1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rearely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boudaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9820, 0x983c, 1383 0x9850, 0x9864, 1384 0x9c00, 0x9c6c, 1385 0x9c80, 0x9cec, 1386 0x9d00, 0x9d6c, 1387 0x9d80, 0x9dec, 1388 0x9e00, 0x9e6c, 1389 0x9e80, 0x9eec, 1390 0x9f00, 0x9f6c, 1391 0x9f80, 0xa020, 1392 0xd004, 0xd004, 1393 0xd010, 0xd03c, 1394 0xdfc0, 0xdfe0, 1395 0xe000, 0x1106c, 1396 0x11074, 0x11088, 1397 0x1109c, 0x1117c, 1398 0x11190, 0x11204, 1399 0x19040, 0x1906c, 1400 0x19078, 0x19080, 1401 0x1908c, 0x190e8, 1402 0x190f0, 0x190f8, 1403 0x19100, 0x19110, 1404 0x19120, 0x19124, 1405 0x19150, 0x19194, 1406 0x1919c, 0x191b0, 1407 0x191d0, 0x191e8, 1408 0x19238, 0x19290, 1409 0x193f8, 0x19428, 1410 0x19430, 0x19444, 1411 0x1944c, 0x1946c, 1412 0x19474, 0x19474, 1413 0x19490, 0x194cc, 1414 0x194f0, 0x194f8, 1415 0x19c00, 0x19c08, 1416 0x19c10, 0x19c60, 1417 0x19c94, 0x19ce4, 1418 0x19cf0, 0x19d40, 1419 0x19d50, 0x19d94, 1420 0x19da0, 0x19de8, 1421 0x19df0, 0x19e10, 1422 0x19e50, 0x19e90, 1423 0x19ea0, 0x19f24, 1424 0x19f34, 0x19f34, 1425 0x19f40, 0x19f50, 1426 0x19f90, 0x19fb4, 1427 0x19fc4, 0x19fe4, 1428 0x1a000, 0x1a004, 1429 0x1a010, 0x1a06c, 1430 0x1a0b0, 0x1a0e4, 1431 0x1a0ec, 0x1a0f8, 1432 0x1a100, 0x1a108, 1433 0x1a114, 0x1a120, 1434 0x1a128, 0x1a130, 1435 0x1a138, 0x1a138, 1436 0x1a190, 0x1a1c4, 1437 0x1a1fc, 0x1a1fc, 1438 0x1e008, 0x1e00c, 1439 0x1e040, 0x1e044, 1440 0x1e04c, 0x1e04c, 1441 0x1e284, 0x1e290, 1442 0x1e2c0, 0x1e2c0, 1443 0x1e2e0, 0x1e2e0, 1444 0x1e300, 0x1e384, 1445 0x1e3c0, 0x1e3c8, 1446 0x1e408, 0x1e40c, 1447 0x1e440, 0x1e444, 1448 0x1e44c, 0x1e44c, 1449 0x1e684, 0x1e690, 1450 0x1e6c0, 0x1e6c0, 1451 0x1e6e0, 0x1e6e0, 1452 0x1e700, 0x1e784, 1453 0x1e7c0, 0x1e7c8, 1454 0x1e808, 0x1e80c, 1455 0x1e840, 0x1e844, 1456 0x1e84c, 0x1e84c, 1457 0x1ea84, 0x1ea90, 1458 0x1eac0, 0x1eac0, 1459 0x1eae0, 0x1eae0, 1460 0x1eb00, 0x1eb84, 1461 0x1ebc0, 0x1ebc8, 1462 0x1ec08, 0x1ec0c, 1463 0x1ec40, 0x1ec44, 1464 0x1ec4c, 0x1ec4c, 1465 0x1ee84, 0x1ee90, 1466 0x1eec0, 0x1eec0, 1467 0x1eee0, 0x1eee0, 1468 0x1ef00, 0x1ef84, 1469 0x1efc0, 0x1efc8, 1470 0x1f008, 0x1f00c, 1471 0x1f040, 0x1f044, 1472 0x1f04c, 0x1f04c, 1473 0x1f284, 0x1f290, 1474 0x1f2c0, 0x1f2c0, 1475 0x1f2e0, 0x1f2e0, 1476 0x1f300, 0x1f384, 1477 0x1f3c0, 0x1f3c8, 1478 0x1f408, 0x1f40c, 1479 0x1f440, 0x1f444, 1480 0x1f44c, 0x1f44c, 1481 0x1f684, 0x1f690, 1482 0x1f6c0, 0x1f6c0, 1483 0x1f6e0, 0x1f6e0, 1484 0x1f700, 0x1f784, 1485 0x1f7c0, 0x1f7c8, 1486 0x1f808, 0x1f80c, 1487 0x1f840, 0x1f844, 1488 0x1f84c, 0x1f84c, 1489 0x1fa84, 0x1fa90, 1490 0x1fac0, 0x1fac0, 1491 0x1fae0, 0x1fae0, 1492 0x1fb00, 0x1fb84, 1493 0x1fbc0, 0x1fbc8, 1494 0x1fc08, 0x1fc0c, 1495 0x1fc40, 0x1fc44, 1496 0x1fc4c, 0x1fc4c, 1497 0x1fe84, 0x1fe90, 1498 0x1fec0, 0x1fec0, 1499 0x1fee0, 0x1fee0, 1500 0x1ff00, 0x1ff84, 1501 0x1ffc0, 0x1ffc8, 1502 0x30000, 0x30030, 1503 0x30100, 0x30144, 1504 0x30190, 0x301a0, 1505 0x301a8, 0x301b8, 1506 0x301c4, 0x301c8, 1507 0x301d0, 0x301d0, 1508 0x30200, 0x30318, 1509 0x30400, 0x304b4, 1510 0x304c0, 0x3052c, 1511 0x30540, 0x3061c, 1512 0x30800, 0x30828, 1513 0x30834, 0x30834, 1514 0x308c0, 0x30908, 1515 0x30910, 0x309ac, 1516 0x30a00, 0x30a14, 1517 0x30a1c, 0x30a2c, 1518 0x30a44, 0x30a50, 1519 0x30a74, 0x30a74, 1520 0x30a7c, 0x30afc, 1521 0x30b08, 0x30c24, 1522 0x30d00, 0x30d00, 1523 0x30d08, 0x30d14, 1524 0x30d1c, 0x30d20, 1525 0x30d3c, 0x30d3c, 1526 0x30d48, 0x30d50, 1527 0x31200, 0x3120c, 1528 0x31220, 0x31220, 1529 0x31240, 0x31240, 1530 0x31600, 0x3160c, 1531 0x31a00, 0x31a1c, 1532 0x31e00, 0x31e20, 1533 0x31e38, 0x31e3c, 1534 0x31e80, 0x31e80, 1535 0x31e88, 0x31ea8, 1536 0x31eb0, 0x31eb4, 1537 0x31ec8, 0x31ed4, 1538 0x31fb8, 0x32004, 1539 0x32200, 0x32200, 1540 0x32208, 0x32240, 1541 0x32248, 0x32280, 1542 0x32288, 0x322c0, 1543 0x322c8, 0x322fc, 1544 0x32600, 0x32630, 1545 0x32a00, 0x32abc, 1546 0x32b00, 0x32b10, 1547 0x32b20, 0x32b30, 1548 0x32b40, 0x32b50, 1549 0x32b60, 0x32b70, 1550 0x33000, 0x33028, 1551 0x33030, 0x33048, 1552 0x33060, 0x33068, 1553 0x33070, 0x3309c, 1554 0x330f0, 0x33128, 1555 0x33130, 0x33148, 1556 0x33160, 0x33168, 1557 0x33170, 0x3319c, 1558 0x331f0, 0x33238, 1559 0x33240, 0x33240, 1560 0x33248, 0x33250, 1561 0x3325c, 0x33264, 1562 0x33270, 0x332b8, 1563 0x332c0, 0x332e4, 1564 0x332f8, 0x33338, 1565 0x33340, 0x33340, 1566 0x33348, 0x33350, 1567 0x3335c, 0x33364, 1568 0x33370, 0x333b8, 1569 0x333c0, 0x333e4, 1570 0x333f8, 0x33428, 1571 0x33430, 0x33448, 1572 0x33460, 0x33468, 1573 0x33470, 0x3349c, 1574 0x334f0, 0x33528, 1575 0x33530, 0x33548, 1576 0x33560, 0x33568, 1577 0x33570, 0x3359c, 1578 0x335f0, 0x33638, 1579 0x33640, 0x33640, 1580 0x33648, 0x33650, 1581 0x3365c, 0x33664, 1582 0x33670, 0x336b8, 1583 0x336c0, 0x336e4, 1584 0x336f8, 0x33738, 1585 0x33740, 0x33740, 1586 0x33748, 0x33750, 1587 0x3375c, 0x33764, 1588 0x33770, 0x337b8, 1589 0x337c0, 0x337e4, 1590 0x337f8, 0x337fc, 1591 0x33814, 0x33814, 1592 0x3382c, 0x3382c, 1593 0x33880, 0x3388c, 1594 0x338e8, 0x338ec, 1595 0x33900, 0x33928, 1596 0x33930, 0x33948, 1597 0x33960, 0x33968, 1598 0x33970, 0x3399c, 1599 0x339f0, 0x33a38, 1600 0x33a40, 0x33a40, 1601 0x33a48, 0x33a50, 1602 0x33a5c, 0x33a64, 1603 0x33a70, 0x33ab8, 1604 0x33ac0, 0x33ae4, 1605 0x33af8, 0x33b10, 1606 0x33b28, 0x33b28, 1607 0x33b3c, 0x33b50, 1608 0x33bf0, 0x33c10, 1609 0x33c28, 0x33c28, 1610 0x33c3c, 0x33c50, 1611 0x33cf0, 0x33cfc, 1612 0x34000, 0x34030, 1613 0x34100, 0x34144, 1614 0x34190, 0x341a0, 1615 0x341a8, 0x341b8, 1616 0x341c4, 0x341c8, 1617 0x341d0, 0x341d0, 1618 0x34200, 0x34318, 1619 0x34400, 0x344b4, 1620 0x344c0, 0x3452c, 1621 0x34540, 0x3461c, 1622 0x34800, 0x34828, 1623 0x34834, 0x34834, 1624 0x348c0, 0x34908, 1625 0x34910, 0x349ac, 1626 0x34a00, 0x34a14, 1627 0x34a1c, 0x34a2c, 1628 0x34a44, 0x34a50, 1629 0x34a74, 0x34a74, 1630 0x34a7c, 0x34afc, 1631 0x34b08, 0x34c24, 1632 0x34d00, 0x34d00, 1633 0x34d08, 0x34d14, 1634 0x34d1c, 0x34d20, 1635 0x34d3c, 0x34d3c, 1636 0x34d48, 0x34d50, 1637 0x35200, 0x3520c, 1638 0x35220, 0x35220, 1639 0x35240, 0x35240, 1640 0x35600, 0x3560c, 1641 0x35a00, 0x35a1c, 1642 0x35e00, 0x35e20, 1643 0x35e38, 0x35e3c, 1644 0x35e80, 0x35e80, 1645 0x35e88, 0x35ea8, 1646 0x35eb0, 0x35eb4, 1647 0x35ec8, 0x35ed4, 1648 0x35fb8, 0x36004, 1649 0x36200, 0x36200, 1650 0x36208, 0x36240, 1651 0x36248, 0x36280, 1652 0x36288, 0x362c0, 1653 0x362c8, 0x362fc, 1654 0x36600, 0x36630, 1655 0x36a00, 0x36abc, 1656 0x36b00, 0x36b10, 1657 0x36b20, 0x36b30, 1658 0x36b40, 0x36b50, 1659 0x36b60, 0x36b70, 1660 0x37000, 0x37028, 1661 0x37030, 0x37048, 1662 0x37060, 0x37068, 1663 0x37070, 0x3709c, 1664 0x370f0, 0x37128, 1665 0x37130, 0x37148, 1666 0x37160, 0x37168, 1667 0x37170, 0x3719c, 1668 0x371f0, 0x37238, 1669 0x37240, 0x37240, 1670 0x37248, 0x37250, 1671 0x3725c, 0x37264, 1672 0x37270, 0x372b8, 1673 0x372c0, 0x372e4, 1674 0x372f8, 0x37338, 1675 0x37340, 0x37340, 1676 0x37348, 0x37350, 1677 0x3735c, 0x37364, 1678 0x37370, 0x373b8, 1679 0x373c0, 0x373e4, 1680 0x373f8, 0x37428, 1681 0x37430, 0x37448, 1682 0x37460, 0x37468, 1683 0x37470, 0x3749c, 1684 0x374f0, 0x37528, 1685 0x37530, 0x37548, 1686 0x37560, 0x37568, 1687 0x37570, 0x3759c, 1688 0x375f0, 0x37638, 1689 0x37640, 0x37640, 1690 0x37648, 0x37650, 1691 0x3765c, 0x37664, 1692 0x37670, 0x376b8, 1693 0x376c0, 0x376e4, 1694 0x376f8, 0x37738, 1695 0x37740, 0x37740, 1696 0x37748, 0x37750, 1697 0x3775c, 0x37764, 1698 0x37770, 0x377b8, 1699 0x377c0, 0x377e4, 1700 0x377f8, 0x377fc, 1701 0x37814, 0x37814, 1702 0x3782c, 0x3782c, 1703 0x37880, 0x3788c, 1704 0x378e8, 0x378ec, 1705 0x37900, 0x37928, 1706 0x37930, 0x37948, 1707 0x37960, 0x37968, 1708 0x37970, 0x3799c, 1709 0x379f0, 0x37a38, 1710 0x37a40, 0x37a40, 1711 0x37a48, 0x37a50, 1712 0x37a5c, 0x37a64, 1713 0x37a70, 0x37ab8, 1714 0x37ac0, 0x37ae4, 1715 0x37af8, 0x37b10, 1716 0x37b28, 0x37b28, 1717 0x37b3c, 0x37b50, 1718 0x37bf0, 0x37c10, 1719 0x37c28, 0x37c28, 1720 0x37c3c, 0x37c50, 1721 0x37cf0, 0x37cfc, 1722 0x38000, 0x38030, 1723 0x38100, 0x38144, 1724 0x38190, 0x381a0, 1725 0x381a8, 0x381b8, 1726 0x381c4, 0x381c8, 1727 0x381d0, 0x381d0, 1728 0x38200, 0x38318, 1729 0x38400, 0x384b4, 1730 0x384c0, 0x3852c, 1731 0x38540, 0x3861c, 1732 0x38800, 0x38828, 1733 0x38834, 0x38834, 1734 0x388c0, 0x38908, 1735 0x38910, 0x389ac, 1736 0x38a00, 0x38a14, 1737 0x38a1c, 0x38a2c, 1738 0x38a44, 0x38a50, 1739 0x38a74, 0x38a74, 1740 0x38a7c, 0x38afc, 1741 0x38b08, 0x38c24, 1742 0x38d00, 0x38d00, 1743 0x38d08, 0x38d14, 1744 0x38d1c, 0x38d20, 1745 0x38d3c, 0x38d3c, 1746 0x38d48, 0x38d50, 1747 0x39200, 0x3920c, 1748 0x39220, 0x39220, 1749 0x39240, 0x39240, 1750 0x39600, 0x3960c, 1751 0x39a00, 0x39a1c, 1752 0x39e00, 0x39e20, 1753 0x39e38, 0x39e3c, 1754 0x39e80, 0x39e80, 1755 0x39e88, 0x39ea8, 1756 0x39eb0, 0x39eb4, 1757 0x39ec8, 0x39ed4, 1758 0x39fb8, 0x3a004, 1759 0x3a200, 0x3a200, 1760 0x3a208, 0x3a240, 1761 0x3a248, 0x3a280, 1762 0x3a288, 0x3a2c0, 1763 0x3a2c8, 0x3a2fc, 1764 0x3a600, 0x3a630, 1765 0x3aa00, 0x3aabc, 1766 0x3ab00, 0x3ab10, 1767 0x3ab20, 0x3ab30, 1768 0x3ab40, 0x3ab50, 1769 0x3ab60, 0x3ab70, 1770 0x3b000, 0x3b028, 1771 0x3b030, 0x3b048, 1772 0x3b060, 0x3b068, 1773 0x3b070, 0x3b09c, 1774 0x3b0f0, 0x3b128, 1775 0x3b130, 0x3b148, 1776 0x3b160, 0x3b168, 1777 0x3b170, 0x3b19c, 1778 0x3b1f0, 0x3b238, 1779 0x3b240, 0x3b240, 1780 0x3b248, 0x3b250, 1781 0x3b25c, 0x3b264, 1782 0x3b270, 0x3b2b8, 1783 0x3b2c0, 0x3b2e4, 1784 0x3b2f8, 0x3b338, 1785 0x3b340, 0x3b340, 1786 0x3b348, 0x3b350, 1787 0x3b35c, 0x3b364, 1788 0x3b370, 0x3b3b8, 1789 0x3b3c0, 0x3b3e4, 1790 0x3b3f8, 0x3b428, 1791 0x3b430, 0x3b448, 1792 0x3b460, 0x3b468, 1793 0x3b470, 0x3b49c, 1794 0x3b4f0, 0x3b528, 1795 0x3b530, 0x3b548, 1796 0x3b560, 0x3b568, 1797 0x3b570, 0x3b59c, 1798 0x3b5f0, 0x3b638, 1799 0x3b640, 0x3b640, 1800 0x3b648, 0x3b650, 1801 0x3b65c, 0x3b664, 1802 0x3b670, 0x3b6b8, 1803 0x3b6c0, 0x3b6e4, 1804 0x3b6f8, 0x3b738, 1805 0x3b740, 0x3b740, 1806 0x3b748, 0x3b750, 1807 0x3b75c, 0x3b764, 1808 0x3b770, 0x3b7b8, 1809 0x3b7c0, 0x3b7e4, 1810 0x3b7f8, 0x3b7fc, 1811 0x3b814, 0x3b814, 1812 0x3b82c, 0x3b82c, 1813 0x3b880, 0x3b88c, 1814 0x3b8e8, 0x3b8ec, 1815 0x3b900, 0x3b928, 1816 0x3b930, 0x3b948, 1817 0x3b960, 0x3b968, 1818 0x3b970, 0x3b99c, 1819 0x3b9f0, 0x3ba38, 1820 0x3ba40, 0x3ba40, 1821 0x3ba48, 0x3ba50, 1822 0x3ba5c, 0x3ba64, 1823 0x3ba70, 0x3bab8, 1824 0x3bac0, 0x3bae4, 1825 0x3baf8, 0x3bb10, 1826 0x3bb28, 0x3bb28, 1827 0x3bb3c, 0x3bb50, 1828 0x3bbf0, 0x3bc10, 1829 0x3bc28, 0x3bc28, 1830 0x3bc3c, 0x3bc50, 1831 0x3bcf0, 0x3bcfc, 1832 0x3c000, 0x3c030, 1833 0x3c100, 0x3c144, 1834 0x3c190, 0x3c1a0, 1835 0x3c1a8, 0x3c1b8, 1836 0x3c1c4, 0x3c1c8, 1837 0x3c1d0, 0x3c1d0, 1838 0x3c200, 0x3c318, 1839 0x3c400, 0x3c4b4, 1840 0x3c4c0, 0x3c52c, 1841 0x3c540, 0x3c61c, 1842 0x3c800, 0x3c828, 1843 0x3c834, 0x3c834, 1844 0x3c8c0, 0x3c908, 1845 0x3c910, 0x3c9ac, 1846 0x3ca00, 0x3ca14, 1847 0x3ca1c, 0x3ca2c, 1848 0x3ca44, 0x3ca50, 1849 0x3ca74, 0x3ca74, 1850 0x3ca7c, 0x3cafc, 1851 0x3cb08, 0x3cc24, 1852 0x3cd00, 0x3cd00, 1853 0x3cd08, 0x3cd14, 1854 0x3cd1c, 0x3cd20, 1855 0x3cd3c, 0x3cd3c, 1856 0x3cd48, 0x3cd50, 1857 0x3d200, 0x3d20c, 1858 0x3d220, 0x3d220, 1859 0x3d240, 0x3d240, 1860 0x3d600, 0x3d60c, 1861 0x3da00, 0x3da1c, 1862 0x3de00, 0x3de20, 1863 0x3de38, 0x3de3c, 1864 0x3de80, 0x3de80, 1865 0x3de88, 0x3dea8, 1866 0x3deb0, 0x3deb4, 1867 0x3dec8, 0x3ded4, 1868 0x3dfb8, 0x3e004, 1869 0x3e200, 0x3e200, 1870 0x3e208, 0x3e240, 1871 0x3e248, 0x3e280, 1872 0x3e288, 0x3e2c0, 1873 0x3e2c8, 0x3e2fc, 1874 0x3e600, 0x3e630, 1875 0x3ea00, 0x3eabc, 1876 0x3eb00, 0x3eb10, 1877 0x3eb20, 0x3eb30, 1878 0x3eb40, 0x3eb50, 1879 0x3eb60, 0x3eb70, 1880 0x3f000, 0x3f028, 1881 0x3f030, 0x3f048, 1882 0x3f060, 0x3f068, 1883 0x3f070, 0x3f09c, 1884 0x3f0f0, 0x3f128, 1885 0x3f130, 0x3f148, 1886 0x3f160, 0x3f168, 1887 0x3f170, 0x3f19c, 1888 0x3f1f0, 0x3f238, 1889 0x3f240, 0x3f240, 1890 0x3f248, 0x3f250, 1891 0x3f25c, 0x3f264, 1892 0x3f270, 0x3f2b8, 1893 0x3f2c0, 0x3f2e4, 1894 0x3f2f8, 0x3f338, 1895 0x3f340, 0x3f340, 1896 0x3f348, 0x3f350, 1897 0x3f35c, 0x3f364, 1898 0x3f370, 0x3f3b8, 1899 0x3f3c0, 0x3f3e4, 1900 0x3f3f8, 0x3f428, 1901 0x3f430, 0x3f448, 1902 0x3f460, 0x3f468, 1903 0x3f470, 0x3f49c, 1904 0x3f4f0, 0x3f528, 1905 0x3f530, 0x3f548, 1906 0x3f560, 0x3f568, 1907 0x3f570, 0x3f59c, 1908 0x3f5f0, 0x3f638, 1909 0x3f640, 0x3f640, 1910 0x3f648, 0x3f650, 1911 0x3f65c, 0x3f664, 1912 0x3f670, 0x3f6b8, 1913 0x3f6c0, 0x3f6e4, 1914 0x3f6f8, 0x3f738, 1915 0x3f740, 0x3f740, 1916 0x3f748, 0x3f750, 1917 0x3f75c, 0x3f764, 1918 0x3f770, 0x3f7b8, 1919 0x3f7c0, 0x3f7e4, 1920 0x3f7f8, 0x3f7fc, 1921 0x3f814, 0x3f814, 1922 0x3f82c, 0x3f82c, 1923 0x3f880, 0x3f88c, 1924 0x3f8e8, 0x3f8ec, 1925 0x3f900, 0x3f928, 1926 0x3f930, 0x3f948, 1927 0x3f960, 0x3f968, 1928 0x3f970, 0x3f99c, 1929 0x3f9f0, 0x3fa38, 1930 0x3fa40, 0x3fa40, 1931 0x3fa48, 0x3fa50, 1932 0x3fa5c, 0x3fa64, 1933 0x3fa70, 0x3fab8, 1934 0x3fac0, 0x3fae4, 1935 0x3faf8, 0x3fb10, 1936 0x3fb28, 0x3fb28, 1937 0x3fb3c, 0x3fb50, 1938 0x3fbf0, 0x3fc10, 1939 0x3fc28, 0x3fc28, 1940 0x3fc3c, 0x3fc50, 1941 0x3fcf0, 0x3fcfc, 1942 0x40000, 0x4000c, 1943 0x40040, 0x40050, 1944 0x40060, 0x40068, 1945 0x4007c, 0x4008c, 1946 0x40094, 0x400b0, 1947 0x400c0, 0x40144, 1948 0x40180, 0x4018c, 1949 0x40200, 0x40254, 1950 0x40260, 0x40264, 1951 0x40270, 0x40288, 1952 0x40290, 0x40298, 1953 0x402ac, 0x402c8, 1954 0x402d0, 0x402e0, 1955 0x402f0, 0x402f0, 1956 0x40300, 0x4033c, 1957 0x403f8, 0x403fc, 1958 0x41304, 0x413c4, 1959 0x41400, 0x4140c, 1960 0x41414, 0x4141c, 1961 0x41480, 0x414d0, 1962 0x44000, 0x44054, 1963 0x4405c, 0x44078, 1964 0x440c0, 0x44174, 1965 0x44180, 0x441ac, 1966 0x441b4, 0x441b8, 1967 0x441c0, 0x44254, 1968 0x4425c, 0x44278, 1969 0x442c0, 0x44374, 1970 0x44380, 0x443ac, 1971 0x443b4, 0x443b8, 1972 0x443c0, 0x44454, 1973 0x4445c, 0x44478, 1974 0x444c0, 0x44574, 1975 0x44580, 0x445ac, 1976 0x445b4, 0x445b8, 1977 0x445c0, 0x44654, 1978 0x4465c, 0x44678, 1979 0x446c0, 0x44774, 1980 0x44780, 0x447ac, 1981 0x447b4, 0x447b8, 1982 0x447c0, 0x44854, 1983 0x4485c, 0x44878, 1984 0x448c0, 0x44974, 1985 0x44980, 0x449ac, 1986 0x449b4, 0x449b8, 1987 0x449c0, 0x449fc, 1988 0x45000, 0x45004, 1989 0x45010, 0x45030, 1990 0x45040, 0x45060, 1991 0x45068, 0x45068, 1992 0x45080, 0x45084, 1993 0x450a0, 0x450b0, 1994 0x45200, 0x45204, 1995 0x45210, 0x45230, 1996 0x45240, 0x45260, 1997 0x45268, 0x45268, 1998 0x45280, 0x45284, 1999 0x452a0, 0x452b0, 2000 0x460c0, 0x460e4, 2001 0x47000, 0x4703c, 2002 0x47044, 0x4708c, 2003 0x47200, 0x47250, 2004 0x47400, 0x47408, 2005 0x47414, 0x47420, 2006 0x47600, 0x47618, 2007 0x47800, 0x47814, 2008 0x48000, 0x4800c, 2009 0x48040, 0x48050, 2010 0x48060, 0x48068, 2011 0x4807c, 0x4808c, 2012 0x48094, 0x480b0, 2013 0x480c0, 0x48144, 2014 0x48180, 0x4818c, 2015 0x48200, 0x48254, 2016 0x48260, 0x48264, 2017 0x48270, 0x48288, 2018 0x48290, 0x48298, 2019 0x482ac, 0x482c8, 2020 0x482d0, 0x482e0, 2021 0x482f0, 0x482f0, 2022 0x48300, 0x4833c, 2023 0x483f8, 0x483fc, 2024 0x49304, 0x493c4, 2025 0x49400, 0x4940c, 2026 0x49414, 0x4941c, 2027 0x49480, 0x494d0, 2028 0x4c000, 0x4c054, 2029 0x4c05c, 0x4c078, 2030 0x4c0c0, 0x4c174, 2031 0x4c180, 0x4c1ac, 2032 0x4c1b4, 0x4c1b8, 2033 0x4c1c0, 0x4c254, 2034 0x4c25c, 0x4c278, 2035 0x4c2c0, 0x4c374, 2036 0x4c380, 0x4c3ac, 2037 0x4c3b4, 0x4c3b8, 2038 0x4c3c0, 0x4c454, 2039 0x4c45c, 0x4c478, 2040 0x4c4c0, 0x4c574, 2041 0x4c580, 0x4c5ac, 2042 0x4c5b4, 0x4c5b8, 2043 0x4c5c0, 0x4c654, 2044 0x4c65c, 0x4c678, 2045 0x4c6c0, 0x4c774, 2046 0x4c780, 0x4c7ac, 2047 0x4c7b4, 0x4c7b8, 2048 0x4c7c0, 0x4c854, 2049 0x4c85c, 0x4c878, 2050 0x4c8c0, 0x4c974, 2051 0x4c980, 0x4c9ac, 2052 0x4c9b4, 0x4c9b8, 2053 0x4c9c0, 0x4c9fc, 2054 0x4d000, 0x4d004, 2055 0x4d010, 0x4d030, 2056 0x4d040, 0x4d060, 2057 0x4d068, 0x4d068, 2058 0x4d080, 0x4d084, 2059 0x4d0a0, 0x4d0b0, 2060 0x4d200, 0x4d204, 2061 0x4d210, 0x4d230, 2062 0x4d240, 0x4d260, 2063 0x4d268, 0x4d268, 2064 0x4d280, 0x4d284, 2065 0x4d2a0, 0x4d2b0, 2066 0x4e0c0, 0x4e0e4, 2067 0x4f000, 0x4f03c, 2068 0x4f044, 0x4f08c, 2069 0x4f200, 0x4f250, 2070 0x4f400, 0x4f408, 2071 0x4f414, 0x4f420, 2072 0x4f600, 0x4f618, 2073 0x4f800, 0x4f814, 2074 0x50000, 0x50084, 2075 0x50090, 0x500cc, 2076 0x50400, 0x50400, 2077 0x50800, 0x50884, 2078 0x50890, 0x508cc, 2079 0x50c00, 0x50c00, 2080 0x51000, 0x5101c, 2081 0x51300, 0x51308, 2082 }; 2083 2084 static const unsigned int t6_reg_ranges[] = { 2085 0x1008, 0x101c, 2086 0x1024, 0x10a8, 2087 0x10b4, 0x10f8, 2088 0x1100, 0x1114, 2089 0x111c, 0x112c, 2090 0x1138, 0x113c, 2091 0x1144, 0x114c, 2092 0x1180, 0x1184, 2093 0x1190, 0x1194, 2094 0x11a0, 0x11a4, 2095 0x11b0, 0x11b4, 2096 0x11fc, 0x1274, 2097 0x1280, 0x133c, 2098 0x1800, 0x18fc, 2099 0x3000, 0x302c, 2100 0x3060, 0x30b0, 2101 0x30b8, 0x30d8, 2102 0x30e0, 0x30fc, 2103 0x3140, 0x357c, 2104 0x35a8, 0x35cc, 2105 0x35ec, 0x35ec, 2106 0x3600, 0x5624, 2107 0x56cc, 0x56ec, 2108 0x56f4, 0x5720, 2109 0x5728, 0x575c, 2110 0x580c, 0x5814, 2111 0x5890, 0x589c, 2112 0x58a4, 0x58ac, 2113 0x58b8, 0x58bc, 2114 0x5940, 0x595c, 2115 0x5980, 0x598c, 2116 0x59b0, 0x59c8, 2117 0x59d0, 0x59dc, 2118 0x59fc, 0x5a18, 2119 0x5a60, 0x5a6c, 2120 0x5a80, 0x5a8c, 2121 0x5a94, 0x5a9c, 2122 0x5b94, 0x5bfc, 2123 0x5c10, 0x5e48, 2124 0x5e50, 0x5e94, 2125 0x5ea0, 0x5eb0, 2126 0x5ec0, 0x5ec0, 2127 0x5ec8, 0x5ed0, 2128 0x5ee0, 0x5ee0, 2129 0x5ef0, 0x5ef0, 2130 0x5f00, 0x5f00, 2131 0x6000, 0x6020, 2132 0x6028, 0x6040, 2133 0x6058, 0x609c, 2134 0x60a8, 0x619c, 2135 0x7700, 0x7798, 2136 0x77c0, 0x7880, 2137 0x78cc, 0x78fc, 2138 0x7b00, 0x7b58, 2139 0x7b60, 0x7b84, 2140 0x7b8c, 0x7c54, 2141 0x7d00, 0x7d38, 2142 0x7d40, 0x7d84, 2143 0x7d8c, 0x7ddc, 2144 0x7de4, 0x7e04, 2145 0x7e10, 0x7e1c, 2146 0x7e24, 0x7e38, 2147 0x7e40, 0x7e44, 2148 0x7e4c, 0x7e78, 2149 0x7e80, 0x7edc, 2150 0x7ee8, 0x7efc, 2151 0x8dc0, 0x8de4, 2152 0x8df8, 0x8e04, 2153 0x8e10, 0x8e84, 2154 0x8ea0, 0x8f88, 2155 0x8fb8, 0x9058, 2156 0x9060, 0x9060, 2157 0x9068, 0x90f8, 2158 0x9100, 0x9124, 2159 0x9400, 0x9470, 2160 0x9600, 0x9600, 2161 0x9608, 0x9638, 2162 0x9640, 0x9704, 2163 0x9710, 0x971c, 2164 0x9800, 0x9808, 2165 0x9820, 0x983c, 2166 0x9850, 0x9864, 2167 0x9c00, 0x9c6c, 2168 0x9c80, 0x9cec, 2169 0x9d00, 0x9d6c, 2170 0x9d80, 0x9dec, 2171 0x9e00, 0x9e6c, 2172 0x9e80, 0x9eec, 2173 0x9f00, 0x9f6c, 2174 0x9f80, 0xa020, 2175 0xd004, 0xd03c, 2176 0xd100, 0xd118, 2177 0xd200, 0xd214, 2178 0xd220, 0xd234, 2179 0xd240, 0xd254, 2180 0xd260, 0xd274, 2181 0xd280, 0xd294, 2182 0xd2a0, 0xd2b4, 2183 0xd2c0, 0xd2d4, 2184 0xd2e0, 0xd2f4, 2185 0xd300, 0xd31c, 2186 0xdfc0, 0xdfe0, 2187 0xe000, 0xf008, 2188 0xf010, 0xf018, 2189 0xf020, 0xf028, 2190 0x11000, 0x11014, 2191 0x11048, 0x1106c, 2192 0x11074, 0x11088, 2193 0x11098, 0x11120, 2194 0x1112c, 0x1117c, 2195 0x11190, 0x112e0, 2196 0x11300, 0x1130c, 2197 0x12000, 0x1206c, 2198 0x19040, 0x1906c, 2199 0x19078, 0x19080, 2200 0x1908c, 0x190e8, 2201 0x190f0, 0x190f8, 2202 0x19100, 0x19110, 2203 0x19120, 0x19124, 2204 0x19150, 0x19194, 2205 0x1919c, 0x191b0, 2206 0x191d0, 0x191e8, 2207 0x19238, 0x19290, 2208 0x192a4, 0x192b0, 2209 0x192bc, 0x192bc, 2210 0x19348, 0x1934c, 2211 0x193f8, 0x19418, 2212 0x19420, 0x19428, 2213 0x19430, 0x19444, 2214 0x1944c, 0x1946c, 2215 0x19474, 0x19474, 2216 0x19490, 0x194cc, 2217 0x194f0, 0x194f8, 2218 0x19c00, 0x19c48, 2219 0x19c50, 0x19c80, 2220 0x19c94, 0x19c98, 2221 0x19ca0, 0x19cbc, 2222 0x19ce4, 0x19ce4, 2223 0x19cf0, 0x19cf8, 2224 0x19d00, 0x19d28, 2225 0x19d50, 0x19d78, 2226 0x19d94, 0x19d98, 2227 0x19da0, 0x19dc8, 2228 0x19df0, 0x19e10, 2229 0x19e50, 0x19e6c, 2230 0x19ea0, 0x19ebc, 2231 0x19ec4, 0x19ef4, 2232 0x19f04, 0x19f2c, 2233 0x19f34, 0x19f34, 2234 0x19f40, 0x19f50, 2235 0x19f90, 0x19fac, 2236 0x19fc4, 0x19fc8, 2237 0x19fd0, 0x19fe4, 2238 0x1a000, 0x1a004, 2239 0x1a010, 0x1a06c, 2240 0x1a0b0, 0x1a0e4, 2241 0x1a0ec, 0x1a0f8, 2242 0x1a100, 0x1a108, 2243 0x1a114, 0x1a120, 2244 0x1a128, 0x1a130, 2245 0x1a138, 0x1a138, 2246 0x1a190, 0x1a1c4, 2247 0x1a1fc, 0x1a1fc, 2248 0x1e008, 0x1e00c, 2249 0x1e040, 0x1e044, 2250 0x1e04c, 0x1e04c, 2251 0x1e284, 0x1e290, 2252 0x1e2c0, 0x1e2c0, 2253 0x1e2e0, 0x1e2e0, 2254 0x1e300, 0x1e384, 2255 0x1e3c0, 0x1e3c8, 2256 0x1e408, 0x1e40c, 2257 0x1e440, 0x1e444, 2258 0x1e44c, 0x1e44c, 2259 0x1e684, 0x1e690, 2260 0x1e6c0, 0x1e6c0, 2261 0x1e6e0, 0x1e6e0, 2262 0x1e700, 0x1e784, 2263 0x1e7c0, 0x1e7c8, 2264 0x1e808, 0x1e80c, 2265 0x1e840, 0x1e844, 2266 0x1e84c, 0x1e84c, 2267 0x1ea84, 0x1ea90, 2268 0x1eac0, 0x1eac0, 2269 0x1eae0, 0x1eae0, 2270 0x1eb00, 0x1eb84, 2271 0x1ebc0, 0x1ebc8, 2272 0x1ec08, 0x1ec0c, 2273 0x1ec40, 0x1ec44, 2274 0x1ec4c, 0x1ec4c, 2275 0x1ee84, 0x1ee90, 2276 0x1eec0, 0x1eec0, 2277 0x1eee0, 0x1eee0, 2278 0x1ef00, 0x1ef84, 2279 0x1efc0, 0x1efc8, 2280 0x1f008, 0x1f00c, 2281 0x1f040, 0x1f044, 2282 0x1f04c, 0x1f04c, 2283 0x1f284, 0x1f290, 2284 0x1f2c0, 0x1f2c0, 2285 0x1f2e0, 0x1f2e0, 2286 0x1f300, 0x1f384, 2287 0x1f3c0, 0x1f3c8, 2288 0x1f408, 0x1f40c, 2289 0x1f440, 0x1f444, 2290 0x1f44c, 0x1f44c, 2291 0x1f684, 0x1f690, 2292 0x1f6c0, 0x1f6c0, 2293 0x1f6e0, 0x1f6e0, 2294 0x1f700, 0x1f784, 2295 0x1f7c0, 0x1f7c8, 2296 0x1f808, 0x1f80c, 2297 0x1f840, 0x1f844, 2298 0x1f84c, 0x1f84c, 2299 0x1fa84, 0x1fa90, 2300 0x1fac0, 0x1fac0, 2301 0x1fae0, 0x1fae0, 2302 0x1fb00, 0x1fb84, 2303 0x1fbc0, 0x1fbc8, 2304 0x1fc08, 0x1fc0c, 2305 0x1fc40, 0x1fc44, 2306 0x1fc4c, 0x1fc4c, 2307 0x1fe84, 0x1fe90, 2308 0x1fec0, 0x1fec0, 2309 0x1fee0, 0x1fee0, 2310 0x1ff00, 0x1ff84, 2311 0x1ffc0, 0x1ffc8, 2312 0x30000, 0x30030, 2313 0x30100, 0x30168, 2314 0x30190, 0x301a0, 2315 0x301a8, 0x301b8, 2316 0x301c4, 0x301c8, 2317 0x301d0, 0x301d0, 2318 0x30200, 0x30320, 2319 0x30400, 0x304b4, 2320 0x304c0, 0x3052c, 2321 0x30540, 0x3061c, 2322 0x30800, 0x308a0, 2323 0x308c0, 0x30908, 2324 0x30910, 0x309b8, 2325 0x30a00, 0x30a04, 2326 0x30a0c, 0x30a14, 2327 0x30a1c, 0x30a2c, 2328 0x30a44, 0x30a50, 2329 0x30a74, 0x30a74, 2330 0x30a7c, 0x30afc, 2331 0x30b08, 0x30c24, 2332 0x30d00, 0x30d14, 2333 0x30d1c, 0x30d3c, 2334 0x30d44, 0x30d4c, 2335 0x30d54, 0x30d74, 2336 0x30d7c, 0x30d7c, 2337 0x30de0, 0x30de0, 2338 0x30e00, 0x30ed4, 2339 0x30f00, 0x30fa4, 2340 0x30fc0, 0x30fc4, 2341 0x31000, 0x31004, 2342 0x31080, 0x310fc, 2343 0x31208, 0x31220, 2344 0x3123c, 0x31254, 2345 0x31300, 0x31300, 2346 0x31308, 0x3131c, 2347 0x31338, 0x3133c, 2348 0x31380, 0x31380, 2349 0x31388, 0x313a8, 2350 0x313b4, 0x313b4, 2351 0x31400, 0x31420, 2352 0x31438, 0x3143c, 2353 0x31480, 0x31480, 2354 0x314a8, 0x314a8, 2355 0x314b0, 0x314b4, 2356 0x314c8, 0x314d4, 2357 0x31a40, 0x31a4c, 2358 0x31af0, 0x31b20, 2359 0x31b38, 0x31b3c, 2360 0x31b80, 0x31b80, 2361 0x31ba8, 0x31ba8, 2362 0x31bb0, 0x31bb4, 2363 0x31bc8, 0x31bd4, 2364 0x32140, 0x3218c, 2365 0x321f0, 0x321f4, 2366 0x32200, 0x32200, 2367 0x32218, 0x32218, 2368 0x32400, 0x32400, 2369 0x32408, 0x3241c, 2370 0x32618, 0x32620, 2371 0x32664, 0x32664, 2372 0x326a8, 0x326a8, 2373 0x326ec, 0x326ec, 2374 0x32a00, 0x32abc, 2375 0x32b00, 0x32b18, 2376 0x32b20, 0x32b38, 2377 0x32b40, 0x32b58, 2378 0x32b60, 0x32b78, 2379 0x32c00, 0x32c00, 2380 0x32c08, 0x32c3c, 2381 0x33000, 0x3302c, 2382 0x33034, 0x33050, 2383 0x33058, 0x33058, 2384 0x33060, 0x3308c, 2385 0x3309c, 0x330ac, 2386 0x330c0, 0x330c0, 2387 0x330c8, 0x330d0, 2388 0x330d8, 0x330e0, 2389 0x330ec, 0x3312c, 2390 0x33134, 0x33150, 2391 0x33158, 0x33158, 2392 0x33160, 0x3318c, 2393 0x3319c, 0x331ac, 2394 0x331c0, 0x331c0, 2395 0x331c8, 0x331d0, 2396 0x331d8, 0x331e0, 2397 0x331ec, 0x33290, 2398 0x33298, 0x332c4, 2399 0x332e4, 0x33390, 2400 0x33398, 0x333c4, 2401 0x333e4, 0x3342c, 2402 0x33434, 0x33450, 2403 0x33458, 0x33458, 2404 0x33460, 0x3348c, 2405 0x3349c, 0x334ac, 2406 0x334c0, 0x334c0, 2407 0x334c8, 0x334d0, 2408 0x334d8, 0x334e0, 2409 0x334ec, 0x3352c, 2410 0x33534, 0x33550, 2411 0x33558, 0x33558, 2412 0x33560, 0x3358c, 2413 0x3359c, 0x335ac, 2414 0x335c0, 0x335c0, 2415 0x335c8, 0x335d0, 2416 0x335d8, 0x335e0, 2417 0x335ec, 0x33690, 2418 0x33698, 0x336c4, 2419 0x336e4, 0x33790, 2420 0x33798, 0x337c4, 2421 0x337e4, 0x337fc, 2422 0x33814, 0x33814, 2423 0x33854, 0x33868, 2424 0x33880, 0x3388c, 2425 0x338c0, 0x338d0, 2426 0x338e8, 0x338ec, 2427 0x33900, 0x3392c, 2428 0x33934, 0x33950, 2429 0x33958, 0x33958, 2430 0x33960, 0x3398c, 2431 0x3399c, 0x339ac, 2432 0x339c0, 0x339c0, 2433 0x339c8, 0x339d0, 2434 0x339d8, 0x339e0, 2435 0x339ec, 0x33a90, 2436 0x33a98, 0x33ac4, 2437 0x33ae4, 0x33b10, 2438 0x33b24, 0x33b28, 2439 0x33b38, 0x33b50, 2440 0x33bf0, 0x33c10, 2441 0x33c24, 0x33c28, 2442 0x33c38, 0x33c50, 2443 0x33cf0, 0x33cfc, 2444 0x34000, 0x34030, 2445 0x34100, 0x34168, 2446 0x34190, 0x341a0, 2447 0x341a8, 0x341b8, 2448 0x341c4, 0x341c8, 2449 0x341d0, 0x341d0, 2450 0x34200, 0x34320, 2451 0x34400, 0x344b4, 2452 0x344c0, 0x3452c, 2453 0x34540, 0x3461c, 2454 0x34800, 0x348a0, 2455 0x348c0, 0x34908, 2456 0x34910, 0x349b8, 2457 0x34a00, 0x34a04, 2458 0x34a0c, 0x34a14, 2459 0x34a1c, 0x34a2c, 2460 0x34a44, 0x34a50, 2461 0x34a74, 0x34a74, 2462 0x34a7c, 0x34afc, 2463 0x34b08, 0x34c24, 2464 0x34d00, 0x34d14, 2465 0x34d1c, 0x34d3c, 2466 0x34d44, 0x34d4c, 2467 0x34d54, 0x34d74, 2468 0x34d7c, 0x34d7c, 2469 0x34de0, 0x34de0, 2470 0x34e00, 0x34ed4, 2471 0x34f00, 0x34fa4, 2472 0x34fc0, 0x34fc4, 2473 0x35000, 0x35004, 2474 0x35080, 0x350fc, 2475 0x35208, 0x35220, 2476 0x3523c, 0x35254, 2477 0x35300, 0x35300, 2478 0x35308, 0x3531c, 2479 0x35338, 0x3533c, 2480 0x35380, 0x35380, 2481 0x35388, 0x353a8, 2482 0x353b4, 0x353b4, 2483 0x35400, 0x35420, 2484 0x35438, 0x3543c, 2485 0x35480, 0x35480, 2486 0x354a8, 0x354a8, 2487 0x354b0, 0x354b4, 2488 0x354c8, 0x354d4, 2489 0x35a40, 0x35a4c, 2490 0x35af0, 0x35b20, 2491 0x35b38, 0x35b3c, 2492 0x35b80, 0x35b80, 2493 0x35ba8, 0x35ba8, 2494 0x35bb0, 0x35bb4, 2495 0x35bc8, 0x35bd4, 2496 0x36140, 0x3618c, 2497 0x361f0, 0x361f4, 2498 0x36200, 0x36200, 2499 0x36218, 0x36218, 2500 0x36400, 0x36400, 2501 0x36408, 0x3641c, 2502 0x36618, 0x36620, 2503 0x36664, 0x36664, 2504 0x366a8, 0x366a8, 2505 0x366ec, 0x366ec, 2506 0x36a00, 0x36abc, 2507 0x36b00, 0x36b18, 2508 0x36b20, 0x36b38, 2509 0x36b40, 0x36b58, 2510 0x36b60, 0x36b78, 2511 0x36c00, 0x36c00, 2512 0x36c08, 0x36c3c, 2513 0x37000, 0x3702c, 2514 0x37034, 0x37050, 2515 0x37058, 0x37058, 2516 0x37060, 0x3708c, 2517 0x3709c, 0x370ac, 2518 0x370c0, 0x370c0, 2519 0x370c8, 0x370d0, 2520 0x370d8, 0x370e0, 2521 0x370ec, 0x3712c, 2522 0x37134, 0x37150, 2523 0x37158, 0x37158, 2524 0x37160, 0x3718c, 2525 0x3719c, 0x371ac, 2526 0x371c0, 0x371c0, 2527 0x371c8, 0x371d0, 2528 0x371d8, 0x371e0, 2529 0x371ec, 0x37290, 2530 0x37298, 0x372c4, 2531 0x372e4, 0x37390, 2532 0x37398, 0x373c4, 2533 0x373e4, 0x3742c, 2534 0x37434, 0x37450, 2535 0x37458, 0x37458, 2536 0x37460, 0x3748c, 2537 0x3749c, 0x374ac, 2538 0x374c0, 0x374c0, 2539 0x374c8, 0x374d0, 2540 0x374d8, 0x374e0, 2541 0x374ec, 0x3752c, 2542 0x37534, 0x37550, 2543 0x37558, 0x37558, 2544 0x37560, 0x3758c, 2545 0x3759c, 0x375ac, 2546 0x375c0, 0x375c0, 2547 0x375c8, 0x375d0, 2548 0x375d8, 0x375e0, 2549 0x375ec, 0x37690, 2550 0x37698, 0x376c4, 2551 0x376e4, 0x37790, 2552 0x37798, 0x377c4, 2553 0x377e4, 0x377fc, 2554 0x37814, 0x37814, 2555 0x37854, 0x37868, 2556 0x37880, 0x3788c, 2557 0x378c0, 0x378d0, 2558 0x378e8, 0x378ec, 2559 0x37900, 0x3792c, 2560 0x37934, 0x37950, 2561 0x37958, 0x37958, 2562 0x37960, 0x3798c, 2563 0x3799c, 0x379ac, 2564 0x379c0, 0x379c0, 2565 0x379c8, 0x379d0, 2566 0x379d8, 0x379e0, 2567 0x379ec, 0x37a90, 2568 0x37a98, 0x37ac4, 2569 0x37ae4, 0x37b10, 2570 0x37b24, 0x37b28, 2571 0x37b38, 0x37b50, 2572 0x37bf0, 0x37c10, 2573 0x37c24, 0x37c28, 2574 0x37c38, 0x37c50, 2575 0x37cf0, 0x37cfc, 2576 0x40040, 0x40040, 2577 0x40080, 0x40084, 2578 0x40100, 0x40100, 2579 0x40140, 0x401bc, 2580 0x40200, 0x40214, 2581 0x40228, 0x40228, 2582 0x40240, 0x40258, 2583 0x40280, 0x40280, 2584 0x40304, 0x40304, 2585 0x40330, 0x4033c, 2586 0x41304, 0x413c8, 2587 0x413d0, 0x413dc, 2588 0x413f0, 0x413f0, 2589 0x41400, 0x4140c, 2590 0x41414, 0x4141c, 2591 0x41480, 0x414d0, 2592 0x44000, 0x4407c, 2593 0x440c0, 0x441ac, 2594 0x441b4, 0x4427c, 2595 0x442c0, 0x443ac, 2596 0x443b4, 0x4447c, 2597 0x444c0, 0x445ac, 2598 0x445b4, 0x4467c, 2599 0x446c0, 0x447ac, 2600 0x447b4, 0x4487c, 2601 0x448c0, 0x449ac, 2602 0x449b4, 0x44a7c, 2603 0x44ac0, 0x44bac, 2604 0x44bb4, 0x44c7c, 2605 0x44cc0, 0x44dac, 2606 0x44db4, 0x44e7c, 2607 0x44ec0, 0x44fac, 2608 0x44fb4, 0x4507c, 2609 0x450c0, 0x451ac, 2610 0x451b4, 0x451fc, 2611 0x45800, 0x45804, 2612 0x45810, 0x45830, 2613 0x45840, 0x45860, 2614 0x45868, 0x45868, 2615 0x45880, 0x45884, 2616 0x458a0, 0x458b0, 2617 0x45a00, 0x45a04, 2618 0x45a10, 0x45a30, 2619 0x45a40, 0x45a60, 2620 0x45a68, 0x45a68, 2621 0x45a80, 0x45a84, 2622 0x45aa0, 0x45ab0, 2623 0x460c0, 0x460e4, 2624 0x47000, 0x4703c, 2625 0x47044, 0x4708c, 2626 0x47200, 0x47250, 2627 0x47400, 0x47408, 2628 0x47414, 0x47420, 2629 0x47600, 0x47618, 2630 0x47800, 0x47814, 2631 0x47820, 0x4782c, 2632 0x50000, 0x50084, 2633 0x50090, 0x500cc, 2634 0x50300, 0x50384, 2635 0x50400, 0x50400, 2636 0x50800, 0x50884, 2637 0x50890, 0x508cc, 2638 0x50b00, 0x50b84, 2639 0x50c00, 0x50c00, 2640 0x51000, 0x51020, 2641 0x51028, 0x510b0, 2642 0x51300, 0x51324, 2643 }; 2644 2645 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2646 const unsigned int *reg_ranges; 2647 int reg_ranges_size, range; 2648 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2649 2650 /* Select the right set of register ranges to dump depending on the 2651 * adapter chip type. 2652 */ 2653 switch (chip_version) { 2654 case CHELSIO_T4: 2655 reg_ranges = t4_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T5: 2660 reg_ranges = t5_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2662 break; 2663 2664 case CHELSIO_T6: 2665 reg_ranges = t6_reg_ranges; 2666 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2667 break; 2668 2669 default: 2670 dev_err(adap->pdev_dev, 2671 "Unsupported chip version %d\n", chip_version); 2672 return; 2673 } 2674 2675 /* Clear the register buffer and insert the appropriate register 2676 * values selected by the above register ranges. 2677 */ 2678 memset(buf, 0, buf_size); 2679 for (range = 0; range < reg_ranges_size; range += 2) { 2680 unsigned int reg = reg_ranges[range]; 2681 unsigned int last_reg = reg_ranges[range + 1]; 2682 u32 *bufp = (u32 *)((char *)buf + reg); 2683 2684 /* Iterate across the register range filling in the register 2685 * buffer but don't write past the end of the register buffer. 2686 */ 2687 while (reg <= last_reg && bufp < buf_end) { 2688 *bufp++ = t4_read_reg(adap, reg); 2689 reg += sizeof(u32); 2690 } 2691 } 2692 } 2693 2694 #define EEPROM_STAT_ADDR 0x7bfc 2695 #define VPD_BASE 0x400 2696 #define VPD_BASE_OLD 0 2697 #define VPD_LEN 1024 2698 #define CHELSIO_VPD_UNIQUE_ID 0x82 2699 2700 /** 2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2702 * @phys_addr: the physical EEPROM address 2703 * @fn: the PCI function number 2704 * @sz: size of function-specific area 2705 * 2706 * Translate a physical EEPROM address to virtual. The first 1K is 2707 * accessed through virtual addresses starting at 31K, the rest is 2708 * accessed through virtual addresses starting at 0. 2709 * 2710 * The mapping is as follows: 2711 * [0..1K) -> [31K..32K) 2712 * [1K..1K+A) -> [31K-A..31K) 2713 * [1K+A..ES) -> [0..ES-A-1K) 2714 * 2715 * where A = @fn * @sz, and ES = EEPROM size. 2716 */ 2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2718 { 2719 fn *= sz; 2720 if (phys_addr < 1024) 2721 return phys_addr + (31 << 10); 2722 if (phys_addr < 1024 + fn) 2723 return 31744 - fn + phys_addr - 1024; 2724 if (phys_addr < EEPROMSIZE) 2725 return phys_addr - 1024 - fn; 2726 return -EINVAL; 2727 } 2728 2729 /** 2730 * t4_seeprom_wp - enable/disable EEPROM write protection 2731 * @adapter: the adapter 2732 * @enable: whether to enable or disable write protection 2733 * 2734 * Enables or disables write protection on the serial EEPROM. 2735 */ 2736 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2737 { 2738 unsigned int v = enable ? 0xc : 0; 2739 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2740 return ret < 0 ? ret : 0; 2741 } 2742 2743 /** 2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2745 * @adapter: adapter to read 2746 * @p: where to store the parameters 2747 * 2748 * Reads card parameters stored in VPD EEPROM. 2749 */ 2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2751 { 2752 int i, ret = 0, addr; 2753 int ec, sn, pn, na; 2754 u8 *vpd, csum; 2755 unsigned int vpdr_len, kw_offset, id_len; 2756 2757 vpd = vmalloc(VPD_LEN); 2758 if (!vpd) 2759 return -ENOMEM; 2760 2761 /* Card information normally starts at VPD_BASE but early cards had 2762 * it at 0. 2763 */ 2764 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 /* The VPD shall have a unique identifier specified by the PCI SIG. 2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2771 * is expected to automatically put this entry at the 2772 * beginning of the VPD. 2773 */ 2774 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2775 2776 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2777 if (ret < 0) 2778 goto out; 2779 2780 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2781 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2782 ret = -EINVAL; 2783 goto out; 2784 } 2785 2786 id_len = pci_vpd_lrdt_size(vpd); 2787 if (id_len > ID_LEN) 2788 id_len = ID_LEN; 2789 2790 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2791 if (i < 0) { 2792 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2793 ret = -EINVAL; 2794 goto out; 2795 } 2796 2797 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2798 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2799 if (vpdr_len + kw_offset > VPD_LEN) { 2800 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2801 ret = -EINVAL; 2802 goto out; 2803 } 2804 2805 #define FIND_VPD_KW(var, name) do { \ 2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2807 if (var < 0) { \ 2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2809 ret = -EINVAL; \ 2810 goto out; \ 2811 } \ 2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2813 } while (0) 2814 2815 FIND_VPD_KW(i, "RV"); 2816 for (csum = 0; i >= 0; i--) 2817 csum += vpd[i]; 2818 2819 if (csum) { 2820 dev_err(adapter->pdev_dev, 2821 "corrupted VPD EEPROM, actual csum %u\n", csum); 2822 ret = -EINVAL; 2823 goto out; 2824 } 2825 2826 FIND_VPD_KW(ec, "EC"); 2827 FIND_VPD_KW(sn, "SN"); 2828 FIND_VPD_KW(pn, "PN"); 2829 FIND_VPD_KW(na, "NA"); 2830 #undef FIND_VPD_KW 2831 2832 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2833 strim(p->id); 2834 memcpy(p->ec, vpd + ec, EC_LEN); 2835 strim(p->ec); 2836 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2837 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2838 strim(p->sn); 2839 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2840 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2841 strim(p->pn); 2842 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2843 strim((char *)p->na); 2844 2845 out: 2846 vfree(vpd); 2847 return ret < 0 ? ret : 0; 2848 } 2849 2850 /** 2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2852 * @adapter: adapter to read 2853 * @p: where to store the parameters 2854 * 2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2856 * Clock. This can only be called after a connection to the firmware 2857 * is established. 2858 */ 2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2860 { 2861 u32 cclk_param, cclk_val; 2862 int ret; 2863 2864 /* Grab the raw VPD parameters. 2865 */ 2866 ret = t4_get_raw_vpd_params(adapter, p); 2867 if (ret) 2868 return ret; 2869 2870 /* Ask firmware for the Core Clock since it knows how to translate the 2871 * Reference Clock ('V2') VPD field into a Core Clock value ... 