xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rearely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boudaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9820, 0x983c,
1383 		0x9850, 0x9864,
1384 		0x9c00, 0x9c6c,
1385 		0x9c80, 0x9cec,
1386 		0x9d00, 0x9d6c,
1387 		0x9d80, 0x9dec,
1388 		0x9e00, 0x9e6c,
1389 		0x9e80, 0x9eec,
1390 		0x9f00, 0x9f6c,
1391 		0x9f80, 0xa020,
1392 		0xd004, 0xd004,
1393 		0xd010, 0xd03c,
1394 		0xdfc0, 0xdfe0,
1395 		0xe000, 0x1106c,
1396 		0x11074, 0x11088,
1397 		0x1109c, 0x1117c,
1398 		0x11190, 0x11204,
1399 		0x19040, 0x1906c,
1400 		0x19078, 0x19080,
1401 		0x1908c, 0x190e8,
1402 		0x190f0, 0x190f8,
1403 		0x19100, 0x19110,
1404 		0x19120, 0x19124,
1405 		0x19150, 0x19194,
1406 		0x1919c, 0x191b0,
1407 		0x191d0, 0x191e8,
1408 		0x19238, 0x19290,
1409 		0x193f8, 0x19428,
1410 		0x19430, 0x19444,
1411 		0x1944c, 0x1946c,
1412 		0x19474, 0x19474,
1413 		0x19490, 0x194cc,
1414 		0x194f0, 0x194f8,
1415 		0x19c00, 0x19c08,
1416 		0x19c10, 0x19c60,
1417 		0x19c94, 0x19ce4,
1418 		0x19cf0, 0x19d40,
1419 		0x19d50, 0x19d94,
1420 		0x19da0, 0x19de8,
1421 		0x19df0, 0x19e10,
1422 		0x19e50, 0x19e90,
1423 		0x19ea0, 0x19f24,
1424 		0x19f34, 0x19f34,
1425 		0x19f40, 0x19f50,
1426 		0x19f90, 0x19fb4,
1427 		0x19fc4, 0x19fe4,
1428 		0x1a000, 0x1a004,
1429 		0x1a010, 0x1a06c,
1430 		0x1a0b0, 0x1a0e4,
1431 		0x1a0ec, 0x1a0f8,
1432 		0x1a100, 0x1a108,
1433 		0x1a114, 0x1a120,
1434 		0x1a128, 0x1a130,
1435 		0x1a138, 0x1a138,
1436 		0x1a190, 0x1a1c4,
1437 		0x1a1fc, 0x1a1fc,
1438 		0x1e008, 0x1e00c,
1439 		0x1e040, 0x1e044,
1440 		0x1e04c, 0x1e04c,
1441 		0x1e284, 0x1e290,
1442 		0x1e2c0, 0x1e2c0,
1443 		0x1e2e0, 0x1e2e0,
1444 		0x1e300, 0x1e384,
1445 		0x1e3c0, 0x1e3c8,
1446 		0x1e408, 0x1e40c,
1447 		0x1e440, 0x1e444,
1448 		0x1e44c, 0x1e44c,
1449 		0x1e684, 0x1e690,
1450 		0x1e6c0, 0x1e6c0,
1451 		0x1e6e0, 0x1e6e0,
1452 		0x1e700, 0x1e784,
1453 		0x1e7c0, 0x1e7c8,
1454 		0x1e808, 0x1e80c,
1455 		0x1e840, 0x1e844,
1456 		0x1e84c, 0x1e84c,
1457 		0x1ea84, 0x1ea90,
1458 		0x1eac0, 0x1eac0,
1459 		0x1eae0, 0x1eae0,
1460 		0x1eb00, 0x1eb84,
1461 		0x1ebc0, 0x1ebc8,
1462 		0x1ec08, 0x1ec0c,
1463 		0x1ec40, 0x1ec44,
1464 		0x1ec4c, 0x1ec4c,
1465 		0x1ee84, 0x1ee90,
1466 		0x1eec0, 0x1eec0,
1467 		0x1eee0, 0x1eee0,
1468 		0x1ef00, 0x1ef84,
1469 		0x1efc0, 0x1efc8,
1470 		0x1f008, 0x1f00c,
1471 		0x1f040, 0x1f044,
1472 		0x1f04c, 0x1f04c,
1473 		0x1f284, 0x1f290,
1474 		0x1f2c0, 0x1f2c0,
1475 		0x1f2e0, 0x1f2e0,
1476 		0x1f300, 0x1f384,
1477 		0x1f3c0, 0x1f3c8,
1478 		0x1f408, 0x1f40c,
1479 		0x1f440, 0x1f444,
1480 		0x1f44c, 0x1f44c,
1481 		0x1f684, 0x1f690,
1482 		0x1f6c0, 0x1f6c0,
1483 		0x1f6e0, 0x1f6e0,
1484 		0x1f700, 0x1f784,
1485 		0x1f7c0, 0x1f7c8,
1486 		0x1f808, 0x1f80c,
1487 		0x1f840, 0x1f844,
1488 		0x1f84c, 0x1f84c,
1489 		0x1fa84, 0x1fa90,
1490 		0x1fac0, 0x1fac0,
1491 		0x1fae0, 0x1fae0,
1492 		0x1fb00, 0x1fb84,
1493 		0x1fbc0, 0x1fbc8,
1494 		0x1fc08, 0x1fc0c,
1495 		0x1fc40, 0x1fc44,
1496 		0x1fc4c, 0x1fc4c,
1497 		0x1fe84, 0x1fe90,
1498 		0x1fec0, 0x1fec0,
1499 		0x1fee0, 0x1fee0,
1500 		0x1ff00, 0x1ff84,
1501 		0x1ffc0, 0x1ffc8,
1502 		0x30000, 0x30030,
1503 		0x30100, 0x30144,
1504 		0x30190, 0x301a0,
1505 		0x301a8, 0x301b8,
1506 		0x301c4, 0x301c8,
1507 		0x301d0, 0x301d0,
1508 		0x30200, 0x30318,
1509 		0x30400, 0x304b4,
1510 		0x304c0, 0x3052c,
1511 		0x30540, 0x3061c,
1512 		0x30800, 0x30828,
1513 		0x30834, 0x30834,
1514 		0x308c0, 0x30908,
1515 		0x30910, 0x309ac,
1516 		0x30a00, 0x30a14,
1517 		0x30a1c, 0x30a2c,
1518 		0x30a44, 0x30a50,
1519 		0x30a74, 0x30a74,
1520 		0x30a7c, 0x30afc,
1521 		0x30b08, 0x30c24,
1522 		0x30d00, 0x30d00,
1523 		0x30d08, 0x30d14,
1524 		0x30d1c, 0x30d20,
1525 		0x30d3c, 0x30d3c,
1526 		0x30d48, 0x30d50,
1527 		0x31200, 0x3120c,
1528 		0x31220, 0x31220,
1529 		0x31240, 0x31240,
1530 		0x31600, 0x3160c,
1531 		0x31a00, 0x31a1c,
1532 		0x31e00, 0x31e20,
1533 		0x31e38, 0x31e3c,
1534 		0x31e80, 0x31e80,
1535 		0x31e88, 0x31ea8,
1536 		0x31eb0, 0x31eb4,
1537 		0x31ec8, 0x31ed4,
1538 		0x31fb8, 0x32004,
1539 		0x32200, 0x32200,
1540 		0x32208, 0x32240,
1541 		0x32248, 0x32280,
1542 		0x32288, 0x322c0,
1543 		0x322c8, 0x322fc,
1544 		0x32600, 0x32630,
1545 		0x32a00, 0x32abc,
1546 		0x32b00, 0x32b10,
1547 		0x32b20, 0x32b30,
1548 		0x32b40, 0x32b50,
1549 		0x32b60, 0x32b70,
1550 		0x33000, 0x33028,
1551 		0x33030, 0x33048,
1552 		0x33060, 0x33068,
1553 		0x33070, 0x3309c,
1554 		0x330f0, 0x33128,
1555 		0x33130, 0x33148,
1556 		0x33160, 0x33168,
1557 		0x33170, 0x3319c,
1558 		0x331f0, 0x33238,
1559 		0x33240, 0x33240,
1560 		0x33248, 0x33250,
1561 		0x3325c, 0x33264,
1562 		0x33270, 0x332b8,
1563 		0x332c0, 0x332e4,
1564 		0x332f8, 0x33338,
1565 		0x33340, 0x33340,
1566 		0x33348, 0x33350,
1567 		0x3335c, 0x33364,
1568 		0x33370, 0x333b8,
1569 		0x333c0, 0x333e4,
1570 		0x333f8, 0x33428,
1571 		0x33430, 0x33448,
1572 		0x33460, 0x33468,
1573 		0x33470, 0x3349c,
1574 		0x334f0, 0x33528,
1575 		0x33530, 0x33548,
1576 		0x33560, 0x33568,
1577 		0x33570, 0x3359c,
1578 		0x335f0, 0x33638,
1579 		0x33640, 0x33640,
1580 		0x33648, 0x33650,
1581 		0x3365c, 0x33664,
1582 		0x33670, 0x336b8,
1583 		0x336c0, 0x336e4,
1584 		0x336f8, 0x33738,
1585 		0x33740, 0x33740,
1586 		0x33748, 0x33750,
1587 		0x3375c, 0x33764,
1588 		0x33770, 0x337b8,
1589 		0x337c0, 0x337e4,
1590 		0x337f8, 0x337fc,
1591 		0x33814, 0x33814,
1592 		0x3382c, 0x3382c,
1593 		0x33880, 0x3388c,
1594 		0x338e8, 0x338ec,
1595 		0x33900, 0x33928,
1596 		0x33930, 0x33948,
1597 		0x33960, 0x33968,
1598 		0x33970, 0x3399c,
1599 		0x339f0, 0x33a38,
1600 		0x33a40, 0x33a40,
1601 		0x33a48, 0x33a50,
1602 		0x33a5c, 0x33a64,
1603 		0x33a70, 0x33ab8,
1604 		0x33ac0, 0x33ae4,
1605 		0x33af8, 0x33b10,
1606 		0x33b28, 0x33b28,
1607 		0x33b3c, 0x33b50,
1608 		0x33bf0, 0x33c10,
1609 		0x33c28, 0x33c28,
1610 		0x33c3c, 0x33c50,
1611 		0x33cf0, 0x33cfc,
1612 		0x34000, 0x34030,
1613 		0x34100, 0x34144,
1614 		0x34190, 0x341a0,
1615 		0x341a8, 0x341b8,
1616 		0x341c4, 0x341c8,
1617 		0x341d0, 0x341d0,
1618 		0x34200, 0x34318,
1619 		0x34400, 0x344b4,
1620 		0x344c0, 0x3452c,
1621 		0x34540, 0x3461c,
1622 		0x34800, 0x34828,
1623 		0x34834, 0x34834,
1624 		0x348c0, 0x34908,
1625 		0x34910, 0x349ac,
1626 		0x34a00, 0x34a14,
1627 		0x34a1c, 0x34a2c,
1628 		0x34a44, 0x34a50,
1629 		0x34a74, 0x34a74,
1630 		0x34a7c, 0x34afc,
1631 		0x34b08, 0x34c24,
1632 		0x34d00, 0x34d00,
1633 		0x34d08, 0x34d14,
1634 		0x34d1c, 0x34d20,
1635 		0x34d3c, 0x34d3c,
1636 		0x34d48, 0x34d50,
1637 		0x35200, 0x3520c,
1638 		0x35220, 0x35220,
1639 		0x35240, 0x35240,
1640 		0x35600, 0x3560c,
1641 		0x35a00, 0x35a1c,
1642 		0x35e00, 0x35e20,
1643 		0x35e38, 0x35e3c,
1644 		0x35e80, 0x35e80,
1645 		0x35e88, 0x35ea8,
1646 		0x35eb0, 0x35eb4,
1647 		0x35ec8, 0x35ed4,
1648 		0x35fb8, 0x36004,
1649 		0x36200, 0x36200,
1650 		0x36208, 0x36240,
1651 		0x36248, 0x36280,
1652 		0x36288, 0x362c0,
1653 		0x362c8, 0x362fc,
1654 		0x36600, 0x36630,
1655 		0x36a00, 0x36abc,
1656 		0x36b00, 0x36b10,
1657 		0x36b20, 0x36b30,
1658 		0x36b40, 0x36b50,
1659 		0x36b60, 0x36b70,
1660 		0x37000, 0x37028,
1661 		0x37030, 0x37048,
1662 		0x37060, 0x37068,
1663 		0x37070, 0x3709c,
1664 		0x370f0, 0x37128,
1665 		0x37130, 0x37148,
1666 		0x37160, 0x37168,
1667 		0x37170, 0x3719c,
1668 		0x371f0, 0x37238,
1669 		0x37240, 0x37240,
1670 		0x37248, 0x37250,
1671 		0x3725c, 0x37264,
1672 		0x37270, 0x372b8,
1673 		0x372c0, 0x372e4,
1674 		0x372f8, 0x37338,
1675 		0x37340, 0x37340,
1676 		0x37348, 0x37350,
1677 		0x3735c, 0x37364,
1678 		0x37370, 0x373b8,
1679 		0x373c0, 0x373e4,
1680 		0x373f8, 0x37428,
1681 		0x37430, 0x37448,
1682 		0x37460, 0x37468,
1683 		0x37470, 0x3749c,
1684 		0x374f0, 0x37528,
1685 		0x37530, 0x37548,
1686 		0x37560, 0x37568,
1687 		0x37570, 0x3759c,
1688 		0x375f0, 0x37638,
1689 		0x37640, 0x37640,
1690 		0x37648, 0x37650,
1691 		0x3765c, 0x37664,
1692 		0x37670, 0x376b8,
1693 		0x376c0, 0x376e4,
1694 		0x376f8, 0x37738,
1695 		0x37740, 0x37740,
1696 		0x37748, 0x37750,
1697 		0x3775c, 0x37764,
1698 		0x37770, 0x377b8,
1699 		0x377c0, 0x377e4,
1700 		0x377f8, 0x377fc,
1701 		0x37814, 0x37814,
1702 		0x3782c, 0x3782c,
1703 		0x37880, 0x3788c,
1704 		0x378e8, 0x378ec,
1705 		0x37900, 0x37928,
1706 		0x37930, 0x37948,
1707 		0x37960, 0x37968,
1708 		0x37970, 0x3799c,
1709 		0x379f0, 0x37a38,
1710 		0x37a40, 0x37a40,
1711 		0x37a48, 0x37a50,
1712 		0x37a5c, 0x37a64,
1713 		0x37a70, 0x37ab8,
1714 		0x37ac0, 0x37ae4,
1715 		0x37af8, 0x37b10,
1716 		0x37b28, 0x37b28,
1717 		0x37b3c, 0x37b50,
1718 		0x37bf0, 0x37c10,
1719 		0x37c28, 0x37c28,
1720 		0x37c3c, 0x37c50,
1721 		0x37cf0, 0x37cfc,
1722 		0x38000, 0x38030,
1723 		0x38100, 0x38144,
1724 		0x38190, 0x381a0,
1725 		0x381a8, 0x381b8,
1726 		0x381c4, 0x381c8,
1727 		0x381d0, 0x381d0,
1728 		0x38200, 0x38318,
1729 		0x38400, 0x384b4,
1730 		0x384c0, 0x3852c,
1731 		0x38540, 0x3861c,
1732 		0x38800, 0x38828,
1733 		0x38834, 0x38834,
1734 		0x388c0, 0x38908,
1735 		0x38910, 0x389ac,
1736 		0x38a00, 0x38a14,
1737 		0x38a1c, 0x38a2c,
1738 		0x38a44, 0x38a50,
1739 		0x38a74, 0x38a74,
1740 		0x38a7c, 0x38afc,
1741 		0x38b08, 0x38c24,
1742 		0x38d00, 0x38d00,
1743 		0x38d08, 0x38d14,
1744 		0x38d1c, 0x38d20,
1745 		0x38d3c, 0x38d3c,
1746 		0x38d48, 0x38d50,
1747 		0x39200, 0x3920c,
1748 		0x39220, 0x39220,
1749 		0x39240, 0x39240,
1750 		0x39600, 0x3960c,
1751 		0x39a00, 0x39a1c,
1752 		0x39e00, 0x39e20,
1753 		0x39e38, 0x39e3c,
1754 		0x39e80, 0x39e80,
1755 		0x39e88, 0x39ea8,
1756 		0x39eb0, 0x39eb4,
1757 		0x39ec8, 0x39ed4,
1758 		0x39fb8, 0x3a004,
1759 		0x3a200, 0x3a200,
1760 		0x3a208, 0x3a240,
1761 		0x3a248, 0x3a280,
1762 		0x3a288, 0x3a2c0,
1763 		0x3a2c8, 0x3a2fc,
1764 		0x3a600, 0x3a630,
1765 		0x3aa00, 0x3aabc,
1766 		0x3ab00, 0x3ab10,
1767 		0x3ab20, 0x3ab30,
1768 		0x3ab40, 0x3ab50,
1769 		0x3ab60, 0x3ab70,
1770 		0x3b000, 0x3b028,
1771 		0x3b030, 0x3b048,
1772 		0x3b060, 0x3b068,
1773 		0x3b070, 0x3b09c,
1774 		0x3b0f0, 0x3b128,
1775 		0x3b130, 0x3b148,
1776 		0x3b160, 0x3b168,
1777 		0x3b170, 0x3b19c,
1778 		0x3b1f0, 0x3b238,
1779 		0x3b240, 0x3b240,
1780 		0x3b248, 0x3b250,
1781 		0x3b25c, 0x3b264,
1782 		0x3b270, 0x3b2b8,
1783 		0x3b2c0, 0x3b2e4,
1784 		0x3b2f8, 0x3b338,
1785 		0x3b340, 0x3b340,
1786 		0x3b348, 0x3b350,
1787 		0x3b35c, 0x3b364,
1788 		0x3b370, 0x3b3b8,
1789 		0x3b3c0, 0x3b3e4,
1790 		0x3b3f8, 0x3b428,
1791 		0x3b430, 0x3b448,
1792 		0x3b460, 0x3b468,
1793 		0x3b470, 0x3b49c,
1794 		0x3b4f0, 0x3b528,
1795 		0x3b530, 0x3b548,
1796 		0x3b560, 0x3b568,
1797 		0x3b570, 0x3b59c,
1798 		0x3b5f0, 0x3b638,
1799 		0x3b640, 0x3b640,
1800 		0x3b648, 0x3b650,
1801 		0x3b65c, 0x3b664,
1802 		0x3b670, 0x3b6b8,
1803 		0x3b6c0, 0x3b6e4,
1804 		0x3b6f8, 0x3b738,
1805 		0x3b740, 0x3b740,
1806 		0x3b748, 0x3b750,
1807 		0x3b75c, 0x3b764,
1808 		0x3b770, 0x3b7b8,
1809 		0x3b7c0, 0x3b7e4,
1810 		0x3b7f8, 0x3b7fc,
1811 		0x3b814, 0x3b814,
1812 		0x3b82c, 0x3b82c,
1813 		0x3b880, 0x3b88c,
1814 		0x3b8e8, 0x3b8ec,
1815 		0x3b900, 0x3b928,
1816 		0x3b930, 0x3b948,
1817 		0x3b960, 0x3b968,
1818 		0x3b970, 0x3b99c,
1819 		0x3b9f0, 0x3ba38,
1820 		0x3ba40, 0x3ba40,
1821 		0x3ba48, 0x3ba50,
1822 		0x3ba5c, 0x3ba64,
1823 		0x3ba70, 0x3bab8,
1824 		0x3bac0, 0x3bae4,
1825 		0x3baf8, 0x3bb10,
1826 		0x3bb28, 0x3bb28,
1827 		0x3bb3c, 0x3bb50,
1828 		0x3bbf0, 0x3bc10,
1829 		0x3bc28, 0x3bc28,
1830 		0x3bc3c, 0x3bc50,
1831 		0x3bcf0, 0x3bcfc,
1832 		0x3c000, 0x3c030,
1833 		0x3c100, 0x3c144,
1834 		0x3c190, 0x3c1a0,
1835 		0x3c1a8, 0x3c1b8,
1836 		0x3c1c4, 0x3c1c8,
1837 		0x3c1d0, 0x3c1d0,
1838 		0x3c200, 0x3c318,
1839 		0x3c400, 0x3c4b4,
1840 		0x3c4c0, 0x3c52c,
1841 		0x3c540, 0x3c61c,
1842 		0x3c800, 0x3c828,
1843 		0x3c834, 0x3c834,
1844 		0x3c8c0, 0x3c908,
1845 		0x3c910, 0x3c9ac,
1846 		0x3ca00, 0x3ca14,
1847 		0x3ca1c, 0x3ca2c,
1848 		0x3ca44, 0x3ca50,
1849 		0x3ca74, 0x3ca74,
1850 		0x3ca7c, 0x3cafc,
1851 		0x3cb08, 0x3cc24,
1852 		0x3cd00, 0x3cd00,
1853 		0x3cd08, 0x3cd14,
1854 		0x3cd1c, 0x3cd20,
1855 		0x3cd3c, 0x3cd3c,
1856 		0x3cd48, 0x3cd50,
1857 		0x3d200, 0x3d20c,
1858 		0x3d220, 0x3d220,
1859 		0x3d240, 0x3d240,
1860 		0x3d600, 0x3d60c,
1861 		0x3da00, 0x3da1c,
1862 		0x3de00, 0x3de20,
1863 		0x3de38, 0x3de3c,
1864 		0x3de80, 0x3de80,
1865 		0x3de88, 0x3dea8,
1866 		0x3deb0, 0x3deb4,
1867 		0x3dec8, 0x3ded4,
1868 		0x3dfb8, 0x3e004,
1869 		0x3e200, 0x3e200,
1870 		0x3e208, 0x3e240,
1871 		0x3e248, 0x3e280,
1872 		0x3e288, 0x3e2c0,
1873 		0x3e2c8, 0x3e2fc,
1874 		0x3e600, 0x3e630,
1875 		0x3ea00, 0x3eabc,
1876 		0x3eb00, 0x3eb10,
1877 		0x3eb20, 0x3eb30,
1878 		0x3eb40, 0x3eb50,
1879 		0x3eb60, 0x3eb70,
1880 		0x3f000, 0x3f028,
1881 		0x3f030, 0x3f048,
1882 		0x3f060, 0x3f068,
1883 		0x3f070, 0x3f09c,
1884 		0x3f0f0, 0x3f128,
1885 		0x3f130, 0x3f148,
1886 		0x3f160, 0x3f168,
1887 		0x3f170, 0x3f19c,
1888 		0x3f1f0, 0x3f238,
1889 		0x3f240, 0x3f240,
1890 		0x3f248, 0x3f250,
1891 		0x3f25c, 0x3f264,
1892 		0x3f270, 0x3f2b8,
1893 		0x3f2c0, 0x3f2e4,
1894 		0x3f2f8, 0x3f338,
1895 		0x3f340, 0x3f340,
1896 		0x3f348, 0x3f350,
1897 		0x3f35c, 0x3f364,
1898 		0x3f370, 0x3f3b8,
1899 		0x3f3c0, 0x3f3e4,
1900 		0x3f3f8, 0x3f428,
1901 		0x3f430, 0x3f448,
1902 		0x3f460, 0x3f468,
1903 		0x3f470, 0x3f49c,
1904 		0x3f4f0, 0x3f528,
1905 		0x3f530, 0x3f548,
1906 		0x3f560, 0x3f568,
1907 		0x3f570, 0x3f59c,
1908 		0x3f5f0, 0x3f638,
1909 		0x3f640, 0x3f640,
1910 		0x3f648, 0x3f650,
1911 		0x3f65c, 0x3f664,
1912 		0x3f670, 0x3f6b8,
1913 		0x3f6c0, 0x3f6e4,
1914 		0x3f6f8, 0x3f738,
1915 		0x3f740, 0x3f740,
1916 		0x3f748, 0x3f750,
1917 		0x3f75c, 0x3f764,
1918 		0x3f770, 0x3f7b8,
1919 		0x3f7c0, 0x3f7e4,
1920 		0x3f7f8, 0x3f7fc,
1921 		0x3f814, 0x3f814,
1922 		0x3f82c, 0x3f82c,
1923 		0x3f880, 0x3f88c,
1924 		0x3f8e8, 0x3f8ec,
1925 		0x3f900, 0x3f928,
1926 		0x3f930, 0x3f948,
1927 		0x3f960, 0x3f968,
1928 		0x3f970, 0x3f99c,
1929 		0x3f9f0, 0x3fa38,
1930 		0x3fa40, 0x3fa40,
1931 		0x3fa48, 0x3fa50,
1932 		0x3fa5c, 0x3fa64,
1933 		0x3fa70, 0x3fab8,
1934 		0x3fac0, 0x3fae4,
1935 		0x3faf8, 0x3fb10,
1936 		0x3fb28, 0x3fb28,
1937 		0x3fb3c, 0x3fb50,
1938 		0x3fbf0, 0x3fc10,
1939 		0x3fc28, 0x3fc28,
1940 		0x3fc3c, 0x3fc50,
1941 		0x3fcf0, 0x3fcfc,
1942 		0x40000, 0x4000c,
1943 		0x40040, 0x40050,
1944 		0x40060, 0x40068,
1945 		0x4007c, 0x4008c,
1946 		0x40094, 0x400b0,
1947 		0x400c0, 0x40144,
1948 		0x40180, 0x4018c,
1949 		0x40200, 0x40254,
1950 		0x40260, 0x40264,
1951 		0x40270, 0x40288,
1952 		0x40290, 0x40298,
1953 		0x402ac, 0x402c8,
1954 		0x402d0, 0x402e0,
1955 		0x402f0, 0x402f0,
1956 		0x40300, 0x4033c,
1957 		0x403f8, 0x403fc,
1958 		0x41304, 0x413c4,
1959 		0x41400, 0x4140c,
1960 		0x41414, 0x4141c,
1961 		0x41480, 0x414d0,
1962 		0x44000, 0x44054,
1963 		0x4405c, 0x44078,
1964 		0x440c0, 0x44174,
1965 		0x44180, 0x441ac,
1966 		0x441b4, 0x441b8,
1967 		0x441c0, 0x44254,
1968 		0x4425c, 0x44278,
1969 		0x442c0, 0x44374,
1970 		0x44380, 0x443ac,
1971 		0x443b4, 0x443b8,
1972 		0x443c0, 0x44454,
1973 		0x4445c, 0x44478,
1974 		0x444c0, 0x44574,
1975 		0x44580, 0x445ac,
1976 		0x445b4, 0x445b8,
1977 		0x445c0, 0x44654,
1978 		0x4465c, 0x44678,
1979 		0x446c0, 0x44774,
1980 		0x44780, 0x447ac,
1981 		0x447b4, 0x447b8,
1982 		0x447c0, 0x44854,
1983 		0x4485c, 0x44878,
1984 		0x448c0, 0x44974,
1985 		0x44980, 0x449ac,
1986 		0x449b4, 0x449b8,
1987 		0x449c0, 0x449fc,
1988 		0x45000, 0x45004,
1989 		0x45010, 0x45030,
1990 		0x45040, 0x45060,
1991 		0x45068, 0x45068,
1992 		0x45080, 0x45084,
1993 		0x450a0, 0x450b0,
1994 		0x45200, 0x45204,
1995 		0x45210, 0x45230,
1996 		0x45240, 0x45260,
1997 		0x45268, 0x45268,
1998 		0x45280, 0x45284,
1999 		0x452a0, 0x452b0,
2000 		0x460c0, 0x460e4,
2001 		0x47000, 0x4703c,
2002 		0x47044, 0x4708c,
2003 		0x47200, 0x47250,
2004 		0x47400, 0x47408,
2005 		0x47414, 0x47420,
2006 		0x47600, 0x47618,
2007 		0x47800, 0x47814,
2008 		0x48000, 0x4800c,
2009 		0x48040, 0x48050,
2010 		0x48060, 0x48068,
2011 		0x4807c, 0x4808c,
2012 		0x48094, 0x480b0,
2013 		0x480c0, 0x48144,
2014 		0x48180, 0x4818c,
2015 		0x48200, 0x48254,
2016 		0x48260, 0x48264,
2017 		0x48270, 0x48288,
2018 		0x48290, 0x48298,
2019 		0x482ac, 0x482c8,
2020 		0x482d0, 0x482e0,
2021 		0x482f0, 0x482f0,
2022 		0x48300, 0x4833c,
2023 		0x483f8, 0x483fc,
2024 		0x49304, 0x493c4,
2025 		0x49400, 0x4940c,
2026 		0x49414, 0x4941c,
2027 		0x49480, 0x494d0,
2028 		0x4c000, 0x4c054,
2029 		0x4c05c, 0x4c078,
2030 		0x4c0c0, 0x4c174,
2031 		0x4c180, 0x4c1ac,
2032 		0x4c1b4, 0x4c1b8,
2033 		0x4c1c0, 0x4c254,
2034 		0x4c25c, 0x4c278,
2035 		0x4c2c0, 0x4c374,
2036 		0x4c380, 0x4c3ac,
2037 		0x4c3b4, 0x4c3b8,
2038 		0x4c3c0, 0x4c454,
2039 		0x4c45c, 0x4c478,
2040 		0x4c4c0, 0x4c574,
2041 		0x4c580, 0x4c5ac,
2042 		0x4c5b4, 0x4c5b8,
2043 		0x4c5c0, 0x4c654,
2044 		0x4c65c, 0x4c678,
2045 		0x4c6c0, 0x4c774,
2046 		0x4c780, 0x4c7ac,
2047 		0x4c7b4, 0x4c7b8,
2048 		0x4c7c0, 0x4c854,
2049 		0x4c85c, 0x4c878,
2050 		0x4c8c0, 0x4c974,
2051 		0x4c980, 0x4c9ac,
2052 		0x4c9b4, 0x4c9b8,
2053 		0x4c9c0, 0x4c9fc,
2054 		0x4d000, 0x4d004,
2055 		0x4d010, 0x4d030,
2056 		0x4d040, 0x4d060,
2057 		0x4d068, 0x4d068,
2058 		0x4d080, 0x4d084,
2059 		0x4d0a0, 0x4d0b0,
2060 		0x4d200, 0x4d204,
2061 		0x4d210, 0x4d230,
2062 		0x4d240, 0x4d260,
2063 		0x4d268, 0x4d268,
2064 		0x4d280, 0x4d284,
2065 		0x4d2a0, 0x4d2b0,
2066 		0x4e0c0, 0x4e0e4,
2067 		0x4f000, 0x4f03c,
2068 		0x4f044, 0x4f08c,
2069 		0x4f200, 0x4f250,
2070 		0x4f400, 0x4f408,
2071 		0x4f414, 0x4f420,
2072 		0x4f600, 0x4f618,
2073 		0x4f800, 0x4f814,
2074 		0x50000, 0x50084,
2075 		0x50090, 0x500cc,
2076 		0x50400, 0x50400,
2077 		0x50800, 0x50884,
2078 		0x50890, 0x508cc,
2079 		0x50c00, 0x50c00,
2080 		0x51000, 0x5101c,
2081 		0x51300, 0x51308,
2082 	};
2083 
2084 	static const unsigned int t6_reg_ranges[] = {
2085 		0x1008, 0x101c,
2086 		0x1024, 0x10a8,
2087 		0x10b4, 0x10f8,
2088 		0x1100, 0x1114,
2089 		0x111c, 0x112c,
2090 		0x1138, 0x113c,
2091 		0x1144, 0x114c,
2092 		0x1180, 0x1184,
2093 		0x1190, 0x1194,
2094 		0x11a0, 0x11a4,
2095 		0x11b0, 0x11b4,
2096 		0x11fc, 0x1274,
2097 		0x1280, 0x133c,
2098 		0x1800, 0x18fc,
2099 		0x3000, 0x302c,
2100 		0x3060, 0x30b0,
2101 		0x30b8, 0x30d8,
2102 		0x30e0, 0x30fc,
2103 		0x3140, 0x357c,
2104 		0x35a8, 0x35cc,
2105 		0x35ec, 0x35ec,
2106 		0x3600, 0x5624,
2107 		0x56cc, 0x56ec,
2108 		0x56f4, 0x5720,
2109 		0x5728, 0x575c,
2110 		0x580c, 0x5814,
2111 		0x5890, 0x589c,
2112 		0x58a4, 0x58ac,
2113 		0x58b8, 0x58bc,
2114 		0x5940, 0x595c,
2115 		0x5980, 0x598c,
2116 		0x59b0, 0x59c8,
2117 		0x59d0, 0x59dc,
2118 		0x59fc, 0x5a18,
2119 		0x5a60, 0x5a6c,
2120 		0x5a80, 0x5a8c,
2121 		0x5a94, 0x5a9c,
2122 		0x5b94, 0x5bfc,
2123 		0x5c10, 0x5e48,
2124 		0x5e50, 0x5e94,
2125 		0x5ea0, 0x5eb0,
2126 		0x5ec0, 0x5ec0,
2127 		0x5ec8, 0x5ed0,
2128 		0x5ee0, 0x5ee0,
2129 		0x5ef0, 0x5ef0,
2130 		0x5f00, 0x5f00,
2131 		0x6000, 0x6020,
2132 		0x6028, 0x6040,
2133 		0x6058, 0x609c,
2134 		0x60a8, 0x619c,
2135 		0x7700, 0x7798,
2136 		0x77c0, 0x7880,
2137 		0x78cc, 0x78fc,
2138 		0x7b00, 0x7b58,
2139 		0x7b60, 0x7b84,
2140 		0x7b8c, 0x7c54,
2141 		0x7d00, 0x7d38,
2142 		0x7d40, 0x7d84,
2143 		0x7d8c, 0x7ddc,
2144 		0x7de4, 0x7e04,
2145 		0x7e10, 0x7e1c,
2146 		0x7e24, 0x7e38,
2147 		0x7e40, 0x7e44,
2148 		0x7e4c, 0x7e78,
2149 		0x7e80, 0x7edc,
2150 		0x7ee8, 0x7efc,
2151 		0x8dc0, 0x8de4,
2152 		0x8df8, 0x8e04,
2153 		0x8e10, 0x8e84,
2154 		0x8ea0, 0x8f88,
2155 		0x8fb8, 0x9058,
2156 		0x9060, 0x9060,
2157 		0x9068, 0x90f8,
2158 		0x9100, 0x9124,
2159 		0x9400, 0x9470,
2160 		0x9600, 0x9600,
2161 		0x9608, 0x9638,
2162 		0x9640, 0x9704,
2163 		0x9710, 0x971c,
2164 		0x9800, 0x9808,
2165 		0x9820, 0x983c,
2166 		0x9850, 0x9864,
2167 		0x9c00, 0x9c6c,
2168 		0x9c80, 0x9cec,
2169 		0x9d00, 0x9d6c,
2170 		0x9d80, 0x9dec,
2171 		0x9e00, 0x9e6c,
2172 		0x9e80, 0x9eec,
2173 		0x9f00, 0x9f6c,
2174 		0x9f80, 0xa020,
2175 		0xd004, 0xd03c,
2176 		0xd100, 0xd118,
2177 		0xd200, 0xd214,
2178 		0xd220, 0xd234,
2179 		0xd240, 0xd254,
2180 		0xd260, 0xd274,
2181 		0xd280, 0xd294,
2182 		0xd2a0, 0xd2b4,
2183 		0xd2c0, 0xd2d4,
2184 		0xd2e0, 0xd2f4,
2185 		0xd300, 0xd31c,
2186 		0xdfc0, 0xdfe0,
2187 		0xe000, 0xf008,
2188 		0xf010, 0xf018,
2189 		0xf020, 0xf028,
2190 		0x11000, 0x11014,
2191 		0x11048, 0x1106c,
2192 		0x11074, 0x11088,
2193 		0x11098, 0x11120,
2194 		0x1112c, 0x1117c,
2195 		0x11190, 0x112e0,
2196 		0x11300, 0x1130c,
2197 		0x12000, 0x1206c,
2198 		0x19040, 0x1906c,
2199 		0x19078, 0x19080,
2200 		0x1908c, 0x190e8,
2201 		0x190f0, 0x190f8,
2202 		0x19100, 0x19110,
2203 		0x19120, 0x19124,
2204 		0x19150, 0x19194,
2205 		0x1919c, 0x191b0,
2206 		0x191d0, 0x191e8,
2207 		0x19238, 0x19290,
2208 		0x192a4, 0x192b0,
2209 		0x192bc, 0x192bc,
2210 		0x19348, 0x1934c,
2211 		0x193f8, 0x19418,
2212 		0x19420, 0x19428,
2213 		0x19430, 0x19444,
2214 		0x1944c, 0x1946c,
2215 		0x19474, 0x19474,
2216 		0x19490, 0x194cc,
2217 		0x194f0, 0x194f8,
2218 		0x19c00, 0x19c48,
2219 		0x19c50, 0x19c80,
2220 		0x19c94, 0x19c98,
2221 		0x19ca0, 0x19cbc,
2222 		0x19ce4, 0x19ce4,
2223 		0x19cf0, 0x19cf8,
2224 		0x19d00, 0x19d28,
2225 		0x19d50, 0x19d78,
2226 		0x19d94, 0x19d98,
2227 		0x19da0, 0x19dc8,
2228 		0x19df0, 0x19e10,
2229 		0x19e50, 0x19e6c,
2230 		0x19ea0, 0x19ebc,
2231 		0x19ec4, 0x19ef4,
2232 		0x19f04, 0x19f2c,
2233 		0x19f34, 0x19f34,
2234 		0x19f40, 0x19f50,
2235 		0x19f90, 0x19fac,
2236 		0x19fc4, 0x19fc8,
2237 		0x19fd0, 0x19fe4,
2238 		0x1a000, 0x1a004,
2239 		0x1a010, 0x1a06c,
2240 		0x1a0b0, 0x1a0e4,
2241 		0x1a0ec, 0x1a0f8,
2242 		0x1a100, 0x1a108,
2243 		0x1a114, 0x1a120,
2244 		0x1a128, 0x1a130,
2245 		0x1a138, 0x1a138,
2246 		0x1a190, 0x1a1c4,
2247 		0x1a1fc, 0x1a1fc,
2248 		0x1e008, 0x1e00c,
2249 		0x1e040, 0x1e044,
2250 		0x1e04c, 0x1e04c,
2251 		0x1e284, 0x1e290,
2252 		0x1e2c0, 0x1e2c0,
2253 		0x1e2e0, 0x1e2e0,
2254 		0x1e300, 0x1e384,
2255 		0x1e3c0, 0x1e3c8,
2256 		0x1e408, 0x1e40c,
2257 		0x1e440, 0x1e444,
2258 		0x1e44c, 0x1e44c,
2259 		0x1e684, 0x1e690,
2260 		0x1e6c0, 0x1e6c0,
2261 		0x1e6e0, 0x1e6e0,
2262 		0x1e700, 0x1e784,
2263 		0x1e7c0, 0x1e7c8,
2264 		0x1e808, 0x1e80c,
2265 		0x1e840, 0x1e844,
2266 		0x1e84c, 0x1e84c,
2267 		0x1ea84, 0x1ea90,
2268 		0x1eac0, 0x1eac0,
2269 		0x1eae0, 0x1eae0,
2270 		0x1eb00, 0x1eb84,
2271 		0x1ebc0, 0x1ebc8,
2272 		0x1ec08, 0x1ec0c,
2273 		0x1ec40, 0x1ec44,
2274 		0x1ec4c, 0x1ec4c,
2275 		0x1ee84, 0x1ee90,
2276 		0x1eec0, 0x1eec0,
2277 		0x1eee0, 0x1eee0,
2278 		0x1ef00, 0x1ef84,
2279 		0x1efc0, 0x1efc8,
2280 		0x1f008, 0x1f00c,
2281 		0x1f040, 0x1f044,
2282 		0x1f04c, 0x1f04c,
2283 		0x1f284, 0x1f290,
2284 		0x1f2c0, 0x1f2c0,
2285 		0x1f2e0, 0x1f2e0,
2286 		0x1f300, 0x1f384,
2287 		0x1f3c0, 0x1f3c8,
2288 		0x1f408, 0x1f40c,
2289 		0x1f440, 0x1f444,
2290 		0x1f44c, 0x1f44c,
2291 		0x1f684, 0x1f690,
2292 		0x1f6c0, 0x1f6c0,
2293 		0x1f6e0, 0x1f6e0,
2294 		0x1f700, 0x1f784,
2295 		0x1f7c0, 0x1f7c8,
2296 		0x1f808, 0x1f80c,
2297 		0x1f840, 0x1f844,
2298 		0x1f84c, 0x1f84c,
2299 		0x1fa84, 0x1fa90,
2300 		0x1fac0, 0x1fac0,
2301 		0x1fae0, 0x1fae0,
2302 		0x1fb00, 0x1fb84,
