xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 /**
228  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *	@adapter: the adapter
230  *	@cmd: the Firmware Mailbox Command or Reply
231  *	@size: command length in bytes
232  *	@access: the time (ms) needed to access the Firmware Mailbox
233  *	@execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236 			   const __be64 *cmd, unsigned int size,
237 			   int access, int execute)
238 {
239 	struct mbox_cmd_log *log = adapter->mbox_log;
240 	struct mbox_cmd *entry;
241 	int i;
242 
243 	entry = mbox_cmd_log_entry(log, log->cursor++);
244 	if (log->cursor == log->size)
245 		log->cursor = 0;
246 
247 	for (i = 0; i < size / 8; i++)
248 		entry->cmd[i] = be64_to_cpu(cmd[i]);
249 	while (i < MBOX_LEN / 8)
250 		entry->cmd[i++] = 0;
251 	entry->timestamp = jiffies;
252 	entry->seqno = log->seqno++;
253 	entry->access = access;
254 	entry->execute = execute;
255 }
256 
257 /**
258  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *	@adap: the adapter
260  *	@mbox: index of the mailbox to use
261  *	@cmd: the command to write
262  *	@size: command length in bytes
263  *	@rpl: where to optionally store the reply
264  *	@sleep_ok: if true we may sleep while awaiting command completion
265  *	@timeout: time to wait for command to finish before timing out
266  *
267  *	Sends the given command to FW through the selected mailbox and waits
268  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *	store the FW's reply to the command.  The command and its optional
270  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *	the response.  If sleeping is allowed we use progressive backoff
273  *	otherwise we spin.
274  *
275  *	The return value is 0 on success or a negative errno on failure.  A
276  *	failure can happen either because we are not able to execute the
277  *	command or FW executes it but signals an error.  In the latter case
278  *	the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 			    int size, void *rpl, bool sleep_ok, int timeout)
282 {
283 	static const int delay[] = {
284 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 	};
286 
287 	struct mbox_list entry;
288 	u16 access = 0;
289 	u16 execute = 0;
290 	u32 v;
291 	u64 res;
292 	int i, ms, delay_idx, ret;
293 	const __be64 *p = cmd;
294 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
296 	__be64 cmd_rpl[MBOX_LEN / 8];
297 	u32 pcie_fw;
298 
299 	if ((size & 15) || size > MBOX_LEN)
300 		return -EINVAL;
301 
302 	/*
303 	 * If the device is off-line, as in EEH, commands will time out.
304 	 * Fail them early so we don't waste time waiting.
305 	 */
306 	if (adap->pdev->error_state != pci_channel_io_normal)
307 		return -EIO;
308 
309 	/* If we have a negative timeout, that implies that we can't sleep. */
310 	if (timeout < 0) {
311 		sleep_ok = false;
312 		timeout = -timeout;
313 	}
314 
315 	/* Queue ourselves onto the mailbox access list.  When our entry is at
316 	 * the front of the list, we have rights to access the mailbox.  So we
317 	 * wait [for a while] till we're at the front [or bail out with an
318 	 * EBUSY] ...
319 	 */
320 	spin_lock(&adap->mbox_lock);
321 	list_add_tail(&entry.list, &adap->mlist.list);
322 	spin_unlock(&adap->mbox_lock);
323 
324 	delay_idx = 0;
325 	ms = delay[0];
326 
327 	for (i = 0; ; i += ms) {
328 		/* If we've waited too long, return a busy indication.  This
329 		 * really ought to be based on our initial position in the
330 		 * mailbox access list but this is a start.  We very rearely
331 		 * contend on access to the mailbox ...
332 		 */
333 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
335 			spin_lock(&adap->mbox_lock);
336 			list_del(&entry.list);
337 			spin_unlock(&adap->mbox_lock);
338 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
339 			t4_record_mbox(adap, cmd, size, access, ret);
340 			return ret;
341 		}
342 
343 		/* If we're at the head, break out and start the mailbox
344 		 * protocol.
345 		 */
346 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
347 				     list) == &entry)
348 			break;
349 
350 		/* Delay for a bit before checking again ... */
351 		if (sleep_ok) {
352 			ms = delay[delay_idx];  /* last element may repeat */
353 			if (delay_idx < ARRAY_SIZE(delay) - 1)
354 				delay_idx++;
355 			msleep(ms);
356 		} else {
357 			mdelay(ms);
358 		}
359 	}
360 
361 	/* Loop trying to get ownership of the mailbox.  Return an error
362 	 * if we can't gain ownership.
363 	 */
364 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
365 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
366 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	if (v != MBOX_OWNER_DRV) {
368 		spin_lock(&adap->mbox_lock);
369 		list_del(&entry.list);
370 		spin_unlock(&adap->mbox_lock);
371 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372 		t4_record_mbox(adap, cmd, size, access, ret);
373 		return ret;
374 	}
375 
376 	/* Copy in the new mailbox command and send it on its way ... */
377 	t4_record_mbox(adap, cmd, size, access, 0);
378 	for (i = 0; i < size; i += 8)
379 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380 
381 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
382 	t4_read_reg(adap, ctl_reg);          /* flush write */
383 
384 	delay_idx = 0;
385 	ms = delay[0];
386 
387 	for (i = 0;
388 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389 	     i < timeout;
390 	     i += ms) {
391 		if (sleep_ok) {
392 			ms = delay[delay_idx];  /* last element may repeat */
393 			if (delay_idx < ARRAY_SIZE(delay) - 1)
394 				delay_idx++;
395 			msleep(ms);
396 		} else
397 			mdelay(ms);
398 
399 		v = t4_read_reg(adap, ctl_reg);
400 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401 			if (!(v & MBMSGVALID_F)) {
402 				t4_write_reg(adap, ctl_reg, 0);
403 				continue;
404 			}
405 
406 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407 			res = be64_to_cpu(cmd_rpl[0]);
408 
409 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
410 				fw_asrt(adap, data_reg);
411 				res = FW_CMD_RETVAL_V(EIO);
412 			} else if (rpl) {
413 				memcpy(rpl, cmd_rpl, size);
414 			}
415 
416 			t4_write_reg(adap, ctl_reg, 0);
417 
418 			execute = i + ms;
419 			t4_record_mbox(adap, cmd_rpl,
420 				       MBOX_LEN, access, execute);
421 			spin_lock(&adap->mbox_lock);
422 			list_del(&entry.list);
423 			spin_unlock(&adap->mbox_lock);
424 			return -FW_CMD_RETVAL_G((int)res);
425 		}
426 	}
427 
428 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
429 	t4_record_mbox(adap, cmd, size, access, ret);
430 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431 		*(const u8 *)cmd, mbox);
432 	t4_report_fw_error(adap);
433 	spin_lock(&adap->mbox_lock);
434 	list_del(&entry.list);
435 	spin_unlock(&adap->mbox_lock);
436 	t4_fatal_err(adap);
437 	return ret;
438 }
439 
440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 		    void *rpl, bool sleep_ok)
442 {
443 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444 				       FW_CMD_MAX_TIMEOUT);
445 }
446 
447 static int t4_edc_err_read(struct adapter *adap, int idx)
448 {
449 	u32 edc_ecc_err_addr_reg;
450 	u32 rdata_reg;
451 
452 	if (is_t4(adap->params.chip)) {
453 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454 		return 0;
455 	}
456 	if (idx != 0 && idx != 1) {
457 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458 		return 0;
459 	}
460 
461 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463 
464 	CH_WARN(adap,
465 		"edc%d err addr 0x%x: 0x%x.\n",
466 		idx, edc_ecc_err_addr_reg,
467 		t4_read_reg(adap, edc_ecc_err_addr_reg));
468 	CH_WARN(adap,
469 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470 		rdata_reg,
471 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
472 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480 
481 	return 0;
482 }
483 
484 /**
485  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486  *	@adap: the adapter
487  *	@win: PCI-E Memory Window to use
488  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489  *	@addr: address within indicated memory type
490  *	@len: amount of memory to transfer
491  *	@hbuf: host memory buffer
492  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
493  *
494  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
495  *	firmware memory address and host buffer must be aligned on 32-bit
496  *	boudaries; the length may be arbitrary.  The memory is transferred as
497  *	a raw byte sequence from/to the firmware's memory.  If this memory
498  *	contains data structures which contain multi-byte integers, it's the
499  *	caller's responsibility to perform appropriate byte order conversions.
500  */
501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
502 		 u32 len, void *hbuf, int dir)
503 {
504 	u32 pos, offset, resid, memoffset;
505 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
506 	u32 *buf;
507 
508 	/* Argument sanity checks ...
509 	 */
510 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
511 		return -EINVAL;
512 	buf = (u32 *)hbuf;
513 
514 	/* It's convenient to be able to handle lengths which aren't a
515 	 * multiple of 32-bits because we often end up transferring files to
516 	 * the firmware.  So we'll handle that by normalizing the length here
517 	 * and then handling any residual transfer at the end.
518 	 */
519 	resid = len & 0x3;
520 	len -= resid;
521 
522 	/* Offset into the region of memory which is being accessed
523 	 * MEM_EDC0 = 0
524 	 * MEM_EDC1 = 1
525 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
526 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
527 	 * MEM_HMA  = 4
528 	 */
529 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
530 	if (mtype == MEM_HMA) {
531 		memoffset = 2 * (edc_size * 1024 * 1024);
532 	} else if (mtype != MEM_MC1) {
533 		memoffset = (mtype * (edc_size * 1024 * 1024));
534 	} else {
535 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
536 						      MA_EXT_MEMORY0_BAR_A));
537 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
538 	}
539 
540 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
541 	addr = addr + memoffset;
542 
543 	/* Each PCI-E Memory Window is programmed with a window size -- or
544 	 * "aperture" -- which controls the granularity of its mapping onto
545 	 * adapter memory.  We need to grab that aperture in order to know
546 	 * how to use the specified window.  The window is also programmed
547 	 * with the base address of the Memory Window in BAR0's address
548 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
549 	 * the address is relative to BAR0.
550 	 */
551 	mem_reg = t4_read_reg(adap,
552 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
553 						  win));
554 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
555 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
556 	if (is_t4(adap->params.chip))
557 		mem_base -= adap->t4_bar0;
558 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
559 
560 	/* Calculate our initial PCI-E Memory Window Position and Offset into
561 	 * that Window.
562 	 */
563 	pos = addr & ~(mem_aperture-1);
564 	offset = addr - pos;
565 
566 	/* Set up initial PCI-E Memory Window to cover the start of our
567 	 * transfer.  (Read it back to ensure that changes propagate before we
568 	 * attempt to use the new value.)
569 	 */
570 	t4_write_reg(adap,
571 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
572 		     pos | win_pf);
573 	t4_read_reg(adap,
574 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
575 
576 	/* Transfer data to/from the adapter as long as there's an integral
577 	 * number of 32-bit transfers to complete.
578 	 *
579 	 * A note on Endianness issues:
580 	 *
581 	 * The "register" reads and writes below from/to the PCI-E Memory
582 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
583 	 * Little-Endian "swizzel."  As a result, if we have the following
584 	 * data in adapter memory:
585 	 *
586 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
587 	 *     Address:      i+0  i+1  i+2  i+3
588 	 *
589 	 * Then a read of the adapter memory via the PCI-E Memory Window
590 	 * will yield:
591 	 *
592 	 *     x = readl(i)
593 	 *         31                  0
594 	 *         [ b3 | b2 | b1 | b0 ]
595 	 *
596 	 * If this value is stored into local memory on a Little-Endian system
597 	 * it will show up correctly in local memory as:
598 	 *
599 	 *     ( ..., b0, b1, b2, b3, ... )
600 	 *
601 	 * But on a Big-Endian system, the store will show up in memory
602 	 * incorrectly swizzled as:
603 	 *
604 	 *     ( ..., b3, b2, b1, b0, ... )
605 	 *
606 	 * So we need to account for this in the reads and writes to the
607 	 * PCI-E Memory Window below by undoing the register read/write
608 	 * swizzels.
609 	 */
610 	while (len > 0) {
611 		if (dir == T4_MEMORY_READ)
612 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
613 						mem_base + offset));
614 		else
615 			t4_write_reg(adap, mem_base + offset,
616 				     (__force u32)cpu_to_le32(*buf++));
617 		offset += sizeof(__be32);
618 		len -= sizeof(__be32);
619 
620 		/* If we've reached the end of our current window aperture,
621 		 * move the PCI-E Memory Window on to the next.  Note that
622 		 * doing this here after "len" may be 0 allows us to set up
623 		 * the PCI-E Memory Window for a possible final residual
624 		 * transfer below ...
625 		 */
626 		if (offset == mem_aperture) {
627 			pos += mem_aperture;
628 			offset = 0;
629 			t4_write_reg(adap,
630 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631 						    win), pos | win_pf);
632 			t4_read_reg(adap,
633 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
634 						    win));
635 		}
636 	}
637 
638 	/* If the original transfer had a length which wasn't a multiple of
639 	 * 32-bits, now's where we need to finish off the transfer of the
640 	 * residual amount.  The PCI-E Memory Window has already been moved
641 	 * above (if necessary) to cover this final transfer.
642 	 */
643 	if (resid) {
644 		union {
645 			u32 word;
646 			char byte[4];
647 		} last;
648 		unsigned char *bp;
649 		int i;
650 
651 		if (dir == T4_MEMORY_READ) {
652 			last.word = le32_to_cpu(
653 					(__force __le32)t4_read_reg(adap,
654 						mem_base + offset));
655 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
656 				bp[i] = last.byte[i];
657 		} else {
658 			last.word = *buf;
659 			for (i = resid; i < 4; i++)
660 				last.byte[i] = 0;
661 			t4_write_reg(adap, mem_base + offset,
662 				     (__force u32)cpu_to_le32(last.word));
663 		}
664 	}
665 
666 	return 0;
667 }
668 
669 /* Return the specified PCI-E Configuration Space register from our Physical
670  * Function.  We try first via a Firmware LDST Command since we prefer to let
671  * the firmware own all of these registers, but if that fails we go for it
672  * directly ourselves.
673  */
674 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
675 {
676 	u32 val, ldst_addrspace;
677 
678 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
679 	 * retrieve the specified PCI-E Configuration Space register.
680 	 */
681 	struct fw_ldst_cmd ldst_cmd;
682 	int ret;
683 
684 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
685 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
686 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
687 					       FW_CMD_REQUEST_F |
688 					       FW_CMD_READ_F |
689 					       ldst_addrspace);
690 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
691 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
692 	ldst_cmd.u.pcie.ctrl_to_fn =
693 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
694 	ldst_cmd.u.pcie.r = reg;
695 
696 	/* If the LDST Command succeeds, return the result, otherwise
697 	 * fall through to reading it directly ourselves ...
698 	 */
699 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
700 			 &ldst_cmd);
701 	if (ret == 0)
702 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
703 	else
704 		/* Read the desired Configuration Space register via the PCI-E
705 		 * Backdoor mechanism.
706 		 */
707 		t4_hw_pci_read_cfg4(adap, reg, &val);
708 	return val;
709 }
710 
711 /* Get the window based on base passed to it.
712  * Window aperture is currently unhandled, but there is no use case for it
713  * right now
714  */
715 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
716 			 u32 memwin_base)
717 {
718 	u32 ret;
719 
720 	if (is_t4(adap->params.chip)) {
721 		u32 bar0;
722 
723 		/* Truncation intentional: we only read the bottom 32-bits of
724 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
725 		 * mechanism to read BAR0 instead of using
726 		 * pci_resource_start() because we could be operating from
727 		 * within a Virtual Machine which is trapping our accesses to
728 		 * our Configuration Space and we need to set up the PCI-E
729 		 * Memory Window decoders with the actual addresses which will
730 		 * be coming across the PCI-E link.
731 		 */
732 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
733 		bar0 &= pci_mask;
734 		adap->t4_bar0 = bar0;
735 
736 		ret = bar0 + memwin_base;
737 	} else {
738 		/* For T5, only relative offset inside the PCIe BAR is passed */
739 		ret = memwin_base;
740 	}
741 	return ret;
742 }
743 
744 /* Get the default utility window (win0) used by everyone */
745 u32 t4_get_util_window(struct adapter *adap)
746 {
747 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
748 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
749 }
750 
751 /* Set up memory window for accessing adapter memory ranges.  (Read
752  * back MA register to ensure that changes propagate before we attempt
753  * to use the new values.)
754  */
755 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
756 {
757 	t4_write_reg(adap,
758 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
759 		     memwin_base | BIR_V(0) |
760 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
761 	t4_read_reg(adap,
762 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
763 }
764 
765 /**
766  *	t4_get_regs_len - return the size of the chips register set
767  *	@adapter: the adapter
768  *
769  *	Returns the size of the chip's BAR0 register space.
770  */
771 unsigned int t4_get_regs_len(struct adapter *adapter)
772 {
773 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
774 
775 	switch (chip_version) {
776 	case CHELSIO_T4:
777 		return T4_REGMAP_SIZE;
778 
779 	case CHELSIO_T5:
780 	case CHELSIO_T6:
781 		return T5_REGMAP_SIZE;
782 	}
783 
784 	dev_err(adapter->pdev_dev,
785 		"Unsupported chip version %d\n", chip_version);
786 	return 0;
787 }
788 
789 /**
790  *	t4_get_regs - read chip registers into provided buffer
791  *	@adap: the adapter
792  *	@buf: register buffer
793  *	@buf_size: size (in bytes) of register buffer
794  *
795  *	If the provided register buffer isn't large enough for the chip's
796  *	full register range, the register dump will be truncated to the
797  *	register buffer's size.
798  */
799 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
800 {
801 	static const unsigned int t4_reg_ranges[] = {
802 		0x1008, 0x1108,
803 		0x1180, 0x1184,
804 		0x1190, 0x1194,
805 		0x11a0, 0x11a4,
806 		0x11b0, 0x11b4,
807 		0x11fc, 0x123c,
808 		0x1300, 0x173c,
809 		0x1800, 0x18fc,
810 		0x3000, 0x30d8,
811 		0x30e0, 0x30e4,
812 		0x30ec, 0x5910,
813 		0x5920, 0x5924,
814 		0x5960, 0x5960,
815 		0x5968, 0x5968,
816 		0x5970, 0x5970,
817 		0x5978, 0x5978,
818 		0x5980, 0x5980,
819 		0x5988, 0x5988,
820 		0x5990, 0x5990,
821 		0x5998, 0x5998,
822 		0x59a0, 0x59d4,
823 		0x5a00, 0x5ae0,
824 		0x5ae8, 0x5ae8,
825 		0x5af0, 0x5af0,
826 		0x5af8, 0x5af8,
827 		0x6000, 0x6098,
828 		0x6100, 0x6150,
829 		0x6200, 0x6208,
830 		0x6240, 0x6248,
831 		0x6280, 0x62b0,
832 		0x62c0, 0x6338,
833 		0x6370, 0x638c,
834 		0x6400, 0x643c,
835 		0x6500, 0x6524,
836 		0x6a00, 0x6a04,
837 		0x6a14, 0x6a38,
838 		0x6a60, 0x6a70,
839 		0x6a78, 0x6a78,
840 		0x6b00, 0x6b0c,
841 		0x6b1c, 0x6b84,
842 		0x6bf0, 0x6bf8,
843 		0x6c00, 0x6c0c,
844 		0x6c1c, 0x6c84,
845 		0x6cf0, 0x6cf8,
846 		0x6d00, 0x6d0c,
847 		0x6d1c, 0x6d84,
848 		0x6df0, 0x6df8,
849 		0x6e00, 0x6e0c,
850 		0x6e1c, 0x6e84,
851 		0x6ef0, 0x6ef8,
852 		0x6f00, 0x6f0c,
853 		0x6f1c, 0x6f84,
854 		0x6ff0, 0x6ff8,
855 		0x7000, 0x700c,
856 		0x701c, 0x7084,
857 		0x70f0, 0x70f8,
858 		0x7100, 0x710c,
859 		0x711c, 0x7184,
860 		0x71f0, 0x71f8,
861 		0x7200, 0x720c,
862 		0x721c, 0x7284,
863 		0x72f0, 0x72f8,
864 		0x7300, 0x730c,
865 		0x731c, 0x7384,
866 		0x73f0, 0x73f8,
867 		0x7400, 0x7450,
868 		0x7500, 0x7530,
869 		0x7600, 0x760c,
870 		0x7614, 0x761c,
871 		0x7680, 0x76cc,
872 		0x7700, 0x7798,
873 		0x77c0, 0x77fc,
874 		0x7900, 0x79fc,
875 		0x7b00, 0x7b58,
876 		0x7b60, 0x7b84,
877 		0x7b8c, 0x7c38,
878 		0x7d00, 0x7d38,
879 		0x7d40, 0x7d80,
880 		0x7d8c, 0x7ddc,
881 		0x7de4, 0x7e04,
882 		0x7e10, 0x7e1c,
883 		0x7e24, 0x7e38,
884 		0x7e40, 0x7e44,
885 		0x7e4c, 0x7e78,
886 		0x7e80, 0x7ea4,
887 		0x7eac, 0x7edc,
888 		0x7ee8, 0x7efc,
889 		0x8dc0, 0x8e04,
890 		0x8e10, 0x8e1c,
891 		0x8e30, 0x8e78,
892 		0x8ea0, 0x8eb8,
893 		0x8ec0, 0x8f6c,
894 		0x8fc0, 0x9008,
895 		0x9010, 0x9058,
896 		0x9060, 0x9060,
897 		0x9068, 0x9074,
898 		0x90fc, 0x90fc,
899 		0x9400, 0x9408,
900 		0x9410, 0x9458,
901 		0x9600, 0x9600,
902 		0x9608, 0x9638,
903 		0x9640, 0x96bc,
904 		0x9800, 0x9808,
905 		0x9820, 0x983c,
906 		0x9850, 0x9864,
907 		0x9c00, 0x9c6c,
908 		0x9c80, 0x9cec,
909 		0x9d00, 0x9d6c,
910 		0x9d80, 0x9dec,
911 		0x9e00, 0x9e6c,
912 		0x9e80, 0x9eec,
913 		0x9f00, 0x9f6c,
914 		0x9f80, 0x9fec,
915 		0xd004, 0xd004,
916 		0xd010, 0xd03c,
917 		0xdfc0, 0xdfe0,
918 		0xe000, 0xea7c,
919 		0xf000, 0x11110,
920 		0x11118, 0x11190,
921 		0x19040, 0x1906c,
922 		0x19078, 0x19080,
923 		0x1908c, 0x190e4,
924 		0x190f0, 0x190f8,
925 		0x19100, 0x19110,
926 		0x19120, 0x19124,
927 		0x19150, 0x19194,
928 		0x1919c, 0x191b0,
929 		0x191d0, 0x191e8,
930 		0x19238, 0x1924c,
931 		0x193f8, 0x1943c,
932 		0x1944c, 0x19474,
933 		0x19490, 0x194e0,
934 		0x194f0, 0x194f8,
935 		0x19800, 0x19c08,
936 		0x19c10, 0x19c90,
937 		0x19ca0, 0x19ce4,
938 		0x19cf0, 0x19d40,
939 		0x19d50, 0x19d94,
940 		0x19da0, 0x19de8,
941 		0x19df0, 0x19e40,
942 		0x19e50, 0x19e90,
943 		0x19ea0, 0x19f4c,
944 		0x1a000, 0x1a004,
945 		0x1a010, 0x1a06c,
946 		0x1a0b0, 0x1a0e4,
947 		0x1a0ec, 0x1a0f4,
948 		0x1a100, 0x1a108,
949 		0x1a114, 0x1a120,
950 		0x1a128, 0x1a130,
951 		0x1a138, 0x1a138,
952 		0x1a190, 0x1a1c4,
953 		0x1a1fc, 0x1a1fc,
954 		0x1e040, 0x1e04c,
955 		0x1e284, 0x1e28c,
956 		0x1e2c0, 0x1e2c0,
957 		0x1e2e0, 0x1e2e0,
958 		0x1e300, 0x1e384,
959 		0x1e3c0, 0x1e3c8,
960 		0x1e440, 0x1e44c,
961 		0x1e684, 0x1e68c,
962 		0x1e6c0, 0x1e6c0,
963 		0x1e6e0, 0x1e6e0,
964 		0x1e700, 0x1e784,
965 		0x1e7c0, 0x1e7c8,
966 		0x1e840, 0x1e84c,
967 		0x1ea84, 0x1ea8c,
968 		0x1eac0, 0x1eac0,
969 		0x1eae0, 0x1eae0,
970 		0x1eb00, 0x1eb84,
971 		0x1ebc0, 0x1ebc8,
972 		0x1ec40, 0x1ec4c,
973 		0x1ee84, 0x1ee8c,
974 		0x1eec0, 0x1eec0,
975 		0x1eee0, 0x1eee0,
976 		0x1ef00, 0x1ef84,
977 		0x1efc0, 0x1efc8,
978 		0x1f040, 0x1f04c,
979 		0x1f284, 0x1f28c,
980 		0x1f2c0, 0x1f2c0,
981 		0x1f2e0, 0x1f2e0,
982 		0x1f300, 0x1f384,
983 		0x1f3c0, 0x1f3c8,
984 		0x1f440, 0x1f44c,
985 		0x1f684, 0x1f68c,
986 		0x1f6c0, 0x1f6c0,
987 		0x1f6e0, 0x1f6e0,
988 		0x1f700, 0x1f784,
989 		0x1f7c0, 0x1f7c8,
990 		0x1f840, 0x1f84c,
991 		0x1fa84, 0x1fa8c,
992 		0x1fac0, 0x1fac0,
993 		0x1fae0, 0x1fae0,
994 		0x1fb00, 0x1fb84,
995 		0x1fbc0, 0x1fbc8,
996 		0x1fc40, 0x1fc4c,
997 		0x1fe84, 0x1fe8c,
998 		0x1fec0, 0x1fec0,
999 		0x1fee0, 0x1fee0,
1000 		0x1ff00, 0x1ff84,
1001 		0x1ffc0, 0x1ffc8,
1002 		0x20000, 0x2002c,
1003 		0x20100, 0x2013c,
1004 		0x20190, 0x201a0,
1005 		0x201a8, 0x201b8,
1006 		0x201c4, 0x201c8,
1007 		0x20200, 0x20318,
1008 		0x20400, 0x204b4,
1009 		0x204c0, 0x20528,
1010 		0x20540, 0x20614,
1011 		0x21000, 0x21040,
1012 		0x2104c, 0x21060,
1013 		0x210c0, 0x210ec,
1014 		0x21200, 0x21268,
1015 		0x21270, 0x21284,
1016 		0x212fc, 0x21388,
1017 		0x21400, 0x21404,
1018 		0x21500, 0x21500,
1019 		0x21510, 0x21518,
1020 		0x2152c, 0x21530,
1021 		0x2153c, 0x2153c,
1022 		0x21550, 0x21554,
1023 		0x21600, 0x21600,
1024 		0x21608, 0x2161c,
1025 		0x21624, 0x21628,
1026 		0x21630, 0x21634,
1027 		0x2163c, 0x2163c,
1028 		0x21700, 0x2171c,
1029 		0x21780, 0x2178c,
1030 		0x21800, 0x21818,
1031 		0x21820, 0x21828,
1032 		0x21830, 0x21848,
1033 		0x21850, 0x21854,
1034 		0x21860, 0x21868,
1035 		0x21870, 0x21870,
1036 		0x21878, 0x21898,
1037 		0x218a0, 0x218a8,
1038 		0x218b0, 0x218c8,
1039 		0x218d0, 0x218d4,
1040 		0x218e0, 0x218e8,
1041 		0x218f0, 0x218f0,
1042 		0x218f8, 0x21a18,
1043 		0x21a20, 0x21a28,
1044 		0x21a30, 0x21a48,
1045 		0x21a50, 0x21a54,
1046 		0x21a60, 0x21a68,
1047 		0x21a70, 0x21a70,
1048 		0x21a78, 0x21a98,
1049 		0x21aa0, 0x21aa8,
1050 		0x21ab0, 0x21ac8,
1051 		0x21ad0, 0x21ad4,
1052 		0x21ae0, 0x21ae8,
1053 		0x21af0, 0x21af0,
1054 		0x21af8, 0x21c18,
1055 		0x21c20, 0x21c20,
1056 		0x21c28, 0x21c30,
1057 		0x21c38, 0x21c38,
1058 		0x21c80, 0x21c98,
1059 		0x21ca0, 0x21ca8,
1060 		0x21cb0, 0x21cc8,
1061 		0x21cd0, 0x21cd4,
1062 		0x21ce0, 0x21ce8,
1063 		0x21cf0, 0x21cf0,
1064 		0x21cf8, 0x21d7c,
1065 		0x21e00, 0x21e04,
1066 		0x22000, 0x2202c,
1067 		0x22100, 0x2213c,
1068 		0x22190, 0x221a0,
1069 		0x221a8, 0x221b8,
1070 		0x221c4, 0x221c8,
1071 		0x22200, 0x22318,
1072 		0x22400, 0x224b4,
1073 		0x224c0, 0x22528,
1074 		0x22540, 0x22614,
1075 		0x23000, 0x23040,
1076 		0x2304c, 0x23060,
1077 		0x230c0, 0x230ec,
1078 		0x23200, 0x23268,
1079 		0x23270, 0x23284,
1080 		0x232fc, 0x23388,
1081 		0x23400, 0x23404,
1082 		0x23500, 0x23500,
1083 		0x23510, 0x23518,
1084 		0x2352c, 0x23530,
1085 		0x2353c, 0x2353c,
1086 		0x23550, 0x23554,
1087 		0x23600, 0x23600,
1088 		0x23608, 0x2361c,
1089 		0x23624, 0x23628,
1090 		0x23630, 0x23634,
1091 		0x2363c, 0x2363c,
1092 		0x23700, 0x2371c,
1093 		0x23780, 0x2378c,
1094 		0x23800, 0x23818,
1095 		0x23820, 0x23828,
1096 		0x23830, 0x23848,
1097 		0x23850, 0x23854,
1098 		0x23860, 0x23868,
1099 		0x23870, 0x23870,
1100 		0x23878, 0x23898,
1101 		0x238a0, 0x238a8,
1102 		0x238b0, 0x238c8,
1103 		0x238d0, 0x238d4,
1104 		0x238e0, 0x238e8,
1105 		0x238f0, 0x238f0,
1106 		0x238f8, 0x23a18,
1107 		0x23a20, 0x23a28,
1108 		0x23a30, 0x23a48,
1109 		0x23a50, 0x23a54,
1110 		0x23a60, 0x23a68,
1111 		0x23a70, 0x23a70,
1112 		0x23a78, 0x23a98,
1113 		0x23aa0, 0x23aa8,
1114 		0x23ab0, 0x23ac8,
1115 		0x23ad0, 0x23ad4,
1116 		0x23ae0, 0x23ae8,
1117 		0x23af0, 0x23af0,
1118 		0x23af8, 0x23c18,
1119 		0x23c20, 0x23c20,
1120 		0x23c28, 0x23c30,
1121 		0x23c38, 0x23c38,
1122 		0x23c80, 0x23c98,
1123 		0x23ca0, 0x23ca8,
1124 		0x23cb0, 0x23cc8,
1125 		0x23cd0, 0x23cd4,
1126 		0x23ce0, 0x23ce8,
1127 		0x23cf0, 0x23cf0,
1128 		0x23cf8, 0x23d7c,
1129 		0x23e00, 0x23e04,
1130 		0x24000, 0x2402c,
1131 		0x24100, 0x2413c,
1132 		0x24190, 0x241a0,
1133 		0x241a8, 0x241b8,
1134 		0x241c4, 0x241c8,
1135 		0x24200, 0x24318,
1136 		0x24400, 0x244b4,
1137 		0x244c0, 0x24528,
1138 		0x24540, 0x24614,
1139 		0x25000, 0x25040,
1140 		0x2504c, 0x25060,
1141 		0x250c0, 0x250ec,
1142 		0x25200, 0x25268,
1143 		0x25270, 0x25284,
1144 		0x252fc, 0x25388,
1145 		0x25400, 0x25404,
1146 		0x25500, 0x25500,
1147 		0x25510, 0x25518,
1148 		0x2552c, 0x25530,
1149 		0x2553c, 0x2553c,
1150 		0x25550, 0x25554,
1151 		0x25600, 0x25600,
1152 		0x25608, 0x2561c,
1153 		0x25624, 0x25628,
1154 		0x25630, 0x25634,
1155 		0x2563c, 0x2563c,
1156 		0x25700, 0x2571c,
1157 		0x25780, 0x2578c,
1158 		0x25800, 0x25818,
1159 		0x25820, 0x25828,
1160 		0x25830, 0x25848,
1161 		0x25850, 0x25854,
1162 		0x25860, 0x25868,
1163 		0x25870, 0x25870,
1164 		0x25878, 0x25898,
1165 		0x258a0, 0x258a8,
1166 		0x258b0, 0x258c8,
1167 		0x258d0, 0x258d4,
1168 		0x258e0, 0x258e8,
1169 		0x258f0, 0x258f0,
1170 		0x258f8, 0x25a18,
1171 		0x25a20, 0x25a28,
1172 		0x25a30, 0x25a48,
1173 		0x25a50, 0x25a54,
1174 		0x25a60, 0x25a68,
1175 		0x25a70, 0x25a70,
1176 		0x25a78, 0x25a98,
1177 		0x25aa0, 0x25aa8,
1178 		0x25ab0, 0x25ac8,
1179 		0x25ad0, 0x25ad4,
1180 		0x25ae0, 0x25ae8,
1181 		0x25af0, 0x25af0,
1182 		0x25af8, 0x25c18,
1183 		0x25c20, 0x25c20,
1184 		0x25c28, 0x25c30,
1185 		0x25c38, 0x25c38,
1186 		0x25c80, 0x25c98,
1187 		0x25ca0, 0x25ca8,
1188 		0x25cb0, 0x25cc8,
1189 		0x25cd0, 0x25cd4,
1190 		0x25ce0, 0x25ce8,
