1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rarely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boundaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9810, 0x9864, 1383 0x9c00, 0x9c6c, 1384 0x9c80, 0x9cec, 1385 0x9d00, 0x9d6c, 1386 0x9d80, 0x9dec, 1387 0x9e00, 0x9e6c, 1388 0x9e80, 0x9eec, 1389 0x9f00, 0x9f6c, 1390 0x9f80, 0xa020, 1391 0xd000, 0xd004, 1392 0xd010, 0xd03c, 1393 0xdfc0, 0xdfe0, 1394 0xe000, 0x1106c, 1395 0x11074, 0x11088, 1396 0x1109c, 0x1117c, 1397 0x11190, 0x11204, 1398 0x19040, 0x1906c, 1399 0x19078, 0x19080, 1400 0x1908c, 0x190e8, 1401 0x190f0, 0x190f8, 1402 0x19100, 0x19110, 1403 0x19120, 0x19124, 1404 0x19150, 0x19194, 1405 0x1919c, 0x191b0, 1406 0x191d0, 0x191e8, 1407 0x19238, 0x19290, 1408 0x193f8, 0x19428, 1409 0x19430, 0x19444, 1410 0x1944c, 0x1946c, 1411 0x19474, 0x19474, 1412 0x19490, 0x194cc, 1413 0x194f0, 0x194f8, 1414 0x19c00, 0x19c08, 1415 0x19c10, 0x19c60, 1416 0x19c94, 0x19ce4, 1417 0x19cf0, 0x19d40, 1418 0x19d50, 0x19d94, 1419 0x19da0, 0x19de8, 1420 0x19df0, 0x19e10, 1421 0x19e50, 0x19e90, 1422 0x19ea0, 0x19f24, 1423 0x19f34, 0x19f34, 1424 0x19f40, 0x19f50, 1425 0x19f90, 0x19fb4, 1426 0x19fc4, 0x19fe4, 1427 0x1a000, 0x1a004, 1428 0x1a010, 0x1a06c, 1429 0x1a0b0, 0x1a0e4, 1430 0x1a0ec, 0x1a0f8, 1431 0x1a100, 0x1a108, 1432 0x1a114, 0x1a130, 1433 0x1a138, 0x1a1c4, 1434 0x1a1fc, 0x1a1fc, 1435 0x1e008, 0x1e00c, 1436 0x1e040, 0x1e044, 1437 0x1e04c, 0x1e04c, 1438 0x1e284, 0x1e290, 1439 0x1e2c0, 0x1e2c0, 1440 0x1e2e0, 0x1e2e0, 1441 0x1e300, 0x1e384, 1442 0x1e3c0, 0x1e3c8, 1443 0x1e408, 0x1e40c, 1444 0x1e440, 0x1e444, 1445 0x1e44c, 0x1e44c, 1446 0x1e684, 0x1e690, 1447 0x1e6c0, 0x1e6c0, 1448 0x1e6e0, 0x1e6e0, 1449 0x1e700, 0x1e784, 1450 0x1e7c0, 0x1e7c8, 1451 0x1e808, 0x1e80c, 1452 0x1e840, 0x1e844, 1453 0x1e84c, 0x1e84c, 1454 0x1ea84, 0x1ea90, 1455 0x1eac0, 0x1eac0, 1456 0x1eae0, 0x1eae0, 1457 0x1eb00, 0x1eb84, 1458 0x1ebc0, 0x1ebc8, 1459 0x1ec08, 0x1ec0c, 1460 0x1ec40, 0x1ec44, 1461 0x1ec4c, 0x1ec4c, 1462 0x1ee84, 0x1ee90, 1463 0x1eec0, 0x1eec0, 1464 0x1eee0, 0x1eee0, 1465 0x1ef00, 0x1ef84, 1466 0x1efc0, 0x1efc8, 1467 0x1f008, 0x1f00c, 1468 0x1f040, 0x1f044, 1469 0x1f04c, 0x1f04c, 1470 0x1f284, 0x1f290, 1471 0x1f2c0, 0x1f2c0, 1472 0x1f2e0, 0x1f2e0, 1473 0x1f300, 0x1f384, 1474 0x1f3c0, 0x1f3c8, 1475 0x1f408, 0x1f40c, 1476 0x1f440, 0x1f444, 1477 0x1f44c, 0x1f44c, 1478 0x1f684, 0x1f690, 1479 0x1f6c0, 0x1f6c0, 1480 0x1f6e0, 0x1f6e0, 1481 0x1f700, 0x1f784, 1482 0x1f7c0, 0x1f7c8, 1483 0x1f808, 0x1f80c, 1484 0x1f840, 0x1f844, 1485 0x1f84c, 0x1f84c, 1486 0x1fa84, 0x1fa90, 1487 0x1fac0, 0x1fac0, 1488 0x1fae0, 0x1fae0, 1489 0x1fb00, 0x1fb84, 1490 0x1fbc0, 0x1fbc8, 1491 0x1fc08, 0x1fc0c, 1492 0x1fc40, 0x1fc44, 1493 0x1fc4c, 0x1fc4c, 1494 0x1fe84, 0x1fe90, 1495 0x1fec0, 0x1fec0, 1496 0x1fee0, 0x1fee0, 1497 0x1ff00, 0x1ff84, 1498 0x1ffc0, 0x1ffc8, 1499 0x30000, 0x30030, 1500 0x30100, 0x30144, 1501 0x30190, 0x301a0, 1502 0x301a8, 0x301b8, 1503 0x301c4, 0x301c8, 1504 0x301d0, 0x301d0, 1505 0x30200, 0x30318, 1506 0x30400, 0x304b4, 1507 0x304c0, 0x3052c, 1508 0x30540, 0x3061c, 1509 0x30800, 0x30828, 1510 0x30834, 0x30834, 1511 0x308c0, 0x30908, 1512 0x30910, 0x309ac, 1513 0x30a00, 0x30a14, 1514 0x30a1c, 0x30a2c, 1515 0x30a44, 0x30a50, 1516 0x30a74, 0x30a74, 1517 0x30a7c, 0x30afc, 1518 0x30b08, 0x30c24, 1519 0x30d00, 0x30d00, 1520 0x30d08, 0x30d14, 1521 0x30d1c, 0x30d20, 1522 0x30d3c, 0x30d3c, 1523 0x30d48, 0x30d50, 1524 0x31200, 0x3120c, 1525 0x31220, 0x31220, 1526 0x31240, 0x31240, 1527 0x31600, 0x3160c, 1528 0x31a00, 0x31a1c, 1529 0x31e00, 0x31e20, 1530 0x31e38, 0x31e3c, 1531 0x31e80, 0x31e80, 1532 0x31e88, 0x31ea8, 1533 0x31eb0, 0x31eb4, 1534 0x31ec8, 0x31ed4, 1535 0x31fb8, 0x32004, 1536 0x32200, 0x32200, 1537 0x32208, 0x32240, 1538 0x32248, 0x32280, 1539 0x32288, 0x322c0, 1540 0x322c8, 0x322fc, 1541 0x32600, 0x32630, 1542 0x32a00, 0x32abc, 1543 0x32b00, 0x32b10, 1544 0x32b20, 0x32b30, 1545 0x32b40, 0x32b50, 1546 0x32b60, 0x32b70, 1547 0x33000, 0x33028, 1548 0x33030, 0x33048, 1549 0x33060, 0x33068, 1550 0x33070, 0x3309c, 1551 0x330f0, 0x33128, 1552 0x33130, 0x33148, 1553 0x33160, 0x33168, 1554 0x33170, 0x3319c, 1555 0x331f0, 0x33238, 1556 0x33240, 0x33240, 1557 0x33248, 0x33250, 1558 0x3325c, 0x33264, 1559 0x33270, 0x332b8, 1560 0x332c0, 0x332e4, 1561 0x332f8, 0x33338, 1562 0x33340, 0x33340, 1563 0x33348, 0x33350, 1564 0x3335c, 0x33364, 1565 0x33370, 0x333b8, 1566 0x333c0, 0x333e4, 1567 0x333f8, 0x33428, 1568 0x33430, 0x33448, 1569 0x33460, 0x33468, 1570 0x33470, 0x3349c, 1571 0x334f0, 0x33528, 1572 0x33530, 0x33548, 1573 0x33560, 0x33568, 1574 0x33570, 0x3359c, 1575 0x335f0, 0x33638, 1576 0x33640, 0x33640, 1577 0x33648, 0x33650, 1578 0x3365c, 0x33664, 1579 0x33670, 0x336b8, 1580 0x336c0, 0x336e4, 1581 0x336f8, 0x33738, 1582 0x33740, 0x33740, 1583 0x33748, 0x33750, 1584 0x3375c, 0x33764, 1585 0x33770, 0x337b8, 1586 0x337c0, 0x337e4, 1587 0x337f8, 0x337fc, 1588 0x33814, 0x33814, 1589 0x3382c, 0x3382c, 1590 0x33880, 0x3388c, 1591 0x338e8, 0x338ec, 1592 0x33900, 0x33928, 1593 0x33930, 0x33948, 1594 0x33960, 0x33968, 1595 0x33970, 0x3399c, 1596 0x339f0, 0x33a38, 1597 0x33a40, 0x33a40, 1598 0x33a48, 0x33a50, 1599 0x33a5c, 0x33a64, 1600 0x33a70, 0x33ab8, 1601 0x33ac0, 0x33ae4, 1602 0x33af8, 0x33b10, 1603 0x33b28, 0x33b28, 1604 0x33b3c, 0x33b50, 1605 0x33bf0, 0x33c10, 1606 0x33c28, 0x33c28, 1607 0x33c3c, 0x33c50, 1608 0x33cf0, 0x33cfc, 1609 0x34000, 0x34030, 1610 0x34100, 0x34144, 1611 0x34190, 0x341a0, 1612 0x341a8, 0x341b8, 1613 0x341c4, 0x341c8, 1614 0x341d0, 0x341d0, 1615 0x34200, 0x34318, 1616 0x34400, 0x344b4, 1617 0x344c0, 0x3452c, 1618 0x34540, 0x3461c, 1619 0x34800, 0x34828, 1620 0x34834, 0x34834, 1621 0x348c0, 0x34908, 1622 0x34910, 0x349ac, 1623 0x34a00, 0x34a14, 1624 0x34a1c, 0x34a2c, 1625 0x34a44, 0x34a50, 1626 0x34a74, 0x34a74, 1627 0x34a7c, 0x34afc, 1628 0x34b08, 0x34c24, 1629 0x34d00, 0x34d00, 1630 0x34d08, 0x34d14, 1631 0x34d1c, 0x34d20, 1632 0x34d3c, 0x34d3c, 1633 0x34d48, 0x34d50, 1634 0x35200, 0x3520c, 1635 0x35220, 0x35220, 1636 0x35240, 0x35240, 1637 0x35600, 0x3560c, 1638 0x35a00, 0x35a1c, 1639 0x35e00, 0x35e20, 1640 0x35e38, 0x35e3c, 1641 0x35e80, 0x35e80, 1642 0x35e88, 0x35ea8, 1643 0x35eb0, 0x35eb4, 1644 0x35ec8, 0x35ed4, 1645 0x35fb8, 0x36004, 1646 0x36200, 0x36200, 1647 0x36208, 0x36240, 1648 0x36248, 0x36280, 1649 0x36288, 0x362c0, 1650 0x362c8, 0x362fc, 1651 0x36600, 0x36630, 1652 0x36a00, 0x36abc, 1653 0x36b00, 0x36b10, 1654 0x36b20, 0x36b30, 1655 0x36b40, 0x36b50, 1656 0x36b60, 0x36b70, 1657 0x37000, 0x37028, 1658 0x37030, 0x37048, 1659 0x37060, 0x37068, 1660 0x37070, 0x3709c, 1661 0x370f0, 0x37128, 1662 0x37130, 0x37148, 1663 0x37160, 0x37168, 1664 0x37170, 0x3719c, 1665 0x371f0, 0x37238, 1666 0x37240, 0x37240, 1667 0x37248, 0x37250, 1668 0x3725c, 0x37264, 1669 0x37270, 0x372b8, 1670 0x372c0, 0x372e4, 1671 0x372f8, 0x37338, 1672 0x37340, 0x37340, 1673 0x37348, 0x37350, 1674 0x3735c, 0x37364, 1675 0x37370, 0x373b8, 1676 0x373c0, 0x373e4, 1677 0x373f8, 0x37428, 1678 0x37430, 0x37448, 1679 0x37460, 0x37468, 1680 0x37470, 0x3749c, 1681 0x374f0, 0x37528, 1682 0x37530, 0x37548, 1683 0x37560, 0x37568, 1684 0x37570, 0x3759c, 1685 0x375f0, 0x37638, 1686 0x37640, 0x37640, 1687 0x37648, 0x37650, 1688 0x3765c, 0x37664, 1689 0x37670, 0x376b8, 1690 0x376c0, 0x376e4, 1691 0x376f8, 0x37738, 1692 0x37740, 0x37740, 1693 0x37748, 0x37750, 1694 0x3775c, 0x37764, 1695 0x37770, 0x377b8, 1696 0x377c0, 0x377e4, 1697 0x377f8, 0x377fc, 1698 0x37814, 0x37814, 1699 0x3782c, 0x3782c, 1700 0x37880, 0x3788c, 1701 0x378e8, 0x378ec, 1702 0x37900, 0x37928, 1703 0x37930, 0x37948, 1704 0x37960, 0x37968, 1705 0x37970, 0x3799c, 1706 0x379f0, 0x37a38, 1707 0x37a40, 0x37a40, 1708 0x37a48, 0x37a50, 1709 0x37a5c, 0x37a64, 1710 0x37a70, 0x37ab8, 1711 0x37ac0, 0x37ae4, 1712 0x37af8, 0x37b10, 1713 0x37b28, 0x37b28, 1714 0x37b3c, 0x37b50, 1715 0x37bf0, 0x37c10, 1716 0x37c28, 0x37c28, 1717 0x37c3c, 0x37c50, 1718 0x37cf0, 0x37cfc, 1719 0x38000, 0x38030, 1720 0x38100, 0x38144, 1721 0x38190, 0x381a0, 1722 0x381a8, 0x381b8, 1723 0x381c4, 0x381c8, 1724 0x381d0, 0x381d0, 1725 0x38200, 0x38318, 1726 0x38400, 0x384b4, 1727 0x384c0, 0x3852c, 1728 0x38540, 0x3861c, 1729 0x38800, 0x38828, 1730 0x38834, 0x38834, 1731 0x388c0, 0x38908, 1732 0x38910, 0x389ac, 1733 0x38a00, 0x38a14, 1734 0x38a1c, 0x38a2c, 1735 0x38a44, 0x38a50, 1736 0x38a74, 0x38a74, 1737 0x38a7c, 0x38afc, 1738 0x38b08, 0x38c24, 1739 0x38d00, 0x38d00, 1740 0x38d08, 0x38d14, 1741 0x38d1c, 0x38d20, 1742 0x38d3c, 0x38d3c, 1743 0x38d48, 0x38d50, 1744 0x39200, 0x3920c, 1745 0x39220, 0x39220, 1746 0x39240, 0x39240, 1747 0x39600, 0x3960c, 1748 0x39a00, 0x39a1c, 1749 0x39e00, 0x39e20, 1750 0x39e38, 0x39e3c, 1751 0x39e80, 0x39e80, 1752 0x39e88, 0x39ea8, 1753 0x39eb0, 0x39eb4, 1754 0x39ec8, 0x39ed4, 1755 0x39fb8, 0x3a004, 1756 0x3a200, 0x3a200, 1757 0x3a208, 0x3a240, 1758 0x3a248, 0x3a280, 1759 0x3a288, 0x3a2c0, 1760 0x3a2c8, 0x3a2fc, 1761 0x3a600, 0x3a630, 1762 0x3aa00, 0x3aabc, 1763 0x3ab00, 0x3ab10, 1764 0x3ab20, 0x3ab30, 1765 0x3ab40, 0x3ab50, 1766 0x3ab60, 0x3ab70, 1767 0x3b000, 0x3b028, 1768 0x3b030, 0x3b048, 1769 0x3b060, 0x3b068, 1770 0x3b070, 0x3b09c, 1771 0x3b0f0, 0x3b128, 1772 0x3b130, 0x3b148, 1773 0x3b160, 0x3b168, 1774 0x3b170, 0x3b19c, 1775 0x3b1f0, 0x3b238, 1776 0x3b240, 0x3b240, 1777 0x3b248, 0x3b250, 1778 0x3b25c, 0x3b264, 1779 0x3b270, 0x3b2b8, 1780 0x3b2c0, 0x3b2e4, 1781 0x3b2f8, 0x3b338, 1782 0x3b340, 0x3b340, 1783 0x3b348, 0x3b350, 1784 0x3b35c, 0x3b364, 1785 0x3b370, 0x3b3b8, 1786 0x3b3c0, 0x3b3e4, 1787 0x3b3f8, 0x3b428, 1788 0x3b430, 0x3b448, 1789 0x3b460, 0x3b468, 1790 0x3b470, 0x3b49c, 1791 0x3b4f0, 0x3b528, 1792 0x3b530, 0x3b548, 1793 0x3b560, 0x3b568, 1794 0x3b570, 0x3b59c, 1795 0x3b5f0, 0x3b638, 1796 0x3b640, 0x3b640, 1797 0x3b648, 0x3b650, 1798 0x3b65c, 0x3b664, 1799 0x3b670, 0x3b6b8, 1800 0x3b6c0, 0x3b6e4, 1801 0x3b6f8, 0x3b738, 1802 0x3b740, 0x3b740, 1803 0x3b748, 0x3b750, 1804 0x3b75c, 0x3b764, 1805 0x3b770, 0x3b7b8, 1806 0x3b7c0, 0x3b7e4, 1807 0x3b7f8, 0x3b7fc, 1808 0x3b814, 0x3b814, 1809 0x3b82c, 0x3b82c, 1810 0x3b880, 0x3b88c, 1811 0x3b8e8, 0x3b8ec, 1812 0x3b900, 0x3b928, 1813 0x3b930, 0x3b948, 1814 0x3b960, 0x3b968, 1815 0x3b970, 0x3b99c, 1816 0x3b9f0, 0x3ba38, 1817 0x3ba40, 0x3ba40, 1818 0x3ba48, 0x3ba50, 1819 0x3ba5c, 0x3ba64, 1820 0x3ba70, 0x3bab8, 1821 0x3bac0, 0x3bae4, 1822 0x3baf8, 0x3bb10, 1823 0x3bb28, 0x3bb28, 1824 0x3bb3c, 0x3bb50, 1825 0x3bbf0, 0x3bc10, 1826 0x3bc28, 0x3bc28, 1827 0x3bc3c, 0x3bc50, 1828 0x3bcf0, 0x3bcfc, 1829 0x3c000, 0x3c030, 1830 0x3c100, 0x3c144, 1831 0x3c190, 0x3c1a0, 1832 0x3c1a8, 0x3c1b8, 1833 0x3c1c4, 0x3c1c8, 1834 0x3c1d0, 0x3c1d0, 1835 0x3c200, 0x3c318, 1836 0x3c400, 0x3c4b4, 1837 0x3c4c0, 0x3c52c, 1838 0x3c540, 0x3c61c, 1839 0x3c800, 0x3c828, 1840 0x3c834, 0x3c834, 1841 0x3c8c0, 0x3c908, 1842 0x3c910, 0x3c9ac, 1843 0x3ca00, 0x3ca14, 1844 0x3ca1c, 0x3ca2c, 1845 0x3ca44, 0x3ca50, 1846 0x3ca74, 0x3ca74, 1847 0x3ca7c, 0x3cafc, 1848 0x3cb08, 0x3cc24, 1849 0x3cd00, 0x3cd00, 1850 0x3cd08, 0x3cd14, 1851 0x3cd1c, 0x3cd20, 1852 0x3cd3c, 0x3cd3c, 1853 0x3cd48, 0x3cd50, 1854 0x3d200, 0x3d20c, 1855 0x3d220, 0x3d220, 1856 0x3d240, 0x3d240, 1857 0x3d600, 0x3d60c, 1858 0x3da00, 0x3da1c, 1859 0x3de00, 0x3de20, 1860 0x3de38, 0x3de3c, 1861 0x3de80, 0x3de80, 1862 0x3de88, 0x3dea8, 1863 0x3deb0, 0x3deb4, 1864 0x3dec8, 0x3ded4, 1865 0x3dfb8, 0x3e004, 1866 0x3e200, 0x3e200, 1867 0x3e208, 0x3e240, 1868 0x3e248, 0x3e280, 1869 0x3e288, 0x3e2c0, 1870 0x3e2c8, 0x3e2fc, 1871 0x3e600, 0x3e630, 1872 0x3ea00, 0x3eabc, 1873 0x3eb00, 0x3eb10, 1874 0x3eb20, 0x3eb30, 1875 0x3eb40, 0x3eb50, 1876 0x3eb60, 0x3eb70, 1877 0x3f000, 0x3f028, 1878 0x3f030, 0x3f048, 1879 0x3f060, 0x3f068, 1880 0x3f070, 0x3f09c, 1881 0x3f0f0, 0x3f128, 1882 0x3f130, 0x3f148, 1883 0x3f160, 0x3f168, 1884 0x3f170, 0x3f19c, 1885 0x3f1f0, 0x3f238, 1886 0x3f240, 0x3f240, 1887 0x3f248, 0x3f250, 1888 0x3f25c, 0x3f264, 1889 0x3f270, 0x3f2b8, 1890 0x3f2c0, 0x3f2e4, 1891 0x3f2f8, 0x3f338, 1892 0x3f340, 0x3f340, 1893 0x3f348, 0x3f350, 1894 0x3f35c, 0x3f364, 1895 0x3f370, 0x3f3b8, 1896 0x3f3c0, 0x3f3e4, 1897 0x3f3f8, 0x3f428, 1898 0x3f430, 0x3f448, 1899 0x3f460, 0x3f468, 1900 0x3f470, 0x3f49c, 1901 0x3f4f0, 0x3f528, 1902 0x3f530, 0x3f548, 1903 0x3f560, 0x3f568, 1904 0x3f570, 0x3f59c, 1905 0x3f5f0, 0x3f638, 1906 0x3f640, 0x3f640, 1907 0x3f648, 0x3f650, 1908 0x3f65c, 0x3f664, 1909 0x3f670, 0x3f6b8, 1910 0x3f6c0, 0x3f6e4, 1911 0x3f6f8, 0x3f738, 1912 0x3f740, 0x3f740, 1913 0x3f748, 0x3f750, 1914 0x3f75c, 0x3f764, 1915 0x3f770, 0x3f7b8, 1916 0x3f7c0, 0x3f7e4, 1917 0x3f7f8, 0x3f7fc, 1918 0x3f814, 0x3f814, 1919 0x3f82c, 0x3f82c, 1920 0x3f880, 0x3f88c, 1921 0x3f8e8, 0x3f8ec, 1922 0x3f900, 0x3f928, 1923 0x3f930, 0x3f948, 1924 0x3f960, 0x3f968, 1925 0x3f970, 0x3f99c, 1926 0x3f9f0, 0x3fa38, 1927 0x3fa40, 0x3fa40, 1928 0x3fa48, 0x3fa50, 1929 0x3fa5c, 0x3fa64, 1930 0x3fa70, 0x3fab8, 1931 0x3fac0, 0x3fae4, 1932 0x3faf8, 0x3fb10, 1933 0x3fb28, 0x3fb28, 1934 0x3fb3c, 0x3fb50, 1935 0x3fbf0, 0x3fc10, 1936 0x3fc28, 0x3fc28, 1937 0x3fc3c, 0x3fc50, 1938 0x3fcf0, 0x3fcfc, 1939 0x40000, 0x4000c, 1940 0x40040, 0x40050, 1941 0x40060, 0x40068, 1942 0x4007c, 0x4008c, 1943 0x40094, 0x400b0, 1944 0x400c0, 0x40144, 1945 0x40180, 0x4018c, 1946 0x40200, 0x40254, 1947 0x40260, 0x40264, 1948 0x40270, 0x40288, 1949 0x40290, 0x40298, 1950 0x402ac, 0x402c8, 1951 0x402d0, 0x402e0, 1952 0x402f0, 0x402f0, 1953 0x40300, 0x4033c, 1954 0x403f8, 0x403fc, 1955 0x41304, 0x413c4, 1956 0x41400, 0x4140c, 1957 0x41414, 0x4141c, 1958 0x41480, 0x414d0, 1959 0x44000, 0x44054, 1960 0x4405c, 0x44078, 1961 0x440c0, 0x44174, 1962 0x44180, 0x441ac, 1963 0x441b4, 0x441b8, 1964 0x441c0, 0x44254, 1965 0x4425c, 0x44278, 1966 0x442c0, 0x44374, 1967 0x44380, 0x443ac, 1968 0x443b4, 0x443b8, 1969 0x443c0, 0x44454, 1970 0x4445c, 0x44478, 1971 0x444c0, 0x44574, 1972 0x44580, 0x445ac, 1973 0x445b4, 0x445b8, 1974 0x445c0, 0x44654, 1975 0x4465c, 0x44678, 1976 0x446c0, 0x44774, 1977 0x44780, 0x447ac, 1978 0x447b4, 0x447b8, 1979 0x447c0, 0x44854, 1980 0x4485c, 0x44878, 1981 0x448c0, 0x44974, 1982 0x44980, 0x449ac, 1983 0x449b4, 0x449b8, 1984 0x449c0, 0x449fc, 1985 0x45000, 0x45004, 1986 0x45010, 0x45030, 1987 0x45040, 0x45060, 1988 0x45068, 0x45068, 1989 0x45080, 0x45084, 1990 0x450a0, 0x450b0, 1991 0x45200, 0x45204, 1992 0x45210, 0x45230, 1993 0x45240, 0x45260, 1994 0x45268, 0x45268, 1995 0x45280, 0x45284, 1996 0x452a0, 0x452b0, 1997 0x460c0, 0x460e4, 1998 0x47000, 0x4703c, 1999 0x47044, 0x4708c, 2000 0x47200, 0x47250, 2001 0x47400, 0x47408, 2002 0x47414, 0x47420, 2003 0x47600, 0x47618, 2004 0x47800, 0x47814, 2005 0x48000, 0x4800c, 2006 0x48040, 0x48050, 2007 0x48060, 0x48068, 2008 0x4807c, 0x4808c, 2009 0x48094, 0x480b0, 2010 0x480c0, 0x48144, 2011 0x48180, 0x4818c, 2012 0x48200, 0x48254, 2013 0x48260, 0x48264, 2014 0x48270, 0x48288, 2015 0x48290, 0x48298, 2016 0x482ac, 0x482c8, 2017 0x482d0, 0x482e0, 2018 0x482f0, 0x482f0, 2019 0x48300, 0x4833c, 2020 0x483f8, 0x483fc, 2021 0x49304, 0x493c4, 2022 0x49400, 0x4940c, 2023 0x49414, 0x4941c, 2024 0x49480, 0x494d0, 2025 0x4c000, 0x4c054, 2026 0x4c05c, 0x4c078, 2027 0x4c0c0, 0x4c174, 2028 0x4c180, 0x4c1ac, 2029 0x4c1b4, 0x4c1b8, 2030 0x4c1c0, 0x4c254, 2031 0x4c25c, 0x4c278, 2032 0x4c2c0, 0x4c374, 2033 0x4c380, 0x4c3ac, 2034 0x4c3b4, 0x4c3b8, 2035 0x4c3c0, 0x4c454, 2036 0x4c45c, 0x4c478, 2037 0x4c4c0, 0x4c574, 2038 0x4c580, 0x4c5ac, 2039 0x4c5b4, 0x4c5b8, 2040 0x4c5c0, 0x4c654, 2041 0x4c65c, 0x4c678, 2042 0x4c6c0, 0x4c774, 2043 0x4c780, 0x4c7ac, 2044 0x4c7b4, 0x4c7b8, 2045 0x4c7c0, 0x4c854, 2046 0x4c85c, 0x4c878, 2047 0x4c8c0, 0x4c974, 2048 0x4c980, 0x4c9ac, 2049 0x4c9b4, 0x4c9b8, 2050 0x4c9c0, 0x4c9fc, 2051 0x4d000, 0x4d004, 2052 0x4d010, 0x4d030, 2053 0x4d040, 0x4d060, 2054 0x4d068, 0x4d068, 2055 0x4d080, 0x4d084, 2056 0x4d0a0, 0x4d0b0, 2057 0x4d200, 0x4d204, 2058 0x4d210, 0x4d230, 2059 0x4d240, 0x4d260, 2060 0x4d268, 0x4d268, 2061 0x4d280, 0x4d284, 2062 0x4d2a0, 0x4d2b0, 2063 0x4e0c0, 0x4e0e4, 2064 0x4f000, 0x4f03c, 2065 0x4f044, 0x4f08c, 2066 0x4f200, 0x4f250, 2067 0x4f400, 0x4f408, 2068 0x4f414, 0x4f420, 2069 0x4f600, 0x4f618, 2070 0x4f800, 0x4f814, 2071 0x50000, 0x50084, 2072 0x50090, 0x500cc, 2073 0x50400, 0x50400, 2074 0x50800, 0x50884, 2075 0x50890, 0x508cc, 2076 0x50c00, 0x50c00, 2077 0x51000, 0x5101c, 2078 0x51300, 0x51308, 2079 }; 2080 2081 static const unsigned int t6_reg_ranges[] = { 2082 0x1008, 0x101c, 2083 0x1024, 0x10a8, 2084 0x10b4, 0x10f8, 2085 0x1100, 0x1114, 2086 0x111c, 0x112c, 2087 0x1138, 0x113c, 2088 0x1144, 0x114c, 2089 0x1180, 0x1184, 2090 0x1190, 0x1194, 2091 0x11a0, 0x11a4, 2092 0x11b0, 0x11b4, 2093 0x11fc, 0x1274, 2094 0x1280, 0x133c, 2095 0x1800, 0x18fc, 2096 0x3000, 0x302c, 2097 0x3060, 0x30b0, 2098 0x30b8, 0x30d8, 2099 0x30e0, 0x30fc, 2100 0x3140, 0x357c, 2101 0x35a8, 0x35cc, 2102 0x35ec, 0x35ec, 2103 0x3600, 0x5624, 2104 0x56cc, 0x56ec, 2105 0x56f4, 0x5720, 2106 0x5728, 0x575c, 2107 0x580c, 0x5814, 2108 0x5890, 0x589c, 2109 0x58a4, 0x58ac, 2110 0x58b8, 0x58bc, 2111 0x5940, 0x595c, 2112 0x5980, 0x598c, 2113 0x59b0, 0x59c8, 2114 0x59d0, 0x59dc, 2115 0x59fc, 0x5a18, 2116 0x5a60, 0x5a6c, 2117 0x5a80, 0x5a8c, 2118 0x5a94, 0x5a9c, 2119 0x5b94, 0x5bfc, 2120 0x5c10, 0x5e48, 2121 0x5e50, 0x5e94, 2122 0x5ea0, 0x5eb0, 2123 0x5ec0, 0x5ec0, 2124 0x5ec8, 0x5ed0, 2125 0x5ee0, 0x5ee0, 2126 0x5ef0, 0x5ef0, 2127 0x5f00, 0x5f00, 2128 0x6000, 0x6020, 2129 0x6028, 0x6040, 2130 0x6058, 0x609c, 2131 0x60a8, 0x619c, 2132 0x7700, 0x7798, 2133 0x77c0, 0x7880, 2134 0x78cc, 0x78fc, 2135 0x7b00, 0x7b58, 2136 0x7b60, 0x7b84, 2137 0x7b8c, 0x7c54, 2138 0x7d00, 0x7d38, 2139 0x7d40, 0x7d84, 2140 0x7d8c, 0x7ddc, 2141 0x7de4, 0x7e04, 2142 0x7e10, 0x7e1c, 2143 0x7e24, 0x7e38, 2144 0x7e40, 0x7e44, 2145 0x7e4c, 0x7e78, 2146 0x7e80, 0x7edc, 2147 0x7ee8, 0x7efc, 2148 0x8dc0, 0x8de4, 2149 0x8df8, 0x8e04, 2150 0x8e10, 0x8e84, 2151 0x8ea0, 0x8f88, 2152 0x8fb8, 0x9058, 2153 0x9060, 0x9060, 2154 0x9068, 0x90f8, 2155 0x9100, 0x9124, 2156 0x9400, 0x9470, 2157 0x9600, 0x9600, 2158 0x9608, 0x9638, 2159 0x9640, 0x9704, 2160 0x9710, 0x971c, 2161 0x9800, 0x9808, 2162 0x9810, 0x9864, 2163 0x9c00, 0x9c6c, 2164 0x9c80, 0x9cec, 2165 0x9d00, 0x9d6c, 2166 0x9d80, 0x9dec, 2167 0x9e00, 0x9e6c, 2168 0x9e80, 0x9eec, 2169 0x9f00, 0x9f6c, 2170 0x9f80, 0xa020, 2171 0xd000, 0xd03c, 2172 0xd100, 0xd118, 2173 0xd200, 0xd214, 2174 0xd220, 0xd234, 2175 0xd240, 0xd254, 2176 0xd260, 0xd274, 2177 0xd280, 0xd294, 2178 0xd2a0, 0xd2b4, 2179 0xd2c0, 0xd2d4, 2180 0xd2e0, 0xd2f4, 2181 0xd300, 0xd31c, 2182 0xdfc0, 0xdfe0, 2183 0xe000, 0xf008, 2184 0xf010, 0xf018, 2185 0xf020, 0xf028, 2186 0x11000, 0x11014, 2187 0x11048, 0x1106c, 2188 0x11074, 0x11088, 2189 0x11098, 0x11120, 2190 0x1112c, 0x1117c, 2191 0x11190, 0x112e0, 2192 0x11300, 0x1130c, 2193 0x12000, 0x1206c, 2194 0x19040, 0x1906c, 2195 0x19078, 0x19080, 2196 0x1908c, 0x190e8, 2197 0x190f0, 0x190f8, 2198 0x19100, 0x19110, 2199 0x19120, 0x19124, 2200 0x19150, 0x19194, 2201 0x1919c, 0x191b0, 2202 0x191d0, 0x191e8, 2203 0x19238, 0x19290, 2204 0x192a4, 0x192b0, 2205 0x192bc, 0x192bc, 2206 0x19348, 0x1934c, 2207 0x193f8, 0x19418, 2208 0x19420, 0x19428, 2209 0x19430, 0x19444, 2210 0x1944c, 0x1946c, 2211 0x19474, 0x19474, 2212 0x19490, 0x194cc, 2213 0x194f0, 0x194f8, 2214 0x19c00, 0x19c48, 2215 0x19c50, 0x19c80, 2216 0x19c94, 0x19c98, 2217 0x19ca0, 0x19cbc, 2218 0x19ce4, 0x19ce4, 2219 0x19cf0, 0x19cf8, 2220 0x19d00, 0x19d28, 2221 0x19d50, 0x19d78, 2222 0x19d94, 0x19d98, 2223 0x19da0, 0x19dc8, 2224 0x19df0, 0x19e10, 2225 0x19e50, 0x19e6c, 2226 0x19ea0, 0x19ebc, 2227 0x19ec4, 0x19ef4, 2228 0x19f04, 0x19f2c, 2229 0x19f34, 0x19f34, 2230 0x19f40, 0x19f50, 2231 0x19f90, 0x19fac, 2232 0x19fc4, 0x19fc8, 2233 0x19fd0, 0x19fe4, 2234 0x1a000, 0x1a004, 2235 0x1a010, 0x1a06c, 2236 0x1a0b0, 0x1a0e4, 2237 0x1a0ec, 0x1a0f8, 2238 0x1a100, 0x1a108, 2239 0x1a114, 0x1a130, 2240 0x1a138, 0x1a1c4, 2241 0x1a1fc, 0x1a1fc, 2242 0x1e008, 0x1e00c, 2243 0x1e040, 0x1e044, 2244 0x1e04c, 0x1e04c, 2245 0x1e284, 0x1e290, 2246 0x1e2c0, 0x1e2c0, 2247 0x1e2e0, 0x1e2e0, 2248 0x1e300, 0x1e384, 2249 0x1e3c0, 0x1e3c8, 2250 0x1e408, 0x1e40c, 2251 0x1e440, 0x1e444, 2252 0x1e44c, 0x1e44c, 2253 0x1e684, 0x1e690, 2254 0x1e6c0, 0x1e6c0, 2255 0x1e6e0, 0x1e6e0, 2256 0x1e700, 0x1e784, 2257 0x1e7c0, 0x1e7c8, 2258 0x1e808, 0x1e80c, 2259 0x1e840, 0x1e844, 2260 0x1e84c, 0x1e84c, 2261 0x1ea84, 0x1ea90, 2262 0x1eac0, 0x1eac0, 2263 0x1eae0, 0x1eae0, 2264 0x1eb00, 0x1eb84, 2265 0x1ebc0, 0x1ebc8, 2266 0x1ec08, 0x1ec0c, 2267 0x1ec40, 0x1ec44, 2268 0x1ec4c, 0x1ec4c, 2269 0x1ee84, 0x1ee90, 2270 0x1eec0, 0x1eec0, 2271 0x1eee0, 0x1eee0, 2272 0x1ef00, 0x1ef84, 2273 0x1efc0, 0x1efc8, 2274 0x1f008, 0x1f00c, 2275 0x1f040, 0x1f044, 2276 0x1f04c, 0x1f04c, 2277 0x1f284, 0x1f290, 2278 0x1f2c0, 0x1f2c0, 2279 0x1f2e0, 0x1f2e0, 2280 0x1f300, 0x1f384, 2281 0x1f3c0, 0x1f3c8, 2282 0x1f408, 0x1f40c, 2283 0x1f440, 0x1f444, 2284 0x1f44c, 0x1f44c, 2285 0x1f684, 0x1f690, 2286 0x1f6c0, 0x1f6c0, 2287 0x1f6e0, 0x1f6e0, 2288 0x1f700, 0x1f784, 2289 0x1f7c0, 0x1f7c8, 2290 0x1f808, 0x1f80c, 2291 0x1f840, 0x1f844, 2292 0x1f84c, 0x1f84c, 2293 0x1fa84, 0x1fa90, 2294 0x1fac0, 0x1fac0, 2295 0x1fae0, 0x1fae0, 2296 0x1fb00, 0x1fb84, 2297 0x1fbc0, 0x1fbc8, 2298 0x1fc08, 0x1fc0c, 2299 0x1fc40, 0x1fc44, 2300 0x1fc4c, 0x1fc4c, 2301 0x1fe84, 0x1fe90, 2302 0x1fec0, 0x1fec0, 2303 0x1fee0, 0x1fee0, 2304 0x1ff00, 0x1ff84, 2305 0x1ffc0, 0x1ffc8, 2306 0x30000, 0x30030, 2307 0x30100, 0x30168, 2308 0x30190, 0x301a0, 2309 0x301a8, 0x301b8, 2310 0x301c4, 0x301c8, 2311 0x301d0, 0x301d0, 2312 0x30200, 0x30320, 2313 0x30400, 0x304b4, 2314 0x304c0, 0x3052c, 2315 0x30540, 0x3061c, 2316 0x30800, 0x308a0, 2317 0x308c0, 0x30908, 2318 0x30910, 0x309b8, 2319 0x30a00, 0x30a04, 2320 0x30a0c, 0x30a14, 2321 0x30a1c, 0x30a2c, 2322 0x30a44, 0x30a50, 2323 0x30a74, 0x30a74, 2324 0x30a7c, 0x30afc, 2325 0x30b08, 0x30c24, 2326 0x30d00, 0x30d14, 2327 0x30d1c, 0x30d3c, 2328 0x30d44, 0x30d4c, 2329 0x30d54, 0x30d74, 2330 0x30d7c, 0x30d7c, 2331 0x30de0, 0x30de0, 2332 0x30e00, 0x30ed4, 2333 0x30f00, 0x30fa4, 2334 0x30fc0, 0x30fc4, 2335 0x31000, 0x31004, 2336 0x31080, 0x310fc, 2337 0x31208, 0x31220, 2338 0x3123c, 0x31254, 2339 0x31300, 0x31300, 2340 0x31308, 0x3131c, 2341 0x31338, 0x3133c, 2342 0x31380, 0x31380, 2343 0x31388, 0x313a8, 2344 0x313b4, 0x313b4, 2345 0x31400, 0x31420, 2346 0x31438, 0x3143c, 2347 0x31480, 0x31480, 2348 0x314a8, 0x314a8, 2349 0x314b0, 0x314b4, 2350 0x314c8, 0x314d4, 2351 0x31a40, 0x31a4c, 2352 0x31af0, 0x31b20, 2353 0x31b38, 0x31b3c, 2354 0x31b80, 0x31b80, 2355 0x31ba8, 0x31ba8, 2356 0x31bb0, 0x31bb4, 2357 0x31bc8, 0x31bd4, 2358 0x32140, 0x3218c, 2359 0x321f0, 0x321f4, 2360 0x32200, 0x32200, 2361 0x32218, 0x32218, 2362 0x32400, 0x32400, 2363 0x32408, 0x3241c, 2364 0x32618, 0x32620, 2365 0x32664, 0x32664, 2366 0x326a8, 0x326a8, 2367 0x326ec, 0x326ec, 2368 0x32a00, 0x32abc, 2369 0x32b00, 0x32b18, 2370 0x32b20, 0x32b38, 2371 0x32b40, 0x32b58, 2372 0x32b60, 0x32b78, 2373 0x32c00, 0x32c00, 2374 0x32c08, 0x32c3c, 2375 0x33000, 0x3302c, 2376 0x33034, 0x33050, 2377 0x33058, 0x33058, 2378 0x33060, 0x3308c, 2379 0x3309c, 0x330ac, 2380 0x330c0, 0x330c0, 2381 0x330c8, 0x330d0, 2382 0x330d8, 0x330e0, 2383 0x330ec, 0x3312c, 2384 0x33134, 0x33150, 2385 0x33158, 0x33158, 2386 0x33160, 0x3318c, 2387 0x3319c, 0x331ac, 2388 0x331c0, 0x331c0, 2389 0x331c8, 0x331d0, 2390 0x331d8, 0x331e0, 2391 0x331ec, 0x33290, 2392 0x33298, 0x332c4, 2393 0x332e4, 0x33390, 2394 0x33398, 0x333c4, 2395 0x333e4, 0x3342c, 2396 0x33434, 0x33450, 2397 0x33458, 0x33458, 2398 0x33460, 0x3348c, 2399 0x3349c, 0x334ac, 2400 0x334c0, 0x334c0, 2401 0x334c8, 0x334d0, 2402 0x334d8, 0x334e0, 2403 0x334ec, 0x3352c, 2404 0x33534, 0x33550, 2405 0x33558, 0x33558, 2406 0x33560, 0x3358c, 2407 0x3359c, 0x335ac, 2408 0x335c0, 0x335c0, 2409 0x335c8, 0x335d0, 2410 0x335d8, 0x335e0, 2411 0x335ec, 0x33690, 2412 0x33698, 0x336c4, 2413 0x336e4, 0x33790, 2414 0x33798, 0x337c4, 2415 0x337e4, 0x337fc, 2416 0x33814, 0x33814, 2417 0x33854, 0x33868, 2418 0x33880, 0x3388c, 2419 0x338c0, 0x338d0, 2420 0x338e8, 0x338ec, 2421 0x33900, 0x3392c, 2422 0x33934, 0x33950, 2423 0x33958, 0x33958, 2424 0x33960, 0x3398c, 2425 0x3399c, 0x339ac, 2426 0x339c0, 0x339c0, 2427 0x339c8, 0x339d0, 2428 0x339d8, 0x339e0, 2429 0x339ec, 0x33a90, 2430 0x33a98, 0x33ac4, 2431 0x33ae4, 0x33b10, 2432 0x33b24, 0x33b28, 2433 0x33b38, 0x33b50, 2434 0x33bf0, 0x33c10, 2435 0x33c24, 0x33c28, 2436 0x33c38, 0x33c50, 2437 0x33cf0, 0x33cfc, 2438 0x34000, 0x34030, 2439 0x34100, 0x34168, 2440 0x34190, 0x341a0, 2441 0x341a8, 0x341b8, 2442 0x341c4, 0x341c8, 2443 0x341d0, 0x341d0, 2444 0x34200, 0x34320, 2445 0x34400, 0x344b4, 2446 0x344c0, 0x3452c, 2447 0x34540, 0x3461c, 2448 0x34800, 0x348a0, 2449 0x348c0, 0x34908, 2450 0x34910, 0x349b8, 2451 0x34a00, 0x34a04, 2452 0x34a0c, 0x34a14, 2453 0x34a1c, 0x34a2c, 2454 0x34a44, 0x34a50, 2455 0x34a74, 0x34a74, 2456 0x34a7c, 0x34afc, 2457 0x34b08, 0x34c24, 2458 0x34d00, 0x34d14, 2459 0x34d1c, 0x34d3c, 2460 0x34d44, 0x34d4c, 2461 0x34d54, 0x34d74, 2462 0x34d7c, 0x34d7c, 2463 0x34de0, 0x34de0, 2464 0x34e00, 0x34ed4, 2465 0x34f00, 0x34fa4, 2466 0x34fc0, 0x34fc4, 2467 0x35000, 0x35004, 2468 0x35080, 0x350fc, 2469 0x35208, 0x35220, 2470 0x3523c, 0x35254, 2471 0x35300, 0x35300, 2472 0x35308, 0x3531c, 2473 0x35338, 0x3533c, 2474 0x35380, 0x35380, 2475 0x35388, 0x353a8, 2476 0x353b4, 0x353b4, 2477 0x35400, 0x35420, 2478 0x35438, 0x3543c, 2479 0x35480, 0x35480, 2480 0x354a8, 0x354a8, 2481 0x354b0, 0x354b4, 2482 0x354c8, 0x354d4, 2483 0x35a40, 0x35a4c, 2484 0x35af0, 0x35b20, 2485 0x35b38, 0x35b3c, 2486 0x35b80, 0x35b80, 2487 0x35ba8, 0x35ba8, 2488 0x35bb0, 0x35bb4, 2489 0x35bc8, 0x35bd4, 2490 0x36140, 0x3618c, 2491 0x361f0, 0x361f4, 2492 0x36200, 0x36200, 2493 0x36218, 0x36218, 2494 0x36400, 0x36400, 2495 0x36408, 0x3641c, 2496 0x36618, 0x36620, 2497 0x36664, 0x36664, 2498 0x366a8, 0x366a8, 2499 0x366ec, 0x366ec, 2500 0x36a00, 0x36abc, 2501 0x36b00, 0x36b18, 2502 0x36b20, 0x36b38, 2503 0x36b40, 0x36b58, 2504 0x36b60, 0x36b78, 2505 0x36c00, 0x36c00, 2506 0x36c08, 0x36c3c, 2507 0x37000, 0x3702c, 2508 0x37034, 0x37050, 2509 0x37058, 0x37058, 2510 0x37060, 0x3708c, 2511 0x3709c, 0x370ac, 2512 0x370c0, 0x370c0, 2513 0x370c8, 0x370d0, 2514 0x370d8, 0x370e0, 2515 0x370ec, 0x3712c, 2516 0x37134, 0x37150, 2517 0x37158, 0x37158, 2518 0x37160, 0x3718c, 2519 0x3719c, 0x371ac, 2520 0x371c0, 0x371c0, 2521 0x371c8, 0x371d0, 2522 0x371d8, 0x371e0, 2523 0x371ec, 0x37290, 2524 0x37298, 0x372c4, 2525 0x372e4, 0x37390, 2526 0x37398, 0x373c4, 2527 0x373e4, 0x3742c, 2528 0x37434, 0x37450, 2529 0x37458, 0x37458, 2530 0x37460, 0x3748c, 2531 0x3749c, 0x374ac, 2532 0x374c0, 0x374c0, 2533 0x374c8, 0x374d0, 2534 0x374d8, 0x374e0, 2535 0x374ec, 0x3752c, 2536 0x37534, 0x37550, 2537 0x37558, 0x37558, 2538 0x37560, 0x3758c, 2539 0x3759c, 0x375ac, 2540 0x375c0, 0x375c0, 2541 0x375c8, 0x375d0, 2542 0x375d8, 0x375e0, 2543 0x375ec, 0x37690, 2544 0x37698, 0x376c4, 2545 0x376e4, 0x37790, 2546 0x37798, 0x377c4, 2547 0x377e4, 0x377fc, 2548 0x37814, 0x37814, 2549 0x37854, 0x37868, 2550 0x37880, 0x3788c, 2551 0x378c0, 0x378d0, 2552 0x378e8, 0x378ec, 2553 0x37900, 0x3792c, 2554 0x37934, 0x37950, 2555 0x37958, 0x37958, 2556 0x37960, 0x3798c, 2557 0x3799c, 0x379ac, 2558 0x379c0, 0x379c0, 2559 0x379c8, 0x379d0, 2560 0x379d8, 0x379e0, 2561 0x379ec, 0x37a90, 2562 0x37a98, 0x37ac4, 2563 0x37ae4, 0x37b10, 2564 0x37b24, 0x37b28, 2565 0x37b38, 0x37b50, 2566 0x37bf0, 0x37c10, 2567 0x37c24, 0x37c28, 2568 0x37c38, 0x37c50, 2569 0x37cf0, 0x37cfc, 2570 0x40040, 0x40040, 2571 0x40080, 0x40084, 2572 0x40100, 0x40100, 2573 0x40140, 0x401bc, 2574 0x40200, 0x40214, 2575 0x40228, 0x40228, 2576 0x40240, 0x40258, 2577 0x40280, 0x40280, 2578 0x40304, 0x40304, 2579 0x40330, 0x4033c, 2580 0x41304, 0x413c8, 2581 0x413d0, 0x413dc, 2582 0x413f0, 0x413f0, 2583 0x41400, 0x4140c, 2584 0x41414, 0x4141c, 2585 0x41480, 0x414d0, 2586 0x44000, 0x4407c, 2587 0x440c0, 0x441ac, 2588 0x441b4, 0x4427c, 2589 0x442c0, 0x443ac, 2590 0x443b4, 0x4447c, 2591 0x444c0, 0x445ac, 2592 0x445b4, 0x4467c, 2593 0x446c0, 0x447ac, 2594 0x447b4, 0x4487c, 2595 0x448c0, 0x449ac, 2596 0x449b4, 0x44a7c, 2597 0x44ac0, 0x44bac, 2598 0x44bb4, 0x44c7c, 2599 0x44cc0, 0x44dac, 2600 0x44db4, 0x44e7c, 2601 0x44ec0, 0x44fac, 2602 0x44fb4, 0x4507c, 2603 0x450c0, 0x451ac, 2604 0x451b4, 0x451fc, 2605 0x45800, 0x45804, 2606 0x45810, 0x45830, 2607 0x45840, 0x45860, 2608 0x45868, 0x45868, 2609 0x45880, 0x45884, 2610 0x458a0, 0x458b0, 2611 0x45a00, 0x45a04, 2612 0x45a10, 0x45a30, 2613 0x45a40, 0x45a60, 2614 0x45a68, 0x45a68, 2615 0x45a80, 0x45a84, 2616 0x45aa0, 0x45ab0, 2617 0x460c0, 0x460e4, 2618 0x47000, 0x4703c, 2619 0x47044, 0x4708c, 2620 0x47200, 0x47250, 2621 0x47400, 0x47408, 2622 0x47414, 0x47420, 2623 0x47600, 0x47618, 2624 0x47800, 0x47814, 2625 0x47820, 0x4782c, 2626 0x50000, 0x50084, 2627 0x50090, 0x500cc, 2628 0x50300, 0x50384, 2629 0x50400, 0x50400, 2630 0x50800, 0x50884, 2631 0x50890, 0x508cc, 2632 0x50b00, 0x50b84, 2633 0x50c00, 0x50c00, 2634 0x51000, 0x51020, 2635 0x51028, 0x510b0, 2636 0x51300, 0x51324, 2637 }; 2638 2639 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2640 const unsigned int *reg_ranges; 2641 int reg_ranges_size, range; 2642 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2643 2644 /* Select the right set of register ranges to dump depending on the 2645 * adapter chip type. 2646 */ 2647 switch (chip_version) { 2648 case CHELSIO_T4: 2649 reg_ranges = t4_reg_ranges; 2650 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2651 break; 2652 2653 case CHELSIO_T5: 2654 reg_ranges = t5_reg_ranges; 2655 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2656 break; 2657 2658 case CHELSIO_T6: 2659 reg_ranges = t6_reg_ranges; 2660 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2661 break; 2662 2663 default: 2664 dev_err(adap->pdev_dev, 2665 "Unsupported chip version %d\n", chip_version); 2666 return; 2667 } 2668 2669 /* Clear the register buffer and insert the appropriate register 2670 * values selected by the above register ranges. 2671 */ 2672 memset(buf, 0, buf_size); 2673 for (range = 0; range < reg_ranges_size; range += 2) { 2674 unsigned int reg = reg_ranges[range]; 2675 unsigned int last_reg = reg_ranges[range + 1]; 2676 u32 *bufp = (u32 *)((char *)buf + reg); 2677 2678 /* Iterate across the register range filling in the register 2679 * buffer but don't write past the end of the register buffer. 2680 */ 2681 while (reg <= last_reg && bufp < buf_end) { 2682 *bufp++ = t4_read_reg(adap, reg); 2683 reg += sizeof(u32); 2684 } 2685 } 2686 } 2687 2688 #define EEPROM_STAT_ADDR 0x7bfc 2689 #define VPD_BASE 0x400 2690 #define VPD_BASE_OLD 0 2691 #define VPD_LEN 1024 2692 #define CHELSIO_VPD_UNIQUE_ID 0x82 2693 2694 /** 2695 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2696 * @phys_addr: the physical EEPROM address 2697 * @fn: the PCI function number 2698 * @sz: size of function-specific area 2699 * 2700 * Translate a physical EEPROM address to virtual. The first 1K is 2701 * accessed through virtual addresses starting at 31K, the rest is 2702 * accessed through virtual addresses starting at 0. 2703 * 2704 * The mapping is as follows: 2705 * [0..1K) -> [31K..32K) 2706 * [1K..1K+A) -> [31K-A..31K) 2707 * [1K+A..ES) -> [0..ES-A-1K) 2708 * 2709 * where A = @fn * @sz, and ES = EEPROM size. 2710 */ 2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2712 { 2713 fn *= sz; 2714 if (phys_addr < 1024) 2715 return phys_addr + (31 << 10); 2716 if (phys_addr < 1024 + fn) 2717 return 31744 - fn + phys_addr - 1024; 2718 if (phys_addr < EEPROMSIZE) 2719 return phys_addr - 1024 - fn; 2720 return -EINVAL; 2721 } 2722 2723 /** 2724 * t4_seeprom_wp - enable/disable EEPROM write protection 2725 * @adapter: the adapter 2726 * @enable: whether to enable or disable write protection 2727 * 2728 * Enables or disables write protection on the serial EEPROM. 2729 */ 2730 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2731 { 2732 unsigned int v = enable ? 0xc : 0; 2733 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2734 return ret < 0 ? ret : 0; 2735 } 2736 2737 /** 2738 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2739 * @adapter: adapter to read 2740 * @p: where to store the parameters 2741 * 2742 * Reads card parameters stored in VPD EEPROM. 2743 */ 2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2745 { 2746 int i, ret = 0, addr; 2747 int ec, sn, pn, na; 2748 u8 *vpd, csum; 2749 unsigned int vpdr_len, kw_offset, id_len; 2750 2751 vpd = vmalloc(VPD_LEN); 2752 if (!vpd) 2753 return -ENOMEM; 2754 2755 /* Card information normally starts at VPD_BASE but early cards had 2756 * it at 0. 2757 */ 2758 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2759 if (ret < 0) 2760 goto out; 2761 2762 /* The VPD shall have a unique identifier specified by the PCI SIG. 2763 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2764 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2765 * is expected to automatically put this entry at the 2766 * beginning of the VPD. 2767 */ 2768 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2769 2770 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2771 if (ret < 0) 2772 goto out; 2773 2774 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2775 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2776 ret = -EINVAL; 2777 goto out; 2778 } 2779 2780 id_len = pci_vpd_lrdt_size(vpd); 2781 if (id_len > ID_LEN) 2782 id_len = ID_LEN; 2783 2784 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2785 if (i < 0) { 2786 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2787 ret = -EINVAL; 2788 goto out; 2789 } 2790 2791 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2792 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2793 if (vpdr_len + kw_offset > VPD_LEN) { 2794 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2795 ret = -EINVAL; 2796 goto out; 2797 } 2798 2799 #define FIND_VPD_KW(var, name) do { \ 2800 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2801 if (var < 0) { \ 2802 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2803 ret = -EINVAL; \ 2804 goto out; \ 2805 } \ 2806 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2807 } while (0) 2808 2809 FIND_VPD_KW(i, "RV"); 2810 for (csum = 0; i >= 0; i--) 2811 csum += vpd[i]; 2812 2813 if (csum) { 2814 dev_err(adapter->pdev_dev, 2815 "corrupted VPD EEPROM, actual csum %u\n", csum); 2816 ret = -EINVAL; 2817 goto out; 2818 } 2819 2820 FIND_VPD_KW(ec, "EC"); 2821 FIND_VPD_KW(sn, "SN"); 2822 FIND_VPD_KW(pn, "PN"); 2823 FIND_VPD_KW(na, "NA"); 2824 #undef FIND_VPD_KW 2825 2826 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2827 strim(p->id); 2828 memcpy(p->ec, vpd + ec, EC_LEN); 2829 strim(p->ec); 2830 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2831 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2832 strim(p->sn); 2833 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2834 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2835 strim(p->pn); 2836 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2837 strim((char *)p->na); 2838 2839 out: 2840 vfree(vpd); 2841 return ret < 0 ? ret : 0; 2842 } 2843 2844 /** 2845 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2846 * @adapter: adapter to read 2847 * @p: where to store the parameters 2848 * 2849 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2850 * Clock. This can only be called after a connection to the firmware 2851 * is established. 2852 */ 2853 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2854 { 2855 u32 cclk_param, cclk_val; 2856 int ret; 2857 2858 /* Grab the raw VPD parameters. 2859 */ 2860 ret = t4_get_raw_vpd_params(adapter, p); 2861 if (ret) 2862 return ret; 2863 2864 /* Ask firmware for the Core Clock since it knows how to translate the 2865 * Reference Clock ('V2') VPD field into a Core Clock value ... 2866 */ 2867 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2868 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2869 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2870 1, &cclk_param, &cclk_val); 2871 2872 if (ret) 2873 return ret; 2874 p->cclk = cclk_val; 2875 2876 return 0; 2877 } 2878 2879 /** 2880 * t4_get_pfres - retrieve VF resource limits 2881 * @adapter: the adapter 2882 * 2883 * Retrieves configured resource limits and capabilities for a physical 2884 * function. The results are stored in @adapter->pfres. 2885 */ 2886 int t4_get_pfres(struct adapter *adapter) 2887 { 2888 struct pf_resources *pfres = &adapter->params.pfres; 2889 struct fw_pfvf_cmd cmd, rpl; 2890 int v; 2891 u32 word; 2892 2893 /* Execute PFVF Read command to get VF resource limits; bail out early 2894 * with error on command failure. 2895 */ 2896 memset(&cmd, 0, sizeof(cmd)); 2897 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2898 FW_CMD_REQUEST_F | 2899 FW_CMD_READ_F | 2900 FW_PFVF_CMD_PFN_V(adapter->pf) | 2901 FW_PFVF_CMD_VFN_V(0)); 2902 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2903 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2904 if (v != FW_SUCCESS) 2905 return v; 2906 2907 /* Extract PF resource limits and return success. 2908 */ 2909 word = be32_to_cpu(rpl.niqflint_niq); 2910 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2911 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2912 2913 word = be32_to_cpu(rpl.type_to_neq); 2914 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2915 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2916 2917 word = be32_to_cpu(rpl.tc_to_nexactf); 2918 pfres->tc = FW_PFVF_CMD_TC_G(word); 2919 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2920 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2921 2922 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2923 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2924 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2925 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2926 2927 return 0; 2928 } 2929 2930 /* serial flash and firmware constants */ 2931 enum { 2932 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2933 2934 /* flash command opcodes */ 2935 SF_PROG_PAGE = 2, /* program page */ 2936 SF_WR_DISABLE = 4, /* disable writes */ 2937 SF_RD_STATUS = 5, /* read status register */ 2938 SF_WR_ENABLE = 6, /* enable writes */ 2939 SF_RD_DATA_FAST = 0xb, /* read flash */ 2940 SF_RD_ID = 0x9f, /* read ID */ 2941 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2942 }; 2943 2944 /** 2945 * sf1_read - read data from the serial flash 2946 * @adapter: the adapter 2947 * @byte_cnt: number of bytes to read 2948 * @cont: whether another operation will be chained 2949 * @lock: whether to lock SF for PL access only 2950 * @valp: where to store the read data 2951 * 2952 * Reads up to 4 bytes of data from the serial flash. The location of 2953 * the read needs to be specified prior to calling this by issuing the 2954 * appropriate commands to the serial flash. 