1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 } 202 203 /* 204 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 205 */ 206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 207 u32 mbox_addr) 208 { 209 for ( ; nflit; nflit--, mbox_addr += 8) 210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 211 } 212 213 /* 214 * Handle a FW assertion reported in a mailbox. 215 */ 216 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 217 { 218 struct fw_debug_cmd asrt; 219 220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 221 dev_alert(adap->pdev_dev, 222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 225 } 226 227 /** 228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 229 * @adapter: the adapter 230 * @cmd: the Firmware Mailbox Command or Reply 231 * @size: command length in bytes 232 * @access: the time (ms) needed to access the Firmware Mailbox 233 * @execute: the time (ms) the command spent being executed 234 */ 235 static void t4_record_mbox(struct adapter *adapter, 236 const __be64 *cmd, unsigned int size, 237 int access, int execute) 238 { 239 struct mbox_cmd_log *log = adapter->mbox_log; 240 struct mbox_cmd *entry; 241 int i; 242 243 entry = mbox_cmd_log_entry(log, log->cursor++); 244 if (log->cursor == log->size) 245 log->cursor = 0; 246 247 for (i = 0; i < size / 8; i++) 248 entry->cmd[i] = be64_to_cpu(cmd[i]); 249 while (i < MBOX_LEN / 8) 250 entry->cmd[i++] = 0; 251 entry->timestamp = jiffies; 252 entry->seqno = log->seqno++; 253 entry->access = access; 254 entry->execute = execute; 255 } 256 257 /** 258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 259 * @adap: the adapter 260 * @mbox: index of the mailbox to use 261 * @cmd: the command to write 262 * @size: command length in bytes 263 * @rpl: where to optionally store the reply 264 * @sleep_ok: if true we may sleep while awaiting command completion 265 * @timeout: time to wait for command to finish before timing out 266 * 267 * Sends the given command to FW through the selected mailbox and waits 268 * for the FW to execute the command. If @rpl is not %NULL it is used to 269 * store the FW's reply to the command. The command and its optional 270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 271 * to respond. @sleep_ok determines whether we may sleep while awaiting 272 * the response. If sleeping is allowed we use progressive backoff 273 * otherwise we spin. 274 * 275 * The return value is 0 on success or a negative errno on failure. A 276 * failure can happen either because we are not able to execute the 277 * command or FW executes it but signals an error. In the latter case 278 * the return value is the error code indicated by FW (negated). 279 */ 280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 281 int size, void *rpl, bool sleep_ok, int timeout) 282 { 283 static const int delay[] = { 284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 285 }; 286 287 struct mbox_list entry; 288 u16 access = 0; 289 u16 execute = 0; 290 u32 v; 291 u64 res; 292 int i, ms, delay_idx, ret; 293 const __be64 *p = cmd; 294 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 295 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 296 __be64 cmd_rpl[MBOX_LEN / 8]; 297 u32 pcie_fw; 298 299 if ((size & 15) || size > MBOX_LEN) 300 return -EINVAL; 301 302 /* 303 * If the device is off-line, as in EEH, commands will time out. 304 * Fail them early so we don't waste time waiting. 305 */ 306 if (adap->pdev->error_state != pci_channel_io_normal) 307 return -EIO; 308 309 /* If we have a negative timeout, that implies that we can't sleep. */ 310 if (timeout < 0) { 311 sleep_ok = false; 312 timeout = -timeout; 313 } 314 315 /* Queue ourselves onto the mailbox access list. When our entry is at 316 * the front of the list, we have rights to access the mailbox. So we 317 * wait [for a while] till we're at the front [or bail out with an 318 * EBUSY] ... 319 */ 320 spin_lock(&adap->mbox_lock); 321 list_add_tail(&entry.list, &adap->mlist.list); 322 spin_unlock(&adap->mbox_lock); 323 324 delay_idx = 0; 325 ms = delay[0]; 326 327 for (i = 0; ; i += ms) { 328 /* If we've waited too long, return a busy indication. This 329 * really ought to be based on our initial position in the 330 * mailbox access list but this is a start. We very rearely 331 * contend on access to the mailbox ... 332 */ 333 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 334 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 335 spin_lock(&adap->mbox_lock); 336 list_del(&entry.list); 337 spin_unlock(&adap->mbox_lock); 338 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 339 t4_record_mbox(adap, cmd, size, access, ret); 340 return ret; 341 } 342 343 /* If we're at the head, break out and start the mailbox 344 * protocol. 345 */ 346 if (list_first_entry(&adap->mlist.list, struct mbox_list, 347 list) == &entry) 348 break; 349 350 /* Delay for a bit before checking again ... */ 351 if (sleep_ok) { 352 ms = delay[delay_idx]; /* last element may repeat */ 353 if (delay_idx < ARRAY_SIZE(delay) - 1) 354 delay_idx++; 355 msleep(ms); 356 } else { 357 mdelay(ms); 358 } 359 } 360 361 /* Loop trying to get ownership of the mailbox. Return an error 362 * if we can't gain ownership. 363 */ 364 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 365 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 if (v != MBOX_OWNER_DRV) { 368 spin_lock(&adap->mbox_lock); 369 list_del(&entry.list); 370 spin_unlock(&adap->mbox_lock); 371 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 372 t4_record_mbox(adap, cmd, size, access, ret); 373 return ret; 374 } 375 376 /* Copy in the new mailbox command and send it on its way ... */ 377 t4_record_mbox(adap, cmd, size, access, 0); 378 for (i = 0; i < size; i += 8) 379 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 380 381 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 382 t4_read_reg(adap, ctl_reg); /* flush write */ 383 384 delay_idx = 0; 385 ms = delay[0]; 386 387 for (i = 0; 388 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 389 i < timeout; 390 i += ms) { 391 if (sleep_ok) { 392 ms = delay[delay_idx]; /* last element may repeat */ 393 if (delay_idx < ARRAY_SIZE(delay) - 1) 394 delay_idx++; 395 msleep(ms); 396 } else 397 mdelay(ms); 398 399 v = t4_read_reg(adap, ctl_reg); 400 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 401 if (!(v & MBMSGVALID_F)) { 402 t4_write_reg(adap, ctl_reg, 0); 403 continue; 404 } 405 406 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 407 res = be64_to_cpu(cmd_rpl[0]); 408 409 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 410 fw_asrt(adap, data_reg); 411 res = FW_CMD_RETVAL_V(EIO); 412 } else if (rpl) { 413 memcpy(rpl, cmd_rpl, size); 414 } 415 416 t4_write_reg(adap, ctl_reg, 0); 417 418 execute = i + ms; 419 t4_record_mbox(adap, cmd_rpl, 420 MBOX_LEN, access, execute); 421 spin_lock(&adap->mbox_lock); 422 list_del(&entry.list); 423 spin_unlock(&adap->mbox_lock); 424 return -FW_CMD_RETVAL_G((int)res); 425 } 426 } 427 428 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 429 t4_record_mbox(adap, cmd, size, access, ret); 430 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 431 *(const u8 *)cmd, mbox); 432 t4_report_fw_error(adap); 433 spin_lock(&adap->mbox_lock); 434 list_del(&entry.list); 435 spin_unlock(&adap->mbox_lock); 436 t4_fatal_err(adap); 437 return ret; 438 } 439 440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 441 void *rpl, bool sleep_ok) 442 { 443 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 444 FW_CMD_MAX_TIMEOUT); 445 } 446 447 static int t4_edc_err_read(struct adapter *adap, int idx) 448 { 449 u32 edc_ecc_err_addr_reg; 450 u32 rdata_reg; 451 452 if (is_t4(adap->params.chip)) { 453 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 454 return 0; 455 } 456 if (idx != 0 && idx != 1) { 457 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 458 return 0; 459 } 460 461 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 462 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 463 464 CH_WARN(adap, 465 "edc%d err addr 0x%x: 0x%x.\n", 466 idx, edc_ecc_err_addr_reg, 467 t4_read_reg(adap, edc_ecc_err_addr_reg)); 468 CH_WARN(adap, 469 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 470 rdata_reg, 471 (unsigned long long)t4_read_reg64(adap, rdata_reg), 472 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 473 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 480 481 return 0; 482 } 483 484 /** 485 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 486 * @adap: the adapter 487 * @win: PCI-E Memory Window to use 488 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 489 * @addr: address within indicated memory type 490 * @len: amount of memory to transfer 491 * @hbuf: host memory buffer 492 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 493 * 494 * Reads/writes an [almost] arbitrary memory region in the firmware: the 495 * firmware memory address and host buffer must be aligned on 32-bit 496 * boudaries; the length may be arbitrary. The memory is transferred as 497 * a raw byte sequence from/to the firmware's memory. If this memory 498 * contains data structures which contain multi-byte integers, it's the 499 * caller's responsibility to perform appropriate byte order conversions. 500 */ 501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 502 u32 len, void *hbuf, int dir) 503 { 504 u32 pos, offset, resid, memoffset; 505 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 506 u32 *buf; 507 508 /* Argument sanity checks ... 509 */ 510 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 511 return -EINVAL; 512 buf = (u32 *)hbuf; 513 514 /* It's convenient to be able to handle lengths which aren't a 515 * multiple of 32-bits because we often end up transferring files to 516 * the firmware. So we'll handle that by normalizing the length here 517 * and then handling any residual transfer at the end. 518 */ 519 resid = len & 0x3; 520 len -= resid; 521 522 /* Offset into the region of memory which is being accessed 523 * MEM_EDC0 = 0 524 * MEM_EDC1 = 1 525 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 526 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 527 * MEM_HMA = 4 528 */ 529 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 530 if (mtype == MEM_HMA) { 531 memoffset = 2 * (edc_size * 1024 * 1024); 532 } else if (mtype != MEM_MC1) { 533 memoffset = (mtype * (edc_size * 1024 * 1024)); 534 } else { 535 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 536 MA_EXT_MEMORY0_BAR_A)); 537 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 538 } 539 540 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 541 addr = addr + memoffset; 542 543 /* Each PCI-E Memory Window is programmed with a window size -- or 544 * "aperture" -- which controls the granularity of its mapping onto 545 * adapter memory. We need to grab that aperture in order to know 546 * how to use the specified window. The window is also programmed 547 * with the base address of the Memory Window in BAR0's address 548 * space. For T4 this is an absolute PCI-E Bus Address. For T5 549 * the address is relative to BAR0. 550 */ 551 mem_reg = t4_read_reg(adap, 552 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 553 win)); 554 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 555 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 556 if (is_t4(adap->params.chip)) 557 mem_base -= adap->t4_bar0; 558 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 559 560 /* Calculate our initial PCI-E Memory Window Position and Offset into 561 * that Window. 562 */ 563 pos = addr & ~(mem_aperture-1); 564 offset = addr - pos; 565 566 /* Set up initial PCI-E Memory Window to cover the start of our 567 * transfer. (Read it back to ensure that changes propagate before we 568 * attempt to use the new value.) 569 */ 570 t4_write_reg(adap, 571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 572 pos | win_pf); 573 t4_read_reg(adap, 574 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 575 576 /* Transfer data to/from the adapter as long as there's an integral 577 * number of 32-bit transfers to complete. 578 * 579 * A note on Endianness issues: 580 * 581 * The "register" reads and writes below from/to the PCI-E Memory 582 * Window invoke the standard adapter Big-Endian to PCI-E Link 583 * Little-Endian "swizzel." As a result, if we have the following 584 * data in adapter memory: 585 * 586 * Memory: ... | b0 | b1 | b2 | b3 | ... 587 * Address: i+0 i+1 i+2 i+3 588 * 589 * Then a read of the adapter memory via the PCI-E Memory Window 590 * will yield: 591 * 592 * x = readl(i) 593 * 31 0 594 * [ b3 | b2 | b1 | b0 ] 595 * 596 * If this value is stored into local memory on a Little-Endian system 597 * it will show up correctly in local memory as: 598 * 599 * ( ..., b0, b1, b2, b3, ... ) 600 * 601 * But on a Big-Endian system, the store will show up in memory 602 * incorrectly swizzled as: 603 * 604 * ( ..., b3, b2, b1, b0, ... ) 605 * 606 * So we need to account for this in the reads and writes to the 607 * PCI-E Memory Window below by undoing the register read/write 608 * swizzels. 609 */ 610 while (len > 0) { 611 if (dir == T4_MEMORY_READ) 612 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 613 mem_base + offset)); 614 else 615 t4_write_reg(adap, mem_base + offset, 616 (__force u32)cpu_to_le32(*buf++)); 617 offset += sizeof(__be32); 618 len -= sizeof(__be32); 619 620 /* If we've reached the end of our current window aperture, 621 * move the PCI-E Memory Window on to the next. Note that 622 * doing this here after "len" may be 0 allows us to set up 623 * the PCI-E Memory Window for a possible final residual 624 * transfer below ... 625 */ 626 if (offset == mem_aperture) { 627 pos += mem_aperture; 628 offset = 0; 629 t4_write_reg(adap, 630 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 631 win), pos | win_pf); 632 t4_read_reg(adap, 633 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 634 win)); 635 } 636 } 637 638 /* If the original transfer had a length which wasn't a multiple of 639 * 32-bits, now's where we need to finish off the transfer of the 640 * residual amount. The PCI-E Memory Window has already been moved 641 * above (if necessary) to cover this final transfer. 642 */ 643 if (resid) { 644 union { 645 u32 word; 646 char byte[4]; 647 } last; 648 unsigned char *bp; 649 int i; 650 651 if (dir == T4_MEMORY_READ) { 652 last.word = le32_to_cpu( 653 (__force __le32)t4_read_reg(adap, 654 mem_base + offset)); 655 for (bp = (unsigned char *)buf, i = resid; i < 4; i++) 656 bp[i] = last.byte[i]; 657 } else { 658 last.word = *buf; 659 for (i = resid; i < 4; i++) 660 last.byte[i] = 0; 661 t4_write_reg(adap, mem_base + offset, 662 (__force u32)cpu_to_le32(last.word)); 663 } 664 } 665 666 return 0; 667 } 668 669 /* Return the specified PCI-E Configuration Space register from our Physical 670 * Function. We try first via a Firmware LDST Command since we prefer to let 671 * the firmware own all of these registers, but if that fails we go for it 672 * directly ourselves. 673 */ 674 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 675 { 676 u32 val, ldst_addrspace; 677 678 /* If fw_attach != 0, construct and send the Firmware LDST Command to 679 * retrieve the specified PCI-E Configuration Space register. 680 */ 681 struct fw_ldst_cmd ldst_cmd; 682 int ret; 683 684 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 685 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 686 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 687 FW_CMD_REQUEST_F | 688 FW_CMD_READ_F | 689 ldst_addrspace); 690 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 691 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 692 ldst_cmd.u.pcie.ctrl_to_fn = 693 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 694 ldst_cmd.u.pcie.r = reg; 695 696 /* If the LDST Command succeeds, return the result, otherwise 697 * fall through to reading it directly ourselves ... 698 */ 699 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 700 &ldst_cmd); 701 if (ret == 0) 702 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 703 else 704 /* Read the desired Configuration Space register via the PCI-E 705 * Backdoor mechanism. 706 */ 707 t4_hw_pci_read_cfg4(adap, reg, &val); 708 return val; 709 } 710 711 /* Get the window based on base passed to it. 712 * Window aperture is currently unhandled, but there is no use case for it 713 * right now 714 */ 715 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 716 u32 memwin_base) 717 { 718 u32 ret; 719 720 if (is_t4(adap->params.chip)) { 721 u32 bar0; 722 723 /* Truncation intentional: we only read the bottom 32-bits of 724 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 725 * mechanism to read BAR0 instead of using 726 * pci_resource_start() because we could be operating from 727 * within a Virtual Machine which is trapping our accesses to 728 * our Configuration Space and we need to set up the PCI-E 729 * Memory Window decoders with the actual addresses which will 730 * be coming across the PCI-E link. 731 */ 732 bar0 = t4_read_pcie_cfg4(adap, pci_base); 733 bar0 &= pci_mask; 734 adap->t4_bar0 = bar0; 735 736 ret = bar0 + memwin_base; 737 } else { 738 /* For T5, only relative offset inside the PCIe BAR is passed */ 739 ret = memwin_base; 740 } 741 return ret; 742 } 743 744 /* Get the default utility window (win0) used by everyone */ 745 u32 t4_get_util_window(struct adapter *adap) 746 { 747 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 748 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 749 } 750 751 /* Set up memory window for accessing adapter memory ranges. (Read 752 * back MA register to ensure that changes propagate before we attempt 753 * to use the new values.) 754 */ 755 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 756 { 757 t4_write_reg(adap, 758 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 759 memwin_base | BIR_V(0) | 760 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 761 t4_read_reg(adap, 762 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 763 } 764 765 /** 766 * t4_get_regs_len - return the size of the chips register set 767 * @adapter: the adapter 768 * 769 * Returns the size of the chip's BAR0 register space. 770 */ 771 unsigned int t4_get_regs_len(struct adapter *adapter) 772 { 773 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 774 775 switch (chip_version) { 776 case CHELSIO_T4: 777 return T4_REGMAP_SIZE; 778 779 case CHELSIO_T5: 780 case CHELSIO_T6: 781 return T5_REGMAP_SIZE; 782 } 783 784 dev_err(adapter->pdev_dev, 785 "Unsupported chip version %d\n", chip_version); 786 return 0; 787 } 788 789 /** 790 * t4_get_regs - read chip registers into provided buffer 791 * @adap: the adapter 792 * @buf: register buffer 793 * @buf_size: size (in bytes) of register buffer 794 * 795 * If the provided register buffer isn't large enough for the chip's 796 * full register range, the register dump will be truncated to the 797 * register buffer's size. 798 */ 799 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 800 { 801 static const unsigned int t4_reg_ranges[] = { 802 0x1008, 0x1108, 803 0x1180, 0x1184, 804 0x1190, 0x1194, 805 0x11a0, 0x11a4, 806 0x11b0, 0x11b4, 807 0x11fc, 0x123c, 808 0x1300, 0x173c, 809 0x1800, 0x18fc, 810 0x3000, 0x30d8, 811 0x30e0, 0x30e4, 812 0x30ec, 0x5910, 813 0x5920, 0x5924, 814 0x5960, 0x5960, 815 0x5968, 0x5968, 816 0x5970, 0x5970, 817 0x5978, 0x5978, 818 0x5980, 0x5980, 819 0x5988, 0x5988, 820 0x5990, 0x5990, 821 0x5998, 0x5998, 822 0x59a0, 0x59d4, 823 0x5a00, 0x5ae0, 824 0x5ae8, 0x5ae8, 825 0x5af0, 0x5af0, 826 0x5af8, 0x5af8, 827 0x6000, 0x6098, 828 0x6100, 0x6150, 829 0x6200, 0x6208, 830 0x6240, 0x6248, 831 0x6280, 0x62b0, 832 0x62c0, 0x6338, 833 0x6370, 0x638c, 834 0x6400, 0x643c, 835 0x6500, 0x6524, 836 0x6a00, 0x6a04, 837 0x6a14, 0x6a38, 838 0x6a60, 0x6a70, 839 0x6a78, 0x6a78, 840 0x6b00, 0x6b0c, 841 0x6b1c, 0x6b84, 842 0x6bf0, 0x6bf8, 843 0x6c00, 0x6c0c, 844 0x6c1c, 0x6c84, 845 0x6cf0, 0x6cf8, 846 0x6d00, 0x6d0c, 847 0x6d1c, 0x6d84, 848 0x6df0, 0x6df8, 849 0x6e00, 0x6e0c, 850 0x6e1c, 0x6e84, 851 0x6ef0, 0x6ef8, 852 0x6f00, 0x6f0c, 853 0x6f1c, 0x6f84, 854 0x6ff0, 0x6ff8, 855 0x7000, 0x700c, 856 0x701c, 0x7084, 857 0x70f0, 0x70f8, 858 0x7100, 0x710c, 859 0x711c, 0x7184, 860 0x71f0, 0x71f8, 861 0x7200, 0x720c, 862 0x721c, 0x7284, 863 0x72f0, 0x72f8, 864 0x7300, 0x730c, 865 0x731c, 0x7384, 866 0x73f0, 0x73f8, 867 0x7400, 0x7450, 868 0x7500, 0x7530, 869 0x7600, 0x760c, 870 0x7614, 0x761c, 871 0x7680, 0x76cc, 872 0x7700, 0x7798, 873 0x77c0, 0x77fc, 874 0x7900, 0x79fc, 875 0x7b00, 0x7b58, 876 0x7b60, 0x7b84, 877 0x7b8c, 0x7c38, 878 0x7d00, 0x7d38, 879 0x7d40, 0x7d80, 880 0x7d8c, 0x7ddc, 881 0x7de4, 0x7e04, 882 0x7e10, 0x7e1c, 883 0x7e24, 0x7e38, 884 0x7e40, 0x7e44, 885 0x7e4c, 0x7e78, 886 0x7e80, 0x7ea4, 887 0x7eac, 0x7edc, 888 0x7ee8, 0x7efc, 889 0x8dc0, 0x8e04, 890 0x8e10, 0x8e1c, 891 0x8e30, 0x8e78, 892 0x8ea0, 0x8eb8, 893 0x8ec0, 0x8f6c, 894 0x8fc0, 0x9008, 895 0x9010, 0x9058, 896 0x9060, 0x9060, 897 0x9068, 0x9074, 898 0x90fc, 0x90fc, 899 0x9400, 0x9408, 900 0x9410, 0x9458, 901 0x9600, 0x9600, 902 0x9608, 0x9638, 903 0x9640, 0x96bc, 904 0x9800, 0x9808, 905 0x9820, 0x983c, 906 0x9850, 0x9864, 907 0x9c00, 0x9c6c, 908 0x9c80, 0x9cec, 909 0x9d00, 0x9d6c, 910 0x9d80, 0x9dec, 911 0x9e00, 0x9e6c, 912 0x9e80, 0x9eec, 913 0x9f00, 0x9f6c, 914 0x9f80, 0x9fec, 915 0xd004, 0xd004, 916 0xd010, 0xd03c, 917 0xdfc0, 0xdfe0, 918 0xe000, 0xea7c, 919 0xf000, 0x11110, 920 0x11118, 0x11190, 921 0x19040, 0x1906c, 922 0x19078, 0x19080, 923 0x1908c, 0x190e4, 924 0x190f0, 0x190f8, 925 0x19100, 0x19110, 926 0x19120, 0x19124, 927 0x19150, 0x19194, 928 0x1919c, 0x191b0, 929 0x191d0, 0x191e8, 930 0x19238, 0x1924c, 931 0x193f8, 0x1943c, 932 0x1944c, 0x19474, 933 0x19490, 0x194e0, 934 0x194f0, 0x194f8, 935 0x19800, 0x19c08, 936 0x19c10, 0x19c90, 937 0x19ca0, 0x19ce4, 938 0x19cf0, 0x19d40, 939 0x19d50, 0x19d94, 940 0x19da0, 0x19de8, 941 0x19df0, 0x19e40, 942 0x19e50, 0x19e90, 943 0x19ea0, 0x19f4c, 944 0x1a000, 0x1a004, 945 0x1a010, 0x1a06c, 946 0x1a0b0, 0x1a0e4, 947 0x1a0ec, 0x1a0f4, 948 0x1a100, 0x1a108, 949 0x1a114, 0x1a120, 950 0x1a128, 0x1a130, 951 0x1a138, 0x1a138, 952 0x1a190, 0x1a1c4, 953 0x1a1fc, 0x1a1fc, 954 0x1e040, 0x1e04c, 955 0x1e284, 0x1e28c, 956 0x1e2c0, 0x1e2c0, 957 0x1e2e0, 0x1e2e0, 958 0x1e300, 0x1e384, 959 0x1e3c0, 0x1e3c8, 960 0x1e440, 0x1e44c, 961 0x1e684, 0x1e68c, 962 0x1e6c0, 0x1e6c0, 963 0x1e6e0, 0x1e6e0, 964 0x1e700, 0x1e784, 965 0x1e7c0, 0x1e7c8, 966 0x1e840, 0x1e84c, 967 0x1ea84, 0x1ea8c, 968 0x1eac0, 0x1eac0, 969 0x1eae0, 0x1eae0, 970 0x1eb00, 0x1eb84, 971 0x1ebc0, 0x1ebc8, 972 0x1ec40, 0x1ec4c, 973 0x1ee84, 0x1ee8c, 974 0x1eec0, 0x1eec0, 975 0x1eee0, 0x1eee0, 976 0x1ef00, 0x1ef84, 977 0x1efc0, 0x1efc8, 978 0x1f040, 0x1f04c, 979 0x1f284, 0x1f28c, 980 0x1f2c0, 0x1f2c0, 981 0x1f2e0, 0x1f2e0, 982 0x1f300, 0x1f384, 983 0x1f3c0, 0x1f3c8, 984 0x1f440, 0x1f44c, 985 0x1f684, 0x1f68c, 986 0x1f6c0, 0x1f6c0, 987 0x1f6e0, 0x1f6e0, 988 0x1f700, 0x1f784, 989 0x1f7c0, 0x1f7c8, 990 0x1f840, 0x1f84c, 991 0x1fa84, 0x1fa8c, 992 0x1fac0, 0x1fac0, 993 0x1fae0, 0x1fae0, 994 0x1fb00, 0x1fb84, 995 0x1fbc0, 0x1fbc8, 996 0x1fc40, 0x1fc4c, 997 0x1fe84, 0x1fe8c, 998 0x1fec0, 0x1fec0, 999 0x1fee0, 0x1fee0, 1000 0x1ff00, 0x1ff84, 1001 0x1ffc0, 0x1ffc8, 1002 0x20000, 0x2002c, 1003 0x20100, 0x2013c, 1004 0x20190, 0x201a0, 1005 0x201a8, 0x201b8, 1006 0x201c4, 0x201c8, 1007 0x20200, 0x20318, 1008 0x20400, 0x204b4, 1009 0x204c0, 0x20528, 1010 0x20540, 0x20614, 1011 0x21000, 0x21040, 1012 0x2104c, 0x21060, 1013 0x210c0, 0x210ec, 1014 0x21200, 0x21268, 1015 0x21270, 0x21284, 1016 0x212fc, 0x21388, 1017 0x21400, 0x21404, 1018 0x21500, 0x21500, 1019 0x21510, 0x21518, 1020 0x2152c, 0x21530, 1021 0x2153c, 0x2153c, 1022 0x21550, 0x21554, 1023 0x21600, 0x21600, 1024 0x21608, 0x2161c, 1025 0x21624, 0x21628, 1026 0x21630, 0x21634, 1027 0x2163c, 0x2163c, 1028 0x21700, 0x2171c, 1029 0x21780, 0x2178c, 1030 0x21800, 0x21818, 1031 0x21820, 0x21828, 1032 0x21830, 0x21848, 1033 0x21850, 0x21854, 1034 0x21860, 0x21868, 1035 0x21870, 0x21870, 1036 0x21878, 0x21898, 1037 0x218a0, 0x218a8, 1038 0x218b0, 0x218c8, 1039 0x218d0, 0x218d4, 1040 0x218e0, 0x218e8, 1041 0x218f0, 0x218f0, 1042 0x218f8, 0x21a18, 1043 0x21a20, 0x21a28, 1044 0x21a30, 0x21a48, 1045 0x21a50, 0x21a54, 1046 0x21a60, 0x21a68, 1047 0x21a70, 0x21a70, 1048 0x21a78, 0x21a98, 1049 0x21aa0, 0x21aa8, 1050 0x21ab0, 0x21ac8, 1051 0x21ad0, 0x21ad4, 1052 0x21ae0, 0x21ae8, 1053 0x21af0, 0x21af0, 1054 0x21af8, 0x21c18, 1055 0x21c20, 0x21c20, 1056 0x21c28, 0x21c30, 1057 0x21c38, 0x21c38, 1058 0x21c80, 0x21c98, 1059 0x21ca0, 0x21ca8, 1060 0x21cb0, 0x21cc8, 1061 0x21cd0, 0x21cd4, 1062 0x21ce0, 0x21ce8, 1063 0x21cf0, 0x21cf0, 1064 0x21cf8, 0x21d7c, 1065 0x21e00, 0x21e04, 1066 0x22000, 0x2202c, 1067 0x22100, 0x2213c, 1068 0x22190, 0x221a0, 1069 0x221a8, 0x221b8, 1070 0x221c4, 0x221c8, 1071 0x22200, 0x22318, 1072 0x22400, 0x224b4, 1073 0x224c0, 0x22528, 1074 0x22540, 0x22614, 1075 0x23000, 0x23040, 1076 0x2304c, 0x23060, 1077 0x230c0, 0x230ec, 1078 0x23200, 0x23268, 1079 0x23270, 0x23284, 1080 0x232fc, 0x23388, 1081 0x23400, 0x23404, 1082 0x23500, 0x23500, 1083 0x23510, 0x23518, 1084 0x2352c, 0x23530, 1085 0x2353c, 0x2353c, 1086 0x23550, 0x23554, 1087 0x23600, 0x23600, 1088 0x23608, 0x2361c, 1089 0x23624, 0x23628, 1090 0x23630, 0x23634, 1091 0x2363c, 0x2363c, 1092 0x23700, 0x2371c, 1093 0x23780, 0x2378c, 1094 0x23800, 0x23818, 1095 0x23820, 0x23828, 1096 0x23830, 0x23848, 1097 0x23850, 0x23854, 1098 0x23860, 0x23868, 1099 0x23870, 0x23870, 1100 0x23878, 0x23898, 1101 0x238a0, 0x238a8, 1102 0x238b0, 0x238c8, 1103 0x238d0, 0x238d4, 1104 0x238e0, 0x238e8, 1105 0x238f0, 0x238f0, 1106 0x238f8, 0x23a18, 1107 0x23a20, 0x23a28, 1108 0x23a30, 0x23a48, 1109 0x23a50, 0x23a54, 1110 0x23a60, 0x23a68, 1111 0x23a70, 0x23a70, 1112 0x23a78, 0x23a98, 1113 0x23aa0, 0x23aa8, 1114 0x23ab0, 0x23ac8, 1115 0x23ad0, 0x23ad4, 1116 0x23ae0, 0x23ae8, 1117 0x23af0, 0x23af0, 1118 0x23af8, 0x23c18, 1119 0x23c20, 0x23c20, 1120 0x23c28, 0x23c30, 1121 0x23c38, 0x23c38, 1122 0x23c80, 0x23c98, 1123 0x23ca0, 0x23ca8, 1124 0x23cb0, 0x23cc8, 1125 0x23cd0, 0x23cd4, 1126 0x23ce0, 0x23ce8, 1127 0x23cf0, 0x23cf0, 1128 0x23cf8, 0x23d7c, 1129 0x23e00, 0x23e04, 1130 0x24000, 0x2402c, 1131 0x24100, 0x2413c, 1132 0x24190, 0x241a0, 1133 0x241a8, 0x241b8, 1134 0x241c4, 0x241c8, 1135 0x24200, 0x24318, 1136 0x24400, 0x244b4, 1137 0x244c0, 0x24528, 1138 0x24540, 0x24614, 1139 0x25000, 0x25040, 1140 0x2504c, 0x25060, 1141 0x250c0, 0x250ec, 1142 0x25200, 0x25268, 1143 0x25270, 0x25284, 1144 0x252fc, 0x25388, 1145 0x25400, 0x25404, 1146 0x25500, 0x25500, 1147 0x25510, 0x25518, 1148 0x2552c, 0x25530, 1149 0x2553c, 0x2553c, 1150 0x25550, 0x25554, 1151 0x25600, 0x25600, 1152 0x25608, 0x2561c, 1153 0x25624, 0x25628, 1154 0x25630, 0x25634, 1155 0x2563c, 0x2563c, 1156 0x25700, 0x2571c, 1157 0x25780, 0x2578c, 1158 0x25800, 0x25818, 1159 0x25820, 0x25828, 1160 0x25830, 0x25848, 1161 0x25850, 0x25854, 1162 0x25860, 0x25868, 1163 0x25870, 0x25870, 1164 0x25878, 0x25898, 1165 0x258a0, 0x258a8, 1166 0x258b0, 0x258c8, 1167 0x258d0, 0x258d4, 1168 0x258e0, 0x258e8, 1169 0x258f0, 0x258f0, 1170 0x258f8, 0x25a18, 1171 0x25a20, 0x25a28, 1172 0x25a30, 0x25a48, 1173 0x25a50, 0x25a54, 1174 0x25a60, 0x25a68, 1175 0x25a70, 0x25a70, 1176 0x25a78, 0x25a98, 1177 0x25aa0, 0x25aa8, 1178 0x25ab0, 0x25ac8, 1179 0x25ad0, 0x25ad4, 1180 0x25ae0, 0x25ae8, 1181 0x25af0, 0x25af0, 1182 0x25af8, 0x25c18, 1183 0x25c20, 0x25c20, 1184 0x25c28, 0x25c30, 1185 0x25c38, 0x25c38, 1186 0x25c80, 0x25c98, 1187 0x25ca0, 0x25ca8, 1188 0x25cb0, 0x25cc8, 1189 0x25cd0, 0x25cd4, 1190 0x25ce0, 0x25ce8, 1191 0x25cf0, 0x25cf0, 1192 0x25cf8, 0x25d7c, 1193 0x25e00, 0x25e04, 1194 0x26000, 0x2602c, 1195 0x26100, 0x2613c, 1196 0x26190, 0x261a0, 1197 0x261a8, 0x261b8, 1198 0x261c4, 0x261c8, 1199 0x26200, 0x26318, 1200 0x26400, 0x264b4, 1201 0x264c0, 0x26528, 1202 0x26540, 0x26614, 1203 0x27000, 0x27040, 1204 0x2704c, 0x27060, 1205 0x270c0, 0x270ec, 1206 0x27200, 0x27268, 1207 0x27270, 0x27284, 1208 0x272fc, 0x27388, 1209 0x27400, 0x27404, 1210 0x27500, 0x27500, 1211 0x27510, 0x27518, 1212 0x2752c, 0x27530, 1213 0x2753c, 0x2753c, 1214 0x27550, 0x27554, 1215 0x27600, 0x27600, 1216 0x27608, 0x2761c, 1217 0x27624, 0x27628, 1218 0x27630, 0x27634, 1219 0x2763c, 0x2763c, 1220 0x27700, 0x2771c, 1221 0x27780, 0x2778c, 1222 0x27800, 0x27818, 1223 0x27820, 0x27828, 1224 0x27830, 0x27848, 1225 0x27850, 0x27854, 1226 0x27860, 0x27868, 1227 0x27870, 0x27870, 1228 0x27878, 0x27898, 1229 0x278a0, 0x278a8, 1230 0x278b0, 0x278c8, 1231 0x278d0, 0x278d4, 1232 0x278e0, 0x278e8, 1233 0x278f0, 0x278f0, 1234 0x278f8, 0x27a18, 1235 0x27a20, 0x27a28, 1236 0x27a30, 0x27a48, 1237 0x27a50, 0x27a54, 1238 0x27a60, 0x27a68, 1239 0x27a70, 0x27a70, 1240 0x27a78, 0x27a98, 1241 0x27aa0, 0x27aa8, 1242 0x27ab0, 0x27ac8, 1243 0x27ad0, 0x27ad4, 1244 0x27ae0, 0x27ae8, 1245 0x27af0, 0x27af0, 1246 0x27af8, 0x27c18, 1247 0x27c20, 0x27c20, 1248 0x27c28, 0x27c30, 1249 0x27c38, 0x27c38, 1250 0x27c80, 0x27c98, 1251 0x27ca0, 0x27ca8, 1252 0x27cb0, 0x27cc8, 1253 0x27cd0, 0x27cd4, 1254 0x27ce0, 0x27ce8, 1255 0x27cf0, 0x27cf0, 1256 0x27cf8, 0x27d7c, 1257 0x27e00, 0x27e04, 1258 }; 1259 1260 static const unsigned int t5_reg_ranges[] = { 1261 0x1008, 0x10c0, 1262 0x10cc, 0x10f8, 1263 0x1100, 0x1100, 1264 0x110c, 0x1148, 1265 0x1180, 0x1184, 1266 0x1190, 0x1194, 1267 0x11a0, 0x11a4, 1268 0x11b0, 0x11b4, 1269 0x11fc, 0x123c, 1270 0x1280, 0x173c, 1271 0x1800, 0x18fc, 1272 0x3000, 0x3028, 1273 0x3060, 0x30b0, 1274 0x30b8, 0x30d8, 1275 0x30e0, 0x30fc, 1276 0x3140, 0x357c, 1277 0x35a8, 0x35cc, 1278 0x35ec, 0x35ec, 1279 0x3600, 0x5624, 1280 0x56cc, 0x56ec, 1281 0x56f4, 0x5720, 1282 0x5728, 0x575c, 1283 0x580c, 0x5814, 1284 0x5890, 0x589c, 1285 0x58a4, 0x58ac, 1286 0x58b8, 0x58bc, 1287 0x5940, 0x59c8, 1288 0x59d0, 0x59dc, 1289 0x59fc, 0x5a18, 1290 0x5a60, 0x5a70, 1291 0x5a80, 0x5a9c, 1292 0x5b94, 0x5bfc, 1293 0x6000, 0x6020, 1294 0x6028, 0x6040, 1295 0x6058, 0x609c, 1296 0x60a8, 0x614c, 1297 0x7700, 0x7798, 1298 0x77c0, 0x78fc, 1299 0x7b00, 0x7b58, 1300 0x7b60, 0x7b84, 1301 0x7b8c, 0x7c54, 1302 0x7d00, 0x7d38, 1303 0x7d40, 0x7d80, 1304 0x7d8c, 0x7ddc, 1305 0x7de4, 0x7e04, 1306 0x7e10, 0x7e1c, 1307 0x7e24, 0x7e38, 1308 0x7e40, 0x7e44, 1309 0x7e4c, 0x7e78, 1310 0x7e80, 0x7edc, 1311 0x7ee8, 0x7efc, 1312 0x8dc0, 0x8de0, 1313 0x8df8, 0x8e04, 1314 0x8e10, 0x8e84, 1315 0x8ea0, 0x8f84, 1316 0x8fc0, 0x9058, 1317 0x9060, 0x9060, 1318 0x9068, 0x90f8, 1319 0x9400, 0x9408, 1320 0x9410, 0x9470, 1321 0x9600, 0x9600, 1322 0x9608, 0x9638, 1323 0x9640, 0x96f4, 1324 0x9800, 0x9808, 1325 0x9820, 0x983c, 1326 0x9850, 0x9864, 1327 0x9c00, 0x9c6c, 1328 0x9c80, 0x9cec, 1329 0x9d00, 0x9d6c, 1330 0x9d80, 0x9dec, 1331 0x9e00, 0x9e6c, 1332 0x9e80, 0x9eec, 1333 0x9f00, 0x9f6c, 1334 0x9f80, 0xa020, 1335 0xd004, 0xd004, 1336 0xd010, 0xd03c, 1337 0xdfc0, 0xdfe0, 1338 0xe000, 0x1106c, 1339 0x11074, 0x11088, 1340 0x1109c, 0x1117c, 1341 0x11190, 0x11204, 1342 0x19040, 0x1906c, 1343 0x19078, 0x19080, 1344 0x1908c, 0x190e8, 1345 0x190f0, 0x190f8, 1346 0x19100, 0x19110, 1347 0x19120, 0x19124, 1348 0x19150, 0x19194, 1349 0x1919c, 0x191b0, 1350 0x191d0, 0x191e8, 1351 0x19238, 0x19290, 1352 0x193f8, 0x19428, 1353 0x19430, 0x19444, 1354 0x1944c, 0x1946c, 1355 0x19474, 0x19474, 1356 0x19490, 0x194cc, 1357 0x194f0, 0x194f8, 1358 0x19c00, 0x19c08, 1359 0x19c10, 0x19c60, 1360 0x19c94, 0x19ce4, 1361 0x19cf0, 0x19d40, 1362 0x19d50, 0x19d94, 1363 0x19da0, 0x19de8, 1364 0x19df0, 0x19e10, 1365 0x19e50, 0x19e90, 1366 0x19ea0, 0x19f24, 1367 0x19f34, 0x19f34, 1368 0x19f40, 0x19f50, 1369 0x19f90, 0x19fb4, 1370 0x19fc4, 0x19fe4, 1371 0x1a000, 0x1a004, 1372 0x1a010, 0x1a06c, 1373 0x1a0b0, 0x1a0e4, 1374 0x1a0ec, 0x1a0f8, 1375 0x1a100, 0x1a108, 1376 0x1a114, 0x1a120, 1377 0x1a128, 0x1a130, 1378 0x1a138, 0x1a138, 1379 0x1a190, 0x1a1c4, 1380 0x1a1fc, 0x1a1fc, 1381 0x1e008, 0x1e00c, 1382 0x1e040, 0x1e044, 1383 0x1e04c, 0x1e04c, 1384 0x1e284, 0x1e290, 1385 0x1e2c0, 0x1e2c0, 1386 0x1e2e0, 0x1e2e0, 1387 0x1e300, 0x1e384, 1388 0x1e3c0, 0x1e3c8, 1389 0x1e408, 0x1e40c, 1390 0x1e440, 0x1e444, 1391 0x1e44c, 0x1e44c, 1392 0x1e684, 0x1e690, 1393 0x1e6c0, 0x1e6c0, 1394 0x1e6e0, 0x1e6e0, 1395 0x1e700, 0x1e784, 1396 0x1e7c0, 0x1e7c8, 1397 0x1e808, 0x1e80c, 1398 0x1e840, 0x1e844, 1399 0x1e84c, 0x1e84c, 1400 0x1ea84, 0x1ea90, 1401 0x1eac0, 0x1eac0, 1402 0x1eae0, 0x1eae0, 1403 0x1eb00, 0x1eb84, 1404 0x1ebc0, 0x1ebc8, 1405 0x1ec08, 0x1ec0c, 1406 0x1ec40, 0x1ec44, 1407 0x1ec4c, 0x1ec4c, 1408 0x1ee84, 0x1ee90, 1409 0x1eec0, 0x1eec0, 1410 0x1eee0, 0x1eee0, 1411 0x1ef00, 0x1ef84, 1412 0x1efc0, 0x1efc8, 1413 0x1f008, 0x1f00c, 1414 0x1f040, 0x1f044, 1415 0x1f04c, 0x1f04c, 1416 0x1f284, 0x1f290, 1417 0x1f2c0, 0x1f2c0, 1418 0x1f2e0, 0x1f2e0, 1419 0x1f300, 0x1f384, 1420 0x1f3c0, 0x1f3c8, 1421 0x1f408, 0x1f40c, 1422 0x1f440, 0x1f444, 1423 0x1f44c, 0x1f44c, 1424 0x1f684, 0x1f690, 1425 0x1f6c0, 0x1f6c0, 1426 0x1f6e0, 0x1f6e0, 1427 0x1f700, 0x1f784, 1428 0x1f7c0, 0x1f7c8, 1429 0x1f808, 0x1f80c, 1430 0x1f840, 0x1f844, 1431 0x1f84c, 0x1f84c, 1432 0x1fa84, 0x1fa90, 1433 0x1fac0, 0x1fac0, 1434 0x1fae0, 0x1fae0, 1435 0x1fb00, 0x1fb84, 1436 0x1fbc0, 0x1fbc8, 1437 0x1fc08, 0x1fc0c, 1438 0x1fc40, 0x1fc44, 1439 0x1fc4c, 0x1fc4c, 1440 0x1fe84, 0x1fe90, 1441 0x1fec0, 0x1fec0, 1442 0x1fee0, 0x1fee0, 1443 0x1ff00, 0x1ff84, 1444 0x1ffc0, 0x1ffc8, 1445 0x30000, 0x30030, 1446 0x30100, 0x30144, 1447 0x30190, 0x301a0, 1448 0x301a8, 0x301b8, 1449 0x301c4, 0x301c8, 1450 0x301d0, 0x301d0, 1451 0x30200, 0x30318, 1452 0x30400, 0x304b4, 1453 0x304c0, 0x3052c, 1454 0x30540, 0x3061c, 1455 0x30800, 0x30828, 1456 0x30834, 0x30834, 1457 0x308c0, 0x30908, 1458 0x30910, 0x309ac, 1459 0x30a00, 0x30a14, 1460 0x30a1c, 0x30a2c, 1461 0x30a44, 0x30a50, 1462 0x30a74, 0x30a74, 1463 0x30a7c, 0x30afc, 1464 0x30b08, 0x30c24, 1465 0x30d00, 0x30d00, 1466 0x30d08, 0x30d14, 1467 0x30d1c, 0x30d20, 1468 0x30d3c, 0x30d3c, 1469 0x30d48, 0x30d50, 1470 0x31200, 0x3120c, 1471 0x31220, 0x31220, 1472 0x31240, 0x31240, 1473 0x31600, 0x3160c, 1474 0x31a00, 0x31a1c, 1475 0x31e00, 0x31e20, 1476 0x31e38, 0x31e3c, 1477 0x31e80, 0x31e80, 1478 0x31e88, 0x31ea8, 1479 0x31eb0, 0x31eb4, 1480 0x31ec8, 0x31ed4, 1481 0x31fb8, 0x32004, 1482 0x32200, 0x32200, 1483 0x32208, 0x32240, 1484 0x32248, 0x32280, 1485 0x32288, 0x322c0, 1486 0x322c8, 0x322fc, 1487 0x32600, 0x32630, 1488 0x32a00, 0x32abc, 1489 0x32b00, 0x32b10, 1490 0x32b20, 0x32b30, 1491 0x32b40, 0x32b50, 1492 0x32b60, 0x32b70, 1493 0x33000, 0x33028, 1494 0x33030, 0x33048, 1495 0x33060, 0x33068, 1496 0x33070, 0x3309c, 1497 0x330f0, 0x33128, 1498 0x33130, 0x33148, 1499 0x33160, 0x33168, 1500 0x33170, 0x3319c, 1501 0x331f0, 0x33238, 1502 0x33240, 0x33240, 1503 0x33248, 0x33250, 1504 0x3325c, 0x33264, 1505 0x33270, 0x332b8, 1506 0x332c0, 0x332e4, 1507 0x332f8, 0x33338, 1508 0x33340, 0x33340, 1509 0x33348, 0x33350, 1510 0x3335c, 0x33364, 1511 0x33370, 0x333b8, 1512 0x333c0, 0x333e4, 1513 0x333f8, 0x33428, 1514 0x33430, 0x33448, 1515 0x33460, 0x33468, 1516 0x33470, 0x3349c, 1517 0x334f0, 0x33528, 1518 0x33530, 0x33548, 1519 0x33560, 0x33568, 1520 0x33570, 0x3359c, 1521 0x335f0, 0x33638, 1522 0x33640, 0x33640, 1523 0x33648, 0x33650, 1524 0x3365c, 0x33664, 1525 0x33670, 0x336b8, 1526 0x336c0, 0x336e4, 1527 0x336f8, 0x33738, 1528 0x33740, 0x33740, 1529 0x33748, 0x33750, 1530 0x3375c, 0x33764, 1531 0x33770, 0x337b8, 1532 0x337c0, 0x337e4, 1533 0x337f8, 0x337fc, 1534 0x33814, 0x33814, 1535 0x3382c, 0x3382c, 1536 0x33880, 0x3388c, 1537 0x338e8, 0x338ec, 1538 0x33900, 0x33928, 1539 0x33930, 0x33948, 1540 0x33960, 0x33968, 1541 0x33970, 0x3399c, 1542 0x339f0, 0x33a38, 1543 0x33a40, 0x33a40, 1544 0x33a48, 0x33a50, 1545 0x33a5c, 0x33a64, 1546 0x33a70, 0x33ab8, 1547 0x33ac0, 0x33ae4, 1548 0x33af8, 0x33b10, 1549 0x33b28, 0x33b28, 1550 0x33b3c, 0x33b50, 1551 0x33bf0, 0x33c10, 1552 0x33c28, 0x33c28, 1553 0x33c3c, 0x33c50, 1554 0x33cf0, 0x33cfc, 1555 0x34000, 0x34030, 1556 0x34100, 0x34144, 1557 0x34190, 0x341a0, 1558 0x341a8, 0x341b8, 1559 0x341c4, 0x341c8, 1560 0x341d0, 0x341d0, 1561 0x34200, 0x34318, 1562 0x34400, 0x344b4, 1563 0x344c0, 0x3452c, 1564 0x34540, 0x3461c, 1565 0x34800, 0x34828, 1566 0x34834, 0x34834, 1567 0x348c0, 0x34908, 1568 0x34910, 0x349ac, 1569 0x34a00, 0x34a14, 1570 0x34a1c, 0x34a2c, 1571 0x34a44, 0x34a50, 1572 0x34a74, 0x34a74, 1573 0x34a7c, 0x34afc, 1574 0x34b08, 0x34c24, 1575 0x34d00, 0x34d00, 1576 0x34d08, 0x34d14, 1577 0x34d1c, 0x34d20, 1578 0x34d3c, 0x34d3c, 1579 0x34d48, 0x34d50, 1580 0x35200, 0x3520c, 1581 0x35220, 0x35220, 1582 0x35240, 0x35240, 1583 0x35600, 0x3560c, 1584 0x35a00, 0x35a1c, 1585 0x35e00, 0x35e20, 1586 0x35e38, 0x35e3c, 1587 0x35e80, 0x35e80, 1588 0x35e88, 0x35ea8, 1589 0x35eb0, 0x35eb4, 1590 0x35ec8, 0x35ed4, 1591 0x35fb8, 0x36004, 1592 0x36200, 0x36200, 1593 0x36208, 0x36240, 1594 0x36248, 0x36280, 1595 0x36288, 0x362c0, 1596 0x362c8, 0x362fc, 1597 0x36600, 0x36630, 1598 0x36a00, 0x36abc, 1599 0x36b00, 0x36b10, 1600 0x36b20, 0x36b30, 1601 0x36b40, 0x36b50, 1602 0x36b60, 0x36b70, 1603 0x37000, 0x37028, 1604 0x37030, 0x37048, 1605 0x37060, 0x37068, 1606 0x37070, 0x3709c, 1607 0x370f0, 0x37128, 1608 0x37130, 0x37148, 1609 0x37160, 0x37168, 1610 0x37170, 0x3719c, 1611 0x371f0, 0x37238, 1612 0x37240, 0x37240, 1613 0x37248, 0x37250, 1614 0x3725c, 0x37264, 1615 0x37270, 0x372b8, 1616 0x372c0, 0x372e4, 1617 0x372f8, 0x37338, 1618 0x37340, 0x37340, 1619 0x37348, 0x37350, 1620 0x3735c, 0x37364, 1621 0x37370, 0x373b8, 1622 0x373c0, 0x373e4, 1623 0x373f8, 0x37428, 1624 0x37430, 0x37448, 1625 0x37460, 0x37468, 1626 0x37470, 0x3749c, 1627 0x374f0, 0x37528, 1628 0x37530, 0x37548, 1629 0x37560, 0x37568, 1630 0x37570, 0x3759c, 1631 0x375f0, 0x37638, 1632 0x37640, 0x37640, 1633 0x37648, 0x37650, 1634 0x3765c, 0x37664, 1635 0x37670, 0x376b8, 1636 0x376c0, 0x376e4, 1637 0x376f8, 0x37738, 1638 