1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x1274,
2094 		0x1280, 0x133c,
2095 		0x1800, 0x18fc,
2096 		0x3000, 0x302c,
2097 		0x3060, 0x30b0,
2098 		0x30b8, 0x30d8,
2099 		0x30e0, 0x30fc,
2100 		0x3140, 0x357c,
2101 		0x35a8, 0x35cc,
2102 		0x35ec, 0x35ec,
2103 		0x3600, 0x5624,
2104 		0x56cc, 0x56ec,
2105 		0x56f4, 0x5720,
2106 		0x5728, 0x575c,
2107 		0x580c, 0x5814,
2108 		0x5890, 0x589c,
2109 		0x58a4, 0x58ac,
2110 		0x58b8, 0x58bc,
2111 		0x5940, 0x595c,
2112 		0x5980, 0x598c,
2113 		0x59b0, 0x59c8,
2114 		0x59d0, 0x59dc,
2115 		0x59fc, 0x5a18,
2116 		0x5a60, 0x5a6c,
2117 		0x5a80, 0x5a8c,
2118 		0x5a94, 0x5a9c,
2119 		0x5b94, 0x5bfc,
2120 		0x5c10, 0x5e48,
2121 		0x5e50, 0x5e94,
2122 		0x5ea0, 0x5eb0,
2123 		0x5ec0, 0x5ec0,
2124 		0x5ec8, 0x5ed0,
2125 		0x5ee0, 0x5ee0,
2126 		0x5ef0, 0x5ef0,
2127 		0x5f00, 0x5f00,
2128 		0x6000, 0x6020,
2129 		0x6028, 0x6040,
2130 		0x6058, 0x609c,
2131 		0x60a8, 0x619c,
2132 		0x7700, 0x7798,
2133 		0x77c0, 0x7880,
2134 		0x78cc, 0x78fc,
2135 		0x7b00, 0x7b58,
2136 		0x7b60, 0x7b84,
2137 		0x7b8c, 0x7c54,
2138 		0x7d00, 0x7d38,
2139 		0x7d40, 0x7d84,
2140 		0x7d8c, 0x7ddc,
2141 		0x7de4, 0x7e04,
2142 		0x7e10, 0x7e1c,
2143 		0x7e24, 0x7e38,
2144 		0x7e40, 0x7e44,
2145 		0x7e4c, 0x7e78,
2146 		0x7e80, 0x7edc,
2147 		0x7ee8, 0x7efc,
2148 		0x8dc0, 0x8de4,
2149 		0x8df8, 0x8e04,
2150 		0x8e10, 0x8e84,
2151 		0x8ea0, 0x8f88,
2152 		0x8fb8, 0x9058,
2153 		0x9060, 0x9060,
2154 		0x9068, 0x90f8,
2155 		0x9100, 0x9124,
2156 		0x9400, 0x9470,
2157 		0x9600, 0x9600,
2158 		0x9608, 0x9638,
2159 		0x9640, 0x9704,
2160 		0x9710, 0x971c,
2161 		0x9800, 0x9808,
2162 		0x9810, 0x9864,
2163 		0x9c00, 0x9c6c,
2164 		0x9c80, 0x9cec,
2165 		0x9d00, 0x9d6c,
2166 		0x9d80, 0x9dec,
2167 		0x9e00, 0x9e6c,
2168 		0x9e80, 0x9eec,
2169 		0x9f00, 0x9f6c,
2170 		0x9f80, 0xa020,
2171 		0xd000, 0xd03c,
2172 		0xd100, 0xd118,
2173 		0xd200, 0xd214,
2174 		0xd220, 0xd234,
2175 		0xd240, 0xd254,
2176 		0xd260, 0xd274,
2177 		0xd280, 0xd294,
2178 		0xd2a0, 0xd2b4,
2179 		0xd2c0, 0xd2d4,
2180 		0xd2e0, 0xd2f4,
2181 		0xd300, 0xd31c,
2182 		0xdfc0, 0xdfe0,
2183 		0xe000, 0xf008,
2184 		0xf010, 0xf018,
2185 		0xf020, 0xf028,
2186 		0x11000, 0x11014,
2187 		0x11048, 0x1106c,
2188 		0x11074, 0x11088,
2189 		0x11098, 0x11120,
2190 		0x1112c, 0x1117c,
2191 		0x11190, 0x112e0,
2192 		0x11300, 0x1130c,
2193 		0x12000, 0x1206c,
2194 		0x19040, 0x1906c,
2195 		0x19078, 0x19080,
2196 		0x1908c, 0x190e8,
2197 		0x190f0, 0x190f8,
2198 		0x19100, 0x19110,
2199 		0x19120, 0x19124,
2200 		0x19150, 0x19194,
2201 		0x1919c, 0x191b0,
2202 		0x191d0, 0x191e8,
2203 		0x19238, 0x19290,
2204 		0x192a4, 0x192b0,
2205 		0x192bc, 0x192bc,
2206 		0x19348, 0x1934c,
2207 		0x193f8, 0x19418,
2208 		0x19420, 0x19428,
2209 		0x19430, 0x19444,
2210 		0x1944c, 0x1946c,
2211 		0x19474, 0x19474,
2212 		0x19490, 0x194cc,
2213 		0x194f0, 0x194f8,
2214 		0x19c00, 0x19c48,
2215 		0x19c50, 0x19c80,
2216 		0x19c94, 0x19c98,
2217 		0x19ca0, 0x19cbc,
2218 		0x19ce4, 0x19ce4,
2219 		0x19cf0, 0x19cf8,
2220 		0x19d00, 0x19d28,
2221 		0x19d50, 0x19d78,
2222 		0x19d94, 0x19d98,
2223 		0x19da0, 0x19dc8,
2224 		0x19df0, 0x19e10,
2225 		0x19e50, 0x19e6c,
2226 		0x19ea0, 0x19ebc,
2227 		0x19ec4, 0x19ef4,
2228 		0x19f04, 0x19f2c,
2229 		0x19f34, 0x19f34,
2230 		0x19f40, 0x19f50,
2231 		0x19f90, 0x19fac,
2232 		0x19fc4, 0x19fc8,
2233 		0x19fd0, 0x19fe4,
2234 		0x1a000, 0x1a004,
2235 		0x1a010, 0x1a06c,
2236 		0x1a0b0, 0x1a0e4,
2237 		0x1a0ec, 0x1a0f8,
2238 		0x1a100, 0x1a108,
2239 		0x1a114, 0x1a130,
2240 		0x1a138, 0x1a1c4,
2241 		0x1a1fc, 0x1a1fc,
2242 		0x1e008, 0x1e00c,
2243 		0x1e040, 0x1e044,
2244 		0x1e04c, 0x1e04c,
2245 		0x1e284, 0x1e290,
2246 		0x1e2c0, 0x1e2c0,
2247 		0x1e2e0, 0x1e2e0,
2248 		0x1e300, 0x1e384,
2249 		0x1e3c0, 0x1e3c8,
2250 		0x1e408, 0x1e40c,
2251 		0x1e440, 0x1e444,
2252 		0x1e44c, 0x1e44c,
2253 		0x1e684, 0x1e690,
2254 		0x1e6c0, 0x1e6c0,
2255 		0x1e6e0, 0x1e6e0,
2256 		0x1e700, 0x1e784,
2257 		0x1e7c0, 0x1e7c8,
2258 		0x1e808, 0x1e80c,
2259 		0x1e840, 0x1e844,
2260 		0x1e84c, 0x1e84c,
2261 		0x1ea84, 0x1ea90,
2262 		0x1eac0, 0x1eac0,
2263 		0x1eae0, 0x1eae0,
2264 		0x1eb00, 0x1eb84,
2265 		0x1ebc0, 0x1ebc8,
2266 		0x1ec08, 0x1ec0c,
2267 		0x1ec40, 0x1ec44,
2268 		0x1ec4c, 0x1ec4c,
2269 		0x1ee84, 0x1ee90,
2270 		0x1eec0, 0x1eec0,
2271 		0x1eee0, 0x1eee0,
2272 		0x1ef00, 0x1ef84,
2273 		0x1efc0, 0x1efc8,
2274 		0x1f008, 0x1f00c,
2275 		0x1f040, 0x1f044,
2276 		0x1f04c, 0x1f04c,
2277 		0x1f284, 0x1f290,
2278 		0x1f2c0, 0x1f2c0,
2279 		0x1f2e0, 0x1f2e0,
2280 		0x1f300, 0x1f384,
2281 		0x1f3c0, 0x1f3c8,
2282 		0x1f408, 0x1f40c,
2283 		0x1f440, 0x1f444,
2284 		0x1f44c, 0x1f44c,
2285 		0x1f684, 0x1f690,
2286 		0x1f6c0, 0x1f6c0,
2287 		0x1f6e0, 0x1f6e0,
2288 		0x1f700, 0x1f784,
2289 		0x1f7c0, 0x1f7c8,
2290 		0x1f808, 0x1f80c,
2291 		0x1f840, 0x1f844,
2292 		0x1f84c, 0x1f84c,
2293 		0x1fa84, 0x1fa90,
2294 		0x1fac0, 0x1fac0,
2295 		0x1fae0, 0x1fae0,
2296 		0x1fb00, 0x1fb84,
2297 		0x1fbc0, 0x1fbc8,
2298 		0x1fc08, 0x1fc0c,
2299 		0x1fc40, 0x1fc44,
2300 		0x1fc4c, 0x1fc4c,
2301 		0x1fe84, 0x1fe90,
2302 		0x1fec0, 0x1fec0,
2303 		0x1fee0, 0x1fee0,
2304 		0x1ff00, 0x1ff84,
2305 		0x1ffc0, 0x1ffc8,
2306 		0x30000, 0x30030,
2307 		0x30100, 0x30168,
2308 		0x30190, 0x301a0,
2309 		0x301a8, 0x301b8,
2310 		0x301c4, 0x301c8,
2311 		0x301d0, 0x301d0,
2312 		0x30200, 0x30320,
2313 		0x30400, 0x304b4,
2314 		0x304c0, 0x3052c,
2315 		0x30540, 0x3061c,
2316 		0x30800, 0x308a0,
2317 		0x308c0, 0x30908,
2318 		0x30910, 0x309b8,
2319 		0x30a00, 0x30a04,
2320 		0x30a0c, 0x30a14,
2321 		0x30a1c, 0x30a2c,
2322 		0x30a44, 0x30a50,
2323 		0x30a74, 0x30a74,
2324 		0x30a7c, 0x30afc,
2325 		0x30b08, 0x30c24,
2326 		0x30d00, 0x30d14,
2327 		0x30d1c, 0x30d3c,
2328 		0x30d44, 0x30d4c,
2329 		0x30d54, 0x30d74,
2330 		0x30d7c, 0x30d7c,
2331 		0x30de0, 0x30de0,
2332 		0x30e00, 0x30ed4,
2333 		0x30f00, 0x30fa4,
2334 		0x30fc0, 0x30fc4,
2335 		0x31000, 0x31004,
2336 		0x31080, 0x310fc,
2337 		0x31208, 0x31220,
2338 		0x3123c, 0x31254,
2339 		0x31300, 0x31300,
2340 		0x31308, 0x3131c,
2341 		0x31338, 0x3133c,
2342 		0x31380, 0x31380,
2343 		0x31388, 0x313a8,
2344 		0x313b4, 0x313b4,
2345 		0x31400, 0x31420,
2346 		0x31438, 0x3143c,
2347 		0x31480, 0x31480,
2348 		0x314a8, 0x314a8,
2349 		0x314b0, 0x314b4,
2350 		0x314c8, 0x314d4,
2351 		0x31a40, 0x31a4c,
2352 		0x31af0, 0x31b20,
2353 		0x31b38, 0x31b3c,
2354 		0x31b80, 0x31b80,
2355 		0x31ba8, 0x31ba8,
2356 		0x31bb0, 0x31bb4,
2357 		0x31bc8, 0x31bd4,
2358 		0x32140, 0x3218c,
2359 		0x321f0, 0x321f4,
2360 		0x32200, 0x32200,
2361 		0x32218, 0x32218,
2362 		0x32400, 0x32400,
2363 		0x32408, 0x3241c,
2364 		0x32618, 0x32620,
2365 		0x32664, 0x32664,
2366 		0x326a8, 0x326a8,
2367 		0x326ec, 0x326ec,
2368 		0x32a00, 0x32abc,
2369 		0x32b00, 0x32b18,
2370 		0x32b20, 0x32b38,
2371 		0x32b40, 0x32b58,
2372 		0x32b60, 0x32b78,
2373 		0x32c00, 0x32c00,
2374 		0x32c08, 0x32c3c,
2375 		0x33000, 0x3302c,
2376 		0x33034, 0x33050,
2377 		0x33058, 0x33058,
2378 		0x33060, 0x3308c,
2379 		0x3309c, 0x330ac,
2380 		0x330c0, 0x330c0,
2381 		0x330c8, 0x330d0,
2382 		0x330d8, 0x330e0,
2383 		0x330ec, 0x3312c,
2384 		0x33134, 0x33150,
2385 		0x33158, 0x33158,
2386 		0x33160, 0x3318c,
2387 		0x3319c, 0x331ac,
2388 		0x331c0, 0x331c0,
2389 		0x331c8, 0x331d0,
2390 		0x331d8, 0x331e0,
2391 		0x331ec, 0x33290,
2392 		0x33298, 0x332c4,
2393 		0x332e4, 0x33390,
2394 		0x33398, 0x333c4,
2395 		0x333e4, 0x3342c,
2396 		0x33434, 0x33450,
2397 		0x33458, 0x33458,
2398 		0x33460, 0x3348c,
2399 		0x3349c, 0x334ac,
2400 		0x334c0, 0x334c0,
2401 		0x334c8, 0x334d0,
2402 		0x334d8, 0x334e0,
2403 		0x334ec, 0x3352c,
2404 		0x33534, 0x33550,
2405 		0x33558, 0x33558,
2406 		0x33560, 0x3358c,
2407 		0x3359c, 0x335ac,
2408 		0x335c0, 0x335c0,
2409 		0x335c8, 0x335d0,
2410 		0x335d8, 0x335e0,
2411 		0x335ec, 0x33690,
2412 		0x33698, 0x336c4,
2413 		0x336e4, 0x33790,
2414 		0x33798, 0x337c4,
2415 		0x337e4, 0x337fc,
2416 		0x33814, 0x33814,
2417 		0x33854, 0x33868,
2418 		0x33880, 0x3388c,
2419 		0x338c0, 0x338d0,
2420 		0x338e8, 0x338ec,
2421 		0x33900, 0x3392c,
2422 		0x33934, 0x33950,
2423 		0x33958, 0x33958,
2424 		0x33960, 0x3398c,
2425 		0x3399c, 0x339ac,
2426 		0x339c0, 0x339c0,
2427 		0x339c8, 0x339d0,
2428 		0x339d8, 0x339e0,
2429 		0x339ec, 0x33a90,
2430 		0x33a98, 0x33ac4,
2431 		0x33ae4, 0x33b10,
2432 		0x33b24, 0x33b28,
2433 		0x33b38, 0x33b50,
2434 		0x33bf0, 0x33c10,