2303 		0x1fbc0, 0x1fbc8,
2304 		0x1fc08, 0x1fc0c,
2305 		0x1fc40, 0x1fc44,
2306 		0x1fc4c, 0x1fc4c,
2307 		0x1fe84, 0x1fe90,
2308 		0x1fec0, 0x1fec0,
2309 		0x1fee0, 0x1fee0,
2310 		0x1ff00, 0x1ff84,
2311 		0x1ffc0, 0x1ffc8,
2312 		0x30000, 0x30030,
2313 		0x30100, 0x30168,
2314 		0x30190, 0x301a0,
2315 		0x301a8, 0x301b8,
2316 		0x301c4, 0x301c8,
2317 		0x301d0, 0x301d0,
2318 		0x30200, 0x30320,
2319 		0x30400, 0x304b4,
2320 		0x304c0, 0x3052c,
2321 		0x30540, 0x3061c,
2322 		0x30800, 0x308a0,
2323 		0x308c0, 0x30908,
2324 		0x30910, 0x309b8,
2325 		0x30a00, 0x30a04,
2326 		0x30a0c, 0x30a14,
2327 		0x30a1c, 0x30a2c,
2328 		0x30a44, 0x30a50,
2329 		0x30a74, 0x30a74,
2330 		0x30a7c, 0x30afc,
2331 		0x30b08, 0x30c24,
2332 		0x30d00, 0x30d14,
2333 		0x30d1c, 0x30d3c,
2334 		0x30d44, 0x30d4c,
2335 		0x30d54, 0x30d74,
2336 		0x30d7c, 0x30d7c,
2337 		0x30de0, 0x30de0,
2338 		0x30e00, 0x30ed4,
2339 		0x30f00, 0x30fa4,
2340 		0x30fc0, 0x30fc4,
2341 		0x31000, 0x31004,
2342 		0x31080, 0x310fc,
2343 		0x31208, 0x31220,
2344 		0x3123c, 0x31254,
2345 		0x31300, 0x31300,
2346 		0x31308, 0x3131c,
2347 		0x31338, 0x3133c,
2348 		0x31380, 0x31380,
2349 		0x31388, 0x313a8,
2350 		0x313b4, 0x313b4,
2351 		0x31400, 0x31420,
2352 		0x31438, 0x3143c,
2353 		0x31480, 0x31480,
2354 		0x314a8, 0x314a8,
2355 		0x314b0, 0x314b4,
2356 		0x314c8, 0x314d4,
2357 		0x31a40, 0x31a4c,
2358 		0x31af0, 0x31b20,
2359 		0x31b38, 0x31b3c,
2360 		0x31b80, 0x31b80,
2361 		0x31ba8, 0x31ba8,
2362 		0x31bb0, 0x31bb4,
2363 		0x31bc8, 0x31bd4,
2364 		0x32140, 0x3218c,
2365 		0x321f0, 0x321f4,
2366 		0x32200, 0x32200,
2367 		0x32218, 0x32218,
2368 		0x32400, 0x32400,
2369 		0x32408, 0x3241c,
2370 		0x32618, 0x32620,
2371 		0x32664, 0x32664,
2372 		0x326a8, 0x326a8,
2373 		0x326ec, 0x326ec,
2374 		0x32a00, 0x32abc,
2375 		0x32b00, 0x32b18,
2376 		0x32b20, 0x32b38,
2377 		0x32b40, 0x32b58,
2378 		0x32b60, 0x32b78,
2379 		0x32c00, 0x32c00,
2380 		0x32c08, 0x32c3c,
2381 		0x33000, 0x3302c,
2382 		0x33034, 0x33050,
2383 		0x33058, 0x33058,
2384 		0x33060, 0x3308c,
2385 		0x3309c, 0x330ac,
2386 		0x330c0, 0x330c0,
2387 		0x330c8, 0x330d0,
2388 		0x330d8, 0x330e0,
2389 		0x330ec, 0x3312c,
2390 		0x33134, 0x33150,
2391 		0x33158, 0x33158,
2392 		0x33160, 0x3318c,
2393 		0x3319c, 0x331ac,
2394 		0x331c0, 0x331c0,
2395 		0x331c8, 0x331d0,
2396 		0x331d8, 0x331e0,
2397 		0x331ec, 0x33290,
2398 		0x33298, 0x332c4,
2399 		0x332e4, 0x33390,
2400 		0x33398, 0x333c4,
2401 		0x333e4, 0x3342c,
2402 		0x33434, 0x33450,
2403 		0x33458, 0x33458,
2404 		0x33460, 0x3348c,
2405 		0x3349c, 0x334ac,
2406 		0x334c0, 0x334c0,
2407 		0x334c8, 0x334d0,
2408 		0x334d8, 0x334e0,
2409 		0x334ec, 0x3352c,
2410 		0x33534, 0x33550,
2411 		0x33558, 0x33558,
2412 		0x33560, 0x3358c,
2413 		0x3359c, 0x335ac,
2414 		0x335c0, 0x335c0,
2415 		0x335c8, 0x335d0,
2416 		0x335d8, 0x335e0,
2417 		0x335ec, 0x33690,
2418 		0x33698, 0x336c4,
2419 		0x336e4, 0x33790,
2420 		0x33798, 0x337c4,
2421 		0x337e4, 0x337fc,
2422 		0x33814, 0x33814,
2423 		0x33854, 0x33868,
2424 		0x33880, 0x3388c,
2425 		0x338c0, 0x338d0,
2426 		0x338e8, 0x338ec,
2427 		0x33900, 0x3392c,
2428 		0x33934, 0x33950,
2429 		0x33958, 0x33958,
2430 		0x33960, 0x3398c,
2431 		0x3399c, 0x339ac,
2432 		0x339c0, 0x339c0,
2433 		0x339c8, 0x339d0,
2434 		0x339d8, 0x339e0,
2435 		0x339ec, 0x33a90,
2436 		0x33a98, 0x33ac4,
2437 		0x33ae4, 0x33b10,
2438 		0x33b24, 0x33b28,
2439 		0x33b38, 0x33b50,
2440 		0x33bf0, 0x33c10,
2441 		0x33c24, 0x33c28,
2442 		0x33c38, 0x33c50,
2443 		0x33cf0, 0x33cfc,
2444 		0x34000, 0x34030,
2445 		0x34100, 0x34168,
2446 		0x34190, 0x341a0,
2447 		0x341a8, 0x341b8,
2448 		0x341c4, 0x341c8,
2449 		0x341d0, 0x341d0,
2450 		0x34200, 0x34320,
2451 		0x34400, 0x344b4,
2452 		0x344c0, 0x3452c,
2453 		0x34540, 0x3461c,
2454 		0x34800, 0x348a0,
2455 		0x348c0, 0x34908,
2456 		0x34910, 0x349b8,
2457 		0x34a00, 0x34a04,
2458 		0x34a0c, 0x34a14,
2459 		0x34a1c, 0x34a2c,
2460 		0x34a44, 0x34a50,
2461 		0x34a74, 0x34a74,
2462 		0x34a7c, 0x34afc,
2463 		0x34b08, 0x34c24,
2464 		0x34d00, 0x34d14,
2465 		0x34d1c, 0x34d3c,
2466 		0x34d44, 0x34d4c,
2467 		0x34d54, 0x34d74,
2468 		0x34d7c, 0x34d7c,
2469 		0x34de0, 0x34de0,
2470 		0x34e00, 0x34ed4,
2471 		0x34f00, 0x34fa4,
2472 		0x34fc0, 0x34fc4,
2473 		0x35000, 0x35004,
2474 		0x35080, 0x350fc,
2475 		0x35208, 0x35220,
2476 		0x3523c, 0x35254,
2477 		0x35300, 0x35300,
2478 		0x35308, 0x3531c,
2479 		0x35338, 0x3533c,
2480 		0x35380, 0x35380,
2481 		0x35388, 0x353a8,
2482 		0x353b4, 0x353b4,
2483 		0x35400, 0x35420,
2484 		0x35438, 0x3543c,
2485 		0x35480, 0x35480,
2486 		0x354a8, 0x354a8,
2487 		0x354b0, 0x354b4,
2488 		0x354c8, 0x354d4,
2489 		0x35a40, 0x35a4c,
2490 		0x35af0, 0x35b20,
2491 		0x35b38, 0x35b3c,
2492 		0x35b80, 0x35b80,
2493 		0x35ba8, 0x35ba8,
2494 		0x35bb0, 0x35bb4,
2495 		0x35bc8, 0x35bd4,
2496 		0x36140, 0x3618c,
2497 		0x361f0, 0x361f4,
2498 		0x36200, 0x36200,
2499 		0x36218, 0x36218,
2500 		0x36400, 0x36400,
2501 		0x36408, 0x3641c,
2502 		0x36618, 0x36620,
2503 		0x36664, 0x36664,
2504 		0x366a8, 0x366a8,
2505 		0x366ec, 0x366ec,
2506 		0x36a00, 0x36abc,
2507 		0x36b00, 0x36b18,
2508 		0x36b20, 0x36b38,
2509 		0x36b40, 0x36b58,
2510 		0x36b60, 0x36b78,
2511 		0x36c00, 0x36c00,
2512 		0x36c08, 0x36c3c,
2513 		0x37000, 0x3702c,
2514 		0x37034, 0x37050,
2515 		0x37058, 0x37058,
2516 		0x37060, 0x3708c,
2517 		0x3709c, 0x370ac,
2518 		0x370c0, 0x370c0,
2519 		0x370c8, 0x370d0,
2520 		0x370d8, 0x370e0,
2521 		0x370ec, 0x3712c,
2522 		0x37134, 0x37150,
2523 		0x37158, 0x37158,
2524 		0x37160, 0x3718c,
2525 		0x3719c, 0x371ac,
2526 		0x371c0, 0x371c0,
2527 		0x371c8, 0x371d0,
2528 		0x371d8, 0x371e0,
2529 		0x371ec, 0x37290,
2530 		0x37298, 0x372c4,
2531 		0x372e4, 0x37390,
2532 		0x37398, 0x373c4,
2533 		0x373e4, 0x3742c,
2534 		0x37434, 0x37450,
2535 		0x37458, 0x37458,
2536 		0x37460, 0x3748c,
2537 		0x3749c, 0x374ac,
2538 		0x374c0, 0x374c0,
2539 		0x374c8, 0x374d0,
2540 		0x374d8, 0x374e0,
2541 		0x374ec, 0x3752c,
2542 		0x37534, 0x37550,
2543 		0x37558, 0x37558,
2544 		0x37560, 0x3758c,
2545 		0x3759c, 0x375ac,
2546 		0x375c0, 0x375c0,
2547 		0x375c8, 0x375d0,
2548 		0x375d8, 0x375e0,
2549 		0x375ec, 0x37690,
2550 		0x37698, 0x376c4,
2551 		0x376e4, 0x37790,
2552 		0x37798, 0x377c4,
2553 		0x377e4, 0x377fc,
2554 		0x37814, 0x37814,
2555 		0x37854, 0x37868,
2556 		0x37880, 0x3788c,
2557 		0x378c0, 0x378d0,
2558 		0x378e8, 0x378ec,
2559 		0x37900, 0x3792c,
2560 		0x37934, 0x37950,
2561 		0x37958, 0x37958,
2562 		0x37960, 0x3798c,
2563 		0x3799c, 0x379ac,
2564 		0x379c0, 0x379c0,
2565 		0x379c8, 0x379d0,
2566 		0x379d8, 0x379e0,
2567 		0x379ec, 0x37a90,
2568 		0x37a98, 0x37ac4,
2569 		0x37ae4, 0x37b10,
2570 		0x37b24, 0x37b28,
2571 		0x37b38, 0x37b50,
2572 		0x37bf0, 0x37c10,
2573 		0x37c24, 0x37c28,
2574 		0x37c38, 0x37c50,
2575 		0x37cf0, 0x37cfc,
2576 		0x40040, 0x40040,
2577 		0x40080, 0x40084,
2578 		0x40100, 0x40100,
2579 		0x40140, 0x401bc,
2580 		0x40200, 0x40214,
2581 		0x40228, 0x40228,
2582 		0x40240, 0x40258,
2583 		0x40280, 0x40280,
2584 		0x40304, 0x40304,
2585 		0x40330, 0x4033c,
2586 		0x41304, 0x413c8,
2587 		0x413d0, 0x413dc,
2588 		0x413f0, 0x413f0,
2589 		0x41400, 0x4140c,
2590 		0x41414, 0x4141c,
2591 		0x41480, 0x414d0,
2592 		0x44000, 0x4407c,
2593 		0x440c0, 0x441ac,
2594 		0x441b4, 0x4427c,
2595 		0x442c0, 0x443ac,
2596 		0x443b4, 0x4447c,
2597 		0x444c0, 0x445ac,
2598 		0x445b4, 0x4467c,
2599 		0x446c0, 0x447ac,
2600 		0x447b4, 0x4487c,
2601 		0x448c0, 0x449ac,
2602 		0x449b4, 0x44a7c,
2603 		0x44ac0, 0x44bac,
2604 		0x44bb4, 0x44c7c,
2605 		0x44cc0, 0x44dac,
2606 		0x44db4, 0x44e7c,
2607 		0x44ec0, 0x44fac,
2608 		0x44fb4, 0x4507c,
2609 		0x450c0, 0x451ac,
2610 		0x451b4, 0x451fc,
2611 		0x45800, 0x45804,
2612 		0x45810, 0x45830,
2613 		0x45840, 0x45860,
2614 		0x45868, 0x45868,
2615 		0x45880, 0x45884,
2616 		0x458a0, 0x458b0,
2617 		0x45a00, 0x45a04,
2618 		0x45a10, 0x45a30,
2619 		0x45a40, 0x45a60,
2620 		0x45a68, 0x45a68,
2621 		0x45a80, 0x45a84,
2622 		0x45aa0, 0x45ab0,
2623 		0x460c0, 0x460e4,
2624 		0x47000, 0x4703c,
2625 		0x47044, 0x4708c,
2626 		0x47200, 0x47250,
2627 		0x47400, 0x47408,
2628 		0x47414, 0x47420,
2629 		0x47600, 0x47618,
2630 		0x47800, 0x47814,
2631 		0x47820, 0x4782c,
2632 		0x50000, 0x50084,
2633 		0x50090, 0x500cc,
2634 		0x50300, 0x50384,
2635 		0x50400, 0x50400,
2636 		0x50800, 0x50884,
2637 		0x50890, 0x508cc,
2638 		0x50b00, 0x50b84,
2639 		0x50c00, 0x50c00,
2640 		0x51000, 0x51020,
2641 		0x51028, 0x510b0,
2642 		0x51300, 0x51324,
2643 	};
2644 
2645 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646 	const unsigned int *reg_ranges;
2647 	int reg_ranges_size, range;
2648 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649 
2650 	/* Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		reg_ranges = t4_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T5:
2660 		reg_ranges = t5_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662 		break;
2663 
2664 	case CHELSIO_T6:
2665 		reg_ranges = t6_reg_ranges;
2666 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667 		break;
2668 
2669 	default:
2670 		dev_err(adap->pdev_dev,
2671 			"Unsupported chip version %d\n", chip_version);
2672 		return;
2673 	}
2674 
2675 	/* Clear the register buffer and insert the appropriate register
2676 	 * values selected by the above register ranges.
2677 	 */
2678 	memset(buf, 0, buf_size);
2679 	for (range = 0; range < reg_ranges_size; range += 2) {
2680 		unsigned int reg = reg_ranges[range];
2681 		unsigned int last_reg = reg_ranges[range + 1];
2682 		u32 *bufp = (u32 *)((char *)buf + reg);
2683 
2684 		/* Iterate across the register range filling in the register
2685 		 * buffer but don't write past the end of the register buffer.
2686 		 */
2687 		while (reg <= last_reg && bufp < buf_end) {
2688 			*bufp++ = t4_read_reg(adap, reg);
2689 			reg += sizeof(u32);
2690 		}
2691 	}
2692 }
2693 
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699 
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719 	fn *= sz;
2720 	if (phys_addr < 1024)
2721 		return phys_addr + (31 << 10);
2722 	if (phys_addr < 1024 + fn)
2723 		return 31744 - fn + phys_addr - 1024;
2724 	if (phys_addr < EEPROMSIZE)
2725 		return phys_addr - 1024 - fn;
2726 	return -EINVAL;
2727 }
2728 
2729 /**
2730  *	t4_seeprom_wp - enable/disable EEPROM write protection
2731  *	@adapter: the adapter
2732  *	@enable: whether to enable or disable write protection
2733  *
2734  *	Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738 	unsigned int v = enable ? 0xc : 0;
2739 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740 	return ret < 0 ? ret : 0;
2741 }
2742 
2743 /**
2744  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *	@adapter: adapter to read
2746  *	@p: where to store the parameters
2747  *
2748  *	Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752 	int i, ret = 0, addr;
2753 	int ec, sn, pn, na;
2754 	u8 *vpd, csum;
2755 	unsigned int vpdr_len, kw_offset, id_len;
2756 
2757 	vpd = vmalloc(VPD_LEN);
2758 	if (!vpd)
2759 		return -ENOMEM;
2760 
2761 	/* Card information normally starts at VPD_BASE but early cards had
2762 	 * it at 0.
2763 	 */
2764 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2769 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 	 * is expected to automatically put this entry at the
2772 	 * beginning of the VPD.
2773 	 */
2774 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775 
2776 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777 	if (ret < 0)
2778 		goto out;
2779 
2780 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782 		ret = -EINVAL;
2783 		goto out;
2784 	}
2785 
2786 	id_len = pci_vpd_lrdt_size(vpd);
2787 	if (id_len > ID_LEN)
2788 		id_len = ID_LEN;
2789 
2790 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791 	if (i < 0) {
2792 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793 		ret = -EINVAL;
2794 		goto out;
2795 	}
2796 
2797 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799 	if (vpdr_len + kw_offset > VPD_LEN) {
2800 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801 		ret = -EINVAL;
2802 		goto out;
2803 	}
2804 
2805 #define FIND_VPD_KW(var, name) do { \
2806 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807 	if (var < 0) { \
2808 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809 		ret = -EINVAL; \
2810 		goto out; \
2811 	} \
2812 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814 
2815 	FIND_VPD_KW(i, "RV");
2816 	for (csum = 0; i >= 0; i--)
2817 		csum += vpd[i];
2818 
2819 	if (csum) {
2820 		dev_err(adapter->pdev_dev,
2821 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2822 		ret = -EINVAL;
2823 		goto out;
2824 	}
2825 
2826 	FIND_VPD_KW(ec, "EC");
2827 	FIND_VPD_KW(sn, "SN");
2828 	FIND_VPD_KW(pn, "PN");
2829 	FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831 
2832 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833 	strim(p->id);
2834 	memcpy(p->ec, vpd + ec, EC_LEN);
2835 	strim(p->ec);
2836 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838 	strim(p->sn);
2839 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841 	strim(p->pn);
2842 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843 	strim((char *)p->na);
2844 
2845 out:
2846 	vfree(vpd);
2847 	return ret < 0 ? ret : 0;
2848 }
2849 
2850 /**
2851  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *	@adapter: adapter to read
2853  *	@p: where to store the parameters
2854  *
2855  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *	Clock.  This can only be called after a connection to the firmware
2857  *	is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861 	u32 cclk_param, cclk_val;
2862 	int ret;
2863 
2864 	/* Grab the raw VPD parameters.
2865 	 */
2866 	ret = t4_get_raw_vpd_params(adapter, p);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/* Ask firmware for the Core Clock since it knows how to translate the
2871 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2872 	 */
2873 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876 			      1, &cclk_param, &cclk_val);
2877 
2878 	if (ret)
2879 		return ret;
2880 	p->cclk = cclk_val;
2881 
2882 	return 0;
2883 }
2884 
2885 /**
2886  *	t4_get_pfres - retrieve VF resource limits
2887  *	@adapter: the adapter
2888  *
2889  *	Retrieves configured resource limits and capabilities for a physical
2890  *	function.  The results are stored in @adapter->pfres.
2891  */
2892 int t4_get_pfres(struct adapter *adapter)
2893 {
2894 	struct pf_resources *pfres = &adapter->params.pfres;
2895 	struct fw_pfvf_cmd cmd, rpl;
2896 	int v;
2897 	u32 word;
2898 
2899 	/* Execute PFVF Read command to get VF resource limits; bail out early
2900 	 * with error on command failure.
2901 	 */
2902 	memset(&cmd, 0, sizeof(cmd));
2903 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2904 				    FW_CMD_REQUEST_F |
2905 				    FW_CMD_READ_F |
2906 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2907 				    FW_PFVF_CMD_VFN_V(0));
2908 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2909 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2910 	if (v != FW_SUCCESS)
2911 		return v;
2912 
2913 	/* Extract PF resource limits and return success.
2914 	 */
2915 	word = be32_to_cpu(rpl.niqflint_niq);
2916 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2917 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2918 
2919 	word = be32_to_cpu(rpl.type_to_neq);
2920 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2921 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2922 
2923 	word = be32_to_cpu(rpl.tc_to_nexactf);
2924 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2925 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2926 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2927 
2928 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2929 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2930 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2931 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2932 
2933 	return 0;
2934 }
2935 
2936 /* serial flash and firmware constants */
2937 enum {
2938 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2939 
2940 	/* flash command opcodes */
2941 	SF_PROG_PAGE    = 2,          /* program page */
2942 	SF_WR_DISABLE   = 4,          /* disable writes */
2943 	SF_RD_STATUS    = 5,          /* read status register */
2944 	SF_WR_ENABLE    = 6,          /* enable writes */
2945 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2946 	SF_RD_ID        = 0x9f,       /* read ID */
2947 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2948 };
2949 
2950 /**
2951  *	sf1_read - read data from the serial flash
2952  *	@adapter: the adapter
2953  *	@byte_cnt: number of bytes to read
2954  *	@cont: whether another operation will be chained
2955  *	@lock: whether to lock SF for PL access only
2956  *	@valp: where to store the read data
2957  *
2958  *	Reads up to 4 bytes of data from the serial flash.  The location of
2959  *	the read needs to be specified prior to calling this by issuing the
2960  *	appropriate commands to the serial flash.
2961  */
2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2963 		    int lock, u32 *valp)
2964 {
2965 	int ret;
2966 
2967 	if (!byte_cnt || byte_cnt > 4)
2968 		return -EINVAL;
2969 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2970 		return -EBUSY;
2971 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2972 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2973 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2974 	if (!ret)
2975 		*valp = t4_read_reg(adapter, SF_DATA_A);
2976 	return ret;
2977 }
2978 
2979 /**
2980  *	sf1_write - write data to the serial flash
2981  *	@adapter: the adapter
2982  *	@byte_cnt: number of bytes to write
2983  *	@cont: whether another operation will be chained
2984  *	@lock: whether to lock SF for PL access only
2985  *	@val: value to write
2986  *
2987  *	Writes up to 4 bytes of data to the serial flash.  The location of
2988  *	the write needs to be specified prior to calling this by issuing the
2989  *	appropriate commands to the serial flash.
2990  */
2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2992 		     int lock, u32 val)
2993 {
2994 	if (!byte_cnt || byte_cnt > 4)
2995 		return -EINVAL;
2996 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2997 		return -EBUSY;
2998 	t4_write_reg(adapter, SF_DATA_A, val);
2999 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
3000 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
3001 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
3002 }
3003 
3004 /**
3005  *	flash_wait_op - wait for a flash operation to complete
3006  *	@adapter: the adapter
3007  *	@attempts: max number of polls of the status register
3008  *	@delay: delay between polls in ms
3009  *
3010  *	Wait for a flash operation to complete by polling the status register.
3011  */
3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3013 {
3014 	int ret;
3015 	u32 status;
3016 
3017 	while (1) {
3018 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3019 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3020 			return ret;
3021 		if (!(status & 1))
3022 			return 0;
3023 		if (--attempts == 0)
3024 			return -EAGAIN;
3025 		if (delay)
3026 			msleep(delay);
3027 	}
3028 }
3029 
3030 /**
3031  *	t4_read_flash - read words from serial flash
3032  *	@adapter: the adapter
3033  *	@addr: the start address for the read
3034  *	@nwords: how many 32-bit words to read
3035  *	@data: where to store the read data
3036  *	@byte_oriented: whether to store data as bytes or as words
3037  *
3038  *	Read the specified number of 32-bit words from the serial flash.
3039  *	If @byte_oriented is set the read data is stored as a byte array
3040  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3041  *	natural endianness.
3042  */
3043 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3044 		  unsigned int nwords, u32 *data, int byte_oriented)
3045 {
3046 	int ret;
3047 
3048 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3049 		return -EINVAL;
3050 
3051 	addr = swab32(addr) | SF_RD_DATA_FAST;
3052 
3053 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3054 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3055 		return ret;
3056 
3057 	for ( ; nwords; nwords--, data++) {
3058 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3059 		if (nwords == 1)
3060 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3061 		if (ret)
3062 			return ret;
3063 		if (byte_oriented)
3064 			*data = (__force __u32)(cpu_to_be32(*data));
3065 	}
3066 	return 0;
3067 }
3068 
3069 /**
3070  *	t4_write_flash - write up to a page of data to the serial flash
3071  *	@adapter: the adapter
3072  *	@addr: the start address to write
3073  *	@n: length of data to write in bytes
3074  *	@data: the data to write
3075  *
3076  *	Writes up to a page of data (256 bytes) to the serial flash starting
3077  *	at the given address.  All the data must be written to the same page.
3078  */
3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3080 			  unsigned int n, const u8 *data)
3081 {
3082 	int ret;
3083 	u32 buf[64];
3084 	unsigned int i, c, left, val, offset = addr & 0xff;
3085 
3086 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3087 		return -EINVAL;
3088 
3089 	val = swab32(addr) | SF_PROG_PAGE;
3090 
3091 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3092 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3093 		goto unlock;
3094 
3095 	for (left = n; left; left -= c) {
3096 		c = min(left, 4U);
3097 		for (val = 0, i = 0; i < c; ++i)
3098 			val = (val << 8) + *data++;
3099 
3100 		ret = sf1_write(adapter, c, c != left, 1, val);
3101 		if (ret)
3102 			goto unlock;
3103 	}
3104 	ret = flash_wait_op(adapter, 8, 1);
3105 	if (ret)
3106 		goto unlock;
3107 
3108 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3109 
3110 	/* Read the page to verify the write succeeded */
3111 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3112 	if (ret)
3113 		return ret;
3114 
3115 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3116 		dev_err(adapter->pdev_dev,
3117 			"failed to correctly write the flash page at %#x\n",
3118 			addr);
3119 		return -EIO;
3120 	}
3121 	return 0;
3122 
3123 unlock:
3124 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3125 	return ret;
3126 }
3127 
3128 /**
3129  *	t4_get_fw_version - read the firmware version
3130  *	@adapter: the adapter
3131  *	@vers: where to place the version
3132  *
3133  *	Reads the FW version from flash.
3134  */
3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3136 {
3137 	return t4_read_flash(adapter, FLASH_FW_START +
3138 			     offsetof(struct fw_hdr, fw_ver), 1,
3139 			     vers, 0);
3140 }
3141 
3142 /**
3143  *	t4_get_bs_version - read the firmware bootstrap version
3144  *	@adapter: the adapter
3145  *	@vers: where to place the version
3146  *
3147  *	Reads the FW Bootstrap version from flash.
