1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 
41 /**
42  *	t4_wait_op_done_val - wait until an operation is completed
43  *	@adapter: the adapter performing the operation
44  *	@reg: the register to check for completion
45  *	@mask: a single-bit field within @reg that indicates completion
46  *	@polarity: the value of the field when the operation is completed
47  *	@attempts: number of check iterations
48  *	@delay: delay in usecs between iterations
49  *	@valp: where to store the value of the register at completion time
50  *
51  *	Wait until an operation is completed by checking a bit in a register
52  *	up to @attempts times.  If @valp is not NULL the value of the register
53  *	at the time it indicated completion is stored there.  Returns 0 if the
54  *	operation completes and	-EAGAIN	otherwise.
55  */
56 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 			       int polarity, int attempts, int delay, u32 *valp)
58 {
59 	while (1) {
60 		u32 val = t4_read_reg(adapter, reg);
61 
62 		if (!!(val & mask) == polarity) {
63 			if (valp)
64 				*valp = val;
65 			return 0;
66 		}
67 		if (--attempts == 0)
68 			return -EAGAIN;
69 		if (delay)
70 			udelay(delay);
71 	}
72 }
73 
74 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 				  int polarity, int attempts, int delay)
76 {
77 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 				   delay, NULL);
79 }
80 
81 /**
82  *	t4_set_reg_field - set a register field to a value
83  *	@adapter: the adapter to program
84  *	@addr: the register address
85  *	@mask: specifies the portion of the register to modify
86  *	@val: the new value for the register field
87  *
88  *	Sets a register field specified by the supplied mask to the
89  *	given value.
90  */
91 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 		      u32 val)
93 {
94 	u32 v = t4_read_reg(adapter, addr) & ~mask;
95 
96 	t4_write_reg(adapter, addr, v | val);
97 	(void) t4_read_reg(adapter, addr);      /* flush */
98 }
99 
100 /**
101  *	t4_read_indirect - read indirectly addressed registers
102  *	@adap: the adapter
103  *	@addr_reg: register holding the indirect address
104  *	@data_reg: register holding the value of the indirect register
105  *	@vals: where the read register values are stored
106  *	@nregs: how many indirect registers to read
107  *	@start_idx: index of first indirect register to read
108  *
109  *	Reads registers that are accessed indirectly through an address/data
110  *	register pair.
111  */
112 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 			     unsigned int data_reg, u32 *vals,
114 			     unsigned int nregs, unsigned int start_idx)
115 {
116 	while (nregs--) {
117 		t4_write_reg(adap, addr_reg, start_idx);
118 		*vals++ = t4_read_reg(adap, data_reg);
119 		start_idx++;
120 	}
121 }
122 
123 /**
124  *	t4_write_indirect - write indirectly addressed registers
125  *	@adap: the adapter
126  *	@addr_reg: register holding the indirect addresses
127  *	@data_reg: register holding the value for the indirect registers
128  *	@vals: values to write
129  *	@nregs: how many indirect registers to write
130  *	@start_idx: address of first indirect register to write
131  *
132  *	Writes a sequential block of registers that are accessed indirectly
133  *	through an address/data register pair.
134  */
135 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 		       unsigned int data_reg, const u32 *vals,
137 		       unsigned int nregs, unsigned int start_idx)
138 {
139 	while (nregs--) {
140 		t4_write_reg(adap, addr_reg, start_idx++);
141 		t4_write_reg(adap, data_reg, *vals++);
142 	}
143 }
144 
145 /*
146  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147  * mechanism.  This guarantees that we get the real value even if we're
148  * operating within a Virtual Machine and the Hypervisor is trapping our
149  * Configuration Space accesses.
150  */
151 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
152 {
153 	u32 req = ENABLE_F | FUNCTION_V(adap->fn) | REGISTER_V(reg);
154 
155 	if (is_t4(adap->params.chip))
156 		req |= LOCALCFG_F;
157 
158 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
159 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
160 
161 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
162 	 * Configuration Space read.  (None of the other fields matter when
163 	 * ENABLE is 0 so a simple register write is easier than a
164 	 * read-modify-write via t4_set_reg_field().)
165 	 */
166 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
167 }
168 
169 /*
170  * t4_report_fw_error - report firmware error
171  * @adap: the adapter
172  *
173  * The adapter firmware can indicate error conditions to the host.
174  * If the firmware has indicated an error, print out the reason for
175  * the firmware error.
176  */
177 static void t4_report_fw_error(struct adapter *adap)
178 {
179 	static const char *const reason[] = {
180 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
181 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
182 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
183 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
184 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
185 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
186 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
187 		"Reserved",                     /* reserved */
188 	};
189 	u32 pcie_fw;
190 
191 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
192 	if (pcie_fw & PCIE_FW_ERR_F)
193 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
194 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
195 }
196 
197 /*
198  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
199  */
200 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
201 			 u32 mbox_addr)
202 {
203 	for ( ; nflit; nflit--, mbox_addr += 8)
204 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
205 }
206 
207 /*
208  * Handle a FW assertion reported in a mailbox.
209  */
210 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
211 {
212 	struct fw_debug_cmd asrt;
213 
214 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
215 	dev_alert(adap->pdev_dev,
216 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
217 		  asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
218 		  ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
219 }
220 
221 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
222 {
223 	dev_err(adap->pdev_dev,
224 		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
225 		(unsigned long long)t4_read_reg64(adap, data_reg),
226 		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
227 		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
228 		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
229 		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
230 		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
231 		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
232 		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
233 }
234 
235 /**
236  *	t4_wr_mbox_meat - send a command to FW through the given mailbox
237  *	@adap: the adapter
238  *	@mbox: index of the mailbox to use
239  *	@cmd: the command to write
240  *	@size: command length in bytes
241  *	@rpl: where to optionally store the reply
242  *	@sleep_ok: if true we may sleep while awaiting command completion
243  *
244  *	Sends the given command to FW through the selected mailbox and waits
245  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
246  *	store the FW's reply to the command.  The command and its optional
247  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
248  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
249  *	the response.  If sleeping is allowed we use progressive backoff
250  *	otherwise we spin.
251  *
252  *	The return value is 0 on success or a negative errno on failure.  A
253  *	failure can happen either because we are not able to execute the
254  *	command or FW executes it but signals an error.  In the latter case
255  *	the return value is the error code indicated by FW (negated).
256  */
257 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
258 		    void *rpl, bool sleep_ok)
259 {
260 	static const int delay[] = {
261 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
262 	};
263 
264 	u32 v;
265 	u64 res;
266 	int i, ms, delay_idx;
267 	const __be64 *p = cmd;
268 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
269 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
270 
271 	if ((size & 15) || size > MBOX_LEN)
272 		return -EINVAL;
273 
274 	/*
275 	 * If the device is off-line, as in EEH, commands will time out.
276 	 * Fail them early so we don't waste time waiting.
277 	 */
278 	if (adap->pdev->error_state != pci_channel_io_normal)
279 		return -EIO;
280 
281 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
282 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
283 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
284 
285 	if (v != MBOX_OWNER_DRV)
286 		return v ? -EBUSY : -ETIMEDOUT;
287 
288 	for (i = 0; i < size; i += 8)
289 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
290 
291 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
292 	t4_read_reg(adap, ctl_reg);          /* flush write */
293 
294 	delay_idx = 0;
295 	ms = delay[0];
296 
297 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
298 		if (sleep_ok) {
299 			ms = delay[delay_idx];  /* last element may repeat */
300 			if (delay_idx < ARRAY_SIZE(delay) - 1)
301 				delay_idx++;
302 			msleep(ms);
303 		} else
304 			mdelay(ms);
305 
306 		v = t4_read_reg(adap, ctl_reg);
307 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
308 			if (!(v & MBMSGVALID_F)) {
309 				t4_write_reg(adap, ctl_reg, 0);
310 				continue;
311 			}
312 
313 			res = t4_read_reg64(adap, data_reg);
314 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
315 				fw_asrt(adap, data_reg);
316 				res = FW_CMD_RETVAL_V(EIO);
317 			} else if (rpl) {
318 				get_mbox_rpl(adap, rpl, size / 8, data_reg);
319 			}
320 
321 			if (FW_CMD_RETVAL_G((int)res))
322 				dump_mbox(adap, mbox, data_reg);
323 			t4_write_reg(adap, ctl_reg, 0);
324 			return -FW_CMD_RETVAL_G((int)res);
325 		}
326 	}
327 
328 	dump_mbox(adap, mbox, data_reg);
329 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
330 		*(const u8 *)cmd, mbox);
331 	t4_report_fw_error(adap);
332 	return -ETIMEDOUT;
333 }
334 
335 /**
336  *	t4_mc_read - read from MC through backdoor accesses
337  *	@adap: the adapter
338  *	@addr: address of first byte requested
339  *	@idx: which MC to access
340  *	@data: 64 bytes of data containing the requested address
341  *	@ecc: where to store the corresponding 64-bit ECC word
342  *
343  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
344  *	that covers the requested address @addr.  If @parity is not %NULL it
345  *	is assigned the 64-bit ECC word for the read data.
346  */
347 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
348 {
349 	int i;
350 	u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
351 	u32 mc_bist_status_rdata, mc_bist_data_pattern;
352 
353 	if (is_t4(adap->params.chip)) {
354 		mc_bist_cmd = MC_BIST_CMD_A;
355 		mc_bist_cmd_addr = MC_BIST_CMD_ADDR_A;
356 		mc_bist_cmd_len = MC_BIST_CMD_LEN_A;
357 		mc_bist_status_rdata = MC_BIST_STATUS_RDATA_A;
358 		mc_bist_data_pattern = MC_BIST_DATA_PATTERN_A;
359 	} else {
360 		mc_bist_cmd = MC_REG(MC_P_BIST_CMD_A, idx);
361 		mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
362 		mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
363 		mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
364 		mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
365 	}
366 
367 	if (t4_read_reg(adap, mc_bist_cmd) & START_BIST_F)
368 		return -EBUSY;
369 	t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
370 	t4_write_reg(adap, mc_bist_cmd_len, 64);
371 	t4_write_reg(adap, mc_bist_data_pattern, 0xc);
372 	t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE_V(1) | START_BIST_F |
373 		     BIST_CMD_GAP_V(1));
374 	i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST_F, 0, 10, 1);
375 	if (i)
376 		return i;
377 
378 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
379 
380 	for (i = 15; i >= 0; i--)
381 		*data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
382 	if (ecc)
383 		*ecc = t4_read_reg64(adap, MC_DATA(16));
384 #undef MC_DATA
385 	return 0;
386 }
387 
388 /**
389  *	t4_edc_read - read from EDC through backdoor accesses
390  *	@adap: the adapter
391  *	@idx: which EDC to access
392  *	@addr: address of first byte requested
393  *	@data: 64 bytes of data containing the requested address
394  *	@ecc: where to store the corresponding 64-bit ECC word
395  *
396  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
397  *	that covers the requested address @addr.  If @parity is not %NULL it
398  *	is assigned the 64-bit ECC word for the read data.
399  */
400 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
401 {
402 	int i;
403 	u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
404 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
405 
406 	if (is_t4(adap->params.chip)) {
407 		edc_bist_cmd = EDC_REG(EDC_BIST_CMD_A, idx);
408 		edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR_A, idx);
409 		edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN_A, idx);
410 		edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN_A,
411 						    idx);
412 		edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA_A,
413 						idx);
414 	} else {
415 		edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
416 		edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
417 		edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
418 		edc_bist_cmd_data_pattern =
419 			EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
420 		edc_bist_status_rdata =
421 			 EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
422 	}
423 
424 	if (t4_read_reg(adap, edc_bist_cmd) & START_BIST_F)
425 		return -EBUSY;
426 	t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
427 	t4_write_reg(adap, edc_bist_cmd_len, 64);
428 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
429 	t4_write_reg(adap, edc_bist_cmd,
430 		     BIST_OPCODE_V(1) | BIST_CMD_GAP_V(1) | START_BIST_F);
431 	i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST_F, 0, 10, 1);
432 	if (i)
433 		return i;
434 
435 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
436 
437 	for (i = 15; i >= 0; i--)
438 		*data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
439 	if (ecc)
440 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
441 #undef EDC_DATA
442 	return 0;
443 }
444 
445 /**
446  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
447  *	@adap: the adapter
448  *	@win: PCI-E Memory Window to use
449  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
450  *	@addr: address within indicated memory type
451  *	@len: amount of memory to transfer
452  *	@hbuf: host memory buffer
453  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
454  *
455  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
456  *	firmware memory address and host buffer must be aligned on 32-bit
457  *	boudaries; the length may be arbitrary.  The memory is transferred as
458  *	a raw byte sequence from/to the firmware's memory.  If this memory
459  *	contains data structures which contain multi-byte integers, it's the
460  *	caller's responsibility to perform appropriate byte order conversions.
461  */
462 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
463 		 u32 len, void *hbuf, int dir)
464 {
465 	u32 pos, offset, resid, memoffset;
466 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
467 	u32 *buf;
468 
469 	/* Argument sanity checks ...
470 	 */
471 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
472 		return -EINVAL;
473 	buf = (u32 *)hbuf;
474 
475 	/* It's convenient to be able to handle lengths which aren't a
476 	 * multiple of 32-bits because we often end up transferring files to
477 	 * the firmware.  So we'll handle that by normalizing the length here
478 	 * and then handling any residual transfer at the end.
479 	 */
480 	resid = len & 0x3;
481 	len -= resid;
482 
483 	/* Offset into the region of memory which is being accessed
484 	 * MEM_EDC0 = 0
485 	 * MEM_EDC1 = 1
486 	 * MEM_MC   = 2 -- T4
487 	 * MEM_MC0  = 2 -- For T5
488 	 * MEM_MC1  = 3 -- For T5
489 	 */
490 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
491 	if (mtype != MEM_MC1)
492 		memoffset = (mtype * (edc_size * 1024 * 1024));
493 	else {
494 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
495 						      MA_EXT_MEMORY0_BAR_A));
496 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
497 	}
498 
499 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
500 	addr = addr + memoffset;
501 
502 	/* Each PCI-E Memory Window is programmed with a window size -- or
503 	 * "aperture" -- which controls the granularity of its mapping onto
504 	 * adapter memory.  We need to grab that aperture in order to know
505 	 * how to use the specified window.  The window is also programmed
506 	 * with the base address of the Memory Window in BAR0's address
507 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
508 	 * the address is relative to BAR0.
509 	 */
510 	mem_reg = t4_read_reg(adap,
511 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
512 						  win));
513 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
514 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
515 	if (is_t4(adap->params.chip))
516 		mem_base -= adap->t4_bar0;
517 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->fn);
518 
519 	/* Calculate our initial PCI-E Memory Window Position and Offset into
520 	 * that Window.
521 	 */
522 	pos = addr & ~(mem_aperture-1);
523 	offset = addr - pos;
524 
525 	/* Set up initial PCI-E Memory Window to cover the start of our
526 	 * transfer.  (Read it back to ensure that changes propagate before we
527 	 * attempt to use the new value.)
528 	 */
529 	t4_write_reg(adap,
530 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
531 		     pos | win_pf);
532 	t4_read_reg(adap,
533 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
534 
535 	/* Transfer data to/from the adapter as long as there's an integral
536 	 * number of 32-bit transfers to complete.
537 	 *
538 	 * A note on Endianness issues:
539 	 *
540 	 * The "register" reads and writes below from/to the PCI-E Memory
541 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
542 	 * Little-Endian "swizzel."  As a result, if we have the following
543 	 * data in adapter memory:
544 	 *
545 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
546 	 *     Address:      i+0  i+1  i+2  i+3
547 	 *
548 	 * Then a read of the adapter memory via the PCI-E Memory Window
549 	 * will yield:
550 	 *
551 	 *     x = readl(i)
552 	 *         31                  0
553 	 *         [ b3 | b2 | b1 | b0 ]
554 	 *
555 	 * If this value is stored into local memory on a Little-Endian system
556 	 * it will show up correctly in local memory as:
557 	 *
558 	 *     ( ..., b0, b1, b2, b3, ... )
559 	 *
560 	 * But on a Big-Endian system, the store will show up in memory
561 	 * incorrectly swizzled as:
562 	 *
563 	 *     ( ..., b3, b2, b1, b0, ... )
564 	 *
565 	 * So we need to account for this in the reads and writes to the
566 	 * PCI-E Memory Window below by undoing the register read/write
567 	 * swizzels.
568 	 */
569 	while (len > 0) {
570 		if (dir == T4_MEMORY_READ)
571 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
572 						mem_base + offset));
573 		else
574 			t4_write_reg(adap, mem_base + offset,
575 				     (__force u32)cpu_to_le32(*buf++));
576 		offset += sizeof(__be32);
577 		len -= sizeof(__be32);
578 
579 		/* If we've reached the end of our current window aperture,
580 		 * move the PCI-E Memory Window on to the next.  Note that
581 		 * doing this here after "len" may be 0 allows us to set up
582 		 * the PCI-E Memory Window for a possible final residual
583 		 * transfer below ...
584 		 */
585 		if (offset == mem_aperture) {
586 			pos += mem_aperture;
587 			offset = 0;
588 			t4_write_reg(adap,
589 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
590 						    win), pos | win_pf);
591 			t4_read_reg(adap,
592 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
593 						    win));
594 		}
595 	}
596 
597 	/* If the original transfer had a length which wasn't a multiple of
598 	 * 32-bits, now's where we need to finish off the transfer of the
599 	 * residual amount.  The PCI-E Memory Window has already been moved
600 	 * above (if necessary) to cover this final transfer.
601 	 */
602 	if (resid) {
603 		union {
604 			u32 word;
605 			char byte[4];
606 		} last;
607 		unsigned char *bp;
608 		int i;
609 
610 		if (dir == T4_MEMORY_READ) {
611 			last.word = le32_to_cpu(
612 					(__force __le32)t4_read_reg(adap,
613 						mem_base + offset));
614 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
615 				bp[i] = last.byte[i];
616 		} else {
617 			last.word = *buf;
618 			for (i = resid; i < 4; i++)
619 				last.byte[i] = 0;
620 			t4_write_reg(adap, mem_base + offset,
621 				     (__force u32)cpu_to_le32(last.word));
622 		}
623 	}
624 
625 	return 0;
626 }
627 
628 /**
629  *	t4_get_regs_len - return the size of the chips register set
630  *	@adapter: the adapter
631  *
632  *	Returns the size of the chip's BAR0 register space.
633  */
634 unsigned int t4_get_regs_len(struct adapter *adapter)
635 {
636 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
637 
638 	switch (chip_version) {
639 	case CHELSIO_T4:
640 		return T4_REGMAP_SIZE;
641 
642 	case CHELSIO_T5:
643 		return T5_REGMAP_SIZE;
644 	}
645 
646 	dev_err(adapter->pdev_dev,
647 		"Unsupported chip version %d\n", chip_version);
648 	return 0;
649 }
650 
651 /**
652  *	t4_get_regs - read chip registers into provided buffer
653  *	@adap: the adapter
654  *	@buf: register buffer
655  *	@buf_size: size (in bytes) of register buffer
656  *
657  *	If the provided register buffer isn't large enough for the chip's
658  *	full register range, the register dump will be truncated to the
659  *	register buffer's size.