2435 		0x33c24, 0x33c28,
2436 		0x33c38, 0x33c50,
2437 		0x33cf0, 0x33cfc,
2438 		0x34000, 0x34030,
2439 		0x34100, 0x34168,
2440 		0x34190, 0x341a0,
2441 		0x341a8, 0x341b8,
2442 		0x341c4, 0x341c8,
2443 		0x341d0, 0x341d0,
2444 		0x34200, 0x34320,
2445 		0x34400, 0x344b4,
2446 		0x344c0, 0x3452c,
2447 		0x34540, 0x3461c,
2448 		0x34800, 0x348a0,
2449 		0x348c0, 0x34908,
2450 		0x34910, 0x349b8,
2451 		0x34a00, 0x34a04,
2452 		0x34a0c, 0x34a14,
2453 		0x34a1c, 0x34a2c,
2454 		0x34a44, 0x34a50,
2455 		0x34a74, 0x34a74,
2456 		0x34a7c, 0x34afc,
2457 		0x34b08, 0x34c24,
2458 		0x34d00, 0x34d14,
2459 		0x34d1c, 0x34d3c,
2460 		0x34d44, 0x34d4c,
2461 		0x34d54, 0x34d74,
2462 		0x34d7c, 0x34d7c,
2463 		0x34de0, 0x34de0,
2464 		0x34e00, 0x34ed4,
2465 		0x34f00, 0x34fa4,
2466 		0x34fc0, 0x34fc4,
2467 		0x35000, 0x35004,
2468 		0x35080, 0x350fc,
2469 		0x35208, 0x35220,
2470 		0x3523c, 0x35254,
2471 		0x35300, 0x35300,
2472 		0x35308, 0x3531c,
2473 		0x35338, 0x3533c,
2474 		0x35380, 0x35380,
2475 		0x35388, 0x353a8,
2476 		0x353b4, 0x353b4,
2477 		0x35400, 0x35420,
2478 		0x35438, 0x3543c,
2479 		0x35480, 0x35480,
2480 		0x354a8, 0x354a8,
2481 		0x354b0, 0x354b4,
2482 		0x354c8, 0x354d4,
2483 		0x35a40, 0x35a4c,
2484 		0x35af0, 0x35b20,
2485 		0x35b38, 0x35b3c,
2486 		0x35b80, 0x35b80,
2487 		0x35ba8, 0x35ba8,
2488 		0x35bb0, 0x35bb4,
2489 		0x35bc8, 0x35bd4,
2490 		0x36140, 0x3618c,
2491 		0x361f0, 0x361f4,
2492 		0x36200, 0x36200,
2493 		0x36218, 0x36218,
2494 		0x36400, 0x36400,
2495 		0x36408, 0x3641c,
2496 		0x36618, 0x36620,
2497 		0x36664, 0x36664,
2498 		0x366a8, 0x366a8,
2499 		0x366ec, 0x366ec,
2500 		0x36a00, 0x36abc,
2501 		0x36b00, 0x36b18,
2502 		0x36b20, 0x36b38,
2503 		0x36b40, 0x36b58,
2504 		0x36b60, 0x36b78,
2505 		0x36c00, 0x36c00,
2506 		0x36c08, 0x36c3c,
2507 		0x37000, 0x3702c,
2508 		0x37034, 0x37050,
2509 		0x37058, 0x37058,
2510 		0x37060, 0x3708c,
2511 		0x3709c, 0x370ac,
2512 		0x370c0, 0x370c0,
2513 		0x370c8, 0x370d0,
2514 		0x370d8, 0x370e0,
2515 		0x370ec, 0x3712c,
2516 		0x37134, 0x37150,
2517 		0x37158, 0x37158,
2518 		0x37160, 0x3718c,
2519 		0x3719c, 0x371ac,
2520 		0x371c0, 0x371c0,
2521 		0x371c8, 0x371d0,
2522 		0x371d8, 0x371e0,
2523 		0x371ec, 0x37290,
2524 		0x37298, 0x372c4,
2525 		0x372e4, 0x37390,
2526 		0x37398, 0x373c4,
2527 		0x373e4, 0x3742c,
2528 		0x37434, 0x37450,
2529 		0x37458, 0x37458,
2530 		0x37460, 0x3748c,
2531 		0x3749c, 0x374ac,
2532 		0x374c0, 0x374c0,
2533 		0x374c8, 0x374d0,
2534 		0x374d8, 0x374e0,
2535 		0x374ec, 0x3752c,
2536 		0x37534, 0x37550,
2537 		0x37558, 0x37558,
2538 		0x37560, 0x3758c,
2539 		0x3759c, 0x375ac,
2540 		0x375c0, 0x375c0,
2541 		0x375c8, 0x375d0,
2542 		0x375d8, 0x375e0,
2543 		0x375ec, 0x37690,
2544 		0x37698, 0x376c4,
2545 		0x376e4, 0x37790,
2546 		0x37798, 0x377c4,
2547 		0x377e4, 0x377fc,
2548 		0x37814, 0x37814,
2549 		0x37854, 0x37868,
2550 		0x37880, 0x3788c,
2551 		0x378c0, 0x378d0,
2552 		0x378e8, 0x378ec,
2553 		0x37900, 0x3792c,
2554 		0x37934, 0x37950,
2555 		0x37958, 0x37958,
2556 		0x37960, 0x3798c,
2557 		0x3799c, 0x379ac,
2558 		0x379c0, 0x379c0,
2559 		0x379c8, 0x379d0,
2560 		0x379d8, 0x379e0,
2561 		0x379ec, 0x37a90,
2562 		0x37a98, 0x37ac4,
2563 		0x37ae4, 0x37b10,
2564 		0x37b24, 0x37b28,
2565 		0x37b38, 0x37b50,
2566 		0x37bf0, 0x37c10,
2567 		0x37c24, 0x37c28,
2568 		0x37c38, 0x37c50,
2569 		0x37cf0, 0x37cfc,
2570 		0x40040, 0x40040,
2571 		0x40080, 0x40084,
2572 		0x40100, 0x40100,
2573 		0x40140, 0x401bc,
2574 		0x40200, 0x40214,
2575 		0x40228, 0x40228,
2576 		0x40240, 0x40258,
2577 		0x40280, 0x40280,
2578 		0x40304, 0x40304,
2579 		0x40330, 0x4033c,
2580 		0x41304, 0x413c8,
2581 		0x413d0, 0x413dc,
2582 		0x413f0, 0x413f0,
2583 		0x41400, 0x4140c,
2584 		0x41414, 0x4141c,
2585 		0x41480, 0x414d0,
2586 		0x44000, 0x4407c,
2587 		0x440c0, 0x441ac,
2588 		0x441b4, 0x4427c,
2589 		0x442c0, 0x443ac,
2590 		0x443b4, 0x4447c,
2591 		0x444c0, 0x445ac,
2592 		0x445b4, 0x4467c,
2593 		0x446c0, 0x447ac,
2594 		0x447b4, 0x4487c,
2595 		0x448c0, 0x449ac,
2596 		0x449b4, 0x44a7c,
2597 		0x44ac0, 0x44bac,
2598 		0x44bb4, 0x44c7c,
2599 		0x44cc0, 0x44dac,
2600 		0x44db4, 0x44e7c,
2601 		0x44ec0, 0x44fac,
2602 		0x44fb4, 0x4507c,
2603 		0x450c0, 0x451ac,
2604 		0x451b4, 0x451fc,
2605 		0x45800, 0x45804,
2606 		0x45810, 0x45830,
2607 		0x45840, 0x45860,
2608 		0x45868, 0x45868,
2609 		0x45880, 0x45884,
2610 		0x458a0, 0x458b0,
2611 		0x45a00, 0x45a04,
2612 		0x45a10, 0x45a30,
2613 		0x45a40, 0x45a60,
2614 		0x45a68, 0x45a68,
2615 		0x45a80, 0x45a84,
2616 		0x45aa0, 0x45ab0,
2617 		0x460c0, 0x460e4,
2618 		0x47000, 0x4703c,
2619 		0x47044, 0x4708c,
2620 		0x47200, 0x47250,
2621 		0x47400, 0x47408,
2622 		0x47414, 0x47420,
2623 		0x47600, 0x47618,
2624 		0x47800, 0x47814,
2625 		0x47820, 0x4782c,
2626 		0x50000, 0x50084,
2627 		0x50090, 0x500cc,
2628 		0x50300, 0x50384,
2629 		0x50400, 0x50400,
2630 		0x50800, 0x50884,
2631 		0x50890, 0x508cc,
2632 		0x50b00, 0x50b84,
2633 		0x50c00, 0x50c00,
2634 		0x51000, 0x51020,
2635 		0x51028, 0x510b0,
2636 		0x51300, 0x51324,
2637 	};
2638 
2639 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2640 	const unsigned int *reg_ranges;
2641 	int reg_ranges_size, range;
2642 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2643 
2644 	/* Select the right set of register ranges to dump depending on the
2645 	 * adapter chip type.
2646 	 */
2647 	switch (chip_version) {
2648 	case CHELSIO_T4:
2649 		reg_ranges = t4_reg_ranges;
2650 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2651 		break;
2652 
2653 	case CHELSIO_T5:
2654 		reg_ranges = t5_reg_ranges;
2655 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2656 		break;
2657 
2658 	case CHELSIO_T6:
2659 		reg_ranges = t6_reg_ranges;
2660 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2661 		break;
2662 
2663 	default:
2664 		dev_err(adap->pdev_dev,
2665 			"Unsupported chip version %d\n", chip_version);
2666 		return;
2667 	}
2668 
2669 	/* Clear the register buffer and insert the appropriate register
2670 	 * values selected by the above register ranges.
2671 	 */
2672 	memset(buf, 0, buf_size);
2673 	for (range = 0; range < reg_ranges_size; range += 2) {
2674 		unsigned int reg = reg_ranges[range];
2675 		unsigned int last_reg = reg_ranges[range + 1];
2676 		u32 *bufp = (u32 *)((char *)buf + reg);
2677 
2678 		/* Iterate across the register range filling in the register
2679 		 * buffer but don't write past the end of the register buffer.
2680 		 */
2681 		while (reg <= last_reg && bufp < buf_end) {
2682 			*bufp++ = t4_read_reg(adap, reg);
2683 			reg += sizeof(u32);
2684 		}
2685 	}
2686 }
2687 
2688 #define EEPROM_STAT_ADDR   0x7bfc
2689 #define VPD_BASE           0x400
2690 #define VPD_BASE_OLD       0
2691 #define VPD_LEN            1024
2692 #define CHELSIO_VPD_UNIQUE_ID 0x82
2693 
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713 	fn *= sz;
2714 	if (phys_addr < 1024)
2715 		return phys_addr + (31 << 10);
2716 	if (phys_addr < 1024 + fn)
2717 		return 31744 - fn + phys_addr - 1024;
2718 	if (phys_addr < EEPROMSIZE)
2719 		return phys_addr - 1024 - fn;
2720 	return -EINVAL;
2721 }
2722 
2723 /**
2724  *	t4_seeprom_wp - enable/disable EEPROM write protection
2725  *	@adapter: the adapter
2726  *	@enable: whether to enable or disable write protection
2727  *
2728  *	Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732 	unsigned int v = enable ? 0xc : 0;
2733 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734 	return ret < 0 ? ret : 0;
2735 }
2736 
2737 /**
2738  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *	@adapter: adapter to read
2740  *	@p: where to store the parameters
2741  *
2742  *	Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746 	int i, ret = 0, addr;
2747 	int ec, sn, pn, na;
2748 	u8 *vpd, csum;
2749 	unsigned int vpdr_len, kw_offset, id_len;
2750 
2751 	vpd = vmalloc(VPD_LEN);
2752 	if (!vpd)
2753 		return -ENOMEM;
2754 
2755 	/* Card information normally starts at VPD_BASE but early cards had
2756 	 * it at 0.
2757 	 */
2758 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2759 	if (ret < 0)
2760 		goto out;
2761 
2762 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2763 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2764 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2765 	 * is expected to automatically put this entry at the
2766 	 * beginning of the VPD.