3148  */
3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3150 {
3151 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3152 			     offsetof(struct fw_hdr, fw_ver), 1,
3153 			     vers, 0);
3154 }
3155 
3156 /**
3157  *	t4_get_tp_version - read the TP microcode version
3158  *	@adapter: the adapter
3159  *	@vers: where to place the version
3160  *
3161  *	Reads the TP microcode version from flash.
3162  */
3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3164 {
3165 	return t4_read_flash(adapter, FLASH_FW_START +
3166 			     offsetof(struct fw_hdr, tp_microcode_ver),
3167 			     1, vers, 0);
3168 }
3169 
3170 /**
3171  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3172  *	@adapter: the adapter
3173  *	@vers: where to place the version
3174  *
3175  *	Reads the Expansion ROM header from FLASH and returns the version
3176  *	number (if present) through the @vers return value pointer.  We return
3177  *	this in the Firmware Version Format since it's convenient.  Return
3178  *	0 on success, -ENOENT if no Expansion ROM is present.
3179  */
3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3181 {
3182 	struct exprom_header {
3183 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3184 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3185 	} *hdr;
3186 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3187 					   sizeof(u32))];
3188 	int ret;
3189 
3190 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3191 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3192 			    0);
3193 	if (ret)
3194 		return ret;
3195 
3196 	hdr = (struct exprom_header *)exprom_header_buf;
3197 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3198 		return -ENOENT;
3199 
3200 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3201 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3202 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3203 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3204 	return 0;
3205 }
3206 
3207 /**
3208  *      t4_get_vpd_version - return the VPD version
3209  *      @adapter: the adapter
3210  *      @vers: where to place the version
3211  *
3212  *      Reads the VPD via the Firmware interface (thus this can only be called
3213  *      once we're ready to issue Firmware commands).  The format of the
3214  *      VPD version is adapter specific.  Returns 0 on success, an error on
3215  *      failure.
3216  *
3217  *      Note that early versions of the Firmware didn't include the ability
3218  *      to retrieve the VPD version, so we zero-out the return-value parameter
3219  *      in that case to avoid leaving it with garbage in it.
3220  *
3221  *      Also note that the Firmware will return its cached copy of the VPD
3222  *      Revision ID, not the actual Revision ID as written in the Serial
3223  *      EEPROM.  This is only an issue if a new VPD has been written and the
3224  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3225  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3226  *      if the Host Driver will be performing a full adapter initialization.
3227  */
3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3229 {
3230 	u32 vpdrev_param;
3231 	int ret;
3232 
3233 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3234 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3235 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3236 			      1, &vpdrev_param, vers);
3237 	if (ret)
3238 		*vers = 0;
3239 	return ret;
3240 }
3241 
3242 /**
3243  *      t4_get_scfg_version - return the Serial Configuration version
3244  *      @adapter: the adapter
3245  *      @vers: where to place the version
3246  *
3247  *      Reads the Serial Configuration Version via the Firmware interface
3248  *      (thus this can only be called once we're ready to issue Firmware
3249  *      commands).  The format of the Serial Configuration version is
3250  *      adapter specific.  Returns 0 on success, an error on failure.
3251  *
3252  *      Note that early versions of the Firmware didn't include the ability
3253  *      to retrieve the Serial Configuration version, so we zero-out the
3254  *      return-value parameter in that case to avoid leaving it with
3255  *      garbage in it.
3256  *
3257  *      Also note that the Firmware will return its cached copy of the Serial
3258  *      Initialization Revision ID, not the actual Revision ID as written in
3259  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3260  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3261  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3262  *      been issued if the Host Driver will be performing a full adapter
3263  *      initialization.
3264  */
3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3266 {
3267 	u32 scfgrev_param;
3268 	int ret;
3269 
3270 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3271 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3272 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3273 			      1, &scfgrev_param, vers);
3274 	if (ret)
3275 		*vers = 0;
3276 	return ret;
3277 }
3278 
3279 /**
3280  *      t4_get_version_info - extract various chip/firmware version information
3281  *      @adapter: the adapter
3282  *
3283  *      Reads various chip/firmware version numbers and stores them into the
3284  *      adapter Adapter Parameters structure.  If any of the efforts fails
3285  *      the first failure will be returned, but all of the version numbers
3286  *      will be read.
3287  */
3288 int t4_get_version_info(struct adapter *adapter)
3289 {
3290 	int ret = 0;
3291 
3292 	#define FIRST_RET(__getvinfo) \
3293 	do { \
3294 		int __ret = __getvinfo; \
3295 		if (__ret && !ret) \
3296 			ret = __ret; \
3297 	} while (0)
3298 
3299 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3300 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3301 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3302 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3303 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3304 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3305 
3306 	#undef FIRST_RET
3307 	return ret;
3308 }
3309 
3310 /**
3311  *      t4_dump_version_info - dump all of the adapter configuration IDs
3312  *      @adapter: the adapter
3313  *
3314  *      Dumps all of the various bits of adapter configuration version/revision
3315  *      IDs information.  This is typically called at some point after
3316  *      t4_get_version_info() has been called.
3317  */
3318 void t4_dump_version_info(struct adapter *adapter)
3319 {
3320 	/* Device information */
3321 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3322 		 adapter->params.vpd.id,
3323 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3324 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3325 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3326 
3327 	/* Firmware Version */
3328 	if (!adapter->params.fw_vers)
3329 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3330 	else
3331 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3332 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3333 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3334 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3335 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3336 
3337 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3338 	 * Firmware, so dev_info() is more appropriate here.)
3339 	 */
3340 	if (!adapter->params.bs_vers)
3341 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3342 	else
3343 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3344 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3345 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3346 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3347 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3348 
3349 	/* TP Microcode Version */
3350 	if (!adapter->params.tp_vers)
3351 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3352 	else
3353 		dev_info(adapter->pdev_dev,
3354 			 "TP Microcode version: %u.%u.%u.%u\n",
3355 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3356 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3357 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3358 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3359 
3360 	/* Expansion ROM version */
3361 	if (!adapter->params.er_vers)
3362 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3363 	else
3364 		dev_info(adapter->pdev_dev,
3365 			 "Expansion ROM version: %u.%u.%u.%u\n",
3366 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3367 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3368 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3369 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3370 
3371 	/* Serial Configuration version */
3372 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3373 		 adapter->params.scfg_vers);
3374 
3375 	/* VPD Version */
3376 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3377 		 adapter->params.vpd_vers);
3378 }
3379 
3380 /**
3381  *	t4_check_fw_version - check if the FW is supported with this driver
3382  *	@adap: the adapter
3383  *
3384  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3385  *	if there's exact match, a negative error if the version could not be
3386  *	read or there's a major version mismatch
3387  */
3388 int t4_check_fw_version(struct adapter *adap)
3389 {
3390 	int i, ret, major, minor, micro;
3391 	int exp_major, exp_minor, exp_micro;
3392 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3393 
3394 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3395 	/* Try multiple times before returning error */
3396 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3397 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3398 
3399 	if (ret)
3400 		return ret;
3401 
3402 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3403 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3404 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3405 
3406 	switch (chip_version) {
3407 	case CHELSIO_T4:
3408 		exp_major = T4FW_MIN_VERSION_MAJOR;
3409 		exp_minor = T4FW_MIN_VERSION_MINOR;
3410 		exp_micro = T4FW_MIN_VERSION_MICRO;
3411 		break;
3412 	case CHELSIO_T5:
3413 		exp_major = T5FW_MIN_VERSION_MAJOR;
3414 		exp_minor = T5FW_MIN_VERSION_MINOR;
3415 		exp_micro = T5FW_MIN_VERSION_MICRO;
3416 		break;
3417 	case CHELSIO_T6:
3418 		exp_major = T6FW_MIN_VERSION_MAJOR;
3419 		exp_minor = T6FW_MIN_VERSION_MINOR;
3420 		exp_micro = T6FW_MIN_VERSION_MICRO;
3421 		break;
3422 	default:
3423 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3424 			adap->chip);
3425 		return -EINVAL;
3426 	}
3427 
3428 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3429 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3430 		dev_err(adap->pdev_dev,
3431 			"Card has firmware version %u.%u.%u, minimum "
3432 			"supported firmware is %u.%u.%u.\n", major, minor,
3433 			micro, exp_major, exp_minor, exp_micro);
3434 		return -EFAULT;
3435 	}
3436 	return 0;
3437 }
3438 
3439 /* Is the given firmware API compatible with the one the driver was compiled
3440  * with?
3441  */
3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3443 {
3444 
3445 	/* short circuit if it's the exact same firmware version */
3446 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3447 		return 1;
3448 
3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3450 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3451 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3452 		return 1;
3453 #undef SAME_INTF
3454 
3455 	return 0;
3456 }
3457 
3458 /* The firmware in the filesystem is usable, but should it be installed?
3459  * This routine explains itself in detail if it indicates the filesystem
3460  * firmware should be installed.
3461  */
3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3463 				int k, int c)
3464 {
3465 	const char *reason;
3466 
3467 	if (!card_fw_usable) {
3468 		reason = "incompatible or unusable";
3469 		goto install;
3470 	}
3471 
3472 	if (k > c) {
3473 		reason = "older than the version supported with this driver";
3474 		goto install;
3475 	}
3476 
3477 	return 0;
3478 
3479 install:
3480 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3481 		"installing firmware %u.%u.%u.%u on card.\n",
3482 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3483 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3484 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3485 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3486 
3487 	return 1;
3488 }
3489 
3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3491 	       const u8 *fw_data, unsigned int fw_size,
3492 	       struct fw_hdr *card_fw, enum dev_state state,
3493 	       int *reset)
3494 {
3495 	int ret, card_fw_usable, fs_fw_usable;
3496 	const struct fw_hdr *fs_fw;
3497 	const struct fw_hdr *drv_fw;
3498 
3499 	drv_fw = &fw_info->fw_hdr;
3500 
3501 	/* Read the header of the firmware on the card */
3502 	ret = -t4_read_flash(adap, FLASH_FW_START,
3503 			    sizeof(*card_fw) / sizeof(uint32_t),
3504 			    (uint32_t *)card_fw, 1);
3505 	if (ret == 0) {
3506 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3507 	} else {
3508 		dev_err(adap->pdev_dev,
3509 			"Unable to read card's firmware header: %d\n", ret);
3510 		card_fw_usable = 0;
3511 	}
3512 
3513 	if (fw_data != NULL) {
3514 		fs_fw = (const void *)fw_data;
3515 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3516 	} else {
3517 		fs_fw = NULL;
3518 		fs_fw_usable = 0;
3519 	}
3520 
3521 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3522 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3523 		/* Common case: the firmware on the card is an exact match and
3524 		 * the filesystem one is an exact match too, or the filesystem
3525 		 * one is absent/incompatible.
3526 		 */
3527 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3528 		   should_install_fs_fw(adap, card_fw_usable,
3529 					be32_to_cpu(fs_fw->fw_ver),
3530 					be32_to_cpu(card_fw->fw_ver))) {
3531 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3532 				     fw_size, 0);
3533 		if (ret != 0) {
3534 			dev_err(adap->pdev_dev,
3535 				"failed to install firmware: %d\n", ret);
3536 			goto bye;
3537 		}
3538 
3539 		/* Installed successfully, update the cached header too. */
3540 		*card_fw = *fs_fw;
3541 		card_fw_usable = 1;
3542 		*reset = 0;	/* already reset as part of load_fw */
3543 	}
3544 
3545 	if (!card_fw_usable) {
3546 		uint32_t d, c, k;
3547 
3548 		d = be32_to_cpu(drv_fw->fw_ver);
3549 		c = be32_to_cpu(card_fw->fw_ver);
3550 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3551 
3552 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3553 			"chip state %d, "
3554 			"driver compiled with %d.%d.%d.%d, "
3555 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3556 			state,
3557 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3558 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3559 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3560 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3561 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3562 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3563 		ret = EINVAL;
3564 		goto bye;
3565 	}
3566 
3567 	/* We're using whatever's on the card and it's known to be good. */
3568 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3569 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3570 
3571 bye:
3572 	return ret;
3573 }
3574 
3575 /**
3576  *	t4_flash_erase_sectors - erase a range of flash sectors
3577  *	@adapter: the adapter
3578  *	@start: the first sector to erase
3579  *	@end: the last sector to erase
3580  *
3581  *	Erases the sectors in the given inclusive range.
3582  */
3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3584 {
3585 	int ret = 0;
3586 
3587 	if (end >= adapter->params.sf_nsec)
3588 		return -EINVAL;
3589 
3590 	while (start <= end) {
3591 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3592 		    (ret = sf1_write(adapter, 4, 0, 1,
3593 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3594 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3595 			dev_err(adapter->pdev_dev,
3596 				"erase of flash sector %d failed, error %d\n",
3597 				start, ret);
3598 			break;
3599 		}
3600 		start++;
3601 	}
3602 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3603 	return ret;
3604 }
3605 
3606 /**
3607  *	t4_flash_cfg_addr - return the address of the flash configuration file
3608  *	@adapter: the adapter
3609  *
3610  *	Return the address within the flash where the Firmware Configuration
3611  *	File is stored.
3612  */
3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3614 {
3615 	if (adapter->params.sf_size == 0x100000)
3616 		return FLASH_FPGA_CFG_START;
3617 	else
3618 		return FLASH_CFG_START;
3619 }
3620 
3621 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3622  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3623  * and emit an error message for mismatched firmware to save our caller the
3624  * effort ...
3625  */
3626 static bool t4_fw_matches_chip(const struct adapter *adap,
3627 			       const struct fw_hdr *hdr)
3628 {
3629 	/* The expression below will return FALSE for any unsupported adapter
3630 	 * which will keep us "honest" in the future ...
3631 	 */
3632 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3633 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3634 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3635 		return true;
3636 
3637 	dev_err(adap->pdev_dev,
3638 		"FW image (%d) is not suitable for this adapter (%d)\n",
3639 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3640 	return false;
3641 }
3642 
3643 /**
3644  *	t4_load_fw - download firmware
3645  *	@adap: the adapter
3646  *	@fw_data: the firmware image to write
3647  *	@size: image size
3648  *
3649  *	Write the supplied firmware image to the card's serial flash.
3650  */
3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3652 {
3653 	u32 csum;
3654 	int ret, addr;
3655 	unsigned int i;
3656 	u8 first_page[SF_PAGE_SIZE];
3657 	const __be32 *p = (const __be32 *)fw_data;
3658 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3659 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3660 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3661 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3662 	unsigned int fw_start = FLASH_FW_START;
3663 
3664 	if (!size) {
3665 		dev_err(adap->pdev_dev, "FW image has no data\n");
3666 		return -EINVAL;
3667 	}
3668 	if (size & 511) {
3669 		dev_err(adap->pdev_dev,
3670 			"FW image size not multiple of 512 bytes\n");
3671 		return -EINVAL;
3672 	}
3673 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3674 		dev_err(adap->pdev_dev,
3675 			"FW image size differs from size in FW header\n");
3676 		return -EINVAL;
3677 	}
3678 	if (size > fw_size) {
3679 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3680 			fw_size);
3681 		return -EFBIG;
3682 	}
3683 	if (!t4_fw_matches_chip(adap, hdr))
3684 		return -EINVAL;
3685 
3686 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3687 		csum += be32_to_cpu(p[i]);
3688 
3689 	if (csum != 0xffffffff) {
3690 		dev_err(adap->pdev_dev,
3691 			"corrupted firmware image, checksum %#x\n", csum);
3692 		return -EINVAL;
3693 	}
3694 
3695 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3696 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3697 	if (ret)
3698 		goto out;
3699 
3700 	/*
3701 	 * We write the correct version at the end so the driver can see a bad
3702 	 * version if the FW write fails.  Start by writing a copy of the
3703 	 * first page with a bad version.
3704 	 */
3705 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3706 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3707 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3708 	if (ret)
3709 		goto out;
3710 
3711 	addr = fw_start;
3712 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3713 		addr += SF_PAGE_SIZE;
3714 		fw_data += SF_PAGE_SIZE;
3715 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3716 		if (ret)
3717 			goto out;
3718 	}
3719 
3720 	ret = t4_write_flash(adap,
3721 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3722 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3723 out:
3724 	if (ret)
3725 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3726 			ret);
3727 	else
3728 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3729 	return ret;
3730 }
3731 
3732 /**
3733  *	t4_phy_fw_ver - return current PHY firmware version
3734  *	@adap: the adapter
3735  *	@phy_fw_ver: return value buffer for PHY firmware version
3736  *
3737  *	Returns the current version of external PHY firmware on the
3738  *	adapter.
3739  */
3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3741 {
3742 	u32 param, val;
3743 	int ret;
3744 
3745 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3746 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3747 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3748 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3749 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3750 			      &param, &val);
3751 	if (ret < 0)
3752 		return ret;
3753 	*phy_fw_ver = val;
3754 	return 0;
3755 }
3756 
3757 /**
3758  *	t4_load_phy_fw - download port PHY firmware
3759  *	@adap: the adapter
3760  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3761  *	@win_lock: the lock to use to guard the memory copy
3762  *	@phy_fw_version: function to check PHY firmware versions
3763  *	@phy_fw_data: the PHY firmware image to write
3764  *	@phy_fw_size: image size
3765  *
3766  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3767  *	@phy_fw_version is supplied, then it will be used to determine if
3768  *	it's necessary to perform the transfer by comparing the version
3769  *	of any existing adapter PHY firmware with that of the passed in
3770  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3771  *	around the call to t4_memory_rw() which transfers the PHY firmware
3772  *	to the adapter.
3773  *
3774  *	A negative error number will be returned if an error occurs.  If
3775  *	version number support is available and there's no need to upgrade
3776  *	the firmware, 0 will be returned.  If firmware is successfully
3777  *	transferred to the adapter, 1 will be retured.
3778  *
3779  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3780  *	a result, a RESET of the adapter would cause that RAM to lose its
3781  *	contents.  Thus, loading PHY firmware on such adapters must happen
3782  *	after any FW_RESET_CMDs ...
3783  */
3784 int t4_load_phy_fw(struct adapter *adap,
3785 		   int win, spinlock_t *win_lock,
3786 		   int (*phy_fw_version)(const u8 *, size_t),
3787 		   const u8 *phy_fw_data, size_t phy_fw_size)
3788 {
3789 	unsigned long mtype = 0, maddr = 0;
3790 	u32 param, val;
3791 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3792 	int ret;
3793 
3794 	/* If we have version number support, then check to see if the adapter
3795 	 * already has up-to-date PHY firmware loaded.
3796 	 */
3797 	 if (phy_fw_version) {
3798 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3799 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3800 		if (ret < 0)
3801 			return ret;
3802 
3803 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3804 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3805 				"version %#x\n", cur_phy_fw_ver);
3806 			return 0;
3807 		}
3808 	}
3809 
3810 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3811 	 * The size of the file requires a special version of the READ coommand
3812 	 * which will pass the file size via the values field in PARAMS_CMD and
3813 	 * retrieve the return value from firmware and place it in the same
3814 	 * buffer values
3815 	 */
3816 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3817 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3818 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3819 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3820 	val = phy_fw_size;
3821 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3822 				 &param, &val, 1, true);
3823 	if (ret < 0)
3824 		return ret;
3825 	mtype = val >> 8;
3826 	maddr = (val & 0xff) << 16;
3827 
3828 	/* Copy the supplied PHY Firmware image to the adapter memory location
3829 	 * allocated by the adapter firmware.
3830 	 */
3831 	if (win_lock)
3832 		spin_lock_bh(win_lock);
3833 	ret = t4_memory_rw(adap, win, mtype, maddr,
3834 			   phy_fw_size, (__be32 *)phy_fw_data,
3835 			   T4_MEMORY_WRITE);
3836 	if (win_lock)
3837 		spin_unlock_bh(win_lock);
3838 	if (ret)
3839 		return ret;
3840 
3841 	/* Tell the firmware that the PHY firmware image has been written to
3842 	 * RAM and it can now start copying it over to the PHYs.  The chip
3843 	 * firmware will RESET the affected PHYs as part of this operation
3844 	 * leaving them running the new PHY firmware image.
3845 	 */
3846 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3847 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3848 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3849 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3850 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3851 				    &param, &val, 30000);
3852 
3853 	/* If we have version number support, then check to see that the new
3854 	 * firmware got loaded properly.
3855 	 */
3856 	if (phy_fw_version) {
3857 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3858 		if (ret < 0)
3859 			return ret;
3860 
3861 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3862 			CH_WARN(adap, "PHY Firmware did not update: "
3863 				"version on adapter %#x, "
3864 				"version flashed %#x\n",
3865 				cur_phy_fw_ver, new_phy_fw_vers);
3866 			return -ENXIO;
3867 		}
3868 	}
3869 
3870 	return 1;
3871 }
3872 
3873 /**
3874  *	t4_fwcache - firmware cache operation
3875  *	@adap: the adapter
3876  *	@op  : the operation (flush or flush and invalidate)
3877  */
3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3879 {
3880 	struct fw_params_cmd c;
3881 
3882 	memset(&c, 0, sizeof(c));
3883 	c.op_to_vfn =
3884 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3885 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3886 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3887 			    FW_PARAMS_CMD_VFN_V(0));
3888 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3889 	c.param[0].mnem =
3890 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3891 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3892 	c.param[0].val = (__force __be32)op;
3893 
3894 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3895 }
3896 
3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3898 			unsigned int *pif_req_wrptr,
3899 			unsigned int *pif_rsp_wrptr)
3900 {
3901 	int i, j;
3902 	u32 cfg, val, req, rsp;
3903 
3904 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3905 	if (cfg & LADBGEN_F)
3906 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3907 
3908 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3909 	req = POLADBGWRPTR_G(val);
3910 	rsp = PILADBGWRPTR_G(val);
3911 	if (pif_req_wrptr)
3912 		*pif_req_wrptr = req;
3913 	if (pif_rsp_wrptr)
3914 		*pif_rsp_wrptr = rsp;
3915 
3916 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3917 		for (j = 0; j < 6; j++) {
3918 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3919 				     PILADBGRDPTR_V(rsp));
3920 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3921 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3922 			req++;
3923 			rsp++;
3924 		}
3925 		req = (req + 2) & POLADBGRDPTR_M;
3926 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3927 	}
3928 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3929 }
3930 
3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3932 {
3933 	u32 cfg;
3934 	int i, j, idx;
3935 
3936 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3937 	if (cfg & LADBGEN_F)
3938 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3939 
3940 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3941 		for (j = 0; j < 5; j++) {
3942 			idx = 8 * i + j;
3943 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3944 				     PILADBGRDPTR_V(idx));
3945 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3946 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3947 		}
3948 	}
3949 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3950 }
3951 
3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3953 {
3954 	unsigned int i, j;
3955 
3956 	for (i = 0; i < 8; i++) {
3957 		u32 *p = la_buf + i;
3958 
3959 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3960 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3961 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3962 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3963 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3964 	}
3965 }
3966 
3967 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3968 		     FW_PORT_CAP32_ANEG)
3969 
3970 /**
3971  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3972  *	@caps16: a 16-bit Port Capabilities value
3973  *
3974  *	Returns the equivalent 32-bit Port Capabilities value.
3975  */
3976 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3977 {
3978 	fw_port_cap32_t caps32 = 0;
3979 
3980 	#define CAP16_TO_CAP32(__cap) \
3981 		do { \
3982 			if (caps16 & FW_PORT_CAP_##__cap) \
3983 				caps32 |= FW_PORT_CAP32_##__cap; \
3984 		} while (0)
3985 
3986 	CAP16_TO_CAP32(SPEED_100M);
3987 	CAP16_TO_CAP32(SPEED_1G);
3988 	CAP16_TO_CAP32(SPEED_25G);
3989 	CAP16_TO_CAP32(SPEED_10G);
3990 	CAP16_TO_CAP32(SPEED_40G);
3991 	CAP16_TO_CAP32(SPEED_100G);
3992 	CAP16_TO_CAP32(FC_RX);
3993 	CAP16_TO_CAP32(FC_TX);
3994 	CAP16_TO_CAP32(ANEG);
3995 	CAP16_TO_CAP32(FORCE_PAUSE);
3996 	CAP16_TO_CAP32(MDIAUTO);
3997 	CAP16_TO_CAP32(MDISTRAIGHT);
3998 	CAP16_TO_CAP32(FEC_RS);
3999 	CAP16_TO_CAP32(FEC_BASER_RS);
4000 	CAP16_TO_CAP32(802_3_PAUSE);
4001 	CAP16_TO_CAP32(802_3_ASM_DIR);
4002 
4003 	#undef CAP16_TO_CAP32
4004 
4005 	return caps32;
4006 }
4007 
4008 /**
4009  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4010  *	@caps32: a 32-bit Port Capabilities value
4011  *
4012  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4013  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4014  *	Port Capabilities and some fields/values may not make it.
4015  */
4016 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4017 {
4018 	fw_port_cap16_t caps16 = 0;
4019 
4020 	#define CAP32_TO_CAP16(__cap) \
4021 		do { \
4022 			if (caps32 & FW_PORT_CAP32_##__cap) \
4023 				caps16 |= FW_PORT_CAP_##__cap; \
4024 		} while (0)
4025 
4026 	CAP32_TO_CAP16(SPEED_100M);
4027 	CAP32_TO_CAP16(SPEED_1G);
4028 	CAP32_TO_CAP16(SPEED_10G);
4029 	CAP32_TO_CAP16(SPEED_25G);
4030 	CAP32_TO_CAP16(SPEED_40G);
4031 	CAP32_TO_CAP16(SPEED_100G);
4032 	CAP32_TO_CAP16(FC_RX);
4033 	CAP32_TO_CAP16(FC_TX);
4034 	CAP32_TO_CAP16(802_3_PAUSE);
4035 	CAP32_TO_CAP16(802_3_ASM_DIR);
4036 	CAP32_TO_CAP16(ANEG);
4037 	CAP32_TO_CAP16(FORCE_PAUSE);
4038 	CAP32_TO_CAP16(MDIAUTO);
4039 	CAP32_TO_CAP16(MDISTRAIGHT);
4040 	CAP32_TO_CAP16(FEC_RS);
4041 	CAP32_TO_CAP16(FEC_BASER_RS);
4042 
4043 	#undef CAP32_TO_CAP16
4044 
4045 	return caps16;
4046 }
4047 
4048 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4049 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4050 {
4051 	enum cc_pause cc_pause = 0;
4052 
4053 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4054 		cc_pause |= PAUSE_RX;
4055 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4056 		cc_pause |= PAUSE_TX;
4057 
4058 	return cc_pause;
4059 }
4060 
4061 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4062 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4063 {
4064 	fw_port_cap32_t fw_pause = 0;
4065 
4066 	if (cc_pause & PAUSE_RX)
4067 		fw_pause |= FW_PORT_CAP32_FC_RX;
4068 	if (cc_pause & PAUSE_TX)
4069 		fw_pause |= FW_PORT_CAP32_FC_TX;
4070 	if (!(cc_pause & PAUSE_AUTONEG))
4071 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4072 
4073 	return fw_pause;
4074 }
4075 
4076 /* Translate Firmware Forward Error Correction specification to Common Code */
4077 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4078 {
4079 	enum cc_fec cc_fec = 0;
4080 
4081 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4082 		cc_fec |= FEC_RS;
4083 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4084 		cc_fec |= FEC_BASER_RS;
4085 
4086 	return cc_fec;
4087 }
4088 
4089 /* Translate Common Code Forward Error Correction specification to Firmware */
4090 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4091 {
4092 	fw_port_cap32_t fw_fec = 0;
4093 
4094 	if (cc_fec & FEC_RS)
4095 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4096 	if (cc_fec & FEC_BASER_RS)
4097 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4098 
4099 	return fw_fec;
4100 }
4101 
4102 /**
4103  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4104  *	@adapter: the adapter
4105  *	@mbox: the Firmware Mailbox to use
4106  *	@port: the Port ID
4107  *	@lc: the Port's Link Configuration
4108  *
4109  *	Set up a port's MAC and PHY according to a desired link configuration.
4110  *	- If the PHY can auto-negotiate first decide what to advertise, then
4111  *	  enable/disable auto-negotiation as desired, and reset.
4112  *	- If the PHY does not auto-negotiate just reset it.
4113  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4114  *	  otherwise do it later based on the outcome of auto-negotiation.
4115  */
4116 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4117 		       unsigned int port, struct link_config *lc,
4118 		       bool sleep_ok, int timeout)
4119 {
4120 	unsigned int fw_caps = adapter->params.fw_caps_support;
4121 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4122 	struct fw_port_cmd cmd;
4123 	unsigned int fw_mdi;
4124 	int ret;
4125 
4126 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4127 	/* Convert driver coding of Pause Frame Flow Control settings into the
4128 	 * Firmware's API.
4129 	 */
4130 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4131 
4132 	/* Convert Common Code Forward Error Control settings into the
4133 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4134 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4135 	 * sent us as part of it's IEEE 802.3-based interpratation of
4136 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4137 	 * use whatever is in the current Requested FEC settings.
4138 	 */
4139 	if (lc->requested_fec & FEC_AUTO)
4140 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4141 	else
4142 		cc_fec = lc->requested_fec;
4143 	fw_fec = cc_to_fwcap_fec(cc_fec);
4144 
4145 	/* Figure out what our Requested Port Capabilities are going to be.
4146 	 */
4147 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4148 		rcap = lc->acaps | fw_fc | fw_fec;
4149 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4150 		lc->fec = cc_fec;
4151 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4152 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4153 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4154 		lc->fec = cc_fec;
4155 	} else {
4156 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4157 	}
4158 
4159 	/* Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4160 	 * we need to exclude this from this check in order to maintain
4161 	 * compatibility ...
4162 	 */
4163 	if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4164 		dev_err(adapter->pdev_dev,
4165 			"Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4166 			rcap, lc->pcaps);
4167 		return -EINVAL;
4168 	}
4169 
4170 	/* And send that on to the Firmware ...
4171 	 */
4172 	memset(&cmd, 0, sizeof(cmd));
4173 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4174 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4175 				       FW_PORT_CMD_PORTID_V(port));
4176 	cmd.action_to_len16 =
4177 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4178 						 ? FW_PORT_ACTION_L1_CFG
4179 						 : FW_PORT_ACTION_L1_CFG32) |
4180 						 FW_LEN16(cmd));
4181 	if (fw_caps == FW_CAPS16)
4182 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4183 	else
4184 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4185 
4186 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4187 				      sleep_ok, timeout);
4188 	if (ret) {
4189 		dev_err(adapter->pdev_dev,
4190 			"Requested Port Capabilities %#x rejected, error %d\n",
4191 			rcap, -ret);
4192 		return ret;
4193 	}
4194 	return ret;
4195 }
4196 
4197 /**
4198  *	t4_restart_aneg - restart autonegotiation
4199  *	@adap: the adapter
4200  *	@mbox: mbox to use for the FW command
4201  *	@port: the port id
4202  *
4203  *	Restarts autonegotiation for the selected port.
4204  */
4205 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4206 {
4207 	struct fw_port_cmd c;
4208 
4209 	memset(&c, 0, sizeof(c));
4210 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4211 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4212 				     FW_PORT_CMD_PORTID_V(port));
4213 	c.action_to_len16 =
4214 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4215 			    FW_LEN16(c));
4216 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4217 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4218 }
4219 
4220 typedef void (*int_handler_t)(struct adapter *adap);
4221 
4222 struct intr_info {
4223 	unsigned int mask;       /* bits to check in interrupt status */
4224 	const char *msg;         /* message to print or NULL */
4225 	short stat_idx;          /* stat counter to increment or -1 */
4226 	unsigned short fatal;    /* whether the condition reported is fatal */
4227 	int_handler_t int_handler; /* platform-specific int handler */
4228 };
4229 
4230 /**
4231  *	t4_handle_intr_status - table driven interrupt handler
4232  *	@adapter: the adapter that generated the interrupt
4233  *	@reg: the interrupt status register to process
4234  *	@acts: table of interrupt actions
4235  *
4236  *	A table driven interrupt handler that applies a set of masks to an
4237  *	interrupt status word and performs the corresponding actions if the
4238  *	interrupts described by the mask have occurred.  The actions include
4239  *	optionally emitting a warning or alert message.  The table is terminated
4240  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4241  *	conditions.
4242  */
4243 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4244 				 const struct intr_info *acts)
4245 {
4246 	int fatal = 0;
4247 	unsigned int mask = 0;
4248 	unsigned int status = t4_read_reg(adapter, reg);
4249 
4250 	for ( ; acts->mask; ++acts) {
4251 		if (!(status & acts->mask))
4252 			continue;
4253 		if (acts->fatal) {
4254 			fatal++;
4255 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4256 				  status & acts->mask);
4257 		} else if (acts->msg && printk_ratelimit())
4258 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4259 				 status & acts->mask);
4260 		if (acts->int_handler)
4261 			acts->int_handler(adapter);
4262 		mask |= acts->mask;
4263 	}
4264 	status &= mask;
4265 	if (status)                           /* clear processed interrupts */
4266 		t4_write_reg(adapter, reg, status);
4267 	return fatal;
4268 }
4269 
4270 /*
4271  * Interrupt handler for the PCIE module.
4272  */
4273 static void pcie_intr_handler(struct adapter *adapter)
4274 {
4275 	static const struct intr_info sysbus_intr_info[] = {
4276 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4277 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4278 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4279 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4280 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4281 		{ 0 }
4282 	};
4283 	static const struct intr_info pcie_port_intr_info[] = {
4284 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4285 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4286 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4287 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4288 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4289 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4290 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4291 		{ RDPE_F, "Rx data parity error", -1, 1 },
4292 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4293 		{ 0 }
4294 	};
4295 	static const struct intr_info pcie_intr_info[] = {
4296 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4297 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4298 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4299 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4300 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4301 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4302 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4303 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4304 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4305 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4306 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4307 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4308 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4309 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4310 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4311 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4312 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4313 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4314 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4315 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4316 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4317 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4318 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4319 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4320 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4321 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4322 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4323 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4324 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4325 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4326 		  -1, 0 },
4327 		{ 0 }
4328 	};
4329 
4330 	static struct intr_info t5_pcie_intr_info[] = {
4331 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4332 		  -1, 1 },
4333 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4334 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4335 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4336 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4337 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4338 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4339 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4340 		  -1, 1 },
4341 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4342 		  -1, 1 },
4343 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4344 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4345 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4346 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4347 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4348 		  -1, 1 },
4349 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4350 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4351 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4352 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4353 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4354 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4355 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4356 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4357 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4358 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4359 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4360 		  -1, 1 },
4361 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4362 		  -1, 1 },
4363 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4364 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4365 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4366 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4367 		{ 0 }
4368 	};
4369 
4370 	int fat;
4371 
4372 	if (is_t4(adapter->params.chip))
4373 		fat = t4_handle_intr_status(adapter,
4374 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4375 				sysbus_intr_info) +
4376 			t4_handle_intr_status(adapter,
4377 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4378 					pcie_port_intr_info) +
4379 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4380 					      pcie_intr_info);
4381 	else
4382 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4383 					    t5_pcie_intr_info);
4384 
4385 	if (fat)
4386 		t4_fatal_err(adapter);
4387 }
4388 
4389 /*
4390  * TP interrupt handler.