660  */
661 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
662 {
663 	static const unsigned int t4_reg_ranges[] = {
664 		0x1008, 0x1108,
665 		0x1180, 0x11b4,
666 		0x11fc, 0x123c,
667 		0x1300, 0x173c,
668 		0x1800, 0x18fc,
669 		0x3000, 0x30d8,
670 		0x30e0, 0x5924,
671 		0x5960, 0x59d4,
672 		0x5a00, 0x5af8,
673 		0x6000, 0x6098,
674 		0x6100, 0x6150,
675 		0x6200, 0x6208,
676 		0x6240, 0x6248,
677 		0x6280, 0x6338,
678 		0x6370, 0x638c,
679 		0x6400, 0x643c,
680 		0x6500, 0x6524,
681 		0x6a00, 0x6a38,
682 		0x6a60, 0x6a78,
683 		0x6b00, 0x6b84,
684 		0x6bf0, 0x6c84,
685 		0x6cf0, 0x6d84,
686 		0x6df0, 0x6e84,
687 		0x6ef0, 0x6f84,
688 		0x6ff0, 0x7084,
689 		0x70f0, 0x7184,
690 		0x71f0, 0x7284,
691 		0x72f0, 0x7384,
692 		0x73f0, 0x7450,
693 		0x7500, 0x7530,
694 		0x7600, 0x761c,
695 		0x7680, 0x76cc,
696 		0x7700, 0x7798,
697 		0x77c0, 0x77fc,
698 		0x7900, 0x79fc,
699 		0x7b00, 0x7c38,
700 		0x7d00, 0x7efc,
701 		0x8dc0, 0x8e1c,
702 		0x8e30, 0x8e78,
703 		0x8ea0, 0x8f6c,
704 		0x8fc0, 0x9074,
705 		0x90fc, 0x90fc,
706 		0x9400, 0x9458,
707 		0x9600, 0x96bc,
708 		0x9800, 0x9808,
709 		0x9820, 0x983c,
710 		0x9850, 0x9864,
711 		0x9c00, 0x9c6c,
712 		0x9c80, 0x9cec,
713 		0x9d00, 0x9d6c,
714 		0x9d80, 0x9dec,
715 		0x9e00, 0x9e6c,
716 		0x9e80, 0x9eec,
717 		0x9f00, 0x9f6c,
718 		0x9f80, 0x9fec,
719 		0xd004, 0xd03c,
720 		0xdfc0, 0xdfe0,
721 		0xe000, 0xea7c,
722 		0xf000, 0x11110,
723 		0x11118, 0x11190,
724 		0x19040, 0x1906c,
725 		0x19078, 0x19080,
726 		0x1908c, 0x19124,
727 		0x19150, 0x191b0,
728 		0x191d0, 0x191e8,
729 		0x19238, 0x1924c,
730 		0x193f8, 0x19474,
731 		0x19490, 0x194f8,
732 		0x19800, 0x19f30,
733 		0x1a000, 0x1a06c,
734 		0x1a0b0, 0x1a120,
735 		0x1a128, 0x1a138,
736 		0x1a190, 0x1a1c4,
737 		0x1a1fc, 0x1a1fc,
738 		0x1e040, 0x1e04c,
739 		0x1e284, 0x1e28c,
740 		0x1e2c0, 0x1e2c0,
741 		0x1e2e0, 0x1e2e0,
742 		0x1e300, 0x1e384,
743 		0x1e3c0, 0x1e3c8,
744 		0x1e440, 0x1e44c,
745 		0x1e684, 0x1e68c,
746 		0x1e6c0, 0x1e6c0,
747 		0x1e6e0, 0x1e6e0,
748 		0x1e700, 0x1e784,
749 		0x1e7c0, 0x1e7c8,
750 		0x1e840, 0x1e84c,
751 		0x1ea84, 0x1ea8c,
752 		0x1eac0, 0x1eac0,
753 		0x1eae0, 0x1eae0,
754 		0x1eb00, 0x1eb84,
755 		0x1ebc0, 0x1ebc8,
756 		0x1ec40, 0x1ec4c,
757 		0x1ee84, 0x1ee8c,
758 		0x1eec0, 0x1eec0,
759 		0x1eee0, 0x1eee0,
760 		0x1ef00, 0x1ef84,
761 		0x1efc0, 0x1efc8,
762 		0x1f040, 0x1f04c,
763 		0x1f284, 0x1f28c,
764 		0x1f2c0, 0x1f2c0,
765 		0x1f2e0, 0x1f2e0,
766 		0x1f300, 0x1f384,
767 		0x1f3c0, 0x1f3c8,
768 		0x1f440, 0x1f44c,
769 		0x1f684, 0x1f68c,
770 		0x1f6c0, 0x1f6c0,
771 		0x1f6e0, 0x1f6e0,
772 		0x1f700, 0x1f784,
773 		0x1f7c0, 0x1f7c8,
774 		0x1f840, 0x1f84c,
775 		0x1fa84, 0x1fa8c,
776 		0x1fac0, 0x1fac0,
777 		0x1fae0, 0x1fae0,
778 		0x1fb00, 0x1fb84,
779 		0x1fbc0, 0x1fbc8,
780 		0x1fc40, 0x1fc4c,
781 		0x1fe84, 0x1fe8c,
782 		0x1fec0, 0x1fec0,
783 		0x1fee0, 0x1fee0,
784 		0x1ff00, 0x1ff84,
785 		0x1ffc0, 0x1ffc8,
786 		0x20000, 0x2002c,
787 		0x20100, 0x2013c,
788 		0x20190, 0x201c8,
789 		0x20200, 0x20318,
790 		0x20400, 0x20528,
791 		0x20540, 0x20614,
792 		0x21000, 0x21040,
793 		0x2104c, 0x21060,
794 		0x210c0, 0x210ec,
795 		0x21200, 0x21268,
796 		0x21270, 0x21284,
797 		0x212fc, 0x21388,
798 		0x21400, 0x21404,
799 		0x21500, 0x21518,
800 		0x2152c, 0x2153c,
801 		0x21550, 0x21554,
802 		0x21600, 0x21600,
803 		0x21608, 0x21628,
804 		0x21630, 0x2163c,
805 		0x21700, 0x2171c,
806 		0x21780, 0x2178c,
807 		0x21800, 0x21c38,
808 		0x21c80, 0x21d7c,
809 		0x21e00, 0x21e04,
810 		0x22000, 0x2202c,
811 		0x22100, 0x2213c,
812 		0x22190, 0x221c8,
813 		0x22200, 0x22318,
814 		0x22400, 0x22528,
815 		0x22540, 0x22614,
816 		0x23000, 0x23040,
817 		0x2304c, 0x23060,
818 		0x230c0, 0x230ec,
819 		0x23200, 0x23268,
820 		0x23270, 0x23284,
821 		0x232fc, 0x23388,
822 		0x23400, 0x23404,
823 		0x23500, 0x23518,
824 		0x2352c, 0x2353c,
825 		0x23550, 0x23554,
826 		0x23600, 0x23600,
827 		0x23608, 0x23628,
828 		0x23630, 0x2363c,
829 		0x23700, 0x2371c,
830 		0x23780, 0x2378c,
831 		0x23800, 0x23c38,
832 		0x23c80, 0x23d7c,
833 		0x23e00, 0x23e04,
834 		0x24000, 0x2402c,
835 		0x24100, 0x2413c,
836 		0x24190, 0x241c8,
837 		0x24200, 0x24318,
838 		0x24400, 0x24528,
839 		0x24540, 0x24614,
840 		0x25000, 0x25040,
841 		0x2504c, 0x25060,
842 		0x250c0, 0x250ec,
843 		0x25200, 0x25268,
844 		0x25270, 0x25284,
845 		0x252fc, 0x25388,
846 		0x25400, 0x25404,
847 		0x25500, 0x25518,
848 		0x2552c, 0x2553c,
849 		0x25550, 0x25554,
850 		0x25600, 0x25600,
851 		0x25608, 0x25628,
852 		0x25630, 0x2563c,
853 		0x25700, 0x2571c,
854 		0x25780, 0x2578c,
855 		0x25800, 0x25c38,
856 		0x25c80, 0x25d7c,
857 		0x25e00, 0x25e04,
858 		0x26000, 0x2602c,
859 		0x26100, 0x2613c,
860 		0x26190, 0x261c8,
861 		0x26200, 0x26318,
862 		0x26400, 0x26528,
863 		0x26540, 0x26614,
864 		0x27000, 0x27040,
865 		0x2704c, 0x27060,
866 		0x270c0, 0x270ec,
867 		0x27200, 0x27268,
868 		0x27270, 0x27284,
869 		0x272fc, 0x27388,
870 		0x27400, 0x27404,
871 		0x27500, 0x27518,
872 		0x2752c, 0x2753c,
873 		0x27550, 0x27554,
874 		0x27600, 0x27600,
875 		0x27608, 0x27628,
876 		0x27630, 0x2763c,
877 		0x27700, 0x2771c,
878 		0x27780, 0x2778c,
879 		0x27800, 0x27c38,
880 		0x27c80, 0x27d7c,
881 		0x27e00, 0x27e04
882 	};
883 
884 	static const unsigned int t5_reg_ranges[] = {
885 		0x1008, 0x1148,
886 		0x1180, 0x11b4,
887 		0x11fc, 0x123c,
888 		0x1280, 0x173c,
889 		0x1800, 0x18fc,
890 		0x3000, 0x3028,
891 		0x3060, 0x30d8,
892 		0x30e0, 0x30fc,
893 		0x3140, 0x357c,
894 		0x35a8, 0x35cc,
895 		0x35ec, 0x35ec,
896 		0x3600, 0x5624,
897 		0x56cc, 0x575c,
898 		0x580c, 0x5814,
899 		0x5890, 0x58bc,
900 		0x5940, 0x59dc,
901 		0x59fc, 0x5a18,
902 		0x5a60, 0x5a9c,
903 		0x5b9c, 0x5bfc,
904 		0x6000, 0x6040,
905 		0x6058, 0x614c,
906 		0x7700, 0x7798,
907 		0x77c0, 0x78fc,
908 		0x7b00, 0x7c54,
909 		0x7d00, 0x7efc,
910 		0x8dc0, 0x8de0,
911 		0x8df8, 0x8e84,
912 		0x8ea0, 0x8f84,
913 		0x8fc0, 0x90f8,
914 		0x9400, 0x9470,
915 		0x9600, 0x96f4,
916 		0x9800, 0x9808,
917 		0x9820, 0x983c,
918 		0x9850, 0x9864,
919 		0x9c00, 0x9c6c,
920 		0x9c80, 0x9cec,
921 		0x9d00, 0x9d6c,
922 		0x9d80, 0x9dec,
923 		0x9e00, 0x9e6c,
924 		0x9e80, 0x9eec,
925 		0x9f00, 0x9f6c,
926 		0x9f80, 0xa020,
927 		0xd004, 0xd03c,
928 		0xdfc0, 0xdfe0,
929 		0xe000, 0x11088,
930 		0x1109c, 0x11110,
931 		0x11118, 0x1117c,
932 		0x11190, 0x11204,
933 		0x19040, 0x1906c,
934 		0x19078, 0x19080,
935 		0x1908c, 0x19124,
936 		0x19150, 0x191b0,
937 		0x191d0, 0x191e8,
938 		0x19238, 0x19290,
939 		0x193f8, 0x19474,
940 		0x19490, 0x194cc,
941 		0x194f0, 0x194f8,
942 		0x19c00, 0x19c60,
943 		0x19c94, 0x19e10,
944 		0x19e50, 0x19f34,
945 		0x19f40, 0x19f50,
946 		0x19f90, 0x19fe4,
947 		0x1a000, 0x1a06c,
948 		0x1a0b0, 0x1a120,
949 		0x1a128, 0x1a138,
950 		0x1a190, 0x1a1c4,
951 		0x1a1fc, 0x1a1fc,
952 		0x1e008, 0x1e00c,
953 		0x1e040, 0x1e04c,
954 		0x1e284, 0x1e290,
955 		0x1e2c0, 0x1e2c0,
956 		0x1e2e0, 0x1e2e0,
957 		0x1e300, 0x1e384,
958 		0x1e3c0, 0x1e3c8,
959 		0x1e408, 0x1e40c,
960 		0x1e440, 0x1e44c,
961 		0x1e684, 0x1e690,
962 		0x1e6c0, 0x1e6c0,
963 		0x1e6e0, 0x1e6e0,
964 		0x1e700, 0x1e784,
965 		0x1e7c0, 0x1e7c8,
966 		0x1e808, 0x1e80c,
967 		0x1e840, 0x1e84c,
968 		0x1ea84, 0x1ea90,
969 		0x1eac0, 0x1eac0,
970 		0x1eae0, 0x1eae0,
971 		0x1eb00, 0x1eb84,
972 		0x1ebc0, 0x1ebc8,
973 		0x1ec08, 0x1ec0c,
974 		0x1ec40, 0x1ec4c,
975 		0x1ee84, 0x1ee90,
976 		0x1eec0, 0x1eec0,
977 		0x1eee0, 0x1eee0,
978 		0x1ef00, 0x1ef84,
979 		0x1efc0, 0x1efc8,
980 		0x1f008, 0x1f00c,
981 		0x1f040, 0x1f04c,
982 		0x1f284, 0x1f290,
983 		0x1f2c0, 0x1f2c0,
984 		0x1f2e0, 0x1f2e0,
985 		0x1f300, 0x1f384,
986 		0x1f3c0, 0x1f3c8,
987 		0x1f408, 0x1f40c,
988 		0x1f440, 0x1f44c,
989 		0x1f684, 0x1f690,
990 		0x1f6c0, 0x1f6c0,
991 		0x1f6e0, 0x1f6e0,
992 		0x1f700, 0x1f784,
993 		0x1f7c0, 0x1f7c8,
994 		0x1f808, 0x1f80c,
995 		0x1f840, 0x1f84c,
996 		0x1fa84, 0x1fa90,
997 		0x1fac0, 0x1fac0,
998 		0x1fae0, 0x1fae0,
999 		0x1fb00, 0x1fb84,
1000 		0x1fbc0, 0x1fbc8,
1001 		0x1fc08, 0x1fc0c,
1002 		0x1fc40, 0x1fc4c,
1003 		0x1fe84, 0x1fe90,
1004 		0x1fec0, 0x1fec0,
1005 		0x1fee0, 0x1fee0,
1006 		0x1ff00, 0x1ff84,
1007 		0x1ffc0, 0x1ffc8,
1008 		0x30000, 0x30030,
1009 		0x30100, 0x30144,
1010 		0x30190, 0x301d0,
1011 		0x30200, 0x30318,
1012 		0x30400, 0x3052c,
1013 		0x30540, 0x3061c,
1014 		0x30800, 0x30834,
1015 		0x308c0, 0x30908,
1016 		0x30910, 0x309ac,
1017 		0x30a00, 0x30a04,
1018 		0x30a0c, 0x30a2c,
1019 		0x30a44, 0x30a50,
1020 		0x30a74, 0x30c24,
1021 		0x30d08, 0x30d14,
1022 		0x30d1c, 0x30d20,
1023 		0x30d3c, 0x30d50,
1024 		0x31200, 0x3120c,
1025 		0x31220, 0x31220,
1026 		0x31240, 0x31240,
1027 		0x31600, 0x31600,
1028 		0x31608, 0x3160c,
1029 		0x31a00, 0x31a1c,
1030 		0x31e04, 0x31e20,
1031 		0x31e38, 0x31e3c,
1032 		0x31e80, 0x31e80,
1033 		0x31e88, 0x31ea8,
1034 		0x31eb0, 0x31eb4,
1035 		0x31ec8, 0x31ed4,
1036 		0x31fb8, 0x32004,
1037 		0x32208, 0x3223c,
1038 		0x32600, 0x32630,
1039 		0x32a00, 0x32abc,
1040 		0x32b00, 0x32b70,
1041 		0x33000, 0x33048,
1042 		0x33060, 0x3309c,
1043 		0x330f0, 0x33148,
1044 		0x33160, 0x3319c,
1045 		0x331f0, 0x332e4,
1046 		0x332f8, 0x333e4,
1047 		0x333f8, 0x33448,
1048 		0x33460, 0x3349c,
1049 		0x334f0, 0x33548,
1050 		0x33560, 0x3359c,
1051 		0x335f0, 0x336e4,
1052 		0x336f8, 0x337e4,
1053 		0x337f8, 0x337fc,
1054 		0x33814, 0x33814,
1055 		0x3382c, 0x3382c,
1056 		0x33880, 0x3388c,
1057 		0x338e8, 0x338ec,
1058 		0x33900, 0x33948,
1059 		0x33960, 0x3399c,
1060 		0x339f0, 0x33ae4,
1061 		0x33af8, 0x33b10,
1062 		0x33b28, 0x33b28,
1063 		0x33b3c, 0x33b50,
1064 		0x33bf0, 0x33c10,
1065 		0x33c28, 0x33c28,
1066 		0x33c3c, 0x33c50,
1067 		0x33cf0, 0x33cfc,
1068 		0x34000, 0x34030,
1069 		0x34100, 0x34144,
1070 		0x34190, 0x341d0,
1071 		0x34200, 0x34318,
1072 		0x34400, 0x3452c,
1073 		0x34540, 0x3461c,
1074 		0x34800, 0x34834,
1075 		0x348c0, 0x34908,
1076 		0x34910, 0x349ac,
1077 		0x34a00, 0x34a04,
1078 		0x34a0c, 0x34a2c,
1079 		0x34a44, 0x34a50,
1080 		0x34a74, 0x34c24,
1081 		0x34d08, 0x34d14,
1082 		0x34d1c, 0x34d20,
1083 		0x34d3c, 0x34d50,
1084 		0x35200, 0x3520c,
1085 		0x35220, 0x35220,
1086 		0x35240, 0x35240,
1087 		0x35600, 0x35600,
1088 		0x35608, 0x3560c,
1089 		0x35a00, 0x35a1c,
1090 		0x35e04, 0x35e20,
1091 		0x35e38, 0x35e3c,
1092 		0x35e80, 0x35e80,
1093 		0x35e88, 0x35ea8,
1094 		0x35eb0, 0x35eb4,
1095 		0x35ec8, 0x35ed4,
1096 		0x35fb8, 0x36004,
1097 		0x36208, 0x3623c,
1098 		0x36600, 0x36630,
1099 		0x36a00, 0x36abc,
1100 		0x36b00, 0x36b70,
1101 		0x37000, 0x37048,
1102 		0x37060, 0x3709c,
1103 		0x370f0, 0x37148,
1104 		0x37160, 0x3719c,
1105 		0x371f0, 0x372e4,
1106 		0x372f8, 0x373e4,
1107 		0x373f8, 0x37448,
1108 		0x37460, 0x3749c,
1109 		0x374f0, 0x37548,
1110 		0x37560, 0x3759c,
1111 		0x375f0, 0x376e4,
1112 		0x376f8, 0x377e4,
1113 		0x377f8, 0x377fc,
1114 		0x37814, 0x37814,
1115 		0x3782c, 0x3782c,
1116 		0x37880, 0x3788c,
1117 		0x378e8, 0x378ec,
1118 		0x37900, 0x37948,
1119 		0x37960, 0x3799c,
1120 		0x379f0, 0x37ae4,
1121 		0x37af8, 0x37b10,
1122 		0x37b28, 0x37b28,
1123 		0x37b3c, 0x37b50,
1124 		0x37bf0, 0x37c10,
1125 		0x37c28, 0x37c28,
1126 		0x37c3c, 0x37c50,
1127 		0x37cf0, 0x37cfc,
1128 		0x38000, 0x38030,
1129 		0x38100, 0x38144,
1130 		0x38190, 0x381d0,
1131 		0x38200, 0x38318,
1132 		0x38400, 0x3852c,
1133 		0x38540, 0x3861c,
1134 		0x38800, 0x38834,
1135 		0x388c0, 0x38908,
1136 		0x38910, 0x389ac,
1137 		0x38a00, 0x38a04,
1138 		0x38a0c, 0x38a2c,
1139 		0x38a44, 0x38a50,
1140 		0x38a74, 0x38c24,
1141 		0x38d08, 0x38d14,
1142 		0x38d1c, 0x38d20,
1143 		0x38d3c, 0x38d50,
1144 		0x39200, 0x3920c,
1145 		0x39220, 0x39220,
1146 		0x39240, 0x39240,
1147 		0x39600, 0x39600,
1148 		0x39608, 0x3960c,
1149 		0x39a00, 0x39a1c,
1150 		0x39e04, 0x39e20,
1151 		0x39e38, 0x39e3c,
1152 		0x39e80, 0x39e80,
1153 		0x39e88, 0x39ea8,
1154 		0x39eb0, 0x39eb4,
1155 		0x39ec8, 0x39ed4,
1156 		0x39fb8, 0x3a004,
1157 		0x3a208, 0x3a23c,
1158 		0x3a600, 0x3a630,
1159 		0x3aa00, 0x3aabc,
1160 		0x3ab00, 0x3ab70,
1161 		0x3b000, 0x3b048,
1162 		0x3b060, 0x3b09c,
1163 		0x3b0f0, 0x3b148,
1164 		0x3b160, 0x3b19c,
1165 		0x3b1f0, 0x3b2e4,
1166 		0x3b2f8, 0x3b3e4,
1167 		0x3b3f8, 0x3b448,
1168 		0x3b460, 0x3b49c,
1169 		0x3b4f0, 0x3b548,
1170 		0x3b560, 0x3b59c,
1171 		0x3b5f0, 0x3b6e4,
1172 		0x3b6f8, 0x3b7e4,
1173 		0x3b7f8, 0x3b7fc,
1174 		0x3b814, 0x3b814,
1175 		0x3b82c, 0x3b82c,
1176 		0x3b880, 0x3b88c,
1177 		0x3b8e8, 0x3b8ec,
1178 		0x3b900, 0x3b948,
1179 		0x3b960, 0x3b99c,
1180 		0x3b9f0, 0x3bae4,
1181 		0x3baf8, 0x3bb10,
1182 		0x3bb28, 0x3bb28,
1183 		0x3bb3c, 0x3bb50,
1184 		0x3bbf0, 0x3bc10,
1185 		0x3bc28, 0x3bc28,
1186 		0x3bc3c, 0x3bc50,
1187 		0x3bcf0, 0x3bcfc,
1188 		0x3c000, 0x3c030,
1189 		0x3c100, 0x3c144,
1190 		0x3c190, 0x3c1d0,
1191 		0x3c200, 0x3c318,
1192 		0x3c400, 0x3c52c,
1193 		0x3c540, 0x3c61c,
1194 		0x3c800, 0x3c834,
1195 		0x3c8c0, 0x3c908,
1196 		0x3c910, 0x3c9ac,
1197 		0x3ca00, 0x3ca04,
1198 		0x3ca0c, 0x3ca2c,
1199 		0x3ca44, 0x3ca50,
1200 		0x3ca74, 0x3cc24,
1201 		0x3cd08, 0x3cd14,
1202 		0x3cd1c, 0x3cd20,
1203 		0x3cd3c, 0x3cd50,
1204 		0x3d200, 0x3d20c,
1205 		0x3d220, 0x3d220,
1206 		0x3d240, 0x3d240,
1207 		0x3d600, 0x3d600,
1208 		0x3d608, 0x3d60c,
1209 		0x3da00, 0x3da1c,
1210 		0x3de04, 0x3de20,
1211 		0x3de38, 0x3de3c,
1212 		0x3de80, 0x3de80,
1213 		0x3de88, 0x3dea8,
1214 		0x3deb0, 0x3deb4,
1215 		0x3dec8, 0x3ded4,
1216 		0x3dfb8, 0x3e004,
1217 		0x3e208, 0x3e23c,
1218 		0x3e600, 0x3e630,
1219 		0x3ea00, 0x3eabc,
1220 		0x3eb00, 0x3eb70,
1221 		0x3f000, 0x3f048,
1222 		0x3f060, 0x3f09c,
1223 		0x3f0f0, 0x3f148,
1224 		0x3f160, 0x3f19c,
1225 		0x3f1f0, 0x3f2e4,
1226 		0x3f2f8, 0x3f3e4,
1227 		0x3f3f8, 0x3f448,
1228 		0x3f460, 0x3f49c,
1229 		0x3f4f0, 0x3f548,
1230 		0x3f560, 0x3f59c,
1231 		0x3f5f0, 0x3f6e4,
1232 		0x3f6f8, 0x3f7e4,
1233 		0x3f7f8, 0x3f7fc,
1234 		0x3f814, 0x3f814,
1235 		0x3f82c, 0x3f82c,
1236 		0x3f880, 0x3f88c,
1237 		0x3f8e8, 0x3f8ec,
1238 		0x3f900, 0x3f948,
1239 		0x3f960, 0x3f99c,
1240 		0x3f9f0, 0x3fae4,
1241 		0x3faf8, 0x3fb10,
1242 		0x3fb28, 0x3fb28,
1243 		0x3fb3c, 0x3fb50,
1244 		0x3fbf0, 0x3fc10,
1245 		0x3fc28, 0x3fc28,
1246 		0x3fc3c, 0x3fc50,
1247 		0x3fcf0, 0x3fcfc,
1248 		0x40000, 0x4000c,
1249 		0x40040, 0x40068,
1250 		0x40080, 0x40144,
1251 		0x40180, 0x4018c,
1252 		0x40200, 0x40298,
1253 		0x402ac, 0x4033c,
1254 		0x403f8, 0x403fc,
1255 		0x41304, 0x413c4,
1256 		0x41400, 0x4141c,
1257 		0x41480, 0x414d0,
1258 		0x44000, 0x44078,
1259 		0x440c0, 0x44278,
1260 		0x442c0, 0x44478,
1261 		0x444c0, 0x44678,
1262 		0x446c0, 0x44878,
1263 		0x448c0, 0x449fc,
1264 		0x45000, 0x45068,
1265 		0x45080, 0x45084,
1266 		0x450a0, 0x450b0,
1267 		0x45200, 0x45268,
1268 		0x45280, 0x45284,
1269 		0x452a0, 0x452b0,
1270 		0x460c0, 0x460e4,
1271 		0x47000, 0x4708c,
1272 		0x47200, 0x47250,
1273 		0x47400, 0x47420,
1274 		0x47600, 0x47618,
1275 		0x47800, 0x47814,
1276 		0x48000, 0x4800c,
1277 		0x48040, 0x48068,
1278 		0x48080, 0x48144,
1279 		0x48180, 0x4818c,
1280 		0x48200, 0x48298,
1281 		0x482ac, 0x4833c,
1282 		0x483f8, 0x483fc,
1283 		0x49304, 0x493c4,
1284 		0x49400, 0x4941c,
1285 		0x49480, 0x494d0,
1286 		0x4c000, 0x4c078,
1287 		0x4c0c0, 0x4c278,
1288 		0x4c2c0, 0x4c478,
1289 		0x4c4c0, 0x4c678,
1290 		0x4c6c0, 0x4c878,
1291 		0x4c8c0, 0x4c9fc,
1292 		0x4d000, 0x4d068,
1293 		0x4d080, 0x4d084,
1294 		0x4d0a0, 0x4d0b0,
1295 		0x4d200, 0x4d268,
1296 		0x4d280, 0x4d284,
1297 		0x4d2a0, 0x4d2b0,
1298 		0x4e0c0, 0x4e0e4,
1299 		0x4f000, 0x4f08c,
1300 		0x4f200, 0x4f250,
1301 		0x4f400, 0x4f420,
1302 		0x4f600, 0x4f618,
1303 		0x4f800, 0x4f814,
1304 		0x50000, 0x500cc,
1305 		0x50400, 0x50400,
1306 		0x50800, 0x508cc,
1307 		0x50c00, 0x50c00,
1308 		0x51000, 0x5101c,
1309 		0x51300, 0x51308,
1310 	};
1311 
1312 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
1313 	const unsigned int *reg_ranges;
1314 	int reg_ranges_size, range;
1315 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1316 
1317 	/* Select the right set of register ranges to dump depending on the
1318 	 * adapter chip type.