1191 		0x25cf0, 0x25cf0,
1192 		0x25cf8, 0x25d7c,
1193 		0x25e00, 0x25e04,
1194 		0x26000, 0x2602c,
1195 		0x26100, 0x2613c,
1196 		0x26190, 0x261a0,
1197 		0x261a8, 0x261b8,
1198 		0x261c4, 0x261c8,
1199 		0x26200, 0x26318,
1200 		0x26400, 0x264b4,
1201 		0x264c0, 0x26528,
1202 		0x26540, 0x26614,
1203 		0x27000, 0x27040,
1204 		0x2704c, 0x27060,
1205 		0x270c0, 0x270ec,
1206 		0x27200, 0x27268,
1207 		0x27270, 0x27284,
1208 		0x272fc, 0x27388,
1209 		0x27400, 0x27404,
1210 		0x27500, 0x27500,
1211 		0x27510, 0x27518,
1212 		0x2752c, 0x27530,
1213 		0x2753c, 0x2753c,
1214 		0x27550, 0x27554,
1215 		0x27600, 0x27600,
1216 		0x27608, 0x2761c,
1217 		0x27624, 0x27628,
1218 		0x27630, 0x27634,
1219 		0x2763c, 0x2763c,
1220 		0x27700, 0x2771c,
1221 		0x27780, 0x2778c,
1222 		0x27800, 0x27818,
1223 		0x27820, 0x27828,
1224 		0x27830, 0x27848,
1225 		0x27850, 0x27854,
1226 		0x27860, 0x27868,
1227 		0x27870, 0x27870,
1228 		0x27878, 0x27898,
1229 		0x278a0, 0x278a8,
1230 		0x278b0, 0x278c8,
1231 		0x278d0, 0x278d4,
1232 		0x278e0, 0x278e8,
1233 		0x278f0, 0x278f0,
1234 		0x278f8, 0x27a18,
1235 		0x27a20, 0x27a28,
1236 		0x27a30, 0x27a48,
1237 		0x27a50, 0x27a54,
1238 		0x27a60, 0x27a68,
1239 		0x27a70, 0x27a70,
1240 		0x27a78, 0x27a98,
1241 		0x27aa0, 0x27aa8,
1242 		0x27ab0, 0x27ac8,
1243 		0x27ad0, 0x27ad4,
1244 		0x27ae0, 0x27ae8,
1245 		0x27af0, 0x27af0,
1246 		0x27af8, 0x27c18,
1247 		0x27c20, 0x27c20,
1248 		0x27c28, 0x27c30,
1249 		0x27c38, 0x27c38,
1250 		0x27c80, 0x27c98,
1251 		0x27ca0, 0x27ca8,
1252 		0x27cb0, 0x27cc8,
1253 		0x27cd0, 0x27cd4,
1254 		0x27ce0, 0x27ce8,
1255 		0x27cf0, 0x27cf0,
1256 		0x27cf8, 0x27d7c,
1257 		0x27e00, 0x27e04,
1258 	};
1259 
1260 	static const unsigned int t5_reg_ranges[] = {
1261 		0x1008, 0x10c0,
1262 		0x10cc, 0x10f8,
1263 		0x1100, 0x1100,
1264 		0x110c, 0x1148,
1265 		0x1180, 0x1184,
1266 		0x1190, 0x1194,
1267 		0x11a0, 0x11a4,
1268 		0x11b0, 0x11b4,
1269 		0x11fc, 0x123c,
1270 		0x1280, 0x173c,
1271 		0x1800, 0x18fc,
1272 		0x3000, 0x3028,
1273 		0x3060, 0x30b0,
1274 		0x30b8, 0x30d8,
1275 		0x30e0, 0x30fc,
1276 		0x3140, 0x357c,
1277 		0x35a8, 0x35cc,
1278 		0x35ec, 0x35ec,
1279 		0x3600, 0x5624,
1280 		0x56cc, 0x56ec,
1281 		0x56f4, 0x5720,
1282 		0x5728, 0x575c,
1283 		0x580c, 0x5814,
1284 		0x5890, 0x589c,
1285 		0x58a4, 0x58ac,
1286 		0x58b8, 0x58bc,
1287 		0x5940, 0x59c8,
1288 		0x59d0, 0x59dc,
1289 		0x59fc, 0x5a18,
1290 		0x5a60, 0x5a70,
1291 		0x5a80, 0x5a9c,
1292 		0x5b94, 0x5bfc,
1293 		0x6000, 0x6020,
1294 		0x6028, 0x6040,
1295 		0x6058, 0x609c,
1296 		0x60a8, 0x614c,
1297 		0x7700, 0x7798,
1298 		0x77c0, 0x78fc,
1299 		0x7b00, 0x7b58,
1300 		0x7b60, 0x7b84,
1301 		0x7b8c, 0x7c54,
1302 		0x7d00, 0x7d38,
1303 		0x7d40, 0x7d80,
1304 		0x7d8c, 0x7ddc,
1305 		0x7de4, 0x7e04,
1306 		0x7e10, 0x7e1c,
1307 		0x7e24, 0x7e38,
1308 		0x7e40, 0x7e44,
1309 		0x7e4c, 0x7e78,
1310 		0x7e80, 0x7edc,
1311 		0x7ee8, 0x7efc,
1312 		0x8dc0, 0x8de0,
1313 		0x8df8, 0x8e04,
1314 		0x8e10, 0x8e84,
1315 		0x8ea0, 0x8f84,
1316 		0x8fc0, 0x9058,
1317 		0x9060, 0x9060,
1318 		0x9068, 0x90f8,
1319 		0x9400, 0x9408,
1320 		0x9410, 0x9470,
1321 		0x9600, 0x9600,
1322 		0x9608, 0x9638,
1323 		0x9640, 0x96f4,
1324 		0x9800, 0x9808,
1325 		0x9820, 0x983c,
1326 		0x9850, 0x9864,
1327 		0x9c00, 0x9c6c,
1328 		0x9c80, 0x9cec,
1329 		0x9d00, 0x9d6c,
1330 		0x9d80, 0x9dec,
1331 		0x9e00, 0x9e6c,
1332 		0x9e80, 0x9eec,
1333 		0x9f00, 0x9f6c,
1334 		0x9f80, 0xa020,
1335 		0xd004, 0xd004,
1336 		0xd010, 0xd03c,
1337 		0xdfc0, 0xdfe0,
1338 		0xe000, 0x1106c,
1339 		0x11074, 0x11088,
1340 		0x1109c, 0x1117c,
1341 		0x11190, 0x11204,
1342 		0x19040, 0x1906c,
1343 		0x19078, 0x19080,
1344 		0x1908c, 0x190e8,
1345 		0x190f0, 0x190f8,
1346 		0x19100, 0x19110,
1347 		0x19120, 0x19124,
1348 		0x19150, 0x19194,
1349 		0x1919c, 0x191b0,
1350 		0x191d0, 0x191e8,
1351 		0x19238, 0x19290,
1352 		0x193f8, 0x19428,
1353 		0x19430, 0x19444,
1354 		0x1944c, 0x1946c,
1355 		0x19474, 0x19474,
1356 		0x19490, 0x194cc,
1357 		0x194f0, 0x194f8,
1358 		0x19c00, 0x19c08,
1359 		0x19c10, 0x19c60,
1360 		0x19c94, 0x19ce4,
1361 		0x19cf0, 0x19d40,
1362 		0x19d50, 0x19d94,
1363 		0x19da0, 0x19de8,
1364 		0x19df0, 0x19e10,
1365 		0x19e50, 0x19e90,
1366 		0x19ea0, 0x19f24,
1367 		0x19f34, 0x19f34,
1368 		0x19f40, 0x19f50,
1369 		0x19f90, 0x19fb4,
1370 		0x19fc4, 0x19fe4,
1371 		0x1a000, 0x1a004,
1372 		0x1a010, 0x1a06c,
1373 		0x1a0b0, 0x1a0e4,
1374 		0x1a0ec, 0x1a0f8,
1375 		0x1a100, 0x1a108,
1376 		0x1a114, 0x1a120,
1377 		0x1a128, 0x1a130,
1378 		0x1a138, 0x1a138,
1379 		0x1a190, 0x1a1c4,
1380 		0x1a1fc, 0x1a1fc,
1381 		0x1e008, 0x1e00c,
1382 		0x1e040, 0x1e044,
1383 		0x1e04c, 0x1e04c,
1384 		0x1e284, 0x1e290,
1385 		0x1e2c0, 0x1e2c0,
1386 		0x1e2e0, 0x1e2e0,
1387 		0x1e300, 0x1e384,
1388 		0x1e3c0, 0x1e3c8,
1389 		0x1e408, 0x1e40c,
1390 		0x1e440, 0x1e444,
1391 		0x1e44c, 0x1e44c,
1392 		0x1e684, 0x1e690,
1393 		0x1e6c0, 0x1e6c0,
1394 		0x1e6e0, 0x1e6e0,
1395 		0x1e700, 0x1e784,
1396 		0x1e7c0, 0x1e7c8,
1397 		0x1e808, 0x1e80c,
1398 		0x1e840, 0x1e844,
1399 		0x1e84c, 0x1e84c,
1400 		0x1ea84, 0x1ea90,
1401 		0x1eac0, 0x1eac0,
1402 		0x1eae0, 0x1eae0,
1403 		0x1eb00, 0x1eb84,
1404 		0x1ebc0, 0x1ebc8,
1405 		0x1ec08, 0x1ec0c,
1406 		0x1ec40, 0x1ec44,
1407 		0x1ec4c, 0x1ec4c,
1408 		0x1ee84, 0x1ee90,
1409 		0x1eec0, 0x1eec0,
1410 		0x1eee0, 0x1eee0,
1411 		0x1ef00, 0x1ef84,
1412 		0x1efc0, 0x1efc8,
1413 		0x1f008, 0x1f00c,
1414 		0x1f040, 0x1f044,
1415 		0x1f04c, 0x1f04c,
1416 		0x1f284, 0x1f290,
1417 		0x1f2c0, 0x1f2c0,
1418 		0x1f2e0, 0x1f2e0,
1419 		0x1f300, 0x1f384,
1420 		0x1f3c0, 0x1f3c8,
1421 		0x1f408, 0x1f40c,
1422 		0x1f440, 0x1f444,
1423 		0x1f44c, 0x1f44c,
1424 		0x1f684, 0x1f690,
1425 		0x1f6c0, 0x1f6c0,
1426 		0x1f6e0, 0x1f6e0,
1427 		0x1f700, 0x1f784,
1428 		0x1f7c0, 0x1f7c8,
1429 		0x1f808, 0x1f80c,
1430 		0x1f840, 0x1f844,
1431 		0x1f84c, 0x1f84c,
1432 		0x1fa84, 0x1fa90,
1433 		0x1fac0, 0x1fac0,
1434 		0x1fae0, 0x1fae0,
1435 		0x1fb00, 0x1fb84,
1436 		0x1fbc0, 0x1fbc8,
1437 		0x1fc08, 0x1fc0c,
1438 		0x1fc40, 0x1fc44,
1439 		0x1fc4c, 0x1fc4c,
1440 		0x1fe84, 0x1fe90,
1441 		0x1fec0, 0x1fec0,
1442 		0x1fee0, 0x1fee0,
1443 		0x1ff00, 0x1ff84,
1444 		0x1ffc0, 0x1ffc8,
1445 		0x30000, 0x30030,
1446 		0x30100, 0x30144,
1447 		0x30190, 0x301a0,
1448 		0x301a8, 0x301b8,
1449 		0x301c4, 0x301c8,
1450 		0x301d0, 0x301d0,
1451 		0x30200, 0x30318,
1452 		0x30400, 0x304b4,
1453 		0x304c0, 0x3052c,
1454 		0x30540, 0x3061c,
1455 		0x30800, 0x30828,
1456 		0x30834, 0x30834,
1457 		0x308c0, 0x30908,
1458 		0x30910, 0x309ac,
1459 		0x30a00, 0x30a14,
1460 		0x30a1c, 0x30a2c,
1461 		0x30a44, 0x30a50,
1462 		0x30a74, 0x30a74,
1463 		0x30a7c, 0x30afc,
1464 		0x30b08, 0x30c24,
1465 		0x30d00, 0x30d00,
1466 		0x30d08, 0x30d14,
1467 		0x30d1c, 0x30d20,
1468 		0x30d3c, 0x30d3c,
1469 		0x30d48, 0x30d50,
1470 		0x31200, 0x3120c,
1471 		0x31220, 0x31220,
1472 		0x31240, 0x31240,
1473 		0x31600, 0x3160c,
1474 		0x31a00, 0x31a1c,
1475 		0x31e00, 0x31e20,
1476 		0x31e38, 0x31e3c,
1477 		0x31e80, 0x31e80,
1478 		0x31e88, 0x31ea8,
1479 		0x31eb0, 0x31eb4,
1480 		0x31ec8, 0x31ed4,
1481 		0x31fb8, 0x32004,
1482 		0x32200, 0x32200,
1483 		0x32208, 0x32240,
1484 		0x32248, 0x32280,
1485 		0x32288, 0x322c0,
1486 		0x322c8, 0x322fc,
1487 		0x32600, 0x32630,
1488 		0x32a00, 0x32abc,
1489 		0x32b00, 0x32b10,
1490 		0x32b20, 0x32b30,
1491 		0x32b40, 0x32b50,
1492 		0x32b60, 0x32b70,
1493 		0x33000, 0x33028,
1494 		0x33030, 0x33048,
1495 		0x33060, 0x33068,
1496 		0x33070, 0x3309c,
1497 		0x330f0, 0x33128,
1498 		0x33130, 0x33148,
1499 		0x33160, 0x33168,
1500 		0x33170, 0x3319c,
1501 		0x331f0, 0x33238,
1502 		0x33240, 0x33240,
1503 		0x33248, 0x33250,
1504 		0x3325c, 0x33264,
1505 		0x33270, 0x332b8,
1506 		0x332c0, 0x332e4,
1507 		0x332f8, 0x33338,
1508 		0x33340, 0x33340,
1509 		0x33348, 0x33350,
1510 		0x3335c, 0x33364,
1511 		0x33370, 0x333b8,
1512 		0x333c0, 0x333e4,
1513 		0x333f8, 0x33428,
1514 		0x33430, 0x33448,
1515 		0x33460, 0x33468,
1516 		0x33470, 0x3349c,
1517 		0x334f0, 0x33528,
1518 		0x33530, 0x33548,
1519 		0x33560, 0x33568,
1520 		0x33570, 0x3359c,
1521 		0x335f0, 0x33638,
1522 		0x33640, 0x33640,
1523 		0x33648, 0x33650,
1524 		0x3365c, 0x33664,
1525 		0x33670, 0x336b8,
1526 		0x336c0, 0x336e4,
1527 		0x336f8, 0x33738,
1528 		0x33740, 0x33740,
1529 		0x33748, 0x33750,
1530 		0x3375c, 0x33764,
1531 		0x33770, 0x337b8,
1532 		0x337c0, 0x337e4,
1533 		0x337f8, 0x337fc,
1534 		0x33814, 0x33814,
1535 		0x3382c, 0x3382c,
1536 		0x33880, 0x3388c,
1537 		0x338e8, 0x338ec,
1538 		0x33900, 0x33928,
1539 		0x33930, 0x33948,
1540 		0x33960, 0x33968,
1541 		0x33970, 0x3399c,
1542 		0x339f0, 0x33a38,
1543 		0x33a40, 0x33a40,
1544 		0x33a48, 0x33a50,
1545 		0x33a5c, 0x33a64,
1546 		0x33a70, 0x33ab8,
1547 		0x33ac0, 0x33ae4,
1548 		0x33af8, 0x33b10,
1549 		0x33b28, 0x33b28,
1550 		0x33b3c, 0x33b50,
1551 		0x33bf0, 0x33c10,
1552 		0x33c28, 0x33c28,
1553 		0x33c3c, 0x33c50,
1554 		0x33cf0, 0x33cfc,
1555 		0x34000, 0x34030,
1556 		0x34100, 0x34144,
1557 		0x34190, 0x341a0,
1558 		0x341a8, 0x341b8,
1559 		0x341c4, 0x341c8,
1560 		0x341d0, 0x341d0,
1561 		0x34200, 0x34318,
1562 		0x34400, 0x344b4,
1563 		0x344c0, 0x3452c,
1564 		0x34540, 0x3461c,
1565 		0x34800, 0x34828,
1566 		0x34834, 0x34834,
1567 		0x348c0, 0x34908,
1568 		0x34910, 0x349ac,
1569 		0x34a00, 0x34a14,
1570 		0x34a1c, 0x34a2c,
1571 		0x34a44, 0x34a50,
1572 		0x34a74, 0x34a74,
1573 		0x34a7c, 0x34afc,
1574 		0x34b08, 0x34c24,
1575 		0x34d00, 0x34d00,
1576 		0x34d08, 0x34d14,
1577 		0x34d1c, 0x34d20,
1578 		0x34d3c, 0x34d3c,
1579 		0x34d48, 0x34d50,
1580 		0x35200, 0x3520c,
1581 		0x35220, 0x35220,
1582 		0x35240, 0x35240,
1583 		0x35600, 0x3560c,
1584 		0x35a00, 0x35a1c,
1585 		0x35e00, 0x35e20,
1586 		0x35e38, 0x35e3c,
1587 		0x35e80, 0x35e80,
1588 		0x35e88, 0x35ea8,
1589 		0x35eb0, 0x35eb4,
1590 		0x35ec8, 0x35ed4,
1591 		0x35fb8, 0x36004,
1592 		0x36200, 0x36200,
1593 		0x36208, 0x36240,
1594 		0x36248, 0x36280,
1595 		0x36288, 0x362c0,
1596 		0x362c8, 0x362fc,
1597 		0x36600, 0x36630,
1598 		0x36a00, 0x36abc,
1599 		0x36b00, 0x36b10,
1600 		0x36b20, 0x36b30,
1601 		0x36b40, 0x36b50,
1602 		0x36b60, 0x36b70,
1603 		0x37000, 0x37028,
1604 		0x37030, 0x37048,
1605 		0x37060, 0x37068,
1606 		0x37070, 0x3709c,
1607 		0x370f0, 0x37128,
1608 		0x37130, 0x37148,
1609 		0x37160, 0x37168,
1610 		0x37170, 0x3719c,
1611 		0x371f0, 0x37238,
1612 		0x37240, 0x37240,
1613 		0x37248, 0x37250,
1614 		0x3725c, 0x37264,
1615 		0x37270, 0x372b8,
1616 		0x372c0, 0x372e4,
1617 		0x372f8, 0x37338,
1618 		0x37340, 0x37340,
1619 		0x37348, 0x37350,
1620 		0x3735c, 0x37364,
1621 		0x37370, 0x373b8,
1622 		0x373c0, 0x373e4,
1623 		0x373f8, 0x37428,
1624 		0x37430, 0x37448,
1625 		0x37460, 0x37468,
1626 		0x37470, 0x3749c,
1627 		0x374f0, 0x37528,
1628 		0x37530, 0x37548,
1629 		0x37560, 0x37568,
1630 		0x37570, 0x3759c,
1631 		0x375f0, 0x37638,
1632 		0x37640, 0x37640,
1633 		0x37648, 0x37650,
1634 		0x3765c, 0x37664,
1635 		0x37670, 0x376b8,
1636 		0x376c0, 0x376e4,
1637 		0x376f8, 0x37738,
1638 		0x37740, 0x37740,
1639 		0x37748, 0x37750,
1640 		0x3775c, 0x37764,
1641 		0x37770, 0x377b8,
1642 		0x377c0, 0x377e4,
1643 		0x377f8, 0x377fc,
1644 		0x37814, 0x37814,
1645 		0x3782c, 0x3782c,
1646 		0x37880, 0x3788c,
1647 		0x378e8, 0x378ec,
1648 		0x37900, 0x37928,
1649 		0x37930, 0x37948,
1650 		0x37960, 0x37968,
1651 		0x37970, 0x3799c,
1652 		0x379f0, 0x37a38,
1653 		0x37a40, 0x37a40,
1654 		0x37a48, 0x37a50,
1655 		0x37a5c, 0x37a64,
1656 		0x37a70, 0x37ab8,
1657 		0x37ac0, 0x37ae4,
1658 		0x37af8, 0x37b10,
1659 		0x37b28, 0x37b28,
1660 		0x37b3c, 0x37b50,
1661 		0x37bf0, 0x37c10,
1662 		0x37c28, 0x37c28,
1663 		0x37c3c, 0x37c50,
1664 		0x37cf0, 0x37cfc,
1665 		0x38000, 0x38030,
1666 		0x38100, 0x38144,
1667 		0x38190, 0x381a0,
1668 		0x381a8, 0x381b8,
1669 		0x381c4, 0x381c8,
1670 		0x381d0, 0x381d0,
1671 		0x38200, 0x38318,
1672 		0x38400, 0x384b4,
1673 		0x384c0, 0x3852c,
1674 		0x38540, 0x3861c,
1675 		0x38800, 0x38828,
1676 		0x38834, 0x38834,
1677 		0x388c0, 0x38908,
1678 		0x38910, 0x389ac,
1679 		0x38a00, 0x38a14,
1680 		0x38a1c, 0x38a2c,
1681 		0x38a44, 0x38a50,
1682 		0x38a74, 0x38a74,
1683 		0x38a7c, 0x38afc,
1684 		0x38b08, 0x38c24,
1685 		0x38d00, 0x38d00,
1686 		0x38d08, 0x38d14,
1687 		0x38d1c, 0x38d20,
1688 		0x38d3c, 0x38d3c,
1689 		0x38d48, 0x38d50,
1690 		0x39200, 0x3920c,
1691 		0x39220, 0x39220,
1692 		0x39240, 0x39240,
1693 		0x39600, 0x3960c,
1694 		0x39a00, 0x39a1c,
1695 		0x39e00, 0x39e20,
1696 		0x39e38, 0x39e3c,
1697 		0x39e80, 0x39e80,
1698 		0x39e88, 0x39ea8,
1699 		0x39eb0, 0x39eb4,
1700 		0x39ec8, 0x39ed4,
1701 		0x39fb8, 0x3a004,
1702 		0x3a200, 0x3a200,
1703 		0x3a208, 0x3a240,
1704 		0x3a248, 0x3a280,
1705 		0x3a288, 0x3a2c0,
1706 		0x3a2c8, 0x3a2fc,
1707 		0x3a600, 0x3a630,
1708 		0x3aa00, 0x3aabc,
1709 		0x3ab00, 0x3ab10,
1710 		0x3ab20, 0x3ab30,
1711 		0x3ab40, 0x3ab50,
1712 		0x3ab60, 0x3ab70,
1713 		0x3b000, 0x3b028,
1714 		0x3b030, 0x3b048,
1715 		0x3b060, 0x3b068,
1716 		0x3b070, 0x3b09c,
1717 		0x3b0f0, 0x3b128,
1718 		0x3b130, 0x3b148,
1719 		0x3b160, 0x3b168,
1720 		0x3b170, 0x3b19c,
1721 		0x3b1f0, 0x3b238,
1722 		0x3b240, 0x3b240,
1723 		0x3b248, 0x3b250,
1724 		0x3b25c, 0x3b264,
1725 		0x3b270, 0x3b2b8,
1726 		0x3b2c0, 0x3b2e4,
1727 		0x3b2f8, 0x3b338,
1728 		0x3b340, 0x3b340,
1729 		0x3b348, 0x3b350,
1730 		0x3b35c, 0x3b364,
1731 		0x3b370, 0x3b3b8,
1732 		0x3b3c0, 0x3b3e4,
1733 		0x3b3f8, 0x3b428,
1734 		0x3b430, 0x3b448,
1735 		0x3b460, 0x3b468,
1736 		0x3b470, 0x3b49c,
1737 		0x3b4f0, 0x3b528,
1738 		0x3b530, 0x3b548,
1739 		0x3b560, 0x3b568,
1740 		0x3b570, 0x3b59c,
1741 		0x3b5f0, 0x3b638,
1742 		0x3b640, 0x3b640,
1743 		0x3b648, 0x3b650,
1744 		0x3b65c, 0x3b664,
1745 		0x3b670, 0x3b6b8,
1746 		0x3b6c0, 0x3b6e4,
1747 		0x3b6f8, 0x3b738,
1748 		0x3b740, 0x3b740,
1749 		0x3b748, 0x3b750,
1750 		0x3b75c, 0x3b764,
1751 		0x3b770, 0x3b7b8,
1752 		0x3b7c0, 0x3b7e4,
1753 		0x3b7f8, 0x3b7fc,
1754 		0x3b814, 0x3b814,
1755 		0x3b82c, 0x3b82c,
1756 		0x3b880, 0x3b88c,
1757 		0x3b8e8, 0x3b8ec,
1758 		0x3b900, 0x3b928,
1759 		0x3b930, 0x3b948,
1760 		0x3b960, 0x3b968,
1761 		0x3b970, 0x3b99c,
1762 		0x3b9f0, 0x3ba38,
1763 		0x3ba40, 0x3ba40,
1764 		0x3ba48, 0x3ba50,
1765 		0x3ba5c, 0x3ba64,
1766 		0x3ba70, 0x3bab8,
1767 		0x3bac0, 0x3bae4,
1768 		0x3baf8, 0x3bb10,
1769 		0x3bb28, 0x3bb28,
1770 		0x3bb3c, 0x3bb50,
1771 		0x3bbf0, 0x3bc10,
1772 		0x3bc28, 0x3bc28,
1773 		0x3bc3c, 0x3bc50,
1774 		0x3bcf0, 0x3bcfc,
1775 		0x3c000, 0x3c030,
1776 		0x3c100, 0x3c144,
1777 		0x3c190, 0x3c1a0,
1778 		0x3c1a8, 0x3c1b8,
1779 		0x3c1c4, 0x3c1c8,
1780 		0x3c1d0, 0x3c1d0,
1781 		0x3c200, 0x3c318,
1782 		0x3c400, 0x3c4b4,
1783 		0x3c4c0, 0x3c52c,
1784 		0x3c540, 0x3c61c,
1785 		0x3c800, 0x3c828,
1786 		0x3c834, 0x3c834,
1787 		0x3c8c0, 0x3c908,
1788 		0x3c910, 0x3c9ac,
1789 		0x3ca00, 0x3ca14,
1790 		0x3ca1c, 0x3ca2c,
1791 		0x3ca44, 0x3ca50,
1792 		0x3ca74, 0x3ca74,
1793 		0x3ca7c, 0x3cafc,
1794 		0x3cb08, 0x3cc24,
1795 		0x3cd00, 0x3cd00,
1796 		0x3cd08, 0x3cd14,
1797 		0x3cd1c, 0x3cd20,
1798 		0x3cd3c, 0x3cd3c,
1799 		0x3cd48, 0x3cd50,
1800 		0x3d200, 0x3d20c,
1801 		0x3d220, 0x3d220,
1802 		0x3d240, 0x3d240,
1803 		0x3d600, 0x3d60c,
1804 		0x3da00, 0x3da1c,
1805 		0x3de00, 0x3de20,
1806 		0x3de38, 0x3de3c,
1807 		0x3de80, 0x3de80,
1808 		0x3de88, 0x3dea8,
1809 		0x3deb0, 0x3deb4,
1810 		0x3dec8, 0x3ded4,
1811 		0x3dfb8, 0x3e004,
1812 		0x3e200, 0x3e200,
1813 		0x3e208, 0x3e240,
1814 		0x3e248, 0x3e280,
1815 		0x3e288, 0x3e2c0,
1816 		0x3e2c8, 0x3e2fc,
1817 		0x3e600, 0x3e630,
1818 		0x3ea00, 0x3eabc,
1819 		0x3eb00, 0x3eb10,
1820 		0x3eb20, 0x3eb30,
1821 		0x3eb40, 0x3eb50,
1822 		0x3eb60, 0x3eb70,
1823 		0x3f000, 0x3f028,
1824 		0x3f030, 0x3f048,
1825 		0x3f060, 0x3f068,
1826 		0x3f070, 0x3f09c,
1827 		0x3f0f0, 0x3f128,
1828 		0x3f130, 0x3f148,
1829 		0x3f160, 0x3f168,
1830 		0x3f170, 0x3f19c,
1831 		0x3f1f0, 0x3f238,
1832 		0x3f240, 0x3f240,
1833 		0x3f248, 0x3f250,
1834 		0x3f25c, 0x3f264,
1835 		0x3f270, 0x3f2b8,
1836 		0x3f2c0, 0x3f2e4,
1837 		0x3f2f8, 0x3f338,
1838 		0x3f340, 0x3f340,
1839 		0x3f348, 0x3f350,
1840 		0x3f35c, 0x3f364,
1841 		0x3f370, 0x3f3b8,
1842 		0x3f3c0, 0x3f3e4,
1843 		0x3f3f8, 0x3f428,
1844 		0x3f430, 0x3f448,
1845 		0x3f460, 0x3f468,
1846 		0x3f470, 0x3f49c,
1847 		0x3f4f0, 0x3f528,
1848 		0x3f530, 0x3f548,
1849 		0x3f560, 0x3f568,
1850 		0x3f570, 0x3f59c,
1851 		0x3f5f0, 0x3f638,
1852 		0x3f640, 0x3f640,
1853 		0x3f648, 0x3f650,
1854 		0x3f65c, 0x3f664,
1855 		0x3f670, 0x3f6b8,
1856 		0x3f6c0, 0x3f6e4,
1857 		0x3f6f8, 0x3f738,
1858 		0x3f740, 0x3f740,
1859 		0x3f748, 0x3f750,
1860 		0x3f75c, 0x3f764,
1861 		0x3f770, 0x3f7b8,
1862 		0x3f7c0, 0x3f7e4,
1863 		0x3f7f8, 0x3f7fc,
1864 		0x3f814, 0x3f814,
1865 		0x3f82c, 0x3f82c,
1866 		0x3f880, 0x3f88c,
1867 		0x3f8e8, 0x3f8ec,
1868 		0x3f900, 0x3f928,
1869 		0x3f930, 0x3f948,
1870 		0x3f960, 0x3f968,
1871 		0x3f970, 0x3f99c,
1872 		0x3f9f0, 0x3fa38,
1873 		0x3fa40, 0x3fa40,
1874 		0x3fa48, 0x3fa50,
1875 		0x3fa5c, 0x3fa64,
1876 		0x3fa70, 0x3fab8,
1877 		0x3fac0, 0x3fae4,
1878 		0x3faf8, 0x3fb10,
1879 		0x3fb28, 0x3fb28,
1880 		0x3fb3c, 0x3fb50,
1881 		0x3fbf0, 0x3fc10,
1882 		0x3fc28, 0x3fc28,
1883 		0x3fc3c, 0x3fc50,
1884 		0x3fcf0, 0x3fcfc,
1885 		0x40000, 0x4000c,
1886 		0x40040, 0x40050,
1887 		0x40060, 0x40068,
1888 		0x4007c, 0x4008c,
1889 		0x40094, 0x400b0,
1890 		0x400c0, 0x40144,
1891 		0x40180, 0x4018c,
1892 		0x40200, 0x40254,
1893 		0x40260, 0x40264,
1894 		0x40270, 0x40288,
1895 		0x40290, 0x40298,
1896 		0x402ac, 0x402c8,
1897 		0x402d0, 0x402e0,
1898 		0x402f0, 0x402f0,
1899 		0x40300, 0x4033c,
1900 		0x403f8, 0x403fc,
1901 		0x41304, 0x413c4,
1902 		0x41400, 0x4140c,
1903 		0x41414, 0x4141c,
1904 		0x41480, 0x414d0,
1905 		0x44000, 0x44054,
1906 		0x4405c, 0x44078,
1907 		0x440c0, 0x44174,
1908 		0x44180, 0x441ac,
1909 		0x441b4, 0x441b8,
1910 		0x441c0, 0x44254,
1911 		0x4425c, 0x44278,
1912 		0x442c0, 0x44374,
1913 		0x44380, 0x443ac,
1914 		0x443b4, 0x443b8,
1915 		0x443c0, 0x44454,
1916 		0x4445c, 0x44478,
1917 		0x444c0, 0x44574,
1918 		0x44580, 0x445ac,
1919 		0x445b4, 0x445b8,
1920 		0x445c0, 0x44654,
1921 		0x4465c, 0x44678,
1922 		0x446c0, 0x44774,
1923 		0x44780, 0x447ac,
1924 		0x447b4, 0x447b8,
1925 		0x447c0, 0x44854,
1926 		0x4485c, 0x44878,
1927 		0x448c0, 0x44974,
1928 		0x44980, 0x449ac,
1929 		0x449b4, 0x449b8,
1930 		0x449c0, 0x449fc,
1931 		0x45000, 0x45004,
1932 		0x45010, 0x45030,
1933 		0x45040, 0x45060,
1934 		0x45068, 0x45068,
1935 		0x45080, 0x45084,
1936 		0x450a0, 0x450b0,
1937 		0x45200, 0x45204,
1938 		0x45210, 0x45230,
1939 		0x45240, 0x45260,
1940 		0x45268, 0x45268,
1941 		0x45280, 0x45284,
1942 		0x452a0, 0x452b0,
1943 		0x460c0, 0x460e4,
1944 		0x47000, 0x4703c,
1945 		0x47044, 0x4708c,
1946 		0x47200, 0x47250,
1947 		0x47400, 0x47408,
1948 		0x47414, 0x47420,
1949 		0x47600, 0x47618,
1950 		0x47800, 0x47814,
1951 		0x48000, 0x4800c,
1952 		0x48040, 0x48050,
1953 		0x48060, 0x48068,
1954 		0x4807c, 0x4808c,
1955 		0x48094, 0x480b0,
1956 		0x480c0, 0x48144,
1957 		0x48180, 0x4818c,
1958 		0x48200, 0x48254,
1959 		0x48260, 0x48264,
1960 		0x48270, 0x48288,
1961 		0x48290, 0x48298,
1962 		0x482ac, 0x482c8,
1963 		0x482d0, 0x482e0,
1964 		0x482f0, 0x482f0,
1965 		0x48300, 0x4833c,
1966 		0x483f8, 0x483fc,
1967 		0x49304, 0x493c4,
1968 		0x49400, 0x4940c,
1969 		0x49414, 0x4941c,
1970 		0x49480, 0x494d0,
1971 		0x4c000, 0x4c054,
1972 		0x4c05c, 0x4c078,
1973 		0x4c0c0, 0x4c174,
1974 		0x4c180, 0x4c1ac,
1975 		0x4c1b4, 0x4c1b8,
1976 		0x4c1c0, 0x4c254,
1977 		0x4c25c, 0x4c278,
1978 		0x4c2c0, 0x4c374,
1979 		0x4c380, 0x4c3ac,
1980 		0x4c3b4, 0x4c3b8,
1981 		0x4c3c0, 0x4c454,
1982 		0x4c45c, 0x4c478,
1983 		0x4c4c0, 0x4c574,
1984 		0x4c580, 0x4c5ac,
1985 		0x4c5b4, 0x4c5b8,
1986 		0x4c5c0, 0x4c654,
1987 		0x4c65c, 0x4c678,
1988 		0x4c6c0, 0x4c774,
1989 		0x4c780, 0x4c7ac,
1990 		0x4c7b4, 0x4c7b8,
1991 		0x4c7c0, 0x4c854,
1992 		0x4c85c, 0x4c878,
1993 		0x4c8c0, 0x4c974,
1994 		0x4c980, 0x4c9ac,
1995 		0x4c9b4, 0x4c9b8,
1996 		0x4c9c0, 0x4c9fc,
1997 		0x4d000, 0x4d004,
1998 		0x4d010, 0x4d030,
1999 		0x4d040, 0x4d060,
2000 		0x4d068, 0x4d068,
2001 		0x4d080, 0x4d084,
2002 		0x4d0a0, 0x4d0b0,
2003 		0x4d200, 0x4d204,
2004 		0x4d210, 0x4d230,
2005 		0x4d240, 0x4d260,
2006 		0x4d268, 0x4d268,
2007 		0x4d280, 0x4d284,
2008 		0x4d2a0, 0x4d2b0,
2009 		0x4e0c0, 0x4e0e4,
2010 		0x4f000, 0x4f03c,
2011 		0x4f044, 0x4f08c,
2012 		0x4f200, 0x4f250,
2013 		0x4f400, 0x4f408,
2014 		0x4f414, 0x4f420,
2015 		0x4f600, 0x4f618,
2016 		0x4f800, 0x4f814,
2017 		0x50000, 0x50084,
2018 		0x50090, 0x500cc,
2019 		0x50400, 0x50400,
2020 		0x50800, 0x50884,
2021 		0x50890, 0x508cc,
2022 		0x50c00, 0x50c00,
2023 		0x51000, 0x5101c,
2024 		0x51300, 0x51308,
2025 	};
2026 
2027 	static const unsigned int t6_reg_ranges[] = {
2028 		0x1008, 0x101c,
2029 		0x1024, 0x10a8,
2030 		0x10b4, 0x10f8,
2031 		0x1100, 0x1114,
2032 		0x111c, 0x112c,
2033 		0x1138, 0x113c,
2034 		0x1144, 0x114c,
2035 		0x1180, 0x1184,
2036 		0x1190, 0x1194,
2037 		0x11a0, 0x11a4,
2038 		0x11b0, 0x11b4,
2039 		0x11fc, 0x1274,
2040 		0x1280, 0x133c,
2041 		0x1800, 0x18fc,
2042 		0x3000, 0x302c,
2043 		0x3060, 0x30b0,
2044 		0x30b8, 0x30d8,
2045 		0x30e0, 0x30fc,
2046 		0x3140, 0x357c,
2047 		0x35a8, 0x35cc,
2048 		0x35ec, 0x35ec,
2049 		0x3600, 0x5624,
2050 		0x56cc, 0x56ec,
2051 		0x56f4, 0x5720,
2052 		0x5728, 0x575c,
2053 		0x580c, 0x5814,
2054 		0x5890, 0x589c,
2055 		0x58a4, 0x58ac,
2056 		0x58b8, 0x58bc,
2057 		0x5940, 0x595c,
2058 		0x5980, 0x598c,
2059 		0x59b0, 0x59c8,
2060 		0x59d0, 0x59dc,
2061 		0x59fc, 0x5a18,
2062 		0x5a60, 0x5a6c,
2063 		0x5a80, 0x5a8c,
2064 		0x5a94, 0x5a9c,
2065 		0x5b94, 0x5bfc,
2066 		0x5c10, 0x5e48,
2067 		0x5e50, 0x5e94,
2068 		0x5ea0, 0x5eb0,
2069 		0x5ec0, 0x5ec0,
2070 		0x5ec8, 0x5ed0,
2071 		0x5ee0, 0x5ee0,
2072 		0x5ef0, 0x5ef0,
2073 		0x5f00, 0x5f00,
2074 		0x6000, 0x6020,
2075 		0x6028, 0x6040,
2076 		0x6058, 0x609c,
2077 		0x60a8, 0x619c,
2078 		0x7700, 0x7798,
2079 		0x77c0, 0x7880,
2080 		0x78cc, 0x78fc,
2081 		0x7b00, 0x7b58,
2082 		0x7b60, 0x7b84,
2083 		0x7b8c, 0x7c54,
2084 		0x7d00, 0x7d38,
2085 		0x7d40, 0x7d84,
2086 		0x7d8c, 0x7ddc,
2087 		0x7de4, 0x7e04,
2088 		0x7e10, 0x7e1c,
2089 		0x7e24, 0x7e38,
2090 		0x7e40, 0x7e44,
2091 		0x7e4c, 0x7e78,
2092 		0x7e80, 0x7edc,
2093 		0x7ee8, 0x7efc,
2094 		0x8dc0, 0x8de4,
2095 		0x8df8, 0x8e04,
2096 		0x8e10, 0x8e84,
2097 		0x8ea0, 0x8f88,
2098 		0x8fb8, 0x9058,
2099 		0x9060, 0x9060,
2100 		0x9068, 0x90f8,
2101 		0x9100, 0x9124,
2102 		0x9400, 0x9470,
2103 		0x9600, 0x9600,
2104 		0x9608, 0x9638,
2105 		0x9640, 0x9704,
2106 		0x9710, 0x971c,
2107 		0x9800, 0x9808,
2108 		0x9820, 0x983c,
2109 		0x9850, 0x9864,
2110 		0x9c00, 0x9c6c,
2111 		0x9c80, 0x9cec,
2112 		0x9d00, 0x9d6c,
2113 		0x9d80, 0x9dec,
2114 		0x9e00, 0x9e6c,
2115 		0x9e80, 0x9eec,
2116 		0x9f00, 0x9f6c,
2117 		0x9f80, 0xa020,
2118 		0xd004, 0xd03c,
2119 		0xd100, 0xd118,
2120 		0xd200, 0xd214,
2121 		0xd220, 0xd234,
2122 		0xd240, 0xd254,
2123 		0xd260, 0xd274,
2124 		0xd280, 0xd294,
2125 		0xd2a0, 0xd2b4,
2126 		0xd2c0, 0xd2d4,
2127 		0xd2e0, 0xd2f4,
2128 		0xd300, 0xd31c,
2129 		0xdfc0, 0xdfe0,
2130 		0xe000, 0xf008,
2131 		0xf010, 0xf018,
2132 		0xf020, 0xf028,
2133 		0x11000, 0x11014,
2134 		0x11048, 0x1106c,
2135 		0x11074, 0x11088,
2136 		0x11098, 0x11120,
2137 		0x1112c, 0x1117c,
2138 		0x11190, 0x112e0,
2139 		0x11300, 0x1130c,
2140 		0x12000, 0x1206c,
2141 		0x19040, 0x1906c,
2142 		0x19078, 0x19080,
2143 		0x1908c, 0x190e8,
2144 		0x190f0, 0x190f8,
2145 		0x19100, 0x19110,
2146 		0x19120, 0x19124,
2147 		0x19150, 0x19194,
2148 		0x1919c, 0x191b0,
2149 		0x191d0, 0x191e8,
2150 		0x19238, 0x19290,
2151 		0x192a4, 0x192b0,
2152 		0x192bc, 0x192bc,
2153 		0x19348, 0x1934c,
2154 		0x193f8, 0x19418,
2155 		0x19420, 0x19428,
2156 		0x19430, 0x19444,
2157 		0x1944c, 0x1946c,
2158 		0x19474, 0x19474,
2159 		0x19490, 0x194cc,
2160 		0x194f0, 0x194f8,
2161 		0x19c00, 0x19c48,
2162 		0x19c50, 0x19c80,
2163 		0x19c94, 0x19c98,
2164 		0x19ca0, 0x19cbc,
2165 		0x19ce4, 0x19ce4,
2166 		0x19cf0, 0x19cf8,
2167 		0x19d00, 0x19d28,
2168 		0x19d50, 0x19d78,
2169 		0x19d94, 0x19d98,
2170 		0x19da0, 0x19dc8,
2171 		0x19df0, 0x19e10,
2172 		0x19e50, 0x19e6c,
2173 		0x19ea0, 0x19ebc,
2174 		0x19ec4, 0x19ef4,
2175 		0x19f04, 0x19f2c,
2176 		0x19f34, 0x19f34,
2177 		0x19f40, 0x19f50,
2178 		0x19f90, 0x19fac,
2179 		0x19fc4, 0x19fc8,
2180 		0x19fd0, 0x19fe4,
2181 		0x1a000, 0x1a004,
2182 		0x1a010, 0x1a06c,
2183 		0x1a0b0, 0x1a0e4,
2184 		0x1a0ec, 0x1a0f8,
2185 		0x1a100, 0x1a108,
2186 		0x1a114, 0x1a120,
2187 		0x1a128, 0x1a130,
2188 		0x1a138, 0x1a138,
2189 		0x1a190, 0x1a1c4,
2190 		0x1a1fc, 0x1a1fc,
2191 		0x1e008, 0x1e00c,
2192 		0x1e040, 0x1e044,
2193 		0x1e04c, 0x1e04c,
2194 		0x1e284, 0x1e290,
2195 		0x1e2c0, 0x1e2c0,
2196 		0x1e2e0, 0x1e2e0,
2197 		0x1e300, 0x1e384,
2198 		0x1e3c0, 0x1e3c8,
2199 		0x1e408, 0x1e40c,
2200 		0x1e440, 0x1e444,
2201 		0x1e44c, 0x1e44c,
2202 		0x1e684, 0x1e690,
2203 		0x1e6c0, 0x1e6c0,
2204 		0x1e6e0, 0x1e6e0,
2205 		0x1e700, 0x1e784,
2206 		0x1e7c0, 0x1e7c8,
2207 		0x1e808, 0x1e80c,
2208 		0x1e840, 0x1e844,
2209 		0x1e84c, 0x1e84c,
2210 		0x1ea84, 0x1ea90,
2211 		0x1eac0, 0x1eac0,
2212 		0x1eae0, 0x1eae0,
2213 		0x1eb00, 0x1eb84,
2214 		0x1ebc0, 0x1ebc8,
2215 		0x1ec08, 0x1ec0c,
2216 		0x1ec40, 0x1ec44,
2217 		0x1ec4c, 0x1ec4c,
2218 		0x1ee84, 0x1ee90,
2219 		0x1eec0, 0x1eec0,
2220 		0x1eee0, 0x1eee0,
2221 		0x1ef00, 0x1ef84,
2222 		0x1efc0, 0x1efc8,
2223 		0x1f008, 0x1f00c,
2224 		0x1f040, 0x1f044,
2225 		0x1f04c, 0x1f04c,
2226 		0x1f284, 0x1f290,
2227 		0x1f2c0, 0x1f2c0,
2228 		0x1f2e0, 0x1f2e0,
2229 		0x1f300, 0x1f384,
2230 		0x1f3c0, 0x1f3c8,
2231 		0x1f408, 0x1f40c,
2232 		0x1f440, 0x1f444,
2233 		0x1f44c, 0x1f44c,
2234 		0x1f684, 0x1f690,
2235 		0x1f6c0, 0x1f6c0,
2236 		0x1f6e0, 0x1f6e0,
2237 		0x1f700, 0x1f784,
2238 		0x1f7c0, 0x1f7c8,
2239 		0x1f808, 0x1f80c,
2240 		0x1f840, 0x1f844,
2241 		0x1f84c, 0x1f84c,
2242 		0x1fa84, 0x1fa90,
2243 		0x1fac0, 0x1fac0,
2244 		0x1fae0, 0x1fae0,
2245 		0x1fb00, 0x1fb84,
2246 		0x1fbc0, 0x1fbc8,
2247 		0x1fc08, 0x1fc0c,
2248 		0x1fc40, 0x1fc44,
2249 		0x1fc4c, 0x1fc4c,
2250 		0x1fe84, 0x1fe90,
2251 		0x1fec0, 0x1fec0,
2252 		0x1fee0, 0x1fee0,
2253 		0x1ff00, 0x1ff84,
2254 		0x1ffc0, 0x1ffc8,
2255 		0x30000, 0x30030,
2256 		0x30100, 0x30168,
2257 		0x30190, 0x301a0,
2258 		0x301a8, 0x301b8,
2259 		0x301c4, 0x301c8,
2260 		0x301d0, 0x301d0,
2261 		0x30200, 0x30320,
2262 		0x30400, 0x304b4,
2263 		0x304c0, 0x3052c,
2264 		0x30540, 0x3061c,
2265 		0x30800, 0x308a0,
2266 		0x308c0, 0x30908,
2267 		0x30910, 0x309b8,
2268 		0x30a00, 0x30a04,
2269 		0x30a0c, 0x30a14,
2270 		0x30a1c, 0x30a2c,
2271 		0x30a44, 0x30a50,
2272 		0x30a74, 0x30a74,
2273 		0x30a7c, 0x30afc,
2274 		0x30b08, 0x30c24,
2275 		0x30d00, 0x30d14,
2276 		0x30d1c, 0x30d3c,
2277 		0x30d44, 0x30d4c,
2278 		0x30d54, 0x30d74,
2279 		0x30d7c, 0x30d7c,
2280 		0x30de0, 0x30de0,
2281 		0x30e00, 0x30ed4,
2282 		0x30f00, 0x30fa4,
2283 		0x30fc0, 0x30fc4,
2284 		0x31000, 0x31004,
2285 		0x31080, 0x310fc,
2286 		0x31208, 0x31220,
2287 		0x3123c, 0x31254,
2288 		0x31300, 0x31300,
2289 		0x31308, 0x3131c,
2290 		0x31338, 0x3133c,
2291 		0x31380, 0x31380,
2292 		0x31388, 0x313a8,
2293 		0x313b4, 0x313b4,
2294 		0x31400, 0x31420,
2295 		0x31438, 0x3143c,
2296 		0x31480, 0x31480,
2297 		0x314a8, 0x314a8,
2298 		0x314b0, 0x314b4,
2299 		0x314c8, 0x314d4,
2300 		0x31a40, 0x31a4c,
2301 		0x31af0, 0x31b20,
2302 		0x31b38, 0x31b3c,
2303 		0x31b80, 0x31b80,
2304 		0x31ba8, 0x31ba8,
2305 		0x31bb0, 0x31bb4,
2306 		0x31bc8, 0x31bd4,
2307 		0x32140, 0x3218c,
2308 		0x321f0, 0x321f4,
2309 		0x32200, 0x32200,
2310 		0x32218, 0x32218,
2311 		0x32400, 0x32400,
2312 		0x32408, 0x3241c,
2313 		0x32618, 0x32620,
2314 		0x32664, 0x32664,
2315 		0x326a8, 0x326a8,
2316 		0x326ec, 0x326ec,
2317 		0x32a00, 0x32abc,
2318 		0x32b00, 0x32b18,
2319 		0x32b20, 0x32b38,
2320 		0x32b40, 0x32b58,
2321 		0x32b60, 0x32b78,
2322 		0x32c00, 0x32c00,
2323 		0x32c08, 0x32c3c,
2324 		0x33000, 0x3302c,
2325 		0x33034, 0x33050,
2326 		0x33058, 0x33058,
2327 		0x33060, 0x3308c,
2328 		0x3309c, 0x330ac,
2329 		0x330c0, 0x330c0,
2330 		0x330c8, 0x330d0,
2331 		0x330d8, 0x330e0,
2332 		0x330ec, 0x3312c,
2333 		0x33134, 0x33150,
2334 		0x33158, 0x33158,
2335 		0x33160, 0x3318c,
2336 		0x3319c, 0x331ac,
2337 		0x331c0, 0x331c0,
2338 		0x331c8, 0x331d0,
