1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 } 202 203 /* 204 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 205 */ 206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 207 u32 mbox_addr) 208 { 209 for ( ; nflit; nflit--, mbox_addr += 8) 210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 211 } 212 213 /* 214 * Handle a FW assertion reported in a mailbox. 215 */ 216 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 217 { 218 struct fw_debug_cmd asrt; 219 220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 221 dev_alert(adap->pdev_dev, 222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 225 } 226 227 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg) 228 { 229 dev_err(adap->pdev_dev, 230 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox, 231 (unsigned long long)t4_read_reg64(adap, data_reg), 232 (unsigned long long)t4_read_reg64(adap, data_reg + 8), 233 (unsigned long long)t4_read_reg64(adap, data_reg + 16), 234 (unsigned long long)t4_read_reg64(adap, data_reg + 24), 235 (unsigned long long)t4_read_reg64(adap, data_reg + 32), 236 (unsigned long long)t4_read_reg64(adap, data_reg + 40), 237 (unsigned long long)t4_read_reg64(adap, data_reg + 48), 238 (unsigned long long)t4_read_reg64(adap, data_reg + 56)); 239 } 240 241 /** 242 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 243 * @adap: the adapter 244 * @mbox: index of the mailbox to use 245 * @cmd: the command to write 246 * @size: command length in bytes 247 * @rpl: where to optionally store the reply 248 * @sleep_ok: if true we may sleep while awaiting command completion 249 * @timeout: time to wait for command to finish before timing out 250 * 251 * Sends the given command to FW through the selected mailbox and waits 252 * for the FW to execute the command. If @rpl is not %NULL it is used to 253 * store the FW's reply to the command. The command and its optional 254 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 255 * to respond. @sleep_ok determines whether we may sleep while awaiting 256 * the response. If sleeping is allowed we use progressive backoff 257 * otherwise we spin. 258 * 259 * The return value is 0 on success or a negative errno on failure. A 260 * failure can happen either because we are not able to execute the 261 * command or FW executes it but signals an error. In the latter case 262 * the return value is the error code indicated by FW (negated). 263 */ 264 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 265 int size, void *rpl, bool sleep_ok, int timeout) 266 { 267 static const int delay[] = { 268 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 269 }; 270 271 u32 v; 272 u64 res; 273 int i, ms, delay_idx; 274 const __be64 *p = cmd; 275 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 276 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 277 278 if ((size & 15) || size > MBOX_LEN) 279 return -EINVAL; 280 281 /* 282 * If the device is off-line, as in EEH, commands will time out. 283 * Fail them early so we don't waste time waiting. 284 */ 285 if (adap->pdev->error_state != pci_channel_io_normal) 286 return -EIO; 287 288 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 289 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 290 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 291 292 if (v != MBOX_OWNER_DRV) 293 return v ? -EBUSY : -ETIMEDOUT; 294 295 for (i = 0; i < size; i += 8) 296 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 297 298 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 299 t4_read_reg(adap, ctl_reg); /* flush write */ 300 301 delay_idx = 0; 302 ms = delay[0]; 303 304 for (i = 0; i < timeout; i += ms) { 305 if (sleep_ok) { 306 ms = delay[delay_idx]; /* last element may repeat */ 307 if (delay_idx < ARRAY_SIZE(delay) - 1) 308 delay_idx++; 309 msleep(ms); 310 } else 311 mdelay(ms); 312 313 v = t4_read_reg(adap, ctl_reg); 314 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 315 if (!(v & MBMSGVALID_F)) { 316 t4_write_reg(adap, ctl_reg, 0); 317 continue; 318 } 319 320 res = t4_read_reg64(adap, data_reg); 321 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 322 fw_asrt(adap, data_reg); 323 res = FW_CMD_RETVAL_V(EIO); 324 } else if (rpl) { 325 get_mbox_rpl(adap, rpl, size / 8, data_reg); 326 } 327 328 if (FW_CMD_RETVAL_G((int)res)) 329 dump_mbox(adap, mbox, data_reg); 330 t4_write_reg(adap, ctl_reg, 0); 331 return -FW_CMD_RETVAL_G((int)res); 332 } 333 } 334 335 dump_mbox(adap, mbox, data_reg); 336 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 337 *(const u8 *)cmd, mbox); 338 t4_report_fw_error(adap); 339 return -ETIMEDOUT; 340 } 341 342 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 343 void *rpl, bool sleep_ok) 344 { 345 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 346 FW_CMD_MAX_TIMEOUT); 347 } 348 349 static int t4_edc_err_read(struct adapter *adap, int idx) 350 { 351 u32 edc_ecc_err_addr_reg; 352 u32 rdata_reg; 353 354 if (is_t4(adap->params.chip)) { 355 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 356 return 0; 357 } 358 if (idx != 0 && idx != 1) { 359 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 360 return 0; 361 } 362 363 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 364 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 365 366 CH_WARN(adap, 367 "edc%d err addr 0x%x: 0x%x.\n", 368 idx, edc_ecc_err_addr_reg, 369 t4_read_reg(adap, edc_ecc_err_addr_reg)); 370 CH_WARN(adap, 371 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 372 rdata_reg, 373 (unsigned long long)t4_read_reg64(adap, rdata_reg), 374 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 375 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 376 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 377 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 378 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 379 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 380 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 381 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 382 383 return 0; 384 } 385 386 /** 387 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 388 * @adap: the adapter 389 * @win: PCI-E Memory Window to use 390 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 391 * @addr: address within indicated memory type 392 * @len: amount of memory to transfer 393 * @hbuf: host memory buffer 394 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 395 * 396 * Reads/writes an [almost] arbitrary memory region in the firmware: the 397 * firmware memory address and host buffer must be aligned on 32-bit 398 * boudaries; the length may be arbitrary. The memory is transferred as 399 * a raw byte sequence from/to the firmware's memory. If this memory 400 * contains data structures which contain multi-byte integers, it's the 401 * caller's responsibility to perform appropriate byte order conversions. 402 */ 403 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 404 u32 len, void *hbuf, int dir) 405 { 406 u32 pos, offset, resid, memoffset; 407 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 408 u32 *buf; 409 410 /* Argument sanity checks ... 411 */ 412 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 413 return -EINVAL; 414 buf = (u32 *)hbuf; 415 416 /* It's convenient to be able to handle lengths which aren't a 417 * multiple of 32-bits because we often end up transferring files to 418 * the firmware. So we'll handle that by normalizing the length here 419 * and then handling any residual transfer at the end. 420 */ 421 resid = len & 0x3; 422 len -= resid; 423 424 /* Offset into the region of memory which is being accessed 425 * MEM_EDC0 = 0 426 * MEM_EDC1 = 1 427 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 428 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 429 */ 430 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 431 if (mtype != MEM_MC1) 432 memoffset = (mtype * (edc_size * 1024 * 1024)); 433 else { 434 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 435 MA_EXT_MEMORY0_BAR_A)); 436 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 437 } 438 439 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 440 addr = addr + memoffset; 441 442 /* Each PCI-E Memory Window is programmed with a window size -- or 443 * "aperture" -- which controls the granularity of its mapping onto 444 * adapter memory. We need to grab that aperture in order to know 445 * how to use the specified window. The window is also programmed 446 * with the base address of the Memory Window in BAR0's address 447 * space. For T4 this is an absolute PCI-E Bus Address. For T5 448 * the address is relative to BAR0. 449 */ 450 mem_reg = t4_read_reg(adap, 451 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 452 win)); 453 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 454 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 455 if (is_t4(adap->params.chip)) 456 mem_base -= adap->t4_bar0; 457 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 458 459 /* Calculate our initial PCI-E Memory Window Position and Offset into 460 * that Window. 461 */ 462 pos = addr & ~(mem_aperture-1); 463 offset = addr - pos; 464 465 /* Set up initial PCI-E Memory Window to cover the start of our 466 * transfer. (Read it back to ensure that changes propagate before we 467 * attempt to use the new value.) 468 */ 469 t4_write_reg(adap, 470 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 471 pos | win_pf); 472 t4_read_reg(adap, 473 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 474 475 /* Transfer data to/from the adapter as long as there's an integral 476 * number of 32-bit transfers to complete. 477 * 478 * A note on Endianness issues: 479 * 480 * The "register" reads and writes below from/to the PCI-E Memory 481 * Window invoke the standard adapter Big-Endian to PCI-E Link 482 * Little-Endian "swizzel." As a result, if we have the following 483 * data in adapter memory: 484 * 485 * Memory: ... | b0 | b1 | b2 | b3 | ... 486 * Address: i+0 i+1 i+2 i+3 487 * 488 * Then a read of the adapter memory via the PCI-E Memory Window 489 * will yield: 490 * 491 * x = readl(i) 492 * 31 0 493 * [ b3 | b2 | b1 | b0 ] 494 * 495 * If this value is stored into local memory on a Little-Endian system 496 * it will show up correctly in local memory as: 497 * 498 * ( ..., b0, b1, b2, b3, ... ) 499 * 500 * But on a Big-Endian system, the store will show up in memory 501 * incorrectly swizzled as: 502 * 503 * ( ..., b3, b2, b1, b0, ... ) 504 * 505 * So we need to account for this in the reads and writes to the 506 * PCI-E Memory Window below by undoing the register read/write 507 * swizzels. 508 */ 509 while (len > 0) { 510 if (dir == T4_MEMORY_READ) 511 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 512 mem_base + offset)); 513 else 514 t4_write_reg(adap, mem_base + offset, 515 (__force u32)cpu_to_le32(*buf++)); 516 offset += sizeof(__be32); 517 len -= sizeof(__be32); 518 519 /* If we've reached the end of our current window aperture, 520 * move the PCI-E Memory Window on to the next. Note that 521 * doing this here after "len" may be 0 allows us to set up 522 * the PCI-E Memory Window for a possible final residual 523 * transfer below ... 524 */ 525 if (offset == mem_aperture) { 526 pos += mem_aperture; 527 offset = 0; 528 t4_write_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 530 win), pos | win_pf); 531 t4_read_reg(adap, 532 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 533 win)); 534 } 535 } 536 537 /* If the original transfer had a length which wasn't a multiple of 538 * 32-bits, now's where we need to finish off the transfer of the 539 * residual amount. The PCI-E Memory Window has already been moved 540 * above (if necessary) to cover this final transfer. 541 */ 542 if (resid) { 543 union { 544 u32 word; 545 char byte[4]; 546 } last; 547 unsigned char *bp; 548 int i; 549 550 if (dir == T4_MEMORY_READ) { 551 last.word = le32_to_cpu( 552 (__force __le32)t4_read_reg(adap, 553 mem_base + offset)); 554 for (bp = (unsigned char *)buf, i = resid; i < 4; i++) 555 bp[i] = last.byte[i]; 556 } else { 557 last.word = *buf; 558 for (i = resid; i < 4; i++) 559 last.byte[i] = 0; 560 t4_write_reg(adap, mem_base + offset, 561 (__force u32)cpu_to_le32(last.word)); 562 } 563 } 564 565 return 0; 566 } 567 568 /* Return the specified PCI-E Configuration Space register from our Physical 569 * Function. We try first via a Firmware LDST Command since we prefer to let 570 * the firmware own all of these registers, but if that fails we go for it 571 * directly ourselves. 572 */ 573 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 574 { 575 u32 val, ldst_addrspace; 576 577 /* If fw_attach != 0, construct and send the Firmware LDST Command to 578 * retrieve the specified PCI-E Configuration Space register. 579 */ 580 struct fw_ldst_cmd ldst_cmd; 581 int ret; 582 583 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 584 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 585 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 586 FW_CMD_REQUEST_F | 587 FW_CMD_READ_F | 588 ldst_addrspace); 589 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 590 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 591 ldst_cmd.u.pcie.ctrl_to_fn = 592 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 593 ldst_cmd.u.pcie.r = reg; 594 595 /* If the LDST Command succeeds, return the result, otherwise 596 * fall through to reading it directly ourselves ... 597 */ 598 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 599 &ldst_cmd); 600 if (ret == 0) 601 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 602 else 603 /* Read the desired Configuration Space register via the PCI-E 604 * Backdoor mechanism. 605 */ 606 t4_hw_pci_read_cfg4(adap, reg, &val); 607 return val; 608 } 609 610 /* Get the window based on base passed to it. 611 * Window aperture is currently unhandled, but there is no use case for it 612 * right now 613 */ 614 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 615 u32 memwin_base) 616 { 617 u32 ret; 618 619 if (is_t4(adap->params.chip)) { 620 u32 bar0; 621 622 /* Truncation intentional: we only read the bottom 32-bits of 623 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 624 * mechanism to read BAR0 instead of using 625 * pci_resource_start() because we could be operating from 626 * within a Virtual Machine which is trapping our accesses to 627 * our Configuration Space and we need to set up the PCI-E 628 * Memory Window decoders with the actual addresses which will 629 * be coming across the PCI-E link. 630 */ 631 bar0 = t4_read_pcie_cfg4(adap, pci_base); 632 bar0 &= pci_mask; 633 adap->t4_bar0 = bar0; 634 635 ret = bar0 + memwin_base; 636 } else { 637 /* For T5, only relative offset inside the PCIe BAR is passed */ 638 ret = memwin_base; 639 } 640 return ret; 641 } 642 643 /* Get the default utility window (win0) used by everyone */ 644 u32 t4_get_util_window(struct adapter *adap) 645 { 646 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 647 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 648 } 649 650 /* Set up memory window for accessing adapter memory ranges. (Read 651 * back MA register to ensure that changes propagate before we attempt 652 * to use the new values.) 653 */ 654 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 655 { 656 t4_write_reg(adap, 657 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 658 memwin_base | BIR_V(0) | 659 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 660 t4_read_reg(adap, 661 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 662 } 663 664 /** 665 * t4_get_regs_len - return the size of the chips register set 666 * @adapter: the adapter 667 * 668 * Returns the size of the chip's BAR0 register space. 669 */ 670 unsigned int t4_get_regs_len(struct adapter *adapter) 671 { 672 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 673 674 switch (chip_version) { 675 case CHELSIO_T4: 676 return T4_REGMAP_SIZE; 677 678 case CHELSIO_T5: 679 case CHELSIO_T6: 680 return T5_REGMAP_SIZE; 681 } 682 683 dev_err(adapter->pdev_dev, 684 "Unsupported chip version %d\n", chip_version); 685 return 0; 686 } 687 688 /** 689 * t4_get_regs - read chip registers into provided buffer 690 * @adap: the adapter 691 * @buf: register buffer 692 * @buf_size: size (in bytes) of register buffer 693 * 694 * If the provided register buffer isn't large enough for the chip's 695 * full register range, the register dump will be truncated to the 696 * register buffer's size. 697 */ 698 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 699 { 700 static const unsigned int t4_reg_ranges[] = { 701 0x1008, 0x1108, 702 0x1180, 0x1184, 703 0x1190, 0x1194, 704 0x11a0, 0x11a4, 705 0x11b0, 0x11b4, 706 0x11fc, 0x123c, 707 0x1300, 0x173c, 708 0x1800, 0x18fc, 709 0x3000, 0x30d8, 710 0x30e0, 0x30e4, 711 0x30ec, 0x5910, 712 0x5920, 0x5924, 713 0x5960, 0x5960, 714 0x5968, 0x5968, 715 0x5970, 0x5970, 716 0x5978, 0x5978, 717 0x5980, 0x5980, 718 0x5988, 0x5988, 719 0x5990, 0x5990, 720 0x5998, 0x5998, 721 0x59a0, 0x59d4, 722 0x5a00, 0x5ae0, 723 0x5ae8, 0x5ae8, 724 0x5af0, 0x5af0, 725 0x5af8, 0x5af8, 726 0x6000, 0x6098, 727 0x6100, 0x6150, 728 0x6200, 0x6208, 729 0x6240, 0x6248, 730 0x6280, 0x62b0, 731 0x62c0, 0x6338, 732 0x6370, 0x638c, 733 0x6400, 0x643c, 734 0x6500, 0x6524, 735 0x6a00, 0x6a04, 736 0x6a14, 0x6a38, 737 0x6a60, 0x6a70, 738 0x6a78, 0x6a78, 739 0x6b00, 0x6b0c, 740 0x6b1c, 0x6b84, 741 0x6bf0, 0x6bf8, 742 0x6c00, 0x6c0c, 743 0x6c1c, 0x6c84, 744 0x6cf0, 0x6cf8, 745 0x6d00, 0x6d0c, 746 0x6d1c, 0x6d84, 747 0x6df0, 0x6df8, 748 0x6e00, 0x6e0c, 749 0x6e1c, 0x6e84, 750 0x6ef0, 0x6ef8, 751 0x6f00, 0x6f0c, 752 0x6f1c, 0x6f84, 753 0x6ff0, 0x6ff8, 754 0x7000, 0x700c, 755 0x701c, 0x7084, 756 0x70f0, 0x70f8, 757 0x7100, 0x710c, 758 0x711c, 0x7184, 759 0x71f0, 0x71f8, 760 0x7200, 0x720c, 761 0x721c, 0x7284, 762 0x72f0, 0x72f8, 763 0x7300, 0x730c, 764 0x731c, 0x7384, 765 0x73f0, 0x73f8, 766 0x7400, 0x7450, 767 0x7500, 0x7530, 768 0x7600, 0x760c, 769 0x7614, 0x761c, 770 0x7680, 0x76cc, 771 0x7700, 0x7798, 772 0x77c0, 0x77fc, 773 0x7900, 0x79fc, 774 0x7b00, 0x7b58, 775 0x7b60, 0x7b84, 776 0x7b8c, 0x7c38, 777 0x7d00, 0x7d38, 778 0x7d40, 0x7d80, 779 0x7d8c, 0x7ddc, 780 0x7de4, 0x7e04, 781 0x7e10, 0x7e1c, 782 0x7e24, 0x7e38, 783 0x7e40, 0x7e44, 784 0x7e4c, 0x7e78, 785 0x7e80, 0x7ea4, 786 0x7eac, 0x7edc, 787 0x7ee8, 0x7efc, 788 0x8dc0, 0x8e04, 789 0x8e10, 0x8e1c, 790 0x8e30, 0x8e78, 791 0x8ea0, 0x8eb8, 792 0x8ec0, 0x8f6c, 793 0x8fc0, 0x9008, 794 0x9010, 0x9058, 795 0x9060, 0x9060, 796 0x9068, 0x9074, 797 0x90fc, 0x90fc, 798 0x9400, 0x9408, 799 0x9410, 0x9458, 800 0x9600, 0x9600, 801 0x9608, 0x9638, 802 0x9640, 0x96bc, 803 0x9800, 0x9808, 804 0x9820, 0x983c, 805 0x9850, 0x9864, 806 0x9c00, 0x9c6c, 807 0x9c80, 0x9cec, 808 0x9d00, 0x9d6c, 809 0x9d80, 0x9dec, 810 0x9e00, 0x9e6c, 811 0x9e80, 0x9eec, 812 0x9f00, 0x9f6c, 813 0x9f80, 0x9fec, 814 0xd004, 0xd004, 815 0xd010, 0xd03c, 816 0xdfc0, 0xdfe0, 817 0xe000, 0xea7c, 818 0xf000, 0x11190, 819 0x19040, 0x1906c, 820 0x19078, 0x19080, 821 0x1908c, 0x190e4, 822 0x190f0, 0x190f8, 823 0x19100, 0x19110, 824 0x19120, 0x19124, 825 0x19150, 0x19194, 826 0x1919c, 0x191b0, 827 0x191d0, 0x191e8, 828 0x19238, 0x1924c, 829 0x193f8, 0x1943c, 830 0x1944c, 0x19474, 831 0x19490, 0x194e0, 832 0x194f0, 0x194f8, 833 0x19800, 0x19c08, 834 0x19c10, 0x19c90, 835 0x19ca0, 0x19ce4, 836 0x19cf0, 0x19d40, 837 0x19d50, 0x19d94, 838 0x19da0, 0x19de8, 839 0x19df0, 0x19e40, 840 0x19e50, 0x19e90, 841 0x19ea0, 0x19f4c, 842 0x1a000, 0x1a004, 843 0x1a010, 0x1a06c, 844 0x1a0b0, 0x1a0e4, 845 0x1a0ec, 0x1a0f4, 846 0x1a100, 0x1a108, 847 0x1a114, 0x1a120, 848 0x1a128, 0x1a130, 849 0x1a138, 0x1a138, 850 0x1a190, 0x1a1c4, 851 0x1a1fc, 0x1a1fc, 852 0x1e040, 0x1e04c, 853 0x1e284, 0x1e28c, 854 0x1e2c0, 0x1e2c0, 855 0x1e2e0, 0x1e2e0, 856 0x1e300, 0x1e384, 857 0x1e3c0, 0x1e3c8, 858 0x1e440, 0x1e44c, 859 0x1e684, 0x1e68c, 860 0x1e6c0, 0x1e6c0, 861 0x1e6e0, 0x1e6e0, 862 0x1e700, 0x1e784, 863 0x1e7c0, 0x1e7c8, 864 0x1e840, 0x1e84c, 865 0x1ea84, 0x1ea8c, 866 0x1eac0, 0x1eac0, 867 0x1eae0, 0x1eae0, 868 0x1eb00, 0x1eb84, 869 0x1ebc0, 0x1ebc8, 870 0x1ec40, 0x1ec4c, 871 0x1ee84, 0x1ee8c, 872 0x1eec0, 0x1eec0, 873 0x1eee0, 0x1eee0, 874 0x1ef00, 0x1ef84, 875 0x1efc0, 0x1efc8, 876 0x1f040, 0x1f04c, 877 0x1f284, 0x1f28c, 878 0x1f2c0, 0x1f2c0, 879 0x1f2e0, 0x1f2e0, 880 0x1f300, 0x1f384, 881 0x1f3c0, 0x1f3c8, 882 0x1f440, 0x1f44c, 883 0x1f684, 0x1f68c, 884 0x1f6c0, 0x1f6c0, 885 0x1f6e0, 0x1f6e0, 886 0x1f700, 0x1f784, 887 0x1f7c0, 0x1f7c8, 888 0x1f840, 0x1f84c, 889 0x1fa84, 0x1fa8c, 890 0x1fac0, 0x1fac0, 891 0x1fae0, 0x1fae0, 892 0x1fb00, 0x1fb84, 893 0x1fbc0, 0x1fbc8, 894 0x1fc40, 0x1fc4c, 895 0x1fe84, 0x1fe8c, 896 0x1fec0, 0x1fec0, 897 0x1fee0, 0x1fee0, 898 0x1ff00, 0x1ff84, 899 0x1ffc0, 0x1ffc8, 900 0x20000, 0x2002c, 901 0x20100, 0x2013c, 902 0x20190, 0x201a0, 903 0x201a8, 0x201b8, 904 0x201c4, 0x201c8, 905 0x20200, 0x20318, 906 0x20400, 0x204b4, 907 0x204c0, 0x20528, 908 0x20540, 0x20614, 909 0x21000, 0x21040, 910 0x2104c, 0x21060, 911 0x210c0, 0x210ec, 912 0x21200, 0x21268, 913 0x21270, 0x21284, 914 0x212fc, 0x21388, 915 0x21400, 0x21404, 916 0x21500, 0x21500, 917 0x21510, 0x21518, 918 0x2152c, 0x21530, 919 0x2153c, 0x2153c, 920 0x21550, 0x21554, 921 0x21600, 0x21600, 922 0x21608, 0x2161c, 923 0x21624, 0x21628, 924 0x21630, 0x21634, 925 0x2163c, 0x2163c, 926 0x21700, 0x2171c, 927 0x21780, 0x2178c, 928 0x21800, 0x21818, 929 0x21820, 0x21828, 930 0x21830, 0x21848, 931 0x21850, 0x21854, 932 0x21860, 0x21868, 933 0x21870, 0x21870, 934 0x21878, 0x21898, 935 0x218a0, 0x218a8, 936 0x218b0, 0x218c8, 937 0x218d0, 0x218d4, 938 0x218e0, 0x218e8, 939 0x218f0, 0x218f0, 940 0x218f8, 0x21a18, 941 0x21a20, 0x21a28, 942 0x21a30, 0x21a48, 943 0x21a50, 0x21a54, 944 0x21a60, 0x21a68, 945 0x21a70, 0x21a70, 946 0x21a78, 0x21a98, 947 0x21aa0, 0x21aa8, 948 0x21ab0, 0x21ac8, 949 0x21ad0, 0x21ad4, 950 0x21ae0, 0x21ae8, 951 0x21af0, 0x21af0, 952 0x21af8, 0x21c18, 953 0x21c20, 0x21c20, 954 0x21c28, 0x21c30, 955 0x21c38, 0x21c38, 956 0x21c80, 0x21c98, 957 0x21ca0, 0x21ca8, 958 0x21cb0, 0x21cc8, 959 0x21cd0, 0x21cd4, 960 0x21ce0, 0x21ce8, 961 0x21cf0, 0x21cf0, 962 0x21cf8, 0x21d7c, 963 0x21e00, 0x21e04, 964 0x22000, 0x2202c, 965 0x22100, 0x2213c, 966 0x22190, 0x221a0, 967 0x221a8, 0x221b8, 968 0x221c4, 0x221c8, 969 0x22200, 0x22318, 970 0x22400, 0x224b4, 971 0x224c0, 0x22528, 972 0x22540, 0x22614, 973 0x23000, 0x23040, 974 0x2304c, 0x23060, 975 0x230c0, 0x230ec, 976 0x23200, 0x23268, 977 0x23270, 0x23284, 978 0x232fc, 0x23388, 979 0x23400, 0x23404, 980 0x23500, 0x23500, 981 0x23510, 0x23518, 982 0x2352c, 0x23530, 983 0x2353c, 0x2353c, 984 0x23550, 0x23554, 985 0x23600, 0x23600, 986 0x23608, 0x2361c, 987 0x23624, 0x23628, 988 0x23630, 0x23634, 989 0x2363c, 0x2363c, 990 0x23700, 0x2371c, 991 0x23780, 0x2378c, 992 0x23800, 0x23818, 993 0x23820, 0x23828, 994 0x23830, 0x23848, 995 0x23850, 0x23854, 996 0x23860, 0x23868, 997 0x23870, 0x23870, 998 0x23878, 0x23898, 999 0x238a0, 0x238a8, 1000 0x238b0, 0x238c8, 1001 0x238d0, 0x238d4, 1002 0x238e0, 0x238e8, 1003 0x238f0, 0x238f0, 1004 0x238f8, 0x23a18, 1005 0x23a20, 0x23a28, 1006 0x23a30, 0x23a48, 1007 0x23a50, 0x23a54, 1008 0x23a60, 0x23a68, 1009 0x23a70, 0x23a70, 1010 0x23a78, 0x23a98, 1011 0x23aa0, 0x23aa8, 1012 0x23ab0, 0x23ac8, 1013 0x23ad0, 0x23ad4, 1014 0x23ae0, 0x23ae8, 1015 0x23af0, 0x23af0, 1016 0x23af8, 0x23c18, 1017 0x23c20, 0x23c20, 1018 0x23c28, 0x23c30, 1019 0x23c38, 0x23c38, 1020 0x23c80, 0x23c98, 1021 0x23ca0, 0x23ca8, 1022 0x23cb0, 0x23cc8, 1023 0x23cd0, 0x23cd4, 1024 0x23ce0, 0x23ce8, 1025 0x23cf0, 0x23cf0, 1026 0x23cf8, 0x23d7c, 1027 0x23e00, 0x23e04, 1028 0x24000, 0x2402c, 1029 0x24100, 0x2413c, 1030 0x24190, 0x241a0, 1031 0x241a8, 0x241b8, 1032 0x241c4, 0x241c8, 1033 0x24200, 0x24318, 1034 0x24400, 0x244b4, 1035 0x244c0, 0x24528, 1036 0x24540, 0x24614, 1037 0x25000, 0x25040, 1038 0x2504c, 0x25060, 1039 0x250c0, 0x250ec, 1040 0x25200, 0x25268, 1041 0x25270, 0x25284, 1042 0x252fc, 0x25388, 1043 0x25400, 0x25404, 1044 0x25500, 0x25500, 1045 0x25510, 0x25518, 1046 0x2552c, 0x25530, 1047 0x2553c, 0x2553c, 1048 0x25550, 0x25554, 1049 0x25600, 0x25600, 1050 0x25608, 0x2561c, 1051 0x25624, 0x25628, 1052 0x25630, 0x25634, 1053 0x2563c, 0x2563c, 1054 0x25700, 0x2571c, 1055 0x25780, 0x2578c, 1056 0x25800, 0x25818, 1057 0x25820, 0x25828, 1058 0x25830, 0x25848, 1059 0x25850, 0x25854, 1060 0x25860, 0x25868, 1061 0x25870, 0x25870, 1062 0x25878, 0x25898, 1063 0x258a0, 0x258a8, 1064 0x258b0, 0x258c8, 1065 0x258d0, 0x258d4, 1066 0x258e0, 0x258e8, 1067 0x258f0, 0x258f0, 1068 0x258f8, 0x25a18, 1069 0x25a20, 0x25a28, 1070 0x25a30, 0x25a48, 1071 0x25a50, 0x25a54, 1072 0x25a60, 0x25a68, 1073 0x25a70, 0x25a70, 1074 0x25a78, 0x25a98, 1075 0x25aa0, 0x25aa8, 1076 0x25ab0, 0x25ac8, 1077 0x25ad0, 0x25ad4, 1078 0x25ae0, 0x25ae8, 1079 0x25af0, 0x25af0, 1080 0x25af8, 0x25c18, 1081 0x25c20, 0x25c20, 1082 0x25c28, 0x25c30, 1083 0x25c38, 0x25c38, 1084 0x25c80, 0x25c98, 1085 0x25ca0, 0x25ca8, 1086 0x25cb0, 0x25cc8, 1087 0x25cd0, 0x25cd4, 1088 0x25ce0, 0x25ce8, 1089 0x25cf0, 0x25cf0, 1090 0x25cf8, 0x25d7c, 1091 0x25e00, 0x25e04, 1092 0x26000, 0x2602c, 1093 0x26100, 0x2613c, 1094 0x26190, 0x261a0, 1095 0x261a8, 0x261b8, 1096 0x261c4, 0x261c8, 1097 0x26200, 0x26318, 1098 0x26400, 0x264b4, 1099 0x264c0, 0x26528, 1100 0x26540, 0x26614, 1101 0x27000, 0x27040, 1102 0x2704c, 0x27060, 1103 0x270c0, 0x270ec, 1104 0x27200, 0x27268, 1105 0x27270, 0x27284, 1106 0x272fc, 0x27388, 1107 0x27400, 0x27404, 1108 0x27500, 0x27500, 1109 0x27510, 0x27518, 1110 0x2752c, 0x27530, 1111 0x2753c, 0x2753c, 1112 0x27550, 0x27554, 1113 0x27600, 0x27600, 1114 0x27608, 0x2761c, 1115 0x27624, 0x27628, 1116 0x27630, 0x27634, 1117 0x2763c, 0x2763c, 1118 0x27700, 0x2771c, 1119 0x27780, 0x2778c, 1120 0x27800, 0x27818, 1121 0x27820, 0x27828, 1122 0x27830, 0x27848, 1123 0x27850, 0x27854, 1124 0x27860, 0x27868, 1125 0x27870, 0x27870, 1126 0x27878, 0x27898, 1127 0x278a0, 0x278a8, 1128 0x278b0, 0x278c8, 1129 0x278d0, 0x278d4, 1130 0x278e0, 0x278e8, 1131 0x278f0, 0x278f0, 1132 0x278f8, 0x27a18, 1133 0x27a20, 0x27a28, 1134 0x27a30, 0x27a48, 1135 0x27a50, 0x27a54, 1136 0x27a60, 0x27a68, 1137 0x27a70, 0x27a70, 1138 0x27a78, 0x27a98, 1139 0x27aa0, 0x27aa8, 1140 0x27ab0, 0x27ac8, 1141 0x27ad0, 0x27ad4, 1142 0x27ae0, 0x27ae8, 1143 0x27af0, 0x27af0, 1144 0x27af8, 0x27c18, 1145 0x27c20, 0x27c20, 1146 0x27c28, 0x27c30, 1147 0x27c38, 0x27c38, 1148 0x27c80, 0x27c98, 1149 0x27ca0, 0x27ca8, 1150 0x27cb0, 0x27cc8, 1151 0x27cd0, 0x27cd4, 1152 0x27ce0, 0x27ce8, 1153 0x27cf0, 0x27cf0, 1154 0x27cf8, 0x27d7c, 1155 0x27e00, 0x27e04, 1156 }; 1157 1158 static const unsigned int t5_reg_ranges[] = { 1159 0x1008, 0x10c0, 1160 0x10cc, 0x10f8, 1161 0x1100, 0x1100, 1162 0x110c, 0x1148, 1163 0x1180, 0x1184, 1164 0x1190, 0x1194, 1165 0x11a0, 0x11a4, 1166 0x11b0, 0x11b4, 1167 0x11fc, 0x123c, 1168 0x1280, 0x173c, 1169 0x1800, 0x18fc, 1170 0x3000, 0x3028, 1171 0x3060, 0x30b0, 1172 0x30b8, 0x30d8, 1173 0x30e0, 0x30fc, 1174 0x3140, 0x357c, 1175 0x35a8, 0x35cc, 1176 0x35ec, 0x35ec, 1177 0x3600, 0x5624, 1178 0x56cc, 0x56ec, 1179 0x56f4, 0x5720, 1180 0x5728, 0x575c, 1181 0x580c, 0x5814, 1182 0x5890, 0x589c, 1183 0x58a4, 0x58ac, 1184 0x58b8, 0x58bc, 1185 0x5940, 0x59c8, 1186 0x59d0, 0x59dc, 1187 0x59fc, 0x5a18, 1188 0x5a60, 0x5a70, 1189 0x5a80, 0x5a9c, 1190 0x5b94, 0x5bfc, 1191 0x6000, 0x6020, 1192 0x6028, 0x6040, 1193 0x6058, 0x609c, 1194 0x60a8, 0x614c, 1195 0x7700, 0x7798, 1196 0x77c0, 0x78fc, 1197 0x7b00, 0x7b58, 1198 0x7b60, 0x7b84, 1199 0x7b8c, 0x7c54, 1200 0x7d00, 0x7d38, 1201 0x7d40, 0x7d80, 1202 0x7d8c, 0x7ddc, 1203 0x7de4, 0x7e04, 1204 0x7e10, 0x7e1c, 1205 0x7e24, 0x7e38, 1206 0x7e40, 0x7e44, 1207 0x7e4c, 0x7e78, 1208 0x7e80, 0x7edc, 1209 0x7ee8, 0x7efc, 1210 0x8dc0, 0x8de0, 1211 0x8df8, 0x8e04, 1212 0x8e10, 0x8e84, 1213 0x8ea0, 0x8f84, 1214 0x8fc0, 0x9058, 1215 0x9060, 0x9060, 1216 0x9068, 0x90f8, 1217 0x9400, 0x9408, 1218 0x9410, 0x9470, 1219 0x9600, 0x9600, 1220 0x9608, 0x9638, 1221 0x9640, 0x96f4, 1222 0x9800, 0x9808, 1223 0x9820, 0x983c, 1224 0x9850, 0x9864, 1225 0x9c00, 0x9c6c, 1226 0x9c80, 0x9cec, 1227 0x9d00, 0x9d6c, 1228 0x9d80, 0x9dec, 1229 0x9e00, 0x9e6c, 1230 0x9e80, 0x9eec, 1231 0x9f00, 0x9f6c, 1232 0x9f80, 0xa020, 1233 0xd004, 0xd004, 1234 0xd010, 0xd03c, 1235 0xdfc0, 0xdfe0, 1236 0xe000, 0x1106c, 1237 0x11074, 0x11088, 1238 0x1109c, 0x1117c, 1239 0x11190, 0x11204, 1240 0x19040, 0x1906c, 1241 0x19078, 0x19080, 1242 0x1908c, 0x190e8, 1243 0x190f0, 0x190f8, 1244 0x19100, 0x19110, 1245 0x19120, 0x19124, 1246 0x19150, 0x19194, 1247 0x1919c, 0x191b0, 1248 0x191d0, 0x191e8, 1249 0x19238, 0x19290, 1250 0x193f8, 0x19428, 1251 0x19430, 0x19444, 1252 0x1944c, 0x1946c, 1253 0x19474, 0x19474, 1254 0x19490, 0x194cc, 1255 0x194f0, 0x194f8, 1256 0x19c00, 0x19c08, 1257 0x19c10, 0x19c60, 1258 0x19c94, 0x19ce4, 1259 0x19cf0, 0x19d40, 1260 0x19d50, 0x19d94, 1261 0x19da0, 0x19de8, 1262 0x19df0, 0x19e10, 1263 0x19e50, 0x19e90, 1264 0x19ea0, 0x19f24, 1265 0x19f34, 0x19f34, 1266 0x19f40, 0x19f50, 1267 0x19f90, 0x19fb4, 1268 0x19fc4, 0x19fe4, 1269 0x1a000, 0x1a004, 1270 0x1a010, 0x1a06c, 1271 0x1a0b0, 0x1a0e4, 1272 0x1a0ec, 0x1a0f8, 1273 0x1a100, 0x1a108, 1274 0x1a114, 0x1a120, 1275 0x1a128, 0x1a130, 1276 0x1a138, 0x1a138, 1277 0x1a190, 0x1a1c4, 1278 0x1a1fc, 0x1a1fc, 1279 0x1e008, 0x1e00c, 1280 0x1e040, 0x1e044, 1281 0x1e04c, 0x1e04c, 1282 0x1e284, 0x1e290, 1283 0x1e2c0, 0x1e2c0, 1284 0x1e2e0, 0x1e2e0, 1285 0x1e300, 0x1e384, 1286 0x1e3c0, 0x1e3c8, 1287 0x1e408, 0x1e40c, 1288 0x1e440, 0x1e444, 1289 0x1e44c, 0x1e44c, 1290 0x1e684, 0x1e690, 1291 0x1e6c0, 0x1e6c0, 1292 0x1e6e0, 0x1e6e0, 1293 0x1e700, 0x1e784, 1294 0x1e7c0, 0x1e7c8, 1295 0x1e808, 0x1e80c, 1296 0x1e840, 0x1e844, 1297 0x1e84c, 0x1e84c, 1298 0x1ea84, 0x1ea90, 1299 0x1eac0, 0x1eac0, 1300 0x1eae0, 0x1eae0, 1301 0x1eb00, 0x1eb84, 1302 0x1ebc0, 0x1ebc8, 1303 0x1ec08, 0x1ec0c, 1304 0x1ec40, 0x1ec44, 1305 0x1ec4c, 0x1ec4c, 1306 0x1ee84, 0x1ee90, 1307 0x1eec0, 0x1eec0, 1308 0x1eee0, 0x1eee0, 1309 0x1ef00, 0x1ef84, 1310 0x1efc0, 0x1efc8, 1311 0x1f008, 0x1f00c, 1312 0x1f040, 0x1f044, 1313 0x1f04c, 0x1f04c, 1314 0x1f284, 0x1f290, 1315 0x1f2c0, 0x1f2c0, 1316 0x1f2e0, 0x1f2e0, 1317 0x1f300, 0x1f384, 1318 0x1f3c0, 0x1f3c8, 1319 0x1f408, 0x1f40c, 1320 0x1f440, 0x1f444, 1321 0x1f44c, 0x1f44c, 1322 0x1f684, 0x1f690, 1323 0x1f6c0, 0x1f6c0, 1324 0x1f6e0, 0x1f6e0, 1325 0x1f700, 0x1f784, 1326 0x1f7c0, 0x1f7c8, 1327 0x1f808, 0x1f80c, 1328 0x1f840, 0x1f844, 1329 0x1f84c, 0x1f84c, 1330 0x1fa84, 0x1fa90, 1331 0x1fac0, 0x1fac0, 1332 0x1fae0, 0x1fae0, 1333 0x1fb00, 0x1fb84, 1334 0x1fbc0, 0x1fbc8, 1335 0x1fc08, 0x1fc0c, 1336 0x1fc40, 0x1fc44, 1337 0x1fc4c, 0x1fc4c, 1338 0x1fe84, 0x1fe90, 1339 0x1fec0, 0x1fec0, 1340 0x1fee0, 0x1fee0, 