4391  */
4392 static void tp_intr_handler(struct adapter *adapter)
4393 {
4394 	static const struct intr_info tp_intr_info[] = {
4395 		{ 0x3fffffff, "TP parity error", -1, 1 },
4396 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4397 		{ 0 }
4398 	};
4399 
4400 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4401 		t4_fatal_err(adapter);
4402 }
4403 
4404 /*
4405  * SGE interrupt handler.
4406  */
4407 static void sge_intr_handler(struct adapter *adapter)
4408 {
4409 	u64 v;
4410 	u32 err;
4411 
4412 	static const struct intr_info sge_intr_info[] = {
4413 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4414 		  "SGE received CPL exceeding IQE size", -1, 1 },
4415 		{ ERR_INVALID_CIDX_INC_F,
4416 		  "SGE GTS CIDX increment too large", -1, 0 },
4417 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4418 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4419 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4420 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4421 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4422 		  0 },
4423 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4424 		  0 },
4425 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4426 		  0 },
4427 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4428 		  0 },
4429 		{ ERR_ING_CTXT_PRIO_F,
4430 		  "SGE too many priority ingress contexts", -1, 0 },
4431 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4432 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4433 		{ 0 }
4434 	};
4435 
4436 	static struct intr_info t4t5_sge_intr_info[] = {
4437 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4438 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4439 		{ ERR_EGR_CTXT_PRIO_F,
4440 		  "SGE too many priority egress contexts", -1, 0 },
4441 		{ 0 }
4442 	};
4443 
4444 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4445 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4446 	if (v) {
4447 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4448 				(unsigned long long)v);
4449 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4450 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4451 	}
4452 
4453 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4454 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4455 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4456 					   t4t5_sge_intr_info);
4457 
4458 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4459 	if (err & ERROR_QID_VALID_F) {
4460 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4461 			ERROR_QID_G(err));
4462 		if (err & UNCAPTURED_ERROR_F)
4463 			dev_err(adapter->pdev_dev,
4464 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4465 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4466 			     UNCAPTURED_ERROR_F);
4467 	}
4468 
4469 	if (v != 0)
4470 		t4_fatal_err(adapter);
4471 }
4472 
4473 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4474 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4475 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4476 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4477 
4478 /*
4479  * CIM interrupt handler.
4480  */
4481 static void cim_intr_handler(struct adapter *adapter)
4482 {
4483 	static const struct intr_info cim_intr_info[] = {
4484 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4485 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4486 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4487 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4488 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4489 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4490 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4491 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4492 		{ 0 }
4493 	};
4494 	static const struct intr_info cim_upintr_info[] = {
4495 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4496 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4497 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4498 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4499 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4500 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4501 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4502 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4503 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4504 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4505 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4506 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4507 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4508 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4509 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4510 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4511 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4512 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4513 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4514 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4515 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4516 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4517 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4518 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4519 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4520 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4521 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4522 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4523 		{ 0 }
4524 	};
4525 
4526 	u32 val, fw_err;
4527 	int fat;
4528 
4529 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4530 	if (fw_err & PCIE_FW_ERR_F)
4531 		t4_report_fw_error(adapter);
4532 
4533 	/* When the Firmware detects an internal error which normally
4534 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4535 	 * in order to make sure the Host sees the Firmware Crash.  So
4536 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4537 	 * ignore the Timer0 interrupt.
4538 	 */
4539 
4540 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4541 	if (val & TIMER0INT_F)
4542 		if (!(fw_err & PCIE_FW_ERR_F) ||
4543 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4544 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4545 				     TIMER0INT_F);
4546 
4547 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4548 				    cim_intr_info) +
4549 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4550 				    cim_upintr_info);
4551 	if (fat)
4552 		t4_fatal_err(adapter);
4553 }
4554 
4555 /*
4556  * ULP RX interrupt handler.
4557  */
4558 static void ulprx_intr_handler(struct adapter *adapter)
4559 {
4560 	static const struct intr_info ulprx_intr_info[] = {
4561 		{ 0x1800000, "ULPRX context error", -1, 1 },
4562 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4563 		{ 0 }
4564 	};
4565 
4566 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4567 		t4_fatal_err(adapter);
4568 }
4569 
4570 /*
4571  * ULP TX interrupt handler.
4572  */
4573 static void ulptx_intr_handler(struct adapter *adapter)
4574 {
4575 	static const struct intr_info ulptx_intr_info[] = {
4576 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4577 		  0 },
4578 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4579 		  0 },
4580 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4581 		  0 },
4582 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4583 		  0 },
4584 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4585 		{ 0 }
4586 	};
4587 
4588 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4589 		t4_fatal_err(adapter);
4590 }
4591 
4592 /*
4593  * PM TX interrupt handler.
4594  */
4595 static void pmtx_intr_handler(struct adapter *adapter)
4596 {
4597 	static const struct intr_info pmtx_intr_info[] = {
4598 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4599 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4600 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4601 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4602 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4603 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4604 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4605 		  -1, 1 },
4606 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4607 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4608 		{ 0 }
4609 	};
4610 
4611 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4612 		t4_fatal_err(adapter);
4613 }
4614 
4615 /*
4616  * PM RX interrupt handler.
4617  */
4618 static void pmrx_intr_handler(struct adapter *adapter)
4619 {
4620 	static const struct intr_info pmrx_intr_info[] = {
4621 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4622 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4623 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4624 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4625 		  -1, 1 },
4626 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4627 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4628 		{ 0 }
4629 	};
4630 
4631 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4632 		t4_fatal_err(adapter);
4633 }
4634 
4635 /*
4636  * CPL switch interrupt handler.
4637  */
4638 static void cplsw_intr_handler(struct adapter *adapter)
4639 {
4640 	static const struct intr_info cplsw_intr_info[] = {
4641 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4642 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4643 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4644 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4645 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4646 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4647 		{ 0 }
4648 	};
4649 
4650 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4651 		t4_fatal_err(adapter);
4652 }
4653 
4654 /*
4655  * LE interrupt handler.
4656  */
4657 static void le_intr_handler(struct adapter *adap)
4658 {
4659 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4660 	static const struct intr_info le_intr_info[] = {
4661 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4662 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4663 		{ PARITYERR_F, "LE parity error", -1, 1 },
4664 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4665 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4666 		{ 0 }
4667 	};
4668 
4669 	static struct intr_info t6_le_intr_info[] = {
4670 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4671 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4672 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4673 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4674 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4675 		{ 0 }
4676 	};
4677 
4678 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4679 				  (chip <= CHELSIO_T5) ?
4680 				  le_intr_info : t6_le_intr_info))
4681 		t4_fatal_err(adap);
4682 }
4683 
4684 /*
4685  * MPS interrupt handler.
4686  */
4687 static void mps_intr_handler(struct adapter *adapter)
4688 {
4689 	static const struct intr_info mps_rx_intr_info[] = {
4690 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4691 		{ 0 }
4692 	};
4693 	static const struct intr_info mps_tx_intr_info[] = {
4694 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4695 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4696 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4697 		  -1, 1 },
4698 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4699 		  -1, 1 },
4700 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4701 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4702 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4703 		{ 0 }
4704 	};
4705 	static const struct intr_info t6_mps_tx_intr_info[] = {
4706 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4707 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4708 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4709 		  -1, 1 },
4710 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4711 		  -1, 1 },
4712 		/* MPS Tx Bubble is normal for T6 */
4713 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4714 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4715 		{ 0 }
4716 	};
4717 	static const struct intr_info mps_trc_intr_info[] = {
4718 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4719 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4720 		  -1, 1 },
4721 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4722 		{ 0 }
4723 	};
4724 	static const struct intr_info mps_stat_sram_intr_info[] = {
4725 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4726 		{ 0 }
4727 	};
4728 	static const struct intr_info mps_stat_tx_intr_info[] = {
4729 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4730 		{ 0 }
4731 	};
4732 	static const struct intr_info mps_stat_rx_intr_info[] = {
4733 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4734 		{ 0 }
4735 	};
4736 	static const struct intr_info mps_cls_intr_info[] = {
4737 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4738 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4739 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4740 		{ 0 }
4741 	};
4742 
4743 	int fat;
4744 
4745 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4746 				    mps_rx_intr_info) +
4747 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4748 				    is_t6(adapter->params.chip)
4749 				    ? t6_mps_tx_intr_info
4750 				    : mps_tx_intr_info) +
4751 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4752 				    mps_trc_intr_info) +
4753 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4754 				    mps_stat_sram_intr_info) +
4755 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4756 				    mps_stat_tx_intr_info) +
4757 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4758 				    mps_stat_rx_intr_info) +
4759 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4760 				    mps_cls_intr_info);
4761 
4762 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4763 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4764 	if (fat)
4765 		t4_fatal_err(adapter);
4766 }
4767 
4768 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4769 		      ECC_UE_INT_CAUSE_F)
4770 
4771 /*
4772  * EDC/MC interrupt handler.
4773  */
4774 static void mem_intr_handler(struct adapter *adapter, int idx)
4775 {
4776 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4777 
4778 	unsigned int addr, cnt_addr, v;
4779 
4780 	if (idx <= MEM_EDC1) {
4781 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4782 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4783 	} else if (idx == MEM_MC) {
4784 		if (is_t4(adapter->params.chip)) {
4785 			addr = MC_INT_CAUSE_A;
4786 			cnt_addr = MC_ECC_STATUS_A;
4787 		} else {
4788 			addr = MC_P_INT_CAUSE_A;
4789 			cnt_addr = MC_P_ECC_STATUS_A;
4790 		}
4791 	} else {
4792 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4793 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4794 	}
4795 
4796 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4797 	if (v & PERR_INT_CAUSE_F)
4798 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4799 			  name[idx]);
4800 	if (v & ECC_CE_INT_CAUSE_F) {
4801 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4802 
4803 		t4_edc_err_read(adapter, idx);
4804 
4805 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4806 		if (printk_ratelimit())
4807 			dev_warn(adapter->pdev_dev,
4808 				 "%u %s correctable ECC data error%s\n",
4809 				 cnt, name[idx], cnt > 1 ? "s" : "");
4810 	}
4811 	if (v & ECC_UE_INT_CAUSE_F)
4812 		dev_alert(adapter->pdev_dev,
4813 			  "%s uncorrectable ECC data error\n", name[idx]);
4814 
4815 	t4_write_reg(adapter, addr, v);
4816 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4817 		t4_fatal_err(adapter);
4818 }
4819 
4820 /*
4821  * MA interrupt handler.
4822  */
4823 static void ma_intr_handler(struct adapter *adap)
4824 {
4825 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4826 
4827 	if (status & MEM_PERR_INT_CAUSE_F) {
4828 		dev_alert(adap->pdev_dev,
4829 			  "MA parity error, parity status %#x\n",
4830 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4831 		if (is_t5(adap->params.chip))
4832 			dev_alert(adap->pdev_dev,
4833 				  "MA parity error, parity status %#x\n",
4834 				  t4_read_reg(adap,
4835 					      MA_PARITY_ERROR_STATUS2_A));
4836 	}
4837 	if (status & MEM_WRAP_INT_CAUSE_F) {
4838 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4839 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4840 			  "client %u to address %#x\n",
4841 			  MEM_WRAP_CLIENT_NUM_G(v),
4842 			  MEM_WRAP_ADDRESS_G(v) << 4);
4843 	}
4844 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4845 	t4_fatal_err(adap);
4846 }
4847 
4848 /*
4849  * SMB interrupt handler.
4850  */
4851 static void smb_intr_handler(struct adapter *adap)
4852 {
4853 	static const struct intr_info smb_intr_info[] = {
4854 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4855 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4856 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4857 		{ 0 }
4858 	};
4859 
4860 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4861 		t4_fatal_err(adap);
4862 }
4863 
4864 /*
4865  * NC-SI interrupt handler.
4866  */
4867 static void ncsi_intr_handler(struct adapter *adap)
4868 {
4869 	static const struct intr_info ncsi_intr_info[] = {
4870 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4871 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4872 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4873 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4874 		{ 0 }
4875 	};
4876 
4877 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4878 		t4_fatal_err(adap);
4879 }
4880 
4881 /*
4882  * XGMAC interrupt handler.
4883  */
4884 static void xgmac_intr_handler(struct adapter *adap, int port)
4885 {
4886 	u32 v, int_cause_reg;
4887 
4888 	if (is_t4(adap->params.chip))
4889 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4890 	else
4891 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4892 
4893 	v = t4_read_reg(adap, int_cause_reg);
4894 
4895 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4896 	if (!v)
4897 		return;
4898 
4899 	if (v & TXFIFO_PRTY_ERR_F)
4900 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4901 			  port);
4902 	if (v & RXFIFO_PRTY_ERR_F)
4903 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4904 			  port);
4905 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4906 	t4_fatal_err(adap);
4907 }
4908 
4909 /*
4910  * PL interrupt handler.
4911  */
4912 static void pl_intr_handler(struct adapter *adap)
4913 {
4914 	static const struct intr_info pl_intr_info[] = {
4915 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4916 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4917 		{ 0 }
4918 	};
4919 
4920 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4921 		t4_fatal_err(adap);
4922 }
4923 
4924 #define PF_INTR_MASK (PFSW_F)
4925 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4926 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4927 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4928 
4929 /**
4930  *	t4_slow_intr_handler - control path interrupt handler
4931  *	@adapter: the adapter
4932  *
4933  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4934  *	The designation 'slow' is because it involves register reads, while
4935  *	data interrupts typically don't involve any MMIOs.
4936  */
4937 int t4_slow_intr_handler(struct adapter *adapter)
4938 {
4939 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4940 
4941 	if (!(cause & GLBL_INTR_MASK))
4942 		return 0;
4943 	if (cause & CIM_F)
4944 		cim_intr_handler(adapter);
4945 	if (cause & MPS_F)
4946 		mps_intr_handler(adapter);
4947 	if (cause & NCSI_F)
4948 		ncsi_intr_handler(adapter);
4949 	if (cause & PL_F)
4950 		pl_intr_handler(adapter);
4951 	if (cause & SMB_F)
4952 		smb_intr_handler(adapter);
4953 	if (cause & XGMAC0_F)
4954 		xgmac_intr_handler(adapter, 0);
4955 	if (cause & XGMAC1_F)
4956 		xgmac_intr_handler(adapter, 1);
4957 	if (cause & XGMAC_KR0_F)
4958 		xgmac_intr_handler(adapter, 2);
4959 	if (cause & XGMAC_KR1_F)
4960 		xgmac_intr_handler(adapter, 3);
4961 	if (cause & PCIE_F)
4962 		pcie_intr_handler(adapter);
4963 	if (cause & MC_F)
4964 		mem_intr_handler(adapter, MEM_MC);
4965 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4966 		mem_intr_handler(adapter, MEM_MC1);
4967 	if (cause & EDC0_F)
4968 		mem_intr_handler(adapter, MEM_EDC0);
4969 	if (cause & EDC1_F)
4970 		mem_intr_handler(adapter, MEM_EDC1);
4971 	if (cause & LE_F)
4972 		le_intr_handler(adapter);
4973 	if (cause & TP_F)
4974 		tp_intr_handler(adapter);
4975 	if (cause & MA_F)
4976 		ma_intr_handler(adapter);
4977 	if (cause & PM_TX_F)
4978 		pmtx_intr_handler(adapter);
4979 	if (cause & PM_RX_F)
4980 		pmrx_intr_handler(adapter);
4981 	if (cause & ULP_RX_F)
4982 		ulprx_intr_handler(adapter);
4983 	if (cause & CPL_SWITCH_F)
4984 		cplsw_intr_handler(adapter);
4985 	if (cause & SGE_F)
4986 		sge_intr_handler(adapter);
4987 	if (cause & ULP_TX_F)
4988 		ulptx_intr_handler(adapter);
4989 
4990 	/* Clear the interrupts just processed for which we are the master. */
4991 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4992 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4993 	return 1;
4994 }
4995 
4996 /**
4997  *	t4_intr_enable - enable interrupts
4998  *	@adapter: the adapter whose interrupts should be enabled
4999  *
5000  *	Enable PF-specific interrupts for the calling function and the top-level
5001  *	interrupt concentrator for global interrupts.  Interrupts are already
5002  *	enabled at each module,	here we just enable the roots of the interrupt
5003  *	hierarchies.
5004  *
5005  *	Note: this function should be called only when the driver manages
5006  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5007  *	function at a time should be doing this.
5008  */
5009 void t4_intr_enable(struct adapter *adapter)
5010 {
5011 	u32 val = 0;
5012 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5013 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5014 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5015 
5016 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5017 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5018 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5019 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5020 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5021 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5022 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5023 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5024 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5025 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5026 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5027 }
5028 
5029 /**
5030  *	t4_intr_disable - disable interrupts
5031  *	@adapter: the adapter whose interrupts should be disabled
5032  *
5033  *	Disable interrupts.  We only disable the top-level interrupt
5034  *	concentrators.  The caller must be a PCI function managing global
5035  *	interrupts.
5036  */
5037 void t4_intr_disable(struct adapter *adapter)
5038 {
5039 	u32 whoami, pf;
5040 
5041 	if (pci_channel_offline(adapter->pdev))
5042 		return;
5043 
5044 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5045 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5046 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5047 
5048 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5049 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5050 }
5051 
5052 unsigned int t4_chip_rss_size(struct adapter *adap)
5053 {
5054 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5055 		return RSS_NENTRIES;
5056 	else
5057 		return T6_RSS_NENTRIES;
5058 }
5059 
5060 /**
5061  *	t4_config_rss_range - configure a portion of the RSS mapping table
5062  *	@adapter: the adapter
5063  *	@mbox: mbox to use for the FW command
5064  *	@viid: virtual interface whose RSS subtable is to be written
5065  *	@start: start entry in the table to write
5066  *	@n: how many table entries to write
5067  *	@rspq: values for the response queue lookup table
5068  *	@nrspq: number of values in @rspq
5069  *
5070  *	Programs the selected part of the VI's RSS mapping table with the
5071  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5072  *	until the full table range is populated.
5073  *
5074  *	The caller must ensure the values in @rspq are in the range allowed for
5075  *	@viid.
5076  */
5077 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5078 			int start, int n, const u16 *rspq, unsigned int nrspq)
5079 {
5080 	int ret;
5081 	const u16 *rsp = rspq;
5082 	const u16 *rsp_end = rspq + nrspq;
5083 	struct fw_rss_ind_tbl_cmd cmd;
5084 
5085 	memset(&cmd, 0, sizeof(cmd));
5086 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5087 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5088 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5089 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5090 
5091 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5092 	while (n > 0) {
5093 		int nq = min(n, 32);
5094 		__be32 *qp = &cmd.iq0_to_iq2;
5095 
5096 		cmd.niqid = cpu_to_be16(nq);
5097 		cmd.startidx = cpu_to_be16(start);
5098 
5099 		start += nq;
5100 		n -= nq;
5101 
5102 		while (nq > 0) {
5103 			unsigned int v;
5104 
5105 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5106 			if (++rsp >= rsp_end)
5107 				rsp = rspq;
5108 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5109 			if (++rsp >= rsp_end)
5110 				rsp = rspq;
5111 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5112 			if (++rsp >= rsp_end)
5113 				rsp = rspq;
5114 
5115 			*qp++ = cpu_to_be32(v);
5116 			nq -= 3;
5117 		}
5118 
5119 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5120 		if (ret)
5121 			return ret;
5122 	}
5123 	return 0;
5124 }
5125 
5126 /**
5127  *	t4_config_glbl_rss - configure the global RSS mode
5128  *	@adapter: the adapter
5129  *	@mbox: mbox to use for the FW command
5130  *	@mode: global RSS mode
5131  *	@flags: mode-specific flags
5132  *
5133  *	Sets the global RSS mode.
5134  */
5135 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5136 		       unsigned int flags)
5137 {
5138 	struct fw_rss_glb_config_cmd c;
5139 
5140 	memset(&c, 0, sizeof(c));
5141 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5142 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5143 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5144 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5145 		c.u.manual.mode_pkd =
5146 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5147 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5148 		c.u.basicvirtual.mode_pkd =
5149 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5150 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5151 	} else
5152 		return -EINVAL;
5153 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5154 }
5155 
5156 /**
5157  *	t4_config_vi_rss - configure per VI RSS settings
5158  *	@adapter: the adapter
5159  *	@mbox: mbox to use for the FW command
5160  *	@viid: the VI id
5161  *	@flags: RSS flags
5162  *	@defq: id of the default RSS queue for the VI.
5163  *
5164  *	Configures VI-specific RSS properties.
5165  */
5166 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5167 		     unsigned int flags, unsigned int defq)
5168 {
5169 	struct fw_rss_vi_config_cmd c;
5170 
5171 	memset(&c, 0, sizeof(c));
5172 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5173 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5174 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5175 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5176 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5177 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5178 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5179 }
5180 
5181 /* Read an RSS table row */
5182 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5183 {
5184 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5185 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5186 				   5, 0, val);
5187 }
5188 
5189 /**
5190  *	t4_read_rss - read the contents of the RSS mapping table
5191  *	@adapter: the adapter
5192  *	@map: holds the contents of the RSS mapping table
5193  *
5194  *	Reads the contents of the RSS hash->queue mapping table.
5195  */
5196 int t4_read_rss(struct adapter *adapter, u16 *map)
5197 {
5198 	int i, ret, nentries;
5199 	u32 val;
5200 
5201 	nentries = t4_chip_rss_size(adapter);
5202 	for (i = 0; i < nentries / 2; ++i) {
5203 		ret = rd_rss_row(adapter, i, &val);
5204 		if (ret)
5205 			return ret;
5206 		*map++ = LKPTBLQUEUE0_G(val);
5207 		*map++ = LKPTBLQUEUE1_G(val);
5208 	}
5209 	return 0;
5210 }
5211 
5212 static unsigned int t4_use_ldst(struct adapter *adap)
5213 {
5214 	return (adap->flags & FW_OK) && !adap->use_bd;
5215 }
5216 
5217 /**
5218  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5219  * @adap: the adapter
5220  * @cmd: TP fw ldst address space type
5221  * @vals: where the indirect register values are stored/written
5222  * @nregs: how many indirect registers to read/write
5223  * @start_idx: index of first indirect register to read/write
5224  * @rw: Read (1) or Write (0)
5225  * @sleep_ok: if true we may sleep while awaiting command completion
5226  *
5227  * Access TP indirect registers through LDST
5228  */
5229 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5230 			    unsigned int nregs, unsigned int start_index,
5231 			    unsigned int rw, bool sleep_ok)
5232 {
5233 	int ret = 0;
5234 	unsigned int i;
5235 	struct fw_ldst_cmd c;
5236 
5237 	for (i = 0; i < nregs; i++) {
5238 		memset(&c, 0, sizeof(c));
5239 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5240 						FW_CMD_REQUEST_F |
5241 						(rw ? FW_CMD_READ_F :
5242 						      FW_CMD_WRITE_F) |
5243 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5244 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5245 
5246 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5247 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5248 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5249 				      sleep_ok);
5250 		if (ret)
5251 			return ret;
5252 
5253 		if (rw)
5254 			vals[i] = be32_to_cpu(c.u.addrval.val);
5255 	}
5256 	return 0;
5257 }
5258 
5259 /**
5260  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5261  * @adap: the adapter
5262  * @reg_addr: Address Register
5263  * @reg_data: Data register
5264  * @buff: where the indirect register values are stored/written
5265  * @nregs: how many indirect registers to read/write
5266  * @start_index: index of first indirect register to read/write
5267  * @rw: READ(1) or WRITE(0)
5268  * @sleep_ok: if true we may sleep while awaiting command completion
5269  *
5270  * Read/Write TP indirect registers through LDST if possible.
5271  * Else, use backdoor access
5272  **/
5273 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5274 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5275 			      bool sleep_ok)
5276 {
5277 	int rc = -EINVAL;
5278 	int cmd;
5279 
5280 	switch (reg_addr) {
5281 	case TP_PIO_ADDR_A:
5282 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5283 		break;
5284 	case TP_TM_PIO_ADDR_A:
5285 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5286 		break;
5287 	case TP_MIB_INDEX_A:
5288 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5289 		break;
5290 	default:
5291 		goto indirect_access;
5292 	}
5293 
5294 	if (t4_use_ldst(adap))
5295 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5296 				      sleep_ok);
5297 
5298 indirect_access:
5299 
5300 	if (rc) {
5301 		if (rw)
5302 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5303 					 start_index);
5304 		else
5305 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5306 					  start_index);
5307 	}
5308 }
5309 
5310 /**
5311  * t4_tp_pio_read - Read TP PIO registers
5312  * @adap: the adapter
5313  * @buff: where the indirect register values are written
5314  * @nregs: how many indirect registers to read
5315  * @start_index: index of first indirect register to read
5316  * @sleep_ok: if true we may sleep while awaiting command completion
5317  *
5318  * Read TP PIO Registers
5319  **/
5320 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5321 		    u32 start_index, bool sleep_ok)
5322 {
5323 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5324 			  start_index, 1, sleep_ok);
5325 }
5326 
5327 /**
5328  * t4_tp_pio_write - Write TP PIO registers
5329  * @adap: the adapter
5330  * @buff: where the indirect register values are stored
5331  * @nregs: how many indirect registers to write
5332  * @start_index: index of first indirect register to write
5333  * @sleep_ok: if true we may sleep while awaiting command completion
5334  *
5335  * Write TP PIO Registers
5336  **/
5337 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5338 			    u32 start_index, bool sleep_ok)
5339 {
5340 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5341 			  start_index, 0, sleep_ok);
5342 }
5343 
5344 /**
5345  * t4_tp_tm_pio_read - Read TP TM PIO registers
5346  * @adap: the adapter
5347  * @buff: where the indirect register values are written
5348  * @nregs: how many indirect registers to read
5349  * @start_index: index of first indirect register to read
5350  * @sleep_ok: if true we may sleep while awaiting command completion
5351  *
5352  * Read TP TM PIO Registers
5353  **/
5354 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5355 		       u32 start_index, bool sleep_ok)
5356 {
5357 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5358 			  nregs, start_index, 1, sleep_ok);
5359 }
5360 
5361 /**
5362  * t4_tp_mib_read - Read TP MIB registers
5363  * @adap: the adapter
5364  * @buff: where the indirect register values are written
5365  * @nregs: how many indirect registers to read
5366  * @start_index: index of first indirect register to read
5367  * @sleep_ok: if true we may sleep while awaiting command completion
5368  *
5369  * Read TP MIB Registers
5370  **/
5371 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5372 		    bool sleep_ok)
5373 {
5374 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5375 			  start_index, 1, sleep_ok);
5376 }
5377 
5378 /**
5379  *	t4_read_rss_key - read the global RSS key
5380  *	@adap: the adapter
5381  *	@key: 10-entry array holding the 320-bit RSS key
5382  *      @sleep_ok: if true we may sleep while awaiting command completion
5383  *
5384  *	Reads the global 320-bit RSS key.
5385  */
5386 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5387 {
5388 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5389 }
5390 
5391 /**
5392  *	t4_write_rss_key - program one of the RSS keys
5393  *	@adap: the adapter
5394  *	@key: 10-entry array holding the 320-bit RSS key
5395  *	@idx: which RSS key to write
5396  *      @sleep_ok: if true we may sleep while awaiting command completion
5397  *
5398  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5399  *	0..15 the corresponding entry in the RSS key table is written,
5400  *	otherwise the global RSS key is written.
5401  */
5402 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5403 		      bool sleep_ok)
5404 {
5405 	u8 rss_key_addr_cnt = 16;
5406 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5407 
5408 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5409 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5410 	 * as index[5:4](upper 2) into key table
5411 	 */
5412 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5413 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5414 		rss_key_addr_cnt = 32;
5415 
5416 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5417 
5418 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5419 		if (rss_key_addr_cnt > 16)
5420 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5421 				     KEYWRADDRX_V(idx >> 4) |
5422 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5423 		else
5424 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5425 				     KEYWRADDR_V(idx) | KEYWREN_F);
5426 	}
5427 }
5428 
5429 /**
5430  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5431  *	@adapter: the adapter
5432  *	@index: the entry in the PF RSS table to read
5433  *	@valp: where to store the returned value
5434  *      @sleep_ok: if true we may sleep while awaiting command completion
5435  *
5436  *	Reads the PF RSS Configuration Table at the specified index and returns
5437  *	the value found there.
5438  */
5439 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5440 			   u32 *valp, bool sleep_ok)
5441 {
5442 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5443 }
5444 
5445 /**
5446  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5447  *	@adapter: the adapter
5448  *	@index: the entry in the VF RSS table to read
5449  *	@vfl: where to store the returned VFL
5450  *	@vfh: where to store the returned VFH
5451  *      @sleep_ok: if true we may sleep while awaiting command completion
5452  *
5453  *	Reads the VF RSS Configuration Table at the specified index and returns
5454  *	the (VFL, VFH) values found there.
5455  */
5456 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5457 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5458 {
5459 	u32 vrt, mask, data;
5460 
5461 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5462 		mask = VFWRADDR_V(VFWRADDR_M);
5463 		data = VFWRADDR_V(index);
5464 	} else {
5465 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5466 		 data = T6_VFWRADDR_V(index);
5467 	}
5468 
5469 	/* Request that the index'th VF Table values be read into VFL/VFH.
5470 	 */
5471 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5472 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5473 	vrt |= data | VFRDEN_F;
5474 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5475 
5476 	/* Grab the VFL/VFH values ...
5477 	 */
5478 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5479 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5480 }
5481 
5482 /**
5483  *	t4_read_rss_pf_map - read PF RSS Map
5484  *	@adapter: the adapter
5485  *      @sleep_ok: if true we may sleep while awaiting command completion
5486  *
5487  *	Reads the PF RSS Map register and returns its value.
5488  */
5489 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5490 {
5491 	u32 pfmap;
5492 
5493 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5494 	return pfmap;
5495 }
5496 
5497 /**
5498  *	t4_read_rss_pf_mask - read PF RSS Mask
5499  *	@adapter: the adapter
5500  *      @sleep_ok: if true we may sleep while awaiting command completion
5501  *
5502  *	Reads the PF RSS Mask register and returns its value.
5503  */
5504 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5505 {
5506 	u32 pfmask;
5507 
5508 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5509 	return pfmask;
5510 }
5511 
5512 /**
5513  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5514  *	@adap: the adapter
5515  *	@v4: holds the TCP/IP counter values
5516  *	@v6: holds the TCP/IPv6 counter values
5517  *      @sleep_ok: if true we may sleep while awaiting command completion
5518  *
5519  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5520  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5521  */
5522 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5523 			 struct tp_tcp_stats *v6, bool sleep_ok)
5524 {
5525 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5526 
5527 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5528 #define STAT(x)     val[STAT_IDX(x)]
5529 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5530 
5531 	if (v4) {
5532 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5533 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5534 		v4->tcp_out_rsts = STAT(OUT_RST);
5535 		v4->tcp_in_segs  = STAT64(IN_SEG);
5536 		v4->tcp_out_segs = STAT64(OUT_SEG);
5537 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5538 	}
5539 	if (v6) {
5540 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5541 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5542 		v6->tcp_out_rsts = STAT(OUT_RST);
5543 		v6->tcp_in_segs  = STAT64(IN_SEG);
5544 		v6->tcp_out_segs = STAT64(OUT_SEG);
5545 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5546 	}
5547 #undef STAT64
5548 #undef STAT
5549 #undef STAT_IDX
5550 }
5551 
5552 /**
5553  *	t4_tp_get_err_stats - read TP's error MIB counters
5554  *	@adap: the adapter
5555  *	@st: holds the counter values
5556  *      @sleep_ok: if true we may sleep while awaiting command completion
5557  *
5558  *	Returns the values of TP's error counters.
5559  */
5560 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5561 			 bool sleep_ok)
5562 {
5563 	int nchan = adap->params.arch.nchan;
5564 
5565 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5566 		       sleep_ok);
5567 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5568 		       sleep_ok);
5569 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5570 		       sleep_ok);
5571 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5572 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5573 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5574 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5575 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5576 		       sleep_ok);
5577 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5578 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5579 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5580 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5581 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5582 		       sleep_ok);
5583 }
5584 
5585 /**
5586  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5587  *	@adap: the adapter
5588  *	@st: holds the counter values
5589  *      @sleep_ok: if true we may sleep while awaiting command completion
5590  *
5591  *	Returns the values of TP's CPL counters.
5592  */
5593 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5594 			 bool sleep_ok)
5595 {
5596 	int nchan = adap->params.arch.nchan;
5597 
5598 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5599 
5600 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5601 }
5602 
5603 /**
5604  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5605  *	@adap: the adapter
5606  *	@st: holds the counter values
5607  *      @sleep_ok: if true we may sleep while awaiting command completion
5608  *
5609  *	Returns the values of TP's RDMA counters.
5610  */
5611 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5612 			  bool sleep_ok)
5613 {
5614 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5615 		       sleep_ok);
5616 }
5617 
5618 /**
5619  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5620  *	@adap: the adapter
5621  *	@idx: the port index
5622  *	@st: holds the counter values
5623  *      @sleep_ok: if true we may sleep while awaiting command completion
5624  *
5625  *	Returns the values of TP's FCoE counters for the selected port.