2872 */ 2873 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2875 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2876 1, &cclk_param, &cclk_val); 2877 2878 if (ret) 2879 return ret; 2880 p->cclk = cclk_val; 2881 2882 return 0; 2883 } 2884 2885 /** 2886 * t4_get_pfres - retrieve VF resource limits 2887 * @adapter: the adapter 2888 * 2889 * Retrieves configured resource limits and capabilities for a physical 2890 * function. The results are stored in @adapter->pfres. 2891 */ 2892 int t4_get_pfres(struct adapter *adapter) 2893 { 2894 struct pf_resources *pfres = &adapter->params.pfres; 2895 struct fw_pfvf_cmd cmd, rpl; 2896 int v; 2897 u32 word; 2898 2899 /* Execute PFVF Read command to get VF resource limits; bail out early 2900 * with error on command failure. 2901 */ 2902 memset(&cmd, 0, sizeof(cmd)); 2903 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2904 FW_CMD_REQUEST_F | 2905 FW_CMD_READ_F | 2906 FW_PFVF_CMD_PFN_V(adapter->pf) | 2907 FW_PFVF_CMD_VFN_V(0)); 2908 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2909 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2910 if (v != FW_SUCCESS) 2911 return v; 2912 2913 /* Extract PF resource limits and return success. 2914 */ 2915 word = be32_to_cpu(rpl.niqflint_niq); 2916 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2917 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2918 2919 word = be32_to_cpu(rpl.type_to_neq); 2920 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2921 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2922 2923 word = be32_to_cpu(rpl.tc_to_nexactf); 2924 pfres->tc = FW_PFVF_CMD_TC_G(word); 2925 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2926 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2927 2928 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2929 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2930 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2931 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2932 2933 return 0; 2934 } 2935 2936 /* serial flash and firmware constants */ 2937 enum { 2938 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2939 2940 /* flash command opcodes */ 2941 SF_PROG_PAGE = 2, /* program page */ 2942 SF_WR_DISABLE = 4, /* disable writes */ 2943 SF_RD_STATUS = 5, /* read status register */ 2944 SF_WR_ENABLE = 6, /* enable writes */ 2945 SF_RD_DATA_FAST = 0xb, /* read flash */ 2946 SF_RD_ID = 0x9f, /* read ID */ 2947 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2948 }; 2949 2950 /** 2951 * sf1_read - read data from the serial flash 2952 * @adapter: the adapter 2953 * @byte_cnt: number of bytes to read 2954 * @cont: whether another operation will be chained 2955 * @lock: whether to lock SF for PL access only 2956 * @valp: where to store the read data 2957 * 2958 * Reads up to 4 bytes of data from the serial flash. The location of 2959 * the read needs to be specified prior to calling this by issuing the 2960 * appropriate commands to the serial flash. 2961 */ 2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2963 int lock, u32 *valp) 2964 { 2965 int ret; 2966 2967 if (!byte_cnt || byte_cnt > 4) 2968 return -EINVAL; 2969 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2970 return -EBUSY; 2971 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2972 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2973 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2974 if (!ret) 2975 *valp = t4_read_reg(adapter, SF_DATA_A); 2976 return ret; 2977 } 2978 2979 /** 2980 * sf1_write - write data to the serial flash 2981 * @adapter: the adapter 2982 * @byte_cnt: number of bytes to write 2983 * @cont: whether another operation will be chained 2984 * @lock: whether to lock SF for PL access only 2985 * @val: value to write 2986 * 2987 * Writes up to 4 bytes of data to the serial flash. The location of 2988 * the write needs to be specified prior to calling this by issuing the 2989 * appropriate commands to the serial flash. 2990 */ 2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2992 int lock, u32 val) 2993 { 2994 if (!byte_cnt || byte_cnt > 4) 2995 return -EINVAL; 2996 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2997 return -EBUSY; 2998 t4_write_reg(adapter, SF_DATA_A, val); 2999 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 3000 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 3001 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 3002 } 3003 3004 /** 3005 * flash_wait_op - wait for a flash operation to complete 3006 * @adapter: the adapter 3007 * @attempts: max number of polls of the status register 3008 * @delay: delay between polls in ms 3009 * 3010 * Wait for a flash operation to complete by polling the status register. 3011 */ 3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3013 { 3014 int ret; 3015 u32 status; 3016 3017 while (1) { 3018 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3019 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3020 return ret; 3021 if (!(status & 1)) 3022 return 0; 3023 if (--attempts == 0) 3024 return -EAGAIN; 3025 if (delay) 3026 msleep(delay); 3027 } 3028 } 3029 3030 /** 3031 * t4_read_flash - read words from serial flash 3032 * @adapter: the adapter 3033 * @addr: the start address for the read 3034 * @nwords: how many 32-bit words to read 3035 * @data: where to store the read data 3036 * @byte_oriented: whether to store data as bytes or as words 3037 * 3038 * Read the specified number of 32-bit words from the serial flash. 3039 * If @byte_oriented is set the read data is stored as a byte array 3040 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3041 * natural endianness. 3042 */ 3043 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3044 unsigned int nwords, u32 *data, int byte_oriented) 3045 { 3046 int ret; 3047 3048 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3049 return -EINVAL; 3050 3051 addr = swab32(addr) | SF_RD_DATA_FAST; 3052 3053 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3054 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3055 return ret; 3056 3057 for ( ; nwords; nwords--, data++) { 3058 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3059 if (nwords == 1) 3060 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3061 if (ret) 3062 return ret; 3063 if (byte_oriented) 3064 *data = (__force __u32)(cpu_to_be32(*data)); 3065 } 3066 return 0; 3067 } 3068 3069 /** 3070 * t4_write_flash - write up to a page of data to the serial flash 3071 * @adapter: the adapter 3072 * @addr: the start address to write 3073 * @n: length of data to write in bytes 3074 * @data: the data to write 3075 * 3076 * Writes up to a page of data (256 bytes) to the serial flash starting 3077 * at the given address. All the data must be written to the same page. 3078 */ 3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3080 unsigned int n, const u8 *data) 3081 { 3082 int ret; 3083 u32 buf[64]; 3084 unsigned int i, c, left, val, offset = addr & 0xff; 3085 3086 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3087 return -EINVAL; 3088 3089 val = swab32(addr) | SF_PROG_PAGE; 3090 3091 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3092 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3093 goto unlock; 3094 3095 for (left = n; left; left -= c) { 3096 c = min(left, 4U); 3097 for (val = 0, i = 0; i < c; ++i) 3098 val = (val << 8) + *data++; 3099 3100 ret = sf1_write(adapter, c, c != left, 1, val); 3101 if (ret) 3102 goto unlock; 3103 } 3104 ret = flash_wait_op(adapter, 8, 1); 3105 if (ret) 3106 goto unlock; 3107 3108 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3109 3110 /* Read the page to verify the write succeeded */ 3111 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3112 if (ret) 3113 return ret; 3114 3115 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3116 dev_err(adapter->pdev_dev, 3117 "failed to correctly write the flash page at %#x\n", 3118 addr); 3119 return -EIO; 3120 } 3121 return 0; 3122 3123 unlock: 3124 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3125 return ret; 3126 } 3127 3128 /** 3129 * t4_get_fw_version - read the firmware version 3130 * @adapter: the adapter 3131 * @vers: where to place the version 3132 * 3133 * Reads the FW version from flash. 3134 */ 3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3136 { 3137 return t4_read_flash(adapter, FLASH_FW_START + 3138 offsetof(struct fw_hdr, fw_ver), 1, 3139 vers, 0); 3140 } 3141 3142 /** 3143 * t4_get_bs_version - read the firmware bootstrap version 3144 * @adapter: the adapter 3145 * @vers: where to place the version 3146 * 3147 * Reads the FW Bootstrap version from flash. 3148 */ 3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3150 { 3151 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3152 offsetof(struct fw_hdr, fw_ver), 1, 3153 vers, 0); 3154 } 3155 3156 /** 3157 * t4_get_tp_version - read the TP microcode version 3158 * @adapter: the adapter 3159 * @vers: where to place the version 3160 * 3161 * Reads the TP microcode version from flash. 3162 */ 3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3164 { 3165 return t4_read_flash(adapter, FLASH_FW_START + 3166 offsetof(struct fw_hdr, tp_microcode_ver), 3167 1, vers, 0); 3168 } 3169 3170 /** 3171 * t4_get_exprom_version - return the Expansion ROM version (if any) 3172 * @adapter: the adapter 3173 * @vers: where to place the version 3174 * 3175 * Reads the Expansion ROM header from FLASH and returns the version 3176 * number (if present) through the @vers return value pointer. We return 3177 * this in the Firmware Version Format since it's convenient. Return 3178 * 0 on success, -ENOENT if no Expansion ROM is present. 3179 */ 3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3181 { 3182 struct exprom_header { 3183 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3184 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3185 } *hdr; 3186 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3187 sizeof(u32))]; 3188 int ret; 3189 3190 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3191 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3192 0); 3193 if (ret) 3194 return ret; 3195 3196 hdr = (struct exprom_header *)exprom_header_buf; 3197 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3198 return -ENOENT; 3199 3200 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3201 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3202 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3203 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3204 return 0; 3205 } 3206 3207 /** 3208 * t4_get_vpd_version - return the VPD version 3209 * @adapter: the adapter 3210 * @vers: where to place the version 3211 * 3212 * Reads the VPD via the Firmware interface (thus this can only be called 3213 * once we're ready to issue Firmware commands). The format of the 3214 * VPD version is adapter specific. Returns 0 on success, an error on 3215 * failure. 3216 * 3217 * Note that early versions of the Firmware didn't include the ability 3218 * to retrieve the VPD version, so we zero-out the return-value parameter 3219 * in that case to avoid leaving it with garbage in it. 3220 * 3221 * Also note that the Firmware will return its cached copy of the VPD 3222 * Revision ID, not the actual Revision ID as written in the Serial 3223 * EEPROM. This is only an issue if a new VPD has been written and the 3224 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3225 * to defer calling this routine till after a FW_RESET_CMD has been issued 3226 * if the Host Driver will be performing a full adapter initialization. 3227 */ 3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3229 { 3230 u32 vpdrev_param; 3231 int ret; 3232 3233 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3234 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3235 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3236 1, &vpdrev_param, vers); 3237 if (ret) 3238 *vers = 0; 3239 return ret; 3240 } 3241 3242 /** 3243 * t4_get_scfg_version - return the Serial Configuration version 3244 * @adapter: the adapter 3245 * @vers: where to place the version 3246 * 3247 * Reads the Serial Configuration Version via the Firmware interface 3248 * (thus this can only be called once we're ready to issue Firmware 3249 * commands). The format of the Serial Configuration version is 3250 * adapter specific. Returns 0 on success, an error on failure. 3251 * 3252 * Note that early versions of the Firmware didn't include the ability 3253 * to retrieve the Serial Configuration version, so we zero-out the 3254 * return-value parameter in that case to avoid leaving it with 3255 * garbage in it. 3256 * 3257 * Also note that the Firmware will return its cached copy of the Serial 3258 * Initialization Revision ID, not the actual Revision ID as written in 3259 * the Serial EEPROM. This is only an issue if a new VPD has been written 3260 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3261 * it's best to defer calling this routine till after a FW_RESET_CMD has 3262 * been issued if the Host Driver will be performing a full adapter 3263 * initialization. 3264 */ 3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3266 { 3267 u32 scfgrev_param; 3268 int ret; 3269 3270 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3271 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3272 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3273 1, &scfgrev_param, vers); 3274 if (ret) 3275 *vers = 0; 3276 return ret; 3277 } 3278 3279 /** 3280 * t4_get_version_info - extract various chip/firmware version information 3281 * @adapter: the adapter 3282 * 3283 * Reads various chip/firmware version numbers and stores them into the 3284 * adapter Adapter Parameters structure. If any of the efforts fails 3285 * the first failure will be returned, but all of the version numbers 3286 * will be read. 3287 */ 3288 int t4_get_version_info(struct adapter *adapter) 3289 { 3290 int ret = 0; 3291 3292 #define FIRST_RET(__getvinfo) \ 3293 do { \ 3294 int __ret = __getvinfo; \ 3295 if (__ret && !ret) \ 3296 ret = __ret; \ 3297 } while (0) 3298 3299 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3300 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3301 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3302 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3303 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3304 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3305 3306 #undef FIRST_RET 3307 return ret; 3308 } 3309 3310 /** 3311 * t4_dump_version_info - dump all of the adapter configuration IDs 3312 * @adapter: the adapter 3313 * 3314 * Dumps all of the various bits of adapter configuration version/revision 3315 * IDs information. This is typically called at some point after 3316 * t4_get_version_info() has been called. 3317 */ 3318 void t4_dump_version_info(struct adapter *adapter) 3319 { 3320 /* Device information */ 3321 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3322 adapter->params.vpd.id, 3323 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3324 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3325 adapter->params.vpd.sn, adapter->params.vpd.pn); 3326 3327 /* Firmware Version */ 3328 if (!adapter->params.fw_vers) 3329 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3330 else 3331 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3332 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3333 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3334 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3335 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3336 3337 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3338 * Firmware, so dev_info() is more appropriate here.) 3339 */ 3340 if (!adapter->params.bs_vers) 3341 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3342 else 3343 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3344 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3345 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3346 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3347 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3348 3349 /* TP Microcode Version */ 3350 if (!adapter->params.tp_vers) 3351 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3352 else 3353 dev_info(adapter->pdev_dev, 3354 "TP Microcode version: %u.%u.%u.%u\n", 3355 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3356 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3357 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3358 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3359 3360 /* Expansion ROM version */ 3361 if (!adapter->params.er_vers) 3362 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3363 else 3364 dev_info(adapter->pdev_dev, 3365 "Expansion ROM version: %u.%u.%u.%u\n", 3366 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3367 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3368 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3369 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3370 3371 /* Serial Configuration version */ 3372 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3373 adapter->params.scfg_vers); 3374 3375 /* VPD Version */ 3376 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3377 adapter->params.vpd_vers); 3378 } 3379 3380 /** 3381 * t4_check_fw_version - check if the FW is supported with this driver 3382 * @adap: the adapter 3383 * 3384 * Checks if an adapter's FW is compatible with the driver. Returns 0 3385 * if there's exact match, a negative error if the version could not be 3386 * read or there's a major version mismatch 3387 */ 3388 int t4_check_fw_version(struct adapter *adap) 3389 { 3390 int i, ret, major, minor, micro; 3391 int exp_major, exp_minor, exp_micro; 3392 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3393 3394 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3395 /* Try multiple times before returning error */ 3396 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3397 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3398 3399 if (ret) 3400 return ret; 3401 3402 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3403 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3404 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3405 3406 switch (chip_version) { 3407 case CHELSIO_T4: 3408 exp_major = T4FW_MIN_VERSION_MAJOR; 3409 exp_minor = T4FW_MIN_VERSION_MINOR; 3410 exp_micro = T4FW_MIN_VERSION_MICRO; 3411 break; 3412 case CHELSIO_T5: 3413 exp_major = T5FW_MIN_VERSION_MAJOR; 3414 exp_minor = T5FW_MIN_VERSION_MINOR; 3415 exp_micro = T5FW_MIN_VERSION_MICRO; 3416 break; 3417 case CHELSIO_T6: 3418 exp_major = T6FW_MIN_VERSION_MAJOR; 3419 exp_minor = T6FW_MIN_VERSION_MINOR; 3420 exp_micro = T6FW_MIN_VERSION_MICRO; 3421 break; 3422 default: 3423 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3424 adap->chip); 3425 return -EINVAL; 3426 } 3427 3428 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3429 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3430 dev_err(adap->pdev_dev, 3431 "Card has firmware version %u.%u.%u, minimum " 3432 "supported firmware is %u.%u.%u.\n", major, minor, 3433 micro, exp_major, exp_minor, exp_micro); 3434 return -EFAULT; 3435 } 3436 return 0; 3437 } 3438 3439 /* Is the given firmware API compatible with the one the driver was compiled 3440 * with? 3441 */ 3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3443 { 3444 3445 /* short circuit if it's the exact same firmware version */ 3446 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3447 return 1; 3448 3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3450 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3451 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3452 return 1; 3453 #undef SAME_INTF 3454 3455 return 0; 3456 } 3457 3458 /* The firmware in the filesystem is usable, but should it be installed? 3459 * This routine explains itself in detail if it indicates the filesystem 3460 * firmware should be installed. 3461 */ 3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3463 int k, int c) 3464 { 3465 const char *reason; 3466 3467 if (!card_fw_usable) { 3468 reason = "incompatible or unusable"; 3469 goto install; 3470 } 3471 3472 if (k > c) { 3473 reason = "older than the version supported with this driver"; 3474 goto install; 3475 } 3476 3477 return 0; 3478 3479 install: 3480 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3481 "installing firmware %u.%u.%u.%u on card.\n", 3482 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3483 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3484 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3485 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3486 3487 return 1; 3488 } 3489 3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3491 const u8 *fw_data, unsigned int fw_size, 3492 struct fw_hdr *card_fw, enum dev_state state, 3493 int *reset) 3494 { 3495 int ret, card_fw_usable, fs_fw_usable; 3496 const struct fw_hdr *fs_fw; 3497 const struct fw_hdr *drv_fw; 3498 3499 drv_fw = &fw_info->fw_hdr; 3500 3501 /* Read the header of the firmware on the card */ 3502 ret = -t4_read_flash(adap, FLASH_FW_START, 3503 sizeof(*card_fw) / sizeof(uint32_t), 3504 (uint32_t *)card_fw, 1); 3505 if (ret == 0) { 3506 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3507 } else { 3508 dev_err(adap->pdev_dev, 3509 "Unable to read card's firmware header: %d\n", ret); 3510 card_fw_usable = 0; 3511 } 3512 3513 if (fw_data != NULL) { 3514 fs_fw = (const void *)fw_data; 3515 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3516 } else { 3517 fs_fw = NULL; 3518 fs_fw_usable = 0; 3519 } 3520 3521 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3522 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3523 /* Common case: the firmware on the card is an exact match and 3524 * the filesystem one is an exact match too, or the filesystem 3525 * one is absent/incompatible. 3526 */ 3527 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3528 should_install_fs_fw(adap, card_fw_usable, 3529 be32_to_cpu(fs_fw->fw_ver), 3530 be32_to_cpu(card_fw->fw_ver))) { 3531 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3532 fw_size, 0); 3533 if (ret != 0) { 3534 dev_err(adap->pdev_dev, 3535 "failed to install firmware: %d\n", ret); 3536 goto bye; 3537 } 3538 3539 /* Installed successfully, update the cached header too. */ 3540 *card_fw = *fs_fw; 3541 card_fw_usable = 1; 3542 *reset = 0; /* already reset as part of load_fw */ 3543 } 3544 3545 if (!card_fw_usable) { 3546 uint32_t d, c, k; 3547 3548 d = be32_to_cpu(drv_fw->fw_ver); 3549 c = be32_to_cpu(card_fw->fw_ver); 3550 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3551 3552 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3553 "chip state %d, " 3554 "driver compiled with %d.%d.%d.%d, " 3555 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3556 state, 3557 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3558 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3559 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3560 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3561 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3562 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3563 ret = EINVAL; 3564 goto bye; 3565 } 3566 3567 /* We're using whatever's on the card and it's known to be good. */ 3568 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3569 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3570 3571 bye: 3572 return ret; 3573 } 3574 3575 /** 3576 * t4_flash_erase_sectors - erase a range of flash sectors 3577 * @adapter: the adapter 3578 * @start: the first sector to erase 3579 * @end: the last sector to erase 3580 * 3581 * Erases the sectors in the given inclusive range. 3582 */ 3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3584 { 3585 int ret = 0; 3586 3587 if (end >= adapter->params.sf_nsec) 3588 return -EINVAL; 3589 3590 while (start <= end) { 3591 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3592 (ret = sf1_write(adapter, 4, 0, 1, 3593 SF_ERASE_SECTOR | (start << 8))) != 0 || 3594 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3595 dev_err(adapter->pdev_dev, 3596 "erase of flash sector %d failed, error %d\n", 3597 start, ret); 3598 break; 3599 } 3600 start++; 3601 } 3602 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3603 return ret; 3604 } 3605 3606 /** 3607 * t4_flash_cfg_addr - return the address of the flash configuration file 3608 * @adapter: the adapter 3609 * 3610 * Return the address within the flash where the Firmware Configuration 3611 * File is stored. 3612 */ 3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3614 { 3615 if (adapter->params.sf_size == 0x100000) 3616 return FLASH_FPGA_CFG_START; 3617 else 3618 return FLASH_CFG_START; 3619 } 3620 3621 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3622 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3623 * and emit an error message for mismatched firmware to save our caller the 3624 * effort ... 3625 */ 3626 static bool t4_fw_matches_chip(const struct adapter *adap, 3627 const struct fw_hdr *hdr) 3628 { 3629 /* The expression below will return FALSE for any unsupported adapter 3630 * which will keep us "honest" in the future ... 3631 */ 3632 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3633 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3634 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3635 return true; 3636 3637 dev_err(adap->pdev_dev, 3638 "FW image (%d) is not suitable for this adapter (%d)\n", 3639 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3640 return false; 3641 } 3642 3643 /** 3644 * t4_load_fw - download firmware 3645 * @adap: the adapter 3646 * @fw_data: the firmware image to write 3647 * @size: image size 3648 * 3649 * Write the supplied firmware image to the card's serial flash. 3650 */ 3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3652 { 3653 u32 csum; 3654 int ret, addr; 3655 unsigned int i; 3656 u8 first_page[SF_PAGE_SIZE]; 3657 const __be32 *p = (const __be32 *)fw_data; 3658 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3659 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3660 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3661 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3662 unsigned int fw_start = FLASH_FW_START; 3663 3664 if (!size) { 3665 dev_err(adap->pdev_dev, "FW image has no data\n"); 3666 return -EINVAL; 3667 } 3668 if (size & 511) { 3669 dev_err(adap->pdev_dev, 3670 "FW image size not multiple of 512 bytes\n"); 3671 return -EINVAL; 3672 } 3673 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3674 dev_err(adap->pdev_dev, 3675 "FW image size differs from size in FW header\n"); 3676 return -EINVAL; 3677 } 3678 if (size > fw_size) { 3679 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3680 fw_size); 3681 return -EFBIG; 3682 } 3683 if (!t4_fw_matches_chip(adap, hdr)) 3684 return -EINVAL; 3685 3686 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3687 csum += be32_to_cpu(p[i]); 3688 3689 if (csum != 0xffffffff) { 3690 dev_err(adap->pdev_dev, 3691 "corrupted firmware image, checksum %#x\n", csum); 3692 return -EINVAL; 3693 } 3694 3695 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3696 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3697 if (ret) 3698 goto out; 3699 3700 /* 3701 * We write the correct version at the end so the driver can see a bad 3702 * version if the FW write fails. Start by writing a copy of the 3703 * first page with a bad version. 3704 */ 3705 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3706 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3707 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3708 if (ret) 3709 goto out; 3710 3711 addr = fw_start; 3712 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3713 addr += SF_PAGE_SIZE; 3714 fw_data += SF_PAGE_SIZE; 3715 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3716 if (ret) 3717 goto out; 3718 } 3719 3720 ret = t4_write_flash(adap, 3721 fw_start + offsetof(struct fw_hdr, fw_ver), 3722 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3723 out: 3724 if (ret) 3725 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3726 ret); 3727 else 3728 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3729 return ret; 3730 } 3731 3732 /** 3733 * t4_phy_fw_ver - return current PHY firmware version 3734 * @adap: the adapter 3735 * @phy_fw_ver: return value buffer for PHY firmware version 3736 * 3737 * Returns the current version of external PHY firmware on the 3738 * adapter. 3739 */ 3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3741 { 3742 u32 param, val; 3743 int ret; 3744 3745 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3746 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3747 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3748 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3749 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3750 ¶m, &val); 3751 if (ret < 0) 3752 return ret; 3753 *phy_fw_ver = val; 3754 return 0; 3755 } 3756 3757 /** 3758 * t4_load_phy_fw - download port PHY firmware 3759 * @adap: the adapter 3760 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3761 * @win_lock: the lock to use to guard the memory copy 3762 * @phy_fw_version: function to check PHY firmware versions 3763 * @phy_fw_data: the PHY firmware image to write 3764 * @phy_fw_size: image size 3765 * 3766 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3767 * @phy_fw_version is supplied, then it will be used to determine if 3768 * it's necessary to perform the transfer by comparing the version 3769 * of any existing adapter PHY firmware with that of the passed in 3770 * PHY firmware image. If @win_lock is non-NULL then it will be used 3771 * around the call to t4_memory_rw() which transfers the PHY firmware 3772 * to the adapter. 3773 * 3774 * A negative error number will be returned if an error occurs. If 3775 * version number support is available and there's no need to upgrade 3776 * the firmware, 0 will be returned. If firmware is successfully 3777 * transferred to the adapter, 1 will be retured. 3778 * 3779 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3780 * a result, a RESET of the adapter would cause that RAM to lose its 3781 * contents. Thus, loading PHY firmware on such adapters must happen 3782 * after any FW_RESET_CMDs ... 3783 */ 3784 int t4_load_phy_fw(struct adapter *adap, 3785 int win, spinlock_t *win_lock, 3786 int (*phy_fw_version)(const u8 *, size_t), 3787 const u8 *phy_fw_data, size_t phy_fw_size) 3788 { 3789 unsigned long mtype = 0, maddr = 0; 3790 u32 param, val; 3791 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3792 int ret; 3793 3794 /* If we have version number support, then check to see if the adapter 3795 * already has up-to-date PHY firmware loaded. 3796 */ 3797 if (phy_fw_version) { 3798 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3799 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3800 if (ret < 0) 3801 return ret; 3802 3803 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3804 CH_WARN(adap, "PHY Firmware already up-to-date, " 3805 "version %#x\n", cur_phy_fw_ver); 3806 return 0; 3807 } 3808 } 3809 3810 /* Ask the firmware where it wants us to copy the PHY firmware image. 3811 * The size of the file requires a special version of the READ coommand 3812 * which will pass the file size via the values field in PARAMS_CMD and 3813 * retrieve the return value from firmware and place it in the same 3814 * buffer values 3815 */ 3816 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3817 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3818 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3819 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3820 val = phy_fw_size; 3821 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3822 ¶m, &val, 1, true); 3823 if (ret < 0) 3824 return ret; 3825 mtype = val >> 8; 3826 maddr = (val & 0xff) << 16; 3827 3828 /* Copy the supplied PHY Firmware image to the adapter memory location 3829 * allocated by the adapter firmware. 3830 */ 3831 if (win_lock) 3832 spin_lock_bh(win_lock); 3833 ret = t4_memory_rw(adap, win, mtype, maddr, 3834 phy_fw_size, (__be32 *)phy_fw_data, 3835 T4_MEMORY_WRITE); 3836 if (win_lock) 3837 spin_unlock_bh(win_lock); 3838 if (ret) 3839 return ret; 3840 3841 /* Tell the firmware that the PHY firmware image has been written to 3842 * RAM and it can now start copying it over to the PHYs. The chip 3843 * firmware will RESET the affected PHYs as part of this operation 3844 * leaving them running the new PHY firmware image. 3845 */ 3846 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3847 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3848 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3849 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3850 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3851 ¶m, &val, 30000); 3852 3853 /* If we have version number support, then check to see that the new 3854 * firmware got loaded properly. 3855 */ 3856 if (phy_fw_version) { 3857 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3858 if (ret < 0) 3859 return ret; 3860 3861 if (cur_phy_fw_ver != new_phy_fw_vers) { 3862 CH_WARN(adap, "PHY Firmware did not update: " 3863 "version on adapter %#x, " 3864 "version flashed %#x\n", 3865 cur_phy_fw_ver, new_phy_fw_vers); 3866 return -ENXIO; 3867 } 3868 } 3869 3870 return 1; 3871 } 3872 3873 /** 3874 * t4_fwcache - firmware cache operation 3875 * @adap: the adapter 3876 * @op : the operation (flush or flush and invalidate) 3877 */ 3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3879 { 3880 struct fw_params_cmd c; 3881 3882 memset(&c, 0, sizeof(c)); 3883 c.op_to_vfn = 3884 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3885 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3886 FW_PARAMS_CMD_PFN_V(adap->pf) | 3887 FW_PARAMS_CMD_VFN_V(0)); 3888 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3889 c.param[0].mnem = 3890 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3891 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3892 c.param[0].val = cpu_to_be32(op); 3893 3894 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3895 } 3896 3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3898 unsigned int *pif_req_wrptr, 3899 unsigned int *pif_rsp_wrptr) 3900 { 3901 int i, j; 3902 u32 cfg, val, req, rsp; 3903 3904 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3905 if (cfg & LADBGEN_F) 3906 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3907 3908 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3909 req = POLADBGWRPTR_G(val); 3910 rsp = PILADBGWRPTR_G(val); 3911 if (pif_req_wrptr) 3912 *pif_req_wrptr = req; 3913 if (pif_rsp_wrptr) 3914 *pif_rsp_wrptr = rsp; 3915 3916 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3917 for (j = 0; j < 6; j++) { 3918 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3919 PILADBGRDPTR_V(rsp)); 3920 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3921 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3922 req++; 3923 rsp++; 3924 } 3925 req = (req + 2) & POLADBGRDPTR_M; 3926 rsp = (rsp + 2) & PILADBGRDPTR_M; 3927 } 3928 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3929 } 3930 3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3932 { 3933 u32 cfg; 3934 int i, j, idx; 3935 3936 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3937 if (cfg & LADBGEN_F) 3938 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3939 3940 for (i = 0; i < CIM_MALA_SIZE; i++) { 3941 for (j = 0; j < 5; j++) { 3942 idx = 8 * i + j; 3943 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3944 PILADBGRDPTR_V(idx)); 3945 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3946 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3947 } 3948 } 3949 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3950 } 3951 3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3953 { 3954 unsigned int i, j; 3955 3956 for (i = 0; i < 8; i++) { 3957 u32 *p = la_buf + i; 3958 3959 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3960 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3961 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3962 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3963 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3964 } 3965 } 3966 3967 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3968 FW_PORT_CAP32_ANEG) 3969 3970 /** 3971 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3972 * @caps16: a 16-bit Port Capabilities value 3973 * 3974 * Returns the equivalent 32-bit Port Capabilities value. 