1319 	 */
1320 	switch (chip_version) {
1321 	case CHELSIO_T4:
1322 		reg_ranges = t4_reg_ranges;
1323 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
1324 		break;
1325 
1326 	case CHELSIO_T5:
1327 		reg_ranges = t5_reg_ranges;
1328 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1329 		break;
1330 
1331 	default:
1332 		dev_err(adap->pdev_dev,
1333 			"Unsupported chip version %d\n", chip_version);
1334 		return;
1335 	}
1336 
1337 	/* Clear the register buffer and insert the appropriate register
1338 	 * values selected by the above register ranges.
1339 	 */
1340 	memset(buf, 0, buf_size);
1341 	for (range = 0; range < reg_ranges_size; range += 2) {
1342 		unsigned int reg = reg_ranges[range];
1343 		unsigned int last_reg = reg_ranges[range + 1];
1344 		u32 *bufp = (u32 *)((char *)buf + reg);
1345 
1346 		/* Iterate across the register range filling in the register
1347 		 * buffer but don't write past the end of the register buffer.
1348 		 */
1349 		while (reg <= last_reg && bufp < buf_end) {
1350 			*bufp++ = t4_read_reg(adap, reg);
1351 			reg += sizeof(u32);
1352 		}
1353 	}
1354 }
1355 
1356 #define EEPROM_STAT_ADDR   0x7bfc
1357 #define VPD_BASE           0x400
1358 #define VPD_BASE_OLD       0
1359 #define VPD_LEN            1024
1360 #define CHELSIO_VPD_UNIQUE_ID 0x82
1361 
1362 /**
1363  *	t4_seeprom_wp - enable/disable EEPROM write protection
1364  *	@adapter: the adapter
1365  *	@enable: whether to enable or disable write protection
1366  *
1367  *	Enables or disables write protection on the serial EEPROM.
1368  */
1369 int t4_seeprom_wp(struct adapter *adapter, bool enable)
1370 {
1371 	unsigned int v = enable ? 0xc : 0;
1372 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
1373 	return ret < 0 ? ret : 0;
1374 }
1375 
1376 /**
1377  *	get_vpd_params - read VPD parameters from VPD EEPROM
1378  *	@adapter: adapter to read
1379  *	@p: where to store the parameters
1380  *
1381  *	Reads card parameters stored in VPD EEPROM.
1382  */
1383 int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
1384 {
1385 	u32 cclk_param, cclk_val;
1386 	int i, ret, addr;
1387 	int ec, sn, pn;
1388 	u8 *vpd, csum;
1389 	unsigned int vpdr_len, kw_offset, id_len;
1390 
1391 	vpd = vmalloc(VPD_LEN);
1392 	if (!vpd)
1393 		return -ENOMEM;
1394 
1395 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
1396 	if (ret < 0)
1397 		goto out;
1398 
1399 	/* The VPD shall have a unique identifier specified by the PCI SIG.
1400 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
1401 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
1402 	 * is expected to automatically put this entry at the
1403 	 * beginning of the VPD.
1404 	 */
1405 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
1406 
1407 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
1408 	if (ret < 0)
1409 		goto out;
1410 
1411 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
1412 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
1413 		ret = -EINVAL;
1414 		goto out;
1415 	}
1416 
1417 	id_len = pci_vpd_lrdt_size(vpd);
1418 	if (id_len > ID_LEN)
1419 		id_len = ID_LEN;
1420 
1421 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
1422 	if (i < 0) {
1423 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
1424 		ret = -EINVAL;
1425 		goto out;
1426 	}
1427 
1428 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
1429 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
1430 	if (vpdr_len + kw_offset > VPD_LEN) {
1431 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
1432 		ret = -EINVAL;
1433 		goto out;
1434 	}
1435 
1436 #define FIND_VPD_KW(var, name) do { \
1437 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
1438 	if (var < 0) { \
1439 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
1440 		ret = -EINVAL; \
1441 		goto out; \
1442 	} \
1443 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
1444 } while (0)
1445 
1446 	FIND_VPD_KW(i, "RV");
1447 	for (csum = 0; i >= 0; i--)
1448 		csum += vpd[i];
1449 
1450 	if (csum) {
1451 		dev_err(adapter->pdev_dev,
1452 			"corrupted VPD EEPROM, actual csum %u\n", csum);
1453 		ret = -EINVAL;
1454 		goto out;
1455 	}
1456 
1457 	FIND_VPD_KW(ec, "EC");
1458 	FIND_VPD_KW(sn, "SN");
1459 	FIND_VPD_KW(pn, "PN");
1460 #undef FIND_VPD_KW
1461 
1462 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
1463 	strim(p->id);
1464 	memcpy(p->ec, vpd + ec, EC_LEN);
1465 	strim(p->ec);
1466 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
1467 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
1468 	strim(p->sn);
1469 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
1470 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
1471 	strim(p->pn);
1472 
1473 	/*
1474 	 * Ask firmware for the Core Clock since it knows how to translate the
1475 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
1476 	 */
1477 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1478 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
1479 	ret = t4_query_params(adapter, adapter->mbox, 0, 0,
1480 			      1, &cclk_param, &cclk_val);
1481 
1482 out:
1483 	vfree(vpd);
1484 	if (ret)
1485 		return ret;
1486 	p->cclk = cclk_val;
1487 
1488 	return 0;
1489 }
1490 
1491 /* serial flash and firmware constants */
1492 enum {
1493 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
1494 
1495 	/* flash command opcodes */
1496 	SF_PROG_PAGE    = 2,          /* program page */
1497 	SF_WR_DISABLE   = 4,          /* disable writes */
1498 	SF_RD_STATUS    = 5,          /* read status register */
1499 	SF_WR_ENABLE    = 6,          /* enable writes */
1500 	SF_RD_DATA_FAST = 0xb,        /* read flash */
1501 	SF_RD_ID        = 0x9f,       /* read ID */
1502 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
1503 
1504 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
1505 };
1506 
1507 /**
1508  *	sf1_read - read data from the serial flash
1509  *	@adapter: the adapter
1510  *	@byte_cnt: number of bytes to read
1511  *	@cont: whether another operation will be chained
1512  *	@lock: whether to lock SF for PL access only
1513  *	@valp: where to store the read data
1514  *
1515  *	Reads up to 4 bytes of data from the serial flash.  The location of
1516  *	the read needs to be specified prior to calling this by issuing the
1517  *	appropriate commands to the serial flash.
1518  */
1519 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
1520 		    int lock, u32 *valp)
1521 {
1522 	int ret;
1523 
1524 	if (!byte_cnt || byte_cnt > 4)
1525 		return -EINVAL;
1526 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1527 		return -EBUSY;
1528 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1529 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
1530 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1531 	if (!ret)
1532 		*valp = t4_read_reg(adapter, SF_DATA_A);
1533 	return ret;
1534 }
1535 
1536 /**
1537  *	sf1_write - write data to the serial flash
1538  *	@adapter: the adapter
1539  *	@byte_cnt: number of bytes to write
1540  *	@cont: whether another operation will be chained
1541  *	@lock: whether to lock SF for PL access only
1542  *	@val: value to write
1543  *
1544  *	Writes up to 4 bytes of data to the serial flash.  The location of
1545  *	the write needs to be specified prior to calling this by issuing the
1546  *	appropriate commands to the serial flash.
1547  */
1548 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
1549 		     int lock, u32 val)
1550 {
1551 	if (!byte_cnt || byte_cnt > 4)
1552 		return -EINVAL;
1553 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1554 		return -EBUSY;
1555 	t4_write_reg(adapter, SF_DATA_A, val);
1556 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1557 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
1558 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1559 }
1560 
1561 /**
1562  *	flash_wait_op - wait for a flash operation to complete
1563  *	@adapter: the adapter
1564  *	@attempts: max number of polls of the status register
1565  *	@delay: delay between polls in ms
1566  *
1567  *	Wait for a flash operation to complete by polling the status register.
1568  */
1569 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
1570 {
1571 	int ret;
1572 	u32 status;
1573 
1574 	while (1) {
1575 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
1576 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
1577 			return ret;
1578 		if (!(status & 1))
1579 			return 0;
1580 		if (--attempts == 0)
1581 			return -EAGAIN;
1582 		if (delay)
1583 			msleep(delay);
1584 	}
1585 }
1586 
1587 /**
1588  *	t4_read_flash - read words from serial flash
1589  *	@adapter: the adapter
1590  *	@addr: the start address for the read
1591  *	@nwords: how many 32-bit words to read
1592  *	@data: where to store the read data
1593  *	@byte_oriented: whether to store data as bytes or as words
1594  *
1595  *	Read the specified number of 32-bit words from the serial flash.
1596  *	If @byte_oriented is set the read data is stored as a byte array
1597  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
1598  *	natural endianness.
1599  */
1600 int t4_read_flash(struct adapter *adapter, unsigned int addr,
1601 		  unsigned int nwords, u32 *data, int byte_oriented)
1602 {
1603 	int ret;
1604 
1605 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
1606 		return -EINVAL;
1607 
1608 	addr = swab32(addr) | SF_RD_DATA_FAST;
1609 
1610 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
1611 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
1612 		return ret;
1613 
1614 	for ( ; nwords; nwords--, data++) {
1615 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
1616 		if (nwords == 1)
1617 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
1618 		if (ret)
1619 			return ret;
1620 		if (byte_oriented)
1621 			*data = (__force __u32) (htonl(*data));
1622 	}
1623 	return 0;
1624 }
1625 
1626 /**
1627  *	t4_write_flash - write up to a page of data to the serial flash
1628  *	@adapter: the adapter
1629  *	@addr: the start address to write
1630  *	@n: length of data to write in bytes
1631  *	@data: the data to write
1632  *
1633  *	Writes up to a page of data (256 bytes) to the serial flash starting
1634  *	at the given address.  All the data must be written to the same page.
1635  */
1636 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
1637 			  unsigned int n, const u8 *data)
1638 {
1639 	int ret;
1640 	u32 buf[64];
1641 	unsigned int i, c, left, val, offset = addr & 0xff;
1642 
1643 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
1644 		return -EINVAL;
1645 
1646 	val = swab32(addr) | SF_PROG_PAGE;
1647 
1648 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
1649 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
1650 		goto unlock;
1651 
1652 	for (left = n; left; left -= c) {
1653 		c = min(left, 4U);
1654 		for (val = 0, i = 0; i < c; ++i)
1655 			val = (val << 8) + *data++;
1656 
1657 		ret = sf1_write(adapter, c, c != left, 1, val);
1658 		if (ret)
1659 			goto unlock;
1660 	}
1661 	ret = flash_wait_op(adapter, 8, 1);
1662 	if (ret)
1663 		goto unlock;
1664 
1665 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
1666 
1667 	/* Read the page to verify the write succeeded */
1668 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
1669 	if (ret)
1670 		return ret;
1671 
1672 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
1673 		dev_err(adapter->pdev_dev,
1674 			"failed to correctly write the flash page at %#x\n",
1675 			addr);
1676 		return -EIO;
1677 	}
1678 	return 0;
1679 
1680 unlock:
1681 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
1682 	return ret;
1683 }
1684 
1685 /**
1686  *	t4_get_fw_version - read the firmware version
1687  *	@adapter: the adapter
1688  *	@vers: where to place the version
1689  *
1690  *	Reads the FW version from flash.
1691  */
1692 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
1693 {
1694 	return t4_read_flash(adapter, FLASH_FW_START +
1695 			     offsetof(struct fw_hdr, fw_ver), 1,
1696 			     vers, 0);
1697 }
1698 
1699 /**
1700  *	t4_get_tp_version - read the TP microcode version
1701  *	@adapter: the adapter
1702  *	@vers: where to place the version
1703  *
1704  *	Reads the TP microcode version from flash.
1705  */
1706 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
1707 {
1708 	return t4_read_flash(adapter, FLASH_FW_START +
1709 			     offsetof(struct fw_hdr, tp_microcode_ver),
1710 			     1, vers, 0);
1711 }
1712 
1713 /**
1714  *	t4_get_exprom_version - return the Expansion ROM version (if any)
1715  *	@adapter: the adapter
1716  *	@vers: where to place the version
1717  *
1718  *	Reads the Expansion ROM header from FLASH and returns the version
1719  *	number (if present) through the @vers return value pointer.  We return
1720  *	this in the Firmware Version Format since it's convenient.  Return
1721  *	0 on success, -ENOENT if no Expansion ROM is present.
1722  */
1723 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
1724 {
1725 	struct exprom_header {
1726 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
1727 		unsigned char hdr_ver[4];	/* Expansion ROM version */
1728 	} *hdr;
1729 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
1730 					   sizeof(u32))];
1731 	int ret;
1732 
1733 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
1734 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
1735 			    0);
1736 	if (ret)
1737 		return ret;
1738 
1739 	hdr = (struct exprom_header *)exprom_header_buf;
1740 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
1741 		return -ENOENT;
1742 
1743 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
1744 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
1745 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
1746 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
1747 	return 0;
1748 }
1749 
1750 /* Is the given firmware API compatible with the one the driver was compiled
1751  * with?
1752  */
1753 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
1754 {
1755 
1756 	/* short circuit if it's the exact same firmware version */
1757 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
1758 		return 1;
1759 
1760 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
1761 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
1762 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
1763 		return 1;
1764 #undef SAME_INTF
1765 
1766 	return 0;
1767 }
1768 
1769 /* The firmware in the filesystem is usable, but should it be installed?
1770  * This routine explains itself in detail if it indicates the filesystem
1771  * firmware should be installed.
1772  */
1773 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
1774 				int k, int c)
1775 {
1776 	const char *reason;
1777 
1778 	if (!card_fw_usable) {
1779 		reason = "incompatible or unusable";
1780 		goto install;
1781 	}
1782 
1783 	if (k > c) {
1784 		reason = "older than the version supported with this driver";
1785 		goto install;
1786 	}
1787 
1788 	return 0;
1789 
1790 install:
1791 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
1792 		"installing firmware %u.%u.%u.%u on card.\n",
1793 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1794 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
1795 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1796 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1797 
1798 	return 1;
1799 }
1800 
1801 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
1802 	       const u8 *fw_data, unsigned int fw_size,
1803 	       struct fw_hdr *card_fw, enum dev_state state,
1804 	       int *reset)
1805 {
1806 	int ret, card_fw_usable, fs_fw_usable;
1807 	const struct fw_hdr *fs_fw;
1808 	const struct fw_hdr *drv_fw;
1809 
1810 	drv_fw = &fw_info->fw_hdr;
1811 
1812 	/* Read the header of the firmware on the card */
1813 	ret = -t4_read_flash(adap, FLASH_FW_START,
1814 			    sizeof(*card_fw) / sizeof(uint32_t),
1815 			    (uint32_t *)card_fw, 1);
1816 	if (ret == 0) {
1817 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1818 	} else {
1819 		dev_err(adap->pdev_dev,
1820 			"Unable to read card's firmware header: %d\n", ret);
1821 		card_fw_usable = 0;
1822 	}
1823 
1824 	if (fw_data != NULL) {
1825 		fs_fw = (const void *)fw_data;
1826 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1827 	} else {
1828 		fs_fw = NULL;
1829 		fs_fw_usable = 0;
1830 	}
1831 
1832 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1833 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1834 		/* Common case: the firmware on the card is an exact match and
1835 		 * the filesystem one is an exact match too, or the filesystem
1836 		 * one is absent/incompatible.
1837 		 */
1838 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
1839 		   should_install_fs_fw(adap, card_fw_usable,
1840 					be32_to_cpu(fs_fw->fw_ver),
1841 					be32_to_cpu(card_fw->fw_ver))) {
1842 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
1843 				     fw_size, 0);
1844 		if (ret != 0) {
1845 			dev_err(adap->pdev_dev,
1846 				"failed to install firmware: %d\n", ret);
1847 			goto bye;
1848 		}
1849 
1850 		/* Installed successfully, update the cached header too. */
1851 		*card_fw = *fs_fw;
1852 		card_fw_usable = 1;
1853 		*reset = 0;	/* already reset as part of load_fw */
1854 	}
1855 
1856 	if (!card_fw_usable) {
1857 		uint32_t d, c, k;
1858 
1859 		d = be32_to_cpu(drv_fw->fw_ver);
1860 		c = be32_to_cpu(card_fw->fw_ver);
1861 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1862 
1863 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
1864 			"chip state %d, "
1865 			"driver compiled with %d.%d.%d.%d, "
1866 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1867 			state,
1868 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1869 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1870 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1871 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1872 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1873 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1874 		ret = EINVAL;
1875 		goto bye;
1876 	}
1877 
1878 	/* We're using whatever's on the card and it's known to be good. */
1879 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
1880 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
1881 
1882 bye:
1883 	return ret;
1884 }
1885 
1886 /**
1887  *	t4_flash_erase_sectors - erase a range of flash sectors
1888  *	@adapter: the adapter
1889  *	@start: the first sector to erase
1890  *	@end: the last sector to erase
1891  *
1892  *	Erases the sectors in the given inclusive range.
1893  */
1894 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
1895 {
1896 	int ret = 0;
1897 
1898 	if (end >= adapter->params.sf_nsec)
1899 		return -EINVAL;
1900 
1901 	while (start <= end) {
1902 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
1903 		    (ret = sf1_write(adapter, 4, 0, 1,
1904 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
1905 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
1906 			dev_err(adapter->pdev_dev,
1907 				"erase of flash sector %d failed, error %d\n",
1908 				start, ret);
1909 			break;
1910 		}
1911 		start++;
1912 	}
1913 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
1914 	return ret;
1915 }
1916 
1917 /**
1918  *	t4_flash_cfg_addr - return the address of the flash configuration file
1919  *	@adapter: the adapter
1920  *
1921  *	Return the address within the flash where the Firmware Configuration
1922  *	File is stored.
1923  */
1924 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
1925 {
1926 	if (adapter->params.sf_size == 0x100000)
1927 		return FLASH_FPGA_CFG_START;
1928 	else
1929 		return FLASH_CFG_START;
1930 }
1931 
1932 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
1933  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
1934  * and emit an error message for mismatched firmware to save our caller the
1935  * effort ...
1936  */
1937 static bool t4_fw_matches_chip(const struct adapter *adap,
1938 			       const struct fw_hdr *hdr)
1939 {
1940 	/* The expression below will return FALSE for any unsupported adapter
1941 	 * which will keep us "honest" in the future ...
1942 	 */
1943 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
1944 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5))
1945 		return true;
1946 
1947 	dev_err(adap->pdev_dev,
1948 		"FW image (%d) is not suitable for this adapter (%d)\n",
1949 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
1950 	return false;
1951 }
1952 
1953 /**
1954  *	t4_load_fw - download firmware
1955  *	@adap: the adapter
1956  *	@fw_data: the firmware image to write
1957  *	@size: image size
1958  *
1959  *	Write the supplied firmware image to the card's serial flash.
1960  */
1961 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
1962 {
1963 	u32 csum;
1964 	int ret, addr;
1965 	unsigned int i;
1966 	u8 first_page[SF_PAGE_SIZE];
1967 	const __be32 *p = (const __be32 *)fw_data;
1968 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
1969 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1970 	unsigned int fw_img_start = adap->params.sf_fw_start;
1971 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
1972 
1973 	if (!size) {
1974 		dev_err(adap->pdev_dev, "FW image has no data\n");
1975 		return -EINVAL;
1976 	}
1977 	if (size & 511) {
1978 		dev_err(adap->pdev_dev,
1979 			"FW image size not multiple of 512 bytes\n");
1980 		return -EINVAL;
1981 	}
1982 	if (ntohs(hdr->len512) * 512 != size) {
1983 		dev_err(adap->pdev_dev,
1984 			"FW image size differs from size in FW header\n");
1985 		return -EINVAL;
1986 	}
1987 	if (size > FW_MAX_SIZE) {
1988 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
1989 			FW_MAX_SIZE);
1990 		return -EFBIG;
1991 	}
1992 	if (!t4_fw_matches_chip(adap, hdr))
1993 		return -EINVAL;
1994 
1995 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1996 		csum += ntohl(p[i]);
1997 
1998 	if (csum != 0xffffffff) {
1999 		dev_err(adap->pdev_dev,
2000 			"corrupted firmware image, checksum %#x\n", csum);
2001 		return -EINVAL;
2002 	}
2003 
2004 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
2005 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
2006 	if (ret)
2007 		goto out;
2008 
2009 	/*
2010 	 * We write the correct version at the end so the driver can see a bad
2011 	 * version if the FW write fails.  Start by writing a copy of the
2012 	 * first page with a bad version.