0x37740, 0x37740, 1639 0x37748, 0x37750, 1640 0x3775c, 0x37764, 1641 0x37770, 0x377b8, 1642 0x377c0, 0x377e4, 1643 0x377f8, 0x377fc, 1644 0x37814, 0x37814, 1645 0x3782c, 0x3782c, 1646 0x37880, 0x3788c, 1647 0x378e8, 0x378ec, 1648 0x37900, 0x37928, 1649 0x37930, 0x37948, 1650 0x37960, 0x37968, 1651 0x37970, 0x3799c, 1652 0x379f0, 0x37a38, 1653 0x37a40, 0x37a40, 1654 0x37a48, 0x37a50, 1655 0x37a5c, 0x37a64, 1656 0x37a70, 0x37ab8, 1657 0x37ac0, 0x37ae4, 1658 0x37af8, 0x37b10, 1659 0x37b28, 0x37b28, 1660 0x37b3c, 0x37b50, 1661 0x37bf0, 0x37c10, 1662 0x37c28, 0x37c28, 1663 0x37c3c, 0x37c50, 1664 0x37cf0, 0x37cfc, 1665 0x38000, 0x38030, 1666 0x38100, 0x38144, 1667 0x38190, 0x381a0, 1668 0x381a8, 0x381b8, 1669 0x381c4, 0x381c8, 1670 0x381d0, 0x381d0, 1671 0x38200, 0x38318, 1672 0x38400, 0x384b4, 1673 0x384c0, 0x3852c, 1674 0x38540, 0x3861c, 1675 0x38800, 0x38828, 1676 0x38834, 0x38834, 1677 0x388c0, 0x38908, 1678 0x38910, 0x389ac, 1679 0x38a00, 0x38a14, 1680 0x38a1c, 0x38a2c, 1681 0x38a44, 0x38a50, 1682 0x38a74, 0x38a74, 1683 0x38a7c, 0x38afc, 1684 0x38b08, 0x38c24, 1685 0x38d00, 0x38d00, 1686 0x38d08, 0x38d14, 1687 0x38d1c, 0x38d20, 1688 0x38d3c, 0x38d3c, 1689 0x38d48, 0x38d50, 1690 0x39200, 0x3920c, 1691 0x39220, 0x39220, 1692 0x39240, 0x39240, 1693 0x39600, 0x3960c, 1694 0x39a00, 0x39a1c, 1695 0x39e00, 0x39e20, 1696 0x39e38, 0x39e3c, 1697 0x39e80, 0x39e80, 1698 0x39e88, 0x39ea8, 1699 0x39eb0, 0x39eb4, 1700 0x39ec8, 0x39ed4, 1701 0x39fb8, 0x3a004, 1702 0x3a200, 0x3a200, 1703 0x3a208, 0x3a240, 1704 0x3a248, 0x3a280, 1705 0x3a288, 0x3a2c0, 1706 0x3a2c8, 0x3a2fc, 1707 0x3a600, 0x3a630, 1708 0x3aa00, 0x3aabc, 1709 0x3ab00, 0x3ab10, 1710 0x3ab20, 0x3ab30, 1711 0x3ab40, 0x3ab50, 1712 0x3ab60, 0x3ab70, 1713 0x3b000, 0x3b028, 1714 0x3b030, 0x3b048, 1715 0x3b060, 0x3b068, 1716 0x3b070, 0x3b09c, 1717 0x3b0f0, 0x3b128, 1718 0x3b130, 0x3b148, 1719 0x3b160, 0x3b168, 1720 0x3b170, 0x3b19c, 1721 0x3b1f0, 0x3b238, 1722 0x3b240, 0x3b240, 1723 0x3b248, 0x3b250, 1724 0x3b25c, 0x3b264, 1725 0x3b270, 0x3b2b8, 1726 0x3b2c0, 0x3b2e4, 1727 0x3b2f8, 0x3b338, 1728 0x3b340, 0x3b340, 1729 0x3b348, 0x3b350, 1730 0x3b35c, 0x3b364, 1731 0x3b370, 0x3b3b8, 1732 0x3b3c0, 0x3b3e4, 1733 0x3b3f8, 0x3b428, 1734 0x3b430, 0x3b448, 1735 0x3b460, 0x3b468, 1736 0x3b470, 0x3b49c, 1737 0x3b4f0, 0x3b528, 1738 0x3b530, 0x3b548, 1739 0x3b560, 0x3b568, 1740 0x3b570, 0x3b59c, 1741 0x3b5f0, 0x3b638, 1742 0x3b640, 0x3b640, 1743 0x3b648, 0x3b650, 1744 0x3b65c, 0x3b664, 1745 0x3b670, 0x3b6b8, 1746 0x3b6c0, 0x3b6e4, 1747 0x3b6f8, 0x3b738, 1748 0x3b740, 0x3b740, 1749 0x3b748, 0x3b750, 1750 0x3b75c, 0x3b764, 1751 0x3b770, 0x3b7b8, 1752 0x3b7c0, 0x3b7e4, 1753 0x3b7f8, 0x3b7fc, 1754 0x3b814, 0x3b814, 1755 0x3b82c, 0x3b82c, 1756 0x3b880, 0x3b88c, 1757 0x3b8e8, 0x3b8ec, 1758 0x3b900, 0x3b928, 1759 0x3b930, 0x3b948, 1760 0x3b960, 0x3b968, 1761 0x3b970, 0x3b99c, 1762 0x3b9f0, 0x3ba38, 1763 0x3ba40, 0x3ba40, 1764 0x3ba48, 0x3ba50, 1765 0x3ba5c, 0x3ba64, 1766 0x3ba70, 0x3bab8, 1767 0x3bac0, 0x3bae4, 1768 0x3baf8, 0x3bb10, 1769 0x3bb28, 0x3bb28, 1770 0x3bb3c, 0x3bb50, 1771 0x3bbf0, 0x3bc10, 1772 0x3bc28, 0x3bc28, 1773 0x3bc3c, 0x3bc50, 1774 0x3bcf0, 0x3bcfc, 1775 0x3c000, 0x3c030, 1776 0x3c100, 0x3c144, 1777 0x3c190, 0x3c1a0, 1778 0x3c1a8, 0x3c1b8, 1779 0x3c1c4, 0x3c1c8, 1780 0x3c1d0, 0x3c1d0, 1781 0x3c200, 0x3c318, 1782 0x3c400, 0x3c4b4, 1783 0x3c4c0, 0x3c52c, 1784 0x3c540, 0x3c61c, 1785 0x3c800, 0x3c828, 1786 0x3c834, 0x3c834, 1787 0x3c8c0, 0x3c908, 1788 0x3c910, 0x3c9ac, 1789 0x3ca00, 0x3ca14, 1790 0x3ca1c, 0x3ca2c, 1791 0x3ca44, 0x3ca50, 1792 0x3ca74, 0x3ca74, 1793 0x3ca7c, 0x3cafc, 1794 0x3cb08, 0x3cc24, 1795 0x3cd00, 0x3cd00, 1796 0x3cd08, 0x3cd14, 1797 0x3cd1c, 0x3cd20, 1798 0x3cd3c, 0x3cd3c, 1799 0x3cd48, 0x3cd50, 1800 0x3d200, 0x3d20c, 1801 0x3d220, 0x3d220, 1802 0x3d240, 0x3d240, 1803 0x3d600, 0x3d60c, 1804 0x3da00, 0x3da1c, 1805 0x3de00, 0x3de20, 1806 0x3de38, 0x3de3c, 1807 0x3de80, 0x3de80, 1808 0x3de88, 0x3dea8, 1809 0x3deb0, 0x3deb4, 1810 0x3dec8, 0x3ded4, 1811 0x3dfb8, 0x3e004, 1812 0x3e200, 0x3e200, 1813 0x3e208, 0x3e240, 1814 0x3e248, 0x3e280, 1815 0x3e288, 0x3e2c0, 1816 0x3e2c8, 0x3e2fc, 1817 0x3e600, 0x3e630, 1818 0x3ea00, 0x3eabc, 1819 0x3eb00, 0x3eb10, 1820 0x3eb20, 0x3eb30, 1821 0x3eb40, 0x3eb50, 1822 0x3eb60, 0x3eb70, 1823 0x3f000, 0x3f028, 1824 0x3f030, 0x3f048, 1825 0x3f060, 0x3f068, 1826 0x3f070, 0x3f09c, 1827 0x3f0f0, 0x3f128, 1828 0x3f130, 0x3f148, 1829 0x3f160, 0x3f168, 1830 0x3f170, 0x3f19c, 1831 0x3f1f0, 0x3f238, 1832 0x3f240, 0x3f240, 1833 0x3f248, 0x3f250, 1834 0x3f25c, 0x3f264, 1835 0x3f270, 0x3f2b8, 1836 0x3f2c0, 0x3f2e4, 1837 0x3f2f8, 0x3f338, 1838 0x3f340, 0x3f340, 1839 0x3f348, 0x3f350, 1840 0x3f35c, 0x3f364, 1841 0x3f370, 0x3f3b8, 1842 0x3f3c0, 0x3f3e4, 1843 0x3f3f8, 0x3f428, 1844 0x3f430, 0x3f448, 1845 0x3f460, 0x3f468, 1846 0x3f470, 0x3f49c, 1847 0x3f4f0, 0x3f528, 1848 0x3f530, 0x3f548, 1849 0x3f560, 0x3f568, 1850 0x3f570, 0x3f59c, 1851 0x3f5f0, 0x3f638, 1852 0x3f640, 0x3f640, 1853 0x3f648, 0x3f650, 1854 0x3f65c, 0x3f664, 1855 0x3f670, 0x3f6b8, 1856 0x3f6c0, 0x3f6e4, 1857 0x3f6f8, 0x3f738, 1858 0x3f740, 0x3f740, 1859 0x3f748, 0x3f750, 1860 0x3f75c, 0x3f764, 1861 0x3f770, 0x3f7b8, 1862 0x3f7c0, 0x3f7e4, 1863 0x3f7f8, 0x3f7fc, 1864 0x3f814, 0x3f814, 1865 0x3f82c, 0x3f82c, 1866 0x3f880, 0x3f88c, 1867 0x3f8e8, 0x3f8ec, 1868 0x3f900, 0x3f928, 1869 0x3f930, 0x3f948, 1870 0x3f960, 0x3f968, 1871 0x3f970, 0x3f99c, 1872 0x3f9f0, 0x3fa38, 1873 0x3fa40, 0x3fa40, 1874 0x3fa48, 0x3fa50, 1875 0x3fa5c, 0x3fa64, 1876 0x3fa70, 0x3fab8, 1877 0x3fac0, 0x3fae4, 1878 0x3faf8, 0x3fb10, 1879 0x3fb28, 0x3fb28, 1880 0x3fb3c, 0x3fb50, 1881 0x3fbf0, 0x3fc10, 1882 0x3fc28, 0x3fc28, 1883 0x3fc3c, 0x3fc50, 1884 0x3fcf0, 0x3fcfc, 1885 0x40000, 0x4000c, 1886 0x40040, 0x40050, 1887 0x40060, 0x40068, 1888 0x4007c, 0x4008c, 1889 0x40094, 0x400b0, 1890 0x400c0, 0x40144, 1891 0x40180, 0x4018c, 1892 0x40200, 0x40254, 1893 0x40260, 0x40264, 1894 0x40270, 0x40288, 1895 0x40290, 0x40298, 1896 0x402ac, 0x402c8, 1897 0x402d0, 0x402e0, 1898 0x402f0, 0x402f0, 1899 0x40300, 0x4033c, 1900 0x403f8, 0x403fc, 1901 0x41304, 0x413c4, 1902 0x41400, 0x4140c, 1903 0x41414, 0x4141c, 1904 0x41480, 0x414d0, 1905 0x44000, 0x44054, 1906 0x4405c, 0x44078, 1907 0x440c0, 0x44174, 1908 0x44180, 0x441ac, 1909 0x441b4, 0x441b8, 1910 0x441c0, 0x44254, 1911 0x4425c, 0x44278, 1912 0x442c0, 0x44374, 1913 0x44380, 0x443ac, 1914 0x443b4, 0x443b8, 1915 0x443c0, 0x44454, 1916 0x4445c, 0x44478, 1917 0x444c0, 0x44574, 1918 0x44580, 0x445ac, 1919 0x445b4, 0x445b8, 1920 0x445c0, 0x44654, 1921 0x4465c, 0x44678, 1922 0x446c0, 0x44774, 1923 0x44780, 0x447ac, 1924 0x447b4, 0x447b8, 1925 0x447c0, 0x44854, 1926 0x4485c, 0x44878, 1927 0x448c0, 0x44974, 1928 0x44980, 0x449ac, 1929 0x449b4, 0x449b8, 1930 0x449c0, 0x449fc, 1931 0x45000, 0x45004, 1932 0x45010, 0x45030, 1933 0x45040, 0x45060, 1934 0x45068, 0x45068, 1935 0x45080, 0x45084, 1936 0x450a0, 0x450b0, 1937 0x45200, 0x45204, 1938 0x45210, 0x45230, 1939 0x45240, 0x45260, 1940 0x45268, 0x45268, 1941 0x45280, 0x45284, 1942 0x452a0, 0x452b0, 1943 0x460c0, 0x460e4, 1944 0x47000, 0x4703c, 1945 0x47044, 0x4708c, 1946 0x47200, 0x47250, 1947 0x47400, 0x47408, 1948 0x47414, 0x47420, 1949 0x47600, 0x47618, 1950 0x47800, 0x47814, 1951 0x48000, 0x4800c, 1952 0x48040, 0x48050, 1953 0x48060, 0x48068, 1954 0x4807c, 0x4808c, 1955 0x48094, 0x480b0, 1956 0x480c0, 0x48144, 1957 0x48180, 0x4818c, 1958 0x48200, 0x48254, 1959 0x48260, 0x48264, 1960 0x48270, 0x48288, 1961 0x48290, 0x48298, 1962 0x482ac, 0x482c8, 1963 0x482d0, 0x482e0, 1964 0x482f0, 0x482f0, 1965 0x48300, 0x4833c, 1966 0x483f8, 0x483fc, 1967 0x49304, 0x493c4, 1968 0x49400, 0x4940c, 1969 0x49414, 0x4941c, 1970 0x49480, 0x494d0, 1971 0x4c000, 0x4c054, 1972 0x4c05c, 0x4c078, 1973 0x4c0c0, 0x4c174, 1974 0x4c180, 0x4c1ac, 1975 0x4c1b4, 0x4c1b8, 1976 0x4c1c0, 0x4c254, 1977 0x4c25c, 0x4c278, 1978 0x4c2c0, 0x4c374, 1979 0x4c380, 0x4c3ac, 1980 0x4c3b4, 0x4c3b8, 1981 0x4c3c0, 0x4c454, 1982 0x4c45c, 0x4c478, 1983 0x4c4c0, 0x4c574, 1984 0x4c580, 0x4c5ac, 1985 0x4c5b4, 0x4c5b8, 1986 0x4c5c0, 0x4c654, 1987 0x4c65c, 0x4c678, 1988 0x4c6c0, 0x4c774, 1989 0x4c780, 0x4c7ac, 1990 0x4c7b4, 0x4c7b8, 1991 0x4c7c0, 0x4c854, 1992 0x4c85c, 0x4c878, 1993 0x4c8c0, 0x4c974, 1994 0x4c980, 0x4c9ac, 1995 0x4c9b4, 0x4c9b8, 1996 0x4c9c0, 0x4c9fc, 1997 0x4d000, 0x4d004, 1998 0x4d010, 0x4d030, 1999 0x4d040, 0x4d060, 2000 0x4d068, 0x4d068, 2001 0x4d080, 0x4d084, 2002 0x4d0a0, 0x4d0b0, 2003 0x4d200, 0x4d204, 2004 0x4d210, 0x4d230, 2005 0x4d240, 0x4d260, 2006 0x4d268, 0x4d268, 2007 0x4d280, 0x4d284, 2008 0x4d2a0, 0x4d2b0, 2009 0x4e0c0, 0x4e0e4, 2010 0x4f000, 0x4f03c, 2011 0x4f044, 0x4f08c, 2012 0x4f200, 0x4f250, 2013 0x4f400, 0x4f408, 2014 0x4f414, 0x4f420, 2015 0x4f600, 0x4f618, 2016 0x4f800, 0x4f814, 2017 0x50000, 0x50084, 2018 0x50090, 0x500cc, 2019 0x50400, 0x50400, 2020 0x50800, 0x50884, 2021 0x50890, 0x508cc, 2022 0x50c00, 0x50c00, 2023 0x51000, 0x5101c, 2024 0x51300, 0x51308, 2025 }; 2026 2027 static const unsigned int t6_reg_ranges[] = { 2028 0x1008, 0x101c, 2029 0x1024, 0x10a8, 2030 0x10b4, 0x10f8, 2031 0x1100, 0x1114, 2032 0x111c, 0x112c, 2033 0x1138, 0x113c, 2034 0x1144, 0x114c, 2035 0x1180, 0x1184, 2036 0x1190, 0x1194, 2037 0x11a0, 0x11a4, 2038 0x11b0, 0x11b4, 2039 0x11fc, 0x1274, 2040 0x1280, 0x133c, 2041 0x1800, 0x18fc, 2042 0x3000, 0x302c, 2043 0x3060, 0x30b0, 2044 0x30b8, 0x30d8, 2045 0x30e0, 0x30fc, 2046 0x3140, 0x357c, 2047 0x35a8, 0x35cc, 2048 0x35ec, 0x35ec, 2049 0x3600, 0x5624, 2050 0x56cc, 0x56ec, 2051 0x56f4, 0x5720, 2052 0x5728, 0x575c, 2053 0x580c, 0x5814, 2054 0x5890, 0x589c, 2055 0x58a4, 0x58ac, 2056 0x58b8, 0x58bc, 2057 0x5940, 0x595c, 2058 0x5980, 0x598c, 2059 0x59b0, 0x59c8, 2060 0x59d0, 0x59dc, 2061 0x59fc, 0x5a18, 2062 0x5a60, 0x5a6c, 2063 0x5a80, 0x5a8c, 2064 0x5a94, 0x5a9c, 2065 0x5b94, 0x5bfc, 2066 0x5c10, 0x5e48, 2067 0x5e50, 0x5e94, 2068 0x5ea0, 0x5eb0, 2069 0x5ec0, 0x5ec0, 2070 0x5ec8, 0x5ed0, 2071 0x5ee0, 0x5ee0, 2072 0x5ef0, 0x5ef0, 2073 0x5f00, 0x5f00, 2074 0x6000, 0x6020, 2075 0x6028, 0x6040, 2076 0x6058, 0x609c, 2077 0x60a8, 0x619c, 2078 0x7700, 0x7798, 2079 0x77c0, 0x7880, 2080 0x78cc, 0x78fc, 2081 0x7b00, 0x7b58, 2082 0x7b60, 0x7b84, 2083 0x7b8c, 0x7c54, 2084 0x7d00, 0x7d38, 2085 0x7d40, 0x7d84, 2086 0x7d8c, 0x7ddc, 2087 0x7de4, 0x7e04, 2088 0x7e10, 0x7e1c, 2089 0x7e24, 0x7e38, 2090 0x7e40, 0x7e44, 2091 0x7e4c, 0x7e78, 2092 0x7e80, 0x7edc, 2093 0x7ee8, 0x7efc, 2094 0x8dc0, 0x8de4, 2095 0x8df8, 0x8e04, 2096 0x8e10, 0x8e84, 2097 0x8ea0, 0x8f88, 2098 0x8fb8, 0x9058, 2099 0x9060, 0x9060, 2100 0x9068, 0x90f8, 2101 0x9100, 0x9124, 2102 0x9400, 0x9470, 2103 0x9600, 0x9600, 2104 0x9608, 0x9638, 2105 0x9640, 0x9704, 2106 0x9710, 0x971c, 2107 0x9800, 0x9808, 2108 0x9820, 0x983c, 2109 0x9850, 0x9864, 2110 0x9c00, 0x9c6c, 2111 0x9c80, 0x9cec, 2112 0x9d00, 0x9d6c, 2113 0x9d80, 0x9dec, 2114 0x9e00, 0x9e6c, 2115 0x9e80, 0x9eec, 2116 0x9f00, 0x9f6c, 2117 0x9f80, 0xa020, 2118 0xd004, 0xd03c, 2119 0xd100, 0xd118, 2120 0xd200, 0xd214, 2121 0xd220, 0xd234, 2122 0xd240, 0xd254, 2123 0xd260, 0xd274, 2124 0xd280, 0xd294, 2125 0xd2a0, 0xd2b4, 2126 0xd2c0, 0xd2d4, 2127 0xd2e0, 0xd2f4, 2128 0xd300, 0xd31c, 2129 0xdfc0, 0xdfe0, 2130 0xe000, 0xf008, 2131 0xf010, 0xf018, 2132 0xf020, 0xf028, 2133 0x11000, 0x11014, 2134 0x11048, 0x1106c, 2135 0x11074, 0x11088, 2136 0x11098, 0x11120, 2137 0x1112c, 0x1117c, 2138 0x11190, 0x112e0, 2139 0x11300, 0x1130c, 2140 0x12000, 0x1206c, 2141 0x19040, 0x1906c, 2142 0x19078, 0x19080, 2143 0x1908c, 0x190e8, 2144 0x190f0, 0x190f8, 2145 0x19100, 0x19110, 2146 0x19120, 0x19124, 2147 0x19150, 0x19194, 2148 0x1919c, 0x191b0, 2149 0x191d0, 0x191e8, 2150 0x19238, 0x19290, 2151 0x192a4, 0x192b0, 2152 0x192bc, 0x192bc, 2153 0x19348, 0x1934c, 2154 0x193f8, 0x19418, 2155 0x19420, 0x19428, 2156 0x19430, 0x19444, 2157 0x1944c, 0x1946c, 2158 0x19474, 0x19474, 2159 0x19490, 0x194cc, 2160 0x194f0, 0x194f8, 2161 0x19c00, 0x19c48, 2162 0x19c50, 0x19c80, 2163 0x19c94, 0x19c98, 2164 0x19ca0, 0x19cbc, 2165 0x19ce4, 0x19ce4, 2166 0x19cf0, 0x19cf8, 2167 0x19d00, 0x19d28, 2168 0x19d50, 0x19d78, 2169 0x19d94, 0x19d98, 2170 0x19da0, 0x19dc8, 2171 0x19df0, 0x19e10, 2172 0x19e50, 0x19e6c, 2173 0x19ea0, 0x19ebc, 2174 0x19ec4, 0x19ef4, 2175 0x19f04, 0x19f2c, 2176 0x19f34, 0x19f34, 2177 0x19f40, 0x19f50, 2178 0x19f90, 0x19fac, 2179 0x19fc4, 0x19fc8, 2180 0x19fd0, 0x19fe4, 2181 0x1a000, 0x1a004, 2182 0x1a010, 0x1a06c, 2183 0x1a0b0, 0x1a0e4, 2184 0x1a0ec, 0x1a0f8, 2185 0x1a100, 0x1a108, 2186 0x1a114, 0x1a120, 2187 0x1a128, 0x1a130, 2188 0x1a138, 0x1a138, 2189 0x1a190, 0x1a1c4, 2190 0x1a1fc, 0x1a1fc, 2191 0x1e008, 0x1e00c, 2192 0x1e040, 0x1e044, 2193 0x1e04c, 0x1e04c, 2194 0x1e284, 0x1e290, 2195 0x1e2c0, 0x1e2c0, 2196 0x1e2e0, 0x1e2e0, 2197 0x1e300, 0x1e384, 2198 0x1e3c0, 0x1e3c8, 2199 0x1e408, 0x1e40c, 2200 0x1e440, 0x1e444, 2201 0x1e44c, 0x1e44c, 2202 0x1e684, 0x1e690, 2203 0x1e6c0, 0x1e6c0, 2204 0x1e6e0, 0x1e6e0, 2205 0x1e700, 0x1e784, 2206 0x1e7c0, 0x1e7c8, 2207 0x1e808, 0x1e80c, 2208 0x1e840, 0x1e844, 2209 0x1e84c, 0x1e84c, 2210 0x1ea84, 0x1ea90, 2211 0x1eac0, 0x1eac0, 2212 0x1eae0, 0x1eae0, 2213 0x1eb00, 0x1eb84, 2214 0x1ebc0, 0x1ebc8, 2215 0x1ec08, 0x1ec0c, 2216 0x1ec40, 0x1ec44, 2217 0x1ec4c, 0x1ec4c, 2218 0x1ee84, 0x1ee90, 2219 0x1eec0, 0x1eec0, 2220 0x1eee0, 0x1eee0, 2221 0x1ef00, 0x1ef84, 2222 0x1efc0, 0x1efc8, 2223 0x1f008, 0x1f00c, 2224 0x1f040, 0x1f044, 2225 0x1f04c, 0x1f04c, 2226 0x1f284, 0x1f290, 2227 0x1f2c0, 0x1f2c0, 2228 0x1f2e0, 0x1f2e0, 2229 0x1f300, 0x1f384, 2230 0x1f3c0, 0x1f3c8, 2231 0x1f408, 0x1f40c, 2232 0x1f440, 0x1f444, 2233 0x1f44c, 0x1f44c, 2234 0x1f684, 0x1f690, 2235 0x1f6c0, 0x1f6c0, 2236 0x1f6e0, 0x1f6e0, 2237 0x1f700, 0x1f784, 2238 0x1f7c0, 0x1f7c8, 2239 0x1f808, 0x1f80c, 2240 0x1f840, 0x1f844, 2241 0x1f84c, 0x1f84c, 2242 0x1fa84, 0x1fa90, 2243 0x1fac0, 0x1fac0, 2244 0x1fae0, 0x1fae0, 2245 0x1fb00, 0x1fb84, 2246 0x1fbc0, 0x1fbc8, 2247 0x1fc08, 0x1fc0c, 2248 0x1fc40, 0x1fc44, 2249 0x1fc4c, 0x1fc4c, 2250 0x1fe84, 0x1fe90, 2251 0x1fec0, 0x1fec0, 2252 0x1fee0, 0x1fee0, 2253 0x1ff00, 0x1ff84, 2254 0x1ffc0, 0x1ffc8, 2255 0x30000, 0x30030, 2256 0x30100, 0x30168, 2257 0x30190, 0x301a0, 2258 0x301a8, 0x301b8, 2259 0x301c4, 0x301c8, 2260 0x301d0, 0x301d0, 2261 0x30200, 0x30320, 2262 0x30400, 0x304b4, 2263 0x304c0, 0x3052c, 2264 0x30540, 0x3061c, 2265 0x30800, 0x308a0, 2266 0x308c0, 0x30908, 2267 0x30910, 0x309b8, 2268 0x30a00, 0x30a04, 2269 0x30a0c, 0x30a14, 2270 0x30a1c, 0x30a2c, 2271 0x30a44, 0x30a50, 2272 0x30a74, 0x30a74, 2273 0x30a7c, 0x30afc, 2274 0x30b08, 0x30c24, 2275 0x30d00, 0x30d14, 2276 0x30d1c, 0x30d3c, 2277 0x30d44, 0x30d4c, 2278 0x30d54, 0x30d74, 2279 0x30d7c, 0x30d7c, 2280 0x30de0, 0x30de0, 2281 0x30e00, 0x30ed4, 2282 0x30f00, 0x30fa4, 2283 0x30fc0, 0x30fc4, 2284 0x31000, 0x31004, 2285 0x31080, 0x310fc, 2286 0x31208, 0x31220, 2287 0x3123c, 0x31254, 2288 0x31300, 0x31300, 2289 0x31308, 0x3131c, 2290 0x31338, 0x3133c, 2291 0x31380, 0x31380, 2292 0x31388, 0x313a8, 2293 0x313b4, 0x313b4, 2294 0x31400, 0x31420, 2295 0x31438, 0x3143c, 2296 0x31480, 0x31480, 2297 0x314a8, 0x314a8, 2298 0x314b0, 0x314b4, 2299 0x314c8, 0x314d4, 2300 0x31a40, 0x31a4c, 2301 0x31af0, 0x31b20, 2302 0x31b38, 0x31b3c, 2303 0x31b80, 0x31b80, 2304 0x31ba8, 0x31ba8, 2305 0x31bb0, 0x31bb4, 2306 0x31bc8, 0x31bd4, 2307 0x32140, 0x3218c, 2308 0x321f0, 0x321f4, 2309 0x32200, 0x32200, 2310 0x32218, 0x32218, 2311 0x32400, 0x32400, 2312 0x32408, 0x3241c, 2313 0x32618, 0x32620, 2314 0x32664, 0x32664, 2315 0x326a8, 0x326a8, 2316 0x326ec, 0x326ec, 2317 0x32a00, 0x32abc, 2318 0x32b00, 0x32b18, 2319 0x32b20, 0x32b38, 2320 0x32b40, 0x32b58, 2321 0x32b60, 0x32b78, 2322 0x32c00, 0x32c00, 2323 0x32c08, 0x32c3c, 2324 0x33000, 0x3302c, 2325 0x33034, 0x33050, 2326 0x33058, 0x33058, 2327 0x33060, 0x3308c, 2328 0x3309c, 0x330ac, 2329 0x330c0, 0x330c0, 2330 0x330c8, 0x330d0, 2331 0x330d8, 0x330e0, 2332 0x330ec, 0x3312c, 2333 0x33134, 0x33150, 2334 0x33158, 0x33158, 2335 0x33160, 0x3318c, 2336 0x3319c, 0x331ac, 2337 0x331c0, 0x331c0, 2338 0x331c8, 0x331d0, 2339 0x331d8, 0x331e0, 2340 0x331ec, 0x33290, 2341 0x33298, 0x332c4, 2342 0x332e4, 0x33390, 2343 0x33398, 0x333c4, 2344 0x333e4, 0x3342c, 2345 0x33434, 0x33450, 2346 0x33458, 0x33458, 2347 0x33460, 0x3348c, 2348 0x3349c, 0x334ac, 2349 0x334c0, 0x334c0, 2350 0x334c8, 0x334d0, 2351 0x334d8, 0x334e0, 2352 0x334ec, 0x3352c, 2353 0x33534, 0x33550, 2354 0x33558, 0x33558, 2355 0x33560, 0x3358c, 2356 0x3359c, 0x335ac, 2357 0x335c0, 0x335c0, 2358 0x335c8, 0x335d0, 2359 0x335d8, 0x335e0, 2360 0x335ec, 0x33690, 2361 0x33698, 0x336c4, 2362 0x336e4, 0x33790, 2363 0x33798, 0x337c4, 2364 0x337e4, 0x337fc, 2365 0x33814, 0x33814, 2366 0x33854, 0x33868, 2367 0x33880, 0x3388c, 2368 0x338c0, 0x338d0, 2369 0x338e8, 0x338ec, 2370 0x33900, 0x3392c, 2371 0x33934, 0x33950, 2372 0x33958, 0x33958, 2373 0x33960, 0x3398c, 2374 0x3399c, 0x339ac, 2375 0x339c0, 0x339c0, 2376 0x339c8, 0x339d0, 2377 0x339d8, 0x339e0, 2378 0x339ec, 0x33a90, 2379 0x33a98, 0x33ac4, 2380 0x33ae4, 0x33b10, 2381 0x33b24, 0x33b28, 2382 0x33b38, 0x33b50, 2383 0x33bf0, 0x33c10, 2384 0x33c24, 0x33c28, 2385 0x33c38, 0x33c50, 2386 0x33cf0, 0x33cfc, 2387 0x34000, 0x34030, 2388 0x34100, 0x34168, 2389 0x34190, 0x341a0, 2390 0x341a8, 0x341b8, 2391 0x341c4, 0x341c8, 2392 0x341d0, 0x341d0, 2393 0x34200, 0x34320, 2394 0x34400, 0x344b4, 2395 0x344c0, 0x3452c, 2396 0x34540, 0x3461c, 2397 0x34800, 0x348a0, 2398 0x348c0, 0x34908, 2399 0x34910, 0x349b8, 2400 0x34a00, 0x34a04, 2401 0x34a0c, 0x34a14, 2402 0x34a1c, 0x34a2c, 2403 0x34a44, 0x34a50, 2404 0x34a74, 0x34a74, 2405 0x34a7c, 0x34afc, 2406 0x34b08, 0x34c24, 2407 0x34d00, 0x34d14, 2408 0x34d1c, 0x34d3c, 2409 0x34d44, 0x34d4c, 2410 0x34d54, 0x34d74, 2411 0x34d7c, 0x34d7c, 2412 0x34de0, 0x34de0, 2413 0x34e00, 0x34ed4, 2414 0x34f00, 0x34fa4, 2415 0x34fc0, 0x34fc4, 2416 0x35000, 0x35004, 2417 0x35080, 0x350fc, 2418 0x35208, 0x35220, 2419 0x3523c, 0x35254, 2420 0x35300, 0x35300, 2421 0x35308, 0x3531c, 2422 0x35338, 0x3533c, 2423 0x35380, 0x35380, 2424 0x35388, 0x353a8, 2425 0x353b4, 0x353b4, 2426 0x35400, 0x35420, 2427 0x35438, 0x3543c, 2428 0x35480, 0x35480, 2429 0x354a8, 0x354a8, 2430 0x354b0, 0x354b4, 2431 0x354c8, 0x354d4, 2432 0x35a40, 0x35a4c, 2433 0x35af0, 0x35b20, 2434 0x35b38, 0x35b3c, 2435 0x35b80, 0x35b80, 2436 0x35ba8, 0x35ba8, 2437 0x35bb0, 0x35bb4, 2438 0x35bc8, 0x35bd4, 2439 0x36140, 0x3618c, 2440 0x361f0, 0x361f4, 2441 0x36200, 0x36200, 2442 0x36218, 0x36218, 2443 0x36400, 0x36400, 2444 0x36408, 0x3641c, 2445 0x36618, 0x36620, 2446 0x36664, 0x36664, 2447 0x366a8, 0x366a8, 2448 0x366ec, 0x366ec, 2449 0x36a00, 0x36abc, 2450 0x36b00, 0x36b18, 2451 0x36b20, 0x36b38, 2452 0x36b40, 0x36b58, 2453 0x36b60, 0x36b78, 2454 0x36c00, 0x36c00, 2455 0x36c08, 0x36c3c, 2456 0x37000, 0x3702c, 2457 0x37034, 0x37050, 2458 0x37058, 0x37058, 2459 0x37060, 0x3708c, 2460 0x3709c, 0x370ac, 2461 0x370c0, 0x370c0, 2462 0x370c8, 0x370d0, 2463 0x370d8, 0x370e0, 2464 0x370ec, 0x3712c, 2465 0x37134, 0x37150, 2466 0x37158, 0x37158, 2467 0x37160, 0x3718c, 2468 0x3719c, 0x371ac, 2469 0x371c0, 0x371c0, 2470 0x371c8, 0x371d0, 2471 0x371d8, 0x371e0, 2472 0x371ec, 0x37290, 2473 0x37298, 0x372c4, 2474 0x372e4, 0x37390, 2475 0x37398, 0x373c4, 2476 0x373e4, 0x3742c, 2477 0x37434, 0x37450, 2478 0x37458, 0x37458, 2479 0x37460, 0x3748c, 2480 0x3749c, 0x374ac, 2481 0x374c0, 0x374c0, 2482 0x374c8, 0x374d0, 2483 0x374d8, 0x374e0, 2484 0x374ec, 0x3752c, 2485 0x37534, 0x37550, 2486 0x37558, 0x37558, 2487 0x37560, 0x3758c, 2488 0x3759c, 0x375ac, 2489 0x375c0, 0x375c0, 2490 0x375c8, 0x375d0, 2491 0x375d8, 0x375e0, 2492 0x375ec, 0x37690, 2493 0x37698, 0x376c4, 2494 0x376e4, 0x37790, 2495 0x37798, 0x377c4, 2496 0x377e4, 0x377fc, 2497 0x37814, 0x37814, 2498 0x37854, 0x37868, 2499 0x37880, 0x3788c, 2500 0x378c0, 0x378d0, 2501 0x378e8, 0x378ec, 2502 0x37900, 0x3792c, 2503 0x37934, 0x37950, 2504 0x37958, 0x37958, 2505 0x37960, 0x3798c, 2506 0x3799c, 0x379ac, 2507 0x379c0, 0x379c0, 2508 0x379c8, 0x379d0, 2509 0x379d8, 0x379e0, 2510 0x379ec, 0x37a90, 2511 0x37a98, 0x37ac4, 2512 0x37ae4, 0x37b10, 2513 0x37b24, 0x37b28, 2514 0x37b38, 0x37b50, 2515 0x37bf0, 0x37c10, 2516 0x37c24, 0x37c28, 2517 0x37c38, 0x37c50, 2518 0x37cf0, 0x37cfc, 2519 0x40040, 0x40040, 2520 0x40080, 0x40084, 2521 0x40100, 0x40100, 2522 0x40140, 0x401bc, 2523 0x40200, 0x40214, 2524 0x40228, 0x40228, 2525 0x40240, 0x40258, 2526 0x40280, 0x40280, 2527 0x40304, 0x40304, 2528 0x40330, 0x4033c, 2529 0x41304, 0x413c8, 2530 0x413d0, 0x413dc, 2531 0x413f0, 0x413f0, 2532 0x41400, 0x4140c, 2533 0x41414, 0x4141c, 2534 0x41480, 0x414d0, 2535 0x44000, 0x4407c, 2536 0x440c0, 0x441ac, 2537 0x441b4, 0x4427c, 2538 0x442c0, 0x443ac, 2539 0x443b4, 0x4447c, 2540 0x444c0, 0x445ac, 2541 0x445b4, 0x4467c, 2542 0x446c0, 0x447ac, 2543 0x447b4, 0x4487c, 2544 0x448c0, 0x449ac, 2545 0x449b4, 0x44a7c, 2546 0x44ac0, 0x44bac, 2547 0x44bb4, 0x44c7c, 2548 0x44cc0, 0x44dac, 2549 0x44db4, 0x44e7c, 2550 0x44ec0, 0x44fac, 2551 0x44fb4, 0x4507c, 2552 0x450c0, 0x451ac, 2553 0x451b4, 0x451fc, 2554 0x45800, 0x45804, 2555 0x45810, 0x45830, 2556 0x45840, 0x45860, 2557 0x45868, 0x45868, 2558 0x45880, 0x45884, 2559 0x458a0, 0x458b0, 2560 0x45a00, 0x45a04, 2561 0x45a10, 0x45a30, 2562 0x45a40, 0x45a60, 2563 0x45a68, 0x45a68, 2564 0x45a80, 0x45a84, 2565 0x45aa0, 0x45ab0, 2566 0x460c0, 0x460e4, 2567 0x47000, 0x4703c, 2568 0x47044, 0x4708c, 2569 0x47200, 0x47250, 2570 0x47400, 0x47408, 2571 0x47414, 0x47420, 2572 0x47600, 0x47618, 2573 0x47800, 0x47814, 2574 0x47820, 0x4782c, 2575 0x50000, 0x50084, 2576 0x50090, 0x500cc, 2577 0x50300, 0x50384, 2578 0x50400, 0x50400, 2579 0x50800, 0x50884, 2580 0x50890, 0x508cc, 2581 0x50b00, 0x50b84, 2582 0x50c00, 0x50c00, 2583 0x51000, 0x51020, 2584 0x51028, 0x510b0, 2585 0x51300, 0x51324, 2586 }; 2587 2588 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2589 const unsigned int *reg_ranges; 2590 int reg_ranges_size, range; 2591 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2592 2593 /* Select the right set of register ranges to dump depending on the 2594 * adapter chip type. 2595 */ 2596 switch (chip_version) { 2597 case CHELSIO_T4: 2598 reg_ranges = t4_reg_ranges; 2599 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2600 break; 2601 2602 case CHELSIO_T5: 2603 reg_ranges = t5_reg_ranges; 2604 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2605 break; 2606 2607 case CHELSIO_T6: 2608 reg_ranges = t6_reg_ranges; 2609 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2610 break; 2611 2612 default: 2613 dev_err(adap->pdev_dev, 2614 "Unsupported chip version %d\n", chip_version); 2615 return; 2616 } 2617 2618 /* Clear the register buffer and insert the appropriate register 2619 * values selected by the above register ranges. 2620 */ 2621 memset(buf, 0, buf_size); 2622 for (range = 0; range < reg_ranges_size; range += 2) { 2623 unsigned int reg = reg_ranges[range]; 2624 unsigned int last_reg = reg_ranges[range + 1]; 2625 u32 *bufp = (u32 *)((char *)buf + reg); 2626 2627 /* Iterate across the register range filling in the register 2628 * buffer but don't write past the end of the register buffer. 2629 */ 2630 while (reg <= last_reg && bufp < buf_end) { 2631 *bufp++ = t4_read_reg(adap, reg); 2632 reg += sizeof(u32); 2633 } 2634 } 2635 } 2636 2637 #define EEPROM_STAT_ADDR 0x7bfc 2638 #define VPD_SIZE 0x800 2639 #define VPD_BASE 0x400 2640 #define VPD_BASE_OLD 0 2641 #define VPD_LEN 1024 2642 #define CHELSIO_VPD_UNIQUE_ID 0x82 2643 2644 /** 2645 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2646 * @phys_addr: the physical EEPROM address 2647 * @fn: the PCI function number 2648 * @sz: size of function-specific area 2649 * 2650 * Translate a physical EEPROM address to virtual. The first 1K is 2651 * accessed through virtual addresses starting at 31K, the rest is 2652 * accessed through virtual addresses starting at 0. 2653 * 2654 * The mapping is as follows: 2655 * [0..1K) -> [31K..32K) 2656 * [1K..1K+A) -> [31K-A..31K) 2657 * [1K+A..ES) -> [0..ES-A-1K) 2658 * 2659 * where A = @fn * @sz, and ES = EEPROM size. 2660 */ 2661 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2662 { 2663 fn *= sz; 2664 if (phys_addr < 1024) 2665 return phys_addr + (31 << 10); 2666 if (phys_addr < 1024 + fn) 2667 return 31744 - fn + phys_addr - 1024; 2668 if (phys_addr < EEPROMSIZE) 2669 return phys_addr - 1024 - fn; 2670 return -EINVAL; 2671 } 2672 2673 /** 2674 * t4_seeprom_wp - enable/disable EEPROM write protection 2675 * @adapter: the adapter 2676 * @enable: whether to enable or disable write protection 2677 * 2678 * Enables or disables write protection on the serial EEPROM. 2679 */ 2680 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2681 { 2682 unsigned int v = enable ? 0xc : 0; 2683 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2684 return ret < 0 ? ret : 0; 2685 } 2686 2687 /** 2688 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2689 * @adapter: adapter to read 2690 * @p: where to store the parameters 2691 * 2692 * Reads card parameters stored in VPD EEPROM. 2693 */ 2694 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2695 { 2696 int i, ret = 0, addr; 2697 int ec, sn, pn, na; 2698 u8 *vpd, csum; 2699 unsigned int vpdr_len, kw_offset, id_len; 2700 2701 vpd = vmalloc(VPD_LEN); 2702 if (!vpd) 2703 return -ENOMEM; 2704 2705 /* We have two VPD data structures stored in the adapter VPD area. 2706 * By default, Linux calculates the size of the VPD area by traversing 2707 * the first VPD area at offset 0x0, so we need to tell the OS what 2708 * our real VPD size is. 2709 */ 2710 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE); 2711 if (ret < 0) 2712 goto out; 2713 2714 /* Card information normally starts at VPD_BASE but early cards had 2715 * it at 0. 2716 */ 2717 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2718 if (ret < 0) 2719 goto out; 2720 2721 /* The VPD shall have a unique identifier specified by the PCI SIG. 2722 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2723 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2724 * is expected to automatically put this entry at the 2725 * beginning of the VPD. 2726 */ 2727 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2728 2729 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2730 if (ret < 0) 2731 goto out; 2732 2733 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2734 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2735 ret = -EINVAL; 2736 goto out; 2737 } 2738 2739 id_len = pci_vpd_lrdt_size(vpd); 2740 if (id_len > ID_LEN) 2741 id_len = ID_LEN; 2742 2743 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2744 if (i < 0) { 2745 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2746 ret = -EINVAL; 2747 goto out; 2748 } 2749 2750 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2751 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2752 if (vpdr_len + kw_offset > VPD_LEN) { 2753 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2754 ret = -EINVAL; 2755 goto out; 2756 } 2757 2758 #define FIND_VPD_KW(var, name) do { \ 2759 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2760 if (var < 0) { \ 2761 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2762 ret = -EINVAL; \ 2763 goto out; \ 2764 } \ 2765 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2766 } while (0) 2767 2768 FIND_VPD_KW(i, "RV"); 2769 for (csum = 0; i >= 0; i--) 2770 csum += vpd[i]; 2771 2772 if (csum) { 2773 dev_err(adapter->pdev_dev, 2774 "corrupted VPD EEPROM, actual csum %u\n", csum); 2775 ret = -EINVAL; 2776 goto out; 2777 } 2778 2779 FIND_VPD_KW(ec, "EC"); 2780 FIND_VPD_KW(sn, "SN"); 2781 FIND_VPD_KW(pn, "PN"); 2782 FIND_VPD_KW(na, "NA"); 2783 #undef FIND_VPD_KW 2784 2785 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2786 strim(p->id); 2787 memcpy(p->ec, vpd + ec, EC_LEN); 2788 strim(p->ec); 2789 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2790 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2791 strim(p->sn); 2792 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2793 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2794 strim(p->pn); 2795 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2796 strim((char *)p->na); 2797 2798 out: 2799 vfree(vpd); 2800 return ret < 0 ? ret : 0; 2801 } 2802 2803 /** 2804 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2805 * @adapter: adapter to read 2806 * @p: where to store the parameters 2807 * 2808 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2809 * Clock. This can only be called after a connection to the firmware 2810 * is established. 2811 */ 2812 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2813 { 2814 u32 cclk_param, cclk_val; 2815 int ret; 2816 2817 /* Grab the raw VPD parameters. 2818 */ 2819 ret = t4_get_raw_vpd_params(adapter, p); 2820 if (ret) 2821 return ret; 2822 2823 /* Ask firmware for the Core Clock since it knows how to translate the 2824 * Reference Clock ('V2') VPD field into a Core Clock value ... 2825 */ 2826 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2827 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2828 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2829 1, &cclk_param, &cclk_val); 2830 2831 if (ret) 2832 return ret; 2833 p->cclk = cclk_val; 2834 2835 return 0; 2836 } 2837 2838 /* serial flash and firmware constants */ 2839 enum { 2840 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2841 2842 /* flash command opcodes */ 2843 SF_PROG_PAGE = 2, /* program page */ 2844 SF_WR_DISABLE = 4, /* disable writes */ 2845 SF_RD_STATUS = 5, /* read status register */ 2846 SF_WR_ENABLE = 6, /* enable writes */ 2847 SF_RD_DATA_FAST = 0xb, /* read flash */ 2848 SF_RD_ID = 0x9f, /* read ID */ 2849 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2850 2851 FW_MAX_SIZE = 16 * SF_SEC_SIZE, 2852 }; 2853 2854 /** 2855 * sf1_read - read data from the serial flash 2856 * @adapter: the adapter 2857 * @byte_cnt: number of bytes to read 2858 * @cont: whether another operation will be chained 2859 * @lock: whether to lock SF for PL access only 2860 * @valp: where to store the read data 2861 * 2862 * Reads up to 4 bytes of data from the serial flash. The location of 2863 * the read needs to be specified prior to calling this by issuing the 2864 * appropriate commands to the serial flash. 2865 */ 2866 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2867 int lock, u32 *valp) 2868 { 2869 int ret; 2870 2871 if (!byte_cnt || byte_cnt > 4) 2872 return -EINVAL; 2873 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2874 return -EBUSY; 2875 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2876 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2877 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2878 if (!ret) 2879 *valp = t4_read_reg(adapter, SF_DATA_A); 2880 return ret; 2881 } 2882 2883 /** 2884 * sf1_write - write data to the serial flash 2885 * @adapter: the adapter 2886 * @byte_cnt: number of bytes to write 2887 * @cont: whether another operation will be chained 2888 * @lock: whether to lock SF for PL access only 2889 * @val: value to write 2890 * 2891 * Writes up to 4 bytes of data to the serial flash. The location of 2892 * the write needs to be specified prior to calling this by issuing the 2893 * appropriate commands to the serial flash. 2894 */ 2895 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2896 int lock, u32 val) 2897 { 2898 if (!byte_cnt || byte_cnt > 4) 2899 return -EINVAL; 2900 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2901 return -EBUSY; 2902 t4_write_reg(adapter, SF_DATA_A, val); 2903 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2904 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2905 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2906 } 2907 2908 /** 2909 * flash_wait_op - wait for a flash operation to complete 2910 * @adapter: the adapter 2911 * @attempts: max number of polls of the status register 2912 * @delay: delay between polls in ms 2913 * 2914 * Wait for a flash operation to complete by polling the status register. 2915 */ 2916 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2917 { 2918 int ret; 2919 u32 status; 2920 2921 while (1) { 2922 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2923 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2924 return ret; 2925 if (!(status & 1)) 2926 return 0; 2927 if (--attempts == 0) 2928 return -EAGAIN; 2929 if (delay) 2930 msleep(delay); 2931 } 2932 } 2933 2934 /** 2935 * t4_read_flash - read words from serial flash 2936 * @adapter: the adapter 2937 * @addr: the start address for the read 2938 * @nwords: how many 32-bit words to read 2939 * @data: where to store the read data 2940 * @byte_oriented: whether to store data as bytes or as words 2941 * 2942 * Read the specified number of 32-bit words from the serial flash. 2943 * If @byte_oriented is set the read data is stored as a byte array 2944 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2945 * natural endianness. 2946 */ 2947 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2948 unsigned int nwords, u32 *data, int byte_oriented) 2949 { 2950 int ret; 2951 2952 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2953 return -EINVAL; 2954 2955 addr = swab32(addr) | SF_RD_DATA_FAST; 2956 2957 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 2958 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 2959 return ret; 2960 2961 for ( ; nwords; nwords--, data++) { 2962 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 2963 if (nwords == 1) 2964 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2965 if (ret) 2966 return ret; 2967 if (byte_oriented) 2968 *data = (__force __u32)(cpu_to_be32(*data)); 2969 } 2970 return 0; 2971 } 2972 2973 /** 2974 * t4_write_flash - write up to a page of data to the serial flash 2975 * @adapter: the adapter 2976 * @addr: the start address to write 2977 * @n: length of data to write in bytes 2978 * @data: the data to write 2979 * 2980 * Writes up to a page of data (256 bytes) to the serial flash starting 2981 * at the given address. All the data must be written to the same page. 2982 */ 2983 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 2984 unsigned int n, const u8 *data) 2985 { 2986 int ret; 2987 u32 buf[64]; 2988 unsigned int i, c, left, val, offset = addr & 0xff; 2989 2990 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 2991 return -EINVAL; 2992 2993 val = swab32(addr) | SF_PROG_PAGE; 2994 2995 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 2996 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 2997 goto unlock; 2998 2999 for (left = n; left; left -= c) { 3000 c = min(left, 4U); 3001 for (val = 0, i = 0; i < c; ++i) 3002 val = (val << 8) + *data++; 3003 3004 ret = sf1_write(adapter, c, c != left, 1, val); 3005 if (ret) 3006 goto unlock; 3007 } 3008 ret = flash_wait_op(adapter, 8, 1); 3009 if (ret) 3010 goto unlock; 3011 3012 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3013 3014 /* Read the page to verify the write succeeded */ 3015 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3016 if (ret) 3017 return ret; 3018 3019 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3020 dev_err(adapter->pdev_dev, 3021 "failed to correctly write the flash page at %#x\n", 3022 addr); 3023 return -EIO; 3024 } 3025 return 0; 3026 3027 unlock: 3028 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3029 return ret; 3030 } 3031 3032 /** 3033 * t4_get_fw_version - read the firmware version 3034 * @adapter: the adapter 3035 * @vers: where to place the version 3036 * 3037 * Reads the FW version from flash. 3038 */ 3039 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3040 { 3041 return t4_read_flash(adapter, FLASH_FW_START + 3042 offsetof(struct fw_hdr, fw_ver), 1, 3043 vers, 0); 3044 } 3045 3046 /** 3047 * t4_get_bs_version - read the firmware bootstrap version 3048 * @adapter: the adapter 3049 * @vers: where to place the version 3050 * 3051 * Reads the FW Bootstrap version from flash. 3052 */ 3053 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3054 { 3055 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3056 offsetof(struct fw_hdr, fw_ver), 1, 3057 vers, 0); 3058 } 3059 3060 /** 3061 * t4_get_tp_version - read the TP microcode version 3062 * @adapter: the adapter 3063 * @vers: where to place the version 3064 * 3065 * Reads the TP microcode version from flash. 3066 */ 3067 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3068 { 3069 return t4_read_flash(adapter, FLASH_FW_START + 3070 offsetof(struct fw_hdr, tp_microcode_ver), 3071 1, vers, 0); 3072 } 3073 3074 /** 3075 * t4_get_exprom_version - return the Expansion ROM version (if any) 3076 * @adapter: the adapter 3077 * @vers: where to place the version 3078 * 3079 * Reads the Expansion ROM header from FLASH and returns the version 3080 * number (if present) through the @vers return value pointer. We return 3081 * this in the Firmware Version Format since it's convenient. Return 3082 * 0 on success, -ENOENT if no Expansion ROM is present. 3083 */ 3084 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3085 { 3086 struct exprom_header { 3087 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3088 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3089 } *hdr; 3090 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3091 sizeof(u32))]; 3092 int ret; 3093 3094 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3095 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3096 0); 3097 if (ret) 3098 return ret; 3099 3100 hdr = (struct exprom_header *)exprom_header_buf; 3101 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3102 return -ENOENT; 3103 3104 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3105 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3106 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3107 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3108 return 0; 3109 } 3110 3111 /** 3112 * t4_get_vpd_version - return the VPD version 3113 * @adapter: the adapter 3114 * @vers: where to place the version 3115 * 3116 * Reads the VPD via the Firmware interface (thus this can only be called 3117 * once we're ready to issue Firmware commands). The format of the 3118 * VPD version is adapter specific. Returns 0 on success, an error on 3119 * failure. 