2339 		0x331d8, 0x331e0,
2340 		0x331ec, 0x33290,
2341 		0x33298, 0x332c4,
2342 		0x332e4, 0x33390,
2343 		0x33398, 0x333c4,
2344 		0x333e4, 0x3342c,
2345 		0x33434, 0x33450,
2346 		0x33458, 0x33458,
2347 		0x33460, 0x3348c,
2348 		0x3349c, 0x334ac,
2349 		0x334c0, 0x334c0,
2350 		0x334c8, 0x334d0,
2351 		0x334d8, 0x334e0,
2352 		0x334ec, 0x3352c,
2353 		0x33534, 0x33550,
2354 		0x33558, 0x33558,
2355 		0x33560, 0x3358c,
2356 		0x3359c, 0x335ac,
2357 		0x335c0, 0x335c0,
2358 		0x335c8, 0x335d0,
2359 		0x335d8, 0x335e0,
2360 		0x335ec, 0x33690,
2361 		0x33698, 0x336c4,
2362 		0x336e4, 0x33790,
2363 		0x33798, 0x337c4,
2364 		0x337e4, 0x337fc,
2365 		0x33814, 0x33814,
2366 		0x33854, 0x33868,
2367 		0x33880, 0x3388c,
2368 		0x338c0, 0x338d0,
2369 		0x338e8, 0x338ec,
2370 		0x33900, 0x3392c,
2371 		0x33934, 0x33950,
2372 		0x33958, 0x33958,
2373 		0x33960, 0x3398c,
2374 		0x3399c, 0x339ac,
2375 		0x339c0, 0x339c0,
2376 		0x339c8, 0x339d0,
2377 		0x339d8, 0x339e0,
2378 		0x339ec, 0x33a90,
2379 		0x33a98, 0x33ac4,
2380 		0x33ae4, 0x33b10,
2381 		0x33b24, 0x33b28,
2382 		0x33b38, 0x33b50,
2383 		0x33bf0, 0x33c10,
2384 		0x33c24, 0x33c28,
2385 		0x33c38, 0x33c50,
2386 		0x33cf0, 0x33cfc,
2387 		0x34000, 0x34030,
2388 		0x34100, 0x34168,
2389 		0x34190, 0x341a0,
2390 		0x341a8, 0x341b8,
2391 		0x341c4, 0x341c8,
2392 		0x341d0, 0x341d0,
2393 		0x34200, 0x34320,
2394 		0x34400, 0x344b4,
2395 		0x344c0, 0x3452c,
2396 		0x34540, 0x3461c,
2397 		0x34800, 0x348a0,
2398 		0x348c0, 0x34908,
2399 		0x34910, 0x349b8,
2400 		0x34a00, 0x34a04,
2401 		0x34a0c, 0x34a14,
2402 		0x34a1c, 0x34a2c,
2403 		0x34a44, 0x34a50,
2404 		0x34a74, 0x34a74,
2405 		0x34a7c, 0x34afc,
2406 		0x34b08, 0x34c24,
2407 		0x34d00, 0x34d14,
2408 		0x34d1c, 0x34d3c,
2409 		0x34d44, 0x34d4c,
2410 		0x34d54, 0x34d74,
2411 		0x34d7c, 0x34d7c,
2412 		0x34de0, 0x34de0,
2413 		0x34e00, 0x34ed4,
2414 		0x34f00, 0x34fa4,
2415 		0x34fc0, 0x34fc4,
2416 		0x35000, 0x35004,
2417 		0x35080, 0x350fc,
2418 		0x35208, 0x35220,
2419 		0x3523c, 0x35254,
2420 		0x35300, 0x35300,
2421 		0x35308, 0x3531c,
2422 		0x35338, 0x3533c,
2423 		0x35380, 0x35380,
2424 		0x35388, 0x353a8,
2425 		0x353b4, 0x353b4,
2426 		0x35400, 0x35420,
2427 		0x35438, 0x3543c,
2428 		0x35480, 0x35480,
2429 		0x354a8, 0x354a8,
2430 		0x354b0, 0x354b4,
2431 		0x354c8, 0x354d4,
2432 		0x35a40, 0x35a4c,
2433 		0x35af0, 0x35b20,
2434 		0x35b38, 0x35b3c,
2435 		0x35b80, 0x35b80,
2436 		0x35ba8, 0x35ba8,
2437 		0x35bb0, 0x35bb4,
2438 		0x35bc8, 0x35bd4,
2439 		0x36140, 0x3618c,
2440 		0x361f0, 0x361f4,
2441 		0x36200, 0x36200,
2442 		0x36218, 0x36218,
2443 		0x36400, 0x36400,
2444 		0x36408, 0x3641c,
2445 		0x36618, 0x36620,
2446 		0x36664, 0x36664,
2447 		0x366a8, 0x366a8,
2448 		0x366ec, 0x366ec,
2449 		0x36a00, 0x36abc,
2450 		0x36b00, 0x36b18,
2451 		0x36b20, 0x36b38,
2452 		0x36b40, 0x36b58,
2453 		0x36b60, 0x36b78,
2454 		0x36c00, 0x36c00,
2455 		0x36c08, 0x36c3c,
2456 		0x37000, 0x3702c,
2457 		0x37034, 0x37050,
2458 		0x37058, 0x37058,
2459 		0x37060, 0x3708c,
2460 		0x3709c, 0x370ac,
2461 		0x370c0, 0x370c0,
2462 		0x370c8, 0x370d0,
2463 		0x370d8, 0x370e0,
2464 		0x370ec, 0x3712c,
2465 		0x37134, 0x37150,
2466 		0x37158, 0x37158,
2467 		0x37160, 0x3718c,
2468 		0x3719c, 0x371ac,
2469 		0x371c0, 0x371c0,
2470 		0x371c8, 0x371d0,
2471 		0x371d8, 0x371e0,
2472 		0x371ec, 0x37290,
2473 		0x37298, 0x372c4,
2474 		0x372e4, 0x37390,
2475 		0x37398, 0x373c4,
2476 		0x373e4, 0x3742c,
2477 		0x37434, 0x37450,
2478 		0x37458, 0x37458,
2479 		0x37460, 0x3748c,
2480 		0x3749c, 0x374ac,
2481 		0x374c0, 0x374c0,
2482 		0x374c8, 0x374d0,
2483 		0x374d8, 0x374e0,
2484 		0x374ec, 0x3752c,
2485 		0x37534, 0x37550,
2486 		0x37558, 0x37558,
2487 		0x37560, 0x3758c,
2488 		0x3759c, 0x375ac,
2489 		0x375c0, 0x375c0,
2490 		0x375c8, 0x375d0,
2491 		0x375d8, 0x375e0,
2492 		0x375ec, 0x37690,
2493 		0x37698, 0x376c4,
2494 		0x376e4, 0x37790,
2495 		0x37798, 0x377c4,
2496 		0x377e4, 0x377fc,
2497 		0x37814, 0x37814,
2498 		0x37854, 0x37868,
2499 		0x37880, 0x3788c,
2500 		0x378c0, 0x378d0,
2501 		0x378e8, 0x378ec,
2502 		0x37900, 0x3792c,
2503 		0x37934, 0x37950,
2504 		0x37958, 0x37958,
2505 		0x37960, 0x3798c,
2506 		0x3799c, 0x379ac,
2507 		0x379c0, 0x379c0,
2508 		0x379c8, 0x379d0,
2509 		0x379d8, 0x379e0,
2510 		0x379ec, 0x37a90,
2511 		0x37a98, 0x37ac4,
2512 		0x37ae4, 0x37b10,
2513 		0x37b24, 0x37b28,
2514 		0x37b38, 0x37b50,
2515 		0x37bf0, 0x37c10,
2516 		0x37c24, 0x37c28,
2517 		0x37c38, 0x37c50,
2518 		0x37cf0, 0x37cfc,
2519 		0x40040, 0x40040,
2520 		0x40080, 0x40084,
2521 		0x40100, 0x40100,
2522 		0x40140, 0x401bc,
2523 		0x40200, 0x40214,
2524 		0x40228, 0x40228,
2525 		0x40240, 0x40258,
2526 		0x40280, 0x40280,
2527 		0x40304, 0x40304,
2528 		0x40330, 0x4033c,
2529 		0x41304, 0x413c8,
2530 		0x413d0, 0x413dc,
2531 		0x413f0, 0x413f0,
2532 		0x41400, 0x4140c,
2533 		0x41414, 0x4141c,
2534 		0x41480, 0x414d0,
2535 		0x44000, 0x4407c,
2536 		0x440c0, 0x441ac,
2537 		0x441b4, 0x4427c,
2538 		0x442c0, 0x443ac,
2539 		0x443b4, 0x4447c,
2540 		0x444c0, 0x445ac,
2541 		0x445b4, 0x4467c,
2542 		0x446c0, 0x447ac,
2543 		0x447b4, 0x4487c,
2544 		0x448c0, 0x449ac,
2545 		0x449b4, 0x44a7c,
2546 		0x44ac0, 0x44bac,
2547 		0x44bb4, 0x44c7c,
2548 		0x44cc0, 0x44dac,
2549 		0x44db4, 0x44e7c,
2550 		0x44ec0, 0x44fac,
2551 		0x44fb4, 0x4507c,
2552 		0x450c0, 0x451ac,
2553 		0x451b4, 0x451fc,
2554 		0x45800, 0x45804,
2555 		0x45810, 0x45830,
2556 		0x45840, 0x45860,
2557 		0x45868, 0x45868,
2558 		0x45880, 0x45884,
2559 		0x458a0, 0x458b0,
2560 		0x45a00, 0x45a04,
2561 		0x45a10, 0x45a30,
2562 		0x45a40, 0x45a60,
2563 		0x45a68, 0x45a68,
2564 		0x45a80, 0x45a84,
2565 		0x45aa0, 0x45ab0,
2566 		0x460c0, 0x460e4,
2567 		0x47000, 0x4703c,
2568 		0x47044, 0x4708c,
2569 		0x47200, 0x47250,
2570 		0x47400, 0x47408,
2571 		0x47414, 0x47420,
2572 		0x47600, 0x47618,
2573 		0x47800, 0x47814,
2574 		0x47820, 0x4782c,
2575 		0x50000, 0x50084,
2576 		0x50090, 0x500cc,
2577 		0x50300, 0x50384,
2578 		0x50400, 0x50400,
2579 		0x50800, 0x50884,
2580 		0x50890, 0x508cc,
2581 		0x50b00, 0x50b84,
2582 		0x50c00, 0x50c00,
2583 		0x51000, 0x51020,
2584 		0x51028, 0x510b0,
2585 		0x51300, 0x51324,
2586 	};
2587 
2588 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2589 	const unsigned int *reg_ranges;
2590 	int reg_ranges_size, range;
2591 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2592 
2593 	/* Select the right set of register ranges to dump depending on the
2594 	 * adapter chip type.
2595 	 */
2596 	switch (chip_version) {
2597 	case CHELSIO_T4:
2598 		reg_ranges = t4_reg_ranges;
2599 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2600 		break;
2601 
2602 	case CHELSIO_T5:
2603 		reg_ranges = t5_reg_ranges;
2604 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2605 		break;
2606 
2607 	case CHELSIO_T6:
2608 		reg_ranges = t6_reg_ranges;
2609 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2610 		break;
2611 
2612 	default:
2613 		dev_err(adap->pdev_dev,
2614 			"Unsupported chip version %d\n", chip_version);
2615 		return;
2616 	}
2617 
2618 	/* Clear the register buffer and insert the appropriate register
2619 	 * values selected by the above register ranges.
2620 	 */
2621 	memset(buf, 0, buf_size);
2622 	for (range = 0; range < reg_ranges_size; range += 2) {
2623 		unsigned int reg = reg_ranges[range];
2624 		unsigned int last_reg = reg_ranges[range + 1];
2625 		u32 *bufp = (u32 *)((char *)buf + reg);
2626 
2627 		/* Iterate across the register range filling in the register
2628 		 * buffer but don't write past the end of the register buffer.
2629 		 */
2630 		while (reg <= last_reg && bufp < buf_end) {
2631 			*bufp++ = t4_read_reg(adap, reg);
2632 			reg += sizeof(u32);
2633 		}
2634 	}
2635 }
2636 
2637 #define EEPROM_STAT_ADDR   0x7bfc
2638 #define VPD_SIZE           0x800
2639 #define VPD_BASE           0x400
2640 #define VPD_BASE_OLD       0
2641 #define VPD_LEN            1024
2642 #define CHELSIO_VPD_UNIQUE_ID 0x82
2643 
2644 /**
2645  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2646  * @phys_addr: the physical EEPROM address
2647  * @fn: the PCI function number
2648  * @sz: size of function-specific area
2649  *
2650  * Translate a physical EEPROM address to virtual.  The first 1K is
2651  * accessed through virtual addresses starting at 31K, the rest is
2652  * accessed through virtual addresses starting at 0.
2653  *
2654  * The mapping is as follows:
2655  * [0..1K) -> [31K..32K)
2656  * [1K..1K+A) -> [31K-A..31K)
2657  * [1K+A..ES) -> [0..ES-A-1K)
2658  *
2659  * where A = @fn * @sz, and ES = EEPROM size.
2660  */
2661 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2662 {
2663 	fn *= sz;
2664 	if (phys_addr < 1024)
2665 		return phys_addr + (31 << 10);
2666 	if (phys_addr < 1024 + fn)
2667 		return 31744 - fn + phys_addr - 1024;
2668 	if (phys_addr < EEPROMSIZE)
2669 		return phys_addr - 1024 - fn;
2670 	return -EINVAL;
2671 }
2672 
2673 /**
2674  *	t4_seeprom_wp - enable/disable EEPROM write protection
2675  *	@adapter: the adapter
2676  *	@enable: whether to enable or disable write protection
2677  *
2678  *	Enables or disables write protection on the serial EEPROM.
2679  */
2680 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2681 {
2682 	unsigned int v = enable ? 0xc : 0;
2683 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2684 	return ret < 0 ? ret : 0;
2685 }
2686 
2687 /**
2688  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2689  *	@adapter: adapter to read
2690  *	@p: where to store the parameters
2691  *
2692  *	Reads card parameters stored in VPD EEPROM.
2693  */
2694 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2695 {
2696 	int i, ret = 0, addr;
2697 	int ec, sn, pn, na;
2698 	u8 *vpd, csum;
2699 	unsigned int vpdr_len, kw_offset, id_len;
2700 
2701 	vpd = vmalloc(VPD_LEN);
2702 	if (!vpd)
2703 		return -ENOMEM;
2704 
2705 	/* We have two VPD data structures stored in the adapter VPD area.
2706 	 * By default, Linux calculates the size of the VPD area by traversing
2707 	 * the first VPD area at offset 0x0, so we need to tell the OS what
2708 	 * our real VPD size is.
2709 	 */
2710 	ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2711 	if (ret < 0)
2712 		goto out;
2713 
2714 	/* Card information normally starts at VPD_BASE but early cards had
2715 	 * it at 0.
2716 	 */
2717 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2718 	if (ret < 0)
2719 		goto out;
2720 
2721 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2722 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2723 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2724 	 * is expected to automatically put this entry at the
2725 	 * beginning of the VPD.
2726 	 */
2727 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2728 
2729 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2730 	if (ret < 0)
2731 		goto out;
2732 
2733 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2734 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2735 		ret = -EINVAL;
2736 		goto out;
2737 	}
2738 
2739 	id_len = pci_vpd_lrdt_size(vpd);
2740 	if (id_len > ID_LEN)
2741 		id_len = ID_LEN;
2742 
2743 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2744 	if (i < 0) {
2745 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2746 		ret = -EINVAL;
2747 		goto out;
2748 	}
2749 
2750 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2751 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2752 	if (vpdr_len + kw_offset > VPD_LEN) {
2753 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2754 		ret = -EINVAL;
2755 		goto out;
2756 	}
2757 
2758 #define FIND_VPD_KW(var, name) do { \
2759 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2760 	if (var < 0) { \
2761 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2762 		ret = -EINVAL; \
2763 		goto out; \
2764 	} \
2765 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2766 } while (0)
2767 
2768 	FIND_VPD_KW(i, "RV");
2769 	for (csum = 0; i >= 0; i--)
2770 		csum += vpd[i];
2771 
2772 	if (csum) {
2773 		dev_err(adapter->pdev_dev,
2774 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2775 		ret = -EINVAL;
2776 		goto out;
2777 	}
2778 
2779 	FIND_VPD_KW(ec, "EC");
2780 	FIND_VPD_KW(sn, "SN");
2781 	FIND_VPD_KW(pn, "PN");
2782 	FIND_VPD_KW(na, "NA");
2783 #undef FIND_VPD_KW
2784 
2785 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2786 	strim(p->id);
2787 	memcpy(p->ec, vpd + ec, EC_LEN);
2788 	strim(p->ec);
2789 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2790 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2791 	strim(p->sn);
2792 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2793 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2794 	strim(p->pn);
2795 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2796 	strim((char *)p->na);
2797 
2798 out:
2799 	vfree(vpd);
2800 	return ret < 0 ? ret : 0;
2801 }
2802 
2803 /**
2804  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2805  *	@adapter: adapter to read
2806  *	@p: where to store the parameters
2807  *
2808  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2809  *	Clock.  This can only be called after a connection to the firmware
2810  *	is established.
2811  */
2812 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2813 {
2814 	u32 cclk_param, cclk_val;
2815 	int ret;
2816 
2817 	/* Grab the raw VPD parameters.
2818 	 */
2819 	ret = t4_get_raw_vpd_params(adapter, p);
2820 	if (ret)
2821 		return ret;
2822 
2823 	/* Ask firmware for the Core Clock since it knows how to translate the
2824 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2825 	 */
2826 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2827 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2828 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2829 			      1, &cclk_param, &cclk_val);
2830 
2831 	if (ret)
2832 		return ret;
2833 	p->cclk = cclk_val;
2834 
2835 	return 0;
2836 }
2837 
2838 /* serial flash and firmware constants */
2839 enum {
2840 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2841 
2842 	/* flash command opcodes */
2843 	SF_PROG_PAGE    = 2,          /* program page */
2844 	SF_WR_DISABLE   = 4,          /* disable writes */
2845 	SF_RD_STATUS    = 5,          /* read status register */
2846 	SF_WR_ENABLE    = 6,          /* enable writes */
2847 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2848 	SF_RD_ID        = 0x9f,       /* read ID */
2849 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2850 
2851 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2852 };
2853 
2854 /**
2855  *	sf1_read - read data from the serial flash
2856  *	@adapter: the adapter
2857  *	@byte_cnt: number of bytes to read
2858  *	@cont: whether another operation will be chained
2859  *	@lock: whether to lock SF for PL access only
2860  *	@valp: where to store the read data
2861  *
2862  *	Reads up to 4 bytes of data from the serial flash.  The location of
2863  *	the read needs to be specified prior to calling this by issuing the
2864  *	appropriate commands to the serial flash.
2865  */
2866 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2867 		    int lock, u32 *valp)
2868 {
2869 	int ret;
2870 
2871 	if (!byte_cnt || byte_cnt > 4)
2872 		return -EINVAL;
2873 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2874 		return -EBUSY;
2875 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2876 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2877 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2878 	if (!ret)
2879 		*valp = t4_read_reg(adapter, SF_DATA_A);
2880 	return ret;
2881 }
2882 
2883 /**
2884  *	sf1_write - write data to the serial flash
2885  *	@adapter: the adapter
2886  *	@byte_cnt: number of bytes to write
2887  *	@cont: whether another operation will be chained
2888  *	@lock: whether to lock SF for PL access only
2889  *	@val: value to write
2890  *
2891  *	Writes up to 4 bytes of data to the serial flash.  The location of
2892  *	the write needs to be specified prior to calling this by issuing the
2893  *	appropriate commands to the serial flash.
2894  */
2895 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2896 		     int lock, u32 val)
2897 {
2898 	if (!byte_cnt || byte_cnt > 4)
2899 		return -EINVAL;
2900 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2901 		return -EBUSY;
2902 	t4_write_reg(adapter, SF_DATA_A, val);
2903 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2904 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2905 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2906 }
2907 
2908 /**
2909  *	flash_wait_op - wait for a flash operation to complete
2910  *	@adapter: the adapter
2911  *	@attempts: max number of polls of the status register
2912  *	@delay: delay between polls in ms
2913  *
2914  *	Wait for a flash operation to complete by polling the status register.
2915  */
2916 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2917 {
2918 	int ret;
2919 	u32 status;
2920 
2921 	while (1) {
2922 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2923 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2924 			return ret;
2925 		if (!(status & 1))
2926 			return 0;
2927 		if (--attempts == 0)
2928 			return -EAGAIN;
2929 		if (delay)
2930 			msleep(delay);
2931 	}
2932 }
2933 
2934 /**
2935  *	t4_read_flash - read words from serial flash
2936  *	@adapter: the adapter
2937  *	@addr: the start address for the read
2938  *	@nwords: how many 32-bit words to read
2939  *	@data: where to store the read data
2940  *	@byte_oriented: whether to store data as bytes or as words
2941  *
2942  *	Read the specified number of 32-bit words from the serial flash.
2943  *	If @byte_oriented is set the read data is stored as a byte array
2944  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2945  *	natural endianness.
2946  */
2947 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2948 		  unsigned int nwords, u32 *data, int byte_oriented)
2949 {
2950 	int ret;
2951 
2952 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2953 		return -EINVAL;
2954 
2955 	addr = swab32(addr) | SF_RD_DATA_FAST;
2956 
2957 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2958 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2959 		return ret;
2960 
2961 	for ( ; nwords; nwords--, data++) {
2962 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2963 		if (nwords == 1)
2964 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2965 		if (ret)
2966 			return ret;
2967 		if (byte_oriented)
2968 			*data = (__force __u32)(cpu_to_be32(*data));
2969 	}
2970 	return 0;
2971 }
2972 
2973 /**
2974  *	t4_write_flash - write up to a page of data to the serial flash
2975  *	@adapter: the adapter
2976  *	@addr: the start address to write
2977  *	@n: length of data to write in bytes
2978  *	@data: the data to write
2979  *
2980  *	Writes up to a page of data (256 bytes) to the serial flash starting
2981  *	at the given address.  All the data must be written to the same page.
2982  */
2983 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2984 			  unsigned int n, const u8 *data)
2985 {
2986 	int ret;
2987 	u32 buf[64];
2988 	unsigned int i, c, left, val, offset = addr & 0xff;
2989 
2990 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2991 		return -EINVAL;
2992 
2993 	val = swab32(addr) | SF_PROG_PAGE;
2994 
2995 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2996 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2997 		goto unlock;
2998 
2999 	for (left = n; left; left -= c) {
3000 		c = min(left, 4U);
3001 		for (val = 0, i = 0; i < c; ++i)
3002 			val = (val << 8) + *data++;
3003 
3004 		ret = sf1_write(adapter, c, c != left, 1, val);
3005 		if (ret)
3006 			goto unlock;
3007 	}
3008 	ret = flash_wait_op(adapter, 8, 1);
3009 	if (ret)
3010 		goto unlock;
3011 
3012 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3013 
3014 	/* Read the page to verify the write succeeded */
3015 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3016 	if (ret)
3017 		return ret;
3018 
3019 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3020 		dev_err(adapter->pdev_dev,
3021 			"failed to correctly write the flash page at %#x\n",
3022 			addr);
3023 		return -EIO;
3024 	}
3025 	return 0;
3026 
3027 unlock:
3028 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3029 	return ret;
3030 }
3031 
3032 /**
3033  *	t4_get_fw_version - read the firmware version
3034  *	@adapter: the adapter
3035  *	@vers: where to place the version
3036  *
3037  *	Reads the FW version from flash.
3038  */
3039 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3040 {
3041 	return t4_read_flash(adapter, FLASH_FW_START +
3042 			     offsetof(struct fw_hdr, fw_ver), 1,
3043 			     vers, 0);
3044 }
3045 
3046 /**
3047  *	t4_get_bs_version - read the firmware bootstrap version
3048  *	@adapter: the adapter
3049  *	@vers: where to place the version
3050  *
3051  *	Reads the FW Bootstrap version from flash.
3052  */
3053 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3054 {
3055 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3056 			     offsetof(struct fw_hdr, fw_ver), 1,
3057 			     vers, 0);
3058 }
3059 
3060 /**
3061  *	t4_get_tp_version - read the TP microcode version
3062  *	@adapter: the adapter
3063  *	@vers: where to place the version
3064  *
3065  *	Reads the TP microcode version from flash.
3066  */
3067 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3068 {
3069 	return t4_read_flash(adapter, FLASH_FW_START +
3070 			     offsetof(struct fw_hdr, tp_microcode_ver),
3071 			     1, vers, 0);
3072 }
3073 
3074 /**
3075  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3076  *	@adapter: the adapter
3077  *	@vers: where to place the version
3078  *
3079  *	Reads the Expansion ROM header from FLASH and returns the version
3080  *	number (if present) through the @vers return value pointer.  We return
3081  *	this in the Firmware Version Format since it's convenient.  Return
3082  *	0 on success, -ENOENT if no Expansion ROM is present.
3083  */
3084 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3085 {
3086 	struct exprom_header {
3087 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3088 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3089 	} *hdr;
3090 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3091 					   sizeof(u32))];
3092 	int ret;
3093 
3094 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3095 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3096 			    0);
3097 	if (ret)
3098 		return ret;
3099 
3100 	hdr = (struct exprom_header *)exprom_header_buf;
3101 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3102 		return -ENOENT;
3103 
3104 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3105 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3106 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3107 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3108 	return 0;
3109 }
3110 
3111 /**
3112  *      t4_get_vpd_version - return the VPD version
3113  *      @adapter: the adapter
3114  *      @vers: where to place the version
3115  *
3116  *      Reads the VPD via the Firmware interface (thus this can only be called
3117  *      once we're ready to issue Firmware commands).  The format of the
3118  *      VPD version is adapter specific.  Returns 0 on success, an error on
3119  *      failure.
3120  *
3121  *      Note that early versions of the Firmware didn't include the ability
3122  *      to retrieve the VPD version, so we zero-out the return-value parameter
3123  *      in that case to avoid leaving it with garbage in it.
3124  *
3125  *      Also note that the Firmware will return its cached copy of the VPD
3126  *      Revision ID, not the actual Revision ID as written in the Serial
3127  *      EEPROM.  This is only an issue if a new VPD has been written and the
3128  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3129  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3130  *      if the Host Driver will be performing a full adapter initialization.
3131  */
3132 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3133 {
3134 	u32 vpdrev_param;
3135 	int ret;
3136 
3137 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3138 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3139 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3140 			      1, &vpdrev_param, vers);
3141 	if (ret)
3142 		*vers = 0;
3143 	return ret;
3144 }
3145 
3146 /**
3147  *      t4_get_scfg_version - return the Serial Configuration version
3148  *      @adapter: the adapter
3149  *      @vers: where to place the version
3150  *
3151  *      Reads the Serial Configuration Version via the Firmware interface
3152  *      (thus this can only be called once we're ready to issue Firmware
3153  *      commands).  The format of the Serial Configuration version is
3154  *      adapter specific.  Returns 0 on success, an error on failure.
3155  *
3156  *      Note that early versions of the Firmware didn't include the ability
3157  *      to retrieve the Serial Configuration version, so we zero-out the
3158  *      return-value parameter in that case to avoid leaving it with
3159  *      garbage in it.
3160  *
3161  *      Also note that the Firmware will return its cached copy of the Serial
3162  *      Initialization Revision ID, not the actual Revision ID as written in
3163  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3164  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3165  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3166  *      been issued if the Host Driver will be performing a full adapter
3167  *      initialization.
3168  */
3169 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3170 {
3171 	u32 scfgrev_param;
3172 	int ret;
3173 
3174 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3175 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3176 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3177 			      1, &scfgrev_param, vers);
3178 	if (ret)
3179 		*vers = 0;
3180 	return ret;
3181 }
3182 
3183 /**
3184  *      t4_get_version_info - extract various chip/firmware version information
3185  *      @adapter: the adapter
3186  *
3187  *      Reads various chip/firmware version numbers and stores them into the
3188  *      adapter Adapter Parameters structure.  If any of the efforts fails
3189  *      the first failure will be returned, but all of the version numbers
3190  *      will be read.
3191  */
3192 int t4_get_version_info(struct adapter *adapter)
3193 {
3194 	int ret = 0;
3195 
3196 	#define FIRST_RET(__getvinfo) \
3197 	do { \
3198 		int __ret = __getvinfo; \
3199 		if (__ret && !ret) \
3200 			ret = __ret; \
3201 	} while (0)
3202 
3203 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3204 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3205 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3206 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3207 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3208 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3209 
3210 	#undef FIRST_RET
3211 	return ret;
3212 }
3213 
3214 /**
3215  *      t4_dump_version_info - dump all of the adapter configuration IDs
3216  *      @adapter: the adapter
3217  *
3218  *      Dumps all of the various bits of adapter configuration version/revision
3219  *      IDs information.  This is typically called at some point after
3220  *      t4_get_version_info() has been called.
3221  */
3222 void t4_dump_version_info(struct adapter *adapter)
3223 {
3224 	/* Device information */
3225 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3226 		 adapter->params.vpd.id,
3227 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3228 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3229 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3230 
3231 	/* Firmware Version */
3232 	if (!adapter->params.fw_vers)
3233 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3234 	else
3235 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3236 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3237 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3238 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3239 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3240 
3241 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3242 	 * Firmware, so dev_info() is more appropriate here.)