1341 0x1ff00, 0x1ff84, 1342 0x1ffc0, 0x1ffc8, 1343 0x30000, 0x30030, 1344 0x30038, 0x30038, 1345 0x30040, 0x30040, 1346 0x30100, 0x30144, 1347 0x30190, 0x301a0, 1348 0x301a8, 0x301b8, 1349 0x301c4, 0x301c8, 1350 0x301d0, 0x301d0, 1351 0x30200, 0x30318, 1352 0x30400, 0x304b4, 1353 0x304c0, 0x3052c, 1354 0x30540, 0x3061c, 1355 0x30800, 0x30828, 1356 0x30834, 0x30834, 1357 0x308c0, 0x30908, 1358 0x30910, 0x309ac, 1359 0x30a00, 0x30a14, 1360 0x30a1c, 0x30a2c, 1361 0x30a44, 0x30a50, 1362 0x30a74, 0x30a74, 1363 0x30a7c, 0x30afc, 1364 0x30b08, 0x30c24, 1365 0x30d00, 0x30d00, 1366 0x30d08, 0x30d14, 1367 0x30d1c, 0x30d20, 1368 0x30d3c, 0x30d3c, 1369 0x30d48, 0x30d50, 1370 0x31200, 0x3120c, 1371 0x31220, 0x31220, 1372 0x31240, 0x31240, 1373 0x31600, 0x3160c, 1374 0x31a00, 0x31a1c, 1375 0x31e00, 0x31e20, 1376 0x31e38, 0x31e3c, 1377 0x31e80, 0x31e80, 1378 0x31e88, 0x31ea8, 1379 0x31eb0, 0x31eb4, 1380 0x31ec8, 0x31ed4, 1381 0x31fb8, 0x32004, 1382 0x32200, 0x32200, 1383 0x32208, 0x32240, 1384 0x32248, 0x32280, 1385 0x32288, 0x322c0, 1386 0x322c8, 0x322fc, 1387 0x32600, 0x32630, 1388 0x32a00, 0x32abc, 1389 0x32b00, 0x32b10, 1390 0x32b20, 0x32b30, 1391 0x32b40, 0x32b50, 1392 0x32b60, 0x32b70, 1393 0x33000, 0x33028, 1394 0x33030, 0x33048, 1395 0x33060, 0x33068, 1396 0x33070, 0x3309c, 1397 0x330f0, 0x33128, 1398 0x33130, 0x33148, 1399 0x33160, 0x33168, 1400 0x33170, 0x3319c, 1401 0x331f0, 0x33238, 1402 0x33240, 0x33240, 1403 0x33248, 0x33250, 1404 0x3325c, 0x33264, 1405 0x33270, 0x332b8, 1406 0x332c0, 0x332e4, 1407 0x332f8, 0x33338, 1408 0x33340, 0x33340, 1409 0x33348, 0x33350, 1410 0x3335c, 0x33364, 1411 0x33370, 0x333b8, 1412 0x333c0, 0x333e4, 1413 0x333f8, 0x33428, 1414 0x33430, 0x33448, 1415 0x33460, 0x33468, 1416 0x33470, 0x3349c, 1417 0x334f0, 0x33528, 1418 0x33530, 0x33548, 1419 0x33560, 0x33568, 1420 0x33570, 0x3359c, 1421 0x335f0, 0x33638, 1422 0x33640, 0x33640, 1423 0x33648, 0x33650, 1424 0x3365c, 0x33664, 1425 0x33670, 0x336b8, 1426 0x336c0, 0x336e4, 1427 0x336f8, 0x33738, 1428 0x33740, 0x33740, 1429 0x33748, 0x33750, 1430 0x3375c, 0x33764, 1431 0x33770, 0x337b8, 1432 0x337c0, 0x337e4, 1433 0x337f8, 0x337fc, 1434 0x33814, 0x33814, 1435 0x3382c, 0x3382c, 1436 0x33880, 0x3388c, 1437 0x338e8, 0x338ec, 1438 0x33900, 0x33928, 1439 0x33930, 0x33948, 1440 0x33960, 0x33968, 1441 0x33970, 0x3399c, 1442 0x339f0, 0x33a38, 1443 0x33a40, 0x33a40, 1444 0x33a48, 0x33a50, 1445 0x33a5c, 0x33a64, 1446 0x33a70, 0x33ab8, 1447 0x33ac0, 0x33ae4, 1448 0x33af8, 0x33b10, 1449 0x33b28, 0x33b28, 1450 0x33b3c, 0x33b50, 1451 0x33bf0, 0x33c10, 1452 0x33c28, 0x33c28, 1453 0x33c3c, 0x33c50, 1454 0x33cf0, 0x33cfc, 1455 0x34000, 0x34030, 1456 0x34038, 0x34038, 1457 0x34040, 0x34040, 1458 0x34100, 0x34144, 1459 0x34190, 0x341a0, 1460 0x341a8, 0x341b8, 1461 0x341c4, 0x341c8, 1462 0x341d0, 0x341d0, 1463 0x34200, 0x34318, 1464 0x34400, 0x344b4, 1465 0x344c0, 0x3452c, 1466 0x34540, 0x3461c, 1467 0x34800, 0x34828, 1468 0x34834, 0x34834, 1469 0x348c0, 0x34908, 1470 0x34910, 0x349ac, 1471 0x34a00, 0x34a14, 1472 0x34a1c, 0x34a2c, 1473 0x34a44, 0x34a50, 1474 0x34a74, 0x34a74, 1475 0x34a7c, 0x34afc, 1476 0x34b08, 0x34c24, 1477 0x34d00, 0x34d00, 1478 0x34d08, 0x34d14, 1479 0x34d1c, 0x34d20, 1480 0x34d3c, 0x34d3c, 1481 0x34d48, 0x34d50, 1482 0x35200, 0x3520c, 1483 0x35220, 0x35220, 1484 0x35240, 0x35240, 1485 0x35600, 0x3560c, 1486 0x35a00, 0x35a1c, 1487 0x35e00, 0x35e20, 1488 0x35e38, 0x35e3c, 1489 0x35e80, 0x35e80, 1490 0x35e88, 0x35ea8, 1491 0x35eb0, 0x35eb4, 1492 0x35ec8, 0x35ed4, 1493 0x35fb8, 0x36004, 1494 0x36200, 0x36200, 1495 0x36208, 0x36240, 1496 0x36248, 0x36280, 1497 0x36288, 0x362c0, 1498 0x362c8, 0x362fc, 1499 0x36600, 0x36630, 1500 0x36a00, 0x36abc, 1501 0x36b00, 0x36b10, 1502 0x36b20, 0x36b30, 1503 0x36b40, 0x36b50, 1504 0x36b60, 0x36b70, 1505 0x37000, 0x37028, 1506 0x37030, 0x37048, 1507 0x37060, 0x37068, 1508 0x37070, 0x3709c, 1509 0x370f0, 0x37128, 1510 0x37130, 0x37148, 1511 0x37160, 0x37168, 1512 0x37170, 0x3719c, 1513 0x371f0, 0x37238, 1514 0x37240, 0x37240, 1515 0x37248, 0x37250, 1516 0x3725c, 0x37264, 1517 0x37270, 0x372b8, 1518 0x372c0, 0x372e4, 1519 0x372f8, 0x37338, 1520 0x37340, 0x37340, 1521 0x37348, 0x37350, 1522 0x3735c, 0x37364, 1523 0x37370, 0x373b8, 1524 0x373c0, 0x373e4, 1525 0x373f8, 0x37428, 1526 0x37430, 0x37448, 1527 0x37460, 0x37468, 1528 0x37470, 0x3749c, 1529 0x374f0, 0x37528, 1530 0x37530, 0x37548, 1531 0x37560, 0x37568, 1532 0x37570, 0x3759c, 1533 0x375f0, 0x37638, 1534 0x37640, 0x37640, 1535 0x37648, 0x37650, 1536 0x3765c, 0x37664, 1537 0x37670, 0x376b8, 1538 0x376c0, 0x376e4, 1539 0x376f8, 0x37738, 1540 0x37740, 0x37740, 1541 0x37748, 0x37750, 1542 0x3775c, 0x37764, 1543 0x37770, 0x377b8, 1544 0x377c0, 0x377e4, 1545 0x377f8, 0x377fc, 1546 0x37814, 0x37814, 1547 0x3782c, 0x3782c, 1548 0x37880, 0x3788c, 1549 0x378e8, 0x378ec, 1550 0x37900, 0x37928, 1551 0x37930, 0x37948, 1552 0x37960, 0x37968, 1553 0x37970, 0x3799c, 1554 0x379f0, 0x37a38, 1555 0x37a40, 0x37a40, 1556 0x37a48, 0x37a50, 1557 0x37a5c, 0x37a64, 1558 0x37a70, 0x37ab8, 1559 0x37ac0, 0x37ae4, 1560 0x37af8, 0x37b10, 1561 0x37b28, 0x37b28, 1562 0x37b3c, 0x37b50, 1563 0x37bf0, 0x37c10, 1564 0x37c28, 0x37c28, 1565 0x37c3c, 0x37c50, 1566 0x37cf0, 0x37cfc, 1567 0x38000, 0x38030, 1568 0x38038, 0x38038, 1569 0x38040, 0x38040, 1570 0x38100, 0x38144, 1571 0x38190, 0x381a0, 1572 0x381a8, 0x381b8, 1573 0x381c4, 0x381c8, 1574 0x381d0, 0x381d0, 1575 0x38200, 0x38318, 1576 0x38400, 0x384b4, 1577 0x384c0, 0x3852c, 1578 0x38540, 0x3861c, 1579 0x38800, 0x38828, 1580 0x38834, 0x38834, 1581 0x388c0, 0x38908, 1582 0x38910, 0x389ac, 1583 0x38a00, 0x38a14, 1584 0x38a1c, 0x38a2c, 1585 0x38a44, 0x38a50, 1586 0x38a74, 0x38a74, 1587 0x38a7c, 0x38afc, 1588 0x38b08, 0x38c24, 1589 0x38d00, 0x38d00, 1590 0x38d08, 0x38d14, 1591 0x38d1c, 0x38d20, 1592 0x38d3c, 0x38d3c, 1593 0x38d48, 0x38d50, 1594 0x39200, 0x3920c, 1595 0x39220, 0x39220, 1596 0x39240, 0x39240, 1597 0x39600, 0x3960c, 1598 0x39a00, 0x39a1c, 1599 0x39e00, 0x39e20, 1600 0x39e38, 0x39e3c, 1601 0x39e80, 0x39e80, 1602 0x39e88, 0x39ea8, 1603 0x39eb0, 0x39eb4, 1604 0x39ec8, 0x39ed4, 1605 0x39fb8, 0x3a004, 1606 0x3a200, 0x3a200, 1607 0x3a208, 0x3a240, 1608 0x3a248, 0x3a280, 1609 0x3a288, 0x3a2c0, 1610 0x3a2c8, 0x3a2fc, 1611 0x3a600, 0x3a630, 1612 0x3aa00, 0x3aabc, 1613 0x3ab00, 0x3ab10, 1614 0x3ab20, 0x3ab30, 1615 0x3ab40, 0x3ab50, 1616 0x3ab60, 0x3ab70, 1617 0x3b000, 0x3b028, 1618 0x3b030, 0x3b048, 1619 0x3b060, 0x3b068, 1620 0x3b070, 0x3b09c, 1621 0x3b0f0, 0x3b128, 1622 0x3b130, 0x3b148, 1623 0x3b160, 0x3b168, 1624 0x3b170, 0x3b19c, 1625 0x3b1f0, 0x3b238, 1626 0x3b240, 0x3b240, 1627 0x3b248, 0x3b250, 1628 0x3b25c, 0x3b264, 1629 0x3b270, 0x3b2b8, 1630 0x3b2c0, 0x3b2e4, 1631 0x3b2f8, 0x3b338, 1632 0x3b340, 0x3b340, 1633 0x3b348, 0x3b350, 1634 0x3b35c, 0x3b364, 1635 0x3b370, 0x3b3b8, 1636 0x3b3c0, 0x3b3e4, 1637 0x3b3f8, 0x3b428, 1638 0x3b430, 0x3b448, 1639 0x3b460, 0x3b468, 1640 0x3b470, 0x3b49c, 1641 0x3b4f0, 0x3b528, 1642 0x3b530, 0x3b548, 1643 0x3b560, 0x3b568, 1644 0x3b570, 0x3b59c, 1645 0x3b5f0, 0x3b638, 1646 0x3b640, 0x3b640, 1647 0x3b648, 0x3b650, 1648 0x3b65c, 0x3b664, 1649 0x3b670, 0x3b6b8, 1650 0x3b6c0, 0x3b6e4, 1651 0x3b6f8, 0x3b738, 1652 0x3b740, 0x3b740, 1653 0x3b748, 0x3b750, 1654 0x3b75c, 0x3b764, 1655 0x3b770, 0x3b7b8, 1656 0x3b7c0, 0x3b7e4, 1657 0x3b7f8, 0x3b7fc, 1658 0x3b814, 0x3b814, 1659 0x3b82c, 0x3b82c, 1660 0x3b880, 0x3b88c, 1661 0x3b8e8, 0x3b8ec, 1662 0x3b900, 0x3b928, 1663 0x3b930, 0x3b948, 1664 0x3b960, 0x3b968, 1665 0x3b970, 0x3b99c, 1666 0x3b9f0, 0x3ba38, 1667 0x3ba40, 0x3ba40, 1668 0x3ba48, 0x3ba50, 1669 0x3ba5c, 0x3ba64, 1670 0x3ba70, 0x3bab8, 1671 0x3bac0, 0x3bae4, 1672 0x3baf8, 0x3bb10, 1673 0x3bb28, 0x3bb28, 1674 0x3bb3c, 0x3bb50, 1675 0x3bbf0, 0x3bc10, 1676 0x3bc28, 0x3bc28, 1677 0x3bc3c, 0x3bc50, 1678 0x3bcf0, 0x3bcfc, 1679 0x3c000, 0x3c030, 1680 0x3c038, 0x3c038, 1681 0x3c040, 0x3c040, 1682 0x3c100, 0x3c144, 1683 0x3c190, 0x3c1a0, 1684 0x3c1a8, 0x3c1b8, 1685 0x3c1c4, 0x3c1c8, 1686 0x3c1d0, 0x3c1d0, 1687 0x3c200, 0x3c318, 1688 0x3c400, 0x3c4b4, 1689 0x3c4c0, 0x3c52c, 1690 0x3c540, 0x3c61c, 1691 0x3c800, 0x3c828, 1692 0x3c834, 0x3c834, 1693 0x3c8c0, 0x3c908, 1694 0x3c910, 0x3c9ac, 1695 0x3ca00, 0x3ca14, 1696 0x3ca1c, 0x3ca2c, 1697 0x3ca44, 0x3ca50, 1698 0x3ca74, 0x3ca74, 1699 0x3ca7c, 0x3cafc, 1700 0x3cb08, 0x3cc24, 1701 0x3cd00, 0x3cd00, 1702 0x3cd08, 0x3cd14, 1703 0x3cd1c, 0x3cd20, 1704 0x3cd3c, 0x3cd3c, 1705 0x3cd48, 0x3cd50, 1706 0x3d200, 0x3d20c, 1707 0x3d220, 0x3d220, 1708 0x3d240, 0x3d240, 1709 0x3d600, 0x3d60c, 1710 0x3da00, 0x3da1c, 1711 0x3de00, 0x3de20, 1712 0x3de38, 0x3de3c, 1713 0x3de80, 0x3de80, 1714 0x3de88, 0x3dea8, 1715 0x3deb0, 0x3deb4, 1716 0x3dec8, 0x3ded4, 1717 0x3dfb8, 0x3e004, 1718 0x3e200, 0x3e200, 1719 0x3e208, 0x3e240, 1720 0x3e248, 0x3e280, 1721 0x3e288, 0x3e2c0, 1722 0x3e2c8, 0x3e2fc, 1723 0x3e600, 0x3e630, 1724 0x3ea00, 0x3eabc, 1725 0x3eb00, 0x3eb10, 1726 0x3eb20, 0x3eb30, 1727 0x3eb40, 0x3eb50, 1728 0x3eb60, 0x3eb70, 1729 0x3f000, 0x3f028, 1730 0x3f030, 0x3f048, 1731 0x3f060, 0x3f068, 1732 0x3f070, 0x3f09c, 1733 0x3f0f0, 0x3f128, 1734 0x3f130, 0x3f148, 1735 0x3f160, 0x3f168, 1736 0x3f170, 0x3f19c, 1737 0x3f1f0, 0x3f238, 1738 0x3f240, 0x3f240, 1739 0x3f248, 0x3f250, 1740 0x3f25c, 0x3f264, 1741 0x3f270, 0x3f2b8, 1742 0x3f2c0, 0x3f2e4, 1743 0x3f2f8, 0x3f338, 1744 0x3f340, 0x3f340, 1745 0x3f348, 0x3f350, 1746 0x3f35c, 0x3f364, 1747 0x3f370, 0x3f3b8, 1748 0x3f3c0, 0x3f3e4, 1749 0x3f3f8, 0x3f428, 1750 0x3f430, 0x3f448, 1751 0x3f460, 0x3f468, 1752 0x3f470, 0x3f49c, 1753 0x3f4f0, 0x3f528, 1754 0x3f530, 0x3f548, 1755 0x3f560, 0x3f568, 1756 0x3f570, 0x3f59c, 1757 0x3f5f0, 0x3f638, 1758 0x3f640, 0x3f640, 1759 0x3f648, 0x3f650, 1760 0x3f65c, 0x3f664, 1761 0x3f670, 0x3f6b8, 1762 0x3f6c0, 0x3f6e4, 1763 0x3f6f8, 0x3f738, 1764 0x3f740, 0x3f740, 1765 0x3f748, 0x3f750, 1766 0x3f75c, 0x3f764, 1767 0x3f770, 0x3f7b8, 1768 0x3f7c0, 0x3f7e4, 1769 0x3f7f8, 0x3f7fc, 1770 0x3f814, 0x3f814, 1771 0x3f82c, 0x3f82c, 1772 0x3f880, 0x3f88c, 1773 0x3f8e8, 0x3f8ec, 1774 0x3f900, 0x3f928, 1775 0x3f930, 0x3f948, 1776 0x3f960, 0x3f968, 1777 0x3f970, 0x3f99c, 1778 0x3f9f0, 0x3fa38, 1779 0x3fa40, 0x3fa40, 1780 0x3fa48, 0x3fa50, 1781 0x3fa5c, 0x3fa64, 1782 0x3fa70, 0x3fab8, 1783 0x3fac0, 0x3fae4, 1784 0x3faf8, 0x3fb10, 1785 0x3fb28, 0x3fb28, 1786 0x3fb3c, 0x3fb50, 1787 0x3fbf0, 0x3fc10, 1788 0x3fc28, 0x3fc28, 1789 0x3fc3c, 0x3fc50, 1790 0x3fcf0, 0x3fcfc, 1791 0x40000, 0x4000c, 1792 0x40040, 0x40050, 1793 0x40060, 0x40068, 1794 0x4007c, 0x4008c, 1795 0x40094, 0x400b0, 1796 0x400c0, 0x40144, 1797 0x40180, 0x4018c, 1798 0x40200, 0x40254, 1799 0x40260, 0x40264, 1800 0x40270, 0x40288, 1801 0x40290, 0x40298, 1802 0x402ac, 0x402c8, 1803 0x402d0, 0x402e0, 1804 0x402f0, 0x402f0, 1805 0x40300, 0x4033c, 1806 0x403f8, 0x403fc, 1807 0x41304, 0x413c4, 1808 0x41400, 0x4140c, 1809 0x41414, 0x4141c, 1810 0x41480, 0x414d0, 1811 0x44000, 0x44054, 1812 0x4405c, 0x44078, 1813 0x440c0, 0x44174, 1814 0x44180, 0x441ac, 1815 0x441b4, 0x441b8, 1816 0x441c0, 0x44254, 1817 0x4425c, 0x44278, 1818 0x442c0, 0x44374, 1819 0x44380, 0x443ac, 1820 0x443b4, 0x443b8, 1821 0x443c0, 0x44454, 1822 0x4445c, 0x44478, 1823 0x444c0, 0x44574, 1824 0x44580, 0x445ac, 1825 0x445b4, 0x445b8, 1826 0x445c0, 0x44654, 1827 0x4465c, 0x44678, 1828 0x446c0, 0x44774, 1829 0x44780, 0x447ac, 1830 0x447b4, 0x447b8, 1831 0x447c0, 0x44854, 1832 0x4485c, 0x44878, 1833 0x448c0, 0x44974, 1834 0x44980, 0x449ac, 1835 0x449b4, 0x449b8, 1836 0x449c0, 0x449fc, 1837 0x45000, 0x45004, 1838 0x45010, 0x45030, 1839 0x45040, 0x45060, 1840 0x45068, 0x45068, 1841 0x45080, 0x45084, 1842 0x450a0, 0x450b0, 1843 0x45200, 0x45204, 1844 0x45210, 0x45230, 1845 0x45240, 0x45260, 1846 0x45268, 0x45268, 1847 0x45280, 0x45284, 1848 0x452a0, 0x452b0, 1849 0x460c0, 0x460e4, 1850 0x47000, 0x4703c, 1851 0x47044, 0x4708c, 1852 0x47200, 0x47250, 1853 0x47400, 0x47408, 1854 0x47414, 0x47420, 1855 0x47600, 0x47618, 1856 0x47800, 0x47814, 1857 0x48000, 0x4800c, 1858 0x48040, 0x48050, 1859 0x48060, 0x48068, 1860 0x4807c, 0x4808c, 1861 0x48094, 0x480b0, 1862 0x480c0, 0x48144, 1863 0x48180, 0x4818c, 1864 0x48200, 0x48254, 1865 0x48260, 0x48264, 1866 0x48270, 0x48288, 1867 0x48290, 0x48298, 1868 0x482ac, 0x482c8, 1869 0x482d0, 0x482e0, 1870 0x482f0, 0x482f0, 1871 0x48300, 0x4833c, 1872 0x483f8, 0x483fc, 1873 0x49304, 0x493c4, 1874 0x49400, 0x4940c, 1875 0x49414, 0x4941c, 1876 0x49480, 0x494d0, 1877 0x4c000, 0x4c054, 1878 0x4c05c, 0x4c078, 1879 0x4c0c0, 0x4c174, 1880 0x4c180, 0x4c1ac, 1881 0x4c1b4, 0x4c1b8, 1882 0x4c1c0, 0x4c254, 1883 0x4c25c, 0x4c278, 1884 0x4c2c0, 0x4c374, 1885 0x4c380, 0x4c3ac, 1886 0x4c3b4, 0x4c3b8, 1887 0x4c3c0, 0x4c454, 1888 0x4c45c, 0x4c478, 1889 0x4c4c0, 0x4c574, 1890 0x4c580, 0x4c5ac, 1891 0x4c5b4, 0x4c5b8, 1892 0x4c5c0, 0x4c654, 1893 0x4c65c, 0x4c678, 1894 0x4c6c0, 0x4c774, 1895 0x4c780, 0x4c7ac, 1896 0x4c7b4, 0x4c7b8, 1897 0x4c7c0, 0x4c854, 1898 0x4c85c, 0x4c878, 1899 0x4c8c0, 0x4c974, 1900 0x4c980, 0x4c9ac, 1901 0x4c9b4, 0x4c9b8, 1902 0x4c9c0, 0x4c9fc, 1903 0x4d000, 0x4d004, 1904 0x4d010, 0x4d030, 1905 0x4d040, 0x4d060, 1906 0x4d068, 0x4d068, 1907 0x4d080, 0x4d084, 1908 0x4d0a0, 0x4d0b0, 1909 0x4d200, 0x4d204, 1910 0x4d210, 0x4d230, 1911 0x4d240, 0x4d260, 1912 0x4d268, 0x4d268, 1913 0x4d280, 0x4d284, 1914 0x4d2a0, 0x4d2b0, 1915 0x4e0c0, 0x4e0e4, 1916 0x4f000, 0x4f03c, 1917 0x4f044, 0x4f08c, 1918 0x4f200, 0x4f250, 1919 0x4f400, 0x4f408, 1920 0x4f414, 0x4f420, 1921 0x4f600, 0x4f618, 1922 0x4f800, 0x4f814, 1923 0x50000, 0x50084, 1924 0x50090, 0x500cc, 1925 0x50400, 0x50400, 1926 0x50800, 0x50884, 1927 0x50890, 0x508cc, 1928 0x50c00, 0x50c00, 1929 0x51000, 0x5101c, 1930 0x51300, 0x51308, 1931 }; 1932 1933 static const unsigned int t6_reg_ranges[] = { 1934 0x1008, 0x101c, 1935 0x1024, 0x10a8, 1936 0x10b4, 0x10f8, 1937 0x1100, 0x1114, 1938 0x111c, 0x112c, 1939 0x1138, 0x113c, 1940 0x1144, 0x114c, 1941 0x1180, 0x1184, 1942 0x1190, 0x1194, 1943 0x11a0, 0x11a4, 1944 0x11b0, 0x11b4, 1945 0x11fc, 0x1258, 1946 0x1280, 0x12d4, 1947 0x12d9, 0x12d9, 1948 0x12de, 0x12de, 1949 0x12e3, 0x12e3, 1950 0x12e8, 0x133c, 1951 0x1800, 0x18fc, 1952 0x3000, 0x302c, 1953 0x3060, 0x30b0, 1954 0x30b8, 0x30d8, 1955 0x30e0, 0x30fc, 1956 0x3140, 0x357c, 1957 0x35a8, 0x35cc, 1958 0x35ec, 0x35ec, 1959 0x3600, 0x5624, 1960 0x56cc, 0x56ec, 1961 0x56f4, 0x5720, 1962 0x5728, 0x575c, 1963 0x580c, 0x5814, 1964 0x5890, 0x589c, 1965 0x58a4, 0x58ac, 1966 0x58b8, 0x58bc, 1967 0x5940, 0x595c, 1968 0x5980, 0x598c, 1969 0x59b0, 0x59c8, 1970 0x59d0, 0x59dc, 1971 0x59fc, 0x5a18, 1972 0x5a60, 0x5a6c, 1973 0x5a80, 0x5a8c, 1974 0x5a94, 0x5a9c, 1975 0x5b94, 0x5bfc, 1976 0x5c10, 0x5e48, 1977 0x5e50, 0x5e94, 1978 0x5ea0, 0x5eb0, 1979 0x5ec0, 0x5ec0, 1980 0x5ec8, 0x5ed0, 1981 0x6000, 0x6020, 1982 0x6028, 0x6040, 1983 0x6058, 0x609c, 1984 0x60a8, 0x619c, 1985 0x7700, 0x7798, 1986 0x77c0, 0x7880, 1987 0x78cc, 0x78fc, 1988 0x7b00, 0x7b58, 1989 0x7b60, 0x7b84, 1990 0x7b8c, 0x7c54, 1991 0x7d00, 0x7d38, 1992 0x7d40, 0x7d84, 1993 0x7d8c, 0x7ddc, 1994 0x7de4, 0x7e04, 1995 0x7e10, 0x7e1c, 1996 0x7e24, 0x7e38, 1997 0x7e40, 0x7e44, 1998 0x7e4c, 0x7e78, 1999 0x7e80, 0x7edc, 2000 0x7ee8, 0x7efc, 2001 0x8dc0, 0x8de4, 2002 0x8df8, 0x8e04, 2003 0x8e10, 0x8e84, 2004 0x8ea0, 0x8f88, 2005 0x8fb8, 0x9058, 2006 0x9060, 0x9060, 2007 0x9068, 0x90f8, 2008 0x9100, 0x9124, 2009 0x9400, 0x9470, 2010 0x9600, 0x9600, 2011 0x9608, 0x9638, 2012 0x9640, 0x9704, 2013 0x9710, 0x971c, 2014 0x9800, 0x9808, 2015 0x9820, 0x983c, 2016 0x9850, 0x9864, 2017 0x9c00, 0x9c6c, 2018 0x9c80, 0x9cec, 2019 0x9d00, 0x9d6c, 2020 0x9d80, 0x9dec, 2021 0x9e00, 0x9e6c, 2022 0x9e80, 0x9eec, 2023 0x9f00, 0x9f6c, 2024 0x9f80, 0xa020, 2025 0xd004, 0xd03c, 2026 0xd100, 0xd118, 2027 0xd200, 0xd214, 2028 0xd220, 0xd234, 2029 0xd240, 0xd254, 2030 0xd260, 0xd274, 2031 0xd280, 0xd294, 2032 0xd2a0, 0xd2b4, 2033 0xd2c0, 0xd2d4, 2034 0xd2e0, 0xd2f4, 2035 0xd300, 0xd31c, 2036 0xdfc0, 0xdfe0, 2037 0xe000, 0xf008, 2038 0x11000, 0x11014, 2039 0x11048, 0x1106c, 2040 0x11074, 0x11088, 2041 0x11098, 0x11120, 2042 0x1112c, 0x1117c, 2043 0x11190, 0x112e0, 2044 0x11300, 0x1130c, 2045 0x12000, 0x1206c, 2046 0x19040, 0x1906c, 2047 0x19078, 0x19080, 2048 0x1908c, 0x190e8, 2049 0x190f0, 0x190f8, 2050 0x19100, 0x19110, 2051 0x19120, 0x19124, 2052 0x19150, 0x19194, 2053 0x1919c, 0x191b0, 2054 0x191d0, 0x191e8, 2055 0x19238, 0x19290, 2056 0x192a4, 0x192b0, 2057 0x192bc, 0x192bc, 2058 0x19348, 0x1934c, 2059 0x193f8, 0x19418, 2060 0x19420, 0x19428, 2061 0x19430, 0x19444, 2062 0x1944c, 0x1946c, 2063 0x19474, 0x19474, 2064 0x19490, 0x194cc, 2065 0x194f0, 0x194f8, 2066 0x19c00, 0x19c48, 2067 0x19c50, 0x19c80, 2068 0x19c94, 0x19c98, 2069 0x19ca0, 0x19cbc, 2070 0x19ce4, 0x19ce4, 2071 0x19cf0, 0x19cf8, 2072 0x19d00, 0x19d28, 2073 0x19d50, 0x19d78, 2074 0x19d94, 0x19d98, 2075 0x19da0, 0x19dc8, 2076 0x19df0, 0x19e10, 2077 0x19e50, 0x19e6c, 2078 0x19ea0, 0x19ebc, 2079 0x19ec4, 0x19ef4, 2080 0x19f04, 0x19f2c, 2081 0x19f34, 0x19f34, 2082 0x19f40, 0x19f50, 2083 0x19f90, 0x19fac, 2084 0x19fc4, 0x19fc8, 2085 0x19fd0, 0x19fe4, 2086 0x1a000, 0x1a004, 2087 0x1a010, 0x1a06c, 2088 0x1a0b0, 0x1a0e4, 2089 0x1a0ec, 0x1a0f8, 2090 0x1a100, 0x1a108, 2091 0x1a114, 0x1a120, 2092 0x1a128, 0x1a130, 2093 0x1a138, 0x1a138, 2094 0x1a190, 0x1a1c4, 2095 0x1a1fc, 0x1a1fc, 2096 0x1e008, 0x1e00c, 2097 0x1e040, 0x1e044, 2098 0x1e04c, 0x1e04c, 2099 0x1e284, 0x1e290, 2100 0x1e2c0, 0x1e2c0, 2101 0x1e2e0, 0x1e2e0, 2102 0x1e300, 0x1e384, 2103 0x1e3c0, 0x1e3c8, 2104 0x1e408, 0x1e40c, 2105 0x1e440, 0x1e444, 2106 0x1e44c, 0x1e44c, 2107 0x1e684, 0x1e690, 2108 0x1e6c0, 0x1e6c0, 2109 0x1e6e0, 0x1e6e0, 2110 0x1e700, 0x1e784, 2111 0x1e7c0, 0x1e7c8, 2112 0x1e808, 0x1e80c, 2113 0x1e840, 0x1e844, 2114 0x1e84c, 0x1e84c, 2115 0x1ea84, 0x1ea90, 2116 0x1eac0, 0x1eac0, 2117 0x1eae0, 0x1eae0, 2118 0x1eb00, 0x1eb84, 2119 0x1ebc0, 0x1ebc8, 2120 0x1ec08, 0x1ec0c, 2121 0x1ec40, 0x1ec44, 2122 0x1ec4c, 0x1ec4c, 2123 0x1ee84, 0x1ee90, 2124 0x1eec0, 0x1eec0, 2125 0x1eee0, 0x1eee0, 2126 0x1ef00, 0x1ef84, 2127 0x1efc0, 0x1efc8, 2128 0x1f008, 0x1f00c, 2129 0x1f040, 0x1f044, 2130 0x1f04c, 0x1f04c, 2131 0x1f284, 0x1f290, 2132 0x1f2c0, 0x1f2c0, 2133 0x1f2e0, 0x1f2e0, 2134 0x1f300, 0x1f384, 2135 0x1f3c0, 0x1f3c8, 2136 0x1f408, 0x1f40c, 2137 0x1f440, 0x1f444, 2138 0x1f44c, 0x1f44c, 2139 0x1f684, 0x1f690, 2140 0x1f6c0, 0x1f6c0, 2141 0x1f6e0, 0x1f6e0, 2142 0x1f700, 0x1f784, 2143 0x1f7c0, 0x1f7c8, 2144 0x1f808, 0x1f80c, 2145 0x1f840, 0x1f844, 2146 0x1f84c, 0x1f84c, 2147 0x1fa84, 0x1fa90, 2148 0x1fac0, 0x1fac0, 2149 0x1fae0, 0x1fae0, 2150 0x1fb00, 0x1fb84, 2151 0x1fbc0, 0x1fbc8, 2152 0x1fc08, 0x1fc0c, 2153 0x1fc40, 0x1fc44, 2154 0x1fc4c, 0x1fc4c, 2155 0x1fe84, 0x1fe90, 2156 0x1fec0, 0x1fec0, 2157 0x1fee0, 0x1fee0, 2158 0x1ff00, 0x1ff84, 2159 0x1ffc0, 0x1ffc8, 2160 0x30000, 0x30030, 2161 0x30038, 0x30038, 2162 0x30040, 0x30040, 2163 0x30048, 0x30048, 2164 0x30050, 0x30050, 2165 0x3005c, 0x30060, 2166 0x30068, 0x30068, 2167 0x30070, 0x30070, 2168 0x30100, 0x30168, 2169 0x30190, 0x301a0, 2170 0x301a8, 0x301b8, 2171 0x301c4, 0x301c8, 2172 0x301d0, 0x301d0, 2173 0x30200, 0x30320, 2174 0x30400, 0x304b4, 2175 0x304c0, 0x3052c, 2176 0x30540, 0x3061c, 2177 0x30800, 0x308a0, 2178 0x308c0, 0x30908, 2179 0x30910, 0x309b8, 2180 0x30a00, 0x30a04, 2181 0x30a0c, 0x30a14, 2182 0x30a1c, 0x30a2c, 2183 0x30a44, 0x30a50, 2184 0x30a74, 0x30a74, 2185 0x30a7c, 0x30afc, 2186 0x30b08, 0x30c24, 2187 0x30d00, 0x30d14, 2188 0x30d1c, 0x30d3c, 2189 0x30d44, 0x30d4c, 2190 0x30d54, 0x30d74, 2191 0x30d7c, 0x30d7c, 2192 0x30de0, 0x30de0, 2193 0x30e00, 0x30ed4, 2194 0x30f00, 0x30fa4, 2195 0x30fc0, 0x30fc4, 2196 0x31000, 0x31004, 2197 0x31080, 0x310fc, 2198 0x31208, 0x31220, 2199 0x3123c, 0x31254, 2200 0x31300, 0x31300, 2201 0x31308, 0x3131c, 2202 0x31338, 0x3133c, 2203 0x31380, 0x31380, 2204 0x31388, 0x313a8, 2205 0x313b4, 0x313b4, 2206 0x31400, 0x31420, 2207 0x31438, 0x3143c, 2208 0x31480, 0x31480, 2209 0x314a8, 0x314a8, 2210 0x314b0, 0x314b4, 2211 0x314c8, 0x314d4, 2212 0x31a40, 0x31a4c, 2213 0x31af0, 0x31b20, 2214 0x31b38, 0x31b3c, 2215 0x31b80, 0x31b80, 2216 0x31ba8, 0x31ba8, 2217 0x31bb0, 0x31bb4, 2218 0x31bc8, 0x31bd4, 2219 0x32140, 0x3218c, 2220 0x321f0, 0x321f4, 2221 0x32200, 0x32200, 2222 0x32218, 0x32218, 2223 0x32400, 0x32400, 2224 0x32408, 0x3241c, 2225 0x32618, 0x32620, 2226 0x32664, 0x32664, 2227 0x326a8, 0x326a8, 2228 0x326ec, 0x326ec, 2229 0x32a00, 0x32abc, 2230 0x32b00, 0x32b38, 2231 0x32b40, 0x32b58, 2232 0x32b60, 0x32b78, 2233 0x32c00, 0x32c00, 2234 0x32c08, 0x32c3c, 2235 0x32e00, 0x32e2c, 2236 0x32f00, 0x32f2c, 2237 0x33000, 0x3302c, 2238 0x33034, 0x33050, 2239 0x33058, 0x33058, 2240 0x33060, 0x3308c, 2241 0x3309c, 0x330ac, 2242 0x330c0, 0x330c0, 2243 0x330c8, 0x330d0, 2244 0x330d8, 0x330e0, 2245 0x330ec, 0x3312c, 2246 0x33134, 0x33150, 2247 0x33158, 0x33158, 2248 0x33160, 0x3318c, 2249 0x3319c, 0x331ac, 2250 0x331c0, 0x331c0, 2251 0x331c8, 0x331d0, 2252 0x331d8, 0x331e0, 2253 0x331ec, 0x33290, 2254 0x33298, 0x332c4, 2255 0x332e4, 0x33390, 2256 0x33398, 0x333c4, 2257 0x333e4, 0x3342c, 2258 0x33434, 0x33450, 2259 0x33458, 0x33458, 2260 0x33460, 0x3348c, 2261 0x3349c, 0x334ac, 2262 0x334c0, 0x334c0, 2263 0x334c8, 0x334d0, 2264 0x334d8, 0x334e0, 2265 0x334ec, 0x3352c, 2266 0x33534, 0x33550, 2267 0x33558, 0x33558, 2268 0x33560, 0x3358c, 2269 0x3359c, 0x335ac, 2270 0x335c0, 0x335c0, 2271 0x335c8, 0x335d0, 2272 0x335d8, 0x335e0, 2273 0x335ec, 0x33690, 2274 0x33698, 0x336c4, 2275 0x336e4, 0x33790, 2276 0x33798, 0x337c4, 2277 0x337e4, 0x337fc, 2278 0x33814, 0x33814, 2279 0x33854, 0x33868, 2280 0x33880, 0x3388c, 2281 0x338c0, 0x338d0, 2282 0x338e8, 0x338ec, 2283 0x33900, 0x3392c, 2284 0x33934, 0x33950, 2285 0x33958, 0x33958, 2286 0x33960, 0x3398c, 2287 0x3399c, 0x339ac, 2288 0x339c0, 0x339c0, 2289 0x339c8, 0x339d0, 2290 0x339d8, 0x339e0, 2291 0x339ec, 0x33a90, 2292 0x33a98, 0x33ac4, 2293 0x33ae4, 0x33b10, 2294 0x33b24, 0x33b28, 2295 0x33b38, 0x33b50, 2296 0x33bf0, 0x33c10, 2297 0x33c24, 0x33c28, 2298 0x33c38, 0x33c50, 2299 0x33cf0, 0x33cfc, 2300 0x34000, 0x34030, 2301 0x34038, 0x34038, 2302 0x34040, 0x34040, 2303 0x34048, 0x34048, 2304 0x34050, 0x34050, 2305 0x3405c, 0x34060, 2306 0x34068, 0x34068, 2307 0x34070, 0x34070, 2308 0x34100, 0x34168, 2309 0x34190, 0x341a0, 2310 0x341a8, 0x341b8, 2311 0x341c4, 0x341c8, 2312 0x341d0, 0x341d0, 2313 0x34200, 0x34320, 2314 0x34400, 0x344b4, 2315 0x344c0, 0x3452c, 2316 0x34540, 0x3461c, 2317 0x34800, 0x348a0, 2318 0x348c0, 0x34908, 2319 0x34910, 0x349b8, 2320 0x34a00, 0x34a04, 2321 0x34a0c, 0x34a14, 2322 0x34a1c, 0x34a2c, 2323 0x34a44, 0x34a50, 2324 0x34a74, 0x34a74, 2325 0x34a7c, 0x34afc, 2326 0x34b08, 0x34c24, 2327 0x34d00, 0x34d14, 2328 0x34d1c, 0x34d3c, 2329 0x34d44, 0x34d4c, 2330 0x34d54, 0x34d74, 2331 0x34d7c, 0x34d7c, 2332 0x34de0, 0x34de0, 2333 0x34e00, 0x34ed4, 2334 0x34f00, 0x34fa4, 2335 0x34fc0, 0x34fc4, 2336 0x35000, 0x35004, 2337 0x35080, 0x350fc, 2338 0x35208, 0x35220, 2339 0x3523c, 0x35254, 2340 0x35300, 0x35300, 2341 0x35308, 0x3531c, 2342 0x35338, 0x3533c, 2343 0x35380, 0x35380, 2344 0x35388, 0x353a8, 2345 0x353b4, 0x353b4, 2346 0x35400, 0x35420, 2347 0x35438, 0x3543c, 2348 0x35480, 0x35480, 2349 0x354a8, 0x354a8, 2350 0x354b0, 0x354b4, 2351 0x354c8, 0x354d4, 2352 0x35a40, 0x35a4c, 2353 0x35af0, 0x35b20, 2354 0x35b38, 0x35b3c, 2355 0x35b80, 0x35b80, 2356 0x35ba8, 0x35ba8, 2357 0x35bb0, 0x35bb4, 2358 0x35bc8, 0x35bd4, 2359 0x36140, 0x3618c, 2360 0x361f0, 0x361f4, 2361 0x36200, 0x36200, 2362 0x36218, 0x36218, 2363 0x36400, 0x36400, 2364 0x36408, 0x3641c, 2365 0x36618, 0x36620, 2366 0x36664, 0x36664, 2367 0x366a8, 0x366a8, 2368 0x366ec, 0x366ec, 2369 0x36a00, 0x36abc, 2370 0x36b00, 0x36b38, 2371 0x36b40, 0x36b58, 2372 0x36b60, 0x36b78, 2373 0x36c00, 0x36c00, 2374 0x36c08, 0x36c3c, 2375 0x36e00, 0x36e2c, 2376 0x36f00, 0x36f2c, 2377 0x37000, 0x3702c, 2378 0x37034, 0x37050, 2379 0x37058, 0x37058, 2380 0x37060, 0x3708c, 2381 0x3709c, 0x370ac, 2382 0x370c0, 0x370c0, 2383 0x370c8, 0x370d0, 2384 0x370d8, 0x370e0, 2385 0x370ec, 0x3712c, 2386 0x37134, 0x37150, 2387 0x37158, 0x37158, 2388 0x37160, 0x3718c, 2389 0x3719c, 0x371ac, 2390 0x371c0, 0x371c0, 2391 0x371c8, 0x371d0, 2392 0x371d8, 0x371e0, 2393 0x371ec, 0x37290, 2394 0x37298, 0x372c4, 2395 0x372e4, 0x37390, 2396 0x37398, 0x373c4, 2397 0x373e4, 0x3742c, 2398 0x37434, 0x37450, 2399 0x37458, 0x37458, 2400 0x37460, 0x3748c, 2401 0x3749c, 0x374ac, 2402 0x374c0, 0x374c0, 2403 0x374c8, 0x374d0, 2404 0x374d8, 0x374e0, 2405 0x374ec, 0x3752c, 2406 0x37534, 0x37550, 2407 0x37558, 0x37558, 2408 0x37560, 0x3758c, 2409 0x3759c, 0x375ac, 2410 0x375c0, 0x375c0, 2411 0x375c8, 0x375d0, 2412 0x375d8, 0x375e0, 2413 0x375ec, 0x37690, 2414 0x37698, 0x376c4, 2415 0x376e4, 0x37790, 2416 0x37798, 0x377c4, 2417 0x377e4, 0x377fc, 2418 0x37814, 0x37814, 2419 0x37854, 0x37868, 2420 0x37880, 0x3788c, 2421 0x378c0, 0x378d0, 2422 0x378e8, 0x378ec, 2423 0x37900, 0x3792c, 2424 0x37934, 0x37950, 2425 0x37958, 0x37958, 2426 0x37960, 0x3798c, 2427 0x3799c, 0x379ac, 2428 0x379c0, 0x379c0, 2429 0x379c8, 0x379d0, 2430 0x379d8, 0x379e0, 2431 0x379ec, 0x37a90, 2432 0x37a98, 0x37ac4, 2433 0x37ae4, 0x37b10, 2434 0x37b24, 0x37b28, 2435 0x37b38, 0x37b50, 2436 0x37bf0, 0x37c10, 2437 0x37c24, 0x37c28, 2438 0x37c38, 0x37c50, 2439 0x37cf0, 0x37cfc, 2440 0x40040, 0x40040, 2441 0x40080, 0x40084, 2442 0x40100, 0x40100, 2443 0x40140, 0x401bc, 2444 0x40200, 0x40214, 2445 0x40228, 0x40228, 2446 0x40240, 0x40258, 2447 0x40280, 0x40280, 2448 0x40304, 0x40304, 2449 0x40330, 0x4033c, 2450 0x41304, 0x413b8, 2451 0x413c0, 0x413c8, 2452 0x413d0, 0x413dc, 2453 0x413f0, 0x413f0, 2454 0x41400, 0x4140c, 2455 0x41414, 0x4141c, 2456 0x41480, 0x414d0, 2457 0x44000, 0x4407c, 2458 0x440c0, 0x441ac, 2459 0x441b4, 0x4427c, 2460 0x442c0, 0x443ac, 2461 0x443b4, 0x4447c, 2462 0x444c0, 0x445ac, 2463 0x445b4, 0x4467c, 2464 0x446c0, 0x447ac, 2465 0x447b4, 0x4487c, 2466 0x448c0, 0x449ac, 2467 0x449b4, 0x44a7c, 2468 0x44ac0, 0x44bac, 2469 0x44bb4, 0x44c7c, 2470 0x44cc0, 0x44dac, 2471 0x44db4, 0x44e7c, 2472 0x44ec0, 0x44fac, 2473 0x44fb4, 0x4507c, 2474 0x450c0, 0x451ac, 2475 0x451b4, 0x451fc, 2476 0x45800, 0x45804, 2477 0x45810, 0x45830, 2478 0x45840, 0x45860, 2479 0x45868, 0x45868, 2480 0x45880, 0x45884, 2481 0x458a0, 0x458b0, 2482 0x45a00, 0x45a04, 2483 0x45a10, 0x45a30, 2484 0x45a40, 0x45a60, 2485 0x45a68, 0x45a68, 2486 0x45a80, 0x45a84, 2487 0x45aa0, 0x45ab0, 2488 0x460c0, 0x460e4, 2489 0x47000, 0x4703c, 2490 0x47044, 0x4708c, 2491 0x47200, 0x47250, 2492 0x47400, 0x47408, 2493 0x47414, 0x47420, 2494 0x47600, 0x47618, 2495 0x47800, 0x47814, 2496 0x47820, 0x4782c, 2497 0x50000, 0x50084, 2498 0x50090, 0x500cc, 2499 0x50300, 0x50384, 2500 0x50400, 0x50400, 2501 0x50800, 0x50884, 2502 0x50890, 0x508cc, 2503 0x50b00, 0x50b84, 2504 0x50c00, 0x50c00, 2505 0x51000, 0x51020, 2506 0x51028, 0x510b0, 2507 0x51300, 0x51324, 2508 }; 2509 2510 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2511 const unsigned int *reg_ranges; 2512 int reg_ranges_size, range; 2513 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2514 2515 /* Select the right set of register ranges to dump depending on the 2516 * adapter chip type. 2517 */ 2518 switch (chip_version) { 2519 case CHELSIO_T4: 2520 reg_ranges = t4_reg_ranges; 2521 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2522 break; 2523 2524 case CHELSIO_T5: 2525 reg_ranges = t5_reg_ranges; 2526 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2527 break; 2528 2529 case CHELSIO_T6: 2530 reg_ranges = t6_reg_ranges; 2531 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2532 break; 2533 2534 default: 2535 dev_err(adap->pdev_dev, 2536 "Unsupported chip version %d\n", chip_version); 2537 return; 2538 } 2539 2540 /* Clear the register buffer and insert the appropriate register 2541 * values selected by the above register ranges. 2542 */ 2543 memset(buf, 0, buf_size); 2544 for (range = 0; range < reg_ranges_size; range += 2) { 2545 unsigned int reg = reg_ranges[range]; 2546 unsigned int last_reg = reg_ranges[range + 1]; 2547 u32 *bufp = (u32 *)((char *)buf + reg); 2548 2549 /* Iterate across the register range filling in the register 2550 * buffer but don't write past the end of the register buffer. 2551 */ 2552 while (reg <= last_reg && bufp < buf_end) { 2553 *bufp++ = t4_read_reg(adap, reg); 2554 reg += sizeof(u32); 2555 } 2556 } 2557 } 2558 2559 #define EEPROM_STAT_ADDR 0x7bfc 2560 #define VPD_BASE 0x400 2561 #define VPD_BASE_OLD 0 2562 #define VPD_LEN 1024 2563 #define CHELSIO_VPD_UNIQUE_ID 0x82 2564 2565 /** 2566 * t4_seeprom_wp - enable/disable EEPROM write protection 2567 * @adapter: the adapter 2568 * @enable: whether to enable or disable write protection 2569 * 2570 * Enables or disables write protection on the serial EEPROM. 2571 */ 2572 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2573 { 2574 unsigned int v = enable ? 0xc : 0; 2575 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2576 return ret < 0 ? ret : 0; 2577 } 2578 2579 /** 2580 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2581 * @adapter: adapter to read 2582 * @p: where to store the parameters 2583 * 2584 * Reads card parameters stored in VPD EEPROM. 2585 */ 2586 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2587 { 2588 int i, ret = 0, addr; 2589 int ec, sn, pn, na; 2590 u8 *vpd, csum; 2591 unsigned int vpdr_len, kw_offset, id_len; 2592 2593 vpd = vmalloc(VPD_LEN); 2594 if (!vpd) 2595 return -ENOMEM; 2596 2597 /* Card information normally starts at VPD_BASE but early cards had 2598 * it at 0. 