5626  */
5627 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5628 		       struct tp_fcoe_stats *st, bool sleep_ok)
5629 {
5630 	u32 val[2];
5631 
5632 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5633 		       sleep_ok);
5634 
5635 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5636 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5637 
5638 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5639 		       sleep_ok);
5640 
5641 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5642 }
5643 
5644 /**
5645  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5646  *	@adap: the adapter
5647  *	@st: holds the counter values
5648  *      @sleep_ok: if true we may sleep while awaiting command completion
5649  *
5650  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5651  */
5652 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5653 		      bool sleep_ok)
5654 {
5655 	u32 val[4];
5656 
5657 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5658 	st->frames = val[0];
5659 	st->drops = val[1];
5660 	st->octets = ((u64)val[2] << 32) | val[3];
5661 }
5662 
5663 /**
5664  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5665  *	@adap: the adapter
5666  *	@mtus: where to store the MTU values
5667  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5668  *
5669  *	Reads the HW path MTU table.
5670  */
5671 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5672 {
5673 	u32 v;
5674 	int i;
5675 
5676 	for (i = 0; i < NMTUS; ++i) {
5677 		t4_write_reg(adap, TP_MTU_TABLE_A,
5678 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5679 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5680 		mtus[i] = MTUVALUE_G(v);
5681 		if (mtu_log)
5682 			mtu_log[i] = MTUWIDTH_G(v);
5683 	}
5684 }
5685 
5686 /**
5687  *	t4_read_cong_tbl - reads the congestion control table
5688  *	@adap: the adapter
5689  *	@incr: where to store the alpha values
5690  *
5691  *	Reads the additive increments programmed into the HW congestion
5692  *	control table.
5693  */
5694 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5695 {
5696 	unsigned int mtu, w;
5697 
5698 	for (mtu = 0; mtu < NMTUS; ++mtu)
5699 		for (w = 0; w < NCCTRL_WIN; ++w) {
5700 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5701 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5702 			incr[mtu][w] = (u16)t4_read_reg(adap,
5703 						TP_CCTRL_TABLE_A) & 0x1fff;
5704 		}
5705 }
5706 
5707 /**
5708  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5709  *	@adap: the adapter
5710  *	@addr: the indirect TP register address
5711  *	@mask: specifies the field within the register to modify
5712  *	@val: new value for the field
5713  *
5714  *	Sets a field of an indirect TP register to the given value.
5715  */
5716 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5717 			    unsigned int mask, unsigned int val)
5718 {
5719 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5720 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5721 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5722 }
5723 
5724 /**
5725  *	init_cong_ctrl - initialize congestion control parameters
5726  *	@a: the alpha values for congestion control
5727  *	@b: the beta values for congestion control
5728  *
5729  *	Initialize the congestion control parameters.
5730  */
5731 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5732 {
5733 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5734 	a[9] = 2;
5735 	a[10] = 3;
5736 	a[11] = 4;
5737 	a[12] = 5;
5738 	a[13] = 6;
5739 	a[14] = 7;
5740 	a[15] = 8;
5741 	a[16] = 9;
5742 	a[17] = 10;
5743 	a[18] = 14;
5744 	a[19] = 17;
5745 	a[20] = 21;
5746 	a[21] = 25;
5747 	a[22] = 30;
5748 	a[23] = 35;
5749 	a[24] = 45;
5750 	a[25] = 60;
5751 	a[26] = 80;
5752 	a[27] = 100;
5753 	a[28] = 200;
5754 	a[29] = 300;
5755 	a[30] = 400;
5756 	a[31] = 500;
5757 
5758 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5759 	b[9] = b[10] = 1;
5760 	b[11] = b[12] = 2;
5761 	b[13] = b[14] = b[15] = b[16] = 3;
5762 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5763 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5764 	b[28] = b[29] = 6;
5765 	b[30] = b[31] = 7;
5766 }
5767 
5768 /* The minimum additive increment value for the congestion control table */
5769 #define CC_MIN_INCR 2U
5770 
5771 /**
5772  *	t4_load_mtus - write the MTU and congestion control HW tables
5773  *	@adap: the adapter
5774  *	@mtus: the values for the MTU table
5775  *	@alpha: the values for the congestion control alpha parameter
5776  *	@beta: the values for the congestion control beta parameter
5777  *
5778  *	Write the HW MTU table with the supplied MTUs and the high-speed
5779  *	congestion control table with the supplied alpha, beta, and MTUs.
5780  *	We write the two tables together because the additive increments
5781  *	depend on the MTUs.
5782  */
5783 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5784 		  const unsigned short *alpha, const unsigned short *beta)
5785 {
5786 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5787 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5788 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5789 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5790 	};
5791 
5792 	unsigned int i, w;
5793 
5794 	for (i = 0; i < NMTUS; ++i) {
5795 		unsigned int mtu = mtus[i];
5796 		unsigned int log2 = fls(mtu);
5797 
5798 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5799 			log2--;
5800 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5801 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5802 
5803 		for (w = 0; w < NCCTRL_WIN; ++w) {
5804 			unsigned int inc;
5805 
5806 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5807 				  CC_MIN_INCR);
5808 
5809 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5810 				     (w << 16) | (beta[w] << 13) | inc);
5811 		}
5812 	}
5813 }
5814 
5815 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5816  * clocks.  The formula is
5817  *
5818  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5819  *
5820  * which is equivalent to
5821  *
5822  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5823  */
5824 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5825 {
5826 	u64 v = bytes256 * adap->params.vpd.cclk;
5827 
5828 	return v * 62 + v / 2;
5829 }
5830 
5831 /**
5832  *	t4_get_chan_txrate - get the current per channel Tx rates
5833  *	@adap: the adapter
5834  *	@nic_rate: rates for NIC traffic
5835  *	@ofld_rate: rates for offloaded traffic
5836  *
5837  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5838  *	for each channel.
5839  */
5840 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5841 {
5842 	u32 v;
5843 
5844 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5845 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5846 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5847 	if (adap->params.arch.nchan == NCHAN) {
5848 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5849 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5850 	}
5851 
5852 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5853 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5854 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5855 	if (adap->params.arch.nchan == NCHAN) {
5856 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5857 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5858 	}
5859 }
5860 
5861 /**
5862  *	t4_set_trace_filter - configure one of the tracing filters
5863  *	@adap: the adapter
5864  *	@tp: the desired trace filter parameters
5865  *	@idx: which filter to configure
5866  *	@enable: whether to enable or disable the filter
5867  *
5868  *	Configures one of the tracing filters available in HW.  If @enable is
5869  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5870  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5871  */
5872 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5873 			int idx, int enable)
5874 {
5875 	int i, ofst = idx * 4;
5876 	u32 data_reg, mask_reg, cfg;
5877 	u32 multitrc = TRCMULTIFILTER_F;
5878 
5879 	if (!enable) {
5880 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5881 		return 0;
5882 	}
5883 
5884 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5885 	if (cfg & TRCMULTIFILTER_F) {
5886 		/* If multiple tracers are enabled, then maximum
5887 		 * capture size is 2.5KB (FIFO size of a single channel)
5888 		 * minus 2 flits for CPL_TRACE_PKT header.
5889 		 */
5890 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5891 			return -EINVAL;
5892 	} else {
5893 		/* If multiple tracers are disabled, to avoid deadlocks
5894 		 * maximum packet capture size of 9600 bytes is recommended.
5895 		 * Also in this mode, only trace0 can be enabled and running.
5896 		 */
5897 		multitrc = 0;
5898 		if (tp->snap_len > 9600 || idx)
5899 			return -EINVAL;
5900 	}
5901 
5902 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5903 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5904 	    tp->min_len > TFMINPKTSIZE_M)
5905 		return -EINVAL;
5906 
5907 	/* stop the tracer we'll be changing */
5908 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5909 
5910 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5911 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5912 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5913 
5914 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5915 		t4_write_reg(adap, data_reg, tp->data[i]);
5916 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5917 	}
5918 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5919 		     TFCAPTUREMAX_V(tp->snap_len) |
5920 		     TFMINPKTSIZE_V(tp->min_len));
5921 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5922 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5923 		     (is_t4(adap->params.chip) ?
5924 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5925 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5926 		     T5_TFINVERTMATCH_V(tp->invert)));
5927 
5928 	return 0;
5929 }
5930 
5931 /**
5932  *	t4_get_trace_filter - query one of the tracing filters
5933  *	@adap: the adapter
5934  *	@tp: the current trace filter parameters
5935  *	@idx: which trace filter to query
5936  *	@enabled: non-zero if the filter is enabled
5937  *
5938  *	Returns the current settings of one of the HW tracing filters.
5939  */
5940 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5941 			 int *enabled)
5942 {
5943 	u32 ctla, ctlb;
5944 	int i, ofst = idx * 4;
5945 	u32 data_reg, mask_reg;
5946 
5947 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5948 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5949 
5950 	if (is_t4(adap->params.chip)) {
5951 		*enabled = !!(ctla & TFEN_F);
5952 		tp->port =  TFPORT_G(ctla);
5953 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5954 	} else {
5955 		*enabled = !!(ctla & T5_TFEN_F);
5956 		tp->port = T5_TFPORT_G(ctla);
5957 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5958 	}
5959 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5960 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5961 	tp->skip_ofst = TFOFFSET_G(ctla);
5962 	tp->skip_len = TFLENGTH_G(ctla);
5963 
5964 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5965 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5966 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5967 
5968 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5969 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5970 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5971 	}
5972 }
5973 
5974 /**
5975  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5976  *	@adap: the adapter
5977  *	@cnt: where to store the count statistics
5978  *	@cycles: where to store the cycle statistics
5979  *
5980  *	Returns performance statistics from PMTX.
5981  */
5982 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5983 {
5984 	int i;
5985 	u32 data[2];
5986 
5987 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5988 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5989 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5990 		if (is_t4(adap->params.chip)) {
5991 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5992 		} else {
5993 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5994 					 PM_TX_DBG_DATA_A, data, 2,
5995 					 PM_TX_DBG_STAT_MSB_A);
5996 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5997 		}
5998 	}
5999 }
6000 
6001 /**
6002  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6003  *	@adap: the adapter
6004  *	@cnt: where to store the count statistics
6005  *	@cycles: where to store the cycle statistics
6006  *
6007  *	Returns performance statistics from PMRX.
6008  */
6009 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6010 {
6011 	int i;
6012 	u32 data[2];
6013 
6014 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6015 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6016 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6017 		if (is_t4(adap->params.chip)) {
6018 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6019 		} else {
6020 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6021 					 PM_RX_DBG_DATA_A, data, 2,
6022 					 PM_RX_DBG_STAT_MSB_A);
6023 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6024 		}
6025 	}
6026 }
6027 
6028 /**
6029  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6030  *	@adap: the adapter
6031  *	@pidx: the port index
6032  *
6033  *	Computes and returns a bitmap indicating which MPS buffer groups are
6034  *	associated with the given Port.  Bit i is set if buffer group i is
6035  *	used by the Port.
6036  */
6037 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6038 					      int pidx)
6039 {
6040 	unsigned int chip_version, nports;
6041 
6042 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6043 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6044 
6045 	switch (chip_version) {
6046 	case CHELSIO_T4:
6047 	case CHELSIO_T5:
6048 		switch (nports) {
6049 		case 1: return 0xf;
6050 		case 2: return 3 << (2 * pidx);
6051 		case 4: return 1 << pidx;
6052 		}
6053 		break;
6054 
6055 	case CHELSIO_T6:
6056 		switch (nports) {
6057 		case 2: return 1 << (2 * pidx);
6058 		}
6059 		break;
6060 	}
6061 
6062 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6063 		chip_version, nports);
6064 
6065 	return 0;
6066 }
6067 
6068 /**
6069  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6070  *	@adapter: the adapter
6071  *	@pidx: the port index
6072  *
6073  *	Returns a bitmap indicating which MPS buffer groups are associated
6074  *	with the given Port.  Bit i is set if buffer group i is used by the
6075  *	Port.
6076  */
6077 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6078 {
6079 	u8 *mps_bg_map;
6080 	unsigned int nports;
6081 
6082 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6083 	if (pidx >= nports) {
6084 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6085 			pidx, nports);
6086 		return 0;
6087 	}
6088 
6089 	/* If we've already retrieved/computed this, just return the result.
6090 	 */
6091 	mps_bg_map = adapter->params.mps_bg_map;
6092 	if (mps_bg_map[pidx])
6093 		return mps_bg_map[pidx];
6094 
6095 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6096 	 * If we're talking to such Firmware, let it tell us.  If the new
6097 	 * API isn't supported, revert back to old hardcoded way.  The value
6098 	 * obtained from Firmware is encoded in below format:
6099 	 *
6100 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6101 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6102 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6103 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6104 	 */
6105 	if (adapter->flags & FW_OK) {
6106 		u32 param, val;
6107 		int ret;
6108 
6109 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6110 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6111 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6112 					 0, 1, &param, &val);
6113 		if (!ret) {
6114 			int p;
6115 
6116 			/* Store the BG Map for all of the Ports in order to
6117 			 * avoid more calls to the Firmware in the future.
6118 			 */
6119 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6120 				mps_bg_map[p] = val & 0xff;
6121 
6122 			return mps_bg_map[pidx];
6123 		}
6124 	}
6125 
6126 	/* Either we're not talking to the Firmware or we're dealing with
6127 	 * older Firmware which doesn't support the new API to get the MPS
6128 	 * Buffer Group Map.  Fall back to computing it ourselves.
6129 	 */
6130 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6131 	return mps_bg_map[pidx];
6132 }
6133 
6134 /**
6135  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6136  *	@adapter: the adapter
6137  *	@pidx: the port index
6138  *
6139  *	Returns a bitmap indicating which TP Ingress Channels are associated
6140  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6141  *	the Port.
6142  */
6143 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6144 {
6145 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6146 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6147 
6148 	if (pidx >= nports) {
6149 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6150 			 pidx, nports);
6151 		return 0;
6152 	}
6153 
6154 	switch (chip_version) {
6155 	case CHELSIO_T4:
6156 	case CHELSIO_T5:
6157 		/* Note that this happens to be the same values as the MPS
6158 		 * Buffer Group Map for these Chips.  But we replicate the code
6159 		 * here because they're really separate concepts.
6160 		 */
6161 		switch (nports) {
6162 		case 1: return 0xf;
6163 		case 2: return 3 << (2 * pidx);
6164 		case 4: return 1 << pidx;
6165 		}
6166 		break;
6167 
6168 	case CHELSIO_T6:
6169 		switch (nports) {
6170 		case 1:
6171 		case 2: return 1 << pidx;
6172 		}
6173 		break;
6174 	}
6175 
6176 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6177 		chip_version, nports);
6178 	return 0;
6179 }
6180 
6181 /**
6182  *      t4_get_port_type_description - return Port Type string description
6183  *      @port_type: firmware Port Type enumeration
6184  */
6185 const char *t4_get_port_type_description(enum fw_port_type port_type)
6186 {
6187 	static const char *const port_type_description[] = {
6188 		"Fiber_XFI",
6189 		"Fiber_XAUI",
6190 		"BT_SGMII",
6191 		"BT_XFI",
6192 		"BT_XAUI",
6193 		"KX4",
6194 		"CX4",
6195 		"KX",
6196 		"KR",
6197 		"SFP",
6198 		"BP_AP",
6199 		"BP4_AP",
6200 		"QSFP_10G",
6201 		"QSA",
6202 		"QSFP",
6203 		"BP40_BA",
6204 		"KR4_100G",
6205 		"CR4_QSFP",
6206 		"CR_QSFP",
6207 		"CR2_QSFP",
6208 		"SFP28",
6209 		"KR_SFP28",
6210 		"KR_XLAUI"
6211 	};
6212 
6213 	if (port_type < ARRAY_SIZE(port_type_description))
6214 		return port_type_description[port_type];
6215 	return "UNKNOWN";
6216 }
6217 
6218 /**
6219  *      t4_get_port_stats_offset - collect port stats relative to a previous
6220  *                                 snapshot
6221  *      @adap: The adapter
6222  *      @idx: The port
6223  *      @stats: Current stats to fill
6224  *      @offset: Previous stats snapshot
6225  */
6226 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6227 			      struct port_stats *stats,
6228 			      struct port_stats *offset)
6229 {
6230 	u64 *s, *o;
6231 	int i;
6232 
6233 	t4_get_port_stats(adap, idx, stats);
6234 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6235 			i < (sizeof(struct port_stats) / sizeof(u64));
6236 			i++, s++, o++)
6237 		*s -= *o;
6238 }
6239 
6240 /**
6241  *	t4_get_port_stats - collect port statistics
6242  *	@adap: the adapter
6243  *	@idx: the port index
6244  *	@p: the stats structure to fill
6245  *
6246  *	Collect statistics related to the given port from HW.
6247  */
6248 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6249 {
6250 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6251 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6252 
6253 #define GET_STAT(name) \
6254 	t4_read_reg64(adap, \
6255 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6256 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6257 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6258 
6259 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6260 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6261 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6262 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6263 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6264 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6265 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6266 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6267 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6268 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6269 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6270 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6271 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6272 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6273 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6274 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6275 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6276 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6277 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6278 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6279 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6280 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6281 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6282 
6283 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6284 		if (stat_ctl & COUNTPAUSESTATTX_F)
6285 			p->tx_frames_64 -= p->tx_pause;
6286 		if (stat_ctl & COUNTPAUSEMCTX_F)
6287 			p->tx_mcast_frames -= p->tx_pause;
6288 	}
6289 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6290 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6291 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6292 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6293 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6294 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6295 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6296 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6297 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6298 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6299 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6300 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6301 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6302 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6303 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6304 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6305 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6306 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6307 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6308 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6309 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6310 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6311 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6312 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6313 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6314 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6315 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6316 
6317 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6318 		if (stat_ctl & COUNTPAUSESTATRX_F)
6319 			p->rx_frames_64 -= p->rx_pause;
6320 		if (stat_ctl & COUNTPAUSEMCRX_F)
6321 			p->rx_mcast_frames -= p->rx_pause;
6322 	}
6323 
6324 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6325 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6326 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6327 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6328 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6329 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6330 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6331 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6332 
6333 #undef GET_STAT
6334 #undef GET_STAT_COM
6335 }
6336 
6337 /**
6338  *	t4_get_lb_stats - collect loopback port statistics
6339  *	@adap: the adapter
6340  *	@idx: the loopback port index
6341  *	@p: the stats structure to fill
6342  *
6343  *	Return HW statistics for the given loopback port.
6344  */
6345 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6346 {
6347 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6348 
6349 #define GET_STAT(name) \
6350 	t4_read_reg64(adap, \
6351 	(is_t4(adap->params.chip) ? \
6352 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6353 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6354 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6355 
6356 	p->octets           = GET_STAT(BYTES);
6357 	p->frames           = GET_STAT(FRAMES);
6358 	p->bcast_frames     = GET_STAT(BCAST);
6359 	p->mcast_frames     = GET_STAT(MCAST);
6360 	p->ucast_frames     = GET_STAT(UCAST);
6361 	p->error_frames     = GET_STAT(ERROR);
6362 
6363 	p->frames_64        = GET_STAT(64B);
6364 	p->frames_65_127    = GET_STAT(65B_127B);
6365 	p->frames_128_255   = GET_STAT(128B_255B);
6366 	p->frames_256_511   = GET_STAT(256B_511B);
6367 	p->frames_512_1023  = GET_STAT(512B_1023B);
6368 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6369 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6370 	p->drop             = GET_STAT(DROP_FRAMES);
6371 
6372 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6373 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6374 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6375 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6376 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6377 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6378 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6379 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6380 
6381 #undef GET_STAT
6382 #undef GET_STAT_COM
6383 }
6384 
6385 /*     t4_mk_filtdelwr - create a delete filter WR
6386  *     @ftid: the filter ID
6387  *     @wr: the filter work request to populate
6388  *     @qid: ingress queue to receive the delete notification
6389  *
6390  *     Creates a filter work request to delete the supplied filter.  If @qid is
6391  *     negative the delete notification is suppressed.
6392  */
6393 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6394 {
6395 	memset(wr, 0, sizeof(*wr));
6396 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6397 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6398 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6399 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6400 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6401 	if (qid >= 0)
6402 		wr->rx_chan_rx_rpl_iq =
6403 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6404 }
6405 
6406 #define INIT_CMD(var, cmd, rd_wr) do { \
6407 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6408 					FW_CMD_REQUEST_F | \
6409 					FW_CMD_##rd_wr##_F); \
6410 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6411 } while (0)
6412 
6413 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6414 			  u32 addr, u32 val)
6415 {
6416 	u32 ldst_addrspace;
6417 	struct fw_ldst_cmd c;
6418 
6419 	memset(&c, 0, sizeof(c));
6420 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6421 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6422 					FW_CMD_REQUEST_F |
6423 					FW_CMD_WRITE_F |
6424 					ldst_addrspace);
6425 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6426 	c.u.addrval.addr = cpu_to_be32(addr);
6427 	c.u.addrval.val = cpu_to_be32(val);
6428 
6429 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6430 }
6431 
6432 /**
6433  *	t4_mdio_rd - read a PHY register through MDIO
6434  *	@adap: the adapter
6435  *	@mbox: mailbox to use for the FW command
6436  *	@phy_addr: the PHY address
6437  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6438  *	@reg: the register to read
6439  *	@valp: where to store the value
6440  *
6441  *	Issues a FW command through the given mailbox to read a PHY register.
6442  */
6443 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6444 	       unsigned int mmd, unsigned int reg, u16 *valp)
6445 {
6446 	int ret;
6447 	u32 ldst_addrspace;
6448 	struct fw_ldst_cmd c;
6449 
6450 	memset(&c, 0, sizeof(c));
6451 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6452 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6453 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6454 					ldst_addrspace);
6455 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6456 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6457 					 FW_LDST_CMD_MMD_V(mmd));
6458 	c.u.mdio.raddr = cpu_to_be16(reg);
6459 
6460 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6461 	if (ret == 0)
6462 		*valp = be16_to_cpu(c.u.mdio.rval);
6463 	return ret;
6464 }
6465 
6466 /**
6467  *	t4_mdio_wr - write a PHY register through MDIO
6468  *	@adap: the adapter
6469  *	@mbox: mailbox to use for the FW command
6470  *	@phy_addr: the PHY address
6471  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6472  *	@reg: the register to write
6473  *	@valp: value to write
6474  *
6475  *	Issues a FW command through the given mailbox to write a PHY register.
6476  */
6477 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6478 	       unsigned int mmd, unsigned int reg, u16 val)
6479 {
6480 	u32 ldst_addrspace;
6481 	struct fw_ldst_cmd c;
6482 
6483 	memset(&c, 0, sizeof(c));
6484 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6485 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6486 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6487 					ldst_addrspace);
6488 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6489 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6490 					 FW_LDST_CMD_MMD_V(mmd));
6491 	c.u.mdio.raddr = cpu_to_be16(reg);
6492 	c.u.mdio.rval = cpu_to_be16(val);
6493 
6494 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6495 }
6496 
6497 /**
6498  *	t4_sge_decode_idma_state - decode the idma state
6499  *	@adap: the adapter
6500  *	@state: the state idma is stuck in
6501  */
6502 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6503 {
6504 	static const char * const t4_decode[] = {
6505 		"IDMA_IDLE",
6506 		"IDMA_PUSH_MORE_CPL_FIFO",
6507 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6508 		"Not used",
6509 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6510 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6511 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6512 		"IDMA_SEND_FIFO_TO_IMSG",
6513 		"IDMA_FL_REQ_DATA_FL_PREP",
6514 		"IDMA_FL_REQ_DATA_FL",
6515 		"IDMA_FL_DROP",
6516 		"IDMA_FL_H_REQ_HEADER_FL",
6517 		"IDMA_FL_H_SEND_PCIEHDR",
6518 		"IDMA_FL_H_PUSH_CPL_FIFO",
6519 		"IDMA_FL_H_SEND_CPL",
6520 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6521 		"IDMA_FL_H_SEND_IP_HDR",
6522 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6523 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6524 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6525 		"IDMA_FL_D_SEND_PCIEHDR",
6526 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6527 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6528 		"IDMA_FL_SEND_PCIEHDR",
6529 		"IDMA_FL_PUSH_CPL_FIFO",
6530 		"IDMA_FL_SEND_CPL",
6531 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6532 		"IDMA_FL_SEND_PAYLOAD",
6533 		"IDMA_FL_REQ_NEXT_DATA_FL",
6534 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6535 		"IDMA_FL_SEND_PADDING",
6536 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6537 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6538 		"IDMA_FL_REQ_DATAFL_DONE",
6539 		"IDMA_FL_REQ_HEADERFL_DONE",
6540 	};
6541 	static const char * const t5_decode[] = {
6542 		"IDMA_IDLE",
6543 		"IDMA_ALMOST_IDLE",
6544 		"IDMA_PUSH_MORE_CPL_FIFO",
6545 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6546 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6547 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6548 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6549 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6550 		"IDMA_SEND_FIFO_TO_IMSG",
6551 		"IDMA_FL_REQ_DATA_FL",
6552 		"IDMA_FL_DROP",
6553 		"IDMA_FL_DROP_SEND_INC",
6554 		"IDMA_FL_H_REQ_HEADER_FL",
6555 		"IDMA_FL_H_SEND_PCIEHDR",
6556 		"IDMA_FL_H_PUSH_CPL_FIFO",
6557 		"IDMA_FL_H_SEND_CPL",
6558 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6559 		"IDMA_FL_H_SEND_IP_HDR",
6560 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6561 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6562 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6563 		"IDMA_FL_D_SEND_PCIEHDR",
6564 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6565 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6566 		"IDMA_FL_SEND_PCIEHDR",
6567 		"IDMA_FL_PUSH_CPL_FIFO",
6568 		"IDMA_FL_SEND_CPL",
6569 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6570 		"IDMA_FL_SEND_PAYLOAD",
6571 		"IDMA_FL_REQ_NEXT_DATA_FL",
6572 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6573 		"IDMA_FL_SEND_PADDING",
6574 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6575 	};
6576 	static const char * const t6_decode[] = {
6577 		"IDMA_IDLE",
6578 		"IDMA_PUSH_MORE_CPL_FIFO",
6579 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6580 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6581 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6582 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6583 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6584 		"IDMA_FL_REQ_DATA_FL",
6585 		"IDMA_FL_DROP",
6586 		"IDMA_FL_DROP_SEND_INC",
6587 		"IDMA_FL_H_REQ_HEADER_FL",
6588 		"IDMA_FL_H_SEND_PCIEHDR",
6589 		"IDMA_FL_H_PUSH_CPL_FIFO",
6590 		"IDMA_FL_H_SEND_CPL",
6591 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6592 		"IDMA_FL_H_SEND_IP_HDR",
6593 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6594 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6595 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6596 		"IDMA_FL_D_SEND_PCIEHDR",
6597 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6598 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6599 		"IDMA_FL_SEND_PCIEHDR",
6600 		"IDMA_FL_PUSH_CPL_FIFO",
6601 		"IDMA_FL_SEND_CPL",
6602 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6603 		"IDMA_FL_SEND_PAYLOAD",
6604 		"IDMA_FL_REQ_NEXT_DATA_FL",
6605 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6606 		"IDMA_FL_SEND_PADDING",
6607 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6608 	};
6609 	static const u32 sge_regs[] = {
6610 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6611 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6612 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6613 	};
6614 	const char **sge_idma_decode;
6615 	int sge_idma_decode_nstates;
6616 	int i;
6617 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6618 
6619 	/* Select the right set of decode strings to dump depending on the
6620 	 * adapter chip type.
6621 	 */
6622 	switch (chip_version) {
6623 	case CHELSIO_T4:
6624 		sge_idma_decode = (const char **)t4_decode;
6625 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6626 		break;
6627 
6628 	case CHELSIO_T5:
6629 		sge_idma_decode = (const char **)t5_decode;
6630 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6631 		break;
6632 
6633 	case CHELSIO_T6:
6634 		sge_idma_decode = (const char **)t6_decode;
6635 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6636 		break;
6637 
6638 	default:
6639 		dev_err(adapter->pdev_dev,
6640 			"Unsupported chip version %d\n", chip_version);
6641 		return;
6642 	}
6643 
6644 	if (is_t4(adapter->params.chip)) {
6645 		sge_idma_decode = (const char **)t4_decode;
6646 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6647 	} else {
6648 		sge_idma_decode = (const char **)t5_decode;
6649 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6650 	}
6651 
6652 	if (state < sge_idma_decode_nstates)
6653 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6654 	else
6655 		CH_WARN(adapter, "idma state %d unknown\n", state);
6656 
6657 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6658 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6659 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6660 }
6661 
6662 /**
6663  *      t4_sge_ctxt_flush - flush the SGE context cache
6664  *      @adap: the adapter
6665  *      @mbox: mailbox to use for the FW command
6666  *      @ctx_type: Egress or Ingress
6667  *
6668  *      Issues a FW command through the given mailbox to flush the
6669  *      SGE context cache.
6670  */
6671 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6672 {
6673 	int ret;
6674 	u32 ldst_addrspace;
6675 	struct fw_ldst_cmd c;
6676 
6677 	memset(&c, 0, sizeof(c));
6678 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6679 						 FW_LDST_ADDRSPC_SGE_EGRC :
6680 						 FW_LDST_ADDRSPC_SGE_INGC);
6681 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6682 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6683 					ldst_addrspace);
6684 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6685 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6686 
6687 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6688 	return ret;
6689 }
6690 
6691 /**
6692  *      t4_fw_hello - establish communication with FW
6693  *      @adap: the adapter
6694  *      @mbox: mailbox to use for the FW command
6695  *      @evt_mbox: mailbox to receive async FW events
6696  *      @master: specifies the caller's willingness to be the device master
6697  *	@state: returns the current device state (if non-NULL)
6698  *
6699  *	Issues a command to establish communication with FW.  Returns either
6700  *	an error (negative integer) or the mailbox of the Master PF.
6701  */
6702 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6703 		enum dev_master master, enum dev_state *state)
6704 {
6705 	int ret;
6706 	struct fw_hello_cmd c;
6707 	u32 v;
6708 	unsigned int master_mbox;
6709 	int retries = FW_CMD_HELLO_RETRIES;
6710 
6711 retry:
6712 	memset(&c, 0, sizeof(c));
6713 	INIT_CMD(c, HELLO, WRITE);
6714 	c.err_to_clearinit = cpu_to_be32(
6715 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6716 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6717 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6718 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6719 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6720 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6721 		FW_HELLO_CMD_CLEARINIT_F);
6722 
6723 	/*
6724 	 * Issue the HELLO command to the firmware.  If it's not successful
6725 	 * but indicates that we got a "busy" or "timeout" condition, retry
6726 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6727 	 * retry limit, check to see if the firmware left us any error
6728 	 * information and report that if so.
6729 	 */
6730 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6731 	if (ret < 0) {
6732 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6733 			goto retry;
6734 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6735 			t4_report_fw_error(adap);
6736 		return ret;
6737 	}
6738 
6739 	v = be32_to_cpu(c.err_to_clearinit);
6740 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6741 	if (state) {
6742 		if (v & FW_HELLO_CMD_ERR_F)
6743 			*state = DEV_STATE_ERR;
6744 		else if (v & FW_HELLO_CMD_INIT_F)
6745 			*state = DEV_STATE_INIT;
6746 		else
6747 			*state = DEV_STATE_UNINIT;
6748 	}
6749 
6750 	/*
6751 	 * If we're not the Master PF then we need to wait around for the
6752 	 * Master PF Driver to finish setting up the adapter.
6753 	 *
6754 	 * Note that we also do this wait if we're a non-Master-capable PF and
6755 	 * there is no current Master PF; a Master PF may show up momentarily
6756 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6757 	 * OS loads lots of different drivers rapidly at the same time).  In
6758 	 * this case, the Master PF returned by the firmware will be
6759 	 * PCIE_FW_MASTER_M so the test below will work ...
6760 	 */
6761 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6762 	    master_mbox != mbox) {
6763 		int waiting = FW_CMD_HELLO_TIMEOUT;
6764 
6765 		/*
6766 		 * Wait for the firmware to either indicate an error or
6767 		 * initialized state.  If we see either of these we bail out
6768 		 * and report the issue to the caller.  If we exhaust the
6769 		 * "hello timeout" and we haven't exhausted our retries, try
6770 		 * again.  Otherwise bail with a timeout error.
6771 		 */
6772 		for (;;) {
6773 			u32 pcie_fw;
6774 
6775 			msleep(50);
6776 			waiting -= 50;
6777 
6778 			/*
6779 			 * If neither Error nor Initialialized are indicated
6780 			 * by the firmware keep waiting till we exaust our
6781 			 * timeout ... and then retry if we haven't exhausted
6782 			 * our retries ...
6783 			 */
6784 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6785 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6786 				if (waiting <= 0) {
6787 					if (retries-- > 0)
6788 						goto retry;
6789 
6790 					return -ETIMEDOUT;
6791 				}
6792 				continue;
6793 			}
6794 
6795 			/*
6796 			 * We either have an Error or Initialized condition
6797 			 * report errors preferentially.
6798 			 */
6799 			if (state) {
6800 				if (pcie_fw & PCIE_FW_ERR_F)
6801 					*state = DEV_STATE_ERR;
6802 				else if (pcie_fw & PCIE_FW_INIT_F)
6803 					*state = DEV_STATE_INIT;
6804 			}
6805 
6806 			/*
6807 			 * If we arrived before a Master PF was selected and
6808 			 * there's not a valid Master PF, grab its identity
6809 			 * for our caller.
6810 			 */
6811 			if (master_mbox == PCIE_FW_MASTER_M &&
6812 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6813 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6814 			break;
6815 		}
6816 	}
6817 
6818 	return master_mbox;
6819 }
6820 
6821 /**
6822  *	t4_fw_bye - end communication with FW
6823  *	@adap: the adapter
6824  *	@mbox: mailbox to use for the FW command
6825  *
6826  *	Issues a command to terminate communication with FW.