3243 	 */
3244 	if (!adapter->params.bs_vers)
3245 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3246 	else
3247 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3248 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3249 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3250 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3251 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3252 
3253 	/* TP Microcode Version */
3254 	if (!adapter->params.tp_vers)
3255 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3256 	else
3257 		dev_info(adapter->pdev_dev,
3258 			 "TP Microcode version: %u.%u.%u.%u\n",
3259 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3260 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3261 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3262 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3263 
3264 	/* Expansion ROM version */
3265 	if (!adapter->params.er_vers)
3266 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3267 	else
3268 		dev_info(adapter->pdev_dev,
3269 			 "Expansion ROM version: %u.%u.%u.%u\n",
3270 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3271 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3272 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3273 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3274 
3275 	/* Serial Configuration version */
3276 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3277 		 adapter->params.scfg_vers);
3278 
3279 	/* VPD Version */
3280 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3281 		 adapter->params.vpd_vers);
3282 }
3283 
3284 /**
3285  *	t4_check_fw_version - check if the FW is supported with this driver
3286  *	@adap: the adapter
3287  *
3288  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3289  *	if there's exact match, a negative error if the version could not be
3290  *	read or there's a major version mismatch
3291  */
3292 int t4_check_fw_version(struct adapter *adap)
3293 {
3294 	int i, ret, major, minor, micro;
3295 	int exp_major, exp_minor, exp_micro;
3296 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3297 
3298 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3299 	/* Try multiple times before returning error */
3300 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3301 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3302 
3303 	if (ret)
3304 		return ret;
3305 
3306 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3307 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3308 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3309 
3310 	switch (chip_version) {
3311 	case CHELSIO_T4:
3312 		exp_major = T4FW_MIN_VERSION_MAJOR;
3313 		exp_minor = T4FW_MIN_VERSION_MINOR;
3314 		exp_micro = T4FW_MIN_VERSION_MICRO;
3315 		break;
3316 	case CHELSIO_T5:
3317 		exp_major = T5FW_MIN_VERSION_MAJOR;
3318 		exp_minor = T5FW_MIN_VERSION_MINOR;
3319 		exp_micro = T5FW_MIN_VERSION_MICRO;
3320 		break;
3321 	case CHELSIO_T6:
3322 		exp_major = T6FW_MIN_VERSION_MAJOR;
3323 		exp_minor = T6FW_MIN_VERSION_MINOR;
3324 		exp_micro = T6FW_MIN_VERSION_MICRO;
3325 		break;
3326 	default:
3327 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3328 			adap->chip);
3329 		return -EINVAL;
3330 	}
3331 
3332 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3333 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3334 		dev_err(adap->pdev_dev,
3335 			"Card has firmware version %u.%u.%u, minimum "
3336 			"supported firmware is %u.%u.%u.\n", major, minor,
3337 			micro, exp_major, exp_minor, exp_micro);
3338 		return -EFAULT;
3339 	}
3340 	return 0;
3341 }
3342 
3343 /* Is the given firmware API compatible with the one the driver was compiled
3344  * with?
3345  */
3346 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3347 {
3348 
3349 	/* short circuit if it's the exact same firmware version */
3350 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3351 		return 1;
3352 
3353 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3354 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3355 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3356 		return 1;
3357 #undef SAME_INTF
3358 
3359 	return 0;
3360 }
3361 
3362 /* The firmware in the filesystem is usable, but should it be installed?
3363  * This routine explains itself in detail if it indicates the filesystem
3364  * firmware should be installed.
3365  */
3366 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3367 				int k, int c)
3368 {
3369 	const char *reason;
3370 
3371 	if (!card_fw_usable) {
3372 		reason = "incompatible or unusable";
3373 		goto install;
3374 	}
3375 
3376 	if (k > c) {
3377 		reason = "older than the version supported with this driver";
3378 		goto install;
3379 	}
3380 
3381 	return 0;
3382 
3383 install:
3384 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3385 		"installing firmware %u.%u.%u.%u on card.\n",
3386 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3387 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3388 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3389 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3390 
3391 	return 1;
3392 }
3393 
3394 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3395 	       const u8 *fw_data, unsigned int fw_size,
3396 	       struct fw_hdr *card_fw, enum dev_state state,
3397 	       int *reset)
3398 {
3399 	int ret, card_fw_usable, fs_fw_usable;
3400 	const struct fw_hdr *fs_fw;
3401 	const struct fw_hdr *drv_fw;
3402 
3403 	drv_fw = &fw_info->fw_hdr;
3404 
3405 	/* Read the header of the firmware on the card */
3406 	ret = -t4_read_flash(adap, FLASH_FW_START,
3407 			    sizeof(*card_fw) / sizeof(uint32_t),
3408 			    (uint32_t *)card_fw, 1);
3409 	if (ret == 0) {
3410 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3411 	} else {
3412 		dev_err(adap->pdev_dev,
3413 			"Unable to read card's firmware header: %d\n", ret);
3414 		card_fw_usable = 0;
3415 	}
3416 
3417 	if (fw_data != NULL) {
3418 		fs_fw = (const void *)fw_data;
3419 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3420 	} else {
3421 		fs_fw = NULL;
3422 		fs_fw_usable = 0;
3423 	}
3424 
3425 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3426 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3427 		/* Common case: the firmware on the card is an exact match and
3428 		 * the filesystem one is an exact match too, or the filesystem
3429 		 * one is absent/incompatible.
3430 		 */
3431 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3432 		   should_install_fs_fw(adap, card_fw_usable,
3433 					be32_to_cpu(fs_fw->fw_ver),
3434 					be32_to_cpu(card_fw->fw_ver))) {
3435 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3436 				     fw_size, 0);
3437 		if (ret != 0) {
3438 			dev_err(adap->pdev_dev,
3439 				"failed to install firmware: %d\n", ret);
3440 			goto bye;
3441 		}
3442 
3443 		/* Installed successfully, update the cached header too. */
3444 		*card_fw = *fs_fw;
3445 		card_fw_usable = 1;
3446 		*reset = 0;	/* already reset as part of load_fw */
3447 	}
3448 
3449 	if (!card_fw_usable) {
3450 		uint32_t d, c, k;
3451 
3452 		d = be32_to_cpu(drv_fw->fw_ver);
3453 		c = be32_to_cpu(card_fw->fw_ver);
3454 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3455 
3456 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3457 			"chip state %d, "
3458 			"driver compiled with %d.%d.%d.%d, "
3459 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3460 			state,
3461 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3462 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3463 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3464 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3465 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3466 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3467 		ret = EINVAL;
3468 		goto bye;
3469 	}
3470 
3471 	/* We're using whatever's on the card and it's known to be good. */
3472 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3473 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3474 
3475 bye:
3476 	return ret;
3477 }
3478 
3479 /**
3480  *	t4_flash_erase_sectors - erase a range of flash sectors
3481  *	@adapter: the adapter
3482  *	@start: the first sector to erase
3483  *	@end: the last sector to erase
3484  *
3485  *	Erases the sectors in the given inclusive range.
3486  */
3487 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3488 {
3489 	int ret = 0;
3490 
3491 	if (end >= adapter->params.sf_nsec)
3492 		return -EINVAL;
3493 
3494 	while (start <= end) {
3495 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3496 		    (ret = sf1_write(adapter, 4, 0, 1,
3497 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3498 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3499 			dev_err(adapter->pdev_dev,
3500 				"erase of flash sector %d failed, error %d\n",
3501 				start, ret);
3502 			break;
3503 		}
3504 		start++;
3505 	}
3506 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3507 	return ret;
3508 }
3509 
3510 /**
3511  *	t4_flash_cfg_addr - return the address of the flash configuration file
3512  *	@adapter: the adapter
3513  *
3514  *	Return the address within the flash where the Firmware Configuration
3515  *	File is stored.
3516  */
3517 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3518 {
3519 	if (adapter->params.sf_size == 0x100000)
3520 		return FLASH_FPGA_CFG_START;
3521 	else
3522 		return FLASH_CFG_START;
3523 }
3524 
3525 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3526  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3527  * and emit an error message for mismatched firmware to save our caller the
3528  * effort ...
3529  */
3530 static bool t4_fw_matches_chip(const struct adapter *adap,
3531 			       const struct fw_hdr *hdr)
3532 {
3533 	/* The expression below will return FALSE for any unsupported adapter
3534 	 * which will keep us "honest" in the future ...
3535 	 */
3536 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3537 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3538 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3539 		return true;
3540 
3541 	dev_err(adap->pdev_dev,
3542 		"FW image (%d) is not suitable for this adapter (%d)\n",
3543 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3544 	return false;
3545 }
3546 
3547 /**
3548  *	t4_load_fw - download firmware
3549  *	@adap: the adapter
3550  *	@fw_data: the firmware image to write
3551  *	@size: image size
3552  *
3553  *	Write the supplied firmware image to the card's serial flash.
3554  */
3555 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3556 {
3557 	u32 csum;
3558 	int ret, addr;
3559 	unsigned int i;
3560 	u8 first_page[SF_PAGE_SIZE];
3561 	const __be32 *p = (const __be32 *)fw_data;
3562 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3563 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3564 	unsigned int fw_img_start = adap->params.sf_fw_start;
3565 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3566 
3567 	if (!size) {
3568 		dev_err(adap->pdev_dev, "FW image has no data\n");
3569 		return -EINVAL;
3570 	}
3571 	if (size & 511) {
3572 		dev_err(adap->pdev_dev,
3573 			"FW image size not multiple of 512 bytes\n");
3574 		return -EINVAL;
3575 	}
3576 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3577 		dev_err(adap->pdev_dev,
3578 			"FW image size differs from size in FW header\n");
3579 		return -EINVAL;
3580 	}
3581 	if (size > FW_MAX_SIZE) {
3582 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3583 			FW_MAX_SIZE);
3584 		return -EFBIG;
3585 	}
3586 	if (!t4_fw_matches_chip(adap, hdr))
3587 		return -EINVAL;
3588 
3589 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3590 		csum += be32_to_cpu(p[i]);
3591 
3592 	if (csum != 0xffffffff) {
3593 		dev_err(adap->pdev_dev,
3594 			"corrupted firmware image, checksum %#x\n", csum);
3595 		return -EINVAL;
3596 	}
3597 
3598 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3599 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3600 	if (ret)
3601 		goto out;
3602 
3603 	/*
3604 	 * We write the correct version at the end so the driver can see a bad
3605 	 * version if the FW write fails.  Start by writing a copy of the
3606 	 * first page with a bad version.
3607 	 */
3608 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3609 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3610 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3611 	if (ret)
3612 		goto out;
3613 
3614 	addr = fw_img_start;
3615 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3616 		addr += SF_PAGE_SIZE;
3617 		fw_data += SF_PAGE_SIZE;
3618 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3619 		if (ret)
3620 			goto out;
3621 	}
3622 
3623 	ret = t4_write_flash(adap,
3624 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3625 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3626 out:
3627 	if (ret)
3628 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3629 			ret);
3630 	else
3631 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3632 	return ret;
3633 }
3634 
3635 /**
3636  *	t4_phy_fw_ver - return current PHY firmware version
3637  *	@adap: the adapter
3638  *	@phy_fw_ver: return value buffer for PHY firmware version
3639  *
3640  *	Returns the current version of external PHY firmware on the
3641  *	adapter.
3642  */
3643 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3644 {
3645 	u32 param, val;
3646 	int ret;
3647 
3648 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3649 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3650 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3651 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3652 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3653 			      &param, &val);
3654 	if (ret < 0)
3655 		return ret;
3656 	*phy_fw_ver = val;
3657 	return 0;
3658 }
3659 
3660 /**
3661  *	t4_load_phy_fw - download port PHY firmware
3662  *	@adap: the adapter
3663  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3664  *	@win_lock: the lock to use to guard the memory copy
3665  *	@phy_fw_version: function to check PHY firmware versions
3666  *	@phy_fw_data: the PHY firmware image to write
3667  *	@phy_fw_size: image size
3668  *
3669  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3670  *	@phy_fw_version is supplied, then it will be used to determine if
3671  *	it's necessary to perform the transfer by comparing the version
3672  *	of any existing adapter PHY firmware with that of the passed in
3673  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3674  *	around the call to t4_memory_rw() which transfers the PHY firmware
3675  *	to the adapter.
3676  *
3677  *	A negative error number will be returned if an error occurs.  If
3678  *	version number support is available and there's no need to upgrade
3679  *	the firmware, 0 will be returned.  If firmware is successfully
3680  *	transferred to the adapter, 1 will be retured.
3681  *
3682  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3683  *	a result, a RESET of the adapter would cause that RAM to lose its
3684  *	contents.  Thus, loading PHY firmware on such adapters must happen
3685  *	after any FW_RESET_CMDs ...
3686  */
3687 int t4_load_phy_fw(struct adapter *adap,
3688 		   int win, spinlock_t *win_lock,
3689 		   int (*phy_fw_version)(const u8 *, size_t),
3690 		   const u8 *phy_fw_data, size_t phy_fw_size)
3691 {
3692 	unsigned long mtype = 0, maddr = 0;
3693 	u32 param, val;
3694 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3695 	int ret;
3696 
3697 	/* If we have version number support, then check to see if the adapter
3698 	 * already has up-to-date PHY firmware loaded.
3699 	 */
3700 	 if (phy_fw_version) {
3701 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3702 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3703 		if (ret < 0)
3704 			return ret;
3705 
3706 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3707 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3708 				"version %#x\n", cur_phy_fw_ver);
3709 			return 0;
3710 		}
3711 	}
3712 
3713 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3714 	 * The size of the file requires a special version of the READ coommand
3715 	 * which will pass the file size via the values field in PARAMS_CMD and
3716 	 * retrieve the return value from firmware and place it in the same
3717 	 * buffer values
3718 	 */
3719 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3720 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3721 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3722 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3723 	val = phy_fw_size;
3724 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3725 				 &param, &val, 1, true);
3726 	if (ret < 0)
3727 		return ret;
3728 	mtype = val >> 8;
3729 	maddr = (val & 0xff) << 16;
3730 
3731 	/* Copy the supplied PHY Firmware image to the adapter memory location
3732 	 * allocated by the adapter firmware.
3733 	 */
3734 	if (win_lock)
3735 		spin_lock_bh(win_lock);
3736 	ret = t4_memory_rw(adap, win, mtype, maddr,
3737 			   phy_fw_size, (__be32 *)phy_fw_data,
3738 			   T4_MEMORY_WRITE);
3739 	if (win_lock)
3740 		spin_unlock_bh(win_lock);
3741 	if (ret)
3742 		return ret;
3743 
3744 	/* Tell the firmware that the PHY firmware image has been written to
3745 	 * RAM and it can now start copying it over to the PHYs.  The chip
3746 	 * firmware will RESET the affected PHYs as part of this operation
3747 	 * leaving them running the new PHY firmware image.
3748 	 */
3749 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3750 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3751 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3752 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3753 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3754 				    &param, &val, 30000);
3755 
3756 	/* If we have version number support, then check to see that the new
3757 	 * firmware got loaded properly.
3758 	 */
3759 	if (phy_fw_version) {
3760 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3761 		if (ret < 0)
3762 			return ret;
3763 
3764 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3765 			CH_WARN(adap, "PHY Firmware did not update: "
3766 				"version on adapter %#x, "
3767 				"version flashed %#x\n",
3768 				cur_phy_fw_ver, new_phy_fw_vers);
3769 			return -ENXIO;
3770 		}
3771 	}
3772 
3773 	return 1;
3774 }
3775 
3776 /**
3777  *	t4_fwcache - firmware cache operation
3778  *	@adap: the adapter
3779  *	@op  : the operation (flush or flush and invalidate)
3780  */
3781 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3782 {
3783 	struct fw_params_cmd c;
3784 
3785 	memset(&c, 0, sizeof(c));
3786 	c.op_to_vfn =
3787 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3788 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3789 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3790 			    FW_PARAMS_CMD_VFN_V(0));
3791 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3792 	c.param[0].mnem =
3793 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3794 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3795 	c.param[0].val = (__force __be32)op;
3796 
3797 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3798 }
3799 
3800 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3801 			unsigned int *pif_req_wrptr,
3802 			unsigned int *pif_rsp_wrptr)
3803 {
3804 	int i, j;
3805 	u32 cfg, val, req, rsp;
3806 
3807 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3808 	if (cfg & LADBGEN_F)
3809 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3810 
3811 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3812 	req = POLADBGWRPTR_G(val);
3813 	rsp = PILADBGWRPTR_G(val);
3814 	if (pif_req_wrptr)
3815 		*pif_req_wrptr = req;
3816 	if (pif_rsp_wrptr)
3817 		*pif_rsp_wrptr = rsp;
3818 
3819 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3820 		for (j = 0; j < 6; j++) {
3821 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3822 				     PILADBGRDPTR_V(rsp));
3823 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3824 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3825 			req++;
3826 			rsp++;
3827 		}
3828 		req = (req + 2) & POLADBGRDPTR_M;
3829 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3830 	}
3831 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3832 }
3833 
3834 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3835 {
3836 	u32 cfg;
3837 	int i, j, idx;
3838 
3839 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3840 	if (cfg & LADBGEN_F)
3841 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3842 
3843 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3844 		for (j = 0; j < 5; j++) {
3845 			idx = 8 * i + j;
3846 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3847 				     PILADBGRDPTR_V(idx));
3848 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3849 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3850 		}
3851 	}
3852 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3853 }
3854 
3855 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3856 {
3857 	unsigned int i, j;
3858 
3859 	for (i = 0; i < 8; i++) {
3860 		u32 *p = la_buf + i;
3861 
3862 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3863 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3864 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3865 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3866 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3867 	}
3868 }
3869 
3870 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3871 		     FW_PORT_CAP32_ANEG)
3872 
3873 /**
3874  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3875  *	@caps16: a 16-bit Port Capabilities value
3876  *
3877  *	Returns the equivalent 32-bit Port Capabilities value.
3878  */
3879 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3880 {
3881 	fw_port_cap32_t caps32 = 0;
3882 
3883 	#define CAP16_TO_CAP32(__cap) \
3884 		do { \
3885 			if (caps16 & FW_PORT_CAP_##__cap) \
3886 				caps32 |= FW_PORT_CAP32_##__cap; \
3887 		} while (0)
3888 
3889 	CAP16_TO_CAP32(SPEED_100M);
3890 	CAP16_TO_CAP32(SPEED_1G);
3891 	CAP16_TO_CAP32(SPEED_25G);
3892 	CAP16_TO_CAP32(SPEED_10G);
3893 	CAP16_TO_CAP32(SPEED_40G);
3894 	CAP16_TO_CAP32(SPEED_100G);
3895 	CAP16_TO_CAP32(FC_RX);
3896 	CAP16_TO_CAP32(FC_TX);
3897 	CAP16_TO_CAP32(ANEG);
3898 	CAP16_TO_CAP32(MDIX);
3899 	CAP16_TO_CAP32(MDIAUTO);
3900 	CAP16_TO_CAP32(FEC_RS);
3901 	CAP16_TO_CAP32(FEC_BASER_RS);
3902 	CAP16_TO_CAP32(802_3_PAUSE);
3903 	CAP16_TO_CAP32(802_3_ASM_DIR);
3904 
3905 	#undef CAP16_TO_CAP32
3906 
3907 	return caps32;
3908 }
3909 
3910 /**
3911  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3912  *	@caps32: a 32-bit Port Capabilities value
3913  *
3914  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3915  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3916  *	Port Capabilities and some fields/values may not make it.
3917  */
3918 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3919 {
3920 	fw_port_cap16_t caps16 = 0;
3921 
3922 	#define CAP32_TO_CAP16(__cap) \
3923 		do { \
3924 			if (caps32 & FW_PORT_CAP32_##__cap) \
3925 				caps16 |= FW_PORT_CAP_##__cap; \
3926 		} while (0)
3927 
3928 	CAP32_TO_CAP16(SPEED_100M);
3929 	CAP32_TO_CAP16(SPEED_1G);
3930 	CAP32_TO_CAP16(SPEED_10G);
3931 	CAP32_TO_CAP16(SPEED_25G);
3932 	CAP32_TO_CAP16(SPEED_40G);
3933 	CAP32_TO_CAP16(SPEED_100G);
3934 	CAP32_TO_CAP16(FC_RX);
3935 	CAP32_TO_CAP16(FC_TX);
3936 	CAP32_TO_CAP16(802_3_PAUSE);
3937 	CAP32_TO_CAP16(802_3_ASM_DIR);
3938 	CAP32_TO_CAP16(ANEG);
3939 	CAP32_TO_CAP16(MDIX);
3940 	CAP32_TO_CAP16(MDIAUTO);
3941 	CAP32_TO_CAP16(FEC_RS);
3942 	CAP32_TO_CAP16(FEC_BASER_RS);
3943 
3944 	#undef CAP32_TO_CAP16
3945 
3946 	return caps16;
3947 }
3948 
3949 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3950 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3951 {
3952 	enum cc_pause cc_pause = 0;
3953 
3954 	if (fw_pause & FW_PORT_CAP32_FC_RX)
3955 		cc_pause |= PAUSE_RX;
3956 	if (fw_pause & FW_PORT_CAP32_FC_TX)
3957 		cc_pause |= PAUSE_TX;
3958 
3959 	return cc_pause;
3960 }
3961 
3962 /* Translate Common Code Pause specification into Firmware Port Capabilities */
3963 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
3964 {
3965 	fw_port_cap32_t fw_pause = 0;
3966 
3967 	if (cc_pause & PAUSE_RX)
3968 		fw_pause |= FW_PORT_CAP32_FC_RX;
3969 	if (cc_pause & PAUSE_TX)
3970 		fw_pause |= FW_PORT_CAP32_FC_TX;
3971 
3972 	return fw_pause;
3973 }
3974 
3975 /* Translate Firmware Forward Error Correction specification to Common Code */
3976 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
3977 {
3978 	enum cc_fec cc_fec = 0;
3979 
3980 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
3981 		cc_fec |= FEC_RS;
3982 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
3983 		cc_fec |= FEC_BASER_RS;
3984 
3985 	return cc_fec;
3986 }
3987 
3988 /* Translate Common Code Forward Error Correction specification to Firmware */
3989 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
3990 {
3991 	fw_port_cap32_t fw_fec = 0;
3992 
3993 	if (cc_fec & FEC_RS)
3994 		fw_fec |= FW_PORT_CAP32_FEC_RS;
3995 	if (cc_fec & FEC_BASER_RS)
3996 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
3997 
3998 	return fw_fec;
3999 }
4000 
4001 /**
4002  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4003  *	@adapter: the adapter
4004  *	@mbox: the Firmware Mailbox to use
4005  *	@port: the Port ID
4006  *	@lc: the Port's Link Configuration
4007  *
4008  *	Set up a port's MAC and PHY according to a desired link configuration.
4009  *	- If the PHY can auto-negotiate first decide what to advertise, then
4010  *	  enable/disable auto-negotiation as desired, and reset.
4011  *	- If the PHY does not auto-negotiate just reset it.
4012  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4013  *	  otherwise do it later based on the outcome of auto-negotiation.
4014  */
4015 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox,
4016 		  unsigned int port, struct link_config *lc)
4017 {
4018 	unsigned int fw_caps = adapter->params.fw_caps_support;
4019 	struct fw_port_cmd cmd;
4020 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
4021 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4022 
4023 	lc->link_ok = 0;
4024 
4025 	/* Convert driver coding of Pause Frame Flow Control settings into the
4026 	 * Firmware's API.
4027 	 */
4028 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4029 
4030 	/* Convert Common Code Forward Error Control settings into the
4031 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4032 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4033 	 * sent us as part of it's IEEE 802.3-based interpratation of
4034 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4035 	 * use whatever is in the current Requested FEC settings.
4036 	 */
4037 	if (lc->requested_fec & FEC_AUTO)
4038 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4039 	else
4040 		cc_fec = lc->requested_fec;
4041 	fw_fec = cc_to_fwcap_fec(cc_fec);
4042 
4043 	/* Figure out what our Requested Port Capabilities are going to be.
4044 	 */
4045 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4046 		rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
4047 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4048 		lc->fec = cc_fec;
4049 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4050 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4051 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4052 		lc->fec = cc_fec;
4053 	} else {
4054 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4055 	}
4056 
4057 	/* And send that on to the Firmware ...
4058 	 */
4059 	memset(&cmd, 0, sizeof(cmd));
4060 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4061 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4062 				       FW_PORT_CMD_PORTID_V(port));
4063 	cmd.action_to_len16 =
4064 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4065 						 ? FW_PORT_ACTION_L1_CFG
4066 						 : FW_PORT_ACTION_L1_CFG32) |
4067 			    FW_LEN16(cmd));
4068 	if (fw_caps == FW_CAPS16)
4069 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4070 	else
4071 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4072 	return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4073 }
4074 
4075 /**
4076  *	t4_restart_aneg - restart autonegotiation
4077  *	@adap: the adapter
4078  *	@mbox: mbox to use for the FW command
4079  *	@port: the port id
4080  *
4081  *	Restarts autonegotiation for the selected port.
4082  */
4083 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4084 {
4085 	struct fw_port_cmd c;
4086 
4087 	memset(&c, 0, sizeof(c));
4088 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4089 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4090 				     FW_PORT_CMD_PORTID_V(port));
4091 	c.action_to_len16 =
4092 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4093 			    FW_LEN16(c));
4094 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4095 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4096 }
4097 
4098 typedef void (*int_handler_t)(struct adapter *adap);
4099 
4100 struct intr_info {
4101 	unsigned int mask;       /* bits to check in interrupt status */
4102 	const char *msg;         /* message to print or NULL */
4103 	short stat_idx;          /* stat counter to increment or -1 */
4104 	unsigned short fatal;    /* whether the condition reported is fatal */
4105 	int_handler_t int_handler; /* platform-specific int handler */
4106 };
4107 
4108 /**
4109  *	t4_handle_intr_status - table driven interrupt handler
4110  *	@adapter: the adapter that generated the interrupt
4111  *	@reg: the interrupt status register to process
4112  *	@acts: table of interrupt actions
4113  *
4114  *	A table driven interrupt handler that applies a set of masks to an
4115  *	interrupt status word and performs the corresponding actions if the
4116  *	interrupts described by the mask have occurred.  The actions include
4117  *	optionally emitting a warning or alert message.  The table is terminated
4118  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4119  *	conditions.
4120  */
4121 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4122 				 const struct intr_info *acts)
4123 {
4124 	int fatal = 0;
4125 	unsigned int mask = 0;
4126 	unsigned int status = t4_read_reg(adapter, reg);
4127 
4128 	for ( ; acts->mask; ++acts) {
4129 		if (!(status & acts->mask))
4130 			continue;
4131 		if (acts->fatal) {
4132 			fatal++;
4133 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4134 				  status & acts->mask);
4135 		} else if (acts->msg && printk_ratelimit())
4136 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4137 				 status & acts->mask);
4138 		if (acts->int_handler)
4139 			acts->int_handler(adapter);
4140 		mask |= acts->mask;
4141 	}
4142 	status &= mask;
4143 	if (status)                           /* clear processed interrupts */
4144 		t4_write_reg(adapter, reg, status);
4145 	return fatal;
4146 }
4147 
4148 /*
4149  * Interrupt handler for the PCIE module.
4150  */
4151 static void pcie_intr_handler(struct adapter *adapter)
4152 {
4153 	static const struct intr_info sysbus_intr_info[] = {
4154 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4155 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4156 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4157 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4158 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4159 		{ 0 }
4160 	};
4161 	static const struct intr_info pcie_port_intr_info[] = {
4162 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4163 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4164 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4165 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4166 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4167 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4168 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4169 		{ RDPE_F, "Rx data parity error", -1, 1 },
4170 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4171 		{ 0 }
4172 	};
4173 	static const struct intr_info pcie_intr_info[] = {
4174 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4175 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4176 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4177 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4178 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4179 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4180 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4181 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4182 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4183 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4184 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4185 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4186 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4187 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4188 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4189 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4190 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4191 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4192 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4193 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4194 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4195 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4196 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4197 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4198 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4199 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4200 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4201 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4202 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4203 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4204 		  -1, 0 },
4205 		{ 0 }
4206 	};
4207 
4208 	static struct intr_info t5_pcie_intr_info[] = {
4209 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4210 		  -1, 1 },
4211 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4212 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4213 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4214 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4215 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4216 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4217 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4218 		  -1, 1 },
4219 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4220 		  -1, 1 },
4221 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4222 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4223 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4224 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4225 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4226 		  -1, 1 },
4227 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4228 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4229 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4230 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4231 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4232 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4233 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4234 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4235 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4236 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4237 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4238 		  -1, 1 },
4239 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4240 		  -1, 1 },
4241 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4242 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4243 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4244 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4245 		{ 0 }
4246 	};
4247 
4248 	int fat;
4249 
4250 	if (is_t4(adapter->params.chip))
4251 		fat = t4_handle_intr_status(adapter,
4252 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4253 				sysbus_intr_info) +
4254 			t4_handle_intr_status(adapter,
4255 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4256 					pcie_port_intr_info) +
4257 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4258 					      pcie_intr_info);
4259 	else
4260 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4261 					    t5_pcie_intr_info);
4262 
4263 	if (fat)
4264 		t4_fatal_err(adapter);
4265 }
4266 
4267 /*
4268  * TP interrupt handler.
4269  */
4270 static void tp_intr_handler(struct adapter *adapter)
4271 {
4272 	static const struct intr_info tp_intr_info[] = {
4273 		{ 0x3fffffff, "TP parity error", -1, 1 },
4274 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4275 		{ 0 }
4276 	};
4277 
4278 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4279 		t4_fatal_err(adapter);
4280 }
4281 
4282 /*
4283  * SGE interrupt handler.
4284  */
4285 static void sge_intr_handler(struct adapter *adapter)
4286 {
4287 	u64 v;
4288 	u32 err;
4289 
4290 	static const struct intr_info sge_intr_info[] = {
4291 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4292 		  "SGE received CPL exceeding IQE size", -1, 1 },
4293 		{ ERR_INVALID_CIDX_INC_F,
4294 		  "SGE GTS CIDX increment too large", -1, 0 },
4295 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4296 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4297 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4298 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4299 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4300 		  0 },
4301 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4302 		  0 },
4303 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4304 		  0 },
4305 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4306 		  0 },
4307 		{ ERR_ING_CTXT_PRIO_F,
4308 		  "SGE too many priority ingress contexts", -1, 0 },
4309 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4310 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4311 		{ 0 }
4312 	};
4313 
4314 	static struct intr_info t4t5_sge_intr_info[] = {
4315 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4316 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4317 		{ ERR_EGR_CTXT_PRIO_F,
4318 		  "SGE too many priority egress contexts", -1, 0 },
4319 		{ 0 }
4320 	};
4321 
4322 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4323 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4324 	if (v) {
4325 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4326 				(unsigned long long)v);
4327 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4328 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4329 	}
4330 
4331 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4332 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4333 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4334 					   t4t5_sge_intr_info);
4335 
4336 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4337 	if (err & ERROR_QID_VALID_F) {
4338 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4339 			ERROR_QID_G(err));
4340 		if (err & UNCAPTURED_ERROR_F)
4341 			dev_err(adapter->pdev_dev,
4342 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4343 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4344 			     UNCAPTURED_ERROR_F);
4345 	}
4346 
4347 	if (v != 0)
4348 		t4_fatal_err(adapter);
4349 }
4350 
4351 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4352 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4353 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4354 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4355 
4356 /*
4357  * CIM interrupt handler.
4358  */
4359 static void cim_intr_handler(struct adapter *adapter)
4360 {
4361 	static const struct intr_info cim_intr_info[] = {
4362 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4363 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4364 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4365 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4366 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4367 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4368 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4369 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4370 		{ 0 }
4371 	};
4372 	static const struct intr_info cim_upintr_info[] = {
4373 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4374 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4375 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4376 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4377 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4378 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4379 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4380 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4381 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4382 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4383 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4384 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4385 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4386 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4387 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4388 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4389 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4390 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4391 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4392 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4393 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4394 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4395 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4396 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4397 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4398 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4399 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4400 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4401 		{ 0 }
4402 	};
4403 
4404 	u32 val, fw_err;
4405 	int fat;
4406 
4407 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4408 	if (fw_err & PCIE_FW_ERR_F)
4409 		t4_report_fw_error(adapter);
4410 
4411 	/* When the Firmware detects an internal error which normally
4412 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4413 	 * in order to make sure the Host sees the Firmware Crash.  So
4414 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4415 	 * ignore the Timer0 interrupt.
4416 	 */
4417 
4418 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4419 	if (val & TIMER0INT_F)
4420 		if (!(fw_err & PCIE_FW_ERR_F) ||
4421 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4422 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4423 				     TIMER0INT_F);
4424 
4425 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4426 				    cim_intr_info) +
4427 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4428 				    cim_upintr_info);
4429 	if (fat)
4430 		t4_fatal_err(adapter);
4431 }
4432 
4433 /*
4434  * ULP RX interrupt handler.
4435  */
4436 static void ulprx_intr_handler(struct adapter *adapter)
4437 {
4438 	static const struct intr_info ulprx_intr_info[] = {
4439 		{ 0x1800000, "ULPRX context error", -1, 1 },
4440 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4441 		{ 0 }
4442 	};
4443 
4444 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4445 		t4_fatal_err(adapter);
4446 }
4447 
4448 /*
4449  * ULP TX interrupt handler.
4450  */
4451 static void ulptx_intr_handler(struct adapter *adapter)
4452 {
4453 	static const struct intr_info ulptx_intr_info[] = {
4454 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4455 		  0 },
4456 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4457 		  0 },
4458 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4459 		  0 },
4460 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4461 		  0 },
4462 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4463 		{ 0 }
4464 	};
4465 
4466 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4467 		t4_fatal_err(adapter);
4468 }
4469 
4470 /*
4471  * PM TX interrupt handler.
4472  */
4473 static void pmtx_intr_handler(struct adapter *adapter)
4474 {
4475 	static const struct intr_info pmtx_intr_info[] = {
4476 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4477 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4478 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4479 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4480 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4481 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4482 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4483 		  -1, 1 },
4484 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4485 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4486 		{ 0 }
4487 	};
4488 
4489 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4490 		t4_fatal_err(adapter);
4491 }
4492 
4493 /*
4494  * PM RX interrupt handler.
4495  */
4496 static void pmrx_intr_handler(struct adapter *adapter)
4497 {
4498 	static const struct intr_info pmrx_intr_info[] = {
4499 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4500 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4501 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4502 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4503 		  -1, 1 },
4504 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4505 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4506 		{ 0 }
4507 	};
4508 
4509 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4510 		t4_fatal_err(adapter);
4511 }
4512 
4513 /*
4514  * CPL switch interrupt handler.
4515  */
4516 static void cplsw_intr_handler(struct adapter *adapter)
4517 {
4518 	static const struct intr_info cplsw_intr_info[] = {
4519 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4520 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4521 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4522 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4523 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4524 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4525 		{ 0 }
4526 	};
4527 
4528 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4529 		t4_fatal_err(adapter);
4530 }
4531 
4532 /*
4533  * LE interrupt handler.
4534  */
4535 static void le_intr_handler(struct adapter *adap)
4536 {
4537 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4538 	static const struct intr_info le_intr_info[] = {
4539 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4540 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4541 		{ PARITYERR_F, "LE parity error", -1, 1 },
4542 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4543 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4544 		{ 0 }
4545 	};
4546 
4547 	static struct intr_info t6_le_intr_info[] = {
4548 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4549 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4550 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4551 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4552 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4553 		{ 0 }
4554 	};
4555 
4556 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4557 				  (chip <= CHELSIO_T5) ?
4558 				  le_intr_info : t6_le_intr_info))
4559 		t4_fatal_err(adap);
4560 }
4561 
4562 /*
4563  * MPS interrupt handler.
4564  */
4565 static void mps_intr_handler(struct adapter *adapter)
4566 {
4567 	static const struct intr_info mps_rx_intr_info[] = {
4568 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4569 		{ 0 }
4570 	};
4571 	static const struct intr_info mps_tx_intr_info[] = {
4572 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4573 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4574 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4575 		  -1, 1 },
4576 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4577 		  -1, 1 },
4578 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4579 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4580 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4581 		{ 0 }
4582 	};
4583 	static const struct intr_info t6_mps_tx_intr_info[] = {
4584 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4585 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4586 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4587 		  -1, 1 },
4588 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4589 		  -1, 1 },
4590 		/* MPS Tx Bubble is normal for T6 */
4591 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4592 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4593 		{ 0 }
4594 	};
4595 	static const struct intr_info mps_trc_intr_info[] = {
4596 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4597 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4598 		  -1, 1 },
4599 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4600 		{ 0 }
4601 	};
4602 	static const struct intr_info mps_stat_sram_intr_info[] = {
4603 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4604 		{ 0 }
4605 	};
4606 	static const struct intr_info mps_stat_tx_intr_info[] = {
4607 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4608 		{ 0 }
4609 	};
4610 	static const struct intr_info mps_stat_rx_intr_info[] = {
4611 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4612 		{ 0 }
4613 	};
4614 	static const struct intr_info mps_cls_intr_info[] = {
4615 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4616 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4617 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4618 		{ 0 }
4619 	};
4620 
4621 	int fat;
4622 
4623 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4624 				    mps_rx_intr_info) +
4625 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4626 				    is_t6(adapter->params.chip)
4627 				    ? t6_mps_tx_intr_info
4628 				    : mps_tx_intr_info) +
4629 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4630 				    mps_trc_intr_info) +
4631 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4632 				    mps_stat_sram_intr_info) +
4633 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4634 				    mps_stat_tx_intr_info) +
4635 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4636 				    mps_stat_rx_intr_info) +
4637 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4638 				    mps_cls_intr_info);
4639 
4640 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4641 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4642 	if (fat)
4643 		t4_fatal_err(adapter);
4644 }
4645 
4646 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4647 		      ECC_UE_INT_CAUSE_F)
4648 
4649 /*
4650  * EDC/MC interrupt handler.