2955 */ 2956 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2957 int lock, u32 *valp) 2958 { 2959 int ret; 2960 2961 if (!byte_cnt || byte_cnt > 4) 2962 return -EINVAL; 2963 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2964 return -EBUSY; 2965 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2966 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2967 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2968 if (!ret) 2969 *valp = t4_read_reg(adapter, SF_DATA_A); 2970 return ret; 2971 } 2972 2973 /** 2974 * sf1_write - write data to the serial flash 2975 * @adapter: the adapter 2976 * @byte_cnt: number of bytes to write 2977 * @cont: whether another operation will be chained 2978 * @lock: whether to lock SF for PL access only 2979 * @val: value to write 2980 * 2981 * Writes up to 4 bytes of data to the serial flash. The location of 2982 * the write needs to be specified prior to calling this by issuing the 2983 * appropriate commands to the serial flash. 2984 */ 2985 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2986 int lock, u32 val) 2987 { 2988 if (!byte_cnt || byte_cnt > 4) 2989 return -EINVAL; 2990 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2991 return -EBUSY; 2992 t4_write_reg(adapter, SF_DATA_A, val); 2993 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2994 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2995 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2996 } 2997 2998 /** 2999 * flash_wait_op - wait for a flash operation to complete 3000 * @adapter: the adapter 3001 * @attempts: max number of polls of the status register 3002 * @delay: delay between polls in ms 3003 * 3004 * Wait for a flash operation to complete by polling the status register. 3005 */ 3006 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3007 { 3008 int ret; 3009 u32 status; 3010 3011 while (1) { 3012 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3013 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3014 return ret; 3015 if (!(status & 1)) 3016 return 0; 3017 if (--attempts == 0) 3018 return -EAGAIN; 3019 if (delay) 3020 msleep(delay); 3021 } 3022 } 3023 3024 /** 3025 * t4_read_flash - read words from serial flash 3026 * @adapter: the adapter 3027 * @addr: the start address for the read 3028 * @nwords: how many 32-bit words to read 3029 * @data: where to store the read data 3030 * @byte_oriented: whether to store data as bytes or as words 3031 * 3032 * Read the specified number of 32-bit words from the serial flash. 3033 * If @byte_oriented is set the read data is stored as a byte array 3034 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3035 * natural endianness. 3036 */ 3037 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3038 unsigned int nwords, u32 *data, int byte_oriented) 3039 { 3040 int ret; 3041 3042 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3043 return -EINVAL; 3044 3045 addr = swab32(addr) | SF_RD_DATA_FAST; 3046 3047 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3048 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3049 return ret; 3050 3051 for ( ; nwords; nwords--, data++) { 3052 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3053 if (nwords == 1) 3054 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3055 if (ret) 3056 return ret; 3057 if (byte_oriented) 3058 *data = (__force __u32)(cpu_to_be32(*data)); 3059 } 3060 return 0; 3061 } 3062 3063 /** 3064 * t4_write_flash - write up to a page of data to the serial flash 3065 * @adapter: the adapter 3066 * @addr: the start address to write 3067 * @n: length of data to write in bytes 3068 * @data: the data to write 3069 * 3070 * Writes up to a page of data (256 bytes) to the serial flash starting 3071 * at the given address. All the data must be written to the same page. 3072 */ 3073 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3074 unsigned int n, const u8 *data) 3075 { 3076 int ret; 3077 u32 buf[64]; 3078 unsigned int i, c, left, val, offset = addr & 0xff; 3079 3080 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3081 return -EINVAL; 3082 3083 val = swab32(addr) | SF_PROG_PAGE; 3084 3085 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3086 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3087 goto unlock; 3088 3089 for (left = n; left; left -= c) { 3090 c = min(left, 4U); 3091 for (val = 0, i = 0; i < c; ++i) 3092 val = (val << 8) + *data++; 3093 3094 ret = sf1_write(adapter, c, c != left, 1, val); 3095 if (ret) 3096 goto unlock; 3097 } 3098 ret = flash_wait_op(adapter, 8, 1); 3099 if (ret) 3100 goto unlock; 3101 3102 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3103 3104 /* Read the page to verify the write succeeded */ 3105 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3106 if (ret) 3107 return ret; 3108 3109 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3110 dev_err(adapter->pdev_dev, 3111 "failed to correctly write the flash page at %#x\n", 3112 addr); 3113 return -EIO; 3114 } 3115 return 0; 3116 3117 unlock: 3118 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3119 return ret; 3120 } 3121 3122 /** 3123 * t4_get_fw_version - read the firmware version 3124 * @adapter: the adapter 3125 * @vers: where to place the version 3126 * 3127 * Reads the FW version from flash. 3128 */ 3129 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3130 { 3131 return t4_read_flash(adapter, FLASH_FW_START + 3132 offsetof(struct fw_hdr, fw_ver), 1, 3133 vers, 0); 3134 } 3135 3136 /** 3137 * t4_get_bs_version - read the firmware bootstrap version 3138 * @adapter: the adapter 3139 * @vers: where to place the version 3140 * 3141 * Reads the FW Bootstrap version from flash. 3142 */ 3143 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3144 { 3145 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3146 offsetof(struct fw_hdr, fw_ver), 1, 3147 vers, 0); 3148 } 3149 3150 /** 3151 * t4_get_tp_version - read the TP microcode version 3152 * @adapter: the adapter 3153 * @vers: where to place the version 3154 * 3155 * Reads the TP microcode version from flash. 3156 */ 3157 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3158 { 3159 return t4_read_flash(adapter, FLASH_FW_START + 3160 offsetof(struct fw_hdr, tp_microcode_ver), 3161 1, vers, 0); 3162 } 3163 3164 /** 3165 * t4_get_exprom_version - return the Expansion ROM version (if any) 3166 * @adap: the adapter 3167 * @vers: where to place the version 3168 * 3169 * Reads the Expansion ROM header from FLASH and returns the version 3170 * number (if present) through the @vers return value pointer. We return 3171 * this in the Firmware Version Format since it's convenient. Return 3172 * 0 on success, -ENOENT if no Expansion ROM is present. 3173 */ 3174 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3175 { 3176 struct exprom_header { 3177 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3178 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3179 } *hdr; 3180 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3181 sizeof(u32))]; 3182 int ret; 3183 3184 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3185 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3186 0); 3187 if (ret) 3188 return ret; 3189 3190 hdr = (struct exprom_header *)exprom_header_buf; 3191 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3192 return -ENOENT; 3193 3194 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3195 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3196 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3197 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3198 return 0; 3199 } 3200 3201 /** 3202 * t4_get_vpd_version - return the VPD version 3203 * @adapter: the adapter 3204 * @vers: where to place the version 3205 * 3206 * Reads the VPD via the Firmware interface (thus this can only be called 3207 * once we're ready to issue Firmware commands). The format of the 3208 * VPD version is adapter specific. Returns 0 on success, an error on 3209 * failure. 3210 * 3211 * Note that early versions of the Firmware didn't include the ability 3212 * to retrieve the VPD version, so we zero-out the return-value parameter 3213 * in that case to avoid leaving it with garbage in it. 3214 * 3215 * Also note that the Firmware will return its cached copy of the VPD 3216 * Revision ID, not the actual Revision ID as written in the Serial 3217 * EEPROM. This is only an issue if a new VPD has been written and the 3218 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3219 * to defer calling this routine till after a FW_RESET_CMD has been issued 3220 * if the Host Driver will be performing a full adapter initialization. 3221 */ 3222 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3223 { 3224 u32 vpdrev_param; 3225 int ret; 3226 3227 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3228 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3229 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3230 1, &vpdrev_param, vers); 3231 if (ret) 3232 *vers = 0; 3233 return ret; 3234 } 3235 3236 /** 3237 * t4_get_scfg_version - return the Serial Configuration version 3238 * @adapter: the adapter 3239 * @vers: where to place the version 3240 * 3241 * Reads the Serial Configuration Version via the Firmware interface 3242 * (thus this can only be called once we're ready to issue Firmware 3243 * commands). The format of the Serial Configuration version is 3244 * adapter specific. Returns 0 on success, an error on failure. 3245 * 3246 * Note that early versions of the Firmware didn't include the ability 3247 * to retrieve the Serial Configuration version, so we zero-out the 3248 * return-value parameter in that case to avoid leaving it with 3249 * garbage in it. 3250 * 3251 * Also note that the Firmware will return its cached copy of the Serial 3252 * Initialization Revision ID, not the actual Revision ID as written in 3253 * the Serial EEPROM. This is only an issue if a new VPD has been written 3254 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3255 * it's best to defer calling this routine till after a FW_RESET_CMD has 3256 * been issued if the Host Driver will be performing a full adapter 3257 * initialization. 3258 */ 3259 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3260 { 3261 u32 scfgrev_param; 3262 int ret; 3263 3264 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3265 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3266 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3267 1, &scfgrev_param, vers); 3268 if (ret) 3269 *vers = 0; 3270 return ret; 3271 } 3272 3273 /** 3274 * t4_get_version_info - extract various chip/firmware version information 3275 * @adapter: the adapter 3276 * 3277 * Reads various chip/firmware version numbers and stores them into the 3278 * adapter Adapter Parameters structure. If any of the efforts fails 3279 * the first failure will be returned, but all of the version numbers 3280 * will be read. 3281 */ 3282 int t4_get_version_info(struct adapter *adapter) 3283 { 3284 int ret = 0; 3285 3286 #define FIRST_RET(__getvinfo) \ 3287 do { \ 3288 int __ret = __getvinfo; \ 3289 if (__ret && !ret) \ 3290 ret = __ret; \ 3291 } while (0) 3292 3293 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3294 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3295 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3296 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3297 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3298 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3299 3300 #undef FIRST_RET 3301 return ret; 3302 } 3303 3304 /** 3305 * t4_dump_version_info - dump all of the adapter configuration IDs 3306 * @adapter: the adapter 3307 * 3308 * Dumps all of the various bits of adapter configuration version/revision 3309 * IDs information. This is typically called at some point after 3310 * t4_get_version_info() has been called. 3311 */ 3312 void t4_dump_version_info(struct adapter *adapter) 3313 { 3314 /* Device information */ 3315 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3316 adapter->params.vpd.id, 3317 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3318 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3319 adapter->params.vpd.sn, adapter->params.vpd.pn); 3320 3321 /* Firmware Version */ 3322 if (!adapter->params.fw_vers) 3323 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3324 else 3325 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3326 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3327 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3328 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3329 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3330 3331 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3332 * Firmware, so dev_info() is more appropriate here.) 3333 */ 3334 if (!adapter->params.bs_vers) 3335 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3336 else 3337 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3338 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3339 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3340 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3341 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3342 3343 /* TP Microcode Version */ 3344 if (!adapter->params.tp_vers) 3345 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3346 else 3347 dev_info(adapter->pdev_dev, 3348 "TP Microcode version: %u.%u.%u.%u\n", 3349 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3350 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3351 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3352 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3353 3354 /* Expansion ROM version */ 3355 if (!adapter->params.er_vers) 3356 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3357 else 3358 dev_info(adapter->pdev_dev, 3359 "Expansion ROM version: %u.%u.%u.%u\n", 3360 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3361 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3362 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3363 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3364 3365 /* Serial Configuration version */ 3366 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3367 adapter->params.scfg_vers); 3368 3369 /* VPD Version */ 3370 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3371 adapter->params.vpd_vers); 3372 } 3373 3374 /** 3375 * t4_check_fw_version - check if the FW is supported with this driver 3376 * @adap: the adapter 3377 * 3378 * Checks if an adapter's FW is compatible with the driver. Returns 0 3379 * if there's exact match, a negative error if the version could not be 3380 * read or there's a major version mismatch 3381 */ 3382 int t4_check_fw_version(struct adapter *adap) 3383 { 3384 int i, ret, major, minor, micro; 3385 int exp_major, exp_minor, exp_micro; 3386 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3387 3388 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3389 /* Try multiple times before returning error */ 3390 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3391 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3392 3393 if (ret) 3394 return ret; 3395 3396 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3397 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3398 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3399 3400 switch (chip_version) { 3401 case CHELSIO_T4: 3402 exp_major = T4FW_MIN_VERSION_MAJOR; 3403 exp_minor = T4FW_MIN_VERSION_MINOR; 3404 exp_micro = T4FW_MIN_VERSION_MICRO; 3405 break; 3406 case CHELSIO_T5: 3407 exp_major = T5FW_MIN_VERSION_MAJOR; 3408 exp_minor = T5FW_MIN_VERSION_MINOR; 3409 exp_micro = T5FW_MIN_VERSION_MICRO; 3410 break; 3411 case CHELSIO_T6: 3412 exp_major = T6FW_MIN_VERSION_MAJOR; 3413 exp_minor = T6FW_MIN_VERSION_MINOR; 3414 exp_micro = T6FW_MIN_VERSION_MICRO; 3415 break; 3416 default: 3417 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3418 adap->chip); 3419 return -EINVAL; 3420 } 3421 3422 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3423 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3424 dev_err(adap->pdev_dev, 3425 "Card has firmware version %u.%u.%u, minimum " 3426 "supported firmware is %u.%u.%u.\n", major, minor, 3427 micro, exp_major, exp_minor, exp_micro); 3428 return -EFAULT; 3429 } 3430 return 0; 3431 } 3432 3433 /* Is the given firmware API compatible with the one the driver was compiled 3434 * with? 3435 */ 3436 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3437 { 3438 3439 /* short circuit if it's the exact same firmware version */ 3440 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3441 return 1; 3442 3443 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3444 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3445 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3446 return 1; 3447 #undef SAME_INTF 3448 3449 return 0; 3450 } 3451 3452 /* The firmware in the filesystem is usable, but should it be installed? 3453 * This routine explains itself in detail if it indicates the filesystem 3454 * firmware should be installed. 3455 */ 3456 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3457 int k, int c) 3458 { 3459 const char *reason; 3460 3461 if (!card_fw_usable) { 3462 reason = "incompatible or unusable"; 3463 goto install; 3464 } 3465 3466 if (k > c) { 3467 reason = "older than the version supported with this driver"; 3468 goto install; 3469 } 3470 3471 return 0; 3472 3473 install: 3474 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3475 "installing firmware %u.%u.%u.%u on card.\n", 3476 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3477 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3478 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3479 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3480 3481 return 1; 3482 } 3483 3484 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3485 const u8 *fw_data, unsigned int fw_size, 3486 struct fw_hdr *card_fw, enum dev_state state, 3487 int *reset) 3488 { 3489 int ret, card_fw_usable, fs_fw_usable; 3490 const struct fw_hdr *fs_fw; 3491 const struct fw_hdr *drv_fw; 3492 3493 drv_fw = &fw_info->fw_hdr; 3494 3495 /* Read the header of the firmware on the card */ 3496 ret = t4_read_flash(adap, FLASH_FW_START, 3497 sizeof(*card_fw) / sizeof(uint32_t), 3498 (uint32_t *)card_fw, 1); 3499 if (ret == 0) { 3500 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3501 } else { 3502 dev_err(adap->pdev_dev, 3503 "Unable to read card's firmware header: %d\n", ret); 3504 card_fw_usable = 0; 3505 } 3506 3507 if (fw_data != NULL) { 3508 fs_fw = (const void *)fw_data; 3509 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3510 } else { 3511 fs_fw = NULL; 3512 fs_fw_usable = 0; 3513 } 3514 3515 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3516 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3517 /* Common case: the firmware on the card is an exact match and 3518 * the filesystem one is an exact match too, or the filesystem 3519 * one is absent/incompatible. 3520 */ 3521 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3522 should_install_fs_fw(adap, card_fw_usable, 3523 be32_to_cpu(fs_fw->fw_ver), 3524 be32_to_cpu(card_fw->fw_ver))) { 3525 ret = t4_fw_upgrade(adap, adap->mbox, fw_data, 3526 fw_size, 0); 3527 if (ret != 0) { 3528 dev_err(adap->pdev_dev, 3529 "failed to install firmware: %d\n", ret); 3530 goto bye; 3531 } 3532 3533 /* Installed successfully, update the cached header too. */ 3534 *card_fw = *fs_fw; 3535 card_fw_usable = 1; 3536 *reset = 0; /* already reset as part of load_fw */ 3537 } 3538 3539 if (!card_fw_usable) { 3540 uint32_t d, c, k; 3541 3542 d = be32_to_cpu(drv_fw->fw_ver); 3543 c = be32_to_cpu(card_fw->fw_ver); 3544 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3545 3546 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3547 "chip state %d, " 3548 "driver compiled with %d.%d.%d.%d, " 3549 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3550 state, 3551 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3552 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3553 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3554 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3555 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3556 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3557 ret = -EINVAL; 3558 goto bye; 3559 } 3560 3561 /* We're using whatever's on the card and it's known to be good. */ 3562 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3563 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3564 3565 bye: 3566 return ret; 3567 } 3568 3569 /** 3570 * t4_flash_erase_sectors - erase a range of flash sectors 3571 * @adapter: the adapter 3572 * @start: the first sector to erase 3573 * @end: the last sector to erase 3574 * 3575 * Erases the sectors in the given inclusive range. 3576 */ 3577 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3578 { 3579 int ret = 0; 3580 3581 if (end >= adapter->params.sf_nsec) 3582 return -EINVAL; 3583 3584 while (start <= end) { 3585 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3586 (ret = sf1_write(adapter, 4, 0, 1, 3587 SF_ERASE_SECTOR | (start << 8))) != 0 || 3588 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3589 dev_err(adapter->pdev_dev, 3590 "erase of flash sector %d failed, error %d\n", 3591 start, ret); 3592 break; 3593 } 3594 start++; 3595 } 3596 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3597 return ret; 3598 } 3599 3600 /** 3601 * t4_flash_cfg_addr - return the address of the flash configuration file 3602 * @adapter: the adapter 3603 * 3604 * Return the address within the flash where the Firmware Configuration 3605 * File is stored. 3606 */ 3607 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3608 { 3609 if (adapter->params.sf_size == 0x100000) 3610 return FLASH_FPGA_CFG_START; 3611 else 3612 return FLASH_CFG_START; 3613 } 3614 3615 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3616 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3617 * and emit an error message for mismatched firmware to save our caller the 3618 * effort ... 3619 */ 3620 static bool t4_fw_matches_chip(const struct adapter *adap, 3621 const struct fw_hdr *hdr) 3622 { 3623 /* The expression below will return FALSE for any unsupported adapter 3624 * which will keep us "honest" in the future ... 3625 */ 3626 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3627 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3628 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3629 return true; 3630 3631 dev_err(adap->pdev_dev, 3632 "FW image (%d) is not suitable for this adapter (%d)\n", 3633 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3634 return false; 3635 } 3636 3637 /** 3638 * t4_load_fw - download firmware 3639 * @adap: the adapter 3640 * @fw_data: the firmware image to write 3641 * @size: image size 3642 * 3643 * Write the supplied firmware image to the card's serial flash. 3644 */ 3645 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3646 { 3647 u32 csum; 3648 int ret, addr; 3649 unsigned int i; 3650 u8 first_page[SF_PAGE_SIZE]; 3651 const __be32 *p = (const __be32 *)fw_data; 3652 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3653 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3654 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3655 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3656 unsigned int fw_start = FLASH_FW_START; 3657 3658 if (!size) { 3659 dev_err(adap->pdev_dev, "FW image has no data\n"); 3660 return -EINVAL; 3661 } 3662 if (size & 511) { 3663 dev_err(adap->pdev_dev, 3664 "FW image size not multiple of 512 bytes\n"); 3665 return -EINVAL; 3666 } 3667 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3668 dev_err(adap->pdev_dev, 3669 "FW image size differs from size in FW header\n"); 3670 return -EINVAL; 3671 } 3672 if (size > fw_size) { 3673 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3674 fw_size); 3675 return -EFBIG; 3676 } 3677 if (!t4_fw_matches_chip(adap, hdr)) 3678 return -EINVAL; 3679 3680 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3681 csum += be32_to_cpu(p[i]); 3682 3683 if (csum != 0xffffffff) { 3684 dev_err(adap->pdev_dev, 3685 "corrupted firmware image, checksum %#x\n", csum); 3686 return -EINVAL; 3687 } 3688 3689 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3690 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3691 if (ret) 3692 goto out; 3693 3694 /* 3695 * We write the correct version at the end so the driver can see a bad 3696 * version if the FW write fails. Start by writing a copy of the 3697 * first page with a bad version. 3698 */ 3699 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3700 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3701 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3702 if (ret) 3703 goto out; 3704 3705 addr = fw_start; 3706 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3707 addr += SF_PAGE_SIZE; 3708 fw_data += SF_PAGE_SIZE; 3709 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3710 if (ret) 3711 goto out; 3712 } 3713 3714 ret = t4_write_flash(adap, 3715 fw_start + offsetof(struct fw_hdr, fw_ver), 3716 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3717 out: 3718 if (ret) 3719 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3720 ret); 3721 else 3722 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3723 return ret; 3724 } 3725 3726 /** 3727 * t4_phy_fw_ver - return current PHY firmware version 3728 * @adap: the adapter 3729 * @phy_fw_ver: return value buffer for PHY firmware version 3730 * 3731 * Returns the current version of external PHY firmware on the 3732 * adapter. 3733 */ 3734 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3735 { 3736 u32 param, val; 3737 int ret; 3738 3739 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3740 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3741 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3742 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3743 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3744 ¶m, &val); 3745 if (ret) 3746 return ret; 3747 *phy_fw_ver = val; 3748 return 0; 3749 } 3750 3751 /** 3752 * t4_load_phy_fw - download port PHY firmware 3753 * @adap: the adapter 3754 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3755 * @phy_fw_version: function to check PHY firmware versions 3756 * @phy_fw_data: the PHY firmware image to write 3757 * @phy_fw_size: image size 3758 * 3759 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3760 * @phy_fw_version is supplied, then it will be used to determine if 3761 * it's necessary to perform the transfer by comparing the version 3762 * of any existing adapter PHY firmware with that of the passed in 3763 * PHY firmware image. 3764 * 3765 * A negative error number will be returned if an error occurs. If 3766 * version number support is available and there's no need to upgrade 3767 * the firmware, 0 will be returned. If firmware is successfully 3768 * transferred to the adapter, 1 will be returned. 3769 * 3770 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3771 * a result, a RESET of the adapter would cause that RAM to lose its 3772 * contents. Thus, loading PHY firmware on such adapters must happen 3773 * after any FW_RESET_CMDs ... 3774 */ 3775 int t4_load_phy_fw(struct adapter *adap, int win, 3776 int (*phy_fw_version)(const u8 *, size_t), 3777 const u8 *phy_fw_data, size_t phy_fw_size) 3778 { 3779 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3780 unsigned long mtype = 0, maddr = 0; 3781 u32 param, val; 3782 int ret; 3783 3784 /* If we have version number support, then check to see if the adapter 3785 * already has up-to-date PHY firmware loaded. 3786 */ 3787 if (phy_fw_version) { 3788 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3789 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3790 if (ret < 0) 3791 return ret; 3792 3793 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3794 CH_WARN(adap, "PHY Firmware already up-to-date, " 3795 "version %#x\n", cur_phy_fw_ver); 3796 return 0; 3797 } 3798 } 3799 3800 /* Ask the firmware where it wants us to copy the PHY firmware image. 3801 * The size of the file requires a special version of the READ command 3802 * which will pass the file size via the values field in PARAMS_CMD and 3803 * retrieve the return value from firmware and place it in the same 3804 * buffer values 3805 */ 3806 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3807 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3808 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3809 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3810 val = phy_fw_size; 3811 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3812 ¶m, &val, 1, true); 3813 if (ret < 0) 3814 return ret; 3815 mtype = val >> 8; 3816 maddr = (val & 0xff) << 16; 3817 3818 /* Copy the supplied PHY Firmware image to the adapter memory location 3819 * allocated by the adapter firmware. 3820 */ 3821 ret = t4_memory_rw(adap, win, mtype, maddr, 3822 phy_fw_size, (__be32 *)phy_fw_data, 3823 T4_MEMORY_WRITE); 3824 if (ret) 3825 return ret; 3826 3827 /* Tell the firmware that the PHY firmware image has been written to 3828 * RAM and it can now start copying it over to the PHYs. The chip 3829 * firmware will RESET the affected PHYs as part of this operation 3830 * leaving them running the new PHY firmware image. 3831 */ 3832 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3833 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3834 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3835 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3836 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3837 ¶m, &val, 30000); 3838 3839 /* If we have version number support, then check to see that the new 3840 * firmware got loaded properly. 3841 */ 3842 if (phy_fw_version) { 3843 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3844 if (ret < 0) 3845 return ret; 3846 3847 if (cur_phy_fw_ver != new_phy_fw_vers) { 3848 CH_WARN(adap, "PHY Firmware did not update: " 3849 "version on adapter %#x, " 3850 "version flashed %#x\n", 3851 cur_phy_fw_ver, new_phy_fw_vers); 3852 return -ENXIO; 3853 } 3854 } 3855 3856 return 1; 3857 } 3858 3859 /** 3860 * t4_fwcache - firmware cache operation 3861 * @adap: the adapter 3862 * @op : the operation (flush or flush and invalidate) 3863 */ 3864 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3865 { 3866 struct fw_params_cmd c; 3867 3868 memset(&c, 0, sizeof(c)); 3869 c.op_to_vfn = 3870 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3871 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3872 FW_PARAMS_CMD_PFN_V(adap->pf) | 3873 FW_PARAMS_CMD_VFN_V(0)); 3874 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3875 c.param[0].mnem = 3876 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3877 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3878 c.param[0].val = cpu_to_be32(op); 3879 3880 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3881 } 3882 3883 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3884 unsigned int *pif_req_wrptr, 3885 unsigned int *pif_rsp_wrptr) 3886 { 3887 int i, j; 3888 u32 cfg, val, req, rsp; 3889 3890 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3891 if (cfg & LADBGEN_F) 3892 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3893 3894 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3895 req = POLADBGWRPTR_G(val); 3896 rsp = PILADBGWRPTR_G(val); 3897 if (pif_req_wrptr) 3898 *pif_req_wrptr = req; 3899 if (pif_rsp_wrptr) 3900 *pif_rsp_wrptr = rsp; 3901 3902 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3903 for (j = 0; j < 6; j++) { 3904 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3905 PILADBGRDPTR_V(rsp)); 3906 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3907 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3908 req++; 3909 rsp++; 3910 } 3911 req = (req + 2) & POLADBGRDPTR_M; 3912 rsp = (rsp + 2) & PILADBGRDPTR_M; 3913 } 3914 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3915 } 3916 3917 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3918 { 3919 u32 cfg; 3920 int i, j, idx; 3921 3922 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3923 if (cfg & LADBGEN_F) 3924 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3925 3926 for (i = 0; i < CIM_MALA_SIZE; i++) { 3927 for (j = 0; j < 5; j++) { 3928 idx = 8 * i + j; 3929 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3930 PILADBGRDPTR_V(idx)); 3931 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3932 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3933 } 3934 } 3935 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3936 } 3937 3938 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3939 { 3940 unsigned int i, j; 3941 3942 for (i = 0; i < 8; i++) { 3943 u32 *p = la_buf + i; 3944 3945 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3946 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3947 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3948 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3949 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3950 } 3951 } 3952 3953 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port 3954 * Capabilities which we control with separate controls -- see, for instance, 3955 * Pause Frames and Forward Error Correction. In order to determine what the 3956 * full set of Advertised Port Capabilities are, the base Advertised Port 3957 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised 3958 * Port Capabilities associated with those other controls. See 3959 * t4_link_acaps() for how this is done. 3960 */ 3961 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3962 FW_PORT_CAP32_ANEG) 3963 3964 /** 3965 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3966 * @caps16: a 16-bit Port Capabilities value 3967 * 3968 * Returns the equivalent 32-bit Port Capabilities value. 3969 */ 3970 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3971 { 3972 fw_port_cap32_t caps32 = 0; 3973 3974 #define CAP16_TO_CAP32(__cap) \ 3975 do { \ 3976 if (caps16 & FW_PORT_CAP_##__cap) \ 3977 caps32 |= FW_PORT_CAP32_##__cap; \ 3978 } while (0) 3979 3980 CAP16_TO_CAP32(SPEED_100M); 3981 CAP16_TO_CAP32(SPEED_1G); 3982 CAP16_TO_CAP32(SPEED_25G); 3983 CAP16_TO_CAP32(SPEED_10G); 3984 CAP16_TO_CAP32(SPEED_40G); 3985 CAP16_TO_CAP32(SPEED_100G); 3986 CAP16_TO_CAP32(FC_RX); 3987 CAP16_TO_CAP32(FC_TX); 3988 CAP16_TO_CAP32(ANEG); 3989 CAP16_TO_CAP32(FORCE_PAUSE); 3990 CAP16_TO_CAP32(MDIAUTO); 3991 CAP16_TO_CAP32(MDISTRAIGHT); 3992 CAP16_TO_CAP32(FEC_RS); 3993 CAP16_TO_CAP32(FEC_BASER_RS); 3994 CAP16_TO_CAP32(802_3_PAUSE); 3995 CAP16_TO_CAP32(802_3_ASM_DIR); 3996 3997 #undef CAP16_TO_CAP32 3998 3999 return caps32; 4000 } 4001 4002 /** 4003 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 4004 * @caps32: a 32-bit Port Capabilities value 4005 * 4006 * Returns the equivalent 16-bit Port Capabilities value. Note that 4007 * not all 32-bit Port Capabilities can be represented in the 16-bit 4008 * Port Capabilities and some fields/values may not make it. 4009 */ 4010 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4011 { 4012 fw_port_cap16_t caps16 = 0; 4013 4014 #define CAP32_TO_CAP16(__cap) \ 4015 do { \ 4016 if (caps32 & FW_PORT_CAP32_##__cap) \ 4017 caps16 |= FW_PORT_CAP_##__cap; \ 4018 } while (0) 4019 4020 CAP32_TO_CAP16(SPEED_100M); 4021 CAP32_TO_CAP16(SPEED_1G); 4022 CAP32_TO_CAP16(SPEED_10G); 4023 CAP32_TO_CAP16(SPEED_25G); 4024 CAP32_TO_CAP16(SPEED_40G); 4025 CAP32_TO_CAP16(SPEED_100G); 4026 CAP32_TO_CAP16(FC_RX); 4027 CAP32_TO_CAP16(FC_TX); 4028 CAP32_TO_CAP16(802_3_PAUSE); 4029 CAP32_TO_CAP16(802_3_ASM_DIR); 4030 CAP32_TO_CAP16(ANEG); 4031 CAP32_TO_CAP16(FORCE_PAUSE); 4032 CAP32_TO_CAP16(MDIAUTO); 4033 CAP32_TO_CAP16(MDISTRAIGHT); 4034 CAP32_TO_CAP16(FEC_RS); 4035 CAP32_TO_CAP16(FEC_BASER_RS); 4036 4037 #undef CAP32_TO_CAP16 4038 4039 return caps16; 4040 } 4041 4042 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4043 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4044 { 4045 enum cc_pause cc_pause = 0; 4046 4047 if (fw_pause & FW_PORT_CAP32_FC_RX) 4048 cc_pause |= PAUSE_RX; 4049 if (fw_pause & FW_PORT_CAP32_FC_TX) 4050 cc_pause |= PAUSE_TX; 4051 4052 return cc_pause; 4053 } 4054 4055 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4056 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4057 { 4058 /* Translate orthogonal RX/TX Pause Controls for L1 Configure 4059 * commands, etc. 4060 */ 4061 fw_port_cap32_t fw_pause = 0; 4062 4063 if (cc_pause & PAUSE_RX) 4064 fw_pause |= FW_PORT_CAP32_FC_RX; 4065 if (cc_pause & PAUSE_TX) 4066 fw_pause |= FW_PORT_CAP32_FC_TX; 4067 if (!(cc_pause & PAUSE_AUTONEG)) 4068 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4069 4070 /* Translate orthogonal Pause controls into IEEE 802.3 Pause, 4071 * Asymmetrical Pause for use in reporting to upper layer OS code, etc. 4072 * Note that these bits are ignored in L1 Configure commands. 