6827  */
6828 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6829 {
6830 	struct fw_bye_cmd c;
6831 
6832 	memset(&c, 0, sizeof(c));
6833 	INIT_CMD(c, BYE, WRITE);
6834 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6835 }
6836 
6837 /**
6838  *	t4_init_cmd - ask FW to initialize the device
6839  *	@adap: the adapter
6840  *	@mbox: mailbox to use for the FW command
6841  *
6842  *	Issues a command to FW to partially initialize the device.  This
6843  *	performs initialization that generally doesn't depend on user input.
6844  */
6845 int t4_early_init(struct adapter *adap, unsigned int mbox)
6846 {
6847 	struct fw_initialize_cmd c;
6848 
6849 	memset(&c, 0, sizeof(c));
6850 	INIT_CMD(c, INITIALIZE, WRITE);
6851 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6852 }
6853 
6854 /**
6855  *	t4_fw_reset - issue a reset to FW
6856  *	@adap: the adapter
6857  *	@mbox: mailbox to use for the FW command
6858  *	@reset: specifies the type of reset to perform
6859  *
6860  *	Issues a reset command of the specified type to FW.
6861  */
6862 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6863 {
6864 	struct fw_reset_cmd c;
6865 
6866 	memset(&c, 0, sizeof(c));
6867 	INIT_CMD(c, RESET, WRITE);
6868 	c.val = cpu_to_be32(reset);
6869 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6870 }
6871 
6872 /**
6873  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6874  *	@adap: the adapter
6875  *	@mbox: mailbox to use for the FW RESET command (if desired)
6876  *	@force: force uP into RESET even if FW RESET command fails
6877  *
6878  *	Issues a RESET command to firmware (if desired) with a HALT indication
6879  *	and then puts the microprocessor into RESET state.  The RESET command
6880  *	will only be issued if a legitimate mailbox is provided (mbox <=
6881  *	PCIE_FW_MASTER_M).
6882  *
6883  *	This is generally used in order for the host to safely manipulate the
6884  *	adapter without fear of conflicting with whatever the firmware might
6885  *	be doing.  The only way out of this state is to RESTART the firmware
6886  *	...
6887  */
6888 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6889 {
6890 	int ret = 0;
6891 
6892 	/*
6893 	 * If a legitimate mailbox is provided, issue a RESET command
6894 	 * with a HALT indication.
6895 	 */
6896 	if (mbox <= PCIE_FW_MASTER_M) {
6897 		struct fw_reset_cmd c;
6898 
6899 		memset(&c, 0, sizeof(c));
6900 		INIT_CMD(c, RESET, WRITE);
6901 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6902 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6903 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6904 	}
6905 
6906 	/*
6907 	 * Normally we won't complete the operation if the firmware RESET
6908 	 * command fails but if our caller insists we'll go ahead and put the
6909 	 * uP into RESET.  This can be useful if the firmware is hung or even
6910 	 * missing ...  We'll have to take the risk of putting the uP into
6911 	 * RESET without the cooperation of firmware in that case.
6912 	 *
6913 	 * We also force the firmware's HALT flag to be on in case we bypassed
6914 	 * the firmware RESET command above or we're dealing with old firmware
6915 	 * which doesn't have the HALT capability.  This will serve as a flag
6916 	 * for the incoming firmware to know that it's coming out of a HALT
6917 	 * rather than a RESET ... if it's new enough to understand that ...
6918 	 */
6919 	if (ret == 0 || force) {
6920 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6921 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6922 				 PCIE_FW_HALT_F);
6923 	}
6924 
6925 	/*
6926 	 * And we always return the result of the firmware RESET command
6927 	 * even when we force the uP into RESET ...
6928 	 */
6929 	return ret;
6930 }
6931 
6932 /**
6933  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6934  *	@adap: the adapter
6935  *	@reset: if we want to do a RESET to restart things
6936  *
6937  *	Restart firmware previously halted by t4_fw_halt().  On successful
6938  *	return the previous PF Master remains as the new PF Master and there
6939  *	is no need to issue a new HELLO command, etc.
6940  *
6941  *	We do this in two ways:
6942  *
6943  *	 1. If we're dealing with newer firmware we'll simply want to take
6944  *	    the chip's microprocessor out of RESET.  This will cause the
6945  *	    firmware to start up from its start vector.  And then we'll loop
6946  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6947  *	    reset to 0) or we timeout.
6948  *
6949  *	 2. If we're dealing with older firmware then we'll need to RESET
6950  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6951  *	    flag and automatically RESET itself on startup.
6952  */
6953 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6954 {
6955 	if (reset) {
6956 		/*
6957 		 * Since we're directing the RESET instead of the firmware
6958 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6959 		 * bit.
6960 		 */
6961 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6962 
6963 		/*
6964 		 * If we've been given a valid mailbox, first try to get the
6965 		 * firmware to do the RESET.  If that works, great and we can
6966 		 * return success.  Otherwise, if we haven't been given a
6967 		 * valid mailbox or the RESET command failed, fall back to
6968 		 * hitting the chip with a hammer.
6969 		 */
6970 		if (mbox <= PCIE_FW_MASTER_M) {
6971 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6972 			msleep(100);
6973 			if (t4_fw_reset(adap, mbox,
6974 					PIORST_F | PIORSTMODE_F) == 0)
6975 				return 0;
6976 		}
6977 
6978 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6979 		msleep(2000);
6980 	} else {
6981 		int ms;
6982 
6983 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6984 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6985 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6986 				return 0;
6987 			msleep(100);
6988 			ms += 100;
6989 		}
6990 		return -ETIMEDOUT;
6991 	}
6992 	return 0;
6993 }
6994 
6995 /**
6996  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6997  *	@adap: the adapter
6998  *	@mbox: mailbox to use for the FW RESET command (if desired)
6999  *	@fw_data: the firmware image to write
7000  *	@size: image size
7001  *	@force: force upgrade even if firmware doesn't cooperate
7002  *
7003  *	Perform all of the steps necessary for upgrading an adapter's
7004  *	firmware image.  Normally this requires the cooperation of the
7005  *	existing firmware in order to halt all existing activities
7006  *	but if an invalid mailbox token is passed in we skip that step
7007  *	(though we'll still put the adapter microprocessor into RESET in
7008  *	that case).
7009  *
7010  *	On successful return the new firmware will have been loaded and
7011  *	the adapter will have been fully RESET losing all previous setup
7012  *	state.  On unsuccessful return the adapter may be completely hosed ...
7013  *	positive errno indicates that the adapter is ~probably~ intact, a
7014  *	negative errno indicates that things are looking bad ...
7015  */
7016 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7017 		  const u8 *fw_data, unsigned int size, int force)
7018 {
7019 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7020 	int reset, ret;
7021 
7022 	if (!t4_fw_matches_chip(adap, fw_hdr))
7023 		return -EINVAL;
7024 
7025 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
7026 	 * wont be sent when we are flashing FW.
7027 	 */
7028 	adap->flags &= ~FW_OK;
7029 
7030 	ret = t4_fw_halt(adap, mbox, force);
7031 	if (ret < 0 && !force)
7032 		goto out;
7033 
7034 	ret = t4_load_fw(adap, fw_data, size);
7035 	if (ret < 0)
7036 		goto out;
7037 
7038 	/*
7039 	 * If there was a Firmware Configuration File stored in FLASH,
7040 	 * there's a good chance that it won't be compatible with the new
7041 	 * Firmware.  In order to prevent difficult to diagnose adapter
7042 	 * initialization issues, we clear out the Firmware Configuration File
7043 	 * portion of the FLASH .  The user will need to re-FLASH a new
7044 	 * Firmware Configuration File which is compatible with the new
7045 	 * Firmware if that's desired.
7046 	 */
7047 	(void)t4_load_cfg(adap, NULL, 0);
7048 
7049 	/*
7050 	 * Older versions of the firmware don't understand the new
7051 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7052 	 * restart.  So for newly loaded older firmware we'll have to do the
7053 	 * RESET for it so it starts up on a clean slate.  We can tell if
7054 	 * the newly loaded firmware will handle this right by checking
7055 	 * its header flags to see if it advertises the capability.
7056 	 */
7057 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7058 	ret = t4_fw_restart(adap, mbox, reset);
7059 
7060 	/* Grab potentially new Firmware Device Log parameters so we can see
7061 	 * how healthy the new Firmware is.  It's okay to contact the new
7062 	 * Firmware for these parameters even though, as far as it's
7063 	 * concerned, we've never said "HELLO" to it ...
7064 	 */
7065 	(void)t4_init_devlog_params(adap);
7066 out:
7067 	adap->flags |= FW_OK;
7068 	return ret;
7069 }
7070 
7071 /**
7072  *	t4_fl_pkt_align - return the fl packet alignment
7073  *	@adap: the adapter
7074  *
7075  *	T4 has a single field to specify the packing and padding boundary.
7076  *	T5 onwards has separate fields for this and hence the alignment for
7077  *	next packet offset is maximum of these two.
7078  *
7079  */
7080 int t4_fl_pkt_align(struct adapter *adap)
7081 {
7082 	u32 sge_control, sge_control2;
7083 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7084 
7085 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7086 
7087 	/* T4 uses a single control field to specify both the PCIe Padding and
7088 	 * Packing Boundary.  T5 introduced the ability to specify these
7089 	 * separately.  The actual Ingress Packet Data alignment boundary
7090 	 * within Packed Buffer Mode is the maximum of these two
7091 	 * specifications.  (Note that it makes no real practical sense to
7092 	 * have the Pading Boudary be larger than the Packing Boundary but you
7093 	 * could set the chip up that way and, in fact, legacy T4 code would
7094 	 * end doing this because it would initialize the Padding Boundary and
7095 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7096 	 * Padding Boundary values in T6 starts from 8B,
7097 	 * where as it is 32B for T4 and T5.
7098 	 */
7099 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7100 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7101 	else
7102 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7103 
7104 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7105 
7106 	fl_align = ingpadboundary;
7107 	if (!is_t4(adap->params.chip)) {
7108 		/* T5 has a weird interpretation of one of the PCIe Packing
7109 		 * Boundary values.  No idea why ...
7110 		 */
7111 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7112 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7113 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7114 			ingpackboundary = 16;
7115 		else
7116 			ingpackboundary = 1 << (ingpackboundary +
7117 						INGPACKBOUNDARY_SHIFT_X);
7118 
7119 		fl_align = max(ingpadboundary, ingpackboundary);
7120 	}
7121 	return fl_align;
7122 }
7123 
7124 /**
7125  *	t4_fixup_host_params - fix up host-dependent parameters
7126  *	@adap: the adapter
7127  *	@page_size: the host's Base Page Size
7128  *	@cache_line_size: the host's Cache Line Size
7129  *
7130  *	Various registers in T4 contain values which are dependent on the
7131  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7132  *	those registers with the appropriate values as passed in ...
7133  */
7134 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7135 			 unsigned int cache_line_size)
7136 {
7137 	unsigned int page_shift = fls(page_size) - 1;
7138 	unsigned int sge_hps = page_shift - 10;
7139 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7140 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7141 	unsigned int fl_align_log = fls(fl_align) - 1;
7142 
7143 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7144 		     HOSTPAGESIZEPF0_V(sge_hps) |
7145 		     HOSTPAGESIZEPF1_V(sge_hps) |
7146 		     HOSTPAGESIZEPF2_V(sge_hps) |
7147 		     HOSTPAGESIZEPF3_V(sge_hps) |
7148 		     HOSTPAGESIZEPF4_V(sge_hps) |
7149 		     HOSTPAGESIZEPF5_V(sge_hps) |
7150 		     HOSTPAGESIZEPF6_V(sge_hps) |
7151 		     HOSTPAGESIZEPF7_V(sge_hps));
7152 
7153 	if (is_t4(adap->params.chip)) {
7154 		t4_set_reg_field(adap, SGE_CONTROL_A,
7155 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7156 				 EGRSTATUSPAGESIZE_F,
7157 				 INGPADBOUNDARY_V(fl_align_log -
7158 						  INGPADBOUNDARY_SHIFT_X) |
7159 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7160 	} else {
7161 		unsigned int pack_align;
7162 		unsigned int ingpad, ingpack;
7163 		unsigned int pcie_cap;
7164 
7165 		/* T5 introduced the separation of the Free List Padding and
7166 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7167 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7168 		 * Bandwidth, and use a Packing Boundary which is large enough
7169 		 * to avoid false sharing between CPUs, etc.
7170 		 *
7171 		 * For the PCI Link, the smaller the Padding Boundary the
7172 		 * better.  For the Memory Controller, a smaller Padding
7173 		 * Boundary is better until we cross under the Memory Line
7174 		 * Size (the minimum unit of transfer to/from Memory).  If we
7175 		 * have a Padding Boundary which is smaller than the Memory
7176 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7177 		 * Memory Controller which is never good.
7178 		 */
7179 
7180 		/* We want the Packing Boundary to be based on the Cache Line
7181 		 * Size in order to help avoid False Sharing performance
7182 		 * issues between CPUs, etc.  We also want the Packing
7183 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7184 		 * get best performance when the Packing Boundary is a
7185 		 * multiple of the Maximum Payload Size.
7186 		 */
7187 		pack_align = fl_align;
7188 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7189 		if (pcie_cap) {
7190 			unsigned int mps, mps_log;
7191 			u16 devctl;
7192 
7193 			/* The PCIe Device Control Maximum Payload Size field
7194 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7195 			 * 128 bytes.
7196 			 */
7197 			pci_read_config_word(adap->pdev,
7198 					     pcie_cap + PCI_EXP_DEVCTL,
7199 					     &devctl);
7200 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7201 			mps = 1 << mps_log;
7202 			if (mps > pack_align)
7203 				pack_align = mps;
7204 		}
7205 
7206 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7207 		 * value for the Packing Boundary.  This corresponds to 16
7208 		 * bytes instead of the expected 32 bytes.  So if we want 32
7209 		 * bytes, the best we can really do is 64 bytes ...
7210 		 */
7211 		if (pack_align <= 16) {
7212 			ingpack = INGPACKBOUNDARY_16B_X;
7213 			fl_align = 16;
7214 		} else if (pack_align == 32) {
7215 			ingpack = INGPACKBOUNDARY_64B_X;
7216 			fl_align = 64;
7217 		} else {
7218 			unsigned int pack_align_log = fls(pack_align) - 1;
7219 
7220 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7221 			fl_align = pack_align;
7222 		}
7223 
7224 		/* Use the smallest Ingress Padding which isn't smaller than
7225 		 * the Memory Controller Read/Write Size.  We'll take that as
7226 		 * being 8 bytes since we don't know of any system with a
7227 		 * wider Memory Controller Bus Width.
7228 		 */
7229 		if (is_t5(adap->params.chip))
7230 			ingpad = INGPADBOUNDARY_32B_X;
7231 		else
7232 			ingpad = T6_INGPADBOUNDARY_8B_X;
7233 
7234 		t4_set_reg_field(adap, SGE_CONTROL_A,
7235 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7236 				 EGRSTATUSPAGESIZE_F,
7237 				 INGPADBOUNDARY_V(ingpad) |
7238 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7239 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7240 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7241 				 INGPACKBOUNDARY_V(ingpack));
7242 	}
7243 	/*
7244 	 * Adjust various SGE Free List Host Buffer Sizes.
7245 	 *
7246 	 * This is something of a crock since we're using fixed indices into
7247 	 * the array which are also known by the sge.c code and the T4
7248 	 * Firmware Configuration File.  We need to come up with a much better
7249 	 * approach to managing this array.  For now, the first four entries
7250 	 * are:
7251 	 *
7252 	 *   0: Host Page Size
7253 	 *   1: 64KB
7254 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7255 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7256 	 *
7257 	 * For the single-MTU buffers in unpacked mode we need to include
7258 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7259 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7260 	 * Padding boundary.  All of these are accommodated in the Factory
7261 	 * Default Firmware Configuration File but we need to adjust it for
7262 	 * this host's cache line size.
7263 	 */
7264 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7265 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7266 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7267 		     & ~(fl_align-1));
7268 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7269 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7270 		     & ~(fl_align-1));
7271 
7272 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7273 
7274 	return 0;
7275 }
7276 
7277 /**
7278  *	t4_fw_initialize - ask FW to initialize the device
7279  *	@adap: the adapter
7280  *	@mbox: mailbox to use for the FW command
7281  *
7282  *	Issues a command to FW to partially initialize the device.  This
7283  *	performs initialization that generally doesn't depend on user input.
7284  */
7285 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7286 {
7287 	struct fw_initialize_cmd c;
7288 
7289 	memset(&c, 0, sizeof(c));
7290 	INIT_CMD(c, INITIALIZE, WRITE);
7291 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7292 }
7293 
7294 /**
7295  *	t4_query_params_rw - query FW or device parameters
7296  *	@adap: the adapter
7297  *	@mbox: mailbox to use for the FW command
7298  *	@pf: the PF
7299  *	@vf: the VF
7300  *	@nparams: the number of parameters
7301  *	@params: the parameter names
7302  *	@val: the parameter values
7303  *	@rw: Write and read flag
7304  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7305  *
7306  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7307  *	queried at once.
7308  */
7309 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7310 		       unsigned int vf, unsigned int nparams, const u32 *params,
7311 		       u32 *val, int rw, bool sleep_ok)
7312 {
7313 	int i, ret;
7314 	struct fw_params_cmd c;
7315 	__be32 *p = &c.param[0].mnem;
7316 
7317 	if (nparams > 7)
7318 		return -EINVAL;
7319 
7320 	memset(&c, 0, sizeof(c));
7321 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7322 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7323 				  FW_PARAMS_CMD_PFN_V(pf) |
7324 				  FW_PARAMS_CMD_VFN_V(vf));
7325 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7326 
7327 	for (i = 0; i < nparams; i++) {
7328 		*p++ = cpu_to_be32(*params++);
7329 		if (rw)
7330 			*p = cpu_to_be32(*(val + i));
7331 		p++;
7332 	}
7333 
7334 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7335 	if (ret == 0)
7336 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7337 			*val++ = be32_to_cpu(*p);
7338 	return ret;
7339 }
7340 
7341 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7342 		    unsigned int vf, unsigned int nparams, const u32 *params,
7343 		    u32 *val)
7344 {
7345 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7346 				  true);
7347 }
7348 
7349 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7350 		       unsigned int vf, unsigned int nparams, const u32 *params,
7351 		       u32 *val)
7352 {
7353 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7354 				  false);
7355 }
7356 
7357 /**
7358  *      t4_set_params_timeout - sets FW or device parameters
7359  *      @adap: the adapter
7360  *      @mbox: mailbox to use for the FW command
7361  *      @pf: the PF
7362  *      @vf: the VF
7363  *      @nparams: the number of parameters
7364  *      @params: the parameter names
7365  *      @val: the parameter values
7366  *      @timeout: the timeout time
7367  *
7368  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7369  *      specified at once.
7370  */
7371 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7372 			  unsigned int pf, unsigned int vf,
7373 			  unsigned int nparams, const u32 *params,
7374 			  const u32 *val, int timeout)
7375 {
7376 	struct fw_params_cmd c;
7377 	__be32 *p = &c.param[0].mnem;
7378 
7379 	if (nparams > 7)
7380 		return -EINVAL;
7381 
7382 	memset(&c, 0, sizeof(c));
7383 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7384 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7385 				  FW_PARAMS_CMD_PFN_V(pf) |
7386 				  FW_PARAMS_CMD_VFN_V(vf));
7387 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7388 
7389 	while (nparams--) {
7390 		*p++ = cpu_to_be32(*params++);
7391 		*p++ = cpu_to_be32(*val++);
7392 	}
7393 
7394 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7395 }
7396 
7397 /**
7398  *	t4_set_params - sets FW or device parameters
7399  *	@adap: the adapter
7400  *	@mbox: mailbox to use for the FW command
7401  *	@pf: the PF
7402  *	@vf: the VF
7403  *	@nparams: the number of parameters
7404  *	@params: the parameter names
7405  *	@val: the parameter values
7406  *
7407  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7408  *	specified at once.
7409  */
7410 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7411 		  unsigned int vf, unsigned int nparams, const u32 *params,
7412 		  const u32 *val)
7413 {
7414 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7415 				     FW_CMD_MAX_TIMEOUT);
7416 }
7417 
7418 /**
7419  *	t4_cfg_pfvf - configure PF/VF resource limits
7420  *	@adap: the adapter
7421  *	@mbox: mailbox to use for the FW command
7422  *	@pf: the PF being configured
7423  *	@vf: the VF being configured
7424  *	@txq: the max number of egress queues
7425  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7426  *	@rxqi: the max number of interrupt-capable ingress queues
7427  *	@rxq: the max number of interruptless ingress queues
7428  *	@tc: the PCI traffic class
7429  *	@vi: the max number of virtual interfaces
7430  *	@cmask: the channel access rights mask for the PF/VF
7431  *	@pmask: the port access rights mask for the PF/VF
7432  *	@nexact: the maximum number of exact MPS filters
7433  *	@rcaps: read capabilities
7434  *	@wxcaps: write/execute capabilities
7435  *
7436  *	Configures resource limits and capabilities for a physical or virtual
7437  *	function.
7438  */
7439 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7440 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7441 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7442 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7443 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7444 {
7445 	struct fw_pfvf_cmd c;
7446 
7447 	memset(&c, 0, sizeof(c));
7448 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7449 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7450 				  FW_PFVF_CMD_VFN_V(vf));
7451 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7452 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7453 				     FW_PFVF_CMD_NIQ_V(rxq));
7454 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7455 				    FW_PFVF_CMD_PMASK_V(pmask) |
7456 				    FW_PFVF_CMD_NEQ_V(txq));
7457 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7458 				      FW_PFVF_CMD_NVI_V(vi) |
7459 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7460 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7461 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7462 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7463 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7464 }
7465 
7466 /**
7467  *	t4_alloc_vi - allocate a virtual interface
7468  *	@adap: the adapter
7469  *	@mbox: mailbox to use for the FW command
7470  *	@port: physical port associated with the VI
7471  *	@pf: the PF owning the VI
7472  *	@vf: the VF owning the VI
7473  *	@nmac: number of MAC addresses needed (1 to 5)
7474  *	@mac: the MAC addresses of the VI
7475  *	@rss_size: size of RSS table slice associated with this VI
7476  *
7477  *	Allocates a virtual interface for the given physical port.  If @mac is
7478  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7479  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7480  *	stored consecutively so the space needed is @nmac * 6 bytes.
7481  *	Returns a negative error number or the non-negative VI id.
7482  */
7483 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7484 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7485 		unsigned int *rss_size)
7486 {
7487 	int ret;
7488 	struct fw_vi_cmd c;
7489 
7490 	memset(&c, 0, sizeof(c));
7491 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7492 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7493 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7494 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7495 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7496 	c.nmac = nmac - 1;
7497 
7498 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7499 	if (ret)
7500 		return ret;
7501 
7502 	if (mac) {
7503 		memcpy(mac, c.mac, sizeof(c.mac));
7504 		switch (nmac) {
7505 		case 5:
7506 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7507 		case 4:
7508 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7509 		case 3:
7510 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7511 		case 2:
7512 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7513 		}
7514 	}
7515 	if (rss_size)
7516 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7517 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7518 }
7519 
7520 /**
7521  *	t4_free_vi - free a virtual interface
7522  *	@adap: the adapter
7523  *	@mbox: mailbox to use for the FW command
7524  *	@pf: the PF owning the VI
7525  *	@vf: the VF owning the VI
7526  *	@viid: virtual interface identifiler
7527  *
7528  *	Free a previously allocated virtual interface.
7529  */
7530 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7531 	       unsigned int vf, unsigned int viid)
7532 {
7533 	struct fw_vi_cmd c;
7534 
7535 	memset(&c, 0, sizeof(c));
7536 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7537 				  FW_CMD_REQUEST_F |
7538 				  FW_CMD_EXEC_F |
7539 				  FW_VI_CMD_PFN_V(pf) |
7540 				  FW_VI_CMD_VFN_V(vf));
7541 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7542 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7543 
7544 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7545 }
7546 
7547 /**
7548  *	t4_set_rxmode - set Rx properties of a virtual interface
7549  *	@adap: the adapter
7550  *	@mbox: mailbox to use for the FW command
7551  *	@viid: the VI id
7552  *	@mtu: the new MTU or -1
7553  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7554  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7555  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7556  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7557  *	@sleep_ok: if true we may sleep while awaiting command completion
7558  *
7559  *	Sets Rx properties of a virtual interface.
7560  */
7561 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7562 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7563 		  bool sleep_ok)
7564 {
7565 	struct fw_vi_rxmode_cmd c;
7566 
7567 	/* convert to FW values */
7568 	if (mtu < 0)
7569 		mtu = FW_RXMODE_MTU_NO_CHG;
7570 	if (promisc < 0)
7571 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7572 	if (all_multi < 0)
7573 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7574 	if (bcast < 0)
7575 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7576 	if (vlanex < 0)
7577 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7578 
7579 	memset(&c, 0, sizeof(c));
7580 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7581 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7582 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7583 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7584 	c.mtu_to_vlanexen =
7585 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7586 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7587 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7588 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7589 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7590 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7591 }
7592 
7593 /**
7594  *      t4_free_encap_mac_filt - frees MPS entry at given index
7595  *      @adap: the adapter
7596  *      @viid: the VI id
7597  *      @idx: index of MPS entry to be freed
7598  *      @sleep_ok: call is allowed to sleep
7599  *
7600  *      Frees the MPS entry at supplied index
7601  *
7602  *      Returns a negative error number or zero on success
7603  */
7604 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7605 			   int idx, bool sleep_ok)
7606 {
7607 	struct fw_vi_mac_exact *p;
7608 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7609 	struct fw_vi_mac_cmd c;
7610 	int ret = 0;
7611 	u32 exact;
7612 
7613 	memset(&c, 0, sizeof(c));
7614 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7615 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7616 				   FW_CMD_EXEC_V(0) |
7617 				   FW_VI_MAC_CMD_VIID_V(viid));
7618 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7619 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7620 					  exact |
7621 					  FW_CMD_LEN16_V(1));
7622 	p = c.u.exact;
7623 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7624 				      FW_VI_MAC_CMD_IDX_V(idx));
7625 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7626 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7627 	return ret;
7628 }
7629 
7630 /**
7631  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7632  *	@adap: the adapter
7633  *	@viid: the VI id
7634  *	@addr: the MAC address
7635  *	@mask: the mask
7636  *	@idx: index of the entry in mps tcam
7637  *	@lookup_type: MAC address for inner (1) or outer (0) header
7638  *	@port_id: the port index
7639  *	@sleep_ok: call is allowed to sleep
7640  *
7641  *	Removes the mac entry at the specified index using raw mac interface.
7642  *
7643  *	Returns a negative error number on failure.
7644  */
7645 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7646 			 const u8 *addr, const u8 *mask, unsigned int idx,
7647 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7648 {
7649 	struct fw_vi_mac_cmd c;
7650 	struct fw_vi_mac_raw *p = &c.u.raw;
7651 	u32 val;
7652 
7653 	memset(&c, 0, sizeof(c));
7654 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7655 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7656 				   FW_CMD_EXEC_V(0) |
7657 				   FW_VI_MAC_CMD_VIID_V(viid));
7658 	val = FW_CMD_LEN16_V(1) |
7659 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7660 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7661 					  FW_CMD_LEN16_V(val));
7662 
7663 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7664 				     FW_VI_MAC_ID_BASED_FREE);
7665 
7666 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7667 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7668 				   DATAPORTNUM_V(port_id));
7669 	/* Lookup mask and port mask */
7670 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7671 				    DATAPORTNUM_V(DATAPORTNUM_M));
7672 
7673 	/* Copy the address and the mask */
7674 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7675 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7676 
7677 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7678 }
7679 
7680 /**
7681  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7682  *      @adap: the adapter
7683  *      @viid: the VI id
7684  *      @mac: the MAC address
7685  *      @mask: the mask
7686  *      @vni: the VNI id for the tunnel protocol
7687  *      @vni_mask: mask for the VNI id
7688  *      @dip_hit: to enable DIP match for the MPS entry
7689  *      @lookup_type: MAC address for inner (1) or outer (0) header
7690  *      @sleep_ok: call is allowed to sleep
7691  *
7692  *      Allocates an MPS entry with specified MAC address and VNI value.
7693  *
7694  *      Returns a negative error number or the allocated index for this mac.
7695  */
7696 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7697 			    const u8 *addr, const u8 *mask, unsigned int vni,
7698 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7699 			    bool sleep_ok)
7700 {
7701 	struct fw_vi_mac_cmd c;
7702 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7703 	int ret = 0;
7704 	u32 val;
7705 
7706 	memset(&c, 0, sizeof(c));
7707 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7708 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7709 				   FW_VI_MAC_CMD_VIID_V(viid));
7710 	val = FW_CMD_LEN16_V(1) |
7711 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7712 	c.freemacs_to_len16 = cpu_to_be32(val);
7713 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7714 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7715 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7716 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7717 
7718 	p->lookup_type_to_vni =
7719 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7720 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7721 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7722 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7723 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7724 	if (ret == 0)
7725 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7726 	return ret;
7727 }
7728 
7729 /**
7730  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7731  *	@adap: the adapter
7732  *	@viid: the VI id
7733  *	@mac: the MAC address
7734  *	@mask: the mask
7735  *	@idx: index at which to add this entry
7736  *	@port_id: the port index
7737  *	@lookup_type: MAC address for inner (1) or outer (0) header
7738  *	@sleep_ok: call is allowed to sleep
7739  *
7740  *	Adds the mac entry at the specified index using raw mac interface.
7741  *
7742  *	Returns a negative error number or the allocated index for this mac.
7743  */
7744 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7745 			  const u8 *addr, const u8 *mask, unsigned int idx,
7746 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7747 {
7748 	int ret = 0;
7749 	struct fw_vi_mac_cmd c;
7750 	struct fw_vi_mac_raw *p = &c.u.raw;
7751 	u32 val;
7752 
7753 	memset(&c, 0, sizeof(c));
7754 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7755 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7756 				   FW_VI_MAC_CMD_VIID_V(viid));
7757 	val = FW_CMD_LEN16_V(1) |
7758 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7759 	c.freemacs_to_len16 = cpu_to_be32(val);
7760 
7761 	/* Specify that this is an inner mac address */
7762 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7763 
7764 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7765 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7766 				   DATAPORTNUM_V(port_id));
7767 	/* Lookup mask and port mask */
7768 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7769 				    DATAPORTNUM_V(DATAPORTNUM_M));
7770 
7771 	/* Copy the address and the mask */
7772 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7773 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7774 
7775 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7776 	if (ret == 0) {
7777 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7778 		if (ret != idx)
7779 			ret = -ENOMEM;
7780 	}
7781 
7782 	return ret;
7783 }
7784 
7785 /**
7786  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7787  *	@adap: the adapter
7788  *	@mbox: mailbox to use for the FW command
7789  *	@viid: the VI id
7790  *	@free: if true any existing filters for this VI id are first removed
7791  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7792  *	@addr: the MAC address(es)
7793  *	@idx: where to store the index of each allocated filter
7794  *	@hash: pointer to hash address filter bitmap
7795  *	@sleep_ok: call is allowed to sleep
7796  *
7797  *	Allocates an exact-match filter for each of the supplied addresses and
7798  *	sets it to the corresponding address.  If @idx is not %NULL it should
7799  *	have at least @naddr entries, each of which will be set to the index of
7800  *	the filter allocated for the corresponding MAC address.  If a filter
7801  *	could not be allocated for an address its index is set to 0xffff.
7802  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7803  *	are hashed and update the hash filter bitmap pointed at by @hash.
7804  *
7805  *	Returns a negative error number or the number of filters allocated.
7806  */
7807 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7808 		      unsigned int viid, bool free, unsigned int naddr,
7809 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7810 {
7811 	int offset, ret = 0;
7812 	struct fw_vi_mac_cmd c;
7813 	unsigned int nfilters = 0;
7814 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7815 	unsigned int rem = naddr;
7816 
7817 	if (naddr > max_naddr)
7818 		return -EINVAL;
7819 
7820 	for (offset = 0; offset < naddr ; /**/) {
7821 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7822 					 rem : ARRAY_SIZE(c.u.exact));
7823 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7824 						     u.exact[fw_naddr]), 16);
7825 		struct fw_vi_mac_exact *p;
7826 		int i;
7827 
7828 		memset(&c, 0, sizeof(c));
7829 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7830 					   FW_CMD_REQUEST_F |
7831 					   FW_CMD_WRITE_F |
7832 					   FW_CMD_EXEC_V(free) |
7833 					   FW_VI_MAC_CMD_VIID_V(viid));
7834 		c.freemacs_to_len16 =
7835 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7836 				    FW_CMD_LEN16_V(len16));
7837 
7838 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7839 			p->valid_to_idx =
7840 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7841 					    FW_VI_MAC_CMD_IDX_V(
7842 						    FW_VI_MAC_ADD_MAC));
7843 			memcpy(p->macaddr, addr[offset + i],
7844 			       sizeof(p->macaddr));
7845 		}
7846 
7847 		/* It's okay if we run out of space in our MAC address arena.
7848 		 * Some of the addresses we submit may get stored so we need
7849 		 * to run through the reply to see what the results were ...
7850 		 */
7851 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7852 		if (ret && ret != -FW_ENOMEM)
7853 			break;
7854 
7855 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7856 			u16 index = FW_VI_MAC_CMD_IDX_G(
7857 					be16_to_cpu(p->valid_to_idx));
7858 
7859 			if (idx)
7860 				idx[offset + i] = (index >= max_naddr ?
7861 						   0xffff : index);
7862 			if (index < max_naddr)
7863 				nfilters++;
7864 			else if (hash)
7865 				*hash |= (1ULL <<
7866 					  hash_mac_addr(addr[offset + i]));
7867 		}
7868 
7869 		free = false;
7870 		offset += fw_naddr;
7871 		rem -= fw_naddr;
7872 	}
7873 
7874 	if (ret == 0 || ret == -FW_ENOMEM)
7875 		ret = nfilters;
7876 	return ret;
7877 }
7878 
7879 /**
7880  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7881  *	@adap: the adapter
7882  *	@mbox: mailbox to use for the FW command
7883  *	@viid: the VI id
7884  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7885  *	@addr: the MAC address(es)
7886  *	@sleep_ok: call is allowed to sleep
7887  *
7888  *	Frees the exact-match filter for each of the supplied addresses
7889  *
7890  *	Returns a negative error number or the number of filters freed.