3120 * 3121 * Note that early versions of the Firmware didn't include the ability 3122 * to retrieve the VPD version, so we zero-out the return-value parameter 3123 * in that case to avoid leaving it with garbage in it. 3124 * 3125 * Also note that the Firmware will return its cached copy of the VPD 3126 * Revision ID, not the actual Revision ID as written in the Serial 3127 * EEPROM. This is only an issue if a new VPD has been written and the 3128 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3129 * to defer calling this routine till after a FW_RESET_CMD has been issued 3130 * if the Host Driver will be performing a full adapter initialization. 3131 */ 3132 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3133 { 3134 u32 vpdrev_param; 3135 int ret; 3136 3137 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3138 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3139 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3140 1, &vpdrev_param, vers); 3141 if (ret) 3142 *vers = 0; 3143 return ret; 3144 } 3145 3146 /** 3147 * t4_get_scfg_version - return the Serial Configuration version 3148 * @adapter: the adapter 3149 * @vers: where to place the version 3150 * 3151 * Reads the Serial Configuration Version via the Firmware interface 3152 * (thus this can only be called once we're ready to issue Firmware 3153 * commands). The format of the Serial Configuration version is 3154 * adapter specific. Returns 0 on success, an error on failure. 3155 * 3156 * Note that early versions of the Firmware didn't include the ability 3157 * to retrieve the Serial Configuration version, so we zero-out the 3158 * return-value parameter in that case to avoid leaving it with 3159 * garbage in it. 3160 * 3161 * Also note that the Firmware will return its cached copy of the Serial 3162 * Initialization Revision ID, not the actual Revision ID as written in 3163 * the Serial EEPROM. This is only an issue if a new VPD has been written 3164 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3165 * it's best to defer calling this routine till after a FW_RESET_CMD has 3166 * been issued if the Host Driver will be performing a full adapter 3167 * initialization. 3168 */ 3169 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3170 { 3171 u32 scfgrev_param; 3172 int ret; 3173 3174 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3175 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3176 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3177 1, &scfgrev_param, vers); 3178 if (ret) 3179 *vers = 0; 3180 return ret; 3181 } 3182 3183 /** 3184 * t4_get_version_info - extract various chip/firmware version information 3185 * @adapter: the adapter 3186 * 3187 * Reads various chip/firmware version numbers and stores them into the 3188 * adapter Adapter Parameters structure. If any of the efforts fails 3189 * the first failure will be returned, but all of the version numbers 3190 * will be read. 3191 */ 3192 int t4_get_version_info(struct adapter *adapter) 3193 { 3194 int ret = 0; 3195 3196 #define FIRST_RET(__getvinfo) \ 3197 do { \ 3198 int __ret = __getvinfo; \ 3199 if (__ret && !ret) \ 3200 ret = __ret; \ 3201 } while (0) 3202 3203 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3204 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3205 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3206 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3207 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3208 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3209 3210 #undef FIRST_RET 3211 return ret; 3212 } 3213 3214 /** 3215 * t4_dump_version_info - dump all of the adapter configuration IDs 3216 * @adapter: the adapter 3217 * 3218 * Dumps all of the various bits of adapter configuration version/revision 3219 * IDs information. This is typically called at some point after 3220 * t4_get_version_info() has been called. 3221 */ 3222 void t4_dump_version_info(struct adapter *adapter) 3223 { 3224 /* Device information */ 3225 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3226 adapter->params.vpd.id, 3227 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3228 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3229 adapter->params.vpd.sn, adapter->params.vpd.pn); 3230 3231 /* Firmware Version */ 3232 if (!adapter->params.fw_vers) 3233 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3234 else 3235 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3236 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3237 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3238 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3239 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3240 3241 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3242 * Firmware, so dev_info() is more appropriate here.) 3243 */ 3244 if (!adapter->params.bs_vers) 3245 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3246 else 3247 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3248 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3249 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3250 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3251 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3252 3253 /* TP Microcode Version */ 3254 if (!adapter->params.tp_vers) 3255 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3256 else 3257 dev_info(adapter->pdev_dev, 3258 "TP Microcode version: %u.%u.%u.%u\n", 3259 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3260 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3261 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3262 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3263 3264 /* Expansion ROM version */ 3265 if (!adapter->params.er_vers) 3266 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3267 else 3268 dev_info(adapter->pdev_dev, 3269 "Expansion ROM version: %u.%u.%u.%u\n", 3270 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3271 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3272 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3273 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3274 3275 /* Serial Configuration version */ 3276 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3277 adapter->params.scfg_vers); 3278 3279 /* VPD Version */ 3280 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3281 adapter->params.vpd_vers); 3282 } 3283 3284 /** 3285 * t4_check_fw_version - check if the FW is supported with this driver 3286 * @adap: the adapter 3287 * 3288 * Checks if an adapter's FW is compatible with the driver. Returns 0 3289 * if there's exact match, a negative error if the version could not be 3290 * read or there's a major version mismatch 3291 */ 3292 int t4_check_fw_version(struct adapter *adap) 3293 { 3294 int i, ret, major, minor, micro; 3295 int exp_major, exp_minor, exp_micro; 3296 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3297 3298 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3299 /* Try multiple times before returning error */ 3300 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3301 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3302 3303 if (ret) 3304 return ret; 3305 3306 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3307 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3308 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3309 3310 switch (chip_version) { 3311 case CHELSIO_T4: 3312 exp_major = T4FW_MIN_VERSION_MAJOR; 3313 exp_minor = T4FW_MIN_VERSION_MINOR; 3314 exp_micro = T4FW_MIN_VERSION_MICRO; 3315 break; 3316 case CHELSIO_T5: 3317 exp_major = T5FW_MIN_VERSION_MAJOR; 3318 exp_minor = T5FW_MIN_VERSION_MINOR; 3319 exp_micro = T5FW_MIN_VERSION_MICRO; 3320 break; 3321 case CHELSIO_T6: 3322 exp_major = T6FW_MIN_VERSION_MAJOR; 3323 exp_minor = T6FW_MIN_VERSION_MINOR; 3324 exp_micro = T6FW_MIN_VERSION_MICRO; 3325 break; 3326 default: 3327 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3328 adap->chip); 3329 return -EINVAL; 3330 } 3331 3332 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3333 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3334 dev_err(adap->pdev_dev, 3335 "Card has firmware version %u.%u.%u, minimum " 3336 "supported firmware is %u.%u.%u.\n", major, minor, 3337 micro, exp_major, exp_minor, exp_micro); 3338 return -EFAULT; 3339 } 3340 return 0; 3341 } 3342 3343 /* Is the given firmware API compatible with the one the driver was compiled 3344 * with? 3345 */ 3346 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3347 { 3348 3349 /* short circuit if it's the exact same firmware version */ 3350 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3351 return 1; 3352 3353 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3354 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3355 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3356 return 1; 3357 #undef SAME_INTF 3358 3359 return 0; 3360 } 3361 3362 /* The firmware in the filesystem is usable, but should it be installed? 3363 * This routine explains itself in detail if it indicates the filesystem 3364 * firmware should be installed. 3365 */ 3366 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3367 int k, int c) 3368 { 3369 const char *reason; 3370 3371 if (!card_fw_usable) { 3372 reason = "incompatible or unusable"; 3373 goto install; 3374 } 3375 3376 if (k > c) { 3377 reason = "older than the version supported with this driver"; 3378 goto install; 3379 } 3380 3381 return 0; 3382 3383 install: 3384 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3385 "installing firmware %u.%u.%u.%u on card.\n", 3386 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3387 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3388 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3389 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3390 3391 return 1; 3392 } 3393 3394 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3395 const u8 *fw_data, unsigned int fw_size, 3396 struct fw_hdr *card_fw, enum dev_state state, 3397 int *reset) 3398 { 3399 int ret, card_fw_usable, fs_fw_usable; 3400 const struct fw_hdr *fs_fw; 3401 const struct fw_hdr *drv_fw; 3402 3403 drv_fw = &fw_info->fw_hdr; 3404 3405 /* Read the header of the firmware on the card */ 3406 ret = -t4_read_flash(adap, FLASH_FW_START, 3407 sizeof(*card_fw) / sizeof(uint32_t), 3408 (uint32_t *)card_fw, 1); 3409 if (ret == 0) { 3410 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3411 } else { 3412 dev_err(adap->pdev_dev, 3413 "Unable to read card's firmware header: %d\n", ret); 3414 card_fw_usable = 0; 3415 } 3416 3417 if (fw_data != NULL) { 3418 fs_fw = (const void *)fw_data; 3419 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3420 } else { 3421 fs_fw = NULL; 3422 fs_fw_usable = 0; 3423 } 3424 3425 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3426 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3427 /* Common case: the firmware on the card is an exact match and 3428 * the filesystem one is an exact match too, or the filesystem 3429 * one is absent/incompatible. 3430 */ 3431 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3432 should_install_fs_fw(adap, card_fw_usable, 3433 be32_to_cpu(fs_fw->fw_ver), 3434 be32_to_cpu(card_fw->fw_ver))) { 3435 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3436 fw_size, 0); 3437 if (ret != 0) { 3438 dev_err(adap->pdev_dev, 3439 "failed to install firmware: %d\n", ret); 3440 goto bye; 3441 } 3442 3443 /* Installed successfully, update the cached header too. */ 3444 *card_fw = *fs_fw; 3445 card_fw_usable = 1; 3446 *reset = 0; /* already reset as part of load_fw */ 3447 } 3448 3449 if (!card_fw_usable) { 3450 uint32_t d, c, k; 3451 3452 d = be32_to_cpu(drv_fw->fw_ver); 3453 c = be32_to_cpu(card_fw->fw_ver); 3454 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3455 3456 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3457 "chip state %d, " 3458 "driver compiled with %d.%d.%d.%d, " 3459 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3460 state, 3461 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3462 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3463 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3464 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3465 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3466 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3467 ret = EINVAL; 3468 goto bye; 3469 } 3470 3471 /* We're using whatever's on the card and it's known to be good. */ 3472 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3473 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3474 3475 bye: 3476 return ret; 3477 } 3478 3479 /** 3480 * t4_flash_erase_sectors - erase a range of flash sectors 3481 * @adapter: the adapter 3482 * @start: the first sector to erase 3483 * @end: the last sector to erase 3484 * 3485 * Erases the sectors in the given inclusive range. 3486 */ 3487 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3488 { 3489 int ret = 0; 3490 3491 if (end >= adapter->params.sf_nsec) 3492 return -EINVAL; 3493 3494 while (start <= end) { 3495 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3496 (ret = sf1_write(adapter, 4, 0, 1, 3497 SF_ERASE_SECTOR | (start << 8))) != 0 || 3498 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3499 dev_err(adapter->pdev_dev, 3500 "erase of flash sector %d failed, error %d\n", 3501 start, ret); 3502 break; 3503 } 3504 start++; 3505 } 3506 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3507 return ret; 3508 } 3509 3510 /** 3511 * t4_flash_cfg_addr - return the address of the flash configuration file 3512 * @adapter: the adapter 3513 * 3514 * Return the address within the flash where the Firmware Configuration 3515 * File is stored. 3516 */ 3517 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3518 { 3519 if (adapter->params.sf_size == 0x100000) 3520 return FLASH_FPGA_CFG_START; 3521 else 3522 return FLASH_CFG_START; 3523 } 3524 3525 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3526 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3527 * and emit an error message for mismatched firmware to save our caller the 3528 * effort ... 3529 */ 3530 static bool t4_fw_matches_chip(const struct adapter *adap, 3531 const struct fw_hdr *hdr) 3532 { 3533 /* The expression below will return FALSE for any unsupported adapter 3534 * which will keep us "honest" in the future ... 3535 */ 3536 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3537 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3538 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3539 return true; 3540 3541 dev_err(adap->pdev_dev, 3542 "FW image (%d) is not suitable for this adapter (%d)\n", 3543 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3544 return false; 3545 } 3546 3547 /** 3548 * t4_load_fw - download firmware 3549 * @adap: the adapter 3550 * @fw_data: the firmware image to write 3551 * @size: image size 3552 * 3553 * Write the supplied firmware image to the card's serial flash. 3554 */ 3555 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3556 { 3557 u32 csum; 3558 int ret, addr; 3559 unsigned int i; 3560 u8 first_page[SF_PAGE_SIZE]; 3561 const __be32 *p = (const __be32 *)fw_data; 3562 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3563 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3564 unsigned int fw_img_start = adap->params.sf_fw_start; 3565 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 3566 3567 if (!size) { 3568 dev_err(adap->pdev_dev, "FW image has no data\n"); 3569 return -EINVAL; 3570 } 3571 if (size & 511) { 3572 dev_err(adap->pdev_dev, 3573 "FW image size not multiple of 512 bytes\n"); 3574 return -EINVAL; 3575 } 3576 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3577 dev_err(adap->pdev_dev, 3578 "FW image size differs from size in FW header\n"); 3579 return -EINVAL; 3580 } 3581 if (size > FW_MAX_SIZE) { 3582 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3583 FW_MAX_SIZE); 3584 return -EFBIG; 3585 } 3586 if (!t4_fw_matches_chip(adap, hdr)) 3587 return -EINVAL; 3588 3589 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3590 csum += be32_to_cpu(p[i]); 3591 3592 if (csum != 0xffffffff) { 3593 dev_err(adap->pdev_dev, 3594 "corrupted firmware image, checksum %#x\n", csum); 3595 return -EINVAL; 3596 } 3597 3598 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3599 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3600 if (ret) 3601 goto out; 3602 3603 /* 3604 * We write the correct version at the end so the driver can see a bad 3605 * version if the FW write fails. Start by writing a copy of the 3606 * first page with a bad version. 3607 */ 3608 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3609 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3610 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 3611 if (ret) 3612 goto out; 3613 3614 addr = fw_img_start; 3615 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3616 addr += SF_PAGE_SIZE; 3617 fw_data += SF_PAGE_SIZE; 3618 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3619 if (ret) 3620 goto out; 3621 } 3622 3623 ret = t4_write_flash(adap, 3624 fw_img_start + offsetof(struct fw_hdr, fw_ver), 3625 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3626 out: 3627 if (ret) 3628 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3629 ret); 3630 else 3631 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3632 return ret; 3633 } 3634 3635 /** 3636 * t4_phy_fw_ver - return current PHY firmware version 3637 * @adap: the adapter 3638 * @phy_fw_ver: return value buffer for PHY firmware version 3639 * 3640 * Returns the current version of external PHY firmware on the 3641 * adapter. 3642 */ 3643 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3644 { 3645 u32 param, val; 3646 int ret; 3647 3648 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3649 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3650 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3651 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3652 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3653 ¶m, &val); 3654 if (ret < 0) 3655 return ret; 3656 *phy_fw_ver = val; 3657 return 0; 3658 } 3659 3660 /** 3661 * t4_load_phy_fw - download port PHY firmware 3662 * @adap: the adapter 3663 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3664 * @win_lock: the lock to use to guard the memory copy 3665 * @phy_fw_version: function to check PHY firmware versions 3666 * @phy_fw_data: the PHY firmware image to write 3667 * @phy_fw_size: image size 3668 * 3669 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3670 * @phy_fw_version is supplied, then it will be used to determine if 3671 * it's necessary to perform the transfer by comparing the version 3672 * of any existing adapter PHY firmware with that of the passed in 3673 * PHY firmware image. If @win_lock is non-NULL then it will be used 3674 * around the call to t4_memory_rw() which transfers the PHY firmware 3675 * to the adapter. 3676 * 3677 * A negative error number will be returned if an error occurs. If 3678 * version number support is available and there's no need to upgrade 3679 * the firmware, 0 will be returned. If firmware is successfully 3680 * transferred to the adapter, 1 will be retured. 3681 * 3682 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3683 * a result, a RESET of the adapter would cause that RAM to lose its 3684 * contents. Thus, loading PHY firmware on such adapters must happen 3685 * after any FW_RESET_CMDs ... 3686 */ 3687 int t4_load_phy_fw(struct adapter *adap, 3688 int win, spinlock_t *win_lock, 3689 int (*phy_fw_version)(const u8 *, size_t), 3690 const u8 *phy_fw_data, size_t phy_fw_size) 3691 { 3692 unsigned long mtype = 0, maddr = 0; 3693 u32 param, val; 3694 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3695 int ret; 3696 3697 /* If we have version number support, then check to see if the adapter 3698 * already has up-to-date PHY firmware loaded. 3699 */ 3700 if (phy_fw_version) { 3701 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3702 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3703 if (ret < 0) 3704 return ret; 3705 3706 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3707 CH_WARN(adap, "PHY Firmware already up-to-date, " 3708 "version %#x\n", cur_phy_fw_ver); 3709 return 0; 3710 } 3711 } 3712 3713 /* Ask the firmware where it wants us to copy the PHY firmware image. 3714 * The size of the file requires a special version of the READ coommand 3715 * which will pass the file size via the values field in PARAMS_CMD and 3716 * retrieve the return value from firmware and place it in the same 3717 * buffer values 3718 */ 3719 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3720 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3721 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3722 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3723 val = phy_fw_size; 3724 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3725 ¶m, &val, 1, true); 3726 if (ret < 0) 3727 return ret; 3728 mtype = val >> 8; 3729 maddr = (val & 0xff) << 16; 3730 3731 /* Copy the supplied PHY Firmware image to the adapter memory location 3732 * allocated by the adapter firmware. 3733 */ 3734 if (win_lock) 3735 spin_lock_bh(win_lock); 3736 ret = t4_memory_rw(adap, win, mtype, maddr, 3737 phy_fw_size, (__be32 *)phy_fw_data, 3738 T4_MEMORY_WRITE); 3739 if (win_lock) 3740 spin_unlock_bh(win_lock); 3741 if (ret) 3742 return ret; 3743 3744 /* Tell the firmware that the PHY firmware image has been written to 3745 * RAM and it can now start copying it over to the PHYs. The chip 3746 * firmware will RESET the affected PHYs as part of this operation 3747 * leaving them running the new PHY firmware image. 3748 */ 3749 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3750 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3751 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3752 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3753 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3754 ¶m, &val, 30000); 3755 3756 /* If we have version number support, then check to see that the new 3757 * firmware got loaded properly. 3758 */ 3759 if (phy_fw_version) { 3760 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3761 if (ret < 0) 3762 return ret; 3763 3764 if (cur_phy_fw_ver != new_phy_fw_vers) { 3765 CH_WARN(adap, "PHY Firmware did not update: " 3766 "version on adapter %#x, " 3767 "version flashed %#x\n", 3768 cur_phy_fw_ver, new_phy_fw_vers); 3769 return -ENXIO; 3770 } 3771 } 3772 3773 return 1; 3774 } 3775 3776 /** 3777 * t4_fwcache - firmware cache operation 3778 * @adap: the adapter 3779 * @op : the operation (flush or flush and invalidate) 3780 */ 3781 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3782 { 3783 struct fw_params_cmd c; 3784 3785 memset(&c, 0, sizeof(c)); 3786 c.op_to_vfn = 3787 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3788 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3789 FW_PARAMS_CMD_PFN_V(adap->pf) | 3790 FW_PARAMS_CMD_VFN_V(0)); 3791 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3792 c.param[0].mnem = 3793 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3794 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3795 c.param[0].val = (__force __be32)op; 3796 3797 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3798 } 3799 3800 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3801 unsigned int *pif_req_wrptr, 3802 unsigned int *pif_rsp_wrptr) 3803 { 3804 int i, j; 3805 u32 cfg, val, req, rsp; 3806 3807 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3808 if (cfg & LADBGEN_F) 3809 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3810 3811 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3812 req = POLADBGWRPTR_G(val); 3813 rsp = PILADBGWRPTR_G(val); 3814 if (pif_req_wrptr) 3815 *pif_req_wrptr = req; 3816 if (pif_rsp_wrptr) 3817 *pif_rsp_wrptr = rsp; 3818 3819 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3820 for (j = 0; j < 6; j++) { 3821 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3822 PILADBGRDPTR_V(rsp)); 3823 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3824 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3825 req++; 3826 rsp++; 3827 } 3828 req = (req + 2) & POLADBGRDPTR_M; 3829 rsp = (rsp + 2) & PILADBGRDPTR_M; 3830 } 3831 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3832 } 3833 3834 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3835 { 3836 u32 cfg; 3837 int i, j, idx; 3838 3839 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3840 if (cfg & LADBGEN_F) 3841 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3842 3843 for (i = 0; i < CIM_MALA_SIZE; i++) { 3844 for (j = 0; j < 5; j++) { 3845 idx = 8 * i + j; 3846 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3847 PILADBGRDPTR_V(idx)); 3848 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3849 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3850 } 3851 } 3852 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3853 } 3854 3855 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3856 { 3857 unsigned int i, j; 3858 3859 for (i = 0; i < 8; i++) { 3860 u32 *p = la_buf + i; 3861 3862 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3863 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3864 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3865 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3866 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3867 } 3868 } 3869 3870 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3871 FW_PORT_CAP32_ANEG) 3872 3873 /** 3874 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3875 * @caps16: a 16-bit Port Capabilities value 3876 * 3877 * Returns the equivalent 32-bit Port Capabilities value. 3878 */ 3879 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3880 { 3881 fw_port_cap32_t caps32 = 0; 3882 3883 #define CAP16_TO_CAP32(__cap) \ 3884 do { \ 3885 if (caps16 & FW_PORT_CAP_##__cap) \ 3886 caps32 |= FW_PORT_CAP32_##__cap; \ 3887 } while (0) 3888 3889 CAP16_TO_CAP32(SPEED_100M); 3890 CAP16_TO_CAP32(SPEED_1G); 3891 CAP16_TO_CAP32(SPEED_25G); 3892 CAP16_TO_CAP32(SPEED_10G); 3893 CAP16_TO_CAP32(SPEED_40G); 3894 CAP16_TO_CAP32(SPEED_100G); 3895 CAP16_TO_CAP32(FC_RX); 3896 CAP16_TO_CAP32(FC_TX); 3897 CAP16_TO_CAP32(ANEG); 3898 CAP16_TO_CAP32(MDIX); 3899 CAP16_TO_CAP32(MDIAUTO); 3900 CAP16_TO_CAP32(FEC_RS); 3901 CAP16_TO_CAP32(FEC_BASER_RS); 3902 CAP16_TO_CAP32(802_3_PAUSE); 3903 CAP16_TO_CAP32(802_3_ASM_DIR); 3904 3905 #undef CAP16_TO_CAP32 3906 3907 return caps32; 3908 } 3909 3910 /** 3911 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3912 * @caps32: a 32-bit Port Capabilities value 3913 * 3914 * Returns the equivalent 16-bit Port Capabilities value. Note that 3915 * not all 32-bit Port Capabilities can be represented in the 16-bit 3916 * Port Capabilities and some fields/values may not make it. 3917 */ 3918 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 3919 { 3920 fw_port_cap16_t caps16 = 0; 3921 3922 #define CAP32_TO_CAP16(__cap) \ 3923 do { \ 3924 if (caps32 & FW_PORT_CAP32_##__cap) \ 3925 caps16 |= FW_PORT_CAP_##__cap; \ 3926 } while (0) 3927 3928 CAP32_TO_CAP16(SPEED_100M); 3929 CAP32_TO_CAP16(SPEED_1G); 3930 CAP32_TO_CAP16(SPEED_10G); 3931 CAP32_TO_CAP16(SPEED_25G); 3932 CAP32_TO_CAP16(SPEED_40G); 3933 CAP32_TO_CAP16(SPEED_100G); 3934 CAP32_TO_CAP16(FC_RX); 3935 CAP32_TO_CAP16(FC_TX); 3936 CAP32_TO_CAP16(802_3_PAUSE); 3937 CAP32_TO_CAP16(802_3_ASM_DIR); 3938 CAP32_TO_CAP16(ANEG); 3939 CAP32_TO_CAP16(MDIX); 3940 CAP32_TO_CAP16(MDIAUTO); 3941 CAP32_TO_CAP16(FEC_RS); 3942 CAP32_TO_CAP16(FEC_BASER_RS); 3943 3944 #undef CAP32_TO_CAP16 3945 3946 return caps16; 3947 } 3948 3949 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 3950 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 3951 { 3952 enum cc_pause cc_pause = 0; 3953 3954 if (fw_pause & FW_PORT_CAP32_FC_RX) 3955 cc_pause |= PAUSE_RX; 3956 if (fw_pause & FW_PORT_CAP32_FC_TX) 3957 cc_pause |= PAUSE_TX; 3958 3959 return cc_pause; 3960 } 3961 3962 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 3963 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 3964 { 3965 fw_port_cap32_t fw_pause = 0; 3966 3967 if (cc_pause & PAUSE_RX) 3968 fw_pause |= FW_PORT_CAP32_FC_RX; 3969 if (cc_pause & PAUSE_TX) 3970 fw_pause |= FW_PORT_CAP32_FC_TX; 3971 3972 return fw_pause; 3973 } 3974 3975 /* Translate Firmware Forward Error Correction specification to Common Code */ 3976 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 3977 { 3978 enum cc_fec cc_fec = 0; 3979 3980 if (fw_fec & FW_PORT_CAP32_FEC_RS) 3981 cc_fec |= FEC_RS; 3982 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 3983 cc_fec |= FEC_BASER_RS; 3984 3985 return cc_fec; 3986 } 3987 3988 /* Translate Common Code Forward Error Correction specification to Firmware */ 3989 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 3990 { 3991 fw_port_cap32_t fw_fec = 0; 3992 3993 if (cc_fec & FEC_RS) 3994 fw_fec |= FW_PORT_CAP32_FEC_RS; 3995 if (cc_fec & FEC_BASER_RS) 3996 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 3997 3998 return fw_fec; 3999 } 4000 4001 /** 4002 * t4_link_l1cfg - apply link configuration to MAC/PHY 4003 * @adapter: the adapter 4004 * @mbox: the Firmware Mailbox to use 4005 * @port: the Port ID 4006 * @lc: the Port's Link Configuration 4007 * 4008 * Set up a port's MAC and PHY according to a desired link configuration. 4009 * - If the PHY can auto-negotiate first decide what to advertise, then 4010 * enable/disable auto-negotiation as desired, and reset. 4011 * - If the PHY does not auto-negotiate just reset it. 4012 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4013 * otherwise do it later based on the outcome of auto-negotiation. 4014 */ 4015 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox, 4016 unsigned int port, struct link_config *lc) 4017 { 4018 unsigned int fw_caps = adapter->params.fw_caps_support; 4019 struct fw_port_cmd cmd; 4020 unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO); 4021 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 4022 4023 lc->link_ok = 0; 4024 4025 /* Convert driver coding of Pause Frame Flow Control settings into the 4026 * Firmware's API. 4027 */ 4028 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4029 4030 /* Convert Common Code Forward Error Control settings into the 4031 * Firmware's API. If the current Requested FEC has "Automatic" 4032 * (IEEE 802.3) specified, then we use whatever the Firmware 4033 * sent us as part of it's IEEE 802.3-based interpratation of 4034 * the Transceiver Module EPROM FEC parameters. Otherwise we 4035 * use whatever is in the current Requested FEC settings. 4036 */ 4037 if (lc->requested_fec & FEC_AUTO) 4038 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4039 else 4040 cc_fec = lc->requested_fec; 4041 fw_fec = cc_to_fwcap_fec(cc_fec); 4042 4043 /* Figure out what our Requested Port Capabilities are going to be. 4044 */ 4045 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4046 rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec; 4047 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4048 lc->fec = cc_fec; 4049 } else if (lc->autoneg == AUTONEG_DISABLE) { 4050 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4051 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4052 lc->fec = cc_fec; 4053 } else { 4054 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4055 } 4056 4057 /* And send that on to the Firmware ... 4058 */ 4059 memset(&cmd, 0, sizeof(cmd)); 4060 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4061 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4062 FW_PORT_CMD_PORTID_V(port)); 4063 cmd.action_to_len16 = 4064 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4065 ? FW_PORT_ACTION_L1_CFG 4066 : FW_PORT_ACTION_L1_CFG32) | 4067 FW_LEN16(cmd)); 4068 if (fw_caps == FW_CAPS16) 4069 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4070 else 4071 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4072 return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4073 } 4074 4075 /** 4076 * t4_restart_aneg - restart autonegotiation 4077 * @adap: the adapter 4078 * @mbox: mbox to use for the FW command 4079 * @port: the port id 4080 * 4081 * Restarts autonegotiation for the selected port. 4082 */ 4083 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4084 { 4085 struct fw_port_cmd c; 4086 4087 memset(&c, 0, sizeof(c)); 4088 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4089 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4090 FW_PORT_CMD_PORTID_V(port)); 4091 c.action_to_len16 = 4092 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 4093 FW_LEN16(c)); 4094 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG); 4095 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4096 } 4097 4098 typedef void (*int_handler_t)(struct adapter *adap); 4099 4100 struct intr_info { 4101 unsigned int mask; /* bits to check in interrupt status */ 4102 const char *msg; /* message to print or NULL */ 4103 short stat_idx; /* stat counter to increment or -1 */ 4104 unsigned short fatal; /* whether the condition reported is fatal */ 4105 int_handler_t int_handler; /* platform-specific int handler */ 4106 }; 4107 4108 /** 4109 * t4_handle_intr_status - table driven interrupt handler 4110 * @adapter: the adapter that generated the interrupt 4111 * @reg: the interrupt status register to process 4112 * @acts: table of interrupt actions 4113 * 4114 * A table driven interrupt handler that applies a set of masks to an 4115 * interrupt status word and performs the corresponding actions if the 4116 * interrupts described by the mask have occurred. The actions include 4117 * optionally emitting a warning or alert message. The table is terminated 4118 * by an entry specifying mask 0. Returns the number of fatal interrupt 4119 * conditions. 4120 */ 4121 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4122 const struct intr_info *acts) 4123 { 4124 int fatal = 0; 4125 unsigned int mask = 0; 4126 unsigned int status = t4_read_reg(adapter, reg); 4127 4128 for ( ; acts->mask; ++acts) { 4129 if (!(status & acts->mask)) 4130 continue; 4131 if (acts->fatal) { 4132 fatal++; 4133 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4134 status & acts->mask); 4135 } else if (acts->msg && printk_ratelimit()) 4136 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4137 status & acts->mask); 4138 if (acts->int_handler) 4139 acts->int_handler(adapter); 4140 mask |= acts->mask; 4141 } 4142 status &= mask; 4143 if (status) /* clear processed interrupts */ 4144 t4_write_reg(adapter, reg, status); 4145 return fatal; 4146 } 4147 4148 /* 4149 * Interrupt handler for the PCIE module. 4150 */ 4151 static void pcie_intr_handler(struct adapter *adapter) 4152 { 4153 static const struct intr_info sysbus_intr_info[] = { 4154 { RNPP_F, "RXNP array parity error", -1, 1 }, 4155 { RPCP_F, "RXPC array parity error", -1, 1 }, 4156 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4157 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4158 { RFTP_F, "RXFT array parity error", -1, 1 }, 4159 { 0 } 4160 }; 4161 static const struct intr_info pcie_port_intr_info[] = { 4162 { TPCP_F, "TXPC array parity error", -1, 1 }, 4163 { TNPP_F, "TXNP array parity error", -1, 1 }, 4164 { TFTP_F, "TXFT array parity error", -1, 1 }, 4165 { TCAP_F, "TXCA array parity error", -1, 1 }, 4166 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4167 { RCAP_F, "RXCA array parity error", -1, 1 }, 4168 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4169 { RDPE_F, "Rx data parity error", -1, 1 }, 4170 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4171 { 0 } 4172 }; 4173 static const struct intr_info pcie_intr_info[] = { 4174 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4175 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4176 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4177 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4178 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4179 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4180 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4181 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4182 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4183 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4184 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4185 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4186 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4187 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4188 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4189 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4190 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4191 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4192 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4193 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4194 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4195 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4196 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4197 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4198 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4199 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4200 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4201 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4202 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4203 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4204 -1, 0 }, 4205 { 0 } 4206 }; 4207 4208 static struct intr_info t5_pcie_intr_info[] = { 4209 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4210 -1, 1 }, 4211 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4212 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4213 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4214 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4215 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4216 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4217 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4218 -1, 1 }, 4219 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4220 -1, 1 }, 4221 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4222 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4223 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4224 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4225 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4226 -1, 1 }, 4227 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4228 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4229 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4230 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4231 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4232 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4233 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4234 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4235 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4236 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4237 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4238 -1, 1 }, 4239 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4240 -1, 1 }, 4241 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4242 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4243 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4244 { READRSPERR_F, "Outbound read error", -1, 0 }, 4245 { 0 } 4246 }; 4247 4248 int fat; 4249 4250 if (is_t4(adapter->params.chip)) 4251 fat = t4_handle_intr_status(adapter, 4252 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4253 sysbus_intr_info) + 4254 t4_handle_intr_status(adapter, 4255 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4256 pcie_port_intr_info) + 4257 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4258 pcie_intr_info); 4259 else 4260 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4261 t5_pcie_intr_info); 4262 4263 if (fat) 4264 t4_fatal_err(adapter); 4265 } 4266 4267 /* 4268 * TP interrupt handler. 