2599 */ 2600 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2601 if (ret < 0) 2602 goto out; 2603 2604 /* The VPD shall have a unique identifier specified by the PCI SIG. 2605 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2606 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2607 * is expected to automatically put this entry at the 2608 * beginning of the VPD. 2609 */ 2610 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2611 2612 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2613 if (ret < 0) 2614 goto out; 2615 2616 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2617 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2618 ret = -EINVAL; 2619 goto out; 2620 } 2621 2622 id_len = pci_vpd_lrdt_size(vpd); 2623 if (id_len > ID_LEN) 2624 id_len = ID_LEN; 2625 2626 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2627 if (i < 0) { 2628 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2629 ret = -EINVAL; 2630 goto out; 2631 } 2632 2633 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2634 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2635 if (vpdr_len + kw_offset > VPD_LEN) { 2636 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2637 ret = -EINVAL; 2638 goto out; 2639 } 2640 2641 #define FIND_VPD_KW(var, name) do { \ 2642 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2643 if (var < 0) { \ 2644 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2645 ret = -EINVAL; \ 2646 goto out; \ 2647 } \ 2648 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2649 } while (0) 2650 2651 FIND_VPD_KW(i, "RV"); 2652 for (csum = 0; i >= 0; i--) 2653 csum += vpd[i]; 2654 2655 if (csum) { 2656 dev_err(adapter->pdev_dev, 2657 "corrupted VPD EEPROM, actual csum %u\n", csum); 2658 ret = -EINVAL; 2659 goto out; 2660 } 2661 2662 FIND_VPD_KW(ec, "EC"); 2663 FIND_VPD_KW(sn, "SN"); 2664 FIND_VPD_KW(pn, "PN"); 2665 FIND_VPD_KW(na, "NA"); 2666 #undef FIND_VPD_KW 2667 2668 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2669 strim(p->id); 2670 memcpy(p->ec, vpd + ec, EC_LEN); 2671 strim(p->ec); 2672 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2673 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2674 strim(p->sn); 2675 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2676 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2677 strim(p->pn); 2678 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2679 strim((char *)p->na); 2680 2681 out: 2682 vfree(vpd); 2683 return ret; 2684 } 2685 2686 /** 2687 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2688 * @adapter: adapter to read 2689 * @p: where to store the parameters 2690 * 2691 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2692 * Clock. This can only be called after a connection to the firmware 2693 * is established. 2694 */ 2695 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2696 { 2697 u32 cclk_param, cclk_val; 2698 int ret; 2699 2700 /* Grab the raw VPD parameters. 2701 */ 2702 ret = t4_get_raw_vpd_params(adapter, p); 2703 if (ret) 2704 return ret; 2705 2706 /* Ask firmware for the Core Clock since it knows how to translate the 2707 * Reference Clock ('V2') VPD field into a Core Clock value ... 2708 */ 2709 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2710 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2711 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2712 1, &cclk_param, &cclk_val); 2713 2714 if (ret) 2715 return ret; 2716 p->cclk = cclk_val; 2717 2718 return 0; 2719 } 2720 2721 /* serial flash and firmware constants */ 2722 enum { 2723 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2724 2725 /* flash command opcodes */ 2726 SF_PROG_PAGE = 2, /* program page */ 2727 SF_WR_DISABLE = 4, /* disable writes */ 2728 SF_RD_STATUS = 5, /* read status register */ 2729 SF_WR_ENABLE = 6, /* enable writes */ 2730 SF_RD_DATA_FAST = 0xb, /* read flash */ 2731 SF_RD_ID = 0x9f, /* read ID */ 2732 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2733 2734 FW_MAX_SIZE = 16 * SF_SEC_SIZE, 2735 }; 2736 2737 /** 2738 * sf1_read - read data from the serial flash 2739 * @adapter: the adapter 2740 * @byte_cnt: number of bytes to read 2741 * @cont: whether another operation will be chained 2742 * @lock: whether to lock SF for PL access only 2743 * @valp: where to store the read data 2744 * 2745 * Reads up to 4 bytes of data from the serial flash. The location of 2746 * the read needs to be specified prior to calling this by issuing the 2747 * appropriate commands to the serial flash. 2748 */ 2749 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2750 int lock, u32 *valp) 2751 { 2752 int ret; 2753 2754 if (!byte_cnt || byte_cnt > 4) 2755 return -EINVAL; 2756 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2757 return -EBUSY; 2758 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2759 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2760 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2761 if (!ret) 2762 *valp = t4_read_reg(adapter, SF_DATA_A); 2763 return ret; 2764 } 2765 2766 /** 2767 * sf1_write - write data to the serial flash 2768 * @adapter: the adapter 2769 * @byte_cnt: number of bytes to write 2770 * @cont: whether another operation will be chained 2771 * @lock: whether to lock SF for PL access only 2772 * @val: value to write 2773 * 2774 * Writes up to 4 bytes of data to the serial flash. The location of 2775 * the write needs to be specified prior to calling this by issuing the 2776 * appropriate commands to the serial flash. 2777 */ 2778 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2779 int lock, u32 val) 2780 { 2781 if (!byte_cnt || byte_cnt > 4) 2782 return -EINVAL; 2783 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2784 return -EBUSY; 2785 t4_write_reg(adapter, SF_DATA_A, val); 2786 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2787 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2788 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2789 } 2790 2791 /** 2792 * flash_wait_op - wait for a flash operation to complete 2793 * @adapter: the adapter 2794 * @attempts: max number of polls of the status register 2795 * @delay: delay between polls in ms 2796 * 2797 * Wait for a flash operation to complete by polling the status register. 2798 */ 2799 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2800 { 2801 int ret; 2802 u32 status; 2803 2804 while (1) { 2805 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2806 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2807 return ret; 2808 if (!(status & 1)) 2809 return 0; 2810 if (--attempts == 0) 2811 return -EAGAIN; 2812 if (delay) 2813 msleep(delay); 2814 } 2815 } 2816 2817 /** 2818 * t4_read_flash - read words from serial flash 2819 * @adapter: the adapter 2820 * @addr: the start address for the read 2821 * @nwords: how many 32-bit words to read 2822 * @data: where to store the read data 2823 * @byte_oriented: whether to store data as bytes or as words 2824 * 2825 * Read the specified number of 32-bit words from the serial flash. 2826 * If @byte_oriented is set the read data is stored as a byte array 2827 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2828 * natural endianness. 2829 */ 2830 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2831 unsigned int nwords, u32 *data, int byte_oriented) 2832 { 2833 int ret; 2834 2835 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2836 return -EINVAL; 2837 2838 addr = swab32(addr) | SF_RD_DATA_FAST; 2839 2840 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 2841 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 2842 return ret; 2843 2844 for ( ; nwords; nwords--, data++) { 2845 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 2846 if (nwords == 1) 2847 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2848 if (ret) 2849 return ret; 2850 if (byte_oriented) 2851 *data = (__force __u32)(cpu_to_be32(*data)); 2852 } 2853 return 0; 2854 } 2855 2856 /** 2857 * t4_write_flash - write up to a page of data to the serial flash 2858 * @adapter: the adapter 2859 * @addr: the start address to write 2860 * @n: length of data to write in bytes 2861 * @data: the data to write 2862 * 2863 * Writes up to a page of data (256 bytes) to the serial flash starting 2864 * at the given address. All the data must be written to the same page. 2865 */ 2866 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 2867 unsigned int n, const u8 *data) 2868 { 2869 int ret; 2870 u32 buf[64]; 2871 unsigned int i, c, left, val, offset = addr & 0xff; 2872 2873 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 2874 return -EINVAL; 2875 2876 val = swab32(addr) | SF_PROG_PAGE; 2877 2878 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 2879 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 2880 goto unlock; 2881 2882 for (left = n; left; left -= c) { 2883 c = min(left, 4U); 2884 for (val = 0, i = 0; i < c; ++i) 2885 val = (val << 8) + *data++; 2886 2887 ret = sf1_write(adapter, c, c != left, 1, val); 2888 if (ret) 2889 goto unlock; 2890 } 2891 ret = flash_wait_op(adapter, 8, 1); 2892 if (ret) 2893 goto unlock; 2894 2895 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2896 2897 /* Read the page to verify the write succeeded */ 2898 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 2899 if (ret) 2900 return ret; 2901 2902 if (memcmp(data - n, (u8 *)buf + offset, n)) { 2903 dev_err(adapter->pdev_dev, 2904 "failed to correctly write the flash page at %#x\n", 2905 addr); 2906 return -EIO; 2907 } 2908 return 0; 2909 2910 unlock: 2911 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2912 return ret; 2913 } 2914 2915 /** 2916 * t4_get_fw_version - read the firmware version 2917 * @adapter: the adapter 2918 * @vers: where to place the version 2919 * 2920 * Reads the FW version from flash. 2921 */ 2922 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 2923 { 2924 return t4_read_flash(adapter, FLASH_FW_START + 2925 offsetof(struct fw_hdr, fw_ver), 1, 2926 vers, 0); 2927 } 2928 2929 /** 2930 * t4_get_tp_version - read the TP microcode version 2931 * @adapter: the adapter 2932 * @vers: where to place the version 2933 * 2934 * Reads the TP microcode version from flash. 2935 */ 2936 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 2937 { 2938 return t4_read_flash(adapter, FLASH_FW_START + 2939 offsetof(struct fw_hdr, tp_microcode_ver), 2940 1, vers, 0); 2941 } 2942 2943 /** 2944 * t4_get_exprom_version - return the Expansion ROM version (if any) 2945 * @adapter: the adapter 2946 * @vers: where to place the version 2947 * 2948 * Reads the Expansion ROM header from FLASH and returns the version 2949 * number (if present) through the @vers return value pointer. We return 2950 * this in the Firmware Version Format since it's convenient. Return 2951 * 0 on success, -ENOENT if no Expansion ROM is present. 2952 */ 2953 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 2954 { 2955 struct exprom_header { 2956 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 2957 unsigned char hdr_ver[4]; /* Expansion ROM version */ 2958 } *hdr; 2959 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 2960 sizeof(u32))]; 2961 int ret; 2962 2963 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 2964 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 2965 0); 2966 if (ret) 2967 return ret; 2968 2969 hdr = (struct exprom_header *)exprom_header_buf; 2970 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 2971 return -ENOENT; 2972 2973 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 2974 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 2975 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 2976 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 2977 return 0; 2978 } 2979 2980 /** 2981 * t4_check_fw_version - check if the FW is supported with this driver 2982 * @adap: the adapter 2983 * 2984 * Checks if an adapter's FW is compatible with the driver. Returns 0 2985 * if there's exact match, a negative error if the version could not be 2986 * read or there's a major version mismatch 2987 */ 2988 int t4_check_fw_version(struct adapter *adap) 2989 { 2990 int i, ret, major, minor, micro; 2991 int exp_major, exp_minor, exp_micro; 2992 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2993 2994 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 2995 /* Try multiple times before returning error */ 2996 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 2997 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 2998 2999 if (ret) 3000 return ret; 3001 3002 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3003 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3004 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3005 3006 switch (chip_version) { 3007 case CHELSIO_T4: 3008 exp_major = T4FW_MIN_VERSION_MAJOR; 3009 exp_minor = T4FW_MIN_VERSION_MINOR; 3010 exp_micro = T4FW_MIN_VERSION_MICRO; 3011 break; 3012 case CHELSIO_T5: 3013 exp_major = T5FW_MIN_VERSION_MAJOR; 3014 exp_minor = T5FW_MIN_VERSION_MINOR; 3015 exp_micro = T5FW_MIN_VERSION_MICRO; 3016 break; 3017 case CHELSIO_T6: 3018 exp_major = T6FW_MIN_VERSION_MAJOR; 3019 exp_minor = T6FW_MIN_VERSION_MINOR; 3020 exp_micro = T6FW_MIN_VERSION_MICRO; 3021 break; 3022 default: 3023 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3024 adap->chip); 3025 return -EINVAL; 3026 } 3027 3028 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3029 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3030 dev_err(adap->pdev_dev, 3031 "Card has firmware version %u.%u.%u, minimum " 3032 "supported firmware is %u.%u.%u.\n", major, minor, 3033 micro, exp_major, exp_minor, exp_micro); 3034 return -EFAULT; 3035 } 3036 return 0; 3037 } 3038 3039 /* Is the given firmware API compatible with the one the driver was compiled 3040 * with? 3041 */ 3042 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3043 { 3044 3045 /* short circuit if it's the exact same firmware version */ 3046 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3047 return 1; 3048 3049 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3050 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3051 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3052 return 1; 3053 #undef SAME_INTF 3054 3055 return 0; 3056 } 3057 3058 /* The firmware in the filesystem is usable, but should it be installed? 3059 * This routine explains itself in detail if it indicates the filesystem 3060 * firmware should be installed. 3061 */ 3062 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3063 int k, int c) 3064 { 3065 const char *reason; 3066 3067 if (!card_fw_usable) { 3068 reason = "incompatible or unusable"; 3069 goto install; 3070 } 3071 3072 if (k > c) { 3073 reason = "older than the version supported with this driver"; 3074 goto install; 3075 } 3076 3077 return 0; 3078 3079 install: 3080 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3081 "installing firmware %u.%u.%u.%u on card.\n", 3082 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3083 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3084 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3085 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3086 3087 return 1; 3088 } 3089 3090 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3091 const u8 *fw_data, unsigned int fw_size, 3092 struct fw_hdr *card_fw, enum dev_state state, 3093 int *reset) 3094 { 3095 int ret, card_fw_usable, fs_fw_usable; 3096 const struct fw_hdr *fs_fw; 3097 const struct fw_hdr *drv_fw; 3098 3099 drv_fw = &fw_info->fw_hdr; 3100 3101 /* Read the header of the firmware on the card */ 3102 ret = -t4_read_flash(adap, FLASH_FW_START, 3103 sizeof(*card_fw) / sizeof(uint32_t), 3104 (uint32_t *)card_fw, 1); 3105 if (ret == 0) { 3106 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3107 } else { 3108 dev_err(adap->pdev_dev, 3109 "Unable to read card's firmware header: %d\n", ret); 3110 card_fw_usable = 0; 3111 } 3112 3113 if (fw_data != NULL) { 3114 fs_fw = (const void *)fw_data; 3115 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3116 } else { 3117 fs_fw = NULL; 3118 fs_fw_usable = 0; 3119 } 3120 3121 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3122 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3123 /* Common case: the firmware on the card is an exact match and 3124 * the filesystem one is an exact match too, or the filesystem 3125 * one is absent/incompatible. 3126 */ 3127 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3128 should_install_fs_fw(adap, card_fw_usable, 3129 be32_to_cpu(fs_fw->fw_ver), 3130 be32_to_cpu(card_fw->fw_ver))) { 3131 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3132 fw_size, 0); 3133 if (ret != 0) { 3134 dev_err(adap->pdev_dev, 3135 "failed to install firmware: %d\n", ret); 3136 goto bye; 3137 } 3138 3139 /* Installed successfully, update the cached header too. */ 3140 *card_fw = *fs_fw; 3141 card_fw_usable = 1; 3142 *reset = 0; /* already reset as part of load_fw */ 3143 } 3144 3145 if (!card_fw_usable) { 3146 uint32_t d, c, k; 3147 3148 d = be32_to_cpu(drv_fw->fw_ver); 3149 c = be32_to_cpu(card_fw->fw_ver); 3150 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3151 3152 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3153 "chip state %d, " 3154 "driver compiled with %d.%d.%d.%d, " 3155 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3156 state, 3157 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3158 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3159 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3160 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3161 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3162 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3163 ret = EINVAL; 3164 goto bye; 3165 } 3166 3167 /* We're using whatever's on the card and it's known to be good. */ 3168 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3169 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3170 3171 bye: 3172 return ret; 3173 } 3174 3175 /** 3176 * t4_flash_erase_sectors - erase a range of flash sectors 3177 * @adapter: the adapter 3178 * @start: the first sector to erase 3179 * @end: the last sector to erase 3180 * 3181 * Erases the sectors in the given inclusive range. 3182 */ 3183 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3184 { 3185 int ret = 0; 3186 3187 if (end >= adapter->params.sf_nsec) 3188 return -EINVAL; 3189 3190 while (start <= end) { 3191 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3192 (ret = sf1_write(adapter, 4, 0, 1, 3193 SF_ERASE_SECTOR | (start << 8))) != 0 || 3194 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3195 dev_err(adapter->pdev_dev, 3196 "erase of flash sector %d failed, error %d\n", 3197 start, ret); 3198 break; 3199 } 3200 start++; 3201 } 3202 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3203 return ret; 3204 } 3205 3206 /** 3207 * t4_flash_cfg_addr - return the address of the flash configuration file 3208 * @adapter: the adapter 3209 * 3210 * Return the address within the flash where the Firmware Configuration 3211 * File is stored. 3212 */ 3213 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3214 { 3215 if (adapter->params.sf_size == 0x100000) 3216 return FLASH_FPGA_CFG_START; 3217 else 3218 return FLASH_CFG_START; 3219 } 3220 3221 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3222 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3223 * and emit an error message for mismatched firmware to save our caller the 3224 * effort ... 3225 */ 3226 static bool t4_fw_matches_chip(const struct adapter *adap, 3227 const struct fw_hdr *hdr) 3228 { 3229 /* The expression below will return FALSE for any unsupported adapter 3230 * which will keep us "honest" in the future ... 3231 */ 3232 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3233 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3234 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3235 return true; 3236 3237 dev_err(adap->pdev_dev, 3238 "FW image (%d) is not suitable for this adapter (%d)\n", 3239 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3240 return false; 3241 } 3242 3243 /** 3244 * t4_load_fw - download firmware 3245 * @adap: the adapter 3246 * @fw_data: the firmware image to write 3247 * @size: image size 3248 * 3249 * Write the supplied firmware image to the card's serial flash. 3250 */ 3251 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3252 { 3253 u32 csum; 3254 int ret, addr; 3255 unsigned int i; 3256 u8 first_page[SF_PAGE_SIZE]; 3257 const __be32 *p = (const __be32 *)fw_data; 3258 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3259 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3260 unsigned int fw_img_start = adap->params.sf_fw_start; 3261 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 3262 3263 if (!size) { 3264 dev_err(adap->pdev_dev, "FW image has no data\n"); 3265 return -EINVAL; 3266 } 3267 if (size & 511) { 3268 dev_err(adap->pdev_dev, 3269 "FW image size not multiple of 512 bytes\n"); 3270 return -EINVAL; 3271 } 3272 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3273 dev_err(adap->pdev_dev, 3274 "FW image size differs from size in FW header\n"); 3275 return -EINVAL; 3276 } 3277 if (size > FW_MAX_SIZE) { 3278 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3279 FW_MAX_SIZE); 3280 return -EFBIG; 3281 } 3282 if (!t4_fw_matches_chip(adap, hdr)) 3283 return -EINVAL; 3284 3285 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3286 csum += be32_to_cpu(p[i]); 3287 3288 if (csum != 0xffffffff) { 3289 dev_err(adap->pdev_dev, 3290 "corrupted firmware image, checksum %#x\n", csum); 3291 return -EINVAL; 3292 } 3293 3294 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3295 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3296 if (ret) 3297 goto out; 3298 3299 /* 3300 * We write the correct version at the end so the driver can see a bad 3301 * version if the FW write fails. Start by writing a copy of the 3302 * first page with a bad version. 3303 */ 3304 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3305 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3306 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 3307 if (ret) 3308 goto out; 3309 3310 addr = fw_img_start; 3311 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3312 addr += SF_PAGE_SIZE; 3313 fw_data += SF_PAGE_SIZE; 3314 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3315 if (ret) 3316 goto out; 3317 } 3318 3319 ret = t4_write_flash(adap, 3320 fw_img_start + offsetof(struct fw_hdr, fw_ver), 3321 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3322 out: 3323 if (ret) 3324 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3325 ret); 3326 else 3327 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3328 return ret; 3329 } 3330 3331 /** 3332 * t4_phy_fw_ver - return current PHY firmware version 3333 * @adap: the adapter 3334 * @phy_fw_ver: return value buffer for PHY firmware version 3335 * 3336 * Returns the current version of external PHY firmware on the 3337 * adapter. 3338 */ 3339 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3340 { 3341 u32 param, val; 3342 int ret; 3343 3344 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3345 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3346 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3347 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3348 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3349 ¶m, &val); 3350 if (ret < 0) 3351 return ret; 3352 *phy_fw_ver = val; 3353 return 0; 3354 } 3355 3356 /** 3357 * t4_load_phy_fw - download port PHY firmware 3358 * @adap: the adapter 3359 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3360 * @win_lock: the lock to use to guard the memory copy 3361 * @phy_fw_version: function to check PHY firmware versions 3362 * @phy_fw_data: the PHY firmware image to write 3363 * @phy_fw_size: image size 3364 * 3365 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3366 * @phy_fw_version is supplied, then it will be used to determine if 3367 * it's necessary to perform the transfer by comparing the version 3368 * of any existing adapter PHY firmware with that of the passed in 3369 * PHY firmware image. If @win_lock is non-NULL then it will be used 3370 * around the call to t4_memory_rw() which transfers the PHY firmware 3371 * to the adapter. 3372 * 3373 * A negative error number will be returned if an error occurs. If 3374 * version number support is available and there's no need to upgrade 3375 * the firmware, 0 will be returned. If firmware is successfully 3376 * transferred to the adapter, 1 will be retured. 3377 * 3378 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3379 * a result, a RESET of the adapter would cause that RAM to lose its 3380 * contents. Thus, loading PHY firmware on such adapters must happen 3381 * after any FW_RESET_CMDs ... 3382 */ 3383 int t4_load_phy_fw(struct adapter *adap, 3384 int win, spinlock_t *win_lock, 3385 int (*phy_fw_version)(const u8 *, size_t), 3386 const u8 *phy_fw_data, size_t phy_fw_size) 3387 { 3388 unsigned long mtype = 0, maddr = 0; 3389 u32 param, val; 3390 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3391 int ret; 3392 3393 /* If we have version number support, then check to see if the adapter 3394 * already has up-to-date PHY firmware loaded. 3395 */ 3396 if (phy_fw_version) { 3397 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3398 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3399 if (ret < 0) 3400 return ret; 3401 3402 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3403 CH_WARN(adap, "PHY Firmware already up-to-date, " 3404 "version %#x\n", cur_phy_fw_ver); 3405 return 0; 3406 } 3407 } 3408 3409 /* Ask the firmware where it wants us to copy the PHY firmware image. 3410 * The size of the file requires a special version of the READ coommand 3411 * which will pass the file size via the values field in PARAMS_CMD and 3412 * retrieve the return value from firmware and place it in the same 3413 * buffer values 3414 */ 3415 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3416 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3417 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3418 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3419 val = phy_fw_size; 3420 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3421 ¶m, &val, 1); 3422 if (ret < 0) 3423 return ret; 3424 mtype = val >> 8; 3425 maddr = (val & 0xff) << 16; 3426 3427 /* Copy the supplied PHY Firmware image to the adapter memory location 3428 * allocated by the adapter firmware. 3429 */ 3430 if (win_lock) 3431 spin_lock_bh(win_lock); 3432 ret = t4_memory_rw(adap, win, mtype, maddr, 3433 phy_fw_size, (__be32 *)phy_fw_data, 3434 T4_MEMORY_WRITE); 3435 if (win_lock) 3436 spin_unlock_bh(win_lock); 3437 if (ret) 3438 return ret; 3439 3440 /* Tell the firmware that the PHY firmware image has been written to 3441 * RAM and it can now start copying it over to the PHYs. The chip 3442 * firmware will RESET the affected PHYs as part of this operation 3443 * leaving them running the new PHY firmware image. 3444 */ 3445 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3446 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3447 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3448 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3449 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3450 ¶m, &val, 30000); 3451 3452 /* If we have version number support, then check to see that the new 3453 * firmware got loaded properly. 3454 */ 3455 if (phy_fw_version) { 3456 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3457 if (ret < 0) 3458 return ret; 3459 3460 if (cur_phy_fw_ver != new_phy_fw_vers) { 3461 CH_WARN(adap, "PHY Firmware did not update: " 3462 "version on adapter %#x, " 3463 "version flashed %#x\n", 3464 cur_phy_fw_ver, new_phy_fw_vers); 3465 return -ENXIO; 3466 } 3467 } 3468 3469 return 1; 3470 } 3471 3472 /** 3473 * t4_fwcache - firmware cache operation 3474 * @adap: the adapter 3475 * @op : the operation (flush or flush and invalidate) 3476 */ 3477 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3478 { 3479 struct fw_params_cmd c; 3480 3481 memset(&c, 0, sizeof(c)); 3482 c.op_to_vfn = 3483 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3484 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3485 FW_PARAMS_CMD_PFN_V(adap->pf) | 3486 FW_PARAMS_CMD_VFN_V(0)); 3487 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3488 c.param[0].mnem = 3489 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3490 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3491 c.param[0].val = (__force __be32)op; 3492 3493 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3494 } 3495 3496 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3497 unsigned int *pif_req_wrptr, 3498 unsigned int *pif_rsp_wrptr) 3499 { 3500 int i, j; 3501 u32 cfg, val, req, rsp; 3502 3503 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3504 if (cfg & LADBGEN_F) 3505 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3506 3507 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3508 req = POLADBGWRPTR_G(val); 3509 rsp = PILADBGWRPTR_G(val); 3510 if (pif_req_wrptr) 3511 *pif_req_wrptr = req; 3512 if (pif_rsp_wrptr) 3513 *pif_rsp_wrptr = rsp; 3514 3515 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3516 for (j = 0; j < 6; j++) { 3517 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3518 PILADBGRDPTR_V(rsp)); 3519 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3520 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3521 req++; 3522 rsp++; 3523 } 3524 req = (req + 2) & POLADBGRDPTR_M; 3525 rsp = (rsp + 2) & PILADBGRDPTR_M; 3526 } 3527 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3528 } 3529 3530 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3531 { 3532 u32 cfg; 3533 int i, j, idx; 3534 3535 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3536 if (cfg & LADBGEN_F) 3537 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3538 3539 for (i = 0; i < CIM_MALA_SIZE; i++) { 3540 for (j = 0; j < 5; j++) { 3541 idx = 8 * i + j; 3542 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3543 PILADBGRDPTR_V(idx)); 3544 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3545 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3546 } 3547 } 3548 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3549 } 3550 3551 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3552 { 3553 unsigned int i, j; 3554 3555 for (i = 0; i < 8; i++) { 3556 u32 *p = la_buf + i; 3557 3558 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3559 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3560 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3561 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3562 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3563 } 3564 } 3565 3566 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 3567 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \ 3568 FW_PORT_CAP_ANEG) 3569 3570 /** 3571 * t4_link_l1cfg - apply link configuration to MAC/PHY 3572 * @phy: the PHY to setup 3573 * @mac: the MAC to setup 3574 * @lc: the requested link configuration 3575 * 3576 * Set up a port's MAC and PHY according to a desired link configuration. 3577 * - If the PHY can auto-negotiate first decide what to advertise, then 3578 * enable/disable auto-negotiation as desired, and reset. 3579 * - If the PHY does not auto-negotiate just reset it. 3580 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3581 * otherwise do it later based on the outcome of auto-negotiation. 