7891  */
7892 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7893 		     unsigned int viid, unsigned int naddr,
7894 		     const u8 **addr, bool sleep_ok)
7895 {
7896 	int offset, ret = 0;
7897 	struct fw_vi_mac_cmd c;
7898 	unsigned int nfilters = 0;
7899 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7900 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7901 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7902 	unsigned int rem = naddr;
7903 
7904 	if (naddr > max_naddr)
7905 		return -EINVAL;
7906 
7907 	for (offset = 0; offset < (int)naddr ; /**/) {
7908 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7909 					 ? rem
7910 					 : ARRAY_SIZE(c.u.exact));
7911 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7912 						     u.exact[fw_naddr]), 16);
7913 		struct fw_vi_mac_exact *p;
7914 		int i;
7915 
7916 		memset(&c, 0, sizeof(c));
7917 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7918 				     FW_CMD_REQUEST_F |
7919 				     FW_CMD_WRITE_F |
7920 				     FW_CMD_EXEC_V(0) |
7921 				     FW_VI_MAC_CMD_VIID_V(viid));
7922 		c.freemacs_to_len16 =
7923 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7924 					    FW_CMD_LEN16_V(len16));
7925 
7926 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7927 			p->valid_to_idx = cpu_to_be16(
7928 				FW_VI_MAC_CMD_VALID_F |
7929 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7930 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7931 		}
7932 
7933 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7934 		if (ret)
7935 			break;
7936 
7937 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7938 			u16 index = FW_VI_MAC_CMD_IDX_G(
7939 						be16_to_cpu(p->valid_to_idx));
7940 
7941 			if (index < max_naddr)
7942 				nfilters++;
7943 		}
7944 
7945 		offset += fw_naddr;
7946 		rem -= fw_naddr;
7947 	}
7948 
7949 	if (ret == 0)
7950 		ret = nfilters;
7951 	return ret;
7952 }
7953 
7954 /**
7955  *	t4_change_mac - modifies the exact-match filter for a MAC address
7956  *	@adap: the adapter
7957  *	@mbox: mailbox to use for the FW command
7958  *	@viid: the VI id
7959  *	@idx: index of existing filter for old value of MAC address, or -1
7960  *	@addr: the new MAC address value
7961  *	@persist: whether a new MAC allocation should be persistent
7962  *	@add_smt: if true also add the address to the HW SMT
7963  *
7964  *	Modifies an exact-match filter and sets it to the new MAC address.
7965  *	Note that in general it is not possible to modify the value of a given
7966  *	filter so the generic way to modify an address filter is to free the one
7967  *	being used by the old address value and allocate a new filter for the
7968  *	new address value.  @idx can be -1 if the address is a new addition.
7969  *
7970  *	Returns a negative error number or the index of the filter with the new
7971  *	MAC value.
7972  */
7973 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7974 		  int idx, const u8 *addr, bool persist, bool add_smt)
7975 {
7976 	int ret, mode;
7977 	struct fw_vi_mac_cmd c;
7978 	struct fw_vi_mac_exact *p = c.u.exact;
7979 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7980 
7981 	if (idx < 0)                             /* new allocation */
7982 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7983 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7984 
7985 	memset(&c, 0, sizeof(c));
7986 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7987 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7988 				   FW_VI_MAC_CMD_VIID_V(viid));
7989 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7990 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7991 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7992 				      FW_VI_MAC_CMD_IDX_V(idx));
7993 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7994 
7995 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7996 	if (ret == 0) {
7997 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7998 		if (ret >= max_mac_addr)
7999 			ret = -ENOMEM;
8000 	}
8001 	return ret;
8002 }
8003 
8004 /**
8005  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8006  *	@adap: the adapter
8007  *	@mbox: mailbox to use for the FW command
8008  *	@viid: the VI id
8009  *	@ucast: whether the hash filter should also match unicast addresses
8010  *	@vec: the value to be written to the hash filter
8011  *	@sleep_ok: call is allowed to sleep
8012  *
8013  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8014  */
8015 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8016 		     bool ucast, u64 vec, bool sleep_ok)
8017 {
8018 	struct fw_vi_mac_cmd c;
8019 
8020 	memset(&c, 0, sizeof(c));
8021 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8022 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8023 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8024 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8025 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8026 					  FW_CMD_LEN16_V(1));
8027 	c.u.hash.hashvec = cpu_to_be64(vec);
8028 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8029 }
8030 
8031 /**
8032  *      t4_enable_vi_params - enable/disable a virtual interface
8033  *      @adap: the adapter
8034  *      @mbox: mailbox to use for the FW command
8035  *      @viid: the VI id
8036  *      @rx_en: 1=enable Rx, 0=disable Rx
8037  *      @tx_en: 1=enable Tx, 0=disable Tx
8038  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8039  *
8040  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8041  *      only makes sense when enabling a Virtual Interface ...
8042  */
8043 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8044 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8045 {
8046 	struct fw_vi_enable_cmd c;
8047 
8048 	memset(&c, 0, sizeof(c));
8049 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8050 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8051 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8052 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8053 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8054 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8055 				     FW_LEN16(c));
8056 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8057 }
8058 
8059 /**
8060  *	t4_enable_vi - enable/disable a virtual interface
8061  *	@adap: the adapter
8062  *	@mbox: mailbox to use for the FW command
8063  *	@viid: the VI id
8064  *	@rx_en: 1=enable Rx, 0=disable Rx
8065  *	@tx_en: 1=enable Tx, 0=disable Tx
8066  *
8067  *	Enables/disables a virtual interface.
8068  */
8069 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8070 		 bool rx_en, bool tx_en)
8071 {
8072 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8073 }
8074 
8075 /**
8076  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8077  *      @adap: the adapter
8078  *      @mbox: mailbox to use for the FW command
8079  *      @pi: the Port Information structure
8080  *      @rx_en: 1=enable Rx, 0=disable Rx
8081  *      @tx_en: 1=enable Tx, 0=disable Tx
8082  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8083  *
8084  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8085  *	Enable only makes sense when enabling a Virtual Interface ...
8086  *	If the Virtual Interface enable/disable operation is successful,
8087  *	we notify the OS-specific code of a potential Link Status change
8088  *	via the OS Contract API t4_os_link_changed().
8089  */
8090 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8091 			struct port_info *pi,
8092 			bool rx_en, bool tx_en, bool dcb_en)
8093 {
8094 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8095 				      rx_en, tx_en, dcb_en);
8096 	if (ret)
8097 		return ret;
8098 	t4_os_link_changed(adap, pi->port_id,
8099 			   rx_en && tx_en && pi->link_cfg.link_ok);
8100 	return 0;
8101 }
8102 
8103 /**
8104  *	t4_identify_port - identify a VI's port by blinking its LED
8105  *	@adap: the adapter
8106  *	@mbox: mailbox to use for the FW command
8107  *	@viid: the VI id
8108  *	@nblinks: how many times to blink LED at 2.5 Hz
8109  *
8110  *	Identifies a VI's port by blinking its LED.
8111  */
8112 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8113 		     unsigned int nblinks)
8114 {
8115 	struct fw_vi_enable_cmd c;
8116 
8117 	memset(&c, 0, sizeof(c));
8118 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8119 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8120 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8121 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8122 	c.blinkdur = cpu_to_be16(nblinks);
8123 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8124 }
8125 
8126 /**
8127  *	t4_iq_stop - stop an ingress queue and its FLs
8128  *	@adap: the adapter
8129  *	@mbox: mailbox to use for the FW command
8130  *	@pf: the PF owning the queues
8131  *	@vf: the VF owning the queues
8132  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8133  *	@iqid: ingress queue id
8134  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8135  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8136  *
8137  *	Stops an ingress queue and its associated FLs, if any.  This causes
8138  *	any current or future data/messages destined for these queues to be
8139  *	tossed.
8140  */
8141 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8142 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8143 	       unsigned int fl0id, unsigned int fl1id)
8144 {
8145 	struct fw_iq_cmd c;
8146 
8147 	memset(&c, 0, sizeof(c));
8148 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8149 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8150 				  FW_IQ_CMD_VFN_V(vf));
8151 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8152 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8153 	c.iqid = cpu_to_be16(iqid);
8154 	c.fl0id = cpu_to_be16(fl0id);
8155 	c.fl1id = cpu_to_be16(fl1id);
8156 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8157 }
8158 
8159 /**
8160  *	t4_iq_free - free an ingress queue and its FLs
8161  *	@adap: the adapter
8162  *	@mbox: mailbox to use for the FW command
8163  *	@pf: the PF owning the queues
8164  *	@vf: the VF owning the queues
8165  *	@iqtype: the ingress queue type
8166  *	@iqid: ingress queue id
8167  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8168  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8169  *
8170  *	Frees an ingress queue and its associated FLs, if any.
8171  */
8172 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8173 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8174 	       unsigned int fl0id, unsigned int fl1id)
8175 {
8176 	struct fw_iq_cmd c;
8177 
8178 	memset(&c, 0, sizeof(c));
8179 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8180 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8181 				  FW_IQ_CMD_VFN_V(vf));
8182 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8183 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8184 	c.iqid = cpu_to_be16(iqid);
8185 	c.fl0id = cpu_to_be16(fl0id);
8186 	c.fl1id = cpu_to_be16(fl1id);
8187 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8188 }
8189 
8190 /**
8191  *	t4_eth_eq_free - free an Ethernet egress queue
8192  *	@adap: the adapter
8193  *	@mbox: mailbox to use for the FW command
8194  *	@pf: the PF owning the queue
8195  *	@vf: the VF owning the queue
8196  *	@eqid: egress queue id
8197  *
8198  *	Frees an Ethernet egress queue.
8199  */
8200 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8201 		   unsigned int vf, unsigned int eqid)
8202 {
8203 	struct fw_eq_eth_cmd c;
8204 
8205 	memset(&c, 0, sizeof(c));
8206 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8207 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8208 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8209 				  FW_EQ_ETH_CMD_VFN_V(vf));
8210 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8211 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8212 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8213 }
8214 
8215 /**
8216  *	t4_ctrl_eq_free - free a control egress queue
8217  *	@adap: the adapter
8218  *	@mbox: mailbox to use for the FW command
8219  *	@pf: the PF owning the queue
8220  *	@vf: the VF owning the queue
8221  *	@eqid: egress queue id
8222  *
8223  *	Frees a control egress queue.
8224  */
8225 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8226 		    unsigned int vf, unsigned int eqid)
8227 {
8228 	struct fw_eq_ctrl_cmd c;
8229 
8230 	memset(&c, 0, sizeof(c));
8231 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8232 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8233 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8234 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8235 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8236 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8237 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8238 }
8239 
8240 /**
8241  *	t4_ofld_eq_free - free an offload egress queue
8242  *	@adap: the adapter
8243  *	@mbox: mailbox to use for the FW command
8244  *	@pf: the PF owning the queue
8245  *	@vf: the VF owning the queue
8246  *	@eqid: egress queue id
8247  *
8248  *	Frees a control egress queue.
8249  */
8250 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8251 		    unsigned int vf, unsigned int eqid)
8252 {
8253 	struct fw_eq_ofld_cmd c;
8254 
8255 	memset(&c, 0, sizeof(c));
8256 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8257 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8258 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8259 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8260 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8261 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8262 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8263 }
8264 
8265 /**
8266  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8267  *	@adap: the adapter
8268  *	@link_down_rc: Link Down Reason Code
8269  *
8270  *	Returns a string representation of the Link Down Reason Code.
8271  */
8272 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8273 {
8274 	static const char * const reason[] = {
8275 		"Link Down",
8276 		"Remote Fault",
8277 		"Auto-negotiation Failure",
8278 		"Reserved",
8279 		"Insufficient Airflow",
8280 		"Unable To Determine Reason",
8281 		"No RX Signal Detected",
8282 		"Reserved",
8283 	};
8284 
8285 	if (link_down_rc >= ARRAY_SIZE(reason))
8286 		return "Bad Reason Code";
8287 
8288 	return reason[link_down_rc];
8289 }
8290 
8291 /**
8292  * Return the highest speed set in the port capabilities, in Mb/s.
8293  */
8294 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8295 {
8296 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8297 		do { \
8298 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8299 				return __speed; \
8300 		} while (0)
8301 
8302 	TEST_SPEED_RETURN(400G, 400000);
8303 	TEST_SPEED_RETURN(200G, 200000);
8304 	TEST_SPEED_RETURN(100G, 100000);
8305 	TEST_SPEED_RETURN(50G,   50000);
8306 	TEST_SPEED_RETURN(40G,   40000);
8307 	TEST_SPEED_RETURN(25G,   25000);
8308 	TEST_SPEED_RETURN(10G,   10000);
8309 	TEST_SPEED_RETURN(1G,     1000);
8310 	TEST_SPEED_RETURN(100M,    100);
8311 
8312 	#undef TEST_SPEED_RETURN
8313 
8314 	return 0;
8315 }
8316 
8317 /**
8318  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8319  *	@acaps: advertised Port Capabilities
8320  *
8321  *	Get the highest speed for the port from the advertised Port
8322  *	Capabilities.  It will be either the highest speed from the list of
8323  *	speeds or whatever user has set using ethtool.
8324  */
8325 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8326 {
8327 	#define TEST_SPEED_RETURN(__caps_speed) \
8328 		do { \
8329 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8330 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8331 		} while (0)
8332 
8333 	TEST_SPEED_RETURN(400G);
8334 	TEST_SPEED_RETURN(200G);
8335 	TEST_SPEED_RETURN(100G);
8336 	TEST_SPEED_RETURN(50G);
8337 	TEST_SPEED_RETURN(40G);
8338 	TEST_SPEED_RETURN(25G);
8339 	TEST_SPEED_RETURN(10G);
8340 	TEST_SPEED_RETURN(1G);
8341 	TEST_SPEED_RETURN(100M);
8342 
8343 	#undef TEST_SPEED_RETURN
8344 
8345 	return 0;
8346 }
8347 
8348 /**
8349  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8350  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8351  *
8352  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8353  *	32-bit Port Capabilities value.
8354  */
8355 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8356 {
8357 	fw_port_cap32_t linkattr = 0;
8358 
8359 	/* Unfortunately the format of the Link Status in the old
8360 	 * 16-bit Port Information message isn't the same as the
8361 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8362 	 */
8363 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8364 		linkattr |= FW_PORT_CAP32_FC_RX;
8365 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8366 		linkattr |= FW_PORT_CAP32_FC_TX;
8367 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8368 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8369 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8370 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8371 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8372 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8373 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8374 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8375 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8376 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8377 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8378 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8379 
8380 	return linkattr;
8381 }
8382 
8383 /**
8384  *	t4_handle_get_port_info - process a FW reply message
8385  *	@pi: the port info
8386  *	@rpl: start of the FW message
8387  *
8388  *	Processes a GET_PORT_INFO FW reply message.
8389  */
8390 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8391 {
8392 	const struct fw_port_cmd *cmd = (const void *)rpl;
8393 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8394 	struct adapter *adapter = pi->adapter;
8395 	struct link_config *lc = &pi->link_cfg;
8396 	int link_ok, linkdnrc;
8397 	enum fw_port_type port_type;
8398 	enum fw_port_module_type mod_type;
8399 	unsigned int speed, fc, fec;
8400 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8401 
8402 	/* Extract the various fields from the Port Information message.
8403 	 */
8404 	switch (action) {
8405 	case FW_PORT_ACTION_GET_PORT_INFO: {
8406 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8407 
8408 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8409 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8410 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8411 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8412 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8413 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8414 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8415 		linkattr = lstatus_to_fwcap(lstatus);
8416 		break;
8417 	}
8418 
8419 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8420 		u32 lstatus32;
8421 
8422 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8423 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8424 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8425 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8426 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8427 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8428 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8429 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8430 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8431 		break;
8432 	}
8433 
8434 	default:
8435 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8436 			be32_to_cpu(cmd->action_to_len16));
8437 		return;
8438 	}
8439 
8440 	fec = fwcap_to_cc_fec(acaps);
8441 	fc = fwcap_to_cc_pause(linkattr);
8442 	speed = fwcap_to_speed(linkattr);
8443 
8444 	lc->new_module = false;
8445 	lc->redo_l1cfg = false;
8446 
8447 	if (mod_type != pi->mod_type) {
8448 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8449 		 * various fundamental Port Capabilities which used to be
8450 		 * immutable can now change radically.  We can now have
8451 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8452 		 * all change based on what Transceiver Module is inserted.
8453 		 * So we need to record the Physical "Port" Capabilities on
8454 		 * every Transceiver Module change.
8455 		 */
8456 		lc->pcaps = pcaps;
8457 
8458 		/* When a new Transceiver Module is inserted, the Firmware
8459 		 * will examine its i2c EPROM to determine its type and
8460 		 * general operating parameters including things like Forward
8461 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8462 		 * how to interpret these i2c values to determine default
8463 		 * "sutomatic" settings.  We record these for future use when
8464 		 * the user explicitly requests these standards-based values.
8465 		 */
8466 		lc->def_acaps = acaps;
8467 
8468 		/* Some versions of the early T6 Firmware "cheated" when
8469 		 * handling different Transceiver Modules by changing the
8470 		 * underlaying Port Type reported to the Host Drivers.  As
8471 		 * such we need to capture whatever Port Type the Firmware
8472 		 * sends us and record it in case it's different from what we
8473 		 * were told earlier.  Unfortunately, since Firmware is
8474 		 * forever, we'll need to keep this code here forever, but in
8475 		 * later T6 Firmware it should just be an assignment of the
8476 		 * same value already recorded.
8477 		 */
8478 		pi->port_type = port_type;
8479 
8480 		pi->mod_type = mod_type;
8481 
8482 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8483 		t4_os_portmod_changed(adapter, pi->port_id);
8484 	}
8485 
8486 	if (link_ok != lc->link_ok || speed != lc->speed ||
8487 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8488 		if (!link_ok && lc->link_ok) {
8489 			lc->link_down_rc = linkdnrc;
8490 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8491 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8492 		}
8493 		lc->link_ok = link_ok;
8494 		lc->speed = speed;
8495 		lc->fc = fc;
8496 		lc->fec = fec;
8497 
8498 		lc->lpacaps = lpacaps;
8499 		lc->acaps = acaps & ADVERT_MASK;
8500 
8501 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8502 			lc->autoneg = AUTONEG_DISABLE;
8503 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8504 			lc->autoneg = AUTONEG_ENABLE;
8505 		} else {
8506 			/* When Autoneg is disabled, user needs to set
8507 			 * single speed.
8508 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8509 			 */
8510 			lc->acaps = 0;
8511 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8512 			lc->autoneg = AUTONEG_DISABLE;
8513 		}
8514 
8515 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8516 	}
8517 
8518 	if (lc->new_module && lc->redo_l1cfg) {
8519 		struct link_config old_lc;
8520 		int ret;
8521 
8522 		/* Save the current L1 Configuration and restore it if an
8523 		 * error occurs.  We probably should fix the l1_cfg*()
8524 		 * routines not to change the link_config when an error
8525 		 * occurs ...
8526 		 */
8527 		old_lc = *lc;
8528 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8529 		if (ret) {
8530 			*lc = old_lc;
8531 			dev_warn(adapter->pdev_dev,
8532 				 "Attempt to update new Transceiver Module settings failed\n");
8533 		}
8534 	}
8535 	lc->new_module = false;
8536 	lc->redo_l1cfg = false;
8537 }
8538 
8539 /**
8540  *	t4_update_port_info - retrieve and update port information if changed
8541  *	@pi: the port_info
8542  *
8543  *	We issue a Get Port Information Command to the Firmware and, if
8544  *	successful, we check to see if anything is different from what we
8545  *	last recorded and update things accordingly.
8546  */
8547 int t4_update_port_info(struct port_info *pi)
8548 {
8549 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8550 	struct fw_port_cmd port_cmd;
8551 	int ret;
8552 
8553 	memset(&port_cmd, 0, sizeof(port_cmd));
8554 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8555 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8556 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8557 	port_cmd.action_to_len16 = cpu_to_be32(
8558 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8559 				     ? FW_PORT_ACTION_GET_PORT_INFO
8560 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8561 		FW_LEN16(port_cmd));
8562 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8563 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8564 	if (ret)
8565 		return ret;
8566 
8567 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8568 	return 0;
8569 }
8570 
8571 /**
8572  *	t4_get_link_params - retrieve basic link parameters for given port
8573  *	@pi: the port
8574  *	@link_okp: value return pointer for link up/down
8575  *	@speedp: value return pointer for speed (Mb/s)
8576  *	@mtup: value return pointer for mtu
8577  *
8578  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8579  *	and MTU for a specified port.  A negative error is returned on
8580  *	failure; 0 on success.
8581  */
8582 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8583 		       unsigned int *speedp, unsigned int *mtup)
8584 {
8585 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8586 	struct fw_port_cmd port_cmd;
8587 	unsigned int action, link_ok, speed, mtu;
8588 	fw_port_cap32_t linkattr;
8589 	int ret;
8590 
8591 	memset(&port_cmd, 0, sizeof(port_cmd));
8592 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8593 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8594 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8595 	action = (fw_caps == FW_CAPS16
8596 		  ? FW_PORT_ACTION_GET_PORT_INFO
8597 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8598 	port_cmd.action_to_len16 = cpu_to_be32(
8599 		FW_PORT_CMD_ACTION_V(action) |
8600 		FW_LEN16(port_cmd));
8601 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8602 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8603 	if (ret)
8604 		return ret;
8605 
8606 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8607 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8608 
8609 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8610 		linkattr = lstatus_to_fwcap(lstatus);
8611 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8612 	} else {
8613 		u32 lstatus32 =
8614 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8615 
8616 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8617 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8618 		mtu = FW_PORT_CMD_MTU32_G(
8619 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8620 	}
8621 	speed = fwcap_to_speed(linkattr);
8622 
8623 	*link_okp = link_ok;
8624 	*speedp = fwcap_to_speed(linkattr);
8625 	*mtup = mtu;
8626 
8627 	return 0;
8628 }
8629 
8630 /**
8631  *      t4_handle_fw_rpl - process a FW reply message
8632  *      @adap: the adapter
8633  *      @rpl: start of the FW message
8634  *
8635  *      Processes a FW message, such as link state change messages.
8636  */
8637 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8638 {
8639 	u8 opcode = *(const u8 *)rpl;
8640 
8641 	/* This might be a port command ... this simplifies the following
8642 	 * conditionals ...  We can get away with pre-dereferencing
8643 	 * action_to_len16 because it's in the first 16 bytes and all messages
8644 	 * will be at least that long.
8645 	 */
8646 	const struct fw_port_cmd *p = (const void *)rpl;
8647 	unsigned int action =
8648 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8649 
8650 	if (opcode == FW_PORT_CMD &&
8651 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8652 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8653 		int i;
8654 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8655 		struct port_info *pi = NULL;
8656 
8657 		for_each_port(adap, i) {
8658 			pi = adap2pinfo(adap, i);
8659 			if (pi->tx_chan == chan)
8660 				break;
8661 		}
8662 
8663 		t4_handle_get_port_info(pi, rpl);
8664 	} else {
8665 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8666 			 opcode);
8667 		return -EINVAL;
8668 	}
8669 	return 0;
8670 }
8671 
8672 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8673 {
8674 	u16 val;
8675 
8676 	if (pci_is_pcie(adapter->pdev)) {
8677 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8678 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8679 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8680 	}
8681 }
8682 
8683 /**
8684  *	init_link_config - initialize a link's SW state
8685  *	@lc: pointer to structure holding the link state
8686  *	@pcaps: link Port Capabilities
8687  *	@acaps: link current Advertised Port Capabilities
8688  *
8689  *	Initializes the SW state maintained for each link, including the link's
8690  *	capabilities and default speed/flow-control/autonegotiation settings.
8691  */
8692 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8693 			     fw_port_cap32_t acaps)
8694 {
8695 	lc->pcaps = pcaps;
8696 	lc->def_acaps = acaps;
8697 	lc->lpacaps = 0;
8698 	lc->speed_caps = 0;
8699 	lc->speed = 0;
8700 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8701 
8702 	/* For Forward Error Control, we default to whatever the Firmware
8703 	 * tells us the Link is currently advertising.
8704 	 */
8705 	lc->requested_fec = FEC_AUTO;
8706 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8707 
8708 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8709 	 * "enabled" and copy over all of the Physical Port Capabilities
8710 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8711 	 * Auto-Negotiate disabled and select the highest supported speed
8712 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8713 	 * and t4_handle_get_port_info().
8714 	 */
8715 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8716 		lc->acaps = lc->pcaps & ADVERT_MASK;
8717 		lc->autoneg = AUTONEG_ENABLE;
8718 		lc->requested_fc |= PAUSE_AUTONEG;
8719 	} else {
8720 		lc->acaps = 0;
8721 		lc->autoneg = AUTONEG_DISABLE;
8722 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8723 	}
8724 }
8725 
8726 #define CIM_PF_NOACCESS 0xeeeeeeee
8727 
8728 int t4_wait_dev_ready(void __iomem *regs)
8729 {
8730 	u32 whoami;
8731 
8732 	whoami = readl(regs + PL_WHOAMI_A);
8733 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8734 		return 0;
8735 
8736 	msleep(500);
8737 	whoami = readl(regs + PL_WHOAMI_A);
8738 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8739 }
8740 
8741 struct flash_desc {
8742 	u32 vendor_and_model_id;
8743 	u32 size_mb;
8744 };
8745 
8746 static int t4_get_flash_params(struct adapter *adap)
8747 {
8748 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8749 	 * to the preexisting code.  All flash parts have 64KB sectors.
8750 	 */
8751 	static struct flash_desc supported_flash[] = {
8752 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8753 	};
8754 
8755 	unsigned int part, manufacturer;
8756 	unsigned int density, size;
8757 	u32 flashid = 0;
8758 	int ret;
8759 
8760 	/* Issue a Read ID Command to the Flash part.  We decode supported
8761 	 * Flash parts and their sizes from this.  There's a newer Query
8762 	 * Command which can retrieve detailed geometry information but many
8763 	 * Flash parts don't support it.
8764 	 */
8765 
8766 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8767 	if (!ret)
8768 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8769 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8770 	if (ret)
8771 		return ret;
8772 
8773 	/* Check to see if it's one of our non-standard supported Flash parts.
8774 	 */
8775 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8776 		if (supported_flash[part].vendor_and_model_id == flashid) {
8777 			adap->params.sf_size = supported_flash[part].size_mb;
8778 			adap->params.sf_nsec =
8779 				adap->params.sf_size / SF_SEC_SIZE;
8780 			goto found;
8781 		}
8782 
8783 	/* Decode Flash part size.  The code below looks repetative with
8784 	 * common encodings, but that's not guaranteed in the JEDEC
8785 	 * specification for the Read JADEC ID command.  The only thing that
8786 	 * we're guaranteed by the JADEC specification is where the
8787 	 * Manufacturer ID is in the returned result.  After that each
8788 	 * Manufacturer ~could~ encode things completely differently.
8789 	 * Note, all Flash parts must have 64KB sectors.
8790 	 */
8791 	manufacturer = flashid & 0xff;
8792 	switch (manufacturer) {
8793 	case 0x20: { /* Micron/Numonix */
8794 		/* This Density -> Size decoding table is taken from Micron
8795 		 * Data Sheets.
8796 		 */
8797 		density = (flashid >> 16) & 0xff;
8798 		switch (density) {
8799 		case 0x14: /* 1MB */
8800 			size = 1 << 20;
8801 			break;
8802 		case 0x15: /* 2MB */
8803 			size = 1 << 21;
8804 			break;
8805 		case 0x16: /* 4MB */
8806 			size = 1 << 22;
8807 			break;
8808 		case 0x17: /* 8MB */
8809 			size = 1 << 23;
8810 			break;
8811 		case 0x18: /* 16MB */
8812 			size = 1 << 24;
8813 			break;
8814 		case 0x19: /* 32MB */
8815 			size = 1 << 25;
8816 			break;
8817 		case 0x20: /* 64MB */
8818 			size = 1 << 26;
8819 			break;
8820 		case 0x21: /* 128MB */
8821 			size = 1 << 27;
8822 			break;
8823 		case 0x22: /* 256MB */
8824 			size = 1 << 28;
8825 			break;
8826 
8827 		default:
8828 			dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n",
8829 				flashid, density);
8830 			return -EINVAL;
8831 		}
8832 		break;
8833 	}
8834 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
8835 		/* This Density -> Size decoding table is taken from ISSI
8836 		 * Data Sheets.
8837 		 */
8838 		density = (flashid >> 16) & 0xff;
8839 		switch (density) {
8840 		case 0x16: /* 32 MB */
8841 			size = 1 << 25;
8842 			break;
8843 		case 0x17: /* 64MB */
8844 			size = 1 << 26;
8845 			break;
8846 		default:
8847 			dev_err(adap->pdev_dev, "ISSI Flash Part has bad size, ID = %#x, Density code = %#x\n",
8848 				flashid, density);
8849 			return -EINVAL;
8850 		}
8851 		break;
8852 	}
8853 	case 0xc2: { /* Macronix */
8854 		/* This Density -> Size decoding table is taken from Macronix
8855 		 * Data Sheets.
8856 		 */
8857 		density = (flashid >> 16) & 0xff;
8858 		switch (density) {
8859 		case 0x17: /* 8MB */
8860 			size = 1 << 23;
8861 			break;
8862 		case 0x18: /* 16MB */
8863 			size = 1 << 24;
8864 			break;
8865 		default:
8866 			dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n",
8867 				flashid, density);
8868 			return -EINVAL;
8869 		}
8870 		break;
8871 	}
8872 	case 0xef: { /* Winbond */
8873 		/* This Density -> Size decoding table is taken from Winbond
8874 		 * Data Sheets.
8875 		 */
8876 		density = (flashid >> 16) & 0xff;
8877 		switch (density) {
8878 		case 0x17: /* 8MB */
8879 			size = 1 << 23;
8880 			break;
8881 		case 0x18: /* 16MB */
8882 			size = 1 << 24;
8883 			break;
8884 		default:
8885 			dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n",
8886 				flashid, density);
8887 			return -EINVAL;
8888 		}
8889 		break;
8890 	}
8891 	default:
8892 		dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n",
8893 			flashid);
8894 		return -EINVAL;
8895 	}
8896 
8897 	/* Store decoded Flash size and fall through into vetting code. */
8898 	adap->params.sf_size = size;
8899 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8900 
8901 found:
8902 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8903 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8904 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8905 	return 0;
8906 }
8907 
8908 /**
8909  *	t4_prep_adapter - prepare SW and HW for operation
8910  *	@adapter: the adapter
8911  *	@reset: if true perform a HW reset
8912  *
8913  *	Initialize adapter SW state for the various HW modules, set initial
8914  *	values for some adapter tunables, take PHYs out of reset, and
8915  *	initialize the MDIO interface.
8916  */
8917 int t4_prep_adapter(struct adapter *adapter)
8918 {
8919 	int ret, ver;
8920 	uint16_t device_id;
8921 	u32 pl_rev;
8922 
8923 	get_pci_mode(adapter, &adapter->params.pci);
8924 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8925 
8926 	ret = t4_get_flash_params(adapter);
8927 	if (ret < 0) {
8928 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8929 		return ret;
8930 	}
8931 
8932 	/* Retrieve adapter's device ID
8933 	 */
8934 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8935 	ver = device_id >> 12;
8936 	adapter->params.chip = 0;
8937 	switch (ver) {
8938 	case CHELSIO_T4:
8939 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8940 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8941 		adapter->params.arch.mps_tcam_size =
8942 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8943 		adapter->params.arch.mps_rplc_size = 128;
8944 		adapter->params.arch.nchan = NCHAN;
8945 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8946 		adapter->params.arch.vfcount = 128;
8947 		/* Congestion map is for 4 channels so that
8948 		 * MPS can have 4 priority per port.
8949 		 */
8950 		adapter->params.arch.cng_ch_bits_log = 2;
8951 		break;
8952 	case CHELSIO_T5:
8953 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8954 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8955 		adapter->params.arch.mps_tcam_size =
8956 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8957 		adapter->params.arch.mps_rplc_size = 128;
8958 		adapter->params.arch.nchan = NCHAN;
8959 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8960 		adapter->params.arch.vfcount = 128;
8961 		adapter->params.arch.cng_ch_bits_log = 2;
8962 		break;
8963 	case CHELSIO_T6:
8964 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8965 		adapter->params.arch.sge_fl_db = 0;
8966 		adapter->params.arch.mps_tcam_size =
8967 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8968 		adapter->params.arch.mps_rplc_size = 256;
8969 		adapter->params.arch.nchan = 2;
8970 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8971 		adapter->params.arch.vfcount = 256;
8972 		/* Congestion map will be for 2 channels so that
8973 		 * MPS can have 8 priority per port.
8974 		 */
8975 		adapter->params.arch.cng_ch_bits_log = 3;
8976 		break;
8977 	default:
8978 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8979 			device_id);
8980 		return -EINVAL;
8981 	}
8982 
8983 	adapter->params.cim_la_size = CIMLA_SIZE;
8984 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8985 
8986 	/*
8987 	 * Default port for debugging in case we can't reach FW.
8988 	 */
8989 	adapter->params.nports = 1;
8990 	adapter->params.portvec = 1;
8991 	adapter->params.vpd.cclk = 50000;
8992 
8993 	/* Set PCIe completion timeout to 4 seconds. */
8994 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
8995 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
8996 	return 0;
8997 }
8998 
8999 /**
9000  *	t4_shutdown_adapter - shut down adapter, host & wire
9001  *	@adapter: the adapter
9002  *
9003  *	Perform an emergency shutdown of the adapter and stop it from
9004  *	continuing any further communication on the ports or DMA to the
9005  *	host.  This is typically used when the adapter and/or firmware
9006  *	have crashed and we want to prevent any further accidental
9007  *	communication with the rest of the world.  This will also force
9008  *	the port Link Status to go down -- if register writes work --
9009  *	which should help our peers figure out that we're down.