2767 	 */
2768 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2769 
2770 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2771 	if (ret < 0)
2772 		goto out;
2773 
2774 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2775 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2776 		ret = -EINVAL;
2777 		goto out;
2778 	}
2779 
2780 	id_len = pci_vpd_lrdt_size(vpd);
2781 	if (id_len > ID_LEN)
2782 		id_len = ID_LEN;
2783 
2784 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2785 	if (i < 0) {
2786 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2787 		ret = -EINVAL;
2788 		goto out;
2789 	}
2790 
2791 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2792 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2793 	if (vpdr_len + kw_offset > VPD_LEN) {
2794 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2795 		ret = -EINVAL;
2796 		goto out;
2797 	}
2798 
2799 #define FIND_VPD_KW(var, name) do { \
2800 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2801 	if (var < 0) { \
2802 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2803 		ret = -EINVAL; \
2804 		goto out; \
2805 	} \
2806 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2807 } while (0)
2808 
2809 	FIND_VPD_KW(i, "RV");
2810 	for (csum = 0; i >= 0; i--)
2811 		csum += vpd[i];
2812 
2813 	if (csum) {
2814 		dev_err(adapter->pdev_dev,
2815 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2816 		ret = -EINVAL;
2817 		goto out;
2818 	}
2819 
2820 	FIND_VPD_KW(ec, "EC");
2821 	FIND_VPD_KW(sn, "SN");
2822 	FIND_VPD_KW(pn, "PN");
2823 	FIND_VPD_KW(na, "NA");
2824 #undef FIND_VPD_KW
2825 
2826 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2827 	strim(p->id);
2828 	memcpy(p->ec, vpd + ec, EC_LEN);
2829 	strim(p->ec);
2830 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2831 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2832 	strim(p->sn);
2833 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2834 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2835 	strim(p->pn);
2836 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2837 	strim((char *)p->na);
2838 
2839 out:
2840 	vfree(vpd);
2841 	return ret < 0 ? ret : 0;
2842 }
2843 
2844 /**
2845  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2846  *	@adapter: adapter to read
2847  *	@p: where to store the parameters
2848  *
2849  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2850  *	Clock.  This can only be called after a connection to the firmware
2851  *	is established.
2852  */
2853 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2854 {
2855 	u32 cclk_param, cclk_val;
2856 	int ret;
2857 
2858 	/* Grab the raw VPD parameters.
2859 	 */
2860 	ret = t4_get_raw_vpd_params(adapter, p);
2861 	if (ret)
2862 		return ret;
2863 
2864 	/* Ask firmware for the Core Clock since it knows how to translate the
2865 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2866 	 */
2867 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2868 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2869 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2870 			      1, &cclk_param, &cclk_val);
2871 
2872 	if (ret)
2873 		return ret;
2874 	p->cclk = cclk_val;
2875 
2876 	return 0;
2877 }
2878 
2879 /**
2880  *	t4_get_pfres - retrieve VF resource limits
2881  *	@adapter: the adapter
2882  *
2883  *	Retrieves configured resource limits and capabilities for a physical
2884  *	function.  The results are stored in @adapter->pfres.
2885  */
2886 int t4_get_pfres(struct adapter *adapter)
2887 {
2888 	struct pf_resources *pfres = &adapter->params.pfres;
2889 	struct fw_pfvf_cmd cmd, rpl;
2890 	int v;
2891 	u32 word;
2892 
2893 	/* Execute PFVF Read command to get VF resource limits; bail out early
2894 	 * with error on command failure.
2895 	 */
2896 	memset(&cmd, 0, sizeof(cmd));
2897 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2898 				    FW_CMD_REQUEST_F |
2899 				    FW_CMD_READ_F |
2900 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2901 				    FW_PFVF_CMD_VFN_V(0));
2902 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2903 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2904 	if (v != FW_SUCCESS)
2905 		return v;
2906 
2907 	/* Extract PF resource limits and return success.
2908 	 */
2909 	word = be32_to_cpu(rpl.niqflint_niq);
2910 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2911 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2912 
2913 	word = be32_to_cpu(rpl.type_to_neq);
2914 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2915 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2916 
2917 	word = be32_to_cpu(rpl.tc_to_nexactf);
2918 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2919 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2920 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2921 
2922 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2923 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2924 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2925 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2926 
2927 	return 0;
2928 }
2929 
2930 /* serial flash and firmware constants */
2931 enum {
2932 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2933 
2934 	/* flash command opcodes */
2935 	SF_PROG_PAGE    = 2,          /* program page */
2936 	SF_WR_DISABLE   = 4,          /* disable writes */
2937 	SF_RD_STATUS    = 5,          /* read status register */
2938 	SF_WR_ENABLE    = 6,          /* enable writes */
2939 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2940 	SF_RD_ID        = 0x9f,       /* read ID */
2941 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2942 };
2943 
2944 /**
2945  *	sf1_read - read data from the serial flash
2946  *	@adapter: the adapter
2947  *	@byte_cnt: number of bytes to read
2948  *	@cont: whether another operation will be chained
2949  *	@lock: whether to lock SF for PL access only
2950  *	@valp: where to store the read data
2951  *
2952  *	Reads up to 4 bytes of data from the serial flash.  The location of
2953  *	the read needs to be specified prior to calling this by issuing the
2954  *	appropriate commands to the serial flash.
2955  */
2956 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957 		    int lock, u32 *valp)
2958 {
2959 	int ret;
2960 
2961 	if (!byte_cnt || byte_cnt > 4)
2962 		return -EINVAL;
2963 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2964 		return -EBUSY;
2965 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2966 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2967 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2968 	if (!ret)
2969 		*valp = t4_read_reg(adapter, SF_DATA_A);
2970 	return ret;
2971 }
2972 
2973 /**
2974  *	sf1_write - write data to the serial flash
2975  *	@adapter: the adapter
2976  *	@byte_cnt: number of bytes to write
2977  *	@cont: whether another operation will be chained
2978  *	@lock: whether to lock SF for PL access only
2979  *	@val: value to write
2980  *
2981  *	Writes up to 4 bytes of data to the serial flash.  The location of
2982  *	the write needs to be specified prior to calling this by issuing the
2983  *	appropriate commands to the serial flash.
2984  */
2985 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2986 		     int lock, u32 val)
2987 {
2988 	if (!byte_cnt || byte_cnt > 4)
2989 		return -EINVAL;
2990 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2991 		return -EBUSY;
2992 	t4_write_reg(adapter, SF_DATA_A, val);
2993 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2994 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2995 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2996 }
2997 
2998 /**
2999  *	flash_wait_op - wait for a flash operation to complete
3000  *	@adapter: the adapter
3001  *	@attempts: max number of polls of the status register
3002  *	@delay: delay between polls in ms
3003  *
3004  *	Wait for a flash operation to complete by polling the status register.
3005  */
3006 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3007 {
3008 	int ret;
3009 	u32 status;
3010 
3011 	while (1) {
3012 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3013 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3014 			return ret;
3015 		if (!(status & 1))
3016 			return 0;
3017 		if (--attempts == 0)
3018 			return -EAGAIN;
3019 		if (delay)
3020 			msleep(delay);
3021 	}
3022 }
3023 
3024 /**
3025  *	t4_read_flash - read words from serial flash
3026  *	@adapter: the adapter
3027  *	@addr: the start address for the read
3028  *	@nwords: how many 32-bit words to read
3029  *	@data: where to store the read data
3030  *	@byte_oriented: whether to store data as bytes or as words
3031  *
3032  *	Read the specified number of 32-bit words from the serial flash.
3033  *	If @byte_oriented is set the read data is stored as a byte array
3034  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3035  *	natural endianness.
3036  */
3037 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3038 		  unsigned int nwords, u32 *data, int byte_oriented)
3039 {
3040 	int ret;
3041 
3042 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3043 		return -EINVAL;
3044 
3045 	addr = swab32(addr) | SF_RD_DATA_FAST;
3046 
3047 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3048 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3049 		return ret;
3050 
3051 	for ( ; nwords; nwords--, data++) {
3052 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3053 		if (nwords == 1)
3054 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3055 		if (ret)
3056 			return ret;
3057 		if (byte_oriented)
3058 			*data = (__force __u32)(cpu_to_be32(*data));
3059 	}
3060 	return 0;
3061 }
3062 
3063 /**
3064  *	t4_write_flash - write up to a page of data to the serial flash
3065  *	@adapter: the adapter
3066  *	@addr: the start address to write
3067  *	@n: length of data to write in bytes
3068  *	@data: the data to write
3069  *
3070  *	Writes up to a page of data (256 bytes) to the serial flash starting
3071  *	at the given address.  All the data must be written to the same page.
3072  */
3073 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3074 			  unsigned int n, const u8 *data)
3075 {
3076 	int ret;
3077 	u32 buf[64];
3078 	unsigned int i, c, left, val, offset = addr & 0xff;
3079 
3080 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3081 		return -EINVAL;
3082 
3083 	val = swab32(addr) | SF_PROG_PAGE;
3084 
3085 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3086 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3087 		goto unlock;
3088 
3089 	for (left = n; left; left -= c) {
3090 		c = min(left, 4U);
3091 		for (val = 0, i = 0; i < c; ++i)
3092 			val = (val << 8) + *data++;
3093 
3094 		ret = sf1_write(adapter, c, c != left, 1, val);
3095 		if (ret)
3096 			goto unlock;
3097 	}
3098 	ret = flash_wait_op(adapter, 8, 1);
3099 	if (ret)
3100 		goto unlock;
3101 
3102 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3103 
3104 	/* Read the page to verify the write succeeded */
3105 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3106 	if (ret)
3107 		return ret;
3108 
3109 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3110 		dev_err(adapter->pdev_dev,
3111 			"failed to correctly write the flash page at %#x\n",
3112 			addr);
3113 		return -EIO;
3114 	}
3115 	return 0;
3116 
3117 unlock:
3118 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3119 	return ret;
3120 }
3121 
3122 /**
3123  *	t4_get_fw_version - read the firmware version
3124  *	@adapter: the adapter
3125  *	@vers: where to place the version
3126  *
3127  *	Reads the FW version from flash.
3128  */
3129 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3130 {
3131 	return t4_read_flash(adapter, FLASH_FW_START +
3132 			     offsetof(struct fw_hdr, fw_ver), 1,
3133 			     vers, 0);
3134 }
3135 
3136 /**
3137  *	t4_get_bs_version - read the firmware bootstrap version
3138  *	@adapter: the adapter
3139  *	@vers: where to place the version
3140  *
3141  *	Reads the FW Bootstrap version from flash.
3142  */
3143 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3144 {
3145 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3146 			     offsetof(struct fw_hdr, fw_ver), 1,
3147 			     vers, 0);
3148 }
3149 
3150 /**
3151  *	t4_get_tp_version - read the TP microcode version
3152  *	@adapter: the adapter
3153  *	@vers: where to place the version
3154  *
3155  *	Reads the TP microcode version from flash.
3156  */
3157 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3158 {
3159 	return t4_read_flash(adapter, FLASH_FW_START +
3160 			     offsetof(struct fw_hdr, tp_microcode_ver),
3161 			     1, vers, 0);
3162 }
3163 
3164 /**
3165  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3166  *	@adapter: the adapter
3167  *	@vers: where to place the version
3168  *
3169  *	Reads the Expansion ROM header from FLASH and returns the version
3170  *	number (if present) through the @vers return value pointer.  We return
3171  *	this in the Firmware Version Format since it's convenient.  Return
3172  *	0 on success, -ENOENT if no Expansion ROM is present.
3173  */
3174 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3175 {
3176 	struct exprom_header {
3177 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3178 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3179 	} *hdr;
3180 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3181 					   sizeof(u32))];
3182 	int ret;
3183 
3184 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3185 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3186 			    0);
3187 	if (ret)
3188 		return ret;
3189 
3190 	hdr = (struct exprom_header *)exprom_header_buf;
3191 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3192 		return -ENOENT;
3193 
3194 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3195 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3196 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3197 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3198 	return 0;
3199 }
3200 
3201 /**
3202  *      t4_get_vpd_version - return the VPD version
3203  *      @adapter: the adapter
3204  *      @vers: where to place the version
3205  *
3206  *      Reads the VPD via the Firmware interface (thus this can only be called
3207  *      once we're ready to issue Firmware commands).  The format of the
3208  *      VPD version is adapter specific.  Returns 0 on success, an error on
3209  *      failure.
3210  *
3211  *      Note that early versions of the Firmware didn't include the ability
3212  *      to retrieve the VPD version, so we zero-out the return-value parameter
3213  *      in that case to avoid leaving it with garbage in it.
3214  *
3215  *      Also note that the Firmware will return its cached copy of the VPD
3216  *      Revision ID, not the actual Revision ID as written in the Serial
3217  *      EEPROM.  This is only an issue if a new VPD has been written and the
3218  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3219  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3220  *      if the Host Driver will be performing a full adapter initialization.
3221  */
3222 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3223 {
3224 	u32 vpdrev_param;
3225 	int ret;
3226 
3227 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3228 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3229 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3230 			      1, &vpdrev_param, vers);
3231 	if (ret)
3232 		*vers = 0;
3233 	return ret;
3234 }
3235 
3236 /**
3237  *      t4_get_scfg_version - return the Serial Configuration version
3238  *      @adapter: the adapter
3239  *      @vers: where to place the version
3240  *
3241  *      Reads the Serial Configuration Version via the Firmware interface
3242  *      (thus this can only be called once we're ready to issue Firmware
3243  *      commands).  The format of the Serial Configuration version is
3244  *      adapter specific.  Returns 0 on success, an error on failure.
3245  *
3246  *      Note that early versions of the Firmware didn't include the ability
3247  *      to retrieve the Serial Configuration version, so we zero-out the
3248  *      return-value parameter in that case to avoid leaving it with
3249  *      garbage in it.
3250  *
3251  *      Also note that the Firmware will return its cached copy of the Serial
3252  *      Initialization Revision ID, not the actual Revision ID as written in
3253  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3254  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3255  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3256  *      been issued if the Host Driver will be performing a full adapter
3257  *      initialization.
3258  */
3259 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3260 {
3261 	u32 scfgrev_param;
3262 	int ret;
3263 
3264 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3265 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3266 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3267 			      1, &scfgrev_param, vers);
3268 	if (ret)
3269 		*vers = 0;
3270 	return ret;
3271 }
3272 
3273 /**
3274  *      t4_get_version_info - extract various chip/firmware version information
3275  *      @adapter: the adapter
3276  *
3277  *      Reads various chip/firmware version numbers and stores them into the
3278  *      adapter Adapter Parameters structure.  If any of the efforts fails
3279  *      the first failure will be returned, but all of the version numbers
3280  *      will be read.
3281  */
3282 int t4_get_version_info(struct adapter *adapter)
3283 {
3284 	int ret = 0;
3285 
3286 	#define FIRST_RET(__getvinfo) \
3287 	do { \
3288 		int __ret = __getvinfo; \
3289 		if (__ret && !ret) \
3290 			ret = __ret; \
3291 	} while (0)
3292 
3293 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3294 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3295 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3296 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3297 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3298 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3299 
3300 	#undef FIRST_RET
3301 	return ret;
3302 }
3303 
3304 /**
3305  *      t4_dump_version_info - dump all of the adapter configuration IDs
3306  *      @adapter: the adapter
3307  *
3308  *      Dumps all of the various bits of adapter configuration version/revision
3309  *      IDs information.  This is typically called at some point after
3310  *      t4_get_version_info() has been called.