3975 */ 3976 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3977 { 3978 fw_port_cap32_t caps32 = 0; 3979 3980 #define CAP16_TO_CAP32(__cap) \ 3981 do { \ 3982 if (caps16 & FW_PORT_CAP_##__cap) \ 3983 caps32 |= FW_PORT_CAP32_##__cap; \ 3984 } while (0) 3985 3986 CAP16_TO_CAP32(SPEED_100M); 3987 CAP16_TO_CAP32(SPEED_1G); 3988 CAP16_TO_CAP32(SPEED_25G); 3989 CAP16_TO_CAP32(SPEED_10G); 3990 CAP16_TO_CAP32(SPEED_40G); 3991 CAP16_TO_CAP32(SPEED_100G); 3992 CAP16_TO_CAP32(FC_RX); 3993 CAP16_TO_CAP32(FC_TX); 3994 CAP16_TO_CAP32(ANEG); 3995 CAP16_TO_CAP32(FORCE_PAUSE); 3996 CAP16_TO_CAP32(MDIAUTO); 3997 CAP16_TO_CAP32(MDISTRAIGHT); 3998 CAP16_TO_CAP32(FEC_RS); 3999 CAP16_TO_CAP32(FEC_BASER_RS); 4000 CAP16_TO_CAP32(802_3_PAUSE); 4001 CAP16_TO_CAP32(802_3_ASM_DIR); 4002 4003 #undef CAP16_TO_CAP32 4004 4005 return caps32; 4006 } 4007 4008 /** 4009 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 4010 * @caps32: a 32-bit Port Capabilities value 4011 * 4012 * Returns the equivalent 16-bit Port Capabilities value. Note that 4013 * not all 32-bit Port Capabilities can be represented in the 16-bit 4014 * Port Capabilities and some fields/values may not make it. 4015 */ 4016 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4017 { 4018 fw_port_cap16_t caps16 = 0; 4019 4020 #define CAP32_TO_CAP16(__cap) \ 4021 do { \ 4022 if (caps32 & FW_PORT_CAP32_##__cap) \ 4023 caps16 |= FW_PORT_CAP_##__cap; \ 4024 } while (0) 4025 4026 CAP32_TO_CAP16(SPEED_100M); 4027 CAP32_TO_CAP16(SPEED_1G); 4028 CAP32_TO_CAP16(SPEED_10G); 4029 CAP32_TO_CAP16(SPEED_25G); 4030 CAP32_TO_CAP16(SPEED_40G); 4031 CAP32_TO_CAP16(SPEED_100G); 4032 CAP32_TO_CAP16(FC_RX); 4033 CAP32_TO_CAP16(FC_TX); 4034 CAP32_TO_CAP16(802_3_PAUSE); 4035 CAP32_TO_CAP16(802_3_ASM_DIR); 4036 CAP32_TO_CAP16(ANEG); 4037 CAP32_TO_CAP16(FORCE_PAUSE); 4038 CAP32_TO_CAP16(MDIAUTO); 4039 CAP32_TO_CAP16(MDISTRAIGHT); 4040 CAP32_TO_CAP16(FEC_RS); 4041 CAP32_TO_CAP16(FEC_BASER_RS); 4042 4043 #undef CAP32_TO_CAP16 4044 4045 return caps16; 4046 } 4047 4048 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4049 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4050 { 4051 enum cc_pause cc_pause = 0; 4052 4053 if (fw_pause & FW_PORT_CAP32_FC_RX) 4054 cc_pause |= PAUSE_RX; 4055 if (fw_pause & FW_PORT_CAP32_FC_TX) 4056 cc_pause |= PAUSE_TX; 4057 4058 return cc_pause; 4059 } 4060 4061 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4062 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4063 { 4064 fw_port_cap32_t fw_pause = 0; 4065 4066 if (cc_pause & PAUSE_RX) 4067 fw_pause |= FW_PORT_CAP32_FC_RX; 4068 if (cc_pause & PAUSE_TX) 4069 fw_pause |= FW_PORT_CAP32_FC_TX; 4070 if (!(cc_pause & PAUSE_AUTONEG)) 4071 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4072 4073 return fw_pause; 4074 } 4075 4076 /* Translate Firmware Forward Error Correction specification to Common Code */ 4077 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4078 { 4079 enum cc_fec cc_fec = 0; 4080 4081 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4082 cc_fec |= FEC_RS; 4083 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4084 cc_fec |= FEC_BASER_RS; 4085 4086 return cc_fec; 4087 } 4088 4089 /* Translate Common Code Forward Error Correction specification to Firmware */ 4090 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4091 { 4092 fw_port_cap32_t fw_fec = 0; 4093 4094 if (cc_fec & FEC_RS) 4095 fw_fec |= FW_PORT_CAP32_FEC_RS; 4096 if (cc_fec & FEC_BASER_RS) 4097 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4098 4099 return fw_fec; 4100 } 4101 4102 /** 4103 * t4_link_l1cfg - apply link configuration to MAC/PHY 4104 * @adapter: the adapter 4105 * @mbox: the Firmware Mailbox to use 4106 * @port: the Port ID 4107 * @lc: the Port's Link Configuration 4108 * 4109 * Set up a port's MAC and PHY according to a desired link configuration. 4110 * - If the PHY can auto-negotiate first decide what to advertise, then 4111 * enable/disable auto-negotiation as desired, and reset. 4112 * - If the PHY does not auto-negotiate just reset it. 4113 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4114 * otherwise do it later based on the outcome of auto-negotiation. 4115 */ 4116 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4117 unsigned int port, struct link_config *lc, 4118 bool sleep_ok, int timeout) 4119 { 4120 unsigned int fw_caps = adapter->params.fw_caps_support; 4121 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 4122 struct fw_port_cmd cmd; 4123 unsigned int fw_mdi; 4124 int ret; 4125 4126 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4127 /* Convert driver coding of Pause Frame Flow Control settings into the 4128 * Firmware's API. 4129 */ 4130 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4131 4132 /* Convert Common Code Forward Error Control settings into the 4133 * Firmware's API. If the current Requested FEC has "Automatic" 4134 * (IEEE 802.3) specified, then we use whatever the Firmware 4135 * sent us as part of it's IEEE 802.3-based interpratation of 4136 * the Transceiver Module EPROM FEC parameters. Otherwise we 4137 * use whatever is in the current Requested FEC settings. 4138 */ 4139 if (lc->requested_fec & FEC_AUTO) 4140 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4141 else 4142 cc_fec = lc->requested_fec; 4143 fw_fec = cc_to_fwcap_fec(cc_fec); 4144 4145 /* Figure out what our Requested Port Capabilities are going to be. 4146 */ 4147 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4148 rcap = lc->acaps | fw_fc | fw_fec; 4149 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4150 lc->fec = cc_fec; 4151 } else if (lc->autoneg == AUTONEG_DISABLE) { 4152 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4153 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4154 lc->fec = cc_fec; 4155 } else { 4156 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4157 } 4158 4159 /* Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4160 * we need to exclude this from this check in order to maintain 4161 * compatibility ... 4162 */ 4163 if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4164 dev_err(adapter->pdev_dev, 4165 "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4166 rcap, lc->pcaps); 4167 return -EINVAL; 4168 } 4169 4170 /* And send that on to the Firmware ... 4171 */ 4172 memset(&cmd, 0, sizeof(cmd)); 4173 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4174 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4175 FW_PORT_CMD_PORTID_V(port)); 4176 cmd.action_to_len16 = 4177 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4178 ? FW_PORT_ACTION_L1_CFG 4179 : FW_PORT_ACTION_L1_CFG32) | 4180 FW_LEN16(cmd)); 4181 if (fw_caps == FW_CAPS16) 4182 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4183 else 4184 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4185 4186 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4187 sleep_ok, timeout); 4188 if (ret) { 4189 dev_err(adapter->pdev_dev, 4190 "Requested Port Capabilities %#x rejected, error %d\n", 4191 rcap, -ret); 4192 return ret; 4193 } 4194 return ret; 4195 } 4196 4197 /** 4198 * t4_restart_aneg - restart autonegotiation 4199 * @adap: the adapter 4200 * @mbox: mbox to use for the FW command 4201 * @port: the port id 4202 * 4203 * Restarts autonegotiation for the selected port. 4204 */ 4205 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4206 { 4207 unsigned int fw_caps = adap->params.fw_caps_support; 4208 struct fw_port_cmd c; 4209 4210 memset(&c, 0, sizeof(c)); 4211 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4212 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4213 FW_PORT_CMD_PORTID_V(port)); 4214 c.action_to_len16 = 4215 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4216 ? FW_PORT_ACTION_L1_CFG 4217 : FW_PORT_ACTION_L1_CFG32) | 4218 FW_LEN16(c)); 4219 if (fw_caps == FW_CAPS16) 4220 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4221 else 4222 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4223 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4224 } 4225 4226 typedef void (*int_handler_t)(struct adapter *adap); 4227 4228 struct intr_info { 4229 unsigned int mask; /* bits to check in interrupt status */ 4230 const char *msg; /* message to print or NULL */ 4231 short stat_idx; /* stat counter to increment or -1 */ 4232 unsigned short fatal; /* whether the condition reported is fatal */ 4233 int_handler_t int_handler; /* platform-specific int handler */ 4234 }; 4235 4236 /** 4237 * t4_handle_intr_status - table driven interrupt handler 4238 * @adapter: the adapter that generated the interrupt 4239 * @reg: the interrupt status register to process 4240 * @acts: table of interrupt actions 4241 * 4242 * A table driven interrupt handler that applies a set of masks to an 4243 * interrupt status word and performs the corresponding actions if the 4244 * interrupts described by the mask have occurred. The actions include 4245 * optionally emitting a warning or alert message. The table is terminated 4246 * by an entry specifying mask 0. Returns the number of fatal interrupt 4247 * conditions. 4248 */ 4249 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4250 const struct intr_info *acts) 4251 { 4252 int fatal = 0; 4253 unsigned int mask = 0; 4254 unsigned int status = t4_read_reg(adapter, reg); 4255 4256 for ( ; acts->mask; ++acts) { 4257 if (!(status & acts->mask)) 4258 continue; 4259 if (acts->fatal) { 4260 fatal++; 4261 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4262 status & acts->mask); 4263 } else if (acts->msg && printk_ratelimit()) 4264 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4265 status & acts->mask); 4266 if (acts->int_handler) 4267 acts->int_handler(adapter); 4268 mask |= acts->mask; 4269 } 4270 status &= mask; 4271 if (status) /* clear processed interrupts */ 4272 t4_write_reg(adapter, reg, status); 4273 return fatal; 4274 } 4275 4276 /* 4277 * Interrupt handler for the PCIE module. 4278 */ 4279 static void pcie_intr_handler(struct adapter *adapter) 4280 { 4281 static const struct intr_info sysbus_intr_info[] = { 4282 { RNPP_F, "RXNP array parity error", -1, 1 }, 4283 { RPCP_F, "RXPC array parity error", -1, 1 }, 4284 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4285 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4286 { RFTP_F, "RXFT array parity error", -1, 1 }, 4287 { 0 } 4288 }; 4289 static const struct intr_info pcie_port_intr_info[] = { 4290 { TPCP_F, "TXPC array parity error", -1, 1 }, 4291 { TNPP_F, "TXNP array parity error", -1, 1 }, 4292 { TFTP_F, "TXFT array parity error", -1, 1 }, 4293 { TCAP_F, "TXCA array parity error", -1, 1 }, 4294 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4295 { RCAP_F, "RXCA array parity error", -1, 1 }, 4296 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4297 { RDPE_F, "Rx data parity error", -1, 1 }, 4298 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4299 { 0 } 4300 }; 4301 static const struct intr_info pcie_intr_info[] = { 4302 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4303 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4304 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4305 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4306 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4307 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4308 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4309 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4310 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4311 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4312 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4313 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4314 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4315 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4316 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4317 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4318 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4319 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4320 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4321 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4322 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4323 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4324 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4325 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4326 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4327 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4328 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4329 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4330 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4331 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4332 -1, 0 }, 4333 { 0 } 4334 }; 4335 4336 static struct intr_info t5_pcie_intr_info[] = { 4337 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4338 -1, 1 }, 4339 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4340 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4341 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4342 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4343 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4344 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4345 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4346 -1, 1 }, 4347 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4348 -1, 1 }, 4349 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4350 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4351 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4352 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4353 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4354 -1, 1 }, 4355 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4356 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4357 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4358 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4359 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4360 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4361 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4362 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4363 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4364 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4365 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4366 -1, 1 }, 4367 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4368 -1, 1 }, 4369 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4370 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4371 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4372 { READRSPERR_F, "Outbound read error", -1, 0 }, 4373 { 0 } 4374 }; 4375 4376 int fat; 4377 4378 if (is_t4(adapter->params.chip)) 4379 fat = t4_handle_intr_status(adapter, 4380 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4381 sysbus_intr_info) + 4382 t4_handle_intr_status(adapter, 4383 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4384 pcie_port_intr_info) + 4385 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4386 pcie_intr_info); 4387 else 4388 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4389 t5_pcie_intr_info); 4390 4391 if (fat) 4392 t4_fatal_err(adapter); 4393 } 4394 4395 /* 4396 * TP interrupt handler. 4397 */ 4398 static void tp_intr_handler(struct adapter *adapter) 4399 { 4400 static const struct intr_info tp_intr_info[] = { 4401 { 0x3fffffff, "TP parity error", -1, 1 }, 4402 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4403 { 0 } 4404 }; 4405 4406 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4407 t4_fatal_err(adapter); 4408 } 4409 4410 /* 4411 * SGE interrupt handler. 4412 */ 4413 static void sge_intr_handler(struct adapter *adapter) 4414 { 4415 u64 v; 4416 u32 err; 4417 4418 static const struct intr_info sge_intr_info[] = { 4419 { ERR_CPL_EXCEED_IQE_SIZE_F, 4420 "SGE received CPL exceeding IQE size", -1, 1 }, 4421 { ERR_INVALID_CIDX_INC_F, 4422 "SGE GTS CIDX increment too large", -1, 0 }, 4423 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4424 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4425 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4426 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4427 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4428 0 }, 4429 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4430 0 }, 4431 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4432 0 }, 4433 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4434 0 }, 4435 { ERR_ING_CTXT_PRIO_F, 4436 "SGE too many priority ingress contexts", -1, 0 }, 4437 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4438 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4439 { 0 } 4440 }; 4441 4442 static struct intr_info t4t5_sge_intr_info[] = { 4443 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4444 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4445 { ERR_EGR_CTXT_PRIO_F, 4446 "SGE too many priority egress contexts", -1, 0 }, 4447 { 0 } 4448 }; 4449 4450 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4451 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4452 if (v) { 4453 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4454 (unsigned long long)v); 4455 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4456 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4457 } 4458 4459 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4460 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4461 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4462 t4t5_sge_intr_info); 4463 4464 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4465 if (err & ERROR_QID_VALID_F) { 4466 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4467 ERROR_QID_G(err)); 4468 if (err & UNCAPTURED_ERROR_F) 4469 dev_err(adapter->pdev_dev, 4470 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4471 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4472 UNCAPTURED_ERROR_F); 4473 } 4474 4475 if (v != 0) 4476 t4_fatal_err(adapter); 4477 } 4478 4479 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4480 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4481 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4482 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4483 4484 /* 4485 * CIM interrupt handler. 4486 */ 4487 static void cim_intr_handler(struct adapter *adapter) 4488 { 4489 static const struct intr_info cim_intr_info[] = { 4490 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4491 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4492 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4493 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4494 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4495 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4496 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4497 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4498 { 0 } 4499 }; 4500 static const struct intr_info cim_upintr_info[] = { 4501 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4502 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4503 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4504 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4505 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4506 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4507 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4508 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4509 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4510 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4511 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4512 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4513 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4514 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4515 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4516 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4517 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4518 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4519 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4520 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4521 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4522 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4523 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4524 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4525 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4526 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4527 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4528 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4529 { 0 } 4530 }; 4531 4532 u32 val, fw_err; 4533 int fat; 4534 4535 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4536 if (fw_err & PCIE_FW_ERR_F) 4537 t4_report_fw_error(adapter); 4538 4539 /* When the Firmware detects an internal error which normally 4540 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4541 * in order to make sure the Host sees the Firmware Crash. So 4542 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4543 * ignore the Timer0 interrupt. 4544 */ 4545 4546 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4547 if (val & TIMER0INT_F) 4548 if (!(fw_err & PCIE_FW_ERR_F) || 4549 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4550 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4551 TIMER0INT_F); 4552 4553 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4554 cim_intr_info) + 4555 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4556 cim_upintr_info); 4557 if (fat) 4558 t4_fatal_err(adapter); 4559 } 4560 4561 /* 4562 * ULP RX interrupt handler. 4563 */ 4564 static void ulprx_intr_handler(struct adapter *adapter) 4565 { 4566 static const struct intr_info ulprx_intr_info[] = { 4567 { 0x1800000, "ULPRX context error", -1, 1 }, 4568 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4569 { 0 } 4570 }; 4571 4572 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4573 t4_fatal_err(adapter); 4574 } 4575 4576 /* 4577 * ULP TX interrupt handler. 4578 */ 4579 static void ulptx_intr_handler(struct adapter *adapter) 4580 { 4581 static const struct intr_info ulptx_intr_info[] = { 4582 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4583 0 }, 4584 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4585 0 }, 4586 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4587 0 }, 4588 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4589 0 }, 4590 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4591 { 0 } 4592 }; 4593 4594 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4595 t4_fatal_err(adapter); 4596 } 4597 4598 /* 4599 * PM TX interrupt handler. 4600 */ 4601 static void pmtx_intr_handler(struct adapter *adapter) 4602 { 4603 static const struct intr_info pmtx_intr_info[] = { 4604 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4605 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4606 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4607 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4608 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4609 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4610 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4611 -1, 1 }, 4612 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4613 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4614 { 0 } 4615 }; 4616 4617 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4618 t4_fatal_err(adapter); 4619 } 4620 4621 /* 4622 * PM RX interrupt handler. 4623 */ 4624 static void pmrx_intr_handler(struct adapter *adapter) 4625 { 4626 static const struct intr_info pmrx_intr_info[] = { 4627 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4628 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4629 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4630 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4631 -1, 1 }, 4632 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4633 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4634 { 0 } 4635 }; 4636 4637 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4638 t4_fatal_err(adapter); 4639 } 4640 4641 /* 4642 * CPL switch interrupt handler. 4643 */ 4644 static void cplsw_intr_handler(struct adapter *adapter) 4645 { 4646 static const struct intr_info cplsw_intr_info[] = { 4647 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4648 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4649 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4650 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4651 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4652 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4653 { 0 } 4654 }; 4655 4656 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4657 t4_fatal_err(adapter); 4658 } 4659 4660 /* 4661 * LE interrupt handler. 4662 */ 4663 static void le_intr_handler(struct adapter *adap) 4664 { 4665 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4666 static const struct intr_info le_intr_info[] = { 4667 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4668 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4669 { PARITYERR_F, "LE parity error", -1, 1 }, 4670 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4671 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4672 { 0 } 4673 }; 4674 4675 static struct intr_info t6_le_intr_info[] = { 4676 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4677 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4678 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4679 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4680 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4681 { 0 } 4682 }; 4683 4684 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4685 (chip <= CHELSIO_T5) ? 4686 le_intr_info : t6_le_intr_info)) 4687 t4_fatal_err(adap); 4688 } 4689 4690 /* 4691 * MPS interrupt handler. 4692 */ 4693 static void mps_intr_handler(struct adapter *adapter) 4694 { 4695 static const struct intr_info mps_rx_intr_info[] = { 4696 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4697 { 0 } 4698 }; 4699 static const struct intr_info mps_tx_intr_info[] = { 4700 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4701 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4702 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4703 -1, 1 }, 4704 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4705 -1, 1 }, 4706 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4707 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4708 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4709 { 0 } 4710 }; 4711 static const struct intr_info t6_mps_tx_intr_info[] = { 4712 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4713 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4714 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4715 -1, 1 }, 4716 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4717 -1, 1 }, 4718 /* MPS Tx Bubble is normal for T6 */ 4719 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4720 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4721 { 0 } 4722 }; 4723 static const struct intr_info mps_trc_intr_info[] = { 4724 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4725 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4726 -1, 1 }, 4727 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4728 { 0 } 4729 }; 4730 static const struct intr_info mps_stat_sram_intr_info[] = { 4731 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4732 { 0 } 4733 }; 4734 static const struct intr_info mps_stat_tx_intr_info[] = { 4735 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4736 { 0 } 4737 }; 4738 static const struct intr_info mps_stat_rx_intr_info[] = { 4739 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4740 { 0 } 4741 }; 4742 static const struct intr_info mps_cls_intr_info[] = { 4743 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4744 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4745 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4746 { 0 } 4747 }; 4748 4749 int fat; 4750 4751 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4752 mps_rx_intr_info) + 4753 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4754 is_t6(adapter->params.chip) 4755 ? t6_mps_tx_intr_info 4756 : mps_tx_intr_info) + 4757 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4758 mps_trc_intr_info) + 4759 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4760 mps_stat_sram_intr_info) + 4761 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4762 mps_stat_tx_intr_info) + 4763 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4764 mps_stat_rx_intr_info) + 4765 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4766 mps_cls_intr_info); 4767 4768 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4769 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4770 if (fat) 4771 t4_fatal_err(adapter); 4772 } 4773 4774 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4775 ECC_UE_INT_CAUSE_F) 4776 4777 /* 4778 * EDC/MC interrupt handler. 4779 */ 4780 static void mem_intr_handler(struct adapter *adapter, int idx) 4781 { 4782 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4783 4784 unsigned int addr, cnt_addr, v; 4785 4786 if (idx <= MEM_EDC1) { 4787 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4788 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4789 } else if (idx == MEM_MC) { 4790 if (is_t4(adapter->params.chip)) { 4791 addr = MC_INT_CAUSE_A; 4792 cnt_addr = MC_ECC_STATUS_A; 4793 } else { 4794 addr = MC_P_INT_CAUSE_A; 4795 cnt_addr = MC_P_ECC_STATUS_A; 4796 } 4797 } else { 4798 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4799 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4800 } 4801 4802 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4803 if (v & PERR_INT_CAUSE_F) 4804 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4805 name[idx]); 4806 if (v & ECC_CE_INT_CAUSE_F) { 4807 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4808 4809 t4_edc_err_read(adapter, idx); 4810 4811 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4812 if (printk_ratelimit()) 4813 dev_warn(adapter->pdev_dev, 4814 "%u %s correctable ECC data error%s\n", 4815 cnt, name[idx], cnt > 1 ? "s" : ""); 4816 } 4817 if (v & ECC_UE_INT_CAUSE_F) 4818 dev_alert(adapter->pdev_dev, 4819 "%s uncorrectable ECC data error\n", name[idx]); 4820 4821 t4_write_reg(adapter, addr, v); 4822 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4823 t4_fatal_err(adapter); 4824 } 4825 4826 /* 4827 * MA interrupt handler. 4828 */ 4829 static void ma_intr_handler(struct adapter *adap) 4830 { 4831 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4832 4833 if (status & MEM_PERR_INT_CAUSE_F) { 4834 dev_alert(adap->pdev_dev, 4835 "MA parity error, parity status %#x\n", 4836 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4837 if (is_t5(adap->params.chip)) 4838 dev_alert(adap->pdev_dev, 4839 "MA parity error, parity status %#x\n", 4840 t4_read_reg(adap, 4841 MA_PARITY_ERROR_STATUS2_A)); 4842 } 4843 if (status & MEM_WRAP_INT_CAUSE_F) { 4844 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4845 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4846 "client %u to address %#x\n", 4847 MEM_WRAP_CLIENT_NUM_G(v), 4848 MEM_WRAP_ADDRESS_G(v) << 4); 4849 } 4850 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4851 t4_fatal_err(adap); 4852 } 4853 4854 /* 4855 * SMB interrupt handler. 4856 */ 4857 static void smb_intr_handler(struct adapter *adap) 4858 { 4859 static const struct intr_info smb_intr_info[] = { 4860 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4861 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4862 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4863 { 0 } 4864 }; 4865 4866 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4867 t4_fatal_err(adap); 4868 } 4869 4870 /* 4871 * NC-SI interrupt handler. 4872 */ 4873 static void ncsi_intr_handler(struct adapter *adap) 4874 { 4875 static const struct intr_info ncsi_intr_info[] = { 4876 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4877 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4878 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4879 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4880 { 0 } 4881 }; 4882 4883 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4884 t4_fatal_err(adap); 4885 } 4886 4887 /* 4888 * XGMAC interrupt handler. 4889 */ 4890 static void xgmac_intr_handler(struct adapter *adap, int port) 4891 { 4892 u32 v, int_cause_reg; 4893 4894 if (is_t4(adap->params.chip)) 4895 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4896 else 4897 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4898 4899 v = t4_read_reg(adap, int_cause_reg); 4900 4901 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4902 if (!v) 4903 return; 4904 4905 if (v & TXFIFO_PRTY_ERR_F) 4906 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4907 port); 4908 if (v & RXFIFO_PRTY_ERR_F) 4909 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4910 port); 4911 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4912 t4_fatal_err(adap); 4913 } 4914 4915 /* 4916 * PL interrupt handler. 4917 */ 4918 static void pl_intr_handler(struct adapter *adap) 4919 { 4920 static const struct intr_info pl_intr_info[] = { 4921 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4922 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4923 { 0 } 4924 }; 4925 4926 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4927 t4_fatal_err(adap); 4928 } 4929 4930 #define PF_INTR_MASK (PFSW_F) 4931 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4932 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4933 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4934 4935 /** 4936 * t4_slow_intr_handler - control path interrupt handler 4937 * @adapter: the adapter 4938 * 4939 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4940 * The designation 'slow' is because it involves register reads, while 4941 * data interrupts typically don't involve any MMIOs. 4942 */ 4943 int t4_slow_intr_handler(struct adapter *adapter) 4944 { 4945 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4946 4947 if (!