4073 */ 4074 if (cc_pause & PAUSE_RX) { 4075 if (cc_pause & PAUSE_TX) 4076 fw_pause |= FW_PORT_CAP32_802_3_PAUSE; 4077 else 4078 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR | 4079 FW_PORT_CAP32_802_3_PAUSE; 4080 } else if (cc_pause & PAUSE_TX) { 4081 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4082 } 4083 4084 return fw_pause; 4085 } 4086 4087 /* Translate Firmware Forward Error Correction specification to Common Code */ 4088 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4089 { 4090 enum cc_fec cc_fec = 0; 4091 4092 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4093 cc_fec |= FEC_RS; 4094 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4095 cc_fec |= FEC_BASER_RS; 4096 4097 return cc_fec; 4098 } 4099 4100 /* Translate Common Code Forward Error Correction specification to Firmware */ 4101 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4102 { 4103 fw_port_cap32_t fw_fec = 0; 4104 4105 if (cc_fec & FEC_RS) 4106 fw_fec |= FW_PORT_CAP32_FEC_RS; 4107 if (cc_fec & FEC_BASER_RS) 4108 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4109 4110 return fw_fec; 4111 } 4112 4113 /** 4114 * t4_link_acaps - compute Link Advertised Port Capabilities 4115 * @adapter: the adapter 4116 * @port: the Port ID 4117 * @lc: the Port's Link Configuration 4118 * 4119 * Synthesize the Advertised Port Capabilities we'll be using based on 4120 * the base Advertised Port Capabilities (which have been filtered by 4121 * ADVERT_MASK) plus the individual controls for things like Pause 4122 * Frames, Forward Error Correction, MDI, etc. 4123 */ 4124 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, 4125 struct link_config *lc) 4126 { 4127 fw_port_cap32_t fw_fc, fw_fec, acaps; 4128 unsigned int fw_mdi; 4129 char cc_fec; 4130 4131 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4132 4133 /* Convert driver coding of Pause Frame Flow Control settings into the 4134 * Firmware's API. 4135 */ 4136 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4137 4138 /* Convert Common Code Forward Error Control settings into the 4139 * Firmware's API. If the current Requested FEC has "Automatic" 4140 * (IEEE 802.3) specified, then we use whatever the Firmware 4141 * sent us as part of its IEEE 802.3-based interpretation of 4142 * the Transceiver Module EPROM FEC parameters. Otherwise we 4143 * use whatever is in the current Requested FEC settings. 4144 */ 4145 if (lc->requested_fec & FEC_AUTO) 4146 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4147 else 4148 cc_fec = lc->requested_fec; 4149 fw_fec = cc_to_fwcap_fec(cc_fec); 4150 4151 /* Figure out what our Requested Port Capabilities are going to be. 4152 * Note parallel structure in t4_handle_get_port_info() and 4153 * init_link_config(). 4154 */ 4155 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4156 acaps = lc->acaps | fw_fc | fw_fec; 4157 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4158 lc->fec = cc_fec; 4159 } else if (lc->autoneg == AUTONEG_DISABLE) { 4160 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4161 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4162 lc->fec = cc_fec; 4163 } else { 4164 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; 4165 } 4166 4167 /* Some Requested Port Capabilities are trivially wrong if they exceed 4168 * the Physical Port Capabilities. We can check that here and provide 4169 * moderately useful feedback in the system log. 4170 * 4171 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4172 * we need to exclude this from this check in order to maintain 4173 * compatibility ... 4174 */ 4175 if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4176 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4177 acaps, lc->pcaps); 4178 return -EINVAL; 4179 } 4180 4181 return acaps; 4182 } 4183 4184 /** 4185 * t4_link_l1cfg_core - apply link configuration to MAC/PHY 4186 * @adapter: the adapter 4187 * @mbox: the Firmware Mailbox to use 4188 * @port: the Port ID 4189 * @lc: the Port's Link Configuration 4190 * @sleep_ok: if true we may sleep while awaiting command completion 4191 * @timeout: time to wait for command to finish before timing out 4192 * (negative implies @sleep_ok=false) 4193 * 4194 * Set up a port's MAC and PHY according to a desired link configuration. 4195 * - If the PHY can auto-negotiate first decide what to advertise, then 4196 * enable/disable auto-negotiation as desired, and reset. 4197 * - If the PHY does not auto-negotiate just reset it. 4198 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4199 * otherwise do it later based on the outcome of auto-negotiation. 4200 */ 4201 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4202 unsigned int port, struct link_config *lc, 4203 u8 sleep_ok, int timeout) 4204 { 4205 unsigned int fw_caps = adapter->params.fw_caps_support; 4206 struct fw_port_cmd cmd; 4207 fw_port_cap32_t rcap; 4208 int ret; 4209 4210 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && 4211 lc->autoneg == AUTONEG_ENABLE) { 4212 return -EINVAL; 4213 } 4214 4215 /* Compute our Requested Port Capabilities and send that on to the 4216 * Firmware. 4217 */ 4218 rcap = t4_link_acaps(adapter, port, lc); 4219 memset(&cmd, 0, sizeof(cmd)); 4220 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4221 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4222 FW_PORT_CMD_PORTID_V(port)); 4223 cmd.action_to_len16 = 4224 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4225 ? FW_PORT_ACTION_L1_CFG 4226 : FW_PORT_ACTION_L1_CFG32) | 4227 FW_LEN16(cmd)); 4228 if (fw_caps == FW_CAPS16) 4229 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4230 else 4231 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4232 4233 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4234 sleep_ok, timeout); 4235 4236 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4237 * the Physical Port Capabilities, some combinations of features may 4238 * still not be legal. For example, 40Gb/s and Reed-Solomon Forward 4239 * Error Correction. So if the Firmware rejects the L1 Configure 4240 * request, flag that here. 4241 */ 4242 if (ret) { 4243 dev_err(adapter->pdev_dev, 4244 "Requested Port Capabilities %#x rejected, error %d\n", 4245 rcap, -ret); 4246 return ret; 4247 } 4248 return 0; 4249 } 4250 4251 /** 4252 * t4_restart_aneg - restart autonegotiation 4253 * @adap: the adapter 4254 * @mbox: mbox to use for the FW command 4255 * @port: the port id 4256 * 4257 * Restarts autonegotiation for the selected port. 4258 */ 4259 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4260 { 4261 unsigned int fw_caps = adap->params.fw_caps_support; 4262 struct fw_port_cmd c; 4263 4264 memset(&c, 0, sizeof(c)); 4265 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4266 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4267 FW_PORT_CMD_PORTID_V(port)); 4268 c.action_to_len16 = 4269 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4270 ? FW_PORT_ACTION_L1_CFG 4271 : FW_PORT_ACTION_L1_CFG32) | 4272 FW_LEN16(c)); 4273 if (fw_caps == FW_CAPS16) 4274 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4275 else 4276 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4277 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4278 } 4279 4280 typedef void (*int_handler_t)(struct adapter *adap); 4281 4282 struct intr_info { 4283 unsigned int mask; /* bits to check in interrupt status */ 4284 const char *msg; /* message to print or NULL */ 4285 short stat_idx; /* stat counter to increment or -1 */ 4286 unsigned short fatal; /* whether the condition reported is fatal */ 4287 int_handler_t int_handler; /* platform-specific int handler */ 4288 }; 4289 4290 /** 4291 * t4_handle_intr_status - table driven interrupt handler 4292 * @adapter: the adapter that generated the interrupt 4293 * @reg: the interrupt status register to process 4294 * @acts: table of interrupt actions 4295 * 4296 * A table driven interrupt handler that applies a set of masks to an 4297 * interrupt status word and performs the corresponding actions if the 4298 * interrupts described by the mask have occurred. The actions include 4299 * optionally emitting a warning or alert message. The table is terminated 4300 * by an entry specifying mask 0. Returns the number of fatal interrupt 4301 * conditions. 4302 */ 4303 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4304 const struct intr_info *acts) 4305 { 4306 int fatal = 0; 4307 unsigned int mask = 0; 4308 unsigned int status = t4_read_reg(adapter, reg); 4309 4310 for ( ; acts->mask; ++acts) { 4311 if (!(status & acts->mask)) 4312 continue; 4313 if (acts->fatal) { 4314 fatal++; 4315 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4316 status & acts->mask); 4317 } else if (acts->msg && printk_ratelimit()) 4318 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4319 status & acts->mask); 4320 if (acts->int_handler) 4321 acts->int_handler(adapter); 4322 mask |= acts->mask; 4323 } 4324 status &= mask; 4325 if (status) /* clear processed interrupts */ 4326 t4_write_reg(adapter, reg, status); 4327 return fatal; 4328 } 4329 4330 /* 4331 * Interrupt handler for the PCIE module. 4332 */ 4333 static void pcie_intr_handler(struct adapter *adapter) 4334 { 4335 static const struct intr_info sysbus_intr_info[] = { 4336 { RNPP_F, "RXNP array parity error", -1, 1 }, 4337 { RPCP_F, "RXPC array parity error", -1, 1 }, 4338 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4339 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4340 { RFTP_F, "RXFT array parity error", -1, 1 }, 4341 { 0 } 4342 }; 4343 static const struct intr_info pcie_port_intr_info[] = { 4344 { TPCP_F, "TXPC array parity error", -1, 1 }, 4345 { TNPP_F, "TXNP array parity error", -1, 1 }, 4346 { TFTP_F, "TXFT array parity error", -1, 1 }, 4347 { TCAP_F, "TXCA array parity error", -1, 1 }, 4348 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4349 { RCAP_F, "RXCA array parity error", -1, 1 }, 4350 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4351 { RDPE_F, "Rx data parity error", -1, 1 }, 4352 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4353 { 0 } 4354 }; 4355 static const struct intr_info pcie_intr_info[] = { 4356 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4357 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4358 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4359 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4360 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4361 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4362 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4363 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4364 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4365 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4366 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4367 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4368 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4369 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4370 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4371 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4372 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4373 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4374 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4375 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4376 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4377 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4378 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4379 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4380 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4381 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4382 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4383 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4384 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4385 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4386 -1, 0 }, 4387 { 0 } 4388 }; 4389 4390 static struct intr_info t5_pcie_intr_info[] = { 4391 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4392 -1, 1 }, 4393 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4394 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4395 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4396 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4397 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4398 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4399 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4400 -1, 1 }, 4401 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4402 -1, 1 }, 4403 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4404 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4405 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4406 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4407 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4408 -1, 1 }, 4409 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4410 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4411 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4412 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4413 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4414 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4415 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4416 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4417 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4418 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4419 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4420 -1, 1 }, 4421 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4422 -1, 1 }, 4423 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4424 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4425 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4426 { READRSPERR_F, "Outbound read error", -1, 0 }, 4427 { 0 } 4428 }; 4429 4430 int fat; 4431 4432 if (is_t4(adapter->params.chip)) 4433 fat = t4_handle_intr_status(adapter, 4434 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4435 sysbus_intr_info) + 4436 t4_handle_intr_status(adapter, 4437 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4438 pcie_port_intr_info) + 4439 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4440 pcie_intr_info); 4441 else 4442 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4443 t5_pcie_intr_info); 4444 4445 if (fat) 4446 t4_fatal_err(adapter); 4447 } 4448 4449 /* 4450 * TP interrupt handler. 4451 */ 4452 static void tp_intr_handler(struct adapter *adapter) 4453 { 4454 static const struct intr_info tp_intr_info[] = { 4455 { 0x3fffffff, "TP parity error", -1, 1 }, 4456 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4457 { 0 } 4458 }; 4459 4460 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4461 t4_fatal_err(adapter); 4462 } 4463 4464 /* 4465 * SGE interrupt handler. 4466 */ 4467 static void sge_intr_handler(struct adapter *adapter) 4468 { 4469 u32 v = 0, perr; 4470 u32 err; 4471 4472 static const struct intr_info sge_intr_info[] = { 4473 { ERR_CPL_EXCEED_IQE_SIZE_F, 4474 "SGE received CPL exceeding IQE size", -1, 1 }, 4475 { ERR_INVALID_CIDX_INC_F, 4476 "SGE GTS CIDX increment too large", -1, 0 }, 4477 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4478 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4479 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4480 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4481 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4482 0 }, 4483 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4484 0 }, 4485 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4486 0 }, 4487 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4488 0 }, 4489 { ERR_ING_CTXT_PRIO_F, 4490 "SGE too many priority ingress contexts", -1, 0 }, 4491 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4492 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4493 { 0 } 4494 }; 4495 4496 static struct intr_info t4t5_sge_intr_info[] = { 4497 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4498 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4499 { ERR_EGR_CTXT_PRIO_F, 4500 "SGE too many priority egress contexts", -1, 0 }, 4501 { 0 } 4502 }; 4503 4504 perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A); 4505 if (perr) { 4506 v |= perr; 4507 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n", 4508 perr); 4509 } 4510 4511 perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A); 4512 if (perr) { 4513 v |= perr; 4514 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n", 4515 perr); 4516 } 4517 4518 if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) { 4519 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A); 4520 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */ 4521 perr &= ~ERR_T_RXCRC_F; 4522 if (perr) { 4523 v |= perr; 4524 dev_alert(adapter->pdev_dev, 4525 "SGE Cause5 Parity Error %#x\n", perr); 4526 } 4527 } 4528 4529 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4530 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4531 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4532 t4t5_sge_intr_info); 4533 4534 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4535 if (err & ERROR_QID_VALID_F) { 4536 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4537 ERROR_QID_G(err)); 4538 if (err & UNCAPTURED_ERROR_F) 4539 dev_err(adapter->pdev_dev, 4540 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4541 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4542 UNCAPTURED_ERROR_F); 4543 } 4544 4545 if (v != 0) 4546 t4_fatal_err(adapter); 4547 } 4548 4549 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4550 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4551 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4552 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4553 4554 /* 4555 * CIM interrupt handler. 4556 */ 4557 static void cim_intr_handler(struct adapter *adapter) 4558 { 4559 static const struct intr_info cim_intr_info[] = { 4560 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4561 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4562 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4563 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4564 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4565 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4566 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4567 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4568 { 0 } 4569 }; 4570 static const struct intr_info cim_upintr_info[] = { 4571 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4572 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4573 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4574 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4575 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4576 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4577 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4578 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4579 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4580 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4581 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4582 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4583 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4584 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4585 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4586 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4587 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4588 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4589 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4590 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4591 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4592 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4593 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4594 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4595 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4596 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4597 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4598 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4599 { 0 } 4600 }; 4601 4602 u32 val, fw_err; 4603 int fat; 4604 4605 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4606 if (fw_err & PCIE_FW_ERR_F) 4607 t4_report_fw_error(adapter); 4608 4609 /* When the Firmware detects an internal error which normally 4610 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4611 * in order to make sure the Host sees the Firmware Crash. So 4612 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4613 * ignore the Timer0 interrupt. 4614 */ 4615 4616 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4617 if (val & TIMER0INT_F) 4618 if (!(fw_err & PCIE_FW_ERR_F) || 4619 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4620 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4621 TIMER0INT_F); 4622 4623 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4624 cim_intr_info) + 4625 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4626 cim_upintr_info); 4627 if (fat) 4628 t4_fatal_err(adapter); 4629 } 4630 4631 /* 4632 * ULP RX interrupt handler. 4633 */ 4634 static void ulprx_intr_handler(struct adapter *adapter) 4635 { 4636 static const struct intr_info ulprx_intr_info[] = { 4637 { 0x1800000, "ULPRX context error", -1, 1 }, 4638 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4639 { 0 } 4640 }; 4641 4642 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4643 t4_fatal_err(adapter); 4644 } 4645 4646 /* 4647 * ULP TX interrupt handler. 4648 */ 4649 static void ulptx_intr_handler(struct adapter *adapter) 4650 { 4651 static const struct intr_info ulptx_intr_info[] = { 4652 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4653 0 }, 4654 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4655 0 }, 4656 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4657 0 }, 4658 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4659 0 }, 4660 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4661 { 0 } 4662 }; 4663 4664 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4665 t4_fatal_err(adapter); 4666 } 4667 4668 /* 4669 * PM TX interrupt handler. 4670 */ 4671 static void pmtx_intr_handler(struct adapter *adapter) 4672 { 4673 static const struct intr_info pmtx_intr_info[] = { 4674 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4675 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4676 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4677 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4678 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4679 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4680 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4681 -1, 1 }, 4682 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4683 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4684 { 0 } 4685 }; 4686 4687 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4688 t4_fatal_err(adapter); 4689 } 4690 4691 /* 4692 * PM RX interrupt handler. 4693 */ 4694 static void pmrx_intr_handler(struct adapter *adapter) 4695 { 4696 static const struct intr_info pmrx_intr_info[] = { 4697 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4698 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4699 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4700 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4701 -1, 1 }, 4702 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4703 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4704 { 0 } 4705 }; 4706 4707 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4708 t4_fatal_err(adapter); 4709 } 4710 4711 /* 4712 * CPL switch interrupt handler. 4713 */ 4714 static void cplsw_intr_handler(struct adapter *adapter) 4715 { 4716 static const struct intr_info cplsw_intr_info[] = { 4717 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4718 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4719 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4720 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4721 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4722 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4723 { 0 } 4724 }; 4725 4726 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4727 t4_fatal_err(adapter); 4728 } 4729 4730 /* 4731 * LE interrupt handler. 4732 */ 4733 static void le_intr_handler(struct adapter *adap) 4734 { 4735 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4736 static const struct intr_info le_intr_info[] = { 4737 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4738 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4739 { PARITYERR_F, "LE parity error", -1, 1 }, 4740 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4741 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4742 { 0 } 4743 }; 4744 4745 static struct intr_info t6_le_intr_info[] = { 4746 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4747 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4748 { CMDTIDERR_F, "LE cmd tid error", -1, 1 }, 4749 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4750 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4751 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4752 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 }, 4753 { 0 } 4754 }; 4755 4756 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4757 (chip <= CHELSIO_T5) ? 4758 le_intr_info : t6_le_intr_info)) 4759 t4_fatal_err(adap); 4760 } 4761 4762 /* 4763 * MPS interrupt handler. 4764 */ 4765 static void mps_intr_handler(struct adapter *adapter) 4766 { 4767 static const struct intr_info mps_rx_intr_info[] = { 4768 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4769 { 0 } 4770 }; 4771 static const struct intr_info mps_tx_intr_info[] = { 4772 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4773 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4774 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4775 -1, 1 }, 4776 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4777 -1, 1 }, 4778 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4779 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4780 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4781 { 0 } 4782 }; 4783 static const struct intr_info t6_mps_tx_intr_info[] = { 4784 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4785 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4786 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4787 -1, 1 }, 4788 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4789 -1, 1 }, 4790 /* MPS Tx Bubble is normal for T6 */ 4791 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4792 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4793 { 0 } 4794 }; 4795 static const struct intr_info mps_trc_intr_info[] = { 4796 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4797 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4798 -1, 1 }, 4799 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4800 { 0 } 4801 }; 4802 static const struct intr_info mps_stat_sram_intr_info[] = { 4803 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4804 { 0 } 4805 }; 4806 static const struct intr_info mps_stat_tx_intr_info[] = { 4807 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4808 { 0 } 4809 }; 4810 static const struct intr_info mps_stat_rx_intr_info[] = { 4811 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4812 { 0 } 4813 }; 4814 static const struct intr_info mps_cls_intr_info[] = { 4815 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4816 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4817 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4818 { 0 } 4819 }; 4820 4821 int fat; 4822 4823 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4824 mps_rx_intr_info) + 4825 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4826 is_t6(adapter->params.chip) 4827 ? t6_mps_tx_intr_info 4828 : mps_tx_intr_info) + 4829 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4830 mps_trc_intr_info) + 4831 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4832 mps_stat_sram_intr_info) + 4833 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4834 mps_stat_tx_intr_info) + 4835 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4836 mps_stat_rx_intr_info) + 4837 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4838 mps_cls_intr_info); 4839 4840 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4841 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4842 if (fat) 4843 t4_fatal_err(adapter); 4844 } 4845 4846 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4847 ECC_UE_INT_CAUSE_F) 4848 4849 /* 4850 * EDC/MC interrupt handler. 4851 */ 4852 static void mem_intr_handler(struct adapter *adapter, int idx) 4853 { 4854 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4855 4856 unsigned int addr, cnt_addr, v; 4857 4858 if (idx <= MEM_EDC1) { 4859 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4860 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4861 } else if (idx == MEM_MC) { 4862 if (is_t4(adapter->params.chip)) { 4863 addr = MC_INT_CAUSE_A; 4864 cnt_addr = MC_ECC_STATUS_A; 4865 } else { 4866 addr = MC_P_INT_CAUSE_A; 4867 cnt_addr = MC_P_ECC_STATUS_A; 4868 } 4869 } else { 4870 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4871 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4872 } 4873 4874 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4875 if (v & PERR_INT_CAUSE_F) 4876 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4877 name[idx]); 4878 if (v & ECC_CE_INT_CAUSE_F) { 4879 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4880 4881 t4_edc_err_read(adapter, idx); 4882 4883 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4884 if (printk_ratelimit()) 4885 dev_warn(adapter->pdev_dev, 4886 "%u %s correctable ECC data error%s\n", 4887 cnt, name[idx], cnt > 1 ? "s" : ""); 4888 } 4889 if (v & ECC_UE_INT_CAUSE_F) 4890 dev_alert(adapter->pdev_dev, 4891 "%s uncorrectable ECC data error\n", name[idx]); 4892 4893 t4_write_reg(adapter, addr, v); 4894 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4895 t4_fatal_err(adapter); 4896 } 4897 4898 /* 4899 * MA interrupt handler. 4900 */ 4901 static void ma_intr_handler(struct adapter *adap) 4902 { 4903 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4904 4905 if (status & MEM_PERR_INT_CAUSE_F) { 4906 dev_alert(adap->pdev_dev, 4907 "MA parity error, parity status %#x\n", 4908 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4909 if (is_t5(adap->params.chip)) 4910 dev_alert(adap->pdev_dev, 4911 "MA parity error, parity status %#x\n", 4912 t4_read_reg(adap, 4913 MA_PARITY_ERROR_STATUS2_A)); 4914 } 4915 if (status & MEM_WRAP_INT_CAUSE_F) { 4916 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4917 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4918 "client %u to address %#x\n", 4919 MEM_WRAP_CLIENT_NUM_G(v), 4920 MEM_WRAP_ADDRESS_G(v) << 4); 4921 } 4922 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4923 t4_fatal_err(adap); 4924 } 4925 4926 /* 4927 * SMB interrupt handler. 4928 */ 4929 static void smb_intr_handler(struct adapter *adap) 4930 { 4931 static const struct intr_info smb_intr_info[] = { 4932 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4933 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4934 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4935 { 0 } 4936 }; 4937 4938 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4939 t4_fatal_err(adap); 4940 } 4941 4942 /* 4943 * NC-SI interrupt handler. 4944 */ 4945 static void ncsi_intr_handler(struct adapter *adap) 4946 { 4947 static const struct intr_info ncsi_intr_info[] = { 4948 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4949 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4950 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4951 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4952 { 0 } 4953 }; 4954 4955 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4956 t4_fatal_err(adap); 4957 } 4958 4959 /* 4960 * XGMAC interrupt handler. 4961 */ 4962 static void xgmac_intr_handler(struct adapter *adap, int port) 4963 { 4964 u32 v, int_cause_reg; 4965 4966 if (is_t4(adap->params.chip)) 4967 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4968 else 4969 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4970 4971 v = t4_read_reg(adap, int_cause_reg); 4972 4973 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4974 if (!v) 4975 return; 4976 4977 if (v & TXFIFO_PRTY_ERR_F) 4978 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4979 port); 4980 if (v & RXFIFO_PRTY_ERR_F) 4981 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4982 port); 4983 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4984 t4_fatal_err(adap); 4985 } 4986 4987 /* 4988 * PL interrupt handler. 4989 */ 4990 static void pl_intr_handler(struct adapter *adap) 4991 { 4992 static const struct intr_info pl_intr_info[] = { 4993 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4994 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4995 { 0 } 4996 }; 4997 4998 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4999 t4_fatal_err(adap); 5000 } 5001 5002 #define PF_INTR_MASK (PFSW_F) 5003 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 5004 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 5005 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 5006 5007 /** 5008 * t4_slow_intr_handler - control path interrupt handler 5009 * @adapter: the adapter 5010 * 5011 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5012 * The designation 'slow' is because it involves register reads, while 5013 * data interrupts typically don't involve any MMIOs. 5014 */ 5015 int t4_slow_intr_handler(struct adapter *adapter) 5016 { 5017 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 5018 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 5019 * easiest just to mask that case here. 5020 */ 5021 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 5022 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 5023 u32 cause = raw_cause & enable; 5024 5025 if (!(cause & GLBL_INTR_MASK)) 5026 return 0; 5027 if (cause & CIM_F) 5028 cim_intr_handler(adapter); 5029 if (cause & MPS_F) 5030 mps_intr_handler(adapter); 5031 if (cause & NCSI_F) 5032 ncsi_intr_handler(adapter); 5033 if (cause & PL_F) 5034 pl_intr_handler(adapter); 5035 if (cause & SMB_F) 5036 smb_intr_handler(adapter); 5037 if (cause & XGMAC0_F) 5038 xgmac_intr_handler(adapter, 0); 5039 if (cause & XGMAC1_F) 5040 xgmac_intr_handler(adapter, 1); 5041 if (cause & XGMAC_KR0_F) 5042 xgmac_intr_handler(adapter, 2); 5043 if (cause & XGMAC_KR1_F) 5044 xgmac_intr_handler(adapter, 3); 5045 if (cause & PCIE_F) 5046 pcie_intr_handler(adapter); 5047 if (cause & MC_F) 5048 mem_intr_handler(adapter, MEM_MC); 5049 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 5050 mem_intr_handler(adapter, MEM_MC1); 5051 if (cause & EDC0_F) 5052 mem_intr_handler(adapter, MEM_EDC0); 5053 if (cause & EDC1_F) 5054 mem_intr_handler(adapter, MEM_EDC1); 5055 if (cause & LE_F) 5056 le_intr_handler(adapter); 5057 if (cause & TP_F) 5058 tp_intr_handler(adapter); 5059 if (cause & MA_F) 5060 ma_intr_handler(adapter); 5061 if (cause & PM_TX_F) 5062 pmtx_intr_handler(adapter); 5063 if (cause & PM_RX_F) 5064 pmrx_intr_handler(adapter); 5065 if (cause & ULP_RX_F) 5066 ulprx_intr_handler(adapter); 5067 if (cause & CPL_SWITCH_F) 5068 cplsw_intr_handler(adapter); 5069 if (cause & SGE_F) 5070 sge_intr_handler(adapter); 5071 if (cause & ULP_TX_F) 5072 ulptx_intr_handler(adapter); 5073 5074 /* Clear the interrupts just processed for which we are the master. */ 5075 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5076 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5077 return 1; 5078 } 5079 5080 /** 5081 * t4_intr_enable - enable interrupts 5082 * @adapter: the adapter whose interrupts should be enabled 5083 * 5084 * Enable PF-specific interrupts for the calling function and the top-level 5085 * interrupt concentrator for global interrupts. Interrupts are already 5086 * enabled at each module, here we just enable the roots of the interrupt 5087 * hierarchies. 5088 * 5089 * Note: this function should be called only when the driver manages 5090 * non PF-specific interrupts from the various HW modules. Only one PCI 5091 * function at a time should be doing this. 5092 */ 5093 void t4_intr_enable(struct adapter *adapter) 5094 { 5095 u32 val = 0; 5096 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5097 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5098 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5099 5100 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5101 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5102 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5103 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5104 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5105 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5106 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5107 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5108 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5109 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5110 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5111 } 5112 5113 /** 5114 * t4_intr_disable - disable interrupts 5115 * @adapter: the adapter whose interrupts should be disabled 5116 * 5117 * Disable interrupts. We only disable the top-level interrupt 5118 * concentrators. The caller must be a PCI function managing global 5119 * interrupts. 5120 */ 5121 void t4_intr_disable(struct adapter *adapter) 5122 { 5123 u32 whoami, pf; 5124 5125 if (pci_channel_offline(adapter->pdev)) 5126 return; 5127 5128 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5129 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5130 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5131 5132 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5133 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5134 } 5135 5136 unsigned int t4_chip_rss_size(struct adapter *adap) 5137 { 5138 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5139 return RSS_NENTRIES; 5140 else 5141 return T6_RSS_NENTRIES; 5142 } 5143 5144 /** 5145 * t4_config_rss_range - configure a portion of the RSS mapping table 5146 * @adapter: the adapter 5147 * @mbox: mbox to use for the FW command 5148 * @viid: virtual interface whose RSS subtable is to be written 5149 * @start: start entry in the table to write 5150 * @n: how many table entries to write 5151 * @rspq: values for the response queue lookup table 5152 * @nrspq: number of values in @rspq 5153 * 5154 * Programs the selected part of the VI's RSS mapping table with the 5155 * provided values. If @nrspq < @n the supplied values are used repeatedly 5156 * until the full table range is populated. 