4651  */
4652 static void mem_intr_handler(struct adapter *adapter, int idx)
4653 {
4654 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4655 
4656 	unsigned int addr, cnt_addr, v;
4657 
4658 	if (idx <= MEM_EDC1) {
4659 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4660 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4661 	} else if (idx == MEM_MC) {
4662 		if (is_t4(adapter->params.chip)) {
4663 			addr = MC_INT_CAUSE_A;
4664 			cnt_addr = MC_ECC_STATUS_A;
4665 		} else {
4666 			addr = MC_P_INT_CAUSE_A;
4667 			cnt_addr = MC_P_ECC_STATUS_A;
4668 		}
4669 	} else {
4670 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4671 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4672 	}
4673 
4674 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4675 	if (v & PERR_INT_CAUSE_F)
4676 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4677 			  name[idx]);
4678 	if (v & ECC_CE_INT_CAUSE_F) {
4679 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4680 
4681 		t4_edc_err_read(adapter, idx);
4682 
4683 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4684 		if (printk_ratelimit())
4685 			dev_warn(adapter->pdev_dev,
4686 				 "%u %s correctable ECC data error%s\n",
4687 				 cnt, name[idx], cnt > 1 ? "s" : "");
4688 	}
4689 	if (v & ECC_UE_INT_CAUSE_F)
4690 		dev_alert(adapter->pdev_dev,
4691 			  "%s uncorrectable ECC data error\n", name[idx]);
4692 
4693 	t4_write_reg(adapter, addr, v);
4694 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4695 		t4_fatal_err(adapter);
4696 }
4697 
4698 /*
4699  * MA interrupt handler.
4700  */
4701 static void ma_intr_handler(struct adapter *adap)
4702 {
4703 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4704 
4705 	if (status & MEM_PERR_INT_CAUSE_F) {
4706 		dev_alert(adap->pdev_dev,
4707 			  "MA parity error, parity status %#x\n",
4708 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4709 		if (is_t5(adap->params.chip))
4710 			dev_alert(adap->pdev_dev,
4711 				  "MA parity error, parity status %#x\n",
4712 				  t4_read_reg(adap,
4713 					      MA_PARITY_ERROR_STATUS2_A));
4714 	}
4715 	if (status & MEM_WRAP_INT_CAUSE_F) {
4716 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4717 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4718 			  "client %u to address %#x\n",
4719 			  MEM_WRAP_CLIENT_NUM_G(v),
4720 			  MEM_WRAP_ADDRESS_G(v) << 4);
4721 	}
4722 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4723 	t4_fatal_err(adap);
4724 }
4725 
4726 /*
4727  * SMB interrupt handler.
4728  */
4729 static void smb_intr_handler(struct adapter *adap)
4730 {
4731 	static const struct intr_info smb_intr_info[] = {
4732 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4733 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4734 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4735 		{ 0 }
4736 	};
4737 
4738 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4739 		t4_fatal_err(adap);
4740 }
4741 
4742 /*
4743  * NC-SI interrupt handler.
4744  */
4745 static void ncsi_intr_handler(struct adapter *adap)
4746 {
4747 	static const struct intr_info ncsi_intr_info[] = {
4748 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4749 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4750 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4751 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4752 		{ 0 }
4753 	};
4754 
4755 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4756 		t4_fatal_err(adap);
4757 }
4758 
4759 /*
4760  * XGMAC interrupt handler.
4761  */
4762 static void xgmac_intr_handler(struct adapter *adap, int port)
4763 {
4764 	u32 v, int_cause_reg;
4765 
4766 	if (is_t4(adap->params.chip))
4767 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4768 	else
4769 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4770 
4771 	v = t4_read_reg(adap, int_cause_reg);
4772 
4773 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4774 	if (!v)
4775 		return;
4776 
4777 	if (v & TXFIFO_PRTY_ERR_F)
4778 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4779 			  port);
4780 	if (v & RXFIFO_PRTY_ERR_F)
4781 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4782 			  port);
4783 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4784 	t4_fatal_err(adap);
4785 }
4786 
4787 /*
4788  * PL interrupt handler.
4789  */
4790 static void pl_intr_handler(struct adapter *adap)
4791 {
4792 	static const struct intr_info pl_intr_info[] = {
4793 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4794 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4795 		{ 0 }
4796 	};
4797 
4798 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4799 		t4_fatal_err(adap);
4800 }
4801 
4802 #define PF_INTR_MASK (PFSW_F)
4803 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4804 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4805 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4806 
4807 /**
4808  *	t4_slow_intr_handler - control path interrupt handler
4809  *	@adapter: the adapter
4810  *
4811  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4812  *	The designation 'slow' is because it involves register reads, while
4813  *	data interrupts typically don't involve any MMIOs.
4814  */
4815 int t4_slow_intr_handler(struct adapter *adapter)
4816 {
4817 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4818 
4819 	if (!(cause & GLBL_INTR_MASK))
4820 		return 0;
4821 	if (cause & CIM_F)
4822 		cim_intr_handler(adapter);
4823 	if (cause & MPS_F)
4824 		mps_intr_handler(adapter);
4825 	if (cause & NCSI_F)
4826 		ncsi_intr_handler(adapter);
4827 	if (cause & PL_F)
4828 		pl_intr_handler(adapter);
4829 	if (cause & SMB_F)
4830 		smb_intr_handler(adapter);
4831 	if (cause & XGMAC0_F)
4832 		xgmac_intr_handler(adapter, 0);
4833 	if (cause & XGMAC1_F)
4834 		xgmac_intr_handler(adapter, 1);
4835 	if (cause & XGMAC_KR0_F)
4836 		xgmac_intr_handler(adapter, 2);
4837 	if (cause & XGMAC_KR1_F)
4838 		xgmac_intr_handler(adapter, 3);
4839 	if (cause & PCIE_F)
4840 		pcie_intr_handler(adapter);
4841 	if (cause & MC_F)
4842 		mem_intr_handler(adapter, MEM_MC);
4843 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4844 		mem_intr_handler(adapter, MEM_MC1);
4845 	if (cause & EDC0_F)
4846 		mem_intr_handler(adapter, MEM_EDC0);
4847 	if (cause & EDC1_F)
4848 		mem_intr_handler(adapter, MEM_EDC1);
4849 	if (cause & LE_F)
4850 		le_intr_handler(adapter);
4851 	if (cause & TP_F)
4852 		tp_intr_handler(adapter);
4853 	if (cause & MA_F)
4854 		ma_intr_handler(adapter);
4855 	if (cause & PM_TX_F)
4856 		pmtx_intr_handler(adapter);
4857 	if (cause & PM_RX_F)
4858 		pmrx_intr_handler(adapter);
4859 	if (cause & ULP_RX_F)
4860 		ulprx_intr_handler(adapter);
4861 	if (cause & CPL_SWITCH_F)
4862 		cplsw_intr_handler(adapter);
4863 	if (cause & SGE_F)
4864 		sge_intr_handler(adapter);
4865 	if (cause & ULP_TX_F)
4866 		ulptx_intr_handler(adapter);
4867 
4868 	/* Clear the interrupts just processed for which we are the master. */
4869 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4870 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4871 	return 1;
4872 }
4873 
4874 /**
4875  *	t4_intr_enable - enable interrupts
4876  *	@adapter: the adapter whose interrupts should be enabled
4877  *
4878  *	Enable PF-specific interrupts for the calling function and the top-level
4879  *	interrupt concentrator for global interrupts.  Interrupts are already
4880  *	enabled at each module,	here we just enable the roots of the interrupt
4881  *	hierarchies.
4882  *
4883  *	Note: this function should be called only when the driver manages
4884  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4885  *	function at a time should be doing this.
4886  */
4887 void t4_intr_enable(struct adapter *adapter)
4888 {
4889 	u32 val = 0;
4890 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4891 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4892 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4893 
4894 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4895 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4896 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4897 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4898 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4899 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4900 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4901 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4902 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4903 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4904 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4905 }
4906 
4907 /**
4908  *	t4_intr_disable - disable interrupts
4909  *	@adapter: the adapter whose interrupts should be disabled
4910  *
4911  *	Disable interrupts.  We only disable the top-level interrupt
4912  *	concentrators.  The caller must be a PCI function managing global
4913  *	interrupts.
4914  */
4915 void t4_intr_disable(struct adapter *adapter)
4916 {
4917 	u32 whoami, pf;
4918 
4919 	if (pci_channel_offline(adapter->pdev))
4920 		return;
4921 
4922 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4923 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4924 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4925 
4926 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4927 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4928 }
4929 
4930 unsigned int t4_chip_rss_size(struct adapter *adap)
4931 {
4932 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
4933 		return RSS_NENTRIES;
4934 	else
4935 		return T6_RSS_NENTRIES;
4936 }
4937 
4938 /**
4939  *	t4_config_rss_range - configure a portion of the RSS mapping table
4940  *	@adapter: the adapter
4941  *	@mbox: mbox to use for the FW command
4942  *	@viid: virtual interface whose RSS subtable is to be written
4943  *	@start: start entry in the table to write
4944  *	@n: how many table entries to write
4945  *	@rspq: values for the response queue lookup table
4946  *	@nrspq: number of values in @rspq
4947  *
4948  *	Programs the selected part of the VI's RSS mapping table with the
4949  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4950  *	until the full table range is populated.
4951  *
4952  *	The caller must ensure the values in @rspq are in the range allowed for
4953  *	@viid.
4954  */
4955 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4956 			int start, int n, const u16 *rspq, unsigned int nrspq)
4957 {
4958 	int ret;
4959 	const u16 *rsp = rspq;
4960 	const u16 *rsp_end = rspq + nrspq;
4961 	struct fw_rss_ind_tbl_cmd cmd;
4962 
4963 	memset(&cmd, 0, sizeof(cmd));
4964 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4965 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4966 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4967 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4968 
4969 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4970 	while (n > 0) {
4971 		int nq = min(n, 32);
4972 		__be32 *qp = &cmd.iq0_to_iq2;
4973 
4974 		cmd.niqid = cpu_to_be16(nq);
4975 		cmd.startidx = cpu_to_be16(start);
4976 
4977 		start += nq;
4978 		n -= nq;
4979 
4980 		while (nq > 0) {
4981 			unsigned int v;
4982 
4983 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4984 			if (++rsp >= rsp_end)
4985 				rsp = rspq;
4986 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4987 			if (++rsp >= rsp_end)
4988 				rsp = rspq;
4989 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4990 			if (++rsp >= rsp_end)
4991 				rsp = rspq;
4992 
4993 			*qp++ = cpu_to_be32(v);
4994 			nq -= 3;
4995 		}
4996 
4997 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4998 		if (ret)
4999 			return ret;
5000 	}
5001 	return 0;
5002 }
5003 
5004 /**
5005  *	t4_config_glbl_rss - configure the global RSS mode
5006  *	@adapter: the adapter
5007  *	@mbox: mbox to use for the FW command
5008  *	@mode: global RSS mode
5009  *	@flags: mode-specific flags
5010  *
5011  *	Sets the global RSS mode.
5012  */
5013 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5014 		       unsigned int flags)
5015 {
5016 	struct fw_rss_glb_config_cmd c;
5017 
5018 	memset(&c, 0, sizeof(c));
5019 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5020 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5021 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5022 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5023 		c.u.manual.mode_pkd =
5024 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5025 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5026 		c.u.basicvirtual.mode_pkd =
5027 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5028 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5029 	} else
5030 		return -EINVAL;
5031 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5032 }
5033 
5034 /**
5035  *	t4_config_vi_rss - configure per VI RSS settings
5036  *	@adapter: the adapter
5037  *	@mbox: mbox to use for the FW command
5038  *	@viid: the VI id
5039  *	@flags: RSS flags
5040  *	@defq: id of the default RSS queue for the VI.
5041  *
5042  *	Configures VI-specific RSS properties.
5043  */
5044 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5045 		     unsigned int flags, unsigned int defq)
5046 {
5047 	struct fw_rss_vi_config_cmd c;
5048 
5049 	memset(&c, 0, sizeof(c));
5050 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5051 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5052 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5053 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5054 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5055 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5056 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5057 }
5058 
5059 /* Read an RSS table row */
5060 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5061 {
5062 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5063 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5064 				   5, 0, val);
5065 }
5066 
5067 /**
5068  *	t4_read_rss - read the contents of the RSS mapping table
5069  *	@adapter: the adapter
5070  *	@map: holds the contents of the RSS mapping table
5071  *
5072  *	Reads the contents of the RSS hash->queue mapping table.
5073  */
5074 int t4_read_rss(struct adapter *adapter, u16 *map)
5075 {
5076 	int i, ret, nentries;
5077 	u32 val;
5078 
5079 	nentries = t4_chip_rss_size(adapter);
5080 	for (i = 0; i < nentries / 2; ++i) {
5081 		ret = rd_rss_row(adapter, i, &val);
5082 		if (ret)
5083 			return ret;
5084 		*map++ = LKPTBLQUEUE0_G(val);
5085 		*map++ = LKPTBLQUEUE1_G(val);
5086 	}
5087 	return 0;
5088 }
5089 
5090 static unsigned int t4_use_ldst(struct adapter *adap)
5091 {
5092 	return (adap->flags & FW_OK) || !adap->use_bd;
5093 }
5094 
5095 /**
5096  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5097  * @adap: the adapter
5098  * @cmd: TP fw ldst address space type
5099  * @vals: where the indirect register values are stored/written
5100  * @nregs: how many indirect registers to read/write
5101  * @start_idx: index of first indirect register to read/write
5102  * @rw: Read (1) or Write (0)
5103  * @sleep_ok: if true we may sleep while awaiting command completion
5104  *
5105  * Access TP indirect registers through LDST
5106  */
5107 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5108 			    unsigned int nregs, unsigned int start_index,
5109 			    unsigned int rw, bool sleep_ok)
5110 {
5111 	int ret = 0;
5112 	unsigned int i;
5113 	struct fw_ldst_cmd c;
5114 
5115 	for (i = 0; i < nregs; i++) {
5116 		memset(&c, 0, sizeof(c));
5117 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5118 						FW_CMD_REQUEST_F |
5119 						(rw ? FW_CMD_READ_F :
5120 						      FW_CMD_WRITE_F) |
5121 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5122 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5123 
5124 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5125 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5126 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5127 				      sleep_ok);
5128 		if (ret)
5129 			return ret;
5130 
5131 		if (rw)
5132 			vals[i] = be32_to_cpu(c.u.addrval.val);
5133 	}
5134 	return 0;
5135 }
5136 
5137 /**
5138  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5139  * @adap: the adapter
5140  * @reg_addr: Address Register
5141  * @reg_data: Data register
5142  * @buff: where the indirect register values are stored/written
5143  * @nregs: how many indirect registers to read/write
5144  * @start_index: index of first indirect register to read/write
5145  * @rw: READ(1) or WRITE(0)
5146  * @sleep_ok: if true we may sleep while awaiting command completion
5147  *
5148  * Read/Write TP indirect registers through LDST if possible.
5149  * Else, use backdoor access
5150  **/
5151 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5152 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5153 			      bool sleep_ok)
5154 {
5155 	int rc = -EINVAL;
5156 	int cmd;
5157 
5158 	switch (reg_addr) {
5159 	case TP_PIO_ADDR_A:
5160 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5161 		break;
5162 	case TP_TM_PIO_ADDR_A:
5163 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5164 		break;
5165 	case TP_MIB_INDEX_A:
5166 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5167 		break;
5168 	default:
5169 		goto indirect_access;
5170 	}
5171 
5172 	if (t4_use_ldst(adap))
5173 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5174 				      sleep_ok);
5175 
5176 indirect_access:
5177 
5178 	if (rc) {
5179 		if (rw)
5180 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5181 					 start_index);
5182 		else
5183 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5184 					  start_index);
5185 	}
5186 }
5187 
5188 /**
5189  * t4_tp_pio_read - Read TP PIO registers
5190  * @adap: the adapter
5191  * @buff: where the indirect register values are written
5192  * @nregs: how many indirect registers to read
5193  * @start_index: index of first indirect register to read
5194  * @sleep_ok: if true we may sleep while awaiting command completion
5195  *
5196  * Read TP PIO Registers
5197  **/
5198 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5199 		    u32 start_index, bool sleep_ok)
5200 {
5201 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5202 			  start_index, 1, sleep_ok);
5203 }
5204 
5205 /**
5206  * t4_tp_pio_write - Write TP PIO registers
5207  * @adap: the adapter
5208  * @buff: where the indirect register values are stored
5209  * @nregs: how many indirect registers to write
5210  * @start_index: index of first indirect register to write
5211  * @sleep_ok: if true we may sleep while awaiting command completion
5212  *
5213  * Write TP PIO Registers
5214  **/
5215 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5216 			    u32 start_index, bool sleep_ok)
5217 {
5218 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5219 			  start_index, 0, sleep_ok);
5220 }
5221 
5222 /**
5223  * t4_tp_tm_pio_read - Read TP TM PIO registers
5224  * @adap: the adapter
5225  * @buff: where the indirect register values are written
5226  * @nregs: how many indirect registers to read
5227  * @start_index: index of first indirect register to read
5228  * @sleep_ok: if true we may sleep while awaiting command completion
5229  *
5230  * Read TP TM PIO Registers
5231  **/
5232 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5233 		       u32 start_index, bool sleep_ok)
5234 {
5235 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5236 			  nregs, start_index, 1, sleep_ok);
5237 }
5238 
5239 /**
5240  * t4_tp_mib_read - Read TP MIB registers
5241  * @adap: the adapter
5242  * @buff: where the indirect register values are written
5243  * @nregs: how many indirect registers to read
5244  * @start_index: index of first indirect register to read
5245  * @sleep_ok: if true we may sleep while awaiting command completion
5246  *
5247  * Read TP MIB Registers
5248  **/
5249 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5250 		    bool sleep_ok)
5251 {
5252 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5253 			  start_index, 1, sleep_ok);
5254 }
5255 
5256 /**
5257  *	t4_read_rss_key - read the global RSS key
5258  *	@adap: the adapter
5259  *	@key: 10-entry array holding the 320-bit RSS key
5260  *      @sleep_ok: if true we may sleep while awaiting command completion
5261  *
5262  *	Reads the global 320-bit RSS key.
5263  */
5264 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5265 {
5266 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5267 }
5268 
5269 /**
5270  *	t4_write_rss_key - program one of the RSS keys
5271  *	@adap: the adapter
5272  *	@key: 10-entry array holding the 320-bit RSS key
5273  *	@idx: which RSS key to write
5274  *      @sleep_ok: if true we may sleep while awaiting command completion
5275  *
5276  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5277  *	0..15 the corresponding entry in the RSS key table is written,
5278  *	otherwise the global RSS key is written.
5279  */
5280 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5281 		      bool sleep_ok)
5282 {
5283 	u8 rss_key_addr_cnt = 16;
5284 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5285 
5286 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5287 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5288 	 * as index[5:4](upper 2) into key table
5289 	 */
5290 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5291 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5292 		rss_key_addr_cnt = 32;
5293 
5294 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5295 
5296 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5297 		if (rss_key_addr_cnt > 16)
5298 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5299 				     KEYWRADDRX_V(idx >> 4) |
5300 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5301 		else
5302 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5303 				     KEYWRADDR_V(idx) | KEYWREN_F);
5304 	}
5305 }
5306 
5307 /**
5308  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5309  *	@adapter: the adapter
5310  *	@index: the entry in the PF RSS table to read
5311  *	@valp: where to store the returned value
5312  *      @sleep_ok: if true we may sleep while awaiting command completion
5313  *
5314  *	Reads the PF RSS Configuration Table at the specified index and returns
5315  *	the value found there.
5316  */
5317 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5318 			   u32 *valp, bool sleep_ok)
5319 {
5320 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5321 }
5322 
5323 /**
5324  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5325  *	@adapter: the adapter
5326  *	@index: the entry in the VF RSS table to read
5327  *	@vfl: where to store the returned VFL
5328  *	@vfh: where to store the returned VFH
5329  *      @sleep_ok: if true we may sleep while awaiting command completion
5330  *
5331  *	Reads the VF RSS Configuration Table at the specified index and returns
5332  *	the (VFL, VFH) values found there.
5333  */
5334 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5335 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5336 {
5337 	u32 vrt, mask, data;
5338 
5339 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5340 		mask = VFWRADDR_V(VFWRADDR_M);
5341 		data = VFWRADDR_V(index);
5342 	} else {
5343 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5344 		 data = T6_VFWRADDR_V(index);
5345 	}
5346 
5347 	/* Request that the index'th VF Table values be read into VFL/VFH.
5348 	 */
5349 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5350 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5351 	vrt |= data | VFRDEN_F;
5352 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5353 
5354 	/* Grab the VFL/VFH values ...
5355 	 */
5356 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5357 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5358 }
5359 
5360 /**
5361  *	t4_read_rss_pf_map - read PF RSS Map
5362  *	@adapter: the adapter
5363  *      @sleep_ok: if true we may sleep while awaiting command completion
5364  *
5365  *	Reads the PF RSS Map register and returns its value.
5366  */
5367 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5368 {
5369 	u32 pfmap;
5370 
5371 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5372 	return pfmap;
5373 }
5374 
5375 /**
5376  *	t4_read_rss_pf_mask - read PF RSS Mask
5377  *	@adapter: the adapter
5378  *      @sleep_ok: if true we may sleep while awaiting command completion
5379  *
5380  *	Reads the PF RSS Mask register and returns its value.
5381  */
5382 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5383 {
5384 	u32 pfmask;
5385 
5386 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5387 	return pfmask;
5388 }
5389 
5390 /**
5391  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5392  *	@adap: the adapter
5393  *	@v4: holds the TCP/IP counter values
5394  *	@v6: holds the TCP/IPv6 counter values
5395  *      @sleep_ok: if true we may sleep while awaiting command completion
5396  *
5397  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5398  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5399  */
5400 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5401 			 struct tp_tcp_stats *v6, bool sleep_ok)
5402 {
5403 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5404 
5405 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5406 #define STAT(x)     val[STAT_IDX(x)]
5407 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5408 
5409 	if (v4) {
5410 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5411 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5412 		v4->tcp_out_rsts = STAT(OUT_RST);
5413 		v4->tcp_in_segs  = STAT64(IN_SEG);
5414 		v4->tcp_out_segs = STAT64(OUT_SEG);
5415 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5416 	}
5417 	if (v6) {
5418 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5419 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5420 		v6->tcp_out_rsts = STAT(OUT_RST);
5421 		v6->tcp_in_segs  = STAT64(IN_SEG);
5422 		v6->tcp_out_segs = STAT64(OUT_SEG);
5423 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5424 	}
5425 #undef STAT64
5426 #undef STAT
5427 #undef STAT_IDX
5428 }
5429 
5430 /**
5431  *	t4_tp_get_err_stats - read TP's error MIB counters
5432  *	@adap: the adapter
5433  *	@st: holds the counter values
5434  *      @sleep_ok: if true we may sleep while awaiting command completion
5435  *
5436  *	Returns the values of TP's error counters.
5437  */
5438 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5439 			 bool sleep_ok)
5440 {
5441 	int nchan = adap->params.arch.nchan;
5442 
5443 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5444 		       sleep_ok);
5445 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5446 		       sleep_ok);
5447 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5448 		       sleep_ok);
5449 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5450 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5451 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5452 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5453 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5454 		       sleep_ok);
5455 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5456 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5457 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5458 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5459 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5460 		       sleep_ok);
5461 }
5462 
5463 /**
5464  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5465  *	@adap: the adapter
5466  *	@st: holds the counter values
5467  *      @sleep_ok: if true we may sleep while awaiting command completion
5468  *
5469  *	Returns the values of TP's CPL counters.
5470  */
5471 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5472 			 bool sleep_ok)
5473 {
5474 	int nchan = adap->params.arch.nchan;
5475 
5476 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5477 
5478 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5479 }
5480 
5481 /**
5482  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5483  *	@adap: the adapter
5484  *	@st: holds the counter values
5485  *      @sleep_ok: if true we may sleep while awaiting command completion
5486  *
5487  *	Returns the values of TP's RDMA counters.
5488  */
5489 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5490 			  bool sleep_ok)
5491 {
5492 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5493 		       sleep_ok);
5494 }
5495 
5496 /**
5497  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5498  *	@adap: the adapter
5499  *	@idx: the port index
5500  *	@st: holds the counter values
5501  *      @sleep_ok: if true we may sleep while awaiting command completion
5502  *
5503  *	Returns the values of TP's FCoE counters for the selected port.
5504  */
5505 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5506 		       struct tp_fcoe_stats *st, bool sleep_ok)
5507 {
5508 	u32 val[2];
5509 
5510 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5511 		       sleep_ok);
5512 
5513 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5514 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5515 
5516 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5517 		       sleep_ok);
5518 
5519 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5520 }
5521 
5522 /**
5523  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5524  *	@adap: the adapter
5525  *	@st: holds the counter values
5526  *      @sleep_ok: if true we may sleep while awaiting command completion
5527  *
5528  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5529  */
5530 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5531 		      bool sleep_ok)
5532 {
5533 	u32 val[4];
5534 
5535 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5536 	st->frames = val[0];
5537 	st->drops = val[1];
5538 	st->octets = ((u64)val[2] << 32) | val[3];
5539 }
5540 
5541 /**
5542  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5543  *	@adap: the adapter
5544  *	@mtus: where to store the MTU values
5545  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5546  *
5547  *	Reads the HW path MTU table.
5548  */
5549 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5550 {
5551 	u32 v;
5552 	int i;
5553 
5554 	for (i = 0; i < NMTUS; ++i) {
5555 		t4_write_reg(adap, TP_MTU_TABLE_A,
5556 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5557 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5558 		mtus[i] = MTUVALUE_G(v);
5559 		if (mtu_log)
5560 			mtu_log[i] = MTUWIDTH_G(v);
5561 	}
5562 }
5563 
5564 /**
5565  *	t4_read_cong_tbl - reads the congestion control table
5566  *	@adap: the adapter
5567  *	@incr: where to store the alpha values
5568  *
5569  *	Reads the additive increments programmed into the HW congestion
5570  *	control table.
5571  */
5572 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5573 {
5574 	unsigned int mtu, w;
5575 
5576 	for (mtu = 0; mtu < NMTUS; ++mtu)
5577 		for (w = 0; w < NCCTRL_WIN; ++w) {
5578 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5579 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5580 			incr[mtu][w] = (u16)t4_read_reg(adap,
5581 						TP_CCTRL_TABLE_A) & 0x1fff;
5582 		}
5583 }
5584 
5585 /**
5586  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5587  *	@adap: the adapter
5588  *	@addr: the indirect TP register address
5589  *	@mask: specifies the field within the register to modify
5590  *	@val: new value for the field
5591  *
5592  *	Sets a field of an indirect TP register to the given value.
5593  */
5594 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5595 			    unsigned int mask, unsigned int val)
5596 {
5597 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5598 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5599 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5600 }
5601 
5602 /**
5603  *	init_cong_ctrl - initialize congestion control parameters
5604  *	@a: the alpha values for congestion control
5605  *	@b: the beta values for congestion control
5606  *
5607  *	Initialize the congestion control parameters.
5608  */
5609 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5610 {
5611 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5612 	a[9] = 2;
5613 	a[10] = 3;
5614 	a[11] = 4;
5615 	a[12] = 5;
5616 	a[13] = 6;
5617 	a[14] = 7;
5618 	a[15] = 8;
5619 	a[16] = 9;
5620 	a[17] = 10;
5621 	a[18] = 14;
5622 	a[19] = 17;
5623 	a[20] = 21;
5624 	a[21] = 25;
5625 	a[22] = 30;
5626 	a[23] = 35;
5627 	a[24] = 45;
5628 	a[25] = 60;
5629 	a[26] = 80;
5630 	a[27] = 100;
5631 	a[28] = 200;
5632 	a[29] = 300;
5633 	a[30] = 400;
5634 	a[31] = 500;
5635 
5636 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5637 	b[9] = b[10] = 1;
5638 	b[11] = b[12] = 2;
5639 	b[13] = b[14] = b[15] = b[16] = 3;
5640 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5641 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5642 	b[28] = b[29] = 6;
5643 	b[30] = b[31] = 7;
5644 }
5645 
5646 /* The minimum additive increment value for the congestion control table */
5647 #define CC_MIN_INCR 2U
5648 
5649 /**
5650  *	t4_load_mtus - write the MTU and congestion control HW tables
5651  *	@adap: the adapter
5652  *	@mtus: the values for the MTU table
5653  *	@alpha: the values for the congestion control alpha parameter
5654  *	@beta: the values for the congestion control beta parameter
5655  *
5656  *	Write the HW MTU table with the supplied MTUs and the high-speed
5657  *	congestion control table with the supplied alpha, beta, and MTUs.
5658  *	We write the two tables together because the additive increments
5659  *	depend on the MTUs.
5660  */
5661 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5662 		  const unsigned short *alpha, const unsigned short *beta)
5663 {
5664 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5665 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5666 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5667 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5668 	};
5669 
5670 	unsigned int i, w;
5671 
5672 	for (i = 0; i < NMTUS; ++i) {
5673 		unsigned int mtu = mtus[i];
5674 		unsigned int log2 = fls(mtu);
5675 
5676 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5677 			log2--;
5678 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5679 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5680 
5681 		for (w = 0; w < NCCTRL_WIN; ++w) {
5682 			unsigned int inc;
5683 
5684 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5685 				  CC_MIN_INCR);
5686 
5687 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5688 				     (w << 16) | (beta[w] << 13) | inc);
5689 		}
5690 	}
5691 }
5692 
5693 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5694  * clocks.  The formula is
5695  *
5696  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5697  *
5698  * which is equivalent to
5699  *
5700  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5701  */
5702 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5703 {
5704 	u64 v = bytes256 * adap->params.vpd.cclk;
5705 
5706 	return v * 62 + v / 2;
5707 }
5708 
5709 /**
5710  *	t4_get_chan_txrate - get the current per channel Tx rates
5711  *	@adap: the adapter
5712  *	@nic_rate: rates for NIC traffic
5713  *	@ofld_rate: rates for offloaded traffic
5714  *
5715  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5716  *	for each channel.
5717  */
5718 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5719 {
5720 	u32 v;
5721 
5722 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5723 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5724 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5725 	if (adap->params.arch.nchan == NCHAN) {
5726 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5727 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5728 	}
5729 
5730 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5731 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5732 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5733 	if (adap->params.arch.nchan == NCHAN) {
5734 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5735 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5736 	}
5737 }
5738 
5739 /**
5740  *	t4_set_trace_filter - configure one of the tracing filters
5741  *	@adap: the adapter
5742  *	@tp: the desired trace filter parameters
5743  *	@idx: which filter to configure
5744  *	@enable: whether to enable or disable the filter
5745  *
5746  *	Configures one of the tracing filters available in HW.  If @enable is
5747  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5748  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5749  */
5750 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5751 			int idx, int enable)
5752 {
5753 	int i, ofst = idx * 4;
5754 	u32 data_reg, mask_reg, cfg;
5755 	u32 multitrc = TRCMULTIFILTER_F;
5756 
5757 	if (!enable) {
5758 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5759 		return 0;
5760 	}
5761 
5762 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5763 	if (cfg & TRCMULTIFILTER_F) {
5764 		/* If multiple tracers are enabled, then maximum
5765 		 * capture size is 2.5KB (FIFO size of a single channel)
5766 		 * minus 2 flits for CPL_TRACE_PKT header.
5767 		 */
5768 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5769 			return -EINVAL;
5770 	} else {
5771 		/* If multiple tracers are disabled, to avoid deadlocks
5772 		 * maximum packet capture size of 9600 bytes is recommended.
5773 		 * Also in this mode, only trace0 can be enabled and running.
5774 		 */
5775 		multitrc = 0;
5776 		if (tp->snap_len > 9600 || idx)
5777 			return -EINVAL;
5778 	}
5779 
5780 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5781 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5782 	    tp->min_len > TFMINPKTSIZE_M)
5783 		return -EINVAL;
5784 
5785 	/* stop the tracer we'll be changing */
5786 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5787 
5788 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5789 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5790 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5791 
5792 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5793 		t4_write_reg(adap, data_reg, tp->data[i]);
5794 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5795 	}
5796 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5797 		     TFCAPTUREMAX_V(tp->snap_len) |
5798 		     TFMINPKTSIZE_V(tp->min_len));
5799 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5800 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5801 		     (is_t4(adap->params.chip) ?
5802 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5803 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5804 		     T5_TFINVERTMATCH_V(tp->invert)));
5805 
5806 	return 0;
5807 }
5808 
5809 /**
5810  *	t4_get_trace_filter - query one of the tracing filters
5811  *	@adap: the adapter
5812  *	@tp: the current trace filter parameters
5813  *	@idx: which trace filter to query
5814  *	@enabled: non-zero if the filter is enabled
5815  *
5816  *	Returns the current settings of one of the HW tracing filters.
5817  */
5818 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5819 			 int *enabled)
5820 {
5821 	u32 ctla, ctlb;
5822 	int i, ofst = idx * 4;
5823 	u32 data_reg, mask_reg;
5824 
5825 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5826 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5827 
5828 	if (is_t4(adap->params.chip)) {
5829 		*enabled = !!(ctla & TFEN_F);
5830 		tp->port =  TFPORT_G(ctla);
5831 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5832 	} else {
5833 		*enabled = !!(ctla & T5_TFEN_F);
5834 		tp->port = T5_TFPORT_G(ctla);
5835 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5836 	}
5837 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5838 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5839 	tp->skip_ofst = TFOFFSET_G(ctla);
5840 	tp->skip_len = TFLENGTH_G(ctla);
5841 
5842 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5843 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5844 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5845 
5846 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5847 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5848 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5849 	}
5850 }
5851 
5852 /**
5853  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5854  *	@adap: the adapter
5855  *	@cnt: where to store the count statistics
5856  *	@cycles: where to store the cycle statistics
5857  *
5858  *	Returns performance statistics from PMTX.
5859  */
5860 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5861 {
5862 	int i;
5863 	u32 data[2];
5864 
5865 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5866 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5867 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5868 		if (is_t4(adap->params.chip)) {
5869 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5870 		} else {
5871 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5872 					 PM_TX_DBG_DATA_A, data, 2,
5873 					 PM_TX_DBG_STAT_MSB_A);
5874 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5875 		}
5876 	}
5877 }
5878 
5879 /**
5880  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5881  *	@adap: the adapter
5882  *	@cnt: where to store the count statistics
5883  *	@cycles: where to store the cycle statistics
5884  *
5885  *	Returns performance statistics from PMRX.
5886  */
5887 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5888 {
5889 	int i;
5890 	u32 data[2];
5891 
5892 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5893 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5894 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5895 		if (is_t4(adap->params.chip)) {
5896 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5897 		} else {
5898 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5899 					 PM_RX_DBG_DATA_A, data, 2,
5900 					 PM_RX_DBG_STAT_MSB_A);
5901 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5902 		}
5903 	}
5904 }
5905 
5906 /**
5907  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5908  *	@adap: the adapter
5909  *	@pidx: the port index
5910  *
5911  *	Computes and returns a bitmap indicating which MPS buffer groups are
5912  *	associated with the given Port.  Bit i is set if buffer group i is
5913  *	used by the Port.
5914  */
5915 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5916 					      int pidx)
5917 {
5918 	unsigned int chip_version, nports;
5919 
5920 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5921 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5922 
5923 	switch (chip_version) {
5924 	case CHELSIO_T4:
5925 	case CHELSIO_T5:
5926 		switch (nports) {
5927 		case 1: return 0xf;
5928 		case 2: return 3 << (2 * pidx);
5929 		case 4: return 1 << pidx;
5930 		}
5931 		break;
5932 
5933 	case CHELSIO_T6:
5934 		switch (nports) {
5935 		case 2: return 1 << (2 * pidx);
5936 		}
5937 		break;
5938 	}
5939 
5940 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
5941 		chip_version, nports);
5942 
5943 	return 0;
5944 }
5945 
5946 /**
5947  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5948  *	@adapter: the adapter
5949  *	@pidx: the port index
5950  *
5951  *	Returns a bitmap indicating which MPS buffer groups are associated
5952  *	with the given Port.  Bit i is set if buffer group i is used by the
5953  *	Port.
5954  */
5955 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
5956 {
5957 	u8 *mps_bg_map;
5958 	unsigned int nports;
5959 
5960 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5961 	if (pidx >= nports) {
5962 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
5963 			pidx, nports);
5964 		return 0;
5965 	}
5966 
5967 	/* If we've already retrieved/computed this, just return the result.
5968 	 */
5969 	mps_bg_map = adapter->params.mps_bg_map;
5970 	if (mps_bg_map[pidx])
5971 		return mps_bg_map[pidx];
5972 
5973 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
5974 	 * If we're talking to such Firmware, let it tell us.  If the new
5975 	 * API isn't supported, revert back to old hardcoded way.  The value
5976 	 * obtained from Firmware is encoded in below format:
5977 	 *
5978 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
5979 	 *        ( MPSBGMAP[Port 2] << 16 ) |
5980 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
5981 	 *        ( MPSBGMAP[Port 0] <<  0 ))
5982 	 */
5983 	if (adapter->flags & FW_OK) {
5984 		u32 param, val;
5985 		int ret;
5986 
5987 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5988 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
5989 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
5990 					 0, 1, &param, &val);
5991 		if (!ret) {
5992 			int p;
5993 
5994 			/* Store the BG Map for all of the Ports in order to
5995 			 * avoid more calls to the Firmware in the future.
5996 			 */
5997 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
5998 				mps_bg_map[p] = val & 0xff;
5999 
6000 			return mps_bg_map[pidx];
6001 		}
6002 	}
6003 
6004 	/* Either we're not talking to the Firmware or we're dealing with
6005 	 * older Firmware which doesn't support the new API to get the MPS
6006 	 * Buffer Group Map.  Fall back to computing it ourselves.
6007 	 */
6008 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6009 	return mps_bg_map[pidx];
6010 }
6011 
6012 /**
6013  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6014  *	@adapter: the adapter
6015  *	@pidx: the port index
6016  *
6017  *	Returns a bitmap indicating which TP Ingress Channels are associated
6018  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6019  *	the Port.