4269 */ 4270 static void tp_intr_handler(struct adapter *adapter) 4271 { 4272 static const struct intr_info tp_intr_info[] = { 4273 { 0x3fffffff, "TP parity error", -1, 1 }, 4274 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4275 { 0 } 4276 }; 4277 4278 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4279 t4_fatal_err(adapter); 4280 } 4281 4282 /* 4283 * SGE interrupt handler. 4284 */ 4285 static void sge_intr_handler(struct adapter *adapter) 4286 { 4287 u64 v; 4288 u32 err; 4289 4290 static const struct intr_info sge_intr_info[] = { 4291 { ERR_CPL_EXCEED_IQE_SIZE_F, 4292 "SGE received CPL exceeding IQE size", -1, 1 }, 4293 { ERR_INVALID_CIDX_INC_F, 4294 "SGE GTS CIDX increment too large", -1, 0 }, 4295 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4296 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4297 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4298 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4299 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4300 0 }, 4301 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4302 0 }, 4303 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4304 0 }, 4305 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4306 0 }, 4307 { ERR_ING_CTXT_PRIO_F, 4308 "SGE too many priority ingress contexts", -1, 0 }, 4309 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4310 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4311 { 0 } 4312 }; 4313 4314 static struct intr_info t4t5_sge_intr_info[] = { 4315 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4316 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4317 { ERR_EGR_CTXT_PRIO_F, 4318 "SGE too many priority egress contexts", -1, 0 }, 4319 { 0 } 4320 }; 4321 4322 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4323 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4324 if (v) { 4325 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4326 (unsigned long long)v); 4327 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4328 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4329 } 4330 4331 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4332 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4333 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4334 t4t5_sge_intr_info); 4335 4336 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4337 if (err & ERROR_QID_VALID_F) { 4338 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4339 ERROR_QID_G(err)); 4340 if (err & UNCAPTURED_ERROR_F) 4341 dev_err(adapter->pdev_dev, 4342 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4343 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4344 UNCAPTURED_ERROR_F); 4345 } 4346 4347 if (v != 0) 4348 t4_fatal_err(adapter); 4349 } 4350 4351 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4352 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4353 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4354 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4355 4356 /* 4357 * CIM interrupt handler. 4358 */ 4359 static void cim_intr_handler(struct adapter *adapter) 4360 { 4361 static const struct intr_info cim_intr_info[] = { 4362 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4363 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4364 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4365 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4366 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4367 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4368 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4369 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4370 { 0 } 4371 }; 4372 static const struct intr_info cim_upintr_info[] = { 4373 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4374 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4375 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4376 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4377 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4378 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4379 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4380 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4381 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4382 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4383 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4384 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4385 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4386 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4387 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4388 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4389 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4390 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4391 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4392 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4393 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4394 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4395 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4396 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4397 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4398 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4399 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4400 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4401 { 0 } 4402 }; 4403 4404 u32 val, fw_err; 4405 int fat; 4406 4407 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4408 if (fw_err & PCIE_FW_ERR_F) 4409 t4_report_fw_error(adapter); 4410 4411 /* When the Firmware detects an internal error which normally 4412 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4413 * in order to make sure the Host sees the Firmware Crash. So 4414 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4415 * ignore the Timer0 interrupt. 4416 */ 4417 4418 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4419 if (val & TIMER0INT_F) 4420 if (!(fw_err & PCIE_FW_ERR_F) || 4421 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4422 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4423 TIMER0INT_F); 4424 4425 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4426 cim_intr_info) + 4427 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4428 cim_upintr_info); 4429 if (fat) 4430 t4_fatal_err(adapter); 4431 } 4432 4433 /* 4434 * ULP RX interrupt handler. 4435 */ 4436 static void ulprx_intr_handler(struct adapter *adapter) 4437 { 4438 static const struct intr_info ulprx_intr_info[] = { 4439 { 0x1800000, "ULPRX context error", -1, 1 }, 4440 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4441 { 0 } 4442 }; 4443 4444 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4445 t4_fatal_err(adapter); 4446 } 4447 4448 /* 4449 * ULP TX interrupt handler. 4450 */ 4451 static void ulptx_intr_handler(struct adapter *adapter) 4452 { 4453 static const struct intr_info ulptx_intr_info[] = { 4454 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4455 0 }, 4456 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4457 0 }, 4458 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4459 0 }, 4460 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4461 0 }, 4462 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4463 { 0 } 4464 }; 4465 4466 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4467 t4_fatal_err(adapter); 4468 } 4469 4470 /* 4471 * PM TX interrupt handler. 4472 */ 4473 static void pmtx_intr_handler(struct adapter *adapter) 4474 { 4475 static const struct intr_info pmtx_intr_info[] = { 4476 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4477 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4478 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4479 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4480 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4481 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4482 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4483 -1, 1 }, 4484 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4485 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4486 { 0 } 4487 }; 4488 4489 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4490 t4_fatal_err(adapter); 4491 } 4492 4493 /* 4494 * PM RX interrupt handler. 4495 */ 4496 static void pmrx_intr_handler(struct adapter *adapter) 4497 { 4498 static const struct intr_info pmrx_intr_info[] = { 4499 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4500 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4501 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4502 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4503 -1, 1 }, 4504 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4505 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4506 { 0 } 4507 }; 4508 4509 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4510 t4_fatal_err(adapter); 4511 } 4512 4513 /* 4514 * CPL switch interrupt handler. 4515 */ 4516 static void cplsw_intr_handler(struct adapter *adapter) 4517 { 4518 static const struct intr_info cplsw_intr_info[] = { 4519 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4520 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4521 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4522 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4523 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4524 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4525 { 0 } 4526 }; 4527 4528 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4529 t4_fatal_err(adapter); 4530 } 4531 4532 /* 4533 * LE interrupt handler. 4534 */ 4535 static void le_intr_handler(struct adapter *adap) 4536 { 4537 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4538 static const struct intr_info le_intr_info[] = { 4539 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4540 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4541 { PARITYERR_F, "LE parity error", -1, 1 }, 4542 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4543 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4544 { 0 } 4545 }; 4546 4547 static struct intr_info t6_le_intr_info[] = { 4548 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4549 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4550 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4551 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4552 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4553 { 0 } 4554 }; 4555 4556 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4557 (chip <= CHELSIO_T5) ? 4558 le_intr_info : t6_le_intr_info)) 4559 t4_fatal_err(adap); 4560 } 4561 4562 /* 4563 * MPS interrupt handler. 4564 */ 4565 static void mps_intr_handler(struct adapter *adapter) 4566 { 4567 static const struct intr_info mps_rx_intr_info[] = { 4568 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4569 { 0 } 4570 }; 4571 static const struct intr_info mps_tx_intr_info[] = { 4572 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4573 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4574 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4575 -1, 1 }, 4576 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4577 -1, 1 }, 4578 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4579 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4580 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4581 { 0 } 4582 }; 4583 static const struct intr_info t6_mps_tx_intr_info[] = { 4584 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4585 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4586 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4587 -1, 1 }, 4588 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4589 -1, 1 }, 4590 /* MPS Tx Bubble is normal for T6 */ 4591 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4592 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4593 { 0 } 4594 }; 4595 static const struct intr_info mps_trc_intr_info[] = { 4596 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4597 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4598 -1, 1 }, 4599 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4600 { 0 } 4601 }; 4602 static const struct intr_info mps_stat_sram_intr_info[] = { 4603 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4604 { 0 } 4605 }; 4606 static const struct intr_info mps_stat_tx_intr_info[] = { 4607 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4608 { 0 } 4609 }; 4610 static const struct intr_info mps_stat_rx_intr_info[] = { 4611 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4612 { 0 } 4613 }; 4614 static const struct intr_info mps_cls_intr_info[] = { 4615 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4616 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4617 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4618 { 0 } 4619 }; 4620 4621 int fat; 4622 4623 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4624 mps_rx_intr_info) + 4625 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4626 is_t6(adapter->params.chip) 4627 ? t6_mps_tx_intr_info 4628 : mps_tx_intr_info) + 4629 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4630 mps_trc_intr_info) + 4631 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4632 mps_stat_sram_intr_info) + 4633 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4634 mps_stat_tx_intr_info) + 4635 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4636 mps_stat_rx_intr_info) + 4637 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4638 mps_cls_intr_info); 4639 4640 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4641 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4642 if (fat) 4643 t4_fatal_err(adapter); 4644 } 4645 4646 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4647 ECC_UE_INT_CAUSE_F) 4648 4649 /* 4650 * EDC/MC interrupt handler. 4651 */ 4652 static void mem_intr_handler(struct adapter *adapter, int idx) 4653 { 4654 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4655 4656 unsigned int addr, cnt_addr, v; 4657 4658 if (idx <= MEM_EDC1) { 4659 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4660 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4661 } else if (idx == MEM_MC) { 4662 if (is_t4(adapter->params.chip)) { 4663 addr = MC_INT_CAUSE_A; 4664 cnt_addr = MC_ECC_STATUS_A; 4665 } else { 4666 addr = MC_P_INT_CAUSE_A; 4667 cnt_addr = MC_P_ECC_STATUS_A; 4668 } 4669 } else { 4670 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4671 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4672 } 4673 4674 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4675 if (v & PERR_INT_CAUSE_F) 4676 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4677 name[idx]); 4678 if (v & ECC_CE_INT_CAUSE_F) { 4679 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4680 4681 t4_edc_err_read(adapter, idx); 4682 4683 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4684 if (printk_ratelimit()) 4685 dev_warn(adapter->pdev_dev, 4686 "%u %s correctable ECC data error%s\n", 4687 cnt, name[idx], cnt > 1 ? "s" : ""); 4688 } 4689 if (v & ECC_UE_INT_CAUSE_F) 4690 dev_alert(adapter->pdev_dev, 4691 "%s uncorrectable ECC data error\n", name[idx]); 4692 4693 t4_write_reg(adapter, addr, v); 4694 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4695 t4_fatal_err(adapter); 4696 } 4697 4698 /* 4699 * MA interrupt handler. 4700 */ 4701 static void ma_intr_handler(struct adapter *adap) 4702 { 4703 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4704 4705 if (status & MEM_PERR_INT_CAUSE_F) { 4706 dev_alert(adap->pdev_dev, 4707 "MA parity error, parity status %#x\n", 4708 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4709 if (is_t5(adap->params.chip)) 4710 dev_alert(adap->pdev_dev, 4711 "MA parity error, parity status %#x\n", 4712 t4_read_reg(adap, 4713 MA_PARITY_ERROR_STATUS2_A)); 4714 } 4715 if (status & MEM_WRAP_INT_CAUSE_F) { 4716 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4717 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4718 "client %u to address %#x\n", 4719 MEM_WRAP_CLIENT_NUM_G(v), 4720 MEM_WRAP_ADDRESS_G(v) << 4); 4721 } 4722 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4723 t4_fatal_err(adap); 4724 } 4725 4726 /* 4727 * SMB interrupt handler. 4728 */ 4729 static void smb_intr_handler(struct adapter *adap) 4730 { 4731 static const struct intr_info smb_intr_info[] = { 4732 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4733 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4734 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4735 { 0 } 4736 }; 4737 4738 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4739 t4_fatal_err(adap); 4740 } 4741 4742 /* 4743 * NC-SI interrupt handler. 4744 */ 4745 static void ncsi_intr_handler(struct adapter *adap) 4746 { 4747 static const struct intr_info ncsi_intr_info[] = { 4748 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4749 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4750 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4751 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4752 { 0 } 4753 }; 4754 4755 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4756 t4_fatal_err(adap); 4757 } 4758 4759 /* 4760 * XGMAC interrupt handler. 4761 */ 4762 static void xgmac_intr_handler(struct adapter *adap, int port) 4763 { 4764 u32 v, int_cause_reg; 4765 4766 if (is_t4(adap->params.chip)) 4767 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4768 else 4769 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4770 4771 v = t4_read_reg(adap, int_cause_reg); 4772 4773 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4774 if (!v) 4775 return; 4776 4777 if (v & TXFIFO_PRTY_ERR_F) 4778 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4779 port); 4780 if (v & RXFIFO_PRTY_ERR_F) 4781 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4782 port); 4783 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4784 t4_fatal_err(adap); 4785 } 4786 4787 /* 4788 * PL interrupt handler. 4789 */ 4790 static void pl_intr_handler(struct adapter *adap) 4791 { 4792 static const struct intr_info pl_intr_info[] = { 4793 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4794 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4795 { 0 } 4796 }; 4797 4798 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4799 t4_fatal_err(adap); 4800 } 4801 4802 #define PF_INTR_MASK (PFSW_F) 4803 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4804 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4805 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4806 4807 /** 4808 * t4_slow_intr_handler - control path interrupt handler 4809 * @adapter: the adapter 4810 * 4811 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4812 * The designation 'slow' is because it involves register reads, while 4813 * data interrupts typically don't involve any MMIOs. 4814 */ 4815 int t4_slow_intr_handler(struct adapter *adapter) 4816 { 4817 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4818 4819 if (!(cause & GLBL_INTR_MASK)) 4820 return 0; 4821 if (cause & CIM_F) 4822 cim_intr_handler(adapter); 4823 if (cause & MPS_F) 4824 mps_intr_handler(adapter); 4825 if (cause & NCSI_F) 4826 ncsi_intr_handler(adapter); 4827 if (cause & PL_F) 4828 pl_intr_handler(adapter); 4829 if (cause & SMB_F) 4830 smb_intr_handler(adapter); 4831 if (cause & XGMAC0_F) 4832 xgmac_intr_handler(adapter, 0); 4833 if (cause & XGMAC1_F) 4834 xgmac_intr_handler(adapter, 1); 4835 if (cause & XGMAC_KR0_F) 4836 xgmac_intr_handler(adapter, 2); 4837 if (cause & XGMAC_KR1_F) 4838 xgmac_intr_handler(adapter, 3); 4839 if (cause & PCIE_F) 4840 pcie_intr_handler(adapter); 4841 if (cause & MC_F) 4842 mem_intr_handler(adapter, MEM_MC); 4843 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4844 mem_intr_handler(adapter, MEM_MC1); 4845 if (cause & EDC0_F) 4846 mem_intr_handler(adapter, MEM_EDC0); 4847 if (cause & EDC1_F) 4848 mem_intr_handler(adapter, MEM_EDC1); 4849 if (cause & LE_F) 4850 le_intr_handler(adapter); 4851 if (cause & TP_F) 4852 tp_intr_handler(adapter); 4853 if (cause & MA_F) 4854 ma_intr_handler(adapter); 4855 if (cause & PM_TX_F) 4856 pmtx_intr_handler(adapter); 4857 if (cause & PM_RX_F) 4858 pmrx_intr_handler(adapter); 4859 if (cause & ULP_RX_F) 4860 ulprx_intr_handler(adapter); 4861 if (cause & CPL_SWITCH_F) 4862 cplsw_intr_handler(adapter); 4863 if (cause & SGE_F) 4864 sge_intr_handler(adapter); 4865 if (cause & ULP_TX_F) 4866 ulptx_intr_handler(adapter); 4867 4868 /* Clear the interrupts just processed for which we are the master. */ 4869 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4870 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4871 return 1; 4872 } 4873 4874 /** 4875 * t4_intr_enable - enable interrupts 4876 * @adapter: the adapter whose interrupts should be enabled 4877 * 4878 * Enable PF-specific interrupts for the calling function and the top-level 4879 * interrupt concentrator for global interrupts. Interrupts are already 4880 * enabled at each module, here we just enable the roots of the interrupt 4881 * hierarchies. 4882 * 4883 * Note: this function should be called only when the driver manages 4884 * non PF-specific interrupts from the various HW modules. Only one PCI 4885 * function at a time should be doing this. 4886 */ 4887 void t4_intr_enable(struct adapter *adapter) 4888 { 4889 u32 val = 0; 4890 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4891 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4892 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4893 4894 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4895 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4896 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4897 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4898 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4899 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4900 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4901 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4902 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4903 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4904 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4905 } 4906 4907 /** 4908 * t4_intr_disable - disable interrupts 4909 * @adapter: the adapter whose interrupts should be disabled 4910 * 4911 * Disable interrupts. We only disable the top-level interrupt 4912 * concentrators. The caller must be a PCI function managing global 4913 * interrupts. 4914 */ 4915 void t4_intr_disable(struct adapter *adapter) 4916 { 4917 u32 whoami, pf; 4918 4919 if (pci_channel_offline(adapter->pdev)) 4920 return; 4921 4922 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4923 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4924 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4925 4926 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4927 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4928 } 4929 4930 unsigned int t4_chip_rss_size(struct adapter *adap) 4931 { 4932 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 4933 return RSS_NENTRIES; 4934 else 4935 return T6_RSS_NENTRIES; 4936 } 4937 4938 /** 4939 * t4_config_rss_range - configure a portion of the RSS mapping table 4940 * @adapter: the adapter 4941 * @mbox: mbox to use for the FW command 4942 * @viid: virtual interface whose RSS subtable is to be written 4943 * @start: start entry in the table to write 4944 * @n: how many table entries to write 4945 * @rspq: values for the response queue lookup table 4946 * @nrspq: number of values in @rspq 4947 * 4948 * Programs the selected part of the VI's RSS mapping table with the 4949 * provided values. If @nrspq < @n the supplied values are used repeatedly 4950 * until the full table range is populated. 4951 * 4952 * The caller must ensure the values in @rspq are in the range allowed for 4953 * @viid. 4954 */ 4955 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 4956 int start, int n, const u16 *rspq, unsigned int nrspq) 4957 { 4958 int ret; 4959 const u16 *rsp = rspq; 4960 const u16 *rsp_end = rspq + nrspq; 4961 struct fw_rss_ind_tbl_cmd cmd; 4962 4963 memset(&cmd, 0, sizeof(cmd)); 4964 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 4965 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4966 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 4967 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 4968 4969 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 4970 while (n > 0) { 4971 int nq = min(n, 32); 4972 __be32 *qp = &cmd.iq0_to_iq2; 4973 4974 cmd.niqid = cpu_to_be16(nq); 4975 cmd.startidx = cpu_to_be16(start); 4976 4977 start += nq; 4978 n -= nq; 4979 4980 while (nq > 0) { 4981 unsigned int v; 4982 4983 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 4984 if (++rsp >= rsp_end) 4985 rsp = rspq; 4986 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 4987 if (++rsp >= rsp_end) 4988 rsp = rspq; 4989 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 4990 if (++rsp >= rsp_end) 4991 rsp = rspq; 4992 4993 *qp++ = cpu_to_be32(v); 4994 nq -= 3; 4995 } 4996 4997 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4998 if (ret) 4999 return ret; 5000 } 5001 return 0; 5002 } 5003 5004 /** 5005 * t4_config_glbl_rss - configure the global RSS mode 5006 * @adapter: the adapter 5007 * @mbox: mbox to use for the FW command 5008 * @mode: global RSS mode 5009 * @flags: mode-specific flags 5010 * 5011 * Sets the global RSS mode. 5012 */ 5013 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5014 unsigned int flags) 5015 { 5016 struct fw_rss_glb_config_cmd c; 5017 5018 memset(&c, 0, sizeof(c)); 5019 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5020 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5021 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5022 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5023 c.u.manual.mode_pkd = 5024 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5025 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5026 c.u.basicvirtual.mode_pkd = 5027 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5028 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5029 } else 5030 return -EINVAL; 5031 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5032 } 5033 5034 /** 5035 * t4_config_vi_rss - configure per VI RSS settings 5036 * @adapter: the adapter 5037 * @mbox: mbox to use for the FW command 5038 * @viid: the VI id 5039 * @flags: RSS flags 5040 * @defq: id of the default RSS queue for the VI. 5041 * 5042 * Configures VI-specific RSS properties. 5043 */ 5044 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5045 unsigned int flags, unsigned int defq) 5046 { 5047 struct fw_rss_vi_config_cmd c; 5048 5049 memset(&c, 0, sizeof(c)); 5050 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5051 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5052 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5053 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5054 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5055 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5056 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5057 } 5058 5059 /* Read an RSS table row */ 5060 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5061 { 5062 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5063 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5064 5, 0, val); 5065 } 5066 5067 /** 5068 * t4_read_rss - read the contents of the RSS mapping table 5069 * @adapter: the adapter 5070 * @map: holds the contents of the RSS mapping table 5071 * 5072 * Reads the contents of the RSS hash->queue mapping table. 5073 */ 5074 int t4_read_rss(struct adapter *adapter, u16 *map) 5075 { 5076 int i, ret, nentries; 5077 u32 val; 5078 5079 nentries = t4_chip_rss_size(adapter); 5080 for (i = 0; i < nentries / 2; ++i) { 5081 ret = rd_rss_row(adapter, i, &val); 5082 if (ret) 5083 return ret; 5084 *map++ = LKPTBLQUEUE0_G(val); 5085 *map++ = LKPTBLQUEUE1_G(val); 5086 } 5087 return 0; 5088 } 5089 5090 static unsigned int t4_use_ldst(struct adapter *adap) 5091 { 5092 return (adap->flags & FW_OK) || !adap->use_bd; 5093 } 5094 5095 /** 5096 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5097 * @adap: the adapter 5098 * @cmd: TP fw ldst address space type 5099 * @vals: where the indirect register values are stored/written 5100 * @nregs: how many indirect registers to read/write 5101 * @start_idx: index of first indirect register to read/write 5102 * @rw: Read (1) or Write (0) 5103 * @sleep_ok: if true we may sleep while awaiting command completion 5104 * 5105 * Access TP indirect registers through LDST 5106 */ 5107 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5108 unsigned int nregs, unsigned int start_index, 5109 unsigned int rw, bool sleep_ok) 5110 { 5111 int ret = 0; 5112 unsigned int i; 5113 struct fw_ldst_cmd c; 5114 5115 for (i = 0; i < nregs; i++) { 5116 memset(&c, 0, sizeof(c)); 5117 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5118 FW_CMD_REQUEST_F | 5119 (rw ? FW_CMD_READ_F : 5120 FW_CMD_WRITE_F) | 5121 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5122 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5123 5124 c.u.addrval.addr = cpu_to_be32(start_index + i); 5125 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5126 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5127 sleep_ok); 5128 if (ret) 5129 return ret; 5130 5131 if (rw) 5132 vals[i] = be32_to_cpu(c.u.addrval.val); 5133 } 5134 return 0; 5135 } 5136 5137 /** 5138 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5139 * @adap: the adapter 5140 * @reg_addr: Address Register 5141 * @reg_data: Data register 5142 * @buff: where the indirect register values are stored/written 5143 * @nregs: how many indirect registers to read/write 5144 * @start_index: index of first indirect register to read/write 5145 * @rw: READ(1) or WRITE(0) 5146 * @sleep_ok: if true we may sleep while awaiting command completion 5147 * 5148 * Read/Write TP indirect registers through LDST if possible. 5149 * Else, use backdoor access 5150 **/ 5151 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5152 u32 *buff, u32 nregs, u32 start_index, int rw, 5153 bool sleep_ok) 5154 { 5155 int rc = -EINVAL; 5156 int cmd; 5157 5158 switch (reg_addr) { 5159 case TP_PIO_ADDR_A: 5160 cmd = FW_LDST_ADDRSPC_TP_PIO; 5161 break; 5162 case TP_TM_PIO_ADDR_A: 5163 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5164 break; 5165 case TP_MIB_INDEX_A: 5166 cmd = FW_LDST_ADDRSPC_TP_MIB; 5167 break; 5168 default: 5169 goto indirect_access; 5170 } 5171 5172 if (t4_use_ldst(adap)) 5173 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5174 sleep_ok); 5175 5176 indirect_access: 5177 5178 if (rc) { 5179 if (rw) 5180 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5181 start_index); 5182 else 5183 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5184 start_index); 5185 } 5186 } 5187 5188 /** 5189 * t4_tp_pio_read - Read TP PIO registers 5190 * @adap: the adapter 5191 * @buff: where the indirect register values are written 5192 * @nregs: how many indirect registers to read 5193 * @start_index: index of first indirect register to read 5194 * @sleep_ok: if true we may sleep while awaiting command completion 5195 * 5196 * Read TP PIO Registers 5197 **/ 5198 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5199 u32 start_index, bool sleep_ok) 5200 { 5201 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5202 start_index, 1, sleep_ok); 5203 } 5204 5205 /** 5206 * t4_tp_pio_write - Write TP PIO registers 5207 * @adap: the adapter 5208 * @buff: where the indirect register values are stored 5209 * @nregs: how many indirect registers to write 5210 * @start_index: index of first indirect register to write 5211 * @sleep_ok: if true we may sleep while awaiting command completion 5212 * 5213 * Write TP PIO Registers 5214 **/ 5215 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5216 u32 start_index, bool sleep_ok) 5217 { 5218 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5219 start_index, 0, sleep_ok); 5220 } 5221 5222 /** 5223 * t4_tp_tm_pio_read - Read TP TM PIO registers 5224 * @adap: the adapter 5225 * @buff: where the indirect register values are written 5226 * @nregs: how many indirect registers to read 5227 * @start_index: index of first indirect register to read 5228 * @sleep_ok: if true we may sleep while awaiting command completion 5229 * 5230 * Read TP TM PIO Registers 5231 **/ 5232 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5233 u32 start_index, bool sleep_ok) 5234 { 5235 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5236 nregs, start_index, 1, sleep_ok); 5237 } 5238 5239 /** 5240 * t4_tp_mib_read - Read TP MIB registers 5241 * @adap: the adapter 5242 * @buff: where the indirect register values are written 5243 * @nregs: how many indirect registers to read 5244 * @start_index: index of first indirect register to read 5245 * @sleep_ok: if true we may sleep while awaiting command completion 5246 * 5247 * Read TP MIB Registers 5248 **/ 5249 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5250 bool sleep_ok) 5251 { 5252 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5253 start_index, 1, sleep_ok); 5254 } 5255 5256 /** 5257 * t4_read_rss_key - read the global RSS key 5258 * @adap: the adapter 5259 * @key: 10-entry array holding the 320-bit RSS key 5260 * @sleep_ok: if true we may sleep while awaiting command completion 5261 * 5262 * Reads the global 320-bit RSS key. 5263 */ 5264 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5265 { 5266 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5267 } 5268 5269 /** 5270 * t4_write_rss_key - program one of the RSS keys 5271 * @adap: the adapter 5272 * @key: 10-entry array holding the 320-bit RSS key 5273 * @idx: which RSS key to write 5274 * @sleep_ok: if true we may sleep while awaiting command completion 5275 * 5276 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5277 * 0..15 the corresponding entry in the RSS key table is written, 5278 * otherwise the global RSS key is written. 5279 */ 5280 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5281 bool sleep_ok) 5282 { 5283 u8 rss_key_addr_cnt = 16; 5284 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5285 5286 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5287 * allows access to key addresses 16-63 by using KeyWrAddrX 5288 * as index[5:4](upper 2) into key table 5289 */ 5290 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5291 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5292 rss_key_addr_cnt = 32; 5293 5294 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5295 5296 if (idx >= 0 && idx < rss_key_addr_cnt) { 5297 if (rss_key_addr_cnt > 16) 5298 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5299 KEYWRADDRX_V(idx >> 4) | 5300 T6_VFWRADDR_V(idx) | KEYWREN_F); 5301 else 5302 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5303 KEYWRADDR_V(idx) | KEYWREN_F); 5304 } 5305 } 5306 5307 /** 5308 * t4_read_rss_pf_config - read PF RSS Configuration Table 5309 * @adapter: the adapter 5310 * @index: the entry in the PF RSS table to read 5311 * @valp: where to store the returned value 5312 * @sleep_ok: if true we may sleep while awaiting command completion 5313 * 5314 * Reads the PF RSS Configuration Table at the specified index and returns 5315 * the value found there. 