5157 * 5158 * The caller must ensure the values in @rspq are in the range allowed for 5159 * @viid. 5160 */ 5161 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5162 int start, int n, const u16 *rspq, unsigned int nrspq) 5163 { 5164 int ret; 5165 const u16 *rsp = rspq; 5166 const u16 *rsp_end = rspq + nrspq; 5167 struct fw_rss_ind_tbl_cmd cmd; 5168 5169 memset(&cmd, 0, sizeof(cmd)); 5170 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5171 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5172 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5173 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5174 5175 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5176 while (n > 0) { 5177 int nq = min(n, 32); 5178 __be32 *qp = &cmd.iq0_to_iq2; 5179 5180 cmd.niqid = cpu_to_be16(nq); 5181 cmd.startidx = cpu_to_be16(start); 5182 5183 start += nq; 5184 n -= nq; 5185 5186 while (nq > 0) { 5187 unsigned int v; 5188 5189 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5190 if (++rsp >= rsp_end) 5191 rsp = rspq; 5192 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5193 if (++rsp >= rsp_end) 5194 rsp = rspq; 5195 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5196 if (++rsp >= rsp_end) 5197 rsp = rspq; 5198 5199 *qp++ = cpu_to_be32(v); 5200 nq -= 3; 5201 } 5202 5203 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5204 if (ret) 5205 return ret; 5206 } 5207 return 0; 5208 } 5209 5210 /** 5211 * t4_config_glbl_rss - configure the global RSS mode 5212 * @adapter: the adapter 5213 * @mbox: mbox to use for the FW command 5214 * @mode: global RSS mode 5215 * @flags: mode-specific flags 5216 * 5217 * Sets the global RSS mode. 5218 */ 5219 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5220 unsigned int flags) 5221 { 5222 struct fw_rss_glb_config_cmd c; 5223 5224 memset(&c, 0, sizeof(c)); 5225 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5226 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5227 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5228 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5229 c.u.manual.mode_pkd = 5230 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5231 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5232 c.u.basicvirtual.mode_pkd = 5233 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5234 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5235 } else 5236 return -EINVAL; 5237 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5238 } 5239 5240 /** 5241 * t4_config_vi_rss - configure per VI RSS settings 5242 * @adapter: the adapter 5243 * @mbox: mbox to use for the FW command 5244 * @viid: the VI id 5245 * @flags: RSS flags 5246 * @defq: id of the default RSS queue for the VI. 5247 * 5248 * Configures VI-specific RSS properties. 5249 */ 5250 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5251 unsigned int flags, unsigned int defq) 5252 { 5253 struct fw_rss_vi_config_cmd c; 5254 5255 memset(&c, 0, sizeof(c)); 5256 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5257 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5258 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5259 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5260 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5261 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5262 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5263 } 5264 5265 /* Read an RSS table row */ 5266 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5267 { 5268 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5269 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5270 5, 0, val); 5271 } 5272 5273 /** 5274 * t4_read_rss - read the contents of the RSS mapping table 5275 * @adapter: the adapter 5276 * @map: holds the contents of the RSS mapping table 5277 * 5278 * Reads the contents of the RSS hash->queue mapping table. 5279 */ 5280 int t4_read_rss(struct adapter *adapter, u16 *map) 5281 { 5282 int i, ret, nentries; 5283 u32 val; 5284 5285 nentries = t4_chip_rss_size(adapter); 5286 for (i = 0; i < nentries / 2; ++i) { 5287 ret = rd_rss_row(adapter, i, &val); 5288 if (ret) 5289 return ret; 5290 *map++ = LKPTBLQUEUE0_G(val); 5291 *map++ = LKPTBLQUEUE1_G(val); 5292 } 5293 return 0; 5294 } 5295 5296 static unsigned int t4_use_ldst(struct adapter *adap) 5297 { 5298 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5299 } 5300 5301 /** 5302 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5303 * @adap: the adapter 5304 * @cmd: TP fw ldst address space type 5305 * @vals: where the indirect register values are stored/written 5306 * @nregs: how many indirect registers to read/write 5307 * @start_index: index of first indirect register to read/write 5308 * @rw: Read (1) or Write (0) 5309 * @sleep_ok: if true we may sleep while awaiting command completion 5310 * 5311 * Access TP indirect registers through LDST 5312 */ 5313 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5314 unsigned int nregs, unsigned int start_index, 5315 unsigned int rw, bool sleep_ok) 5316 { 5317 int ret = 0; 5318 unsigned int i; 5319 struct fw_ldst_cmd c; 5320 5321 for (i = 0; i < nregs; i++) { 5322 memset(&c, 0, sizeof(c)); 5323 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5324 FW_CMD_REQUEST_F | 5325 (rw ? FW_CMD_READ_F : 5326 FW_CMD_WRITE_F) | 5327 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5328 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5329 5330 c.u.addrval.addr = cpu_to_be32(start_index + i); 5331 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5332 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5333 sleep_ok); 5334 if (ret) 5335 return ret; 5336 5337 if (rw) 5338 vals[i] = be32_to_cpu(c.u.addrval.val); 5339 } 5340 return 0; 5341 } 5342 5343 /** 5344 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5345 * @adap: the adapter 5346 * @reg_addr: Address Register 5347 * @reg_data: Data register 5348 * @buff: where the indirect register values are stored/written 5349 * @nregs: how many indirect registers to read/write 5350 * @start_index: index of first indirect register to read/write 5351 * @rw: READ(1) or WRITE(0) 5352 * @sleep_ok: if true we may sleep while awaiting command completion 5353 * 5354 * Read/Write TP indirect registers through LDST if possible. 5355 * Else, use backdoor access 5356 **/ 5357 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5358 u32 *buff, u32 nregs, u32 start_index, int rw, 5359 bool sleep_ok) 5360 { 5361 int rc = -EINVAL; 5362 int cmd; 5363 5364 switch (reg_addr) { 5365 case TP_PIO_ADDR_A: 5366 cmd = FW_LDST_ADDRSPC_TP_PIO; 5367 break; 5368 case TP_TM_PIO_ADDR_A: 5369 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5370 break; 5371 case TP_MIB_INDEX_A: 5372 cmd = FW_LDST_ADDRSPC_TP_MIB; 5373 break; 5374 default: 5375 goto indirect_access; 5376 } 5377 5378 if (t4_use_ldst(adap)) 5379 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5380 sleep_ok); 5381 5382 indirect_access: 5383 5384 if (rc) { 5385 if (rw) 5386 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5387 start_index); 5388 else 5389 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5390 start_index); 5391 } 5392 } 5393 5394 /** 5395 * t4_tp_pio_read - Read TP PIO registers 5396 * @adap: the adapter 5397 * @buff: where the indirect register values are written 5398 * @nregs: how many indirect registers to read 5399 * @start_index: index of first indirect register to read 5400 * @sleep_ok: if true we may sleep while awaiting command completion 5401 * 5402 * Read TP PIO Registers 5403 **/ 5404 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5405 u32 start_index, bool sleep_ok) 5406 { 5407 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5408 start_index, 1, sleep_ok); 5409 } 5410 5411 /** 5412 * t4_tp_pio_write - Write TP PIO registers 5413 * @adap: the adapter 5414 * @buff: where the indirect register values are stored 5415 * @nregs: how many indirect registers to write 5416 * @start_index: index of first indirect register to write 5417 * @sleep_ok: if true we may sleep while awaiting command completion 5418 * 5419 * Write TP PIO Registers 5420 **/ 5421 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5422 u32 start_index, bool sleep_ok) 5423 { 5424 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5425 start_index, 0, sleep_ok); 5426 } 5427 5428 /** 5429 * t4_tp_tm_pio_read - Read TP TM PIO registers 5430 * @adap: the adapter 5431 * @buff: where the indirect register values are written 5432 * @nregs: how many indirect registers to read 5433 * @start_index: index of first indirect register to read 5434 * @sleep_ok: if true we may sleep while awaiting command completion 5435 * 5436 * Read TP TM PIO Registers 5437 **/ 5438 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5439 u32 start_index, bool sleep_ok) 5440 { 5441 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5442 nregs, start_index, 1, sleep_ok); 5443 } 5444 5445 /** 5446 * t4_tp_mib_read - Read TP MIB registers 5447 * @adap: the adapter 5448 * @buff: where the indirect register values are written 5449 * @nregs: how many indirect registers to read 5450 * @start_index: index of first indirect register to read 5451 * @sleep_ok: if true we may sleep while awaiting command completion 5452 * 5453 * Read TP MIB Registers 5454 **/ 5455 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5456 bool sleep_ok) 5457 { 5458 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5459 start_index, 1, sleep_ok); 5460 } 5461 5462 /** 5463 * t4_read_rss_key - read the global RSS key 5464 * @adap: the adapter 5465 * @key: 10-entry array holding the 320-bit RSS key 5466 * @sleep_ok: if true we may sleep while awaiting command completion 5467 * 5468 * Reads the global 320-bit RSS key. 5469 */ 5470 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5471 { 5472 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5473 } 5474 5475 /** 5476 * t4_write_rss_key - program one of the RSS keys 5477 * @adap: the adapter 5478 * @key: 10-entry array holding the 320-bit RSS key 5479 * @idx: which RSS key to write 5480 * @sleep_ok: if true we may sleep while awaiting command completion 5481 * 5482 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5483 * 0..15 the corresponding entry in the RSS key table is written, 5484 * otherwise the global RSS key is written. 5485 */ 5486 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5487 bool sleep_ok) 5488 { 5489 u8 rss_key_addr_cnt = 16; 5490 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5491 5492 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5493 * allows access to key addresses 16-63 by using KeyWrAddrX 5494 * as index[5:4](upper 2) into key table 5495 */ 5496 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5497 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5498 rss_key_addr_cnt = 32; 5499 5500 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5501 5502 if (idx >= 0 && idx < rss_key_addr_cnt) { 5503 if (rss_key_addr_cnt > 16) 5504 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5505 KEYWRADDRX_V(idx >> 4) | 5506 T6_VFWRADDR_V(idx) | KEYWREN_F); 5507 else 5508 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5509 KEYWRADDR_V(idx) | KEYWREN_F); 5510 } 5511 } 5512 5513 /** 5514 * t4_read_rss_pf_config - read PF RSS Configuration Table 5515 * @adapter: the adapter 5516 * @index: the entry in the PF RSS table to read 5517 * @valp: where to store the returned value 5518 * @sleep_ok: if true we may sleep while awaiting command completion 5519 * 5520 * Reads the PF RSS Configuration Table at the specified index and returns 5521 * the value found there. 5522 */ 5523 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5524 u32 *valp, bool sleep_ok) 5525 { 5526 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5527 } 5528 5529 /** 5530 * t4_read_rss_vf_config - read VF RSS Configuration Table 5531 * @adapter: the adapter 5532 * @index: the entry in the VF RSS table to read 5533 * @vfl: where to store the returned VFL 5534 * @vfh: where to store the returned VFH 5535 * @sleep_ok: if true we may sleep while awaiting command completion 5536 * 5537 * Reads the VF RSS Configuration Table at the specified index and returns 5538 * the (VFL, VFH) values found there. 5539 */ 5540 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5541 u32 *vfl, u32 *vfh, bool sleep_ok) 5542 { 5543 u32 vrt, mask, data; 5544 5545 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5546 mask = VFWRADDR_V(VFWRADDR_M); 5547 data = VFWRADDR_V(index); 5548 } else { 5549 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5550 data = T6_VFWRADDR_V(index); 5551 } 5552 5553 /* Request that the index'th VF Table values be read into VFL/VFH. 5554 */ 5555 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5556 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5557 vrt |= data | VFRDEN_F; 5558 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5559 5560 /* Grab the VFL/VFH values ... 5561 */ 5562 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5563 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5564 } 5565 5566 /** 5567 * t4_read_rss_pf_map - read PF RSS Map 5568 * @adapter: the adapter 5569 * @sleep_ok: if true we may sleep while awaiting command completion 5570 * 5571 * Reads the PF RSS Map register and returns its value. 5572 */ 5573 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5574 { 5575 u32 pfmap; 5576 5577 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5578 return pfmap; 5579 } 5580 5581 /** 5582 * t4_read_rss_pf_mask - read PF RSS Mask 5583 * @adapter: the adapter 5584 * @sleep_ok: if true we may sleep while awaiting command completion 5585 * 5586 * Reads the PF RSS Mask register and returns its value. 5587 */ 5588 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5589 { 5590 u32 pfmask; 5591 5592 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5593 return pfmask; 5594 } 5595 5596 /** 5597 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5598 * @adap: the adapter 5599 * @v4: holds the TCP/IP counter values 5600 * @v6: holds the TCP/IPv6 counter values 5601 * @sleep_ok: if true we may sleep while awaiting command completion 5602 * 5603 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5604 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5605 */ 5606 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5607 struct tp_tcp_stats *v6, bool sleep_ok) 5608 { 5609 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5610 5611 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5612 #define STAT(x) val[STAT_IDX(x)] 5613 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5614 5615 if (v4) { 5616 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5617 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5618 v4->tcp_out_rsts = STAT(OUT_RST); 5619 v4->tcp_in_segs = STAT64(IN_SEG); 5620 v4->tcp_out_segs = STAT64(OUT_SEG); 5621 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5622 } 5623 if (v6) { 5624 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5625 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5626 v6->tcp_out_rsts = STAT(OUT_RST); 5627 v6->tcp_in_segs = STAT64(IN_SEG); 5628 v6->tcp_out_segs = STAT64(OUT_SEG); 5629 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5630 } 5631 #undef STAT64 5632 #undef STAT 5633 #undef STAT_IDX 5634 } 5635 5636 /** 5637 * t4_tp_get_err_stats - read TP's error MIB counters 5638 * @adap: the adapter 5639 * @st: holds the counter values 5640 * @sleep_ok: if true we may sleep while awaiting command completion 5641 * 5642 * Returns the values of TP's error counters. 5643 */ 5644 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5645 bool sleep_ok) 5646 { 5647 int nchan = adap->params.arch.nchan; 5648 5649 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5650 sleep_ok); 5651 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5652 sleep_ok); 5653 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5654 sleep_ok); 5655 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5656 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5657 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5658 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5659 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5660 sleep_ok); 5661 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5662 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5663 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5664 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5665 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5666 sleep_ok); 5667 } 5668 5669 /** 5670 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5671 * @adap: the adapter 5672 * @st: holds the counter values 5673 * @sleep_ok: if true we may sleep while awaiting command completion 5674 * 5675 * Returns the values of TP's CPL counters. 5676 */ 5677 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5678 bool sleep_ok) 5679 { 5680 int nchan = adap->params.arch.nchan; 5681 5682 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5683 5684 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5685 } 5686 5687 /** 5688 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5689 * @adap: the adapter 5690 * @st: holds the counter values 5691 * @sleep_ok: if true we may sleep while awaiting command completion 5692 * 5693 * Returns the values of TP's RDMA counters. 5694 */ 5695 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5696 bool sleep_ok) 5697 { 5698 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5699 sleep_ok); 5700 } 5701 5702 /** 5703 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5704 * @adap: the adapter 5705 * @idx: the port index 5706 * @st: holds the counter values 5707 * @sleep_ok: if true we may sleep while awaiting command completion 5708 * 5709 * Returns the values of TP's FCoE counters for the selected port. 5710 */ 5711 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5712 struct tp_fcoe_stats *st, bool sleep_ok) 5713 { 5714 u32 val[2]; 5715 5716 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5717 sleep_ok); 5718 5719 t4_tp_mib_read(adap, &st->frames_drop, 1, 5720 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5721 5722 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5723 sleep_ok); 5724 5725 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5726 } 5727 5728 /** 5729 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5730 * @adap: the adapter 5731 * @st: holds the counter values 5732 * @sleep_ok: if true we may sleep while awaiting command completion 5733 * 5734 * Returns the values of TP's counters for non-TCP directly-placed packets. 5735 */ 5736 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5737 bool sleep_ok) 5738 { 5739 u32 val[4]; 5740 5741 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5742 st->frames = val[0]; 5743 st->drops = val[1]; 5744 st->octets = ((u64)val[2] << 32) | val[3]; 5745 } 5746 5747 /** 5748 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5749 * @adap: the adapter 5750 * @mtus: where to store the MTU values 5751 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5752 * 5753 * Reads the HW path MTU table. 5754 */ 5755 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5756 { 5757 u32 v; 5758 int i; 5759 5760 for (i = 0; i < NMTUS; ++i) { 5761 t4_write_reg(adap, TP_MTU_TABLE_A, 5762 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5763 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5764 mtus[i] = MTUVALUE_G(v); 5765 if (mtu_log) 5766 mtu_log[i] = MTUWIDTH_G(v); 5767 } 5768 } 5769 5770 /** 5771 * t4_read_cong_tbl - reads the congestion control table 5772 * @adap: the adapter 5773 * @incr: where to store the alpha values 5774 * 5775 * Reads the additive increments programmed into the HW congestion 5776 * control table. 5777 */ 5778 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5779 { 5780 unsigned int mtu, w; 5781 5782 for (mtu = 0; mtu < NMTUS; ++mtu) 5783 for (w = 0; w < NCCTRL_WIN; ++w) { 5784 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5785 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5786 incr[mtu][w] = (u16)t4_read_reg(adap, 5787 TP_CCTRL_TABLE_A) & 0x1fff; 5788 } 5789 } 5790 5791 /** 5792 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5793 * @adap: the adapter 5794 * @addr: the indirect TP register address 5795 * @mask: specifies the field within the register to modify 5796 * @val: new value for the field 5797 * 5798 * Sets a field of an indirect TP register to the given value. 5799 */ 5800 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5801 unsigned int mask, unsigned int val) 5802 { 5803 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5804 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5805 t4_write_reg(adap, TP_PIO_DATA_A, val); 5806 } 5807 5808 /** 5809 * init_cong_ctrl - initialize congestion control parameters 5810 * @a: the alpha values for congestion control 5811 * @b: the beta values for congestion control 5812 * 5813 * Initialize the congestion control parameters. 5814 */ 5815 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5816 { 5817 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5818 a[9] = 2; 5819 a[10] = 3; 5820 a[11] = 4; 5821 a[12] = 5; 5822 a[13] = 6; 5823 a[14] = 7; 5824 a[15] = 8; 5825 a[16] = 9; 5826 a[17] = 10; 5827 a[18] = 14; 5828 a[19] = 17; 5829 a[20] = 21; 5830 a[21] = 25; 5831 a[22] = 30; 5832 a[23] = 35; 5833 a[24] = 45; 5834 a[25] = 60; 5835 a[26] = 80; 5836 a[27] = 100; 5837 a[28] = 200; 5838 a[29] = 300; 5839 a[30] = 400; 5840 a[31] = 500; 5841 5842 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5843 b[9] = b[10] = 1; 5844 b[11] = b[12] = 2; 5845 b[13] = b[14] = b[15] = b[16] = 3; 5846 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5847 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5848 b[28] = b[29] = 6; 5849 b[30] = b[31] = 7; 5850 } 5851 5852 /* The minimum additive increment value for the congestion control table */ 5853 #define CC_MIN_INCR 2U 5854 5855 /** 5856 * t4_load_mtus - write the MTU and congestion control HW tables 5857 * @adap: the adapter 5858 * @mtus: the values for the MTU table 5859 * @alpha: the values for the congestion control alpha parameter 5860 * @beta: the values for the congestion control beta parameter 5861 * 5862 * Write the HW MTU table with the supplied MTUs and the high-speed 5863 * congestion control table with the supplied alpha, beta, and MTUs. 5864 * We write the two tables together because the additive increments 5865 * depend on the MTUs. 5866 */ 5867 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5868 const unsigned short *alpha, const unsigned short *beta) 5869 { 5870 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5871 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5872 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5873 28672, 40960, 57344, 81920, 114688, 163840, 229376 5874 }; 5875 5876 unsigned int i, w; 5877 5878 for (i = 0; i < NMTUS; ++i) { 5879 unsigned int mtu = mtus[i]; 5880 unsigned int log2 = fls(mtu); 5881 5882 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5883 log2--; 5884 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5885 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5886 5887 for (w = 0; w < NCCTRL_WIN; ++w) { 5888 unsigned int inc; 5889 5890 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5891 CC_MIN_INCR); 5892 5893 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5894 (w << 16) | (beta[w] << 13) | inc); 5895 } 5896 } 5897 } 5898 5899 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5900 * clocks. The formula is 5901 * 5902 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5903 * 5904 * which is equivalent to 5905 * 5906 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5907 */ 5908 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5909 { 5910 u64 v = bytes256 * adap->params.vpd.cclk; 5911 5912 return v * 62 + v / 2; 5913 } 5914 5915 /** 5916 * t4_get_chan_txrate - get the current per channel Tx rates 5917 * @adap: the adapter 5918 * @nic_rate: rates for NIC traffic 5919 * @ofld_rate: rates for offloaded traffic 5920 * 5921 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5922 * for each channel. 5923 */ 5924 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5925 { 5926 u32 v; 5927 5928 v = t4_read_reg(adap, TP_TX_TRATE_A); 5929 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5930 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5931 if (adap->params.arch.nchan == NCHAN) { 5932 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5933 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5934 } 5935 5936 v = t4_read_reg(adap, TP_TX_ORATE_A); 5937 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5938 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5939 if (adap->params.arch.nchan == NCHAN) { 5940 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5941 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5942 } 5943 } 5944 5945 /** 5946 * t4_set_trace_filter - configure one of the tracing filters 5947 * @adap: the adapter 5948 * @tp: the desired trace filter parameters 5949 * @idx: which filter to configure 5950 * @enable: whether to enable or disable the filter 5951 * 5952 * Configures one of the tracing filters available in HW. If @enable is 5953 * %0 @tp is not examined and may be %NULL. The user is responsible to 5954 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5955 */ 5956 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5957 int idx, int enable) 5958 { 5959 int i, ofst = idx * 4; 5960 u32 data_reg, mask_reg, cfg; 5961 5962 if (!enable) { 5963 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5964 return 0; 5965 } 5966 5967 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5968 if (cfg & TRCMULTIFILTER_F) { 5969 /* If multiple tracers are enabled, then maximum 5970 * capture size is 2.5KB (FIFO size of a single channel) 5971 * minus 2 flits for CPL_TRACE_PKT header. 5972 */ 5973 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5974 return -EINVAL; 5975 } else { 5976 /* If multiple tracers are disabled, to avoid deadlocks 5977 * maximum packet capture size of 9600 bytes is recommended. 5978 * Also in this mode, only trace0 can be enabled and running. 5979 */ 5980 if (tp->snap_len > 9600 || idx) 5981 return -EINVAL; 5982 } 5983 5984 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5985 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5986 tp->min_len > TFMINPKTSIZE_M) 5987 return -EINVAL; 5988 5989 /* stop the tracer we'll be changing */ 5990 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5991 5992 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5993 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5994 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5995 5996 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5997 t4_write_reg(adap, data_reg, tp->data[i]); 5998 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5999 } 6000 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 6001 TFCAPTUREMAX_V(tp->snap_len) | 6002 TFMINPKTSIZE_V(tp->min_len)); 6003 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 6004 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 6005 (is_t4(adap->params.chip) ? 6006 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 6007 T5_TFPORT_V(tp->port) | T5_TFEN_F | 6008 T5_TFINVERTMATCH_V(tp->invert))); 6009 6010 return 0; 6011 } 6012 6013 /** 6014 * t4_get_trace_filter - query one of the tracing filters 6015 * @adap: the adapter 6016 * @tp: the current trace filter parameters 6017 * @idx: which trace filter to query 6018 * @enabled: non-zero if the filter is enabled 6019 * 6020 * Returns the current settings of one of the HW tracing filters. 6021 */ 6022 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6023 int *enabled) 6024 { 6025 u32 ctla, ctlb; 6026 int i, ofst = idx * 4; 6027 u32 data_reg, mask_reg; 6028 6029 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 6030 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 6031 6032 if (is_t4(adap->params.chip)) { 6033 *enabled = !!(ctla & TFEN_F); 6034 tp->port = TFPORT_G(ctla); 6035 tp->invert = !!(ctla & TFINVERTMATCH_F); 6036 } else { 6037 *enabled = !!(ctla & T5_TFEN_F); 6038 tp->port = T5_TFPORT_G(ctla); 6039 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 6040 } 6041 tp->snap_len = TFCAPTUREMAX_G(ctlb); 6042 tp->min_len = TFMINPKTSIZE_G(ctlb); 6043 tp->skip_ofst = TFOFFSET_G(ctla); 6044 tp->skip_len = TFLENGTH_G(ctla); 6045 6046 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 6047 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 6048 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 6049 6050 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6051 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6052 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6053 } 6054 } 6055 6056 /** 6057 * t4_pmtx_get_stats - returns the HW stats from PMTX 6058 * @adap: the adapter 6059 * @cnt: where to store the count statistics 6060 * @cycles: where to store the cycle statistics 6061 * 6062 * Returns performance statistics from PMTX. 6063 */ 6064 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6065 { 6066 int i; 6067 u32 data[2]; 6068 6069 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6070 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6071 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6072 if (is_t4(adap->params.chip)) { 6073 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6074 } else { 6075 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6076 PM_TX_DBG_DATA_A, data, 2, 6077 PM_TX_DBG_STAT_MSB_A); 6078 cycles[i] = (((u64)data[0] << 32) | data[1]); 6079 } 6080 } 6081 } 6082 6083 /** 6084 * t4_pmrx_get_stats - returns the HW stats from PMRX 6085 * @adap: the adapter 6086 * @cnt: where to store the count statistics 6087 * @cycles: where to store the cycle statistics 6088 * 6089 * Returns performance statistics from PMRX. 6090 */ 6091 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6092 { 6093 int i; 6094 u32 data[2]; 6095 6096 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6097 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6098 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6099 if (is_t4(adap->params.chip)) { 6100 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6101 } else { 6102 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6103 PM_RX_DBG_DATA_A, data, 2, 6104 PM_RX_DBG_STAT_MSB_A); 6105 cycles[i] = (((u64)data[0] << 32) | data[1]); 6106 } 6107 } 6108 } 6109 6110 /** 6111 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6112 * @adapter: the adapter 6113 * @pidx: the port index 6114 * 6115 * Computes and returns a bitmap indicating which MPS buffer groups are 6116 * associated with the given Port. Bit i is set if buffer group i is 6117 * used by the Port. 6118 */ 6119 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6120 int pidx) 6121 { 6122 unsigned int chip_version, nports; 6123 6124 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6125 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6126 6127 switch (chip_version) { 6128 case CHELSIO_T4: 6129 case CHELSIO_T5: 6130 switch (nports) { 6131 case 1: return 0xf; 6132 case 2: return 3 << (2 * pidx); 6133 case 4: return 1 << pidx; 6134 } 6135 break; 6136 6137 case CHELSIO_T6: 6138 switch (nports) { 6139 case 2: return 1 << (2 * pidx); 6140 } 6141 break; 6142 } 6143 6144 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6145 chip_version, nports); 6146 6147 return 0; 6148 } 6149 6150 /** 6151 * t4_get_mps_bg_map - return the buffer groups associated with a port 6152 * @adapter: the adapter 6153 * @pidx: the port index 6154 * 6155 * Returns a bitmap indicating which MPS buffer groups are associated 6156 * with the given Port. Bit i is set if buffer group i is used by the 6157 * Port. 6158 */ 6159 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6160 { 6161 u8 *mps_bg_map; 6162 unsigned int nports; 6163 6164 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6165 if (pidx >= nports) { 6166 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6167 pidx, nports); 6168 return 0; 6169 } 6170 6171 /* If we've already retrieved/computed this, just return the result. 6172 */ 6173 mps_bg_map = adapter->params.mps_bg_map; 6174 if (mps_bg_map[pidx]) 6175 return mps_bg_map[pidx]; 6176 6177 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6178 * If we're talking to such Firmware, let it tell us. If the new 6179 * API isn't supported, revert back to old hardcoded way. The value 6180 * obtained from Firmware is encoded in below format: 6181 * 6182 * val = (( MPSBGMAP[Port 3] << 24 ) | 6183 * ( MPSBGMAP[Port 2] << 16 ) | 6184 * ( MPSBGMAP[Port 1] << 8 ) | 6185 * ( MPSBGMAP[Port 0] << 0 )) 6186 */ 6187 if (adapter->flags & CXGB4_FW_OK) { 6188 u32 param, val; 6189 int ret; 6190 6191 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6192 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6193 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6194 0, 1, ¶m, &val); 6195 if (!ret) { 6196 int p; 6197 6198 /* Store the BG Map for all of the Ports in order to 6199 * avoid more calls to the Firmware in the future. 6200 */ 6201 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6202 mps_bg_map[p] = val & 0xff; 6203 6204 return mps_bg_map[pidx]; 6205 } 6206 } 6207 6208 /* Either we're not talking to the Firmware or we're dealing with 6209 * older Firmware which doesn't support the new API to get the MPS 6210 * Buffer Group Map. Fall back to computing it ourselves. 6211 */ 6212 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6213 return mps_bg_map[pidx]; 6214 } 6215 6216 /** 6217 * t4_get_tp_e2c_map - return the E2C channel map associated with a port 6218 * @adapter: the adapter 6219 * @pidx: the port index 6220 */ 6221 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx) 6222 { 6223 unsigned int nports; 6224 u32 param, val = 0; 6225 int ret; 6226 6227 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6228 if (pidx >= nports) { 6229 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n", 6230 pidx, nports); 6231 return 0; 6232 } 6233 6234 /* FW version >= 1.16.44.0 can determine E2C channel map using 6235 * FW_PARAMS_PARAM_DEV_TPCHMAP API. 6236 */ 6237 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6238 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP)); 6239 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6240 0, 1, ¶m, &val); 6241 if (!ret) 6242 return (val >> (8 * pidx)) & 0xff; 6243 6244 return 0; 6245 } 6246 6247 /** 6248 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6249 * @adap: the adapter 6250 * @pidx: the port index 6251 * 6252 * Returns a bitmap indicating which TP Ingress Channels are associated 6253 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6254 * the Port. 6255 */ 6256 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6257 { 6258 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6259 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6260 6261 if (pidx >= nports) { 6262 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6263 pidx, nports); 6264 return 0; 6265 } 6266 6267 switch (chip_version) { 6268 case CHELSIO_T4: 6269 case CHELSIO_T5: 6270 /* Note that this happens to be the same values as the MPS 6271 * Buffer Group Map for these Chips. But we replicate the code 6272 * here because they're really separate concepts. 