(cause & GLBL_INTR_MASK)) 4948 return 0; 4949 if (cause & CIM_F) 4950 cim_intr_handler(adapter); 4951 if (cause & MPS_F) 4952 mps_intr_handler(adapter); 4953 if (cause & NCSI_F) 4954 ncsi_intr_handler(adapter); 4955 if (cause & PL_F) 4956 pl_intr_handler(adapter); 4957 if (cause & SMB_F) 4958 smb_intr_handler(adapter); 4959 if (cause & XGMAC0_F) 4960 xgmac_intr_handler(adapter, 0); 4961 if (cause & XGMAC1_F) 4962 xgmac_intr_handler(adapter, 1); 4963 if (cause & XGMAC_KR0_F) 4964 xgmac_intr_handler(adapter, 2); 4965 if (cause & XGMAC_KR1_F) 4966 xgmac_intr_handler(adapter, 3); 4967 if (cause & PCIE_F) 4968 pcie_intr_handler(adapter); 4969 if (cause & MC_F) 4970 mem_intr_handler(adapter, MEM_MC); 4971 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4972 mem_intr_handler(adapter, MEM_MC1); 4973 if (cause & EDC0_F) 4974 mem_intr_handler(adapter, MEM_EDC0); 4975 if (cause & EDC1_F) 4976 mem_intr_handler(adapter, MEM_EDC1); 4977 if (cause & LE_F) 4978 le_intr_handler(adapter); 4979 if (cause & TP_F) 4980 tp_intr_handler(adapter); 4981 if (cause & MA_F) 4982 ma_intr_handler(adapter); 4983 if (cause & PM_TX_F) 4984 pmtx_intr_handler(adapter); 4985 if (cause & PM_RX_F) 4986 pmrx_intr_handler(adapter); 4987 if (cause & ULP_RX_F) 4988 ulprx_intr_handler(adapter); 4989 if (cause & CPL_SWITCH_F) 4990 cplsw_intr_handler(adapter); 4991 if (cause & SGE_F) 4992 sge_intr_handler(adapter); 4993 if (cause & ULP_TX_F) 4994 ulptx_intr_handler(adapter); 4995 4996 /* Clear the interrupts just processed for which we are the master. */ 4997 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4998 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4999 return 1; 5000 } 5001 5002 /** 5003 * t4_intr_enable - enable interrupts 5004 * @adapter: the adapter whose interrupts should be enabled 5005 * 5006 * Enable PF-specific interrupts for the calling function and the top-level 5007 * interrupt concentrator for global interrupts. Interrupts are already 5008 * enabled at each module, here we just enable the roots of the interrupt 5009 * hierarchies. 5010 * 5011 * Note: this function should be called only when the driver manages 5012 * non PF-specific interrupts from the various HW modules. Only one PCI 5013 * function at a time should be doing this. 5014 */ 5015 void t4_intr_enable(struct adapter *adapter) 5016 { 5017 u32 val = 0; 5018 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5019 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5020 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5021 5022 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5023 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5024 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5025 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5026 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5027 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5028 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5029 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5030 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5031 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5032 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5033 } 5034 5035 /** 5036 * t4_intr_disable - disable interrupts 5037 * @adapter: the adapter whose interrupts should be disabled 5038 * 5039 * Disable interrupts. We only disable the top-level interrupt 5040 * concentrators. The caller must be a PCI function managing global 5041 * interrupts. 5042 */ 5043 void t4_intr_disable(struct adapter *adapter) 5044 { 5045 u32 whoami, pf; 5046 5047 if (pci_channel_offline(adapter->pdev)) 5048 return; 5049 5050 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5051 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5052 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5053 5054 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5055 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5056 } 5057 5058 unsigned int t4_chip_rss_size(struct adapter *adap) 5059 { 5060 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5061 return RSS_NENTRIES; 5062 else 5063 return T6_RSS_NENTRIES; 5064 } 5065 5066 /** 5067 * t4_config_rss_range - configure a portion of the RSS mapping table 5068 * @adapter: the adapter 5069 * @mbox: mbox to use for the FW command 5070 * @viid: virtual interface whose RSS subtable is to be written 5071 * @start: start entry in the table to write 5072 * @n: how many table entries to write 5073 * @rspq: values for the response queue lookup table 5074 * @nrspq: number of values in @rspq 5075 * 5076 * Programs the selected part of the VI's RSS mapping table with the 5077 * provided values. If @nrspq < @n the supplied values are used repeatedly 5078 * until the full table range is populated. 5079 * 5080 * The caller must ensure the values in @rspq are in the range allowed for 5081 * @viid. 5082 */ 5083 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5084 int start, int n, const u16 *rspq, unsigned int nrspq) 5085 { 5086 int ret; 5087 const u16 *rsp = rspq; 5088 const u16 *rsp_end = rspq + nrspq; 5089 struct fw_rss_ind_tbl_cmd cmd; 5090 5091 memset(&cmd, 0, sizeof(cmd)); 5092 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5093 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5094 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5095 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5096 5097 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5098 while (n > 0) { 5099 int nq = min(n, 32); 5100 __be32 *qp = &cmd.iq0_to_iq2; 5101 5102 cmd.niqid = cpu_to_be16(nq); 5103 cmd.startidx = cpu_to_be16(start); 5104 5105 start += nq; 5106 n -= nq; 5107 5108 while (nq > 0) { 5109 unsigned int v; 5110 5111 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5112 if (++rsp >= rsp_end) 5113 rsp = rspq; 5114 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5115 if (++rsp >= rsp_end) 5116 rsp = rspq; 5117 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5118 if (++rsp >= rsp_end) 5119 rsp = rspq; 5120 5121 *qp++ = cpu_to_be32(v); 5122 nq -= 3; 5123 } 5124 5125 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5126 if (ret) 5127 return ret; 5128 } 5129 return 0; 5130 } 5131 5132 /** 5133 * t4_config_glbl_rss - configure the global RSS mode 5134 * @adapter: the adapter 5135 * @mbox: mbox to use for the FW command 5136 * @mode: global RSS mode 5137 * @flags: mode-specific flags 5138 * 5139 * Sets the global RSS mode. 5140 */ 5141 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5142 unsigned int flags) 5143 { 5144 struct fw_rss_glb_config_cmd c; 5145 5146 memset(&c, 0, sizeof(c)); 5147 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5148 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5149 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5150 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5151 c.u.manual.mode_pkd = 5152 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5153 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5154 c.u.basicvirtual.mode_pkd = 5155 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5156 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5157 } else 5158 return -EINVAL; 5159 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5160 } 5161 5162 /** 5163 * t4_config_vi_rss - configure per VI RSS settings 5164 * @adapter: the adapter 5165 * @mbox: mbox to use for the FW command 5166 * @viid: the VI id 5167 * @flags: RSS flags 5168 * @defq: id of the default RSS queue for the VI. 5169 * 5170 * Configures VI-specific RSS properties. 5171 */ 5172 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5173 unsigned int flags, unsigned int defq) 5174 { 5175 struct fw_rss_vi_config_cmd c; 5176 5177 memset(&c, 0, sizeof(c)); 5178 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5179 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5180 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5181 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5182 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5183 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5184 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5185 } 5186 5187 /* Read an RSS table row */ 5188 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5189 { 5190 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5191 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5192 5, 0, val); 5193 } 5194 5195 /** 5196 * t4_read_rss - read the contents of the RSS mapping table 5197 * @adapter: the adapter 5198 * @map: holds the contents of the RSS mapping table 5199 * 5200 * Reads the contents of the RSS hash->queue mapping table. 5201 */ 5202 int t4_read_rss(struct adapter *adapter, u16 *map) 5203 { 5204 int i, ret, nentries; 5205 u32 val; 5206 5207 nentries = t4_chip_rss_size(adapter); 5208 for (i = 0; i < nentries / 2; ++i) { 5209 ret = rd_rss_row(adapter, i, &val); 5210 if (ret) 5211 return ret; 5212 *map++ = LKPTBLQUEUE0_G(val); 5213 *map++ = LKPTBLQUEUE1_G(val); 5214 } 5215 return 0; 5216 } 5217 5218 static unsigned int t4_use_ldst(struct adapter *adap) 5219 { 5220 return (adap->flags & FW_OK) && !adap->use_bd; 5221 } 5222 5223 /** 5224 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5225 * @adap: the adapter 5226 * @cmd: TP fw ldst address space type 5227 * @vals: where the indirect register values are stored/written 5228 * @nregs: how many indirect registers to read/write 5229 * @start_idx: index of first indirect register to read/write 5230 * @rw: Read (1) or Write (0) 5231 * @sleep_ok: if true we may sleep while awaiting command completion 5232 * 5233 * Access TP indirect registers through LDST 5234 */ 5235 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5236 unsigned int nregs, unsigned int start_index, 5237 unsigned int rw, bool sleep_ok) 5238 { 5239 int ret = 0; 5240 unsigned int i; 5241 struct fw_ldst_cmd c; 5242 5243 for (i = 0; i < nregs; i++) { 5244 memset(&c, 0, sizeof(c)); 5245 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5246 FW_CMD_REQUEST_F | 5247 (rw ? FW_CMD_READ_F : 5248 FW_CMD_WRITE_F) | 5249 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5250 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5251 5252 c.u.addrval.addr = cpu_to_be32(start_index + i); 5253 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5254 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5255 sleep_ok); 5256 if (ret) 5257 return ret; 5258 5259 if (rw) 5260 vals[i] = be32_to_cpu(c.u.addrval.val); 5261 } 5262 return 0; 5263 } 5264 5265 /** 5266 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5267 * @adap: the adapter 5268 * @reg_addr: Address Register 5269 * @reg_data: Data register 5270 * @buff: where the indirect register values are stored/written 5271 * @nregs: how many indirect registers to read/write 5272 * @start_index: index of first indirect register to read/write 5273 * @rw: READ(1) or WRITE(0) 5274 * @sleep_ok: if true we may sleep while awaiting command completion 5275 * 5276 * Read/Write TP indirect registers through LDST if possible. 5277 * Else, use backdoor access 5278 **/ 5279 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5280 u32 *buff, u32 nregs, u32 start_index, int rw, 5281 bool sleep_ok) 5282 { 5283 int rc = -EINVAL; 5284 int cmd; 5285 5286 switch (reg_addr) { 5287 case TP_PIO_ADDR_A: 5288 cmd = FW_LDST_ADDRSPC_TP_PIO; 5289 break; 5290 case TP_TM_PIO_ADDR_A: 5291 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5292 break; 5293 case TP_MIB_INDEX_A: 5294 cmd = FW_LDST_ADDRSPC_TP_MIB; 5295 break; 5296 default: 5297 goto indirect_access; 5298 } 5299 5300 if (t4_use_ldst(adap)) 5301 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5302 sleep_ok); 5303 5304 indirect_access: 5305 5306 if (rc) { 5307 if (rw) 5308 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5309 start_index); 5310 else 5311 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5312 start_index); 5313 } 5314 } 5315 5316 /** 5317 * t4_tp_pio_read - Read TP PIO registers 5318 * @adap: the adapter 5319 * @buff: where the indirect register values are written 5320 * @nregs: how many indirect registers to read 5321 * @start_index: index of first indirect register to read 5322 * @sleep_ok: if true we may sleep while awaiting command completion 5323 * 5324 * Read TP PIO Registers 5325 **/ 5326 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5327 u32 start_index, bool sleep_ok) 5328 { 5329 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5330 start_index, 1, sleep_ok); 5331 } 5332 5333 /** 5334 * t4_tp_pio_write - Write TP PIO registers 5335 * @adap: the adapter 5336 * @buff: where the indirect register values are stored 5337 * @nregs: how many indirect registers to write 5338 * @start_index: index of first indirect register to write 5339 * @sleep_ok: if true we may sleep while awaiting command completion 5340 * 5341 * Write TP PIO Registers 5342 **/ 5343 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5344 u32 start_index, bool sleep_ok) 5345 { 5346 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5347 start_index, 0, sleep_ok); 5348 } 5349 5350 /** 5351 * t4_tp_tm_pio_read - Read TP TM PIO registers 5352 * @adap: the adapter 5353 * @buff: where the indirect register values are written 5354 * @nregs: how many indirect registers to read 5355 * @start_index: index of first indirect register to read 5356 * @sleep_ok: if true we may sleep while awaiting command completion 5357 * 5358 * Read TP TM PIO Registers 5359 **/ 5360 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5361 u32 start_index, bool sleep_ok) 5362 { 5363 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5364 nregs, start_index, 1, sleep_ok); 5365 } 5366 5367 /** 5368 * t4_tp_mib_read - Read TP MIB registers 5369 * @adap: the adapter 5370 * @buff: where the indirect register values are written 5371 * @nregs: how many indirect registers to read 5372 * @start_index: index of first indirect register to read 5373 * @sleep_ok: if true we may sleep while awaiting command completion 5374 * 5375 * Read TP MIB Registers 5376 **/ 5377 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5378 bool sleep_ok) 5379 { 5380 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5381 start_index, 1, sleep_ok); 5382 } 5383 5384 /** 5385 * t4_read_rss_key - read the global RSS key 5386 * @adap: the adapter 5387 * @key: 10-entry array holding the 320-bit RSS key 5388 * @sleep_ok: if true we may sleep while awaiting command completion 5389 * 5390 * Reads the global 320-bit RSS key. 5391 */ 5392 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5393 { 5394 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5395 } 5396 5397 /** 5398 * t4_write_rss_key - program one of the RSS keys 5399 * @adap: the adapter 5400 * @key: 10-entry array holding the 320-bit RSS key 5401 * @idx: which RSS key to write 5402 * @sleep_ok: if true we may sleep while awaiting command completion 5403 * 5404 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5405 * 0..15 the corresponding entry in the RSS key table is written, 5406 * otherwise the global RSS key is written. 5407 */ 5408 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5409 bool sleep_ok) 5410 { 5411 u8 rss_key_addr_cnt = 16; 5412 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5413 5414 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5415 * allows access to key addresses 16-63 by using KeyWrAddrX 5416 * as index[5:4](upper 2) into key table 5417 */ 5418 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5419 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5420 rss_key_addr_cnt = 32; 5421 5422 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5423 5424 if (idx >= 0 && idx < rss_key_addr_cnt) { 5425 if (rss_key_addr_cnt > 16) 5426 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5427 KEYWRADDRX_V(idx >> 4) | 5428 T6_VFWRADDR_V(idx) | KEYWREN_F); 5429 else 5430 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5431 KEYWRADDR_V(idx) | KEYWREN_F); 5432 } 5433 } 5434 5435 /** 5436 * t4_read_rss_pf_config - read PF RSS Configuration Table 5437 * @adapter: the adapter 5438 * @index: the entry in the PF RSS table to read 5439 * @valp: where to store the returned value 5440 * @sleep_ok: if true we may sleep while awaiting command completion 5441 * 5442 * Reads the PF RSS Configuration Table at the specified index and returns 5443 * the value found there. 5444 */ 5445 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5446 u32 *valp, bool sleep_ok) 5447 { 5448 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5449 } 5450 5451 /** 5452 * t4_read_rss_vf_config - read VF RSS Configuration Table 5453 * @adapter: the adapter 5454 * @index: the entry in the VF RSS table to read 5455 * @vfl: where to store the returned VFL 5456 * @vfh: where to store the returned VFH 5457 * @sleep_ok: if true we may sleep while awaiting command completion 5458 * 5459 * Reads the VF RSS Configuration Table at the specified index and returns 5460 * the (VFL, VFH) values found there. 5461 */ 5462 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5463 u32 *vfl, u32 *vfh, bool sleep_ok) 5464 { 5465 u32 vrt, mask, data; 5466 5467 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5468 mask = VFWRADDR_V(VFWRADDR_M); 5469 data = VFWRADDR_V(index); 5470 } else { 5471 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5472 data = T6_VFWRADDR_V(index); 5473 } 5474 5475 /* Request that the index'th VF Table values be read into VFL/VFH. 5476 */ 5477 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5478 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5479 vrt |= data | VFRDEN_F; 5480 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5481 5482 /* Grab the VFL/VFH values ... 5483 */ 5484 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5485 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5486 } 5487 5488 /** 5489 * t4_read_rss_pf_map - read PF RSS Map 5490 * @adapter: the adapter 5491 * @sleep_ok: if true we may sleep while awaiting command completion 5492 * 5493 * Reads the PF RSS Map register and returns its value. 5494 */ 5495 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5496 { 5497 u32 pfmap; 5498 5499 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5500 return pfmap; 5501 } 5502 5503 /** 5504 * t4_read_rss_pf_mask - read PF RSS Mask 5505 * @adapter: the adapter 5506 * @sleep_ok: if true we may sleep while awaiting command completion 5507 * 5508 * Reads the PF RSS Mask register and returns its value. 5509 */ 5510 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5511 { 5512 u32 pfmask; 5513 5514 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5515 return pfmask; 5516 } 5517 5518 /** 5519 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5520 * @adap: the adapter 5521 * @v4: holds the TCP/IP counter values 5522 * @v6: holds the TCP/IPv6 counter values 5523 * @sleep_ok: if true we may sleep while awaiting command completion 5524 * 5525 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5526 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5527 */ 5528 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5529 struct tp_tcp_stats *v6, bool sleep_ok) 5530 { 5531 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5532 5533 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5534 #define STAT(x) val[STAT_IDX(x)] 5535 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5536 5537 if (v4) { 5538 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5539 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5540 v4->tcp_out_rsts = STAT(OUT_RST); 5541 v4->tcp_in_segs = STAT64(IN_SEG); 5542 v4->tcp_out_segs = STAT64(OUT_SEG); 5543 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5544 } 5545 if (v6) { 5546 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5547 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5548 v6->tcp_out_rsts = STAT(OUT_RST); 5549 v6->tcp_in_segs = STAT64(IN_SEG); 5550 v6->tcp_out_segs = STAT64(OUT_SEG); 5551 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5552 } 5553 #undef STAT64 5554 #undef STAT 5555 #undef STAT_IDX 5556 } 5557 5558 /** 5559 * t4_tp_get_err_stats - read TP's error MIB counters 5560 * @adap: the adapter 5561 * @st: holds the counter values 5562 * @sleep_ok: if true we may sleep while awaiting command completion 5563 * 5564 * Returns the values of TP's error counters. 5565 */ 5566 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5567 bool sleep_ok) 5568 { 5569 int nchan = adap->params.arch.nchan; 5570 5571 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5572 sleep_ok); 5573 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5574 sleep_ok); 5575 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5576 sleep_ok); 5577 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5578 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5579 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5580 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5581 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5582 sleep_ok); 5583 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5584 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5585 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5586 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5587 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5588 sleep_ok); 5589 } 5590 5591 /** 5592 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5593 * @adap: the adapter 5594 * @st: holds the counter values 5595 * @sleep_ok: if true we may sleep while awaiting command completion 5596 * 5597 * Returns the values of TP's CPL counters. 5598 */ 5599 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5600 bool sleep_ok) 5601 { 5602 int nchan = adap->params.arch.nchan; 5603 5604 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5605 5606 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5607 } 5608 5609 /** 5610 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5611 * @adap: the adapter 5612 * @st: holds the counter values 5613 * @sleep_ok: if true we may sleep while awaiting command completion 5614 * 5615 * Returns the values of TP's RDMA counters. 5616 */ 5617 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5618 bool sleep_ok) 5619 { 5620 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5621 sleep_ok); 5622 } 5623 5624 /** 5625 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5626 * @adap: the adapter 5627 * @idx: the port index 5628 * @st: holds the counter values 5629 * @sleep_ok: if true we may sleep while awaiting command completion 5630 * 5631 * Returns the values of TP's FCoE counters for the selected port. 5632 */ 5633 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5634 struct tp_fcoe_stats *st, bool sleep_ok) 5635 { 5636 u32 val[2]; 5637 5638 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5639 sleep_ok); 5640 5641 t4_tp_mib_read(adap, &st->frames_drop, 1, 5642 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5643 5644 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5645 sleep_ok); 5646 5647 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5648 } 5649 5650 /** 5651 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5652 * @adap: the adapter 5653 * @st: holds the counter values 5654 * @sleep_ok: if true we may sleep while awaiting command completion 5655 * 5656 * Returns the values of TP's counters for non-TCP directly-placed packets. 5657 */ 5658 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5659 bool sleep_ok) 5660 { 5661 u32 val[4]; 5662 5663 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5664 st->frames = val[0]; 5665 st->drops = val[1]; 5666 st->octets = ((u64)val[2] << 32) | val[3]; 5667 } 5668 5669 /** 5670 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5671 * @adap: the adapter 5672 * @mtus: where to store the MTU values 5673 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5674 * 5675 * Reads the HW path MTU table. 5676 */ 5677 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5678 { 5679 u32 v; 5680 int i; 5681 5682 for (i = 0; i < NMTUS; ++i) { 5683 t4_write_reg(adap, TP_MTU_TABLE_A, 5684 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5685 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5686 mtus[i] = MTUVALUE_G(v); 5687 if (mtu_log) 5688 mtu_log[i] = MTUWIDTH_G(v); 5689 } 5690 } 5691 5692 /** 5693 * t4_read_cong_tbl - reads the congestion control table 5694 * @adap: the adapter 5695 * @incr: where to store the alpha values 5696 * 5697 * Reads the additive increments programmed into the HW congestion 5698 * control table. 5699 */ 5700 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5701 { 5702 unsigned int mtu, w; 5703 5704 for (mtu = 0; mtu < NMTUS; ++mtu) 5705 for (w = 0; w < NCCTRL_WIN; ++w) { 5706 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5707 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5708 incr[mtu][w] = (u16)t4_read_reg(adap, 5709 TP_CCTRL_TABLE_A) & 0x1fff; 5710 } 5711 } 5712 5713 /** 5714 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5715 * @adap: the adapter 5716 * @addr: the indirect TP register address 5717 * @mask: specifies the field within the register to modify 5718 * @val: new value for the field 5719 * 5720 * Sets a field of an indirect TP register to the given value. 5721 */ 5722 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5723 unsigned int mask, unsigned int val) 5724 { 5725 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5726 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5727 t4_write_reg(adap, TP_PIO_DATA_A, val); 5728 } 5729 5730 /** 5731 * init_cong_ctrl - initialize congestion control parameters 5732 * @a: the alpha values for congestion control 5733 * @b: the beta values for congestion control 5734 * 5735 * Initialize the congestion control parameters. 5736 */ 5737 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5738 { 5739 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5740 a[9] = 2; 5741 a[10] = 3; 5742 a[11] = 4; 5743 a[12] = 5; 5744 a[13] = 6; 5745 a[14] = 7; 5746 a[15] = 8; 5747 a[16] = 9; 5748 a[17] = 10; 5749 a[18] = 14; 5750 a[19] = 17; 5751 a[20] = 21; 5752 a[21] = 25; 5753 a[22] = 30; 5754 a[23] = 35; 5755 a[24] = 45; 5756 a[25] = 60; 5757 a[26] = 80; 5758 a[27] = 100; 5759 a[28] = 200; 5760 a[29] = 300; 5761 a[30] = 400; 5762 a[31] = 500; 5763 5764 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5765 b[9] = b[10] = 1; 5766 b[11] = b[12] = 2; 5767 b[13] = b[14] = b[15] = b[16] = 3; 5768 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5769 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5770 b[28] = b[29] = 6; 5771 b[30] = b[31] = 7; 5772 } 5773 5774 /* The minimum additive increment value for the congestion control table */ 5775 #define CC_MIN_INCR 2U 5776 5777 /** 5778 * t4_load_mtus - write the MTU and congestion control HW tables 5779 * @adap: the adapter 5780 * @mtus: the values for the MTU table 5781 * @alpha: the values for the congestion control alpha parameter 5782 * @beta: the values for the congestion control beta parameter 5783 * 5784 * Write the HW MTU table with the supplied MTUs and the high-speed 5785 * congestion control table with the supplied alpha, beta, and MTUs. 5786 * We write the two tables together because the additive increments 5787 * depend on the MTUs. 5788 */ 5789 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5790 const unsigned short *alpha, const unsigned short *beta) 5791 { 5792 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5793 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5794 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5795 28672, 40960, 57344, 81920, 114688, 163840, 229376 5796 }; 5797 5798 unsigned int i, w; 5799 5800 for (i = 0; i < NMTUS; ++i) { 5801 unsigned int mtu = mtus[i]; 5802 unsigned int log2 = fls(mtu); 5803 5804 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5805 log2--; 5806 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5807 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5808 5809 for (w = 0; w < NCCTRL_WIN; ++w) { 5810 unsigned int inc; 5811 5812 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5813 CC_MIN_INCR); 5814 5815 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5816 (w << 16) | (beta[w] << 13) | inc); 5817 } 5818 } 5819 } 5820 5821 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5822 * clocks. The formula is 5823 * 5824 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5825 * 5826 * which is equivalent to 5827 * 5828 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5829 */ 5830 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5831 { 5832 u64 v = bytes256 * adap->params.vpd.cclk; 5833 5834 return v * 62 + v / 2; 5835 } 5836 5837 /** 5838 * t4_get_chan_txrate - get the current per channel Tx rates 5839 * @adap: the adapter 5840 * @nic_rate: rates for NIC traffic 5841 * @ofld_rate: rates for offloaded traffic 5842 * 5843 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5844 * for each channel. 5845 */ 5846 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5847 { 5848 u32 v; 5849 5850 v = t4_read_reg(adap, TP_TX_TRATE_A); 5851 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5852 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5853 if (adap->params.arch.nchan == NCHAN) { 5854 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5855 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5856 } 5857 5858 v = t4_read_reg(adap, TP_TX_ORATE_A); 5859 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5860 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5861 if (adap->params.arch.nchan == NCHAN) { 5862 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5863 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5864 } 5865 } 5866 5867 /** 5868 * t4_set_trace_filter - configure one of the tracing filters 5869 * @adap: the adapter 5870 * @tp: the desired trace filter parameters 5871 * @idx: which filter to configure 5872 * @enable: whether to enable or disable the filter 5873 * 5874 * Configures one of the tracing filters available in HW. If @enable is 5875 * %0 @tp is not examined and may be %NULL. The user is responsible to 5876 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5877 */ 5878 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5879 int idx, int enable) 5880 { 5881 int i, ofst = idx * 4; 5882 u32 data_reg, mask_reg, cfg; 5883 5884 if (!enable) { 5885 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5886 return 0; 5887 } 5888 5889 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5890 if (cfg & TRCMULTIFILTER_F) { 5891 /* If multiple tracers are enabled, then maximum 5892 * capture size is 2.5KB (FIFO size of a single channel) 5893 * minus 2 flits for CPL_TRACE_PKT header. 5894 */ 5895 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5896 return -EINVAL; 5897 } else { 5898 /* If multiple tracers are disabled, to avoid deadlocks 5899 * maximum packet capture size of 9600 bytes is recommended. 5900 * Also in this mode, only trace0 can be enabled and running. 5901 */ 5902 if (tp->snap_len > 9600 || idx) 5903 return -EINVAL; 5904 } 5905 5906 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5907 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5908 tp->min_len > TFMINPKTSIZE_M) 5909 return -EINVAL; 5910 5911 /* stop the tracer we'll be changing */ 5912 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5913 5914 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5915 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5916 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5917 5918 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5919 t4_write_reg(adap, data_reg, tp->data[i]); 5920 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5921 } 5922 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5923 TFCAPTUREMAX_V(tp->snap_len) | 5924 TFMINPKTSIZE_V(tp->min_len)); 5925 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5926 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5927 (is_t4(adap->params.chip) ? 5928 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5929 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5930 T5_TFINVERTMATCH_V(tp->invert))); 5931 5932 return 0; 5933 } 5934 5935 /** 5936 * t4_get_trace_filter - query one of the tracing filters 5937 * @adap: the adapter 5938 * @tp: the current trace filter parameters 5939 * @idx: which trace filter to query 5940 * @enabled: non-zero if the filter is enabled 5941 * 5942 * Returns the current settings of one of the HW tracing filters. 5943 */ 5944 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5945 int *enabled) 5946 { 5947 u32 ctla, ctlb; 5948 int i, ofst = idx * 4; 5949 u32 data_reg, mask_reg; 5950 5951 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5952 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5953 5954 if (is_t4(adap->params.chip)) { 5955 *enabled = !!(ctla & TFEN_F); 5956 tp->port = TFPORT_G(ctla); 5957 tp->invert = !!(ctla & TFINVERTMATCH_F); 5958 } else { 5959 *enabled = !!(ctla & T5_TFEN_F); 5960 tp->port = T5_TFPORT_G(ctla); 5961 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5962 } 5963 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5964 tp->min_len = TFMINPKTSIZE_G(ctlb); 5965 tp->skip_ofst = TFOFFSET_G(ctla); 5966 tp->skip_len = TFLENGTH_G(ctla); 5967 5968 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5969 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5970 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5971 5972 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5973 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5974 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5975 } 5976 } 5977 5978 /** 5979 * t4_pmtx_get_stats - returns the HW stats from PMTX 5980 * @adap: the adapter 5981 * @cnt: where to store the count statistics 5982 * @cycles: where to store the cycle statistics 5983 * 5984 * Returns performance statistics from PMTX. 5985 */ 5986 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5987 { 5988 int i; 5989 u32 data[2]; 5990 5991 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5992 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5993 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5994 if (is_t4(adap->params.chip)) { 5995 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5996 } else { 5997 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5998 PM_TX_DBG_DATA_A, data, 2, 5999 PM_TX_DBG_STAT_MSB_A); 6000 cycles[i] = (((u64)data[0] << 32) | data[1]); 6001 } 6002 } 6003 } 6004 6005 /** 6006 * t4_pmrx_get_stats - returns the HW stats from PMRX 6007 * @adap: the adapter 6008 * @cnt: where to store the count statistics 6009 * @cycles: where to store the cycle statistics 6010 * 6011 * Returns performance statistics from PMRX. 6012 */ 6013 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6014 { 6015 int i; 6016 u32 data[2]; 6017 6018 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6019 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6020 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6021 if (is_t4(adap->params.chip)) { 6022 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6023 } else { 6024 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6025 PM_RX_DBG_DATA_A, data, 2, 6026 PM_RX_DBG_STAT_MSB_A); 6027 cycles[i] = (((u64)data[0] << 32) | data[1]); 6028 } 6029 } 6030 } 6031 6032 /** 6033 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6034 * @adap: the adapter 6035 * @pidx: the port index 6036 * 6037 * Computes and returns a bitmap indicating which MPS buffer groups are 6038 * associated with the given Port. Bit i is set if buffer group i is 6039 * used by the Port. 6040 */ 6041 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6042 int pidx) 6043 { 6044 unsigned int chip_version, nports; 6045 6046 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6047 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6048 6049 switch (chip_version) { 6050 case CHELSIO_T4: 6051 case CHELSIO_T5: 6052 switch (nports) { 6053 case 1: return 0xf; 6054 case 2: return 3 << (2 * pidx); 6055 case 4: return 1 << pidx; 6056 } 6057 break; 6058 6059 case CHELSIO_T6: 6060 switch (nports) { 6061 case 2: return 1 << (2 * pidx); 6062 } 6063 break; 6064 } 6065 6066 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6067 chip_version, nports); 6068 6069 return 0; 6070 } 6071 6072 /** 6073 * t4_get_mps_bg_map - return the buffer groups associated with a port 6074 * @adapter: the adapter 6075 * @pidx: the port index 6076 * 6077 * Returns a bitmap indicating which MPS buffer groups are associated 6078 * with the given Port. Bit i is set if buffer group i is used by the 6079 * Port. 6080 */ 6081 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6082 { 6083 u8 *mps_bg_map; 6084 unsigned int nports; 6085 6086 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6087 if (pidx >= nports) { 6088 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6089 pidx, nports); 6090 return 0; 6091 } 6092 6093 /* If we've already retrieved/computed this, just return the result. 