2013 	 */
2014 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
2015 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
2016 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
2017 	if (ret)
2018 		goto out;
2019 
2020 	addr = fw_img_start;
2021 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
2022 		addr += SF_PAGE_SIZE;
2023 		fw_data += SF_PAGE_SIZE;
2024 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
2025 		if (ret)
2026 			goto out;
2027 	}
2028 
2029 	ret = t4_write_flash(adap,
2030 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
2031 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
2032 out:
2033 	if (ret)
2034 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
2035 			ret);
2036 	else
2037 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2038 	return ret;
2039 }
2040 
2041 /**
2042  *	t4_fwcache - firmware cache operation
2043  *	@adap: the adapter
2044  *	@op  : the operation (flush or flush and invalidate)
2045  */
2046 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
2047 {
2048 	struct fw_params_cmd c;
2049 
2050 	memset(&c, 0, sizeof(c));
2051 	c.op_to_vfn =
2052 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
2053 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2054 			    FW_PARAMS_CMD_PFN_V(adap->fn) |
2055 			    FW_PARAMS_CMD_VFN_V(0));
2056 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2057 	c.param[0].mnem =
2058 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2059 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
2060 	c.param[0].val = (__force __be32)op;
2061 
2062 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
2063 }
2064 
2065 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
2066 {
2067 	unsigned int i, j;
2068 
2069 	for (i = 0; i < 8; i++) {
2070 		u32 *p = la_buf + i;
2071 
2072 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
2073 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
2074 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
2075 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
2076 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
2077 	}
2078 }
2079 
2080 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
2081 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
2082 		     FW_PORT_CAP_ANEG)
2083 
2084 /**
2085  *	t4_link_start - apply link configuration to MAC/PHY
2086  *	@phy: the PHY to setup
2087  *	@mac: the MAC to setup
2088  *	@lc: the requested link configuration
2089  *
2090  *	Set up a port's MAC and PHY according to a desired link configuration.
2091  *	- If the PHY can auto-negotiate first decide what to advertise, then
2092  *	  enable/disable auto-negotiation as desired, and reset.
2093  *	- If the PHY does not auto-negotiate just reset it.
2094  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2095  *	  otherwise do it later based on the outcome of auto-negotiation.
2096  */
2097 int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
2098 		  struct link_config *lc)
2099 {
2100 	struct fw_port_cmd c;
2101 	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
2102 
2103 	lc->link_ok = 0;
2104 	if (lc->requested_fc & PAUSE_RX)
2105 		fc |= FW_PORT_CAP_FC_RX;
2106 	if (lc->requested_fc & PAUSE_TX)
2107 		fc |= FW_PORT_CAP_FC_TX;
2108 
2109 	memset(&c, 0, sizeof(c));
2110 	c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
2111 			       FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
2112 	c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2113 				  FW_LEN16(c));
2114 
2115 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2116 		c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
2117 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2118 	} else if (lc->autoneg == AUTONEG_DISABLE) {
2119 		c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
2120 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2121 	} else
2122 		c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
2123 
2124 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2125 }
2126 
2127 /**
2128  *	t4_restart_aneg - restart autonegotiation
2129  *	@adap: the adapter
2130  *	@mbox: mbox to use for the FW command
2131  *	@port: the port id
2132  *
2133  *	Restarts autonegotiation for the selected port.
2134  */
2135 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
2136 {
2137 	struct fw_port_cmd c;
2138 
2139 	memset(&c, 0, sizeof(c));
2140 	c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
2141 			       FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
2142 	c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2143 				  FW_LEN16(c));
2144 	c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
2145 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2146 }
2147 
2148 typedef void (*int_handler_t)(struct adapter *adap);
2149 
2150 struct intr_info {
2151 	unsigned int mask;       /* bits to check in interrupt status */
2152 	const char *msg;         /* message to print or NULL */
2153 	short stat_idx;          /* stat counter to increment or -1 */
2154 	unsigned short fatal;    /* whether the condition reported is fatal */
2155 	int_handler_t int_handler; /* platform-specific int handler */
2156 };
2157 
2158 /**
2159  *	t4_handle_intr_status - table driven interrupt handler
2160  *	@adapter: the adapter that generated the interrupt
2161  *	@reg: the interrupt status register to process
2162  *	@acts: table of interrupt actions
2163  *
2164  *	A table driven interrupt handler that applies a set of masks to an
2165  *	interrupt status word and performs the corresponding actions if the
2166  *	interrupts described by the mask have occurred.  The actions include
2167  *	optionally emitting a warning or alert message.  The table is terminated
2168  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
2169  *	conditions.
2170  */
2171 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
2172 				 const struct intr_info *acts)
2173 {
2174 	int fatal = 0;
2175 	unsigned int mask = 0;
2176 	unsigned int status = t4_read_reg(adapter, reg);
2177 
2178 	for ( ; acts->mask; ++acts) {
2179 		if (!(status & acts->mask))
2180 			continue;
2181 		if (acts->fatal) {
2182 			fatal++;
2183 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2184 				  status & acts->mask);
2185 		} else if (acts->msg && printk_ratelimit())
2186 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2187 				 status & acts->mask);
2188 		if (acts->int_handler)
2189 			acts->int_handler(adapter);
2190 		mask |= acts->mask;
2191 	}
2192 	status &= mask;
2193 	if (status)                           /* clear processed interrupts */
2194 		t4_write_reg(adapter, reg, status);
2195 	return fatal;
2196 }
2197 
2198 /*
2199  * Interrupt handler for the PCIE module.
2200  */
2201 static void pcie_intr_handler(struct adapter *adapter)
2202 {
2203 	static const struct intr_info sysbus_intr_info[] = {
2204 		{ RNPP_F, "RXNP array parity error", -1, 1 },
2205 		{ RPCP_F, "RXPC array parity error", -1, 1 },
2206 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
2207 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
2208 		{ RFTP_F, "RXFT array parity error", -1, 1 },
2209 		{ 0 }
2210 	};
2211 	static const struct intr_info pcie_port_intr_info[] = {
2212 		{ TPCP_F, "TXPC array parity error", -1, 1 },
2213 		{ TNPP_F, "TXNP array parity error", -1, 1 },
2214 		{ TFTP_F, "TXFT array parity error", -1, 1 },
2215 		{ TCAP_F, "TXCA array parity error", -1, 1 },
2216 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
2217 		{ RCAP_F, "RXCA array parity error", -1, 1 },
2218 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
2219 		{ RDPE_F, "Rx data parity error", -1, 1 },
2220 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
2221 		{ 0 }
2222 	};
2223 	static const struct intr_info pcie_intr_info[] = {
2224 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
2225 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
2226 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
2227 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2228 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2229 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2230 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2231 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
2232 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
2233 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2234 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
2235 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2236 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2237 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
2238 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2239 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2240 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
2241 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2242 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2243 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2244 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
2245 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
2246 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
2247 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2248 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
2249 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
2250 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
2251 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
2252 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
2253 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
2254 		  -1, 0 },
2255 		{ 0 }
2256 	};
2257 
2258 	static struct intr_info t5_pcie_intr_info[] = {
2259 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
2260 		  -1, 1 },
2261 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
2262 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
2263 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2264 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2265 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2266 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2267 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
2268 		  -1, 1 },
2269 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
2270 		  -1, 1 },
2271 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2272 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
2273 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2274 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2275 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
2276 		  -1, 1 },
2277 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2278 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2279 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
2280 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2281 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2282 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2283 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
2284 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
2285 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
2286 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2287 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
2288 		  -1, 1 },
2289 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
2290 		  -1, 1 },
2291 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
2292 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
2293 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2294 		{ READRSPERR_F, "Outbound read error", -1, 0 },
2295 		{ 0 }
2296 	};
2297 
2298 	int fat;
2299 
2300 	if (is_t4(adapter->params.chip))
2301 		fat = t4_handle_intr_status(adapter,
2302 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
2303 				sysbus_intr_info) +
2304 			t4_handle_intr_status(adapter,
2305 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
2306 					pcie_port_intr_info) +
2307 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2308 					      pcie_intr_info);
2309 	else
2310 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2311 					    t5_pcie_intr_info);
2312 
2313 	if (fat)
2314 		t4_fatal_err(adapter);
2315 }
2316 
2317 /*
2318  * TP interrupt handler.
2319  */
2320 static void tp_intr_handler(struct adapter *adapter)
2321 {
2322 	static const struct intr_info tp_intr_info[] = {
2323 		{ 0x3fffffff, "TP parity error", -1, 1 },
2324 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2325 		{ 0 }
2326 	};
2327 
2328 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
2329 		t4_fatal_err(adapter);
2330 }
2331 
2332 /*
2333  * SGE interrupt handler.
2334  */
2335 static void sge_intr_handler(struct adapter *adapter)
2336 {
2337 	u64 v;
2338 
2339 	static const struct intr_info sge_intr_info[] = {
2340 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
2341 		  "SGE received CPL exceeding IQE size", -1, 1 },
2342 		{ ERR_INVALID_CIDX_INC_F,
2343 		  "SGE GTS CIDX increment too large", -1, 0 },
2344 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2345 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
2346 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
2347 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
2348 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2349 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2350 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2351 		  0 },
2352 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2353 		  0 },
2354 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2355 		  0 },
2356 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2357 		  0 },
2358 		{ ERR_ING_CTXT_PRIO_F,
2359 		  "SGE too many priority ingress contexts", -1, 0 },
2360 		{ ERR_EGR_CTXT_PRIO_F,
2361 		  "SGE too many priority egress contexts", -1, 0 },
2362 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2363 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2364 		{ 0 }
2365 	};
2366 
2367 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
2368 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
2369 	if (v) {
2370 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
2371 				(unsigned long long)v);
2372 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
2373 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
2374 	}
2375 
2376 	if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info) ||
2377 	    v != 0)
2378 		t4_fatal_err(adapter);
2379 }
2380 
2381 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2382 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2383 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2384 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2385 
2386 /*
2387  * CIM interrupt handler.
2388  */
2389 static void cim_intr_handler(struct adapter *adapter)
2390 {
2391 	static const struct intr_info cim_intr_info[] = {
2392 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2393 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2394 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2395 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2396 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2397 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2398 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
2399 		{ 0 }
2400 	};
2401 	static const struct intr_info cim_upintr_info[] = {
2402 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2403 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2404 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
2405 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
2406 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2407 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2408 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2409 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2410 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2411 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2412 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2413 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2414 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2415 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2416 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2417 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2418 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2419 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2420 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2421 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2422 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2423 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2424 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2425 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2426 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2427 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2428 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2429 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
2430 		{ 0 }
2431 	};
2432 
2433 	int fat;
2434 
2435 	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
2436 		t4_report_fw_error(adapter);
2437 
2438 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
2439 				    cim_intr_info) +
2440 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
2441 				    cim_upintr_info);
2442 	if (fat)
2443 		t4_fatal_err(adapter);
2444 }
2445 
2446 /*
2447  * ULP RX interrupt handler.
2448  */
2449 static void ulprx_intr_handler(struct adapter *adapter)
2450 {
2451 	static const struct intr_info ulprx_intr_info[] = {
2452 		{ 0x1800000, "ULPRX context error", -1, 1 },
2453 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
2454 		{ 0 }
2455 	};
2456 
2457 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
2458 		t4_fatal_err(adapter);
2459 }
2460 
2461 /*
2462  * ULP TX interrupt handler.
2463  */
2464 static void ulptx_intr_handler(struct adapter *adapter)
2465 {
2466 	static const struct intr_info ulptx_intr_info[] = {
2467 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
2468 		  0 },
2469 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
2470 		  0 },
2471 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
2472 		  0 },
2473 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
2474 		  0 },
2475 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
2476 		{ 0 }
2477 	};
2478 
2479 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
2480 		t4_fatal_err(adapter);
2481 }
2482 
2483 /*
2484  * PM TX interrupt handler.
2485  */
2486 static void pmtx_intr_handler(struct adapter *adapter)
2487 {
2488 	static const struct intr_info pmtx_intr_info[] = {
2489 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
2490 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
2491 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
2492 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
2493 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
2494 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
2495 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
2496 		  -1, 1 },
2497 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
2498 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
2499 		{ 0 }
2500 	};
2501 
2502 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
2503 		t4_fatal_err(adapter);
2504 }
2505 
2506 /*
2507  * PM RX interrupt handler.
2508  */
2509 static void pmrx_intr_handler(struct adapter *adapter)
2510 {
2511 	static const struct intr_info pmrx_intr_info[] = {
2512 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
2513 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
2514 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
2515 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
2516 		  -1, 1 },
2517 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
2518 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
2519 		{ 0 }
2520 	};
2521 
2522 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
2523 		t4_fatal_err(adapter);
2524 }
2525 
2526 /*
2527  * CPL switch interrupt handler.
2528  */
2529 static void cplsw_intr_handler(struct adapter *adapter)
2530 {
2531 	static const struct intr_info cplsw_intr_info[] = {
2532 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
2533 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
2534 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
2535 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
2536 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
2537 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
2538 		{ 0 }
2539 	};
2540 
2541 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
2542 		t4_fatal_err(adapter);
2543 }
2544 
2545 /*
2546  * LE interrupt handler.
2547  */
2548 static void le_intr_handler(struct adapter *adap)
2549 {
2550 	static const struct intr_info le_intr_info[] = {
2551 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
2552 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
2553 		{ PARITYERR_F, "LE parity error", -1, 1 },
2554 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2555 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
2556 		{ 0 }
2557 	};
2558 
2559 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, le_intr_info))
2560 		t4_fatal_err(adap);
2561 }
2562 
2563 /*
2564  * MPS interrupt handler.
2565  */
2566 static void mps_intr_handler(struct adapter *adapter)
2567 {
2568 	static const struct intr_info mps_rx_intr_info[] = {
2569 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
2570 		{ 0 }
2571 	};
2572 	static const struct intr_info mps_tx_intr_info[] = {
2573 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
2574 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2575 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
2576 		  -1, 1 },
2577 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
2578 		  -1, 1 },
2579 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
2580 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
2581 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
2582 		{ 0 }
2583 	};
2584 	static const struct intr_info mps_trc_intr_info[] = {
2585 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
2586 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
2587 		  -1, 1 },
2588 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
2589 		{ 0 }
2590 	};
2591 	static const struct intr_info mps_stat_sram_intr_info[] = {
2592 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2593 		{ 0 }
2594 	};
2595 	static const struct intr_info mps_stat_tx_intr_info[] = {
2596 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2597 		{ 0 }
2598 	};
2599 	static const struct intr_info mps_stat_rx_intr_info[] = {
2600 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2601 		{ 0 }
2602 	};
2603 	static const struct intr_info mps_cls_intr_info[] = {
2604 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
2605 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
2606 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
2607 		{ 0 }
2608 	};
2609 
2610 	int fat;
2611 
2612 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
2613 				    mps_rx_intr_info) +
2614 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
2615 				    mps_tx_intr_info) +
2616 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
2617 				    mps_trc_intr_info) +
2618 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
2619 				    mps_stat_sram_intr_info) +
2620 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
2621 				    mps_stat_tx_intr_info) +
2622 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
2623 				    mps_stat_rx_intr_info) +
2624 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
2625 				    mps_cls_intr_info);
2626 
2627 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
2628 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
2629 	if (fat)
2630 		t4_fatal_err(adapter);
2631 }
2632 
2633 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
2634 		      ECC_UE_INT_CAUSE_F)
2635 
2636 /*
2637  * EDC/MC interrupt handler.
2638  */
2639 static void mem_intr_handler(struct adapter *adapter, int idx)
2640 {
2641 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
2642 
2643 	unsigned int addr, cnt_addr, v;
2644 
2645 	if (idx <= MEM_EDC1) {
2646 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
2647 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
2648 	} else if (idx == MEM_MC) {
2649 		if (is_t4(adapter->params.chip)) {
2650 			addr = MC_INT_CAUSE_A;
2651 			cnt_addr = MC_ECC_STATUS_A;
2652 		} else {
2653 			addr = MC_P_INT_CAUSE_A;
2654 			cnt_addr = MC_P_ECC_STATUS_A;
2655 		}
2656 	} else {
2657 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
2658 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
2659 	}
2660 
2661 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
2662 	if (v & PERR_INT_CAUSE_F)
2663 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
2664 			  name[idx]);
2665 	if (v & ECC_CE_INT_CAUSE_F) {
2666 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
2667 
2668 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
2669 		if (printk_ratelimit())
2670 			dev_warn(adapter->pdev_dev,
2671 				 "%u %s correctable ECC data error%s\n",
2672 				 cnt, name[idx], cnt > 1 ? "s" : "");
2673 	}
2674 	if (v & ECC_UE_INT_CAUSE_F)
2675 		dev_alert(adapter->pdev_dev,
2676 			  "%s uncorrectable ECC data error\n", name[idx]);
2677 
2678 	t4_write_reg(adapter, addr, v);
2679 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
2680 		t4_fatal_err(adapter);
2681 }
2682 
2683 /*
2684  * MA interrupt handler.
2685  */
2686 static void ma_intr_handler(struct adapter *adap)
2687 {
2688 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
2689 
2690 	if (status & MEM_PERR_INT_CAUSE_F) {
2691 		dev_alert(adap->pdev_dev,
2692 			  "MA parity error, parity status %#x\n",
2693 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
2694 		if (is_t5(adap->params.chip))
2695 			dev_alert(adap->pdev_dev,
2696 				  "MA parity error, parity status %#x\n",
2697 				  t4_read_reg(adap,
2698 					      MA_PARITY_ERROR_STATUS2_A));
2699 	}
2700 	if (status & MEM_WRAP_INT_CAUSE_F) {
2701 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
2702 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
2703 			  "client %u to address %#x\n",
2704 			  MEM_WRAP_CLIENT_NUM_G(v),
2705 			  MEM_WRAP_ADDRESS_G(v) << 4);
2706 	}
2707 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
2708 	t4_fatal_err(adap);
2709 }
2710 
2711 /*
2712  * SMB interrupt handler.
2713  */
2714 static void smb_intr_handler(struct adapter *adap)
2715 {
2716 	static const struct intr_info smb_intr_info[] = {
2717 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
2718 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
2719 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
2720 		{ 0 }
2721 	};
2722 
2723 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
2724 		t4_fatal_err(adap);
2725 }
2726 
2727 /*
2728  * NC-SI interrupt handler.
2729  */
2730 static void ncsi_intr_handler(struct adapter *adap)
2731 {
2732 	static const struct intr_info ncsi_intr_info[] = {
2733 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
2734 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
2735 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
2736 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
2737 		{ 0 }
2738 	};
2739 
2740 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
2741 		t4_fatal_err(adap);
2742 }
2743 
2744 /*
2745  * XGMAC interrupt handler.
2746  */
2747 static void xgmac_intr_handler(struct adapter *adap, int port)
2748 {
2749 	u32 v, int_cause_reg;
2750 
2751 	if (is_t4(adap->params.chip))
2752 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
2753 	else
2754 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
2755 
2756 	v = t4_read_reg(adap, int_cause_reg);
2757 
2758 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
2759 	if (!v)
2760 		return;
2761 
2762 	if (v & TXFIFO_PRTY_ERR_F)
2763 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
2764 			  port);
2765 	if (v & RXFIFO_PRTY_ERR_F)
2766 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
2767 			  port);
2768 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
2769 	t4_fatal_err(adap);
2770 }
2771 
2772 /*
2773  * PL interrupt handler.
2774  */
2775 static void pl_intr_handler(struct adapter *adap)
2776 {
2777 	static const struct intr_info pl_intr_info[] = {
2778 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
2779 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
2780 		{ 0 }
2781 	};
2782 
2783 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
2784 		t4_fatal_err(adap);
2785 }
2786 
2787 #define PF_INTR_MASK (PFSW_F)
2788 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
2789 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
2790 		CPL_SWITCH_F | SGE_F | ULP_TX_F)
2791 
2792 /**
2793  *	t4_slow_intr_handler - control path interrupt handler
2794  *	@adapter: the adapter
2795  *
2796  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
2797  *	The designation 'slow' is because it involves register reads, while
2798  *	data interrupts typically don't involve any MMIOs.
2799  */
2800 int t4_slow_intr_handler(struct adapter *adapter)
2801 {
2802 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
2803 
2804 	if (!(cause & GLBL_INTR_MASK))
2805 		return 0;
2806 	if (cause & CIM_F)
2807 		cim_intr_handler(adapter);
2808 	if (cause & MPS_F)
2809 		mps_intr_handler(adapter);
2810 	if (cause & NCSI_F)
2811 		ncsi_intr_handler(adapter);
2812 	if (cause & PL_F)
2813 		pl_intr_handler(adapter);
2814 	if (cause & SMB_F)
2815 		smb_intr_handler(adapter);
2816 	if (cause & XGMAC0_F)
2817 		xgmac_intr_handler(adapter, 0);
2818 	if (cause & XGMAC1_F)
2819 		xgmac_intr_handler(adapter, 1);
2820 	if (cause & XGMAC_KR0_F)
2821 		xgmac_intr_handler(adapter, 2);
2822 	if (cause & XGMAC_KR1_F)
2823 		xgmac_intr_handler(adapter, 3);
2824 	if (cause & PCIE_F)
2825 		pcie_intr_handler(adapter);
2826 	if (cause & MC_F)
2827 		mem_intr_handler(adapter, MEM_MC);
2828 	if (!is_t4(adapter->params.chip) && (cause & MC1_S))
2829 		mem_intr_handler(adapter, MEM_MC1);
2830 	if (cause & EDC0_F)
2831 		mem_intr_handler(adapter, MEM_EDC0);
2832 	if (cause & EDC1_F)
2833 		mem_intr_handler(adapter, MEM_EDC1);
2834 	if (cause & LE_F)
2835 		le_intr_handler(adapter);
2836 	if (cause & TP_F)
2837 		tp_intr_handler(adapter);
2838 	if (cause & MA_F)
2839 		ma_intr_handler(adapter);
2840 	if (cause & PM_TX_F)
2841 		pmtx_intr_handler(adapter);
2842 	if (cause & PM_RX_F)
2843 		pmrx_intr_handler(adapter);
2844 	if (cause & ULP_RX_F)
2845 		ulprx_intr_handler(adapter);
2846 	if (cause & CPL_SWITCH_F)
2847 		cplsw_intr_handler(adapter);
2848 	if (cause & SGE_F)
2849 		sge_intr_handler(adapter);
2850 	if (cause & ULP_TX_F)
2851 		ulptx_intr_handler(adapter);
2852 
2853 	/* Clear the interrupts just processed for which we are the master. */
2854 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
2855 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
2856 	return 1;
2857 }
2858 
2859 /**
2860  *	t4_intr_enable - enable interrupts
2861  *	@adapter: the adapter whose interrupts should be enabled
2862  *
2863  *	Enable PF-specific interrupts for the calling function and the top-level
2864  *	interrupt concentrator for global interrupts.  Interrupts are already
2865  *	enabled at each module,	here we just enable the roots of the interrupt
2866  *	hierarchies.
2867  *
2868  *	Note: this function should be called only when the driver manages
2869  *	non PF-specific interrupts from the various HW modules.  Only one PCI
2870  *	function at a time should be doing this.
2871  */
2872 void t4_intr_enable(struct adapter *adapter)
2873 {
2874 	u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
2875 
2876 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
2877 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
2878 		     ERR_DROPPED_DB_F | ERR_DATA_CPL_ON_HIGH_QID1_F |
2879 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2880 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2881 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2882 		     ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F |
2883 		     DBFIFO_HP_INT_F | DBFIFO_LP_INT_F |
2884 		     EGRESS_SIZE_ERR_F);
2885 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
2886 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
2887 }
2888 
2889 /**
2890  *	t4_intr_disable - disable interrupts
2891  *	@adapter: the adapter whose interrupts should be disabled
2892  *
2893  *	Disable interrupts.  We only disable the top-level interrupt
2894  *	concentrators.  The caller must be a PCI function managing global
2895  *	interrupts.