3582 */ 3583 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3584 struct link_config *lc) 3585 { 3586 struct fw_port_cmd c; 3587 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO); 3588 3589 lc->link_ok = 0; 3590 if (lc->requested_fc & PAUSE_RX) 3591 fc |= FW_PORT_CAP_FC_RX; 3592 if (lc->requested_fc & PAUSE_TX) 3593 fc |= FW_PORT_CAP_FC_TX; 3594 3595 memset(&c, 0, sizeof(c)); 3596 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 3597 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 3598 FW_PORT_CMD_PORTID_V(port)); 3599 c.action_to_len16 = 3600 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 3601 FW_LEN16(c)); 3602 3603 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 3604 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) | 3605 fc); 3606 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 3607 } else if (lc->autoneg == AUTONEG_DISABLE) { 3608 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi); 3609 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 3610 } else 3611 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi); 3612 3613 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3614 } 3615 3616 /** 3617 * t4_restart_aneg - restart autonegotiation 3618 * @adap: the adapter 3619 * @mbox: mbox to use for the FW command 3620 * @port: the port id 3621 * 3622 * Restarts autonegotiation for the selected port. 3623 */ 3624 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 3625 { 3626 struct fw_port_cmd c; 3627 3628 memset(&c, 0, sizeof(c)); 3629 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 3630 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 3631 FW_PORT_CMD_PORTID_V(port)); 3632 c.action_to_len16 = 3633 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 3634 FW_LEN16(c)); 3635 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 3636 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3637 } 3638 3639 typedef void (*int_handler_t)(struct adapter *adap); 3640 3641 struct intr_info { 3642 unsigned int mask; /* bits to check in interrupt status */ 3643 const char *msg; /* message to print or NULL */ 3644 short stat_idx; /* stat counter to increment or -1 */ 3645 unsigned short fatal; /* whether the condition reported is fatal */ 3646 int_handler_t int_handler; /* platform-specific int handler */ 3647 }; 3648 3649 /** 3650 * t4_handle_intr_status - table driven interrupt handler 3651 * @adapter: the adapter that generated the interrupt 3652 * @reg: the interrupt status register to process 3653 * @acts: table of interrupt actions 3654 * 3655 * A table driven interrupt handler that applies a set of masks to an 3656 * interrupt status word and performs the corresponding actions if the 3657 * interrupts described by the mask have occurred. The actions include 3658 * optionally emitting a warning or alert message. The table is terminated 3659 * by an entry specifying mask 0. Returns the number of fatal interrupt 3660 * conditions. 3661 */ 3662 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 3663 const struct intr_info *acts) 3664 { 3665 int fatal = 0; 3666 unsigned int mask = 0; 3667 unsigned int status = t4_read_reg(adapter, reg); 3668 3669 for ( ; acts->mask; ++acts) { 3670 if (!(status & acts->mask)) 3671 continue; 3672 if (acts->fatal) { 3673 fatal++; 3674 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 3675 status & acts->mask); 3676 } else if (acts->msg && printk_ratelimit()) 3677 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 3678 status & acts->mask); 3679 if (acts->int_handler) 3680 acts->int_handler(adapter); 3681 mask |= acts->mask; 3682 } 3683 status &= mask; 3684 if (status) /* clear processed interrupts */ 3685 t4_write_reg(adapter, reg, status); 3686 return fatal; 3687 } 3688 3689 /* 3690 * Interrupt handler for the PCIE module. 3691 */ 3692 static void pcie_intr_handler(struct adapter *adapter) 3693 { 3694 static const struct intr_info sysbus_intr_info[] = { 3695 { RNPP_F, "RXNP array parity error", -1, 1 }, 3696 { RPCP_F, "RXPC array parity error", -1, 1 }, 3697 { RCIP_F, "RXCIF array parity error", -1, 1 }, 3698 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 3699 { RFTP_F, "RXFT array parity error", -1, 1 }, 3700 { 0 } 3701 }; 3702 static const struct intr_info pcie_port_intr_info[] = { 3703 { TPCP_F, "TXPC array parity error", -1, 1 }, 3704 { TNPP_F, "TXNP array parity error", -1, 1 }, 3705 { TFTP_F, "TXFT array parity error", -1, 1 }, 3706 { TCAP_F, "TXCA array parity error", -1, 1 }, 3707 { TCIP_F, "TXCIF array parity error", -1, 1 }, 3708 { RCAP_F, "RXCA array parity error", -1, 1 }, 3709 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 3710 { RDPE_F, "Rx data parity error", -1, 1 }, 3711 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 3712 { 0 } 3713 }; 3714 static const struct intr_info pcie_intr_info[] = { 3715 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 3716 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 3717 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 3718 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 3719 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 3720 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 3721 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 3722 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 3723 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 3724 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 3725 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 3726 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 3727 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 3728 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 3729 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 3730 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 3731 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 3732 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 3733 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 3734 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 3735 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 3736 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 3737 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 3738 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 3739 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 3740 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 3741 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 3742 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 3743 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 3744 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 3745 -1, 0 }, 3746 { 0 } 3747 }; 3748 3749 static struct intr_info t5_pcie_intr_info[] = { 3750 { MSTGRPPERR_F, "Master Response Read Queue parity error", 3751 -1, 1 }, 3752 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 3753 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 3754 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 3755 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 3756 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 3757 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 3758 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 3759 -1, 1 }, 3760 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 3761 -1, 1 }, 3762 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 3763 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 3764 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 3765 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 3766 { DREQWRPERR_F, "PCI DMA channel write request parity error", 3767 -1, 1 }, 3768 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 3769 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 3770 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 3771 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 3772 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 3773 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 3774 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 3775 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 3776 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 3777 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 3778 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 3779 -1, 1 }, 3780 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 3781 -1, 1 }, 3782 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 3783 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 3784 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 3785 { READRSPERR_F, "Outbound read error", -1, 0 }, 3786 { 0 } 3787 }; 3788 3789 int fat; 3790 3791 if (is_t4(adapter->params.chip)) 3792 fat = t4_handle_intr_status(adapter, 3793 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 3794 sysbus_intr_info) + 3795 t4_handle_intr_status(adapter, 3796 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 3797 pcie_port_intr_info) + 3798 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 3799 pcie_intr_info); 3800 else 3801 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 3802 t5_pcie_intr_info); 3803 3804 if (fat) 3805 t4_fatal_err(adapter); 3806 } 3807 3808 /* 3809 * TP interrupt handler. 3810 */ 3811 static void tp_intr_handler(struct adapter *adapter) 3812 { 3813 static const struct intr_info tp_intr_info[] = { 3814 { 0x3fffffff, "TP parity error", -1, 1 }, 3815 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 3816 { 0 } 3817 }; 3818 3819 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 3820 t4_fatal_err(adapter); 3821 } 3822 3823 /* 3824 * SGE interrupt handler. 3825 */ 3826 static void sge_intr_handler(struct adapter *adapter) 3827 { 3828 u64 v; 3829 u32 err; 3830 3831 static const struct intr_info sge_intr_info[] = { 3832 { ERR_CPL_EXCEED_IQE_SIZE_F, 3833 "SGE received CPL exceeding IQE size", -1, 1 }, 3834 { ERR_INVALID_CIDX_INC_F, 3835 "SGE GTS CIDX increment too large", -1, 0 }, 3836 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 3837 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 3838 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 3839 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 3840 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 3841 0 }, 3842 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 3843 0 }, 3844 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 3845 0 }, 3846 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 3847 0 }, 3848 { ERR_ING_CTXT_PRIO_F, 3849 "SGE too many priority ingress contexts", -1, 0 }, 3850 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 3851 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 3852 { 0 } 3853 }; 3854 3855 static struct intr_info t4t5_sge_intr_info[] = { 3856 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 3857 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 3858 { ERR_EGR_CTXT_PRIO_F, 3859 "SGE too many priority egress contexts", -1, 0 }, 3860 { 0 } 3861 }; 3862 3863 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 3864 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 3865 if (v) { 3866 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 3867 (unsigned long long)v); 3868 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 3869 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 3870 } 3871 3872 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 3873 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 3874 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 3875 t4t5_sge_intr_info); 3876 3877 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 3878 if (err & ERROR_QID_VALID_F) { 3879 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 3880 ERROR_QID_G(err)); 3881 if (err & UNCAPTURED_ERROR_F) 3882 dev_err(adapter->pdev_dev, 3883 "SGE UNCAPTURED_ERROR set (clearing)\n"); 3884 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 3885 UNCAPTURED_ERROR_F); 3886 } 3887 3888 if (v != 0) 3889 t4_fatal_err(adapter); 3890 } 3891 3892 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 3893 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 3894 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 3895 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 3896 3897 /* 3898 * CIM interrupt handler. 3899 */ 3900 static void cim_intr_handler(struct adapter *adapter) 3901 { 3902 static const struct intr_info cim_intr_info[] = { 3903 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 3904 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 3905 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 3906 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 3907 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 3908 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 3909 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 3910 { 0 } 3911 }; 3912 static const struct intr_info cim_upintr_info[] = { 3913 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 3914 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 3915 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 3916 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 3917 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 3918 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 3919 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 3920 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 3921 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 3922 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 3923 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 3924 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 3925 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 3926 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 3927 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 3928 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 3929 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 3930 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 3931 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 3932 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 3933 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 3934 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 3935 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 3936 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 3937 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 3938 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 3939 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 3940 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 3941 { 0 } 3942 }; 3943 3944 int fat; 3945 3946 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F) 3947 t4_report_fw_error(adapter); 3948 3949 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 3950 cim_intr_info) + 3951 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 3952 cim_upintr_info); 3953 if (fat) 3954 t4_fatal_err(adapter); 3955 } 3956 3957 /* 3958 * ULP RX interrupt handler. 3959 */ 3960 static void ulprx_intr_handler(struct adapter *adapter) 3961 { 3962 static const struct intr_info ulprx_intr_info[] = { 3963 { 0x1800000, "ULPRX context error", -1, 1 }, 3964 { 0x7fffff, "ULPRX parity error", -1, 1 }, 3965 { 0 } 3966 }; 3967 3968 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 3969 t4_fatal_err(adapter); 3970 } 3971 3972 /* 3973 * ULP TX interrupt handler. 3974 */ 3975 static void ulptx_intr_handler(struct adapter *adapter) 3976 { 3977 static const struct intr_info ulptx_intr_info[] = { 3978 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 3979 0 }, 3980 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 3981 0 }, 3982 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 3983 0 }, 3984 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 3985 0 }, 3986 { 0xfffffff, "ULPTX parity error", -1, 1 }, 3987 { 0 } 3988 }; 3989 3990 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 3991 t4_fatal_err(adapter); 3992 } 3993 3994 /* 3995 * PM TX interrupt handler. 3996 */ 3997 static void pmtx_intr_handler(struct adapter *adapter) 3998 { 3999 static const struct intr_info pmtx_intr_info[] = { 4000 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4001 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4002 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4003 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4004 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4005 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4006 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4007 -1, 1 }, 4008 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4009 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4010 { 0 } 4011 }; 4012 4013 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4014 t4_fatal_err(adapter); 4015 } 4016 4017 /* 4018 * PM RX interrupt handler. 4019 */ 4020 static void pmrx_intr_handler(struct adapter *adapter) 4021 { 4022 static const struct intr_info pmrx_intr_info[] = { 4023 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4024 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4025 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4026 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4027 -1, 1 }, 4028 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4029 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4030 { 0 } 4031 }; 4032 4033 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4034 t4_fatal_err(adapter); 4035 } 4036 4037 /* 4038 * CPL switch interrupt handler. 4039 */ 4040 static void cplsw_intr_handler(struct adapter *adapter) 4041 { 4042 static const struct intr_info cplsw_intr_info[] = { 4043 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4044 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4045 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4046 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4047 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4048 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4049 { 0 } 4050 }; 4051 4052 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4053 t4_fatal_err(adapter); 4054 } 4055 4056 /* 4057 * LE interrupt handler. 4058 */ 4059 static void le_intr_handler(struct adapter *adap) 4060 { 4061 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4062 static const struct intr_info le_intr_info[] = { 4063 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4064 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4065 { PARITYERR_F, "LE parity error", -1, 1 }, 4066 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4067 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4068 { 0 } 4069 }; 4070 4071 static struct intr_info t6_le_intr_info[] = { 4072 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4073 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4074 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4075 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4076 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4077 { 0 } 4078 }; 4079 4080 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4081 (chip <= CHELSIO_T5) ? 4082 le_intr_info : t6_le_intr_info)) 4083 t4_fatal_err(adap); 4084 } 4085 4086 /* 4087 * MPS interrupt handler. 4088 */ 4089 static void mps_intr_handler(struct adapter *adapter) 4090 { 4091 static const struct intr_info mps_rx_intr_info[] = { 4092 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4093 { 0 } 4094 }; 4095 static const struct intr_info mps_tx_intr_info[] = { 4096 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4097 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4098 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4099 -1, 1 }, 4100 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4101 -1, 1 }, 4102 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4103 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4104 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4105 { 0 } 4106 }; 4107 static const struct intr_info mps_trc_intr_info[] = { 4108 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4109 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4110 -1, 1 }, 4111 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4112 { 0 } 4113 }; 4114 static const struct intr_info mps_stat_sram_intr_info[] = { 4115 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4116 { 0 } 4117 }; 4118 static const struct intr_info mps_stat_tx_intr_info[] = { 4119 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4120 { 0 } 4121 }; 4122 static const struct intr_info mps_stat_rx_intr_info[] = { 4123 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4124 { 0 } 4125 }; 4126 static const struct intr_info mps_cls_intr_info[] = { 4127 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4128 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4129 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4130 { 0 } 4131 }; 4132 4133 int fat; 4134 4135 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4136 mps_rx_intr_info) + 4137 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4138 mps_tx_intr_info) + 4139 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4140 mps_trc_intr_info) + 4141 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4142 mps_stat_sram_intr_info) + 4143 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4144 mps_stat_tx_intr_info) + 4145 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4146 mps_stat_rx_intr_info) + 4147 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4148 mps_cls_intr_info); 4149 4150 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4151 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4152 if (fat) 4153 t4_fatal_err(adapter); 4154 } 4155 4156 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4157 ECC_UE_INT_CAUSE_F) 4158 4159 /* 4160 * EDC/MC interrupt handler. 4161 */ 4162 static void mem_intr_handler(struct adapter *adapter, int idx) 4163 { 4164 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4165 4166 unsigned int addr, cnt_addr, v; 4167 4168 if (idx <= MEM_EDC1) { 4169 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4170 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4171 } else if (idx == MEM_MC) { 4172 if (is_t4(adapter->params.chip)) { 4173 addr = MC_INT_CAUSE_A; 4174 cnt_addr = MC_ECC_STATUS_A; 4175 } else { 4176 addr = MC_P_INT_CAUSE_A; 4177 cnt_addr = MC_P_ECC_STATUS_A; 4178 } 4179 } else { 4180 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4181 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4182 } 4183 4184 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4185 if (v & PERR_INT_CAUSE_F) 4186 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4187 name[idx]); 4188 if (v & ECC_CE_INT_CAUSE_F) { 4189 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4190 4191 t4_edc_err_read(adapter, idx); 4192 4193 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4194 if (printk_ratelimit()) 4195 dev_warn(adapter->pdev_dev, 4196 "%u %s correctable ECC data error%s\n", 4197 cnt, name[idx], cnt > 1 ? "s" : ""); 4198 } 4199 if (v & ECC_UE_INT_CAUSE_F) 4200 dev_alert(adapter->pdev_dev, 4201 "%s uncorrectable ECC data error\n", name[idx]); 4202 4203 t4_write_reg(adapter, addr, v); 4204 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4205 t4_fatal_err(adapter); 4206 } 4207 4208 /* 4209 * MA interrupt handler. 4210 */ 4211 static void ma_intr_handler(struct adapter *adap) 4212 { 4213 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4214 4215 if (status & MEM_PERR_INT_CAUSE_F) { 4216 dev_alert(adap->pdev_dev, 4217 "MA parity error, parity status %#x\n", 4218 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4219 if (is_t5(adap->params.chip)) 4220 dev_alert(adap->pdev_dev, 4221 "MA parity error, parity status %#x\n", 4222 t4_read_reg(adap, 4223 MA_PARITY_ERROR_STATUS2_A)); 4224 } 4225 if (status & MEM_WRAP_INT_CAUSE_F) { 4226 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4227 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4228 "client %u to address %#x\n", 4229 MEM_WRAP_CLIENT_NUM_G(v), 4230 MEM_WRAP_ADDRESS_G(v) << 4); 4231 } 4232 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4233 t4_fatal_err(adap); 4234 } 4235 4236 /* 4237 * SMB interrupt handler. 4238 */ 4239 static void smb_intr_handler(struct adapter *adap) 4240 { 4241 static const struct intr_info smb_intr_info[] = { 4242 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4243 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4244 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4245 { 0 } 4246 }; 4247 4248 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4249 t4_fatal_err(adap); 4250 } 4251 4252 /* 4253 * NC-SI interrupt handler. 4254 */ 4255 static void ncsi_intr_handler(struct adapter *adap) 4256 { 4257 static const struct intr_info ncsi_intr_info[] = { 4258 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4259 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4260 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4261 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4262 { 0 } 4263 }; 4264 4265 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4266 t4_fatal_err(adap); 4267 } 4268 4269 /* 4270 * XGMAC interrupt handler. 4271 */ 4272 static void xgmac_intr_handler(struct adapter *adap, int port) 4273 { 4274 u32 v, int_cause_reg; 4275 4276 if (is_t4(adap->params.chip)) 4277 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4278 else 4279 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4280 4281 v = t4_read_reg(adap, int_cause_reg); 4282 4283 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4284 if (!v) 4285 return; 4286 4287 if (v & TXFIFO_PRTY_ERR_F) 4288 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4289 port); 4290 if (v & RXFIFO_PRTY_ERR_F) 4291 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4292 port); 4293 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4294 t4_fatal_err(adap); 4295 } 4296 4297 /* 4298 * PL interrupt handler. 4299 */ 4300 static void pl_intr_handler(struct adapter *adap) 4301 { 4302 static const struct intr_info pl_intr_info[] = { 4303 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4304 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4305 { 0 } 4306 }; 4307 4308 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4309 t4_fatal_err(adap); 4310 } 4311 4312 #define PF_INTR_MASK (PFSW_F) 4313 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4314 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4315 CPL_SWITCH_F | SGE_F | ULP_TX_F) 4316 4317 /** 4318 * t4_slow_intr_handler - control path interrupt handler 4319 * @adapter: the adapter 4320 * 4321 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4322 * The designation 'slow' is because it involves register reads, while 4323 * data interrupts typically don't involve any MMIOs. 4324 */ 4325 int t4_slow_intr_handler(struct adapter *adapter) 4326 { 4327 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4328 4329 if (!(cause & GLBL_INTR_MASK)) 4330 return 0; 4331 if (cause & CIM_F) 4332 cim_intr_handler(adapter); 4333 if (cause & MPS_F) 4334 mps_intr_handler(adapter); 4335 if (cause & NCSI_F) 4336 ncsi_intr_handler(adapter); 4337 if (cause & PL_F) 4338 pl_intr_handler(adapter); 4339 if (cause & SMB_F) 4340 smb_intr_handler(adapter); 4341 if (cause & XGMAC0_F) 4342 xgmac_intr_handler(adapter, 0); 4343 if (cause & XGMAC1_F) 4344 xgmac_intr_handler(adapter, 1); 4345 if (cause & XGMAC_KR0_F) 4346 xgmac_intr_handler(adapter, 2); 4347 if (cause & XGMAC_KR1_F) 4348 xgmac_intr_handler(adapter, 3); 4349 if (cause & PCIE_F) 4350 pcie_intr_handler(adapter); 4351 if (cause & MC_F) 4352 mem_intr_handler(adapter, MEM_MC); 4353 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4354 mem_intr_handler(adapter, MEM_MC1); 4355 if (cause & EDC0_F) 4356 mem_intr_handler(adapter, MEM_EDC0); 4357 if (cause & EDC1_F) 4358 mem_intr_handler(adapter, MEM_EDC1); 4359 if (cause & LE_F) 4360 le_intr_handler(adapter); 4361 if (cause & TP_F) 4362 tp_intr_handler(adapter); 4363 if (cause & MA_F) 4364 ma_intr_handler(adapter); 4365 if (cause & PM_TX_F) 4366 pmtx_intr_handler(adapter); 4367 if (cause & PM_RX_F) 4368 pmrx_intr_handler(adapter); 4369 if (cause & ULP_RX_F) 4370 ulprx_intr_handler(adapter); 4371 if (cause & CPL_SWITCH_F) 4372 cplsw_intr_handler(adapter); 4373 if (cause & SGE_F) 4374 sge_intr_handler(adapter); 4375 if (cause & ULP_TX_F) 4376 ulptx_intr_handler(adapter); 4377 4378 /* Clear the interrupts just processed for which we are the master. */ 4379 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4380 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4381 return 1; 4382 } 4383 4384 /** 4385 * t4_intr_enable - enable interrupts 4386 * @adapter: the adapter whose interrupts should be enabled 4387 * 4388 * Enable PF-specific interrupts for the calling function and the top-level 4389 * interrupt concentrator for global interrupts. Interrupts are already 4390 * enabled at each module, here we just enable the roots of the interrupt 4391 * hierarchies. 4392 * 4393 * Note: this function should be called only when the driver manages 4394 * non PF-specific interrupts from the various HW modules. Only one PCI 4395 * function at a time should be doing this. 4396 */ 4397 void t4_intr_enable(struct adapter *adapter) 4398 { 4399 u32 val = 0; 4400 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4401 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4402 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4403 4404 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4405 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4406 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4407 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4408 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4409 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4410 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4411 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4412 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4413 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4414 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4415 } 4416 4417 /** 4418 * t4_intr_disable - disable interrupts 4419 * @adapter: the adapter whose interrupts should be disabled 4420 * 4421 * Disable interrupts. We only disable the top-level interrupt 4422 * concentrators. The caller must be a PCI function managing global 4423 * interrupts. 4424 */ 4425 void t4_intr_disable(struct adapter *adapter) 4426 { 4427 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4428 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4429 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4430 4431 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4432 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4433 } 4434 4435 /** 4436 * hash_mac_addr - return the hash value of a MAC address 4437 * @addr: the 48-bit Ethernet MAC address 4438 * 4439 * Hashes a MAC address according to the hash function used by HW inexact 4440 * (hash) address matching. 