6094 */ 6095 mps_bg_map = adapter->params.mps_bg_map; 6096 if (mps_bg_map[pidx]) 6097 return mps_bg_map[pidx]; 6098 6099 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6100 * If we're talking to such Firmware, let it tell us. If the new 6101 * API isn't supported, revert back to old hardcoded way. The value 6102 * obtained from Firmware is encoded in below format: 6103 * 6104 * val = (( MPSBGMAP[Port 3] << 24 ) | 6105 * ( MPSBGMAP[Port 2] << 16 ) | 6106 * ( MPSBGMAP[Port 1] << 8 ) | 6107 * ( MPSBGMAP[Port 0] << 0 )) 6108 */ 6109 if (adapter->flags & FW_OK) { 6110 u32 param, val; 6111 int ret; 6112 6113 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6114 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6115 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6116 0, 1, ¶m, &val); 6117 if (!ret) { 6118 int p; 6119 6120 /* Store the BG Map for all of the Ports in order to 6121 * avoid more calls to the Firmware in the future. 6122 */ 6123 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6124 mps_bg_map[p] = val & 0xff; 6125 6126 return mps_bg_map[pidx]; 6127 } 6128 } 6129 6130 /* Either we're not talking to the Firmware or we're dealing with 6131 * older Firmware which doesn't support the new API to get the MPS 6132 * Buffer Group Map. Fall back to computing it ourselves. 6133 */ 6134 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6135 return mps_bg_map[pidx]; 6136 } 6137 6138 /** 6139 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6140 * @adapter: the adapter 6141 * @pidx: the port index 6142 * 6143 * Returns a bitmap indicating which TP Ingress Channels are associated 6144 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6145 * the Port. 6146 */ 6147 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6148 { 6149 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6150 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6151 6152 if (pidx >= nports) { 6153 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6154 pidx, nports); 6155 return 0; 6156 } 6157 6158 switch (chip_version) { 6159 case CHELSIO_T4: 6160 case CHELSIO_T5: 6161 /* Note that this happens to be the same values as the MPS 6162 * Buffer Group Map for these Chips. But we replicate the code 6163 * here because they're really separate concepts. 6164 */ 6165 switch (nports) { 6166 case 1: return 0xf; 6167 case 2: return 3 << (2 * pidx); 6168 case 4: return 1 << pidx; 6169 } 6170 break; 6171 6172 case CHELSIO_T6: 6173 switch (nports) { 6174 case 1: 6175 case 2: return 1 << pidx; 6176 } 6177 break; 6178 } 6179 6180 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6181 chip_version, nports); 6182 return 0; 6183 } 6184 6185 /** 6186 * t4_get_port_type_description - return Port Type string description 6187 * @port_type: firmware Port Type enumeration 6188 */ 6189 const char *t4_get_port_type_description(enum fw_port_type port_type) 6190 { 6191 static const char *const port_type_description[] = { 6192 "Fiber_XFI", 6193 "Fiber_XAUI", 6194 "BT_SGMII", 6195 "BT_XFI", 6196 "BT_XAUI", 6197 "KX4", 6198 "CX4", 6199 "KX", 6200 "KR", 6201 "SFP", 6202 "BP_AP", 6203 "BP4_AP", 6204 "QSFP_10G", 6205 "QSA", 6206 "QSFP", 6207 "BP40_BA", 6208 "KR4_100G", 6209 "CR4_QSFP", 6210 "CR_QSFP", 6211 "CR2_QSFP", 6212 "SFP28", 6213 "KR_SFP28", 6214 "KR_XLAUI" 6215 }; 6216 6217 if (port_type < ARRAY_SIZE(port_type_description)) 6218 return port_type_description[port_type]; 6219 return "UNKNOWN"; 6220 } 6221 6222 /** 6223 * t4_get_port_stats_offset - collect port stats relative to a previous 6224 * snapshot 6225 * @adap: The adapter 6226 * @idx: The port 6227 * @stats: Current stats to fill 6228 * @offset: Previous stats snapshot 6229 */ 6230 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6231 struct port_stats *stats, 6232 struct port_stats *offset) 6233 { 6234 u64 *s, *o; 6235 int i; 6236 6237 t4_get_port_stats(adap, idx, stats); 6238 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6239 i < (sizeof(struct port_stats) / sizeof(u64)); 6240 i++, s++, o++) 6241 *s -= *o; 6242 } 6243 6244 /** 6245 * t4_get_port_stats - collect port statistics 6246 * @adap: the adapter 6247 * @idx: the port index 6248 * @p: the stats structure to fill 6249 * 6250 * Collect statistics related to the given port from HW. 6251 */ 6252 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6253 { 6254 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6255 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6256 6257 #define GET_STAT(name) \ 6258 t4_read_reg64(adap, \ 6259 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6260 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6261 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6262 6263 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6264 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6265 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6266 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6267 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6268 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6269 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6270 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6271 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6272 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6273 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6274 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6275 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6276 p->tx_drop = GET_STAT(TX_PORT_DROP); 6277 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6278 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6279 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6280 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6281 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6282 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6283 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6284 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6285 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6286 6287 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6288 if (stat_ctl & COUNTPAUSESTATTX_F) 6289 p->tx_frames_64 -= p->tx_pause; 6290 if (stat_ctl & COUNTPAUSEMCTX_F) 6291 p->tx_mcast_frames -= p->tx_pause; 6292 } 6293 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6294 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6295 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6296 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6297 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6298 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6299 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6300 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6301 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6302 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6303 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6304 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6305 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6306 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6307 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6308 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6309 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6310 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6311 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6312 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6313 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6314 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6315 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6316 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6317 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6318 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6319 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6320 6321 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6322 if (stat_ctl & COUNTPAUSESTATRX_F) 6323 p->rx_frames_64 -= p->rx_pause; 6324 if (stat_ctl & COUNTPAUSEMCRX_F) 6325 p->rx_mcast_frames -= p->rx_pause; 6326 } 6327 6328 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6329 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6330 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6331 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6332 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6333 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6334 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6335 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6336 6337 #undef GET_STAT 6338 #undef GET_STAT_COM 6339 } 6340 6341 /** 6342 * t4_get_lb_stats - collect loopback port statistics 6343 * @adap: the adapter 6344 * @idx: the loopback port index 6345 * @p: the stats structure to fill 6346 * 6347 * Return HW statistics for the given loopback port. 6348 */ 6349 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6350 { 6351 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6352 6353 #define GET_STAT(name) \ 6354 t4_read_reg64(adap, \ 6355 (is_t4(adap->params.chip) ? \ 6356 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6357 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6358 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6359 6360 p->octets = GET_STAT(BYTES); 6361 p->frames = GET_STAT(FRAMES); 6362 p->bcast_frames = GET_STAT(BCAST); 6363 p->mcast_frames = GET_STAT(MCAST); 6364 p->ucast_frames = GET_STAT(UCAST); 6365 p->error_frames = GET_STAT(ERROR); 6366 6367 p->frames_64 = GET_STAT(64B); 6368 p->frames_65_127 = GET_STAT(65B_127B); 6369 p->frames_128_255 = GET_STAT(128B_255B); 6370 p->frames_256_511 = GET_STAT(256B_511B); 6371 p->frames_512_1023 = GET_STAT(512B_1023B); 6372 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6373 p->frames_1519_max = GET_STAT(1519B_MAX); 6374 p->drop = GET_STAT(DROP_FRAMES); 6375 6376 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6377 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6378 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6379 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6380 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6381 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6382 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6383 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6384 6385 #undef GET_STAT 6386 #undef GET_STAT_COM 6387 } 6388 6389 /* t4_mk_filtdelwr - create a delete filter WR 6390 * @ftid: the filter ID 6391 * @wr: the filter work request to populate 6392 * @qid: ingress queue to receive the delete notification 6393 * 6394 * Creates a filter work request to delete the supplied filter. If @qid is 6395 * negative the delete notification is suppressed. 6396 */ 6397 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6398 { 6399 memset(wr, 0, sizeof(*wr)); 6400 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6401 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6402 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6403 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6404 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6405 if (qid >= 0) 6406 wr->rx_chan_rx_rpl_iq = 6407 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6408 } 6409 6410 #define INIT_CMD(var, cmd, rd_wr) do { \ 6411 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6412 FW_CMD_REQUEST_F | \ 6413 FW_CMD_##rd_wr##_F); \ 6414 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6415 } while (0) 6416 6417 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6418 u32 addr, u32 val) 6419 { 6420 u32 ldst_addrspace; 6421 struct fw_ldst_cmd c; 6422 6423 memset(&c, 0, sizeof(c)); 6424 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6425 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6426 FW_CMD_REQUEST_F | 6427 FW_CMD_WRITE_F | 6428 ldst_addrspace); 6429 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6430 c.u.addrval.addr = cpu_to_be32(addr); 6431 c.u.addrval.val = cpu_to_be32(val); 6432 6433 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6434 } 6435 6436 /** 6437 * t4_mdio_rd - read a PHY register through MDIO 6438 * @adap: the adapter 6439 * @mbox: mailbox to use for the FW command 6440 * @phy_addr: the PHY address 6441 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6442 * @reg: the register to read 6443 * @valp: where to store the value 6444 * 6445 * Issues a FW command through the given mailbox to read a PHY register. 6446 */ 6447 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6448 unsigned int mmd, unsigned int reg, u16 *valp) 6449 { 6450 int ret; 6451 u32 ldst_addrspace; 6452 struct fw_ldst_cmd c; 6453 6454 memset(&c, 0, sizeof(c)); 6455 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6456 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6457 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6458 ldst_addrspace); 6459 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6460 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6461 FW_LDST_CMD_MMD_V(mmd)); 6462 c.u.mdio.raddr = cpu_to_be16(reg); 6463 6464 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6465 if (ret == 0) 6466 *valp = be16_to_cpu(c.u.mdio.rval); 6467 return ret; 6468 } 6469 6470 /** 6471 * t4_mdio_wr - write a PHY register through MDIO 6472 * @adap: the adapter 6473 * @mbox: mailbox to use for the FW command 6474 * @phy_addr: the PHY address 6475 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6476 * @reg: the register to write 6477 * @valp: value to write 6478 * 6479 * Issues a FW command through the given mailbox to write a PHY register. 6480 */ 6481 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6482 unsigned int mmd, unsigned int reg, u16 val) 6483 { 6484 u32 ldst_addrspace; 6485 struct fw_ldst_cmd c; 6486 6487 memset(&c, 0, sizeof(c)); 6488 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6489 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6490 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6491 ldst_addrspace); 6492 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6493 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6494 FW_LDST_CMD_MMD_V(mmd)); 6495 c.u.mdio.raddr = cpu_to_be16(reg); 6496 c.u.mdio.rval = cpu_to_be16(val); 6497 6498 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6499 } 6500 6501 /** 6502 * t4_sge_decode_idma_state - decode the idma state 6503 * @adap: the adapter 6504 * @state: the state idma is stuck in 6505 */ 6506 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6507 { 6508 static const char * const t4_decode[] = { 6509 "IDMA_IDLE", 6510 "IDMA_PUSH_MORE_CPL_FIFO", 6511 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6512 "Not used", 6513 "IDMA_PHYSADDR_SEND_PCIEHDR", 6514 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6515 "IDMA_PHYSADDR_SEND_PAYLOAD", 6516 "IDMA_SEND_FIFO_TO_IMSG", 6517 "IDMA_FL_REQ_DATA_FL_PREP", 6518 "IDMA_FL_REQ_DATA_FL", 6519 "IDMA_FL_DROP", 6520 "IDMA_FL_H_REQ_HEADER_FL", 6521 "IDMA_FL_H_SEND_PCIEHDR", 6522 "IDMA_FL_H_PUSH_CPL_FIFO", 6523 "IDMA_FL_H_SEND_CPL", 6524 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6525 "IDMA_FL_H_SEND_IP_HDR", 6526 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6527 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6528 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6529 "IDMA_FL_D_SEND_PCIEHDR", 6530 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6531 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6532 "IDMA_FL_SEND_PCIEHDR", 6533 "IDMA_FL_PUSH_CPL_FIFO", 6534 "IDMA_FL_SEND_CPL", 6535 "IDMA_FL_SEND_PAYLOAD_FIRST", 6536 "IDMA_FL_SEND_PAYLOAD", 6537 "IDMA_FL_REQ_NEXT_DATA_FL", 6538 "IDMA_FL_SEND_NEXT_PCIEHDR", 6539 "IDMA_FL_SEND_PADDING", 6540 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6541 "IDMA_FL_SEND_FIFO_TO_IMSG", 6542 "IDMA_FL_REQ_DATAFL_DONE", 6543 "IDMA_FL_REQ_HEADERFL_DONE", 6544 }; 6545 static const char * const t5_decode[] = { 6546 "IDMA_IDLE", 6547 "IDMA_ALMOST_IDLE", 6548 "IDMA_PUSH_MORE_CPL_FIFO", 6549 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6550 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6551 "IDMA_PHYSADDR_SEND_PCIEHDR", 6552 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6553 "IDMA_PHYSADDR_SEND_PAYLOAD", 6554 "IDMA_SEND_FIFO_TO_IMSG", 6555 "IDMA_FL_REQ_DATA_FL", 6556 "IDMA_FL_DROP", 6557 "IDMA_FL_DROP_SEND_INC", 6558 "IDMA_FL_H_REQ_HEADER_FL", 6559 "IDMA_FL_H_SEND_PCIEHDR", 6560 "IDMA_FL_H_PUSH_CPL_FIFO", 6561 "IDMA_FL_H_SEND_CPL", 6562 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6563 "IDMA_FL_H_SEND_IP_HDR", 6564 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6565 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6566 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6567 "IDMA_FL_D_SEND_PCIEHDR", 6568 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6569 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6570 "IDMA_FL_SEND_PCIEHDR", 6571 "IDMA_FL_PUSH_CPL_FIFO", 6572 "IDMA_FL_SEND_CPL", 6573 "IDMA_FL_SEND_PAYLOAD_FIRST", 6574 "IDMA_FL_SEND_PAYLOAD", 6575 "IDMA_FL_REQ_NEXT_DATA_FL", 6576 "IDMA_FL_SEND_NEXT_PCIEHDR", 6577 "IDMA_FL_SEND_PADDING", 6578 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6579 }; 6580 static const char * const t6_decode[] = { 6581 "IDMA_IDLE", 6582 "IDMA_PUSH_MORE_CPL_FIFO", 6583 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6584 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6585 "IDMA_PHYSADDR_SEND_PCIEHDR", 6586 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6587 "IDMA_PHYSADDR_SEND_PAYLOAD", 6588 "IDMA_FL_REQ_DATA_FL", 6589 "IDMA_FL_DROP", 6590 "IDMA_FL_DROP_SEND_INC", 6591 "IDMA_FL_H_REQ_HEADER_FL", 6592 "IDMA_FL_H_SEND_PCIEHDR", 6593 "IDMA_FL_H_PUSH_CPL_FIFO", 6594 "IDMA_FL_H_SEND_CPL", 6595 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6596 "IDMA_FL_H_SEND_IP_HDR", 6597 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6598 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6599 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6600 "IDMA_FL_D_SEND_PCIEHDR", 6601 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6602 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6603 "IDMA_FL_SEND_PCIEHDR", 6604 "IDMA_FL_PUSH_CPL_FIFO", 6605 "IDMA_FL_SEND_CPL", 6606 "IDMA_FL_SEND_PAYLOAD_FIRST", 6607 "IDMA_FL_SEND_PAYLOAD", 6608 "IDMA_FL_REQ_NEXT_DATA_FL", 6609 "IDMA_FL_SEND_NEXT_PCIEHDR", 6610 "IDMA_FL_SEND_PADDING", 6611 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6612 }; 6613 static const u32 sge_regs[] = { 6614 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6615 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6616 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6617 }; 6618 const char **sge_idma_decode; 6619 int sge_idma_decode_nstates; 6620 int i; 6621 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6622 6623 /* Select the right set of decode strings to dump depending on the 6624 * adapter chip type. 6625 */ 6626 switch (chip_version) { 6627 case CHELSIO_T4: 6628 sge_idma_decode = (const char **)t4_decode; 6629 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6630 break; 6631 6632 case CHELSIO_T5: 6633 sge_idma_decode = (const char **)t5_decode; 6634 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6635 break; 6636 6637 case CHELSIO_T6: 6638 sge_idma_decode = (const char **)t6_decode; 6639 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6640 break; 6641 6642 default: 6643 dev_err(adapter->pdev_dev, 6644 "Unsupported chip version %d\n", chip_version); 6645 return; 6646 } 6647 6648 if (is_t4(adapter->params.chip)) { 6649 sge_idma_decode = (const char **)t4_decode; 6650 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6651 } else { 6652 sge_idma_decode = (const char **)t5_decode; 6653 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6654 } 6655 6656 if (state < sge_idma_decode_nstates) 6657 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6658 else 6659 CH_WARN(adapter, "idma state %d unknown\n", state); 6660 6661 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6662 CH_WARN(adapter, "SGE register %#x value %#x\n", 6663 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6664 } 6665 6666 /** 6667 * t4_sge_ctxt_flush - flush the SGE context cache 6668 * @adap: the adapter 6669 * @mbox: mailbox to use for the FW command 6670 * @ctx_type: Egress or Ingress 6671 * 6672 * Issues a FW command through the given mailbox to flush the 6673 * SGE context cache. 6674 */ 6675 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6676 { 6677 int ret; 6678 u32 ldst_addrspace; 6679 struct fw_ldst_cmd c; 6680 6681 memset(&c, 0, sizeof(c)); 6682 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6683 FW_LDST_ADDRSPC_SGE_EGRC : 6684 FW_LDST_ADDRSPC_SGE_INGC); 6685 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6686 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6687 ldst_addrspace); 6688 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6689 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6690 6691 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6692 return ret; 6693 } 6694 6695 /** 6696 * t4_fw_hello - establish communication with FW 6697 * @adap: the adapter 6698 * @mbox: mailbox to use for the FW command 6699 * @evt_mbox: mailbox to receive async FW events 6700 * @master: specifies the caller's willingness to be the device master 6701 * @state: returns the current device state (if non-NULL) 6702 * 6703 * Issues a command to establish communication with FW. Returns either 6704 * an error (negative integer) or the mailbox of the Master PF. 6705 */ 6706 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6707 enum dev_master master, enum dev_state *state) 6708 { 6709 int ret; 6710 struct fw_hello_cmd c; 6711 u32 v; 6712 unsigned int master_mbox; 6713 int retries = FW_CMD_HELLO_RETRIES; 6714 6715 retry: 6716 memset(&c, 0, sizeof(c)); 6717 INIT_CMD(c, HELLO, WRITE); 6718 c.err_to_clearinit = cpu_to_be32( 6719 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6720 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6721 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6722 mbox : FW_HELLO_CMD_MBMASTER_M) | 6723 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6724 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6725 FW_HELLO_CMD_CLEARINIT_F); 6726 6727 /* 6728 * Issue the HELLO command to the firmware. If it's not successful 6729 * but indicates that we got a "busy" or "timeout" condition, retry 6730 * the HELLO until we exhaust our retry limit. If we do exceed our 6731 * retry limit, check to see if the firmware left us any error 6732 * information and report that if so. 6733 */ 6734 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6735 if (ret < 0) { 6736 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6737 goto retry; 6738 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6739 t4_report_fw_error(adap); 6740 return ret; 6741 } 6742 6743 v = be32_to_cpu(c.err_to_clearinit); 6744 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6745 if (state) { 6746 if (v & FW_HELLO_CMD_ERR_F) 6747 *state = DEV_STATE_ERR; 6748 else if (v & FW_HELLO_CMD_INIT_F) 6749 *state = DEV_STATE_INIT; 6750 else 6751 *state = DEV_STATE_UNINIT; 6752 } 6753 6754 /* 6755 * If we're not the Master PF then we need to wait around for the 6756 * Master PF Driver to finish setting up the adapter. 6757 * 6758 * Note that we also do this wait if we're a non-Master-capable PF and 6759 * there is no current Master PF; a Master PF may show up momentarily 6760 * and we wouldn't want to fail pointlessly. (This can happen when an 6761 * OS loads lots of different drivers rapidly at the same time). In 6762 * this case, the Master PF returned by the firmware will be 6763 * PCIE_FW_MASTER_M so the test below will work ... 6764 */ 6765 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6766 master_mbox != mbox) { 6767 int waiting = FW_CMD_HELLO_TIMEOUT; 6768 6769 /* 6770 * Wait for the firmware to either indicate an error or 6771 * initialized state. If we see either of these we bail out 6772 * and report the issue to the caller. If we exhaust the 6773 * "hello timeout" and we haven't exhausted our retries, try 6774 * again. Otherwise bail with a timeout error. 6775 */ 6776 for (;;) { 6777 u32 pcie_fw; 6778 6779 msleep(50); 6780 waiting -= 50; 6781 6782 /* 6783 * If neither Error nor Initialialized are indicated 6784 * by the firmware keep waiting till we exaust our 6785 * timeout ... and then retry if we haven't exhausted 6786 * our retries ... 6787 */ 6788 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6789 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6790 if (waiting <= 0) { 6791 if (retries-- > 0) 6792 goto retry; 6793 6794 return -ETIMEDOUT; 6795 } 6796 continue; 6797 } 6798 6799 /* 6800 * We either have an Error or Initialized condition 6801 * report errors preferentially. 6802 */ 6803 if (state) { 6804 if (pcie_fw & PCIE_FW_ERR_F) 6805 *state = DEV_STATE_ERR; 6806 else if (pcie_fw & PCIE_FW_INIT_F) 6807 *state = DEV_STATE_INIT; 6808 } 6809 6810 /* 6811 * If we arrived before a Master PF was selected and 6812 * there's not a valid Master PF, grab its identity 6813 * for our caller. 6814 */ 6815 if (master_mbox == PCIE_FW_MASTER_M && 6816 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6817 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6818 break; 6819 } 6820 } 6821 6822 return master_mbox; 6823 } 6824 6825 /** 6826 * t4_fw_bye - end communication with FW 6827 * @adap: the adapter 6828 * @mbox: mailbox to use for the FW command 6829 * 6830 * Issues a command to terminate communication with FW. 6831 */ 6832 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6833 { 6834 struct fw_bye_cmd c; 6835 6836 memset(&c, 0, sizeof(c)); 6837 INIT_CMD(c, BYE, WRITE); 6838 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6839 } 6840 6841 /** 6842 * t4_init_cmd - ask FW to initialize the device 6843 * @adap: the adapter 6844 * @mbox: mailbox to use for the FW command 6845 * 6846 * Issues a command to FW to partially initialize the device. This 6847 * performs initialization that generally doesn't depend on user input. 6848 */ 6849 int t4_early_init(struct adapter *adap, unsigned int mbox) 6850 { 6851 struct fw_initialize_cmd c; 6852 6853 memset(&c, 0, sizeof(c)); 6854 INIT_CMD(c, INITIALIZE, WRITE); 6855 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6856 } 6857 6858 /** 6859 * t4_fw_reset - issue a reset to FW 6860 * @adap: the adapter 6861 * @mbox: mailbox to use for the FW command 6862 * @reset: specifies the type of reset to perform 6863 * 6864 * Issues a reset command of the specified type to FW. 6865 */ 6866 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6867 { 6868 struct fw_reset_cmd c; 6869 6870 memset(&c, 0, sizeof(c)); 6871 INIT_CMD(c, RESET, WRITE); 6872 c.val = cpu_to_be32(reset); 6873 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6874 } 6875 6876 /** 6877 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6878 * @adap: the adapter 6879 * @mbox: mailbox to use for the FW RESET command (if desired) 6880 * @force: force uP into RESET even if FW RESET command fails 6881 * 6882 * Issues a RESET command to firmware (if desired) with a HALT indication 6883 * and then puts the microprocessor into RESET state. The RESET command 6884 * will only be issued if a legitimate mailbox is provided (mbox <= 6885 * PCIE_FW_MASTER_M). 6886 * 6887 * This is generally used in order for the host to safely manipulate the 6888 * adapter without fear of conflicting with whatever the firmware might 6889 * be doing. The only way out of this state is to RESTART the firmware 6890 * ... 6891 */ 6892 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6893 { 6894 int ret = 0; 6895 6896 /* 6897 * If a legitimate mailbox is provided, issue a RESET command 6898 * with a HALT indication. 6899 */ 6900 if (mbox <= PCIE_FW_MASTER_M) { 6901 struct fw_reset_cmd c; 6902 6903 memset(&c, 0, sizeof(c)); 6904 INIT_CMD(c, RESET, WRITE); 6905 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6906 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6907 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6908 } 6909 6910 /* 6911 * Normally we won't complete the operation if the firmware RESET 6912 * command fails but if our caller insists we'll go ahead and put the 6913 * uP into RESET. This can be useful if the firmware is hung or even 6914 * missing ... We'll have to take the risk of putting the uP into 6915 * RESET without the cooperation of firmware in that case. 6916 * 6917 * We also force the firmware's HALT flag to be on in case we bypassed 6918 * the firmware RESET command above or we're dealing with old firmware 6919 * which doesn't have the HALT capability. This will serve as a flag 6920 * for the incoming firmware to know that it's coming out of a HALT 6921 * rather than a RESET ... if it's new enough to understand that ... 6922 */ 6923 if (ret == 0 || force) { 6924 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6925 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6926 PCIE_FW_HALT_F); 6927 } 6928 6929 /* 6930 * And we always return the result of the firmware RESET command 6931 * even when we force the uP into RESET ... 6932 */ 6933 return ret; 6934 } 6935 6936 /** 6937 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6938 * @adap: the adapter 6939 * @reset: if we want to do a RESET to restart things 6940 * 6941 * Restart firmware previously halted by t4_fw_halt(). On successful 6942 * return the previous PF Master remains as the new PF Master and there 6943 * is no need to issue a new HELLO command, etc. 6944 * 6945 * We do this in two ways: 6946 * 6947 * 1. If we're dealing with newer firmware we'll simply want to take 6948 * the chip's microprocessor out of RESET. This will cause the 6949 * firmware to start up from its start vector. And then we'll loop 6950 * until the firmware indicates it's started again (PCIE_FW.HALT 6951 * reset to 0) or we timeout. 6952 * 6953 * 2. If we're dealing with older firmware then we'll need to RESET 6954 * the chip since older firmware won't recognize the PCIE_FW.HALT 6955 * flag and automatically RESET itself on startup. 6956 */ 6957 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6958 { 6959 if (reset) { 6960 /* 6961 * Since we're directing the RESET instead of the firmware 6962 * doing it automatically, we need to clear the PCIE_FW.HALT 6963 * bit. 6964 */ 6965 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6966 6967 /* 6968 * If we've been given a valid mailbox, first try to get the 6969 * firmware to do the RESET. If that works, great and we can 6970 * return success. Otherwise, if we haven't been given a 6971 * valid mailbox or the RESET command failed, fall back to 6972 * hitting the chip with a hammer. 6973 */ 6974 if (mbox <= PCIE_FW_MASTER_M) { 6975 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6976 msleep(100); 6977 if (t4_fw_reset(adap, mbox, 6978 PIORST_F | PIORSTMODE_F) == 0) 6979 return 0; 6980 } 6981 6982 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6983 msleep(2000); 6984 } else { 6985 int ms; 6986 6987 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6988 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6989 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6990 return 0; 6991 msleep(100); 6992 ms += 100; 6993 } 6994 return -ETIMEDOUT; 6995 } 6996 return 0; 6997 } 6998 6999 /** 7000 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7001 * @adap: the adapter 7002 * @mbox: mailbox to use for the FW RESET command (if desired) 7003 * @fw_data: the firmware image to write 7004 * @size: image size 7005 * @force: force upgrade even if firmware doesn't cooperate 7006 * 7007 * Perform all of the steps necessary for upgrading an adapter's 7008 * firmware image. Normally this requires the cooperation of the 7009 * existing firmware in order to halt all existing activities 7010 * but if an invalid mailbox token is passed in we skip that step 7011 * (though we'll still put the adapter microprocessor into RESET in 7012 * that case). 7013 * 7014 * On successful return the new firmware will have been loaded and 7015 * the adapter will have been fully RESET losing all previous setup 7016 * state. On unsuccessful return the adapter may be completely hosed ... 7017 * positive errno indicates that the adapter is ~probably~ intact, a 7018 * negative errno indicates that things are looking bad ... 7019 */ 7020 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7021 const u8 *fw_data, unsigned int size, int force) 7022 { 7023 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7024 int reset, ret; 7025 7026 if (!t4_fw_matches_chip(adap, fw_hdr)) 7027 return -EINVAL; 7028 7029 /* Disable FW_OK flag so that mbox commands with FW_OK flag set 7030 * wont be sent when we are flashing FW. 7031 */ 7032 adap->flags &= ~FW_OK; 7033 7034 ret = t4_fw_halt(adap, mbox, force); 7035 if (ret < 0 && !force) 7036 goto out; 7037 7038 ret = t4_load_fw(adap, fw_data, size); 7039 if (ret < 0) 7040 goto out; 7041 7042 /* 7043 * If there was a Firmware Configuration File stored in FLASH, 7044 * there's a good chance that it won't be compatible with the new 7045 * Firmware. In order to prevent difficult to diagnose adapter 7046 * initialization issues, we clear out the Firmware Configuration File 7047 * portion of the FLASH . The user will need to re-FLASH a new 7048 * Firmware Configuration File which is compatible with the new 7049 * Firmware if that's desired. 7050 */ 7051 (void)t4_load_cfg(adap, NULL, 0); 7052 7053 /* 7054 * Older versions of the firmware don't understand the new 7055 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7056 * restart. So for newly loaded older firmware we'll have to do the 7057 * RESET for it so it starts up on a clean slate. We can tell if 7058 * the newly loaded firmware will handle this right by checking 7059 * its header flags to see if it advertises the capability. 7060 */ 7061 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7062 ret = t4_fw_restart(adap, mbox, reset); 7063 7064 /* Grab potentially new Firmware Device Log parameters so we can see 7065 * how healthy the new Firmware is. It's okay to contact the new 7066 * Firmware for these parameters even though, as far as it's 7067 * concerned, we've never said "HELLO" to it ... 7068 */ 7069 (void)t4_init_devlog_params(adap); 7070 out: 7071 adap->flags |= FW_OK; 7072 return ret; 7073 } 7074 7075 /** 7076 * t4_fl_pkt_align - return the fl packet alignment 7077 * @adap: the adapter 7078 * 7079 * T4 has a single field to specify the packing and padding boundary. 7080 * T5 onwards has separate fields for this and hence the alignment for 7081 * next packet offset is maximum of these two. 7082 * 7083 */ 7084 int t4_fl_pkt_align(struct adapter *adap) 7085 { 7086 u32 sge_control, sge_control2; 7087 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7088 7089 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7090 7091 /* T4 uses a single control field to specify both the PCIe Padding and 7092 * Packing Boundary. T5 introduced the ability to specify these 7093 * separately. The actual Ingress Packet Data alignment boundary 7094 * within Packed Buffer Mode is the maximum of these two 7095 * specifications. (Note that it makes no real practical sense to 7096 * have the Pading Boudary be larger than the Packing Boundary but you 7097 * could set the chip up that way and, in fact, legacy T4 code would 7098 * end doing this because it would initialize the Padding Boundary and 7099 * leave the Packing Boundary initialized to 0 (16 bytes).) 