3311  */
3312 void t4_dump_version_info(struct adapter *adapter)
3313 {
3314 	/* Device information */
3315 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3316 		 adapter->params.vpd.id,
3317 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3318 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3319 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3320 
3321 	/* Firmware Version */
3322 	if (!adapter->params.fw_vers)
3323 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3324 	else
3325 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3326 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3327 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3328 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3329 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3330 
3331 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3332 	 * Firmware, so dev_info() is more appropriate here.)
3333 	 */
3334 	if (!adapter->params.bs_vers)
3335 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3336 	else
3337 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3338 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3339 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3340 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3341 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3342 
3343 	/* TP Microcode Version */
3344 	if (!adapter->params.tp_vers)
3345 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3346 	else
3347 		dev_info(adapter->pdev_dev,
3348 			 "TP Microcode version: %u.%u.%u.%u\n",
3349 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3350 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3351 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3352 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3353 
3354 	/* Expansion ROM version */
3355 	if (!adapter->params.er_vers)
3356 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3357 	else
3358 		dev_info(adapter->pdev_dev,
3359 			 "Expansion ROM version: %u.%u.%u.%u\n",
3360 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3361 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3362 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3363 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3364 
3365 	/* Serial Configuration version */
3366 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3367 		 adapter->params.scfg_vers);
3368 
3369 	/* VPD Version */
3370 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3371 		 adapter->params.vpd_vers);
3372 }
3373 
3374 /**
3375  *	t4_check_fw_version - check if the FW is supported with this driver
3376  *	@adap: the adapter
3377  *
3378  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3379  *	if there's exact match, a negative error if the version could not be
3380  *	read or there's a major version mismatch
3381  */
3382 int t4_check_fw_version(struct adapter *adap)
3383 {
3384 	int i, ret, major, minor, micro;
3385 	int exp_major, exp_minor, exp_micro;
3386 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3387 
3388 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3389 	/* Try multiple times before returning error */
3390 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3391 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3392 
3393 	if (ret)
3394 		return ret;
3395 
3396 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3397 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3398 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3399 
3400 	switch (chip_version) {
3401 	case CHELSIO_T4:
3402 		exp_major = T4FW_MIN_VERSION_MAJOR;
3403 		exp_minor = T4FW_MIN_VERSION_MINOR;
3404 		exp_micro = T4FW_MIN_VERSION_MICRO;
3405 		break;
3406 	case CHELSIO_T5:
3407 		exp_major = T5FW_MIN_VERSION_MAJOR;
3408 		exp_minor = T5FW_MIN_VERSION_MINOR;
3409 		exp_micro = T5FW_MIN_VERSION_MICRO;
3410 		break;
3411 	case CHELSIO_T6:
3412 		exp_major = T6FW_MIN_VERSION_MAJOR;
3413 		exp_minor = T6FW_MIN_VERSION_MINOR;
3414 		exp_micro = T6FW_MIN_VERSION_MICRO;
3415 		break;
3416 	default:
3417 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3418 			adap->chip);
3419 		return -EINVAL;
3420 	}
3421 
3422 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3423 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3424 		dev_err(adap->pdev_dev,
3425 			"Card has firmware version %u.%u.%u, minimum "
3426 			"supported firmware is %u.%u.%u.\n", major, minor,
3427 			micro, exp_major, exp_minor, exp_micro);
3428 		return -EFAULT;
3429 	}
3430 	return 0;
3431 }
3432 
3433 /* Is the given firmware API compatible with the one the driver was compiled
3434  * with?
3435  */
3436 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3437 {
3438 
3439 	/* short circuit if it's the exact same firmware version */
3440 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3441 		return 1;
3442 
3443 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3444 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3445 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3446 		return 1;
3447 #undef SAME_INTF
3448 
3449 	return 0;
3450 }
3451 
3452 /* The firmware in the filesystem is usable, but should it be installed?
3453  * This routine explains itself in detail if it indicates the filesystem
3454  * firmware should be installed.
3455  */
3456 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3457 				int k, int c)
3458 {
3459 	const char *reason;
3460 
3461 	if (!card_fw_usable) {
3462 		reason = "incompatible or unusable";
3463 		goto install;
3464 	}
3465 
3466 	if (k > c) {
3467 		reason = "older than the version supported with this driver";
3468 		goto install;
3469 	}
3470 
3471 	return 0;
3472 
3473 install:
3474 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3475 		"installing firmware %u.%u.%u.%u on card.\n",
3476 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3477 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3478 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3479 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3480 
3481 	return 1;
3482 }
3483 
3484 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3485 	       const u8 *fw_data, unsigned int fw_size,
3486 	       struct fw_hdr *card_fw, enum dev_state state,
3487 	       int *reset)
3488 {
3489 	int ret, card_fw_usable, fs_fw_usable;
3490 	const struct fw_hdr *fs_fw;
3491 	const struct fw_hdr *drv_fw;
3492 
3493 	drv_fw = &fw_info->fw_hdr;
3494 
3495 	/* Read the header of the firmware on the card */
3496 	ret = -t4_read_flash(adap, FLASH_FW_START,
3497 			    sizeof(*card_fw) / sizeof(uint32_t),
3498 			    (uint32_t *)card_fw, 1);
3499 	if (ret == 0) {
3500 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3501 	} else {
3502 		dev_err(adap->pdev_dev,
3503 			"Unable to read card's firmware header: %d\n", ret);
3504 		card_fw_usable = 0;
3505 	}
3506 
3507 	if (fw_data != NULL) {
3508 		fs_fw = (const void *)fw_data;
3509 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3510 	} else {
3511 		fs_fw = NULL;
3512 		fs_fw_usable = 0;
3513 	}
3514 
3515 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3516 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3517 		/* Common case: the firmware on the card is an exact match and
3518 		 * the filesystem one is an exact match too, or the filesystem
3519 		 * one is absent/incompatible.
3520 		 */
3521 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3522 		   should_install_fs_fw(adap, card_fw_usable,
3523 					be32_to_cpu(fs_fw->fw_ver),
3524 					be32_to_cpu(card_fw->fw_ver))) {
3525 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3526 				     fw_size, 0);
3527 		if (ret != 0) {
3528 			dev_err(adap->pdev_dev,
3529 				"failed to install firmware: %d\n", ret);
3530 			goto bye;
3531 		}
3532 
3533 		/* Installed successfully, update the cached header too. */
3534 		*card_fw = *fs_fw;
3535 		card_fw_usable = 1;
3536 		*reset = 0;	/* already reset as part of load_fw */
3537 	}
3538 
3539 	if (!card_fw_usable) {
3540 		uint32_t d, c, k;
3541 
3542 		d = be32_to_cpu(drv_fw->fw_ver);
3543 		c = be32_to_cpu(card_fw->fw_ver);
3544 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3545 
3546 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3547 			"chip state %d, "
3548 			"driver compiled with %d.%d.%d.%d, "
3549 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3550 			state,
3551 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3552 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3553 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3554 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3555 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3556 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3557 		ret = EINVAL;
3558 		goto bye;
3559 	}
3560 
3561 	/* We're using whatever's on the card and it's known to be good. */
3562 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3563 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3564 
3565 bye:
3566 	return ret;
3567 }
3568 
3569 /**
3570  *	t4_flash_erase_sectors - erase a range of flash sectors
3571  *	@adapter: the adapter
3572  *	@start: the first sector to erase
3573  *	@end: the last sector to erase
3574  *
3575  *	Erases the sectors in the given inclusive range.
3576  */
3577 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3578 {
3579 	int ret = 0;
3580 
3581 	if (end >= adapter->params.sf_nsec)
3582 		return -EINVAL;
3583 
3584 	while (start <= end) {
3585 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3586 		    (ret = sf1_write(adapter, 4, 0, 1,
3587 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3588 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3589 			dev_err(adapter->pdev_dev,
3590 				"erase of flash sector %d failed, error %d\n",
3591 				start, ret);
3592 			break;
3593 		}
3594 		start++;
3595 	}
3596 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3597 	return ret;
3598 }
3599 
3600 /**
3601  *	t4_flash_cfg_addr - return the address of the flash configuration file
3602  *	@adapter: the adapter
3603  *
3604  *	Return the address within the flash where the Firmware Configuration
3605  *	File is stored.
3606  */
3607 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3608 {
3609 	if (adapter->params.sf_size == 0x100000)
3610 		return FLASH_FPGA_CFG_START;
3611 	else
3612 		return FLASH_CFG_START;
3613 }
3614 
3615 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3616  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3617  * and emit an error message for mismatched firmware to save our caller the
3618  * effort ...
3619  */
3620 static bool t4_fw_matches_chip(const struct adapter *adap,
3621 			       const struct fw_hdr *hdr)
3622 {
3623 	/* The expression below will return FALSE for any unsupported adapter
3624 	 * which will keep us "honest" in the future ...
3625 	 */
3626 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3627 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3628 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3629 		return true;
3630 
3631 	dev_err(adap->pdev_dev,
3632 		"FW image (%d) is not suitable for this adapter (%d)\n",
3633 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3634 	return false;
3635 }
3636 
3637 /**
3638  *	t4_load_fw - download firmware
3639  *	@adap: the adapter
3640  *	@fw_data: the firmware image to write
3641  *	@size: image size
3642  *
3643  *	Write the supplied firmware image to the card's serial flash.
3644  */
3645 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3646 {
3647 	u32 csum;
3648 	int ret, addr;
3649 	unsigned int i;
3650 	u8 first_page[SF_PAGE_SIZE];
3651 	const __be32 *p = (const __be32 *)fw_data;
3652 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3653 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3654 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3655 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3656 	unsigned int fw_start = FLASH_FW_START;
3657 
3658 	if (!size) {
3659 		dev_err(adap->pdev_dev, "FW image has no data\n");
3660 		return -EINVAL;
3661 	}
3662 	if (size & 511) {
3663 		dev_err(adap->pdev_dev,
3664 			"FW image size not multiple of 512 bytes\n");
3665 		return -EINVAL;
3666 	}
3667 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3668 		dev_err(adap->pdev_dev,
3669 			"FW image size differs from size in FW header\n");
3670 		return -EINVAL;
3671 	}
3672 	if (size > fw_size) {
3673 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3674 			fw_size);
3675 		return -EFBIG;
3676 	}
3677 	if (!t4_fw_matches_chip(adap, hdr))
3678 		return -EINVAL;
3679 
3680 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3681 		csum += be32_to_cpu(p[i]);
3682 
3683 	if (csum != 0xffffffff) {
3684 		dev_err(adap->pdev_dev,
3685 			"corrupted firmware image, checksum %#x\n", csum);
3686 		return -EINVAL;
3687 	}
3688 
3689 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3690 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3691 	if (ret)
3692 		goto out;
3693 
3694 	/*
3695 	 * We write the correct version at the end so the driver can see a bad
3696 	 * version if the FW write fails.  Start by writing a copy of the
3697 	 * first page with a bad version.
3698 	 */
3699 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3700 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3701 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3702 	if (ret)
3703 		goto out;
3704 
3705 	addr = fw_start;
3706 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3707 		addr += SF_PAGE_SIZE;
3708 		fw_data += SF_PAGE_SIZE;
3709 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3710 		if (ret)
3711 			goto out;
3712 	}
3713 
3714 	ret = t4_write_flash(adap,
3715 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3716 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3717 out:
3718 	if (ret)
3719 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3720 			ret);
3721 	else
3722 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3723 	return ret;
3724 }
3725 
3726 /**
3727  *	t4_phy_fw_ver - return current PHY firmware version
3728  *	@adap: the adapter
3729  *	@phy_fw_ver: return value buffer for PHY firmware version
3730  *
3731  *	Returns the current version of external PHY firmware on the
3732  *	adapter.
3733  */
3734 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3735 {
3736 	u32 param, val;
3737 	int ret;
3738 
3739 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3740 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3741 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3742 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3743 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3744 			      &param, &val);
3745 	if (ret)
3746 		return ret;
3747 	*phy_fw_ver = val;
3748 	return 0;
3749 }
3750 
3751 /**
3752  *	t4_load_phy_fw - download port PHY firmware
3753  *	@adap: the adapter
3754  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3755  *	@win_lock: the lock to use to guard the memory copy
3756  *	@phy_fw_version: function to check PHY firmware versions
3757  *	@phy_fw_data: the PHY firmware image to write
3758  *	@phy_fw_size: image size
3759  *
3760  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3761  *	@phy_fw_version is supplied, then it will be used to determine if
3762  *	it's necessary to perform the transfer by comparing the version
3763  *	of any existing adapter PHY firmware with that of the passed in
3764  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3765  *	around the call to t4_memory_rw() which transfers the PHY firmware
3766  *	to the adapter.
3767  *
3768  *	A negative error number will be returned if an error occurs.  If
3769  *	version number support is available and there's no need to upgrade
3770  *	the firmware, 0 will be returned.  If firmware is successfully
3771  *	transferred to the adapter, 1 will be returned.
3772  *
3773  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3774  *	a result, a RESET of the adapter would cause that RAM to lose its
3775  *	contents.  Thus, loading PHY firmware on such adapters must happen
3776  *	after any FW_RESET_CMDs ...
3777  */
3778 int t4_load_phy_fw(struct adapter *adap,
3779 		   int win, spinlock_t *win_lock,
3780 		   int (*phy_fw_version)(const u8 *, size_t),
3781 		   const u8 *phy_fw_data, size_t phy_fw_size)
3782 {
3783 	unsigned long mtype = 0, maddr = 0;
3784 	u32 param, val;
3785 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3786 	int ret;
3787 
3788 	/* If we have version number support, then check to see if the adapter
3789 	 * already has up-to-date PHY firmware loaded.