4441 */ 4442 static int hash_mac_addr(const u8 *addr) 4443 { 4444 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 4445 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 4446 a ^= b; 4447 a ^= (a >> 12); 4448 a ^= (a >> 6); 4449 return a & 0x3f; 4450 } 4451 4452 /** 4453 * t4_config_rss_range - configure a portion of the RSS mapping table 4454 * @adapter: the adapter 4455 * @mbox: mbox to use for the FW command 4456 * @viid: virtual interface whose RSS subtable is to be written 4457 * @start: start entry in the table to write 4458 * @n: how many table entries to write 4459 * @rspq: values for the response queue lookup table 4460 * @nrspq: number of values in @rspq 4461 * 4462 * Programs the selected part of the VI's RSS mapping table with the 4463 * provided values. If @nrspq < @n the supplied values are used repeatedly 4464 * until the full table range is populated. 4465 * 4466 * The caller must ensure the values in @rspq are in the range allowed for 4467 * @viid. 4468 */ 4469 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 4470 int start, int n, const u16 *rspq, unsigned int nrspq) 4471 { 4472 int ret; 4473 const u16 *rsp = rspq; 4474 const u16 *rsp_end = rspq + nrspq; 4475 struct fw_rss_ind_tbl_cmd cmd; 4476 4477 memset(&cmd, 0, sizeof(cmd)); 4478 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 4479 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4480 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 4481 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 4482 4483 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 4484 while (n > 0) { 4485 int nq = min(n, 32); 4486 __be32 *qp = &cmd.iq0_to_iq2; 4487 4488 cmd.niqid = cpu_to_be16(nq); 4489 cmd.startidx = cpu_to_be16(start); 4490 4491 start += nq; 4492 n -= nq; 4493 4494 while (nq > 0) { 4495 unsigned int v; 4496 4497 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 4498 if (++rsp >= rsp_end) 4499 rsp = rspq; 4500 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 4501 if (++rsp >= rsp_end) 4502 rsp = rspq; 4503 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 4504 if (++rsp >= rsp_end) 4505 rsp = rspq; 4506 4507 *qp++ = cpu_to_be32(v); 4508 nq -= 3; 4509 } 4510 4511 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4512 if (ret) 4513 return ret; 4514 } 4515 return 0; 4516 } 4517 4518 /** 4519 * t4_config_glbl_rss - configure the global RSS mode 4520 * @adapter: the adapter 4521 * @mbox: mbox to use for the FW command 4522 * @mode: global RSS mode 4523 * @flags: mode-specific flags 4524 * 4525 * Sets the global RSS mode. 4526 */ 4527 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 4528 unsigned int flags) 4529 { 4530 struct fw_rss_glb_config_cmd c; 4531 4532 memset(&c, 0, sizeof(c)); 4533 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 4534 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4535 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4536 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 4537 c.u.manual.mode_pkd = 4538 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4539 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 4540 c.u.basicvirtual.mode_pkd = 4541 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4542 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 4543 } else 4544 return -EINVAL; 4545 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4546 } 4547 4548 /** 4549 * t4_config_vi_rss - configure per VI RSS settings 4550 * @adapter: the adapter 4551 * @mbox: mbox to use for the FW command 4552 * @viid: the VI id 4553 * @flags: RSS flags 4554 * @defq: id of the default RSS queue for the VI. 4555 * 4556 * Configures VI-specific RSS properties. 4557 */ 4558 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 4559 unsigned int flags, unsigned int defq) 4560 { 4561 struct fw_rss_vi_config_cmd c; 4562 4563 memset(&c, 0, sizeof(c)); 4564 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 4565 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4566 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 4567 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4568 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 4569 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 4570 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4571 } 4572 4573 /* Read an RSS table row */ 4574 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 4575 { 4576 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 4577 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 4578 5, 0, val); 4579 } 4580 4581 /** 4582 * t4_read_rss - read the contents of the RSS mapping table 4583 * @adapter: the adapter 4584 * @map: holds the contents of the RSS mapping table 4585 * 4586 * Reads the contents of the RSS hash->queue mapping table. 4587 */ 4588 int t4_read_rss(struct adapter *adapter, u16 *map) 4589 { 4590 u32 val; 4591 int i, ret; 4592 4593 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 4594 ret = rd_rss_row(adapter, i, &val); 4595 if (ret) 4596 return ret; 4597 *map++ = LKPTBLQUEUE0_G(val); 4598 *map++ = LKPTBLQUEUE1_G(val); 4599 } 4600 return 0; 4601 } 4602 4603 static unsigned int t4_use_ldst(struct adapter *adap) 4604 { 4605 return (adap->flags & FW_OK) || !adap->use_bd; 4606 } 4607 4608 /** 4609 * t4_fw_tp_pio_rw - Access TP PIO through LDST 4610 * @adap: the adapter 4611 * @vals: where the indirect register values are stored/written 4612 * @nregs: how many indirect registers to read/write 4613 * @start_idx: index of first indirect register to read/write 4614 * @rw: Read (1) or Write (0) 4615 * 4616 * Access TP PIO registers through LDST 4617 */ 4618 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs, 4619 unsigned int start_index, unsigned int rw) 4620 { 4621 int ret, i; 4622 int cmd = FW_LDST_ADDRSPC_TP_PIO; 4623 struct fw_ldst_cmd c; 4624 4625 for (i = 0 ; i < nregs; i++) { 4626 memset(&c, 0, sizeof(c)); 4627 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 4628 FW_CMD_REQUEST_F | 4629 (rw ? FW_CMD_READ_F : 4630 FW_CMD_WRITE_F) | 4631 FW_LDST_CMD_ADDRSPACE_V(cmd)); 4632 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 4633 4634 c.u.addrval.addr = cpu_to_be32(start_index + i); 4635 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 4636 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4637 if (!ret && rw) 4638 vals[i] = be32_to_cpu(c.u.addrval.val); 4639 } 4640 } 4641 4642 /** 4643 * t4_read_rss_key - read the global RSS key 4644 * @adap: the adapter 4645 * @key: 10-entry array holding the 320-bit RSS key 4646 * 4647 * Reads the global 320-bit RSS key. 4648 */ 4649 void t4_read_rss_key(struct adapter *adap, u32 *key) 4650 { 4651 if (t4_use_ldst(adap)) 4652 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1); 4653 else 4654 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 4655 TP_RSS_SECRET_KEY0_A); 4656 } 4657 4658 /** 4659 * t4_write_rss_key - program one of the RSS keys 4660 * @adap: the adapter 4661 * @key: 10-entry array holding the 320-bit RSS key 4662 * @idx: which RSS key to write 4663 * 4664 * Writes one of the RSS keys with the given 320-bit value. If @idx is 4665 * 0..15 the corresponding entry in the RSS key table is written, 4666 * otherwise the global RSS key is written. 4667 */ 4668 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx) 4669 { 4670 u8 rss_key_addr_cnt = 16; 4671 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 4672 4673 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 4674 * allows access to key addresses 16-63 by using KeyWrAddrX 4675 * as index[5:4](upper 2) into key table 4676 */ 4677 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 4678 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 4679 rss_key_addr_cnt = 32; 4680 4681 if (t4_use_ldst(adap)) 4682 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0); 4683 else 4684 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 4685 TP_RSS_SECRET_KEY0_A); 4686 4687 if (idx >= 0 && idx < rss_key_addr_cnt) { 4688 if (rss_key_addr_cnt > 16) 4689 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 4690 KEYWRADDRX_V(idx >> 4) | 4691 T6_VFWRADDR_V(idx) | KEYWREN_F); 4692 else 4693 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 4694 KEYWRADDR_V(idx) | KEYWREN_F); 4695 } 4696 } 4697 4698 /** 4699 * t4_read_rss_pf_config - read PF RSS Configuration Table 4700 * @adapter: the adapter 4701 * @index: the entry in the PF RSS table to read 4702 * @valp: where to store the returned value 4703 * 4704 * Reads the PF RSS Configuration Table at the specified index and returns 4705 * the value found there. 4706 */ 4707 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 4708 u32 *valp) 4709 { 4710 if (t4_use_ldst(adapter)) 4711 t4_fw_tp_pio_rw(adapter, valp, 1, 4712 TP_RSS_PF0_CONFIG_A + index, 1); 4713 else 4714 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4715 valp, 1, TP_RSS_PF0_CONFIG_A + index); 4716 } 4717 4718 /** 4719 * t4_read_rss_vf_config - read VF RSS Configuration Table 4720 * @adapter: the adapter 4721 * @index: the entry in the VF RSS table to read 4722 * @vfl: where to store the returned VFL 4723 * @vfh: where to store the returned VFH 4724 * 4725 * Reads the VF RSS Configuration Table at the specified index and returns 4726 * the (VFL, VFH) values found there. 4727 */ 4728 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 4729 u32 *vfl, u32 *vfh) 4730 { 4731 u32 vrt, mask, data; 4732 4733 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 4734 mask = VFWRADDR_V(VFWRADDR_M); 4735 data = VFWRADDR_V(index); 4736 } else { 4737 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 4738 data = T6_VFWRADDR_V(index); 4739 } 4740 4741 /* Request that the index'th VF Table values be read into VFL/VFH. 4742 */ 4743 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 4744 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 4745 vrt |= data | VFRDEN_F; 4746 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 4747 4748 /* Grab the VFL/VFH values ... 4749 */ 4750 if (t4_use_ldst(adapter)) { 4751 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1); 4752 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1); 4753 } else { 4754 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4755 vfl, 1, TP_RSS_VFL_CONFIG_A); 4756 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4757 vfh, 1, TP_RSS_VFH_CONFIG_A); 4758 } 4759 } 4760 4761 /** 4762 * t4_read_rss_pf_map - read PF RSS Map 4763 * @adapter: the adapter 4764 * 4765 * Reads the PF RSS Map register and returns its value. 4766 */ 4767 u32 t4_read_rss_pf_map(struct adapter *adapter) 4768 { 4769 u32 pfmap; 4770 4771 if (t4_use_ldst(adapter)) 4772 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1); 4773 else 4774 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4775 &pfmap, 1, TP_RSS_PF_MAP_A); 4776 return pfmap; 4777 } 4778 4779 /** 4780 * t4_read_rss_pf_mask - read PF RSS Mask 4781 * @adapter: the adapter 4782 * 4783 * Reads the PF RSS Mask register and returns its value. 4784 */ 4785 u32 t4_read_rss_pf_mask(struct adapter *adapter) 4786 { 4787 u32 pfmask; 4788 4789 if (t4_use_ldst(adapter)) 4790 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1); 4791 else 4792 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4793 &pfmask, 1, TP_RSS_PF_MSK_A); 4794 return pfmask; 4795 } 4796 4797 /** 4798 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 4799 * @adap: the adapter 4800 * @v4: holds the TCP/IP counter values 4801 * @v6: holds the TCP/IPv6 counter values 4802 * 4803 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 4804 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 4805 */ 4806 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 4807 struct tp_tcp_stats *v6) 4808 { 4809 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 4810 4811 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 4812 #define STAT(x) val[STAT_IDX(x)] 4813 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 4814 4815 if (v4) { 4816 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4817 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A); 4818 v4->tcp_out_rsts = STAT(OUT_RST); 4819 v4->tcp_in_segs = STAT64(IN_SEG); 4820 v4->tcp_out_segs = STAT64(OUT_SEG); 4821 v4->tcp_retrans_segs = STAT64(RXT_SEG); 4822 } 4823 if (v6) { 4824 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4825 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A); 4826 v6->tcp_out_rsts = STAT(OUT_RST); 4827 v6->tcp_in_segs = STAT64(IN_SEG); 4828 v6->tcp_out_segs = STAT64(OUT_SEG); 4829 v6->tcp_retrans_segs = STAT64(RXT_SEG); 4830 } 4831 #undef STAT64 4832 #undef STAT 4833 #undef STAT_IDX 4834 } 4835 4836 /** 4837 * t4_tp_get_err_stats - read TP's error MIB counters 4838 * @adap: the adapter 4839 * @st: holds the counter values 4840 * 4841 * Returns the values of TP's error counters. 4842 */ 4843 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st) 4844 { 4845 int nchan = adap->params.arch.nchan; 4846 4847 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4848 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A); 4849 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4850 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A); 4851 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4852 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A); 4853 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4854 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A); 4855 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4856 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A); 4857 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4858 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A); 4859 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4860 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A); 4861 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4862 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A); 4863 4864 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4865 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A); 4866 } 4867 4868 /** 4869 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 4870 * @adap: the adapter 4871 * @st: holds the counter values 4872 * 4873 * Returns the values of TP's CPL counters. 4874 */ 4875 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st) 4876 { 4877 int nchan = adap->params.arch.nchan; 4878 4879 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req, 4880 nchan, TP_MIB_CPL_IN_REQ_0_A); 4881 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp, 4882 nchan, TP_MIB_CPL_OUT_RSP_0_A); 4883 4884 } 4885 4886 /** 4887 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 4888 * @adap: the adapter 4889 * @st: holds the counter values 4890 * 4891 * Returns the values of TP's RDMA counters. 4892 */ 4893 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st) 4894 { 4895 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt, 4896 2, TP_MIB_RQE_DFR_PKT_A); 4897 } 4898 4899 /** 4900 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 4901 * @adap: the adapter 4902 * @idx: the port index 4903 * @st: holds the counter values 4904 * 4905 * Returns the values of TP's FCoE counters for the selected port. 4906 */ 4907 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 4908 struct tp_fcoe_stats *st) 4909 { 4910 u32 val[2]; 4911 4912 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp, 4913 1, TP_MIB_FCOE_DDP_0_A + idx); 4914 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop, 4915 1, TP_MIB_FCOE_DROP_0_A + idx); 4916 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4917 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx); 4918 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 4919 } 4920 4921 /** 4922 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 4923 * @adap: the adapter 4924 * @st: holds the counter values 4925 * 4926 * Returns the values of TP's counters for non-TCP directly-placed packets. 4927 */ 4928 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st) 4929 { 4930 u32 val[4]; 4931 4932 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4, 4933 TP_MIB_USM_PKTS_A); 4934 st->frames = val[0]; 4935 st->drops = val[1]; 4936 st->octets = ((u64)val[2] << 32) | val[3]; 4937 } 4938 4939 /** 4940 * t4_read_mtu_tbl - returns the values in the HW path MTU table 4941 * @adap: the adapter 4942 * @mtus: where to store the MTU values 4943 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 4944 * 4945 * Reads the HW path MTU table. 4946 */ 4947 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 4948 { 4949 u32 v; 4950 int i; 4951 4952 for (i = 0; i < NMTUS; ++i) { 4953 t4_write_reg(adap, TP_MTU_TABLE_A, 4954 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 4955 v = t4_read_reg(adap, TP_MTU_TABLE_A); 4956 mtus[i] = MTUVALUE_G(v); 4957 if (mtu_log) 4958 mtu_log[i] = MTUWIDTH_G(v); 4959 } 4960 } 4961 4962 /** 4963 * t4_read_cong_tbl - reads the congestion control table 4964 * @adap: the adapter 4965 * @incr: where to store the alpha values 4966 * 4967 * Reads the additive increments programmed into the HW congestion 4968 * control table. 4969 */ 4970 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 4971 { 4972 unsigned int mtu, w; 4973 4974 for (mtu = 0; mtu < NMTUS; ++mtu) 4975 for (w = 0; w < NCCTRL_WIN; ++w) { 4976 t4_write_reg(adap, TP_CCTRL_TABLE_A, 4977 ROWINDEX_V(0xffff) | (mtu << 5) | w); 4978 incr[mtu][w] = (u16)t4_read_reg(adap, 4979 TP_CCTRL_TABLE_A) & 0x1fff; 4980 } 4981 } 4982 4983 /** 4984 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 4985 * @adap: the adapter 4986 * @addr: the indirect TP register address 4987 * @mask: specifies the field within the register to modify 4988 * @val: new value for the field 4989 * 4990 * Sets a field of an indirect TP register to the given value. 4991 */ 4992 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 4993 unsigned int mask, unsigned int val) 4994 { 4995 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 4996 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 4997 t4_write_reg(adap, TP_PIO_DATA_A, val); 4998 } 4999 5000 /** 5001 * init_cong_ctrl - initialize congestion control parameters 5002 * @a: the alpha values for congestion control 5003 * @b: the beta values for congestion control 5004 * 5005 * Initialize the congestion control parameters. 5006 */ 5007 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5008 { 5009 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5010 a[9] = 2; 5011 a[10] = 3; 5012 a[11] = 4; 5013 a[12] = 5; 5014 a[13] = 6; 5015 a[14] = 7; 5016 a[15] = 8; 5017 a[16] = 9; 5018 a[17] = 10; 5019 a[18] = 14; 5020 a[19] = 17; 5021 a[20] = 21; 5022 a[21] = 25; 5023 a[22] = 30; 5024 a[23] = 35; 5025 a[24] = 45; 5026 a[25] = 60; 5027 a[26] = 80; 5028 a[27] = 100; 5029 a[28] = 200; 5030 a[29] = 300; 5031 a[30] = 400; 5032 a[31] = 500; 5033 5034 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5035 b[9] = b[10] = 1; 5036 b[11] = b[12] = 2; 5037 b[13] = b[14] = b[15] = b[16] = 3; 5038 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5039 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5040 b[28] = b[29] = 6; 5041 b[30] = b[31] = 7; 5042 } 5043 5044 /* The minimum additive increment value for the congestion control table */ 5045 #define CC_MIN_INCR 2U 5046 5047 /** 5048 * t4_load_mtus - write the MTU and congestion control HW tables 5049 * @adap: the adapter 5050 * @mtus: the values for the MTU table 5051 * @alpha: the values for the congestion control alpha parameter 5052 * @beta: the values for the congestion control beta parameter 5053 * 5054 * Write the HW MTU table with the supplied MTUs and the high-speed 5055 * congestion control table with the supplied alpha, beta, and MTUs. 5056 * We write the two tables together because the additive increments 5057 * depend on the MTUs. 5058 */ 5059 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5060 const unsigned short *alpha, const unsigned short *beta) 5061 { 5062 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5063 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5064 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5065 28672, 40960, 57344, 81920, 114688, 163840, 229376 5066 }; 5067 5068 unsigned int i, w; 5069 5070 for (i = 0; i < NMTUS; ++i) { 5071 unsigned int mtu = mtus[i]; 5072 unsigned int log2 = fls(mtu); 5073 5074 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5075 log2--; 5076 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5077 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5078 5079 for (w = 0; w < NCCTRL_WIN; ++w) { 5080 unsigned int inc; 5081 5082 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5083 CC_MIN_INCR); 5084 5085 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5086 (w << 16) | (beta[w] << 13) | inc); 5087 } 5088 } 5089 } 5090 5091 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5092 * clocks. The formula is 5093 * 5094 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5095 * 5096 * which is equivalent to 5097 * 5098 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5099 */ 5100 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5101 { 5102 u64 v = bytes256 * adap->params.vpd.cclk; 5103 5104 return v * 62 + v / 2; 5105 } 5106 5107 /** 5108 * t4_get_chan_txrate - get the current per channel Tx rates 5109 * @adap: the adapter 5110 * @nic_rate: rates for NIC traffic 5111 * @ofld_rate: rates for offloaded traffic 5112 * 5113 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5114 * for each channel. 5115 */ 5116 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5117 { 5118 u32 v; 5119 5120 v = t4_read_reg(adap, TP_TX_TRATE_A); 5121 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5122 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5123 if (adap->params.arch.nchan == NCHAN) { 5124 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5125 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5126 } 5127 5128 v = t4_read_reg(adap, TP_TX_ORATE_A); 5129 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5130 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5131 if (adap->params.arch.nchan == NCHAN) { 5132 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5133 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5134 } 5135 } 5136 5137 /** 5138 * t4_set_trace_filter - configure one of the tracing filters 5139 * @adap: the adapter 5140 * @tp: the desired trace filter parameters 5141 * @idx: which filter to configure 5142 * @enable: whether to enable or disable the filter 5143 * 5144 * Configures one of the tracing filters available in HW. If @enable is 5145 * %0 @tp is not examined and may be %NULL. The user is responsible to 5146 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5147 */ 5148 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5149 int idx, int enable) 5150 { 5151 int i, ofst = idx * 4; 5152 u32 data_reg, mask_reg, cfg; 5153 u32 multitrc = TRCMULTIFILTER_F; 5154 5155 if (!enable) { 5156 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5157 return 0; 5158 } 5159 5160 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5161 if (cfg & TRCMULTIFILTER_F) { 5162 /* If multiple tracers are enabled, then maximum 5163 * capture size is 2.5KB (FIFO size of a single channel) 5164 * minus 2 flits for CPL_TRACE_PKT header. 5165 */ 5166 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5167 return -EINVAL; 5168 } else { 5169 /* If multiple tracers are disabled, to avoid deadlocks 5170 * maximum packet capture size of 9600 bytes is recommended. 5171 * Also in this mode, only trace0 can be enabled and running. 5172 */ 5173 multitrc = 0; 5174 if (tp->snap_len > 9600 || idx) 5175 return -EINVAL; 5176 } 5177 5178 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5179 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5180 tp->min_len > TFMINPKTSIZE_M) 5181 return -EINVAL; 5182 5183 /* stop the tracer we'll be changing */ 5184 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5185 5186 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5187 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5188 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5189 5190 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5191 t4_write_reg(adap, data_reg, tp->data[i]); 5192 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5193 } 5194 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5195 TFCAPTUREMAX_V(tp->snap_len) | 5196 TFMINPKTSIZE_V(tp->min_len)); 5197 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5198 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5199 (is_t4(adap->params.chip) ? 5200 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5201 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5202 T5_TFINVERTMATCH_V(tp->invert))); 5203 5204 return 0; 5205 } 5206 5207 /** 5208 * t4_get_trace_filter - query one of the tracing filters 5209 * @adap: the adapter 5210 * @tp: the current trace filter parameters 5211 * @idx: which trace filter to query 5212 * @enabled: non-zero if the filter is enabled 5213 * 5214 * Returns the current settings of one of the HW tracing filters. 5215 */ 5216 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5217 int *enabled) 5218 { 5219 u32 ctla, ctlb; 5220 int i, ofst = idx * 4; 5221 u32 data_reg, mask_reg; 5222 5223 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5224 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5225 5226 if (is_t4(adap->params.chip)) { 5227 *enabled = !!(ctla & TFEN_F); 5228 tp->port = TFPORT_G(ctla); 5229 tp->invert = !!(ctla & TFINVERTMATCH_F); 5230 } else { 5231 *enabled = !!(ctla & T5_TFEN_F); 5232 tp->port = T5_TFPORT_G(ctla); 5233 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5234 } 5235 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5236 tp->min_len = TFMINPKTSIZE_G(ctlb); 5237 tp->skip_ofst = TFOFFSET_G(ctla); 5238 tp->skip_len = TFLENGTH_G(ctla); 5239 5240 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5241 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5242 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5243 5244 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5245 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5246 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5247 } 5248 } 5249 5250 /** 5251 * t4_pmtx_get_stats - returns the HW stats from PMTX 5252 * @adap: the adapter 5253 * @cnt: where to store the count statistics 5254 * @cycles: where to store the cycle statistics 5255 * 5256 * Returns performance statistics from PMTX. 5257 */ 5258 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5259 { 5260 int i; 5261 u32 data[2]; 5262 5263 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5264 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5265 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5266 if (is_t4(adap->params.chip)) { 5267 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5268 } else { 5269 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5270 PM_TX_DBG_DATA_A, data, 2, 5271 PM_TX_DBG_STAT_MSB_A); 5272 cycles[i] = (((u64)data[0] << 32) | data[1]); 5273 } 5274 } 5275 } 5276 5277 /** 5278 * t4_pmrx_get_stats - returns the HW stats from PMRX 5279 * @adap: the adapter 5280 * @cnt: where to store the count statistics 5281 * @cycles: where to store the cycle statistics 5282 * 5283 * Returns performance statistics from PMRX. 5284 */ 5285 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5286 { 5287 int i; 5288 u32 data[2]; 5289 5290 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5291 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5292 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5293 if (is_t4(adap->params.chip)) { 5294 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5295 } else { 5296 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5297 PM_RX_DBG_DATA_A, data, 2, 5298 PM_RX_DBG_STAT_MSB_A); 5299 cycles[i] = (((u64)data[0] << 32) | data[1]); 5300 } 5301 } 5302 } 5303 5304 /** 5305 * t4_get_mps_bg_map - return the buffer groups associated with a port 5306 * @adap: the adapter 5307 * @idx: the port index 5308 * 5309 * Returns a bitmap indicating which MPS buffer groups are associated 5310 * with the given port. Bit i is set if buffer group i is used by the 5311 * port. 5312 */ 5313 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 5314 { 5315 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 5316 5317 if (n == 0) 5318 return idx == 0 ? 0xf : 0; 5319 /* In T6 (which is a 2 port card), 5320 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1. 5321 * For 2 port T4/T5 adapter, 5322 * port 0 is mapped to channel 0 and 1, 5323 * port 1 is mapped to channel 2 and 3. 