5316 */ 5317 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5318 u32 *valp, bool sleep_ok) 5319 { 5320 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5321 } 5322 5323 /** 5324 * t4_read_rss_vf_config - read VF RSS Configuration Table 5325 * @adapter: the adapter 5326 * @index: the entry in the VF RSS table to read 5327 * @vfl: where to store the returned VFL 5328 * @vfh: where to store the returned VFH 5329 * @sleep_ok: if true we may sleep while awaiting command completion 5330 * 5331 * Reads the VF RSS Configuration Table at the specified index and returns 5332 * the (VFL, VFH) values found there. 5333 */ 5334 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5335 u32 *vfl, u32 *vfh, bool sleep_ok) 5336 { 5337 u32 vrt, mask, data; 5338 5339 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5340 mask = VFWRADDR_V(VFWRADDR_M); 5341 data = VFWRADDR_V(index); 5342 } else { 5343 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5344 data = T6_VFWRADDR_V(index); 5345 } 5346 5347 /* Request that the index'th VF Table values be read into VFL/VFH. 5348 */ 5349 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5350 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5351 vrt |= data | VFRDEN_F; 5352 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5353 5354 /* Grab the VFL/VFH values ... 5355 */ 5356 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5357 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5358 } 5359 5360 /** 5361 * t4_read_rss_pf_map - read PF RSS Map 5362 * @adapter: the adapter 5363 * @sleep_ok: if true we may sleep while awaiting command completion 5364 * 5365 * Reads the PF RSS Map register and returns its value. 5366 */ 5367 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5368 { 5369 u32 pfmap; 5370 5371 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5372 return pfmap; 5373 } 5374 5375 /** 5376 * t4_read_rss_pf_mask - read PF RSS Mask 5377 * @adapter: the adapter 5378 * @sleep_ok: if true we may sleep while awaiting command completion 5379 * 5380 * Reads the PF RSS Mask register and returns its value. 5381 */ 5382 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5383 { 5384 u32 pfmask; 5385 5386 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5387 return pfmask; 5388 } 5389 5390 /** 5391 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5392 * @adap: the adapter 5393 * @v4: holds the TCP/IP counter values 5394 * @v6: holds the TCP/IPv6 counter values 5395 * @sleep_ok: if true we may sleep while awaiting command completion 5396 * 5397 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5398 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5399 */ 5400 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5401 struct tp_tcp_stats *v6, bool sleep_ok) 5402 { 5403 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5404 5405 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5406 #define STAT(x) val[STAT_IDX(x)] 5407 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5408 5409 if (v4) { 5410 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5411 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5412 v4->tcp_out_rsts = STAT(OUT_RST); 5413 v4->tcp_in_segs = STAT64(IN_SEG); 5414 v4->tcp_out_segs = STAT64(OUT_SEG); 5415 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5416 } 5417 if (v6) { 5418 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5419 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5420 v6->tcp_out_rsts = STAT(OUT_RST); 5421 v6->tcp_in_segs = STAT64(IN_SEG); 5422 v6->tcp_out_segs = STAT64(OUT_SEG); 5423 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5424 } 5425 #undef STAT64 5426 #undef STAT 5427 #undef STAT_IDX 5428 } 5429 5430 /** 5431 * t4_tp_get_err_stats - read TP's error MIB counters 5432 * @adap: the adapter 5433 * @st: holds the counter values 5434 * @sleep_ok: if true we may sleep while awaiting command completion 5435 * 5436 * Returns the values of TP's error counters. 5437 */ 5438 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5439 bool sleep_ok) 5440 { 5441 int nchan = adap->params.arch.nchan; 5442 5443 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5444 sleep_ok); 5445 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5446 sleep_ok); 5447 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5448 sleep_ok); 5449 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5450 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5451 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5452 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5453 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5454 sleep_ok); 5455 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5456 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5457 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5458 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5459 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5460 sleep_ok); 5461 } 5462 5463 /** 5464 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5465 * @adap: the adapter 5466 * @st: holds the counter values 5467 * @sleep_ok: if true we may sleep while awaiting command completion 5468 * 5469 * Returns the values of TP's CPL counters. 5470 */ 5471 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5472 bool sleep_ok) 5473 { 5474 int nchan = adap->params.arch.nchan; 5475 5476 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5477 5478 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5479 } 5480 5481 /** 5482 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5483 * @adap: the adapter 5484 * @st: holds the counter values 5485 * @sleep_ok: if true we may sleep while awaiting command completion 5486 * 5487 * Returns the values of TP's RDMA counters. 5488 */ 5489 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5490 bool sleep_ok) 5491 { 5492 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5493 sleep_ok); 5494 } 5495 5496 /** 5497 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5498 * @adap: the adapter 5499 * @idx: the port index 5500 * @st: holds the counter values 5501 * @sleep_ok: if true we may sleep while awaiting command completion 5502 * 5503 * Returns the values of TP's FCoE counters for the selected port. 5504 */ 5505 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5506 struct tp_fcoe_stats *st, bool sleep_ok) 5507 { 5508 u32 val[2]; 5509 5510 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5511 sleep_ok); 5512 5513 t4_tp_mib_read(adap, &st->frames_drop, 1, 5514 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5515 5516 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5517 sleep_ok); 5518 5519 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5520 } 5521 5522 /** 5523 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5524 * @adap: the adapter 5525 * @st: holds the counter values 5526 * @sleep_ok: if true we may sleep while awaiting command completion 5527 * 5528 * Returns the values of TP's counters for non-TCP directly-placed packets. 5529 */ 5530 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5531 bool sleep_ok) 5532 { 5533 u32 val[4]; 5534 5535 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5536 st->frames = val[0]; 5537 st->drops = val[1]; 5538 st->octets = ((u64)val[2] << 32) | val[3]; 5539 } 5540 5541 /** 5542 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5543 * @adap: the adapter 5544 * @mtus: where to store the MTU values 5545 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5546 * 5547 * Reads the HW path MTU table. 5548 */ 5549 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5550 { 5551 u32 v; 5552 int i; 5553 5554 for (i = 0; i < NMTUS; ++i) { 5555 t4_write_reg(adap, TP_MTU_TABLE_A, 5556 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5557 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5558 mtus[i] = MTUVALUE_G(v); 5559 if (mtu_log) 5560 mtu_log[i] = MTUWIDTH_G(v); 5561 } 5562 } 5563 5564 /** 5565 * t4_read_cong_tbl - reads the congestion control table 5566 * @adap: the adapter 5567 * @incr: where to store the alpha values 5568 * 5569 * Reads the additive increments programmed into the HW congestion 5570 * control table. 5571 */ 5572 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5573 { 5574 unsigned int mtu, w; 5575 5576 for (mtu = 0; mtu < NMTUS; ++mtu) 5577 for (w = 0; w < NCCTRL_WIN; ++w) { 5578 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5579 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5580 incr[mtu][w] = (u16)t4_read_reg(adap, 5581 TP_CCTRL_TABLE_A) & 0x1fff; 5582 } 5583 } 5584 5585 /** 5586 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5587 * @adap: the adapter 5588 * @addr: the indirect TP register address 5589 * @mask: specifies the field within the register to modify 5590 * @val: new value for the field 5591 * 5592 * Sets a field of an indirect TP register to the given value. 5593 */ 5594 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5595 unsigned int mask, unsigned int val) 5596 { 5597 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5598 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5599 t4_write_reg(adap, TP_PIO_DATA_A, val); 5600 } 5601 5602 /** 5603 * init_cong_ctrl - initialize congestion control parameters 5604 * @a: the alpha values for congestion control 5605 * @b: the beta values for congestion control 5606 * 5607 * Initialize the congestion control parameters. 5608 */ 5609 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5610 { 5611 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5612 a[9] = 2; 5613 a[10] = 3; 5614 a[11] = 4; 5615 a[12] = 5; 5616 a[13] = 6; 5617 a[14] = 7; 5618 a[15] = 8; 5619 a[16] = 9; 5620 a[17] = 10; 5621 a[18] = 14; 5622 a[19] = 17; 5623 a[20] = 21; 5624 a[21] = 25; 5625 a[22] = 30; 5626 a[23] = 35; 5627 a[24] = 45; 5628 a[25] = 60; 5629 a[26] = 80; 5630 a[27] = 100; 5631 a[28] = 200; 5632 a[29] = 300; 5633 a[30] = 400; 5634 a[31] = 500; 5635 5636 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5637 b[9] = b[10] = 1; 5638 b[11] = b[12] = 2; 5639 b[13] = b[14] = b[15] = b[16] = 3; 5640 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5641 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5642 b[28] = b[29] = 6; 5643 b[30] = b[31] = 7; 5644 } 5645 5646 /* The minimum additive increment value for the congestion control table */ 5647 #define CC_MIN_INCR 2U 5648 5649 /** 5650 * t4_load_mtus - write the MTU and congestion control HW tables 5651 * @adap: the adapter 5652 * @mtus: the values for the MTU table 5653 * @alpha: the values for the congestion control alpha parameter 5654 * @beta: the values for the congestion control beta parameter 5655 * 5656 * Write the HW MTU table with the supplied MTUs and the high-speed 5657 * congestion control table with the supplied alpha, beta, and MTUs. 5658 * We write the two tables together because the additive increments 5659 * depend on the MTUs. 5660 */ 5661 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5662 const unsigned short *alpha, const unsigned short *beta) 5663 { 5664 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5665 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5666 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5667 28672, 40960, 57344, 81920, 114688, 163840, 229376 5668 }; 5669 5670 unsigned int i, w; 5671 5672 for (i = 0; i < NMTUS; ++i) { 5673 unsigned int mtu = mtus[i]; 5674 unsigned int log2 = fls(mtu); 5675 5676 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5677 log2--; 5678 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5679 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5680 5681 for (w = 0; w < NCCTRL_WIN; ++w) { 5682 unsigned int inc; 5683 5684 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5685 CC_MIN_INCR); 5686 5687 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5688 (w << 16) | (beta[w] << 13) | inc); 5689 } 5690 } 5691 } 5692 5693 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5694 * clocks. The formula is 5695 * 5696 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5697 * 5698 * which is equivalent to 5699 * 5700 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5701 */ 5702 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5703 { 5704 u64 v = bytes256 * adap->params.vpd.cclk; 5705 5706 return v * 62 + v / 2; 5707 } 5708 5709 /** 5710 * t4_get_chan_txrate - get the current per channel Tx rates 5711 * @adap: the adapter 5712 * @nic_rate: rates for NIC traffic 5713 * @ofld_rate: rates for offloaded traffic 5714 * 5715 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5716 * for each channel. 5717 */ 5718 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5719 { 5720 u32 v; 5721 5722 v = t4_read_reg(adap, TP_TX_TRATE_A); 5723 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5724 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5725 if (adap->params.arch.nchan == NCHAN) { 5726 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5727 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5728 } 5729 5730 v = t4_read_reg(adap, TP_TX_ORATE_A); 5731 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5732 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5733 if (adap->params.arch.nchan == NCHAN) { 5734 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5735 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5736 } 5737 } 5738 5739 /** 5740 * t4_set_trace_filter - configure one of the tracing filters 5741 * @adap: the adapter 5742 * @tp: the desired trace filter parameters 5743 * @idx: which filter to configure 5744 * @enable: whether to enable or disable the filter 5745 * 5746 * Configures one of the tracing filters available in HW. If @enable is 5747 * %0 @tp is not examined and may be %NULL. The user is responsible to 5748 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5749 */ 5750 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5751 int idx, int enable) 5752 { 5753 int i, ofst = idx * 4; 5754 u32 data_reg, mask_reg, cfg; 5755 u32 multitrc = TRCMULTIFILTER_F; 5756 5757 if (!enable) { 5758 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5759 return 0; 5760 } 5761 5762 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5763 if (cfg & TRCMULTIFILTER_F) { 5764 /* If multiple tracers are enabled, then maximum 5765 * capture size is 2.5KB (FIFO size of a single channel) 5766 * minus 2 flits for CPL_TRACE_PKT header. 5767 */ 5768 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5769 return -EINVAL; 5770 } else { 5771 /* If multiple tracers are disabled, to avoid deadlocks 5772 * maximum packet capture size of 9600 bytes is recommended. 5773 * Also in this mode, only trace0 can be enabled and running. 5774 */ 5775 multitrc = 0; 5776 if (tp->snap_len > 9600 || idx) 5777 return -EINVAL; 5778 } 5779 5780 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5781 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5782 tp->min_len > TFMINPKTSIZE_M) 5783 return -EINVAL; 5784 5785 /* stop the tracer we'll be changing */ 5786 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5787 5788 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5789 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5790 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5791 5792 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5793 t4_write_reg(adap, data_reg, tp->data[i]); 5794 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5795 } 5796 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5797 TFCAPTUREMAX_V(tp->snap_len) | 5798 TFMINPKTSIZE_V(tp->min_len)); 5799 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5800 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5801 (is_t4(adap->params.chip) ? 5802 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5803 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5804 T5_TFINVERTMATCH_V(tp->invert))); 5805 5806 return 0; 5807 } 5808 5809 /** 5810 * t4_get_trace_filter - query one of the tracing filters 5811 * @adap: the adapter 5812 * @tp: the current trace filter parameters 5813 * @idx: which trace filter to query 5814 * @enabled: non-zero if the filter is enabled 5815 * 5816 * Returns the current settings of one of the HW tracing filters. 5817 */ 5818 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5819 int *enabled) 5820 { 5821 u32 ctla, ctlb; 5822 int i, ofst = idx * 4; 5823 u32 data_reg, mask_reg; 5824 5825 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5826 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5827 5828 if (is_t4(adap->params.chip)) { 5829 *enabled = !!(ctla & TFEN_F); 5830 tp->port = TFPORT_G(ctla); 5831 tp->invert = !!(ctla & TFINVERTMATCH_F); 5832 } else { 5833 *enabled = !!(ctla & T5_TFEN_F); 5834 tp->port = T5_TFPORT_G(ctla); 5835 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5836 } 5837 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5838 tp->min_len = TFMINPKTSIZE_G(ctlb); 5839 tp->skip_ofst = TFOFFSET_G(ctla); 5840 tp->skip_len = TFLENGTH_G(ctla); 5841 5842 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5843 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5844 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5845 5846 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5847 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5848 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5849 } 5850 } 5851 5852 /** 5853 * t4_pmtx_get_stats - returns the HW stats from PMTX 5854 * @adap: the adapter 5855 * @cnt: where to store the count statistics 5856 * @cycles: where to store the cycle statistics 5857 * 5858 * Returns performance statistics from PMTX. 5859 */ 5860 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5861 { 5862 int i; 5863 u32 data[2]; 5864 5865 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5866 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5867 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5868 if (is_t4(adap->params.chip)) { 5869 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5870 } else { 5871 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5872 PM_TX_DBG_DATA_A, data, 2, 5873 PM_TX_DBG_STAT_MSB_A); 5874 cycles[i] = (((u64)data[0] << 32) | data[1]); 5875 } 5876 } 5877 } 5878 5879 /** 5880 * t4_pmrx_get_stats - returns the HW stats from PMRX 5881 * @adap: the adapter 5882 * @cnt: where to store the count statistics 5883 * @cycles: where to store the cycle statistics 5884 * 5885 * Returns performance statistics from PMRX. 5886 */ 5887 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5888 { 5889 int i; 5890 u32 data[2]; 5891 5892 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5893 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5894 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5895 if (is_t4(adap->params.chip)) { 5896 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5897 } else { 5898 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5899 PM_RX_DBG_DATA_A, data, 2, 5900 PM_RX_DBG_STAT_MSB_A); 5901 cycles[i] = (((u64)data[0] << 32) | data[1]); 5902 } 5903 } 5904 } 5905 5906 /** 5907 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 5908 * @adap: the adapter 5909 * @pidx: the port index 5910 * 5911 * Computes and returns a bitmap indicating which MPS buffer groups are 5912 * associated with the given Port. Bit i is set if buffer group i is 5913 * used by the Port. 5914 */ 5915 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 5916 int pidx) 5917 { 5918 unsigned int chip_version, nports; 5919 5920 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5921 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5922 5923 switch (chip_version) { 5924 case CHELSIO_T4: 5925 case CHELSIO_T5: 5926 switch (nports) { 5927 case 1: return 0xf; 5928 case 2: return 3 << (2 * pidx); 5929 case 4: return 1 << pidx; 5930 } 5931 break; 5932 5933 case CHELSIO_T6: 5934 switch (nports) { 5935 case 2: return 1 << (2 * pidx); 5936 } 5937 break; 5938 } 5939 5940 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 5941 chip_version, nports); 5942 5943 return 0; 5944 } 5945 5946 /** 5947 * t4_get_mps_bg_map - return the buffer groups associated with a port 5948 * @adapter: the adapter 5949 * @pidx: the port index 5950 * 5951 * Returns a bitmap indicating which MPS buffer groups are associated 5952 * with the given Port. Bit i is set if buffer group i is used by the 5953 * Port. 5954 */ 5955 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 5956 { 5957 u8 *mps_bg_map; 5958 unsigned int nports; 5959 5960 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5961 if (pidx >= nports) { 5962 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 5963 pidx, nports); 5964 return 0; 5965 } 5966 5967 /* If we've already retrieved/computed this, just return the result. 5968 */ 5969 mps_bg_map = adapter->params.mps_bg_map; 5970 if (mps_bg_map[pidx]) 5971 return mps_bg_map[pidx]; 5972 5973 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 5974 * If we're talking to such Firmware, let it tell us. If the new 5975 * API isn't supported, revert back to old hardcoded way. The value 5976 * obtained from Firmware is encoded in below format: 5977 * 5978 * val = (( MPSBGMAP[Port 3] << 24 ) | 5979 * ( MPSBGMAP[Port 2] << 16 ) | 5980 * ( MPSBGMAP[Port 1] << 8 ) | 5981 * ( MPSBGMAP[Port 0] << 0 )) 5982 */ 5983 if (adapter->flags & FW_OK) { 5984 u32 param, val; 5985 int ret; 5986 5987 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 5988 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 5989 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 5990 0, 1, ¶m, &val); 5991 if (!ret) { 5992 int p; 5993 5994 /* Store the BG Map for all of the Ports in order to 5995 * avoid more calls to the Firmware in the future. 5996 */ 5997 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 5998 mps_bg_map[p] = val & 0xff; 5999 6000 return mps_bg_map[pidx]; 6001 } 6002 } 6003 6004 /* Either we're not talking to the Firmware or we're dealing with 6005 * older Firmware which doesn't support the new API to get the MPS 6006 * Buffer Group Map. Fall back to computing it ourselves. 6007 */ 6008 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6009 return mps_bg_map[pidx]; 6010 } 6011 6012 /** 6013 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6014 * @adapter: the adapter 6015 * @pidx: the port index 6016 * 6017 * Returns a bitmap indicating which TP Ingress Channels are associated 6018 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6019 * the Port. 6020 */ 6021 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6022 { 6023 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6024 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6025 6026 if (pidx >= nports) { 6027 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6028 pidx, nports); 6029 return 0; 6030 } 6031 6032 switch (chip_version) { 6033 case CHELSIO_T4: 6034 case CHELSIO_T5: 6035 /* Note that this happens to be the same values as the MPS 6036 * Buffer Group Map for these Chips. But we replicate the code 6037 * here because they're really separate concepts. 6038 */ 6039 switch (nports) { 6040 case 1: return 0xf; 6041 case 2: return 3 << (2 * pidx); 6042 case 4: return 1 << pidx; 6043 } 6044 break; 6045 6046 case CHELSIO_T6: 6047 switch (nports) { 6048 case 2: return 1 << pidx; 6049 } 6050 break; 6051 } 6052 6053 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6054 chip_version, nports); 6055 return 0; 6056 } 6057 6058 /** 6059 * t4_get_port_type_description - return Port Type string description 6060 * @port_type: firmware Port Type enumeration 6061 */ 6062 const char *t4_get_port_type_description(enum fw_port_type port_type) 6063 { 6064 static const char *const port_type_description[] = { 6065 "Fiber_XFI", 6066 "Fiber_XAUI", 6067 "BT_SGMII", 6068 "BT_XFI", 6069 "BT_XAUI", 6070 "KX4", 6071 "CX4", 6072 "KX", 6073 "KR", 6074 "SFP", 6075 "BP_AP", 6076 "BP4_AP", 6077 "QSFP_10G", 6078 "QSA", 6079 "QSFP", 6080 "BP40_BA", 6081 "KR4_100G", 6082 "CR4_QSFP", 6083 "CR_QSFP", 6084 "CR2_QSFP", 6085 "SFP28", 6086 "KR_SFP28", 6087 "KR_XLAUI" 6088 }; 6089 6090 if (port_type < ARRAY_SIZE(port_type_description)) 6091 return port_type_description[port_type]; 6092 return "UNKNOWN"; 6093 } 6094 6095 /** 6096 * t4_get_port_stats_offset - collect port stats relative to a previous 6097 * snapshot 6098 * @adap: The adapter 6099 * @idx: The port 6100 * @stats: Current stats to fill 6101 * @offset: Previous stats snapshot 6102 */ 6103 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6104 struct port_stats *stats, 6105 struct port_stats *offset) 6106 { 6107 u64 *s, *o; 6108 int i; 6109 6110 t4_get_port_stats(adap, idx, stats); 6111 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6112 i < (sizeof(struct port_stats) / sizeof(u64)); 6113 i++, s++, o++) 6114 *s -= *o; 6115 } 6116 6117 /** 6118 * t4_get_port_stats - collect port statistics 6119 * @adap: the adapter 6120 * @idx: the port index 6121 * @p: the stats structure to fill 6122 * 6123 * Collect statistics related to the given port from HW. 6124 */ 6125 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6126 { 6127 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6128 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6129 6130 #define GET_STAT(name) \ 6131 t4_read_reg64(adap, \ 6132 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6133 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6134 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6135 6136 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6137 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6138 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6139 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6140 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6141 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6142 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6143 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6144 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6145 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6146 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6147 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6148 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6149 p->tx_drop = GET_STAT(TX_PORT_DROP); 6150 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6151 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6152 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6153 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6154 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6155 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6156 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6157 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6158 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6159 6160 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6161 if (stat_ctl & COUNTPAUSESTATTX_F) 6162 p->tx_frames_64 -= p->tx_pause; 6163 if (stat_ctl & COUNTPAUSEMCTX_F) 6164 p->tx_mcast_frames -= p->tx_pause; 6165 } 6166 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6167 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6168 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6169 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6170 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6171 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6172 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6173 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6174 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6175 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6176 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6177 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6178 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6179 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6180 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6181 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6182 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6183 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6184 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6185 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6186 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6187 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6188 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6189 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6190 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6191 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6192 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6193 6194 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6195 if (stat_ctl & COUNTPAUSESTATRX_F) 6196 p->rx_frames_64 -= p->rx_pause; 6197 if (stat_ctl & COUNTPAUSEMCRX_F) 6198 p->rx_mcast_frames -= p->rx_pause; 6199 } 6200 6201 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6202 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6203 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6204 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6205 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6206 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6207 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6208 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6209 6210 #undef GET_STAT 6211 #undef GET_STAT_COM 6212 } 6213 6214 /** 6215 * t4_get_lb_stats - collect loopback port statistics 6216 * @adap: the adapter 6217 * @idx: the loopback port index 6218 * @p: the stats structure to fill 6219 * 6220 * Return HW statistics for the given loopback port. 6221 */ 6222 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6223 { 6224 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6225 6226 #define GET_STAT(name) \ 6227 t4_read_reg64(adap, \ 6228 (is_t4(adap->params.chip) ? \ 6229 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6230 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6231 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6232 6233 p->octets = GET_STAT(BYTES); 6234 p->frames = GET_STAT(FRAMES); 6235 p->bcast_frames = GET_STAT(BCAST); 6236 p->mcast_frames = GET_STAT(MCAST); 6237 p->ucast_frames = GET_STAT(UCAST); 6238 p->error_frames = GET_STAT(ERROR); 6239 6240 p->frames_64 = GET_STAT(64B); 6241 p->frames_65_127 = GET_STAT(65B_127B); 6242 p->frames_128_255 = GET_STAT(128B_255B); 6243 p->frames_256_511 = GET_STAT(256B_511B); 6244 p->frames_512_1023 = GET_STAT(512B_1023B); 6245 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6246 p->frames_1519_max = GET_STAT(1519B_MAX); 6247 p->drop = GET_STAT(DROP_FRAMES); 6248 6249 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6250 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6251 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6252 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6253 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6254 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6255 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6256 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6257 6258 #undef GET_STAT 6259 #undef GET_STAT_COM 6260 } 6261 6262 /* t4_mk_filtdelwr - create a delete filter WR 6263 * @ftid: the filter ID 6264 * @wr: the filter work request to populate 6265 * @qid: ingress queue to receive the delete notification 6266 * 6267 * Creates a filter work request to delete the supplied filter. If @qid is 6268 * negative the delete notification is suppressed. 6269 */ 6270 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6271 { 6272 memset(wr, 0, sizeof(*wr)); 6273 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6274 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6275 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6276 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6277 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6278 if (qid >= 0) 6279 wr->rx_chan_rx_rpl_iq = 6280 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6281 } 6282 6283 #define INIT_CMD(var, cmd, rd_wr) do { \ 6284 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6285 FW_CMD_REQUEST_F | \ 6286 FW_CMD_##rd_wr##_F); \ 6287 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6288 } while (0) 6289 6290 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6291 u32 addr, u32 val) 6292 { 6293 u32 ldst_addrspace; 6294 struct fw_ldst_cmd c; 6295 6296 memset(&c, 0, sizeof(c)); 6297 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6298 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6299 FW_CMD_REQUEST_F | 6300 FW_CMD_WRITE_F | 6301 ldst_addrspace); 6302 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6303 c.u.addrval.addr = cpu_to_be32(addr); 6304 c.u.addrval.val = cpu_to_be32(val); 6305 6306 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6307 } 6308 6309 /** 6310 * t4_mdio_rd - read a PHY register through MDIO 6311 * @adap: the adapter 6312 * @mbox: mailbox to use for the FW command 6313 * @phy_addr: the PHY address 6314 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6315 * @reg: the register to read 6316 * @valp: where to store the value 6317 * 6318 * Issues a FW command through the given mailbox to read a PHY register. 6319 */ 6320 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6321 unsigned int mmd, unsigned int reg, u16 *valp) 6322 { 6323 int ret; 6324 u32 ldst_addrspace; 6325 struct fw_ldst_cmd c; 6326 6327 memset(&c, 0, sizeof(c)); 6328 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6329 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6330 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6331 ldst_addrspace); 6332 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6333 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6334 FW_LDST_CMD_MMD_V(mmd)); 6335 c.u.mdio.raddr = cpu_to_be16(reg); 6336 6337 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6338 if (ret == 0) 6339 *valp = be16_to_cpu(c.u.mdio.rval); 6340 return ret; 6341 } 6342 6343 /** 6344 * t4_mdio_wr - write a PHY register through MDIO 6345 * @adap: the adapter 6346 * @mbox: mailbox to use for the FW command 6347 * @phy_addr: the PHY address 6348 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6349 * @reg: the register to write 6350 * @valp: value to write 6351 * 6352 * Issues a FW command through the given mailbox to write a PHY register. 6353 */ 6354 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6355 unsigned int mmd, unsigned int reg, u16 val) 6356 { 6357 u32 ldst_addrspace; 6358 struct fw_ldst_cmd c; 6359 6360 memset(&c, 0, sizeof(c)); 6361 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6362 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6363 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6364 ldst_addrspace); 6365 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6366 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6367 FW_LDST_CMD_MMD_V(mmd)); 6368 c.u.mdio.raddr = cpu_to_be16(reg); 6369 c.u.mdio.rval = cpu_to_be16(val); 6370 6371 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6372 } 6373 6374 /** 6375 * t4_sge_decode_idma_state - decode the idma state 6376 * @adap: the adapter 6377 * @state: the state idma is stuck in 6378 */ 6379 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6380 { 6381 static const char * const t4_decode[] = { 6382 "IDMA_IDLE", 6383 "IDMA_PUSH_MORE_CPL_FIFO", 6384 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6385 "Not used", 6386 "IDMA_PHYSADDR_SEND_PCIEHDR", 6387 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6388 "IDMA_PHYSADDR_SEND_PAYLOAD", 6389 "IDMA_SEND_FIFO_TO_IMSG", 6390 "IDMA_FL_REQ_DATA_FL_PREP", 6391 "IDMA_FL_REQ_DATA_FL", 6392 "IDMA_FL_DROP", 6393 "IDMA_FL_H_REQ_HEADER_FL", 6394 "IDMA_FL_H_SEND_PCIEHDR", 6395 "IDMA_FL_H_PUSH_CPL_FIFO", 6396 "IDMA_FL_H_SEND_CPL", 6397 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6398 "IDMA_FL_H_SEND_IP_HDR", 6399 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6400 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6401 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6402 "IDMA_FL_D_SEND_PCIEHDR", 6403 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6404 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6405 "IDMA_FL_SEND_PCIEHDR", 6406 "IDMA_FL_PUSH_CPL_FIFO", 6407 "IDMA_FL_SEND_CPL", 6408 "IDMA_FL_SEND_PAYLOAD_FIRST", 6409 "IDMA_FL_SEND_PAYLOAD", 6410 "IDMA_FL_REQ_NEXT_DATA_FL", 6411 "IDMA_FL_SEND_NEXT_PCIEHDR", 6412 "IDMA_FL_SEND_PADDING", 6413 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6414 "IDMA_FL_SEND_FIFO_TO_IMSG", 6415 "IDMA_FL_REQ_DATAFL_DONE", 6416 "IDMA_FL_REQ_HEADERFL_DONE", 6417 }; 6418 static const char * const t5_decode[] = { 6419 "IDMA_IDLE", 6420 "IDMA_ALMOST_IDLE", 6421 "IDMA_PUSH_MORE_CPL_FIFO", 6422 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6423 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6424 "IDMA_PHYSADDR_SEND_PCIEHDR", 6425 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6426 "IDMA_PHYSADDR_SEND_PAYLOAD", 6427 "IDMA_SEND_FIFO_TO_IMSG", 6428 "IDMA_FL_REQ_DATA_FL", 6429 "IDMA_FL_DROP", 6430 "IDMA_FL_DROP_SEND_INC", 6431 "IDMA_FL_H_REQ_HEADER_FL", 6432 "IDMA_FL_H_SEND_PCIEHDR", 6433 "IDMA_FL_H_PUSH_CPL_FIFO", 6434 "IDMA_FL_H_SEND_CPL", 6435 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6436 "IDMA_FL_H_SEND_IP_HDR", 6437 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6438 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6439 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6440 "IDMA_FL_D_SEND_PCIEHDR", 6441 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6442 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6443 "IDMA_FL_SEND_PCIEHDR", 6444 "IDMA_FL_PUSH_CPL_FIFO", 6445 "IDMA_FL_SEND_CPL", 6446 "IDMA_FL_SEND_PAYLOAD_FIRST", 6447 "IDMA_FL_SEND_PAYLOAD", 6448 "IDMA_FL_REQ_NEXT_DATA_FL", 6449 "IDMA_FL_SEND_NEXT_PCIEHDR", 6450 "IDMA_FL_SEND_PADDING", 6451 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6452 }; 6453 static const char * const t6_decode[] = { 6454 "IDMA_IDLE", 6455 "IDMA_PUSH_MORE_CPL_FIFO", 6456 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6457 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6458 "IDMA_PHYSADDR_SEND_PCIEHDR", 6459 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6460 "IDMA_PHYSADDR_SEND_PAYLOAD", 6461 "IDMA_FL_REQ_DATA_FL", 6462 "IDMA_FL_DROP", 6463 "IDMA_FL_DROP_SEND_INC", 6464 "IDMA_FL_H_REQ_HEADER_FL", 6465 "IDMA_FL_H_SEND_PCIEHDR", 6466 "IDMA_FL_H_PUSH_CPL_FIFO", 6467 "IDMA_FL_H_SEND_CPL", 6468 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6469 "IDMA_FL_H_SEND_IP_HDR", 6470 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6471 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6472 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6473 "IDMA_FL_D_SEND_PCIEHDR", 6474 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6475 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6476 "IDMA_FL_SEND_PCIEHDR", 6477 "IDMA_FL_PUSH_CPL_FIFO", 6478 "IDMA_FL_SEND_CPL", 6479 "IDMA_FL_SEND_PAYLOAD_FIRST", 6480 "IDMA_FL_SEND_PAYLOAD", 6481 "IDMA_FL_REQ_NEXT_DATA_FL", 6482 "IDMA_FL_SEND_NEXT_PCIEHDR", 6483 "IDMA_FL_SEND_PADDING", 6484 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6485 }; 6486 static const u32 sge_regs[] = { 6487 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6488 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6489 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6490 }; 6491 const char **sge_idma_decode; 6492 int sge_idma_decode_nstates; 6493 int i; 6494 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6495 6496 /* Select the right set of decode strings to dump depending on the 6497 * adapter chip type. 6498 */ 6499 switch (chip_version) { 6500 case CHELSIO_T4: 6501 sge_idma_decode = (const char **)t4_decode; 6502 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6503 break; 6504 6505 case CHELSIO_T5: 6506 sge_idma_decode = (const char **)t5_decode; 6507 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6508 break; 6509 6510 case CHELSIO_T6: 6511 sge_idma_decode = (const char **)t6_decode; 6512 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6513 break; 6514 6515 default: 6516 dev_err(adapter->pdev_dev, 6517 "Unsupported chip version %d\n", chip_version); 6518 return; 6519 } 6520 6521 if (is_t4(adapter->params.chip)) { 6522 sge_idma_decode = (const char **)t4_decode; 6523 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6524 } else { 6525 sge_idma_decode = (const char **)t5_decode; 6526 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6527 } 6528 6529 if (state < sge_idma_decode_nstates) 6530 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6531 else 6532 CH_WARN(adapter, "idma state %d unknown\n", state); 6533 6534 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6535 CH_WARN(adapter, "SGE register %#x value %#x\n", 6536 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6537 } 6538 6539 /** 6540 * t4_sge_ctxt_flush - flush the SGE context cache 6541 * @adap: the adapter 6542 * @mbox: mailbox to use for the FW command 6543 * @ctx_type: Egress or Ingress 6544 * 6545 * Issues a FW command through the given mailbox to flush the 6546 * SGE context cache. 