6273 */ 6274 switch (nports) { 6275 case 1: return 0xf; 6276 case 2: return 3 << (2 * pidx); 6277 case 4: return 1 << pidx; 6278 } 6279 break; 6280 6281 case CHELSIO_T6: 6282 switch (nports) { 6283 case 1: 6284 case 2: return 1 << pidx; 6285 } 6286 break; 6287 } 6288 6289 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6290 chip_version, nports); 6291 return 0; 6292 } 6293 6294 /** 6295 * t4_get_port_type_description - return Port Type string description 6296 * @port_type: firmware Port Type enumeration 6297 */ 6298 const char *t4_get_port_type_description(enum fw_port_type port_type) 6299 { 6300 static const char *const port_type_description[] = { 6301 "Fiber_XFI", 6302 "Fiber_XAUI", 6303 "BT_SGMII", 6304 "BT_XFI", 6305 "BT_XAUI", 6306 "KX4", 6307 "CX4", 6308 "KX", 6309 "KR", 6310 "SFP", 6311 "BP_AP", 6312 "BP4_AP", 6313 "QSFP_10G", 6314 "QSA", 6315 "QSFP", 6316 "BP40_BA", 6317 "KR4_100G", 6318 "CR4_QSFP", 6319 "CR_QSFP", 6320 "CR2_QSFP", 6321 "SFP28", 6322 "KR_SFP28", 6323 "KR_XLAUI" 6324 }; 6325 6326 if (port_type < ARRAY_SIZE(port_type_description)) 6327 return port_type_description[port_type]; 6328 return "UNKNOWN"; 6329 } 6330 6331 /** 6332 * t4_get_port_stats_offset - collect port stats relative to a previous 6333 * snapshot 6334 * @adap: The adapter 6335 * @idx: The port 6336 * @stats: Current stats to fill 6337 * @offset: Previous stats snapshot 6338 */ 6339 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6340 struct port_stats *stats, 6341 struct port_stats *offset) 6342 { 6343 u64 *s, *o; 6344 int i; 6345 6346 t4_get_port_stats(adap, idx, stats); 6347 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6348 i < (sizeof(struct port_stats) / sizeof(u64)); 6349 i++, s++, o++) 6350 *s -= *o; 6351 } 6352 6353 /** 6354 * t4_get_port_stats - collect port statistics 6355 * @adap: the adapter 6356 * @idx: the port index 6357 * @p: the stats structure to fill 6358 * 6359 * Collect statistics related to the given port from HW. 6360 */ 6361 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6362 { 6363 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6364 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6365 6366 #define GET_STAT(name) \ 6367 t4_read_reg64(adap, \ 6368 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6369 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6370 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6371 6372 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6373 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6374 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6375 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6376 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6377 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6378 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6379 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6380 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6381 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6382 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6383 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6384 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6385 p->tx_drop = GET_STAT(TX_PORT_DROP); 6386 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6387 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6388 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6389 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6390 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6391 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6392 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6393 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6394 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6395 6396 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6397 if (stat_ctl & COUNTPAUSESTATTX_F) 6398 p->tx_frames_64 -= p->tx_pause; 6399 if (stat_ctl & COUNTPAUSEMCTX_F) 6400 p->tx_mcast_frames -= p->tx_pause; 6401 } 6402 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6403 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6404 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6405 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6406 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6407 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6408 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6409 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6410 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6411 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6412 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6413 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6414 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6415 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6416 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6417 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6418 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6419 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6420 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6421 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6422 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6423 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6424 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6425 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6426 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6427 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6428 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6429 6430 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6431 if (stat_ctl & COUNTPAUSESTATRX_F) 6432 p->rx_frames_64 -= p->rx_pause; 6433 if (stat_ctl & COUNTPAUSEMCRX_F) 6434 p->rx_mcast_frames -= p->rx_pause; 6435 } 6436 6437 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6438 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6439 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6440 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6441 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6442 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6443 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6444 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6445 6446 #undef GET_STAT 6447 #undef GET_STAT_COM 6448 } 6449 6450 /** 6451 * t4_get_lb_stats - collect loopback port statistics 6452 * @adap: the adapter 6453 * @idx: the loopback port index 6454 * @p: the stats structure to fill 6455 * 6456 * Return HW statistics for the given loopback port. 6457 */ 6458 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6459 { 6460 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6461 6462 #define GET_STAT(name) \ 6463 t4_read_reg64(adap, \ 6464 (is_t4(adap->params.chip) ? \ 6465 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6466 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6467 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6468 6469 p->octets = GET_STAT(BYTES); 6470 p->frames = GET_STAT(FRAMES); 6471 p->bcast_frames = GET_STAT(BCAST); 6472 p->mcast_frames = GET_STAT(MCAST); 6473 p->ucast_frames = GET_STAT(UCAST); 6474 p->error_frames = GET_STAT(ERROR); 6475 6476 p->frames_64 = GET_STAT(64B); 6477 p->frames_65_127 = GET_STAT(65B_127B); 6478 p->frames_128_255 = GET_STAT(128B_255B); 6479 p->frames_256_511 = GET_STAT(256B_511B); 6480 p->frames_512_1023 = GET_STAT(512B_1023B); 6481 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6482 p->frames_1519_max = GET_STAT(1519B_MAX); 6483 p->drop = GET_STAT(DROP_FRAMES); 6484 6485 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6486 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6487 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6488 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6489 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6490 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6491 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6492 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6493 6494 #undef GET_STAT 6495 #undef GET_STAT_COM 6496 } 6497 6498 /* t4_mk_filtdelwr - create a delete filter WR 6499 * @ftid: the filter ID 6500 * @wr: the filter work request to populate 6501 * @qid: ingress queue to receive the delete notification 6502 * 6503 * Creates a filter work request to delete the supplied filter. If @qid is 6504 * negative the delete notification is suppressed. 6505 */ 6506 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6507 { 6508 memset(wr, 0, sizeof(*wr)); 6509 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6510 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6511 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6512 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6513 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6514 if (qid >= 0) 6515 wr->rx_chan_rx_rpl_iq = 6516 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6517 } 6518 6519 #define INIT_CMD(var, cmd, rd_wr) do { \ 6520 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6521 FW_CMD_REQUEST_F | \ 6522 FW_CMD_##rd_wr##_F); \ 6523 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6524 } while (0) 6525 6526 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6527 u32 addr, u32 val) 6528 { 6529 u32 ldst_addrspace; 6530 struct fw_ldst_cmd c; 6531 6532 memset(&c, 0, sizeof(c)); 6533 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6534 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6535 FW_CMD_REQUEST_F | 6536 FW_CMD_WRITE_F | 6537 ldst_addrspace); 6538 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6539 c.u.addrval.addr = cpu_to_be32(addr); 6540 c.u.addrval.val = cpu_to_be32(val); 6541 6542 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6543 } 6544 6545 /** 6546 * t4_mdio_rd - read a PHY register through MDIO 6547 * @adap: the adapter 6548 * @mbox: mailbox to use for the FW command 6549 * @phy_addr: the PHY address 6550 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6551 * @reg: the register to read 6552 * @valp: where to store the value 6553 * 6554 * Issues a FW command through the given mailbox to read a PHY register. 6555 */ 6556 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6557 unsigned int mmd, unsigned int reg, u16 *valp) 6558 { 6559 int ret; 6560 u32 ldst_addrspace; 6561 struct fw_ldst_cmd c; 6562 6563 memset(&c, 0, sizeof(c)); 6564 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6565 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6566 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6567 ldst_addrspace); 6568 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6569 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6570 FW_LDST_CMD_MMD_V(mmd)); 6571 c.u.mdio.raddr = cpu_to_be16(reg); 6572 6573 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6574 if (ret == 0) 6575 *valp = be16_to_cpu(c.u.mdio.rval); 6576 return ret; 6577 } 6578 6579 /** 6580 * t4_mdio_wr - write a PHY register through MDIO 6581 * @adap: the adapter 6582 * @mbox: mailbox to use for the FW command 6583 * @phy_addr: the PHY address 6584 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6585 * @reg: the register to write 6586 * @val: value to write 6587 * 6588 * Issues a FW command through the given mailbox to write a PHY register. 6589 */ 6590 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6591 unsigned int mmd, unsigned int reg, u16 val) 6592 { 6593 u32 ldst_addrspace; 6594 struct fw_ldst_cmd c; 6595 6596 memset(&c, 0, sizeof(c)); 6597 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6598 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6599 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6600 ldst_addrspace); 6601 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6602 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6603 FW_LDST_CMD_MMD_V(mmd)); 6604 c.u.mdio.raddr = cpu_to_be16(reg); 6605 c.u.mdio.rval = cpu_to_be16(val); 6606 6607 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6608 } 6609 6610 /** 6611 * t4_sge_decode_idma_state - decode the idma state 6612 * @adapter: the adapter 6613 * @state: the state idma is stuck in 6614 */ 6615 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6616 { 6617 static const char * const t4_decode[] = { 6618 "IDMA_IDLE", 6619 "IDMA_PUSH_MORE_CPL_FIFO", 6620 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6621 "Not used", 6622 "IDMA_PHYSADDR_SEND_PCIEHDR", 6623 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6624 "IDMA_PHYSADDR_SEND_PAYLOAD", 6625 "IDMA_SEND_FIFO_TO_IMSG", 6626 "IDMA_FL_REQ_DATA_FL_PREP", 6627 "IDMA_FL_REQ_DATA_FL", 6628 "IDMA_FL_DROP", 6629 "IDMA_FL_H_REQ_HEADER_FL", 6630 "IDMA_FL_H_SEND_PCIEHDR", 6631 "IDMA_FL_H_PUSH_CPL_FIFO", 6632 "IDMA_FL_H_SEND_CPL", 6633 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6634 "IDMA_FL_H_SEND_IP_HDR", 6635 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6636 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6637 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6638 "IDMA_FL_D_SEND_PCIEHDR", 6639 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6640 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6641 "IDMA_FL_SEND_PCIEHDR", 6642 "IDMA_FL_PUSH_CPL_FIFO", 6643 "IDMA_FL_SEND_CPL", 6644 "IDMA_FL_SEND_PAYLOAD_FIRST", 6645 "IDMA_FL_SEND_PAYLOAD", 6646 "IDMA_FL_REQ_NEXT_DATA_FL", 6647 "IDMA_FL_SEND_NEXT_PCIEHDR", 6648 "IDMA_FL_SEND_PADDING", 6649 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6650 "IDMA_FL_SEND_FIFO_TO_IMSG", 6651 "IDMA_FL_REQ_DATAFL_DONE", 6652 "IDMA_FL_REQ_HEADERFL_DONE", 6653 }; 6654 static const char * const t5_decode[] = { 6655 "IDMA_IDLE", 6656 "IDMA_ALMOST_IDLE", 6657 "IDMA_PUSH_MORE_CPL_FIFO", 6658 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6659 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6660 "IDMA_PHYSADDR_SEND_PCIEHDR", 6661 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6662 "IDMA_PHYSADDR_SEND_PAYLOAD", 6663 "IDMA_SEND_FIFO_TO_IMSG", 6664 "IDMA_FL_REQ_DATA_FL", 6665 "IDMA_FL_DROP", 6666 "IDMA_FL_DROP_SEND_INC", 6667 "IDMA_FL_H_REQ_HEADER_FL", 6668 "IDMA_FL_H_SEND_PCIEHDR", 6669 "IDMA_FL_H_PUSH_CPL_FIFO", 6670 "IDMA_FL_H_SEND_CPL", 6671 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6672 "IDMA_FL_H_SEND_IP_HDR", 6673 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6674 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6675 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6676 "IDMA_FL_D_SEND_PCIEHDR", 6677 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6678 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6679 "IDMA_FL_SEND_PCIEHDR", 6680 "IDMA_FL_PUSH_CPL_FIFO", 6681 "IDMA_FL_SEND_CPL", 6682 "IDMA_FL_SEND_PAYLOAD_FIRST", 6683 "IDMA_FL_SEND_PAYLOAD", 6684 "IDMA_FL_REQ_NEXT_DATA_FL", 6685 "IDMA_FL_SEND_NEXT_PCIEHDR", 6686 "IDMA_FL_SEND_PADDING", 6687 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6688 }; 6689 static const char * const t6_decode[] = { 6690 "IDMA_IDLE", 6691 "IDMA_PUSH_MORE_CPL_FIFO", 6692 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6693 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6694 "IDMA_PHYSADDR_SEND_PCIEHDR", 6695 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6696 "IDMA_PHYSADDR_SEND_PAYLOAD", 6697 "IDMA_FL_REQ_DATA_FL", 6698 "IDMA_FL_DROP", 6699 "IDMA_FL_DROP_SEND_INC", 6700 "IDMA_FL_H_REQ_HEADER_FL", 6701 "IDMA_FL_H_SEND_PCIEHDR", 6702 "IDMA_FL_H_PUSH_CPL_FIFO", 6703 "IDMA_FL_H_SEND_CPL", 6704 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6705 "IDMA_FL_H_SEND_IP_HDR", 6706 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6707 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6708 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6709 "IDMA_FL_D_SEND_PCIEHDR", 6710 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6711 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6712 "IDMA_FL_SEND_PCIEHDR", 6713 "IDMA_FL_PUSH_CPL_FIFO", 6714 "IDMA_FL_SEND_CPL", 6715 "IDMA_FL_SEND_PAYLOAD_FIRST", 6716 "IDMA_FL_SEND_PAYLOAD", 6717 "IDMA_FL_REQ_NEXT_DATA_FL", 6718 "IDMA_FL_SEND_NEXT_PCIEHDR", 6719 "IDMA_FL_SEND_PADDING", 6720 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6721 }; 6722 static const u32 sge_regs[] = { 6723 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6724 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6725 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6726 }; 6727 const char **sge_idma_decode; 6728 int sge_idma_decode_nstates; 6729 int i; 6730 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6731 6732 /* Select the right set of decode strings to dump depending on the 6733 * adapter chip type. 6734 */ 6735 switch (chip_version) { 6736 case CHELSIO_T4: 6737 sge_idma_decode = (const char **)t4_decode; 6738 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6739 break; 6740 6741 case CHELSIO_T5: 6742 sge_idma_decode = (const char **)t5_decode; 6743 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6744 break; 6745 6746 case CHELSIO_T6: 6747 sge_idma_decode = (const char **)t6_decode; 6748 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6749 break; 6750 6751 default: 6752 dev_err(adapter->pdev_dev, 6753 "Unsupported chip version %d\n", chip_version); 6754 return; 6755 } 6756 6757 if (is_t4(adapter->params.chip)) { 6758 sge_idma_decode = (const char **)t4_decode; 6759 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6760 } else { 6761 sge_idma_decode = (const char **)t5_decode; 6762 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6763 } 6764 6765 if (state < sge_idma_decode_nstates) 6766 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6767 else 6768 CH_WARN(adapter, "idma state %d unknown\n", state); 6769 6770 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6771 CH_WARN(adapter, "SGE register %#x value %#x\n", 6772 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6773 } 6774 6775 /** 6776 * t4_sge_ctxt_flush - flush the SGE context cache 6777 * @adap: the adapter 6778 * @mbox: mailbox to use for the FW command 6779 * @ctxt_type: Egress or Ingress 6780 * 6781 * Issues a FW command through the given mailbox to flush the 6782 * SGE context cache. 6783 */ 6784 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6785 { 6786 int ret; 6787 u32 ldst_addrspace; 6788 struct fw_ldst_cmd c; 6789 6790 memset(&c, 0, sizeof(c)); 6791 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6792 FW_LDST_ADDRSPC_SGE_EGRC : 6793 FW_LDST_ADDRSPC_SGE_INGC); 6794 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6795 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6796 ldst_addrspace); 6797 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6798 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6799 6800 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6801 return ret; 6802 } 6803 6804 /** 6805 * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values 6806 * @adap: the adapter 6807 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6808 * @dbqtimers: SGE Doorbell Queue Timer table 6809 * 6810 * Reads the SGE Doorbell Queue Timer values into the provided table. 6811 * Returns 0 on success (Firmware and Hardware support this feature), 6812 * an error on failure. 6813 */ 6814 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6815 u16 *dbqtimers) 6816 { 6817 int ret, dbqtimerix; 6818 6819 ret = 0; 6820 dbqtimerix = 0; 6821 while (dbqtimerix < ndbqtimers) { 6822 int nparams, param; 6823 u32 params[7], vals[7]; 6824 6825 nparams = ndbqtimers - dbqtimerix; 6826 if (nparams > ARRAY_SIZE(params)) 6827 nparams = ARRAY_SIZE(params); 6828 6829 for (param = 0; param < nparams; param++) 6830 params[param] = 6831 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6832 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6833 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6834 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6835 nparams, params, vals); 6836 if (ret) 6837 break; 6838 6839 for (param = 0; param < nparams; param++) 6840 dbqtimers[dbqtimerix++] = vals[param]; 6841 } 6842 return ret; 6843 } 6844 6845 /** 6846 * t4_fw_hello - establish communication with FW 6847 * @adap: the adapter 6848 * @mbox: mailbox to use for the FW command 6849 * @evt_mbox: mailbox to receive async FW events 6850 * @master: specifies the caller's willingness to be the device master 6851 * @state: returns the current device state (if non-NULL) 6852 * 6853 * Issues a command to establish communication with FW. Returns either 6854 * an error (negative integer) or the mailbox of the Master PF. 6855 */ 6856 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6857 enum dev_master master, enum dev_state *state) 6858 { 6859 int ret; 6860 struct fw_hello_cmd c; 6861 u32 v; 6862 unsigned int master_mbox; 6863 int retries = FW_CMD_HELLO_RETRIES; 6864 6865 retry: 6866 memset(&c, 0, sizeof(c)); 6867 INIT_CMD(c, HELLO, WRITE); 6868 c.err_to_clearinit = cpu_to_be32( 6869 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6870 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6871 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6872 mbox : FW_HELLO_CMD_MBMASTER_M) | 6873 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6874 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6875 FW_HELLO_CMD_CLEARINIT_F); 6876 6877 /* 6878 * Issue the HELLO command to the firmware. If it's not successful 6879 * but indicates that we got a "busy" or "timeout" condition, retry 6880 * the HELLO until we exhaust our retry limit. If we do exceed our 6881 * retry limit, check to see if the firmware left us any error 6882 * information and report that if so. 6883 */ 6884 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6885 if (ret < 0) { 6886 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6887 goto retry; 6888 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6889 t4_report_fw_error(adap); 6890 return ret; 6891 } 6892 6893 v = be32_to_cpu(c.err_to_clearinit); 6894 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6895 if (state) { 6896 if (v & FW_HELLO_CMD_ERR_F) 6897 *state = DEV_STATE_ERR; 6898 else if (v & FW_HELLO_CMD_INIT_F) 6899 *state = DEV_STATE_INIT; 6900 else 6901 *state = DEV_STATE_UNINIT; 6902 } 6903 6904 /* 6905 * If we're not the Master PF then we need to wait around for the 6906 * Master PF Driver to finish setting up the adapter. 6907 * 6908 * Note that we also do this wait if we're a non-Master-capable PF and 6909 * there is no current Master PF; a Master PF may show up momentarily 6910 * and we wouldn't want to fail pointlessly. (This can happen when an 6911 * OS loads lots of different drivers rapidly at the same time). In 6912 * this case, the Master PF returned by the firmware will be 6913 * PCIE_FW_MASTER_M so the test below will work ... 6914 */ 6915 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6916 master_mbox != mbox) { 6917 int waiting = FW_CMD_HELLO_TIMEOUT; 6918 6919 /* 6920 * Wait for the firmware to either indicate an error or 6921 * initialized state. If we see either of these we bail out 6922 * and report the issue to the caller. If we exhaust the 6923 * "hello timeout" and we haven't exhausted our retries, try 6924 * again. Otherwise bail with a timeout error. 6925 */ 6926 for (;;) { 6927 u32 pcie_fw; 6928 6929 msleep(50); 6930 waiting -= 50; 6931 6932 /* 6933 * If neither Error nor Initialized are indicated 6934 * by the firmware keep waiting till we exhaust our 6935 * timeout ... and then retry if we haven't exhausted 6936 * our retries ... 6937 */ 6938 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6939 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6940 if (waiting <= 0) { 6941 if (retries-- > 0) 6942 goto retry; 6943 6944 return -ETIMEDOUT; 6945 } 6946 continue; 6947 } 6948 6949 /* 6950 * We either have an Error or Initialized condition 6951 * report errors preferentially. 6952 */ 6953 if (state) { 6954 if (pcie_fw & PCIE_FW_ERR_F) 6955 *state = DEV_STATE_ERR; 6956 else if (pcie_fw & PCIE_FW_INIT_F) 6957 *state = DEV_STATE_INIT; 6958 } 6959 6960 /* 6961 * If we arrived before a Master PF was selected and 6962 * there's not a valid Master PF, grab its identity 6963 * for our caller. 6964 */ 6965 if (master_mbox == PCIE_FW_MASTER_M && 6966 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6967 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6968 break; 6969 } 6970 } 6971 6972 return master_mbox; 6973 } 6974 6975 /** 6976 * t4_fw_bye - end communication with FW 6977 * @adap: the adapter 6978 * @mbox: mailbox to use for the FW command 6979 * 6980 * Issues a command to terminate communication with FW. 6981 */ 6982 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6983 { 6984 struct fw_bye_cmd c; 6985 6986 memset(&c, 0, sizeof(c)); 6987 INIT_CMD(c, BYE, WRITE); 6988 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6989 } 6990 6991 /** 6992 * t4_init_cmd - ask FW to initialize the device 6993 * @adap: the adapter 6994 * @mbox: mailbox to use for the FW command 6995 * 6996 * Issues a command to FW to partially initialize the device. This 6997 * performs initialization that generally doesn't depend on user input. 6998 */ 6999 int t4_early_init(struct adapter *adap, unsigned int mbox) 7000 { 7001 struct fw_initialize_cmd c; 7002 7003 memset(&c, 0, sizeof(c)); 7004 INIT_CMD(c, INITIALIZE, WRITE); 7005 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7006 } 7007 7008 /** 7009 * t4_fw_reset - issue a reset to FW 7010 * @adap: the adapter 7011 * @mbox: mailbox to use for the FW command 7012 * @reset: specifies the type of reset to perform 7013 * 7014 * Issues a reset command of the specified type to FW. 7015 */ 7016 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7017 { 7018 struct fw_reset_cmd c; 7019 7020 memset(&c, 0, sizeof(c)); 7021 INIT_CMD(c, RESET, WRITE); 7022 c.val = cpu_to_be32(reset); 7023 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7024 } 7025 7026 /** 7027 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7028 * @adap: the adapter 7029 * @mbox: mailbox to use for the FW RESET command (if desired) 7030 * @force: force uP into RESET even if FW RESET command fails 7031 * 7032 * Issues a RESET command to firmware (if desired) with a HALT indication 7033 * and then puts the microprocessor into RESET state. The RESET command 7034 * will only be issued if a legitimate mailbox is provided (mbox <= 7035 * PCIE_FW_MASTER_M). 7036 * 7037 * This is generally used in order for the host to safely manipulate the 7038 * adapter without fear of conflicting with whatever the firmware might 7039 * be doing. The only way out of this state is to RESTART the firmware 7040 * ... 7041 */ 7042 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7043 { 7044 int ret = 0; 7045 7046 /* 7047 * If a legitimate mailbox is provided, issue a RESET command 7048 * with a HALT indication. 7049 */ 7050 if (mbox <= PCIE_FW_MASTER_M) { 7051 struct fw_reset_cmd c; 7052 7053 memset(&c, 0, sizeof(c)); 7054 INIT_CMD(c, RESET, WRITE); 7055 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 7056 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 7057 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7058 } 7059 7060 /* 7061 * Normally we won't complete the operation if the firmware RESET 7062 * command fails but if our caller insists we'll go ahead and put the 7063 * uP into RESET. This can be useful if the firmware is hung or even 7064 * missing ... We'll have to take the risk of putting the uP into 7065 * RESET without the cooperation of firmware in that case. 7066 * 7067 * We also force the firmware's HALT flag to be on in case we bypassed 7068 * the firmware RESET command above or we're dealing with old firmware 7069 * which doesn't have the HALT capability. This will serve as a flag 7070 * for the incoming firmware to know that it's coming out of a HALT 7071 * rather than a RESET ... if it's new enough to understand that ... 7072 */ 7073 if (ret == 0 || force) { 7074 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 7075 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 7076 PCIE_FW_HALT_F); 7077 } 7078 7079 /* 7080 * And we always return the result of the firmware RESET command 7081 * even when we force the uP into RESET ... 7082 */ 7083 return ret; 7084 } 7085 7086 /** 7087 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7088 * @adap: the adapter 7089 * @mbox: mailbox to use for the FW command 7090 * @reset: if we want to do a RESET to restart things 7091 * 7092 * Restart firmware previously halted by t4_fw_halt(). On successful 7093 * return the previous PF Master remains as the new PF Master and there 7094 * is no need to issue a new HELLO command, etc. 7095 * 7096 * We do this in two ways: 7097 * 7098 * 1. If we're dealing with newer firmware we'll simply want to take 7099 * the chip's microprocessor out of RESET. This will cause the 7100 * firmware to start up from its start vector. And then we'll loop 7101 * until the firmware indicates it's started again (PCIE_FW.HALT 7102 * reset to 0) or we timeout. 7103 * 7104 * 2. If we're dealing with older firmware then we'll need to RESET 7105 * the chip since older firmware won't recognize the PCIE_FW.HALT 7106 * flag and automatically RESET itself on startup. 7107 */ 7108 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7109 { 7110 if (reset) { 7111 /* 7112 * Since we're directing the RESET instead of the firmware 7113 * doing it automatically, we need to clear the PCIE_FW.HALT 7114 * bit. 7115 */ 7116 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7117 7118 /* 7119 * If we've been given a valid mailbox, first try to get the 7120 * firmware to do the RESET. If that works, great and we can 7121 * return success. Otherwise, if we haven't been given a 7122 * valid mailbox or the RESET command failed, fall back to 7123 * hitting the chip with a hammer. 7124 */ 7125 if (mbox <= PCIE_FW_MASTER_M) { 7126 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7127 msleep(100); 7128 if (t4_fw_reset(adap, mbox, 7129 PIORST_F | PIORSTMODE_F) == 0) 7130 return 0; 7131 } 7132 7133 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7134 msleep(2000); 7135 } else { 7136 int ms; 7137 7138 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7139 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7140 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7141 return 0; 7142 msleep(100); 7143 ms += 100; 7144 } 7145 return -ETIMEDOUT; 7146 } 7147 return 0; 7148 } 7149 7150 /** 7151 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7152 * @adap: the adapter 7153 * @mbox: mailbox to use for the FW RESET command (if desired) 7154 * @fw_data: the firmware image to write 7155 * @size: image size 7156 * @force: force upgrade even if firmware doesn't cooperate 7157 * 7158 * Perform all of the steps necessary for upgrading an adapter's 7159 * firmware image. Normally this requires the cooperation of the 7160 * existing firmware in order to halt all existing activities 7161 * but if an invalid mailbox token is passed in we skip that step 7162 * (though we'll still put the adapter microprocessor into RESET in 7163 * that case). 7164 * 7165 * On successful return the new firmware will have been loaded and 7166 * the adapter will have been fully RESET losing all previous setup 7167 * state. On unsuccessful return the adapter may be completely hosed ... 7168 * positive errno indicates that the adapter is ~probably~ intact, a 7169 * negative errno indicates that things are looking bad ... 7170 */ 7171 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7172 const u8 *fw_data, unsigned int size, int force) 7173 { 7174 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7175 int reset, ret; 7176 7177 if (!t4_fw_matches_chip(adap, fw_hdr)) 7178 return -EINVAL; 7179 7180 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7181 * set wont be sent when we are flashing FW. 7182 */ 7183 adap->flags &= ~CXGB4_FW_OK; 7184 7185 ret = t4_fw_halt(adap, mbox, force); 7186 if (ret < 0 && !force) 7187 goto out; 7188 7189 ret = t4_load_fw(adap, fw_data, size); 7190 if (ret < 0) 7191 goto out; 7192 7193 /* 7194 * If there was a Firmware Configuration File stored in FLASH, 7195 * there's a good chance that it won't be compatible with the new 7196 * Firmware. In order to prevent difficult to diagnose adapter 7197 * initialization issues, we clear out the Firmware Configuration File 7198 * portion of the FLASH . The user will need to re-FLASH a new 7199 * Firmware Configuration File which is compatible with the new 7200 * Firmware if that's desired. 7201 */ 7202 (void)t4_load_cfg(adap, NULL, 0); 7203 7204 /* 7205 * Older versions of the firmware don't understand the new 7206 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7207 * restart. So for newly loaded older firmware we'll have to do the 7208 * RESET for it so it starts up on a clean slate. We can tell if 7209 * the newly loaded firmware will handle this right by checking 7210 * its header flags to see if it advertises the capability. 7211 */ 7212 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7213 ret = t4_fw_restart(adap, mbox, reset); 7214 7215 /* Grab potentially new Firmware Device Log parameters so we can see 7216 * how healthy the new Firmware is. It's okay to contact the new 7217 * Firmware for these parameters even though, as far as it's 7218 * concerned, we've never said "HELLO" to it ... 7219 */ 7220 (void)t4_init_devlog_params(adap); 7221 out: 7222 adap->flags |= CXGB4_FW_OK; 7223 return ret; 7224 } 7225 7226 /** 7227 * t4_fl_pkt_align - return the fl packet alignment 7228 * @adap: the adapter 7229 * 7230 * T4 has a single field to specify the packing and padding boundary. 7231 * T5 onwards has separate fields for this and hence the alignment for 7232 * next packet offset is maximum of these two. 7233 * 7234 */ 7235 int t4_fl_pkt_align(struct adapter *adap) 7236 { 7237 u32 sge_control, sge_control2; 7238 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7239 7240 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7241 7242 /* T4 uses a single control field to specify both the PCIe Padding and 7243 * Packing Boundary. T5 introduced the ability to specify these 7244 * separately. The actual Ingress Packet Data alignment boundary 7245 * within Packed Buffer Mode is the maximum of these two 7246 * specifications. (Note that it makes no real practical sense to 7247 * have the Padding Boundary be larger than the Packing Boundary but you 7248 * could set the chip up that way and, in fact, legacy T4 code would 7249 * end doing this because it would initialize the Padding Boundary and 7250 * leave the Packing Boundary initialized to 0 (16 bytes).) 7251 * Padding Boundary values in T6 starts from 8B, 7252 * where as it is 32B for T4 and T5. 7253 */ 7254 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7255 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7256 else 7257 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7258 7259 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7260 7261 fl_align = ingpadboundary; 7262 if (!is_t4(adap->params.chip)) { 7263 /* T5 has a weird interpretation of one of the PCIe Packing 7264 * Boundary values. No idea why ... 7265 */ 7266 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7267 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7268 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7269 ingpackboundary = 16; 7270 else 7271 ingpackboundary = 1 << (ingpackboundary + 7272 INGPACKBOUNDARY_SHIFT_X); 7273 7274 fl_align = max(ingpadboundary, ingpackboundary); 7275 } 7276 return fl_align; 7277 } 7278 7279 /** 7280 * t4_fixup_host_params - fix up host-dependent parameters 7281 * @adap: the adapter 7282 * @page_size: the host's Base Page Size 7283 * @cache_line_size: the host's Cache Line Size 7284 * 7285 * Various registers in T4 contain values which are dependent on the 7286 * host's Base Page and Cache Line Sizes. This function will fix all of 7287 * those registers with the appropriate values as passed in ... 7288 */ 7289 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7290 unsigned int cache_line_size) 7291 { 7292 unsigned int page_shift = fls(page_size) - 1; 7293 unsigned int sge_hps = page_shift - 10; 7294 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7295 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7296 unsigned int fl_align_log = fls(fl_align) - 1; 7297 7298 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7299 HOSTPAGESIZEPF0_V(sge_hps) | 7300 HOSTPAGESIZEPF1_V(sge_hps) | 7301 HOSTPAGESIZEPF2_V(sge_hps) | 7302 HOSTPAGESIZEPF3_V(sge_hps) | 7303 HOSTPAGESIZEPF4_V(sge_hps) | 7304 HOSTPAGESIZEPF5_V(sge_hps) | 7305 HOSTPAGESIZEPF6_V(sge_hps) | 7306 HOSTPAGESIZEPF7_V(sge_hps)); 7307 7308 if (is_t4(adap->params.chip)) { 7309 t4_set_reg_field(adap, SGE_CONTROL_A, 7310 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7311 EGRSTATUSPAGESIZE_F, 7312 INGPADBOUNDARY_V(fl_align_log - 7313 INGPADBOUNDARY_SHIFT_X) | 7314 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7315 } else { 7316 unsigned int pack_align; 7317 unsigned int ingpad, ingpack; 7318 7319 /* T5 introduced the separation of the Free List Padding and 7320 * Packing Boundaries. Thus, we can select a smaller Padding 7321 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7322 * Bandwidth, and use a Packing Boundary which is large enough 7323 * to avoid false sharing between CPUs, etc. 7324 * 7325 * For the PCI Link, the smaller the Padding Boundary the 7326 * better. For the Memory Controller, a smaller Padding 7327 * Boundary is better until we cross under the Memory Line 7328 * Size (the minimum unit of transfer to/from Memory). If we 7329 * have a Padding Boundary which is smaller than the Memory 7330 * Line Size, that'll involve a Read-Modify-Write cycle on the 7331 * Memory Controller which is never good. 7332 */ 7333 7334 /* We want the Packing Boundary to be based on the Cache Line 7335 * Size in order to help avoid False Sharing performance 7336 * issues between CPUs, etc. We also want the Packing 7337 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7338 * get best performance when the Packing Boundary is a 7339 * multiple of the Maximum Payload Size. 7340 */ 7341 pack_align = fl_align; 7342 if (pci_is_pcie(adap->pdev)) { 7343 unsigned int mps, mps_log; 7344 u16 devctl; 7345 7346 /* The PCIe Device Control Maximum Payload Size field 7347 * [bits 7:5] encodes sizes as powers of 2 starting at 7348 * 128 bytes. 7349 */ 7350 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, 7351 &devctl); 7352 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7353 mps = 1 << mps_log; 7354 if (mps > pack_align) 7355 pack_align = mps; 7356 } 7357 7358 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7359 * value for the Packing Boundary. This corresponds to 16 7360 * bytes instead of the expected 32 bytes. So if we want 32 7361 * bytes, the best we can really do is 64 bytes ... 7362 */ 7363 if (pack_align <= 16) { 7364 ingpack = INGPACKBOUNDARY_16B_X; 7365 fl_align = 16; 7366 } else if (pack_align == 32) { 7367 ingpack = INGPACKBOUNDARY_64B_X; 7368 fl_align = 64; 7369 } else { 7370 unsigned int pack_align_log = fls(pack_align) - 1; 7371 7372 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7373 fl_align = pack_align; 7374 } 7375 7376 /* Use the smallest Ingress Padding which isn't smaller than 7377 * the Memory Controller Read/Write Size. We'll take that as 7378 * being 8 bytes since we don't know of any system with a 7379 * wider Memory Controller Bus Width. 7380 */ 7381 if (is_t5(adap->params.chip)) 7382 ingpad = INGPADBOUNDARY_32B_X; 7383 else 7384 ingpad = T6_INGPADBOUNDARY_8B_X; 7385 7386 t4_set_reg_field(adap, SGE_CONTROL_A, 7387 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7388 EGRSTATUSPAGESIZE_F, 7389 INGPADBOUNDARY_V(ingpad) | 7390 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7391 t4_set_reg_field(adap, SGE_CONTROL2_A, 7392 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7393 INGPACKBOUNDARY_V(ingpack)); 7394 } 7395 /* 7396 * Adjust various SGE Free List Host Buffer Sizes. 