5324 */ 5325 if ((n == 1) && 5326 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)) 5327 return idx < 2 ? (3 << (2 * idx)) : 0; 5328 return 1 << idx; 5329 } 5330 5331 /** 5332 * t4_get_port_type_description - return Port Type string description 5333 * @port_type: firmware Port Type enumeration 5334 */ 5335 const char *t4_get_port_type_description(enum fw_port_type port_type) 5336 { 5337 static const char *const port_type_description[] = { 5338 "R XFI", 5339 "R XAUI", 5340 "T SGMII", 5341 "T XFI", 5342 "T XAUI", 5343 "KX4", 5344 "CX4", 5345 "KX", 5346 "KR", 5347 "R SFP+", 5348 "KR/KX", 5349 "KR/KX/KX4", 5350 "R QSFP_10G", 5351 "R QSA", 5352 "R QSFP", 5353 "R BP40_BA", 5354 }; 5355 5356 if (port_type < ARRAY_SIZE(port_type_description)) 5357 return port_type_description[port_type]; 5358 return "UNKNOWN"; 5359 } 5360 5361 /** 5362 * t4_get_port_stats_offset - collect port stats relative to a previous 5363 * snapshot 5364 * @adap: The adapter 5365 * @idx: The port 5366 * @stats: Current stats to fill 5367 * @offset: Previous stats snapshot 5368 */ 5369 void t4_get_port_stats_offset(struct adapter *adap, int idx, 5370 struct port_stats *stats, 5371 struct port_stats *offset) 5372 { 5373 u64 *s, *o; 5374 int i; 5375 5376 t4_get_port_stats(adap, idx, stats); 5377 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 5378 i < (sizeof(struct port_stats) / sizeof(u64)); 5379 i++, s++, o++) 5380 *s -= *o; 5381 } 5382 5383 /** 5384 * t4_get_port_stats - collect port statistics 5385 * @adap: the adapter 5386 * @idx: the port index 5387 * @p: the stats structure to fill 5388 * 5389 * Collect statistics related to the given port from HW. 5390 */ 5391 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 5392 { 5393 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5394 5395 #define GET_STAT(name) \ 5396 t4_read_reg64(adap, \ 5397 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 5398 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 5399 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5400 5401 p->tx_octets = GET_STAT(TX_PORT_BYTES); 5402 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 5403 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 5404 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 5405 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 5406 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 5407 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 5408 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 5409 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 5410 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 5411 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 5412 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 5413 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 5414 p->tx_drop = GET_STAT(TX_PORT_DROP); 5415 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 5416 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 5417 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 5418 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 5419 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 5420 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 5421 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 5422 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 5423 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 5424 5425 p->rx_octets = GET_STAT(RX_PORT_BYTES); 5426 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 5427 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 5428 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 5429 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 5430 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 5431 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 5432 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 5433 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 5434 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 5435 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 5436 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 5437 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 5438 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 5439 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 5440 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 5441 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 5442 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 5443 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 5444 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 5445 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 5446 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 5447 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 5448 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 5449 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 5450 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 5451 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 5452 5453 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 5454 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 5455 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 5456 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 5457 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 5458 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 5459 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 5460 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 5461 5462 #undef GET_STAT 5463 #undef GET_STAT_COM 5464 } 5465 5466 /** 5467 * t4_get_lb_stats - collect loopback port statistics 5468 * @adap: the adapter 5469 * @idx: the loopback port index 5470 * @p: the stats structure to fill 5471 * 5472 * Return HW statistics for the given loopback port. 5473 */ 5474 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 5475 { 5476 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5477 5478 #define GET_STAT(name) \ 5479 t4_read_reg64(adap, \ 5480 (is_t4(adap->params.chip) ? \ 5481 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 5482 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 5483 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5484 5485 p->octets = GET_STAT(BYTES); 5486 p->frames = GET_STAT(FRAMES); 5487 p->bcast_frames = GET_STAT(BCAST); 5488 p->mcast_frames = GET_STAT(MCAST); 5489 p->ucast_frames = GET_STAT(UCAST); 5490 p->error_frames = GET_STAT(ERROR); 5491 5492 p->frames_64 = GET_STAT(64B); 5493 p->frames_65_127 = GET_STAT(65B_127B); 5494 p->frames_128_255 = GET_STAT(128B_255B); 5495 p->frames_256_511 = GET_STAT(256B_511B); 5496 p->frames_512_1023 = GET_STAT(512B_1023B); 5497 p->frames_1024_1518 = GET_STAT(1024B_1518B); 5498 p->frames_1519_max = GET_STAT(1519B_MAX); 5499 p->drop = GET_STAT(DROP_FRAMES); 5500 5501 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 5502 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 5503 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 5504 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 5505 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 5506 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 5507 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 5508 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 5509 5510 #undef GET_STAT 5511 #undef GET_STAT_COM 5512 } 5513 5514 /* t4_mk_filtdelwr - create a delete filter WR 5515 * @ftid: the filter ID 5516 * @wr: the filter work request to populate 5517 * @qid: ingress queue to receive the delete notification 5518 * 5519 * Creates a filter work request to delete the supplied filter. If @qid is 5520 * negative the delete notification is suppressed. 5521 */ 5522 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 5523 { 5524 memset(wr, 0, sizeof(*wr)); 5525 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 5526 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 5527 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 5528 FW_FILTER_WR_NOREPLY_V(qid < 0)); 5529 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 5530 if (qid >= 0) 5531 wr->rx_chan_rx_rpl_iq = 5532 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 5533 } 5534 5535 #define INIT_CMD(var, cmd, rd_wr) do { \ 5536 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 5537 FW_CMD_REQUEST_F | \ 5538 FW_CMD_##rd_wr##_F); \ 5539 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 5540 } while (0) 5541 5542 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 5543 u32 addr, u32 val) 5544 { 5545 u32 ldst_addrspace; 5546 struct fw_ldst_cmd c; 5547 5548 memset(&c, 0, sizeof(c)); 5549 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 5550 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5551 FW_CMD_REQUEST_F | 5552 FW_CMD_WRITE_F | 5553 ldst_addrspace); 5554 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5555 c.u.addrval.addr = cpu_to_be32(addr); 5556 c.u.addrval.val = cpu_to_be32(val); 5557 5558 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5559 } 5560 5561 /** 5562 * t4_mdio_rd - read a PHY register through MDIO 5563 * @adap: the adapter 5564 * @mbox: mailbox to use for the FW command 5565 * @phy_addr: the PHY address 5566 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 5567 * @reg: the register to read 5568 * @valp: where to store the value 5569 * 5570 * Issues a FW command through the given mailbox to read a PHY register. 5571 */ 5572 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 5573 unsigned int mmd, unsigned int reg, u16 *valp) 5574 { 5575 int ret; 5576 u32 ldst_addrspace; 5577 struct fw_ldst_cmd c; 5578 5579 memset(&c, 0, sizeof(c)); 5580 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 5581 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5582 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5583 ldst_addrspace); 5584 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5585 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 5586 FW_LDST_CMD_MMD_V(mmd)); 5587 c.u.mdio.raddr = cpu_to_be16(reg); 5588 5589 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5590 if (ret == 0) 5591 *valp = be16_to_cpu(c.u.mdio.rval); 5592 return ret; 5593 } 5594 5595 /** 5596 * t4_mdio_wr - write a PHY register through MDIO 5597 * @adap: the adapter 5598 * @mbox: mailbox to use for the FW command 5599 * @phy_addr: the PHY address 5600 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 5601 * @reg: the register to write 5602 * @valp: value to write 5603 * 5604 * Issues a FW command through the given mailbox to write a PHY register. 5605 */ 5606 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 5607 unsigned int mmd, unsigned int reg, u16 val) 5608 { 5609 u32 ldst_addrspace; 5610 struct fw_ldst_cmd c; 5611 5612 memset(&c, 0, sizeof(c)); 5613 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 5614 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5615 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5616 ldst_addrspace); 5617 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5618 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 5619 FW_LDST_CMD_MMD_V(mmd)); 5620 c.u.mdio.raddr = cpu_to_be16(reg); 5621 c.u.mdio.rval = cpu_to_be16(val); 5622 5623 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5624 } 5625 5626 /** 5627 * t4_sge_decode_idma_state - decode the idma state 5628 * @adap: the adapter 5629 * @state: the state idma is stuck in 5630 */ 5631 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 5632 { 5633 static const char * const t4_decode[] = { 5634 "IDMA_IDLE", 5635 "IDMA_PUSH_MORE_CPL_FIFO", 5636 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5637 "Not used", 5638 "IDMA_PHYSADDR_SEND_PCIEHDR", 5639 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5640 "IDMA_PHYSADDR_SEND_PAYLOAD", 5641 "IDMA_SEND_FIFO_TO_IMSG", 5642 "IDMA_FL_REQ_DATA_FL_PREP", 5643 "IDMA_FL_REQ_DATA_FL", 5644 "IDMA_FL_DROP", 5645 "IDMA_FL_H_REQ_HEADER_FL", 5646 "IDMA_FL_H_SEND_PCIEHDR", 5647 "IDMA_FL_H_PUSH_CPL_FIFO", 5648 "IDMA_FL_H_SEND_CPL", 5649 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5650 "IDMA_FL_H_SEND_IP_HDR", 5651 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5652 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5653 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5654 "IDMA_FL_D_SEND_PCIEHDR", 5655 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5656 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5657 "IDMA_FL_SEND_PCIEHDR", 5658 "IDMA_FL_PUSH_CPL_FIFO", 5659 "IDMA_FL_SEND_CPL", 5660 "IDMA_FL_SEND_PAYLOAD_FIRST", 5661 "IDMA_FL_SEND_PAYLOAD", 5662 "IDMA_FL_REQ_NEXT_DATA_FL", 5663 "IDMA_FL_SEND_NEXT_PCIEHDR", 5664 "IDMA_FL_SEND_PADDING", 5665 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5666 "IDMA_FL_SEND_FIFO_TO_IMSG", 5667 "IDMA_FL_REQ_DATAFL_DONE", 5668 "IDMA_FL_REQ_HEADERFL_DONE", 5669 }; 5670 static const char * const t5_decode[] = { 5671 "IDMA_IDLE", 5672 "IDMA_ALMOST_IDLE", 5673 "IDMA_PUSH_MORE_CPL_FIFO", 5674 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5675 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 5676 "IDMA_PHYSADDR_SEND_PCIEHDR", 5677 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5678 "IDMA_PHYSADDR_SEND_PAYLOAD", 5679 "IDMA_SEND_FIFO_TO_IMSG", 5680 "IDMA_FL_REQ_DATA_FL", 5681 "IDMA_FL_DROP", 5682 "IDMA_FL_DROP_SEND_INC", 5683 "IDMA_FL_H_REQ_HEADER_FL", 5684 "IDMA_FL_H_SEND_PCIEHDR", 5685 "IDMA_FL_H_PUSH_CPL_FIFO", 5686 "IDMA_FL_H_SEND_CPL", 5687 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5688 "IDMA_FL_H_SEND_IP_HDR", 5689 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5690 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5691 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5692 "IDMA_FL_D_SEND_PCIEHDR", 5693 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5694 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5695 "IDMA_FL_SEND_PCIEHDR", 5696 "IDMA_FL_PUSH_CPL_FIFO", 5697 "IDMA_FL_SEND_CPL", 5698 "IDMA_FL_SEND_PAYLOAD_FIRST", 5699 "IDMA_FL_SEND_PAYLOAD", 5700 "IDMA_FL_REQ_NEXT_DATA_FL", 5701 "IDMA_FL_SEND_NEXT_PCIEHDR", 5702 "IDMA_FL_SEND_PADDING", 5703 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5704 }; 5705 static const char * const t6_decode[] = { 5706 "IDMA_IDLE", 5707 "IDMA_PUSH_MORE_CPL_FIFO", 5708 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5709 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 5710 "IDMA_PHYSADDR_SEND_PCIEHDR", 5711 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5712 "IDMA_PHYSADDR_SEND_PAYLOAD", 5713 "IDMA_FL_REQ_DATA_FL", 5714 "IDMA_FL_DROP", 5715 "IDMA_FL_DROP_SEND_INC", 5716 "IDMA_FL_H_REQ_HEADER_FL", 5717 "IDMA_FL_H_SEND_PCIEHDR", 5718 "IDMA_FL_H_PUSH_CPL_FIFO", 5719 "IDMA_FL_H_SEND_CPL", 5720 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5721 "IDMA_FL_H_SEND_IP_HDR", 5722 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5723 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5724 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5725 "IDMA_FL_D_SEND_PCIEHDR", 5726 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5727 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5728 "IDMA_FL_SEND_PCIEHDR", 5729 "IDMA_FL_PUSH_CPL_FIFO", 5730 "IDMA_FL_SEND_CPL", 5731 "IDMA_FL_SEND_PAYLOAD_FIRST", 5732 "IDMA_FL_SEND_PAYLOAD", 5733 "IDMA_FL_REQ_NEXT_DATA_FL", 5734 "IDMA_FL_SEND_NEXT_PCIEHDR", 5735 "IDMA_FL_SEND_PADDING", 5736 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5737 }; 5738 static const u32 sge_regs[] = { 5739 SGE_DEBUG_DATA_LOW_INDEX_2_A, 5740 SGE_DEBUG_DATA_LOW_INDEX_3_A, 5741 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 5742 }; 5743 const char **sge_idma_decode; 5744 int sge_idma_decode_nstates; 5745 int i; 5746 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5747 5748 /* Select the right set of decode strings to dump depending on the 5749 * adapter chip type. 5750 */ 5751 switch (chip_version) { 5752 case CHELSIO_T4: 5753 sge_idma_decode = (const char **)t4_decode; 5754 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 5755 break; 5756 5757 case CHELSIO_T5: 5758 sge_idma_decode = (const char **)t5_decode; 5759 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 5760 break; 5761 5762 case CHELSIO_T6: 5763 sge_idma_decode = (const char **)t6_decode; 5764 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 5765 break; 5766 5767 default: 5768 dev_err(adapter->pdev_dev, 5769 "Unsupported chip version %d\n", chip_version); 5770 return; 5771 } 5772 5773 if (is_t4(adapter->params.chip)) { 5774 sge_idma_decode = (const char **)t4_decode; 5775 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 5776 } else { 5777 sge_idma_decode = (const char **)t5_decode; 5778 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 5779 } 5780 5781 if (state < sge_idma_decode_nstates) 5782 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 5783 else 5784 CH_WARN(adapter, "idma state %d unknown\n", state); 5785 5786 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 5787 CH_WARN(adapter, "SGE register %#x value %#x\n", 5788 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 5789 } 5790 5791 /** 5792 * t4_sge_ctxt_flush - flush the SGE context cache 5793 * @adap: the adapter 5794 * @mbox: mailbox to use for the FW command 5795 * 5796 * Issues a FW command through the given mailbox to flush the 5797 * SGE context cache. 5798 */ 5799 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 5800 { 5801 int ret; 5802 u32 ldst_addrspace; 5803 struct fw_ldst_cmd c; 5804 5805 memset(&c, 0, sizeof(c)); 5806 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC); 5807 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5808 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5809 ldst_addrspace); 5810 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5811 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 5812 5813 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5814 return ret; 5815 } 5816 5817 /** 5818 * t4_fw_hello - establish communication with FW 5819 * @adap: the adapter 5820 * @mbox: mailbox to use for the FW command 5821 * @evt_mbox: mailbox to receive async FW events 5822 * @master: specifies the caller's willingness to be the device master 5823 * @state: returns the current device state (if non-NULL) 5824 * 5825 * Issues a command to establish communication with FW. Returns either 5826 * an error (negative integer) or the mailbox of the Master PF. 5827 */ 5828 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 5829 enum dev_master master, enum dev_state *state) 5830 { 5831 int ret; 5832 struct fw_hello_cmd c; 5833 u32 v; 5834 unsigned int master_mbox; 5835 int retries = FW_CMD_HELLO_RETRIES; 5836 5837 retry: 5838 memset(&c, 0, sizeof(c)); 5839 INIT_CMD(c, HELLO, WRITE); 5840 c.err_to_clearinit = cpu_to_be32( 5841 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 5842 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 5843 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 5844 mbox : FW_HELLO_CMD_MBMASTER_M) | 5845 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 5846 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 5847 FW_HELLO_CMD_CLEARINIT_F); 5848 5849 /* 5850 * Issue the HELLO command to the firmware. If it's not successful 5851 * but indicates that we got a "busy" or "timeout" condition, retry 5852 * the HELLO until we exhaust our retry limit. If we do exceed our 5853 * retry limit, check to see if the firmware left us any error 5854 * information and report that if so. 5855 */ 5856 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5857 if (ret < 0) { 5858 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 5859 goto retry; 5860 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 5861 t4_report_fw_error(adap); 5862 return ret; 5863 } 5864 5865 v = be32_to_cpu(c.err_to_clearinit); 5866 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 5867 if (state) { 5868 if (v & FW_HELLO_CMD_ERR_F) 5869 *state = DEV_STATE_ERR; 5870 else if (v & FW_HELLO_CMD_INIT_F) 5871 *state = DEV_STATE_INIT; 5872 else 5873 *state = DEV_STATE_UNINIT; 5874 } 5875 5876 /* 5877 * If we're not the Master PF then we need to wait around for the 5878 * Master PF Driver to finish setting up the adapter. 5879 * 5880 * Note that we also do this wait if we're a non-Master-capable PF and 5881 * there is no current Master PF; a Master PF may show up momentarily 5882 * and we wouldn't want to fail pointlessly. (This can happen when an 5883 * OS loads lots of different drivers rapidly at the same time). In 5884 * this case, the Master PF returned by the firmware will be 5885 * PCIE_FW_MASTER_M so the test below will work ... 5886 */ 5887 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 5888 master_mbox != mbox) { 5889 int waiting = FW_CMD_HELLO_TIMEOUT; 5890 5891 /* 5892 * Wait for the firmware to either indicate an error or 5893 * initialized state. If we see either of these we bail out 5894 * and report the issue to the caller. If we exhaust the 5895 * "hello timeout" and we haven't exhausted our retries, try 5896 * again. Otherwise bail with a timeout error. 5897 */ 5898 for (;;) { 5899 u32 pcie_fw; 5900 5901 msleep(50); 5902 waiting -= 50; 5903 5904 /* 5905 * If neither Error nor Initialialized are indicated 5906 * by the firmware keep waiting till we exaust our 5907 * timeout ... and then retry if we haven't exhausted 5908 * our retries ... 5909 */ 5910 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 5911 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 5912 if (waiting <= 0) { 5913 if (retries-- > 0) 5914 goto retry; 5915 5916 return -ETIMEDOUT; 5917 } 5918 continue; 5919 } 5920 5921 /* 5922 * We either have an Error or Initialized condition 5923 * report errors preferentially. 5924 */ 5925 if (state) { 5926 if (pcie_fw & PCIE_FW_ERR_F) 5927 *state = DEV_STATE_ERR; 5928 else if (pcie_fw & PCIE_FW_INIT_F) 5929 *state = DEV_STATE_INIT; 5930 } 5931 5932 /* 5933 * If we arrived before a Master PF was selected and 5934 * there's not a valid Master PF, grab its identity 5935 * for our caller. 5936 */ 5937 if (master_mbox == PCIE_FW_MASTER_M && 5938 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 5939 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 5940 break; 5941 } 5942 } 5943 5944 return master_mbox; 5945 } 5946 5947 /** 5948 * t4_fw_bye - end communication with FW 5949 * @adap: the adapter 5950 * @mbox: mailbox to use for the FW command 5951 * 5952 * Issues a command to terminate communication with FW. 5953 */ 5954 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 5955 { 5956 struct fw_bye_cmd c; 5957 5958 memset(&c, 0, sizeof(c)); 5959 INIT_CMD(c, BYE, WRITE); 5960 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5961 } 5962 5963 /** 5964 * t4_init_cmd - ask FW to initialize the device 5965 * @adap: the adapter 5966 * @mbox: mailbox to use for the FW command 5967 * 5968 * Issues a command to FW to partially initialize the device. This 5969 * performs initialization that generally doesn't depend on user input. 5970 */ 5971 int t4_early_init(struct adapter *adap, unsigned int mbox) 5972 { 5973 struct fw_initialize_cmd c; 5974 5975 memset(&c, 0, sizeof(c)); 5976 INIT_CMD(c, INITIALIZE, WRITE); 5977 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5978 } 5979 5980 /** 5981 * t4_fw_reset - issue a reset to FW 5982 * @adap: the adapter 5983 * @mbox: mailbox to use for the FW command 5984 * @reset: specifies the type of reset to perform 5985 * 5986 * Issues a reset command of the specified type to FW. 5987 */ 5988 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 5989 { 5990 struct fw_reset_cmd c; 5991 5992 memset(&c, 0, sizeof(c)); 5993 INIT_CMD(c, RESET, WRITE); 5994 c.val = cpu_to_be32(reset); 5995 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5996 } 5997 5998 /** 5999 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6000 * @adap: the adapter 6001 * @mbox: mailbox to use for the FW RESET command (if desired) 6002 * @force: force uP into RESET even if FW RESET command fails 6003 * 6004 * Issues a RESET command to firmware (if desired) with a HALT indication 6005 * and then puts the microprocessor into RESET state. The RESET command 6006 * will only be issued if a legitimate mailbox is provided (mbox <= 6007 * PCIE_FW_MASTER_M). 6008 * 6009 * This is generally used in order for the host to safely manipulate the 6010 * adapter without fear of conflicting with whatever the firmware might 6011 * be doing. The only way out of this state is to RESTART the firmware 6012 * ... 6013 */ 6014 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6015 { 6016 int ret = 0; 6017 6018 /* 6019 * If a legitimate mailbox is provided, issue a RESET command 6020 * with a HALT indication. 6021 */ 6022 if (mbox <= PCIE_FW_MASTER_M) { 6023 struct fw_reset_cmd c; 6024 6025 memset(&c, 0, sizeof(c)); 6026 INIT_CMD(c, RESET, WRITE); 6027 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6028 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6029 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6030 } 6031 6032 /* 6033 * Normally we won't complete the operation if the firmware RESET 6034 * command fails but if our caller insists we'll go ahead and put the 6035 * uP into RESET. This can be useful if the firmware is hung or even 6036 * missing ... We'll have to take the risk of putting the uP into 6037 * RESET without the cooperation of firmware in that case. 6038 * 6039 * We also force the firmware's HALT flag to be on in case we bypassed 6040 * the firmware RESET command above or we're dealing with old firmware 6041 * which doesn't have the HALT capability. This will serve as a flag 6042 * for the incoming firmware to know that it's coming out of a HALT 6043 * rather than a RESET ... if it's new enough to understand that ... 6044 */ 6045 if (ret == 0 || force) { 6046 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6047 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6048 PCIE_FW_HALT_F); 6049 } 6050 6051 /* 6052 * And we always return the result of the firmware RESET command 6053 * even when we force the uP into RESET ... 6054 */ 6055 return ret; 6056 } 6057 6058 /** 6059 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6060 * @adap: the adapter 6061 * @reset: if we want to do a RESET to restart things 6062 * 6063 * Restart firmware previously halted by t4_fw_halt(). On successful 6064 * return the previous PF Master remains as the new PF Master and there 6065 * is no need to issue a new HELLO command, etc. 6066 * 6067 * We do this in two ways: 6068 * 6069 * 1. If we're dealing with newer firmware we'll simply want to take 6070 * the chip's microprocessor out of RESET. This will cause the 6071 * firmware to start up from its start vector. And then we'll loop 6072 * until the firmware indicates it's started again (PCIE_FW.HALT 6073 * reset to 0) or we timeout. 6074 * 6075 * 2. If we're dealing with older firmware then we'll need to RESET 6076 * the chip since older firmware won't recognize the PCIE_FW.HALT 6077 * flag and automatically RESET itself on startup. 6078 */ 6079 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6080 { 6081 if (reset) { 6082 /* 6083 * Since we're directing the RESET instead of the firmware 6084 * doing it automatically, we need to clear the PCIE_FW.HALT 6085 * bit. 6086 */ 6087 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6088 6089 /* 6090 * If we've been given a valid mailbox, first try to get the 6091 * firmware to do the RESET. If that works, great and we can 6092 * return success. Otherwise, if we haven't been given a 6093 * valid mailbox or the RESET command failed, fall back to 6094 * hitting the chip with a hammer. 6095 */ 6096 if (mbox <= PCIE_FW_MASTER_M) { 6097 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6098 msleep(100); 6099 if (t4_fw_reset(adap, mbox, 6100 PIORST_F | PIORSTMODE_F) == 0) 6101 return 0; 6102 } 6103 6104 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6105 msleep(2000); 6106 } else { 6107 int ms; 6108 6109 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6110 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6111 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6112 return 0; 6113 msleep(100); 6114 ms += 100; 6115 } 6116 return -ETIMEDOUT; 6117 } 6118 return 0; 6119 } 6120 6121 /** 6122 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6123 * @adap: the adapter 6124 * @mbox: mailbox to use for the FW RESET command (if desired) 6125 * @fw_data: the firmware image to write 6126 * @size: image size 6127 * @force: force upgrade even if firmware doesn't cooperate 6128 * 6129 * Perform all of the steps necessary for upgrading an adapter's 6130 * firmware image. Normally this requires the cooperation of the 6131 * existing firmware in order to halt all existing activities 6132 * but if an invalid mailbox token is passed in we skip that step 6133 * (though we'll still put the adapter microprocessor into RESET in 6134 * that case). 6135 * 6136 * On successful return the new firmware will have been loaded and 6137 * the adapter will have been fully RESET losing all previous setup 6138 * state. On unsuccessful return the adapter may be completely hosed ... 6139 * positive errno indicates that the adapter is ~probably~ intact, a 6140 * negative errno indicates that things are looking bad ... 6141 */ 6142 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6143 const u8 *fw_data, unsigned int size, int force) 6144 { 6145 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6146 int reset, ret; 6147 6148 if (!t4_fw_matches_chip(adap, fw_hdr)) 6149 return -EINVAL; 6150 6151 ret = t4_fw_halt(adap, mbox, force); 6152 if (ret < 0 && !force) 6153 return ret; 6154 6155 ret = t4_load_fw(adap, fw_data, size); 6156 if (ret < 0) 6157 return ret; 6158 6159 /* 6160 * Older versions of the firmware don't understand the new 6161 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6162 * restart. So for newly loaded older firmware we'll have to do the 6163 * RESET for it so it starts up on a clean slate. We can tell if 6164 * the newly loaded firmware will handle this right by checking 6165 * its header flags to see if it advertises the capability. 6166 */ 6167 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6168 return t4_fw_restart(adap, mbox, reset); 6169 } 6170 6171 /** 6172 * t4_fl_pkt_align - return the fl packet alignment 6173 * @adap: the adapter 6174 * 6175 * T4 has a single field to specify the packing and padding boundary. 6176 * T5 onwards has separate fields for this and hence the alignment for 6177 * next packet offset is maximum of these two. 6178 * 6179 */ 6180 int t4_fl_pkt_align(struct adapter *adap) 6181 { 6182 u32 sge_control, sge_control2; 6183 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 6184 6185 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 6186 6187 /* T4 uses a single control field to specify both the PCIe Padding and 6188 * Packing Boundary. T5 introduced the ability to specify these 6189 * separately. The actual Ingress Packet Data alignment boundary 6190 * within Packed Buffer Mode is the maximum of these two 6191 * specifications. (Note that it makes no real practical sense to 6192 * have the Pading Boudary be larger than the Packing Boundary but you 6193 * could set the chip up that way and, in fact, legacy T4 code would 6194 * end doing this because it would initialize the Padding Boundary and 6195 * leave the Packing Boundary initialized to 0 (16 bytes).) 6196 * Padding Boundary values in T6 starts from 8B, 6197 * where as it is 32B for T4 and T5. 6198 */ 6199 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 6200 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 6201 else 6202 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 6203 6204 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 6205 6206 fl_align = ingpadboundary; 6207 if (!is_t4(adap->params.chip)) { 6208 /* T5 has a weird interpretation of one of the PCIe Packing 6209 * Boundary values. No idea why ... 6210 */ 6211 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 6212 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 6213 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 6214 ingpackboundary = 16; 6215 else 6216 ingpackboundary = 1 << (ingpackboundary + 6217 INGPACKBOUNDARY_SHIFT_X); 6218 6219 fl_align = max(ingpadboundary, ingpackboundary); 6220 } 6221 return fl_align; 6222 } 6223 6224 /** 6225 * t4_fixup_host_params - fix up host-dependent parameters 6226 * @adap: the adapter 6227 * @page_size: the host's Base Page Size 6228 * @cache_line_size: the host's Cache Line Size 6229 * 6230 * Various registers in T4 contain values which are dependent on the 6231 * host's Base Page and Cache Line Sizes. This function will fix all of 6232 * those registers with the appropriate values as passed in ... 