2896  */
2897 void t4_intr_disable(struct adapter *adapter)
2898 {
2899 	u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
2900 
2901 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
2902 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
2903 }
2904 
2905 /**
2906  *	hash_mac_addr - return the hash value of a MAC address
2907  *	@addr: the 48-bit Ethernet MAC address
2908  *
2909  *	Hashes a MAC address according to the hash function used by HW inexact
2910  *	(hash) address matching.
2911  */
2912 static int hash_mac_addr(const u8 *addr)
2913 {
2914 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
2915 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
2916 	a ^= b;
2917 	a ^= (a >> 12);
2918 	a ^= (a >> 6);
2919 	return a & 0x3f;
2920 }
2921 
2922 /**
2923  *	t4_config_rss_range - configure a portion of the RSS mapping table
2924  *	@adapter: the adapter
2925  *	@mbox: mbox to use for the FW command
2926  *	@viid: virtual interface whose RSS subtable is to be written
2927  *	@start: start entry in the table to write
2928  *	@n: how many table entries to write
2929  *	@rspq: values for the response queue lookup table
2930  *	@nrspq: number of values in @rspq
2931  *
2932  *	Programs the selected part of the VI's RSS mapping table with the
2933  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
2934  *	until the full table range is populated.
2935  *
2936  *	The caller must ensure the values in @rspq are in the range allowed for
2937  *	@viid.
2938  */
2939 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2940 			int start, int n, const u16 *rspq, unsigned int nrspq)
2941 {
2942 	int ret;
2943 	const u16 *rsp = rspq;
2944 	const u16 *rsp_end = rspq + nrspq;
2945 	struct fw_rss_ind_tbl_cmd cmd;
2946 
2947 	memset(&cmd, 0, sizeof(cmd));
2948 	cmd.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
2949 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2950 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
2951 	cmd.retval_len16 = htonl(FW_LEN16(cmd));
2952 
2953 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
2954 	while (n > 0) {
2955 		int nq = min(n, 32);
2956 		__be32 *qp = &cmd.iq0_to_iq2;
2957 
2958 		cmd.niqid = htons(nq);
2959 		cmd.startidx = htons(start);
2960 
2961 		start += nq;
2962 		n -= nq;
2963 
2964 		while (nq > 0) {
2965 			unsigned int v;
2966 
2967 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
2968 			if (++rsp >= rsp_end)
2969 				rsp = rspq;
2970 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
2971 			if (++rsp >= rsp_end)
2972 				rsp = rspq;
2973 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
2974 			if (++rsp >= rsp_end)
2975 				rsp = rspq;
2976 
2977 			*qp++ = htonl(v);
2978 			nq -= 3;
2979 		}
2980 
2981 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
2982 		if (ret)
2983 			return ret;
2984 	}
2985 	return 0;
2986 }
2987 
2988 /**
2989  *	t4_config_glbl_rss - configure the global RSS mode
2990  *	@adapter: the adapter
2991  *	@mbox: mbox to use for the FW command
2992  *	@mode: global RSS mode
2993  *	@flags: mode-specific flags
2994  *
2995  *	Sets the global RSS mode.
2996  */
2997 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
2998 		       unsigned int flags)
2999 {
3000 	struct fw_rss_glb_config_cmd c;
3001 
3002 	memset(&c, 0, sizeof(c));
3003 	c.op_to_write = htonl(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
3004 			      FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3005 	c.retval_len16 = htonl(FW_LEN16(c));
3006 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
3007 		c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3008 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
3009 		c.u.basicvirtual.mode_pkd =
3010 			htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3011 		c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
3012 	} else
3013 		return -EINVAL;
3014 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3015 }
3016 
3017 /* Read an RSS table row */
3018 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
3019 {
3020 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
3021 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
3022 				   5, 0, val);
3023 }
3024 
3025 /**
3026  *	t4_read_rss - read the contents of the RSS mapping table
3027  *	@adapter: the adapter
3028  *	@map: holds the contents of the RSS mapping table
3029  *
3030  *	Reads the contents of the RSS hash->queue mapping table.
3031  */
3032 int t4_read_rss(struct adapter *adapter, u16 *map)
3033 {
3034 	u32 val;
3035 	int i, ret;
3036 
3037 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
3038 		ret = rd_rss_row(adapter, i, &val);
3039 		if (ret)
3040 			return ret;
3041 		*map++ = LKPTBLQUEUE0_G(val);
3042 		*map++ = LKPTBLQUEUE1_G(val);
3043 	}
3044 	return 0;
3045 }
3046 
3047 /**
3048  *	t4_read_rss_key - read the global RSS key
3049  *	@adap: the adapter
3050  *	@key: 10-entry array holding the 320-bit RSS key
3051  *
3052  *	Reads the global 320-bit RSS key.
3053  */
3054 void t4_read_rss_key(struct adapter *adap, u32 *key)
3055 {
3056 	t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3057 			 TP_RSS_SECRET_KEY0_A);
3058 }
3059 
3060 /**
3061  *	t4_write_rss_key - program one of the RSS keys
3062  *	@adap: the adapter
3063  *	@key: 10-entry array holding the 320-bit RSS key
3064  *	@idx: which RSS key to write
3065  *
3066  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
3067  *	0..15 the corresponding entry in the RSS key table is written,
3068  *	otherwise the global RSS key is written.
3069  */
3070 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
3071 {
3072 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3073 			  TP_RSS_SECRET_KEY0_A);
3074 	if (idx >= 0 && idx < 16)
3075 		t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3076 			     KEYWRADDR_V(idx) | KEYWREN_F);
3077 }
3078 
3079 /**
3080  *	t4_read_rss_pf_config - read PF RSS Configuration Table
3081  *	@adapter: the adapter
3082  *	@index: the entry in the PF RSS table to read
3083  *	@valp: where to store the returned value
3084  *
3085  *	Reads the PF RSS Configuration Table at the specified index and returns
3086  *	the value found there.
3087  */
3088 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
3089 			   u32 *valp)
3090 {
3091 	t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3092 			 valp, 1, TP_RSS_PF0_CONFIG_A + index);
3093 }
3094 
3095 /**
3096  *	t4_read_rss_vf_config - read VF RSS Configuration Table
3097  *	@adapter: the adapter
3098  *	@index: the entry in the VF RSS table to read
3099  *	@vfl: where to store the returned VFL
3100  *	@vfh: where to store the returned VFH
3101  *
3102  *	Reads the VF RSS Configuration Table at the specified index and returns
3103  *	the (VFL, VFH) values found there.
3104  */
3105 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3106 			   u32 *vfl, u32 *vfh)
3107 {
3108 	u32 vrt, mask, data;
3109 
3110 	mask = VFWRADDR_V(VFWRADDR_M);
3111 	data = VFWRADDR_V(index);
3112 
3113 	/* Request that the index'th VF Table values be read into VFL/VFH.
3114 	 */
3115 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
3116 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
3117 	vrt |= data | VFRDEN_F;
3118 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
3119 
3120 	/* Grab the VFL/VFH values ...
3121 	 */
3122 	t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3123 			 vfl, 1, TP_RSS_VFL_CONFIG_A);
3124 	t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3125 			 vfh, 1, TP_RSS_VFH_CONFIG_A);
3126 }
3127 
3128 /**
3129  *	t4_read_rss_pf_map - read PF RSS Map
3130  *	@adapter: the adapter
3131  *
3132  *	Reads the PF RSS Map register and returns its value.
3133  */
3134 u32 t4_read_rss_pf_map(struct adapter *adapter)
3135 {
3136 	u32 pfmap;
3137 
3138 	t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3139 			 &pfmap, 1, TP_RSS_PF_MAP_A);
3140 	return pfmap;
3141 }
3142 
3143 /**
3144  *	t4_read_rss_pf_mask - read PF RSS Mask
3145  *	@adapter: the adapter
3146  *
3147  *	Reads the PF RSS Mask register and returns its value.
3148  */
3149 u32 t4_read_rss_pf_mask(struct adapter *adapter)
3150 {
3151 	u32 pfmask;
3152 
3153 	t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3154 			 &pfmask, 1, TP_RSS_PF_MSK_A);
3155 	return pfmask;
3156 }
3157 
3158 /**
3159  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
3160  *	@adap: the adapter
3161  *	@v4: holds the TCP/IP counter values
3162  *	@v6: holds the TCP/IPv6 counter values
3163  *
3164  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3165  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3166  */
3167 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3168 			 struct tp_tcp_stats *v6)
3169 {
3170 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
3171 
3172 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
3173 #define STAT(x)     val[STAT_IDX(x)]
3174 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3175 
3176 	if (v4) {
3177 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3178 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
3179 		v4->tcpOutRsts = STAT(OUT_RST);
3180 		v4->tcpInSegs  = STAT64(IN_SEG);
3181 		v4->tcpOutSegs = STAT64(OUT_SEG);
3182 		v4->tcpRetransSegs = STAT64(RXT_SEG);
3183 	}
3184 	if (v6) {
3185 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3186 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
3187 		v6->tcpOutRsts = STAT(OUT_RST);
3188 		v6->tcpInSegs  = STAT64(IN_SEG);
3189 		v6->tcpOutSegs = STAT64(OUT_SEG);
3190 		v6->tcpRetransSegs = STAT64(RXT_SEG);
3191 	}
3192 #undef STAT64
3193 #undef STAT
3194 #undef STAT_IDX
3195 }
3196 
3197 /**
3198  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
3199  *	@adap: the adapter
3200  *	@mtus: where to store the MTU values
3201  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
3202  *
3203  *	Reads the HW path MTU table.
3204  */
3205 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
3206 {
3207 	u32 v;
3208 	int i;
3209 
3210 	for (i = 0; i < NMTUS; ++i) {
3211 		t4_write_reg(adap, TP_MTU_TABLE_A,
3212 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
3213 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
3214 		mtus[i] = MTUVALUE_G(v);
3215 		if (mtu_log)
3216 			mtu_log[i] = MTUWIDTH_G(v);
3217 	}
3218 }
3219 
3220 /**
3221  *	t4_read_cong_tbl - reads the congestion control table
3222  *	@adap: the adapter
3223  *	@incr: where to store the alpha values
3224  *
3225  *	Reads the additive increments programmed into the HW congestion
3226  *	control table.
3227  */
3228 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
3229 {
3230 	unsigned int mtu, w;
3231 
3232 	for (mtu = 0; mtu < NMTUS; ++mtu)
3233 		for (w = 0; w < NCCTRL_WIN; ++w) {
3234 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
3235 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
3236 			incr[mtu][w] = (u16)t4_read_reg(adap,
3237 						TP_CCTRL_TABLE_A) & 0x1fff;
3238 		}
3239 }
3240 
3241 /**
3242  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
3243  *	@adap: the adapter
3244  *	@addr: the indirect TP register address
3245  *	@mask: specifies the field within the register to modify
3246  *	@val: new value for the field
3247  *
3248  *	Sets a field of an indirect TP register to the given value.
3249  */
3250 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
3251 			    unsigned int mask, unsigned int val)
3252 {
3253 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
3254 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
3255 	t4_write_reg(adap, TP_PIO_DATA_A, val);
3256 }
3257 
3258 /**
3259  *	init_cong_ctrl - initialize congestion control parameters
3260  *	@a: the alpha values for congestion control
3261  *	@b: the beta values for congestion control
3262  *
3263  *	Initialize the congestion control parameters.
3264  */
3265 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
3266 {
3267 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
3268 	a[9] = 2;
3269 	a[10] = 3;
3270 	a[11] = 4;
3271 	a[12] = 5;
3272 	a[13] = 6;
3273 	a[14] = 7;
3274 	a[15] = 8;
3275 	a[16] = 9;
3276 	a[17] = 10;
3277 	a[18] = 14;
3278 	a[19] = 17;
3279 	a[20] = 21;
3280 	a[21] = 25;
3281 	a[22] = 30;
3282 	a[23] = 35;
3283 	a[24] = 45;
3284 	a[25] = 60;
3285 	a[26] = 80;
3286 	a[27] = 100;
3287 	a[28] = 200;
3288 	a[29] = 300;
3289 	a[30] = 400;
3290 	a[31] = 500;
3291 
3292 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
3293 	b[9] = b[10] = 1;
3294 	b[11] = b[12] = 2;
3295 	b[13] = b[14] = b[15] = b[16] = 3;
3296 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
3297 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
3298 	b[28] = b[29] = 6;
3299 	b[30] = b[31] = 7;
3300 }
3301 
3302 /* The minimum additive increment value for the congestion control table */
3303 #define CC_MIN_INCR 2U
3304 
3305 /**
3306  *	t4_load_mtus - write the MTU and congestion control HW tables
3307  *	@adap: the adapter
3308  *	@mtus: the values for the MTU table
3309  *	@alpha: the values for the congestion control alpha parameter
3310  *	@beta: the values for the congestion control beta parameter
3311  *
3312  *	Write the HW MTU table with the supplied MTUs and the high-speed
3313  *	congestion control table with the supplied alpha, beta, and MTUs.
3314  *	We write the two tables together because the additive increments
3315  *	depend on the MTUs.
3316  */
3317 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
3318 		  const unsigned short *alpha, const unsigned short *beta)
3319 {
3320 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
3321 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
3322 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
3323 		28672, 40960, 57344, 81920, 114688, 163840, 229376
3324 	};
3325 
3326 	unsigned int i, w;
3327 
3328 	for (i = 0; i < NMTUS; ++i) {
3329 		unsigned int mtu = mtus[i];
3330 		unsigned int log2 = fls(mtu);
3331 
3332 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
3333 			log2--;
3334 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
3335 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
3336 
3337 		for (w = 0; w < NCCTRL_WIN; ++w) {
3338 			unsigned int inc;
3339 
3340 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
3341 				  CC_MIN_INCR);
3342 
3343 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
3344 				     (w << 16) | (beta[w] << 13) | inc);
3345 		}
3346 	}
3347 }
3348 
3349 /**
3350  *	t4_pmtx_get_stats - returns the HW stats from PMTX
3351  *	@adap: the adapter
3352  *	@cnt: where to store the count statistics
3353  *	@cycles: where to store the cycle statistics
3354  *
3355  *	Returns performance statistics from PMTX.
3356  */
3357 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3358 {
3359 	int i;
3360 	u32 data[2];
3361 
3362 	for (i = 0; i < PM_NSTATS; i++) {
3363 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
3364 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
3365 		if (is_t4(adap->params.chip)) {
3366 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
3367 		} else {
3368 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
3369 					 PM_TX_DBG_DATA_A, data, 2,
3370 					 PM_TX_DBG_STAT_MSB_A);
3371 			cycles[i] = (((u64)data[0] << 32) | data[1]);
3372 		}
3373 	}
3374 }
3375 
3376 /**
3377  *	t4_pmrx_get_stats - returns the HW stats from PMRX
3378  *	@adap: the adapter
3379  *	@cnt: where to store the count statistics
3380  *	@cycles: where to store the cycle statistics
3381  *
3382  *	Returns performance statistics from PMRX.
3383  */
3384 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3385 {
3386 	int i;
3387 	u32 data[2];
3388 
3389 	for (i = 0; i < PM_NSTATS; i++) {
3390 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
3391 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
3392 		if (is_t4(adap->params.chip)) {
3393 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
3394 		} else {
3395 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
3396 					 PM_RX_DBG_DATA_A, data, 2,
3397 					 PM_RX_DBG_STAT_MSB_A);
3398 			cycles[i] = (((u64)data[0] << 32) | data[1]);
3399 		}
3400 	}
3401 }
3402 
3403 /**
3404  *	get_mps_bg_map - return the buffer groups associated with a port
3405  *	@adap: the adapter
3406  *	@idx: the port index
3407  *
3408  *	Returns a bitmap indicating which MPS buffer groups are associated
3409  *	with the given port.  Bit i is set if buffer group i is used by the
3410  *	port.
3411  */
3412 static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
3413 {
3414 	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
3415 
3416 	if (n == 0)
3417 		return idx == 0 ? 0xf : 0;
3418 	if (n == 1)
3419 		return idx < 2 ? (3 << (2 * idx)) : 0;
3420 	return 1 << idx;
3421 }
3422 
3423 /**
3424  *      t4_get_port_type_description - return Port Type string description
3425  *      @port_type: firmware Port Type enumeration
3426  */
3427 const char *t4_get_port_type_description(enum fw_port_type port_type)
3428 {
3429 	static const char *const port_type_description[] = {
3430 		"R XFI",
3431 		"R XAUI",
3432 		"T SGMII",
3433 		"T XFI",
3434 		"T XAUI",
3435 		"KX4",
3436 		"CX4",
3437 		"KX",
3438 		"KR",
3439 		"R SFP+",
3440 		"KR/KX",
3441 		"KR/KX/KX4",
3442 		"R QSFP_10G",
3443 		"R QSA",
3444 		"R QSFP",
3445 		"R BP40_BA",
3446 	};
3447 
3448 	if (port_type < ARRAY_SIZE(port_type_description))
3449 		return port_type_description[port_type];
3450 	return "UNKNOWN";
3451 }
3452 
3453 /**
3454  *	t4_get_port_stats - collect port statistics
3455  *	@adap: the adapter
3456  *	@idx: the port index
3457  *	@p: the stats structure to fill
3458  *
3459  *	Collect statistics related to the given port from HW.
3460  */
3461 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3462 {
3463 	u32 bgmap = get_mps_bg_map(adap, idx);
3464 
3465 #define GET_STAT(name) \
3466 	t4_read_reg64(adap, \
3467 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
3468 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
3469 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
3470 
3471 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3472 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3473 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3474 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3475 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3476 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3477 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3478 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3479 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3480 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3481 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3482 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3483 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3484 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
3485 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3486 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3487 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3488 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3489 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3490 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3491 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3492 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3493 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3494 
3495 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3496 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3497 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3498 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3499 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3500 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3501 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3502 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3503 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3504 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3505 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3506 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3507 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3508 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3509 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3510 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3511 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3512 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3513 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3514 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3515 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3516 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3517 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3518 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3519 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3520 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3521 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3522 
3523 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3524 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3525 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3526 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3527 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3528 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3529 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3530 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3531 
3532 #undef GET_STAT
3533 #undef GET_STAT_COM
3534 }
3535 
3536 /**
3537  *	t4_wol_magic_enable - enable/disable magic packet WoL
3538  *	@adap: the adapter
3539  *	@port: the physical port index
3540  *	@addr: MAC address expected in magic packets, %NULL to disable
3541  *
3542  *	Enables/disables magic packet wake-on-LAN for the selected port.
3543  */
3544 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
3545 			 const u8 *addr)
3546 {
3547 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
3548 
3549 	if (is_t4(adap->params.chip)) {
3550 		mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
3551 		mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
3552 		port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A);
3553 	} else {
3554 		mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
3555 		mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
3556 		port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A);
3557 	}
3558 
3559 	if (addr) {
3560 		t4_write_reg(adap, mag_id_reg_l,
3561 			     (addr[2] << 24) | (addr[3] << 16) |
3562 			     (addr[4] << 8) | addr[5]);
3563 		t4_write_reg(adap, mag_id_reg_h,
3564 			     (addr[0] << 8) | addr[1]);
3565 	}
3566 	t4_set_reg_field(adap, port_cfg_reg, MAGICEN_F,
3567 			 addr ? MAGICEN_F : 0);
3568 }
3569 
3570 /**
3571  *	t4_wol_pat_enable - enable/disable pattern-based WoL
3572  *	@adap: the adapter
3573  *	@port: the physical port index
3574  *	@map: bitmap of which HW pattern filters to set
3575  *	@mask0: byte mask for bytes 0-63 of a packet
3576  *	@mask1: byte mask for bytes 64-127 of a packet
3577  *	@crc: Ethernet CRC for selected bytes
3578  *	@enable: enable/disable switch
3579  *
3580  *	Sets the pattern filters indicated in @map to mask out the bytes
3581  *	specified in @mask0/@mask1 in received packets and compare the CRC of
3582  *	the resulting packet against @crc.  If @enable is %true pattern-based
3583  *	WoL is enabled, otherwise disabled.
3584  */
3585 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
3586 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
3587 {
3588 	int i;
3589 	u32 port_cfg_reg;
3590 
3591 	if (is_t4(adap->params.chip))
3592 		port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A);
3593 	else
3594 		port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A);
3595 
3596 	if (!enable) {
3597 		t4_set_reg_field(adap, port_cfg_reg, PATEN_F, 0);
3598 		return 0;
3599 	}
3600 	if (map > 0xff)
3601 		return -EINVAL;
3602 
3603 #define EPIO_REG(name) \
3604 	(is_t4(adap->params.chip) ? \
3605 	 PORT_REG(port, XGMAC_PORT_EPIO_##name##_A) : \
3606 	 T5_PORT_REG(port, MAC_PORT_EPIO_##name##_A))
3607 
3608 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
3609 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
3610 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
3611 
3612 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
3613 		if (!(map & 1))
3614 			continue;
3615 
3616 		/* write byte masks */
3617 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
3618 		t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i) | EPIOWR_F);
3619 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
3620 		if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F)
3621 			return -ETIMEDOUT;
3622 
3623 		/* write CRC */
3624 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
3625 		t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i + 32) | EPIOWR_F);
3626 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
3627 		if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F)
3628 			return -ETIMEDOUT;
3629 	}
3630 #undef EPIO_REG
3631 
3632 	t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2_A), 0, PATEN_F);
3633 	return 0;
3634 }
3635 
3636 /*     t4_mk_filtdelwr - create a delete filter WR
3637  *     @ftid: the filter ID
3638  *     @wr: the filter work request to populate
3639  *     @qid: ingress queue to receive the delete notification
3640  *
3641  *     Creates a filter work request to delete the supplied filter.  If @qid is
3642  *     negative the delete notification is suppressed.