7100 * Padding Boundary values in T6 starts from 8B, 7101 * where as it is 32B for T4 and T5. 7102 */ 7103 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7104 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7105 else 7106 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7107 7108 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7109 7110 fl_align = ingpadboundary; 7111 if (!is_t4(adap->params.chip)) { 7112 /* T5 has a weird interpretation of one of the PCIe Packing 7113 * Boundary values. No idea why ... 7114 */ 7115 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7116 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7117 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7118 ingpackboundary = 16; 7119 else 7120 ingpackboundary = 1 << (ingpackboundary + 7121 INGPACKBOUNDARY_SHIFT_X); 7122 7123 fl_align = max(ingpadboundary, ingpackboundary); 7124 } 7125 return fl_align; 7126 } 7127 7128 /** 7129 * t4_fixup_host_params - fix up host-dependent parameters 7130 * @adap: the adapter 7131 * @page_size: the host's Base Page Size 7132 * @cache_line_size: the host's Cache Line Size 7133 * 7134 * Various registers in T4 contain values which are dependent on the 7135 * host's Base Page and Cache Line Sizes. This function will fix all of 7136 * those registers with the appropriate values as passed in ... 7137 */ 7138 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7139 unsigned int cache_line_size) 7140 { 7141 unsigned int page_shift = fls(page_size) - 1; 7142 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7143 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7144 unsigned int fl_align_log = fls(fl_align) - 1; 7145 7146 if (is_t4(adap->params.chip)) { 7147 t4_set_reg_field(adap, SGE_CONTROL_A, 7148 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7149 EGRSTATUSPAGESIZE_F, 7150 INGPADBOUNDARY_V(fl_align_log - 7151 INGPADBOUNDARY_SHIFT_X) | 7152 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7153 } else { 7154 unsigned int pack_align; 7155 unsigned int ingpad, ingpack; 7156 unsigned int pcie_cap; 7157 7158 /* T5 introduced the separation of the Free List Padding and 7159 * Packing Boundaries. Thus, we can select a smaller Padding 7160 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7161 * Bandwidth, and use a Packing Boundary which is large enough 7162 * to avoid false sharing between CPUs, etc. 7163 * 7164 * For the PCI Link, the smaller the Padding Boundary the 7165 * better. For the Memory Controller, a smaller Padding 7166 * Boundary is better until we cross under the Memory Line 7167 * Size (the minimum unit of transfer to/from Memory). If we 7168 * have a Padding Boundary which is smaller than the Memory 7169 * Line Size, that'll involve a Read-Modify-Write cycle on the 7170 * Memory Controller which is never good. 7171 */ 7172 7173 /* We want the Packing Boundary to be based on the Cache Line 7174 * Size in order to help avoid False Sharing performance 7175 * issues between CPUs, etc. We also want the Packing 7176 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7177 * get best performance when the Packing Boundary is a 7178 * multiple of the Maximum Payload Size. 7179 */ 7180 pack_align = fl_align; 7181 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7182 if (pcie_cap) { 7183 unsigned int mps, mps_log; 7184 u16 devctl; 7185 7186 /* The PCIe Device Control Maximum Payload Size field 7187 * [bits 7:5] encodes sizes as powers of 2 starting at 7188 * 128 bytes. 7189 */ 7190 pci_read_config_word(adap->pdev, 7191 pcie_cap + PCI_EXP_DEVCTL, 7192 &devctl); 7193 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7194 mps = 1 << mps_log; 7195 if (mps > pack_align) 7196 pack_align = mps; 7197 } 7198 7199 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7200 * value for the Packing Boundary. This corresponds to 16 7201 * bytes instead of the expected 32 bytes. So if we want 32 7202 * bytes, the best we can really do is 64 bytes ... 7203 */ 7204 if (pack_align <= 16) { 7205 ingpack = INGPACKBOUNDARY_16B_X; 7206 fl_align = 16; 7207 } else if (pack_align == 32) { 7208 ingpack = INGPACKBOUNDARY_64B_X; 7209 fl_align = 64; 7210 } else { 7211 unsigned int pack_align_log = fls(pack_align) - 1; 7212 7213 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7214 fl_align = pack_align; 7215 } 7216 7217 /* Use the smallest Ingress Padding which isn't smaller than 7218 * the Memory Controller Read/Write Size. We'll take that as 7219 * being 8 bytes since we don't know of any system with a 7220 * wider Memory Controller Bus Width. 7221 */ 7222 if (is_t5(adap->params.chip)) 7223 ingpad = INGPADBOUNDARY_32B_X; 7224 else 7225 ingpad = T6_INGPADBOUNDARY_8B_X; 7226 7227 t4_set_reg_field(adap, SGE_CONTROL_A, 7228 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7229 EGRSTATUSPAGESIZE_F, 7230 INGPADBOUNDARY_V(ingpad) | 7231 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7232 t4_set_reg_field(adap, SGE_CONTROL2_A, 7233 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7234 INGPACKBOUNDARY_V(ingpack)); 7235 } 7236 /* 7237 * Adjust various SGE Free List Host Buffer Sizes. 7238 * 7239 * This is something of a crock since we're using fixed indices into 7240 * the array which are also known by the sge.c code and the T4 7241 * Firmware Configuration File. We need to come up with a much better 7242 * approach to managing this array. For now, the first four entries 7243 * are: 7244 * 7245 * 0: Host Page Size 7246 * 1: 64KB 7247 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7248 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7249 * 7250 * For the single-MTU buffers in unpacked mode we need to include 7251 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7252 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7253 * Padding boundary. All of these are accommodated in the Factory 7254 * Default Firmware Configuration File but we need to adjust it for 7255 * this host's cache line size. 7256 */ 7257 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7258 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7259 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7260 & ~(fl_align-1)); 7261 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7262 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7263 & ~(fl_align-1)); 7264 7265 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7266 7267 return 0; 7268 } 7269 7270 /** 7271 * t4_fw_initialize - ask FW to initialize the device 7272 * @adap: the adapter 7273 * @mbox: mailbox to use for the FW command 7274 * 7275 * Issues a command to FW to partially initialize the device. This 7276 * performs initialization that generally doesn't depend on user input. 7277 */ 7278 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7279 { 7280 struct fw_initialize_cmd c; 7281 7282 memset(&c, 0, sizeof(c)); 7283 INIT_CMD(c, INITIALIZE, WRITE); 7284 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7285 } 7286 7287 /** 7288 * t4_query_params_rw - query FW or device parameters 7289 * @adap: the adapter 7290 * @mbox: mailbox to use for the FW command 7291 * @pf: the PF 7292 * @vf: the VF 7293 * @nparams: the number of parameters 7294 * @params: the parameter names 7295 * @val: the parameter values 7296 * @rw: Write and read flag 7297 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7298 * 7299 * Reads the value of FW or device parameters. Up to 7 parameters can be 7300 * queried at once. 7301 */ 7302 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7303 unsigned int vf, unsigned int nparams, const u32 *params, 7304 u32 *val, int rw, bool sleep_ok) 7305 { 7306 int i, ret; 7307 struct fw_params_cmd c; 7308 __be32 *p = &c.param[0].mnem; 7309 7310 if (nparams > 7) 7311 return -EINVAL; 7312 7313 memset(&c, 0, sizeof(c)); 7314 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7315 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7316 FW_PARAMS_CMD_PFN_V(pf) | 7317 FW_PARAMS_CMD_VFN_V(vf)); 7318 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7319 7320 for (i = 0; i < nparams; i++) { 7321 *p++ = cpu_to_be32(*params++); 7322 if (rw) 7323 *p = cpu_to_be32(*(val + i)); 7324 p++; 7325 } 7326 7327 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7328 if (ret == 0) 7329 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7330 *val++ = be32_to_cpu(*p); 7331 return ret; 7332 } 7333 7334 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7335 unsigned int vf, unsigned int nparams, const u32 *params, 7336 u32 *val) 7337 { 7338 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7339 true); 7340 } 7341 7342 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7343 unsigned int vf, unsigned int nparams, const u32 *params, 7344 u32 *val) 7345 { 7346 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7347 false); 7348 } 7349 7350 /** 7351 * t4_set_params_timeout - sets FW or device parameters 7352 * @adap: the adapter 7353 * @mbox: mailbox to use for the FW command 7354 * @pf: the PF 7355 * @vf: the VF 7356 * @nparams: the number of parameters 7357 * @params: the parameter names 7358 * @val: the parameter values 7359 * @timeout: the timeout time 7360 * 7361 * Sets the value of FW or device parameters. Up to 7 parameters can be 7362 * specified at once. 7363 */ 7364 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7365 unsigned int pf, unsigned int vf, 7366 unsigned int nparams, const u32 *params, 7367 const u32 *val, int timeout) 7368 { 7369 struct fw_params_cmd c; 7370 __be32 *p = &c.param[0].mnem; 7371 7372 if (nparams > 7) 7373 return -EINVAL; 7374 7375 memset(&c, 0, sizeof(c)); 7376 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7377 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7378 FW_PARAMS_CMD_PFN_V(pf) | 7379 FW_PARAMS_CMD_VFN_V(vf)); 7380 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7381 7382 while (nparams--) { 7383 *p++ = cpu_to_be32(*params++); 7384 *p++ = cpu_to_be32(*val++); 7385 } 7386 7387 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7388 } 7389 7390 /** 7391 * t4_set_params - sets FW or device parameters 7392 * @adap: the adapter 7393 * @mbox: mailbox to use for the FW command 7394 * @pf: the PF 7395 * @vf: the VF 7396 * @nparams: the number of parameters 7397 * @params: the parameter names 7398 * @val: the parameter values 7399 * 7400 * Sets the value of FW or device parameters. Up to 7 parameters can be 7401 * specified at once. 7402 */ 7403 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7404 unsigned int vf, unsigned int nparams, const u32 *params, 7405 const u32 *val) 7406 { 7407 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7408 FW_CMD_MAX_TIMEOUT); 7409 } 7410 7411 /** 7412 * t4_cfg_pfvf - configure PF/VF resource limits 7413 * @adap: the adapter 7414 * @mbox: mailbox to use for the FW command 7415 * @pf: the PF being configured 7416 * @vf: the VF being configured 7417 * @txq: the max number of egress queues 7418 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7419 * @rxqi: the max number of interrupt-capable ingress queues 7420 * @rxq: the max number of interruptless ingress queues 7421 * @tc: the PCI traffic class 7422 * @vi: the max number of virtual interfaces 7423 * @cmask: the channel access rights mask for the PF/VF 7424 * @pmask: the port access rights mask for the PF/VF 7425 * @nexact: the maximum number of exact MPS filters 7426 * @rcaps: read capabilities 7427 * @wxcaps: write/execute capabilities 7428 * 7429 * Configures resource limits and capabilities for a physical or virtual 7430 * function. 7431 */ 7432 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7433 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7434 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7435 unsigned int vi, unsigned int cmask, unsigned int pmask, 7436 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7437 { 7438 struct fw_pfvf_cmd c; 7439 7440 memset(&c, 0, sizeof(c)); 7441 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7442 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7443 FW_PFVF_CMD_VFN_V(vf)); 7444 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7445 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7446 FW_PFVF_CMD_NIQ_V(rxq)); 7447 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7448 FW_PFVF_CMD_PMASK_V(pmask) | 7449 FW_PFVF_CMD_NEQ_V(txq)); 7450 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7451 FW_PFVF_CMD_NVI_V(vi) | 7452 FW_PFVF_CMD_NEXACTF_V(nexact)); 7453 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7454 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7455 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7456 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7457 } 7458 7459 /** 7460 * t4_alloc_vi - allocate a virtual interface 7461 * @adap: the adapter 7462 * @mbox: mailbox to use for the FW command 7463 * @port: physical port associated with the VI 7464 * @pf: the PF owning the VI 7465 * @vf: the VF owning the VI 7466 * @nmac: number of MAC addresses needed (1 to 5) 7467 * @mac: the MAC addresses of the VI 7468 * @rss_size: size of RSS table slice associated with this VI 7469 * 7470 * Allocates a virtual interface for the given physical port. If @mac is 7471 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7472 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7473 * stored consecutively so the space needed is @nmac * 6 bytes. 7474 * Returns a negative error number or the non-negative VI id. 7475 */ 7476 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7477 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7478 unsigned int *rss_size, u8 *vivld, u8 *vin) 7479 { 7480 int ret; 7481 struct fw_vi_cmd c; 7482 7483 memset(&c, 0, sizeof(c)); 7484 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7485 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7486 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7487 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7488 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7489 c.nmac = nmac - 1; 7490 7491 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7492 if (ret) 7493 return ret; 7494 7495 if (mac) { 7496 memcpy(mac, c.mac, sizeof(c.mac)); 7497 switch (nmac) { 7498 case 5: 7499 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7500 /* Fall through */ 7501 case 4: 7502 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7503 /* Fall through */ 7504 case 3: 7505 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7506 /* Fall through */ 7507 case 2: 7508 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7509 } 7510 } 7511 if (rss_size) 7512 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7513 7514 if (vivld) 7515 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7516 7517 if (vin) 7518 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7519 7520 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7521 } 7522 7523 /** 7524 * t4_free_vi - free a virtual interface 7525 * @adap: the adapter 7526 * @mbox: mailbox to use for the FW command 7527 * @pf: the PF owning the VI 7528 * @vf: the VF owning the VI 7529 * @viid: virtual interface identifiler 7530 * 7531 * Free a previously allocated virtual interface. 7532 */ 7533 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7534 unsigned int vf, unsigned int viid) 7535 { 7536 struct fw_vi_cmd c; 7537 7538 memset(&c, 0, sizeof(c)); 7539 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7540 FW_CMD_REQUEST_F | 7541 FW_CMD_EXEC_F | 7542 FW_VI_CMD_PFN_V(pf) | 7543 FW_VI_CMD_VFN_V(vf)); 7544 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7545 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7546 7547 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7548 } 7549 7550 /** 7551 * t4_set_rxmode - set Rx properties of a virtual interface 7552 * @adap: the adapter 7553 * @mbox: mailbox to use for the FW command 7554 * @viid: the VI id 7555 * @mtu: the new MTU or -1 7556 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7557 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7558 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7559 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7560 * @sleep_ok: if true we may sleep while awaiting command completion 7561 * 7562 * Sets Rx properties of a virtual interface. 7563 */ 7564 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7565 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7566 bool sleep_ok) 7567 { 7568 struct fw_vi_rxmode_cmd c; 7569 7570 /* convert to FW values */ 7571 if (mtu < 0) 7572 mtu = FW_RXMODE_MTU_NO_CHG; 7573 if (promisc < 0) 7574 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7575 if (all_multi < 0) 7576 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7577 if (bcast < 0) 7578 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7579 if (vlanex < 0) 7580 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7581 7582 memset(&c, 0, sizeof(c)); 7583 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7584 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7585 FW_VI_RXMODE_CMD_VIID_V(viid)); 7586 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7587 c.mtu_to_vlanexen = 7588 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7589 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7590 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7591 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7592 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7593 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7594 } 7595 7596 /** 7597 * t4_free_encap_mac_filt - frees MPS entry at given index 7598 * @adap: the adapter 7599 * @viid: the VI id 7600 * @idx: index of MPS entry to be freed 7601 * @sleep_ok: call is allowed to sleep 7602 * 7603 * Frees the MPS entry at supplied index 7604 * 7605 * Returns a negative error number or zero on success 7606 */ 7607 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7608 int idx, bool sleep_ok) 7609 { 7610 struct fw_vi_mac_exact *p; 7611 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7612 struct fw_vi_mac_cmd c; 7613 int ret = 0; 7614 u32 exact; 7615 7616 memset(&c, 0, sizeof(c)); 7617 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7618 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7619 FW_CMD_EXEC_V(0) | 7620 FW_VI_MAC_CMD_VIID_V(viid)); 7621 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7622 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7623 exact | 7624 FW_CMD_LEN16_V(1)); 7625 p = c.u.exact; 7626 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7627 FW_VI_MAC_CMD_IDX_V(idx)); 7628 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7629 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7630 return ret; 7631 } 7632 7633 /** 7634 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7635 * @adap: the adapter 7636 * @viid: the VI id 7637 * @addr: the MAC address 7638 * @mask: the mask 7639 * @idx: index of the entry in mps tcam 7640 * @lookup_type: MAC address for inner (1) or outer (0) header 7641 * @port_id: the port index 7642 * @sleep_ok: call is allowed to sleep 7643 * 7644 * Removes the mac entry at the specified index using raw mac interface. 7645 * 7646 * Returns a negative error number on failure. 7647 */ 7648 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7649 const u8 *addr, const u8 *mask, unsigned int idx, 7650 u8 lookup_type, u8 port_id, bool sleep_ok) 7651 { 7652 struct fw_vi_mac_cmd c; 7653 struct fw_vi_mac_raw *p = &c.u.raw; 7654 u32 val; 7655 7656 memset(&c, 0, sizeof(c)); 7657 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7658 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7659 FW_CMD_EXEC_V(0) | 7660 FW_VI_MAC_CMD_VIID_V(viid)); 7661 val = FW_CMD_LEN16_V(1) | 7662 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7663 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7664 FW_CMD_LEN16_V(val)); 7665 7666 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7667 FW_VI_MAC_ID_BASED_FREE); 7668 7669 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7670 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7671 DATAPORTNUM_V(port_id)); 7672 /* Lookup mask and port mask */ 7673 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7674 DATAPORTNUM_V(DATAPORTNUM_M)); 7675 7676 /* Copy the address and the mask */ 7677 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7678 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7679 7680 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7681 } 7682 7683 /** 7684 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7685 * @adap: the adapter 7686 * @viid: the VI id 7687 * @mac: the MAC address 7688 * @mask: the mask 7689 * @vni: the VNI id for the tunnel protocol 7690 * @vni_mask: mask for the VNI id 7691 * @dip_hit: to enable DIP match for the MPS entry 7692 * @lookup_type: MAC address for inner (1) or outer (0) header 7693 * @sleep_ok: call is allowed to sleep 7694 * 7695 * Allocates an MPS entry with specified MAC address and VNI value. 7696 * 7697 * Returns a negative error number or the allocated index for this mac. 7698 */ 7699 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7700 const u8 *addr, const u8 *mask, unsigned int vni, 7701 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7702 bool sleep_ok) 7703 { 7704 struct fw_vi_mac_cmd c; 7705 struct fw_vi_mac_vni *p = c.u.exact_vni; 7706 int ret = 0; 7707 u32 val; 7708 7709 memset(&c, 0, sizeof(c)); 7710 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7711 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7712 FW_VI_MAC_CMD_VIID_V(viid)); 7713 val = FW_CMD_LEN16_V(1) | 7714 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7715 c.freemacs_to_len16 = cpu_to_be32(val); 7716 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7717 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7718 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7719 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7720 7721 p->lookup_type_to_vni = 7722 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7723 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7724 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7725 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7726 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7727 if (ret == 0) 7728 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7729 return ret; 7730 } 7731 7732 /** 7733 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7734 * @adap: the adapter 7735 * @viid: the VI id 7736 * @mac: the MAC address 7737 * @mask: the mask 7738 * @idx: index at which to add this entry 7739 * @port_id: the port index 7740 * @lookup_type: MAC address for inner (1) or outer (0) header 7741 * @sleep_ok: call is allowed to sleep 7742 * 7743 * Adds the mac entry at the specified index using raw mac interface. 7744 * 7745 * Returns a negative error number or the allocated index for this mac. 7746 */ 7747 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7748 const u8 *addr, const u8 *mask, unsigned int idx, 7749 u8 lookup_type, u8 port_id, bool sleep_ok) 7750 { 7751 int ret = 0; 7752 struct fw_vi_mac_cmd c; 7753 struct fw_vi_mac_raw *p = &c.u.raw; 7754 u32 val; 7755 7756 memset(&c, 0, sizeof(c)); 7757 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7758 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7759 FW_VI_MAC_CMD_VIID_V(viid)); 7760 val = FW_CMD_LEN16_V(1) | 7761 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7762 c.freemacs_to_len16 = cpu_to_be32(val); 7763 7764 /* Specify that this is an inner mac address */ 7765 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7766 7767 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7768 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7769 DATAPORTNUM_V(port_id)); 7770 /* Lookup mask and port mask */ 7771 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7772 DATAPORTNUM_V(DATAPORTNUM_M)); 7773 7774 /* Copy the address and the mask */ 7775 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7776 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7777 7778 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7779 if (ret == 0) { 7780 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7781 if (ret != idx) 7782 ret = -ENOMEM; 7783 } 7784 7785 return ret; 7786 } 7787 7788 /** 7789 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7790 * @adap: the adapter 7791 * @mbox: mailbox to use for the FW command 7792 * @viid: the VI id 7793 * @free: if true any existing filters for this VI id are first removed 7794 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7795 * @addr: the MAC address(es) 7796 * @idx: where to store the index of each allocated filter 7797 * @hash: pointer to hash address filter bitmap 7798 * @sleep_ok: call is allowed to sleep 7799 * 7800 * Allocates an exact-match filter for each of the supplied addresses and 7801 * sets it to the corresponding address. If @idx is not %NULL it should 7802 * have at least @naddr entries, each of which will be set to the index of 7803 * the filter allocated for the corresponding MAC address. If a filter 7804 * could not be allocated for an address its index is set to 0xffff. 7805 * If @hash is not %NULL addresses that fail to allocate an exact filter 7806 * are hashed and update the hash filter bitmap pointed at by @hash. 7807 * 7808 * Returns a negative error number or the number of filters allocated. 7809 */ 7810 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7811 unsigned int viid, bool free, unsigned int naddr, 7812 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7813 { 7814 int offset, ret = 0; 7815 struct fw_vi_mac_cmd c; 7816 unsigned int nfilters = 0; 7817 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7818 unsigned int rem = naddr; 7819 7820 if (naddr > max_naddr) 7821 return -EINVAL; 7822 7823 for (offset = 0; offset < naddr ; /**/) { 7824 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7825 rem : ARRAY_SIZE(c.u.exact)); 7826 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7827 u.exact[fw_naddr]), 16); 7828 struct fw_vi_mac_exact *p; 7829 int i; 7830 7831 memset(&c, 0, sizeof(c)); 7832 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7833 FW_CMD_REQUEST_F | 7834 FW_CMD_WRITE_F | 7835 FW_CMD_EXEC_V(free) | 7836 FW_VI_MAC_CMD_VIID_V(viid)); 7837 c.freemacs_to_len16 = 7838 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7839 FW_CMD_LEN16_V(len16)); 7840 7841 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7842 p->valid_to_idx = 7843 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7844 FW_VI_MAC_CMD_IDX_V( 7845 FW_VI_MAC_ADD_MAC)); 7846 memcpy(p->macaddr, addr[offset + i], 7847 sizeof(p->macaddr)); 7848 } 7849 7850 /* It's okay if we run out of space in our MAC address arena. 7851 * Some of the addresses we submit may get stored so we need 7852 * to run through the reply to see what the results were ... 7853 */ 7854 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7855 if (ret && ret != -FW_ENOMEM) 7856 break; 7857 7858 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7859 u16 index = FW_VI_MAC_CMD_IDX_G( 7860 be16_to_cpu(p->valid_to_idx)); 7861 7862 if (idx) 7863 idx[offset + i] = (index >= max_naddr ? 7864 0xffff : index); 7865 if (index < max_naddr) 7866 nfilters++; 7867 else if (hash) 7868 *hash |= (1ULL << 7869 hash_mac_addr(addr[offset + i])); 7870 } 7871 7872 free = false; 7873 offset += fw_naddr; 7874 rem -= fw_naddr; 7875 } 7876 7877 if (ret == 0 || ret == -FW_ENOMEM) 7878 ret = nfilters; 7879 return ret; 7880 } 7881 7882 /** 7883 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7884 * @adap: the adapter 7885 * @mbox: mailbox to use for the FW command 7886 * @viid: the VI id 7887 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7888 * @addr: the MAC address(es) 7889 * @sleep_ok: call is allowed to sleep 7890 * 7891 * Frees the exact-match filter for each of the supplied addresses 7892 * 7893 * Returns a negative error number or the number of filters freed. 7894 */ 7895 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7896 unsigned int viid, unsigned int naddr, 7897 const u8 **addr, bool sleep_ok) 7898 { 7899 int offset, ret = 0; 7900 struct fw_vi_mac_cmd c; 7901 unsigned int nfilters = 0; 7902 unsigned int max_naddr = is_t4(adap->params.chip) ? 7903 NUM_MPS_CLS_SRAM_L_INSTANCES : 7904 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7905 unsigned int rem = naddr; 7906 7907 if (naddr > max_naddr) 7908 return -EINVAL; 7909 7910 for (offset = 0; offset < (int)naddr ; /**/) { 7911 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7912 ? rem 7913 : ARRAY_SIZE(c.u.exact)); 7914 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7915 u.exact[fw_naddr]), 16); 7916 struct fw_vi_mac_exact *p; 7917 int i; 7918 7919 memset(&c, 0, sizeof(c)); 7920 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7921 FW_CMD_REQUEST_F | 7922 FW_CMD_WRITE_F | 7923 FW_CMD_EXEC_V(0) | 7924 FW_VI_MAC_CMD_VIID_V(viid)); 7925 c.freemacs_to_len16 = 7926 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7927 FW_CMD_LEN16_V(len16)); 7928 7929 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7930 p->valid_to_idx = cpu_to_be16( 7931 FW_VI_MAC_CMD_VALID_F | 7932 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 7933 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7934 } 7935 7936 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7937 if (ret) 7938 break; 7939 7940 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7941 u16 index = FW_VI_MAC_CMD_IDX_G( 7942 be16_to_cpu(p->valid_to_idx)); 7943 7944 if (index < max_naddr) 7945 nfilters++; 7946 } 7947 7948 offset += fw_naddr; 7949 rem -= fw_naddr; 7950 } 7951 7952 if (ret == 0) 7953 ret = nfilters; 7954 return ret; 7955 } 7956 7957 /** 7958 * t4_change_mac - modifies the exact-match filter for a MAC address 7959 * @adap: the adapter 7960 * @mbox: mailbox to use for the FW command 7961 * @viid: the VI id 7962 * @idx: index of existing filter for old value of MAC address, or -1 7963 * @addr: the new MAC address value 7964 * @persist: whether a new MAC allocation should be persistent 7965 * @add_smt: if true also add the address to the HW SMT 7966 * 7967 * Modifies an exact-match filter and sets it to the new MAC address. 7968 * Note that in general it is not possible to modify the value of a given 7969 * filter so the generic way to modify an address filter is to free the one 7970 * being used by the old address value and allocate a new filter for the 7971 * new address value. @idx can be -1 if the address is a new addition. 7972 * 7973 * Returns a negative error number or the index of the filter with the new 7974 * MAC value. 7975 */ 7976 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7977 int idx, const u8 *addr, bool persist, u8 *smt_idx) 7978 { 7979 int ret, mode; 7980 struct fw_vi_mac_cmd c; 7981 struct fw_vi_mac_exact *p = c.u.exact; 7982 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 7983 7984 if (idx < 0) /* new allocation */ 7985 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 7986 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 7987 7988 memset(&c, 0, sizeof(c)); 7989 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7990 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7991 FW_VI_MAC_CMD_VIID_V(viid)); 7992 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 7993 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7994 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 7995 FW_VI_MAC_CMD_IDX_V(idx)); 7996 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7997 7998 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7999 if (ret == 0) { 8000 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8001 if (ret >= max_mac_addr) 8002 ret = -ENOMEM; 8003 if (smt_idx) { 8004 if (adap->params.viid_smt_extn_support) { 8005 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8006 (be32_to_cpu(c.op_to_viid)); 8007 } else { 8008 /* In T4/T5, SMT contains 256 SMAC entries 8009 * organized in 128 rows of 2 entries each. 8010 * In T6, SMT contains 256 SMAC entries in 8011 * 256 rows. 8012 */ 8013 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8014 CHELSIO_T5) 8015 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8016 else 8017 *smt_idx = (viid & FW_VIID_VIN_M); 8018 } 8019 } 8020 } 8021 return ret; 8022 } 8023 8024 /** 8025 * t4_set_addr_hash - program the MAC inexact-match hash filter 8026 * @adap: the adapter 8027 * @mbox: mailbox to use for the FW command 8028 * @viid: the VI id 8029 * @ucast: whether the hash filter should also match unicast addresses 8030 * @vec: the value to be written to the hash filter 8031 * @sleep_ok: call is allowed to sleep 8032 * 8033 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8034 */ 8035 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8036 bool ucast, u64 vec, bool sleep_ok) 8037 { 8038 struct fw_vi_mac_cmd c; 8039 8040 memset(&c, 0, sizeof(c)); 8041 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8042 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8043 FW_VI_ENABLE_CMD_VIID_V(viid)); 8044 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8045 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8046 FW_CMD_LEN16_V(1)); 8047 c.u.hash.hashvec = cpu_to_be64(vec); 8048 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8049 } 8050 8051 /** 8052 * t4_enable_vi_params - enable/disable a virtual interface 8053 * @adap: the adapter 8054 * @mbox: mailbox to use for the FW command 8055 * @viid: the VI id 8056 * @rx_en: 1=enable Rx, 0=disable Rx 8057 * @tx_en: 1=enable Tx, 0=disable Tx 8058 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8059 * 8060 * Enables/disables a virtual interface. Note that setting DCB Enable 8061 * only makes sense when enabling a Virtual Interface ... 8062 */ 8063 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8064 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8065 { 8066 struct fw_vi_enable_cmd c; 8067 8068 memset(&c, 0, sizeof(c)); 8069 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8070 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8071 FW_VI_ENABLE_CMD_VIID_V(viid)); 8072 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8073 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8074 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8075 FW_LEN16(c)); 8076 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8077 } 8078 8079 /** 8080 * t4_enable_vi - enable/disable a virtual interface 8081 * @adap: the adapter 8082 * @mbox: mailbox to use for the FW command 8083 * @viid: the VI id 8084 * @rx_en: 1=enable Rx, 0=disable Rx 8085 * @tx_en: 1=enable Tx, 0=disable Tx 8086 * 8087 * Enables/disables a virtual interface. 8088 */ 8089 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8090 bool rx_en, bool tx_en) 8091 { 8092 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8093 } 8094 8095 /** 8096 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8097 * @adap: the adapter 8098 * @mbox: mailbox to use for the FW command 8099 * @pi: the Port Information structure 8100 * @rx_en: 1=enable Rx, 0=disable Rx 8101 * @tx_en: 1=enable Tx, 0=disable Tx 8102 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8103 * 8104 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8105 * Enable only makes sense when enabling a Virtual Interface ... 8106 * If the Virtual Interface enable/disable operation is successful, 8107 * we notify the OS-specific code of a potential Link Status change 8108 * via the OS Contract API t4_os_link_changed(). 