7397 * 7398 * This is something of a crock since we're using fixed indices into 7399 * the array which are also known by the sge.c code and the T4 7400 * Firmware Configuration File. We need to come up with a much better 7401 * approach to managing this array. For now, the first four entries 7402 * are: 7403 * 7404 * 0: Host Page Size 7405 * 1: 64KB 7406 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7407 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7408 * 7409 * For the single-MTU buffers in unpacked mode we need to include 7410 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7411 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7412 * Padding boundary. All of these are accommodated in the Factory 7413 * Default Firmware Configuration File but we need to adjust it for 7414 * this host's cache line size. 7415 */ 7416 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7417 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7418 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7419 & ~(fl_align-1)); 7420 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7421 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7422 & ~(fl_align-1)); 7423 7424 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7425 7426 return 0; 7427 } 7428 7429 /** 7430 * t4_fw_initialize - ask FW to initialize the device 7431 * @adap: the adapter 7432 * @mbox: mailbox to use for the FW command 7433 * 7434 * Issues a command to FW to partially initialize the device. This 7435 * performs initialization that generally doesn't depend on user input. 7436 */ 7437 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7438 { 7439 struct fw_initialize_cmd c; 7440 7441 memset(&c, 0, sizeof(c)); 7442 INIT_CMD(c, INITIALIZE, WRITE); 7443 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7444 } 7445 7446 /** 7447 * t4_query_params_rw - query FW or device parameters 7448 * @adap: the adapter 7449 * @mbox: mailbox to use for the FW command 7450 * @pf: the PF 7451 * @vf: the VF 7452 * @nparams: the number of parameters 7453 * @params: the parameter names 7454 * @val: the parameter values 7455 * @rw: Write and read flag 7456 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7457 * 7458 * Reads the value of FW or device parameters. Up to 7 parameters can be 7459 * queried at once. 7460 */ 7461 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7462 unsigned int vf, unsigned int nparams, const u32 *params, 7463 u32 *val, int rw, bool sleep_ok) 7464 { 7465 int i, ret; 7466 struct fw_params_cmd c; 7467 __be32 *p = &c.param[0].mnem; 7468 7469 if (nparams > 7) 7470 return -EINVAL; 7471 7472 memset(&c, 0, sizeof(c)); 7473 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7474 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7475 FW_PARAMS_CMD_PFN_V(pf) | 7476 FW_PARAMS_CMD_VFN_V(vf)); 7477 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7478 7479 for (i = 0; i < nparams; i++) { 7480 *p++ = cpu_to_be32(*params++); 7481 if (rw) 7482 *p = cpu_to_be32(*(val + i)); 7483 p++; 7484 } 7485 7486 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7487 if (ret == 0) 7488 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7489 *val++ = be32_to_cpu(*p); 7490 return ret; 7491 } 7492 7493 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7494 unsigned int vf, unsigned int nparams, const u32 *params, 7495 u32 *val) 7496 { 7497 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7498 true); 7499 } 7500 7501 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7502 unsigned int vf, unsigned int nparams, const u32 *params, 7503 u32 *val) 7504 { 7505 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7506 false); 7507 } 7508 7509 /** 7510 * t4_set_params_timeout - sets FW or device parameters 7511 * @adap: the adapter 7512 * @mbox: mailbox to use for the FW command 7513 * @pf: the PF 7514 * @vf: the VF 7515 * @nparams: the number of parameters 7516 * @params: the parameter names 7517 * @val: the parameter values 7518 * @timeout: the timeout time 7519 * 7520 * Sets the value of FW or device parameters. Up to 7 parameters can be 7521 * specified at once. 7522 */ 7523 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7524 unsigned int pf, unsigned int vf, 7525 unsigned int nparams, const u32 *params, 7526 const u32 *val, int timeout) 7527 { 7528 struct fw_params_cmd c; 7529 __be32 *p = &c.param[0].mnem; 7530 7531 if (nparams > 7) 7532 return -EINVAL; 7533 7534 memset(&c, 0, sizeof(c)); 7535 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7536 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7537 FW_PARAMS_CMD_PFN_V(pf) | 7538 FW_PARAMS_CMD_VFN_V(vf)); 7539 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7540 7541 while (nparams--) { 7542 *p++ = cpu_to_be32(*params++); 7543 *p++ = cpu_to_be32(*val++); 7544 } 7545 7546 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7547 } 7548 7549 /** 7550 * t4_set_params - sets FW or device parameters 7551 * @adap: the adapter 7552 * @mbox: mailbox to use for the FW command 7553 * @pf: the PF 7554 * @vf: the VF 7555 * @nparams: the number of parameters 7556 * @params: the parameter names 7557 * @val: the parameter values 7558 * 7559 * Sets the value of FW or device parameters. Up to 7 parameters can be 7560 * specified at once. 7561 */ 7562 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7563 unsigned int vf, unsigned int nparams, const u32 *params, 7564 const u32 *val) 7565 { 7566 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7567 FW_CMD_MAX_TIMEOUT); 7568 } 7569 7570 /** 7571 * t4_cfg_pfvf - configure PF/VF resource limits 7572 * @adap: the adapter 7573 * @mbox: mailbox to use for the FW command 7574 * @pf: the PF being configured 7575 * @vf: the VF being configured 7576 * @txq: the max number of egress queues 7577 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7578 * @rxqi: the max number of interrupt-capable ingress queues 7579 * @rxq: the max number of interruptless ingress queues 7580 * @tc: the PCI traffic class 7581 * @vi: the max number of virtual interfaces 7582 * @cmask: the channel access rights mask for the PF/VF 7583 * @pmask: the port access rights mask for the PF/VF 7584 * @nexact: the maximum number of exact MPS filters 7585 * @rcaps: read capabilities 7586 * @wxcaps: write/execute capabilities 7587 * 7588 * Configures resource limits and capabilities for a physical or virtual 7589 * function. 7590 */ 7591 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7592 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7593 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7594 unsigned int vi, unsigned int cmask, unsigned int pmask, 7595 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7596 { 7597 struct fw_pfvf_cmd c; 7598 7599 memset(&c, 0, sizeof(c)); 7600 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7601 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7602 FW_PFVF_CMD_VFN_V(vf)); 7603 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7604 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7605 FW_PFVF_CMD_NIQ_V(rxq)); 7606 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7607 FW_PFVF_CMD_PMASK_V(pmask) | 7608 FW_PFVF_CMD_NEQ_V(txq)); 7609 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7610 FW_PFVF_CMD_NVI_V(vi) | 7611 FW_PFVF_CMD_NEXACTF_V(nexact)); 7612 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7613 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7614 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7615 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7616 } 7617 7618 /** 7619 * t4_alloc_vi - allocate a virtual interface 7620 * @adap: the adapter 7621 * @mbox: mailbox to use for the FW command 7622 * @port: physical port associated with the VI 7623 * @pf: the PF owning the VI 7624 * @vf: the VF owning the VI 7625 * @nmac: number of MAC addresses needed (1 to 5) 7626 * @mac: the MAC addresses of the VI 7627 * @rss_size: size of RSS table slice associated with this VI 7628 * @vivld: the destination to store the VI Valid value. 7629 * @vin: the destination to store the VIN value. 7630 * 7631 * Allocates a virtual interface for the given physical port. If @mac is 7632 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7633 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7634 * stored consecutively so the space needed is @nmac * 6 bytes. 7635 * Returns a negative error number or the non-negative VI id. 7636 */ 7637 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7638 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7639 unsigned int *rss_size, u8 *vivld, u8 *vin) 7640 { 7641 int ret; 7642 struct fw_vi_cmd c; 7643 7644 memset(&c, 0, sizeof(c)); 7645 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7646 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7647 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7648 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7649 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7650 c.nmac = nmac - 1; 7651 7652 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7653 if (ret) 7654 return ret; 7655 7656 if (mac) { 7657 memcpy(mac, c.mac, sizeof(c.mac)); 7658 switch (nmac) { 7659 case 5: 7660 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7661 fallthrough; 7662 case 4: 7663 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7664 fallthrough; 7665 case 3: 7666 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7667 fallthrough; 7668 case 2: 7669 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7670 } 7671 } 7672 if (rss_size) 7673 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7674 7675 if (vivld) 7676 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7677 7678 if (vin) 7679 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7680 7681 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7682 } 7683 7684 /** 7685 * t4_free_vi - free a virtual interface 7686 * @adap: the adapter 7687 * @mbox: mailbox to use for the FW command 7688 * @pf: the PF owning the VI 7689 * @vf: the VF owning the VI 7690 * @viid: virtual interface identifiler 7691 * 7692 * Free a previously allocated virtual interface. 7693 */ 7694 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7695 unsigned int vf, unsigned int viid) 7696 { 7697 struct fw_vi_cmd c; 7698 7699 memset(&c, 0, sizeof(c)); 7700 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7701 FW_CMD_REQUEST_F | 7702 FW_CMD_EXEC_F | 7703 FW_VI_CMD_PFN_V(pf) | 7704 FW_VI_CMD_VFN_V(vf)); 7705 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7706 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7707 7708 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7709 } 7710 7711 /** 7712 * t4_set_rxmode - set Rx properties of a virtual interface 7713 * @adap: the adapter 7714 * @mbox: mailbox to use for the FW command 7715 * @viid: the VI id 7716 * @viid_mirror: the mirror VI id 7717 * @mtu: the new MTU or -1 7718 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7719 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7720 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7721 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7722 * @sleep_ok: if true we may sleep while awaiting command completion 7723 * 7724 * Sets Rx properties of a virtual interface. 7725 */ 7726 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7727 unsigned int viid_mirror, int mtu, int promisc, int all_multi, 7728 int bcast, int vlanex, bool sleep_ok) 7729 { 7730 struct fw_vi_rxmode_cmd c, c_mirror; 7731 int ret; 7732 7733 /* convert to FW values */ 7734 if (mtu < 0) 7735 mtu = FW_RXMODE_MTU_NO_CHG; 7736 if (promisc < 0) 7737 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7738 if (all_multi < 0) 7739 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7740 if (bcast < 0) 7741 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7742 if (vlanex < 0) 7743 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7744 7745 memset(&c, 0, sizeof(c)); 7746 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7747 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7748 FW_VI_RXMODE_CMD_VIID_V(viid)); 7749 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7750 c.mtu_to_vlanexen = 7751 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7752 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7753 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7754 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7755 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7756 7757 if (viid_mirror) { 7758 memcpy(&c_mirror, &c, sizeof(c_mirror)); 7759 c_mirror.op_to_viid = 7760 cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7761 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7762 FW_VI_RXMODE_CMD_VIID_V(viid_mirror)); 7763 } 7764 7765 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7766 if (ret) 7767 return ret; 7768 7769 if (viid_mirror) 7770 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror), 7771 NULL, sleep_ok); 7772 7773 return ret; 7774 } 7775 7776 /** 7777 * t4_free_encap_mac_filt - frees MPS entry at given index 7778 * @adap: the adapter 7779 * @viid: the VI id 7780 * @idx: index of MPS entry to be freed 7781 * @sleep_ok: call is allowed to sleep 7782 * 7783 * Frees the MPS entry at supplied index 7784 * 7785 * Returns a negative error number or zero on success 7786 */ 7787 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7788 int idx, bool sleep_ok) 7789 { 7790 struct fw_vi_mac_exact *p; 7791 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7792 struct fw_vi_mac_cmd c; 7793 int ret = 0; 7794 u32 exact; 7795 7796 memset(&c, 0, sizeof(c)); 7797 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7798 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7799 FW_CMD_EXEC_V(0) | 7800 FW_VI_MAC_CMD_VIID_V(viid)); 7801 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7802 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7803 exact | 7804 FW_CMD_LEN16_V(1)); 7805 p = c.u.exact; 7806 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7807 FW_VI_MAC_CMD_IDX_V(idx)); 7808 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7809 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7810 return ret; 7811 } 7812 7813 /** 7814 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7815 * @adap: the adapter 7816 * @viid: the VI id 7817 * @addr: the MAC address 7818 * @mask: the mask 7819 * @idx: index of the entry in mps tcam 7820 * @lookup_type: MAC address for inner (1) or outer (0) header 7821 * @port_id: the port index 7822 * @sleep_ok: call is allowed to sleep 7823 * 7824 * Removes the mac entry at the specified index using raw mac interface. 7825 * 7826 * Returns a negative error number on failure. 7827 */ 7828 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7829 const u8 *addr, const u8 *mask, unsigned int idx, 7830 u8 lookup_type, u8 port_id, bool sleep_ok) 7831 { 7832 struct fw_vi_mac_cmd c; 7833 struct fw_vi_mac_raw *p = &c.u.raw; 7834 u32 val; 7835 7836 memset(&c, 0, sizeof(c)); 7837 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7838 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7839 FW_CMD_EXEC_V(0) | 7840 FW_VI_MAC_CMD_VIID_V(viid)); 7841 val = FW_CMD_LEN16_V(1) | 7842 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7843 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7844 FW_CMD_LEN16_V(val)); 7845 7846 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7847 FW_VI_MAC_ID_BASED_FREE); 7848 7849 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7850 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7851 DATAPORTNUM_V(port_id)); 7852 /* Lookup mask and port mask */ 7853 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7854 DATAPORTNUM_V(DATAPORTNUM_M)); 7855 7856 /* Copy the address and the mask */ 7857 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7858 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7859 7860 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7861 } 7862 7863 /** 7864 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7865 * @adap: the adapter 7866 * @viid: the VI id 7867 * @addr: the MAC address 7868 * @mask: the mask 7869 * @vni: the VNI id for the tunnel protocol 7870 * @vni_mask: mask for the VNI id 7871 * @dip_hit: to enable DIP match for the MPS entry 7872 * @lookup_type: MAC address for inner (1) or outer (0) header 7873 * @sleep_ok: call is allowed to sleep 7874 * 7875 * Allocates an MPS entry with specified MAC address and VNI value. 7876 * 7877 * Returns a negative error number or the allocated index for this mac. 7878 */ 7879 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7880 const u8 *addr, const u8 *mask, unsigned int vni, 7881 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7882 bool sleep_ok) 7883 { 7884 struct fw_vi_mac_cmd c; 7885 struct fw_vi_mac_vni *p = c.u.exact_vni; 7886 int ret = 0; 7887 u32 val; 7888 7889 memset(&c, 0, sizeof(c)); 7890 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7891 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7892 FW_VI_MAC_CMD_VIID_V(viid)); 7893 val = FW_CMD_LEN16_V(1) | 7894 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7895 c.freemacs_to_len16 = cpu_to_be32(val); 7896 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7897 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7898 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7899 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7900 7901 p->lookup_type_to_vni = 7902 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7903 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7904 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7905 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7906 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7907 if (ret == 0) 7908 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7909 return ret; 7910 } 7911 7912 /** 7913 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7914 * @adap: the adapter 7915 * @viid: the VI id 7916 * @addr: the MAC address 7917 * @mask: the mask 7918 * @idx: index at which to add this entry 7919 * @lookup_type: MAC address for inner (1) or outer (0) header 7920 * @port_id: the port index 7921 * @sleep_ok: call is allowed to sleep 7922 * 7923 * Adds the mac entry at the specified index using raw mac interface. 7924 * 7925 * Returns a negative error number or the allocated index for this mac. 7926 */ 7927 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7928 const u8 *addr, const u8 *mask, unsigned int idx, 7929 u8 lookup_type, u8 port_id, bool sleep_ok) 7930 { 7931 int ret = 0; 7932 struct fw_vi_mac_cmd c; 7933 struct fw_vi_mac_raw *p = &c.u.raw; 7934 u32 val; 7935 7936 memset(&c, 0, sizeof(c)); 7937 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7938 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7939 FW_VI_MAC_CMD_VIID_V(viid)); 7940 val = FW_CMD_LEN16_V(1) | 7941 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7942 c.freemacs_to_len16 = cpu_to_be32(val); 7943 7944 /* Specify that this is an inner mac address */ 7945 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7946 7947 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7948 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7949 DATAPORTNUM_V(port_id)); 7950 /* Lookup mask and port mask */ 7951 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7952 DATAPORTNUM_V(DATAPORTNUM_M)); 7953 7954 /* Copy the address and the mask */ 7955 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7956 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7957 7958 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7959 if (ret == 0) { 7960 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7961 if (ret != idx) 7962 ret = -ENOMEM; 7963 } 7964 7965 return ret; 7966 } 7967 7968 /** 7969 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7970 * @adap: the adapter 7971 * @mbox: mailbox to use for the FW command 7972 * @viid: the VI id 7973 * @free: if true any existing filters for this VI id are first removed 7974 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7975 * @addr: the MAC address(es) 7976 * @idx: where to store the index of each allocated filter 7977 * @hash: pointer to hash address filter bitmap 7978 * @sleep_ok: call is allowed to sleep 7979 * 7980 * Allocates an exact-match filter for each of the supplied addresses and 7981 * sets it to the corresponding address. If @idx is not %NULL it should 7982 * have at least @naddr entries, each of which will be set to the index of 7983 * the filter allocated for the corresponding MAC address. If a filter 7984 * could not be allocated for an address its index is set to 0xffff. 7985 * If @hash is not %NULL addresses that fail to allocate an exact filter 7986 * are hashed and update the hash filter bitmap pointed at by @hash. 7987 * 7988 * Returns a negative error number or the number of filters allocated. 7989 */ 7990 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7991 unsigned int viid, bool free, unsigned int naddr, 7992 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7993 { 7994 int offset, ret = 0; 7995 struct fw_vi_mac_cmd c; 7996 unsigned int nfilters = 0; 7997 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7998 unsigned int rem = naddr; 7999 8000 if (naddr > max_naddr) 8001 return -EINVAL; 8002 8003 for (offset = 0; offset < naddr ; /**/) { 8004 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 8005 rem : ARRAY_SIZE(c.u.exact)); 8006 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8007 u.exact[fw_naddr]), 16); 8008 struct fw_vi_mac_exact *p; 8009 int i; 8010 8011 memset(&c, 0, sizeof(c)); 8012 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8013 FW_CMD_REQUEST_F | 8014 FW_CMD_WRITE_F | 8015 FW_CMD_EXEC_V(free) | 8016 FW_VI_MAC_CMD_VIID_V(viid)); 8017 c.freemacs_to_len16 = 8018 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 8019 FW_CMD_LEN16_V(len16)); 8020 8021 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8022 p->valid_to_idx = 8023 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8024 FW_VI_MAC_CMD_IDX_V( 8025 FW_VI_MAC_ADD_MAC)); 8026 memcpy(p->macaddr, addr[offset + i], 8027 sizeof(p->macaddr)); 8028 } 8029 8030 /* It's okay if we run out of space in our MAC address arena. 8031 * Some of the addresses we submit may get stored so we need 8032 * to run through the reply to see what the results were ... 8033 */ 8034 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8035 if (ret && ret != -FW_ENOMEM) 8036 break; 8037 8038 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8039 u16 index = FW_VI_MAC_CMD_IDX_G( 8040 be16_to_cpu(p->valid_to_idx)); 8041 8042 if (idx) 8043 idx[offset + i] = (index >= max_naddr ? 8044 0xffff : index); 8045 if (index < max_naddr) 8046 nfilters++; 8047 else if (hash) 8048 *hash |= (1ULL << 8049 hash_mac_addr(addr[offset + i])); 8050 } 8051 8052 free = false; 8053 offset += fw_naddr; 8054 rem -= fw_naddr; 8055 } 8056 8057 if (ret == 0 || ret == -FW_ENOMEM) 8058 ret = nfilters; 8059 return ret; 8060 } 8061 8062 /** 8063 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8064 * @adap: the adapter 8065 * @mbox: mailbox to use for the FW command 8066 * @viid: the VI id 8067 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8068 * @addr: the MAC address(es) 8069 * @sleep_ok: call is allowed to sleep 8070 * 8071 * Frees the exact-match filter for each of the supplied addresses 8072 * 8073 * Returns a negative error number or the number of filters freed. 8074 */ 8075 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8076 unsigned int viid, unsigned int naddr, 8077 const u8 **addr, bool sleep_ok) 8078 { 8079 int offset, ret = 0; 8080 struct fw_vi_mac_cmd c; 8081 unsigned int nfilters = 0; 8082 unsigned int max_naddr = is_t4(adap->params.chip) ? 8083 NUM_MPS_CLS_SRAM_L_INSTANCES : 8084 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8085 unsigned int rem = naddr; 8086 8087 if (naddr > max_naddr) 8088 return -EINVAL; 8089 8090 for (offset = 0; offset < (int)naddr ; /**/) { 8091 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8092 ? rem 8093 : ARRAY_SIZE(c.u.exact)); 8094 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8095 u.exact[fw_naddr]), 16); 8096 struct fw_vi_mac_exact *p; 8097 int i; 8098 8099 memset(&c, 0, sizeof(c)); 8100 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8101 FW_CMD_REQUEST_F | 8102 FW_CMD_WRITE_F | 8103 FW_CMD_EXEC_V(0) | 8104 FW_VI_MAC_CMD_VIID_V(viid)); 8105 c.freemacs_to_len16 = 8106 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 8107 FW_CMD_LEN16_V(len16)); 8108 8109 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8110 p->valid_to_idx = cpu_to_be16( 8111 FW_VI_MAC_CMD_VALID_F | 8112 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8113 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8114 } 8115 8116 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8117 if (ret) 8118 break; 8119 8120 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8121 u16 index = FW_VI_MAC_CMD_IDX_G( 8122 be16_to_cpu(p->valid_to_idx)); 8123 8124 if (index < max_naddr) 8125 nfilters++; 8126 } 8127 8128 offset += fw_naddr; 8129 rem -= fw_naddr; 8130 } 8131 8132 if (ret == 0) 8133 ret = nfilters; 8134 return ret; 8135 } 8136 8137 /** 8138 * t4_change_mac - modifies the exact-match filter for a MAC address 8139 * @adap: the adapter 8140 * @mbox: mailbox to use for the FW command 8141 * @viid: the VI id 8142 * @idx: index of existing filter for old value of MAC address, or -1 8143 * @addr: the new MAC address value 8144 * @persist: whether a new MAC allocation should be persistent 8145 * @smt_idx: the destination to store the new SMT index. 8146 * 8147 * Modifies an exact-match filter and sets it to the new MAC address. 8148 * Note that in general it is not possible to modify the value of a given 8149 * filter so the generic way to modify an address filter is to free the one 8150 * being used by the old address value and allocate a new filter for the 8151 * new address value. @idx can be -1 if the address is a new addition. 8152 * 8153 * Returns a negative error number or the index of the filter with the new 8154 * MAC value. 8155 */ 8156 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8157 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8158 { 8159 int ret, mode; 8160 struct fw_vi_mac_cmd c; 8161 struct fw_vi_mac_exact *p = c.u.exact; 8162 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8163 8164 if (idx < 0) /* new allocation */ 8165 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8166 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8167 8168 memset(&c, 0, sizeof(c)); 8169 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8170 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8171 FW_VI_MAC_CMD_VIID_V(viid)); 8172 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8173 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8174 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8175 FW_VI_MAC_CMD_IDX_V(idx)); 8176 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8177 8178 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8179 if (ret == 0) { 8180 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8181 if (ret >= max_mac_addr) 8182 ret = -ENOMEM; 8183 if (smt_idx) { 8184 if (adap->params.viid_smt_extn_support) { 8185 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8186 (be32_to_cpu(c.op_to_viid)); 8187 } else { 8188 /* In T4/T5, SMT contains 256 SMAC entries 8189 * organized in 128 rows of 2 entries each. 8190 * In T6, SMT contains 256 SMAC entries in 8191 * 256 rows. 8192 */ 8193 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8194 CHELSIO_T5) 8195 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8196 else 8197 *smt_idx = (viid & FW_VIID_VIN_M); 8198 } 8199 } 8200 } 8201 return ret; 8202 } 8203 8204 /** 8205 * t4_set_addr_hash - program the MAC inexact-match hash filter 8206 * @adap: the adapter 8207 * @mbox: mailbox to use for the FW command 8208 * @viid: the VI id 8209 * @ucast: whether the hash filter should also match unicast addresses 8210 * @vec: the value to be written to the hash filter 8211 * @sleep_ok: call is allowed to sleep 8212 * 8213 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8214 */ 8215 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8216 bool ucast, u64 vec, bool sleep_ok) 8217 { 8218 struct fw_vi_mac_cmd c; 8219 8220 memset(&c, 0, sizeof(c)); 8221 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8222 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8223 FW_VI_ENABLE_CMD_VIID_V(viid)); 8224 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8225 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8226 FW_CMD_LEN16_V(1)); 8227 c.u.hash.hashvec = cpu_to_be64(vec); 8228 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8229 } 8230 8231 /** 8232 * t4_enable_vi_params - enable/disable a virtual interface 8233 * @adap: the adapter 8234 * @mbox: mailbox to use for the FW command 8235 * @viid: the VI id 8236 * @rx_en: 1=enable Rx, 0=disable Rx 8237 * @tx_en: 1=enable Tx, 0=disable Tx 8238 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8239 * 8240 * Enables/disables a virtual interface. Note that setting DCB Enable 8241 * only makes sense when enabling a Virtual Interface ... 8242 */ 8243 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8244 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8245 { 8246 struct fw_vi_enable_cmd c; 8247 8248 memset(&c, 0, sizeof(c)); 8249 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8250 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8251 FW_VI_ENABLE_CMD_VIID_V(viid)); 8252 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8253 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8254 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8255 FW_LEN16(c)); 8256 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8257 } 8258 8259 /** 8260 * t4_enable_vi - enable/disable a virtual interface 8261 * @adap: the adapter 8262 * @mbox: mailbox to use for the FW command 8263 * @viid: the VI id 8264 * @rx_en: 1=enable Rx, 0=disable Rx 8265 * @tx_en: 1=enable Tx, 0=disable Tx 8266 * 8267 * Enables/disables a virtual interface. 8268 */ 8269 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8270 bool rx_en, bool tx_en) 8271 { 8272 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8273 } 8274 8275 /** 8276 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8277 * @adap: the adapter 8278 * @mbox: mailbox to use for the FW command 8279 * @pi: the Port Information structure 8280 * @rx_en: 1=enable Rx, 0=disable Rx 8281 * @tx_en: 1=enable Tx, 0=disable Tx 8282 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8283 * 8284 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8285 * Enable only makes sense when enabling a Virtual Interface ... 8286 * If the Virtual Interface enable/disable operation is successful, 8287 * we notify the OS-specific code of a potential Link Status change 8288 * via the OS Contract API t4_os_link_changed(). 8289 */ 8290 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8291 struct port_info *pi, 8292 bool rx_en, bool tx_en, bool dcb_en) 8293 { 8294 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8295 rx_en, tx_en, dcb_en); 8296 if (ret) 8297 return ret; 8298 t4_os_link_changed(adap, pi->port_id, 8299 rx_en && tx_en && pi->link_cfg.link_ok); 8300 return 0; 8301 } 8302 8303 /** 8304 * t4_identify_port - identify a VI's port by blinking its LED 8305 * @adap: the adapter 8306 * @mbox: mailbox to use for the FW command 8307 * @viid: the VI id 8308 * @nblinks: how many times to blink LED at 2.5 Hz 8309 * 8310 * Identifies a VI's port by blinking its LED. 8311 */ 8312 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8313 unsigned int nblinks) 8314 { 8315 struct fw_vi_enable_cmd c; 8316 8317 memset(&c, 0, sizeof(c)); 8318 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8319 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8320 FW_VI_ENABLE_CMD_VIID_V(viid)); 8321 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8322 c.blinkdur = cpu_to_be16(nblinks); 8323 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8324 } 8325 8326 /** 8327 * t4_iq_stop - stop an ingress queue and its FLs 8328 * @adap: the adapter 8329 * @mbox: mailbox to use for the FW command 8330 * @pf: the PF owning the queues 8331 * @vf: the VF owning the queues 8332 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8333 * @iqid: ingress queue id 8334 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8335 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8336 * 8337 * Stops an ingress queue and its associated FLs, if any. This causes 8338 * any current or future data/messages destined for these queues to be 8339 * tossed. 8340 */ 8341 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8342 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8343 unsigned int fl0id, unsigned int fl1id) 8344 { 8345 struct fw_iq_cmd c; 8346 8347 memset(&c, 0, sizeof(c)); 8348 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8349 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8350 FW_IQ_CMD_VFN_V(vf)); 8351 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8352 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8353 c.iqid = cpu_to_be16(iqid); 8354 c.fl0id = cpu_to_be16(fl0id); 8355 c.fl1id = cpu_to_be16(fl1id); 8356 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8357 } 8358 8359 /** 8360 * t4_iq_free - free an ingress queue and its FLs 8361 * @adap: the adapter 8362 * @mbox: mailbox to use for the FW command 8363 * @pf: the PF owning the queues 8364 * @vf: the VF owning the queues 8365 * @iqtype: the ingress queue type 8366 * @iqid: ingress queue id 8367 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8368 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8369 * 8370 * Frees an ingress queue and its associated FLs, if any. 8371 */ 8372 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8373 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8374 unsigned int fl0id, unsigned int fl1id) 8375 { 8376 struct fw_iq_cmd c; 8377 8378 memset(&c, 0, sizeof(c)); 8379 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8380 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8381 FW_IQ_CMD_VFN_V(vf)); 8382 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8383 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8384 c.iqid = cpu_to_be16(iqid); 8385 c.fl0id = cpu_to_be16(fl0id); 8386 c.fl1id = cpu_to_be16(fl1id); 8387 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8388 } 8389 8390 /** 8391 * t4_eth_eq_free - free an Ethernet egress queue 8392 * @adap: the adapter 8393 * @mbox: mailbox to use for the FW command 8394 * @pf: the PF owning the queue 8395 * @vf: the VF owning the queue 8396 * @eqid: egress queue id 8397 * 8398 * Frees an Ethernet egress queue. 8399 */ 8400 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8401 unsigned int vf, unsigned int eqid) 8402 { 8403 struct fw_eq_eth_cmd c; 8404 8405 memset(&c, 0, sizeof(c)); 8406 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8407 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8408 FW_EQ_ETH_CMD_PFN_V(pf) | 8409 FW_EQ_ETH_CMD_VFN_V(vf)); 8410 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8411 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8412 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8413 } 8414 8415 /** 8416 * t4_ctrl_eq_free - free a control egress queue 8417 * @adap: the adapter 8418 * @mbox: mailbox to use for the FW command 8419 * @pf: the PF owning the queue 8420 * @vf: the VF owning the queue 8421 * @eqid: egress queue id 8422 * 8423 * Frees a control egress queue. 8424 */ 8425 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8426 unsigned int vf, unsigned int eqid) 8427 { 8428 struct fw_eq_ctrl_cmd c; 8429 8430 memset(&c, 0, sizeof(c)); 8431 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8432 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8433 FW_EQ_CTRL_CMD_PFN_V(pf) | 8434 FW_EQ_CTRL_CMD_VFN_V(vf)); 8435 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8436 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8437 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8438 } 8439 8440 /** 8441 * t4_ofld_eq_free - free an offload egress queue 8442 * @adap: the adapter 8443 * @mbox: mailbox to use for the FW command 8444 * @pf: the PF owning the queue 8445 * @vf: the VF owning the queue 8446 * @eqid: egress queue id 8447 * 8448 * Frees a control egress queue. 8449 */ 8450 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8451 unsigned int vf, unsigned int eqid) 8452 { 8453 struct fw_eq_ofld_cmd c; 8454 8455 memset(&c, 0, sizeof(c)); 8456 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8457 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8458 FW_EQ_OFLD_CMD_PFN_V(pf) | 8459 FW_EQ_OFLD_CMD_VFN_V(vf)); 8460 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8461 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8462 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8463 } 8464 8465 /** 8466 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8467 * @link_down_rc: Link Down Reason Code 8468 * 8469 * Returns a string representation of the Link Down Reason Code. 8470 */ 8471 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8472 { 8473 static const char * const reason[] = { 8474 "Link Down", 8475 "Remote Fault", 8476 "Auto-negotiation Failure", 8477 "Reserved", 8478 "Insufficient Airflow", 8479 "Unable To Determine Reason", 8480 "No RX Signal Detected", 8481 "Reserved", 8482 }; 8483 8484 if (link_down_rc >= ARRAY_SIZE(reason)) 8485 return "Bad Reason Code"; 8486 8487 return reason[link_down_rc]; 8488 } 8489 8490 /* Return the highest speed set in the port capabilities, in Mb/s. */ 8491 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8492 { 8493 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8494 do { \ 8495 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8496 return __speed; \ 8497 } while (0) 8498 8499 TEST_SPEED_RETURN(400G, 400000); 8500 TEST_SPEED_RETURN(200G, 200000); 8501 TEST_SPEED_RETURN(100G, 100000); 8502 TEST_SPEED_RETURN(50G, 50000); 8503 TEST_SPEED_RETURN(40G, 40000); 8504 TEST_SPEED_RETURN(25G, 25000); 8505 TEST_SPEED_RETURN(10G, 10000); 8506 TEST_SPEED_RETURN(1G, 1000); 8507 TEST_SPEED_RETURN(100M, 100); 8508 8509 #undef TEST_SPEED_RETURN 8510 8511 return 0; 8512 } 8513 8514 /** 8515 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8516 * @acaps: advertised Port Capabilities 8517 * 8518 * Get the highest speed for the port from the advertised Port 8519 * Capabilities. It will be either the highest speed from the list of 8520 * speeds or whatever user has set using ethtool. 