9010  */
9011 int t4_shutdown_adapter(struct adapter *adapter)
9012 {
9013 	int port;
9014 
9015 	t4_intr_disable(adapter);
9016 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9017 	for_each_port(adapter, port) {
9018 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9019 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9020 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9021 
9022 		t4_write_reg(adapter, a_port_cfg,
9023 			     t4_read_reg(adapter, a_port_cfg)
9024 			     & ~SIGNAL_DET_V(1));
9025 	}
9026 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9027 
9028 	return 0;
9029 }
9030 
9031 /**
9032  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9033  *	@adapter: the adapter
9034  *	@qid: the Queue ID
9035  *	@qtype: the Ingress or Egress type for @qid
9036  *	@user: true if this request is for a user mode queue
9037  *	@pbar2_qoffset: BAR2 Queue Offset
9038  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9039  *
9040  *	Returns the BAR2 SGE Queue Registers information associated with the
9041  *	indicated Absolute Queue ID.  These are passed back in return value
9042  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9043  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9044  *
9045  *	This may return an error which indicates that BAR2 SGE Queue
9046  *	registers aren't available.  If an error is not returned, then the
9047  *	following values are returned:
9048  *
9049  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9050  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9051  *
9052  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9053  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9054  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9055  *	then these "Inferred Queue ID" register may not be used.
9056  */
9057 int t4_bar2_sge_qregs(struct adapter *adapter,
9058 		      unsigned int qid,
9059 		      enum t4_bar2_qtype qtype,
9060 		      int user,
9061 		      u64 *pbar2_qoffset,
9062 		      unsigned int *pbar2_qid)
9063 {
9064 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9065 	u64 bar2_page_offset, bar2_qoffset;
9066 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9067 
9068 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9069 	if (!user && is_t4(adapter->params.chip))
9070 		return -EINVAL;
9071 
9072 	/* Get our SGE Page Size parameters.
9073 	 */
9074 	page_shift = adapter->params.sge.hps + 10;
9075 	page_size = 1 << page_shift;
9076 
9077 	/* Get the right Queues per Page parameters for our Queue.
9078 	 */
9079 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9080 		     ? adapter->params.sge.eq_qpp
9081 		     : adapter->params.sge.iq_qpp);
9082 	qpp_mask = (1 << qpp_shift) - 1;
9083 
9084 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9085 	 *  o The BAR2 page the Queue registers will be in.
9086 	 *  o The BAR2 Queue ID.
9087 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9088 	 */
9089 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9090 	bar2_qid = qid & qpp_mask;
9091 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9092 
9093 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9094 	 * hardware will infer the Absolute Queue ID simply from the writes to
9095 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9096 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9097 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9098 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9099 	 * from the BAR2 Page and BAR2 Queue ID.
9100 	 *
9101 	 * One important censequence of this is that some BAR2 SGE registers
9102 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9103 	 * there.  But other registers synthesize the SGE Queue ID purely
9104 	 * from the writes to the registers -- the Write Combined Doorbell
9105 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9106 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9107 	 * Queue ID can be inferred from simple writes.
9108 	 */
9109 	bar2_qoffset = bar2_page_offset;
9110 	bar2_qinferred = (bar2_qid_offset < page_size);
9111 	if (bar2_qinferred) {
9112 		bar2_qoffset += bar2_qid_offset;
9113 		bar2_qid = 0;
9114 	}
9115 
9116 	*pbar2_qoffset = bar2_qoffset;
9117 	*pbar2_qid = bar2_qid;
9118 	return 0;
9119 }
9120 
9121 /**
9122  *	t4_init_devlog_params - initialize adapter->params.devlog
9123  *	@adap: the adapter
9124  *
9125  *	Initialize various fields of the adapter's Firmware Device Log
9126  *	Parameters structure.
9127  */
9128 int t4_init_devlog_params(struct adapter *adap)
9129 {
9130 	struct devlog_params *dparams = &adap->params.devlog;
9131 	u32 pf_dparams;
9132 	unsigned int devlog_meminfo;
9133 	struct fw_devlog_cmd devlog_cmd;
9134 	int ret;
9135 
9136 	/* If we're dealing with newer firmware, the Device Log Paramerters
9137 	 * are stored in a designated register which allows us to access the
9138 	 * Device Log even if we can't talk to the firmware.
9139 	 */
9140 	pf_dparams =
9141 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9142 	if (pf_dparams) {
9143 		unsigned int nentries, nentries128;
9144 
9145 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9146 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9147 
9148 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9149 		nentries = (nentries128 + 1) * 128;
9150 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9151 
9152 		return 0;
9153 	}
9154 
9155 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9156 	 */
9157 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9158 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9159 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9160 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9161 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9162 			 &devlog_cmd);
9163 	if (ret)
9164 		return ret;
9165 
9166 	devlog_meminfo =
9167 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9168 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9169 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9170 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9171 
9172 	return 0;
9173 }
9174 
9175 /**
9176  *	t4_init_sge_params - initialize adap->params.sge
9177  *	@adapter: the adapter
9178  *
9179  *	Initialize various fields of the adapter's SGE Parameters structure.
9180  */
9181 int t4_init_sge_params(struct adapter *adapter)
9182 {
9183 	struct sge_params *sge_params = &adapter->params.sge;
9184 	u32 hps, qpp;
9185 	unsigned int s_hps, s_qpp;
9186 
9187 	/* Extract the SGE Page Size for our PF.
9188 	 */
9189 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9190 	s_hps = (HOSTPAGESIZEPF0_S +
9191 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9192 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9193 
9194 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9195 	 */
9196 	s_qpp = (QUEUESPERPAGEPF0_S +
9197 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9198 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9199 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9200 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9201 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9202 
9203 	return 0;
9204 }
9205 
9206 /**
9207  *      t4_init_tp_params - initialize adap->params.tp
9208  *      @adap: the adapter
9209  *      @sleep_ok: if true we may sleep while awaiting command completion
9210  *
9211  *      Initialize various fields of the adapter's TP Parameters structure.
9212  */
9213 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9214 {
9215 	int chan;
9216 	u32 v;
9217 
9218 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9219 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9220 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9221 
9222 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9223 	for (chan = 0; chan < NCHAN; chan++)
9224 		adap->params.tp.tx_modq[chan] = chan;
9225 
9226 	/* Cache the adapter's Compressed Filter Mode and global Incress
9227 	 * Configuration.
9228 	 */
9229 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9230 		       TP_VLAN_PRI_MAP_A, sleep_ok);
9231 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9232 		       TP_INGRESS_CONFIG_A, sleep_ok);
9233 
9234 	/* For T6, cache the adapter's compressed error vector
9235 	 * and passing outer header info for encapsulated packets.
9236 	 */
9237 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9238 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9239 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9240 	}
9241 
9242 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9243 	 * shift positions of several elements of the Compressed Filter Tuple
9244 	 * for this adapter which we need frequently ...
9245 	 */
9246 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9247 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9248 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9249 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9250 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9251 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9252 							       PROTOCOL_F);
9253 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9254 								ETHERTYPE_F);
9255 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9256 							       MACMATCH_F);
9257 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9258 								MPSHITTYPE_F);
9259 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9260 							   FRAGMENTATION_F);
9261 
9262 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9263 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9264 	 */
9265 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9266 		adap->params.tp.vnic_shift = -1;
9267 
9268 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9269 	adap->params.tp.hash_filter_mask = v;
9270 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9271 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9272 	return 0;
9273 }
9274 
9275 /**
9276  *      t4_filter_field_shift - calculate filter field shift
9277  *      @adap: the adapter
9278  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9279  *
9280  *      Return the shift position of a filter field within the Compressed
9281  *      Filter Tuple.  The filter field is specified via its selection bit
9282  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9283  */
9284 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9285 {
9286 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9287 	unsigned int sel;
9288 	int field_shift;
9289 
9290 	if ((filter_mode & filter_sel) == 0)
9291 		return -1;
9292 
9293 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9294 		switch (filter_mode & sel) {
9295 		case FCOE_F:
9296 			field_shift += FT_FCOE_W;
9297 			break;
9298 		case PORT_F:
9299 			field_shift += FT_PORT_W;
9300 			break;
9301 		case VNIC_ID_F:
9302 			field_shift += FT_VNIC_ID_W;
9303 			break;
9304 		case VLAN_F:
9305 			field_shift += FT_VLAN_W;
9306 			break;
9307 		case TOS_F:
9308 			field_shift += FT_TOS_W;
9309 			break;
9310 		case PROTOCOL_F:
9311 			field_shift += FT_PROTOCOL_W;
9312 			break;
9313 		case ETHERTYPE_F:
9314 			field_shift += FT_ETHERTYPE_W;
9315 			break;
9316 		case MACMATCH_F:
9317 			field_shift += FT_MACMATCH_W;
9318 			break;
9319 		case MPSHITTYPE_F:
9320 			field_shift += FT_MPSHITTYPE_W;
9321 			break;
9322 		case FRAGMENTATION_F:
9323 			field_shift += FT_FRAGMENTATION_W;
9324 			break;
9325 		}
9326 	}
9327 	return field_shift;
9328 }
9329 
9330 int t4_init_rss_mode(struct adapter *adap, int mbox)
9331 {
9332 	int i, ret;
9333 	struct fw_rss_vi_config_cmd rvc;
9334 
9335 	memset(&rvc, 0, sizeof(rvc));
9336 
9337 	for_each_port(adap, i) {
9338 		struct port_info *p = adap2pinfo(adap, i);
9339 
9340 		rvc.op_to_viid =
9341 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9342 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9343 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9344 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9345 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9346 		if (ret)
9347 			return ret;
9348 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9349 	}
9350 	return 0;
9351 }
9352 
9353 /**
9354  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9355  *	@pi: the port_info
9356  *	@mbox: mailbox to use for the FW command
9357  *	@port: physical port associated with the VI
9358  *	@pf: the PF owning the VI
9359  *	@vf: the VF owning the VI
9360  *	@mac: the MAC address of the VI
9361  *
9362  *	Allocates a virtual interface for the given physical port.  If @mac is
9363  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9364  *	@mac should be large enough to hold an Ethernet address.
9365  *	Returns < 0 on error.
9366  */
9367 int t4_init_portinfo(struct port_info *pi, int mbox,
9368 		     int port, int pf, int vf, u8 mac[])
9369 {
9370 	struct adapter *adapter = pi->adapter;
9371 	unsigned int fw_caps = adapter->params.fw_caps_support;
9372 	struct fw_port_cmd cmd;
9373 	unsigned int rss_size;
9374 	enum fw_port_type port_type;
9375 	int mdio_addr;
9376 	fw_port_cap32_t pcaps, acaps;
9377 	int ret;
9378 
9379 	/* If we haven't yet determined whether we're talking to Firmware
9380 	 * which knows the new 32-bit Port Capabilities, it's time to find
9381 	 * out now.  This will also tell new Firmware to send us Port Status
9382 	 * Updates using the new 32-bit Port Capabilities version of the
9383 	 * Port Information message.
9384 	 */
9385 	if (fw_caps == FW_CAPS_UNKNOWN) {
9386 		u32 param, val;
9387 
9388 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9389 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9390 		val = 1;
9391 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9392 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9393 		adapter->params.fw_caps_support = fw_caps;
9394 	}
9395 
9396 	memset(&cmd, 0, sizeof(cmd));
9397 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9398 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9399 				       FW_PORT_CMD_PORTID_V(port));
9400 	cmd.action_to_len16 = cpu_to_be32(
9401 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9402 				     ? FW_PORT_ACTION_GET_PORT_INFO
9403 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9404 		FW_LEN16(cmd));
9405 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9406 	if (ret)
9407 		return ret;
9408 
9409 	/* Extract the various fields from the Port Information message.
9410 	 */
9411 	if (fw_caps == FW_CAPS16) {
9412 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9413 
9414 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9415 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9416 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9417 			     : -1);
9418 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9419 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9420 	} else {
9421 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9422 
9423 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9424 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9425 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9426 			     : -1);
9427 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9428 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9429 	}
9430 
9431 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9432 	if (ret < 0)
9433 		return ret;
9434 
9435 	pi->viid = ret;
9436 	pi->tx_chan = port;
9437 	pi->lport = port;
9438 	pi->rss_size = rss_size;
9439 
9440 	pi->port_type = port_type;
9441 	pi->mdio_addr = mdio_addr;
9442 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9443 
9444 	init_link_config(&pi->link_cfg, pcaps, acaps);
9445 	return 0;
9446 }
9447 
9448 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9449 {
9450 	u8 addr[6];
9451 	int ret, i, j = 0;
9452 
9453 	for_each_port(adap, i) {
9454 		struct port_info *pi = adap2pinfo(adap, i);
9455 
9456 		while ((adap->params.portvec & (1 << j)) == 0)
9457 			j++;
9458 
9459 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9460 		if (ret)
9461 			return ret;
9462 
9463 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9464 		j++;
9465 	}
9466 	return 0;
9467 }
9468 
9469 /**
9470  *	t4_read_cimq_cfg - read CIM queue configuration
9471  *	@adap: the adapter
9472  *	@base: holds the queue base addresses in bytes
9473  *	@size: holds the queue sizes in bytes
9474  *	@thres: holds the queue full thresholds in bytes
9475  *
9476  *	Returns the current configuration of the CIM queues, starting with
9477  *	the IBQs, then the OBQs.
9478  */
9479 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9480 {
9481 	unsigned int i, v;
9482 	int cim_num_obq = is_t4(adap->params.chip) ?
9483 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9484 
9485 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9486 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9487 			     QUENUMSELECT_V(i));
9488 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9489 		/* value is in 256-byte units */
9490 		*base++ = CIMQBASE_G(v) * 256;
9491 		*size++ = CIMQSIZE_G(v) * 256;
9492 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9493 	}
9494 	for (i = 0; i < cim_num_obq; i++) {
9495 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9496 			     QUENUMSELECT_V(i));
9497 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9498 		/* value is in 256-byte units */
9499 		*base++ = CIMQBASE_G(v) * 256;
9500 		*size++ = CIMQSIZE_G(v) * 256;
9501 	}
9502 }
9503 
9504 /**
9505  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9506  *	@adap: the adapter
9507  *	@qid: the queue index
9508  *	@data: where to store the queue contents
9509  *	@n: capacity of @data in 32-bit words
9510  *
9511  *	Reads the contents of the selected CIM queue starting at address 0 up
9512  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9513  *	error and the number of 32-bit words actually read on success.
9514  */
9515 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9516 {
9517 	int i, err, attempts;
9518 	unsigned int addr;
9519 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9520 
9521 	if (qid > 5 || (n & 3))
9522 		return -EINVAL;
9523 
9524 	addr = qid * nwords;
9525 	if (n > nwords)
9526 		n = nwords;
9527 
9528 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9529 	 * Wait for 1 Sec with a delay of 1 usec.
9530 	 */
9531 	attempts = 1000000;
9532 
9533 	for (i = 0; i < n; i++, addr++) {
9534 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9535 			     IBQDBGEN_F);
9536 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9537 				      attempts, 1);
9538 		if (err)
9539 			return err;
9540 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9541 	}
9542 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9543 	return i;
9544 }
9545 
9546 /**
9547  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9548  *	@adap: the adapter
9549  *	@qid: the queue index
9550  *	@data: where to store the queue contents
9551  *	@n: capacity of @data in 32-bit words
9552  *
9553  *	Reads the contents of the selected CIM queue starting at address 0 up
9554  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9555  *	error and the number of 32-bit words actually read on success.
9556  */
9557 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9558 {
9559 	int i, err;
9560 	unsigned int addr, v, nwords;
9561 	int cim_num_obq = is_t4(adap->params.chip) ?
9562 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9563 
9564 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9565 		return -EINVAL;
9566 
9567 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9568 		     QUENUMSELECT_V(qid));
9569 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9570 
9571 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9572 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9573 	if (n > nwords)
9574 		n = nwords;
9575 
9576 	for (i = 0; i < n; i++, addr++) {
9577 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9578 			     OBQDBGEN_F);
9579 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9580 				      2, 1);
9581 		if (err)
9582 			return err;
9583 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9584 	}
9585 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9586 	return i;
9587 }
9588 
9589 /**
9590  *	t4_cim_read - read a block from CIM internal address space
9591  *	@adap: the adapter
9592  *	@addr: the start address within the CIM address space
9593  *	@n: number of words to read
9594  *	@valp: where to store the result
9595  *
9596  *	Reads a block of 4-byte words from the CIM intenal address space.
9597  */
9598 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9599 		unsigned int *valp)
9600 {
9601 	int ret = 0;
9602 
9603 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9604 		return -EBUSY;
9605 
9606 	for ( ; !ret && n--; addr += 4) {
9607 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9608 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9609 				      0, 5, 2);
9610 		if (!ret)
9611 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9612 	}
9613 	return ret;
9614 }
9615 
9616 /**
9617  *	t4_cim_write - write a block into CIM internal address space
9618  *	@adap: the adapter
9619  *	@addr: the start address within the CIM address space
9620  *	@n: number of words to write
9621  *	@valp: set of values to write
9622  *
9623  *	Writes a block of 4-byte words into the CIM intenal address space.
9624  */
9625 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9626 		 const unsigned int *valp)
9627 {
9628 	int ret = 0;
9629 
9630 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9631 		return -EBUSY;
9632 
9633 	for ( ; !ret && n--; addr += 4) {
9634 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9635 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9636 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9637 				      0, 5, 2);
9638 	}
9639 	return ret;
9640 }
9641 
9642 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9643 			 unsigned int val)
9644 {
9645 	return t4_cim_write(adap, addr, 1, &val);
9646 }
9647 
9648 /**
9649  *	t4_cim_read_la - read CIM LA capture buffer
9650  *	@adap: the adapter
9651  *	@la_buf: where to store the LA data
9652  *	@wrptr: the HW write pointer within the capture buffer
9653  *
9654  *	Reads the contents of the CIM LA buffer with the most recent entry at
9655  *	the end	of the returned data and with the entry at @wrptr first.
9656  *	We try to leave the LA in the running state we find it in.
9657  */
9658 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9659 {
9660 	int i, ret;
9661 	unsigned int cfg, val, idx;
9662 
9663 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9664 	if (ret)
9665 		return ret;
9666 
9667 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9668 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9669 		if (ret)
9670 			return ret;
9671 	}
9672 
9673 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9674 	if (ret)
9675 		goto restart;
9676 
9677 	idx = UPDBGLAWRPTR_G(val);
9678 	if (wrptr)
9679 		*wrptr = idx;
9680 
9681 	for (i = 0; i < adap->params.cim_la_size; i++) {
9682 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9683 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9684 		if (ret)
9685 			break;
9686 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9687 		if (ret)
9688 			break;
9689 		if (val & UPDBGLARDEN_F) {
9690 			ret = -ETIMEDOUT;
9691 			break;
9692 		}
9693 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9694 		if (ret)
9695 			break;
9696 
9697 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9698 		 * identify the 32-bit portion of the full 312-bit data
9699 		 */
9700 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9701 			idx = (idx & 0xff0) + 0x10;
9702 		else
9703 			idx++;
9704 		/* address can't exceed 0xfff */
9705 		idx &= UPDBGLARDPTR_M;
9706 	}
9707 restart:
9708 	if (cfg & UPDBGLAEN_F) {
9709 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9710 				      cfg & ~UPDBGLARDEN_F);
9711 		if (!ret)
9712 			ret = r;
9713 	}
9714 	return ret;
9715 }
9716 
9717 /**
9718  *	t4_tp_read_la - read TP LA capture buffer
9719  *	@adap: the adapter
9720  *	@la_buf: where to store the LA data
9721  *	@wrptr: the HW write pointer within the capture buffer
9722  *
9723  *	Reads the contents of the TP LA buffer with the most recent entry at
9724  *	the end	of the returned data and with the entry at @wrptr first.
9725  *	We leave the LA in the running state we find it in.
9726  */
9727 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9728 {
9729 	bool last_incomplete;
9730 	unsigned int i, cfg, val, idx;
9731 
9732 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9733 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9734 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9735 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9736 
9737 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9738 	idx = DBGLAWPTR_G(val);
9739 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9740 	if (last_incomplete)
9741 		idx = (idx + 1) & DBGLARPTR_M;
9742 	if (wrptr)
9743 		*wrptr = idx;
9744 
9745 	val &= 0xffff;
9746 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9747 	val |= adap->params.tp.la_mask;
9748 
9749 	for (i = 0; i < TPLA_SIZE; i++) {
9750 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9751 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9752 		idx = (idx + 1) & DBGLARPTR_M;
9753 	}
9754 
9755 	/* Wipe out last entry if it isn't valid */
9756 	if (last_incomplete)
9757 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9758 
9759 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9760 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9761 			     cfg | adap->params.tp.la_mask);
9762 }
9763 
9764 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9765  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9766  * state for more than the Warning Threshold then we'll issue a warning about
9767  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9768  * appears to be hung every Warning Repeat second till the situation clears.
9769  * If the situation clears, we'll note that as well.
9770  */
9771 #define SGE_IDMA_WARN_THRESH 1
9772 #define SGE_IDMA_WARN_REPEAT 300
9773 
9774 /**
9775  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9776  *	@adapter: the adapter
9777  *	@idma: the adapter IDMA Monitor state
9778  *
9779  *	Initialize the state of an SGE Ingress DMA Monitor.
9780  */
9781 void t4_idma_monitor_init(struct adapter *adapter,
9782 			  struct sge_idma_monitor_state *idma)
9783 {
9784 	/* Initialize the state variables for detecting an SGE Ingress DMA
9785 	 * hang.  The SGE has internal counters which count up on each clock
9786 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9787 	 * same state they were on the previous clock tick.  The clock used is
9788 	 * the Core Clock so we have a limit on the maximum "time" they can
9789 	 * record; typically a very small number of seconds.  For instance,
9790 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9791 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9792 	 * risk of having the "timers" overflow and give us the flexibility to
9793 	 * maintain a Hung SGE State Machine of our own which operates across
9794 	 * a longer time frame.
9795 	 */
9796 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9797 	idma->idma_stalled[0] = 0;
9798 	idma->idma_stalled[1] = 0;
9799 }
9800 
9801 /**
9802  *	t4_idma_monitor - monitor SGE Ingress DMA state
9803  *	@adapter: the adapter
9804  *	@idma: the adapter IDMA Monitor state
9805  *	@hz: number of ticks/second
9806  *	@ticks: number of ticks since the last IDMA Monitor call
9807  */
9808 void t4_idma_monitor(struct adapter *adapter,
9809 		     struct sge_idma_monitor_state *idma,
9810 		     int hz, int ticks)
9811 {
9812 	int i, idma_same_state_cnt[2];
9813 
9814 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9815 	  * are counters inside the SGE which count up on each clock when the
9816 	  * SGE finds its Ingress DMA State Engines in the same states they
9817 	  * were in the previous clock.  The counters will peg out at
9818 	  * 0xffffffff without wrapping around so once they pass the 1s
9819 	  * threshold they'll stay above that till the IDMA state changes.
9820 	  */
9821 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9822 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9823 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9824 
9825 	for (i = 0; i < 2; i++) {
9826 		u32 debug0, debug11;
9827 
9828 		/* If the Ingress DMA Same State Counter ("timer") is less
9829 		 * than 1s, then we can reset our synthesized Stall Timer and
9830 		 * continue.  If we have previously emitted warnings about a
9831 		 * potential stalled Ingress Queue, issue a note indicating
9832 		 * that the Ingress Queue has resumed forward progress.
9833 		 */
9834 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9835 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9836 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9837 					 "resumed after %d seconds\n",
9838 					 i, idma->idma_qid[i],
9839 					 idma->idma_stalled[i] / hz);
9840 			idma->idma_stalled[i] = 0;
9841 			continue;
9842 		}
9843 
9844 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9845 		 * domain.  The first time we get here it'll be because we
9846 		 * passed the 1s Threshold; each additional time it'll be
9847 		 * because the RX Timer Callback is being fired on its regular
9848 		 * schedule.
9849 		 *
9850 		 * If the stall is below our Potential Hung Ingress Queue
9851 		 * Warning Threshold, continue.
9852 		 */
9853 		if (idma->idma_stalled[i] == 0) {
9854 			idma->idma_stalled[i] = hz;
9855 			idma->idma_warn[i] = 0;
9856 		} else {
9857 			idma->idma_stalled[i] += ticks;
9858 			idma->idma_warn[i] -= ticks;
9859 		}
9860 
9861 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9862 			continue;
9863 
9864 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9865 		 */
9866 		if (idma->idma_warn[i] > 0)
9867 			continue;
9868 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9869 
9870 		/* Read and save the SGE IDMA State and Queue ID information.
9871 		 * We do this every time in case it changes across time ...
9872 		 * can't be too careful ...
9873 		 */
9874 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9875 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9876 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9877 
9878 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9879 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9880 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9881 
9882 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9883 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9884 			 i, idma->idma_qid[i], idma->idma_state[i],
9885 			 idma->idma_stalled[i] / hz,
9886 			 debug0, debug11);
9887 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9888 	}
9889 }
9890 
9891 /**
9892  *	t4_load_cfg - download config file
9893  *	@adap: the adapter
9894  *	@cfg_data: the cfg text file to write
9895  *	@size: text file size
9896  *
9897  *	Write the supplied config text file to the card's serial flash.
9898  */
9899 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9900 {
9901 	int ret, i, n, cfg_addr;
9902 	unsigned int addr;
9903 	unsigned int flash_cfg_start_sec;
9904 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9905 
9906 	cfg_addr = t4_flash_cfg_addr(adap);
9907 	if (cfg_addr < 0)
9908 		return cfg_addr;
9909 
9910 	addr = cfg_addr;
9911 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9912 
9913 	if (size > FLASH_CFG_MAX_SIZE) {
9914 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9915 			FLASH_CFG_MAX_SIZE);
9916 		return -EFBIG;
9917 	}
9918 
9919 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9920 			 sf_sec_size);
9921 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9922 				     flash_cfg_start_sec + i - 1);
9923 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9924 	 * with the on-adapter Firmware Configuration File.
9925 	 */
9926 	if (ret || size == 0)
9927 		goto out;
9928 
9929 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9930 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9931 		if ((size - i) <  SF_PAGE_SIZE)
9932 			n = size - i;
9933 		else
9934 			n = SF_PAGE_SIZE;
9935 		ret = t4_write_flash(adap, addr, n, cfg_data);
9936 		if (ret)
9937 			goto out;
9938 
9939 		addr += SF_PAGE_SIZE;
9940 		cfg_data += SF_PAGE_SIZE;
9941 	}
9942 
9943 out:
9944 	if (ret)
9945 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9946 			(size == 0 ? "clear" : "download"), ret);
9947 	return ret;
9948 }
9949 
9950 /**
9951  *	t4_set_vf_mac - Set MAC address for the specified VF
9952  *	@adapter: The adapter
9953  *	@vf: one of the VFs instantiated by the specified PF
9954  *	@naddr: the number of MAC addresses
9955  *	@addr: the MAC address(es) to be set to the specified VF
9956  */
9957 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9958 		      unsigned int naddr, u8 *addr)
9959 {
9960 	struct fw_acl_mac_cmd cmd;
9961 
9962 	memset(&cmd, 0, sizeof(cmd));
9963 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9964 				    FW_CMD_REQUEST_F |
9965 				    FW_CMD_WRITE_F |
9966 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9967 				    FW_ACL_MAC_CMD_VFN_V(vf));
9968 
9969 	/* Note: Do not enable the ACL */
9970 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9971 	cmd.nmac = naddr;
9972 
9973 	switch (adapter->pf) {
9974 	case 3:
9975 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9976 		break;
9977 	case 2:
9978 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9979 		break;
9980 	case 1:
9981 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9982 		break;
9983 	case 0:
9984 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9985 		break;
9986 	}
9987 
9988 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9989 }
9990 
9991 /**
9992  * t4_read_pace_tbl - read the pace table
9993  * @adap: the adapter
9994  * @pace_vals: holds the returned values
9995  *
9996  * Returns the values of TP's pace table in microseconds.
9997  */
9998 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9999 {
10000 	unsigned int i, v;
10001 
10002 	for (i = 0; i < NTX_SCHED; i++) {
10003 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10004 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10005 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10006 	}
10007 }
10008 
10009 /**
10010  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10011  * @adap: the adapter
10012  * @sched: the scheduler index
10013  * @kbps: the byte rate in Kbps
10014  * @ipg: the interpacket delay in tenths of nanoseconds
10015  * @sleep_ok: if true we may sleep while awaiting command completion
10016  *
10017  * Return the current configuration of a HW Tx scheduler.
10018  */
10019 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10020 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10021 {
10022 	unsigned int v, addr, bpt, cpt;
10023 
10024 	if (kbps) {
10025 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10026 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10027 		if (sched & 1)
10028 			v >>= 16;
10029 		bpt = (v >> 8) & 0xff;
10030 		cpt = v & 0xff;
10031 		if (!cpt) {
10032 			*kbps = 0;	/* scheduler disabled */
10033 		} else {
10034 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10035 			*kbps = (v * bpt) / 125;
10036 		}
10037 	}
10038 	if (ipg) {
10039 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10040 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10041 		if (sched & 1)
10042 			v >>= 16;
10043 		v &= 0xffff;
10044 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10045 	}
10046 }
10047 
10048 /* t4_sge_ctxt_rd - read an SGE context through FW
10049  * @adap: the adapter
10050  * @mbox: mailbox to use for the FW command
10051  * @cid: the context id
10052  * @ctype: the context type
10053  * @data: where to store the context data
10054  *
10055  * Issues a FW command through the given mailbox to read an SGE context.
10056  */
10057 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10058 		   enum ctxt_type ctype, u32 *data)
10059 {
10060 	struct fw_ldst_cmd c;
10061 	int ret;
10062 
10063 	if (ctype == CTXT_FLM)
10064 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10065 	else
10066 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10067 
10068 	memset(&c, 0, sizeof(c));
10069 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10070 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10071 					FW_LDST_CMD_ADDRSPACE_V(ret));
10072 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10073 	c.u.idctxt.physid = cpu_to_be32(cid);
10074 
10075 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10076 	if (ret == 0) {
10077 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10078 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10079 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10080 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10081 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10082 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10083 	}
10084 	return ret;
10085 }
10086 
10087 /**
10088  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10089  * @adap: the adapter
10090  * @cid: the context id
10091  * @ctype: the context type
10092  * @data: where to store the context data
10093  *
10094  * Reads an SGE context directly, bypassing FW.  This is only for
10095  * debugging when FW is unavailable.
10096  */
10097 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10098 		      enum ctxt_type ctype, u32 *data)
10099 {
10100 	int i, ret;
10101 
10102 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10103 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10104 	if (!ret)
10105 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10106 			*data++ = t4_read_reg(adap, i);
10107 	return ret;
10108 }
10109 
10110 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10111 		    int rateunit, int ratemode, int channel, int class,
10112 		    int minrate, int maxrate, int weight, int pktsize)
10113 {
10114 	struct fw_sched_cmd cmd;
10115 
10116 	memset(&cmd, 0, sizeof(cmd));
10117 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10118 				      FW_CMD_REQUEST_F |
10119 				      FW_CMD_WRITE_F);
10120 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10121 
10122 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10123 	cmd.u.params.type = type;
10124 	cmd.u.params.level = level;
10125 	cmd.u.params.mode = mode;
10126 	cmd.u.params.ch = channel;
10127 	cmd.u.params.cl = class;
10128 	cmd.u.params.unit = rateunit;
10129 	cmd.u.params.rate = ratemode;
10130 	cmd.u.params.min = cpu_to_be32(minrate);
10131 	cmd.u.params.max = cpu_to_be32(maxrate);
10132 	cmd.u.params.weight = cpu_to_be16(weight);
10133 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10134 
10135 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10136 			       NULL, 1);
10137 }
10138 
10139 /**
10140  *	t4_i2c_rd - read I2C data from adapter
10141  *	@adap: the adapter
10142  *	@port: Port number if per-port device; <0 if not
10143  *	@devid: per-port device ID or absolute device ID
10144  *	@offset: byte offset into device I2C space
10145  *	@len: byte length of I2C space data
10146  *	@buf: buffer in which to return I2C data
10147  *
10148  *	Reads the I2C data from the indicated device and location.
10149  */
10150 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10151 	      unsigned int devid, unsigned int offset,
10152 	      unsigned int len, u8 *buf)
10153 {
10154 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10155 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10156 	int ret = 0;
10157 
10158 	if (len > I2C_PAGE_SIZE)
10159 		return -EINVAL;
10160 
10161 	/* Dont allow reads that spans multiple pages */
10162 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10163 		return -EINVAL;
10164 
10165 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10166 	ldst_cmd.op_to_addrspace =
10167 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10168 			    FW_CMD_REQUEST_F |
10169 			    FW_CMD_READ_F |
10170 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10171 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10172 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10173 	ldst_cmd.u.i2c.did = devid;
10174 
10175 	while (len > 0) {
10176 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10177 
10178 		ldst_cmd.u.i2c.boffset = offset;
10179 		ldst_cmd.u.i2c.blen = i2c_len;
10180 
10181 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10182 				 &ldst_rpl);
10183 		if (ret)
10184 			break;
10185 
10186 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10187 		offset += i2c_len;
10188 		buf += i2c_len;
10189 		len -= i2c_len;
10190 	}
10191 
10192 	return ret;
10193 }
10194 
10195 /**
10196  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10197  *      @adapter: the adapter
10198  *      @mbox: mailbox to use for the FW command
10199  *      @vf: one of the VFs instantiated by the specified PF
10200  *      @vlan: The vlanid to be set
10201  */
10202 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10203 		    u16 vlan)
10204 {
10205 	struct fw_acl_vlan_cmd vlan_cmd;
10206 	unsigned int enable;
10207 
10208 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10209 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10210 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10211 					 FW_CMD_REQUEST_F |
10212 					 FW_CMD_WRITE_F |
10213 					 FW_CMD_EXEC_F |
10214 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10215 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10216 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10217 	/* Drop all packets that donot match vlan id */
10218 	vlan_cmd.dropnovlan_fm = FW_ACL_VLAN_CMD_FM_F;
10219 	if (enable != 0) {
10220 		vlan_cmd.nvlan = 1;
10221 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10222 	}
10223 
10224 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10225 }
10226