3790 	 */
3791 	if (phy_fw_version) {
3792 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3793 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3794 		if (ret < 0)
3795 			return ret;
3796 
3797 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3798 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3799 				"version %#x\n", cur_phy_fw_ver);
3800 			return 0;
3801 		}
3802 	}
3803 
3804 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3805 	 * The size of the file requires a special version of the READ command
3806 	 * which will pass the file size via the values field in PARAMS_CMD and
3807 	 * retrieve the return value from firmware and place it in the same
3808 	 * buffer values
3809 	 */
3810 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3811 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3812 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3813 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3814 	val = phy_fw_size;
3815 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3816 				 &param, &val, 1, true);
3817 	if (ret < 0)
3818 		return ret;
3819 	mtype = val >> 8;
3820 	maddr = (val & 0xff) << 16;
3821 
3822 	/* Copy the supplied PHY Firmware image to the adapter memory location
3823 	 * allocated by the adapter firmware.
3824 	 */
3825 	if (win_lock)
3826 		spin_lock_bh(win_lock);
3827 	ret = t4_memory_rw(adap, win, mtype, maddr,
3828 			   phy_fw_size, (__be32 *)phy_fw_data,
3829 			   T4_MEMORY_WRITE);
3830 	if (win_lock)
3831 		spin_unlock_bh(win_lock);
3832 	if (ret)
3833 		return ret;
3834 
3835 	/* Tell the firmware that the PHY firmware image has been written to
3836 	 * RAM and it can now start copying it over to the PHYs.  The chip
3837 	 * firmware will RESET the affected PHYs as part of this operation
3838 	 * leaving them running the new PHY firmware image.
3839 	 */
3840 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3841 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3842 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3843 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3844 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3845 				    &param, &val, 30000);
3846 
3847 	/* If we have version number support, then check to see that the new
3848 	 * firmware got loaded properly.
3849 	 */
3850 	if (phy_fw_version) {
3851 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3852 		if (ret < 0)
3853 			return ret;
3854 
3855 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3856 			CH_WARN(adap, "PHY Firmware did not update: "
3857 				"version on adapter %#x, "
3858 				"version flashed %#x\n",
3859 				cur_phy_fw_ver, new_phy_fw_vers);
3860 			return -ENXIO;
3861 		}
3862 	}
3863 
3864 	return 1;
3865 }
3866 
3867 /**
3868  *	t4_fwcache - firmware cache operation
3869  *	@adap: the adapter
3870  *	@op  : the operation (flush or flush and invalidate)
3871  */
3872 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3873 {
3874 	struct fw_params_cmd c;
3875 
3876 	memset(&c, 0, sizeof(c));
3877 	c.op_to_vfn =
3878 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3879 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3880 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3881 			    FW_PARAMS_CMD_VFN_V(0));
3882 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3883 	c.param[0].mnem =
3884 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3885 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3886 	c.param[0].val = cpu_to_be32(op);
3887 
3888 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3889 }
3890 
3891 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3892 			unsigned int *pif_req_wrptr,
3893 			unsigned int *pif_rsp_wrptr)
3894 {
3895 	int i, j;
3896 	u32 cfg, val, req, rsp;
3897 
3898 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3899 	if (cfg & LADBGEN_F)
3900 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3901 
3902 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3903 	req = POLADBGWRPTR_G(val);
3904 	rsp = PILADBGWRPTR_G(val);
3905 	if (pif_req_wrptr)
3906 		*pif_req_wrptr = req;
3907 	if (pif_rsp_wrptr)
3908 		*pif_rsp_wrptr = rsp;
3909 
3910 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3911 		for (j = 0; j < 6; j++) {
3912 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3913 				     PILADBGRDPTR_V(rsp));
3914 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3915 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3916 			req++;
3917 			rsp++;
3918 		}
3919 		req = (req + 2) & POLADBGRDPTR_M;
3920 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3921 	}
3922 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3923 }
3924 
3925 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3926 {
3927 	u32 cfg;
3928 	int i, j, idx;
3929 
3930 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3931 	if (cfg & LADBGEN_F)
3932 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3933 
3934 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3935 		for (j = 0; j < 5; j++) {
3936 			idx = 8 * i + j;
3937 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3938 				     PILADBGRDPTR_V(idx));
3939 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3940 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3941 		}
3942 	}
3943 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3944 }
3945 
3946 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3947 {
3948 	unsigned int i, j;
3949 
3950 	for (i = 0; i < 8; i++) {
3951 		u32 *p = la_buf + i;
3952 
3953 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3954 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3955 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3956 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3957 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3958 	}
3959 }
3960 
3961 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3962  * Capabilities which we control with separate controls -- see, for instance,
3963  * Pause Frames and Forward Error Correction.  In order to determine what the
3964  * full set of Advertised Port Capabilities are, the base Advertised Port
3965  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3966  * Port Capabilities associated with those other controls.  See
3967  * t4_link_acaps() for how this is done.
3968  */
3969 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3970 		     FW_PORT_CAP32_ANEG)
3971 
3972 /**
3973  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3974  *	@caps16: a 16-bit Port Capabilities value
3975  *
3976  *	Returns the equivalent 32-bit Port Capabilities value.
3977  */
3978 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3979 {
3980 	fw_port_cap32_t caps32 = 0;
3981 
3982 	#define CAP16_TO_CAP32(__cap) \
3983 		do { \
3984 			if (caps16 & FW_PORT_CAP_##__cap) \
3985 				caps32 |= FW_PORT_CAP32_##__cap; \
3986 		} while (0)
3987 
3988 	CAP16_TO_CAP32(SPEED_100M);
3989 	CAP16_TO_CAP32(SPEED_1G);
3990 	CAP16_TO_CAP32(SPEED_25G);
3991 	CAP16_TO_CAP32(SPEED_10G);
3992 	CAP16_TO_CAP32(SPEED_40G);
3993 	CAP16_TO_CAP32(SPEED_100G);
3994 	CAP16_TO_CAP32(FC_RX);
3995 	CAP16_TO_CAP32(FC_TX);
3996 	CAP16_TO_CAP32(ANEG);
3997 	CAP16_TO_CAP32(FORCE_PAUSE);
3998 	CAP16_TO_CAP32(MDIAUTO);
3999 	CAP16_TO_CAP32(MDISTRAIGHT);
4000 	CAP16_TO_CAP32(FEC_RS);
4001 	CAP16_TO_CAP32(FEC_BASER_RS);
4002 	CAP16_TO_CAP32(802_3_PAUSE);
4003 	CAP16_TO_CAP32(802_3_ASM_DIR);
4004 
4005 	#undef CAP16_TO_CAP32
4006 
4007 	return caps32;
4008 }
4009 
4010 /**
4011  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4012  *	@caps32: a 32-bit Port Capabilities value
4013  *
4014  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4015  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4016  *	Port Capabilities and some fields/values may not make it.
4017  */
4018 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4019 {
4020 	fw_port_cap16_t caps16 = 0;
4021 
4022 	#define CAP32_TO_CAP16(__cap) \
4023 		do { \
4024 			if (caps32 & FW_PORT_CAP32_##__cap) \
4025 				caps16 |= FW_PORT_CAP_##__cap; \
4026 		} while (0)
4027 
4028 	CAP32_TO_CAP16(SPEED_100M);
4029 	CAP32_TO_CAP16(SPEED_1G);
4030 	CAP32_TO_CAP16(SPEED_10G);
4031 	CAP32_TO_CAP16(SPEED_25G);
4032 	CAP32_TO_CAP16(SPEED_40G);
4033 	CAP32_TO_CAP16(SPEED_100G);
4034 	CAP32_TO_CAP16(FC_RX);
4035 	CAP32_TO_CAP16(FC_TX);
4036 	CAP32_TO_CAP16(802_3_PAUSE);
4037 	CAP32_TO_CAP16(802_3_ASM_DIR);
4038 	CAP32_TO_CAP16(ANEG);
4039 	CAP32_TO_CAP16(FORCE_PAUSE);
4040 	CAP32_TO_CAP16(MDIAUTO);
4041 	CAP32_TO_CAP16(MDISTRAIGHT);
4042 	CAP32_TO_CAP16(FEC_RS);
4043 	CAP32_TO_CAP16(FEC_BASER_RS);
4044 
4045 	#undef CAP32_TO_CAP16
4046 
4047 	return caps16;
4048 }
4049 
4050 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4051 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4052 {
4053 	enum cc_pause cc_pause = 0;
4054 
4055 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4056 		cc_pause |= PAUSE_RX;
4057 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4058 		cc_pause |= PAUSE_TX;
4059 
4060 	return cc_pause;
4061 }
4062 
4063 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4064 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4065 {
4066 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4067 	 * commands, etc.
4068 	 */
4069 	fw_port_cap32_t fw_pause = 0;
4070 
4071 	if (cc_pause & PAUSE_RX)
4072 		fw_pause |= FW_PORT_CAP32_FC_RX;
4073 	if (cc_pause & PAUSE_TX)
4074 		fw_pause |= FW_PORT_CAP32_FC_TX;
4075 	if (!(cc_pause & PAUSE_AUTONEG))
4076 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4077 
4078 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4079 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4080 	 * Note that these bits are ignored in L1 Configure commands.
4081 	 */
4082 	if (cc_pause & PAUSE_RX) {
4083 		if (cc_pause & PAUSE_TX)
4084 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4085 		else
4086 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4087 				    FW_PORT_CAP32_802_3_PAUSE;
4088 	} else if (cc_pause & PAUSE_TX) {
4089 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4090 	}
4091 
4092 	return fw_pause;
4093 }
4094 
4095 /* Translate Firmware Forward Error Correction specification to Common Code */
4096 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4097 {
4098 	enum cc_fec cc_fec = 0;
4099 
4100 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4101 		cc_fec |= FEC_RS;
4102 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4103 		cc_fec |= FEC_BASER_RS;
4104 
4105 	return cc_fec;
4106 }
4107 
4108 /* Translate Common Code Forward Error Correction specification to Firmware */
4109 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4110 {
4111 	fw_port_cap32_t fw_fec = 0;
4112 
4113 	if (cc_fec & FEC_RS)
4114 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4115 	if (cc_fec & FEC_BASER_RS)
4116 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4117 
4118 	return fw_fec;
4119 }
4120 
4121 /**
4122  *	t4_link_acaps - compute Link Advertised Port Capabilities
4123  *	@adapter: the adapter
4124  *	@port: the Port ID
4125  *	@lc: the Port's Link Configuration
4126  *
4127  *	Synthesize the Advertised Port Capabilities we'll be using based on
4128  *	the base Advertised Port Capabilities (which have been filtered by
4129  *	ADVERT_MASK) plus the individual controls for things like Pause
4130  *	Frames, Forward Error Correction, MDI, etc.
4131  */
4132 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4133 			      struct link_config *lc)
4134 {
4135 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4136 	unsigned int fw_mdi;
4137 	char cc_fec;
4138 
4139 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4140 
4141 	/* Convert driver coding of Pause Frame Flow Control settings into the
4142 	 * Firmware's API.
4143 	 */
4144 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4145 
4146 	/* Convert Common Code Forward Error Control settings into the
4147 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4148 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4149 	 * sent us as part of its IEEE 802.3-based interpretation of
4150 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4151 	 * use whatever is in the current Requested FEC settings.
4152 	 */
4153 	if (lc->requested_fec & FEC_AUTO)
4154 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4155 	else
4156 		cc_fec = lc->requested_fec;
4157 	fw_fec = cc_to_fwcap_fec(cc_fec);
4158 
4159 	/* Figure out what our Requested Port Capabilities are going to be.
4160 	 * Note parallel structure in t4_handle_get_port_info() and
4161 	 * init_link_config().
4162 	 */
4163 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4164 		acaps = lc->acaps | fw_fc | fw_fec;
4165 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4166 		lc->fec = cc_fec;
4167 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4168 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4169 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4170 		lc->fec = cc_fec;
4171 	} else {
4172 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4173 	}
4174 
4175 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4176 	 * the Physical Port Capabilities.  We can check that here and provide
4177 	 * moderately useful feedback in the system log.
4178 	 *
4179 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4180 	 * we need to exclude this from this check in order to maintain
4181 	 * compatibility ...
4182 	 */
4183 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4184 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4185 			acaps, lc->pcaps);
4186 		return -EINVAL;
4187 	}
4188 
4189 	return acaps;
4190 }
4191 
4192 /**
4193  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4194  *	@adapter: the adapter
4195  *	@mbox: the Firmware Mailbox to use
4196  *	@port: the Port ID
4197  *	@lc: the Port's Link Configuration
4198  *	@sleep_ok: if true we may sleep while awaiting command completion
4199  *	@timeout: time to wait for command to finish before timing out
4200  *		(negative implies @sleep_ok=false)
4201  *
4202  *	Set up a port's MAC and PHY according to a desired link configuration.
4203  *	- If the PHY can auto-negotiate first decide what to advertise, then
4204  *	  enable/disable auto-negotiation as desired, and reset.
4205  *	- If the PHY does not auto-negotiate just reset it.
4206  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4207  *	  otherwise do it later based on the outcome of auto-negotiation.
4208  */
4209 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4210 		       unsigned int port, struct link_config *lc,
4211 		       u8 sleep_ok, int timeout)
4212 {
4213 	unsigned int fw_caps = adapter->params.fw_caps_support;
4214 	struct fw_port_cmd cmd;
4215 	fw_port_cap32_t rcap;
4216 	int ret;
4217 
4218 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4219 	    lc->autoneg == AUTONEG_ENABLE) {
4220 		return -EINVAL;
4221 	}
4222 
4223 	/* Compute our Requested Port Capabilities and send that on to the
4224 	 * Firmware.
4225 	 */
4226 	rcap = t4_link_acaps(adapter, port, lc);
4227 	memset(&cmd, 0, sizeof(cmd));
4228 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4229 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4230 				       FW_PORT_CMD_PORTID_V(port));
4231 	cmd.action_to_len16 =
4232 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4233 						 ? FW_PORT_ACTION_L1_CFG
4234 						 : FW_PORT_ACTION_L1_CFG32) |
4235 						 FW_LEN16(cmd));
4236 	if (fw_caps == FW_CAPS16)
4237 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4238 	else
4239 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4240 
4241 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4242 				      sleep_ok, timeout);
4243 
4244 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4245 	 * the Physical Port Capabilities, some combinations of features may
4246 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4247 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4248 	 * request, flag that here.