8521 */ 8522 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8523 { 8524 #define TEST_SPEED_RETURN(__caps_speed) \ 8525 do { \ 8526 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8527 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8528 } while (0) 8529 8530 TEST_SPEED_RETURN(400G); 8531 TEST_SPEED_RETURN(200G); 8532 TEST_SPEED_RETURN(100G); 8533 TEST_SPEED_RETURN(50G); 8534 TEST_SPEED_RETURN(40G); 8535 TEST_SPEED_RETURN(25G); 8536 TEST_SPEED_RETURN(10G); 8537 TEST_SPEED_RETURN(1G); 8538 TEST_SPEED_RETURN(100M); 8539 8540 #undef TEST_SPEED_RETURN 8541 8542 return 0; 8543 } 8544 8545 /** 8546 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8547 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8548 * 8549 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8550 * 32-bit Port Capabilities value. 8551 */ 8552 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8553 { 8554 fw_port_cap32_t linkattr = 0; 8555 8556 /* Unfortunately the format of the Link Status in the old 8557 * 16-bit Port Information message isn't the same as the 8558 * 16-bit Port Capabilities bitfield used everywhere else ... 8559 */ 8560 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8561 linkattr |= FW_PORT_CAP32_FC_RX; 8562 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8563 linkattr |= FW_PORT_CAP32_FC_TX; 8564 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8565 linkattr |= FW_PORT_CAP32_SPEED_100M; 8566 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8567 linkattr |= FW_PORT_CAP32_SPEED_1G; 8568 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8569 linkattr |= FW_PORT_CAP32_SPEED_10G; 8570 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8571 linkattr |= FW_PORT_CAP32_SPEED_25G; 8572 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8573 linkattr |= FW_PORT_CAP32_SPEED_40G; 8574 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8575 linkattr |= FW_PORT_CAP32_SPEED_100G; 8576 8577 return linkattr; 8578 } 8579 8580 /** 8581 * t4_handle_get_port_info - process a FW reply message 8582 * @pi: the port info 8583 * @rpl: start of the FW message 8584 * 8585 * Processes a GET_PORT_INFO FW reply message. 8586 */ 8587 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8588 { 8589 const struct fw_port_cmd *cmd = (const void *)rpl; 8590 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8591 struct link_config *lc = &pi->link_cfg; 8592 struct adapter *adapter = pi->adapter; 8593 unsigned int speed, fc, fec, adv_fc; 8594 enum fw_port_module_type mod_type; 8595 int action, link_ok, linkdnrc; 8596 enum fw_port_type port_type; 8597 8598 /* Extract the various fields from the Port Information message. 8599 */ 8600 action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8601 switch (action) { 8602 case FW_PORT_ACTION_GET_PORT_INFO: { 8603 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8604 8605 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8606 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8607 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8608 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8609 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8610 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8611 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8612 linkattr = lstatus_to_fwcap(lstatus); 8613 break; 8614 } 8615 8616 case FW_PORT_ACTION_GET_PORT_INFO32: { 8617 u32 lstatus32; 8618 8619 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8620 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8621 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8622 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8623 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8624 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8625 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8626 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8627 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8628 break; 8629 } 8630 8631 default: 8632 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8633 be32_to_cpu(cmd->action_to_len16)); 8634 return; 8635 } 8636 8637 fec = fwcap_to_cc_fec(acaps); 8638 adv_fc = fwcap_to_cc_pause(acaps); 8639 fc = fwcap_to_cc_pause(linkattr); 8640 speed = fwcap_to_speed(linkattr); 8641 8642 /* Reset state for communicating new Transceiver Module status and 8643 * whether the OS-dependent layer wants us to redo the current 8644 * "sticky" L1 Configure Link Parameters. 8645 */ 8646 lc->new_module = false; 8647 lc->redo_l1cfg = false; 8648 8649 if (mod_type != pi->mod_type) { 8650 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8651 * various fundamental Port Capabilities which used to be 8652 * immutable can now change radically. We can now have 8653 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8654 * all change based on what Transceiver Module is inserted. 8655 * So we need to record the Physical "Port" Capabilities on 8656 * every Transceiver Module change. 8657 */ 8658 lc->pcaps = pcaps; 8659 8660 /* When a new Transceiver Module is inserted, the Firmware 8661 * will examine its i2c EPROM to determine its type and 8662 * general operating parameters including things like Forward 8663 * Error Control, etc. Various IEEE 802.3 standards dictate 8664 * how to interpret these i2c values to determine default 8665 * "sutomatic" settings. We record these for future use when 8666 * the user explicitly requests these standards-based values. 8667 */ 8668 lc->def_acaps = acaps; 8669 8670 /* Some versions of the early T6 Firmware "cheated" when 8671 * handling different Transceiver Modules by changing the 8672 * underlaying Port Type reported to the Host Drivers. As 8673 * such we need to capture whatever Port Type the Firmware 8674 * sends us and record it in case it's different from what we 8675 * were told earlier. Unfortunately, since Firmware is 8676 * forever, we'll need to keep this code here forever, but in 8677 * later T6 Firmware it should just be an assignment of the 8678 * same value already recorded. 8679 */ 8680 pi->port_type = port_type; 8681 8682 /* Record new Module Type information. 8683 */ 8684 pi->mod_type = mod_type; 8685 8686 /* Let the OS-dependent layer know if we have a new 8687 * Transceiver Module inserted. 8688 */ 8689 lc->new_module = t4_is_inserted_mod_type(mod_type); 8690 8691 t4_os_portmod_changed(adapter, pi->port_id); 8692 } 8693 8694 if (link_ok != lc->link_ok || speed != lc->speed || 8695 fc != lc->fc || adv_fc != lc->advertised_fc || 8696 fec != lc->fec) { 8697 /* something changed */ 8698 if (!link_ok && lc->link_ok) { 8699 lc->link_down_rc = linkdnrc; 8700 dev_warn_ratelimited(adapter->pdev_dev, 8701 "Port %d link down, reason: %s\n", 8702 pi->tx_chan, 8703 t4_link_down_rc_str(linkdnrc)); 8704 } 8705 lc->link_ok = link_ok; 8706 lc->speed = speed; 8707 lc->advertised_fc = adv_fc; 8708 lc->fc = fc; 8709 lc->fec = fec; 8710 8711 lc->lpacaps = lpacaps; 8712 lc->acaps = acaps & ADVERT_MASK; 8713 8714 /* If we're not physically capable of Auto-Negotiation, note 8715 * this as Auto-Negotiation disabled. Otherwise, we track 8716 * what Auto-Negotiation settings we have. Note parallel 8717 * structure in t4_link_l1cfg_core() and init_link_config(). 8718 */ 8719 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8720 lc->autoneg = AUTONEG_DISABLE; 8721 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8722 lc->autoneg = AUTONEG_ENABLE; 8723 } else { 8724 /* When Autoneg is disabled, user needs to set 8725 * single speed. 8726 * Similar to cxgb4_ethtool.c: set_link_ksettings 8727 */ 8728 lc->acaps = 0; 8729 lc->speed_caps = fwcap_to_fwspeed(acaps); 8730 lc->autoneg = AUTONEG_DISABLE; 8731 } 8732 8733 t4_os_link_changed(adapter, pi->port_id, link_ok); 8734 } 8735 8736 /* If we have a new Transceiver Module and the OS-dependent code has 8737 * told us that it wants us to redo whatever "sticky" L1 Configuration 8738 * Link Parameters are set, do that now. 8739 */ 8740 if (lc->new_module && lc->redo_l1cfg) { 8741 struct link_config old_lc; 8742 int ret; 8743 8744 /* Save the current L1 Configuration and restore it if an 8745 * error occurs. We probably should fix the l1_cfg*() 8746 * routines not to change the link_config when an error 8747 * occurs ... 8748 */ 8749 old_lc = *lc; 8750 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8751 if (ret) { 8752 *lc = old_lc; 8753 dev_warn(adapter->pdev_dev, 8754 "Attempt to update new Transceiver Module settings failed\n"); 8755 } 8756 } 8757 lc->new_module = false; 8758 lc->redo_l1cfg = false; 8759 } 8760 8761 /** 8762 * t4_update_port_info - retrieve and update port information if changed 8763 * @pi: the port_info 8764 * 8765 * We issue a Get Port Information Command to the Firmware and, if 8766 * successful, we check to see if anything is different from what we 8767 * last recorded and update things accordingly. 8768 */ 8769 int t4_update_port_info(struct port_info *pi) 8770 { 8771 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8772 struct fw_port_cmd port_cmd; 8773 int ret; 8774 8775 memset(&port_cmd, 0, sizeof(port_cmd)); 8776 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8777 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8778 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8779 port_cmd.action_to_len16 = cpu_to_be32( 8780 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8781 ? FW_PORT_ACTION_GET_PORT_INFO 8782 : FW_PORT_ACTION_GET_PORT_INFO32) | 8783 FW_LEN16(port_cmd)); 8784 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8785 &port_cmd, sizeof(port_cmd), &port_cmd); 8786 if (ret) 8787 return ret; 8788 8789 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8790 return 0; 8791 } 8792 8793 /** 8794 * t4_get_link_params - retrieve basic link parameters for given port 8795 * @pi: the port 8796 * @link_okp: value return pointer for link up/down 8797 * @speedp: value return pointer for speed (Mb/s) 8798 * @mtup: value return pointer for mtu 8799 * 8800 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8801 * and MTU for a specified port. A negative error is returned on 8802 * failure; 0 on success. 8803 */ 8804 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8805 unsigned int *speedp, unsigned int *mtup) 8806 { 8807 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8808 unsigned int action, link_ok, mtu; 8809 struct fw_port_cmd port_cmd; 8810 fw_port_cap32_t linkattr; 8811 int ret; 8812 8813 memset(&port_cmd, 0, sizeof(port_cmd)); 8814 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8815 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8816 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8817 action = (fw_caps == FW_CAPS16 8818 ? FW_PORT_ACTION_GET_PORT_INFO 8819 : FW_PORT_ACTION_GET_PORT_INFO32); 8820 port_cmd.action_to_len16 = cpu_to_be32( 8821 FW_PORT_CMD_ACTION_V(action) | 8822 FW_LEN16(port_cmd)); 8823 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8824 &port_cmd, sizeof(port_cmd), &port_cmd); 8825 if (ret) 8826 return ret; 8827 8828 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8829 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8830 8831 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8832 linkattr = lstatus_to_fwcap(lstatus); 8833 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8834 } else { 8835 u32 lstatus32 = 8836 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8837 8838 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8839 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8840 mtu = FW_PORT_CMD_MTU32_G( 8841 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8842 } 8843 8844 if (link_okp) 8845 *link_okp = link_ok; 8846 if (speedp) 8847 *speedp = fwcap_to_speed(linkattr); 8848 if (mtup) 8849 *mtup = mtu; 8850 8851 return 0; 8852 } 8853 8854 /** 8855 * t4_handle_fw_rpl - process a FW reply message 8856 * @adap: the adapter 8857 * @rpl: start of the FW message 8858 * 8859 * Processes a FW message, such as link state change messages. 8860 */ 8861 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8862 { 8863 u8 opcode = *(const u8 *)rpl; 8864 8865 /* This might be a port command ... this simplifies the following 8866 * conditionals ... We can get away with pre-dereferencing 8867 * action_to_len16 because it's in the first 16 bytes and all messages 8868 * will be at least that long. 8869 */ 8870 const struct fw_port_cmd *p = (const void *)rpl; 8871 unsigned int action = 8872 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8873 8874 if (opcode == FW_PORT_CMD && 8875 (action == FW_PORT_ACTION_GET_PORT_INFO || 8876 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8877 int i; 8878 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8879 struct port_info *pi = NULL; 8880 8881 for_each_port(adap, i) { 8882 pi = adap2pinfo(adap, i); 8883 if (pi->tx_chan == chan) 8884 break; 8885 } 8886 8887 t4_handle_get_port_info(pi, rpl); 8888 } else { 8889 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8890 opcode); 8891 return -EINVAL; 8892 } 8893 return 0; 8894 } 8895 8896 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8897 { 8898 u16 val; 8899 8900 if (pci_is_pcie(adapter->pdev)) { 8901 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8902 p->speed = val & PCI_EXP_LNKSTA_CLS; 8903 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8904 } 8905 } 8906 8907 /** 8908 * init_link_config - initialize a link's SW state 8909 * @lc: pointer to structure holding the link state 8910 * @pcaps: link Port Capabilities 8911 * @acaps: link current Advertised Port Capabilities 8912 * 8913 * Initializes the SW state maintained for each link, including the link's 8914 * capabilities and default speed/flow-control/autonegotiation settings. 8915 */ 8916 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8917 fw_port_cap32_t acaps) 8918 { 8919 lc->pcaps = pcaps; 8920 lc->def_acaps = acaps; 8921 lc->lpacaps = 0; 8922 lc->speed_caps = 0; 8923 lc->speed = 0; 8924 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8925 8926 /* For Forward Error Control, we default to whatever the Firmware 8927 * tells us the Link is currently advertising. 8928 */ 8929 lc->requested_fec = FEC_AUTO; 8930 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8931 8932 /* If the Port is capable of Auto-Negtotiation, initialize it as 8933 * "enabled" and copy over all of the Physical Port Capabilities 8934 * to the Advertised Port Capabilities. Otherwise mark it as 8935 * Auto-Negotiate disabled and select the highest supported speed 8936 * for the link. Note parallel structure in t4_link_l1cfg_core() 8937 * and t4_handle_get_port_info(). 8938 */ 8939 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8940 lc->acaps = lc->pcaps & ADVERT_MASK; 8941 lc->autoneg = AUTONEG_ENABLE; 8942 lc->requested_fc |= PAUSE_AUTONEG; 8943 } else { 8944 lc->acaps = 0; 8945 lc->autoneg = AUTONEG_DISABLE; 8946 lc->speed_caps = fwcap_to_fwspeed(acaps); 8947 } 8948 } 8949 8950 #define CIM_PF_NOACCESS 0xeeeeeeee 8951 8952 int t4_wait_dev_ready(void __iomem *regs) 8953 { 8954 u32 whoami; 8955 8956 whoami = readl(regs + PL_WHOAMI_A); 8957 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8958 return 0; 8959 8960 msleep(500); 8961 whoami = readl(regs + PL_WHOAMI_A); 8962 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8963 } 8964 8965 struct flash_desc { 8966 u32 vendor_and_model_id; 8967 u32 size_mb; 8968 }; 8969 8970 static int t4_get_flash_params(struct adapter *adap) 8971 { 8972 /* Table for non-Numonix supported flash parts. Numonix parts are left 8973 * to the preexisting code. All flash parts have 64KB sectors. 8974 */ 8975 static struct flash_desc supported_flash[] = { 8976 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8977 }; 8978 8979 unsigned int part, manufacturer; 8980 unsigned int density, size = 0; 8981 u32 flashid = 0; 8982 int ret; 8983 8984 /* Issue a Read ID Command to the Flash part. We decode supported 8985 * Flash parts and their sizes from this. There's a newer Query 8986 * Command which can retrieve detailed geometry information but many 8987 * Flash parts don't support it. 8988 */ 8989 8990 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8991 if (!ret) 8992 ret = sf1_read(adap, 3, 0, 1, &flashid); 8993 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8994 if (ret) 8995 return ret; 8996 8997 /* Check to see if it's one of our non-standard supported Flash parts. 8998 */ 8999 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 9000 if (supported_flash[part].vendor_and_model_id == flashid) { 9001 adap->params.sf_size = supported_flash[part].size_mb; 9002 adap->params.sf_nsec = 9003 adap->params.sf_size / SF_SEC_SIZE; 9004 goto found; 9005 } 9006 9007 /* Decode Flash part size. The code below looks repetitive with 9008 * common encodings, but that's not guaranteed in the JEDEC 9009 * specification for the Read JEDEC ID command. The only thing that 9010 * we're guaranteed by the JEDEC specification is where the 9011 * Manufacturer ID is in the returned result. After that each 9012 * Manufacturer ~could~ encode things completely differently. 9013 * Note, all Flash parts must have 64KB sectors. 9014 */ 9015 manufacturer = flashid & 0xff; 9016 switch (manufacturer) { 9017 case 0x20: { /* Micron/Numonix */ 9018 /* This Density -> Size decoding table is taken from Micron 9019 * Data Sheets. 9020 */ 9021 density = (flashid >> 16) & 0xff; 9022 switch (density) { 9023 case 0x14: /* 1MB */ 9024 size = 1 << 20; 9025 break; 9026 case 0x15: /* 2MB */ 9027 size = 1 << 21; 9028 break; 9029 case 0x16: /* 4MB */ 9030 size = 1 << 22; 9031 break; 9032 case 0x17: /* 8MB */ 9033 size = 1 << 23; 9034 break; 9035 case 0x18: /* 16MB */ 9036 size = 1 << 24; 9037 break; 9038 case 0x19: /* 32MB */ 9039 size = 1 << 25; 9040 break; 9041 case 0x20: /* 64MB */ 9042 size = 1 << 26; 9043 break; 9044 case 0x21: /* 128MB */ 9045 size = 1 << 27; 9046 break; 9047 case 0x22: /* 256MB */ 9048 size = 1 << 28; 9049 break; 9050 } 9051 break; 9052 } 9053 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 9054 /* This Density -> Size decoding table is taken from ISSI 9055 * Data Sheets. 9056 */ 9057 density = (flashid >> 16) & 0xff; 9058 switch (density) { 9059 case 0x16: /* 32 MB */ 9060 size = 1 << 25; 9061 break; 9062 case 0x17: /* 64MB */ 9063 size = 1 << 26; 9064 break; 9065 } 9066 break; 9067 } 9068 case 0xc2: { /* Macronix */ 9069 /* This Density -> Size decoding table is taken from Macronix 9070 * Data Sheets. 9071 */ 9072 density = (flashid >> 16) & 0xff; 9073 switch (density) { 9074 case 0x17: /* 8MB */ 9075 size = 1 << 23; 9076 break; 9077 case 0x18: /* 16MB */ 9078 size = 1 << 24; 9079 break; 9080 } 9081 break; 9082 } 9083 case 0xef: { /* Winbond */ 9084 /* This Density -> Size decoding table is taken from Winbond 9085 * Data Sheets. 9086 */ 9087 density = (flashid >> 16) & 0xff; 9088 switch (density) { 9089 case 0x17: /* 8MB */ 9090 size = 1 << 23; 9091 break; 9092 case 0x18: /* 16MB */ 9093 size = 1 << 24; 9094 break; 9095 } 9096 break; 9097 } 9098 } 9099 9100 /* If we didn't recognize the FLASH part, that's no real issue: the 9101 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9102 * use a FLASH part which is at least 4MB in size and has 64KB 9103 * sectors. The unrecognized FLASH part is likely to be much larger 9104 * than 4MB, but that's all we really need. 9105 */ 9106 if (size == 0) { 9107 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 9108 flashid); 9109 size = 1 << 22; 9110 } 9111 9112 /* Store decoded Flash size and fall through into vetting code. */ 9113 adap->params.sf_size = size; 9114 adap->params.sf_nsec = size / SF_SEC_SIZE; 9115 9116 found: 9117 if (adap->params.sf_size < FLASH_MIN_SIZE) 9118 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9119 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9120 return 0; 9121 } 9122 9123 /** 9124 * t4_prep_adapter - prepare SW and HW for operation 9125 * @adapter: the adapter 9126 * 9127 * Initialize adapter SW state for the various HW modules, set initial 9128 * values for some adapter tunables, take PHYs out of reset, and 9129 * initialize the MDIO interface. 9130 */ 9131 int t4_prep_adapter(struct adapter *adapter) 9132 { 9133 int ret, ver; 9134 uint16_t device_id; 9135 u32 pl_rev; 9136 9137 get_pci_mode(adapter, &adapter->params.pci); 9138 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9139 9140 ret = t4_get_flash_params(adapter); 9141 if (ret < 0) { 9142 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9143 return ret; 9144 } 9145 9146 /* Retrieve adapter's device ID 9147 */ 9148 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9149 ver = device_id >> 12; 9150 adapter->params.chip = 0; 9151 switch (ver) { 9152 case CHELSIO_T4: 9153 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9154 adapter->params.arch.sge_fl_db = DBPRIO_F; 9155 adapter->params.arch.mps_tcam_size = 9156 NUM_MPS_CLS_SRAM_L_INSTANCES; 9157 adapter->params.arch.mps_rplc_size = 128; 9158 adapter->params.arch.nchan = NCHAN; 9159 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9160 adapter->params.arch.vfcount = 128; 9161 /* Congestion map is for 4 channels so that 9162 * MPS can have 4 priority per port. 9163 */ 9164 adapter->params.arch.cng_ch_bits_log = 2; 9165 break; 9166 case CHELSIO_T5: 9167 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9168 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9169 adapter->params.arch.mps_tcam_size = 9170 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9171 adapter->params.arch.mps_rplc_size = 128; 9172 adapter->params.arch.nchan = NCHAN; 9173 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9174 adapter->params.arch.vfcount = 128; 9175 adapter->params.arch.cng_ch_bits_log = 2; 9176 break; 9177 case CHELSIO_T6: 9178 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9179 adapter->params.arch.sge_fl_db = 0; 9180 adapter->params.arch.mps_tcam_size = 9181 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9182 adapter->params.arch.mps_rplc_size = 256; 9183 adapter->params.arch.nchan = 2; 9184 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9185 adapter->params.arch.vfcount = 256; 9186 /* Congestion map will be for 2 channels so that 9187 * MPS can have 8 priority per port. 9188 */ 9189 adapter->params.arch.cng_ch_bits_log = 3; 9190 break; 9191 default: 9192 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9193 device_id); 9194 return -EINVAL; 9195 } 9196 9197 adapter->params.cim_la_size = CIMLA_SIZE; 9198 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9199 9200 /* 9201 * Default port for debugging in case we can't reach FW. 9202 */ 9203 adapter->params.nports = 1; 9204 adapter->params.portvec = 1; 9205 adapter->params.vpd.cclk = 50000; 9206 9207 /* Set PCIe completion timeout to 4 seconds. */ 9208 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9209 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9210 return 0; 9211 } 9212 9213 /** 9214 * t4_shutdown_adapter - shut down adapter, host & wire 9215 * @adapter: the adapter 9216 * 9217 * Perform an emergency shutdown of the adapter and stop it from 9218 * continuing any further communication on the ports or DMA to the 9219 * host. This is typically used when the adapter and/or firmware 9220 * have crashed and we want to prevent any further accidental 9221 * communication with the rest of the world. This will also force 9222 * the port Link Status to go down -- if register writes work -- 9223 * which should help our peers figure out that we're down. 9224 */ 9225 int t4_shutdown_adapter(struct adapter *adapter) 9226 { 9227 int port; 9228 9229 t4_intr_disable(adapter); 9230 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9231 for_each_port(adapter, port) { 9232 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9233 PORT_REG(port, XGMAC_PORT_CFG_A) : 9234 T5_PORT_REG(port, MAC_PORT_CFG_A); 9235 9236 t4_write_reg(adapter, a_port_cfg, 9237 t4_read_reg(adapter, a_port_cfg) 9238 & ~SIGNAL_DET_V(1)); 9239 } 9240 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9241 9242 return 0; 9243 } 9244 9245 /** 9246 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9247 * @adapter: the adapter 9248 * @qid: the Queue ID 9249 * @qtype: the Ingress or Egress type for @qid 9250 * @user: true if this request is for a user mode queue 9251 * @pbar2_qoffset: BAR2 Queue Offset 9252 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9253 * 9254 * Returns the BAR2 SGE Queue Registers information associated with the 9255 * indicated Absolute Queue ID. These are passed back in return value 9256 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9257 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9258 * 9259 * This may return an error which indicates that BAR2 SGE Queue 9260 * registers aren't available. If an error is not returned, then the 9261 * following values are returned: 9262 * 9263 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9264 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9265 * 9266 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9267 * require the "Inferred Queue ID" ability may be used. E.g. the 9268 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9269 * then these "Inferred Queue ID" register may not be used. 9270 */ 9271 int t4_bar2_sge_qregs(struct adapter *adapter, 9272 unsigned int qid, 9273 enum t4_bar2_qtype qtype, 9274 int user, 9275 u64 *pbar2_qoffset, 9276 unsigned int *pbar2_qid) 9277 { 9278 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9279 u64 bar2_page_offset, bar2_qoffset; 9280 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9281 9282 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9283 if (!user && is_t4(adapter->params.chip)) 9284 return -EINVAL; 9285 9286 /* Get our SGE Page Size parameters. 9287 */ 9288 page_shift = adapter->params.sge.hps + 10; 9289 page_size = 1 << page_shift; 9290 9291 /* Get the right Queues per Page parameters for our Queue. 9292 */ 9293 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9294 ? adapter->params.sge.eq_qpp 9295 : adapter->params.sge.iq_qpp); 9296 qpp_mask = (1 << qpp_shift) - 1; 9297 9298 /* Calculate the basics of the BAR2 SGE Queue register area: 9299 * o The BAR2 page the Queue registers will be in. 9300 * o The BAR2 Queue ID. 9301 * o The BAR2 Queue ID Offset into the BAR2 page. 9302 */ 9303 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9304 bar2_qid = qid & qpp_mask; 9305 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9306 9307 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9308 * hardware will infer the Absolute Queue ID simply from the writes to 9309 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9310 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9311 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9312 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9313 * from the BAR2 Page and BAR2 Queue ID. 9314 * 9315 * One important censequence of this is that some BAR2 SGE registers 9316 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9317 * there. But other registers synthesize the SGE Queue ID purely 9318 * from the writes to the registers -- the Write Combined Doorbell 9319 * Buffer is a good example. These BAR2 SGE Registers are only 9320 * available for those BAR2 SGE Register areas where the SGE Absolute 9321 * Queue ID can be inferred from simple writes. 9322 */ 9323 bar2_qoffset = bar2_page_offset; 9324 bar2_qinferred = (bar2_qid_offset < page_size); 9325 if (bar2_qinferred) { 9326 bar2_qoffset += bar2_qid_offset; 9327 bar2_qid = 0; 9328 } 9329 9330 *pbar2_qoffset = bar2_qoffset; 9331 *pbar2_qid = bar2_qid; 9332 return 0; 9333 } 9334 9335 /** 9336 * t4_init_devlog_params - initialize adapter->params.devlog 9337 * @adap: the adapter 9338 * 9339 * Initialize various fields of the adapter's Firmware Device Log 9340 * Parameters structure. 9341 */ 9342 int t4_init_devlog_params(struct adapter *adap) 9343 { 9344 struct devlog_params *dparams = &adap->params.devlog; 9345 u32 pf_dparams; 9346 unsigned int devlog_meminfo; 9347 struct fw_devlog_cmd devlog_cmd; 9348 int ret; 9349 9350 /* If we're dealing with newer firmware, the Device Log Parameters 9351 * are stored in a designated register which allows us to access the 9352 * Device Log even if we can't talk to the firmware. 9353 */ 9354 pf_dparams = 9355 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9356 if (pf_dparams) { 9357 unsigned int nentries, nentries128; 9358 9359 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9360 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9361 9362 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9363 nentries = (nentries128 + 1) * 128; 9364 dparams->size = nentries * sizeof(struct fw_devlog_e); 9365 9366 return 0; 9367 } 9368 9369 /* Otherwise, ask the firmware for it's Device Log Parameters. 9370 */ 9371 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9372 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9373 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9374 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9375 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9376 &devlog_cmd); 9377 if (ret) 9378 return ret; 9379 9380 devlog_meminfo = 9381 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9382 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9383 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9384 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9385 9386 return 0; 9387 } 9388 9389 /** 9390 * t4_init_sge_params - initialize adap->params.sge 9391 * @adapter: the adapter 9392 * 9393 * Initialize various fields of the adapter's SGE Parameters structure. 9394 */ 9395 int t4_init_sge_params(struct adapter *adapter) 9396 { 9397 struct sge_params *sge_params = &adapter->params.sge; 9398 u32 hps, qpp; 9399 unsigned int s_hps, s_qpp; 9400 9401 /* Extract the SGE Page Size for our PF. 9402 */ 9403 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9404 s_hps = (HOSTPAGESIZEPF0_S + 9405 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9406 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9407 9408 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9409 */ 9410 s_qpp = (QUEUESPERPAGEPF0_S + 9411 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9412 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9413 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9414 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9415 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9416 9417 return 0; 9418 } 9419 9420 /** 9421 * t4_init_tp_params - initialize adap->params.tp 9422 * @adap: the adapter 9423 * @sleep_ok: if true we may sleep while awaiting command completion 9424 * 9425 * Initialize various fields of the adapter's TP Parameters structure. 9426 */ 9427 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9428 { 9429 u32 param, val, v; 9430 int chan, ret; 9431 9432 9433 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9434 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9435 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9436 9437 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9438 for (chan = 0; chan < NCHAN; chan++) 9439 adap->params.tp.tx_modq[chan] = chan; 9440 9441 /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress 9442 * Configuration. 9443 */ 9444 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 9445 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) | 9446 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK)); 9447 9448 /* Read current value */ 9449 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 9450 ¶m, &val); 9451 if (ret == 0) { 9452 dev_info(adap->pdev_dev, 9453 "Current filter mode/mask 0x%x:0x%x\n", 9454 FW_PARAMS_PARAM_FILTER_MODE_G(val), 9455 FW_PARAMS_PARAM_FILTER_MASK_G(val)); 9456 adap->params.tp.vlan_pri_map = 9457 FW_PARAMS_PARAM_FILTER_MODE_G(val); 9458 adap->params.tp.filter_mask = 9459 FW_PARAMS_PARAM_FILTER_MASK_G(val); 9460 } else { 9461 dev_info(adap->pdev_dev, 9462 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n"); 9463 9464 /* Incase of older-fw (which doesn't expose the api 9465 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses 9466 * the fw api) combination, fall-back to older method of reading 9467 * the filter mode from indirect-register 9468 */ 9469 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9470 TP_VLAN_PRI_MAP_A, sleep_ok); 9471 9472 /* With the older-fw and newer-driver combination we might run 9473 * into an issue when user wants to use hash filter region but 9474 * the filter_mask is zero, in this case filter_mask validation 9475 * is tough. To avoid that we set the filter_mask same as filter 9476 * mode, which will behave exactly as the older way of ignoring 9477 * the filter mask validation. 9478 */ 9479 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map; 9480 } 9481 9482 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9483 TP_INGRESS_CONFIG_A, sleep_ok); 9484 9485 /* For T6, cache the adapter's compressed error vector 9486 * and passing outer header info for encapsulated packets. 9487 */ 9488 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9489 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9490 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9491 } 9492 9493 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9494 * shift positions of several elements of the Compressed Filter Tuple 9495 * for this adapter which we need frequently ... 9496 */ 9497 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9498 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9499 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9500 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9501 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9502 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9503 PROTOCOL_F); 9504 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9505 ETHERTYPE_F); 9506 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9507 MACMATCH_F); 9508 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9509 MPSHITTYPE_F); 9510 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9511 FRAGMENTATION_F); 9512 9513 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9514 * represents the presence of an Outer VLAN instead of a VNIC ID. 9515 */ 9516 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9517 adap->params.tp.vnic_shift = -1; 9518 9519 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9520 adap->params.tp.hash_filter_mask = v; 9521 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9522 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9523 return 0; 9524 } 9525 9526 /** 9527 * t4_filter_field_shift - calculate filter field shift 9528 * @adap: the adapter 9529 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9530 * 9531 * Return the shift position of a filter field within the Compressed 9532 * Filter Tuple. The filter field is specified via its selection bit 9533 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9534 */ 9535 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9536 { 9537 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9538 unsigned int sel; 9539 int field_shift; 9540 9541 if ((filter_mode & filter_sel) == 0) 9542 return -1; 9543 9544 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9545 switch (filter_mode & sel) { 9546 case FCOE_F: 9547 field_shift += FT_FCOE_W; 9548 break; 9549 case PORT_F: 9550 field_shift += FT_PORT_W; 9551 break; 9552 case VNIC_ID_F: 9553 field_shift += FT_VNIC_ID_W; 9554 break; 9555 case VLAN_F: 9556 field_shift += FT_VLAN_W; 9557 break; 9558 case TOS_F: 9559 field_shift += FT_TOS_W; 9560 break; 9561 case PROTOCOL_F: 9562 field_shift += FT_PROTOCOL_W; 9563 break; 9564 case ETHERTYPE_F: 9565 field_shift += FT_ETHERTYPE_W; 9566 break; 9567 case MACMATCH_F: 9568 field_shift += FT_MACMATCH_W; 9569 break; 9570 case MPSHITTYPE_F: 9571 field_shift += FT_MPSHITTYPE_W; 9572 break; 9573 case FRAGMENTATION_F: 9574 field_shift += FT_FRAGMENTATION_W; 9575 break; 9576 } 9577 } 9578 return field_shift; 9579 } 9580 9581 int t4_init_rss_mode(struct adapter *adap, int mbox) 9582 { 9583 int i, ret; 9584 struct fw_rss_vi_config_cmd rvc; 9585 9586 memset(&rvc, 0, sizeof(rvc)); 9587 9588 for_each_port(adap, i) { 9589 struct port_info *p = adap2pinfo(adap, i); 9590 9591 rvc.op_to_viid = 9592 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9593 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9594 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9595 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9596 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9597 if (ret) 9598 return ret; 9599 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9600 } 9601 return 0; 9602 } 9603 9604 /** 9605 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9606 * @pi: the port_info 9607 * @mbox: mailbox to use for the FW command 9608 * @port: physical port associated with the VI 9609 * @pf: the PF owning the VI 9610 * @vf: the VF owning the VI 9611 * @mac: the MAC address of the VI 9612 * 9613 * Allocates a virtual interface for the given physical port. If @mac is 9614 * not %NULL it contains the MAC address of the VI as assigned by FW. 9615 * @mac should be large enough to hold an Ethernet address. 9616 * Returns < 0 on error. 