8109 */ 8110 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8111 struct port_info *pi, 8112 bool rx_en, bool tx_en, bool dcb_en) 8113 { 8114 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8115 rx_en, tx_en, dcb_en); 8116 if (ret) 8117 return ret; 8118 t4_os_link_changed(adap, pi->port_id, 8119 rx_en && tx_en && pi->link_cfg.link_ok); 8120 return 0; 8121 } 8122 8123 /** 8124 * t4_identify_port - identify a VI's port by blinking its LED 8125 * @adap: the adapter 8126 * @mbox: mailbox to use for the FW command 8127 * @viid: the VI id 8128 * @nblinks: how many times to blink LED at 2.5 Hz 8129 * 8130 * Identifies a VI's port by blinking its LED. 8131 */ 8132 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8133 unsigned int nblinks) 8134 { 8135 struct fw_vi_enable_cmd c; 8136 8137 memset(&c, 0, sizeof(c)); 8138 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8139 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8140 FW_VI_ENABLE_CMD_VIID_V(viid)); 8141 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8142 c.blinkdur = cpu_to_be16(nblinks); 8143 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8144 } 8145 8146 /** 8147 * t4_iq_stop - stop an ingress queue and its FLs 8148 * @adap: the adapter 8149 * @mbox: mailbox to use for the FW command 8150 * @pf: the PF owning the queues 8151 * @vf: the VF owning the queues 8152 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8153 * @iqid: ingress queue id 8154 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8155 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8156 * 8157 * Stops an ingress queue and its associated FLs, if any. This causes 8158 * any current or future data/messages destined for these queues to be 8159 * tossed. 8160 */ 8161 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8162 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8163 unsigned int fl0id, unsigned int fl1id) 8164 { 8165 struct fw_iq_cmd c; 8166 8167 memset(&c, 0, sizeof(c)); 8168 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8169 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8170 FW_IQ_CMD_VFN_V(vf)); 8171 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8172 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8173 c.iqid = cpu_to_be16(iqid); 8174 c.fl0id = cpu_to_be16(fl0id); 8175 c.fl1id = cpu_to_be16(fl1id); 8176 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8177 } 8178 8179 /** 8180 * t4_iq_free - free an ingress queue and its FLs 8181 * @adap: the adapter 8182 * @mbox: mailbox to use for the FW command 8183 * @pf: the PF owning the queues 8184 * @vf: the VF owning the queues 8185 * @iqtype: the ingress queue type 8186 * @iqid: ingress queue id 8187 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8188 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8189 * 8190 * Frees an ingress queue and its associated FLs, if any. 8191 */ 8192 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8193 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8194 unsigned int fl0id, unsigned int fl1id) 8195 { 8196 struct fw_iq_cmd c; 8197 8198 memset(&c, 0, sizeof(c)); 8199 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8200 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8201 FW_IQ_CMD_VFN_V(vf)); 8202 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8203 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8204 c.iqid = cpu_to_be16(iqid); 8205 c.fl0id = cpu_to_be16(fl0id); 8206 c.fl1id = cpu_to_be16(fl1id); 8207 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8208 } 8209 8210 /** 8211 * t4_eth_eq_free - free an Ethernet egress queue 8212 * @adap: the adapter 8213 * @mbox: mailbox to use for the FW command 8214 * @pf: the PF owning the queue 8215 * @vf: the VF owning the queue 8216 * @eqid: egress queue id 8217 * 8218 * Frees an Ethernet egress queue. 8219 */ 8220 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8221 unsigned int vf, unsigned int eqid) 8222 { 8223 struct fw_eq_eth_cmd c; 8224 8225 memset(&c, 0, sizeof(c)); 8226 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8227 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8228 FW_EQ_ETH_CMD_PFN_V(pf) | 8229 FW_EQ_ETH_CMD_VFN_V(vf)); 8230 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8231 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8232 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8233 } 8234 8235 /** 8236 * t4_ctrl_eq_free - free a control egress queue 8237 * @adap: the adapter 8238 * @mbox: mailbox to use for the FW command 8239 * @pf: the PF owning the queue 8240 * @vf: the VF owning the queue 8241 * @eqid: egress queue id 8242 * 8243 * Frees a control egress queue. 8244 */ 8245 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8246 unsigned int vf, unsigned int eqid) 8247 { 8248 struct fw_eq_ctrl_cmd c; 8249 8250 memset(&c, 0, sizeof(c)); 8251 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8252 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8253 FW_EQ_CTRL_CMD_PFN_V(pf) | 8254 FW_EQ_CTRL_CMD_VFN_V(vf)); 8255 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8256 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8257 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8258 } 8259 8260 /** 8261 * t4_ofld_eq_free - free an offload egress queue 8262 * @adap: the adapter 8263 * @mbox: mailbox to use for the FW command 8264 * @pf: the PF owning the queue 8265 * @vf: the VF owning the queue 8266 * @eqid: egress queue id 8267 * 8268 * Frees a control egress queue. 8269 */ 8270 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8271 unsigned int vf, unsigned int eqid) 8272 { 8273 struct fw_eq_ofld_cmd c; 8274 8275 memset(&c, 0, sizeof(c)); 8276 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8277 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8278 FW_EQ_OFLD_CMD_PFN_V(pf) | 8279 FW_EQ_OFLD_CMD_VFN_V(vf)); 8280 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8281 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8282 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8283 } 8284 8285 /** 8286 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8287 * @adap: the adapter 8288 * @link_down_rc: Link Down Reason Code 8289 * 8290 * Returns a string representation of the Link Down Reason Code. 8291 */ 8292 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8293 { 8294 static const char * const reason[] = { 8295 "Link Down", 8296 "Remote Fault", 8297 "Auto-negotiation Failure", 8298 "Reserved", 8299 "Insufficient Airflow", 8300 "Unable To Determine Reason", 8301 "No RX Signal Detected", 8302 "Reserved", 8303 }; 8304 8305 if (link_down_rc >= ARRAY_SIZE(reason)) 8306 return "Bad Reason Code"; 8307 8308 return reason[link_down_rc]; 8309 } 8310 8311 /** 8312 * Return the highest speed set in the port capabilities, in Mb/s. 8313 */ 8314 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8315 { 8316 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8317 do { \ 8318 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8319 return __speed; \ 8320 } while (0) 8321 8322 TEST_SPEED_RETURN(400G, 400000); 8323 TEST_SPEED_RETURN(200G, 200000); 8324 TEST_SPEED_RETURN(100G, 100000); 8325 TEST_SPEED_RETURN(50G, 50000); 8326 TEST_SPEED_RETURN(40G, 40000); 8327 TEST_SPEED_RETURN(25G, 25000); 8328 TEST_SPEED_RETURN(10G, 10000); 8329 TEST_SPEED_RETURN(1G, 1000); 8330 TEST_SPEED_RETURN(100M, 100); 8331 8332 #undef TEST_SPEED_RETURN 8333 8334 return 0; 8335 } 8336 8337 /** 8338 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8339 * @acaps: advertised Port Capabilities 8340 * 8341 * Get the highest speed for the port from the advertised Port 8342 * Capabilities. It will be either the highest speed from the list of 8343 * speeds or whatever user has set using ethtool. 8344 */ 8345 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8346 { 8347 #define TEST_SPEED_RETURN(__caps_speed) \ 8348 do { \ 8349 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8350 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8351 } while (0) 8352 8353 TEST_SPEED_RETURN(400G); 8354 TEST_SPEED_RETURN(200G); 8355 TEST_SPEED_RETURN(100G); 8356 TEST_SPEED_RETURN(50G); 8357 TEST_SPEED_RETURN(40G); 8358 TEST_SPEED_RETURN(25G); 8359 TEST_SPEED_RETURN(10G); 8360 TEST_SPEED_RETURN(1G); 8361 TEST_SPEED_RETURN(100M); 8362 8363 #undef TEST_SPEED_RETURN 8364 8365 return 0; 8366 } 8367 8368 /** 8369 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8370 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8371 * 8372 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8373 * 32-bit Port Capabilities value. 8374 */ 8375 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8376 { 8377 fw_port_cap32_t linkattr = 0; 8378 8379 /* Unfortunately the format of the Link Status in the old 8380 * 16-bit Port Information message isn't the same as the 8381 * 16-bit Port Capabilities bitfield used everywhere else ... 8382 */ 8383 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8384 linkattr |= FW_PORT_CAP32_FC_RX; 8385 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8386 linkattr |= FW_PORT_CAP32_FC_TX; 8387 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8388 linkattr |= FW_PORT_CAP32_SPEED_100M; 8389 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8390 linkattr |= FW_PORT_CAP32_SPEED_1G; 8391 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8392 linkattr |= FW_PORT_CAP32_SPEED_10G; 8393 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8394 linkattr |= FW_PORT_CAP32_SPEED_25G; 8395 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8396 linkattr |= FW_PORT_CAP32_SPEED_40G; 8397 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8398 linkattr |= FW_PORT_CAP32_SPEED_100G; 8399 8400 return linkattr; 8401 } 8402 8403 /** 8404 * t4_handle_get_port_info - process a FW reply message 8405 * @pi: the port info 8406 * @rpl: start of the FW message 8407 * 8408 * Processes a GET_PORT_INFO FW reply message. 8409 */ 8410 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8411 { 8412 const struct fw_port_cmd *cmd = (const void *)rpl; 8413 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8414 struct adapter *adapter = pi->adapter; 8415 struct link_config *lc = &pi->link_cfg; 8416 int link_ok, linkdnrc; 8417 enum fw_port_type port_type; 8418 enum fw_port_module_type mod_type; 8419 unsigned int speed, fc, fec; 8420 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8421 8422 /* Extract the various fields from the Port Information message. 8423 */ 8424 switch (action) { 8425 case FW_PORT_ACTION_GET_PORT_INFO: { 8426 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8427 8428 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8429 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8430 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8431 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8432 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8433 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8434 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8435 linkattr = lstatus_to_fwcap(lstatus); 8436 break; 8437 } 8438 8439 case FW_PORT_ACTION_GET_PORT_INFO32: { 8440 u32 lstatus32; 8441 8442 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8443 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8444 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8445 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8446 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8447 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8448 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8449 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8450 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8451 break; 8452 } 8453 8454 default: 8455 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8456 be32_to_cpu(cmd->action_to_len16)); 8457 return; 8458 } 8459 8460 fec = fwcap_to_cc_fec(acaps); 8461 fc = fwcap_to_cc_pause(linkattr); 8462 speed = fwcap_to_speed(linkattr); 8463 8464 lc->new_module = false; 8465 lc->redo_l1cfg = false; 8466 8467 if (mod_type != pi->mod_type) { 8468 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8469 * various fundamental Port Capabilities which used to be 8470 * immutable can now change radically. We can now have 8471 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8472 * all change based on what Transceiver Module is inserted. 8473 * So we need to record the Physical "Port" Capabilities on 8474 * every Transceiver Module change. 8475 */ 8476 lc->pcaps = pcaps; 8477 8478 /* When a new Transceiver Module is inserted, the Firmware 8479 * will examine its i2c EPROM to determine its type and 8480 * general operating parameters including things like Forward 8481 * Error Control, etc. Various IEEE 802.3 standards dictate 8482 * how to interpret these i2c values to determine default 8483 * "sutomatic" settings. We record these for future use when 8484 * the user explicitly requests these standards-based values. 8485 */ 8486 lc->def_acaps = acaps; 8487 8488 /* Some versions of the early T6 Firmware "cheated" when 8489 * handling different Transceiver Modules by changing the 8490 * underlaying Port Type reported to the Host Drivers. As 8491 * such we need to capture whatever Port Type the Firmware 8492 * sends us and record it in case it's different from what we 8493 * were told earlier. Unfortunately, since Firmware is 8494 * forever, we'll need to keep this code here forever, but in 8495 * later T6 Firmware it should just be an assignment of the 8496 * same value already recorded. 8497 */ 8498 pi->port_type = port_type; 8499 8500 pi->mod_type = mod_type; 8501 8502 lc->new_module = t4_is_inserted_mod_type(mod_type); 8503 t4_os_portmod_changed(adapter, pi->port_id); 8504 } 8505 8506 if (link_ok != lc->link_ok || speed != lc->speed || 8507 fc != lc->fc || fec != lc->fec) { /* something changed */ 8508 if (!link_ok && lc->link_ok) { 8509 lc->link_down_rc = linkdnrc; 8510 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n", 8511 pi->tx_chan, t4_link_down_rc_str(linkdnrc)); 8512 } 8513 lc->link_ok = link_ok; 8514 lc->speed = speed; 8515 lc->fc = fc; 8516 lc->fec = fec; 8517 8518 lc->lpacaps = lpacaps; 8519 lc->acaps = acaps & ADVERT_MASK; 8520 8521 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8522 lc->autoneg = AUTONEG_DISABLE; 8523 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8524 lc->autoneg = AUTONEG_ENABLE; 8525 } else { 8526 /* When Autoneg is disabled, user needs to set 8527 * single speed. 8528 * Similar to cxgb4_ethtool.c: set_link_ksettings 8529 */ 8530 lc->acaps = 0; 8531 lc->speed_caps = fwcap_to_fwspeed(acaps); 8532 lc->autoneg = AUTONEG_DISABLE; 8533 } 8534 8535 t4_os_link_changed(adapter, pi->port_id, link_ok); 8536 } 8537 8538 if (lc->new_module && lc->redo_l1cfg) { 8539 struct link_config old_lc; 8540 int ret; 8541 8542 /* Save the current L1 Configuration and restore it if an 8543 * error occurs. We probably should fix the l1_cfg*() 8544 * routines not to change the link_config when an error 8545 * occurs ... 8546 */ 8547 old_lc = *lc; 8548 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8549 if (ret) { 8550 *lc = old_lc; 8551 dev_warn(adapter->pdev_dev, 8552 "Attempt to update new Transceiver Module settings failed\n"); 8553 } 8554 } 8555 lc->new_module = false; 8556 lc->redo_l1cfg = false; 8557 } 8558 8559 /** 8560 * t4_update_port_info - retrieve and update port information if changed 8561 * @pi: the port_info 8562 * 8563 * We issue a Get Port Information Command to the Firmware and, if 8564 * successful, we check to see if anything is different from what we 8565 * last recorded and update things accordingly. 8566 */ 8567 int t4_update_port_info(struct port_info *pi) 8568 { 8569 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8570 struct fw_port_cmd port_cmd; 8571 int ret; 8572 8573 memset(&port_cmd, 0, sizeof(port_cmd)); 8574 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8575 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8576 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8577 port_cmd.action_to_len16 = cpu_to_be32( 8578 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8579 ? FW_PORT_ACTION_GET_PORT_INFO 8580 : FW_PORT_ACTION_GET_PORT_INFO32) | 8581 FW_LEN16(port_cmd)); 8582 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8583 &port_cmd, sizeof(port_cmd), &port_cmd); 8584 if (ret) 8585 return ret; 8586 8587 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8588 return 0; 8589 } 8590 8591 /** 8592 * t4_get_link_params - retrieve basic link parameters for given port 8593 * @pi: the port 8594 * @link_okp: value return pointer for link up/down 8595 * @speedp: value return pointer for speed (Mb/s) 8596 * @mtup: value return pointer for mtu 8597 * 8598 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8599 * and MTU for a specified port. A negative error is returned on 8600 * failure; 0 on success. 8601 */ 8602 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8603 unsigned int *speedp, unsigned int *mtup) 8604 { 8605 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8606 struct fw_port_cmd port_cmd; 8607 unsigned int action, link_ok, mtu; 8608 fw_port_cap32_t linkattr; 8609 int ret; 8610 8611 memset(&port_cmd, 0, sizeof(port_cmd)); 8612 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8613 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8614 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8615 action = (fw_caps == FW_CAPS16 8616 ? FW_PORT_ACTION_GET_PORT_INFO 8617 : FW_PORT_ACTION_GET_PORT_INFO32); 8618 port_cmd.action_to_len16 = cpu_to_be32( 8619 FW_PORT_CMD_ACTION_V(action) | 8620 FW_LEN16(port_cmd)); 8621 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8622 &port_cmd, sizeof(port_cmd), &port_cmd); 8623 if (ret) 8624 return ret; 8625 8626 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8627 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8628 8629 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8630 linkattr = lstatus_to_fwcap(lstatus); 8631 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8632 } else { 8633 u32 lstatus32 = 8634 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8635 8636 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8637 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8638 mtu = FW_PORT_CMD_MTU32_G( 8639 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8640 } 8641 8642 *link_okp = link_ok; 8643 *speedp = fwcap_to_speed(linkattr); 8644 *mtup = mtu; 8645 8646 return 0; 8647 } 8648 8649 /** 8650 * t4_handle_fw_rpl - process a FW reply message 8651 * @adap: the adapter 8652 * @rpl: start of the FW message 8653 * 8654 * Processes a FW message, such as link state change messages. 8655 */ 8656 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8657 { 8658 u8 opcode = *(const u8 *)rpl; 8659 8660 /* This might be a port command ... this simplifies the following 8661 * conditionals ... We can get away with pre-dereferencing 8662 * action_to_len16 because it's in the first 16 bytes and all messages 8663 * will be at least that long. 8664 */ 8665 const struct fw_port_cmd *p = (const void *)rpl; 8666 unsigned int action = 8667 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8668 8669 if (opcode == FW_PORT_CMD && 8670 (action == FW_PORT_ACTION_GET_PORT_INFO || 8671 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8672 int i; 8673 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8674 struct port_info *pi = NULL; 8675 8676 for_each_port(adap, i) { 8677 pi = adap2pinfo(adap, i); 8678 if (pi->tx_chan == chan) 8679 break; 8680 } 8681 8682 t4_handle_get_port_info(pi, rpl); 8683 } else { 8684 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8685 opcode); 8686 return -EINVAL; 8687 } 8688 return 0; 8689 } 8690 8691 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8692 { 8693 u16 val; 8694 8695 if (pci_is_pcie(adapter->pdev)) { 8696 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8697 p->speed = val & PCI_EXP_LNKSTA_CLS; 8698 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8699 } 8700 } 8701 8702 /** 8703 * init_link_config - initialize a link's SW state 8704 * @lc: pointer to structure holding the link state 8705 * @pcaps: link Port Capabilities 8706 * @acaps: link current Advertised Port Capabilities 8707 * 8708 * Initializes the SW state maintained for each link, including the link's 8709 * capabilities and default speed/flow-control/autonegotiation settings. 8710 */ 8711 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8712 fw_port_cap32_t acaps) 8713 { 8714 lc->pcaps = pcaps; 8715 lc->def_acaps = acaps; 8716 lc->lpacaps = 0; 8717 lc->speed_caps = 0; 8718 lc->speed = 0; 8719 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8720 8721 /* For Forward Error Control, we default to whatever the Firmware 8722 * tells us the Link is currently advertising. 8723 */ 8724 lc->requested_fec = FEC_AUTO; 8725 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8726 8727 /* If the Port is capable of Auto-Negtotiation, initialize it as 8728 * "enabled" and copy over all of the Physical Port Capabilities 8729 * to the Advertised Port Capabilities. Otherwise mark it as 8730 * Auto-Negotiate disabled and select the highest supported speed 8731 * for the link. Note parallel structure in t4_link_l1cfg_core() 8732 * and t4_handle_get_port_info(). 8733 */ 8734 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8735 lc->acaps = lc->pcaps & ADVERT_MASK; 8736 lc->autoneg = AUTONEG_ENABLE; 8737 lc->requested_fc |= PAUSE_AUTONEG; 8738 } else { 8739 lc->acaps = 0; 8740 lc->autoneg = AUTONEG_DISABLE; 8741 lc->speed_caps = fwcap_to_fwspeed(acaps); 8742 } 8743 } 8744 8745 #define CIM_PF_NOACCESS 0xeeeeeeee 8746 8747 int t4_wait_dev_ready(void __iomem *regs) 8748 { 8749 u32 whoami; 8750 8751 whoami = readl(regs + PL_WHOAMI_A); 8752 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8753 return 0; 8754 8755 msleep(500); 8756 whoami = readl(regs + PL_WHOAMI_A); 8757 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8758 } 8759 8760 struct flash_desc { 8761 u32 vendor_and_model_id; 8762 u32 size_mb; 8763 }; 8764 8765 static int t4_get_flash_params(struct adapter *adap) 8766 { 8767 /* Table for non-Numonix supported flash parts. Numonix parts are left 8768 * to the preexisting code. All flash parts have 64KB sectors. 8769 */ 8770 static struct flash_desc supported_flash[] = { 8771 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8772 }; 8773 8774 unsigned int part, manufacturer; 8775 unsigned int density, size = 0; 8776 u32 flashid = 0; 8777 int ret; 8778 8779 /* Issue a Read ID Command to the Flash part. We decode supported 8780 * Flash parts and their sizes from this. There's a newer Query 8781 * Command which can retrieve detailed geometry information but many 8782 * Flash parts don't support it. 8783 */ 8784 8785 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8786 if (!ret) 8787 ret = sf1_read(adap, 3, 0, 1, &flashid); 8788 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8789 if (ret) 8790 return ret; 8791 8792 /* Check to see if it's one of our non-standard supported Flash parts. 8793 */ 8794 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8795 if (supported_flash[part].vendor_and_model_id == flashid) { 8796 adap->params.sf_size = supported_flash[part].size_mb; 8797 adap->params.sf_nsec = 8798 adap->params.sf_size / SF_SEC_SIZE; 8799 goto found; 8800 } 8801 8802 /* Decode Flash part size. The code below looks repetative with 8803 * common encodings, but that's not guaranteed in the JEDEC 8804 * specification for the Read JADEC ID command. The only thing that 8805 * we're guaranteed by the JADEC specification is where the 8806 * Manufacturer ID is in the returned result. After that each 8807 * Manufacturer ~could~ encode things completely differently. 8808 * Note, all Flash parts must have 64KB sectors. 8809 */ 8810 manufacturer = flashid & 0xff; 8811 switch (manufacturer) { 8812 case 0x20: { /* Micron/Numonix */ 8813 /* This Density -> Size decoding table is taken from Micron 8814 * Data Sheets. 8815 */ 8816 density = (flashid >> 16) & 0xff; 8817 switch (density) { 8818 case 0x14: /* 1MB */ 8819 size = 1 << 20; 8820 break; 8821 case 0x15: /* 2MB */ 8822 size = 1 << 21; 8823 break; 8824 case 0x16: /* 4MB */ 8825 size = 1 << 22; 8826 break; 8827 case 0x17: /* 8MB */ 8828 size = 1 << 23; 8829 break; 8830 case 0x18: /* 16MB */ 8831 size = 1 << 24; 8832 break; 8833 case 0x19: /* 32MB */ 8834 size = 1 << 25; 8835 break; 8836 case 0x20: /* 64MB */ 8837 size = 1 << 26; 8838 break; 8839 case 0x21: /* 128MB */ 8840 size = 1 << 27; 8841 break; 8842 case 0x22: /* 256MB */ 8843 size = 1 << 28; 8844 break; 8845 } 8846 break; 8847 } 8848 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 8849 /* This Density -> Size decoding table is taken from ISSI 8850 * Data Sheets. 8851 */ 8852 density = (flashid >> 16) & 0xff; 8853 switch (density) { 8854 case 0x16: /* 32 MB */ 8855 size = 1 << 25; 8856 break; 8857 case 0x17: /* 64MB */ 8858 size = 1 << 26; 8859 break; 8860 } 8861 break; 8862 } 8863 case 0xc2: { /* Macronix */ 8864 /* This Density -> Size decoding table is taken from Macronix 8865 * Data Sheets. 8866 */ 8867 density = (flashid >> 16) & 0xff; 8868 switch (density) { 8869 case 0x17: /* 8MB */ 8870 size = 1 << 23; 8871 break; 8872 case 0x18: /* 16MB */ 8873 size = 1 << 24; 8874 break; 8875 } 8876 break; 8877 } 8878 case 0xef: { /* Winbond */ 8879 /* This Density -> Size decoding table is taken from Winbond 8880 * Data Sheets. 8881 */ 8882 density = (flashid >> 16) & 0xff; 8883 switch (density) { 8884 case 0x17: /* 8MB */ 8885 size = 1 << 23; 8886 break; 8887 case 0x18: /* 16MB */ 8888 size = 1 << 24; 8889 break; 8890 } 8891 break; 8892 } 8893 } 8894 8895 /* If we didn't recognize the FLASH part, that's no real issue: the 8896 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 8897 * use a FLASH part which is at least 4MB in size and has 64KB 8898 * sectors. The unrecognized FLASH part is likely to be much larger 8899 * than 4MB, but that's all we really need. 8900 */ 8901 if (size == 0) { 8902 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 8903 flashid); 8904 size = 1 << 22; 8905 } 8906 8907 /* Store decoded Flash size and fall through into vetting code. */ 8908 adap->params.sf_size = size; 8909 adap->params.sf_nsec = size / SF_SEC_SIZE; 8910 8911 found: 8912 if (adap->params.sf_size < FLASH_MIN_SIZE) 8913 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8914 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 8915 return 0; 8916 } 8917 8918 /** 8919 * t4_prep_adapter - prepare SW and HW for operation 8920 * @adapter: the adapter 8921 * @reset: if true perform a HW reset 8922 * 8923 * Initialize adapter SW state for the various HW modules, set initial 8924 * values for some adapter tunables, take PHYs out of reset, and 8925 * initialize the MDIO interface. 8926 */ 8927 int t4_prep_adapter(struct adapter *adapter) 8928 { 8929 int ret, ver; 8930 uint16_t device_id; 8931 u32 pl_rev; 8932 8933 get_pci_mode(adapter, &adapter->params.pci); 8934 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 8935 8936 ret = t4_get_flash_params(adapter); 8937 if (ret < 0) { 8938 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 8939 return ret; 8940 } 8941 8942 /* Retrieve adapter's device ID 8943 */ 8944 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 8945 ver = device_id >> 12; 8946 adapter->params.chip = 0; 8947 switch (ver) { 8948 case CHELSIO_T4: 8949 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 8950 adapter->params.arch.sge_fl_db = DBPRIO_F; 8951 adapter->params.arch.mps_tcam_size = 8952 NUM_MPS_CLS_SRAM_L_INSTANCES; 8953 adapter->params.arch.mps_rplc_size = 128; 8954 adapter->params.arch.nchan = NCHAN; 8955 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8956 adapter->params.arch.vfcount = 128; 8957 /* Congestion map is for 4 channels so that 8958 * MPS can have 4 priority per port. 8959 */ 8960 adapter->params.arch.cng_ch_bits_log = 2; 8961 break; 8962 case CHELSIO_T5: 8963 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 8964 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 8965 adapter->params.arch.mps_tcam_size = 8966 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8967 adapter->params.arch.mps_rplc_size = 128; 8968 adapter->params.arch.nchan = NCHAN; 8969 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8970 adapter->params.arch.vfcount = 128; 8971 adapter->params.arch.cng_ch_bits_log = 2; 8972 break; 8973 case CHELSIO_T6: 8974 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 8975 adapter->params.arch.sge_fl_db = 0; 8976 adapter->params.arch.mps_tcam_size = 8977 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8978 adapter->params.arch.mps_rplc_size = 256; 8979 adapter->params.arch.nchan = 2; 8980 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 8981 adapter->params.arch.vfcount = 256; 8982 /* Congestion map will be for 2 channels so that 8983 * MPS can have 8 priority per port. 8984 */ 8985 adapter->params.arch.cng_ch_bits_log = 3; 8986 break; 8987 default: 8988 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 8989 device_id); 8990 return -EINVAL; 8991 } 8992 8993 adapter->params.cim_la_size = CIMLA_SIZE; 8994 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8995 8996 /* 8997 * Default port for debugging in case we can't reach FW. 8998 */ 8999 adapter->params.nports = 1; 9000 adapter->params.portvec = 1; 9001 adapter->params.vpd.cclk = 50000; 9002 9003 /* Set PCIe completion timeout to 4 seconds. */ 9004 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9005 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9006 return 0; 9007 } 9008 9009 /** 9010 * t4_shutdown_adapter - shut down adapter, host & wire 9011 * @adapter: the adapter 9012 * 9013 * Perform an emergency shutdown of the adapter and stop it from 9014 * continuing any further communication on the ports or DMA to the 9015 * host. This is typically used when the adapter and/or firmware 9016 * have crashed and we want to prevent any further accidental 9017 * communication with the rest of the world. This will also force 9018 * the port Link Status to go down -- if register writes work -- 9019 * which should help our peers figure out that we're down. 9020 */ 9021 int t4_shutdown_adapter(struct adapter *adapter) 9022 { 9023 int port; 9024 9025 t4_intr_disable(adapter); 9026 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9027 for_each_port(adapter, port) { 9028 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9029 PORT_REG(port, XGMAC_PORT_CFG_A) : 9030 T5_PORT_REG(port, MAC_PORT_CFG_A); 9031 9032 t4_write_reg(adapter, a_port_cfg, 9033 t4_read_reg(adapter, a_port_cfg) 9034 & ~SIGNAL_DET_V(1)); 9035 } 9036 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9037 9038 return 0; 9039 } 9040 9041 /** 9042 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9043 * @adapter: the adapter 9044 * @qid: the Queue ID 9045 * @qtype: the Ingress or Egress type for @qid 9046 * @user: true if this request is for a user mode queue 9047 * @pbar2_qoffset: BAR2 Queue Offset 9048 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9049 * 9050 * Returns the BAR2 SGE Queue Registers information associated with the 9051 * indicated Absolute Queue ID. These are passed back in return value 9052 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9053 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9054 * 9055 * This may return an error which indicates that BAR2 SGE Queue 9056 * registers aren't available. If an error is not returned, then the 9057 * following values are returned: 9058 * 9059 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9060 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9061 * 9062 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9063 * require the "Inferred Queue ID" ability may be used. E.g. the 9064 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9065 * then these "Inferred Queue ID" register may not be used. 9066 */ 9067 int t4_bar2_sge_qregs(struct adapter *adapter, 9068 unsigned int qid, 9069 enum t4_bar2_qtype qtype, 9070 int user, 9071 u64 *pbar2_qoffset, 9072 unsigned int *pbar2_qid) 9073 { 9074 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9075 u64 bar2_page_offset, bar2_qoffset; 9076 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9077 9078 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9079 if (!user && is_t4(adapter->params.chip)) 9080 return -EINVAL; 9081 9082 /* Get our SGE Page Size parameters. 9083 */ 9084 page_shift = adapter->params.sge.hps + 10; 9085 page_size = 1 << page_shift; 9086 9087 /* Get the right Queues per Page parameters for our Queue. 9088 */ 9089 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9090 ? adapter->params.sge.eq_qpp 9091 : adapter->params.sge.iq_qpp); 9092 qpp_mask = (1 << qpp_shift) - 1; 9093 9094 /* Calculate the basics of the BAR2 SGE Queue register area: 9095 * o The BAR2 page the Queue registers will be in. 9096 * o The BAR2 Queue ID. 9097 * o The BAR2 Queue ID Offset into the BAR2 page. 9098 */ 9099 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9100 bar2_qid = qid & qpp_mask; 9101 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9102 9103 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9104 * hardware will infer the Absolute Queue ID simply from the writes to 9105 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9106 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9107 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9108 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9109 * from the BAR2 Page and BAR2 Queue ID. 9110 * 9111 * One important censequence of this is that some BAR2 SGE registers 9112 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9113 * there. But other registers synthesize the SGE Queue ID purely 9114 * from the writes to the registers -- the Write Combined Doorbell 9115 * Buffer is a good example. These BAR2 SGE Registers are only 9116 * available for those BAR2 SGE Register areas where the SGE Absolute 9117 * Queue ID can be inferred from simple writes. 9118 */ 9119 bar2_qoffset = bar2_page_offset; 9120 bar2_qinferred = (bar2_qid_offset < page_size); 9121 if (bar2_qinferred) { 9122 bar2_qoffset += bar2_qid_offset; 9123 bar2_qid = 0; 9124 } 9125 9126 *pbar2_qoffset = bar2_qoffset; 9127 *pbar2_qid = bar2_qid; 9128 return 0; 9129 } 9130 9131 /** 9132 * t4_init_devlog_params - initialize adapter->params.devlog 9133 * @adap: the adapter 9134 * 9135 * Initialize various fields of the adapter's Firmware Device Log 9136 * Parameters structure. 9137 */ 9138 int t4_init_devlog_params(struct adapter *adap) 9139 { 9140 struct devlog_params *dparams = &adap->params.devlog; 9141 u32 pf_dparams; 9142 unsigned int devlog_meminfo; 9143 struct fw_devlog_cmd devlog_cmd; 9144 int ret; 9145 9146 /* If we're dealing with newer firmware, the Device Log Paramerters 9147 * are stored in a designated register which allows us to access the 9148 * Device Log even if we can't talk to the firmware. 9149 */ 9150 pf_dparams = 9151 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9152 if (pf_dparams) { 9153 unsigned int nentries, nentries128; 9154 9155 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9156 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9157 9158 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9159 nentries = (nentries128 + 1) * 128; 9160 dparams->size = nentries * sizeof(struct fw_devlog_e); 9161 9162 return 0; 9163 } 9164 9165 /* Otherwise, ask the firmware for it's Device Log Parameters. 