6547 */ 6548 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6549 { 6550 int ret; 6551 u32 ldst_addrspace; 6552 struct fw_ldst_cmd c; 6553 6554 memset(&c, 0, sizeof(c)); 6555 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6556 FW_LDST_ADDRSPC_SGE_EGRC : 6557 FW_LDST_ADDRSPC_SGE_INGC); 6558 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6559 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6560 ldst_addrspace); 6561 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6562 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6563 6564 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6565 return ret; 6566 } 6567 6568 /** 6569 * t4_fw_hello - establish communication with FW 6570 * @adap: the adapter 6571 * @mbox: mailbox to use for the FW command 6572 * @evt_mbox: mailbox to receive async FW events 6573 * @master: specifies the caller's willingness to be the device master 6574 * @state: returns the current device state (if non-NULL) 6575 * 6576 * Issues a command to establish communication with FW. Returns either 6577 * an error (negative integer) or the mailbox of the Master PF. 6578 */ 6579 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6580 enum dev_master master, enum dev_state *state) 6581 { 6582 int ret; 6583 struct fw_hello_cmd c; 6584 u32 v; 6585 unsigned int master_mbox; 6586 int retries = FW_CMD_HELLO_RETRIES; 6587 6588 retry: 6589 memset(&c, 0, sizeof(c)); 6590 INIT_CMD(c, HELLO, WRITE); 6591 c.err_to_clearinit = cpu_to_be32( 6592 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6593 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6594 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6595 mbox : FW_HELLO_CMD_MBMASTER_M) | 6596 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6597 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6598 FW_HELLO_CMD_CLEARINIT_F); 6599 6600 /* 6601 * Issue the HELLO command to the firmware. If it's not successful 6602 * but indicates that we got a "busy" or "timeout" condition, retry 6603 * the HELLO until we exhaust our retry limit. If we do exceed our 6604 * retry limit, check to see if the firmware left us any error 6605 * information and report that if so. 6606 */ 6607 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6608 if (ret < 0) { 6609 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6610 goto retry; 6611 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6612 t4_report_fw_error(adap); 6613 return ret; 6614 } 6615 6616 v = be32_to_cpu(c.err_to_clearinit); 6617 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6618 if (state) { 6619 if (v & FW_HELLO_CMD_ERR_F) 6620 *state = DEV_STATE_ERR; 6621 else if (v & FW_HELLO_CMD_INIT_F) 6622 *state = DEV_STATE_INIT; 6623 else 6624 *state = DEV_STATE_UNINIT; 6625 } 6626 6627 /* 6628 * If we're not the Master PF then we need to wait around for the 6629 * Master PF Driver to finish setting up the adapter. 6630 * 6631 * Note that we also do this wait if we're a non-Master-capable PF and 6632 * there is no current Master PF; a Master PF may show up momentarily 6633 * and we wouldn't want to fail pointlessly. (This can happen when an 6634 * OS loads lots of different drivers rapidly at the same time). In 6635 * this case, the Master PF returned by the firmware will be 6636 * PCIE_FW_MASTER_M so the test below will work ... 6637 */ 6638 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6639 master_mbox != mbox) { 6640 int waiting = FW_CMD_HELLO_TIMEOUT; 6641 6642 /* 6643 * Wait for the firmware to either indicate an error or 6644 * initialized state. If we see either of these we bail out 6645 * and report the issue to the caller. If we exhaust the 6646 * "hello timeout" and we haven't exhausted our retries, try 6647 * again. Otherwise bail with a timeout error. 6648 */ 6649 for (;;) { 6650 u32 pcie_fw; 6651 6652 msleep(50); 6653 waiting -= 50; 6654 6655 /* 6656 * If neither Error nor Initialialized are indicated 6657 * by the firmware keep waiting till we exaust our 6658 * timeout ... and then retry if we haven't exhausted 6659 * our retries ... 6660 */ 6661 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6662 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6663 if (waiting <= 0) { 6664 if (retries-- > 0) 6665 goto retry; 6666 6667 return -ETIMEDOUT; 6668 } 6669 continue; 6670 } 6671 6672 /* 6673 * We either have an Error or Initialized condition 6674 * report errors preferentially. 6675 */ 6676 if (state) { 6677 if (pcie_fw & PCIE_FW_ERR_F) 6678 *state = DEV_STATE_ERR; 6679 else if (pcie_fw & PCIE_FW_INIT_F) 6680 *state = DEV_STATE_INIT; 6681 } 6682 6683 /* 6684 * If we arrived before a Master PF was selected and 6685 * there's not a valid Master PF, grab its identity 6686 * for our caller. 6687 */ 6688 if (master_mbox == PCIE_FW_MASTER_M && 6689 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6690 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6691 break; 6692 } 6693 } 6694 6695 return master_mbox; 6696 } 6697 6698 /** 6699 * t4_fw_bye - end communication with FW 6700 * @adap: the adapter 6701 * @mbox: mailbox to use for the FW command 6702 * 6703 * Issues a command to terminate communication with FW. 6704 */ 6705 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6706 { 6707 struct fw_bye_cmd c; 6708 6709 memset(&c, 0, sizeof(c)); 6710 INIT_CMD(c, BYE, WRITE); 6711 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6712 } 6713 6714 /** 6715 * t4_init_cmd - ask FW to initialize the device 6716 * @adap: the adapter 6717 * @mbox: mailbox to use for the FW command 6718 * 6719 * Issues a command to FW to partially initialize the device. This 6720 * performs initialization that generally doesn't depend on user input. 6721 */ 6722 int t4_early_init(struct adapter *adap, unsigned int mbox) 6723 { 6724 struct fw_initialize_cmd c; 6725 6726 memset(&c, 0, sizeof(c)); 6727 INIT_CMD(c, INITIALIZE, WRITE); 6728 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6729 } 6730 6731 /** 6732 * t4_fw_reset - issue a reset to FW 6733 * @adap: the adapter 6734 * @mbox: mailbox to use for the FW command 6735 * @reset: specifies the type of reset to perform 6736 * 6737 * Issues a reset command of the specified type to FW. 6738 */ 6739 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6740 { 6741 struct fw_reset_cmd c; 6742 6743 memset(&c, 0, sizeof(c)); 6744 INIT_CMD(c, RESET, WRITE); 6745 c.val = cpu_to_be32(reset); 6746 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6747 } 6748 6749 /** 6750 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6751 * @adap: the adapter 6752 * @mbox: mailbox to use for the FW RESET command (if desired) 6753 * @force: force uP into RESET even if FW RESET command fails 6754 * 6755 * Issues a RESET command to firmware (if desired) with a HALT indication 6756 * and then puts the microprocessor into RESET state. The RESET command 6757 * will only be issued if a legitimate mailbox is provided (mbox <= 6758 * PCIE_FW_MASTER_M). 6759 * 6760 * This is generally used in order for the host to safely manipulate the 6761 * adapter without fear of conflicting with whatever the firmware might 6762 * be doing. The only way out of this state is to RESTART the firmware 6763 * ... 6764 */ 6765 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6766 { 6767 int ret = 0; 6768 6769 /* 6770 * If a legitimate mailbox is provided, issue a RESET command 6771 * with a HALT indication. 6772 */ 6773 if (mbox <= PCIE_FW_MASTER_M) { 6774 struct fw_reset_cmd c; 6775 6776 memset(&c, 0, sizeof(c)); 6777 INIT_CMD(c, RESET, WRITE); 6778 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6779 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6780 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6781 } 6782 6783 /* 6784 * Normally we won't complete the operation if the firmware RESET 6785 * command fails but if our caller insists we'll go ahead and put the 6786 * uP into RESET. This can be useful if the firmware is hung or even 6787 * missing ... We'll have to take the risk of putting the uP into 6788 * RESET without the cooperation of firmware in that case. 6789 * 6790 * We also force the firmware's HALT flag to be on in case we bypassed 6791 * the firmware RESET command above or we're dealing with old firmware 6792 * which doesn't have the HALT capability. This will serve as a flag 6793 * for the incoming firmware to know that it's coming out of a HALT 6794 * rather than a RESET ... if it's new enough to understand that ... 6795 */ 6796 if (ret == 0 || force) { 6797 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6798 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6799 PCIE_FW_HALT_F); 6800 } 6801 6802 /* 6803 * And we always return the result of the firmware RESET command 6804 * even when we force the uP into RESET ... 6805 */ 6806 return ret; 6807 } 6808 6809 /** 6810 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6811 * @adap: the adapter 6812 * @reset: if we want to do a RESET to restart things 6813 * 6814 * Restart firmware previously halted by t4_fw_halt(). On successful 6815 * return the previous PF Master remains as the new PF Master and there 6816 * is no need to issue a new HELLO command, etc. 6817 * 6818 * We do this in two ways: 6819 * 6820 * 1. If we're dealing with newer firmware we'll simply want to take 6821 * the chip's microprocessor out of RESET. This will cause the 6822 * firmware to start up from its start vector. And then we'll loop 6823 * until the firmware indicates it's started again (PCIE_FW.HALT 6824 * reset to 0) or we timeout. 6825 * 6826 * 2. If we're dealing with older firmware then we'll need to RESET 6827 * the chip since older firmware won't recognize the PCIE_FW.HALT 6828 * flag and automatically RESET itself on startup. 6829 */ 6830 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6831 { 6832 if (reset) { 6833 /* 6834 * Since we're directing the RESET instead of the firmware 6835 * doing it automatically, we need to clear the PCIE_FW.HALT 6836 * bit. 6837 */ 6838 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6839 6840 /* 6841 * If we've been given a valid mailbox, first try to get the 6842 * firmware to do the RESET. If that works, great and we can 6843 * return success. Otherwise, if we haven't been given a 6844 * valid mailbox or the RESET command failed, fall back to 6845 * hitting the chip with a hammer. 6846 */ 6847 if (mbox <= PCIE_FW_MASTER_M) { 6848 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6849 msleep(100); 6850 if (t4_fw_reset(adap, mbox, 6851 PIORST_F | PIORSTMODE_F) == 0) 6852 return 0; 6853 } 6854 6855 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6856 msleep(2000); 6857 } else { 6858 int ms; 6859 6860 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6861 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6862 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6863 return 0; 6864 msleep(100); 6865 ms += 100; 6866 } 6867 return -ETIMEDOUT; 6868 } 6869 return 0; 6870 } 6871 6872 /** 6873 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6874 * @adap: the adapter 6875 * @mbox: mailbox to use for the FW RESET command (if desired) 6876 * @fw_data: the firmware image to write 6877 * @size: image size 6878 * @force: force upgrade even if firmware doesn't cooperate 6879 * 6880 * Perform all of the steps necessary for upgrading an adapter's 6881 * firmware image. Normally this requires the cooperation of the 6882 * existing firmware in order to halt all existing activities 6883 * but if an invalid mailbox token is passed in we skip that step 6884 * (though we'll still put the adapter microprocessor into RESET in 6885 * that case). 6886 * 6887 * On successful return the new firmware will have been loaded and 6888 * the adapter will have been fully RESET losing all previous setup 6889 * state. On unsuccessful return the adapter may be completely hosed ... 6890 * positive errno indicates that the adapter is ~probably~ intact, a 6891 * negative errno indicates that things are looking bad ... 6892 */ 6893 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6894 const u8 *fw_data, unsigned int size, int force) 6895 { 6896 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6897 int reset, ret; 6898 6899 if (!t4_fw_matches_chip(adap, fw_hdr)) 6900 return -EINVAL; 6901 6902 /* Disable FW_OK flag so that mbox commands with FW_OK flag set 6903 * wont be sent when we are flashing FW. 6904 */ 6905 adap->flags &= ~FW_OK; 6906 6907 ret = t4_fw_halt(adap, mbox, force); 6908 if (ret < 0 && !force) 6909 goto out; 6910 6911 ret = t4_load_fw(adap, fw_data, size); 6912 if (ret < 0) 6913 goto out; 6914 6915 /* 6916 * If there was a Firmware Configuration File stored in FLASH, 6917 * there's a good chance that it won't be compatible with the new 6918 * Firmware. In order to prevent difficult to diagnose adapter 6919 * initialization issues, we clear out the Firmware Configuration File 6920 * portion of the FLASH . The user will need to re-FLASH a new 6921 * Firmware Configuration File which is compatible with the new 6922 * Firmware if that's desired. 6923 */ 6924 (void)t4_load_cfg(adap, NULL, 0); 6925 6926 /* 6927 * Older versions of the firmware don't understand the new 6928 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6929 * restart. So for newly loaded older firmware we'll have to do the 6930 * RESET for it so it starts up on a clean slate. We can tell if 6931 * the newly loaded firmware will handle this right by checking 6932 * its header flags to see if it advertises the capability. 6933 */ 6934 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6935 ret = t4_fw_restart(adap, mbox, reset); 6936 6937 /* Grab potentially new Firmware Device Log parameters so we can see 6938 * how healthy the new Firmware is. It's okay to contact the new 6939 * Firmware for these parameters even though, as far as it's 6940 * concerned, we've never said "HELLO" to it ... 6941 */ 6942 (void)t4_init_devlog_params(adap); 6943 out: 6944 adap->flags |= FW_OK; 6945 return ret; 6946 } 6947 6948 /** 6949 * t4_fl_pkt_align - return the fl packet alignment 6950 * @adap: the adapter 6951 * 6952 * T4 has a single field to specify the packing and padding boundary. 6953 * T5 onwards has separate fields for this and hence the alignment for 6954 * next packet offset is maximum of these two. 6955 * 6956 */ 6957 int t4_fl_pkt_align(struct adapter *adap) 6958 { 6959 u32 sge_control, sge_control2; 6960 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 6961 6962 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 6963 6964 /* T4 uses a single control field to specify both the PCIe Padding and 6965 * Packing Boundary. T5 introduced the ability to specify these 6966 * separately. The actual Ingress Packet Data alignment boundary 6967 * within Packed Buffer Mode is the maximum of these two 6968 * specifications. (Note that it makes no real practical sense to 6969 * have the Pading Boudary be larger than the Packing Boundary but you 6970 * could set the chip up that way and, in fact, legacy T4 code would 6971 * end doing this because it would initialize the Padding Boundary and 6972 * leave the Packing Boundary initialized to 0 (16 bytes).) 6973 * Padding Boundary values in T6 starts from 8B, 6974 * where as it is 32B for T4 and T5. 6975 */ 6976 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 6977 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 6978 else 6979 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 6980 6981 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 6982 6983 fl_align = ingpadboundary; 6984 if (!is_t4(adap->params.chip)) { 6985 /* T5 has a weird interpretation of one of the PCIe Packing 6986 * Boundary values. No idea why ... 6987 */ 6988 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 6989 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 6990 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 6991 ingpackboundary = 16; 6992 else 6993 ingpackboundary = 1 << (ingpackboundary + 6994 INGPACKBOUNDARY_SHIFT_X); 6995 6996 fl_align = max(ingpadboundary, ingpackboundary); 6997 } 6998 return fl_align; 6999 } 7000 7001 /** 7002 * t4_fixup_host_params - fix up host-dependent parameters 7003 * @adap: the adapter 7004 * @page_size: the host's Base Page Size 7005 * @cache_line_size: the host's Cache Line Size 7006 * 7007 * Various registers in T4 contain values which are dependent on the 7008 * host's Base Page and Cache Line Sizes. This function will fix all of 7009 * those registers with the appropriate values as passed in ... 7010 */ 7011 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7012 unsigned int cache_line_size) 7013 { 7014 unsigned int page_shift = fls(page_size) - 1; 7015 unsigned int sge_hps = page_shift - 10; 7016 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7017 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7018 unsigned int fl_align_log = fls(fl_align) - 1; 7019 7020 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7021 HOSTPAGESIZEPF0_V(sge_hps) | 7022 HOSTPAGESIZEPF1_V(sge_hps) | 7023 HOSTPAGESIZEPF2_V(sge_hps) | 7024 HOSTPAGESIZEPF3_V(sge_hps) | 7025 HOSTPAGESIZEPF4_V(sge_hps) | 7026 HOSTPAGESIZEPF5_V(sge_hps) | 7027 HOSTPAGESIZEPF6_V(sge_hps) | 7028 HOSTPAGESIZEPF7_V(sge_hps)); 7029 7030 if (is_t4(adap->params.chip)) { 7031 t4_set_reg_field(adap, SGE_CONTROL_A, 7032 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7033 EGRSTATUSPAGESIZE_F, 7034 INGPADBOUNDARY_V(fl_align_log - 7035 INGPADBOUNDARY_SHIFT_X) | 7036 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7037 } else { 7038 unsigned int pack_align; 7039 unsigned int ingpad, ingpack; 7040 unsigned int pcie_cap; 7041 7042 /* T5 introduced the separation of the Free List Padding and 7043 * Packing Boundaries. Thus, we can select a smaller Padding 7044 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7045 * Bandwidth, and use a Packing Boundary which is large enough 7046 * to avoid false sharing between CPUs, etc. 7047 * 7048 * For the PCI Link, the smaller the Padding Boundary the 7049 * better. For the Memory Controller, a smaller Padding 7050 * Boundary is better until we cross under the Memory Line 7051 * Size (the minimum unit of transfer to/from Memory). If we 7052 * have a Padding Boundary which is smaller than the Memory 7053 * Line Size, that'll involve a Read-Modify-Write cycle on the 7054 * Memory Controller which is never good. 7055 */ 7056 7057 /* We want the Packing Boundary to be based on the Cache Line 7058 * Size in order to help avoid False Sharing performance 7059 * issues between CPUs, etc. We also want the Packing 7060 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7061 * get best performance when the Packing Boundary is a 7062 * multiple of the Maximum Payload Size. 7063 */ 7064 pack_align = fl_align; 7065 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7066 if (pcie_cap) { 7067 unsigned int mps, mps_log; 7068 u16 devctl; 7069 7070 /* The PCIe Device Control Maximum Payload Size field 7071 * [bits 7:5] encodes sizes as powers of 2 starting at 7072 * 128 bytes. 7073 */ 7074 pci_read_config_word(adap->pdev, 7075 pcie_cap + PCI_EXP_DEVCTL, 7076 &devctl); 7077 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7078 mps = 1 << mps_log; 7079 if (mps > pack_align) 7080 pack_align = mps; 7081 } 7082 7083 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7084 * value for the Packing Boundary. This corresponds to 16 7085 * bytes instead of the expected 32 bytes. So if we want 32 7086 * bytes, the best we can really do is 64 bytes ... 7087 */ 7088 if (pack_align <= 16) { 7089 ingpack = INGPACKBOUNDARY_16B_X; 7090 fl_align = 16; 7091 } else if (pack_align == 32) { 7092 ingpack = INGPACKBOUNDARY_64B_X; 7093 fl_align = 64; 7094 } else { 7095 unsigned int pack_align_log = fls(pack_align) - 1; 7096 7097 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7098 fl_align = pack_align; 7099 } 7100 7101 /* Use the smallest Ingress Padding which isn't smaller than 7102 * the Memory Controller Read/Write Size. We'll take that as 7103 * being 8 bytes since we don't know of any system with a 7104 * wider Memory Controller Bus Width. 7105 */ 7106 if (is_t5(adap->params.chip)) 7107 ingpad = INGPADBOUNDARY_32B_X; 7108 else 7109 ingpad = T6_INGPADBOUNDARY_8B_X; 7110 7111 t4_set_reg_field(adap, SGE_CONTROL_A, 7112 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7113 EGRSTATUSPAGESIZE_F, 7114 INGPADBOUNDARY_V(ingpad) | 7115 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7116 t4_set_reg_field(adap, SGE_CONTROL2_A, 7117 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7118 INGPACKBOUNDARY_V(ingpack)); 7119 } 7120 /* 7121 * Adjust various SGE Free List Host Buffer Sizes. 7122 * 7123 * This is something of a crock since we're using fixed indices into 7124 * the array which are also known by the sge.c code and the T4 7125 * Firmware Configuration File. We need to come up with a much better 7126 * approach to managing this array. For now, the first four entries 7127 * are: 7128 * 7129 * 0: Host Page Size 7130 * 1: 64KB 7131 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7132 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7133 * 7134 * For the single-MTU buffers in unpacked mode we need to include 7135 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7136 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7137 * Padding boundary. All of these are accommodated in the Factory 7138 * Default Firmware Configuration File but we need to adjust it for 7139 * this host's cache line size. 7140 */ 7141 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7142 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7143 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7144 & ~(fl_align-1)); 7145 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7146 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7147 & ~(fl_align-1)); 7148 7149 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7150 7151 return 0; 7152 } 7153 7154 /** 7155 * t4_fw_initialize - ask FW to initialize the device 7156 * @adap: the adapter 7157 * @mbox: mailbox to use for the FW command 7158 * 7159 * Issues a command to FW to partially initialize the device. This 7160 * performs initialization that generally doesn't depend on user input. 7161 */ 7162 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7163 { 7164 struct fw_initialize_cmd c; 7165 7166 memset(&c, 0, sizeof(c)); 7167 INIT_CMD(c, INITIALIZE, WRITE); 7168 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7169 } 7170 7171 /** 7172 * t4_query_params_rw - query FW or device parameters 7173 * @adap: the adapter 7174 * @mbox: mailbox to use for the FW command 7175 * @pf: the PF 7176 * @vf: the VF 7177 * @nparams: the number of parameters 7178 * @params: the parameter names 7179 * @val: the parameter values 7180 * @rw: Write and read flag 7181 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7182 * 7183 * Reads the value of FW or device parameters. Up to 7 parameters can be 7184 * queried at once. 7185 */ 7186 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7187 unsigned int vf, unsigned int nparams, const u32 *params, 7188 u32 *val, int rw, bool sleep_ok) 7189 { 7190 int i, ret; 7191 struct fw_params_cmd c; 7192 __be32 *p = &c.param[0].mnem; 7193 7194 if (nparams > 7) 7195 return -EINVAL; 7196 7197 memset(&c, 0, sizeof(c)); 7198 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7199 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7200 FW_PARAMS_CMD_PFN_V(pf) | 7201 FW_PARAMS_CMD_VFN_V(vf)); 7202 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7203 7204 for (i = 0; i < nparams; i++) { 7205 *p++ = cpu_to_be32(*params++); 7206 if (rw) 7207 *p = cpu_to_be32(*(val + i)); 7208 p++; 7209 } 7210 7211 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7212 if (ret == 0) 7213 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7214 *val++ = be32_to_cpu(*p); 7215 return ret; 7216 } 7217 7218 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7219 unsigned int vf, unsigned int nparams, const u32 *params, 7220 u32 *val) 7221 { 7222 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7223 true); 7224 } 7225 7226 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7227 unsigned int vf, unsigned int nparams, const u32 *params, 7228 u32 *val) 7229 { 7230 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7231 false); 7232 } 7233 7234 /** 7235 * t4_set_params_timeout - sets FW or device parameters 7236 * @adap: the adapter 7237 * @mbox: mailbox to use for the FW command 7238 * @pf: the PF 7239 * @vf: the VF 7240 * @nparams: the number of parameters 7241 * @params: the parameter names 7242 * @val: the parameter values 7243 * @timeout: the timeout time 7244 * 7245 * Sets the value of FW or device parameters. Up to 7 parameters can be 7246 * specified at once. 7247 */ 7248 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7249 unsigned int pf, unsigned int vf, 7250 unsigned int nparams, const u32 *params, 7251 const u32 *val, int timeout) 7252 { 7253 struct fw_params_cmd c; 7254 __be32 *p = &c.param[0].mnem; 7255 7256 if (nparams > 7) 7257 return -EINVAL; 7258 7259 memset(&c, 0, sizeof(c)); 7260 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7261 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7262 FW_PARAMS_CMD_PFN_V(pf) | 7263 FW_PARAMS_CMD_VFN_V(vf)); 7264 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7265 7266 while (nparams--) { 7267 *p++ = cpu_to_be32(*params++); 7268 *p++ = cpu_to_be32(*val++); 7269 } 7270 7271 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7272 } 7273 7274 /** 7275 * t4_set_params - sets FW or device parameters 7276 * @adap: the adapter 7277 * @mbox: mailbox to use for the FW command 7278 * @pf: the PF 7279 * @vf: the VF 7280 * @nparams: the number of parameters 7281 * @params: the parameter names 7282 * @val: the parameter values 7283 * 7284 * Sets the value of FW or device parameters. Up to 7 parameters can be 7285 * specified at once. 7286 */ 7287 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7288 unsigned int vf, unsigned int nparams, const u32 *params, 7289 const u32 *val) 7290 { 7291 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7292 FW_CMD_MAX_TIMEOUT); 7293 } 7294 7295 /** 7296 * t4_cfg_pfvf - configure PF/VF resource limits 7297 * @adap: the adapter 7298 * @mbox: mailbox to use for the FW command 7299 * @pf: the PF being configured 7300 * @vf: the VF being configured 7301 * @txq: the max number of egress queues 7302 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7303 * @rxqi: the max number of interrupt-capable ingress queues 7304 * @rxq: the max number of interruptless ingress queues 7305 * @tc: the PCI traffic class 7306 * @vi: the max number of virtual interfaces 7307 * @cmask: the channel access rights mask for the PF/VF 7308 * @pmask: the port access rights mask for the PF/VF 7309 * @nexact: the maximum number of exact MPS filters 7310 * @rcaps: read capabilities 7311 * @wxcaps: write/execute capabilities 7312 * 7313 * Configures resource limits and capabilities for a physical or virtual 7314 * function. 7315 */ 7316 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7317 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7318 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7319 unsigned int vi, unsigned int cmask, unsigned int pmask, 7320 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7321 { 7322 struct fw_pfvf_cmd c; 7323 7324 memset(&c, 0, sizeof(c)); 7325 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7326 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7327 FW_PFVF_CMD_VFN_V(vf)); 7328 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7329 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7330 FW_PFVF_CMD_NIQ_V(rxq)); 7331 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7332 FW_PFVF_CMD_PMASK_V(pmask) | 7333 FW_PFVF_CMD_NEQ_V(txq)); 7334 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7335 FW_PFVF_CMD_NVI_V(vi) | 7336 FW_PFVF_CMD_NEXACTF_V(nexact)); 7337 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7338 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7339 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7340 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7341 } 7342 7343 /** 7344 * t4_alloc_vi - allocate a virtual interface 7345 * @adap: the adapter 7346 * @mbox: mailbox to use for the FW command 7347 * @port: physical port associated with the VI 7348 * @pf: the PF owning the VI 7349 * @vf: the VF owning the VI 7350 * @nmac: number of MAC addresses needed (1 to 5) 7351 * @mac: the MAC addresses of the VI 7352 * @rss_size: size of RSS table slice associated with this VI 7353 * 7354 * Allocates a virtual interface for the given physical port. If @mac is 7355 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7356 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7357 * stored consecutively so the space needed is @nmac * 6 bytes. 7358 * Returns a negative error number or the non-negative VI id. 7359 */ 7360 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7361 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7362 unsigned int *rss_size) 7363 { 7364 int ret; 7365 struct fw_vi_cmd c; 7366 7367 memset(&c, 0, sizeof(c)); 7368 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7369 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7370 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7371 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7372 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7373 c.nmac = nmac - 1; 7374 7375 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7376 if (ret) 7377 return ret; 7378 7379 if (mac) { 7380 memcpy(mac, c.mac, sizeof(c.mac)); 7381 switch (nmac) { 7382 case 5: 7383 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7384 case 4: 7385 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7386 case 3: 7387 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7388 case 2: 7389 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7390 } 7391 } 7392 if (rss_size) 7393 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7394 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7395 } 7396 7397 /** 7398 * t4_free_vi - free a virtual interface 7399 * @adap: the adapter 7400 * @mbox: mailbox to use for the FW command 7401 * @pf: the PF owning the VI 7402 * @vf: the VF owning the VI 7403 * @viid: virtual interface identifiler 7404 * 7405 * Free a previously allocated virtual interface. 7406 */ 7407 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7408 unsigned int vf, unsigned int viid) 7409 { 7410 struct fw_vi_cmd c; 7411 7412 memset(&c, 0, sizeof(c)); 7413 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7414 FW_CMD_REQUEST_F | 7415 FW_CMD_EXEC_F | 7416 FW_VI_CMD_PFN_V(pf) | 7417 FW_VI_CMD_VFN_V(vf)); 7418 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7419 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7420 7421 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7422 } 7423 7424 /** 7425 * t4_set_rxmode - set Rx properties of a virtual interface 7426 * @adap: the adapter 7427 * @mbox: mailbox to use for the FW command 7428 * @viid: the VI id 7429 * @mtu: the new MTU or -1 7430 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7431 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7432 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7433 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7434 * @sleep_ok: if true we may sleep while awaiting command completion 7435 * 7436 * Sets Rx properties of a virtual interface. 7437 */ 7438 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7439 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7440 bool sleep_ok) 7441 { 7442 struct fw_vi_rxmode_cmd c; 7443 7444 /* convert to FW values */ 7445 if (mtu < 0) 7446 mtu = FW_RXMODE_MTU_NO_CHG; 7447 if (promisc < 0) 7448 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7449 if (all_multi < 0) 7450 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7451 if (bcast < 0) 7452 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7453 if (vlanex < 0) 7454 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7455 7456 memset(&c, 0, sizeof(c)); 7457 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7458 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7459 FW_VI_RXMODE_CMD_VIID_V(viid)); 7460 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7461 c.mtu_to_vlanexen = 7462 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7463 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7464 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7465 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7466 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7467 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7468 } 7469 7470 /** 7471 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7472 * @adap: the adapter 7473 * @mbox: mailbox to use for the FW command 7474 * @viid: the VI id 7475 * @free: if true any existing filters for this VI id are first removed 7476 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7477 * @addr: the MAC address(es) 7478 * @idx: where to store the index of each allocated filter 7479 * @hash: pointer to hash address filter bitmap 7480 * @sleep_ok: call is allowed to sleep 7481 * 7482 * Allocates an exact-match filter for each of the supplied addresses and 7483 * sets it to the corresponding address. If @idx is not %NULL it should 7484 * have at least @naddr entries, each of which will be set to the index of 7485 * the filter allocated for the corresponding MAC address. If a filter 7486 * could not be allocated for an address its index is set to 0xffff. 7487 * If @hash is not %NULL addresses that fail to allocate an exact filter 7488 * are hashed and update the hash filter bitmap pointed at by @hash. 7489 * 7490 * Returns a negative error number or the number of filters allocated. 7491 */ 7492 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7493 unsigned int viid, bool free, unsigned int naddr, 7494 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7495 { 7496 int offset, ret = 0; 7497 struct fw_vi_mac_cmd c; 7498 unsigned int nfilters = 0; 7499 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7500 unsigned int rem = naddr; 7501 7502 if (naddr > max_naddr) 7503 return -EINVAL; 7504 7505 for (offset = 0; offset < naddr ; /**/) { 7506 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7507 rem : ARRAY_SIZE(c.u.exact)); 7508 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7509 u.exact[fw_naddr]), 16); 7510 struct fw_vi_mac_exact *p; 7511 int i; 7512 7513 memset(&c, 0, sizeof(c)); 7514 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7515 FW_CMD_REQUEST_F | 7516 FW_CMD_WRITE_F | 7517 FW_CMD_EXEC_V(free) | 7518 FW_VI_MAC_CMD_VIID_V(viid)); 7519 c.freemacs_to_len16 = 7520 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7521 FW_CMD_LEN16_V(len16)); 7522 7523 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7524 p->valid_to_idx = 7525 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7526 FW_VI_MAC_CMD_IDX_V( 7527 FW_VI_MAC_ADD_MAC)); 7528 memcpy(p->macaddr, addr[offset + i], 7529 sizeof(p->macaddr)); 7530 } 7531 7532 /* It's okay if we run out of space in our MAC address arena. 