4249 	 */
4250 	if (ret) {
4251 		dev_err(adapter->pdev_dev,
4252 			"Requested Port Capabilities %#x rejected, error %d\n",
4253 			rcap, -ret);
4254 		return ret;
4255 	}
4256 	return 0;
4257 }
4258 
4259 /**
4260  *	t4_restart_aneg - restart autonegotiation
4261  *	@adap: the adapter
4262  *	@mbox: mbox to use for the FW command
4263  *	@port: the port id
4264  *
4265  *	Restarts autonegotiation for the selected port.
4266  */
4267 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4268 {
4269 	unsigned int fw_caps = adap->params.fw_caps_support;
4270 	struct fw_port_cmd c;
4271 
4272 	memset(&c, 0, sizeof(c));
4273 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4274 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4275 				     FW_PORT_CMD_PORTID_V(port));
4276 	c.action_to_len16 =
4277 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4278 						 ? FW_PORT_ACTION_L1_CFG
4279 						 : FW_PORT_ACTION_L1_CFG32) |
4280 			    FW_LEN16(c));
4281 	if (fw_caps == FW_CAPS16)
4282 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4283 	else
4284 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4285 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4286 }
4287 
4288 typedef void (*int_handler_t)(struct adapter *adap);
4289 
4290 struct intr_info {
4291 	unsigned int mask;       /* bits to check in interrupt status */
4292 	const char *msg;         /* message to print or NULL */
4293 	short stat_idx;          /* stat counter to increment or -1 */
4294 	unsigned short fatal;    /* whether the condition reported is fatal */
4295 	int_handler_t int_handler; /* platform-specific int handler */
4296 };
4297 
4298 /**
4299  *	t4_handle_intr_status - table driven interrupt handler
4300  *	@adapter: the adapter that generated the interrupt
4301  *	@reg: the interrupt status register to process
4302  *	@acts: table of interrupt actions
4303  *
4304  *	A table driven interrupt handler that applies a set of masks to an
4305  *	interrupt status word and performs the corresponding actions if the
4306  *	interrupts described by the mask have occurred.  The actions include
4307  *	optionally emitting a warning or alert message.  The table is terminated
4308  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4309  *	conditions.
4310  */
4311 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4312 				 const struct intr_info *acts)
4313 {
4314 	int fatal = 0;
4315 	unsigned int mask = 0;
4316 	unsigned int status = t4_read_reg(adapter, reg);
4317 
4318 	for ( ; acts->mask; ++acts) {
4319 		if (!(status & acts->mask))
4320 			continue;
4321 		if (acts->fatal) {
4322 			fatal++;
4323 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4324 				  status & acts->mask);
4325 		} else if (acts->msg && printk_ratelimit())
4326 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4327 				 status & acts->mask);
4328 		if (acts->int_handler)
4329 			acts->int_handler(adapter);
4330 		mask |= acts->mask;
4331 	}
4332 	status &= mask;
4333 	if (status)                           /* clear processed interrupts */
4334 		t4_write_reg(adapter, reg, status);
4335 	return fatal;
4336 }
4337 
4338 /*
4339  * Interrupt handler for the PCIE module.
4340  */
4341 static void pcie_intr_handler(struct adapter *adapter)
4342 {
4343 	static const struct intr_info sysbus_intr_info[] = {
4344 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4345 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4346 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4347 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4348 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4349 		{ 0 }
4350 	};
4351 	static const struct intr_info pcie_port_intr_info[] = {
4352 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4353 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4354 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4355 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4356 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4357 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4358 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4359 		{ RDPE_F, "Rx data parity error", -1, 1 },
4360 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4361 		{ 0 }
4362 	};
4363 	static const struct intr_info pcie_intr_info[] = {
4364 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4365 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4366 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4367 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4368 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4369 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4370 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4371 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4372 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4373 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4374 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4375 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4376 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4377 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4378 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4379 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4380 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4381 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4382 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4383 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4384 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4385 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4386 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4387 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4388 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4389 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4390 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4391 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4392 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4393 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4394 		  -1, 0 },
4395 		{ 0 }
4396 	};
4397 
4398 	static struct intr_info t5_pcie_intr_info[] = {
4399 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4400 		  -1, 1 },
4401 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4402 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4403 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4404 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4405 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4406 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4407 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4408 		  -1, 1 },
4409 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4410 		  -1, 1 },
4411 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4412 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4413 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4414 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4415 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4416 		  -1, 1 },
4417 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4418 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4419 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4420 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4421 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4422 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4423 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4424 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4425 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4426 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4427 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4428 		  -1, 1 },
4429 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4430 		  -1, 1 },
4431 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4432 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4433 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4434 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4435 		{ 0 }
4436 	};
4437 
4438 	int fat;
4439 
4440 	if (is_t4(adapter->params.chip))
4441 		fat = t4_handle_intr_status(adapter,
4442 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4443 				sysbus_intr_info) +
4444 			t4_handle_intr_status(adapter,
4445 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4446 					pcie_port_intr_info) +
4447 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4448 					      pcie_intr_info);
4449 	else
4450 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4451 					    t5_pcie_intr_info);
4452 
4453 	if (fat)
4454 		t4_fatal_err(adapter);
4455 }
4456 
4457 /*
4458  * TP interrupt handler.
4459  */
4460 static void tp_intr_handler(struct adapter *adapter)
4461 {
4462 	static const struct intr_info tp_intr_info[] = {
4463 		{ 0x3fffffff, "TP parity error", -1, 1 },
4464 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4465 		{ 0 }
4466 	};
4467 
4468 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4469 		t4_fatal_err(adapter);
4470 }
4471 
4472 /*
4473  * SGE interrupt handler.
4474  */
4475 static void sge_intr_handler(struct adapter *adapter)
4476 {
4477 	u32 v = 0, perr;
4478 	u32 err;
4479 
4480 	static const struct intr_info sge_intr_info[] = {
4481 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4482 		  "SGE received CPL exceeding IQE size", -1, 1 },
4483 		{ ERR_INVALID_CIDX_INC_F,
4484 		  "SGE GTS CIDX increment too large", -1, 0 },
4485 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4486 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4487 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4488 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4489 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4490 		  0 },
4491 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4492 		  0 },
4493 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4494 		  0 },
4495 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4496 		  0 },
4497 		{ ERR_ING_CTXT_PRIO_F,
4498 		  "SGE too many priority ingress contexts", -1, 0 },
4499 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4500 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4501 		{ 0 }
4502 	};
4503 
4504 	static struct intr_info t4t5_sge_intr_info[] = {
4505 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4506 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4507 		{ ERR_EGR_CTXT_PRIO_F,
4508 		  "SGE too many priority egress contexts", -1, 0 },
4509 		{ 0 }
4510 	};
4511 
4512 	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4513 	if (perr) {
4514 		v |= perr;
4515 		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4516 			  perr);
4517 	}
4518 
4519 	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4520 	if (perr) {
4521 		v |= perr;
4522 		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4523 			  perr);
4524 	}
4525 
4526 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4527 		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4528 		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4529 		perr &= ~ERR_T_RXCRC_F;
4530 		if (perr) {
4531 			v |= perr;
4532 			dev_alert(adapter->pdev_dev,
4533 				  "SGE Cause5 Parity Error %#x\n", perr);
4534 		}
4535 	}
4536 
4537 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4538 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4539 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4540 					   t4t5_sge_intr_info);
4541 
4542 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4543 	if (err & ERROR_QID_VALID_F) {
4544 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4545 			ERROR_QID_G(err));
4546 		if (err & UNCAPTURED_ERROR_F)
4547 			dev_err(adapter->pdev_dev,
4548 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4549 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4550 			     UNCAPTURED_ERROR_F);
4551 	}
4552 
4553 	if (v != 0)
4554 		t4_fatal_err(adapter);
4555 }
4556 
4557 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4558 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4559 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4560 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4561 
4562 /*
4563  * CIM interrupt handler.
4564  */
4565 static void cim_intr_handler(struct adapter *adapter)
4566 {
4567 	static const struct intr_info cim_intr_info[] = {
4568 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4569 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4570 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4571 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4572 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4573 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4574 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4575 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4576 		{ 0 }
4577 	};
4578 	static const struct intr_info cim_upintr_info[] = {
4579 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4580 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4581 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4582 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4583 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4584 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4585 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4586 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4587 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4588 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4589 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4590 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4591 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4592 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4593 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4594 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4595 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4596 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4597 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4598 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4599 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4600 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4601 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4602 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4603 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4604 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4605 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4606 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4607 		{ 0 }
4608 	};
4609 
4610 	u32 val, fw_err;
4611 	int fat;
4612 
4613 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4614 	if (fw_err & PCIE_FW_ERR_F)
4615 		t4_report_fw_error(adapter);
4616 
4617 	/* When the Firmware detects an internal error which normally
4618 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4619 	 * in order to make sure the Host sees the Firmware Crash.  So
4620 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4621 	 * ignore the Timer0 interrupt.
4622 	 */
4623 
4624 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4625 	if (val & TIMER0INT_F)
4626 		if (!(fw_err & PCIE_FW_ERR_F) ||
4627 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4628 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4629 				     TIMER0INT_F);
4630 
4631 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4632 				    cim_intr_info) +
4633 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4634 				    cim_upintr_info);
4635 	if (fat)
4636 		t4_fatal_err(adapter);
4637 }
4638 
4639 /*
4640  * ULP RX interrupt handler.
4641  */
4642 static void ulprx_intr_handler(struct adapter *adapter)
4643 {
4644 	static const struct intr_info ulprx_intr_info[] = {
4645 		{ 0x1800000, "ULPRX context error", -1, 1 },
4646 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4647 		{ 0 }
4648 	};
4649 
4650 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4651 		t4_fatal_err(adapter);
4652 }
4653 
4654 /*
4655  * ULP TX interrupt handler.
4656  */
4657 static void ulptx_intr_handler(struct adapter *adapter)
4658 {
4659 	static const struct intr_info ulptx_intr_info[] = {
4660 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4661 		  0 },
4662 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4663 		  0 },
4664 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4665 		  0 },
4666 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4667 		  0 },
4668 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4669 		{ 0 }
4670 	};
4671 
4672 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4673 		t4_fatal_err(adapter);
4674 }
4675 
4676 /*
4677  * PM TX interrupt handler.
4678  */
4679 static void pmtx_intr_handler(struct adapter *adapter)
4680 {
4681 	static const struct intr_info pmtx_intr_info[] = {
4682 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4683 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4684 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4685 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4686 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4687 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4688 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4689 		  -1, 1 },
4690 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4691 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4692 		{ 0 }
4693 	};
4694 
4695 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4696 		t4_fatal_err(adapter);
4697 }
4698 
4699 /*
4700  * PM RX interrupt handler.
4701  */
4702 static void pmrx_intr_handler(struct adapter *adapter)
4703 {
4704 	static const struct intr_info pmrx_intr_info[] = {
4705 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4706 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4707 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4708 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4709 		  -1, 1 },
4710 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4711 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4712 		{ 0 }
4713 	};
4714 
4715 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4716 		t4_fatal_err(adapter);
4717 }
4718 
4719 /*
4720  * CPL switch interrupt handler.
4721  */
4722 static void cplsw_intr_handler(struct adapter *adapter)
4723 {
4724 	static const struct intr_info cplsw_intr_info[] = {
4725 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4726 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4727 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4728 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4729 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4730 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4731 		{ 0 }
4732 	};
4733 
4734 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4735 		t4_fatal_err(adapter);
4736 }
4737 
4738 /*
4739  * LE interrupt handler.
4740  */
4741 static void le_intr_handler(struct adapter *adap)
4742 {
4743 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4744 	static const struct intr_info le_intr_info[] = {
4745 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4746 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4747 		{ PARITYERR_F, "LE parity error", -1, 1 },
4748 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4749 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4750 		{ 0 }
4751 	};
4752 
4753 	static struct intr_info t6_le_intr_info[] = {
4754 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4755 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4756 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4757 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4758 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4759 		{ 0 }
4760 	};
4761 
4762 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4763 				  (chip <= CHELSIO_T5) ?
4764 				  le_intr_info : t6_le_intr_info))
4765 		t4_fatal_err(adap);
4766 }
4767 
4768 /*
4769  * MPS interrupt handler.
4770  */
4771 static void mps_intr_handler(struct adapter *adapter)
4772 {
4773 	static const struct intr_info mps_rx_intr_info[] = {
4774 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4775 		{ 0 }
4776 	};
4777 	static const struct intr_info mps_tx_intr_info[] = {
4778 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4779 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4780 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4781 		  -1, 1 },
4782 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4783 		  -1, 1 },
4784 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4785 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4786 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4787 		{ 0 }
4788 	};
4789 	static const struct intr_info t6_mps_tx_intr_info[] = {
4790 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4791 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4792 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4793 		  -1, 1 },
4794 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4795 		  -1, 1 },
4796 		/* MPS Tx Bubble is normal for T6 */
4797 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4798 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4799 		{ 0 }
4800 	};
4801 	static const struct intr_info mps_trc_intr_info[] = {
4802 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4803 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4804 		  -1, 1 },
4805 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4806 		{ 0 }
4807 	};
4808 	static const struct intr_info mps_stat_sram_intr_info[] = {
4809 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4810 		{ 0 }
4811 	};
4812 	static const struct intr_info mps_stat_tx_intr_info[] = {
4813 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4814 		{ 0 }
4815 	};
4816 	static const struct intr_info mps_stat_rx_intr_info[] = {
4817 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4818 		{ 0 }
4819 	};
4820 	static const struct intr_info mps_cls_intr_info[] = {
4821 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4822 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4823 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4824 		{ 0 }
4825 	};
4826 
4827 	int fat;
4828 
4829 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4830 				    mps_rx_intr_info) +
4831 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4832 				    is_t6(adapter->params.chip)
4833 				    ? t6_mps_tx_intr_info
4834 				    : mps_tx_intr_info) +
4835 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4836 				    mps_trc_intr_info) +
4837 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4838 				    mps_stat_sram_intr_info) +
4839 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4840 				    mps_stat_tx_intr_info) +
4841 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4842 				    mps_stat_rx_intr_info) +
4843 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4844 				    mps_cls_intr_info);
4845 
4846 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4847 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4848 	if (fat)
4849 		t4_fatal_err(adapter);
4850 }
4851 
4852 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4853 		      ECC_UE_INT_CAUSE_F)
4854 
4855 /*
4856  * EDC/MC interrupt handler.