3643  */
3644 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
3645 {
3646 	memset(wr, 0, sizeof(*wr));
3647 	wr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
3648 	wr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*wr) / 16));
3649 	wr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) |
3650 			FW_FILTER_WR_NOREPLY_V(qid < 0));
3651 	wr->del_filter_to_l2tix = htonl(FW_FILTER_WR_DEL_FILTER_F);
3652 	if (qid >= 0)
3653 		wr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_RPL_IQ_V(qid));
3654 }
3655 
3656 #define INIT_CMD(var, cmd, rd_wr) do { \
3657 	(var).op_to_write = htonl(FW_CMD_OP_V(FW_##cmd##_CMD) | \
3658 				  FW_CMD_REQUEST_F | FW_CMD_##rd_wr##_F); \
3659 	(var).retval_len16 = htonl(FW_LEN16(var)); \
3660 } while (0)
3661 
3662 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
3663 			  u32 addr, u32 val)
3664 {
3665 	struct fw_ldst_cmd c;
3666 
3667 	memset(&c, 0, sizeof(c));
3668 	c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
3669 			    FW_CMD_WRITE_F |
3670 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE));
3671 	c.cycles_to_len16 = htonl(FW_LEN16(c));
3672 	c.u.addrval.addr = htonl(addr);
3673 	c.u.addrval.val = htonl(val);
3674 
3675 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3676 }
3677 
3678 /**
3679  *	t4_mdio_rd - read a PHY register through MDIO
3680  *	@adap: the adapter
3681  *	@mbox: mailbox to use for the FW command
3682  *	@phy_addr: the PHY address
3683  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
3684  *	@reg: the register to read
3685  *	@valp: where to store the value
3686  *
3687  *	Issues a FW command through the given mailbox to read a PHY register.
3688  */
3689 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
3690 	       unsigned int mmd, unsigned int reg, u16 *valp)
3691 {
3692 	int ret;
3693 	struct fw_ldst_cmd c;
3694 
3695 	memset(&c, 0, sizeof(c));
3696 	c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
3697 		FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
3698 	c.cycles_to_len16 = htonl(FW_LEN16(c));
3699 	c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
3700 				   FW_LDST_CMD_MMD_V(mmd));
3701 	c.u.mdio.raddr = htons(reg);
3702 
3703 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3704 	if (ret == 0)
3705 		*valp = ntohs(c.u.mdio.rval);
3706 	return ret;
3707 }
3708 
3709 /**
3710  *	t4_mdio_wr - write a PHY register through MDIO
3711  *	@adap: the adapter
3712  *	@mbox: mailbox to use for the FW command
3713  *	@phy_addr: the PHY address
3714  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
3715  *	@reg: the register to write
3716  *	@valp: value to write
3717  *
3718  *	Issues a FW command through the given mailbox to write a PHY register.
3719  */
3720 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
3721 	       unsigned int mmd, unsigned int reg, u16 val)
3722 {
3723 	struct fw_ldst_cmd c;
3724 
3725 	memset(&c, 0, sizeof(c));
3726 	c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
3727 		FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
3728 	c.cycles_to_len16 = htonl(FW_LEN16(c));
3729 	c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
3730 				   FW_LDST_CMD_MMD_V(mmd));
3731 	c.u.mdio.raddr = htons(reg);
3732 	c.u.mdio.rval = htons(val);
3733 
3734 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3735 }
3736 
3737 /**
3738  *	t4_sge_decode_idma_state - decode the idma state
3739  *	@adap: the adapter
3740  *	@state: the state idma is stuck in
3741  */
3742 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
3743 {
3744 	static const char * const t4_decode[] = {
3745 		"IDMA_IDLE",
3746 		"IDMA_PUSH_MORE_CPL_FIFO",
3747 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
3748 		"Not used",
3749 		"IDMA_PHYSADDR_SEND_PCIEHDR",
3750 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
3751 		"IDMA_PHYSADDR_SEND_PAYLOAD",
3752 		"IDMA_SEND_FIFO_TO_IMSG",
3753 		"IDMA_FL_REQ_DATA_FL_PREP",
3754 		"IDMA_FL_REQ_DATA_FL",
3755 		"IDMA_FL_DROP",
3756 		"IDMA_FL_H_REQ_HEADER_FL",
3757 		"IDMA_FL_H_SEND_PCIEHDR",
3758 		"IDMA_FL_H_PUSH_CPL_FIFO",
3759 		"IDMA_FL_H_SEND_CPL",
3760 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
3761 		"IDMA_FL_H_SEND_IP_HDR",
3762 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
3763 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
3764 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
3765 		"IDMA_FL_D_SEND_PCIEHDR",
3766 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
3767 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
3768 		"IDMA_FL_SEND_PCIEHDR",
3769 		"IDMA_FL_PUSH_CPL_FIFO",
3770 		"IDMA_FL_SEND_CPL",
3771 		"IDMA_FL_SEND_PAYLOAD_FIRST",
3772 		"IDMA_FL_SEND_PAYLOAD",
3773 		"IDMA_FL_REQ_NEXT_DATA_FL",
3774 		"IDMA_FL_SEND_NEXT_PCIEHDR",
3775 		"IDMA_FL_SEND_PADDING",
3776 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
3777 		"IDMA_FL_SEND_FIFO_TO_IMSG",
3778 		"IDMA_FL_REQ_DATAFL_DONE",
3779 		"IDMA_FL_REQ_HEADERFL_DONE",
3780 	};
3781 	static const char * const t5_decode[] = {
3782 		"IDMA_IDLE",
3783 		"IDMA_ALMOST_IDLE",
3784 		"IDMA_PUSH_MORE_CPL_FIFO",
3785 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
3786 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
3787 		"IDMA_PHYSADDR_SEND_PCIEHDR",
3788 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
3789 		"IDMA_PHYSADDR_SEND_PAYLOAD",
3790 		"IDMA_SEND_FIFO_TO_IMSG",
3791 		"IDMA_FL_REQ_DATA_FL",
3792 		"IDMA_FL_DROP",
3793 		"IDMA_FL_DROP_SEND_INC",
3794 		"IDMA_FL_H_REQ_HEADER_FL",
3795 		"IDMA_FL_H_SEND_PCIEHDR",
3796 		"IDMA_FL_H_PUSH_CPL_FIFO",
3797 		"IDMA_FL_H_SEND_CPL",
3798 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
3799 		"IDMA_FL_H_SEND_IP_HDR",
3800 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
3801 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
3802 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
3803 		"IDMA_FL_D_SEND_PCIEHDR",
3804 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
3805 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
3806 		"IDMA_FL_SEND_PCIEHDR",
3807 		"IDMA_FL_PUSH_CPL_FIFO",
3808 		"IDMA_FL_SEND_CPL",
3809 		"IDMA_FL_SEND_PAYLOAD_FIRST",
3810 		"IDMA_FL_SEND_PAYLOAD",
3811 		"IDMA_FL_REQ_NEXT_DATA_FL",
3812 		"IDMA_FL_SEND_NEXT_PCIEHDR",
3813 		"IDMA_FL_SEND_PADDING",
3814 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
3815 	};
3816 	static const u32 sge_regs[] = {
3817 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
3818 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
3819 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
3820 	};
3821 	const char **sge_idma_decode;
3822 	int sge_idma_decode_nstates;
3823 	int i;
3824 
3825 	if (is_t4(adapter->params.chip)) {
3826 		sge_idma_decode = (const char **)t4_decode;
3827 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
3828 	} else {
3829 		sge_idma_decode = (const char **)t5_decode;
3830 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
3831 	}
3832 
3833 	if (state < sge_idma_decode_nstates)
3834 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
3835 	else
3836 		CH_WARN(adapter, "idma state %d unknown\n", state);
3837 
3838 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
3839 		CH_WARN(adapter, "SGE register %#x value %#x\n",
3840 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
3841 }
3842 
3843 /**
3844  *      t4_fw_hello - establish communication with FW
3845  *      @adap: the adapter
3846  *      @mbox: mailbox to use for the FW command
3847  *      @evt_mbox: mailbox to receive async FW events
3848  *      @master: specifies the caller's willingness to be the device master
3849  *	@state: returns the current device state (if non-NULL)
3850  *
3851  *	Issues a command to establish communication with FW.  Returns either
3852  *	an error (negative integer) or the mailbox of the Master PF.
3853  */
3854 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
3855 		enum dev_master master, enum dev_state *state)
3856 {
3857 	int ret;
3858 	struct fw_hello_cmd c;
3859 	u32 v;
3860 	unsigned int master_mbox;
3861 	int retries = FW_CMD_HELLO_RETRIES;
3862 
3863 retry:
3864 	memset(&c, 0, sizeof(c));
3865 	INIT_CMD(c, HELLO, WRITE);
3866 	c.err_to_clearinit = htonl(
3867 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
3868 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
3869 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox :
3870 				      FW_HELLO_CMD_MBMASTER_M) |
3871 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
3872 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
3873 		FW_HELLO_CMD_CLEARINIT_F);
3874 
3875 	/*
3876 	 * Issue the HELLO command to the firmware.  If it's not successful
3877 	 * but indicates that we got a "busy" or "timeout" condition, retry
3878 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
3879 	 * retry limit, check to see if the firmware left us any error
3880 	 * information and report that if so.
3881 	 */
3882 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3883 	if (ret < 0) {
3884 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
3885 			goto retry;
3886 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
3887 			t4_report_fw_error(adap);
3888 		return ret;
3889 	}
3890 
3891 	v = ntohl(c.err_to_clearinit);
3892 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
3893 	if (state) {
3894 		if (v & FW_HELLO_CMD_ERR_F)
3895 			*state = DEV_STATE_ERR;
3896 		else if (v & FW_HELLO_CMD_INIT_F)
3897 			*state = DEV_STATE_INIT;
3898 		else
3899 			*state = DEV_STATE_UNINIT;
3900 	}
3901 
3902 	/*
3903 	 * If we're not the Master PF then we need to wait around for the
3904 	 * Master PF Driver to finish setting up the adapter.
3905 	 *
3906 	 * Note that we also do this wait if we're a non-Master-capable PF and
3907 	 * there is no current Master PF; a Master PF may show up momentarily
3908 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
3909 	 * OS loads lots of different drivers rapidly at the same time).  In
3910 	 * this case, the Master PF returned by the firmware will be
3911 	 * PCIE_FW_MASTER_M so the test below will work ...
3912 	 */
3913 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
3914 	    master_mbox != mbox) {
3915 		int waiting = FW_CMD_HELLO_TIMEOUT;
3916 
3917 		/*
3918 		 * Wait for the firmware to either indicate an error or
3919 		 * initialized state.  If we see either of these we bail out
3920 		 * and report the issue to the caller.  If we exhaust the
3921 		 * "hello timeout" and we haven't exhausted our retries, try
3922 		 * again.  Otherwise bail with a timeout error.
3923 		 */
3924 		for (;;) {
3925 			u32 pcie_fw;
3926 
3927 			msleep(50);
3928 			waiting -= 50;
3929 
3930 			/*
3931 			 * If neither Error nor Initialialized are indicated
3932 			 * by the firmware keep waiting till we exaust our
3933 			 * timeout ... and then retry if we haven't exhausted
3934 			 * our retries ...
3935 			 */
3936 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
3937 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
3938 				if (waiting <= 0) {
3939 					if (retries-- > 0)
3940 						goto retry;
3941 
3942 					return -ETIMEDOUT;
3943 				}
3944 				continue;
3945 			}
3946 
3947 			/*
3948 			 * We either have an Error or Initialized condition
3949 			 * report errors preferentially.
3950 			 */
3951 			if (state) {
3952 				if (pcie_fw & PCIE_FW_ERR_F)
3953 					*state = DEV_STATE_ERR;
3954 				else if (pcie_fw & PCIE_FW_INIT_F)
3955 					*state = DEV_STATE_INIT;
3956 			}
3957 
3958 			/*
3959 			 * If we arrived before a Master PF was selected and
3960 			 * there's not a valid Master PF, grab its identity
3961 			 * for our caller.
3962 			 */
3963 			if (master_mbox == PCIE_FW_MASTER_M &&
3964 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
3965 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
3966 			break;
3967 		}
3968 	}
3969 
3970 	return master_mbox;
3971 }
3972 
3973 /**
3974  *	t4_fw_bye - end communication with FW
3975  *	@adap: the adapter
3976  *	@mbox: mailbox to use for the FW command
3977  *
3978  *	Issues a command to terminate communication with FW.
3979  */
3980 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
3981 {
3982 	struct fw_bye_cmd c;
3983 
3984 	memset(&c, 0, sizeof(c));
3985 	INIT_CMD(c, BYE, WRITE);
3986 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3987 }
3988 
3989 /**
3990  *	t4_init_cmd - ask FW to initialize the device
3991  *	@adap: the adapter
3992  *	@mbox: mailbox to use for the FW command
3993  *
3994  *	Issues a command to FW to partially initialize the device.  This
3995  *	performs initialization that generally doesn't depend on user input.
3996  */
3997 int t4_early_init(struct adapter *adap, unsigned int mbox)
3998 {
3999 	struct fw_initialize_cmd c;
4000 
4001 	memset(&c, 0, sizeof(c));
4002 	INIT_CMD(c, INITIALIZE, WRITE);
4003 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4004 }
4005 
4006 /**
4007  *	t4_fw_reset - issue a reset to FW
4008  *	@adap: the adapter
4009  *	@mbox: mailbox to use for the FW command
4010  *	@reset: specifies the type of reset to perform
4011  *
4012  *	Issues a reset command of the specified type to FW.
4013  */
4014 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4015 {
4016 	struct fw_reset_cmd c;
4017 
4018 	memset(&c, 0, sizeof(c));
4019 	INIT_CMD(c, RESET, WRITE);
4020 	c.val = htonl(reset);
4021 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4022 }
4023 
4024 /**
4025  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4026  *	@adap: the adapter
4027  *	@mbox: mailbox to use for the FW RESET command (if desired)
4028  *	@force: force uP into RESET even if FW RESET command fails
4029  *
4030  *	Issues a RESET command to firmware (if desired) with a HALT indication
4031  *	and then puts the microprocessor into RESET state.  The RESET command
4032  *	will only be issued if a legitimate mailbox is provided (mbox <=
4033  *	PCIE_FW_MASTER_M).
4034  *
4035  *	This is generally used in order for the host to safely manipulate the
4036  *	adapter without fear of conflicting with whatever the firmware might
4037  *	be doing.  The only way out of this state is to RESTART the firmware
4038  *	...
4039  */
4040 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
4041 {
4042 	int ret = 0;
4043 
4044 	/*
4045 	 * If a legitimate mailbox is provided, issue a RESET command
4046 	 * with a HALT indication.
4047 	 */
4048 	if (mbox <= PCIE_FW_MASTER_M) {
4049 		struct fw_reset_cmd c;
4050 
4051 		memset(&c, 0, sizeof(c));
4052 		INIT_CMD(c, RESET, WRITE);
4053 		c.val = htonl(PIORST_F | PIORSTMODE_F);
4054 		c.halt_pkd = htonl(FW_RESET_CMD_HALT_F);
4055 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4056 	}
4057 
4058 	/*
4059 	 * Normally we won't complete the operation if the firmware RESET
4060 	 * command fails but if our caller insists we'll go ahead and put the
4061 	 * uP into RESET.  This can be useful if the firmware is hung or even
4062 	 * missing ...  We'll have to take the risk of putting the uP into
4063 	 * RESET without the cooperation of firmware in that case.
4064 	 *
4065 	 * We also force the firmware's HALT flag to be on in case we bypassed
4066 	 * the firmware RESET command above or we're dealing with old firmware
4067 	 * which doesn't have the HALT capability.  This will serve as a flag
4068 	 * for the incoming firmware to know that it's coming out of a HALT
4069 	 * rather than a RESET ... if it's new enough to understand that ...
4070 	 */
4071 	if (ret == 0 || force) {
4072 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
4073 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
4074 				 PCIE_FW_HALT_F);
4075 	}
4076 
4077 	/*
4078 	 * And we always return the result of the firmware RESET command
4079 	 * even when we force the uP into RESET ...
4080 	 */
4081 	return ret;
4082 }
4083 
4084 /**
4085  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
4086  *	@adap: the adapter
4087  *	@reset: if we want to do a RESET to restart things
4088  *
4089  *	Restart firmware previously halted by t4_fw_halt().  On successful
4090  *	return the previous PF Master remains as the new PF Master and there
4091  *	is no need to issue a new HELLO command, etc.
4092  *
4093  *	We do this in two ways:
4094  *
4095  *	 1. If we're dealing with newer firmware we'll simply want to take
4096  *	    the chip's microprocessor out of RESET.  This will cause the
4097  *	    firmware to start up from its start vector.  And then we'll loop
4098  *	    until the firmware indicates it's started again (PCIE_FW.HALT
4099  *	    reset to 0) or we timeout.
4100  *
4101  *	 2. If we're dealing with older firmware then we'll need to RESET
4102  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
4103  *	    flag and automatically RESET itself on startup.
4104  */
4105 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
4106 {
4107 	if (reset) {
4108 		/*
4109 		 * Since we're directing the RESET instead of the firmware
4110 		 * doing it automatically, we need to clear the PCIE_FW.HALT
4111 		 * bit.
4112 		 */
4113 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
4114 
4115 		/*
4116 		 * If we've been given a valid mailbox, first try to get the
4117 		 * firmware to do the RESET.  If that works, great and we can
4118 		 * return success.  Otherwise, if we haven't been given a
4119 		 * valid mailbox or the RESET command failed, fall back to
4120 		 * hitting the chip with a hammer.
4121 		 */
4122 		if (mbox <= PCIE_FW_MASTER_M) {
4123 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
4124 			msleep(100);
4125 			if (t4_fw_reset(adap, mbox,
4126 					PIORST_F | PIORSTMODE_F) == 0)
4127 				return 0;
4128 		}
4129 
4130 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
4131 		msleep(2000);
4132 	} else {
4133 		int ms;
4134 
4135 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
4136 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
4137 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
4138 				return 0;
4139 			msleep(100);
4140 			ms += 100;
4141 		}
4142 		return -ETIMEDOUT;
4143 	}
4144 	return 0;
4145 }
4146 
4147 /**
4148  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
4149  *	@adap: the adapter
4150  *	@mbox: mailbox to use for the FW RESET command (if desired)
4151  *	@fw_data: the firmware image to write
4152  *	@size: image size
4153  *	@force: force upgrade even if firmware doesn't cooperate
4154  *
4155  *	Perform all of the steps necessary for upgrading an adapter's
4156  *	firmware image.  Normally this requires the cooperation of the
4157  *	existing firmware in order to halt all existing activities
4158  *	but if an invalid mailbox token is passed in we skip that step
4159  *	(though we'll still put the adapter microprocessor into RESET in
4160  *	that case).
4161  *
4162  *	On successful return the new firmware will have been loaded and
4163  *	the adapter will have been fully RESET losing all previous setup
4164  *	state.  On unsuccessful return the adapter may be completely hosed ...
4165  *	positive errno indicates that the adapter is ~probably~ intact, a
4166  *	negative errno indicates that things are looking bad ...
4167  */
4168 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
4169 		  const u8 *fw_data, unsigned int size, int force)
4170 {
4171 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
4172 	int reset, ret;
4173 
4174 	if (!t4_fw_matches_chip(adap, fw_hdr))
4175 		return -EINVAL;
4176 
4177 	ret = t4_fw_halt(adap, mbox, force);
4178 	if (ret < 0 && !force)
4179 		return ret;
4180 
4181 	ret = t4_load_fw(adap, fw_data, size);
4182 	if (ret < 0)
4183 		return ret;
4184 
4185 	/*
4186 	 * Older versions of the firmware don't understand the new
4187 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
4188 	 * restart.  So for newly loaded older firmware we'll have to do the
4189 	 * RESET for it so it starts up on a clean slate.  We can tell if
4190 	 * the newly loaded firmware will handle this right by checking
4191 	 * its header flags to see if it advertises the capability.
4192 	 */
4193 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
4194 	return t4_fw_restart(adap, mbox, reset);
4195 }
4196 
4197 /**
4198  *	t4_fixup_host_params - fix up host-dependent parameters
4199  *	@adap: the adapter
4200  *	@page_size: the host's Base Page Size
4201  *	@cache_line_size: the host's Cache Line Size
4202  *
4203  *	Various registers in T4 contain values which are dependent on the
4204  *	host's Base Page and Cache Line Sizes.  This function will fix all of
4205  *	those registers with the appropriate values as passed in ...
4206  */
4207 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
4208 			 unsigned int cache_line_size)
4209 {
4210 	unsigned int page_shift = fls(page_size) - 1;
4211 	unsigned int sge_hps = page_shift - 10;
4212 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
4213 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
4214 	unsigned int fl_align_log = fls(fl_align) - 1;
4215 
4216 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
4217 		     HOSTPAGESIZEPF0_V(sge_hps) |
4218 		     HOSTPAGESIZEPF1_V(sge_hps) |
4219 		     HOSTPAGESIZEPF2_V(sge_hps) |
4220 		     HOSTPAGESIZEPF3_V(sge_hps) |
4221 		     HOSTPAGESIZEPF4_V(sge_hps) |
4222 		     HOSTPAGESIZEPF5_V(sge_hps) |
4223 		     HOSTPAGESIZEPF6_V(sge_hps) |
4224 		     HOSTPAGESIZEPF7_V(sge_hps));
4225 
4226 	if (is_t4(adap->params.chip)) {
4227 		t4_set_reg_field(adap, SGE_CONTROL_A,
4228 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
4229 				 EGRSTATUSPAGESIZE_F,
4230 				 INGPADBOUNDARY_V(fl_align_log -
4231 						  INGPADBOUNDARY_SHIFT_X) |
4232 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
4233 	} else {
4234 		/* T5 introduced the separation of the Free List Padding and
4235 		 * Packing Boundaries.  Thus, we can select a smaller Padding
4236 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
4237 		 * Bandwidth, and use a Packing Boundary which is large enough
4238 		 * to avoid false sharing between CPUs, etc.
4239 		 *
4240 		 * For the PCI Link, the smaller the Padding Boundary the
4241 		 * better.  For the Memory Controller, a smaller Padding
4242 		 * Boundary is better until we cross under the Memory Line
4243 		 * Size (the minimum unit of transfer to/from Memory).  If we
4244 		 * have a Padding Boundary which is smaller than the Memory
4245 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
4246 		 * Memory Controller which is never good.  For T5 the smallest
4247 		 * Padding Boundary which we can select is 32 bytes which is
4248 		 * larger than any known Memory Controller Line Size so we'll
4249 		 * use that.
4250 		 *
4251 		 * T5 has a different interpretation of the "0" value for the
4252 		 * Packing Boundary.  This corresponds to 16 bytes instead of
4253 		 * the expected 32 bytes.  We never have a Packing Boundary
4254 		 * less than 32 bytes so we can't use that special value but
4255 		 * on the other hand, if we wanted 32 bytes, the best we can
4256 		 * really do is 64 bytes.
4257 		*/
4258 		if (fl_align <= 32) {
4259 			fl_align = 64;
4260 			fl_align_log = 6;
4261 		}
4262 		t4_set_reg_field(adap, SGE_CONTROL_A,
4263 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
4264 				 EGRSTATUSPAGESIZE_F,
4265 				 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
4266 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
4267 		t4_set_reg_field(adap, SGE_CONTROL2_A,
4268 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
4269 				 INGPACKBOUNDARY_V(fl_align_log -
4270 						   INGPACKBOUNDARY_SHIFT_X));
4271 	}
4272 	/*
4273 	 * Adjust various SGE Free List Host Buffer Sizes.