6020  */
6021 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6022 {
6023 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6024 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6025 
6026 	if (pidx >= nports) {
6027 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6028 			 pidx, nports);
6029 		return 0;
6030 	}
6031 
6032 	switch (chip_version) {
6033 	case CHELSIO_T4:
6034 	case CHELSIO_T5:
6035 		/* Note that this happens to be the same values as the MPS
6036 		 * Buffer Group Map for these Chips.  But we replicate the code
6037 		 * here because they're really separate concepts.
6038 		 */
6039 		switch (nports) {
6040 		case 1: return 0xf;
6041 		case 2: return 3 << (2 * pidx);
6042 		case 4: return 1 << pidx;
6043 		}
6044 		break;
6045 
6046 	case CHELSIO_T6:
6047 		switch (nports) {
6048 		case 2: return 1 << pidx;
6049 		}
6050 		break;
6051 	}
6052 
6053 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6054 		chip_version, nports);
6055 	return 0;
6056 }
6057 
6058 /**
6059  *      t4_get_port_type_description - return Port Type string description
6060  *      @port_type: firmware Port Type enumeration
6061  */
6062 const char *t4_get_port_type_description(enum fw_port_type port_type)
6063 {
6064 	static const char *const port_type_description[] = {
6065 		"Fiber_XFI",
6066 		"Fiber_XAUI",
6067 		"BT_SGMII",
6068 		"BT_XFI",
6069 		"BT_XAUI",
6070 		"KX4",
6071 		"CX4",
6072 		"KX",
6073 		"KR",
6074 		"SFP",
6075 		"BP_AP",
6076 		"BP4_AP",
6077 		"QSFP_10G",
6078 		"QSA",
6079 		"QSFP",
6080 		"BP40_BA",
6081 		"KR4_100G",
6082 		"CR4_QSFP",
6083 		"CR_QSFP",
6084 		"CR2_QSFP",
6085 		"SFP28",
6086 		"KR_SFP28",
6087 		"KR_XLAUI"
6088 	};
6089 
6090 	if (port_type < ARRAY_SIZE(port_type_description))
6091 		return port_type_description[port_type];
6092 	return "UNKNOWN";
6093 }
6094 
6095 /**
6096  *      t4_get_port_stats_offset - collect port stats relative to a previous
6097  *                                 snapshot
6098  *      @adap: The adapter
6099  *      @idx: The port
6100  *      @stats: Current stats to fill
6101  *      @offset: Previous stats snapshot
6102  */
6103 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6104 			      struct port_stats *stats,
6105 			      struct port_stats *offset)
6106 {
6107 	u64 *s, *o;
6108 	int i;
6109 
6110 	t4_get_port_stats(adap, idx, stats);
6111 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6112 			i < (sizeof(struct port_stats) / sizeof(u64));
6113 			i++, s++, o++)
6114 		*s -= *o;
6115 }
6116 
6117 /**
6118  *	t4_get_port_stats - collect port statistics
6119  *	@adap: the adapter
6120  *	@idx: the port index
6121  *	@p: the stats structure to fill
6122  *
6123  *	Collect statistics related to the given port from HW.
6124  */
6125 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6126 {
6127 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6128 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6129 
6130 #define GET_STAT(name) \
6131 	t4_read_reg64(adap, \
6132 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6133 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6134 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6135 
6136 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6137 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6138 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6139 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6140 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6141 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6142 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6143 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6144 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6145 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6146 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6147 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6148 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6149 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6150 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6151 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6152 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6153 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6154 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6155 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6156 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6157 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6158 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6159 
6160 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6161 		if (stat_ctl & COUNTPAUSESTATTX_F)
6162 			p->tx_frames_64 -= p->tx_pause;
6163 		if (stat_ctl & COUNTPAUSEMCTX_F)
6164 			p->tx_mcast_frames -= p->tx_pause;
6165 	}
6166 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6167 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6168 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6169 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6170 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6171 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6172 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6173 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6174 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6175 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6176 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6177 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6178 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6179 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6180 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6181 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6182 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6183 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6184 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6185 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6186 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6187 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6188 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6189 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6190 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6191 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6192 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6193 
6194 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6195 		if (stat_ctl & COUNTPAUSESTATRX_F)
6196 			p->rx_frames_64 -= p->rx_pause;
6197 		if (stat_ctl & COUNTPAUSEMCRX_F)
6198 			p->rx_mcast_frames -= p->rx_pause;
6199 	}
6200 
6201 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6202 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6203 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6204 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6205 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6206 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6207 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6208 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6209 
6210 #undef GET_STAT
6211 #undef GET_STAT_COM
6212 }
6213 
6214 /**
6215  *	t4_get_lb_stats - collect loopback port statistics
6216  *	@adap: the adapter
6217  *	@idx: the loopback port index
6218  *	@p: the stats structure to fill
6219  *
6220  *	Return HW statistics for the given loopback port.
6221  */
6222 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6223 {
6224 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6225 
6226 #define GET_STAT(name) \
6227 	t4_read_reg64(adap, \
6228 	(is_t4(adap->params.chip) ? \
6229 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6230 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6231 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6232 
6233 	p->octets           = GET_STAT(BYTES);
6234 	p->frames           = GET_STAT(FRAMES);
6235 	p->bcast_frames     = GET_STAT(BCAST);
6236 	p->mcast_frames     = GET_STAT(MCAST);
6237 	p->ucast_frames     = GET_STAT(UCAST);
6238 	p->error_frames     = GET_STAT(ERROR);
6239 
6240 	p->frames_64        = GET_STAT(64B);
6241 	p->frames_65_127    = GET_STAT(65B_127B);
6242 	p->frames_128_255   = GET_STAT(128B_255B);
6243 	p->frames_256_511   = GET_STAT(256B_511B);
6244 	p->frames_512_1023  = GET_STAT(512B_1023B);
6245 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6246 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6247 	p->drop             = GET_STAT(DROP_FRAMES);
6248 
6249 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6250 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6251 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6252 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6253 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6254 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6255 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6256 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6257 
6258 #undef GET_STAT
6259 #undef GET_STAT_COM
6260 }
6261 
6262 /*     t4_mk_filtdelwr - create a delete filter WR
6263  *     @ftid: the filter ID
6264  *     @wr: the filter work request to populate
6265  *     @qid: ingress queue to receive the delete notification
6266  *
6267  *     Creates a filter work request to delete the supplied filter.  If @qid is
6268  *     negative the delete notification is suppressed.
6269  */
6270 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6271 {
6272 	memset(wr, 0, sizeof(*wr));
6273 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6274 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6275 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6276 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6277 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6278 	if (qid >= 0)
6279 		wr->rx_chan_rx_rpl_iq =
6280 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6281 }
6282 
6283 #define INIT_CMD(var, cmd, rd_wr) do { \
6284 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6285 					FW_CMD_REQUEST_F | \
6286 					FW_CMD_##rd_wr##_F); \
6287 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6288 } while (0)
6289 
6290 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6291 			  u32 addr, u32 val)
6292 {
6293 	u32 ldst_addrspace;
6294 	struct fw_ldst_cmd c;
6295 
6296 	memset(&c, 0, sizeof(c));
6297 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6298 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6299 					FW_CMD_REQUEST_F |
6300 					FW_CMD_WRITE_F |
6301 					ldst_addrspace);
6302 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6303 	c.u.addrval.addr = cpu_to_be32(addr);
6304 	c.u.addrval.val = cpu_to_be32(val);
6305 
6306 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6307 }
6308 
6309 /**
6310  *	t4_mdio_rd - read a PHY register through MDIO
6311  *	@adap: the adapter
6312  *	@mbox: mailbox to use for the FW command
6313  *	@phy_addr: the PHY address
6314  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6315  *	@reg: the register to read
6316  *	@valp: where to store the value
6317  *
6318  *	Issues a FW command through the given mailbox to read a PHY register.
6319  */
6320 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6321 	       unsigned int mmd, unsigned int reg, u16 *valp)
6322 {
6323 	int ret;
6324 	u32 ldst_addrspace;
6325 	struct fw_ldst_cmd c;
6326 
6327 	memset(&c, 0, sizeof(c));
6328 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6329 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6330 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6331 					ldst_addrspace);
6332 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6333 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6334 					 FW_LDST_CMD_MMD_V(mmd));
6335 	c.u.mdio.raddr = cpu_to_be16(reg);
6336 
6337 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6338 	if (ret == 0)
6339 		*valp = be16_to_cpu(c.u.mdio.rval);
6340 	return ret;
6341 }
6342 
6343 /**
6344  *	t4_mdio_wr - write a PHY register through MDIO
6345  *	@adap: the adapter
6346  *	@mbox: mailbox to use for the FW command
6347  *	@phy_addr: the PHY address
6348  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6349  *	@reg: the register to write
6350  *	@valp: value to write
6351  *
6352  *	Issues a FW command through the given mailbox to write a PHY register.
6353  */
6354 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6355 	       unsigned int mmd, unsigned int reg, u16 val)
6356 {
6357 	u32 ldst_addrspace;
6358 	struct fw_ldst_cmd c;
6359 
6360 	memset(&c, 0, sizeof(c));
6361 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6362 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6363 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6364 					ldst_addrspace);
6365 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6366 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6367 					 FW_LDST_CMD_MMD_V(mmd));
6368 	c.u.mdio.raddr = cpu_to_be16(reg);
6369 	c.u.mdio.rval = cpu_to_be16(val);
6370 
6371 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6372 }
6373 
6374 /**
6375  *	t4_sge_decode_idma_state - decode the idma state
6376  *	@adap: the adapter
6377  *	@state: the state idma is stuck in
6378  */
6379 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6380 {
6381 	static const char * const t4_decode[] = {
6382 		"IDMA_IDLE",
6383 		"IDMA_PUSH_MORE_CPL_FIFO",
6384 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6385 		"Not used",
6386 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6387 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6388 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6389 		"IDMA_SEND_FIFO_TO_IMSG",
6390 		"IDMA_FL_REQ_DATA_FL_PREP",
6391 		"IDMA_FL_REQ_DATA_FL",
6392 		"IDMA_FL_DROP",
6393 		"IDMA_FL_H_REQ_HEADER_FL",
6394 		"IDMA_FL_H_SEND_PCIEHDR",
6395 		"IDMA_FL_H_PUSH_CPL_FIFO",
6396 		"IDMA_FL_H_SEND_CPL",
6397 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6398 		"IDMA_FL_H_SEND_IP_HDR",
6399 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6400 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6401 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6402 		"IDMA_FL_D_SEND_PCIEHDR",
6403 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6404 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6405 		"IDMA_FL_SEND_PCIEHDR",
6406 		"IDMA_FL_PUSH_CPL_FIFO",
6407 		"IDMA_FL_SEND_CPL",
6408 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6409 		"IDMA_FL_SEND_PAYLOAD",
6410 		"IDMA_FL_REQ_NEXT_DATA_FL",
6411 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6412 		"IDMA_FL_SEND_PADDING",
6413 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6414 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6415 		"IDMA_FL_REQ_DATAFL_DONE",
6416 		"IDMA_FL_REQ_HEADERFL_DONE",
6417 	};
6418 	static const char * const t5_decode[] = {
6419 		"IDMA_IDLE",
6420 		"IDMA_ALMOST_IDLE",
6421 		"IDMA_PUSH_MORE_CPL_FIFO",
6422 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6423 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6424 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6425 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6426 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6427 		"IDMA_SEND_FIFO_TO_IMSG",
6428 		"IDMA_FL_REQ_DATA_FL",
6429 		"IDMA_FL_DROP",
6430 		"IDMA_FL_DROP_SEND_INC",
6431 		"IDMA_FL_H_REQ_HEADER_FL",
6432 		"IDMA_FL_H_SEND_PCIEHDR",
6433 		"IDMA_FL_H_PUSH_CPL_FIFO",
6434 		"IDMA_FL_H_SEND_CPL",
6435 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6436 		"IDMA_FL_H_SEND_IP_HDR",
6437 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6438 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6439 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6440 		"IDMA_FL_D_SEND_PCIEHDR",
6441 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6442 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6443 		"IDMA_FL_SEND_PCIEHDR",
6444 		"IDMA_FL_PUSH_CPL_FIFO",
6445 		"IDMA_FL_SEND_CPL",
6446 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6447 		"IDMA_FL_SEND_PAYLOAD",
6448 		"IDMA_FL_REQ_NEXT_DATA_FL",
6449 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6450 		"IDMA_FL_SEND_PADDING",
6451 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6452 	};
6453 	static const char * const t6_decode[] = {
6454 		"IDMA_IDLE",
6455 		"IDMA_PUSH_MORE_CPL_FIFO",
6456 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6457 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6458 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6459 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6460 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6461 		"IDMA_FL_REQ_DATA_FL",
6462 		"IDMA_FL_DROP",
6463 		"IDMA_FL_DROP_SEND_INC",
6464 		"IDMA_FL_H_REQ_HEADER_FL",
6465 		"IDMA_FL_H_SEND_PCIEHDR",
6466 		"IDMA_FL_H_PUSH_CPL_FIFO",
6467 		"IDMA_FL_H_SEND_CPL",
6468 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6469 		"IDMA_FL_H_SEND_IP_HDR",
6470 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6471 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6472 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6473 		"IDMA_FL_D_SEND_PCIEHDR",
6474 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6475 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6476 		"IDMA_FL_SEND_PCIEHDR",
6477 		"IDMA_FL_PUSH_CPL_FIFO",
6478 		"IDMA_FL_SEND_CPL",
6479 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6480 		"IDMA_FL_SEND_PAYLOAD",
6481 		"IDMA_FL_REQ_NEXT_DATA_FL",
6482 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6483 		"IDMA_FL_SEND_PADDING",
6484 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6485 	};
6486 	static const u32 sge_regs[] = {
6487 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6488 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6489 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6490 	};
6491 	const char **sge_idma_decode;
6492 	int sge_idma_decode_nstates;
6493 	int i;
6494 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6495 
6496 	/* Select the right set of decode strings to dump depending on the
6497 	 * adapter chip type.
6498 	 */
6499 	switch (chip_version) {
6500 	case CHELSIO_T4:
6501 		sge_idma_decode = (const char **)t4_decode;
6502 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6503 		break;
6504 
6505 	case CHELSIO_T5:
6506 		sge_idma_decode = (const char **)t5_decode;
6507 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6508 		break;
6509 
6510 	case CHELSIO_T6:
6511 		sge_idma_decode = (const char **)t6_decode;
6512 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6513 		break;
6514 
6515 	default:
6516 		dev_err(adapter->pdev_dev,
6517 			"Unsupported chip version %d\n", chip_version);
6518 		return;
6519 	}
6520 
6521 	if (is_t4(adapter->params.chip)) {
6522 		sge_idma_decode = (const char **)t4_decode;
6523 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6524 	} else {
6525 		sge_idma_decode = (const char **)t5_decode;
6526 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6527 	}
6528 
6529 	if (state < sge_idma_decode_nstates)
6530 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6531 	else
6532 		CH_WARN(adapter, "idma state %d unknown\n", state);
6533 
6534 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6535 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6536 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6537 }
6538 
6539 /**
6540  *      t4_sge_ctxt_flush - flush the SGE context cache
6541  *      @adap: the adapter
6542  *      @mbox: mailbox to use for the FW command
6543  *      @ctx_type: Egress or Ingress
6544  *
6545  *      Issues a FW command through the given mailbox to flush the
6546  *      SGE context cache.
6547  */
6548 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6549 {
6550 	int ret;
6551 	u32 ldst_addrspace;
6552 	struct fw_ldst_cmd c;
6553 
6554 	memset(&c, 0, sizeof(c));
6555 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6556 						 FW_LDST_ADDRSPC_SGE_EGRC :
6557 						 FW_LDST_ADDRSPC_SGE_INGC);
6558 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6559 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6560 					ldst_addrspace);
6561 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6562 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6563 
6564 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6565 	return ret;
6566 }
6567 
6568 /**
6569  *      t4_fw_hello - establish communication with FW
6570  *      @adap: the adapter
6571  *      @mbox: mailbox to use for the FW command
6572  *      @evt_mbox: mailbox to receive async FW events
6573  *      @master: specifies the caller's willingness to be the device master
6574  *	@state: returns the current device state (if non-NULL)
6575  *
6576  *	Issues a command to establish communication with FW.  Returns either
6577  *	an error (negative integer) or the mailbox of the Master PF.
6578  */
6579 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6580 		enum dev_master master, enum dev_state *state)
6581 {
6582 	int ret;
6583 	struct fw_hello_cmd c;
6584 	u32 v;
6585 	unsigned int master_mbox;
6586 	int retries = FW_CMD_HELLO_RETRIES;
6587 
6588 retry:
6589 	memset(&c, 0, sizeof(c));
6590 	INIT_CMD(c, HELLO, WRITE);
6591 	c.err_to_clearinit = cpu_to_be32(
6592 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6593 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6594 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6595 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6596 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6597 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6598 		FW_HELLO_CMD_CLEARINIT_F);
6599 
6600 	/*
6601 	 * Issue the HELLO command to the firmware.  If it's not successful
6602 	 * but indicates that we got a "busy" or "timeout" condition, retry
6603 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6604 	 * retry limit, check to see if the firmware left us any error
6605 	 * information and report that if so.
6606 	 */
6607 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6608 	if (ret < 0) {
6609 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6610 			goto retry;
6611 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6612 			t4_report_fw_error(adap);
6613 		return ret;
6614 	}
6615 
6616 	v = be32_to_cpu(c.err_to_clearinit);
6617 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6618 	if (state) {
6619 		if (v & FW_HELLO_CMD_ERR_F)
6620 			*state = DEV_STATE_ERR;
6621 		else if (v & FW_HELLO_CMD_INIT_F)
6622 			*state = DEV_STATE_INIT;
6623 		else
6624 			*state = DEV_STATE_UNINIT;
6625 	}
6626 
6627 	/*
6628 	 * If we're not the Master PF then we need to wait around for the
6629 	 * Master PF Driver to finish setting up the adapter.
6630 	 *
6631 	 * Note that we also do this wait if we're a non-Master-capable PF and
6632 	 * there is no current Master PF; a Master PF may show up momentarily
6633 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6634 	 * OS loads lots of different drivers rapidly at the same time).  In
6635 	 * this case, the Master PF returned by the firmware will be
6636 	 * PCIE_FW_MASTER_M so the test below will work ...
6637 	 */
6638 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6639 	    master_mbox != mbox) {
6640 		int waiting = FW_CMD_HELLO_TIMEOUT;
6641 
6642 		/*
6643 		 * Wait for the firmware to either indicate an error or
6644 		 * initialized state.  If we see either of these we bail out
6645 		 * and report the issue to the caller.  If we exhaust the
6646 		 * "hello timeout" and we haven't exhausted our retries, try
6647 		 * again.  Otherwise bail with a timeout error.
6648 		 */
6649 		for (;;) {
6650 			u32 pcie_fw;
6651 
6652 			msleep(50);
6653 			waiting -= 50;
6654 
6655 			/*
6656 			 * If neither Error nor Initialialized are indicated
6657 			 * by the firmware keep waiting till we exaust our
6658 			 * timeout ... and then retry if we haven't exhausted
6659 			 * our retries ...
6660 			 */
6661 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6662 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6663 				if (waiting <= 0) {
6664 					if (retries-- > 0)
6665 						goto retry;
6666 
6667 					return -ETIMEDOUT;
6668 				}
6669 				continue;
6670 			}
6671 
6672 			/*
6673 			 * We either have an Error or Initialized condition
6674 			 * report errors preferentially.
6675 			 */
6676 			if (state) {
6677 				if (pcie_fw & PCIE_FW_ERR_F)
6678 					*state = DEV_STATE_ERR;
6679 				else if (pcie_fw & PCIE_FW_INIT_F)
6680 					*state = DEV_STATE_INIT;
6681 			}
6682 
6683 			/*
6684 			 * If we arrived before a Master PF was selected and
6685 			 * there's not a valid Master PF, grab its identity
6686 			 * for our caller.
6687 			 */
6688 			if (master_mbox == PCIE_FW_MASTER_M &&
6689 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6690 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6691 			break;
6692 		}
6693 	}
6694 
6695 	return master_mbox;
6696 }
6697 
6698 /**
6699  *	t4_fw_bye - end communication with FW
6700  *	@adap: the adapter
6701  *	@mbox: mailbox to use for the FW command
6702  *
6703  *	Issues a command to terminate communication with FW.
6704  */
6705 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6706 {
6707 	struct fw_bye_cmd c;
6708 
6709 	memset(&c, 0, sizeof(c));
6710 	INIT_CMD(c, BYE, WRITE);
6711 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6712 }
6713 
6714 /**
6715  *	t4_init_cmd - ask FW to initialize the device
6716  *	@adap: the adapter
6717  *	@mbox: mailbox to use for the FW command
6718  *
6719  *	Issues a command to FW to partially initialize the device.  This
6720  *	performs initialization that generally doesn't depend on user input.
6721  */
6722 int t4_early_init(struct adapter *adap, unsigned int mbox)
6723 {
6724 	struct fw_initialize_cmd c;
6725 
6726 	memset(&c, 0, sizeof(c));
6727 	INIT_CMD(c, INITIALIZE, WRITE);
6728 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6729 }
6730 
6731 /**
6732  *	t4_fw_reset - issue a reset to FW
6733  *	@adap: the adapter
6734  *	@mbox: mailbox to use for the FW command
6735  *	@reset: specifies the type of reset to perform
6736  *
6737  *	Issues a reset command of the specified type to FW.
6738  */
6739 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6740 {
6741 	struct fw_reset_cmd c;
6742 
6743 	memset(&c, 0, sizeof(c));
6744 	INIT_CMD(c, RESET, WRITE);
6745 	c.val = cpu_to_be32(reset);
6746 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6747 }
6748 
6749 /**
6750  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6751  *	@adap: the adapter
6752  *	@mbox: mailbox to use for the FW RESET command (if desired)
6753  *	@force: force uP into RESET even if FW RESET command fails
6754  *
6755  *	Issues a RESET command to firmware (if desired) with a HALT indication
6756  *	and then puts the microprocessor into RESET state.  The RESET command
6757  *	will only be issued if a legitimate mailbox is provided (mbox <=
6758  *	PCIE_FW_MASTER_M).
6759  *
6760  *	This is generally used in order for the host to safely manipulate the
6761  *	adapter without fear of conflicting with whatever the firmware might
6762  *	be doing.  The only way out of this state is to RESTART the firmware
6763  *	...
6764  */
6765 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6766 {
6767 	int ret = 0;
6768 
6769 	/*
6770 	 * If a legitimate mailbox is provided, issue a RESET command
6771 	 * with a HALT indication.
6772 	 */
6773 	if (mbox <= PCIE_FW_MASTER_M) {
6774 		struct fw_reset_cmd c;
6775 
6776 		memset(&c, 0, sizeof(c));
6777 		INIT_CMD(c, RESET, WRITE);
6778 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6779 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6780 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6781 	}
6782 
6783 	/*
6784 	 * Normally we won't complete the operation if the firmware RESET
6785 	 * command fails but if our caller insists we'll go ahead and put the
6786 	 * uP into RESET.  This can be useful if the firmware is hung or even
6787 	 * missing ...  We'll have to take the risk of putting the uP into
6788 	 * RESET without the cooperation of firmware in that case.
6789 	 *
6790 	 * We also force the firmware's HALT flag to be on in case we bypassed
6791 	 * the firmware RESET command above or we're dealing with old firmware
6792 	 * which doesn't have the HALT capability.  This will serve as a flag
6793 	 * for the incoming firmware to know that it's coming out of a HALT
6794 	 * rather than a RESET ... if it's new enough to understand that ...
6795 	 */
6796 	if (ret == 0 || force) {
6797 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6798 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6799 				 PCIE_FW_HALT_F);
6800 	}
6801 
6802 	/*
6803 	 * And we always return the result of the firmware RESET command
6804 	 * even when we force the uP into RESET ...
6805 	 */
6806 	return ret;
6807 }
6808 
6809 /**
6810  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6811  *	@adap: the adapter
6812  *	@reset: if we want to do a RESET to restart things
6813  *
6814  *	Restart firmware previously halted by t4_fw_halt().  On successful
6815  *	return the previous PF Master remains as the new PF Master and there
6816  *	is no need to issue a new HELLO command, etc.
6817  *
6818  *	We do this in two ways:
6819  *
6820  *	 1. If we're dealing with newer firmware we'll simply want to take
6821  *	    the chip's microprocessor out of RESET.  This will cause the
6822  *	    firmware to start up from its start vector.  And then we'll loop
6823  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6824  *	    reset to 0) or we timeout.
6825  *
6826  *	 2. If we're dealing with older firmware then we'll need to RESET
6827  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6828  *	    flag and automatically RESET itself on startup.
6829  */
6830 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6831 {
6832 	if (reset) {
6833 		/*
6834 		 * Since we're directing the RESET instead of the firmware
6835 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6836 		 * bit.
6837 		 */
6838 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6839 
6840 		/*
6841 		 * If we've been given a valid mailbox, first try to get the
6842 		 * firmware to do the RESET.  If that works, great and we can
6843 		 * return success.  Otherwise, if we haven't been given a
6844 		 * valid mailbox or the RESET command failed, fall back to
6845 		 * hitting the chip with a hammer.
6846 		 */
6847 		if (mbox <= PCIE_FW_MASTER_M) {
6848 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6849 			msleep(100);
6850 			if (t4_fw_reset(adap, mbox,
6851 					PIORST_F | PIORSTMODE_F) == 0)
6852 				return 0;
6853 		}
6854 
6855 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6856 		msleep(2000);
6857 	} else {
6858 		int ms;
6859 
6860 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6861 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6862 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6863 				return 0;
6864 			msleep(100);
6865 			ms += 100;
6866 		}
6867 		return -ETIMEDOUT;
6868 	}
6869 	return 0;
6870 }
6871 
6872 /**
6873  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6874  *	@adap: the adapter
6875  *	@mbox: mailbox to use for the FW RESET command (if desired)
6876  *	@fw_data: the firmware image to write
6877  *	@size: image size
6878  *	@force: force upgrade even if firmware doesn't cooperate
6879  *
6880  *	Perform all of the steps necessary for upgrading an adapter's
6881  *	firmware image.  Normally this requires the cooperation of the
6882  *	existing firmware in order to halt all existing activities
6883  *	but if an invalid mailbox token is passed in we skip that step
6884  *	(though we'll still put the adapter microprocessor into RESET in
6885  *	that case).
6886  *
6887  *	On successful return the new firmware will have been loaded and
6888  *	the adapter will have been fully RESET losing all previous setup
6889  *	state.  On unsuccessful return the adapter may be completely hosed ...
6890  *	positive errno indicates that the adapter is ~probably~ intact, a
6891  *	negative errno indicates that things are looking bad ...
6892  */
6893 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6894 		  const u8 *fw_data, unsigned int size, int force)
6895 {
6896 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6897 	int reset, ret;
6898 
6899 	if (!t4_fw_matches_chip(adap, fw_hdr))
6900 		return -EINVAL;
6901 
6902 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6903 	 * wont be sent when we are flashing FW.
6904 	 */
6905 	adap->flags &= ~FW_OK;
6906 
6907 	ret = t4_fw_halt(adap, mbox, force);
6908 	if (ret < 0 && !force)
6909 		goto out;
6910 
6911 	ret = t4_load_fw(adap, fw_data, size);
6912 	if (ret < 0)
6913 		goto out;
6914 
6915 	/*
6916 	 * If there was a Firmware Configuration File stored in FLASH,
6917 	 * there's a good chance that it won't be compatible with the new
6918 	 * Firmware.  In order to prevent difficult to diagnose adapter
6919 	 * initialization issues, we clear out the Firmware Configuration File
6920 	 * portion of the FLASH .  The user will need to re-FLASH a new
6921 	 * Firmware Configuration File which is compatible with the new
6922 	 * Firmware if that's desired.
6923 	 */
6924 	(void)t4_load_cfg(adap, NULL, 0);
6925 
6926 	/*
6927 	 * Older versions of the firmware don't understand the new
6928 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6929 	 * restart.  So for newly loaded older firmware we'll have to do the
6930 	 * RESET for it so it starts up on a clean slate.  We can tell if
6931 	 * the newly loaded firmware will handle this right by checking
6932 	 * its header flags to see if it advertises the capability.
6933 	 */
6934 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6935 	ret = t4_fw_restart(adap, mbox, reset);
6936 
6937 	/* Grab potentially new Firmware Device Log parameters so we can see
6938 	 * how healthy the new Firmware is.  It's okay to contact the new
6939 	 * Firmware for these parameters even though, as far as it's
6940 	 * concerned, we've never said "HELLO" to it ...
6941 	 */
6942 	(void)t4_init_devlog_params(adap);
6943 out:
6944 	adap->flags |= FW_OK;
6945 	return ret;
6946 }
6947 
6948 /**
6949  *	t4_fl_pkt_align - return the fl packet alignment
6950  *	@adap: the adapter
6951  *
6952  *	T4 has a single field to specify the packing and padding boundary.
6953  *	T5 onwards has separate fields for this and hence the alignment for
6954  *	next packet offset is maximum of these two.
6955  *
6956  */
6957 int t4_fl_pkt_align(struct adapter *adap)
6958 {
6959 	u32 sge_control, sge_control2;
6960 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6961 
6962 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6963 
6964 	/* T4 uses a single control field to specify both the PCIe Padding and
6965 	 * Packing Boundary.  T5 introduced the ability to specify these
6966 	 * separately.  The actual Ingress Packet Data alignment boundary
6967 	 * within Packed Buffer Mode is the maximum of these two
6968 	 * specifications.  (Note that it makes no real practical sense to
6969 	 * have the Pading Boudary be larger than the Packing Boundary but you
6970 	 * could set the chip up that way and, in fact, legacy T4 code would
6971 	 * end doing this because it would initialize the Padding Boundary and
6972 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6973 	 * Padding Boundary values in T6 starts from 8B,
6974 	 * where as it is 32B for T4 and T5.
6975 	 */
6976 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6977 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6978 	else
6979 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6980 
6981 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6982 
6983 	fl_align = ingpadboundary;
6984 	if (!is_t4(adap->params.chip)) {
6985 		/* T5 has a weird interpretation of one of the PCIe Packing
6986 		 * Boundary values.  No idea why ...
6987 		 */
6988 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6989 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6990 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6991 			ingpackboundary = 16;
6992 		else
6993 			ingpackboundary = 1 << (ingpackboundary +
6994 						INGPACKBOUNDARY_SHIFT_X);
6995 
6996 		fl_align = max(ingpadboundary, ingpackboundary);
6997 	}
6998 	return fl_align;
6999 }
7000 
7001 /**
7002  *	t4_fixup_host_params - fix up host-dependent parameters
7003  *	@adap: the adapter
7004  *	@page_size: the host's Base Page Size
7005  *	@cache_line_size: the host's Cache Line Size
7006  *
7007  *	Various registers in T4 contain values which are dependent on the
7008  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7009  *	those registers with the appropriate values as passed in ...
7010  */
7011 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7012 			 unsigned int cache_line_size)
7013 {
7014 	unsigned int page_shift = fls(page_size) - 1;
7015 	unsigned int sge_hps = page_shift - 10;
7016 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7017 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7018 	unsigned int fl_align_log = fls(fl_align) - 1;
7019 
7020 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7021 		     HOSTPAGESIZEPF0_V(sge_hps) |
7022 		     HOSTPAGESIZEPF1_V(sge_hps) |
7023 		     HOSTPAGESIZEPF2_V(sge_hps) |
7024 		     HOSTPAGESIZEPF3_V(sge_hps) |
7025 		     HOSTPAGESIZEPF4_V(sge_hps) |
7026 		     HOSTPAGESIZEPF5_V(sge_hps) |
7027 		     HOSTPAGESIZEPF6_V(sge_hps) |
7028 		     HOSTPAGESIZEPF7_V(sge_hps));
7029 
7030 	if (is_t4(adap->params.chip)) {
7031 		t4_set_reg_field(adap, SGE_CONTROL_A,
7032 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7033 				 EGRSTATUSPAGESIZE_F,
7034 				 INGPADBOUNDARY_V(fl_align_log -
7035 						  INGPADBOUNDARY_SHIFT_X) |
7036 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7037 	} else {
7038 		unsigned int pack_align;
7039 		unsigned int ingpad, ingpack;
7040 		unsigned int pcie_cap;
7041 
7042 		/* T5 introduced the separation of the Free List Padding and
7043 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7044 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7045 		 * Bandwidth, and use a Packing Boundary which is large enough
7046 		 * to avoid false sharing between CPUs, etc.
7047 		 *
7048 		 * For the PCI Link, the smaller the Padding Boundary the
7049 		 * better.  For the Memory Controller, a smaller Padding
7050 		 * Boundary is better until we cross under the Memory Line
7051 		 * Size (the minimum unit of transfer to/from Memory).  If we
7052 		 * have a Padding Boundary which is smaller than the Memory
7053 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7054 		 * Memory Controller which is never good.
7055 		 */
7056 
7057 		/* We want the Packing Boundary to be based on the Cache Line
7058 		 * Size in order to help avoid False Sharing performance
7059 		 * issues between CPUs, etc.  We also want the Packing
7060 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7061 		 * get best performance when the Packing Boundary is a
7062 		 * multiple of the Maximum Payload Size.
7063 		 */
7064 		pack_align = fl_align;
7065 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7066 		if (pcie_cap) {
7067 			unsigned int mps, mps_log;
7068 			u16 devctl;
7069 
7070 			/* The PCIe Device Control Maximum Payload Size field
7071 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7072 			 * 128 bytes.
7073 			 */
7074 			pci_read_config_word(adap->pdev,
7075 					     pcie_cap + PCI_EXP_DEVCTL,
7076 					     &devctl);
7077 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7078 			mps = 1 << mps_log;
7079 			if (mps > pack_align)
7080 				pack_align = mps;
7081 		}
7082 
7083 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7084 		 * value for the Packing Boundary.  This corresponds to 16
7085 		 * bytes instead of the expected 32 bytes.  So if we want 32
7086 		 * bytes, the best we can really do is 64 bytes ...
7087 		 */
7088 		if (pack_align <= 16) {
7089 			ingpack = INGPACKBOUNDARY_16B_X;
7090 			fl_align = 16;
7091 		} else if (pack_align == 32) {
7092 			ingpack = INGPACKBOUNDARY_64B_X;
7093 			fl_align = 64;
7094 		} else {
7095 			unsigned int pack_align_log = fls(pack_align) - 1;
7096 
7097 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7098 			fl_align = pack_align;
7099 		}
7100 
7101 		/* Use the smallest Ingress Padding which isn't smaller than
7102 		 * the Memory Controller Read/Write Size.  We'll take that as
7103 		 * being 8 bytes since we don't know of any system with a
7104 		 * wider Memory Controller Bus Width.
7105 		 */
7106 		if (is_t5(adap->params.chip))
7107 			ingpad = INGPADBOUNDARY_32B_X;
7108 		else
7109 			ingpad = T6_INGPADBOUNDARY_8B_X;
7110 
7111 		t4_set_reg_field(adap, SGE_CONTROL_A,
7112 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7113 				 EGRSTATUSPAGESIZE_F,
7114 				 INGPADBOUNDARY_V(ingpad) |
7115 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7116 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7117 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7118 				 INGPACKBOUNDARY_V(ingpack));
7119 	}
7120 	/*
7121 	 * Adjust various SGE Free List Host Buffer Sizes.
7122 	 *
7123 	 * This is something of a crock since we're using fixed indices into
7124 	 * the array which are also known by the sge.c code and the T4
7125 	 * Firmware Configuration File.  We need to come up with a much better
7126 	 * approach to managing this array.  For now, the first four entries
7127 	 * are:
7128 	 *
7129 	 *   0: Host Page Size
7130 	 *   1: 64KB
7131 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7132 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7133 	 *
7134 	 * For the single-MTU buffers in unpacked mode we need to include
7135 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7136 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7137 	 * Padding boundary.  All of these are accommodated in the Factory
7138 	 * Default Firmware Configuration File but we need to adjust it for
7139 	 * this host's cache line size.
7140 	 */
7141 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7142 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7143 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7144 		     & ~(fl_align-1));
7145 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7146 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7147 		     & ~(fl_align-1));
7148 
7149 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7150 
7151 	return 0;
7152 }
7153 
7154 /**
7155  *	t4_fw_initialize - ask FW to initialize the device
7156  *	@adap: the adapter
7157  *	@mbox: mailbox to use for the FW command
7158  *
7159  *	Issues a command to FW to partially initialize the device.  This
7160  *	performs initialization that generally doesn't depend on user input.
7161  */
7162 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7163 {
7164 	struct fw_initialize_cmd c;
7165 
7166 	memset(&c, 0, sizeof(c));
7167 	INIT_CMD(c, INITIALIZE, WRITE);
7168 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7169 }
7170 
7171 /**
7172  *	t4_query_params_rw - query FW or device parameters
7173  *	@adap: the adapter
7174  *	@mbox: mailbox to use for the FW command
7175  *	@pf: the PF
7176  *	@vf: the VF
7177  *	@nparams: the number of parameters
7178  *	@params: the parameter names
7179  *	@val: the parameter values
7180  *	@rw: Write and read flag
7181  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7182  *
7183  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7184  *	queried at once.