7533 * Some of the addresses we submit may get stored so we need 7534 * to run through the reply to see what the results were ... 7535 */ 7536 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7537 if (ret && ret != -FW_ENOMEM) 7538 break; 7539 7540 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7541 u16 index = FW_VI_MAC_CMD_IDX_G( 7542 be16_to_cpu(p->valid_to_idx)); 7543 7544 if (idx) 7545 idx[offset + i] = (index >= max_naddr ? 7546 0xffff : index); 7547 if (index < max_naddr) 7548 nfilters++; 7549 else if (hash) 7550 *hash |= (1ULL << 7551 hash_mac_addr(addr[offset + i])); 7552 } 7553 7554 free = false; 7555 offset += fw_naddr; 7556 rem -= fw_naddr; 7557 } 7558 7559 if (ret == 0 || ret == -FW_ENOMEM) 7560 ret = nfilters; 7561 return ret; 7562 } 7563 7564 /** 7565 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7566 * @adap: the adapter 7567 * @mbox: mailbox to use for the FW command 7568 * @viid: the VI id 7569 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7570 * @addr: the MAC address(es) 7571 * @sleep_ok: call is allowed to sleep 7572 * 7573 * Frees the exact-match filter for each of the supplied addresses 7574 * 7575 * Returns a negative error number or the number of filters freed. 7576 */ 7577 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7578 unsigned int viid, unsigned int naddr, 7579 const u8 **addr, bool sleep_ok) 7580 { 7581 int offset, ret = 0; 7582 struct fw_vi_mac_cmd c; 7583 unsigned int nfilters = 0; 7584 unsigned int max_naddr = is_t4(adap->params.chip) ? 7585 NUM_MPS_CLS_SRAM_L_INSTANCES : 7586 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7587 unsigned int rem = naddr; 7588 7589 if (naddr > max_naddr) 7590 return -EINVAL; 7591 7592 for (offset = 0; offset < (int)naddr ; /**/) { 7593 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7594 ? rem 7595 : ARRAY_SIZE(c.u.exact)); 7596 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7597 u.exact[fw_naddr]), 16); 7598 struct fw_vi_mac_exact *p; 7599 int i; 7600 7601 memset(&c, 0, sizeof(c)); 7602 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7603 FW_CMD_REQUEST_F | 7604 FW_CMD_WRITE_F | 7605 FW_CMD_EXEC_V(0) | 7606 FW_VI_MAC_CMD_VIID_V(viid)); 7607 c.freemacs_to_len16 = 7608 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7609 FW_CMD_LEN16_V(len16)); 7610 7611 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7612 p->valid_to_idx = cpu_to_be16( 7613 FW_VI_MAC_CMD_VALID_F | 7614 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 7615 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7616 } 7617 7618 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7619 if (ret) 7620 break; 7621 7622 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7623 u16 index = FW_VI_MAC_CMD_IDX_G( 7624 be16_to_cpu(p->valid_to_idx)); 7625 7626 if (index < max_naddr) 7627 nfilters++; 7628 } 7629 7630 offset += fw_naddr; 7631 rem -= fw_naddr; 7632 } 7633 7634 if (ret == 0) 7635 ret = nfilters; 7636 return ret; 7637 } 7638 7639 /** 7640 * t4_change_mac - modifies the exact-match filter for a MAC address 7641 * @adap: the adapter 7642 * @mbox: mailbox to use for the FW command 7643 * @viid: the VI id 7644 * @idx: index of existing filter for old value of MAC address, or -1 7645 * @addr: the new MAC address value 7646 * @persist: whether a new MAC allocation should be persistent 7647 * @add_smt: if true also add the address to the HW SMT 7648 * 7649 * Modifies an exact-match filter and sets it to the new MAC address. 7650 * Note that in general it is not possible to modify the value of a given 7651 * filter so the generic way to modify an address filter is to free the one 7652 * being used by the old address value and allocate a new filter for the 7653 * new address value. @idx can be -1 if the address is a new addition. 7654 * 7655 * Returns a negative error number or the index of the filter with the new 7656 * MAC value. 7657 */ 7658 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7659 int idx, const u8 *addr, bool persist, bool add_smt) 7660 { 7661 int ret, mode; 7662 struct fw_vi_mac_cmd c; 7663 struct fw_vi_mac_exact *p = c.u.exact; 7664 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 7665 7666 if (idx < 0) /* new allocation */ 7667 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 7668 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 7669 7670 memset(&c, 0, sizeof(c)); 7671 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7672 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7673 FW_VI_MAC_CMD_VIID_V(viid)); 7674 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 7675 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7676 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 7677 FW_VI_MAC_CMD_IDX_V(idx)); 7678 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7679 7680 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7681 if (ret == 0) { 7682 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7683 if (ret >= max_mac_addr) 7684 ret = -ENOMEM; 7685 } 7686 return ret; 7687 } 7688 7689 /** 7690 * t4_set_addr_hash - program the MAC inexact-match hash filter 7691 * @adap: the adapter 7692 * @mbox: mailbox to use for the FW command 7693 * @viid: the VI id 7694 * @ucast: whether the hash filter should also match unicast addresses 7695 * @vec: the value to be written to the hash filter 7696 * @sleep_ok: call is allowed to sleep 7697 * 7698 * Sets the 64-bit inexact-match hash filter for a virtual interface. 7699 */ 7700 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 7701 bool ucast, u64 vec, bool sleep_ok) 7702 { 7703 struct fw_vi_mac_cmd c; 7704 7705 memset(&c, 0, sizeof(c)); 7706 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7707 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7708 FW_VI_ENABLE_CMD_VIID_V(viid)); 7709 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 7710 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 7711 FW_CMD_LEN16_V(1)); 7712 c.u.hash.hashvec = cpu_to_be64(vec); 7713 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7714 } 7715 7716 /** 7717 * t4_enable_vi_params - enable/disable a virtual interface 7718 * @adap: the adapter 7719 * @mbox: mailbox to use for the FW command 7720 * @viid: the VI id 7721 * @rx_en: 1=enable Rx, 0=disable Rx 7722 * @tx_en: 1=enable Tx, 0=disable Tx 7723 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 7724 * 7725 * Enables/disables a virtual interface. Note that setting DCB Enable 7726 * only makes sense when enabling a Virtual Interface ... 7727 */ 7728 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 7729 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 7730 { 7731 struct fw_vi_enable_cmd c; 7732 7733 memset(&c, 0, sizeof(c)); 7734 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7735 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7736 FW_VI_ENABLE_CMD_VIID_V(viid)); 7737 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 7738 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 7739 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 7740 FW_LEN16(c)); 7741 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 7742 } 7743 7744 /** 7745 * t4_enable_vi - enable/disable a virtual interface 7746 * @adap: the adapter 7747 * @mbox: mailbox to use for the FW command 7748 * @viid: the VI id 7749 * @rx_en: 1=enable Rx, 0=disable Rx 7750 * @tx_en: 1=enable Tx, 0=disable Tx 7751 * 7752 * Enables/disables a virtual interface. 7753 */ 7754 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 7755 bool rx_en, bool tx_en) 7756 { 7757 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 7758 } 7759 7760 /** 7761 * t4_identify_port - identify a VI's port by blinking its LED 7762 * @adap: the adapter 7763 * @mbox: mailbox to use for the FW command 7764 * @viid: the VI id 7765 * @nblinks: how many times to blink LED at 2.5 Hz 7766 * 7767 * Identifies a VI's port by blinking its LED. 7768 */ 7769 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 7770 unsigned int nblinks) 7771 { 7772 struct fw_vi_enable_cmd c; 7773 7774 memset(&c, 0, sizeof(c)); 7775 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7776 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7777 FW_VI_ENABLE_CMD_VIID_V(viid)); 7778 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 7779 c.blinkdur = cpu_to_be16(nblinks); 7780 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7781 } 7782 7783 /** 7784 * t4_iq_stop - stop an ingress queue and its FLs 7785 * @adap: the adapter 7786 * @mbox: mailbox to use for the FW command 7787 * @pf: the PF owning the queues 7788 * @vf: the VF owning the queues 7789 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 7790 * @iqid: ingress queue id 7791 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7792 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7793 * 7794 * Stops an ingress queue and its associated FLs, if any. This causes 7795 * any current or future data/messages destined for these queues to be 7796 * tossed. 7797 */ 7798 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 7799 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7800 unsigned int fl0id, unsigned int fl1id) 7801 { 7802 struct fw_iq_cmd c; 7803 7804 memset(&c, 0, sizeof(c)); 7805 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7806 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7807 FW_IQ_CMD_VFN_V(vf)); 7808 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 7809 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7810 c.iqid = cpu_to_be16(iqid); 7811 c.fl0id = cpu_to_be16(fl0id); 7812 c.fl1id = cpu_to_be16(fl1id); 7813 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7814 } 7815 7816 /** 7817 * t4_iq_free - free an ingress queue and its FLs 7818 * @adap: the adapter 7819 * @mbox: mailbox to use for the FW command 7820 * @pf: the PF owning the queues 7821 * @vf: the VF owning the queues 7822 * @iqtype: the ingress queue type 7823 * @iqid: ingress queue id 7824 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7825 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7826 * 7827 * Frees an ingress queue and its associated FLs, if any. 7828 */ 7829 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7830 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7831 unsigned int fl0id, unsigned int fl1id) 7832 { 7833 struct fw_iq_cmd c; 7834 7835 memset(&c, 0, sizeof(c)); 7836 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7837 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7838 FW_IQ_CMD_VFN_V(vf)); 7839 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 7840 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7841 c.iqid = cpu_to_be16(iqid); 7842 c.fl0id = cpu_to_be16(fl0id); 7843 c.fl1id = cpu_to_be16(fl1id); 7844 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7845 } 7846 7847 /** 7848 * t4_eth_eq_free - free an Ethernet egress queue 7849 * @adap: the adapter 7850 * @mbox: mailbox to use for the FW command 7851 * @pf: the PF owning the queue 7852 * @vf: the VF owning the queue 7853 * @eqid: egress queue id 7854 * 7855 * Frees an Ethernet egress queue. 7856 */ 7857 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7858 unsigned int vf, unsigned int eqid) 7859 { 7860 struct fw_eq_eth_cmd c; 7861 7862 memset(&c, 0, sizeof(c)); 7863 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 7864 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7865 FW_EQ_ETH_CMD_PFN_V(pf) | 7866 FW_EQ_ETH_CMD_VFN_V(vf)); 7867 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 7868 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 7869 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7870 } 7871 7872 /** 7873 * t4_ctrl_eq_free - free a control egress queue 7874 * @adap: the adapter 7875 * @mbox: mailbox to use for the FW command 7876 * @pf: the PF owning the queue 7877 * @vf: the VF owning the queue 7878 * @eqid: egress queue id 7879 * 7880 * Frees a control egress queue. 7881 */ 7882 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7883 unsigned int vf, unsigned int eqid) 7884 { 7885 struct fw_eq_ctrl_cmd c; 7886 7887 memset(&c, 0, sizeof(c)); 7888 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 7889 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7890 FW_EQ_CTRL_CMD_PFN_V(pf) | 7891 FW_EQ_CTRL_CMD_VFN_V(vf)); 7892 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 7893 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 7894 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7895 } 7896 7897 /** 7898 * t4_ofld_eq_free - free an offload egress queue 7899 * @adap: the adapter 7900 * @mbox: mailbox to use for the FW command 7901 * @pf: the PF owning the queue 7902 * @vf: the VF owning the queue 7903 * @eqid: egress queue id 7904 * 7905 * Frees a control egress queue. 7906 */ 7907 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7908 unsigned int vf, unsigned int eqid) 7909 { 7910 struct fw_eq_ofld_cmd c; 7911 7912 memset(&c, 0, sizeof(c)); 7913 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 7914 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7915 FW_EQ_OFLD_CMD_PFN_V(pf) | 7916 FW_EQ_OFLD_CMD_VFN_V(vf)); 7917 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 7918 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 7919 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7920 } 7921 7922 /** 7923 * t4_link_down_rc_str - return a string for a Link Down Reason Code 7924 * @adap: the adapter 7925 * @link_down_rc: Link Down Reason Code 7926 * 7927 * Returns a string representation of the Link Down Reason Code. 7928 */ 7929 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 7930 { 7931 static const char * const reason[] = { 7932 "Link Down", 7933 "Remote Fault", 7934 "Auto-negotiation Failure", 7935 "Reserved", 7936 "Insufficient Airflow", 7937 "Unable To Determine Reason", 7938 "No RX Signal Detected", 7939 "Reserved", 7940 }; 7941 7942 if (link_down_rc >= ARRAY_SIZE(reason)) 7943 return "Bad Reason Code"; 7944 7945 return reason[link_down_rc]; 7946 } 7947 7948 /** 7949 * Return the highest speed set in the port capabilities, in Mb/s. 7950 */ 7951 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 7952 { 7953 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 7954 do { \ 7955 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 7956 return __speed; \ 7957 } while (0) 7958 7959 TEST_SPEED_RETURN(400G, 400000); 7960 TEST_SPEED_RETURN(200G, 200000); 7961 TEST_SPEED_RETURN(100G, 100000); 7962 TEST_SPEED_RETURN(50G, 50000); 7963 TEST_SPEED_RETURN(40G, 40000); 7964 TEST_SPEED_RETURN(25G, 25000); 7965 TEST_SPEED_RETURN(10G, 10000); 7966 TEST_SPEED_RETURN(1G, 1000); 7967 TEST_SPEED_RETURN(100M, 100); 7968 7969 #undef TEST_SPEED_RETURN 7970 7971 return 0; 7972 } 7973 7974 /** 7975 * fwcap_to_fwspeed - return highest speed in Port Capabilities 7976 * @acaps: advertised Port Capabilities 7977 * 7978 * Get the highest speed for the port from the advertised Port 7979 * Capabilities. It will be either the highest speed from the list of 7980 * speeds or whatever user has set using ethtool. 7981 */ 7982 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 7983 { 7984 #define TEST_SPEED_RETURN(__caps_speed) \ 7985 do { \ 7986 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 7987 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 7988 } while (0) 7989 7990 TEST_SPEED_RETURN(400G); 7991 TEST_SPEED_RETURN(200G); 7992 TEST_SPEED_RETURN(100G); 7993 TEST_SPEED_RETURN(50G); 7994 TEST_SPEED_RETURN(40G); 7995 TEST_SPEED_RETURN(25G); 7996 TEST_SPEED_RETURN(10G); 7997 TEST_SPEED_RETURN(1G); 7998 TEST_SPEED_RETURN(100M); 7999 8000 #undef TEST_SPEED_RETURN 8001 8002 return 0; 8003 } 8004 8005 /** 8006 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8007 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8008 * 8009 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8010 * 32-bit Port Capabilities value. 8011 */ 8012 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8013 { 8014 fw_port_cap32_t linkattr = 0; 8015 8016 /* Unfortunately the format of the Link Status in the old 8017 * 16-bit Port Information message isn't the same as the 8018 * 16-bit Port Capabilities bitfield used everywhere else ... 8019 */ 8020 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8021 linkattr |= FW_PORT_CAP32_FC_RX; 8022 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8023 linkattr |= FW_PORT_CAP32_FC_TX; 8024 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8025 linkattr |= FW_PORT_CAP32_SPEED_100M; 8026 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8027 linkattr |= FW_PORT_CAP32_SPEED_1G; 8028 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8029 linkattr |= FW_PORT_CAP32_SPEED_10G; 8030 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8031 linkattr |= FW_PORT_CAP32_SPEED_25G; 8032 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8033 linkattr |= FW_PORT_CAP32_SPEED_40G; 8034 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8035 linkattr |= FW_PORT_CAP32_SPEED_100G; 8036 8037 return linkattr; 8038 } 8039 8040 /** 8041 * t4_handle_get_port_info - process a FW reply message 8042 * @pi: the port info 8043 * @rpl: start of the FW message 8044 * 8045 * Processes a GET_PORT_INFO FW reply message. 8046 */ 8047 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8048 { 8049 const struct fw_port_cmd *cmd = (const void *)rpl; 8050 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8051 struct adapter *adapter = pi->adapter; 8052 struct link_config *lc = &pi->link_cfg; 8053 int link_ok, linkdnrc; 8054 enum fw_port_type port_type; 8055 enum fw_port_module_type mod_type; 8056 unsigned int speed, fc, fec; 8057 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8058 8059 /* Extract the various fields from the Port Information message. 8060 */ 8061 switch (action) { 8062 case FW_PORT_ACTION_GET_PORT_INFO: { 8063 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8064 8065 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8066 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8067 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8068 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8069 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8070 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8071 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8072 linkattr = lstatus_to_fwcap(lstatus); 8073 break; 8074 } 8075 8076 case FW_PORT_ACTION_GET_PORT_INFO32: { 8077 u32 lstatus32; 8078 8079 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8080 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8081 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8082 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8083 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8084 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8085 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8086 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8087 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8088 break; 8089 } 8090 8091 default: 8092 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8093 be32_to_cpu(cmd->action_to_len16)); 8094 return; 8095 } 8096 8097 fec = fwcap_to_cc_fec(acaps); 8098 fc = fwcap_to_cc_pause(linkattr); 8099 speed = fwcap_to_speed(linkattr); 8100 8101 if (mod_type != pi->mod_type) { 8102 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8103 * various fundamental Port Capabilities which used to be 8104 * immutable can now change radically. We can now have 8105 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8106 * all change based on what Transceiver Module is inserted. 8107 * So we need to record the Physical "Port" Capabilities on 8108 * every Transceiver Module change. 8109 */ 8110 lc->pcaps = pcaps; 8111 8112 /* When a new Transceiver Module is inserted, the Firmware 8113 * will examine its i2c EPROM to determine its type and 8114 * general operating parameters including things like Forward 8115 * Error Control, etc. Various IEEE 802.3 standards dictate 8116 * how to interpret these i2c values to determine default 8117 * "sutomatic" settings. We record these for future use when 8118 * the user explicitly requests these standards-based values. 8119 */ 8120 lc->def_acaps = acaps; 8121 8122 /* Some versions of the early T6 Firmware "cheated" when 8123 * handling different Transceiver Modules by changing the 8124 * underlaying Port Type reported to the Host Drivers. As 8125 * such we need to capture whatever Port Type the Firmware 8126 * sends us and record it in case it's different from what we 8127 * were told earlier. Unfortunately, since Firmware is 8128 * forever, we'll need to keep this code here forever, but in 8129 * later T6 Firmware it should just be an assignment of the 8130 * same value already recorded. 8131 */ 8132 pi->port_type = port_type; 8133 8134 pi->mod_type = mod_type; 8135 t4_os_portmod_changed(adapter, pi->port_id); 8136 } 8137 8138 if (link_ok != lc->link_ok || speed != lc->speed || 8139 fc != lc->fc || fec != lc->fec) { /* something changed */ 8140 if (!link_ok && lc->link_ok) { 8141 lc->link_down_rc = linkdnrc; 8142 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n", 8143 pi->tx_chan, t4_link_down_rc_str(linkdnrc)); 8144 } 8145 lc->link_ok = link_ok; 8146 lc->speed = speed; 8147 lc->fc = fc; 8148 lc->fec = fec; 8149 8150 lc->lpacaps = lpacaps; 8151 lc->acaps = acaps & ADVERT_MASK; 8152 8153 if (lc->acaps & FW_PORT_CAP32_ANEG) { 8154 lc->autoneg = AUTONEG_ENABLE; 8155 } else { 8156 /* When Autoneg is disabled, user needs to set 8157 * single speed. 8158 * Similar to cxgb4_ethtool.c: set_link_ksettings 8159 */ 8160 lc->acaps = 0; 8161 lc->speed_caps = fwcap_to_fwspeed(acaps); 8162 lc->autoneg = AUTONEG_DISABLE; 8163 } 8164 8165 t4_os_link_changed(adapter, pi->port_id, link_ok); 8166 } 8167 } 8168 8169 /** 8170 * t4_update_port_info - retrieve and update port information if changed 8171 * @pi: the port_info 8172 * 8173 * We issue a Get Port Information Command to the Firmware and, if 8174 * successful, we check to see if anything is different from what we 8175 * last recorded and update things accordingly. 8176 */ 8177 int t4_update_port_info(struct port_info *pi) 8178 { 8179 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8180 struct fw_port_cmd port_cmd; 8181 int ret; 8182 8183 memset(&port_cmd, 0, sizeof(port_cmd)); 8184 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8185 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8186 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8187 port_cmd.action_to_len16 = cpu_to_be32( 8188 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8189 ? FW_PORT_ACTION_GET_PORT_INFO 8190 : FW_PORT_ACTION_GET_PORT_INFO32) | 8191 FW_LEN16(port_cmd)); 8192 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8193 &port_cmd, sizeof(port_cmd), &port_cmd); 8194 if (ret) 8195 return ret; 8196 8197 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8198 return 0; 8199 } 8200 8201 /** 8202 * t4_get_link_params - retrieve basic link parameters for given port 8203 * @pi: the port 8204 * @link_okp: value return pointer for link up/down 8205 * @speedp: value return pointer for speed (Mb/s) 8206 * @mtup: value return pointer for mtu 8207 * 8208 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8209 * and MTU for a specified port. A negative error is returned on 8210 * failure; 0 on success. 8211 */ 8212 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8213 unsigned int *speedp, unsigned int *mtup) 8214 { 8215 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8216 struct fw_port_cmd port_cmd; 8217 unsigned int action, link_ok, speed, mtu; 8218 fw_port_cap32_t linkattr; 8219 int ret; 8220 8221 memset(&port_cmd, 0, sizeof(port_cmd)); 8222 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8223 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8224 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8225 action = (fw_caps == FW_CAPS16 8226 ? FW_PORT_ACTION_GET_PORT_INFO 8227 : FW_PORT_ACTION_GET_PORT_INFO32); 8228 port_cmd.action_to_len16 = cpu_to_be32( 8229 FW_PORT_CMD_ACTION_V(action) | 8230 FW_LEN16(port_cmd)); 8231 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8232 &port_cmd, sizeof(port_cmd), &port_cmd); 8233 if (ret) 8234 return ret; 8235 8236 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8237 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8238 8239 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8240 linkattr = lstatus_to_fwcap(lstatus); 8241 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8242 } else { 8243 u32 lstatus32 = 8244 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8245 8246 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8247 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8248 mtu = FW_PORT_CMD_MTU32_G( 8249 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8250 } 8251 speed = fwcap_to_speed(linkattr); 8252 8253 *link_okp = link_ok; 8254 *speedp = fwcap_to_speed(linkattr); 8255 *mtup = mtu; 8256 8257 return 0; 8258 } 8259 8260 /** 8261 * t4_handle_fw_rpl - process a FW reply message 8262 * @adap: the adapter 8263 * @rpl: start of the FW message 8264 * 8265 * Processes a FW message, such as link state change messages. 8266 */ 8267 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8268 { 8269 u8 opcode = *(const u8 *)rpl; 8270 8271 /* This might be a port command ... this simplifies the following 8272 * conditionals ... We can get away with pre-dereferencing 8273 * action_to_len16 because it's in the first 16 bytes and all messages 8274 * will be at least that long. 8275 */ 8276 const struct fw_port_cmd *p = (const void *)rpl; 8277 unsigned int action = 8278 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8279 8280 if (opcode == FW_PORT_CMD && 8281 (action == FW_PORT_ACTION_GET_PORT_INFO || 8282 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8283 int i; 8284 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8285 struct port_info *pi = NULL; 8286 8287 for_each_port(adap, i) { 8288 pi = adap2pinfo(adap, i); 8289 if (pi->tx_chan == chan) 8290 break; 8291 } 8292 8293 t4_handle_get_port_info(pi, rpl); 8294 } else { 8295 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8296 opcode); 8297 return -EINVAL; 8298 } 8299 return 0; 8300 } 8301 8302 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8303 { 8304 u16 val; 8305 8306 if (pci_is_pcie(adapter->pdev)) { 8307 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8308 p->speed = val & PCI_EXP_LNKSTA_CLS; 8309 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8310 } 8311 } 8312 8313 /** 8314 * init_link_config - initialize a link's SW state 8315 * @lc: pointer to structure holding the link state 8316 * @pcaps: link Port Capabilities 8317 * @acaps: link current Advertised Port Capabilities 8318 * 8319 * Initializes the SW state maintained for each link, including the link's 8320 * capabilities and default speed/flow-control/autonegotiation settings. 8321 */ 8322 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8323 fw_port_cap32_t acaps) 8324 { 8325 lc->pcaps = pcaps; 8326 lc->def_acaps = acaps; 8327 lc->lpacaps = 0; 8328 lc->speed_caps = 0; 8329 lc->speed = 0; 8330 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8331 8332 /* For Forward Error Control, we default to whatever the Firmware 8333 * tells us the Link is currently advertising. 8334 */ 8335 lc->requested_fec = FEC_AUTO; 8336 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8337 8338 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8339 lc->acaps = lc->pcaps & ADVERT_MASK; 8340 lc->autoneg = AUTONEG_ENABLE; 8341 lc->requested_fc |= PAUSE_AUTONEG; 8342 } else { 8343 lc->acaps = 0; 8344 lc->autoneg = AUTONEG_DISABLE; 8345 } 8346 } 8347 8348 #define CIM_PF_NOACCESS 0xeeeeeeee 8349 8350 int t4_wait_dev_ready(void __iomem *regs) 8351 { 8352 u32 whoami; 8353 8354 whoami = readl(regs + PL_WHOAMI_A); 8355 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8356 return 0; 8357 8358 msleep(500); 8359 whoami = readl(regs + PL_WHOAMI_A); 8360 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8361 } 8362 8363 struct flash_desc { 8364 u32 vendor_and_model_id; 8365 u32 size_mb; 8366 }; 8367 8368 static int t4_get_flash_params(struct adapter *adap) 8369 { 8370 /* Table for non-Numonix supported flash parts. Numonix parts are left 8371 * to the preexisting code. All flash parts have 64KB sectors. 8372 */ 8373 static struct flash_desc supported_flash[] = { 8374 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8375 }; 8376 8377 unsigned int part, manufacturer; 8378 unsigned int density, size; 8379 u32 flashid = 0; 8380 int ret; 8381 8382 /* Issue a Read ID Command to the Flash part. We decode supported 8383 * Flash parts and their sizes from this. There's a newer Query 8384 * Command which can retrieve detailed geometry information but many 8385 * Flash parts don't support it. 8386 */ 8387 8388 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8389 if (!ret) 8390 ret = sf1_read(adap, 3, 0, 1, &flashid); 8391 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8392 if (ret) 8393 return ret; 8394 8395 /* Check to see if it's one of our non-standard supported Flash parts. 8396 */ 8397 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8398 if (supported_flash[part].vendor_and_model_id == flashid) { 8399 adap->params.sf_size = supported_flash[part].size_mb; 8400 adap->params.sf_nsec = 8401 adap->params.sf_size / SF_SEC_SIZE; 8402 goto found; 8403 } 8404 8405 /* Decode Flash part size. The code below looks repetative with 8406 * common encodings, but that's not guaranteed in the JEDEC 8407 * specification for the Read JADEC ID command. The only thing that 8408 * we're guaranteed by the JADEC specification is where the 8409 * Manufacturer ID is in the returned result. After that each 8410 * Manufacturer ~could~ encode things completely differently. 8411 * Note, all Flash parts must have 64KB sectors. 8412 */ 8413 manufacturer = flashid & 0xff; 8414 switch (manufacturer) { 8415 case 0x20: { /* Micron/Numonix */ 8416 /* This Density -> Size decoding table is taken from Micron 8417 * Data Sheets. 8418 */ 8419 density = (flashid >> 16) & 0xff; 8420 switch (density) { 8421 case 0x14: /* 1MB */ 8422 size = 1 << 20; 8423 break; 8424 case 0x15: /* 2MB */ 8425 size = 1 << 21; 8426 break; 8427 case 0x16: /* 4MB */ 8428 size = 1 << 22; 8429 break; 8430 case 0x17: /* 8MB */ 8431 size = 1 << 23; 8432 break; 8433 case 0x18: /* 16MB */ 8434 size = 1 << 24; 8435 break; 8436 case 0x19: /* 32MB */ 8437 size = 1 << 25; 8438 break; 8439 case 0x20: /* 64MB */ 8440 size = 1 << 26; 8441 break; 8442 case 0x21: /* 128MB */ 8443 size = 1 << 27; 8444 break; 8445 case 0x22: /* 256MB */ 8446 size = 1 << 28; 8447 break; 8448 8449 default: 8450 dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n", 8451 flashid, density); 8452 return -EINVAL; 8453 } 8454 break; 8455 } 8456 case 0xc2: { /* Macronix */ 8457 /* This Density -> Size decoding table is taken from Macronix 8458 * Data Sheets. 8459 */ 8460 density = (flashid >> 16) & 0xff; 8461 switch (density) { 8462 case 0x17: /* 8MB */ 8463 size = 1 << 23; 8464 break; 8465 case 0x18: /* 16MB */ 8466 size = 1 << 24; 8467 break; 8468 default: 8469 dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n", 8470 flashid, density); 8471 return -EINVAL; 8472 } 8473 break; 8474 } 8475 case 0xef: { /* Winbond */ 8476 /* This Density -> Size decoding table is taken from Winbond 8477 * Data Sheets. 8478 */ 8479 density = (flashid >> 16) & 0xff; 8480 switch (density) { 8481 case 0x17: /* 8MB */ 8482 size = 1 << 23; 8483 break; 8484 case 0x18: /* 16MB */ 8485 size = 1 << 24; 8486 break; 8487 default: 8488 dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n", 8489 flashid, density); 8490 return -EINVAL; 8491 } 8492 break; 8493 } 8494 default: 8495 dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n", 8496 flashid); 8497 return -EINVAL; 8498 } 8499 8500 /* Store decoded Flash size and fall through into vetting code. */ 8501 adap->params.sf_size = size; 8502 adap->params.sf_nsec = size / SF_SEC_SIZE; 8503 8504 found: 8505 if (adap->params.sf_size < FLASH_MIN_SIZE) 8506 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8507 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 8508 return 0; 8509 } 8510 8511 /** 8512 * t4_prep_adapter - prepare SW and HW for operation 8513 * @adapter: the adapter 8514 * @reset: if true perform a HW reset 8515 * 8516 * Initialize adapter SW state for the various HW modules, set initial 8517 * values for some adapter tunables, take PHYs out of reset, and 8518 * initialize the MDIO interface. 8519 */ 8520 int t4_prep_adapter(struct adapter *adapter) 8521 { 8522 int ret, ver; 8523 uint16_t device_id; 8524 u32 pl_rev; 8525 8526 get_pci_mode(adapter, &adapter->params.pci); 8527 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 8528 8529 ret = t4_get_flash_params(adapter); 8530 if (ret < 0) { 8531 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 8532 return ret; 8533 } 8534 8535 /* Retrieve adapter's device ID 8536 */ 8537 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 8538 ver = device_id >> 12; 8539 adapter->params.chip = 0; 8540 switch (ver) { 8541 case CHELSIO_T4: 8542 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 8543 adapter->params.arch.sge_fl_db = DBPRIO_F; 8544 adapter->params.arch.mps_tcam_size = 8545 NUM_MPS_CLS_SRAM_L_INSTANCES; 8546 adapter->params.arch.mps_rplc_size = 128; 8547 adapter->params.arch.nchan = NCHAN; 8548 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8549 adapter->params.arch.vfcount = 128; 8550 /* Congestion map is for 4 channels so that 8551 * MPS can have 4 priority per port. 8552 */ 8553 adapter->params.arch.cng_ch_bits_log = 2; 8554 break; 8555 case CHELSIO_T5: 8556 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 8557 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 8558 adapter->params.arch.mps_tcam_size = 8559 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8560 adapter->params.arch.mps_rplc_size = 128; 8561 adapter->params.arch.nchan = NCHAN; 8562 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8563 adapter->params.arch.vfcount = 128; 8564 adapter->params.arch.cng_ch_bits_log = 2; 8565 break; 8566 case CHELSIO_T6: 8567 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 8568 adapter->params.arch.sge_fl_db = 0; 8569 adapter->params.arch.mps_tcam_size = 8570 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8571 adapter->params.arch.mps_rplc_size = 256; 8572 adapter->params.arch.nchan = 2; 8573 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 8574 adapter->params.arch.vfcount = 256; 8575 /* Congestion map will be for 2 channels so that 8576 * MPS can have 8 priority per port. 8577 */ 8578 adapter->params.arch.cng_ch_bits_log = 3; 8579 break; 8580 default: 8581 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 8582 device_id); 8583 return -EINVAL; 8584 } 8585 8586 adapter->params.cim_la_size = CIMLA_SIZE; 8587 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8588 8589 /* 8590 * Default port for debugging in case we can't reach FW. 8591 */ 8592 adapter->params.nports = 1; 8593 adapter->params.portvec = 1; 8594 adapter->params.vpd.cclk = 50000; 8595 8596 /* Set PCIe completion timeout to 4 seconds. */ 8597 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 8598 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 8599 return 0; 8600 } 8601 8602 /** 8603 * t4_shutdown_adapter - shut down adapter, host & wire 8604 * @adapter: the adapter 8605 * 8606 * Perform an emergency shutdown of the adapter and stop it from 8607 * continuing any further communication on the ports or DMA to the 8608 * host. This is typically used when the adapter and/or firmware 8609 * have crashed and we want to prevent any further accidental 8610 * communication with the rest of the world. This will also force 8611 * the port Link Status to go down -- if register writes work -- 8612 * which should help our peers figure out that we're down. 8613 */ 8614 int t4_shutdown_adapter(struct adapter *adapter) 8615 { 8616 int port; 8617 8618 t4_intr_disable(adapter); 8619 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 8620 for_each_port(adapter, port) { 8621 u32 a_port_cfg = is_t4(adapter->params.chip) ? 8622 PORT_REG(port, XGMAC_PORT_CFG_A) : 8623 T5_PORT_REG(port, MAC_PORT_CFG_A); 8624 8625 t4_write_reg(adapter, a_port_cfg, 8626 t4_read_reg(adapter, a_port_cfg) 8627 & ~SIGNAL_DET_V(1)); 8628 } 8629 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 8630 8631 return 0; 8632 } 8633 8634 /** 8635 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 8636 * @adapter: the adapter 8637 * @qid: the Queue ID 8638 * @qtype: the Ingress or Egress type for @qid 8639 * @user: true if this request is for a user mode queue 8640 * @pbar2_qoffset: BAR2 Queue Offset 8641 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 8642 * 8643 * Returns the BAR2 SGE Queue Registers information associated with the 8644 * indicated Absolute Queue ID. These are passed back in return value 8645 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 8646 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 8647 * 8648 * This may return an error which indicates that BAR2 SGE Queue 8649 * registers aren't available. If an error is not returned, then the 8650 * following values are returned: 8651 * 8652 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 8653 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 8654 * 8655 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 8656 * require the "Inferred Queue ID" ability may be used. E.g. the 8657 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 8658 * then these "Inferred Queue ID" register may not be used. 8659 */ 8660 int t4_bar2_sge_qregs(struct adapter *adapter, 8661 unsigned int qid, 8662 enum t4_bar2_qtype qtype, 8663 int user, 8664 u64 *pbar2_qoffset, 8665 unsigned int *pbar2_qid) 8666 { 8667 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 8668 u64 bar2_page_offset, bar2_qoffset; 8669 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 8670 8671 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 8672 if (!user && is_t4(adapter->params.chip)) 8673 return -EINVAL; 8674 8675 /* Get our SGE Page Size parameters. 