4857  */
4858 static void mem_intr_handler(struct adapter *adapter, int idx)
4859 {
4860 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4861 
4862 	unsigned int addr, cnt_addr, v;
4863 
4864 	if (idx <= MEM_EDC1) {
4865 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4866 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4867 	} else if (idx == MEM_MC) {
4868 		if (is_t4(adapter->params.chip)) {
4869 			addr = MC_INT_CAUSE_A;
4870 			cnt_addr = MC_ECC_STATUS_A;
4871 		} else {
4872 			addr = MC_P_INT_CAUSE_A;
4873 			cnt_addr = MC_P_ECC_STATUS_A;
4874 		}
4875 	} else {
4876 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4877 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4878 	}
4879 
4880 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4881 	if (v & PERR_INT_CAUSE_F)
4882 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4883 			  name[idx]);
4884 	if (v & ECC_CE_INT_CAUSE_F) {
4885 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4886 
4887 		t4_edc_err_read(adapter, idx);
4888 
4889 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4890 		if (printk_ratelimit())
4891 			dev_warn(adapter->pdev_dev,
4892 				 "%u %s correctable ECC data error%s\n",
4893 				 cnt, name[idx], cnt > 1 ? "s" : "");
4894 	}
4895 	if (v & ECC_UE_INT_CAUSE_F)
4896 		dev_alert(adapter->pdev_dev,
4897 			  "%s uncorrectable ECC data error\n", name[idx]);
4898 
4899 	t4_write_reg(adapter, addr, v);
4900 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4901 		t4_fatal_err(adapter);
4902 }
4903 
4904 /*
4905  * MA interrupt handler.
4906  */
4907 static void ma_intr_handler(struct adapter *adap)
4908 {
4909 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4910 
4911 	if (status & MEM_PERR_INT_CAUSE_F) {
4912 		dev_alert(adap->pdev_dev,
4913 			  "MA parity error, parity status %#x\n",
4914 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4915 		if (is_t5(adap->params.chip))
4916 			dev_alert(adap->pdev_dev,
4917 				  "MA parity error, parity status %#x\n",
4918 				  t4_read_reg(adap,
4919 					      MA_PARITY_ERROR_STATUS2_A));
4920 	}
4921 	if (status & MEM_WRAP_INT_CAUSE_F) {
4922 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4923 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4924 			  "client %u to address %#x\n",
4925 			  MEM_WRAP_CLIENT_NUM_G(v),
4926 			  MEM_WRAP_ADDRESS_G(v) << 4);
4927 	}
4928 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4929 	t4_fatal_err(adap);
4930 }
4931 
4932 /*
4933  * SMB interrupt handler.
4934  */
4935 static void smb_intr_handler(struct adapter *adap)
4936 {
4937 	static const struct intr_info smb_intr_info[] = {
4938 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4939 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4940 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4941 		{ 0 }
4942 	};
4943 
4944 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4945 		t4_fatal_err(adap);
4946 }
4947 
4948 /*
4949  * NC-SI interrupt handler.
4950  */
4951 static void ncsi_intr_handler(struct adapter *adap)
4952 {
4953 	static const struct intr_info ncsi_intr_info[] = {
4954 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4955 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4956 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4957 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4958 		{ 0 }
4959 	};
4960 
4961 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4962 		t4_fatal_err(adap);
4963 }
4964 
4965 /*
4966  * XGMAC interrupt handler.
4967  */
4968 static void xgmac_intr_handler(struct adapter *adap, int port)
4969 {
4970 	u32 v, int_cause_reg;
4971 
4972 	if (is_t4(adap->params.chip))
4973 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4974 	else
4975 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4976 
4977 	v = t4_read_reg(adap, int_cause_reg);
4978 
4979 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4980 	if (!v)
4981 		return;
4982 
4983 	if (v & TXFIFO_PRTY_ERR_F)
4984 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4985 			  port);
4986 	if (v & RXFIFO_PRTY_ERR_F)
4987 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4988 			  port);
4989 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4990 	t4_fatal_err(adap);
4991 }
4992 
4993 /*
4994  * PL interrupt handler.
4995  */
4996 static void pl_intr_handler(struct adapter *adap)
4997 {
4998 	static const struct intr_info pl_intr_info[] = {
4999 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
5000 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
5001 		{ 0 }
5002 	};
5003 
5004 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
5005 		t4_fatal_err(adap);
5006 }
5007 
5008 #define PF_INTR_MASK (PFSW_F)
5009 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5010 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5011 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5012 
5013 /**
5014  *	t4_slow_intr_handler - control path interrupt handler
5015  *	@adapter: the adapter
5016  *
5017  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5018  *	The designation 'slow' is because it involves register reads, while
5019  *	data interrupts typically don't involve any MMIOs.
5020  */
5021 int t4_slow_intr_handler(struct adapter *adapter)
5022 {
5023 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5024 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5025 	 * easiest just to mask that case here.
5026 	 */
5027 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5028 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5029 	u32 cause = raw_cause & enable;
5030 
5031 	if (!(cause & GLBL_INTR_MASK))
5032 		return 0;
5033 	if (cause & CIM_F)
5034 		cim_intr_handler(adapter);
5035 	if (cause & MPS_F)
5036 		mps_intr_handler(adapter);
5037 	if (cause & NCSI_F)
5038 		ncsi_intr_handler(adapter);
5039 	if (cause & PL_F)
5040 		pl_intr_handler(adapter);
5041 	if (cause & SMB_F)
5042 		smb_intr_handler(adapter);
5043 	if (cause & XGMAC0_F)
5044 		xgmac_intr_handler(adapter, 0);
5045 	if (cause & XGMAC1_F)
5046 		xgmac_intr_handler(adapter, 1);
5047 	if (cause & XGMAC_KR0_F)
5048 		xgmac_intr_handler(adapter, 2);
5049 	if (cause & XGMAC_KR1_F)
5050 		xgmac_intr_handler(adapter, 3);
5051 	if (cause & PCIE_F)
5052 		pcie_intr_handler(adapter);
5053 	if (cause & MC_F)
5054 		mem_intr_handler(adapter, MEM_MC);
5055 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5056 		mem_intr_handler(adapter, MEM_MC1);
5057 	if (cause & EDC0_F)
5058 		mem_intr_handler(adapter, MEM_EDC0);
5059 	if (cause & EDC1_F)
5060 		mem_intr_handler(adapter, MEM_EDC1);
5061 	if (cause & LE_F)
5062 		le_intr_handler(adapter);
5063 	if (cause & TP_F)
5064 		tp_intr_handler(adapter);
5065 	if (cause & MA_F)
5066 		ma_intr_handler(adapter);
5067 	if (cause & PM_TX_F)
5068 		pmtx_intr_handler(adapter);
5069 	if (cause & PM_RX_F)
5070 		pmrx_intr_handler(adapter);
5071 	if (cause & ULP_RX_F)
5072 		ulprx_intr_handler(adapter);
5073 	if (cause & CPL_SWITCH_F)
5074 		cplsw_intr_handler(adapter);
5075 	if (cause & SGE_F)
5076 		sge_intr_handler(adapter);
5077 	if (cause & ULP_TX_F)
5078 		ulptx_intr_handler(adapter);
5079 
5080 	/* Clear the interrupts just processed for which we are the master. */
5081 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5082 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5083 	return 1;
5084 }
5085 
5086 /**
5087  *	t4_intr_enable - enable interrupts
5088  *	@adapter: the adapter whose interrupts should be enabled
5089  *
5090  *	Enable PF-specific interrupts for the calling function and the top-level
5091  *	interrupt concentrator for global interrupts.  Interrupts are already
5092  *	enabled at each module,	here we just enable the roots of the interrupt
5093  *	hierarchies.
5094  *
5095  *	Note: this function should be called only when the driver manages
5096  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5097  *	function at a time should be doing this.
5098  */
5099 void t4_intr_enable(struct adapter *adapter)
5100 {
5101 	u32 val = 0;
5102 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5103 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5104 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5105 
5106 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5107 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5108 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5109 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5110 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5111 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5112 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5113 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5114 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5115 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5116 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5117 }
5118 
5119 /**
5120  *	t4_intr_disable - disable interrupts
5121  *	@adapter: the adapter whose interrupts should be disabled
5122  *
5123  *	Disable interrupts.  We only disable the top-level interrupt
5124  *	concentrators.  The caller must be a PCI function managing global
5125  *	interrupts.
5126  */
5127 void t4_intr_disable(struct adapter *adapter)
5128 {
5129 	u32 whoami, pf;
5130 
5131 	if (pci_channel_offline(adapter->pdev))
5132 		return;
5133 
5134 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5135 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5136 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5137 
5138 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5139 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5140 }
5141 
5142 unsigned int t4_chip_rss_size(struct adapter *adap)
5143 {
5144 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5145 		return RSS_NENTRIES;
5146 	else
5147 		return T6_RSS_NENTRIES;
5148 }
5149 
5150 /**
5151  *	t4_config_rss_range - configure a portion of the RSS mapping table
5152  *	@adapter: the adapter
5153  *	@mbox: mbox to use for the FW command
5154  *	@viid: virtual interface whose RSS subtable is to be written
5155  *	@start: start entry in the table to write
5156  *	@n: how many table entries to write
5157  *	@rspq: values for the response queue lookup table
5158  *	@nrspq: number of values in @rspq
5159  *
5160  *	Programs the selected part of the VI's RSS mapping table with the
5161  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5162  *	until the full table range is populated.
5163  *
5164  *	The caller must ensure the values in @rspq are in the range allowed for
5165  *	@viid.
5166  */
5167 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5168 			int start, int n, const u16 *rspq, unsigned int nrspq)
5169 {
5170 	int ret;
5171 	const u16 *rsp = rspq;
5172 	const u16 *rsp_end = rspq + nrspq;
5173 	struct fw_rss_ind_tbl_cmd cmd;
5174 
5175 	memset(&cmd, 0, sizeof(cmd));
5176 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5177 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5178 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5179 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5180 
5181 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5182 	while (n > 0) {
5183 		int nq = min(n, 32);
5184 		__be32 *qp = &cmd.iq0_to_iq2;
5185 
5186 		cmd.niqid = cpu_to_be16(nq);
5187 		cmd.startidx = cpu_to_be16(start);
5188 
5189 		start += nq;
5190 		n -= nq;
5191 
5192 		while (nq > 0) {
5193 			unsigned int v;
5194 
5195 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5196 			if (++rsp >= rsp_end)
5197 				rsp = rspq;
5198 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5199 			if (++rsp >= rsp_end)
5200 				rsp = rspq;
5201 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5202 			if (++rsp >= rsp_end)
5203 				rsp = rspq;
5204 
5205 			*qp++ = cpu_to_be32(v);
5206 			nq -= 3;
5207 		}
5208 
5209 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5210 		if (ret)
5211 			return ret;
5212 	}
5213 	return 0;
5214 }
5215 
5216 /**
5217  *	t4_config_glbl_rss - configure the global RSS mode
5218  *	@adapter: the adapter
5219  *	@mbox: mbox to use for the FW command
5220  *	@mode: global RSS mode
5221  *	@flags: mode-specific flags
5222  *
5223  *	Sets the global RSS mode.
5224  */
5225 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5226 		       unsigned int flags)
5227 {
5228 	struct fw_rss_glb_config_cmd c;
5229 
5230 	memset(&c, 0, sizeof(c));
5231 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5232 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5233 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5234 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5235 		c.u.manual.mode_pkd =
5236 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5237 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5238 		c.u.basicvirtual.mode_pkd =
5239 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5240 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5241 	} else
5242 		return -EINVAL;
5243 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5244 }
5245 
5246 /**
5247  *	t4_config_vi_rss - configure per VI RSS settings
5248  *	@adapter: the adapter
5249  *	@mbox: mbox to use for the FW command
5250  *	@viid: the VI id
5251  *	@flags: RSS flags
5252  *	@defq: id of the default RSS queue for the VI.
5253  *
5254  *	Configures VI-specific RSS properties.
5255  */
5256 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5257 		     unsigned int flags, unsigned int defq)
5258 {
5259 	struct fw_rss_vi_config_cmd c;
5260 
5261 	memset(&c, 0, sizeof(c));
5262 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5263 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5264 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5265 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5266 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5267 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5268 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5269 }
5270 
5271 /* Read an RSS table row */
5272 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5273 {
5274 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5275 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5276 				   5, 0, val);
5277 }
5278 
5279 /**
5280  *	t4_read_rss - read the contents of the RSS mapping table
5281  *	@adapter: the adapter
5282  *	@map: holds the contents of the RSS mapping table
5283  *
5284  *	Reads the contents of the RSS hash->queue mapping table.