9617 */ 9618 int t4_init_portinfo(struct port_info *pi, int mbox, 9619 int port, int pf, int vf, u8 mac[]) 9620 { 9621 struct adapter *adapter = pi->adapter; 9622 unsigned int fw_caps = adapter->params.fw_caps_support; 9623 struct fw_port_cmd cmd; 9624 unsigned int rss_size; 9625 enum fw_port_type port_type; 9626 int mdio_addr; 9627 fw_port_cap32_t pcaps, acaps; 9628 u8 vivld = 0, vin = 0; 9629 int ret; 9630 9631 /* If we haven't yet determined whether we're talking to Firmware 9632 * which knows the new 32-bit Port Capabilities, it's time to find 9633 * out now. This will also tell new Firmware to send us Port Status 9634 * Updates using the new 32-bit Port Capabilities version of the 9635 * Port Information message. 9636 */ 9637 if (fw_caps == FW_CAPS_UNKNOWN) { 9638 u32 param, val; 9639 9640 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9641 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9642 val = 1; 9643 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9644 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9645 adapter->params.fw_caps_support = fw_caps; 9646 } 9647 9648 memset(&cmd, 0, sizeof(cmd)); 9649 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9650 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9651 FW_PORT_CMD_PORTID_V(port)); 9652 cmd.action_to_len16 = cpu_to_be32( 9653 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9654 ? FW_PORT_ACTION_GET_PORT_INFO 9655 : FW_PORT_ACTION_GET_PORT_INFO32) | 9656 FW_LEN16(cmd)); 9657 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9658 if (ret) 9659 return ret; 9660 9661 /* Extract the various fields from the Port Information message. 9662 */ 9663 if (fw_caps == FW_CAPS16) { 9664 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9665 9666 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9667 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9668 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9669 : -1); 9670 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9671 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9672 } else { 9673 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9674 9675 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9676 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9677 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9678 : -1); 9679 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9680 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9681 } 9682 9683 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9684 &vivld, &vin); 9685 if (ret < 0) 9686 return ret; 9687 9688 pi->viid = ret; 9689 pi->tx_chan = port; 9690 pi->lport = port; 9691 pi->rss_size = rss_size; 9692 pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port); 9693 9694 /* If fw supports returning the VIN as part of FW_VI_CMD, 9695 * save the returned values. 9696 */ 9697 if (adapter->params.viid_smt_extn_support) { 9698 pi->vivld = vivld; 9699 pi->vin = vin; 9700 } else { 9701 /* Retrieve the values from VIID */ 9702 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9703 pi->vin = FW_VIID_VIN_G(pi->viid); 9704 } 9705 9706 pi->port_type = port_type; 9707 pi->mdio_addr = mdio_addr; 9708 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9709 9710 init_link_config(&pi->link_cfg, pcaps, acaps); 9711 return 0; 9712 } 9713 9714 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9715 { 9716 u8 addr[6]; 9717 int ret, i, j = 0; 9718 9719 for_each_port(adap, i) { 9720 struct port_info *pi = adap2pinfo(adap, i); 9721 9722 while ((adap->params.portvec & (1 << j)) == 0) 9723 j++; 9724 9725 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9726 if (ret) 9727 return ret; 9728 9729 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9730 j++; 9731 } 9732 return 0; 9733 } 9734 9735 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf, 9736 u16 *mirror_viid) 9737 { 9738 int ret; 9739 9740 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL, 9741 NULL, NULL); 9742 if (ret < 0) 9743 return ret; 9744 9745 if (mirror_viid) 9746 *mirror_viid = ret; 9747 9748 return 0; 9749 } 9750 9751 /** 9752 * t4_read_cimq_cfg - read CIM queue configuration 9753 * @adap: the adapter 9754 * @base: holds the queue base addresses in bytes 9755 * @size: holds the queue sizes in bytes 9756 * @thres: holds the queue full thresholds in bytes 9757 * 9758 * Returns the current configuration of the CIM queues, starting with 9759 * the IBQs, then the OBQs. 9760 */ 9761 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9762 { 9763 unsigned int i, v; 9764 int cim_num_obq = is_t4(adap->params.chip) ? 9765 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9766 9767 for (i = 0; i < CIM_NUM_IBQ; i++) { 9768 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9769 QUENUMSELECT_V(i)); 9770 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9771 /* value is in 256-byte units */ 9772 *base++ = CIMQBASE_G(v) * 256; 9773 *size++ = CIMQSIZE_G(v) * 256; 9774 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9775 } 9776 for (i = 0; i < cim_num_obq; i++) { 9777 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9778 QUENUMSELECT_V(i)); 9779 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9780 /* value is in 256-byte units */ 9781 *base++ = CIMQBASE_G(v) * 256; 9782 *size++ = CIMQSIZE_G(v) * 256; 9783 } 9784 } 9785 9786 /** 9787 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9788 * @adap: the adapter 9789 * @qid: the queue index 9790 * @data: where to store the queue contents 9791 * @n: capacity of @data in 32-bit words 9792 * 9793 * Reads the contents of the selected CIM queue starting at address 0 up 9794 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9795 * error and the number of 32-bit words actually read on success. 9796 */ 9797 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9798 { 9799 int i, err, attempts; 9800 unsigned int addr; 9801 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9802 9803 if (qid > 5 || (n & 3)) 9804 return -EINVAL; 9805 9806 addr = qid * nwords; 9807 if (n > nwords) 9808 n = nwords; 9809 9810 /* It might take 3-10ms before the IBQ debug read access is allowed. 9811 * Wait for 1 Sec with a delay of 1 usec. 9812 */ 9813 attempts = 1000000; 9814 9815 for (i = 0; i < n; i++, addr++) { 9816 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9817 IBQDBGEN_F); 9818 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9819 attempts, 1); 9820 if (err) 9821 return err; 9822 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9823 } 9824 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9825 return i; 9826 } 9827 9828 /** 9829 * t4_read_cim_obq - read the contents of a CIM outbound queue 9830 * @adap: the adapter 9831 * @qid: the queue index 9832 * @data: where to store the queue contents 9833 * @n: capacity of @data in 32-bit words 9834 * 9835 * Reads the contents of the selected CIM queue starting at address 0 up 9836 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9837 * error and the number of 32-bit words actually read on success. 9838 */ 9839 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9840 { 9841 int i, err; 9842 unsigned int addr, v, nwords; 9843 int cim_num_obq = is_t4(adap->params.chip) ? 9844 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9845 9846 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9847 return -EINVAL; 9848 9849 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9850 QUENUMSELECT_V(qid)); 9851 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9852 9853 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9854 nwords = CIMQSIZE_G(v) * 64; /* same */ 9855 if (n > nwords) 9856 n = nwords; 9857 9858 for (i = 0; i < n; i++, addr++) { 9859 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9860 OBQDBGEN_F); 9861 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9862 2, 1); 9863 if (err) 9864 return err; 9865 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9866 } 9867 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9868 return i; 9869 } 9870 9871 /** 9872 * t4_cim_read - read a block from CIM internal address space 9873 * @adap: the adapter 9874 * @addr: the start address within the CIM address space 9875 * @n: number of words to read 9876 * @valp: where to store the result 9877 * 9878 * Reads a block of 4-byte words from the CIM intenal address space. 9879 */ 9880 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9881 unsigned int *valp) 9882 { 9883 int ret = 0; 9884 9885 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9886 return -EBUSY; 9887 9888 for ( ; !ret && n--; addr += 4) { 9889 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9890 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9891 0, 5, 2); 9892 if (!ret) 9893 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9894 } 9895 return ret; 9896 } 9897 9898 /** 9899 * t4_cim_write - write a block into CIM internal address space 9900 * @adap: the adapter 9901 * @addr: the start address within the CIM address space 9902 * @n: number of words to write 9903 * @valp: set of values to write 9904 * 9905 * Writes a block of 4-byte words into the CIM intenal address space. 9906 */ 9907 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9908 const unsigned int *valp) 9909 { 9910 int ret = 0; 9911 9912 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9913 return -EBUSY; 9914 9915 for ( ; !ret && n--; addr += 4) { 9916 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9917 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9918 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9919 0, 5, 2); 9920 } 9921 return ret; 9922 } 9923 9924 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9925 unsigned int val) 9926 { 9927 return t4_cim_write(adap, addr, 1, &val); 9928 } 9929 9930 /** 9931 * t4_cim_read_la - read CIM LA capture buffer 9932 * @adap: the adapter 9933 * @la_buf: where to store the LA data 9934 * @wrptr: the HW write pointer within the capture buffer 9935 * 9936 * Reads the contents of the CIM LA buffer with the most recent entry at 9937 * the end of the returned data and with the entry at @wrptr first. 9938 * We try to leave the LA in the running state we find it in. 9939 */ 9940 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9941 { 9942 int i, ret; 9943 unsigned int cfg, val, idx; 9944 9945 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9946 if (ret) 9947 return ret; 9948 9949 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9950 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9951 if (ret) 9952 return ret; 9953 } 9954 9955 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9956 if (ret) 9957 goto restart; 9958 9959 idx = UPDBGLAWRPTR_G(val); 9960 if (wrptr) 9961 *wrptr = idx; 9962 9963 for (i = 0; i < adap->params.cim_la_size; i++) { 9964 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9965 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9966 if (ret) 9967 break; 9968 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9969 if (ret) 9970 break; 9971 if (val & UPDBGLARDEN_F) { 9972 ret = -ETIMEDOUT; 9973 break; 9974 } 9975 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9976 if (ret) 9977 break; 9978 9979 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9980 * identify the 32-bit portion of the full 312-bit data 9981 */ 9982 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9983 idx = (idx & 0xff0) + 0x10; 9984 else 9985 idx++; 9986 /* address can't exceed 0xfff */ 9987 idx &= UPDBGLARDPTR_M; 9988 } 9989 restart: 9990 if (cfg & UPDBGLAEN_F) { 9991 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9992 cfg & ~UPDBGLARDEN_F); 9993 if (!ret) 9994 ret = r; 9995 } 9996 return ret; 9997 } 9998 9999 /** 10000 * t4_tp_read_la - read TP LA capture buffer 10001 * @adap: the adapter 10002 * @la_buf: where to store the LA data 10003 * @wrptr: the HW write pointer within the capture buffer 10004 * 10005 * Reads the contents of the TP LA buffer with the most recent entry at 10006 * the end of the returned data and with the entry at @wrptr first. 10007 * We leave the LA in the running state we find it in. 10008 */ 10009 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 10010 { 10011 bool last_incomplete; 10012 unsigned int i, cfg, val, idx; 10013 10014 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 10015 if (cfg & DBGLAENABLE_F) /* freeze LA */ 10016 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10017 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 10018 10019 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 10020 idx = DBGLAWPTR_G(val); 10021 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 10022 if (last_incomplete) 10023 idx = (idx + 1) & DBGLARPTR_M; 10024 if (wrptr) 10025 *wrptr = idx; 10026 10027 val &= 0xffff; 10028 val &= ~DBGLARPTR_V(DBGLARPTR_M); 10029 val |= adap->params.tp.la_mask; 10030 10031 for (i = 0; i < TPLA_SIZE; i++) { 10032 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 10033 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 10034 idx = (idx + 1) & DBGLARPTR_M; 10035 } 10036 10037 /* Wipe out last entry if it isn't valid */ 10038 if (last_incomplete) 10039 la_buf[TPLA_SIZE - 1] = ~0ULL; 10040 10041 if (cfg & DBGLAENABLE_F) /* restore running state */ 10042 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10043 cfg | adap->params.tp.la_mask); 10044 } 10045 10046 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10047 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10048 * state for more than the Warning Threshold then we'll issue a warning about 10049 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10050 * appears to be hung every Warning Repeat second till the situation clears. 10051 * If the situation clears, we'll note that as well. 10052 */ 10053 #define SGE_IDMA_WARN_THRESH 1 10054 #define SGE_IDMA_WARN_REPEAT 300 10055 10056 /** 10057 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10058 * @adapter: the adapter 10059 * @idma: the adapter IDMA Monitor state 10060 * 10061 * Initialize the state of an SGE Ingress DMA Monitor. 10062 */ 10063 void t4_idma_monitor_init(struct adapter *adapter, 10064 struct sge_idma_monitor_state *idma) 10065 { 10066 /* Initialize the state variables for detecting an SGE Ingress DMA 10067 * hang. The SGE has internal counters which count up on each clock 10068 * tick whenever the SGE finds its Ingress DMA State Engines in the 10069 * same state they were on the previous clock tick. The clock used is 10070 * the Core Clock so we have a limit on the maximum "time" they can 10071 * record; typically a very small number of seconds. For instance, 10072 * with a 600MHz Core Clock, we can only count up to a bit more than 10073 * 7s. So we'll synthesize a larger counter in order to not run the 10074 * risk of having the "timers" overflow and give us the flexibility to 10075 * maintain a Hung SGE State Machine of our own which operates across 10076 * a longer time frame. 10077 */ 10078 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10079 idma->idma_stalled[0] = 0; 10080 idma->idma_stalled[1] = 0; 10081 } 10082 10083 /** 10084 * t4_idma_monitor - monitor SGE Ingress DMA state 10085 * @adapter: the adapter 10086 * @idma: the adapter IDMA Monitor state 10087 * @hz: number of ticks/second 10088 * @ticks: number of ticks since the last IDMA Monitor call 10089 */ 10090 void t4_idma_monitor(struct adapter *adapter, 10091 struct sge_idma_monitor_state *idma, 10092 int hz, int ticks) 10093 { 10094 int i, idma_same_state_cnt[2]; 10095 10096 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10097 * are counters inside the SGE which count up on each clock when the 10098 * SGE finds its Ingress DMA State Engines in the same states they 10099 * were in the previous clock. The counters will peg out at 10100 * 0xffffffff without wrapping around so once they pass the 1s 10101 * threshold they'll stay above that till the IDMA state changes. 10102 */ 10103 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 10104 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 10105 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10106 10107 for (i = 0; i < 2; i++) { 10108 u32 debug0, debug11; 10109 10110 /* If the Ingress DMA Same State Counter ("timer") is less 10111 * than 1s, then we can reset our synthesized Stall Timer and 10112 * continue. If we have previously emitted warnings about a 10113 * potential stalled Ingress Queue, issue a note indicating 10114 * that the Ingress Queue has resumed forward progress. 10115 */ 10116 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10117 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 10118 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 10119 "resumed after %d seconds\n", 10120 i, idma->idma_qid[i], 10121 idma->idma_stalled[i] / hz); 10122 idma->idma_stalled[i] = 0; 10123 continue; 10124 } 10125 10126 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10127 * domain. The first time we get here it'll be because we 10128 * passed the 1s Threshold; each additional time it'll be 10129 * because the RX Timer Callback is being fired on its regular 10130 * schedule. 10131 * 10132 * If the stall is below our Potential Hung Ingress Queue 10133 * Warning Threshold, continue. 10134 */ 10135 if (idma->idma_stalled[i] == 0) { 10136 idma->idma_stalled[i] = hz; 10137 idma->idma_warn[i] = 0; 10138 } else { 10139 idma->idma_stalled[i] += ticks; 10140 idma->idma_warn[i] -= ticks; 10141 } 10142 10143 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 10144 continue; 10145 10146 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10147 */ 10148 if (idma->idma_warn[i] > 0) 10149 continue; 10150 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 10151 10152 /* Read and save the SGE IDMA State and Queue ID information. 10153 * We do this every time in case it changes across time ... 10154 * can't be too careful ... 10155 */ 10156 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 10157 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10158 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10159 10160 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 10161 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10162 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10163 10164 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 10165 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10166 i, idma->idma_qid[i], idma->idma_state[i], 10167 idma->idma_stalled[i] / hz, 10168 debug0, debug11); 10169 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10170 } 10171 } 10172 10173 /** 10174 * t4_load_cfg - download config file 10175 * @adap: the adapter 10176 * @cfg_data: the cfg text file to write 10177 * @size: text file size 10178 * 10179 * Write the supplied config text file to the card's serial flash. 10180 */ 10181 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10182 { 10183 int ret, i, n, cfg_addr; 10184 unsigned int addr; 10185 unsigned int flash_cfg_start_sec; 10186 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10187 10188 cfg_addr = t4_flash_cfg_addr(adap); 10189 if (cfg_addr < 0) 10190 return cfg_addr; 10191 10192 addr = cfg_addr; 10193 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10194 10195 if (size > FLASH_CFG_MAX_SIZE) { 10196 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10197 FLASH_CFG_MAX_SIZE); 10198 return -EFBIG; 10199 } 10200 10201 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10202 sf_sec_size); 10203 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10204 flash_cfg_start_sec + i - 1); 10205 /* If size == 0 then we're simply erasing the FLASH sectors associated 10206 * with the on-adapter Firmware Configuration File. 10207 */ 10208 if (ret || size == 0) 10209 goto out; 10210 10211 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10212 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10213 if ((size - i) < SF_PAGE_SIZE) 10214 n = size - i; 10215 else 10216 n = SF_PAGE_SIZE; 10217 ret = t4_write_flash(adap, addr, n, cfg_data); 10218 if (ret) 10219 goto out; 10220 10221 addr += SF_PAGE_SIZE; 10222 cfg_data += SF_PAGE_SIZE; 10223 } 10224 10225 out: 10226 if (ret) 10227 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10228 (size == 0 ? "clear" : "download"), ret); 10229 return ret; 10230 } 10231 10232 /** 10233 * t4_set_vf_mac - Set MAC address for the specified VF 10234 * @adapter: The adapter 10235 * @vf: one of the VFs instantiated by the specified PF 10236 * @naddr: the number of MAC addresses 10237 * @addr: the MAC address(es) to be set to the specified VF 10238 */ 10239 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10240 unsigned int naddr, u8 *addr) 10241 { 10242 struct fw_acl_mac_cmd cmd; 10243 10244 memset(&cmd, 0, sizeof(cmd)); 10245 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10246 FW_CMD_REQUEST_F | 10247 FW_CMD_WRITE_F | 10248 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10249 FW_ACL_MAC_CMD_VFN_V(vf)); 10250 10251 /* Note: Do not enable the ACL */ 10252 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10253 cmd.nmac = naddr; 10254 10255 switch (adapter->pf) { 10256 case 3: 10257 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10258 break; 10259 case 2: 10260 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10261 break; 10262 case 1: 10263 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10264 break; 10265 case 0: 10266 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10267 break; 10268 } 10269 10270 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10271 } 10272 10273 /** 10274 * t4_read_pace_tbl - read the pace table 10275 * @adap: the adapter 10276 * @pace_vals: holds the returned values 10277 * 10278 * Returns the values of TP's pace table in microseconds. 10279 */ 10280 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10281 { 10282 unsigned int i, v; 10283 10284 for (i = 0; i < NTX_SCHED; i++) { 10285 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10286 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10287 pace_vals[i] = dack_ticks_to_usec(adap, v); 10288 } 10289 } 10290 10291 /** 10292 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10293 * @adap: the adapter 10294 * @sched: the scheduler index 10295 * @kbps: the byte rate in Kbps 10296 * @ipg: the interpacket delay in tenths of nanoseconds 10297 * @sleep_ok: if true we may sleep while awaiting command completion 10298 * 10299 * Return the current configuration of a HW Tx scheduler. 10300 */ 10301 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10302 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10303 { 10304 unsigned int v, addr, bpt, cpt; 10305 10306 if (kbps) { 10307 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10308 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10309 if (sched & 1) 10310 v >>= 16; 10311 bpt = (v >> 8) & 0xff; 10312 cpt = v & 0xff; 10313 if (!cpt) { 10314 *kbps = 0; /* scheduler disabled */ 10315 } else { 10316 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10317 *kbps = (v * bpt) / 125; 10318 } 10319 } 10320 if (ipg) { 10321 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10322 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10323 if (sched & 1) 10324 v >>= 16; 10325 v &= 0xffff; 10326 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10327 } 10328 } 10329 10330 /* t4_sge_ctxt_rd - read an SGE context through FW 10331 * @adap: the adapter 10332 * @mbox: mailbox to use for the FW command 10333 * @cid: the context id 10334 * @ctype: the context type 10335 * @data: where to store the context data 10336 * 10337 * Issues a FW command through the given mailbox to read an SGE context. 10338 */ 10339 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10340 enum ctxt_type ctype, u32 *data) 10341 { 10342 struct fw_ldst_cmd c; 10343 int ret; 10344 10345 if (ctype == CTXT_FLM) 10346 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10347 else 10348 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10349 10350 memset(&c, 0, sizeof(c)); 10351 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10352 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10353 FW_LDST_CMD_ADDRSPACE_V(ret)); 10354 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10355 c.u.idctxt.physid = cpu_to_be32(cid); 10356 10357 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10358 if (ret == 0) { 10359 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10360 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10361 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10362 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10363 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10364 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10365 } 10366 return ret; 10367 } 10368 10369 /** 10370 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10371 * @adap: the adapter 10372 * @cid: the context id 10373 * @ctype: the context type 10374 * @data: where to store the context data 10375 * 10376 * Reads an SGE context directly, bypassing FW. This is only for 10377 * debugging when FW is unavailable. 10378 */ 10379 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10380 enum ctxt_type ctype, u32 *data) 10381 { 10382 int i, ret; 10383 10384 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10385 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10386 if (!ret) 10387 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10388 *data++ = t4_read_reg(adap, i); 10389 return ret; 10390 } 10391 10392 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode, 10393 u8 rateunit, u8 ratemode, u8 channel, u8 class, 10394 u32 minrate, u32 maxrate, u16 weight, u16 pktsize, 10395 u16 burstsize) 10396 { 10397 struct fw_sched_cmd cmd; 10398 10399 memset(&cmd, 0, sizeof(cmd)); 10400 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10401 FW_CMD_REQUEST_F | 10402 FW_CMD_WRITE_F); 10403 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10404 10405 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10406 cmd.u.params.type = type; 10407 cmd.u.params.level = level; 10408 cmd.u.params.mode = mode; 10409 cmd.u.params.ch = channel; 10410 cmd.u.params.cl = class; 10411 cmd.u.params.unit = rateunit; 10412 cmd.u.params.rate = ratemode; 10413 cmd.u.params.min = cpu_to_be32(minrate); 10414 cmd.u.params.max = cpu_to_be32(maxrate); 10415 cmd.u.params.weight = cpu_to_be16(weight); 10416 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10417 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10418 10419 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10420 NULL, 1); 10421 } 10422 10423 /** 10424 * t4_i2c_rd - read I2C data from adapter 10425 * @adap: the adapter 10426 * @mbox: mailbox to use for the FW command 10427 * @port: Port number if per-port device; <0 if not 10428 * @devid: per-port device ID or absolute device ID 10429 * @offset: byte offset into device I2C space 10430 * @len: byte length of I2C space data 10431 * @buf: buffer in which to return I2C data 10432 * 10433 * Reads the I2C data from the indicated device and location. 10434 */ 10435 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10436 unsigned int devid, unsigned int offset, 10437 unsigned int len, u8 *buf) 10438 { 10439 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10440 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10441 int ret = 0; 10442 10443 if (len > I2C_PAGE_SIZE) 10444 return -EINVAL; 10445 10446 /* Dont allow reads that spans multiple pages */ 10447 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10448 return -EINVAL; 10449 10450 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10451 ldst_cmd.op_to_addrspace = 10452 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10453 FW_CMD_REQUEST_F | 10454 FW_CMD_READ_F | 10455 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10456 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10457 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10458 ldst_cmd.u.i2c.did = devid; 10459 10460 while (len > 0) { 10461 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10462 10463 ldst_cmd.u.i2c.boffset = offset; 10464 ldst_cmd.u.i2c.blen = i2c_len; 10465 10466 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10467 &ldst_rpl); 10468 if (ret) 10469 break; 10470 10471 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10472 offset += i2c_len; 10473 buf += i2c_len; 10474 len -= i2c_len; 10475 } 10476 10477 return ret; 10478 } 10479 10480 /** 10481 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10482 * @adap: the adapter 10483 * @mbox: mailbox to use for the FW command 10484 * @vf: one of the VFs instantiated by the specified PF 10485 * @vlan: The vlanid to be set 10486 */ 10487 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10488 u16 vlan) 10489 { 10490 struct fw_acl_vlan_cmd vlan_cmd; 10491 unsigned int enable; 10492 10493 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10494 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10495 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10496 FW_CMD_REQUEST_F | 10497 FW_CMD_WRITE_F | 10498 FW_CMD_EXEC_F | 10499 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10500 FW_ACL_VLAN_CMD_VFN_V(vf)); 10501 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10502 /* Drop all packets that donot match vlan id */ 10503 vlan_cmd.dropnovlan_fm = (enable 10504 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10505 FW_ACL_VLAN_CMD_FM_F) : 0); 10506 if (enable != 0) { 10507 vlan_cmd.nvlan = 1; 10508 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10509 } 10510 10511 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10512 } 10513 10514 /** 10515 * modify_device_id - Modifies the device ID of the Boot BIOS image 10516 * @device_id: the device ID to write. 10517 * @boot_data: the boot image to modify. 10518 * 10519 * Write the supplied device ID to the boot BIOS image. 10520 */ 10521 static void modify_device_id(int device_id, u8 *boot_data) 10522 { 10523 struct cxgb4_pcir_data *pcir_header; 10524 struct legacy_pci_rom_hdr *header; 10525 u8 *cur_header = boot_data; 10526 u16 pcir_offset; 10527 10528 /* Loop through all chained images and change the device ID's */ 10529 do { 10530 header = (struct legacy_pci_rom_hdr *)cur_header; 10531 pcir_offset = le16_to_cpu(header->pcir_offset); 10532 pcir_header = (struct cxgb4_pcir_data *)(cur_header + 10533 pcir_offset); 10534 10535 /** 10536 * Only modify the Device ID if code type is Legacy or HP. 10537 * 0x00: Okay to modify 10538 * 0x01: FCODE. Do not modify 10539 * 0x03: Okay to modify 10540 * 0x04-0xFF: Do not modify 10541 */ 10542 if (pcir_header->code_type == CXGB4_HDR_CODE1) { 10543 u8 csum = 0; 10544 int i; 10545 10546 /** 10547 * Modify Device ID to match current adatper 10548 */ 10549 pcir_header->device_id = cpu_to_le16(device_id); 10550 10551 /** 10552 * Set checksum temporarily to 0. 10553 * We will recalculate it later. 10554 */ 10555 header->cksum = 0x0; 10556 10557 /** 10558 * Calculate and update checksum 10559 */ 10560 for (i = 0; i < (header->size512 * 512); i++) 10561 csum += cur_header[i]; 10562 10563 /** 10564 * Invert summed value to create the checksum 10565 * Writing new checksum value directly to the boot data 10566 */ 10567 cur_header[7] = -csum; 10568 10569 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) { 10570 /** 10571 * Modify Device ID to match current adatper 10572 */ 10573 pcir_header->device_id = cpu_to_le16(device_id); 10574 } 10575 10576 /** 10577 * Move header pointer up to the next image in the ROM. 10578 */ 10579 cur_header += header->size512 * 512; 10580 } while (!(pcir_header->indicator & CXGB4_HDR_INDI)); 10581 } 10582 10583 /** 10584 * t4_load_boot - download boot flash 10585 * @adap: the adapter 10586 * @boot_data: the boot image to write 10587 * @boot_addr: offset in flash to write boot_data 10588 * @size: image size 10589 * 10590 * Write the supplied boot image to the card's serial flash. 10591 * The boot image has the following sections: a 28-byte header and the 10592 * boot image. 10593 */ 10594 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10595 unsigned int boot_addr, unsigned int size) 10596 { 10597 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10598 unsigned int boot_sector = (boot_addr * 1024); 10599 struct cxgb4_pci_exp_rom_header *header; 10600 struct cxgb4_pcir_data *pcir_header; 10601 int pcir_offset; 10602 unsigned int i; 10603 u16 device_id; 10604 int ret, addr; 10605 10606 /** 10607 * Make sure the boot image does not encroach on the firmware region 10608 */ 10609 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10610 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n"); 10611 return -EFBIG; 10612 } 10613 10614 /* Get boot header */ 10615 header = (struct cxgb4_pci_exp_rom_header *)boot_data; 10616 pcir_offset = le16_to_cpu(header->pcir_offset); 10617 /* PCIR Data Structure */ 10618 pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset]; 10619 10620 /** 10621 * Perform some primitive sanity testing to avoid accidentally 10622 * writing garbage over the boot sectors. We ought to check for 10623 * more but it's not worth it for now ... 10624 */ 10625 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10626 dev_err(adap->pdev_dev, "boot image too small/large\n"); 10627 return -EFBIG; 10628 } 10629 10630 if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) { 10631 dev_err(adap->pdev_dev, "Boot image missing signature\n"); 10632 return -EINVAL; 10633 } 10634 10635 /* Check PCI header signature */ 10636 if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) { 10637 dev_err(adap->pdev_dev, "PCI header missing signature\n"); 10638 return -EINVAL; 10639 } 10640 10641 /* Check Vendor ID matches Chelsio ID*/ 10642 if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) { 10643 dev_err(adap->pdev_dev, "Vendor ID missing signature\n"); 10644 return -EINVAL; 10645 } 10646 10647 /** 10648 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10649 * and Boot configuration data sections. These 3 boot sections span 10650 * sectors 0 to 7 in flash and live right before the FW image location. 10651 */ 10652 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, sf_sec_size); 10653 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10654 (boot_sector >> 16) + i - 1); 10655 10656 /** 10657 * If size == 0 then we're simply erasing the FLASH sectors associated 10658 * with the on-adapter option ROM file 10659 */ 10660 if (ret || size == 0) 10661 goto out; 10662 /* Retrieve adapter's device ID */ 10663 pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id); 10664 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10665 device_id = device_id & 0xf0ff; 10666 10667 /* Check PCIE Device ID */ 10668 if (le16_to_cpu(pcir_header->device_id) != device_id) { 10669 /** 10670 * Change the device ID in the Boot BIOS image to match 10671 * the Device ID of the current adapter. 10672 */ 10673 modify_device_id(device_id, boot_data); 10674 } 10675 10676 /** 10677 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10678 * we finish copying the rest of the boot image. This will ensure 10679 * that the BIOS boot header will only be written if the boot image 10680 * was written in full. 10681 */ 10682 addr = boot_sector; 10683 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10684 addr += SF_PAGE_SIZE; 10685 boot_data += SF_PAGE_SIZE; 10686 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data); 10687 if (ret) 10688 goto out; 10689 } 10690 10691 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10692 (const u8 *)header); 10693 10694 out: 10695 if (ret) 10696 dev_err(adap->pdev_dev, "boot image load failed, error %d\n", 10697 ret); 10698 return ret; 10699 } 10700 10701 /** 10702 * t4_flash_bootcfg_addr - return the address of the flash 10703 * optionrom configuration 10704 * @adapter: the adapter 10705 * 10706 * Return the address within the flash where the OptionROM Configuration 10707 * is stored, or an error if the device FLASH is too small to contain 10708 * a OptionROM Configuration. 10709 */ 10710 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10711 { 10712 /** 10713 * If the device FLASH isn't large enough to hold a Firmware 10714 * Configuration File, return an error. 10715 */ 10716 if (adapter->params.sf_size < 10717 FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10718 return -ENOSPC; 10719 10720 return FLASH_BOOTCFG_START; 10721 } 10722 10723 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10724 { 10725 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10726 struct cxgb4_bootcfg_data *header; 10727 unsigned int flash_cfg_start_sec; 10728 unsigned int addr, npad; 10729 int ret, i, n, cfg_addr; 10730 10731 cfg_addr = t4_flash_bootcfg_addr(adap); 10732 if (cfg_addr < 0) 10733 return cfg_addr; 10734 10735 addr = cfg_addr; 10736 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10737 10738 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10739 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n", 10740 FLASH_BOOTCFG_MAX_SIZE); 10741 return -EFBIG; 10742 } 10743 10744 header = (struct cxgb4_bootcfg_data *)cfg_data; 10745 if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) { 10746 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n"); 10747 ret = -EINVAL; 10748 goto out; 10749 } 10750 10751 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE, 10752 sf_sec_size); 10753 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10754 flash_cfg_start_sec + i - 1); 10755 10756 /** 10757 * If size == 0 then we're simply erasing the FLASH sectors associated 10758 * with the on-adapter OptionROM Configuration File. 10759 */ 10760 if (ret || size == 0) 10761 goto out; 10762 10763 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10764 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10765 n = min_t(u32, size - i, SF_PAGE_SIZE); 10766 10767 ret = t4_write_flash(adap, addr, n, cfg_data); 10768 if (ret) 10769 goto out; 10770 10771 addr += SF_PAGE_SIZE; 10772 cfg_data += SF_PAGE_SIZE; 10773 } 10774 10775 npad = ((size + 4 - 1) & ~3) - size; 10776 for (i = 0; i < npad; i++) { 10777 u8 data = 0; 10778 10779 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data); 10780 if (ret) 10781 goto out; 10782 } 10783 10784 out: 10785 if (ret) 10786 dev_err(adap->pdev_dev, "boot config data %s failed %d\n", 10787 (size == 0 ? "clear" : "download"), ret); 10788 return ret; 10789 } 10790