8676 */ 8677 page_shift = adapter->params.sge.hps + 10; 8678 page_size = 1 << page_shift; 8679 8680 /* Get the right Queues per Page parameters for our Queue. 8681 */ 8682 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 8683 ? adapter->params.sge.eq_qpp 8684 : adapter->params.sge.iq_qpp); 8685 qpp_mask = (1 << qpp_shift) - 1; 8686 8687 /* Calculate the basics of the BAR2 SGE Queue register area: 8688 * o The BAR2 page the Queue registers will be in. 8689 * o The BAR2 Queue ID. 8690 * o The BAR2 Queue ID Offset into the BAR2 page. 8691 */ 8692 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 8693 bar2_qid = qid & qpp_mask; 8694 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 8695 8696 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 8697 * hardware will infer the Absolute Queue ID simply from the writes to 8698 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 8699 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 8700 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 8701 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 8702 * from the BAR2 Page and BAR2 Queue ID. 8703 * 8704 * One important censequence of this is that some BAR2 SGE registers 8705 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 8706 * there. But other registers synthesize the SGE Queue ID purely 8707 * from the writes to the registers -- the Write Combined Doorbell 8708 * Buffer is a good example. These BAR2 SGE Registers are only 8709 * available for those BAR2 SGE Register areas where the SGE Absolute 8710 * Queue ID can be inferred from simple writes. 8711 */ 8712 bar2_qoffset = bar2_page_offset; 8713 bar2_qinferred = (bar2_qid_offset < page_size); 8714 if (bar2_qinferred) { 8715 bar2_qoffset += bar2_qid_offset; 8716 bar2_qid = 0; 8717 } 8718 8719 *pbar2_qoffset = bar2_qoffset; 8720 *pbar2_qid = bar2_qid; 8721 return 0; 8722 } 8723 8724 /** 8725 * t4_init_devlog_params - initialize adapter->params.devlog 8726 * @adap: the adapter 8727 * 8728 * Initialize various fields of the adapter's Firmware Device Log 8729 * Parameters structure. 8730 */ 8731 int t4_init_devlog_params(struct adapter *adap) 8732 { 8733 struct devlog_params *dparams = &adap->params.devlog; 8734 u32 pf_dparams; 8735 unsigned int devlog_meminfo; 8736 struct fw_devlog_cmd devlog_cmd; 8737 int ret; 8738 8739 /* If we're dealing with newer firmware, the Device Log Paramerters 8740 * are stored in a designated register which allows us to access the 8741 * Device Log even if we can't talk to the firmware. 8742 */ 8743 pf_dparams = 8744 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 8745 if (pf_dparams) { 8746 unsigned int nentries, nentries128; 8747 8748 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 8749 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 8750 8751 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 8752 nentries = (nentries128 + 1) * 128; 8753 dparams->size = nentries * sizeof(struct fw_devlog_e); 8754 8755 return 0; 8756 } 8757 8758 /* Otherwise, ask the firmware for it's Device Log Parameters. 8759 */ 8760 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 8761 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 8762 FW_CMD_REQUEST_F | FW_CMD_READ_F); 8763 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 8764 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 8765 &devlog_cmd); 8766 if (ret) 8767 return ret; 8768 8769 devlog_meminfo = 8770 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 8771 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 8772 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 8773 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 8774 8775 return 0; 8776 } 8777 8778 /** 8779 * t4_init_sge_params - initialize adap->params.sge 8780 * @adapter: the adapter 8781 * 8782 * Initialize various fields of the adapter's SGE Parameters structure. 8783 */ 8784 int t4_init_sge_params(struct adapter *adapter) 8785 { 8786 struct sge_params *sge_params = &adapter->params.sge; 8787 u32 hps, qpp; 8788 unsigned int s_hps, s_qpp; 8789 8790 /* Extract the SGE Page Size for our PF. 8791 */ 8792 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 8793 s_hps = (HOSTPAGESIZEPF0_S + 8794 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 8795 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 8796 8797 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 8798 */ 8799 s_qpp = (QUEUESPERPAGEPF0_S + 8800 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 8801 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 8802 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 8803 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 8804 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 8805 8806 return 0; 8807 } 8808 8809 /** 8810 * t4_init_tp_params - initialize adap->params.tp 8811 * @adap: the adapter 8812 * @sleep_ok: if true we may sleep while awaiting command completion 8813 * 8814 * Initialize various fields of the adapter's TP Parameters structure. 8815 */ 8816 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 8817 { 8818 int chan; 8819 u32 v; 8820 8821 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 8822 adap->params.tp.tre = TIMERRESOLUTION_G(v); 8823 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 8824 8825 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 8826 for (chan = 0; chan < NCHAN; chan++) 8827 adap->params.tp.tx_modq[chan] = chan; 8828 8829 /* Cache the adapter's Compressed Filter Mode and global Incress 8830 * Configuration. 8831 */ 8832 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 8833 TP_VLAN_PRI_MAP_A, sleep_ok); 8834 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 8835 TP_INGRESS_CONFIG_A, sleep_ok); 8836 8837 /* For T6, cache the adapter's compressed error vector 8838 * and passing outer header info for encapsulated packets. 8839 */ 8840 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 8841 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 8842 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 8843 } 8844 8845 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 8846 * shift positions of several elements of the Compressed Filter Tuple 8847 * for this adapter which we need frequently ... 8848 */ 8849 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 8850 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 8851 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 8852 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 8853 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 8854 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 8855 PROTOCOL_F); 8856 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 8857 ETHERTYPE_F); 8858 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 8859 MACMATCH_F); 8860 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 8861 MPSHITTYPE_F); 8862 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 8863 FRAGMENTATION_F); 8864 8865 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 8866 * represents the presence of an Outer VLAN instead of a VNIC ID. 8867 */ 8868 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 8869 adap->params.tp.vnic_shift = -1; 8870 8871 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 8872 adap->params.tp.hash_filter_mask = v; 8873 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 8874 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 8875 return 0; 8876 } 8877 8878 /** 8879 * t4_filter_field_shift - calculate filter field shift 8880 * @adap: the adapter 8881 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 8882 * 8883 * Return the shift position of a filter field within the Compressed 8884 * Filter Tuple. The filter field is specified via its selection bit 8885 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 8886 */ 8887 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 8888 { 8889 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 8890 unsigned int sel; 8891 int field_shift; 8892 8893 if ((filter_mode & filter_sel) == 0) 8894 return -1; 8895 8896 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 8897 switch (filter_mode & sel) { 8898 case FCOE_F: 8899 field_shift += FT_FCOE_W; 8900 break; 8901 case PORT_F: 8902 field_shift += FT_PORT_W; 8903 break; 8904 case VNIC_ID_F: 8905 field_shift += FT_VNIC_ID_W; 8906 break; 8907 case VLAN_F: 8908 field_shift += FT_VLAN_W; 8909 break; 8910 case TOS_F: 8911 field_shift += FT_TOS_W; 8912 break; 8913 case PROTOCOL_F: 8914 field_shift += FT_PROTOCOL_W; 8915 break; 8916 case ETHERTYPE_F: 8917 field_shift += FT_ETHERTYPE_W; 8918 break; 8919 case MACMATCH_F: 8920 field_shift += FT_MACMATCH_W; 8921 break; 8922 case MPSHITTYPE_F: 8923 field_shift += FT_MPSHITTYPE_W; 8924 break; 8925 case FRAGMENTATION_F: 8926 field_shift += FT_FRAGMENTATION_W; 8927 break; 8928 } 8929 } 8930 return field_shift; 8931 } 8932 8933 int t4_init_rss_mode(struct adapter *adap, int mbox) 8934 { 8935 int i, ret; 8936 struct fw_rss_vi_config_cmd rvc; 8937 8938 memset(&rvc, 0, sizeof(rvc)); 8939 8940 for_each_port(adap, i) { 8941 struct port_info *p = adap2pinfo(adap, i); 8942 8943 rvc.op_to_viid = 8944 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 8945 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8946 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 8947 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 8948 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 8949 if (ret) 8950 return ret; 8951 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 8952 } 8953 return 0; 8954 } 8955 8956 /** 8957 * t4_init_portinfo - allocate a virtual interface and initialize port_info 8958 * @pi: the port_info 8959 * @mbox: mailbox to use for the FW command 8960 * @port: physical port associated with the VI 8961 * @pf: the PF owning the VI 8962 * @vf: the VF owning the VI 8963 * @mac: the MAC address of the VI 8964 * 8965 * Allocates a virtual interface for the given physical port. If @mac is 8966 * not %NULL it contains the MAC address of the VI as assigned by FW. 8967 * @mac should be large enough to hold an Ethernet address. 8968 * Returns < 0 on error. 8969 */ 8970 int t4_init_portinfo(struct port_info *pi, int mbox, 8971 int port, int pf, int vf, u8 mac[]) 8972 { 8973 struct adapter *adapter = pi->adapter; 8974 unsigned int fw_caps = adapter->params.fw_caps_support; 8975 struct fw_port_cmd cmd; 8976 unsigned int rss_size; 8977 enum fw_port_type port_type; 8978 int mdio_addr; 8979 fw_port_cap32_t pcaps, acaps; 8980 int ret; 8981 8982 /* If we haven't yet determined whether we're talking to Firmware 8983 * which knows the new 32-bit Port Capabilities, it's time to find 8984 * out now. This will also tell new Firmware to send us Port Status 8985 * Updates using the new 32-bit Port Capabilities version of the 8986 * Port Information message. 8987 */ 8988 if (fw_caps == FW_CAPS_UNKNOWN) { 8989 u32 param, val; 8990 8991 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 8992 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 8993 val = 1; 8994 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 8995 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 8996 adapter->params.fw_caps_support = fw_caps; 8997 } 8998 8999 memset(&cmd, 0, sizeof(cmd)); 9000 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9001 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9002 FW_PORT_CMD_PORTID_V(port)); 9003 cmd.action_to_len16 = cpu_to_be32( 9004 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9005 ? FW_PORT_ACTION_GET_PORT_INFO 9006 : FW_PORT_ACTION_GET_PORT_INFO32) | 9007 FW_LEN16(cmd)); 9008 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9009 if (ret) 9010 return ret; 9011 9012 /* Extract the various fields from the Port Information message. 9013 */ 9014 if (fw_caps == FW_CAPS16) { 9015 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9016 9017 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9018 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9019 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9020 : -1); 9021 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9022 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9023 } else { 9024 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9025 9026 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9027 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9028 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9029 : -1); 9030 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9031 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9032 } 9033 9034 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 9035 if (ret < 0) 9036 return ret; 9037 9038 pi->viid = ret; 9039 pi->tx_chan = port; 9040 pi->lport = port; 9041 pi->rss_size = rss_size; 9042 9043 pi->port_type = port_type; 9044 pi->mdio_addr = mdio_addr; 9045 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9046 9047 init_link_config(&pi->link_cfg, pcaps, acaps); 9048 return 0; 9049 } 9050 9051 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9052 { 9053 u8 addr[6]; 9054 int ret, i, j = 0; 9055 9056 for_each_port(adap, i) { 9057 struct port_info *pi = adap2pinfo(adap, i); 9058 9059 while ((adap->params.portvec & (1 << j)) == 0) 9060 j++; 9061 9062 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9063 if (ret) 9064 return ret; 9065 9066 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9067 j++; 9068 } 9069 return 0; 9070 } 9071 9072 /** 9073 * t4_read_cimq_cfg - read CIM queue configuration 9074 * @adap: the adapter 9075 * @base: holds the queue base addresses in bytes 9076 * @size: holds the queue sizes in bytes 9077 * @thres: holds the queue full thresholds in bytes 9078 * 9079 * Returns the current configuration of the CIM queues, starting with 9080 * the IBQs, then the OBQs. 9081 */ 9082 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9083 { 9084 unsigned int i, v; 9085 int cim_num_obq = is_t4(adap->params.chip) ? 9086 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9087 9088 for (i = 0; i < CIM_NUM_IBQ; i++) { 9089 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9090 QUENUMSELECT_V(i)); 9091 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9092 /* value is in 256-byte units */ 9093 *base++ = CIMQBASE_G(v) * 256; 9094 *size++ = CIMQSIZE_G(v) * 256; 9095 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9096 } 9097 for (i = 0; i < cim_num_obq; i++) { 9098 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9099 QUENUMSELECT_V(i)); 9100 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9101 /* value is in 256-byte units */ 9102 *base++ = CIMQBASE_G(v) * 256; 9103 *size++ = CIMQSIZE_G(v) * 256; 9104 } 9105 } 9106 9107 /** 9108 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9109 * @adap: the adapter 9110 * @qid: the queue index 9111 * @data: where to store the queue contents 9112 * @n: capacity of @data in 32-bit words 9113 * 9114 * Reads the contents of the selected CIM queue starting at address 0 up 9115 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9116 * error and the number of 32-bit words actually read on success. 9117 */ 9118 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9119 { 9120 int i, err, attempts; 9121 unsigned int addr; 9122 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9123 9124 if (qid > 5 || (n & 3)) 9125 return -EINVAL; 9126 9127 addr = qid * nwords; 9128 if (n > nwords) 9129 n = nwords; 9130 9131 /* It might take 3-10ms before the IBQ debug read access is allowed. 9132 * Wait for 1 Sec with a delay of 1 usec. 9133 */ 9134 attempts = 1000000; 9135 9136 for (i = 0; i < n; i++, addr++) { 9137 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9138 IBQDBGEN_F); 9139 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9140 attempts, 1); 9141 if (err) 9142 return err; 9143 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9144 } 9145 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9146 return i; 9147 } 9148 9149 /** 9150 * t4_read_cim_obq - read the contents of a CIM outbound queue 9151 * @adap: the adapter 9152 * @qid: the queue index 9153 * @data: where to store the queue contents 9154 * @n: capacity of @data in 32-bit words 9155 * 9156 * Reads the contents of the selected CIM queue starting at address 0 up 9157 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9158 * error and the number of 32-bit words actually read on success. 9159 */ 9160 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9161 { 9162 int i, err; 9163 unsigned int addr, v, nwords; 9164 int cim_num_obq = is_t4(adap->params.chip) ? 9165 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9166 9167 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9168 return -EINVAL; 9169 9170 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9171 QUENUMSELECT_V(qid)); 9172 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9173 9174 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9175 nwords = CIMQSIZE_G(v) * 64; /* same */ 9176 if (n > nwords) 9177 n = nwords; 9178 9179 for (i = 0; i < n; i++, addr++) { 9180 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9181 OBQDBGEN_F); 9182 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9183 2, 1); 9184 if (err) 9185 return err; 9186 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9187 } 9188 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9189 return i; 9190 } 9191 9192 /** 9193 * t4_cim_read - read a block from CIM internal address space 9194 * @adap: the adapter 9195 * @addr: the start address within the CIM address space 9196 * @n: number of words to read 9197 * @valp: where to store the result 9198 * 9199 * Reads a block of 4-byte words from the CIM intenal address space. 9200 */ 9201 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9202 unsigned int *valp) 9203 { 9204 int ret = 0; 9205 9206 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9207 return -EBUSY; 9208 9209 for ( ; !ret && n--; addr += 4) { 9210 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9211 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9212 0, 5, 2); 9213 if (!ret) 9214 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9215 } 9216 return ret; 9217 } 9218 9219 /** 9220 * t4_cim_write - write a block into CIM internal address space 9221 * @adap: the adapter 9222 * @addr: the start address within the CIM address space 9223 * @n: number of words to write 9224 * @valp: set of values to write 9225 * 9226 * Writes a block of 4-byte words into the CIM intenal address space. 9227 */ 9228 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9229 const unsigned int *valp) 9230 { 9231 int ret = 0; 9232 9233 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9234 return -EBUSY; 9235 9236 for ( ; !ret && n--; addr += 4) { 9237 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9238 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9239 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9240 0, 5, 2); 9241 } 9242 return ret; 9243 } 9244 9245 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9246 unsigned int val) 9247 { 9248 return t4_cim_write(adap, addr, 1, &val); 9249 } 9250 9251 /** 9252 * t4_cim_read_la - read CIM LA capture buffer 9253 * @adap: the adapter 9254 * @la_buf: where to store the LA data 9255 * @wrptr: the HW write pointer within the capture buffer 9256 * 9257 * Reads the contents of the CIM LA buffer with the most recent entry at 9258 * the end of the returned data and with the entry at @wrptr first. 9259 * We try to leave the LA in the running state we find it in. 9260 */ 9261 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9262 { 9263 int i, ret; 9264 unsigned int cfg, val, idx; 9265 9266 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9267 if (ret) 9268 return ret; 9269 9270 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9271 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9272 if (ret) 9273 return ret; 9274 } 9275 9276 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9277 if (ret) 9278 goto restart; 9279 9280 idx = UPDBGLAWRPTR_G(val); 9281 if (wrptr) 9282 *wrptr = idx; 9283 9284 for (i = 0; i < adap->params.cim_la_size; i++) { 9285 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9286 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9287 if (ret) 9288 break; 9289 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9290 if (ret) 9291 break; 9292 if (val & UPDBGLARDEN_F) { 9293 ret = -ETIMEDOUT; 9294 break; 9295 } 9296 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9297 if (ret) 9298 break; 9299 9300 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9301 * identify the 32-bit portion of the full 312-bit data 9302 */ 9303 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9304 idx = (idx & 0xff0) + 0x10; 9305 else 9306 idx++; 9307 /* address can't exceed 0xfff */ 9308 idx &= UPDBGLARDPTR_M; 9309 } 9310 restart: 9311 if (cfg & UPDBGLAEN_F) { 9312 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9313 cfg & ~UPDBGLARDEN_F); 9314 if (!ret) 9315 ret = r; 9316 } 9317 return ret; 9318 } 9319 9320 /** 9321 * t4_tp_read_la - read TP LA capture buffer 9322 * @adap: the adapter 9323 * @la_buf: where to store the LA data 9324 * @wrptr: the HW write pointer within the capture buffer 9325 * 9326 * Reads the contents of the TP LA buffer with the most recent entry at 9327 * the end of the returned data and with the entry at @wrptr first. 9328 * We leave the LA in the running state we find it in. 9329 */ 9330 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9331 { 9332 bool last_incomplete; 9333 unsigned int i, cfg, val, idx; 9334 9335 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9336 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9337 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9338 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9339 9340 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9341 idx = DBGLAWPTR_G(val); 9342 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9343 if (last_incomplete) 9344 idx = (idx + 1) & DBGLARPTR_M; 9345 if (wrptr) 9346 *wrptr = idx; 9347 9348 val &= 0xffff; 9349 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9350 val |= adap->params.tp.la_mask; 9351 9352 for (i = 0; i < TPLA_SIZE; i++) { 9353 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9354 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9355 idx = (idx + 1) & DBGLARPTR_M; 9356 } 9357 9358 /* Wipe out last entry if it isn't valid */ 9359 if (last_incomplete) 9360 la_buf[TPLA_SIZE - 1] = ~0ULL; 9361 9362 if (cfg & DBGLAENABLE_F) /* restore running state */ 9363 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9364 cfg | adap->params.tp.la_mask); 9365 } 9366 9367 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9368 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9369 * state for more than the Warning Threshold then we'll issue a warning about 9370 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9371 * appears to be hung every Warning Repeat second till the situation clears. 9372 * If the situation clears, we'll note that as well. 9373 */ 9374 #define SGE_IDMA_WARN_THRESH 1 9375 #define SGE_IDMA_WARN_REPEAT 300 9376 9377 /** 9378 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9379 * @adapter: the adapter 9380 * @idma: the adapter IDMA Monitor state 9381 * 9382 * Initialize the state of an SGE Ingress DMA Monitor. 9383 */ 9384 void t4_idma_monitor_init(struct adapter *adapter, 9385 struct sge_idma_monitor_state *idma) 9386 { 9387 /* Initialize the state variables for detecting an SGE Ingress DMA 9388 * hang. The SGE has internal counters which count up on each clock 9389 * tick whenever the SGE finds its Ingress DMA State Engines in the 9390 * same state they were on the previous clock tick. The clock used is 9391 * the Core Clock so we have a limit on the maximum "time" they can 9392 * record; typically a very small number of seconds. For instance, 9393 * with a 600MHz Core Clock, we can only count up to a bit more than 9394 * 7s. So we'll synthesize a larger counter in order to not run the 9395 * risk of having the "timers" overflow and give us the flexibility to 9396 * maintain a Hung SGE State Machine of our own which operates across 9397 * a longer time frame. 9398 */ 9399 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9400 idma->idma_stalled[0] = 0; 9401 idma->idma_stalled[1] = 0; 9402 } 9403 9404 /** 9405 * t4_idma_monitor - monitor SGE Ingress DMA state 9406 * @adapter: the adapter 9407 * @idma: the adapter IDMA Monitor state 9408 * @hz: number of ticks/second 9409 * @ticks: number of ticks since the last IDMA Monitor call 9410 */ 9411 void t4_idma_monitor(struct adapter *adapter, 9412 struct sge_idma_monitor_state *idma, 9413 int hz, int ticks) 9414 { 9415 int i, idma_same_state_cnt[2]; 9416 9417 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9418 * are counters inside the SGE which count up on each clock when the 9419 * SGE finds its Ingress DMA State Engines in the same states they 9420 * were in the previous clock. The counters will peg out at 9421 * 0xffffffff without wrapping around so once they pass the 1s 9422 * threshold they'll stay above that till the IDMA state changes. 9423 */ 9424 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9425 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9426 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9427 9428 for (i = 0; i < 2; i++) { 9429 u32 debug0, debug11; 9430 9431 /* If the Ingress DMA Same State Counter ("timer") is less 9432 * than 1s, then we can reset our synthesized Stall Timer and 9433 * continue. If we have previously emitted warnings about a 9434 * potential stalled Ingress Queue, issue a note indicating 9435 * that the Ingress Queue has resumed forward progress. 9436 */ 9437 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9438 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9439 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9440 "resumed after %d seconds\n", 9441 i, idma->idma_qid[i], 9442 idma->idma_stalled[i] / hz); 9443 idma->idma_stalled[i] = 0; 9444 continue; 9445 } 9446 9447 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9448 * domain. The first time we get here it'll be because we 9449 * passed the 1s Threshold; each additional time it'll be 9450 * because the RX Timer Callback is being fired on its regular 9451 * schedule. 9452 * 9453 * If the stall is below our Potential Hung Ingress Queue 9454 * Warning Threshold, continue. 9455 */ 9456 if (idma->idma_stalled[i] == 0) { 9457 idma->idma_stalled[i] = hz; 9458 idma->idma_warn[i] = 0; 9459 } else { 9460 idma->idma_stalled[i] += ticks; 9461 idma->idma_warn[i] -= ticks; 9462 } 9463 9464 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9465 continue; 9466 9467 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9468 */ 9469 if (idma->idma_warn[i] > 0) 9470 continue; 9471 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9472 9473 /* Read and save the SGE IDMA State and Queue ID information. 9474 * We do this every time in case it changes across time ... 9475 * can't be too careful ... 9476 */ 9477 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9478 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9479 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9480 9481 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9482 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9483 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9484 9485 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9486 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9487 i, idma->idma_qid[i], idma->idma_state[i], 9488 idma->idma_stalled[i] / hz, 9489 debug0, debug11); 9490 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9491 } 9492 } 9493 9494 /** 9495 * t4_load_cfg - download config file 9496 * @adap: the adapter 9497 * @cfg_data: the cfg text file to write 9498 * @size: text file size 9499 * 9500 * Write the supplied config text file to the card's serial flash. 9501 */ 9502 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9503 { 9504 int ret, i, n, cfg_addr; 9505 unsigned int addr; 9506 unsigned int flash_cfg_start_sec; 9507 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9508 9509 cfg_addr = t4_flash_cfg_addr(adap); 9510 if (cfg_addr < 0) 9511 return cfg_addr; 9512 9513 addr = cfg_addr; 9514 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9515 9516 if (size > FLASH_CFG_MAX_SIZE) { 9517 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 9518 FLASH_CFG_MAX_SIZE); 9519 return -EFBIG; 9520 } 9521 9522 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9523 sf_sec_size); 9524 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9525 flash_cfg_start_sec + i - 1); 9526 /* If size == 0 then we're simply erasing the FLASH sectors associated 9527 * with the on-adapter Firmware Configuration File. 9528 */ 9529 if (ret || size == 0) 9530 goto out; 9531 9532 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9533 for (i = 0; i < size; i += SF_PAGE_SIZE) { 9534 if ((size - i) < SF_PAGE_SIZE) 9535 n = size - i; 9536 else 9537 n = SF_PAGE_SIZE; 9538 ret = t4_write_flash(adap, addr, n, cfg_data); 9539 if (ret) 9540 goto out; 9541 9542 addr += SF_PAGE_SIZE; 9543 cfg_data += SF_PAGE_SIZE; 9544 } 9545 9546 out: 9547 if (ret) 9548 dev_err(adap->pdev_dev, "config file %s failed %d\n", 9549 (size == 0 ? "clear" : "download"), ret); 9550 return ret; 9551 } 9552 9553 /** 9554 * t4_set_vf_mac - Set MAC address for the specified VF 9555 * @adapter: The adapter 9556 * @vf: one of the VFs instantiated by the specified PF 9557 * @naddr: the number of MAC addresses 9558 * @addr: the MAC address(es) to be set to the specified VF 9559 */ 9560 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 9561 unsigned int naddr, u8 *addr) 9562 { 9563 struct fw_acl_mac_cmd cmd; 9564 9565 memset(&cmd, 0, sizeof(cmd)); 9566 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 9567 FW_CMD_REQUEST_F | 9568 FW_CMD_WRITE_F | 9569 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 9570 FW_ACL_MAC_CMD_VFN_V(vf)); 9571 9572 /* Note: Do not enable the ACL */ 9573 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 9574 cmd.nmac = naddr; 9575 9576 switch (adapter->pf) { 9577 case 3: 9578 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 9579 break; 9580 case 2: 9581 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 9582 break; 9583 case 1: 9584 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 9585 break; 9586 case 0: 9587 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 9588 break; 9589 } 9590 9591 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 9592 } 9593 9594 /** 9595 * t4_read_pace_tbl - read the pace table 9596 * @adap: the adapter 9597 * @pace_vals: holds the returned values 9598 * 9599 * Returns the values of TP's pace table in microseconds. 9600 */ 9601 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9602 { 9603 unsigned int i, v; 9604 9605 for (i = 0; i < NTX_SCHED; i++) { 9606 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 9607 v = t4_read_reg(adap, TP_PACE_TABLE_A); 9608 pace_vals[i] = dack_ticks_to_usec(adap, v); 9609 } 9610 } 9611 9612 /** 9613 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 9614 * @adap: the adapter 9615 * @sched: the scheduler index 9616 * @kbps: the byte rate in Kbps 9617 * @ipg: the interpacket delay in tenths of nanoseconds 9618 * @sleep_ok: if true we may sleep while awaiting command completion 9619 * 9620 * Return the current configuration of a HW Tx scheduler. 9621 */ 9622 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 9623 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 9624 { 9625 unsigned int v, addr, bpt, cpt; 9626 9627 if (kbps) { 9628 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 9629 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9630 if (sched & 1) 9631 v >>= 16; 9632 bpt = (v >> 8) & 0xff; 9633 cpt = v & 0xff; 9634 if (!cpt) { 9635 *kbps = 0; /* scheduler disabled */ 9636 } else { 9637 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 9638 *kbps = (v * bpt) / 125; 9639 } 9640 } 9641 if (ipg) { 9642 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 9643 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9644 if (sched & 1) 9645 v >>= 16; 9646 v &= 0xffff; 9647 *ipg = (10000 * v) / core_ticks_per_usec(adap); 9648 } 9649 } 9650 9651 /* t4_sge_ctxt_rd - read an SGE context through FW 9652 * @adap: the adapter 9653 * @mbox: mailbox to use for the FW command 9654 * @cid: the context id 9655 * @ctype: the context type 9656 * @data: where to store the context data 9657 * 9658 * Issues a FW command through the given mailbox to read an SGE context. 9659 */ 9660 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 9661 enum ctxt_type ctype, u32 *data) 9662 { 9663 struct fw_ldst_cmd c; 9664 int ret; 9665 9666 if (ctype == CTXT_FLM) 9667 ret = FW_LDST_ADDRSPC_SGE_FLMC; 9668 else 9669 ret = FW_LDST_ADDRSPC_SGE_CONMC; 9670 9671 memset(&c, 0, sizeof(c)); 9672 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 9673 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9674 FW_LDST_CMD_ADDRSPACE_V(ret)); 9675 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 9676 c.u.idctxt.physid = cpu_to_be32(cid); 9677 9678 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 9679 if (ret == 0) { 9680 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 9681 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 9682 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 9683 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 9684 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 9685 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 9686 } 9687 return ret; 9688 } 9689 9690 /** 9691 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 9692 * @adap: the adapter 9693 * @cid: the context id 9694 * @ctype: the context type 9695 * @data: where to store the context data 9696 * 9697 * Reads an SGE context directly, bypassing FW. This is only for 9698 * debugging when FW is unavailable. 9699 */ 9700 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 9701 enum ctxt_type ctype, u32 *data) 9702 { 9703 int i, ret; 9704 9705 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 9706 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 9707 if (!ret) 9708 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 9709 *data++ = t4_read_reg(adap, i); 9710 return ret; 9711 } 9712 9713 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 9714 int rateunit, int ratemode, int channel, int class, 9715 int minrate, int maxrate, int weight, int pktsize) 9716 { 9717 struct fw_sched_cmd cmd; 9718 9719 memset(&cmd, 0, sizeof(cmd)); 9720 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 9721 FW_CMD_REQUEST_F | 9722 FW_CMD_WRITE_F); 9723 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 9724 9725 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 9726 cmd.u.params.type = type; 9727 cmd.u.params.level = level; 9728 cmd.u.params.mode = mode; 9729 cmd.u.params.ch = channel; 9730 cmd.u.params.cl = class; 9731 cmd.u.params.unit = rateunit; 9732 cmd.u.params.rate = ratemode; 9733 cmd.u.params.min = cpu_to_be32(minrate); 9734 cmd.u.params.max = cpu_to_be32(maxrate); 9735 cmd.u.params.weight = cpu_to_be16(weight); 9736 cmd.u.params.pktsize = cpu_to_be16(pktsize); 9737 9738 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 9739 NULL, 1); 9740 } 9741 9742 /** 9743 * t4_i2c_rd - read I2C data from adapter 9744 * @adap: the adapter 9745 * @port: Port number if per-port device; <0 if not 9746 * @devid: per-port device ID or absolute device ID 9747 * @offset: byte offset into device I2C space 9748 * @len: byte length of I2C space data 9749 * @buf: buffer in which to return I2C data 9750 * 9751 * Reads the I2C data from the indicated device and location. 9752 */ 9753 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 9754 unsigned int devid, unsigned int offset, 9755 unsigned int len, u8 *buf) 9756 { 9757 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 9758 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 9759 int ret = 0; 9760 9761 if (len > I2C_PAGE_SIZE) 9762 return -EINVAL; 9763 9764 /* Dont allow reads that spans multiple pages */ 9765 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 9766 return -EINVAL; 9767 9768 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 9769 ldst_cmd.op_to_addrspace = 9770 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 9771 FW_CMD_REQUEST_F | 9772 FW_CMD_READ_F | 9773 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 9774 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 9775 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 9776 ldst_cmd.u.i2c.did = devid; 9777 9778 while (len > 0) { 9779 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 9780 9781 ldst_cmd.u.i2c.boffset = offset; 9782 ldst_cmd.u.i2c.blen = i2c_len; 9783 9784 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 9785 &ldst_rpl); 9786 if (ret) 9787 break; 9788 9789 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 9790 offset += i2c_len; 9791 buf += i2c_len; 9792 len -= i2c_len; 9793 } 9794 9795 return ret; 9796 } 9797