6233 */ 6234 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 6235 unsigned int cache_line_size) 6236 { 6237 unsigned int page_shift = fls(page_size) - 1; 6238 unsigned int sge_hps = page_shift - 10; 6239 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 6240 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 6241 unsigned int fl_align_log = fls(fl_align) - 1; 6242 unsigned int ingpad; 6243 6244 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 6245 HOSTPAGESIZEPF0_V(sge_hps) | 6246 HOSTPAGESIZEPF1_V(sge_hps) | 6247 HOSTPAGESIZEPF2_V(sge_hps) | 6248 HOSTPAGESIZEPF3_V(sge_hps) | 6249 HOSTPAGESIZEPF4_V(sge_hps) | 6250 HOSTPAGESIZEPF5_V(sge_hps) | 6251 HOSTPAGESIZEPF6_V(sge_hps) | 6252 HOSTPAGESIZEPF7_V(sge_hps)); 6253 6254 if (is_t4(adap->params.chip)) { 6255 t4_set_reg_field(adap, SGE_CONTROL_A, 6256 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6257 EGRSTATUSPAGESIZE_F, 6258 INGPADBOUNDARY_V(fl_align_log - 6259 INGPADBOUNDARY_SHIFT_X) | 6260 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6261 } else { 6262 /* T5 introduced the separation of the Free List Padding and 6263 * Packing Boundaries. Thus, we can select a smaller Padding 6264 * Boundary to avoid uselessly chewing up PCIe Link and Memory 6265 * Bandwidth, and use a Packing Boundary which is large enough 6266 * to avoid false sharing between CPUs, etc. 6267 * 6268 * For the PCI Link, the smaller the Padding Boundary the 6269 * better. For the Memory Controller, a smaller Padding 6270 * Boundary is better until we cross under the Memory Line 6271 * Size (the minimum unit of transfer to/from Memory). If we 6272 * have a Padding Boundary which is smaller than the Memory 6273 * Line Size, that'll involve a Read-Modify-Write cycle on the 6274 * Memory Controller which is never good. For T5 the smallest 6275 * Padding Boundary which we can select is 32 bytes which is 6276 * larger than any known Memory Controller Line Size so we'll 6277 * use that. 6278 * 6279 * T5 has a different interpretation of the "0" value for the 6280 * Packing Boundary. This corresponds to 16 bytes instead of 6281 * the expected 32 bytes. We never have a Packing Boundary 6282 * less than 32 bytes so we can't use that special value but 6283 * on the other hand, if we wanted 32 bytes, the best we can 6284 * really do is 64 bytes. 6285 */ 6286 if (fl_align <= 32) { 6287 fl_align = 64; 6288 fl_align_log = 6; 6289 } 6290 6291 if (is_t5(adap->params.chip)) 6292 ingpad = INGPCIEBOUNDARY_32B_X; 6293 else 6294 ingpad = T6_INGPADBOUNDARY_32B_X; 6295 6296 t4_set_reg_field(adap, SGE_CONTROL_A, 6297 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6298 EGRSTATUSPAGESIZE_F, 6299 INGPADBOUNDARY_V(ingpad) | 6300 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6301 t4_set_reg_field(adap, SGE_CONTROL2_A, 6302 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 6303 INGPACKBOUNDARY_V(fl_align_log - 6304 INGPACKBOUNDARY_SHIFT_X)); 6305 } 6306 /* 6307 * Adjust various SGE Free List Host Buffer Sizes. 6308 * 6309 * This is something of a crock since we're using fixed indices into 6310 * the array which are also known by the sge.c code and the T4 6311 * Firmware Configuration File. We need to come up with a much better 6312 * approach to managing this array. For now, the first four entries 6313 * are: 6314 * 6315 * 0: Host Page Size 6316 * 1: 64KB 6317 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 6318 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 6319 * 6320 * For the single-MTU buffers in unpacked mode we need to include 6321 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 6322 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 6323 * Padding boundary. All of these are accommodated in the Factory 6324 * Default Firmware Configuration File but we need to adjust it for 6325 * this host's cache line size. 6326 */ 6327 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 6328 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 6329 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 6330 & ~(fl_align-1)); 6331 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 6332 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 6333 & ~(fl_align-1)); 6334 6335 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 6336 6337 return 0; 6338 } 6339 6340 /** 6341 * t4_fw_initialize - ask FW to initialize the device 6342 * @adap: the adapter 6343 * @mbox: mailbox to use for the FW command 6344 * 6345 * Issues a command to FW to partially initialize the device. This 6346 * performs initialization that generally doesn't depend on user input. 6347 */ 6348 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 6349 { 6350 struct fw_initialize_cmd c; 6351 6352 memset(&c, 0, sizeof(c)); 6353 INIT_CMD(c, INITIALIZE, WRITE); 6354 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6355 } 6356 6357 /** 6358 * t4_query_params_rw - query FW or device parameters 6359 * @adap: the adapter 6360 * @mbox: mailbox to use for the FW command 6361 * @pf: the PF 6362 * @vf: the VF 6363 * @nparams: the number of parameters 6364 * @params: the parameter names 6365 * @val: the parameter values 6366 * @rw: Write and read flag 6367 * 6368 * Reads the value of FW or device parameters. Up to 7 parameters can be 6369 * queried at once. 6370 */ 6371 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 6372 unsigned int vf, unsigned int nparams, const u32 *params, 6373 u32 *val, int rw) 6374 { 6375 int i, ret; 6376 struct fw_params_cmd c; 6377 __be32 *p = &c.param[0].mnem; 6378 6379 if (nparams > 7) 6380 return -EINVAL; 6381 6382 memset(&c, 0, sizeof(c)); 6383 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 6384 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6385 FW_PARAMS_CMD_PFN_V(pf) | 6386 FW_PARAMS_CMD_VFN_V(vf)); 6387 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6388 6389 for (i = 0; i < nparams; i++) { 6390 *p++ = cpu_to_be32(*params++); 6391 if (rw) 6392 *p = cpu_to_be32(*(val + i)); 6393 p++; 6394 } 6395 6396 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6397 if (ret == 0) 6398 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 6399 *val++ = be32_to_cpu(*p); 6400 return ret; 6401 } 6402 6403 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 6404 unsigned int vf, unsigned int nparams, const u32 *params, 6405 u32 *val) 6406 { 6407 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 6408 } 6409 6410 /** 6411 * t4_set_params_timeout - sets FW or device parameters 6412 * @adap: the adapter 6413 * @mbox: mailbox to use for the FW command 6414 * @pf: the PF 6415 * @vf: the VF 6416 * @nparams: the number of parameters 6417 * @params: the parameter names 6418 * @val: the parameter values 6419 * @timeout: the timeout time 6420 * 6421 * Sets the value of FW or device parameters. Up to 7 parameters can be 6422 * specified at once. 6423 */ 6424 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 6425 unsigned int pf, unsigned int vf, 6426 unsigned int nparams, const u32 *params, 6427 const u32 *val, int timeout) 6428 { 6429 struct fw_params_cmd c; 6430 __be32 *p = &c.param[0].mnem; 6431 6432 if (nparams > 7) 6433 return -EINVAL; 6434 6435 memset(&c, 0, sizeof(c)); 6436 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 6437 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6438 FW_PARAMS_CMD_PFN_V(pf) | 6439 FW_PARAMS_CMD_VFN_V(vf)); 6440 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6441 6442 while (nparams--) { 6443 *p++ = cpu_to_be32(*params++); 6444 *p++ = cpu_to_be32(*val++); 6445 } 6446 6447 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 6448 } 6449 6450 /** 6451 * t4_set_params - sets FW or device parameters 6452 * @adap: the adapter 6453 * @mbox: mailbox to use for the FW command 6454 * @pf: the PF 6455 * @vf: the VF 6456 * @nparams: the number of parameters 6457 * @params: the parameter names 6458 * @val: the parameter values 6459 * 6460 * Sets the value of FW or device parameters. Up to 7 parameters can be 6461 * specified at once. 6462 */ 6463 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 6464 unsigned int vf, unsigned int nparams, const u32 *params, 6465 const u32 *val) 6466 { 6467 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 6468 FW_CMD_MAX_TIMEOUT); 6469 } 6470 6471 /** 6472 * t4_cfg_pfvf - configure PF/VF resource limits 6473 * @adap: the adapter 6474 * @mbox: mailbox to use for the FW command 6475 * @pf: the PF being configured 6476 * @vf: the VF being configured 6477 * @txq: the max number of egress queues 6478 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 6479 * @rxqi: the max number of interrupt-capable ingress queues 6480 * @rxq: the max number of interruptless ingress queues 6481 * @tc: the PCI traffic class 6482 * @vi: the max number of virtual interfaces 6483 * @cmask: the channel access rights mask for the PF/VF 6484 * @pmask: the port access rights mask for the PF/VF 6485 * @nexact: the maximum number of exact MPS filters 6486 * @rcaps: read capabilities 6487 * @wxcaps: write/execute capabilities 6488 * 6489 * Configures resource limits and capabilities for a physical or virtual 6490 * function. 6491 */ 6492 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 6493 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 6494 unsigned int rxqi, unsigned int rxq, unsigned int tc, 6495 unsigned int vi, unsigned int cmask, unsigned int pmask, 6496 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 6497 { 6498 struct fw_pfvf_cmd c; 6499 6500 memset(&c, 0, sizeof(c)); 6501 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 6502 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 6503 FW_PFVF_CMD_VFN_V(vf)); 6504 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6505 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 6506 FW_PFVF_CMD_NIQ_V(rxq)); 6507 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 6508 FW_PFVF_CMD_PMASK_V(pmask) | 6509 FW_PFVF_CMD_NEQ_V(txq)); 6510 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 6511 FW_PFVF_CMD_NVI_V(vi) | 6512 FW_PFVF_CMD_NEXACTF_V(nexact)); 6513 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 6514 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 6515 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 6516 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6517 } 6518 6519 /** 6520 * t4_alloc_vi - allocate a virtual interface 6521 * @adap: the adapter 6522 * @mbox: mailbox to use for the FW command 6523 * @port: physical port associated with the VI 6524 * @pf: the PF owning the VI 6525 * @vf: the VF owning the VI 6526 * @nmac: number of MAC addresses needed (1 to 5) 6527 * @mac: the MAC addresses of the VI 6528 * @rss_size: size of RSS table slice associated with this VI 6529 * 6530 * Allocates a virtual interface for the given physical port. If @mac is 6531 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 6532 * @mac should be large enough to hold @nmac Ethernet addresses, they are 6533 * stored consecutively so the space needed is @nmac * 6 bytes. 6534 * Returns a negative error number or the non-negative VI id. 6535 */ 6536 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 6537 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 6538 unsigned int *rss_size) 6539 { 6540 int ret; 6541 struct fw_vi_cmd c; 6542 6543 memset(&c, 0, sizeof(c)); 6544 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 6545 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 6546 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 6547 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 6548 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 6549 c.nmac = nmac - 1; 6550 6551 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6552 if (ret) 6553 return ret; 6554 6555 if (mac) { 6556 memcpy(mac, c.mac, sizeof(c.mac)); 6557 switch (nmac) { 6558 case 5: 6559 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 6560 case 4: 6561 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 6562 case 3: 6563 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 6564 case 2: 6565 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 6566 } 6567 } 6568 if (rss_size) 6569 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 6570 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 6571 } 6572 6573 /** 6574 * t4_free_vi - free a virtual interface 6575 * @adap: the adapter 6576 * @mbox: mailbox to use for the FW command 6577 * @pf: the PF owning the VI 6578 * @vf: the VF owning the VI 6579 * @viid: virtual interface identifiler 6580 * 6581 * Free a previously allocated virtual interface. 6582 */ 6583 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 6584 unsigned int vf, unsigned int viid) 6585 { 6586 struct fw_vi_cmd c; 6587 6588 memset(&c, 0, sizeof(c)); 6589 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 6590 FW_CMD_REQUEST_F | 6591 FW_CMD_EXEC_F | 6592 FW_VI_CMD_PFN_V(pf) | 6593 FW_VI_CMD_VFN_V(vf)); 6594 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 6595 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 6596 6597 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6598 } 6599 6600 /** 6601 * t4_set_rxmode - set Rx properties of a virtual interface 6602 * @adap: the adapter 6603 * @mbox: mailbox to use for the FW command 6604 * @viid: the VI id 6605 * @mtu: the new MTU or -1 6606 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 6607 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 6608 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 6609 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 6610 * @sleep_ok: if true we may sleep while awaiting command completion 6611 * 6612 * Sets Rx properties of a virtual interface. 6613 */ 6614 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 6615 int mtu, int promisc, int all_multi, int bcast, int vlanex, 6616 bool sleep_ok) 6617 { 6618 struct fw_vi_rxmode_cmd c; 6619 6620 /* convert to FW values */ 6621 if (mtu < 0) 6622 mtu = FW_RXMODE_MTU_NO_CHG; 6623 if (promisc < 0) 6624 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 6625 if (all_multi < 0) 6626 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 6627 if (bcast < 0) 6628 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 6629 if (vlanex < 0) 6630 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 6631 6632 memset(&c, 0, sizeof(c)); 6633 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 6634 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6635 FW_VI_RXMODE_CMD_VIID_V(viid)); 6636 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6637 c.mtu_to_vlanexen = 6638 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 6639 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 6640 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 6641 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 6642 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 6643 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 6644 } 6645 6646 /** 6647 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 6648 * @adap: the adapter 6649 * @mbox: mailbox to use for the FW command 6650 * @viid: the VI id 6651 * @free: if true any existing filters for this VI id are first removed 6652 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 6653 * @addr: the MAC address(es) 6654 * @idx: where to store the index of each allocated filter 6655 * @hash: pointer to hash address filter bitmap 6656 * @sleep_ok: call is allowed to sleep 6657 * 6658 * Allocates an exact-match filter for each of the supplied addresses and 6659 * sets it to the corresponding address. If @idx is not %NULL it should 6660 * have at least @naddr entries, each of which will be set to the index of 6661 * the filter allocated for the corresponding MAC address. If a filter 6662 * could not be allocated for an address its index is set to 0xffff. 6663 * If @hash is not %NULL addresses that fail to allocate an exact filter 6664 * are hashed and update the hash filter bitmap pointed at by @hash. 6665 * 6666 * Returns a negative error number or the number of filters allocated. 6667 */ 6668 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 6669 unsigned int viid, bool free, unsigned int naddr, 6670 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 6671 { 6672 int offset, ret = 0; 6673 struct fw_vi_mac_cmd c; 6674 unsigned int nfilters = 0; 6675 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 6676 unsigned int rem = naddr; 6677 6678 if (naddr > max_naddr) 6679 return -EINVAL; 6680 6681 for (offset = 0; offset < naddr ; /**/) { 6682 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 6683 rem : ARRAY_SIZE(c.u.exact)); 6684 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 6685 u.exact[fw_naddr]), 16); 6686 struct fw_vi_mac_exact *p; 6687 int i; 6688 6689 memset(&c, 0, sizeof(c)); 6690 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6691 FW_CMD_REQUEST_F | 6692 FW_CMD_WRITE_F | 6693 FW_CMD_EXEC_V(free) | 6694 FW_VI_MAC_CMD_VIID_V(viid)); 6695 c.freemacs_to_len16 = 6696 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 6697 FW_CMD_LEN16_V(len16)); 6698 6699 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6700 p->valid_to_idx = 6701 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 6702 FW_VI_MAC_CMD_IDX_V( 6703 FW_VI_MAC_ADD_MAC)); 6704 memcpy(p->macaddr, addr[offset + i], 6705 sizeof(p->macaddr)); 6706 } 6707 6708 /* It's okay if we run out of space in our MAC address arena. 6709 * Some of the addresses we submit may get stored so we need 6710 * to run through the reply to see what the results were ... 6711 */ 6712 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 6713 if (ret && ret != -FW_ENOMEM) 6714 break; 6715 6716 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6717 u16 index = FW_VI_MAC_CMD_IDX_G( 6718 be16_to_cpu(p->valid_to_idx)); 6719 6720 if (idx) 6721 idx[offset + i] = (index >= max_naddr ? 6722 0xffff : index); 6723 if (index < max_naddr) 6724 nfilters++; 6725 else if (hash) 6726 *hash |= (1ULL << 6727 hash_mac_addr(addr[offset + i])); 6728 } 6729 6730 free = false; 6731 offset += fw_naddr; 6732 rem -= fw_naddr; 6733 } 6734 6735 if (ret == 0 || ret == -FW_ENOMEM) 6736 ret = nfilters; 6737 return ret; 6738 } 6739 6740 /** 6741 * t4_change_mac - modifies the exact-match filter for a MAC address 6742 * @adap: the adapter 6743 * @mbox: mailbox to use for the FW command 6744 * @viid: the VI id 6745 * @idx: index of existing filter for old value of MAC address, or -1 6746 * @addr: the new MAC address value 6747 * @persist: whether a new MAC allocation should be persistent 6748 * @add_smt: if true also add the address to the HW SMT 6749 * 6750 * Modifies an exact-match filter and sets it to the new MAC address. 6751 * Note that in general it is not possible to modify the value of a given 6752 * filter so the generic way to modify an address filter is to free the one 6753 * being used by the old address value and allocate a new filter for the 6754 * new address value. @idx can be -1 if the address is a new addition. 6755 * 6756 * Returns a negative error number or the index of the filter with the new 6757 * MAC value. 6758 */ 6759 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 6760 int idx, const u8 *addr, bool persist, bool add_smt) 6761 { 6762 int ret, mode; 6763 struct fw_vi_mac_cmd c; 6764 struct fw_vi_mac_exact *p = c.u.exact; 6765 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 6766 6767 if (idx < 0) /* new allocation */ 6768 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 6769 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 6770 6771 memset(&c, 0, sizeof(c)); 6772 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6773 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6774 FW_VI_MAC_CMD_VIID_V(viid)); 6775 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 6776 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 6777 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 6778 FW_VI_MAC_CMD_IDX_V(idx)); 6779 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 6780 6781 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6782 if (ret == 0) { 6783 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 6784 if (ret >= max_mac_addr) 6785 ret = -ENOMEM; 6786 } 6787 return ret; 6788 } 6789 6790 /** 6791 * t4_set_addr_hash - program the MAC inexact-match hash filter 6792 * @adap: the adapter 6793 * @mbox: mailbox to use for the FW command 6794 * @viid: the VI id 6795 * @ucast: whether the hash filter should also match unicast addresses 6796 * @vec: the value to be written to the hash filter 6797 * @sleep_ok: call is allowed to sleep 6798 * 6799 * Sets the 64-bit inexact-match hash filter for a virtual interface. 6800 */ 6801 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 6802 bool ucast, u64 vec, bool sleep_ok) 6803 { 6804 struct fw_vi_mac_cmd c; 6805 6806 memset(&c, 0, sizeof(c)); 6807 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6808 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6809 FW_VI_ENABLE_CMD_VIID_V(viid)); 6810 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 6811 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 6812 FW_CMD_LEN16_V(1)); 6813 c.u.hash.hashvec = cpu_to_be64(vec); 6814 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 6815 } 6816 6817 /** 6818 * t4_enable_vi_params - enable/disable a virtual interface 6819 * @adap: the adapter 6820 * @mbox: mailbox to use for the FW command 6821 * @viid: the VI id 6822 * @rx_en: 1=enable Rx, 0=disable Rx 6823 * @tx_en: 1=enable Tx, 0=disable Tx 6824 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 6825 * 6826 * Enables/disables a virtual interface. Note that setting DCB Enable 6827 * only makes sense when enabling a Virtual Interface ... 6828 */ 6829 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 6830 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 6831 { 6832 struct fw_vi_enable_cmd c; 6833 6834 memset(&c, 0, sizeof(c)); 6835 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 6836 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6837 FW_VI_ENABLE_CMD_VIID_V(viid)); 6838 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 6839 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 6840 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 6841 FW_LEN16(c)); 6842 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 6843 } 6844 6845 /** 6846 * t4_enable_vi - enable/disable a virtual interface 6847 * @adap: the adapter 6848 * @mbox: mailbox to use for the FW command 6849 * @viid: the VI id 6850 * @rx_en: 1=enable Rx, 0=disable Rx 6851 * @tx_en: 1=enable Tx, 0=disable Tx 6852 * 6853 * Enables/disables a virtual interface. 6854 */ 6855 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 6856 bool rx_en, bool tx_en) 6857 { 6858 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 6859 } 6860 6861 /** 6862 * t4_identify_port - identify a VI's port by blinking its LED 6863 * @adap: the adapter 6864 * @mbox: mailbox to use for the FW command 6865 * @viid: the VI id 6866 * @nblinks: how many times to blink LED at 2.5 Hz 6867 * 6868 * Identifies a VI's port by blinking its LED. 6869 */ 6870 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 6871 unsigned int nblinks) 6872 { 6873 struct fw_vi_enable_cmd c; 6874 6875 memset(&c, 0, sizeof(c)); 6876 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 6877 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6878 FW_VI_ENABLE_CMD_VIID_V(viid)); 6879 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 6880 c.blinkdur = cpu_to_be16(nblinks); 6881 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6882 } 6883 6884 /** 6885 * t4_iq_free - free an ingress queue and its FLs 6886 * @adap: the adapter 6887 * @mbox: mailbox to use for the FW command 6888 * @pf: the PF owning the queues 6889 * @vf: the VF owning the queues 6890 * @iqtype: the ingress queue type 6891 * @iqid: ingress queue id 6892 * @fl0id: FL0 queue id or 0xffff if no attached FL0 6893 * @fl1id: FL1 queue id or 0xffff if no attached FL1 6894 * 6895 * Frees an ingress queue and its associated FLs, if any. 6896 */ 6897 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 6898 unsigned int vf, unsigned int iqtype, unsigned int iqid, 6899 unsigned int fl0id, unsigned int fl1id) 6900 { 6901 struct fw_iq_cmd c; 6902 6903 memset(&c, 0, sizeof(c)); 6904 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 6905 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 6906 FW_IQ_CMD_VFN_V(vf)); 6907 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 6908 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 6909 c.iqid = cpu_to_be16(iqid); 6910 c.fl0id = cpu_to_be16(fl0id); 6911 c.fl1id = cpu_to_be16(fl1id); 6912 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6913 } 6914 6915 /** 6916 * t4_eth_eq_free - free an Ethernet egress queue 6917 * @adap: the adapter 6918 * @mbox: mailbox to use for the FW command 6919 * @pf: the PF owning the queue 6920 * @vf: the VF owning the queue 6921 * @eqid: egress queue id 6922 * 6923 * Frees an Ethernet egress queue. 6924 */ 6925 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 6926 unsigned int vf, unsigned int eqid) 6927 { 6928 struct fw_eq_eth_cmd c; 6929 6930 memset(&c, 0, sizeof(c)); 6931 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 6932 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6933 FW_EQ_ETH_CMD_PFN_V(pf) | 6934 FW_EQ_ETH_CMD_VFN_V(vf)); 6935 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 6936 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 6937 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6938 } 6939 6940 /** 6941 * t4_ctrl_eq_free - free a control egress queue 6942 * @adap: the adapter 6943 * @mbox: mailbox to use for the FW command 6944 * @pf: the PF owning the queue 6945 * @vf: the VF owning the queue 6946 * @eqid: egress queue id 6947 * 6948 * Frees a control egress queue. 6949 */ 6950 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 6951 unsigned int vf, unsigned int eqid) 6952 { 6953 struct fw_eq_ctrl_cmd c; 6954 6955 memset(&c, 0, sizeof(c)); 6956 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 6957 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6958 FW_EQ_CTRL_CMD_PFN_V(pf) | 6959 FW_EQ_CTRL_CMD_VFN_V(vf)); 6960 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 6961 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 6962 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6963 } 6964 6965 /** 6966 * t4_ofld_eq_free - free an offload egress queue 6967 * @adap: the adapter 6968 * @mbox: mailbox to use for the FW command 6969 * @pf: the PF owning the queue 6970 * @vf: the VF owning the queue 6971 * @eqid: egress queue id 6972 * 6973 * Frees a control egress queue. 6974 */ 6975 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 6976 unsigned int vf, unsigned int eqid) 6977 { 6978 struct fw_eq_ofld_cmd c; 6979 6980 memset(&c, 0, sizeof(c)); 6981 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 6982 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6983 FW_EQ_OFLD_CMD_PFN_V(pf) | 6984 FW_EQ_OFLD_CMD_VFN_V(vf)); 6985 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 6986 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 6987 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6988 } 6989 6990 /** 6991 * t4_handle_fw_rpl - process a FW reply message 6992 * @adap: the adapter 6993 * @rpl: start of the FW message 6994 * 6995 * Processes a FW message, such as link state change messages. 6996 */ 6997 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 6998 { 6999 u8 opcode = *(const u8 *)rpl; 7000 7001 if (opcode == FW_PORT_CMD) { /* link/module state change message */ 7002 int speed = 0, fc = 0; 7003 const struct fw_port_cmd *p = (void *)rpl; 7004 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 7005 int port = adap->chan_map[chan]; 7006 struct port_info *pi = adap2pinfo(adap, port); 7007 struct link_config *lc = &pi->link_cfg; 7008 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 7009 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; 7010 u32 mod = FW_PORT_CMD_MODTYPE_G(stat); 7011 7012 if (stat & FW_PORT_CMD_RXPAUSE_F) 7013 fc |= PAUSE_RX; 7014 if (stat & FW_PORT_CMD_TXPAUSE_F) 7015 fc |= PAUSE_TX; 7016 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 7017 speed = 100; 7018 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 7019 speed = 1000; 7020 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 7021 speed = 10000; 7022 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 7023 speed = 40000; 7024 7025 if (link_ok != lc->link_ok || speed != lc->speed || 7026 fc != lc->fc) { /* something changed */ 7027 lc->link_ok = link_ok; 7028 lc->speed = speed; 7029 lc->fc = fc; 7030 lc->supported = be16_to_cpu(p->u.info.pcap); 7031 t4_os_link_changed(adap, port, link_ok); 7032 } 7033 if (mod != pi->mod_type) { 7034 pi->mod_type = mod; 7035 t4_os_portmod_changed(adap, port); 7036 } 7037 } 7038 return 0; 7039 } 7040 7041 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 7042 { 7043 u16 val; 7044 7045 if (pci_is_pcie(adapter->pdev)) { 7046 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 7047 p->speed = val & PCI_EXP_LNKSTA_CLS; 7048 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 7049 } 7050 } 7051 7052 /** 7053 * init_link_config - initialize a link's SW state 7054 * @lc: structure holding the link state 7055 * @caps: link capabilities 7056 * 7057 * Initializes the SW state maintained for each link, including the link's 7058 * capabilities and default speed/flow-control/autonegotiation settings. 7059 */ 7060 static void init_link_config(struct link_config *lc, unsigned int caps) 7061 { 7062 lc->supported = caps; 7063 lc->requested_speed = 0; 7064 lc->speed = 0; 7065 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 7066 if (lc->supported & FW_PORT_CAP_ANEG) { 7067 lc->advertising = lc->supported & ADVERT_MASK; 7068 lc->autoneg = AUTONEG_ENABLE; 7069 lc->requested_fc |= PAUSE_AUTONEG; 7070 } else { 7071 lc->advertising = 0; 7072 lc->autoneg = AUTONEG_DISABLE; 7073 } 7074 } 7075 7076 #define CIM_PF_NOACCESS 0xeeeeeeee 7077 7078 int t4_wait_dev_ready(void __iomem *regs) 7079 { 7080 u32 whoami; 7081 7082 whoami = readl(regs + PL_WHOAMI_A); 7083 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 7084 return 0; 7085 7086 msleep(500); 7087 whoami = readl(regs + PL_WHOAMI_A); 7088 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 7089 } 7090 7091 struct flash_desc { 7092 u32 vendor_and_model_id; 7093 u32 size_mb; 7094 }; 7095 7096 static int get_flash_params(struct adapter *adap) 7097 { 7098 /* Table for non-Numonix supported flash parts. Numonix parts are left 7099 * to the preexisting code. All flash parts have 64KB sectors. 