4274 	 *
4275 	 * This is something of a crock since we're using fixed indices into
4276 	 * the array which are also known by the sge.c code and the T4
4277 	 * Firmware Configuration File.  We need to come up with a much better
4278 	 * approach to managing this array.  For now, the first four entries
4279 	 * are:
4280 	 *
4281 	 *   0: Host Page Size
4282 	 *   1: 64KB
4283 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
4284 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
4285 	 *
4286 	 * For the single-MTU buffers in unpacked mode we need to include
4287 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
4288 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
4289 	 * Padding boundary.  All of these are accommodated in the Factory
4290 	 * Default Firmware Configuration File but we need to adjust it for
4291 	 * this host's cache line size.
4292 	 */
4293 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
4294 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
4295 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
4296 		     & ~(fl_align-1));
4297 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
4298 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
4299 		     & ~(fl_align-1));
4300 
4301 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
4302 
4303 	return 0;
4304 }
4305 
4306 /**
4307  *	t4_fw_initialize - ask FW to initialize the device
4308  *	@adap: the adapter
4309  *	@mbox: mailbox to use for the FW command
4310  *
4311  *	Issues a command to FW to partially initialize the device.  This
4312  *	performs initialization that generally doesn't depend on user input.
4313  */
4314 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
4315 {
4316 	struct fw_initialize_cmd c;
4317 
4318 	memset(&c, 0, sizeof(c));
4319 	INIT_CMD(c, INITIALIZE, WRITE);
4320 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4321 }
4322 
4323 /**
4324  *	t4_query_params - query FW or device parameters
4325  *	@adap: the adapter
4326  *	@mbox: mailbox to use for the FW command
4327  *	@pf: the PF
4328  *	@vf: the VF
4329  *	@nparams: the number of parameters
4330  *	@params: the parameter names
4331  *	@val: the parameter values
4332  *
4333  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
4334  *	queried at once.
4335  */
4336 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4337 		    unsigned int vf, unsigned int nparams, const u32 *params,
4338 		    u32 *val)
4339 {
4340 	int i, ret;
4341 	struct fw_params_cmd c;
4342 	__be32 *p = &c.param[0].mnem;
4343 
4344 	if (nparams > 7)
4345 		return -EINVAL;
4346 
4347 	memset(&c, 0, sizeof(c));
4348 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
4349 			    FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) |
4350 			    FW_PARAMS_CMD_VFN_V(vf));
4351 	c.retval_len16 = htonl(FW_LEN16(c));
4352 	for (i = 0; i < nparams; i++, p += 2)
4353 		*p = htonl(*params++);
4354 
4355 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4356 	if (ret == 0)
4357 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
4358 			*val++ = ntohl(*p);
4359 	return ret;
4360 }
4361 
4362 /**
4363  *      t4_set_params_nosleep - sets FW or device parameters
4364  *      @adap: the adapter
4365  *      @mbox: mailbox to use for the FW command
4366  *      @pf: the PF
4367  *      @vf: the VF
4368  *      @nparams: the number of parameters
4369  *      @params: the parameter names
4370  *      @val: the parameter values
4371  *
4372  *	 Does not ever sleep
4373  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
4374  *      specified at once.
4375  */
4376 int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox,
4377 			  unsigned int pf, unsigned int vf,
4378 			  unsigned int nparams, const u32 *params,
4379 			  const u32 *val)
4380 {
4381 	struct fw_params_cmd c;
4382 	__be32 *p = &c.param[0].mnem;
4383 
4384 	if (nparams > 7)
4385 		return -EINVAL;
4386 
4387 	memset(&c, 0, sizeof(c));
4388 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
4389 				FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4390 				FW_PARAMS_CMD_PFN_V(pf) |
4391 				FW_PARAMS_CMD_VFN_V(vf));
4392 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4393 
4394 	while (nparams--) {
4395 		*p++ = cpu_to_be32(*params++);
4396 		*p++ = cpu_to_be32(*val++);
4397 	}
4398 
4399 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4400 }
4401 
4402 /**
4403  *	t4_set_params - sets FW or device parameters
4404  *	@adap: the adapter
4405  *	@mbox: mailbox to use for the FW command
4406  *	@pf: the PF
4407  *	@vf: the VF
4408  *	@nparams: the number of parameters
4409  *	@params: the parameter names
4410  *	@val: the parameter values
4411  *
4412  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
4413  *	specified at once.
4414  */
4415 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4416 		  unsigned int vf, unsigned int nparams, const u32 *params,
4417 		  const u32 *val)
4418 {
4419 	struct fw_params_cmd c;
4420 	__be32 *p = &c.param[0].mnem;
4421 
4422 	if (nparams > 7)
4423 		return -EINVAL;
4424 
4425 	memset(&c, 0, sizeof(c));
4426 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
4427 			    FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) |
4428 			    FW_PARAMS_CMD_VFN_V(vf));
4429 	c.retval_len16 = htonl(FW_LEN16(c));
4430 	while (nparams--) {
4431 		*p++ = htonl(*params++);
4432 		*p++ = htonl(*val++);
4433 	}
4434 
4435 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4436 }
4437 
4438 /**
4439  *	t4_cfg_pfvf - configure PF/VF resource limits
4440  *	@adap: the adapter
4441  *	@mbox: mailbox to use for the FW command
4442  *	@pf: the PF being configured
4443  *	@vf: the VF being configured
4444  *	@txq: the max number of egress queues
4445  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
4446  *	@rxqi: the max number of interrupt-capable ingress queues
4447  *	@rxq: the max number of interruptless ingress queues
4448  *	@tc: the PCI traffic class
4449  *	@vi: the max number of virtual interfaces
4450  *	@cmask: the channel access rights mask for the PF/VF
4451  *	@pmask: the port access rights mask for the PF/VF
4452  *	@nexact: the maximum number of exact MPS filters
4453  *	@rcaps: read capabilities
4454  *	@wxcaps: write/execute capabilities
4455  *
4456  *	Configures resource limits and capabilities for a physical or virtual
4457  *	function.
4458  */
4459 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
4460 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
4461 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
4462 		unsigned int vi, unsigned int cmask, unsigned int pmask,
4463 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
4464 {
4465 	struct fw_pfvf_cmd c;
4466 
4467 	memset(&c, 0, sizeof(c));
4468 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
4469 			    FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
4470 			    FW_PFVF_CMD_VFN_V(vf));
4471 	c.retval_len16 = htonl(FW_LEN16(c));
4472 	c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
4473 			       FW_PFVF_CMD_NIQ_V(rxq));
4474 	c.type_to_neq = htonl(FW_PFVF_CMD_CMASK_V(cmask) |
4475 			       FW_PFVF_CMD_PMASK_V(pmask) |
4476 			       FW_PFVF_CMD_NEQ_V(txq));
4477 	c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) |
4478 				FW_PFVF_CMD_NEXACTF_V(nexact));
4479 	c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS_V(rcaps) |
4480 				     FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
4481 				     FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
4482 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4483 }
4484 
4485 /**
4486  *	t4_alloc_vi - allocate a virtual interface
4487  *	@adap: the adapter
4488  *	@mbox: mailbox to use for the FW command
4489  *	@port: physical port associated with the VI
4490  *	@pf: the PF owning the VI
4491  *	@vf: the VF owning the VI
4492  *	@nmac: number of MAC addresses needed (1 to 5)
4493  *	@mac: the MAC addresses of the VI
4494  *	@rss_size: size of RSS table slice associated with this VI
4495  *
4496  *	Allocates a virtual interface for the given physical port.  If @mac is
4497  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
4498  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
4499  *	stored consecutively so the space needed is @nmac * 6 bytes.
4500  *	Returns a negative error number or the non-negative VI id.
4501  */
4502 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
4503 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
4504 		unsigned int *rss_size)
4505 {
4506 	int ret;
4507 	struct fw_vi_cmd c;
4508 
4509 	memset(&c, 0, sizeof(c));
4510 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
4511 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4512 			    FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
4513 	c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
4514 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
4515 	c.nmac = nmac - 1;
4516 
4517 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4518 	if (ret)
4519 		return ret;
4520 
4521 	if (mac) {
4522 		memcpy(mac, c.mac, sizeof(c.mac));
4523 		switch (nmac) {
4524 		case 5:
4525 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
4526 		case 4:
4527 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
4528 		case 3:
4529 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
4530 		case 2:
4531 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
4532 		}
4533 	}
4534 	if (rss_size)
4535 		*rss_size = FW_VI_CMD_RSSSIZE_G(ntohs(c.rsssize_pkd));
4536 	return FW_VI_CMD_VIID_G(ntohs(c.type_viid));
4537 }
4538 
4539 /**
4540  *	t4_set_rxmode - set Rx properties of a virtual interface
4541  *	@adap: the adapter
4542  *	@mbox: mailbox to use for the FW command
4543  *	@viid: the VI id
4544  *	@mtu: the new MTU or -1
4545  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
4546  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
4547  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
4548  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
4549  *	@sleep_ok: if true we may sleep while awaiting command completion
4550  *
4551  *	Sets Rx properties of a virtual interface.
4552  */
4553 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
4554 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
4555 		  bool sleep_ok)
4556 {
4557 	struct fw_vi_rxmode_cmd c;
4558 
4559 	/* convert to FW values */
4560 	if (mtu < 0)
4561 		mtu = FW_RXMODE_MTU_NO_CHG;
4562 	if (promisc < 0)
4563 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
4564 	if (all_multi < 0)
4565 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
4566 	if (bcast < 0)
4567 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
4568 	if (vlanex < 0)
4569 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
4570 
4571 	memset(&c, 0, sizeof(c));
4572 	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F |
4573 			     FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid));
4574 	c.retval_len16 = htonl(FW_LEN16(c));
4575 	c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU_V(mtu) |
4576 				  FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
4577 				  FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
4578 				  FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
4579 				  FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
4580 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
4581 }
4582 
4583 /**
4584  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
4585  *	@adap: the adapter
4586  *	@mbox: mailbox to use for the FW command
4587  *	@viid: the VI id
4588  *	@free: if true any existing filters for this VI id are first removed
4589  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
4590  *	@addr: the MAC address(es)
4591  *	@idx: where to store the index of each allocated filter
4592  *	@hash: pointer to hash address filter bitmap
4593  *	@sleep_ok: call is allowed to sleep
4594  *
4595  *	Allocates an exact-match filter for each of the supplied addresses and
4596  *	sets it to the corresponding address.  If @idx is not %NULL it should
4597  *	have at least @naddr entries, each of which will be set to the index of
4598  *	the filter allocated for the corresponding MAC address.  If a filter
4599  *	could not be allocated for an address its index is set to 0xffff.
4600  *	If @hash is not %NULL addresses that fail to allocate an exact filter
4601  *	are hashed and update the hash filter bitmap pointed at by @hash.
4602  *
4603  *	Returns a negative error number or the number of filters allocated.
4604  */
4605 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
4606 		      unsigned int viid, bool free, unsigned int naddr,
4607 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
4608 {
4609 	int i, ret;
4610 	struct fw_vi_mac_cmd c;
4611 	struct fw_vi_mac_exact *p;
4612 	unsigned int max_naddr = is_t4(adap->params.chip) ?
4613 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
4614 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4615 
4616 	if (naddr > 7)
4617 		return -EINVAL;
4618 
4619 	memset(&c, 0, sizeof(c));
4620 	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
4621 			     FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) |
4622 			     FW_VI_MAC_CMD_VIID_V(viid));
4623 	c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS_V(free) |
4624 				    FW_CMD_LEN16_V((naddr + 2) / 2));
4625 
4626 	for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
4627 		p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
4628 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
4629 		memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
4630 	}
4631 
4632 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
4633 	if (ret)
4634 		return ret;
4635 
4636 	for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
4637 		u16 index = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
4638 
4639 		if (idx)
4640 			idx[i] = index >= max_naddr ? 0xffff : index;
4641 		if (index < max_naddr)
4642 			ret++;
4643 		else if (hash)
4644 			*hash |= (1ULL << hash_mac_addr(addr[i]));
4645 	}
4646 	return ret;
4647 }
4648 
4649 /**
4650  *	t4_change_mac - modifies the exact-match filter for a MAC address
4651  *	@adap: the adapter
4652  *	@mbox: mailbox to use for the FW command
4653  *	@viid: the VI id
4654  *	@idx: index of existing filter for old value of MAC address, or -1
4655  *	@addr: the new MAC address value
4656  *	@persist: whether a new MAC allocation should be persistent
4657  *	@add_smt: if true also add the address to the HW SMT
4658  *
4659  *	Modifies an exact-match filter and sets it to the new MAC address.
4660  *	Note that in general it is not possible to modify the value of a given
4661  *	filter so the generic way to modify an address filter is to free the one
4662  *	being used by the old address value and allocate a new filter for the
4663  *	new address value.  @idx can be -1 if the address is a new addition.
4664  *
4665  *	Returns a negative error number or the index of the filter with the new
4666  *	MAC value.
4667  */
4668 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
4669 		  int idx, const u8 *addr, bool persist, bool add_smt)
4670 {
4671 	int ret, mode;
4672 	struct fw_vi_mac_cmd c;
4673 	struct fw_vi_mac_exact *p = c.u.exact;
4674 	unsigned int max_mac_addr = is_t4(adap->params.chip) ?
4675 				    NUM_MPS_CLS_SRAM_L_INSTANCES :
4676 				    NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4677 
4678 	if (idx < 0)                             /* new allocation */
4679 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
4680 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
4681 
4682 	memset(&c, 0, sizeof(c));
4683 	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
4684 			     FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid));
4685 	c.freemacs_to_len16 = htonl(FW_CMD_LEN16_V(1));
4686 	p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
4687 				FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
4688 				FW_VI_MAC_CMD_IDX_V(idx));
4689 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
4690 
4691 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4692 	if (ret == 0) {
4693 		ret = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
4694 		if (ret >= max_mac_addr)
4695 			ret = -ENOMEM;
4696 	}
4697 	return ret;
4698 }
4699 
4700 /**
4701  *	t4_set_addr_hash - program the MAC inexact-match hash filter
4702  *	@adap: the adapter
4703  *	@mbox: mailbox to use for the FW command
4704  *	@viid: the VI id
4705  *	@ucast: whether the hash filter should also match unicast addresses
4706  *	@vec: the value to be written to the hash filter
4707  *	@sleep_ok: call is allowed to sleep
4708  *
4709  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
4710  */
4711 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
4712 		     bool ucast, u64 vec, bool sleep_ok)
4713 {
4714 	struct fw_vi_mac_cmd c;
4715 
4716 	memset(&c, 0, sizeof(c));
4717 	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
4718 			     FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid));
4719 	c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN_F |
4720 				    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
4721 				    FW_CMD_LEN16_V(1));
4722 	c.u.hash.hashvec = cpu_to_be64(vec);
4723 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
4724 }
4725 
4726 /**
4727  *      t4_enable_vi_params - enable/disable a virtual interface
4728  *      @adap: the adapter
4729  *      @mbox: mailbox to use for the FW command
4730  *      @viid: the VI id
4731  *      @rx_en: 1=enable Rx, 0=disable Rx
4732  *      @tx_en: 1=enable Tx, 0=disable Tx
4733  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
4734  *
4735  *      Enables/disables a virtual interface.  Note that setting DCB Enable
4736  *      only makes sense when enabling a Virtual Interface ...
4737  */
4738 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
4739 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
4740 {
4741 	struct fw_vi_enable_cmd c;
4742 
4743 	memset(&c, 0, sizeof(c));
4744 	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
4745 			     FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
4746 
4747 	c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
4748 			       FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(c) |
4749 			       FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en));
4750 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4751 }
4752 
4753 /**
4754  *	t4_enable_vi - enable/disable a virtual interface
4755  *	@adap: the adapter
4756  *	@mbox: mailbox to use for the FW command
4757  *	@viid: the VI id
4758  *	@rx_en: 1=enable Rx, 0=disable Rx
4759  *	@tx_en: 1=enable Tx, 0=disable Tx
4760  *
4761  *	Enables/disables a virtual interface.
4762  */
4763 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
4764 		 bool rx_en, bool tx_en)
4765 {
4766 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
4767 }
4768 
4769 /**
4770  *	t4_identify_port - identify a VI's port by blinking its LED
4771  *	@adap: the adapter
4772  *	@mbox: mailbox to use for the FW command
4773  *	@viid: the VI id
4774  *	@nblinks: how many times to blink LED at 2.5 Hz
4775  *
4776  *	Identifies a VI's port by blinking its LED.
4777  */
4778 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
4779 		     unsigned int nblinks)
4780 {
4781 	struct fw_vi_enable_cmd c;
4782 
4783 	memset(&c, 0, sizeof(c));
4784 	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
4785 			     FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
4786 	c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
4787 	c.blinkdur = htons(nblinks);
4788 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4789 }
4790 
4791 /**
4792  *	t4_iq_free - free an ingress queue and its FLs
4793  *	@adap: the adapter
4794  *	@mbox: mailbox to use for the FW command
4795  *	@pf: the PF owning the queues
4796  *	@vf: the VF owning the queues
4797  *	@iqtype: the ingress queue type
4798  *	@iqid: ingress queue id
4799  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
4800  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
4801  *
4802  *	Frees an ingress queue and its associated FLs, if any.
4803  */
4804 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4805 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
4806 	       unsigned int fl0id, unsigned int fl1id)
4807 {
4808 	struct fw_iq_cmd c;
4809 
4810 	memset(&c, 0, sizeof(c));
4811 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4812 			    FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
4813 			    FW_IQ_CMD_VFN_V(vf));
4814 	c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE_F | FW_LEN16(c));
4815 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(iqtype));
4816 	c.iqid = htons(iqid);
4817 	c.fl0id = htons(fl0id);
4818 	c.fl1id = htons(fl1id);
4819 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4820 }
4821 
4822 /**
4823  *	t4_eth_eq_free - free an Ethernet egress queue
4824  *	@adap: the adapter
4825  *	@mbox: mailbox to use for the FW command
4826  *	@pf: the PF owning the queue
4827  *	@vf: the VF owning the queue
4828  *	@eqid: egress queue id
4829  *
4830  *	Frees an Ethernet egress queue.
4831  */
4832 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4833 		   unsigned int vf, unsigned int eqid)
4834 {
4835 	struct fw_eq_eth_cmd c;
4836 
4837 	memset(&c, 0, sizeof(c));
4838 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4839 			    FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) |
4840 			    FW_EQ_ETH_CMD_VFN_V(vf));
4841 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
4842 	c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID_V(eqid));
4843 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4844 }
4845 
4846 /**
4847  *	t4_ctrl_eq_free - free a control egress queue
4848  *	@adap: the adapter
4849  *	@mbox: mailbox to use for the FW command
4850  *	@pf: the PF owning the queue
4851  *	@vf: the VF owning the queue
4852  *	@eqid: egress queue id
4853  *
4854  *	Frees a control egress queue.
4855  */
4856 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4857 		    unsigned int vf, unsigned int eqid)
4858 {
4859 	struct fw_eq_ctrl_cmd c;
4860 
4861 	memset(&c, 0, sizeof(c));
4862 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4863 			    FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) |
4864 			    FW_EQ_CTRL_CMD_VFN_V(vf));
4865 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
4866 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID_V(eqid));
4867 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4868 }
4869 
4870 /**
4871  *	t4_ofld_eq_free - free an offload egress queue
4872  *	@adap: the adapter
4873  *	@mbox: mailbox to use for the FW command
4874  *	@pf: the PF owning the queue
4875  *	@vf: the VF owning the queue
4876  *	@eqid: egress queue id
4877  *
4878  *	Frees a control egress queue.
4879  */
4880 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4881 		    unsigned int vf, unsigned int eqid)
4882 {
4883 	struct fw_eq_ofld_cmd c;
4884 
4885 	memset(&c, 0, sizeof(c));
4886 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
4887 			    FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) |
4888 			    FW_EQ_OFLD_CMD_VFN_V(vf));
4889 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
4890 	c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID_V(eqid));
4891 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4892 }
4893 
4894 /**
4895  *	t4_handle_fw_rpl - process a FW reply message
4896  *	@adap: the adapter
4897  *	@rpl: start of the FW message
4898  *
4899  *	Processes a FW message, such as link state change messages.
4900  */
4901 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
4902 {
4903 	u8 opcode = *(const u8 *)rpl;
4904 
4905 	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
4906 		int speed = 0, fc = 0;
4907 		const struct fw_port_cmd *p = (void *)rpl;
4908 		int chan = FW_PORT_CMD_PORTID_G(ntohl(p->op_to_portid));
4909 		int port = adap->chan_map[chan];
4910 		struct port_info *pi = adap2pinfo(adap, port);
4911 		struct link_config *lc = &pi->link_cfg;
4912 		u32 stat = ntohl(p->u.info.lstatus_to_modtype);
4913 		int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
4914 		u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
4915 
4916 		if (stat & FW_PORT_CMD_RXPAUSE_F)
4917 			fc |= PAUSE_RX;
4918 		if (stat & FW_PORT_CMD_TXPAUSE_F)
4919 			fc |= PAUSE_TX;
4920 		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
4921 			speed = 100;
4922 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
4923 			speed = 1000;
4924 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
4925 			speed = 10000;
4926 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
4927 			speed = 40000;
4928 
4929 		if (link_ok != lc->link_ok || speed != lc->speed ||
4930 		    fc != lc->fc) {                    /* something changed */
4931 			lc->link_ok = link_ok;
4932 			lc->speed = speed;
4933 			lc->fc = fc;
4934 			lc->supported = be16_to_cpu(p->u.info.pcap);
4935 			t4_os_link_changed(adap, port, link_ok);
4936 		}
4937 		if (mod != pi->mod_type) {
4938 			pi->mod_type = mod;
4939 			t4_os_portmod_changed(adap, port);
4940 		}
4941 	}
4942 	return 0;
4943 }
4944 
4945 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
4946 {
4947 	u16 val;
4948 
4949 	if (pci_is_pcie(adapter->pdev)) {
4950 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
4951 		p->speed = val & PCI_EXP_LNKSTA_CLS;
4952 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
4953 	}
4954 }
4955 
4956 /**
4957  *	init_link_config - initialize a link's SW state
4958  *	@lc: structure holding the link state
4959  *	@caps: link capabilities
4960  *
4961  *	Initializes the SW state maintained for each link, including the link's
4962  *	capabilities and default speed/flow-control/autonegotiation settings.