7185  */
7186 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7187 		       unsigned int vf, unsigned int nparams, const u32 *params,
7188 		       u32 *val, int rw, bool sleep_ok)
7189 {
7190 	int i, ret;
7191 	struct fw_params_cmd c;
7192 	__be32 *p = &c.param[0].mnem;
7193 
7194 	if (nparams > 7)
7195 		return -EINVAL;
7196 
7197 	memset(&c, 0, sizeof(c));
7198 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7199 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7200 				  FW_PARAMS_CMD_PFN_V(pf) |
7201 				  FW_PARAMS_CMD_VFN_V(vf));
7202 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7203 
7204 	for (i = 0; i < nparams; i++) {
7205 		*p++ = cpu_to_be32(*params++);
7206 		if (rw)
7207 			*p = cpu_to_be32(*(val + i));
7208 		p++;
7209 	}
7210 
7211 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7212 	if (ret == 0)
7213 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7214 			*val++ = be32_to_cpu(*p);
7215 	return ret;
7216 }
7217 
7218 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7219 		    unsigned int vf, unsigned int nparams, const u32 *params,
7220 		    u32 *val)
7221 {
7222 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7223 				  true);
7224 }
7225 
7226 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7227 		       unsigned int vf, unsigned int nparams, const u32 *params,
7228 		       u32 *val)
7229 {
7230 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7231 				  false);
7232 }
7233 
7234 /**
7235  *      t4_set_params_timeout - sets FW or device parameters
7236  *      @adap: the adapter
7237  *      @mbox: mailbox to use for the FW command
7238  *      @pf: the PF
7239  *      @vf: the VF
7240  *      @nparams: the number of parameters
7241  *      @params: the parameter names
7242  *      @val: the parameter values
7243  *      @timeout: the timeout time
7244  *
7245  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7246  *      specified at once.
7247  */
7248 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7249 			  unsigned int pf, unsigned int vf,
7250 			  unsigned int nparams, const u32 *params,
7251 			  const u32 *val, int timeout)
7252 {
7253 	struct fw_params_cmd c;
7254 	__be32 *p = &c.param[0].mnem;
7255 
7256 	if (nparams > 7)
7257 		return -EINVAL;
7258 
7259 	memset(&c, 0, sizeof(c));
7260 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7261 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7262 				  FW_PARAMS_CMD_PFN_V(pf) |
7263 				  FW_PARAMS_CMD_VFN_V(vf));
7264 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7265 
7266 	while (nparams--) {
7267 		*p++ = cpu_to_be32(*params++);
7268 		*p++ = cpu_to_be32(*val++);
7269 	}
7270 
7271 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7272 }
7273 
7274 /**
7275  *	t4_set_params - sets FW or device parameters
7276  *	@adap: the adapter
7277  *	@mbox: mailbox to use for the FW command
7278  *	@pf: the PF
7279  *	@vf: the VF
7280  *	@nparams: the number of parameters
7281  *	@params: the parameter names
7282  *	@val: the parameter values
7283  *
7284  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7285  *	specified at once.
7286  */
7287 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7288 		  unsigned int vf, unsigned int nparams, const u32 *params,
7289 		  const u32 *val)
7290 {
7291 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7292 				     FW_CMD_MAX_TIMEOUT);
7293 }
7294 
7295 /**
7296  *	t4_cfg_pfvf - configure PF/VF resource limits
7297  *	@adap: the adapter
7298  *	@mbox: mailbox to use for the FW command
7299  *	@pf: the PF being configured
7300  *	@vf: the VF being configured
7301  *	@txq: the max number of egress queues
7302  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7303  *	@rxqi: the max number of interrupt-capable ingress queues
7304  *	@rxq: the max number of interruptless ingress queues
7305  *	@tc: the PCI traffic class
7306  *	@vi: the max number of virtual interfaces
7307  *	@cmask: the channel access rights mask for the PF/VF
7308  *	@pmask: the port access rights mask for the PF/VF
7309  *	@nexact: the maximum number of exact MPS filters
7310  *	@rcaps: read capabilities
7311  *	@wxcaps: write/execute capabilities
7312  *
7313  *	Configures resource limits and capabilities for a physical or virtual
7314  *	function.
7315  */
7316 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7317 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7318 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7319 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7320 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7321 {
7322 	struct fw_pfvf_cmd c;
7323 
7324 	memset(&c, 0, sizeof(c));
7325 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7326 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7327 				  FW_PFVF_CMD_VFN_V(vf));
7328 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7329 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7330 				     FW_PFVF_CMD_NIQ_V(rxq));
7331 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7332 				    FW_PFVF_CMD_PMASK_V(pmask) |
7333 				    FW_PFVF_CMD_NEQ_V(txq));
7334 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7335 				      FW_PFVF_CMD_NVI_V(vi) |
7336 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7337 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7338 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7339 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7340 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7341 }
7342 
7343 /**
7344  *	t4_alloc_vi - allocate a virtual interface
7345  *	@adap: the adapter
7346  *	@mbox: mailbox to use for the FW command
7347  *	@port: physical port associated with the VI
7348  *	@pf: the PF owning the VI
7349  *	@vf: the VF owning the VI
7350  *	@nmac: number of MAC addresses needed (1 to 5)
7351  *	@mac: the MAC addresses of the VI
7352  *	@rss_size: size of RSS table slice associated with this VI
7353  *
7354  *	Allocates a virtual interface for the given physical port.  If @mac is
7355  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7356  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7357  *	stored consecutively so the space needed is @nmac * 6 bytes.
7358  *	Returns a negative error number or the non-negative VI id.
7359  */
7360 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7361 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7362 		unsigned int *rss_size)
7363 {
7364 	int ret;
7365 	struct fw_vi_cmd c;
7366 
7367 	memset(&c, 0, sizeof(c));
7368 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7369 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7370 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7371 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7372 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7373 	c.nmac = nmac - 1;
7374 
7375 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7376 	if (ret)
7377 		return ret;
7378 
7379 	if (mac) {
7380 		memcpy(mac, c.mac, sizeof(c.mac));
7381 		switch (nmac) {
7382 		case 5:
7383 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7384 		case 4:
7385 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7386 		case 3:
7387 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7388 		case 2:
7389 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7390 		}
7391 	}
7392 	if (rss_size)
7393 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7394 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7395 }
7396 
7397 /**
7398  *	t4_free_vi - free a virtual interface
7399  *	@adap: the adapter
7400  *	@mbox: mailbox to use for the FW command
7401  *	@pf: the PF owning the VI
7402  *	@vf: the VF owning the VI
7403  *	@viid: virtual interface identifiler
7404  *
7405  *	Free a previously allocated virtual interface.
7406  */
7407 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7408 	       unsigned int vf, unsigned int viid)
7409 {
7410 	struct fw_vi_cmd c;
7411 
7412 	memset(&c, 0, sizeof(c));
7413 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7414 				  FW_CMD_REQUEST_F |
7415 				  FW_CMD_EXEC_F |
7416 				  FW_VI_CMD_PFN_V(pf) |
7417 				  FW_VI_CMD_VFN_V(vf));
7418 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7419 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7420 
7421 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7422 }
7423 
7424 /**
7425  *	t4_set_rxmode - set Rx properties of a virtual interface
7426  *	@adap: the adapter
7427  *	@mbox: mailbox to use for the FW command
7428  *	@viid: the VI id
7429  *	@mtu: the new MTU or -1
7430  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7431  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7432  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7433  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7434  *	@sleep_ok: if true we may sleep while awaiting command completion
7435  *
7436  *	Sets Rx properties of a virtual interface.
7437  */
7438 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7439 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7440 		  bool sleep_ok)
7441 {
7442 	struct fw_vi_rxmode_cmd c;
7443 
7444 	/* convert to FW values */
7445 	if (mtu < 0)
7446 		mtu = FW_RXMODE_MTU_NO_CHG;
7447 	if (promisc < 0)
7448 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7449 	if (all_multi < 0)
7450 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7451 	if (bcast < 0)
7452 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7453 	if (vlanex < 0)
7454 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7455 
7456 	memset(&c, 0, sizeof(c));
7457 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7458 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7459 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7460 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7461 	c.mtu_to_vlanexen =
7462 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7463 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7464 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7465 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7466 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7467 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7468 }
7469 
7470 /**
7471  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7472  *	@adap: the adapter
7473  *	@mbox: mailbox to use for the FW command
7474  *	@viid: the VI id
7475  *	@free: if true any existing filters for this VI id are first removed
7476  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7477  *	@addr: the MAC address(es)
7478  *	@idx: where to store the index of each allocated filter
7479  *	@hash: pointer to hash address filter bitmap
7480  *	@sleep_ok: call is allowed to sleep
7481  *
7482  *	Allocates an exact-match filter for each of the supplied addresses and
7483  *	sets it to the corresponding address.  If @idx is not %NULL it should
7484  *	have at least @naddr entries, each of which will be set to the index of
7485  *	the filter allocated for the corresponding MAC address.  If a filter
7486  *	could not be allocated for an address its index is set to 0xffff.
7487  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7488  *	are hashed and update the hash filter bitmap pointed at by @hash.
7489  *
7490  *	Returns a negative error number or the number of filters allocated.
7491  */
7492 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7493 		      unsigned int viid, bool free, unsigned int naddr,
7494 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7495 {
7496 	int offset, ret = 0;
7497 	struct fw_vi_mac_cmd c;
7498 	unsigned int nfilters = 0;
7499 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7500 	unsigned int rem = naddr;
7501 
7502 	if (naddr > max_naddr)
7503 		return -EINVAL;
7504 
7505 	for (offset = 0; offset < naddr ; /**/) {
7506 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7507 					 rem : ARRAY_SIZE(c.u.exact));
7508 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7509 						     u.exact[fw_naddr]), 16);
7510 		struct fw_vi_mac_exact *p;
7511 		int i;
7512 
7513 		memset(&c, 0, sizeof(c));
7514 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7515 					   FW_CMD_REQUEST_F |
7516 					   FW_CMD_WRITE_F |
7517 					   FW_CMD_EXEC_V(free) |
7518 					   FW_VI_MAC_CMD_VIID_V(viid));
7519 		c.freemacs_to_len16 =
7520 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7521 				    FW_CMD_LEN16_V(len16));
7522 
7523 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7524 			p->valid_to_idx =
7525 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7526 					    FW_VI_MAC_CMD_IDX_V(
7527 						    FW_VI_MAC_ADD_MAC));
7528 			memcpy(p->macaddr, addr[offset + i],
7529 			       sizeof(p->macaddr));
7530 		}
7531 
7532 		/* It's okay if we run out of space in our MAC address arena.
7533 		 * Some of the addresses we submit may get stored so we need
7534 		 * to run through the reply to see what the results were ...
7535 		 */
7536 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7537 		if (ret && ret != -FW_ENOMEM)
7538 			break;
7539 
7540 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7541 			u16 index = FW_VI_MAC_CMD_IDX_G(
7542 					be16_to_cpu(p->valid_to_idx));
7543 
7544 			if (idx)
7545 				idx[offset + i] = (index >= max_naddr ?
7546 						   0xffff : index);
7547 			if (index < max_naddr)
7548 				nfilters++;
7549 			else if (hash)
7550 				*hash |= (1ULL <<
7551 					  hash_mac_addr(addr[offset + i]));
7552 		}
7553 
7554 		free = false;
7555 		offset += fw_naddr;
7556 		rem -= fw_naddr;
7557 	}
7558 
7559 	if (ret == 0 || ret == -FW_ENOMEM)
7560 		ret = nfilters;
7561 	return ret;
7562 }
7563 
7564 /**
7565  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7566  *	@adap: the adapter
7567  *	@mbox: mailbox to use for the FW command
7568  *	@viid: the VI id
7569  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7570  *	@addr: the MAC address(es)
7571  *	@sleep_ok: call is allowed to sleep
7572  *
7573  *	Frees the exact-match filter for each of the supplied addresses
7574  *
7575  *	Returns a negative error number or the number of filters freed.
7576  */
7577 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7578 		     unsigned int viid, unsigned int naddr,
7579 		     const u8 **addr, bool sleep_ok)
7580 {
7581 	int offset, ret = 0;
7582 	struct fw_vi_mac_cmd c;
7583 	unsigned int nfilters = 0;
7584 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7585 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7586 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7587 	unsigned int rem = naddr;
7588 
7589 	if (naddr > max_naddr)
7590 		return -EINVAL;
7591 
7592 	for (offset = 0; offset < (int)naddr ; /**/) {
7593 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7594 					 ? rem
7595 					 : ARRAY_SIZE(c.u.exact));
7596 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7597 						     u.exact[fw_naddr]), 16);
7598 		struct fw_vi_mac_exact *p;
7599 		int i;
7600 
7601 		memset(&c, 0, sizeof(c));
7602 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7603 				     FW_CMD_REQUEST_F |
7604 				     FW_CMD_WRITE_F |
7605 				     FW_CMD_EXEC_V(0) |
7606 				     FW_VI_MAC_CMD_VIID_V(viid));
7607 		c.freemacs_to_len16 =
7608 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7609 					    FW_CMD_LEN16_V(len16));
7610 
7611 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7612 			p->valid_to_idx = cpu_to_be16(
7613 				FW_VI_MAC_CMD_VALID_F |
7614 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7615 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7616 		}
7617 
7618 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7619 		if (ret)
7620 			break;
7621 
7622 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7623 			u16 index = FW_VI_MAC_CMD_IDX_G(
7624 						be16_to_cpu(p->valid_to_idx));
7625 
7626 			if (index < max_naddr)
7627 				nfilters++;
7628 		}
7629 
7630 		offset += fw_naddr;
7631 		rem -= fw_naddr;
7632 	}
7633 
7634 	if (ret == 0)
7635 		ret = nfilters;
7636 	return ret;
7637 }
7638 
7639 /**
7640  *	t4_change_mac - modifies the exact-match filter for a MAC address
7641  *	@adap: the adapter
7642  *	@mbox: mailbox to use for the FW command
7643  *	@viid: the VI id
7644  *	@idx: index of existing filter for old value of MAC address, or -1
7645  *	@addr: the new MAC address value
7646  *	@persist: whether a new MAC allocation should be persistent
7647  *	@add_smt: if true also add the address to the HW SMT
7648  *
7649  *	Modifies an exact-match filter and sets it to the new MAC address.
7650  *	Note that in general it is not possible to modify the value of a given
7651  *	filter so the generic way to modify an address filter is to free the one
7652  *	being used by the old address value and allocate a new filter for the
7653  *	new address value.  @idx can be -1 if the address is a new addition.
7654  *
7655  *	Returns a negative error number or the index of the filter with the new
7656  *	MAC value.
7657  */
7658 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7659 		  int idx, const u8 *addr, bool persist, bool add_smt)
7660 {
7661 	int ret, mode;
7662 	struct fw_vi_mac_cmd c;
7663 	struct fw_vi_mac_exact *p = c.u.exact;
7664 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7665 
7666 	if (idx < 0)                             /* new allocation */
7667 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7668 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7669 
7670 	memset(&c, 0, sizeof(c));
7671 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7672 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7673 				   FW_VI_MAC_CMD_VIID_V(viid));
7674 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7675 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7676 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7677 				      FW_VI_MAC_CMD_IDX_V(idx));
7678 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7679 
7680 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7681 	if (ret == 0) {
7682 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7683 		if (ret >= max_mac_addr)
7684 			ret = -ENOMEM;
7685 	}
7686 	return ret;
7687 }
7688 
7689 /**
7690  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7691  *	@adap: the adapter
7692  *	@mbox: mailbox to use for the FW command
7693  *	@viid: the VI id
7694  *	@ucast: whether the hash filter should also match unicast addresses
7695  *	@vec: the value to be written to the hash filter
7696  *	@sleep_ok: call is allowed to sleep
7697  *
7698  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7699  */
7700 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7701 		     bool ucast, u64 vec, bool sleep_ok)
7702 {
7703 	struct fw_vi_mac_cmd c;
7704 
7705 	memset(&c, 0, sizeof(c));
7706 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7707 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7708 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7709 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7710 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7711 					  FW_CMD_LEN16_V(1));
7712 	c.u.hash.hashvec = cpu_to_be64(vec);
7713 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7714 }
7715 
7716 /**
7717  *      t4_enable_vi_params - enable/disable a virtual interface
7718  *      @adap: the adapter
7719  *      @mbox: mailbox to use for the FW command
7720  *      @viid: the VI id
7721  *      @rx_en: 1=enable Rx, 0=disable Rx
7722  *      @tx_en: 1=enable Tx, 0=disable Tx
7723  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7724  *
7725  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7726  *      only makes sense when enabling a Virtual Interface ...
7727  */
7728 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7729 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7730 {
7731 	struct fw_vi_enable_cmd c;
7732 
7733 	memset(&c, 0, sizeof(c));
7734 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7735 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7736 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7737 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7738 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7739 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7740 				     FW_LEN16(c));
7741 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7742 }
7743 
7744 /**
7745  *	t4_enable_vi - enable/disable a virtual interface
7746  *	@adap: the adapter
7747  *	@mbox: mailbox to use for the FW command
7748  *	@viid: the VI id
7749  *	@rx_en: 1=enable Rx, 0=disable Rx
7750  *	@tx_en: 1=enable Tx, 0=disable Tx
7751  *
7752  *	Enables/disables a virtual interface.
7753  */
7754 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7755 		 bool rx_en, bool tx_en)
7756 {
7757 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7758 }
7759 
7760 /**
7761  *	t4_identify_port - identify a VI's port by blinking its LED
7762  *	@adap: the adapter
7763  *	@mbox: mailbox to use for the FW command
7764  *	@viid: the VI id
7765  *	@nblinks: how many times to blink LED at 2.5 Hz
7766  *
7767  *	Identifies a VI's port by blinking its LED.
7768  */
7769 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7770 		     unsigned int nblinks)
7771 {
7772 	struct fw_vi_enable_cmd c;
7773 
7774 	memset(&c, 0, sizeof(c));
7775 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7776 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7777 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7778 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7779 	c.blinkdur = cpu_to_be16(nblinks);
7780 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7781 }
7782 
7783 /**
7784  *	t4_iq_stop - stop an ingress queue and its FLs
7785  *	@adap: the adapter
7786  *	@mbox: mailbox to use for the FW command
7787  *	@pf: the PF owning the queues
7788  *	@vf: the VF owning the queues
7789  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7790  *	@iqid: ingress queue id
7791  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7792  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7793  *
7794  *	Stops an ingress queue and its associated FLs, if any.  This causes
7795  *	any current or future data/messages destined for these queues to be
7796  *	tossed.
7797  */
7798 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7799 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7800 	       unsigned int fl0id, unsigned int fl1id)
7801 {
7802 	struct fw_iq_cmd c;
7803 
7804 	memset(&c, 0, sizeof(c));
7805 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7806 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7807 				  FW_IQ_CMD_VFN_V(vf));
7808 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7809 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7810 	c.iqid = cpu_to_be16(iqid);
7811 	c.fl0id = cpu_to_be16(fl0id);
7812 	c.fl1id = cpu_to_be16(fl1id);
7813 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7814 }
7815 
7816 /**
7817  *	t4_iq_free - free an ingress queue and its FLs
7818  *	@adap: the adapter
7819  *	@mbox: mailbox to use for the FW command
7820  *	@pf: the PF owning the queues
7821  *	@vf: the VF owning the queues
7822  *	@iqtype: the ingress queue type
7823  *	@iqid: ingress queue id
7824  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7825  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7826  *
7827  *	Frees an ingress queue and its associated FLs, if any.
7828  */
7829 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7830 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7831 	       unsigned int fl0id, unsigned int fl1id)
7832 {
7833 	struct fw_iq_cmd c;
7834 
7835 	memset(&c, 0, sizeof(c));
7836 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7837 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7838 				  FW_IQ_CMD_VFN_V(vf));
7839 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7840 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7841 	c.iqid = cpu_to_be16(iqid);
7842 	c.fl0id = cpu_to_be16(fl0id);
7843 	c.fl1id = cpu_to_be16(fl1id);
7844 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7845 }
7846 
7847 /**
7848  *	t4_eth_eq_free - free an Ethernet egress queue
7849  *	@adap: the adapter
7850  *	@mbox: mailbox to use for the FW command
7851  *	@pf: the PF owning the queue
7852  *	@vf: the VF owning the queue
7853  *	@eqid: egress queue id
7854  *
7855  *	Frees an Ethernet egress queue.
7856  */
7857 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7858 		   unsigned int vf, unsigned int eqid)
7859 {
7860 	struct fw_eq_eth_cmd c;
7861 
7862 	memset(&c, 0, sizeof(c));
7863 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7864 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7865 				  FW_EQ_ETH_CMD_PFN_V(pf) |
7866 				  FW_EQ_ETH_CMD_VFN_V(vf));
7867 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7868 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7869 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7870 }
7871 
7872 /**
7873  *	t4_ctrl_eq_free - free a control egress queue
7874  *	@adap: the adapter
7875  *	@mbox: mailbox to use for the FW command
7876  *	@pf: the PF owning the queue
7877  *	@vf: the VF owning the queue
7878  *	@eqid: egress queue id
7879  *
7880  *	Frees a control egress queue.
7881  */
7882 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7883 		    unsigned int vf, unsigned int eqid)
7884 {
7885 	struct fw_eq_ctrl_cmd c;
7886 
7887 	memset(&c, 0, sizeof(c));
7888 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7889 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7890 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7891 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7892 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7893 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7894 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7895 }
7896 
7897 /**
7898  *	t4_ofld_eq_free - free an offload egress queue
7899  *	@adap: the adapter
7900  *	@mbox: mailbox to use for the FW command
7901  *	@pf: the PF owning the queue
7902  *	@vf: the VF owning the queue
7903  *	@eqid: egress queue id
7904  *
7905  *	Frees a control egress queue.
7906  */
7907 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7908 		    unsigned int vf, unsigned int eqid)
7909 {
7910 	struct fw_eq_ofld_cmd c;
7911 
7912 	memset(&c, 0, sizeof(c));
7913 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7914 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7915 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7916 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7917 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7918 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7919 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7920 }
7921 
7922 /**
7923  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7924  *	@adap: the adapter
7925  *	@link_down_rc: Link Down Reason Code
7926  *
7927  *	Returns a string representation of the Link Down Reason Code.
7928  */
7929 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7930 {
7931 	static const char * const reason[] = {
7932 		"Link Down",
7933 		"Remote Fault",
7934 		"Auto-negotiation Failure",
7935 		"Reserved",
7936 		"Insufficient Airflow",
7937 		"Unable To Determine Reason",
7938 		"No RX Signal Detected",
7939 		"Reserved",
7940 	};
7941 
7942 	if (link_down_rc >= ARRAY_SIZE(reason))
7943 		return "Bad Reason Code";
7944 
7945 	return reason[link_down_rc];
7946 }
7947 
7948 /**
7949  * Return the highest speed set in the port capabilities, in Mb/s.
7950  */
7951 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
7952 {
7953 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
7954 		do { \
7955 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7956 				return __speed; \
7957 		} while (0)
7958 
7959 	TEST_SPEED_RETURN(400G, 400000);
7960 	TEST_SPEED_RETURN(200G, 200000);
7961 	TEST_SPEED_RETURN(100G, 100000);
7962 	TEST_SPEED_RETURN(50G,   50000);
7963 	TEST_SPEED_RETURN(40G,   40000);
7964 	TEST_SPEED_RETURN(25G,   25000);
7965 	TEST_SPEED_RETURN(10G,   10000);
7966 	TEST_SPEED_RETURN(1G,     1000);
7967 	TEST_SPEED_RETURN(100M,    100);
7968 
7969 	#undef TEST_SPEED_RETURN
7970 
7971 	return 0;
7972 }
7973 
7974 /**
7975  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
7976  *	@acaps: advertised Port Capabilities
7977  *
7978  *	Get the highest speed for the port from the advertised Port
7979  *	Capabilities.  It will be either the highest speed from the list of
7980  *	speeds or whatever user has set using ethtool.
7981  */
7982 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
7983 {
7984 	#define TEST_SPEED_RETURN(__caps_speed) \
7985 		do { \
7986 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7987 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
7988 		} while (0)
7989 
7990 	TEST_SPEED_RETURN(400G);
7991 	TEST_SPEED_RETURN(200G);
7992 	TEST_SPEED_RETURN(100G);
7993 	TEST_SPEED_RETURN(50G);
7994 	TEST_SPEED_RETURN(40G);
7995 	TEST_SPEED_RETURN(25G);
7996 	TEST_SPEED_RETURN(10G);
7997 	TEST_SPEED_RETURN(1G);
7998 	TEST_SPEED_RETURN(100M);
7999 
8000 	#undef TEST_SPEED_RETURN
8001 
8002 	return 0;
8003 }
8004 
8005 /**
8006  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8007  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8008  *
8009  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8010  *	32-bit Port Capabilities value.
8011  */
8012 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8013 {
8014 	fw_port_cap32_t linkattr = 0;
8015 
8016 	/* Unfortunately the format of the Link Status in the old
8017 	 * 16-bit Port Information message isn't the same as the
8018 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8019 	 */
8020 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8021 		linkattr |= FW_PORT_CAP32_FC_RX;
8022 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8023 		linkattr |= FW_PORT_CAP32_FC_TX;
8024 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8025 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8026 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8027 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8028 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8029 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8030 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8031 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8032 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8033 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8034 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8035 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8036 
8037 	return linkattr;
8038 }
8039 
8040 /**
8041  *	t4_handle_get_port_info - process a FW reply message
8042  *	@pi: the port info
8043  *	@rpl: start of the FW message
8044  *
8045  *	Processes a GET_PORT_INFO FW reply message.
8046  */
8047 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8048 {
8049 	const struct fw_port_cmd *cmd = (const void *)rpl;
8050 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8051 	struct adapter *adapter = pi->adapter;
8052 	struct link_config *lc = &pi->link_cfg;
8053 	int link_ok, linkdnrc;
8054 	enum fw_port_type port_type;
8055 	enum fw_port_module_type mod_type;
8056 	unsigned int speed, fc, fec;
8057 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8058 
8059 	/* Extract the various fields from the Port Information message.
8060 	 */
8061 	switch (action) {
8062 	case FW_PORT_ACTION_GET_PORT_INFO: {
8063 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8064 
8065 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8066 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8067 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8068 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8069 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8070 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8071 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8072 		linkattr = lstatus_to_fwcap(lstatus);
8073 		break;
8074 	}
8075 
8076 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8077 		u32 lstatus32;
8078 
8079 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8080 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8081 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8082 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8083 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8084 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8085 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8086 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8087 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8088 		break;
8089 	}
8090 
8091 	default:
8092 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8093 			be32_to_cpu(cmd->action_to_len16));
8094 		return;
8095 	}
8096 
8097 	fec = fwcap_to_cc_fec(acaps);
8098 	fc = fwcap_to_cc_pause(linkattr);
8099 	speed = fwcap_to_speed(linkattr);
8100 
8101 	if (mod_type != pi->mod_type) {
8102 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8103 		 * various fundamental Port Capabilities which used to be
8104 		 * immutable can now change radically.  We can now have
8105 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8106 		 * all change based on what Transceiver Module is inserted.
8107 		 * So we need to record the Physical "Port" Capabilities on
8108 		 * every Transceiver Module change.
8109 		 */
8110 		lc->pcaps = pcaps;
8111 
8112 		/* When a new Transceiver Module is inserted, the Firmware
8113 		 * will examine its i2c EPROM to determine its type and
8114 		 * general operating parameters including things like Forward
8115 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8116 		 * how to interpret these i2c values to determine default
8117 		 * "sutomatic" settings.  We record these for future use when
8118 		 * the user explicitly requests these standards-based values.
8119 		 */
8120 		lc->def_acaps = acaps;
8121 
8122 		/* Some versions of the early T6 Firmware "cheated" when
8123 		 * handling different Transceiver Modules by changing the
8124 		 * underlaying Port Type reported to the Host Drivers.  As
8125 		 * such we need to capture whatever Port Type the Firmware
8126 		 * sends us and record it in case it's different from what we
8127 		 * were told earlier.  Unfortunately, since Firmware is
8128 		 * forever, we'll need to keep this code here forever, but in
8129 		 * later T6 Firmware it should just be an assignment of the
8130 		 * same value already recorded.
8131 		 */
8132 		pi->port_type = port_type;
8133 
8134 		pi->mod_type = mod_type;
8135 		t4_os_portmod_changed(adapter, pi->port_id);
8136 	}
8137 
8138 	if (link_ok != lc->link_ok || speed != lc->speed ||
8139 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8140 		if (!link_ok && lc->link_ok) {
8141 			lc->link_down_rc = linkdnrc;
8142 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8143 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8144 		}
8145 		lc->link_ok = link_ok;
8146 		lc->speed = speed;
8147 		lc->fc = fc;
8148 		lc->fec = fec;
8149 
8150 		lc->lpacaps = lpacaps;
8151 		lc->acaps = acaps & ADVERT_MASK;
8152 
8153 		if (lc->acaps & FW_PORT_CAP32_ANEG) {
8154 			lc->autoneg = AUTONEG_ENABLE;
8155 		} else {
8156 			/* When Autoneg is disabled, user needs to set
8157 			 * single speed.
8158 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8159 			 */
8160 			lc->acaps = 0;
8161 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8162 			lc->autoneg = AUTONEG_DISABLE;
8163 		}
8164 
8165 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8166 	}
8167 }
8168 
8169 /**
8170  *	t4_update_port_info - retrieve and update port information if changed
8171  *	@pi: the port_info
8172  *
8173  *	We issue a Get Port Information Command to the Firmware and, if
8174  *	successful, we check to see if anything is different from what we
8175  *	last recorded and update things accordingly.
8176  */
8177 int t4_update_port_info(struct port_info *pi)
8178 {
8179 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8180 	struct fw_port_cmd port_cmd;
8181 	int ret;
8182 
8183 	memset(&port_cmd, 0, sizeof(port_cmd));
8184 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8185 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8186 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8187 	port_cmd.action_to_len16 = cpu_to_be32(
8188 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8189 				     ? FW_PORT_ACTION_GET_PORT_INFO
8190 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8191 		FW_LEN16(port_cmd));
8192 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8193 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8194 	if (ret)
8195 		return ret;
8196 
8197 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8198 	return 0;
8199 }
8200 
8201 /**
8202  *	t4_get_link_params - retrieve basic link parameters for given port
8203  *	@pi: the port
8204  *	@link_okp: value return pointer for link up/down
8205  *	@speedp: value return pointer for speed (Mb/s)
8206  *	@mtup: value return pointer for mtu
8207  *
8208  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8209  *	and MTU for a specified port.  A negative error is returned on
8210  *	failure; 0 on success.
8211  */
8212 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8213 		       unsigned int *speedp, unsigned int *mtup)
8214 {
8215 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8216 	struct fw_port_cmd port_cmd;
8217 	unsigned int action, link_ok, speed, mtu;
8218 	fw_port_cap32_t linkattr;
8219 	int ret;
8220 
8221 	memset(&port_cmd, 0, sizeof(port_cmd));
8222 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8223 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8224 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8225 	action = (fw_caps == FW_CAPS16
8226 		  ? FW_PORT_ACTION_GET_PORT_INFO
8227 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8228 	port_cmd.action_to_len16 = cpu_to_be32(
8229 		FW_PORT_CMD_ACTION_V(action) |
8230 		FW_LEN16(port_cmd));
8231 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8232 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8233 	if (ret)
8234 		return ret;
8235 
8236 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8237 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8238 
8239 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8240 		linkattr = lstatus_to_fwcap(lstatus);
8241 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8242 	} else {
8243 		u32 lstatus32 =
8244 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8245 
8246 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8247 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8248 		mtu = FW_PORT_CMD_MTU32_G(
8249 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8250 	}
8251 	speed = fwcap_to_speed(linkattr);
8252 
8253 	*link_okp = link_ok;
8254 	*speedp = fwcap_to_speed(linkattr);
8255 	*mtup = mtu;
8256 
8257 	return 0;
8258 }
8259 
8260 /**
8261  *      t4_handle_fw_rpl - process a FW reply message
8262  *      @adap: the adapter
8263  *      @rpl: start of the FW message
8264  *
8265  *      Processes a FW message, such as link state change messages.
8266  */
8267 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8268 {
8269 	u8 opcode = *(const u8 *)rpl;
8270 
8271 	/* This might be a port command ... this simplifies the following
8272 	 * conditionals ...  We can get away with pre-dereferencing
8273 	 * action_to_len16 because it's in the first 16 bytes and all messages
8274 	 * will be at least that long.
8275 	 */
8276 	const struct fw_port_cmd *p = (const void *)rpl;
8277 	unsigned int action =
8278 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8279 
8280 	if (opcode == FW_PORT_CMD &&
8281 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8282 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8283 		int i;
8284 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8285 		struct port_info *pi = NULL;
8286 
8287 		for_each_port(adap, i) {
8288 			pi = adap2pinfo(adap, i);
8289 			if (pi->tx_chan == chan)
8290 				break;
8291 		}
8292 
8293 		t4_handle_get_port_info(pi, rpl);
8294 	} else {
8295 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8296 			 opcode);
8297 		return -EINVAL;
8298 	}
8299 	return 0;
8300 }
8301 
8302 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8303 {
8304 	u16 val;
8305 
8306 	if (pci_is_pcie(adapter->pdev)) {
8307 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8308 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8309 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8310 	}
8311 }
8312 
8313 /**
8314  *	init_link_config - initialize a link's SW state
8315  *	@lc: pointer to structure holding the link state
8316  *	@pcaps: link Port Capabilities
8317  *	@acaps: link current Advertised Port Capabilities
8318  *
8319  *	Initializes the SW state maintained for each link, including the link's
8320  *	capabilities and default speed/flow-control/autonegotiation settings.
8321  */
8322 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8323 			     fw_port_cap32_t acaps)
8324 {
8325 	lc->pcaps = pcaps;
8326 	lc->def_acaps = acaps;
8327 	lc->lpacaps = 0;
8328 	lc->speed_caps = 0;
8329 	lc->speed = 0;
8330 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8331 
8332 	/* For Forward Error Control, we default to whatever the Firmware
8333 	 * tells us the Link is currently advertising.
8334 	 */
8335 	lc->requested_fec = FEC_AUTO;
8336 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8337 
8338 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8339 		lc->acaps = lc->pcaps & ADVERT_MASK;
8340 		lc->autoneg = AUTONEG_ENABLE;
8341 		lc->requested_fc |= PAUSE_AUTONEG;
8342 	} else {
8343 		lc->acaps = 0;
8344 		lc->autoneg = AUTONEG_DISABLE;
8345 	}
8346 }
8347 
8348 #define CIM_PF_NOACCESS 0xeeeeeeee
8349 
8350 int t4_wait_dev_ready(void __iomem *regs)
8351 {
8352 	u32 whoami;
8353 
8354 	whoami = readl(regs + PL_WHOAMI_A);
8355 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8356 		return 0;
8357 
8358 	msleep(500);
8359 	whoami = readl(regs + PL_WHOAMI_A);
8360 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8361 }
8362 
8363 struct flash_desc {
8364 	u32 vendor_and_model_id;
8365 	u32 size_mb;
8366 };
8367 
8368 static int t4_get_flash_params(struct adapter *adap)
8369 {
8370 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8371 	 * to the preexisting code.  All flash parts have 64KB sectors.
8372 	 */
8373 	static struct flash_desc supported_flash[] = {
8374 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8375 	};
8376 
8377 	unsigned int part, manufacturer;
8378 	unsigned int density, size;
8379 	u32 flashid = 0;
8380 	int ret;
8381 
8382 	/* Issue a Read ID Command to the Flash part.  We decode supported
8383 	 * Flash parts and their sizes from this.  There's a newer Query
8384 	 * Command which can retrieve detailed geometry information but many
8385 	 * Flash parts don't support it.
8386 	 */
8387 
8388 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8389 	if (!ret)
8390 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8391 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8392 	if (ret)
8393 		return ret;
8394 
8395 	/* Check to see if it's one of our non-standard supported Flash parts.
8396 	 */
8397 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8398 		if (supported_flash[part].vendor_and_model_id == flashid) {
8399 			adap->params.sf_size = supported_flash[part].size_mb;
8400 			adap->params.sf_nsec =
8401 				adap->params.sf_size / SF_SEC_SIZE;
8402 			goto found;
8403 		}
8404 
8405 	/* Decode Flash part size.  The code below looks repetative with
8406 	 * common encodings, but that's not guaranteed in the JEDEC
8407 	 * specification for the Read JADEC ID command.  The only thing that
8408 	 * we're guaranteed by the JADEC specification is where the
8409 	 * Manufacturer ID is in the returned result.  After that each
8410 	 * Manufacturer ~could~ encode things completely differently.
8411 	 * Note, all Flash parts must have 64KB sectors.
8412 	 */
8413 	manufacturer = flashid & 0xff;
8414 	switch (manufacturer) {
8415 	case 0x20: { /* Micron/Numonix */
8416 		/* This Density -> Size decoding table is taken from Micron
8417 		 * Data Sheets.
8418 		 */
8419 		density = (flashid >> 16) & 0xff;
8420 		switch (density) {
8421 		case 0x14: /* 1MB */
8422 			size = 1 << 20;
8423 			break;
8424 		case 0x15: /* 2MB */
8425 			size = 1 << 21;
8426 			break;
8427 		case 0x16: /* 4MB */
8428 			size = 1 << 22;
8429 			break;
8430 		case 0x17: /* 8MB */
8431 			size = 1 << 23;
8432 			break;
8433 		case 0x18: /* 16MB */
8434 			size = 1 << 24;
8435 			break;
8436 		case 0x19: /* 32MB */
8437 			size = 1 << 25;
8438 			break;
8439 		case 0x20: /* 64MB */
8440 			size = 1 << 26;
8441 			break;
8442 		case 0x21: /* 128MB */
8443 			size = 1 << 27;
8444 			break;
8445 		case 0x22: /* 256MB */
8446 			size = 1 << 28;
8447 			break;
8448 
8449 		default:
8450 			dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n",
8451 				flashid, density);
8452 			return -EINVAL;
8453 		}
8454 		break;
8455 	}
8456 	case 0xc2: { /* Macronix */
8457 		/* This Density -> Size decoding table is taken from Macronix
8458 		 * Data Sheets.
8459 		 */
8460 		density = (flashid >> 16) & 0xff;
8461 		switch (density) {
8462 		case 0x17: /* 8MB */
8463 			size = 1 << 23;
8464 			break;
8465 		case 0x18: /* 16MB */
8466 			size = 1 << 24;
8467 			break;
8468 		default:
8469 			dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n",
8470 				flashid, density);
8471 			return -EINVAL;
8472 		}
8473 		break;
8474 	}
8475 	case 0xef: { /* Winbond */
8476 		/* This Density -> Size decoding table is taken from Winbond
8477 		 * Data Sheets.