9166 */ 9167 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9168 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9169 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9170 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9171 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9172 &devlog_cmd); 9173 if (ret) 9174 return ret; 9175 9176 devlog_meminfo = 9177 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9178 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9179 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9180 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9181 9182 return 0; 9183 } 9184 9185 /** 9186 * t4_init_sge_params - initialize adap->params.sge 9187 * @adapter: the adapter 9188 * 9189 * Initialize various fields of the adapter's SGE Parameters structure. 9190 */ 9191 int t4_init_sge_params(struct adapter *adapter) 9192 { 9193 struct sge_params *sge_params = &adapter->params.sge; 9194 u32 hps, qpp; 9195 unsigned int s_hps, s_qpp; 9196 9197 /* Extract the SGE Page Size for our PF. 9198 */ 9199 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9200 s_hps = (HOSTPAGESIZEPF0_S + 9201 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9202 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9203 9204 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9205 */ 9206 s_qpp = (QUEUESPERPAGEPF0_S + 9207 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9208 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9209 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9210 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9211 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9212 9213 return 0; 9214 } 9215 9216 /** 9217 * t4_init_tp_params - initialize adap->params.tp 9218 * @adap: the adapter 9219 * @sleep_ok: if true we may sleep while awaiting command completion 9220 * 9221 * Initialize various fields of the adapter's TP Parameters structure. 9222 */ 9223 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9224 { 9225 int chan; 9226 u32 v; 9227 9228 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9229 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9230 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9231 9232 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9233 for (chan = 0; chan < NCHAN; chan++) 9234 adap->params.tp.tx_modq[chan] = chan; 9235 9236 /* Cache the adapter's Compressed Filter Mode and global Incress 9237 * Configuration. 9238 */ 9239 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9240 TP_VLAN_PRI_MAP_A, sleep_ok); 9241 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9242 TP_INGRESS_CONFIG_A, sleep_ok); 9243 9244 /* For T6, cache the adapter's compressed error vector 9245 * and passing outer header info for encapsulated packets. 9246 */ 9247 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9248 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9249 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9250 } 9251 9252 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9253 * shift positions of several elements of the Compressed Filter Tuple 9254 * for this adapter which we need frequently ... 9255 */ 9256 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9257 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9258 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9259 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9260 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9261 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9262 PROTOCOL_F); 9263 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9264 ETHERTYPE_F); 9265 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9266 MACMATCH_F); 9267 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9268 MPSHITTYPE_F); 9269 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9270 FRAGMENTATION_F); 9271 9272 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9273 * represents the presence of an Outer VLAN instead of a VNIC ID. 9274 */ 9275 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9276 adap->params.tp.vnic_shift = -1; 9277 9278 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9279 adap->params.tp.hash_filter_mask = v; 9280 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9281 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9282 return 0; 9283 } 9284 9285 /** 9286 * t4_filter_field_shift - calculate filter field shift 9287 * @adap: the adapter 9288 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9289 * 9290 * Return the shift position of a filter field within the Compressed 9291 * Filter Tuple. The filter field is specified via its selection bit 9292 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9293 */ 9294 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9295 { 9296 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9297 unsigned int sel; 9298 int field_shift; 9299 9300 if ((filter_mode & filter_sel) == 0) 9301 return -1; 9302 9303 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9304 switch (filter_mode & sel) { 9305 case FCOE_F: 9306 field_shift += FT_FCOE_W; 9307 break; 9308 case PORT_F: 9309 field_shift += FT_PORT_W; 9310 break; 9311 case VNIC_ID_F: 9312 field_shift += FT_VNIC_ID_W; 9313 break; 9314 case VLAN_F: 9315 field_shift += FT_VLAN_W; 9316 break; 9317 case TOS_F: 9318 field_shift += FT_TOS_W; 9319 break; 9320 case PROTOCOL_F: 9321 field_shift += FT_PROTOCOL_W; 9322 break; 9323 case ETHERTYPE_F: 9324 field_shift += FT_ETHERTYPE_W; 9325 break; 9326 case MACMATCH_F: 9327 field_shift += FT_MACMATCH_W; 9328 break; 9329 case MPSHITTYPE_F: 9330 field_shift += FT_MPSHITTYPE_W; 9331 break; 9332 case FRAGMENTATION_F: 9333 field_shift += FT_FRAGMENTATION_W; 9334 break; 9335 } 9336 } 9337 return field_shift; 9338 } 9339 9340 int t4_init_rss_mode(struct adapter *adap, int mbox) 9341 { 9342 int i, ret; 9343 struct fw_rss_vi_config_cmd rvc; 9344 9345 memset(&rvc, 0, sizeof(rvc)); 9346 9347 for_each_port(adap, i) { 9348 struct port_info *p = adap2pinfo(adap, i); 9349 9350 rvc.op_to_viid = 9351 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9352 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9353 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9354 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9355 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9356 if (ret) 9357 return ret; 9358 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9359 } 9360 return 0; 9361 } 9362 9363 /** 9364 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9365 * @pi: the port_info 9366 * @mbox: mailbox to use for the FW command 9367 * @port: physical port associated with the VI 9368 * @pf: the PF owning the VI 9369 * @vf: the VF owning the VI 9370 * @mac: the MAC address of the VI 9371 * 9372 * Allocates a virtual interface for the given physical port. If @mac is 9373 * not %NULL it contains the MAC address of the VI as assigned by FW. 9374 * @mac should be large enough to hold an Ethernet address. 9375 * Returns < 0 on error. 9376 */ 9377 int t4_init_portinfo(struct port_info *pi, int mbox, 9378 int port, int pf, int vf, u8 mac[]) 9379 { 9380 struct adapter *adapter = pi->adapter; 9381 unsigned int fw_caps = adapter->params.fw_caps_support; 9382 struct fw_port_cmd cmd; 9383 unsigned int rss_size; 9384 enum fw_port_type port_type; 9385 int mdio_addr; 9386 fw_port_cap32_t pcaps, acaps; 9387 u8 vivld = 0, vin = 0; 9388 int ret; 9389 9390 /* If we haven't yet determined whether we're talking to Firmware 9391 * which knows the new 32-bit Port Capabilities, it's time to find 9392 * out now. This will also tell new Firmware to send us Port Status 9393 * Updates using the new 32-bit Port Capabilities version of the 9394 * Port Information message. 9395 */ 9396 if (fw_caps == FW_CAPS_UNKNOWN) { 9397 u32 param, val; 9398 9399 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9400 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9401 val = 1; 9402 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9403 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9404 adapter->params.fw_caps_support = fw_caps; 9405 } 9406 9407 memset(&cmd, 0, sizeof(cmd)); 9408 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9409 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9410 FW_PORT_CMD_PORTID_V(port)); 9411 cmd.action_to_len16 = cpu_to_be32( 9412 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9413 ? FW_PORT_ACTION_GET_PORT_INFO 9414 : FW_PORT_ACTION_GET_PORT_INFO32) | 9415 FW_LEN16(cmd)); 9416 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9417 if (ret) 9418 return ret; 9419 9420 /* Extract the various fields from the Port Information message. 9421 */ 9422 if (fw_caps == FW_CAPS16) { 9423 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9424 9425 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9426 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9427 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9428 : -1); 9429 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9430 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9431 } else { 9432 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9433 9434 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9435 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9436 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9437 : -1); 9438 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9439 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9440 } 9441 9442 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9443 &vivld, &vin); 9444 if (ret < 0) 9445 return ret; 9446 9447 pi->viid = ret; 9448 pi->tx_chan = port; 9449 pi->lport = port; 9450 pi->rss_size = rss_size; 9451 9452 /* If fw supports returning the VIN as part of FW_VI_CMD, 9453 * save the returned values. 9454 */ 9455 if (adapter->params.viid_smt_extn_support) { 9456 pi->vivld = vivld; 9457 pi->vin = vin; 9458 } else { 9459 /* Retrieve the values from VIID */ 9460 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9461 pi->vin = FW_VIID_VIN_G(pi->viid); 9462 } 9463 9464 pi->port_type = port_type; 9465 pi->mdio_addr = mdio_addr; 9466 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9467 9468 init_link_config(&pi->link_cfg, pcaps, acaps); 9469 return 0; 9470 } 9471 9472 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9473 { 9474 u8 addr[6]; 9475 int ret, i, j = 0; 9476 9477 for_each_port(adap, i) { 9478 struct port_info *pi = adap2pinfo(adap, i); 9479 9480 while ((adap->params.portvec & (1 << j)) == 0) 9481 j++; 9482 9483 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9484 if (ret) 9485 return ret; 9486 9487 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9488 j++; 9489 } 9490 return 0; 9491 } 9492 9493 /** 9494 * t4_read_cimq_cfg - read CIM queue configuration 9495 * @adap: the adapter 9496 * @base: holds the queue base addresses in bytes 9497 * @size: holds the queue sizes in bytes 9498 * @thres: holds the queue full thresholds in bytes 9499 * 9500 * Returns the current configuration of the CIM queues, starting with 9501 * the IBQs, then the OBQs. 9502 */ 9503 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9504 { 9505 unsigned int i, v; 9506 int cim_num_obq = is_t4(adap->params.chip) ? 9507 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9508 9509 for (i = 0; i < CIM_NUM_IBQ; i++) { 9510 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9511 QUENUMSELECT_V(i)); 9512 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9513 /* value is in 256-byte units */ 9514 *base++ = CIMQBASE_G(v) * 256; 9515 *size++ = CIMQSIZE_G(v) * 256; 9516 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9517 } 9518 for (i = 0; i < cim_num_obq; i++) { 9519 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9520 QUENUMSELECT_V(i)); 9521 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9522 /* value is in 256-byte units */ 9523 *base++ = CIMQBASE_G(v) * 256; 9524 *size++ = CIMQSIZE_G(v) * 256; 9525 } 9526 } 9527 9528 /** 9529 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9530 * @adap: the adapter 9531 * @qid: the queue index 9532 * @data: where to store the queue contents 9533 * @n: capacity of @data in 32-bit words 9534 * 9535 * Reads the contents of the selected CIM queue starting at address 0 up 9536 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9537 * error and the number of 32-bit words actually read on success. 9538 */ 9539 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9540 { 9541 int i, err, attempts; 9542 unsigned int addr; 9543 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9544 9545 if (qid > 5 || (n & 3)) 9546 return -EINVAL; 9547 9548 addr = qid * nwords; 9549 if (n > nwords) 9550 n = nwords; 9551 9552 /* It might take 3-10ms before the IBQ debug read access is allowed. 9553 * Wait for 1 Sec with a delay of 1 usec. 9554 */ 9555 attempts = 1000000; 9556 9557 for (i = 0; i < n; i++, addr++) { 9558 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9559 IBQDBGEN_F); 9560 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9561 attempts, 1); 9562 if (err) 9563 return err; 9564 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9565 } 9566 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9567 return i; 9568 } 9569 9570 /** 9571 * t4_read_cim_obq - read the contents of a CIM outbound queue 9572 * @adap: the adapter 9573 * @qid: the queue index 9574 * @data: where to store the queue contents 9575 * @n: capacity of @data in 32-bit words 9576 * 9577 * Reads the contents of the selected CIM queue starting at address 0 up 9578 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9579 * error and the number of 32-bit words actually read on success. 9580 */ 9581 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9582 { 9583 int i, err; 9584 unsigned int addr, v, nwords; 9585 int cim_num_obq = is_t4(adap->params.chip) ? 9586 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9587 9588 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9589 return -EINVAL; 9590 9591 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9592 QUENUMSELECT_V(qid)); 9593 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9594 9595 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9596 nwords = CIMQSIZE_G(v) * 64; /* same */ 9597 if (n > nwords) 9598 n = nwords; 9599 9600 for (i = 0; i < n; i++, addr++) { 9601 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9602 OBQDBGEN_F); 9603 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9604 2, 1); 9605 if (err) 9606 return err; 9607 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9608 } 9609 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9610 return i; 9611 } 9612 9613 /** 9614 * t4_cim_read - read a block from CIM internal address space 9615 * @adap: the adapter 9616 * @addr: the start address within the CIM address space 9617 * @n: number of words to read 9618 * @valp: where to store the result 9619 * 9620 * Reads a block of 4-byte words from the CIM intenal address space. 9621 */ 9622 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9623 unsigned int *valp) 9624 { 9625 int ret = 0; 9626 9627 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9628 return -EBUSY; 9629 9630 for ( ; !ret && n--; addr += 4) { 9631 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9632 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9633 0, 5, 2); 9634 if (!ret) 9635 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9636 } 9637 return ret; 9638 } 9639 9640 /** 9641 * t4_cim_write - write a block into CIM internal address space 9642 * @adap: the adapter 9643 * @addr: the start address within the CIM address space 9644 * @n: number of words to write 9645 * @valp: set of values to write 9646 * 9647 * Writes a block of 4-byte words into the CIM intenal address space. 9648 */ 9649 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9650 const unsigned int *valp) 9651 { 9652 int ret = 0; 9653 9654 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9655 return -EBUSY; 9656 9657 for ( ; !ret && n--; addr += 4) { 9658 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9659 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9660 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9661 0, 5, 2); 9662 } 9663 return ret; 9664 } 9665 9666 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9667 unsigned int val) 9668 { 9669 return t4_cim_write(adap, addr, 1, &val); 9670 } 9671 9672 /** 9673 * t4_cim_read_la - read CIM LA capture buffer 9674 * @adap: the adapter 9675 * @la_buf: where to store the LA data 9676 * @wrptr: the HW write pointer within the capture buffer 9677 * 9678 * Reads the contents of the CIM LA buffer with the most recent entry at 9679 * the end of the returned data and with the entry at @wrptr first. 9680 * We try to leave the LA in the running state we find it in. 9681 */ 9682 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9683 { 9684 int i, ret; 9685 unsigned int cfg, val, idx; 9686 9687 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9688 if (ret) 9689 return ret; 9690 9691 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9692 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9693 if (ret) 9694 return ret; 9695 } 9696 9697 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9698 if (ret) 9699 goto restart; 9700 9701 idx = UPDBGLAWRPTR_G(val); 9702 if (wrptr) 9703 *wrptr = idx; 9704 9705 for (i = 0; i < adap->params.cim_la_size; i++) { 9706 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9707 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9708 if (ret) 9709 break; 9710 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9711 if (ret) 9712 break; 9713 if (val & UPDBGLARDEN_F) { 9714 ret = -ETIMEDOUT; 9715 break; 9716 } 9717 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9718 if (ret) 9719 break; 9720 9721 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9722 * identify the 32-bit portion of the full 312-bit data 9723 */ 9724 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9725 idx = (idx & 0xff0) + 0x10; 9726 else 9727 idx++; 9728 /* address can't exceed 0xfff */ 9729 idx &= UPDBGLARDPTR_M; 9730 } 9731 restart: 9732 if (cfg & UPDBGLAEN_F) { 9733 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9734 cfg & ~UPDBGLARDEN_F); 9735 if (!ret) 9736 ret = r; 9737 } 9738 return ret; 9739 } 9740 9741 /** 9742 * t4_tp_read_la - read TP LA capture buffer 9743 * @adap: the adapter 9744 * @la_buf: where to store the LA data 9745 * @wrptr: the HW write pointer within the capture buffer 9746 * 9747 * Reads the contents of the TP LA buffer with the most recent entry at 9748 * the end of the returned data and with the entry at @wrptr first. 9749 * We leave the LA in the running state we find it in. 9750 */ 9751 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9752 { 9753 bool last_incomplete; 9754 unsigned int i, cfg, val, idx; 9755 9756 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9757 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9758 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9759 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9760 9761 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9762 idx = DBGLAWPTR_G(val); 9763 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9764 if (last_incomplete) 9765 idx = (idx + 1) & DBGLARPTR_M; 9766 if (wrptr) 9767 *wrptr = idx; 9768 9769 val &= 0xffff; 9770 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9771 val |= adap->params.tp.la_mask; 9772 9773 for (i = 0; i < TPLA_SIZE; i++) { 9774 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9775 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9776 idx = (idx + 1) & DBGLARPTR_M; 9777 } 9778 9779 /* Wipe out last entry if it isn't valid */ 9780 if (last_incomplete) 9781 la_buf[TPLA_SIZE - 1] = ~0ULL; 9782 9783 if (cfg & DBGLAENABLE_F) /* restore running state */ 9784 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9785 cfg | adap->params.tp.la_mask); 9786 } 9787 9788 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9789 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9790 * state for more than the Warning Threshold then we'll issue a warning about 9791 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9792 * appears to be hung every Warning Repeat second till the situation clears. 9793 * If the situation clears, we'll note that as well. 9794 */ 9795 #define SGE_IDMA_WARN_THRESH 1 9796 #define SGE_IDMA_WARN_REPEAT 300 9797 9798 /** 9799 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9800 * @adapter: the adapter 9801 * @idma: the adapter IDMA Monitor state 9802 * 9803 * Initialize the state of an SGE Ingress DMA Monitor. 9804 */ 9805 void t4_idma_monitor_init(struct adapter *adapter, 9806 struct sge_idma_monitor_state *idma) 9807 { 9808 /* Initialize the state variables for detecting an SGE Ingress DMA 9809 * hang. The SGE has internal counters which count up on each clock 9810 * tick whenever the SGE finds its Ingress DMA State Engines in the 9811 * same state they were on the previous clock tick. The clock used is 9812 * the Core Clock so we have a limit on the maximum "time" they can 9813 * record; typically a very small number of seconds. For instance, 9814 * with a 600MHz Core Clock, we can only count up to a bit more than 9815 * 7s. So we'll synthesize a larger counter in order to not run the 9816 * risk of having the "timers" overflow and give us the flexibility to 9817 * maintain a Hung SGE State Machine of our own which operates across 9818 * a longer time frame. 9819 */ 9820 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9821 idma->idma_stalled[0] = 0; 9822 idma->idma_stalled[1] = 0; 9823 } 9824 9825 /** 9826 * t4_idma_monitor - monitor SGE Ingress DMA state 9827 * @adapter: the adapter 9828 * @idma: the adapter IDMA Monitor state 9829 * @hz: number of ticks/second 9830 * @ticks: number of ticks since the last IDMA Monitor call 9831 */ 9832 void t4_idma_monitor(struct adapter *adapter, 9833 struct sge_idma_monitor_state *idma, 9834 int hz, int ticks) 9835 { 9836 int i, idma_same_state_cnt[2]; 9837 9838 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9839 * are counters inside the SGE which count up on each clock when the 9840 * SGE finds its Ingress DMA State Engines in the same states they 9841 * were in the previous clock. The counters will peg out at 9842 * 0xffffffff without wrapping around so once they pass the 1s 9843 * threshold they'll stay above that till the IDMA state changes. 9844 */ 9845 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9846 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9847 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9848 9849 for (i = 0; i < 2; i++) { 9850 u32 debug0, debug11; 9851 9852 /* If the Ingress DMA Same State Counter ("timer") is less 9853 * than 1s, then we can reset our synthesized Stall Timer and 9854 * continue. If we have previously emitted warnings about a 9855 * potential stalled Ingress Queue, issue a note indicating 9856 * that the Ingress Queue has resumed forward progress. 9857 */ 9858 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9859 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9860 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9861 "resumed after %d seconds\n", 9862 i, idma->idma_qid[i], 9863 idma->idma_stalled[i] / hz); 9864 idma->idma_stalled[i] = 0; 9865 continue; 9866 } 9867 9868 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9869 * domain. The first time we get here it'll be because we 9870 * passed the 1s Threshold; each additional time it'll be 9871 * because the RX Timer Callback is being fired on its regular 9872 * schedule. 9873 * 9874 * If the stall is below our Potential Hung Ingress Queue 9875 * Warning Threshold, continue. 9876 */ 9877 if (idma->idma_stalled[i] == 0) { 9878 idma->idma_stalled[i] = hz; 9879 idma->idma_warn[i] = 0; 9880 } else { 9881 idma->idma_stalled[i] += ticks; 9882 idma->idma_warn[i] -= ticks; 9883 } 9884 9885 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9886 continue; 9887 9888 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9889 */ 9890 if (idma->idma_warn[i] > 0) 9891 continue; 9892 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9893 9894 /* Read and save the SGE IDMA State and Queue ID information. 9895 * We do this every time in case it changes across time ... 9896 * can't be too careful ... 9897 */ 9898 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9899 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9900 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9901 9902 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9903 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9904 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9905 9906 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9907 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9908 i, idma->idma_qid[i], idma->idma_state[i], 9909 idma->idma_stalled[i] / hz, 9910 debug0, debug11); 9911 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9912 } 9913 } 9914 9915 /** 9916 * t4_load_cfg - download config file 9917 * @adap: the adapter 9918 * @cfg_data: the cfg text file to write 9919 * @size: text file size 9920 * 9921 * Write the supplied config text file to the card's serial flash. 9922 */ 9923 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9924 { 9925 int ret, i, n, cfg_addr; 9926 unsigned int addr; 9927 unsigned int flash_cfg_start_sec; 9928 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9929 9930 cfg_addr = t4_flash_cfg_addr(adap); 9931 if (cfg_addr < 0) 9932 return cfg_addr; 9933 9934 addr = cfg_addr; 9935 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9936 9937 if (size > FLASH_CFG_MAX_SIZE) { 9938 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 9939 FLASH_CFG_MAX_SIZE); 9940 return -EFBIG; 9941 } 9942 9943 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9944 sf_sec_size); 9945 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9946 flash_cfg_start_sec + i - 1); 9947 /* If size == 0 then we're simply erasing the FLASH sectors associated 9948 * with the on-adapter Firmware Configuration File. 9949 */ 9950 if (ret || size == 0) 9951 goto out; 9952 9953 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9954 for (i = 0; i < size; i += SF_PAGE_SIZE) { 9955 if ((size - i) < SF_PAGE_SIZE) 9956 n = size - i; 9957 else 9958 n = SF_PAGE_SIZE; 9959 ret = t4_write_flash(adap, addr, n, cfg_data); 9960 if (ret) 9961 goto out; 9962 9963 addr += SF_PAGE_SIZE; 9964 cfg_data += SF_PAGE_SIZE; 9965 } 9966 9967 out: 9968 if (ret) 9969 dev_err(adap->pdev_dev, "config file %s failed %d\n", 9970 (size == 0 ? "clear" : "download"), ret); 9971 return ret; 9972 } 9973 9974 /** 9975 * t4_set_vf_mac - Set MAC address for the specified VF 9976 * @adapter: The adapter 9977 * @vf: one of the VFs instantiated by the specified PF 9978 * @naddr: the number of MAC addresses 9979 * @addr: the MAC address(es) to be set to the specified VF 9980 */ 9981 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 9982 unsigned int naddr, u8 *addr) 9983 { 9984 struct fw_acl_mac_cmd cmd; 9985 9986 memset(&cmd, 0, sizeof(cmd)); 9987 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 9988 FW_CMD_REQUEST_F | 9989 FW_CMD_WRITE_F | 9990 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 9991 FW_ACL_MAC_CMD_VFN_V(vf)); 9992 9993 /* Note: Do not enable the ACL */ 9994 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 9995 cmd.nmac = naddr; 9996 9997 switch (adapter->pf) { 9998 case 3: 9999 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10000 break; 10001 case 2: 10002 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10003 break; 10004 case 1: 10005 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10006 break; 10007 case 0: 10008 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10009 break; 10010 } 10011 10012 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10013 } 10014 10015 /** 10016 * t4_read_pace_tbl - read the pace table 10017 * @adap: the adapter 10018 * @pace_vals: holds the returned values 10019 * 10020 * Returns the values of TP's pace table in microseconds. 10021 */ 10022 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10023 { 10024 unsigned int i, v; 10025 10026 for (i = 0; i < NTX_SCHED; i++) { 10027 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10028 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10029 pace_vals[i] = dack_ticks_to_usec(adap, v); 10030 } 10031 } 10032 10033 /** 10034 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10035 * @adap: the adapter 10036 * @sched: the scheduler index 10037 * @kbps: the byte rate in Kbps 10038 * @ipg: the interpacket delay in tenths of nanoseconds 10039 * @sleep_ok: if true we may sleep while awaiting command completion 10040 * 10041 * Return the current configuration of a HW Tx scheduler. 10042 */ 10043 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10044 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10045 { 10046 unsigned int v, addr, bpt, cpt; 10047 10048 if (kbps) { 10049 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10050 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10051 if (sched & 1) 10052 v >>= 16; 10053 bpt = (v >> 8) & 0xff; 10054 cpt = v & 0xff; 10055 if (!cpt) { 10056 *kbps = 0; /* scheduler disabled */ 10057 } else { 10058 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10059 *kbps = (v * bpt) / 125; 10060 } 10061 } 10062 if (ipg) { 10063 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10064 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10065 if (sched & 1) 10066 v >>= 16; 10067 v &= 0xffff; 10068 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10069 } 10070 } 10071 10072 /* t4_sge_ctxt_rd - read an SGE context through FW 10073 * @adap: the adapter 10074 * @mbox: mailbox to use for the FW command 10075 * @cid: the context id 10076 * @ctype: the context type 10077 * @data: where to store the context data 10078 * 10079 * Issues a FW command through the given mailbox to read an SGE context. 10080 */ 10081 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10082 enum ctxt_type ctype, u32 *data) 10083 { 10084 struct fw_ldst_cmd c; 10085 int ret; 10086 10087 if (ctype == CTXT_FLM) 10088 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10089 else 10090 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10091 10092 memset(&c, 0, sizeof(c)); 10093 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10094 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10095 FW_LDST_CMD_ADDRSPACE_V(ret)); 10096 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10097 c.u.idctxt.physid = cpu_to_be32(cid); 10098 10099 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10100 if (ret == 0) { 10101 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10102 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10103 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10104 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10105 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10106 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10107 } 10108 return ret; 10109 } 10110 10111 /** 10112 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10113 * @adap: the adapter 10114 * @cid: the context id 10115 * @ctype: the context type 10116 * @data: where to store the context data 10117 * 10118 * Reads an SGE context directly, bypassing FW. This is only for 10119 * debugging when FW is unavailable. 10120 */ 10121 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10122 enum ctxt_type ctype, u32 *data) 10123 { 10124 int i, ret; 10125 10126 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10127 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10128 if (!ret) 10129 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10130 *data++ = t4_read_reg(adap, i); 10131 return ret; 10132 } 10133 10134 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10135 int rateunit, int ratemode, int channel, int class, 10136 int minrate, int maxrate, int weight, int pktsize) 10137 { 10138 struct fw_sched_cmd cmd; 10139 10140 memset(&cmd, 0, sizeof(cmd)); 10141 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10142 FW_CMD_REQUEST_F | 10143 FW_CMD_WRITE_F); 10144 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10145 10146 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10147 cmd.u.params.type = type; 10148 cmd.u.params.level = level; 10149 cmd.u.params.mode = mode; 10150 cmd.u.params.ch = channel; 10151 cmd.u.params.cl = class; 10152 cmd.u.params.unit = rateunit; 10153 cmd.u.params.rate = ratemode; 10154 cmd.u.params.min = cpu_to_be32(minrate); 10155 cmd.u.params.max = cpu_to_be32(maxrate); 10156 cmd.u.params.weight = cpu_to_be16(weight); 10157 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10158 10159 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10160 NULL, 1); 10161 } 10162 10163 /** 10164 * t4_i2c_rd - read I2C data from adapter 10165 * @adap: the adapter 10166 * @port: Port number if per-port device; <0 if not 10167 * @devid: per-port device ID or absolute device ID 10168 * @offset: byte offset into device I2C space 10169 * @len: byte length of I2C space data 10170 * @buf: buffer in which to return I2C data 10171 * 10172 * Reads the I2C data from the indicated device and location. 10173 */ 10174 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10175 unsigned int devid, unsigned int offset, 10176 unsigned int len, u8 *buf) 10177 { 10178 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10179 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10180 int ret = 0; 10181 10182 if (len > I2C_PAGE_SIZE) 10183 return -EINVAL; 10184 10185 /* Dont allow reads that spans multiple pages */ 10186 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10187 return -EINVAL; 10188 10189 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10190 ldst_cmd.op_to_addrspace = 10191 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10192 FW_CMD_REQUEST_F | 10193 FW_CMD_READ_F | 10194 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10195 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10196 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10197 ldst_cmd.u.i2c.did = devid; 10198 10199 while (len > 0) { 10200 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10201 10202 ldst_cmd.u.i2c.boffset = offset; 10203 ldst_cmd.u.i2c.blen = i2c_len; 10204 10205 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10206 &ldst_rpl); 10207 if (ret) 10208 break; 10209 10210 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10211 offset += i2c_len; 10212 buf += i2c_len; 10213 len -= i2c_len; 10214 } 10215 10216 return ret; 10217 } 10218 10219 /** 10220 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10221 * @adapter: the adapter 10222 * @mbox: mailbox to use for the FW command 10223 * @vf: one of the VFs instantiated by the specified PF 10224 * @vlan: The vlanid to be set 10225 */ 10226 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10227 u16 vlan) 10228 { 10229 struct fw_acl_vlan_cmd vlan_cmd; 10230 unsigned int enable; 10231 10232 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10233 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10234 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10235 FW_CMD_REQUEST_F | 10236 FW_CMD_WRITE_F | 10237 FW_CMD_EXEC_F | 10238 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10239 FW_ACL_VLAN_CMD_VFN_V(vf)); 10240 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10241 /* Drop all packets that donot match vlan id */ 10242 vlan_cmd.dropnovlan_fm = (enable 10243 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10244 FW_ACL_VLAN_CMD_FM_F) : 0); 10245 if (enable != 0) { 10246 vlan_cmd.nvlan = 1; 10247 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10248 } 10249 10250 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10251 } 10252