7100 */ 7101 static struct flash_desc supported_flash[] = { 7102 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 7103 }; 7104 7105 int ret; 7106 u32 info; 7107 7108 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 7109 if (!ret) 7110 ret = sf1_read(adap, 3, 0, 1, &info); 7111 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 7112 if (ret) 7113 return ret; 7114 7115 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret) 7116 if (supported_flash[ret].vendor_and_model_id == info) { 7117 adap->params.sf_size = supported_flash[ret].size_mb; 7118 adap->params.sf_nsec = 7119 adap->params.sf_size / SF_SEC_SIZE; 7120 return 0; 7121 } 7122 7123 if ((info & 0xff) != 0x20) /* not a Numonix flash */ 7124 return -EINVAL; 7125 info >>= 16; /* log2 of size */ 7126 if (info >= 0x14 && info < 0x18) 7127 adap->params.sf_nsec = 1 << (info - 16); 7128 else if (info == 0x18) 7129 adap->params.sf_nsec = 64; 7130 else 7131 return -EINVAL; 7132 adap->params.sf_size = 1 << info; 7133 adap->params.sf_fw_start = 7134 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M; 7135 7136 if (adap->params.sf_size < FLASH_MIN_SIZE) 7137 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n", 7138 adap->params.sf_size, FLASH_MIN_SIZE); 7139 return 0; 7140 } 7141 7142 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range) 7143 { 7144 u16 val; 7145 u32 pcie_cap; 7146 7147 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 7148 if (pcie_cap) { 7149 pci_read_config_word(adapter->pdev, 7150 pcie_cap + PCI_EXP_DEVCTL2, &val); 7151 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT; 7152 val |= range; 7153 pci_write_config_word(adapter->pdev, 7154 pcie_cap + PCI_EXP_DEVCTL2, val); 7155 } 7156 } 7157 7158 /** 7159 * t4_prep_adapter - prepare SW and HW for operation 7160 * @adapter: the adapter 7161 * @reset: if true perform a HW reset 7162 * 7163 * Initialize adapter SW state for the various HW modules, set initial 7164 * values for some adapter tunables, take PHYs out of reset, and 7165 * initialize the MDIO interface. 7166 */ 7167 int t4_prep_adapter(struct adapter *adapter) 7168 { 7169 int ret, ver; 7170 uint16_t device_id; 7171 u32 pl_rev; 7172 7173 get_pci_mode(adapter, &adapter->params.pci); 7174 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 7175 7176 ret = get_flash_params(adapter); 7177 if (ret < 0) { 7178 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 7179 return ret; 7180 } 7181 7182 /* Retrieve adapter's device ID 7183 */ 7184 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 7185 ver = device_id >> 12; 7186 adapter->params.chip = 0; 7187 switch (ver) { 7188 case CHELSIO_T4: 7189 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 7190 adapter->params.arch.sge_fl_db = DBPRIO_F; 7191 adapter->params.arch.mps_tcam_size = 7192 NUM_MPS_CLS_SRAM_L_INSTANCES; 7193 adapter->params.arch.mps_rplc_size = 128; 7194 adapter->params.arch.nchan = NCHAN; 7195 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 7196 adapter->params.arch.vfcount = 128; 7197 /* Congestion map is for 4 channels so that 7198 * MPS can have 4 priority per port. 7199 */ 7200 adapter->params.arch.cng_ch_bits_log = 2; 7201 break; 7202 case CHELSIO_T5: 7203 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 7204 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 7205 adapter->params.arch.mps_tcam_size = 7206 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7207 adapter->params.arch.mps_rplc_size = 128; 7208 adapter->params.arch.nchan = NCHAN; 7209 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 7210 adapter->params.arch.vfcount = 128; 7211 adapter->params.arch.cng_ch_bits_log = 2; 7212 break; 7213 case CHELSIO_T6: 7214 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 7215 adapter->params.arch.sge_fl_db = 0; 7216 adapter->params.arch.mps_tcam_size = 7217 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7218 adapter->params.arch.mps_rplc_size = 256; 7219 adapter->params.arch.nchan = 2; 7220 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 7221 adapter->params.arch.vfcount = 256; 7222 /* Congestion map will be for 2 channels so that 7223 * MPS can have 8 priority per port. 7224 */ 7225 adapter->params.arch.cng_ch_bits_log = 3; 7226 break; 7227 default: 7228 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 7229 device_id); 7230 return -EINVAL; 7231 } 7232 7233 adapter->params.cim_la_size = CIMLA_SIZE; 7234 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 7235 7236 /* 7237 * Default port for debugging in case we can't reach FW. 7238 */ 7239 adapter->params.nports = 1; 7240 adapter->params.portvec = 1; 7241 adapter->params.vpd.cclk = 50000; 7242 7243 /* Set pci completion timeout value to 4 seconds. */ 7244 set_pcie_completion_timeout(adapter, 0xd); 7245 return 0; 7246 } 7247 7248 /** 7249 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 7250 * @adapter: the adapter 7251 * @qid: the Queue ID 7252 * @qtype: the Ingress or Egress type for @qid 7253 * @user: true if this request is for a user mode queue 7254 * @pbar2_qoffset: BAR2 Queue Offset 7255 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 7256 * 7257 * Returns the BAR2 SGE Queue Registers information associated with the 7258 * indicated Absolute Queue ID. These are passed back in return value 7259 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 7260 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 7261 * 7262 * This may return an error which indicates that BAR2 SGE Queue 7263 * registers aren't available. If an error is not returned, then the 7264 * following values are returned: 7265 * 7266 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 7267 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 7268 * 7269 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 7270 * require the "Inferred Queue ID" ability may be used. E.g. the 7271 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 7272 * then these "Inferred Queue ID" register may not be used. 7273 */ 7274 int t4_bar2_sge_qregs(struct adapter *adapter, 7275 unsigned int qid, 7276 enum t4_bar2_qtype qtype, 7277 int user, 7278 u64 *pbar2_qoffset, 7279 unsigned int *pbar2_qid) 7280 { 7281 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 7282 u64 bar2_page_offset, bar2_qoffset; 7283 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 7284 7285 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 7286 if (!user && is_t4(adapter->params.chip)) 7287 return -EINVAL; 7288 7289 /* Get our SGE Page Size parameters. 7290 */ 7291 page_shift = adapter->params.sge.hps + 10; 7292 page_size = 1 << page_shift; 7293 7294 /* Get the right Queues per Page parameters for our Queue. 7295 */ 7296 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 7297 ? adapter->params.sge.eq_qpp 7298 : adapter->params.sge.iq_qpp); 7299 qpp_mask = (1 << qpp_shift) - 1; 7300 7301 /* Calculate the basics of the BAR2 SGE Queue register area: 7302 * o The BAR2 page the Queue registers will be in. 7303 * o The BAR2 Queue ID. 7304 * o The BAR2 Queue ID Offset into the BAR2 page. 7305 */ 7306 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 7307 bar2_qid = qid & qpp_mask; 7308 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 7309 7310 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 7311 * hardware will infer the Absolute Queue ID simply from the writes to 7312 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 7313 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 7314 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 7315 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 7316 * from the BAR2 Page and BAR2 Queue ID. 7317 * 7318 * One important censequence of this is that some BAR2 SGE registers 7319 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 7320 * there. But other registers synthesize the SGE Queue ID purely 7321 * from the writes to the registers -- the Write Combined Doorbell 7322 * Buffer is a good example. These BAR2 SGE Registers are only 7323 * available for those BAR2 SGE Register areas where the SGE Absolute 7324 * Queue ID can be inferred from simple writes. 7325 */ 7326 bar2_qoffset = bar2_page_offset; 7327 bar2_qinferred = (bar2_qid_offset < page_size); 7328 if (bar2_qinferred) { 7329 bar2_qoffset += bar2_qid_offset; 7330 bar2_qid = 0; 7331 } 7332 7333 *pbar2_qoffset = bar2_qoffset; 7334 *pbar2_qid = bar2_qid; 7335 return 0; 7336 } 7337 7338 /** 7339 * t4_init_devlog_params - initialize adapter->params.devlog 7340 * @adap: the adapter 7341 * 7342 * Initialize various fields of the adapter's Firmware Device Log 7343 * Parameters structure. 7344 */ 7345 int t4_init_devlog_params(struct adapter *adap) 7346 { 7347 struct devlog_params *dparams = &adap->params.devlog; 7348 u32 pf_dparams; 7349 unsigned int devlog_meminfo; 7350 struct fw_devlog_cmd devlog_cmd; 7351 int ret; 7352 7353 /* If we're dealing with newer firmware, the Device Log Paramerters 7354 * are stored in a designated register which allows us to access the 7355 * Device Log even if we can't talk to the firmware. 7356 */ 7357 pf_dparams = 7358 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 7359 if (pf_dparams) { 7360 unsigned int nentries, nentries128; 7361 7362 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 7363 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 7364 7365 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 7366 nentries = (nentries128 + 1) * 128; 7367 dparams->size = nentries * sizeof(struct fw_devlog_e); 7368 7369 return 0; 7370 } 7371 7372 /* Otherwise, ask the firmware for it's Device Log Parameters. 7373 */ 7374 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 7375 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 7376 FW_CMD_REQUEST_F | FW_CMD_READ_F); 7377 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 7378 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 7379 &devlog_cmd); 7380 if (ret) 7381 return ret; 7382 7383 devlog_meminfo = 7384 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 7385 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 7386 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 7387 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 7388 7389 return 0; 7390 } 7391 7392 /** 7393 * t4_init_sge_params - initialize adap->params.sge 7394 * @adapter: the adapter 7395 * 7396 * Initialize various fields of the adapter's SGE Parameters structure. 7397 */ 7398 int t4_init_sge_params(struct adapter *adapter) 7399 { 7400 struct sge_params *sge_params = &adapter->params.sge; 7401 u32 hps, qpp; 7402 unsigned int s_hps, s_qpp; 7403 7404 /* Extract the SGE Page Size for our PF. 7405 */ 7406 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 7407 s_hps = (HOSTPAGESIZEPF0_S + 7408 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 7409 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 7410 7411 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 7412 */ 7413 s_qpp = (QUEUESPERPAGEPF0_S + 7414 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 7415 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 7416 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 7417 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 7418 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 7419 7420 return 0; 7421 } 7422 7423 /** 7424 * t4_init_tp_params - initialize adap->params.tp 7425 * @adap: the adapter 7426 * 7427 * Initialize various fields of the adapter's TP Parameters structure. 7428 */ 7429 int t4_init_tp_params(struct adapter *adap) 7430 { 7431 int chan; 7432 u32 v; 7433 7434 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 7435 adap->params.tp.tre = TIMERRESOLUTION_G(v); 7436 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 7437 7438 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 7439 for (chan = 0; chan < NCHAN; chan++) 7440 adap->params.tp.tx_modq[chan] = chan; 7441 7442 /* Cache the adapter's Compressed Filter Mode and global Incress 7443 * Configuration. 7444 */ 7445 if (t4_use_ldst(adap)) { 7446 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1, 7447 TP_VLAN_PRI_MAP_A, 1); 7448 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1, 7449 TP_INGRESS_CONFIG_A, 1); 7450 } else { 7451 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 7452 &adap->params.tp.vlan_pri_map, 1, 7453 TP_VLAN_PRI_MAP_A); 7454 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 7455 &adap->params.tp.ingress_config, 1, 7456 TP_INGRESS_CONFIG_A); 7457 } 7458 7459 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 7460 * shift positions of several elements of the Compressed Filter Tuple 7461 * for this adapter which we need frequently ... 7462 */ 7463 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 7464 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 7465 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 7466 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 7467 PROTOCOL_F); 7468 7469 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 7470 * represents the presence of an Outer VLAN instead of a VNIC ID. 7471 */ 7472 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 7473 adap->params.tp.vnic_shift = -1; 7474 7475 return 0; 7476 } 7477 7478 /** 7479 * t4_filter_field_shift - calculate filter field shift 7480 * @adap: the adapter 7481 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 7482 * 7483 * Return the shift position of a filter field within the Compressed 7484 * Filter Tuple. The filter field is specified via its selection bit 7485 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 7486 */ 7487 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 7488 { 7489 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 7490 unsigned int sel; 7491 int field_shift; 7492 7493 if ((filter_mode & filter_sel) == 0) 7494 return -1; 7495 7496 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 7497 switch (filter_mode & sel) { 7498 case FCOE_F: 7499 field_shift += FT_FCOE_W; 7500 break; 7501 case PORT_F: 7502 field_shift += FT_PORT_W; 7503 break; 7504 case VNIC_ID_F: 7505 field_shift += FT_VNIC_ID_W; 7506 break; 7507 case VLAN_F: 7508 field_shift += FT_VLAN_W; 7509 break; 7510 case TOS_F: 7511 field_shift += FT_TOS_W; 7512 break; 7513 case PROTOCOL_F: 7514 field_shift += FT_PROTOCOL_W; 7515 break; 7516 case ETHERTYPE_F: 7517 field_shift += FT_ETHERTYPE_W; 7518 break; 7519 case MACMATCH_F: 7520 field_shift += FT_MACMATCH_W; 7521 break; 7522 case MPSHITTYPE_F: 7523 field_shift += FT_MPSHITTYPE_W; 7524 break; 7525 case FRAGMENTATION_F: 7526 field_shift += FT_FRAGMENTATION_W; 7527 break; 7528 } 7529 } 7530 return field_shift; 7531 } 7532 7533 int t4_init_rss_mode(struct adapter *adap, int mbox) 7534 { 7535 int i, ret; 7536 struct fw_rss_vi_config_cmd rvc; 7537 7538 memset(&rvc, 0, sizeof(rvc)); 7539 7540 for_each_port(adap, i) { 7541 struct port_info *p = adap2pinfo(adap, i); 7542 7543 rvc.op_to_viid = 7544 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 7545 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7546 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 7547 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 7548 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 7549 if (ret) 7550 return ret; 7551 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 7552 } 7553 return 0; 7554 } 7555 7556 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 7557 { 7558 u8 addr[6]; 7559 int ret, i, j = 0; 7560 struct fw_port_cmd c; 7561 struct fw_rss_vi_config_cmd rvc; 7562 7563 memset(&c, 0, sizeof(c)); 7564 memset(&rvc, 0, sizeof(rvc)); 7565 7566 for_each_port(adap, i) { 7567 unsigned int rss_size; 7568 struct port_info *p = adap2pinfo(adap, i); 7569 7570 while ((adap->params.portvec & (1 << j)) == 0) 7571 j++; 7572 7573 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 7574 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7575 FW_PORT_CMD_PORTID_V(j)); 7576 c.action_to_len16 = cpu_to_be32( 7577 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 7578 FW_LEN16(c)); 7579 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7580 if (ret) 7581 return ret; 7582 7583 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); 7584 if (ret < 0) 7585 return ret; 7586 7587 p->viid = ret; 7588 p->tx_chan = j; 7589 p->lport = j; 7590 p->rss_size = rss_size; 7591 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 7592 adap->port[i]->dev_port = j; 7593 7594 ret = be32_to_cpu(c.u.info.lstatus_to_modtype); 7595 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ? 7596 FW_PORT_CMD_MDIOADDR_G(ret) : -1; 7597 p->port_type = FW_PORT_CMD_PTYPE_G(ret); 7598 p->mod_type = FW_PORT_MOD_TYPE_NA; 7599 7600 rvc.op_to_viid = 7601 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 7602 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7603 FW_RSS_VI_CONFIG_CMD_VIID(p->viid)); 7604 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 7605 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 7606 if (ret) 7607 return ret; 7608 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 7609 7610 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap)); 7611 j++; 7612 } 7613 return 0; 7614 } 7615 7616 /** 7617 * t4_read_cimq_cfg - read CIM queue configuration 7618 * @adap: the adapter 7619 * @base: holds the queue base addresses in bytes 7620 * @size: holds the queue sizes in bytes 7621 * @thres: holds the queue full thresholds in bytes 7622 * 7623 * Returns the current configuration of the CIM queues, starting with 7624 * the IBQs, then the OBQs. 7625 */ 7626 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 7627 { 7628 unsigned int i, v; 7629 int cim_num_obq = is_t4(adap->params.chip) ? 7630 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 7631 7632 for (i = 0; i < CIM_NUM_IBQ; i++) { 7633 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 7634 QUENUMSELECT_V(i)); 7635 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 7636 /* value is in 256-byte units */ 7637 *base++ = CIMQBASE_G(v) * 256; 7638 *size++ = CIMQSIZE_G(v) * 256; 7639 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 7640 } 7641 for (i = 0; i < cim_num_obq; i++) { 7642 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 7643 QUENUMSELECT_V(i)); 7644 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 7645 /* value is in 256-byte units */ 7646 *base++ = CIMQBASE_G(v) * 256; 7647 *size++ = CIMQSIZE_G(v) * 256; 7648 } 7649 } 7650 7651 /** 7652 * t4_read_cim_ibq - read the contents of a CIM inbound queue 7653 * @adap: the adapter 7654 * @qid: the queue index 7655 * @data: where to store the queue contents 7656 * @n: capacity of @data in 32-bit words 7657 * 7658 * Reads the contents of the selected CIM queue starting at address 0 up 7659 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 7660 * error and the number of 32-bit words actually read on success. 7661 */ 7662 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 7663 { 7664 int i, err, attempts; 7665 unsigned int addr; 7666 const unsigned int nwords = CIM_IBQ_SIZE * 4; 7667 7668 if (qid > 5 || (n & 3)) 7669 return -EINVAL; 7670 7671 addr = qid * nwords; 7672 if (n > nwords) 7673 n = nwords; 7674 7675 /* It might take 3-10ms before the IBQ debug read access is allowed. 7676 * Wait for 1 Sec with a delay of 1 usec. 7677 */ 7678 attempts = 1000000; 7679 7680 for (i = 0; i < n; i++, addr++) { 7681 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 7682 IBQDBGEN_F); 7683 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 7684 attempts, 1); 7685 if (err) 7686 return err; 7687 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 7688 } 7689 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 7690 return i; 7691 } 7692 7693 /** 7694 * t4_read_cim_obq - read the contents of a CIM outbound queue 7695 * @adap: the adapter 7696 * @qid: the queue index 7697 * @data: where to store the queue contents 7698 * @n: capacity of @data in 32-bit words 7699 * 7700 * Reads the contents of the selected CIM queue starting at address 0 up 7701 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 7702 * error and the number of 32-bit words actually read on success. 7703 */ 7704 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 7705 { 7706 int i, err; 7707 unsigned int addr, v, nwords; 7708 int cim_num_obq = is_t4(adap->params.chip) ? 7709 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 7710 7711 if ((qid > (cim_num_obq - 1)) || (n & 3)) 7712 return -EINVAL; 7713 7714 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 7715 QUENUMSELECT_V(qid)); 7716 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 7717 7718 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 7719 nwords = CIMQSIZE_G(v) * 64; /* same */ 7720 if (n > nwords) 7721 n = nwords; 7722 7723 for (i = 0; i < n; i++, addr++) { 7724 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 7725 OBQDBGEN_F); 7726 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 7727 2, 1); 7728 if (err) 7729 return err; 7730 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 7731 } 7732 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 7733 return i; 7734 } 7735 7736 /** 7737 * t4_cim_read - read a block from CIM internal address space 7738 * @adap: the adapter 7739 * @addr: the start address within the CIM address space 7740 * @n: number of words to read 7741 * @valp: where to store the result 7742 * 7743 * Reads a block of 4-byte words from the CIM intenal address space. 7744 */ 7745 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 7746 unsigned int *valp) 7747 { 7748 int ret = 0; 7749 7750 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 7751 return -EBUSY; 7752 7753 for ( ; !ret && n--; addr += 4) { 7754 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 7755 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 7756 0, 5, 2); 7757 if (!ret) 7758 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 7759 } 7760 return ret; 7761 } 7762 7763 /** 7764 * t4_cim_write - write a block into CIM internal address space 7765 * @adap: the adapter 7766 * @addr: the start address within the CIM address space 7767 * @n: number of words to write 7768 * @valp: set of values to write 7769 * 7770 * Writes a block of 4-byte words into the CIM intenal address space. 7771 */ 7772 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 7773 const unsigned int *valp) 7774 { 7775 int ret = 0; 7776 7777 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 7778 return -EBUSY; 7779 7780 for ( ; !ret && n--; addr += 4) { 7781 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 7782 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 7783 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 7784 0, 5, 2); 7785 } 7786 return ret; 7787 } 7788 7789 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 7790 unsigned int val) 7791 { 7792 return t4_cim_write(adap, addr, 1, &val); 7793 } 7794 7795 /** 7796 * t4_cim_read_la - read CIM LA capture buffer 7797 * @adap: the adapter 7798 * @la_buf: where to store the LA data 7799 * @wrptr: the HW write pointer within the capture buffer 7800 * 7801 * Reads the contents of the CIM LA buffer with the most recent entry at 7802 * the end of the returned data and with the entry at @wrptr first. 7803 * We try to leave the LA in the running state we find it in. 7804 */ 7805 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 7806 { 7807 int i, ret; 7808 unsigned int cfg, val, idx; 7809 7810 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 7811 if (ret) 7812 return ret; 7813 7814 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 7815 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 7816 if (ret) 7817 return ret; 7818 } 7819 7820 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 7821 if (ret) 7822 goto restart; 7823 7824 idx = UPDBGLAWRPTR_G(val); 7825 if (wrptr) 7826 *wrptr = idx; 7827 7828 for (i = 0; i < adap->params.cim_la_size; i++) { 7829 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 7830 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 7831 if (ret) 7832 break; 7833 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 7834 if (ret) 7835 break; 7836 if (val & UPDBGLARDEN_F) { 7837 ret = -ETIMEDOUT; 7838 break; 7839 } 7840 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 7841 if (ret) 7842 break; 7843 idx = (idx + 1) & UPDBGLARDPTR_M; 7844 } 7845 restart: 7846 if (cfg & UPDBGLAEN_F) { 7847 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 7848 cfg & ~UPDBGLARDEN_F); 7849 if (!ret) 7850 ret = r; 7851 } 7852 return ret; 7853 } 7854 7855 /** 7856 * t4_tp_read_la - read TP LA capture buffer 7857 * @adap: the adapter 7858 * @la_buf: where to store the LA data 7859 * @wrptr: the HW write pointer within the capture buffer 7860 * 7861 * Reads the contents of the TP LA buffer with the most recent entry at 7862 * the end of the returned data and with the entry at @wrptr first. 7863 * We leave the LA in the running state we find it in. 7864 */ 7865 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 7866 { 7867 bool last_incomplete; 7868 unsigned int i, cfg, val, idx; 7869 7870 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 7871 if (cfg & DBGLAENABLE_F) /* freeze LA */ 7872 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 7873 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 7874 7875 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 7876 idx = DBGLAWPTR_G(val); 7877 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 7878 if (last_incomplete) 7879 idx = (idx + 1) & DBGLARPTR_M; 7880 if (wrptr) 7881 *wrptr = idx; 7882 7883 val &= 0xffff; 7884 val &= ~DBGLARPTR_V(DBGLARPTR_M); 7885 val |= adap->params.tp.la_mask; 7886 7887 for (i = 0; i < TPLA_SIZE; i++) { 7888 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 7889 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 7890 idx = (idx + 1) & DBGLARPTR_M; 7891 } 7892 7893 /* Wipe out last entry if it isn't valid */ 7894 if (last_incomplete) 7895 la_buf[TPLA_SIZE - 1] = ~0ULL; 7896 7897 if (cfg & DBGLAENABLE_F) /* restore running state */ 7898 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 7899 cfg | adap->params.tp.la_mask); 7900 } 7901 7902 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 7903 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 7904 * state for more than the Warning Threshold then we'll issue a warning about 7905 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 7906 * appears to be hung every Warning Repeat second till the situation clears. 7907 * If the situation clears, we'll note that as well. 7908 */ 7909 #define SGE_IDMA_WARN_THRESH 1 7910 #define SGE_IDMA_WARN_REPEAT 300 7911 7912 /** 7913 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 7914 * @adapter: the adapter 7915 * @idma: the adapter IDMA Monitor state 7916 * 7917 * Initialize the state of an SGE Ingress DMA Monitor. 7918 */ 7919 void t4_idma_monitor_init(struct adapter *adapter, 7920 struct sge_idma_monitor_state *idma) 7921 { 7922 /* Initialize the state variables for detecting an SGE Ingress DMA 7923 * hang. The SGE has internal counters which count up on each clock 7924 * tick whenever the SGE finds its Ingress DMA State Engines in the 7925 * same state they were on the previous clock tick. The clock used is 7926 * the Core Clock so we have a limit on the maximum "time" they can 7927 * record; typically a very small number of seconds. For instance, 7928 * with a 600MHz Core Clock, we can only count up to a bit more than 7929 * 7s. So we'll synthesize a larger counter in order to not run the 7930 * risk of having the "timers" overflow and give us the flexibility to 7931 * maintain a Hung SGE State Machine of our own which operates across 7932 * a longer time frame. 7933 */ 7934 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 7935 idma->idma_stalled[0] = 0; 7936 idma->idma_stalled[1] = 0; 7937 } 7938 7939 /** 7940 * t4_idma_monitor - monitor SGE Ingress DMA state 7941 * @adapter: the adapter 7942 * @idma: the adapter IDMA Monitor state 7943 * @hz: number of ticks/second 7944 * @ticks: number of ticks since the last IDMA Monitor call 7945 */ 7946 void t4_idma_monitor(struct adapter *adapter, 7947 struct sge_idma_monitor_state *idma, 7948 int hz, int ticks) 7949 { 7950 int i, idma_same_state_cnt[2]; 7951 7952 /* Read the SGE Debug Ingress DMA Same State Count registers. These 7953 * are counters inside the SGE which count up on each clock when the 7954 * SGE finds its Ingress DMA State Engines in the same states they 7955 * were in the previous clock. The counters will peg out at 7956 * 0xffffffff without wrapping around so once they pass the 1s 7957 * threshold they'll stay above that till the IDMA state changes. 7958 */ 7959 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 7960 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 7961 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 7962 7963 for (i = 0; i < 2; i++) { 7964 u32 debug0, debug11; 7965 7966 /* If the Ingress DMA Same State Counter ("timer") is less 7967 * than 1s, then we can reset our synthesized Stall Timer and 7968 * continue. If we have previously emitted warnings about a 7969 * potential stalled Ingress Queue, issue a note indicating 7970 * that the Ingress Queue has resumed forward progress. 7971 */ 7972 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 7973 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 7974 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 7975 "resumed after %d seconds\n", 7976 i, idma->idma_qid[i], 7977 idma->idma_stalled[i] / hz); 7978 idma->idma_stalled[i] = 0; 7979 continue; 7980 } 7981 7982 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 7983 * domain. The first time we get here it'll be because we 7984 * passed the 1s Threshold; each additional time it'll be 7985 * because the RX Timer Callback is being fired on its regular 7986 * schedule. 7987 * 7988 * If the stall is below our Potential Hung Ingress Queue 7989 * Warning Threshold, continue. 7990 */ 7991 if (idma->idma_stalled[i] == 0) { 7992 idma->idma_stalled[i] = hz; 7993 idma->idma_warn[i] = 0; 7994 } else { 7995 idma->idma_stalled[i] += ticks; 7996 idma->idma_warn[i] -= ticks; 7997 } 7998 7999 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 8000 continue; 8001 8002 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 8003 */ 8004 if (idma->idma_warn[i] > 0) 8005 continue; 8006 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 8007 8008 /* Read and save the SGE IDMA State and Queue ID information. 8009 * We do this every time in case it changes across time ... 8010 * can't be too careful ... 8011 */ 8012 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 8013 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8014 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 8015 8016 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 8017 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8018 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 8019 8020 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 8021 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 8022 i, idma->idma_qid[i], idma->idma_state[i], 8023 idma->idma_stalled[i] / hz, 8024 debug0, debug11); 8025 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 8026 } 8027 } 8028