4963  */
4964 static void init_link_config(struct link_config *lc, unsigned int caps)
4965 {
4966 	lc->supported = caps;
4967 	lc->requested_speed = 0;
4968 	lc->speed = 0;
4969 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
4970 	if (lc->supported & FW_PORT_CAP_ANEG) {
4971 		lc->advertising = lc->supported & ADVERT_MASK;
4972 		lc->autoneg = AUTONEG_ENABLE;
4973 		lc->requested_fc |= PAUSE_AUTONEG;
4974 	} else {
4975 		lc->advertising = 0;
4976 		lc->autoneg = AUTONEG_DISABLE;
4977 	}
4978 }
4979 
4980 #define CIM_PF_NOACCESS 0xeeeeeeee
4981 
4982 int t4_wait_dev_ready(void __iomem *regs)
4983 {
4984 	u32 whoami;
4985 
4986 	whoami = readl(regs + PL_WHOAMI_A);
4987 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
4988 		return 0;
4989 
4990 	msleep(500);
4991 	whoami = readl(regs + PL_WHOAMI_A);
4992 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
4993 }
4994 
4995 struct flash_desc {
4996 	u32 vendor_and_model_id;
4997 	u32 size_mb;
4998 };
4999 
5000 static int get_flash_params(struct adapter *adap)
5001 {
5002 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
5003 	 * to the preexisting code.  All flash parts have 64KB sectors.
5004 	 */
5005 	static struct flash_desc supported_flash[] = {
5006 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
5007 	};
5008 
5009 	int ret;
5010 	u32 info;
5011 
5012 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
5013 	if (!ret)
5014 		ret = sf1_read(adap, 3, 0, 1, &info);
5015 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
5016 	if (ret)
5017 		return ret;
5018 
5019 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
5020 		if (supported_flash[ret].vendor_and_model_id == info) {
5021 			adap->params.sf_size = supported_flash[ret].size_mb;
5022 			adap->params.sf_nsec =
5023 				adap->params.sf_size / SF_SEC_SIZE;
5024 			return 0;
5025 		}
5026 
5027 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
5028 		return -EINVAL;
5029 	info >>= 16;                           /* log2 of size */
5030 	if (info >= 0x14 && info < 0x18)
5031 		adap->params.sf_nsec = 1 << (info - 16);
5032 	else if (info == 0x18)
5033 		adap->params.sf_nsec = 64;
5034 	else
5035 		return -EINVAL;
5036 	adap->params.sf_size = 1 << info;
5037 	adap->params.sf_fw_start =
5038 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
5039 
5040 	if (adap->params.sf_size < FLASH_MIN_SIZE)
5041 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
5042 			 adap->params.sf_size, FLASH_MIN_SIZE);
5043 	return 0;
5044 }
5045 
5046 /**
5047  *	t4_prep_adapter - prepare SW and HW for operation
5048  *	@adapter: the adapter
5049  *	@reset: if true perform a HW reset
5050  *
5051  *	Initialize adapter SW state for the various HW modules, set initial
5052  *	values for some adapter tunables, take PHYs out of reset, and
5053  *	initialize the MDIO interface.
5054  */
5055 int t4_prep_adapter(struct adapter *adapter)
5056 {
5057 	int ret, ver;
5058 	uint16_t device_id;
5059 	u32 pl_rev;
5060 
5061 	get_pci_mode(adapter, &adapter->params.pci);
5062 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
5063 
5064 	ret = get_flash_params(adapter);
5065 	if (ret < 0) {
5066 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
5067 		return ret;
5068 	}
5069 
5070 	/* Retrieve adapter's device ID
5071 	 */
5072 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
5073 	ver = device_id >> 12;
5074 	adapter->params.chip = 0;
5075 	switch (ver) {
5076 	case CHELSIO_T4:
5077 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5078 		break;
5079 	case CHELSIO_T5:
5080 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5081 		break;
5082 	default:
5083 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5084 			device_id);
5085 		return -EINVAL;
5086 	}
5087 
5088 	adapter->params.cim_la_size = CIMLA_SIZE;
5089 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5090 
5091 	/*
5092 	 * Default port for debugging in case we can't reach FW.
5093 	 */
5094 	adapter->params.nports = 1;
5095 	adapter->params.portvec = 1;
5096 	adapter->params.vpd.cclk = 50000;
5097 	return 0;
5098 }
5099 
5100 /**
5101  *	cxgb4_t4_bar2_sge_qregs - return BAR2 SGE Queue register information
5102  *	@adapter: the adapter
5103  *	@qid: the Queue ID
5104  *	@qtype: the Ingress or Egress type for @qid
5105  *	@pbar2_qoffset: BAR2 Queue Offset
5106  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
5107  *
5108  *	Returns the BAR2 SGE Queue Registers information associated with the
5109  *	indicated Absolute Queue ID.  These are passed back in return value
5110  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
5111  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
5112  *
5113  *	This may return an error which indicates that BAR2 SGE Queue
5114  *	registers aren't available.  If an error is not returned, then the
5115  *	following values are returned:
5116  *
5117  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
5118  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
5119  *
5120  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
5121  *	require the "Inferred Queue ID" ability may be used.  E.g. the
5122  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
5123  *	then these "Inferred Queue ID" register may not be used.
5124  */
5125 int cxgb4_t4_bar2_sge_qregs(struct adapter *adapter,
5126 		      unsigned int qid,
5127 		      enum t4_bar2_qtype qtype,
5128 		      u64 *pbar2_qoffset,
5129 		      unsigned int *pbar2_qid)
5130 {
5131 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
5132 	u64 bar2_page_offset, bar2_qoffset;
5133 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
5134 
5135 	/* T4 doesn't support BAR2 SGE Queue registers.
5136 	 */
5137 	if (is_t4(adapter->params.chip))
5138 		return -EINVAL;
5139 
5140 	/* Get our SGE Page Size parameters.
5141 	 */
5142 	page_shift = adapter->params.sge.hps + 10;
5143 	page_size = 1 << page_shift;
5144 
5145 	/* Get the right Queues per Page parameters for our Queue.
5146 	 */
5147 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
5148 		     ? adapter->params.sge.eq_qpp
5149 		     : adapter->params.sge.iq_qpp);
5150 	qpp_mask = (1 << qpp_shift) - 1;
5151 
5152 	/*  Calculate the basics of the BAR2 SGE Queue register area:
5153 	 *  o The BAR2 page the Queue registers will be in.
5154 	 *  o The BAR2 Queue ID.
5155 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
5156 	 */
5157 	bar2_page_offset = ((qid >> qpp_shift) << page_shift);
5158 	bar2_qid = qid & qpp_mask;
5159 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
5160 
5161 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
5162 	 * hardware will infer the Absolute Queue ID simply from the writes to
5163 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
5164 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
5165 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
5166 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
5167 	 * from the BAR2 Page and BAR2 Queue ID.
5168 	 *
5169 	 * One important censequence of this is that some BAR2 SGE registers
5170 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
5171 	 * there.  But other registers synthesize the SGE Queue ID purely
5172 	 * from the writes to the registers -- the Write Combined Doorbell
5173 	 * Buffer is a good example.  These BAR2 SGE Registers are only
5174 	 * available for those BAR2 SGE Register areas where the SGE Absolute
5175 	 * Queue ID can be inferred from simple writes.
5176 	 */
5177 	bar2_qoffset = bar2_page_offset;
5178 	bar2_qinferred = (bar2_qid_offset < page_size);
5179 	if (bar2_qinferred) {
5180 		bar2_qoffset += bar2_qid_offset;
5181 		bar2_qid = 0;
5182 	}
5183 
5184 	*pbar2_qoffset = bar2_qoffset;
5185 	*pbar2_qid = bar2_qid;
5186 	return 0;
5187 }
5188 
5189 /**
5190  *	t4_init_devlog_params - initialize adapter->params.devlog
5191  *	@adap: the adapter
5192  *
5193  *	Initialize various fields of the adapter's Firmware Device Log
5194  *	Parameters structure.
5195  */
5196 int t4_init_devlog_params(struct adapter *adap)
5197 {
5198 	struct devlog_params *dparams = &adap->params.devlog;
5199 	u32 pf_dparams;
5200 	unsigned int devlog_meminfo;
5201 	struct fw_devlog_cmd devlog_cmd;
5202 	int ret;
5203 
5204 	/* If we're dealing with newer firmware, the Device Log Paramerters
5205 	 * are stored in a designated register which allows us to access the
5206 	 * Device Log even if we can't talk to the firmware.
5207 	 */
5208 	pf_dparams =
5209 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
5210 	if (pf_dparams) {
5211 		unsigned int nentries, nentries128;
5212 
5213 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
5214 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
5215 
5216 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
5217 		nentries = (nentries128 + 1) * 128;
5218 		dparams->size = nentries * sizeof(struct fw_devlog_e);
5219 
5220 		return 0;
5221 	}
5222 
5223 	/* Otherwise, ask the firmware for it's Device Log Parameters.
5224 	 */
5225 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
5226 	devlog_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_DEVLOG_CMD) |
5227 				       FW_CMD_REQUEST_F | FW_CMD_READ_F);
5228 	devlog_cmd.retval_len16 = htonl(FW_LEN16(devlog_cmd));
5229 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
5230 			 &devlog_cmd);
5231 	if (ret)
5232 		return ret;
5233 
5234 	devlog_meminfo = ntohl(devlog_cmd.memtype_devlog_memaddr16_devlog);
5235 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
5236 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
5237 	dparams->size = ntohl(devlog_cmd.memsize_devlog);
5238 
5239 	return 0;
5240 }
5241 
5242 /**
5243  *	t4_init_sge_params - initialize adap->params.sge
5244  *	@adapter: the adapter
5245  *
5246  *	Initialize various fields of the adapter's SGE Parameters structure.
5247  */
5248 int t4_init_sge_params(struct adapter *adapter)
5249 {
5250 	struct sge_params *sge_params = &adapter->params.sge;
5251 	u32 hps, qpp;
5252 	unsigned int s_hps, s_qpp;
5253 
5254 	/* Extract the SGE Page Size for our PF.
5255 	 */
5256 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
5257 	s_hps = (HOSTPAGESIZEPF0_S +
5258 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->fn);
5259 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
5260 
5261 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
5262 	 */
5263 	s_qpp = (QUEUESPERPAGEPF0_S +
5264 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->fn);
5265 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
5266 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
5267 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
5268 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
5269 
5270 	return 0;
5271 }
5272 
5273 /**
5274  *      t4_init_tp_params - initialize adap->params.tp
5275  *      @adap: the adapter
5276  *
5277  *      Initialize various fields of the adapter's TP Parameters structure.
5278  */
5279 int t4_init_tp_params(struct adapter *adap)
5280 {
5281 	int chan;
5282 	u32 v;
5283 
5284 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
5285 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
5286 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
5287 
5288 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5289 	for (chan = 0; chan < NCHAN; chan++)
5290 		adap->params.tp.tx_modq[chan] = chan;
5291 
5292 	/* Cache the adapter's Compressed Filter Mode and global Incress
5293 	 * Configuration.
5294 	 */
5295 	t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5296 			 &adap->params.tp.vlan_pri_map, 1,
5297 			 TP_VLAN_PRI_MAP_A);
5298 	t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5299 			 &adap->params.tp.ingress_config, 1,
5300 			 TP_INGRESS_CONFIG_A);
5301 
5302 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
5303 	 * shift positions of several elements of the Compressed Filter Tuple
5304 	 * for this adapter which we need frequently ...
5305 	 */
5306 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
5307 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
5308 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
5309 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
5310 							       PROTOCOL_F);
5311 
5312 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
5313 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
5314 	 */
5315 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
5316 		adap->params.tp.vnic_shift = -1;
5317 
5318 	return 0;
5319 }
5320 
5321 /**
5322  *      t4_filter_field_shift - calculate filter field shift
5323  *      @adap: the adapter
5324  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5325  *
5326  *      Return the shift position of a filter field within the Compressed
5327  *      Filter Tuple.  The filter field is specified via its selection bit
5328  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5329  */
5330 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
5331 {
5332 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5333 	unsigned int sel;
5334 	int field_shift;
5335 
5336 	if ((filter_mode & filter_sel) == 0)
5337 		return -1;
5338 
5339 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5340 		switch (filter_mode & sel) {
5341 		case FCOE_F:
5342 			field_shift += FT_FCOE_W;
5343 			break;
5344 		case PORT_F:
5345 			field_shift += FT_PORT_W;
5346 			break;
5347 		case VNIC_ID_F:
5348 			field_shift += FT_VNIC_ID_W;
5349 			break;
5350 		case VLAN_F:
5351 			field_shift += FT_VLAN_W;
5352 			break;
5353 		case TOS_F:
5354 			field_shift += FT_TOS_W;
5355 			break;
5356 		case PROTOCOL_F:
5357 			field_shift += FT_PROTOCOL_W;
5358 			break;
5359 		case ETHERTYPE_F:
5360 			field_shift += FT_ETHERTYPE_W;
5361 			break;
5362 		case MACMATCH_F:
5363 			field_shift += FT_MACMATCH_W;
5364 			break;
5365 		case MPSHITTYPE_F:
5366 			field_shift += FT_MPSHITTYPE_W;
5367 			break;
5368 		case FRAGMENTATION_F:
5369 			field_shift += FT_FRAGMENTATION_W;
5370 			break;
5371 		}
5372 	}
5373 	return field_shift;
5374 }
5375 
5376 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
5377 {
5378 	u8 addr[6];
5379 	int ret, i, j = 0;
5380 	struct fw_port_cmd c;
5381 	struct fw_rss_vi_config_cmd rvc;
5382 
5383 	memset(&c, 0, sizeof(c));
5384 	memset(&rvc, 0, sizeof(rvc));
5385 
5386 	for_each_port(adap, i) {
5387 		unsigned int rss_size;
5388 		struct port_info *p = adap2pinfo(adap, i);
5389 
5390 		while ((adap->params.portvec & (1 << j)) == 0)
5391 			j++;
5392 
5393 		c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) |
5394 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
5395 				       FW_PORT_CMD_PORTID_V(j));
5396 		c.action_to_len16 = htonl(
5397 			FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
5398 			FW_LEN16(c));
5399 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5400 		if (ret)
5401 			return ret;
5402 
5403 		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
5404 		if (ret < 0)
5405 			return ret;
5406 
5407 		p->viid = ret;
5408 		p->tx_chan = j;
5409 		p->lport = j;
5410 		p->rss_size = rss_size;
5411 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
5412 		adap->port[i]->dev_port = j;
5413 
5414 		ret = ntohl(c.u.info.lstatus_to_modtype);
5415 		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
5416 			FW_PORT_CMD_MDIOADDR_G(ret) : -1;
5417 		p->port_type = FW_PORT_CMD_PTYPE_G(ret);
5418 		p->mod_type = FW_PORT_MOD_TYPE_NA;
5419 
5420 		rvc.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5421 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
5422 				       FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
5423 		rvc.retval_len16 = htonl(FW_LEN16(rvc));
5424 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
5425 		if (ret)
5426 			return ret;
5427 		p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
5428 
5429 		init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
5430 		j++;
5431 	}
5432 	return 0;
5433 }
5434 
5435 /**
5436  *	t4_read_cimq_cfg - read CIM queue configuration
5437  *	@adap: the adapter
5438  *	@base: holds the queue base addresses in bytes
5439  *	@size: holds the queue sizes in bytes
5440  *	@thres: holds the queue full thresholds in bytes
5441  *
5442  *	Returns the current configuration of the CIM queues, starting with
5443  *	the IBQs, then the OBQs.
5444  */
5445 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
5446 {
5447 	unsigned int i, v;
5448 	int cim_num_obq = is_t4(adap->params.chip) ?
5449 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
5450 
5451 	for (i = 0; i < CIM_NUM_IBQ; i++) {
5452 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
5453 			     QUENUMSELECT_V(i));
5454 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
5455 		/* value is in 256-byte units */
5456 		*base++ = CIMQBASE_G(v) * 256;
5457 		*size++ = CIMQSIZE_G(v) * 256;
5458 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
5459 	}
5460 	for (i = 0; i < cim_num_obq; i++) {
5461 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
5462 			     QUENUMSELECT_V(i));
5463 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
5464 		/* value is in 256-byte units */
5465 		*base++ = CIMQBASE_G(v) * 256;
5466 		*size++ = CIMQSIZE_G(v) * 256;
5467 	}
5468 }
5469 
5470 /**
5471  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
5472  *	@adap: the adapter
5473  *	@qid: the queue index
5474  *	@data: where to store the queue contents
5475  *	@n: capacity of @data in 32-bit words
5476  *
5477  *	Reads the contents of the selected CIM queue starting at address 0 up
5478  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
5479  *	error and the number of 32-bit words actually read on success.
5480  */
5481 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
5482 {
5483 	int i, err, attempts;
5484 	unsigned int addr;
5485 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
5486 
5487 	if (qid > 5 || (n & 3))
5488 		return -EINVAL;
5489 
5490 	addr = qid * nwords;
5491 	if (n > nwords)
5492 		n = nwords;
5493 
5494 	/* It might take 3-10ms before the IBQ debug read access is allowed.
5495 	 * Wait for 1 Sec with a delay of 1 usec.
5496 	 */
5497 	attempts = 1000000;
5498 
5499 	for (i = 0; i < n; i++, addr++) {
5500 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
5501 			     IBQDBGEN_F);
5502 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
5503 				      attempts, 1);
5504 		if (err)
5505 			return err;
5506 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
5507 	}
5508 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
5509 	return i;
5510 }
5511 
5512 /**
5513  *	t4_read_cim_obq - read the contents of a CIM outbound queue
5514  *	@adap: the adapter
5515  *	@qid: the queue index
5516  *	@data: where to store the queue contents
5517  *	@n: capacity of @data in 32-bit words
5518  *
5519  *	Reads the contents of the selected CIM queue starting at address 0 up
5520  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
5521  *	error and the number of 32-bit words actually read on success.
5522  */
5523 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
5524 {
5525 	int i, err;
5526 	unsigned int addr, v, nwords;
5527 	int cim_num_obq = is_t4(adap->params.chip) ?
5528 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
5529 
5530 	if ((qid > (cim_num_obq - 1)) || (n & 3))
5531 		return -EINVAL;
5532 
5533 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
5534 		     QUENUMSELECT_V(qid));
5535 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
5536 
5537 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
5538 	nwords = CIMQSIZE_G(v) * 64;  /* same */
5539 	if (n > nwords)
5540 		n = nwords;
5541 
5542 	for (i = 0; i < n; i++, addr++) {
5543 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
5544 			     OBQDBGEN_F);
5545 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
5546 				      2, 1);
5547 		if (err)
5548 			return err;
5549 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
5550 	}
5551 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
5552 	return i;
5553 }
5554 
5555 /**
5556  *	t4_cim_read - read a block from CIM internal address space
5557  *	@adap: the adapter
5558  *	@addr: the start address within the CIM address space
5559  *	@n: number of words to read
5560  *	@valp: where to store the result
5561  *
5562  *	Reads a block of 4-byte words from the CIM intenal address space.
5563  */
5564 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
5565 		unsigned int *valp)
5566 {
5567 	int ret = 0;
5568 
5569 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
5570 		return -EBUSY;
5571 
5572 	for ( ; !ret && n--; addr += 4) {
5573 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
5574 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
5575 				      0, 5, 2);
5576 		if (!ret)
5577 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
5578 	}
5579 	return ret;
5580 }
5581 
5582 /**
5583  *	t4_cim_write - write a block into CIM internal address space
5584  *	@adap: the adapter
5585  *	@addr: the start address within the CIM address space
5586  *	@n: number of words to write
5587  *	@valp: set of values to write
5588  *
5589  *	Writes a block of 4-byte words into the CIM intenal address space.
5590  */
5591 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
5592 		 const unsigned int *valp)
5593 {
5594 	int ret = 0;
5595 
5596 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
5597 		return -EBUSY;
5598 
5599 	for ( ; !ret && n--; addr += 4) {
5600 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
5601 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
5602 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
5603 				      0, 5, 2);
5604 	}
5605 	return ret;
5606 }
5607 
5608 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
5609 			 unsigned int val)
5610 {
5611 	return t4_cim_write(adap, addr, 1, &val);
5612 }
5613 
5614 /**
5615  *	t4_cim_read_la - read CIM LA capture buffer
5616  *	@adap: the adapter
5617  *	@la_buf: where to store the LA data
5618  *	@wrptr: the HW write pointer within the capture buffer
5619  *
5620  *	Reads the contents of the CIM LA buffer with the most recent entry at
5621  *	the end	of the returned data and with the entry at @wrptr first.
5622  *	We try to leave the LA in the running state we find it in.
5623  */
5624 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
5625 {
5626 	int i, ret;
5627 	unsigned int cfg, val, idx;
5628 
5629 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
5630 	if (ret)
5631 		return ret;
5632 
5633 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
5634 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
5635 		if (ret)
5636 			return ret;
5637 	}
5638 
5639 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
5640 	if (ret)
5641 		goto restart;
5642 
5643 	idx = UPDBGLAWRPTR_G(val);
5644 	if (wrptr)
5645 		*wrptr = idx;
5646 
5647 	for (i = 0; i < adap->params.cim_la_size; i++) {
5648 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
5649 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
5650 		if (ret)
5651 			break;
5652 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
5653 		if (ret)
5654 			break;
5655 		if (val & UPDBGLARDEN_F) {
5656 			ret = -ETIMEDOUT;
5657 			break;
5658 		}
5659 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
5660 		if (ret)
5661 			break;
5662 		idx = (idx + 1) & UPDBGLARDPTR_M;
5663 	}
5664 restart:
5665 	if (cfg & UPDBGLAEN_F) {
5666 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
5667 				      cfg & ~UPDBGLARDEN_F);
5668 		if (!ret)
5669 			ret = r;
5670 	}
5671 	return ret;
5672 }
5673 
5674 /**
5675  *	t4_tp_read_la - read TP LA capture buffer
5676  *	@adap: the adapter
5677  *	@la_buf: where to store the LA data
5678  *	@wrptr: the HW write pointer within the capture buffer
5679  *
5680  *	Reads the contents of the TP LA buffer with the most recent entry at
5681  *	the end	of the returned data and with the entry at @wrptr first.
5682  *	We leave the LA in the running state we find it in.
5683  */
5684 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
5685 {
5686 	bool last_incomplete;
5687 	unsigned int i, cfg, val, idx;
5688 
5689 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
5690 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
5691 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
5692 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
5693 
5694 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
5695 	idx = DBGLAWPTR_G(val);
5696 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
5697 	if (last_incomplete)
5698 		idx = (idx + 1) & DBGLARPTR_M;
5699 	if (wrptr)
5700 		*wrptr = idx;
5701 
5702 	val &= 0xffff;
5703 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
5704 	val |= adap->params.tp.la_mask;
5705 
5706 	for (i = 0; i < TPLA_SIZE; i++) {
5707 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
5708 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
5709 		idx = (idx + 1) & DBGLARPTR_M;
5710 	}
5711 
5712 	/* Wipe out last entry if it isn't valid */
5713 	if (last_incomplete)
5714 		la_buf[TPLA_SIZE - 1] = ~0ULL;
5715 
5716 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
5717 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
5718 			     cfg | adap->params.tp.la_mask);
5719 }
5720