8478 		 */
8479 		density = (flashid >> 16) & 0xff;
8480 		switch (density) {
8481 		case 0x17: /* 8MB */
8482 			size = 1 << 23;
8483 			break;
8484 		case 0x18: /* 16MB */
8485 			size = 1 << 24;
8486 			break;
8487 		default:
8488 			dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n",
8489 				flashid, density);
8490 			return -EINVAL;
8491 		}
8492 		break;
8493 	}
8494 	default:
8495 		dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n",
8496 			flashid);
8497 		return -EINVAL;
8498 	}
8499 
8500 	/* Store decoded Flash size and fall through into vetting code. */
8501 	adap->params.sf_size = size;
8502 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8503 
8504 found:
8505 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8506 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8507 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8508 	return 0;
8509 }
8510 
8511 /**
8512  *	t4_prep_adapter - prepare SW and HW for operation
8513  *	@adapter: the adapter
8514  *	@reset: if true perform a HW reset
8515  *
8516  *	Initialize adapter SW state for the various HW modules, set initial
8517  *	values for some adapter tunables, take PHYs out of reset, and
8518  *	initialize the MDIO interface.
8519  */
8520 int t4_prep_adapter(struct adapter *adapter)
8521 {
8522 	int ret, ver;
8523 	uint16_t device_id;
8524 	u32 pl_rev;
8525 
8526 	get_pci_mode(adapter, &adapter->params.pci);
8527 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8528 
8529 	ret = t4_get_flash_params(adapter);
8530 	if (ret < 0) {
8531 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8532 		return ret;
8533 	}
8534 
8535 	/* Retrieve adapter's device ID
8536 	 */
8537 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8538 	ver = device_id >> 12;
8539 	adapter->params.chip = 0;
8540 	switch (ver) {
8541 	case CHELSIO_T4:
8542 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8543 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8544 		adapter->params.arch.mps_tcam_size =
8545 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8546 		adapter->params.arch.mps_rplc_size = 128;
8547 		adapter->params.arch.nchan = NCHAN;
8548 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8549 		adapter->params.arch.vfcount = 128;
8550 		/* Congestion map is for 4 channels so that
8551 		 * MPS can have 4 priority per port.
8552 		 */
8553 		adapter->params.arch.cng_ch_bits_log = 2;
8554 		break;
8555 	case CHELSIO_T5:
8556 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8557 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8558 		adapter->params.arch.mps_tcam_size =
8559 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8560 		adapter->params.arch.mps_rplc_size = 128;
8561 		adapter->params.arch.nchan = NCHAN;
8562 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8563 		adapter->params.arch.vfcount = 128;
8564 		adapter->params.arch.cng_ch_bits_log = 2;
8565 		break;
8566 	case CHELSIO_T6:
8567 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8568 		adapter->params.arch.sge_fl_db = 0;
8569 		adapter->params.arch.mps_tcam_size =
8570 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8571 		adapter->params.arch.mps_rplc_size = 256;
8572 		adapter->params.arch.nchan = 2;
8573 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8574 		adapter->params.arch.vfcount = 256;
8575 		/* Congestion map will be for 2 channels so that
8576 		 * MPS can have 8 priority per port.
8577 		 */
8578 		adapter->params.arch.cng_ch_bits_log = 3;
8579 		break;
8580 	default:
8581 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8582 			device_id);
8583 		return -EINVAL;
8584 	}
8585 
8586 	adapter->params.cim_la_size = CIMLA_SIZE;
8587 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8588 
8589 	/*
8590 	 * Default port for debugging in case we can't reach FW.
8591 	 */
8592 	adapter->params.nports = 1;
8593 	adapter->params.portvec = 1;
8594 	adapter->params.vpd.cclk = 50000;
8595 
8596 	/* Set PCIe completion timeout to 4 seconds. */
8597 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
8598 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
8599 	return 0;
8600 }
8601 
8602 /**
8603  *	t4_shutdown_adapter - shut down adapter, host & wire
8604  *	@adapter: the adapter
8605  *
8606  *	Perform an emergency shutdown of the adapter and stop it from
8607  *	continuing any further communication on the ports or DMA to the
8608  *	host.  This is typically used when the adapter and/or firmware
8609  *	have crashed and we want to prevent any further accidental
8610  *	communication with the rest of the world.  This will also force
8611  *	the port Link Status to go down -- if register writes work --
8612  *	which should help our peers figure out that we're down.
8613  */
8614 int t4_shutdown_adapter(struct adapter *adapter)
8615 {
8616 	int port;
8617 
8618 	t4_intr_disable(adapter);
8619 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8620 	for_each_port(adapter, port) {
8621 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
8622 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
8623 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
8624 
8625 		t4_write_reg(adapter, a_port_cfg,
8626 			     t4_read_reg(adapter, a_port_cfg)
8627 			     & ~SIGNAL_DET_V(1));
8628 	}
8629 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8630 
8631 	return 0;
8632 }
8633 
8634 /**
8635  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8636  *	@adapter: the adapter
8637  *	@qid: the Queue ID
8638  *	@qtype: the Ingress or Egress type for @qid
8639  *	@user: true if this request is for a user mode queue
8640  *	@pbar2_qoffset: BAR2 Queue Offset
8641  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8642  *
8643  *	Returns the BAR2 SGE Queue Registers information associated with the
8644  *	indicated Absolute Queue ID.  These are passed back in return value
8645  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8646  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8647  *
8648  *	This may return an error which indicates that BAR2 SGE Queue
8649  *	registers aren't available.  If an error is not returned, then the
8650  *	following values are returned:
8651  *
8652  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8653  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8654  *
8655  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8656  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8657  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8658  *	then these "Inferred Queue ID" register may not be used.
8659  */
8660 int t4_bar2_sge_qregs(struct adapter *adapter,
8661 		      unsigned int qid,
8662 		      enum t4_bar2_qtype qtype,
8663 		      int user,
8664 		      u64 *pbar2_qoffset,
8665 		      unsigned int *pbar2_qid)
8666 {
8667 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8668 	u64 bar2_page_offset, bar2_qoffset;
8669 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8670 
8671 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
8672 	if (!user && is_t4(adapter->params.chip))
8673 		return -EINVAL;
8674 
8675 	/* Get our SGE Page Size parameters.
8676 	 */
8677 	page_shift = adapter->params.sge.hps + 10;
8678 	page_size = 1 << page_shift;
8679 
8680 	/* Get the right Queues per Page parameters for our Queue.
8681 	 */
8682 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8683 		     ? adapter->params.sge.eq_qpp
8684 		     : adapter->params.sge.iq_qpp);
8685 	qpp_mask = (1 << qpp_shift) - 1;
8686 
8687 	/*  Calculate the basics of the BAR2 SGE Queue register area:
8688 	 *  o The BAR2 page the Queue registers will be in.
8689 	 *  o The BAR2 Queue ID.
8690 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8691 	 */
8692 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8693 	bar2_qid = qid & qpp_mask;
8694 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8695 
8696 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8697 	 * hardware will infer the Absolute Queue ID simply from the writes to
8698 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8699 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8700 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8701 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8702 	 * from the BAR2 Page and BAR2 Queue ID.
8703 	 *
8704 	 * One important censequence of this is that some BAR2 SGE registers
8705 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8706 	 * there.  But other registers synthesize the SGE Queue ID purely
8707 	 * from the writes to the registers -- the Write Combined Doorbell
8708 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8709 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8710 	 * Queue ID can be inferred from simple writes.
8711 	 */
8712 	bar2_qoffset = bar2_page_offset;
8713 	bar2_qinferred = (bar2_qid_offset < page_size);
8714 	if (bar2_qinferred) {
8715 		bar2_qoffset += bar2_qid_offset;
8716 		bar2_qid = 0;
8717 	}
8718 
8719 	*pbar2_qoffset = bar2_qoffset;
8720 	*pbar2_qid = bar2_qid;
8721 	return 0;
8722 }
8723 
8724 /**
8725  *	t4_init_devlog_params - initialize adapter->params.devlog
8726  *	@adap: the adapter
8727  *
8728  *	Initialize various fields of the adapter's Firmware Device Log
8729  *	Parameters structure.
8730  */
8731 int t4_init_devlog_params(struct adapter *adap)
8732 {
8733 	struct devlog_params *dparams = &adap->params.devlog;
8734 	u32 pf_dparams;
8735 	unsigned int devlog_meminfo;
8736 	struct fw_devlog_cmd devlog_cmd;
8737 	int ret;
8738 
8739 	/* If we're dealing with newer firmware, the Device Log Paramerters
8740 	 * are stored in a designated register which allows us to access the
8741 	 * Device Log even if we can't talk to the firmware.
8742 	 */
8743 	pf_dparams =
8744 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
8745 	if (pf_dparams) {
8746 		unsigned int nentries, nentries128;
8747 
8748 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
8749 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
8750 
8751 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
8752 		nentries = (nentries128 + 1) * 128;
8753 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8754 
8755 		return 0;
8756 	}
8757 
8758 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8759 	 */
8760 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
8761 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
8762 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
8763 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8764 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8765 			 &devlog_cmd);
8766 	if (ret)
8767 		return ret;
8768 
8769 	devlog_meminfo =
8770 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8771 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
8772 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
8773 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8774 
8775 	return 0;
8776 }
8777 
8778 /**
8779  *	t4_init_sge_params - initialize adap->params.sge
8780  *	@adapter: the adapter
8781  *
8782  *	Initialize various fields of the adapter's SGE Parameters structure.
8783  */
8784 int t4_init_sge_params(struct adapter *adapter)
8785 {
8786 	struct sge_params *sge_params = &adapter->params.sge;
8787 	u32 hps, qpp;
8788 	unsigned int s_hps, s_qpp;
8789 
8790 	/* Extract the SGE Page Size for our PF.
8791 	 */
8792 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
8793 	s_hps = (HOSTPAGESIZEPF0_S +
8794 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
8795 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8796 
8797 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8798 	 */
8799 	s_qpp = (QUEUESPERPAGEPF0_S +
8800 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
8801 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8802 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8803 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
8804 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8805 
8806 	return 0;
8807 }
8808 
8809 /**
8810  *      t4_init_tp_params - initialize adap->params.tp
8811  *      @adap: the adapter
8812  *      @sleep_ok: if true we may sleep while awaiting command completion
8813  *
8814  *      Initialize various fields of the adapter's TP Parameters structure.
8815  */
8816 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8817 {
8818 	int chan;
8819 	u32 v;
8820 
8821 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8822 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
8823 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
8824 
8825 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8826 	for (chan = 0; chan < NCHAN; chan++)
8827 		adap->params.tp.tx_modq[chan] = chan;
8828 
8829 	/* Cache the adapter's Compressed Filter Mode and global Incress
8830 	 * Configuration.
8831 	 */
8832 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
8833 		       TP_VLAN_PRI_MAP_A, sleep_ok);
8834 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
8835 		       TP_INGRESS_CONFIG_A, sleep_ok);
8836 
8837 	/* For T6, cache the adapter's compressed error vector
8838 	 * and passing outer header info for encapsulated packets.
8839 	 */
8840 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
8841 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
8842 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
8843 	}
8844 
8845 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8846 	 * shift positions of several elements of the Compressed Filter Tuple
8847 	 * for this adapter which we need frequently ...
8848 	 */
8849 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
8850 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
8851 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
8852 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
8853 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
8854 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
8855 							       PROTOCOL_F);
8856 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
8857 								ETHERTYPE_F);
8858 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
8859 							       MACMATCH_F);
8860 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
8861 								MPSHITTYPE_F);
8862 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
8863 							   FRAGMENTATION_F);
8864 
8865 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8866 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8867 	 */
8868 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
8869 		adap->params.tp.vnic_shift = -1;
8870 
8871 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
8872 	adap->params.tp.hash_filter_mask = v;
8873 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
8874 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
8875 	return 0;
8876 }
8877 
8878 /**
8879  *      t4_filter_field_shift - calculate filter field shift
8880  *      @adap: the adapter
8881  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8882  *
8883  *      Return the shift position of a filter field within the Compressed
8884  *      Filter Tuple.  The filter field is specified via its selection bit
8885  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8886  */
8887 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8888 {
8889 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8890 	unsigned int sel;
8891 	int field_shift;
8892 
8893 	if ((filter_mode & filter_sel) == 0)
8894 		return -1;
8895 
8896 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8897 		switch (filter_mode & sel) {
8898 		case FCOE_F:
8899 			field_shift += FT_FCOE_W;
8900 			break;
8901 		case PORT_F:
8902 			field_shift += FT_PORT_W;
8903 			break;
8904 		case VNIC_ID_F:
8905 			field_shift += FT_VNIC_ID_W;
8906 			break;
8907 		case VLAN_F:
8908 			field_shift += FT_VLAN_W;
8909 			break;
8910 		case TOS_F:
8911 			field_shift += FT_TOS_W;
8912 			break;
8913 		case PROTOCOL_F:
8914 			field_shift += FT_PROTOCOL_W;
8915 			break;
8916 		case ETHERTYPE_F:
8917 			field_shift += FT_ETHERTYPE_W;
8918 			break;
8919 		case MACMATCH_F:
8920 			field_shift += FT_MACMATCH_W;
8921 			break;
8922 		case MPSHITTYPE_F:
8923 			field_shift += FT_MPSHITTYPE_W;
8924 			break;
8925 		case FRAGMENTATION_F:
8926 			field_shift += FT_FRAGMENTATION_W;
8927 			break;
8928 		}
8929 	}
8930 	return field_shift;
8931 }
8932 
8933 int t4_init_rss_mode(struct adapter *adap, int mbox)
8934 {
8935 	int i, ret;
8936 	struct fw_rss_vi_config_cmd rvc;
8937 
8938 	memset(&rvc, 0, sizeof(rvc));
8939 
8940 	for_each_port(adap, i) {
8941 		struct port_info *p = adap2pinfo(adap, i);
8942 
8943 		rvc.op_to_viid =
8944 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
8945 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8946 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
8947 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
8948 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
8949 		if (ret)
8950 			return ret;
8951 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
8952 	}
8953 	return 0;
8954 }
8955 
8956 /**
8957  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
8958  *	@pi: the port_info
8959  *	@mbox: mailbox to use for the FW command
8960  *	@port: physical port associated with the VI
8961  *	@pf: the PF owning the VI
8962  *	@vf: the VF owning the VI
8963  *	@mac: the MAC address of the VI
8964  *
8965  *	Allocates a virtual interface for the given physical port.  If @mac is
8966  *	not %NULL it contains the MAC address of the VI as assigned by FW.
8967  *	@mac should be large enough to hold an Ethernet address.
8968  *	Returns < 0 on error.
8969  */
8970 int t4_init_portinfo(struct port_info *pi, int mbox,
8971 		     int port, int pf, int vf, u8 mac[])
8972 {
8973 	struct adapter *adapter = pi->adapter;
8974 	unsigned int fw_caps = adapter->params.fw_caps_support;
8975 	struct fw_port_cmd cmd;
8976 	unsigned int rss_size;
8977 	enum fw_port_type port_type;
8978 	int mdio_addr;
8979 	fw_port_cap32_t pcaps, acaps;
8980 	int ret;
8981 
8982 	/* If we haven't yet determined whether we're talking to Firmware
8983 	 * which knows the new 32-bit Port Capabilities, it's time to find
8984 	 * out now.  This will also tell new Firmware to send us Port Status
8985 	 * Updates using the new 32-bit Port Capabilities version of the
8986 	 * Port Information message.
8987 	 */
8988 	if (fw_caps == FW_CAPS_UNKNOWN) {
8989 		u32 param, val;
8990 
8991 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
8992 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
8993 		val = 1;
8994 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
8995 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
8996 		adapter->params.fw_caps_support = fw_caps;
8997 	}
8998 
8999 	memset(&cmd, 0, sizeof(cmd));
9000 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9001 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9002 				       FW_PORT_CMD_PORTID_V(port));
9003 	cmd.action_to_len16 = cpu_to_be32(
9004 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9005 				     ? FW_PORT_ACTION_GET_PORT_INFO
9006 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9007 		FW_LEN16(cmd));
9008 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9009 	if (ret)
9010 		return ret;
9011 
9012 	/* Extract the various fields from the Port Information message.
9013 	 */
9014 	if (fw_caps == FW_CAPS16) {
9015 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9016 
9017 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9018 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9019 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9020 			     : -1);
9021 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9022 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9023 	} else {
9024 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9025 
9026 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9027 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9028 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9029 			     : -1);
9030 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9031 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9032 	}
9033 
9034 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9035 	if (ret < 0)
9036 		return ret;
9037 
9038 	pi->viid = ret;
9039 	pi->tx_chan = port;
9040 	pi->lport = port;
9041 	pi->rss_size = rss_size;
9042 
9043 	pi->port_type = port_type;
9044 	pi->mdio_addr = mdio_addr;
9045 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9046 
9047 	init_link_config(&pi->link_cfg, pcaps, acaps);
9048 	return 0;
9049 }
9050 
9051 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9052 {
9053 	u8 addr[6];
9054 	int ret, i, j = 0;
9055 
9056 	for_each_port(adap, i) {
9057 		struct port_info *pi = adap2pinfo(adap, i);
9058 
9059 		while ((adap->params.portvec & (1 << j)) == 0)
9060 			j++;
9061 
9062 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9063 		if (ret)
9064 			return ret;
9065 
9066 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9067 		j++;
9068 	}
9069 	return 0;
9070 }
9071 
9072 /**
9073  *	t4_read_cimq_cfg - read CIM queue configuration
9074  *	@adap: the adapter
9075  *	@base: holds the queue base addresses in bytes
9076  *	@size: holds the queue sizes in bytes
9077  *	@thres: holds the queue full thresholds in bytes
9078  *
9079  *	Returns the current configuration of the CIM queues, starting with
9080  *	the IBQs, then the OBQs.
9081  */
9082 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9083 {
9084 	unsigned int i, v;
9085 	int cim_num_obq = is_t4(adap->params.chip) ?
9086 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9087 
9088 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9089 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9090 			     QUENUMSELECT_V(i));
9091 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9092 		/* value is in 256-byte units */
9093 		*base++ = CIMQBASE_G(v) * 256;
9094 		*size++ = CIMQSIZE_G(v) * 256;
9095 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9096 	}
9097 	for (i = 0; i < cim_num_obq; i++) {
9098 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9099 			     QUENUMSELECT_V(i));
9100 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9101 		/* value is in 256-byte units */
9102 		*base++ = CIMQBASE_G(v) * 256;
9103 		*size++ = CIMQSIZE_G(v) * 256;
9104 	}
9105 }
9106 
9107 /**
9108  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9109  *	@adap: the adapter
9110  *	@qid: the queue index
9111  *	@data: where to store the queue contents
9112  *	@n: capacity of @data in 32-bit words
9113  *
9114  *	Reads the contents of the selected CIM queue starting at address 0 up
9115  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9116  *	error and the number of 32-bit words actually read on success.
9117  */
9118 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9119 {
9120 	int i, err, attempts;
9121 	unsigned int addr;
9122 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9123 
9124 	if (qid > 5 || (n & 3))
9125 		return -EINVAL;
9126 
9127 	addr = qid * nwords;
9128 	if (n > nwords)
9129 		n = nwords;
9130 
9131 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9132 	 * Wait for 1 Sec with a delay of 1 usec.
9133 	 */
9134 	attempts = 1000000;
9135 
9136 	for (i = 0; i < n; i++, addr++) {
9137 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9138 			     IBQDBGEN_F);
9139 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9140 				      attempts, 1);
9141 		if (err)
9142 			return err;
9143 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9144 	}
9145 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9146 	return i;
9147 }
9148 
9149 /**
9150  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9151  *	@adap: the adapter
9152  *	@qid: the queue index
9153  *	@data: where to store the queue contents
9154  *	@n: capacity of @data in 32-bit words
9155  *
9156  *	Reads the contents of the selected CIM queue starting at address 0 up
9157  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9158  *	error and the number of 32-bit words actually read on success.
9159  */
9160 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9161 {
9162 	int i, err;
9163 	unsigned int addr, v, nwords;
9164 	int cim_num_obq = is_t4(adap->params.chip) ?
9165 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9166 
9167 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9168 		return -EINVAL;
9169 
9170 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9171 		     QUENUMSELECT_V(qid));
9172 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9173 
9174 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9175 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9176 	if (n > nwords)
9177 		n = nwords;
9178 
9179 	for (i = 0; i < n; i++, addr++) {
9180 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9181 			     OBQDBGEN_F);
9182 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9183 				      2, 1);
9184 		if (err)
9185 			return err;
9186 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9187 	}
9188 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9189 	return i;
9190 }
9191 
9192 /**
9193  *	t4_cim_read - read a block from CIM internal address space
9194  *	@adap: the adapter
9195  *	@addr: the start address within the CIM address space
9196  *	@n: number of words to read
9197  *	@valp: where to store the result
9198  *
9199  *	Reads a block of 4-byte words from the CIM intenal address space.
9200  */
9201 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9202 		unsigned int *valp)
9203 {
9204 	int ret = 0;
9205 
9206 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9207 		return -EBUSY;
9208 
9209 	for ( ; !ret && n--; addr += 4) {
9210 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9211 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9212 				      0, 5, 2);
9213 		if (!ret)
9214 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9215 	}
9216 	return ret;
9217 }
9218 
9219 /**
9220  *	t4_cim_write - write a block into CIM internal address space
9221  *	@adap: the adapter
9222  *	@addr: the start address within the CIM address space
9223  *	@n: number of words to write
9224  *	@valp: set of values to write
9225  *
9226  *	Writes a block of 4-byte words into the CIM intenal address space.
9227  */
9228 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9229 		 const unsigned int *valp)
9230 {
9231 	int ret = 0;
9232 
9233 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9234 		return -EBUSY;
9235 
9236 	for ( ; !ret && n--; addr += 4) {
9237 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9238 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9239 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9240 				      0, 5, 2);
9241 	}
9242 	return ret;
9243 }
9244 
9245 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9246 			 unsigned int val)
9247 {
9248 	return t4_cim_write(adap, addr, 1, &val);
9249 }
9250 
9251 /**
9252  *	t4_cim_read_la - read CIM LA capture buffer
9253  *	@adap: the adapter
9254  *	@la_buf: where to store the LA data
9255  *	@wrptr: the HW write pointer within the capture buffer
9256  *
9257  *	Reads the contents of the CIM LA buffer with the most recent entry at
9258  *	the end	of the returned data and with the entry at @wrptr first.
9259  *	We try to leave the LA in the running state we find it in.
9260  */
9261 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9262 {
9263 	int i, ret;
9264 	unsigned int cfg, val, idx;
9265 
9266 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9267 	if (ret)
9268 		return ret;
9269 
9270 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9271 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9272 		if (ret)
9273 			return ret;
9274 	}
9275 
9276 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9277 	if (ret)
9278 		goto restart;
9279 
9280 	idx = UPDBGLAWRPTR_G(val);
9281 	if (wrptr)
9282 		*wrptr = idx;
9283 
9284 	for (i = 0; i < adap->params.cim_la_size; i++) {
9285 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9286 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9287 		if (ret)
9288 			break;
9289 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9290 		if (ret)
9291 			break;
9292 		if (val & UPDBGLARDEN_F) {
9293 			ret = -ETIMEDOUT;
9294 			break;
9295 		}
9296 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9297 		if (ret)
9298 			break;
9299 
9300 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9301 		 * identify the 32-bit portion of the full 312-bit data
9302 		 */
9303 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9304 			idx = (idx & 0xff0) + 0x10;
9305 		else
9306 			idx++;
9307 		/* address can't exceed 0xfff */
9308 		idx &= UPDBGLARDPTR_M;
9309 	}
9310 restart:
9311 	if (cfg & UPDBGLAEN_F) {
9312 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9313 				      cfg & ~UPDBGLARDEN_F);
9314 		if (!ret)
9315 			ret = r;
9316 	}
9317 	return ret;
9318 }
9319 
9320 /**
9321  *	t4_tp_read_la - read TP LA capture buffer
9322  *	@adap: the adapter
9323  *	@la_buf: where to store the LA data
9324  *	@wrptr: the HW write pointer within the capture buffer
9325  *
9326  *	Reads the contents of the TP LA buffer with the most recent entry at
9327  *	the end	of the returned data and with the entry at @wrptr first.
9328  *	We leave the LA in the running state we find it in.
9329  */
9330 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9331 {
9332 	bool last_incomplete;
9333 	unsigned int i, cfg, val, idx;
9334 
9335 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9336 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9337 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9338 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9339 
9340 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9341 	idx = DBGLAWPTR_G(val);
9342 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9343 	if (last_incomplete)
9344 		idx = (idx + 1) & DBGLARPTR_M;
9345 	if (wrptr)
9346 		*wrptr = idx;
9347 
9348 	val &= 0xffff;
9349 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9350 	val |= adap->params.tp.la_mask;
9351 
9352 	for (i = 0; i < TPLA_SIZE; i++) {
9353 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9354 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9355 		idx = (idx + 1) & DBGLARPTR_M;
9356 	}
9357 
9358 	/* Wipe out last entry if it isn't valid */
9359 	if (last_incomplete)
9360 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9361 
9362 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9363 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9364 			     cfg | adap->params.tp.la_mask);
9365 }
9366 
9367 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9368  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9369  * state for more than the Warning Threshold then we'll issue a warning about
9370  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9371  * appears to be hung every Warning Repeat second till the situation clears.
9372  * If the situation clears, we'll note that as well.
9373  */
9374 #define SGE_IDMA_WARN_THRESH 1
9375 #define SGE_IDMA_WARN_REPEAT 300
9376 
9377 /**
9378  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9379  *	@adapter: the adapter
9380  *	@idma: the adapter IDMA Monitor state
9381  *
9382  *	Initialize the state of an SGE Ingress DMA Monitor.
9383  */
9384 void t4_idma_monitor_init(struct adapter *adapter,
9385 			  struct sge_idma_monitor_state *idma)
9386 {
9387 	/* Initialize the state variables for detecting an SGE Ingress DMA
9388 	 * hang.  The SGE has internal counters which count up on each clock
9389 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9390 	 * same state they were on the previous clock tick.  The clock used is
9391 	 * the Core Clock so we have a limit on the maximum "time" they can
9392 	 * record; typically a very small number of seconds.  For instance,
9393 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9394 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9395 	 * risk of having the "timers" overflow and give us the flexibility to
9396 	 * maintain a Hung SGE State Machine of our own which operates across
9397 	 * a longer time frame.
9398 	 */
9399 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9400 	idma->idma_stalled[0] = 0;
9401 	idma->idma_stalled[1] = 0;
9402 }
9403 
9404 /**
9405  *	t4_idma_monitor - monitor SGE Ingress DMA state
9406  *	@adapter: the adapter
9407  *	@idma: the adapter IDMA Monitor state
9408  *	@hz: number of ticks/second
9409  *	@ticks: number of ticks since the last IDMA Monitor call
9410  */
9411 void t4_idma_monitor(struct adapter *adapter,
9412 		     struct sge_idma_monitor_state *idma,
9413 		     int hz, int ticks)
9414 {
9415 	int i, idma_same_state_cnt[2];
9416 
9417 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9418 	  * are counters inside the SGE which count up on each clock when the
9419 	  * SGE finds its Ingress DMA State Engines in the same states they
9420 	  * were in the previous clock.  The counters will peg out at
9421 	  * 0xffffffff without wrapping around so once they pass the 1s
9422 	  * threshold they'll stay above that till the IDMA state changes.
9423 	  */
9424 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9425 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9426 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9427 
9428 	for (i = 0; i < 2; i++) {
9429 		u32 debug0, debug11;
9430 
9431 		/* If the Ingress DMA Same State Counter ("timer") is less
9432 		 * than 1s, then we can reset our synthesized Stall Timer and
9433 		 * continue.  If we have previously emitted warnings about a
9434 		 * potential stalled Ingress Queue, issue a note indicating
9435 		 * that the Ingress Queue has resumed forward progress.
9436 		 */
9437 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9438 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9439 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9440 					 "resumed after %d seconds\n",
9441 					 i, idma->idma_qid[i],
9442 					 idma->idma_stalled[i] / hz);
9443 			idma->idma_stalled[i] = 0;
9444 			continue;
9445 		}
9446 
9447 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9448 		 * domain.  The first time we get here it'll be because we
9449 		 * passed the 1s Threshold; each additional time it'll be
9450 		 * because the RX Timer Callback is being fired on its regular
9451 		 * schedule.
9452 		 *
9453 		 * If the stall is below our Potential Hung Ingress Queue
9454 		 * Warning Threshold, continue.
9455 		 */
9456 		if (idma->idma_stalled[i] == 0) {
9457 			idma->idma_stalled[i] = hz;
9458 			idma->idma_warn[i] = 0;
9459 		} else {
9460 			idma->idma_stalled[i] += ticks;
9461 			idma->idma_warn[i] -= ticks;
9462 		}
9463 
9464 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9465 			continue;
9466 
9467 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9468 		 */
9469 		if (idma->idma_warn[i] > 0)
9470 			continue;
9471 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9472 
9473 		/* Read and save the SGE IDMA State and Queue ID information.
9474 		 * We do this every time in case it changes across time ...
9475 		 * can't be too careful ...
9476 		 */
9477 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9478 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9479 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9480 
9481 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9482 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9483 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9484 
9485 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9486 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9487 			 i, idma->idma_qid[i], idma->idma_state[i],
9488 			 idma->idma_stalled[i] / hz,
9489 			 debug0, debug11);
9490 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9491 	}
9492 }
9493 
9494 /**
9495  *	t4_load_cfg - download config file
9496  *	@adap: the adapter
9497  *	@cfg_data: the cfg text file to write
9498  *	@size: text file size
9499  *
9500  *	Write the supplied config text file to the card's serial flash.
9501  */
9502 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9503 {
9504 	int ret, i, n, cfg_addr;
9505 	unsigned int addr;
9506 	unsigned int flash_cfg_start_sec;
9507 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9508 
9509 	cfg_addr = t4_flash_cfg_addr(adap);
9510 	if (cfg_addr < 0)
9511 		return cfg_addr;
9512 
9513 	addr = cfg_addr;
9514 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9515 
9516 	if (size > FLASH_CFG_MAX_SIZE) {
9517 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9518 			FLASH_CFG_MAX_SIZE);
9519 		return -EFBIG;
9520 	}
9521 
9522 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9523 			 sf_sec_size);
9524 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9525 				     flash_cfg_start_sec + i - 1);
9526 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9527 	 * with the on-adapter Firmware Configuration File.
9528 	 */
9529 	if (ret || size == 0)
9530 		goto out;
9531 
9532 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9533 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9534 		if ((size - i) <  SF_PAGE_SIZE)
9535 			n = size - i;
9536 		else
9537 			n = SF_PAGE_SIZE;
9538 		ret = t4_write_flash(adap, addr, n, cfg_data);
9539 		if (ret)
9540 			goto out;
9541 
9542 		addr += SF_PAGE_SIZE;
9543 		cfg_data += SF_PAGE_SIZE;
9544 	}
9545 
9546 out:
9547 	if (ret)
9548 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9549 			(size == 0 ? "clear" : "download"), ret);
9550 	return ret;
9551 }
9552 
9553 /**
9554  *	t4_set_vf_mac - Set MAC address for the specified VF
9555  *	@adapter: The adapter
9556  *	@vf: one of the VFs instantiated by the specified PF
9557  *	@naddr: the number of MAC addresses
9558  *	@addr: the MAC address(es) to be set to the specified VF
9559  */
9560 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9561 		      unsigned int naddr, u8 *addr)
9562 {
9563 	struct fw_acl_mac_cmd cmd;
9564 
9565 	memset(&cmd, 0, sizeof(cmd));
9566 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9567 				    FW_CMD_REQUEST_F |
9568 				    FW_CMD_WRITE_F |
9569 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9570 				    FW_ACL_MAC_CMD_VFN_V(vf));
9571 
9572 	/* Note: Do not enable the ACL */
9573 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9574 	cmd.nmac = naddr;
9575 
9576 	switch (adapter->pf) {
9577 	case 3:
9578 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9579 		break;
9580 	case 2:
9581 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9582 		break;
9583 	case 1:
9584 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9585 		break;
9586 	case 0:
9587 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9588 		break;
9589 	}
9590 
9591 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9592 }
9593 
9594 /**
9595  * t4_read_pace_tbl - read the pace table
9596  * @adap: the adapter
9597  * @pace_vals: holds the returned values
9598  *
9599  * Returns the values of TP's pace table in microseconds.
9600  */
9601 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9602 {
9603 	unsigned int i, v;
9604 
9605 	for (i = 0; i < NTX_SCHED; i++) {
9606 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
9607 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
9608 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9609 	}
9610 }
9611 
9612 /**
9613  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9614  * @adap: the adapter
9615  * @sched: the scheduler index
9616  * @kbps: the byte rate in Kbps
9617  * @ipg: the interpacket delay in tenths of nanoseconds
9618  * @sleep_ok: if true we may sleep while awaiting command completion
9619  *
9620  * Return the current configuration of a HW Tx scheduler.
9621  */
9622 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
9623 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
9624 {
9625 	unsigned int v, addr, bpt, cpt;
9626 
9627 	if (kbps) {
9628 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
9629 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9630 		if (sched & 1)
9631 			v >>= 16;
9632 		bpt = (v >> 8) & 0xff;
9633 		cpt = v & 0xff;
9634 		if (!cpt) {
9635 			*kbps = 0;	/* scheduler disabled */
9636 		} else {
9637 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9638 			*kbps = (v * bpt) / 125;
9639 		}
9640 	}
9641 	if (ipg) {
9642 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
9643 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9644 		if (sched & 1)
9645 			v >>= 16;
9646 		v &= 0xffff;
9647 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9648 	}
9649 }
9650 
9651 /* t4_sge_ctxt_rd - read an SGE context through FW
9652  * @adap: the adapter
9653  * @mbox: mailbox to use for the FW command
9654  * @cid: the context id
9655  * @ctype: the context type
9656  * @data: where to store the context data
9657  *
9658  * Issues a FW command through the given mailbox to read an SGE context.
9659  */
9660 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9661 		   enum ctxt_type ctype, u32 *data)
9662 {
9663 	struct fw_ldst_cmd c;
9664 	int ret;
9665 
9666 	if (ctype == CTXT_FLM)
9667 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9668 	else
9669 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9670 
9671 	memset(&c, 0, sizeof(c));
9672 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
9673 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
9674 					FW_LDST_CMD_ADDRSPACE_V(ret));
9675 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9676 	c.u.idctxt.physid = cpu_to_be32(cid);
9677 
9678 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9679 	if (ret == 0) {
9680 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9681 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9682 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9683 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9684 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9685 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9686 	}
9687 	return ret;
9688 }
9689 
9690 /**
9691  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9692  * @adap: the adapter
9693  * @cid: the context id
9694  * @ctype: the context type
9695  * @data: where to store the context data
9696  *
9697  * Reads an SGE context directly, bypassing FW.  This is only for
9698  * debugging when FW is unavailable.
9699  */
9700 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
9701 		      enum ctxt_type ctype, u32 *data)
9702 {
9703 	int i, ret;
9704 
9705 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
9706 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
9707 	if (!ret)
9708 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
9709 			*data++ = t4_read_reg(adap, i);
9710 	return ret;
9711 }
9712 
9713 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9714 		    int rateunit, int ratemode, int channel, int class,
9715 		    int minrate, int maxrate, int weight, int pktsize)
9716 {
9717 	struct fw_sched_cmd cmd;
9718 
9719 	memset(&cmd, 0, sizeof(cmd));
9720 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
9721 				      FW_CMD_REQUEST_F |
9722 				      FW_CMD_WRITE_F);
9723 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9724 
9725 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9726 	cmd.u.params.type = type;
9727 	cmd.u.params.level = level;
9728 	cmd.u.params.mode = mode;
9729 	cmd.u.params.ch = channel;
9730 	cmd.u.params.cl = class;
9731 	cmd.u.params.unit = rateunit;
9732 	cmd.u.params.rate = ratemode;
9733 	cmd.u.params.min = cpu_to_be32(minrate);
9734 	cmd.u.params.max = cpu_to_be32(maxrate);
9735 	cmd.u.params.weight = cpu_to_be16(weight);
9736 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9737 
9738 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
9739 			       NULL, 1);
9740 }
9741 
9742 /**
9743  *	t4_i2c_rd - read I2C data from adapter
9744  *	@adap: the adapter
9745  *	@port: Port number if per-port device; <0 if not
9746  *	@devid: per-port device ID or absolute device ID
9747  *	@offset: byte offset into device I2C space
9748  *	@len: byte length of I2C space data
9749  *	@buf: buffer in which to return I2C data
9750  *
9751  *	Reads the I2C data from the indicated device and location.
9752  */
9753 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
9754 	      unsigned int devid, unsigned int offset,
9755 	      unsigned int len, u8 *buf)
9756 {
9757 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
9758 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
9759 	int ret = 0;
9760 
9761 	if (len > I2C_PAGE_SIZE)
9762 		return -EINVAL;
9763 
9764 	/* Dont allow reads that spans multiple pages */
9765 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
9766 		return -EINVAL;
9767 
9768 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
9769 	ldst_cmd.op_to_addrspace =
9770 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
9771 			    FW_CMD_REQUEST_F |
9772 			    FW_CMD_READ_F |
9773 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
9774 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
9775 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
9776 	ldst_cmd.u.i2c.did = devid;
9777 
9778 	while (len > 0) {
9779 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
9780 
9781 		ldst_cmd.u.i2c.boffset = offset;
9782 		ldst_cmd.u.i2c.blen = i2c_len;
9783 
9784 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
9785 				 &ldst_rpl);
9786 		if (ret)
9787 			break;
9788 
9789 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
9790 		offset += i2c_len;
9791 		buf += i2c_len;
9792 		len -= i2c_len;
9793 	}
9794 
9795 	return ret;
9796 }
9797