5285  */
5286 int t4_read_rss(struct adapter *adapter, u16 *map)
5287 {
5288 	int i, ret, nentries;
5289 	u32 val;
5290 
5291 	nentries = t4_chip_rss_size(adapter);
5292 	for (i = 0; i < nentries / 2; ++i) {
5293 		ret = rd_rss_row(adapter, i, &val);
5294 		if (ret)
5295 			return ret;
5296 		*map++ = LKPTBLQUEUE0_G(val);
5297 		*map++ = LKPTBLQUEUE1_G(val);
5298 	}
5299 	return 0;
5300 }
5301 
5302 static unsigned int t4_use_ldst(struct adapter *adap)
5303 {
5304 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5305 }
5306 
5307 /**
5308  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5309  * @adap: the adapter
5310  * @cmd: TP fw ldst address space type
5311  * @vals: where the indirect register values are stored/written
5312  * @nregs: how many indirect registers to read/write
5313  * @start_idx: index of first indirect register to read/write
5314  * @rw: Read (1) or Write (0)
5315  * @sleep_ok: if true we may sleep while awaiting command completion
5316  *
5317  * Access TP indirect registers through LDST
5318  */
5319 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5320 			    unsigned int nregs, unsigned int start_index,
5321 			    unsigned int rw, bool sleep_ok)
5322 {
5323 	int ret = 0;
5324 	unsigned int i;
5325 	struct fw_ldst_cmd c;
5326 
5327 	for (i = 0; i < nregs; i++) {
5328 		memset(&c, 0, sizeof(c));
5329 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5330 						FW_CMD_REQUEST_F |
5331 						(rw ? FW_CMD_READ_F :
5332 						      FW_CMD_WRITE_F) |
5333 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5334 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5335 
5336 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5337 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5338 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5339 				      sleep_ok);
5340 		if (ret)
5341 			return ret;
5342 
5343 		if (rw)
5344 			vals[i] = be32_to_cpu(c.u.addrval.val);
5345 	}
5346 	return 0;
5347 }
5348 
5349 /**
5350  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5351  * @adap: the adapter
5352  * @reg_addr: Address Register
5353  * @reg_data: Data register
5354  * @buff: where the indirect register values are stored/written
5355  * @nregs: how many indirect registers to read/write
5356  * @start_index: index of first indirect register to read/write
5357  * @rw: READ(1) or WRITE(0)
5358  * @sleep_ok: if true we may sleep while awaiting command completion
5359  *
5360  * Read/Write TP indirect registers through LDST if possible.
5361  * Else, use backdoor access
5362  **/
5363 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5364 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5365 			      bool sleep_ok)
5366 {
5367 	int rc = -EINVAL;
5368 	int cmd;
5369 
5370 	switch (reg_addr) {
5371 	case TP_PIO_ADDR_A:
5372 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5373 		break;
5374 	case TP_TM_PIO_ADDR_A:
5375 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5376 		break;
5377 	case TP_MIB_INDEX_A:
5378 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5379 		break;
5380 	default:
5381 		goto indirect_access;
5382 	}
5383 
5384 	if (t4_use_ldst(adap))
5385 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5386 				      sleep_ok);
5387 
5388 indirect_access:
5389 
5390 	if (rc) {
5391 		if (rw)
5392 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5393 					 start_index);
5394 		else
5395 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5396 					  start_index);
5397 	}
5398 }
5399 
5400 /**
5401  * t4_tp_pio_read - Read TP PIO registers
5402  * @adap: the adapter
5403  * @buff: where the indirect register values are written
5404  * @nregs: how many indirect registers to read
5405  * @start_index: index of first indirect register to read
5406  * @sleep_ok: if true we may sleep while awaiting command completion
5407  *
5408  * Read TP PIO Registers
5409  **/
5410 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5411 		    u32 start_index, bool sleep_ok)
5412 {
5413 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5414 			  start_index, 1, sleep_ok);
5415 }
5416 
5417 /**
5418  * t4_tp_pio_write - Write TP PIO registers
5419  * @adap: the adapter
5420  * @buff: where the indirect register values are stored
5421  * @nregs: how many indirect registers to write
5422  * @start_index: index of first indirect register to write
5423  * @sleep_ok: if true we may sleep while awaiting command completion
5424  *
5425  * Write TP PIO Registers
5426  **/
5427 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5428 			    u32 start_index, bool sleep_ok)
5429 {
5430 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5431 			  start_index, 0, sleep_ok);
5432 }
5433 
5434 /**
5435  * t4_tp_tm_pio_read - Read TP TM PIO registers
5436  * @adap: the adapter
5437  * @buff: where the indirect register values are written
5438  * @nregs: how many indirect registers to read
5439  * @start_index: index of first indirect register to read
5440  * @sleep_ok: if true we may sleep while awaiting command completion
5441  *
5442  * Read TP TM PIO Registers
5443  **/
5444 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5445 		       u32 start_index, bool sleep_ok)
5446 {
5447 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5448 			  nregs, start_index, 1, sleep_ok);
5449 }
5450 
5451 /**
5452  * t4_tp_mib_read - Read TP MIB registers
5453  * @adap: the adapter
5454  * @buff: where the indirect register values are written
5455  * @nregs: how many indirect registers to read
5456  * @start_index: index of first indirect register to read
5457  * @sleep_ok: if true we may sleep while awaiting command completion
5458  *
5459  * Read TP MIB Registers
5460  **/
5461 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5462 		    bool sleep_ok)
5463 {
5464 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5465 			  start_index, 1, sleep_ok);
5466 }
5467 
5468 /**
5469  *	t4_read_rss_key - read the global RSS key
5470  *	@adap: the adapter
5471  *	@key: 10-entry array holding the 320-bit RSS key
5472  *      @sleep_ok: if true we may sleep while awaiting command completion
5473  *
5474  *	Reads the global 320-bit RSS key.
5475  */
5476 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5477 {
5478 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5479 }
5480 
5481 /**
5482  *	t4_write_rss_key - program one of the RSS keys
5483  *	@adap: the adapter
5484  *	@key: 10-entry array holding the 320-bit RSS key
5485  *	@idx: which RSS key to write
5486  *      @sleep_ok: if true we may sleep while awaiting command completion
5487  *
5488  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5489  *	0..15 the corresponding entry in the RSS key table is written,
5490  *	otherwise the global RSS key is written.
5491  */
5492 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5493 		      bool sleep_ok)
5494 {
5495 	u8 rss_key_addr_cnt = 16;
5496 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5497 
5498 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5499 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5500 	 * as index[5:4](upper 2) into key table
5501 	 */
5502 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5503 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5504 		rss_key_addr_cnt = 32;
5505 
5506 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5507 
5508 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5509 		if (rss_key_addr_cnt > 16)
5510 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5511 				     KEYWRADDRX_V(idx >> 4) |
5512 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5513 		else
5514 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5515 				     KEYWRADDR_V(idx) | KEYWREN_F);
5516 	}
5517 }
5518 
5519 /**
5520  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5521  *	@adapter: the adapter
5522  *	@index: the entry in the PF RSS table to read
5523  *	@valp: where to store the returned value
5524  *      @sleep_ok: if true we may sleep while awaiting command completion
5525  *
5526  *	Reads the PF RSS Configuration Table at the specified index and returns
5527  *	the value found there.
5528  */
5529 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5530 			   u32 *valp, bool sleep_ok)
5531 {
5532 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5533 }
5534 
5535 /**
5536  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5537  *	@adapter: the adapter
5538  *	@index: the entry in the VF RSS table to read
5539  *	@vfl: where to store the returned VFL
5540  *	@vfh: where to store the returned VFH
5541  *      @sleep_ok: if true we may sleep while awaiting command completion
5542  *
5543  *	Reads the VF RSS Configuration Table at the specified index and returns
5544  *	the (VFL, VFH) values found there.
5545  */
5546 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5547 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5548 {
5549 	u32 vrt, mask, data;
5550 
5551 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5552 		mask = VFWRADDR_V(VFWRADDR_M);
5553 		data = VFWRADDR_V(index);
5554 	} else {
5555 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5556 		 data = T6_VFWRADDR_V(index);
5557 	}
5558 
5559 	/* Request that the index'th VF Table values be read into VFL/VFH.
5560 	 */
5561 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5562 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5563 	vrt |= data | VFRDEN_F;
5564 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5565 
5566 	/* Grab the VFL/VFH values ...
5567 	 */
5568 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5569 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5570 }
5571 
5572 /**
5573  *	t4_read_rss_pf_map - read PF RSS Map
5574  *	@adapter: the adapter
5575  *      @sleep_ok: if true we may sleep while awaiting command completion
5576  *
5577  *	Reads the PF RSS Map register and returns its value.
5578  */
5579 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5580 {
5581 	u32 pfmap;
5582 
5583 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5584 	return pfmap;
5585 }
5586 
5587 /**
5588  *	t4_read_rss_pf_mask - read PF RSS Mask
5589  *	@adapter: the adapter
5590  *      @sleep_ok: if true we may sleep while awaiting command completion
5591  *
5592  *	Reads the PF RSS Mask register and returns its value.
5593  */
5594 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5595 {
5596 	u32 pfmask;
5597 
5598 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5599 	return pfmask;
5600 }
5601 
5602 /**
5603  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5604  *	@adap: the adapter
5605  *	@v4: holds the TCP/IP counter values
5606  *	@v6: holds the TCP/IPv6 counter values
5607  *      @sleep_ok: if true we may sleep while awaiting command completion
5608  *
5609  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5610  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5611  */
5612 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5613 			 struct tp_tcp_stats *v6, bool sleep_ok)
5614 {
5615 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5616 
5617 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5618 #define STAT(x)     val[STAT_IDX(x)]
5619 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5620 
5621 	if (v4) {
5622 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5623 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5624 		v4->tcp_out_rsts = STAT(OUT_RST);
5625 		v4->tcp_in_segs  = STAT64(IN_SEG);
5626 		v4->tcp_out_segs = STAT64(OUT_SEG);
5627 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5628 	}
5629 	if (v6) {
5630 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5631 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5632 		v6->tcp_out_rsts = STAT(OUT_RST);
5633 		v6->tcp_in_segs  = STAT64(IN_SEG);
5634 		v6->tcp_out_segs = STAT64(OUT_SEG);
5635 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5636 	}
5637 #undef STAT64
5638 #undef STAT
5639 #undef STAT_IDX
5640 }
5641 
5642 /**
5643  *	t4_tp_get_err_stats - read TP's error MIB counters
5644  *	@adap: the adapter
5645  *	@st: holds the counter values
5646  *      @sleep_ok: if true we may sleep while awaiting command completion
5647  *
5648  *	Returns the values of TP's error counters.
5649  */
5650 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5651 			 bool sleep_ok)
5652 {
5653 	int nchan = adap->params.arch.nchan;
5654 
5655 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5656 		       sleep_ok);
5657 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5658 		       sleep_ok);
5659 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5660 		       sleep_ok);
5661 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5662 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5663 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5664 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5665 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5666 		       sleep_ok);
5667 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5668 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5669 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5670 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5671 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5672 		       sleep_ok);
5673 }
5674 
5675 /**
5676  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5677  *	@adap: the adapter
5678  *	@st: holds the counter values
5679  *      @sleep_ok: if true we may sleep while awaiting command completion
5680  *
5681  *	Returns the values of TP's CPL counters.
5682  */
5683 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5684 			 bool sleep_ok)
5685 {
5686 	int nchan = adap->params.arch.nchan;
5687 
5688 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5689 
5690 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5691 }
5692 
5693 /**
5694  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5695  *	@adap: the adapter
5696  *	@st: holds the counter values
5697  *      @sleep_ok: if true we may sleep while awaiting command completion
5698  *
5699  *	Returns the values of TP's RDMA counters.
5700  */
5701 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5702 			  bool sleep_ok)
5703 {
5704 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5705 		       sleep_ok);
5706 }
5707 
5708 /**
5709  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5710  *	@adap: the adapter
5711  *	@idx: the port index
5712  *	@st: holds the counter values
5713  *      @sleep_ok: if true we may sleep while awaiting command completion
5714  *
5715  *	Returns the values of TP's FCoE counters for the selected port.
5716  */
5717 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5718 		       struct tp_fcoe_stats *st, bool sleep_ok)
5719 {
5720 	u32 val[2];
5721 
5722 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5723 		       sleep_ok);
5724 
5725 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5726 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5727 
5728 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5729 		       sleep_ok);
5730 
5731 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5732 }
5733 
5734 /**
5735  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5736  *	@adap: the adapter
5737  *	@st: holds the counter values
5738  *      @sleep_ok: if true we may sleep while awaiting command completion
5739  *
5740  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5741  */
5742 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5743 		      bool sleep_ok)
5744 {
5745 	u32 val[4];
5746 
5747 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5748 	st->frames = val[0];
5749 	st->drops = val[1];
5750 	st->octets = ((u64)val[2] << 32) | val[3];
5751 }
5752 
5753 /**
5754  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5755  *	@adap: the adapter
5756  *	@mtus: where to store the MTU values
5757  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5758  *
5759  *	Reads the HW path MTU table.
5760  */
5761 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5762 {
5763 	u32 v;
5764 	int i;
5765 
5766 	for (i = 0; i < NMTUS; ++i) {
5767 		t4_write_reg(adap, TP_MTU_TABLE_A,
5768 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5769 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5770 		mtus[i] = MTUVALUE_G(v);
5771 		if (mtu_log)
5772 			mtu_log[i] = MTUWIDTH_G(v);
5773 	}
5774 }
5775 
5776 /**
5777  *	t4_read_cong_tbl - reads the congestion control table
5778  *	@adap: the adapter
5779  *	@incr: where to store the alpha values
5780  *
5781  *	Reads the additive increments programmed into the HW congestion
5782  *	control table.
5783  */
5784 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5785 {
5786 	unsigned int mtu, w;
5787 
5788 	for (mtu = 0; mtu < NMTUS; ++mtu)
5789 		for (w = 0; w < NCCTRL_WIN; ++w) {
5790 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5791 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5792 			incr[mtu][w] = (u16)t4_read_reg(adap,
5793 						TP_CCTRL_TABLE_A) & 0x1fff;
5794 		}
5795 }
5796 
5797 /**
5798  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5799  *	@adap: the adapter
5800  *	@addr: the indirect TP register address
5801  *	@mask: specifies the field within the register to modify
5802  *	@val: new value for the field
5803  *
5804  *	Sets a field of an indirect TP register to the given value.
5805  */
5806 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5807 			    unsigned int mask, unsigned int val)
5808 {
5809 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5810 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5811 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5812 }
5813 
5814 /**
5815  *	init_cong_ctrl - initialize congestion control parameters
5816  *	@a: the alpha values for congestion control
5817  *	@b: the beta values for congestion control
5818  *
5819  *	Initialize the congestion control parameters.
5820  */
5821 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5822 {
5823 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5824 	a[9] = 2;
5825 	a[10] = 3;
5826 	a[11] = 4;
5827 	a[12] = 5;
5828 	a[13] = 6;
5829 	a[14] = 7;
5830 	a[15] = 8;
5831 	a[16] = 9;
5832 	a[17] = 10;
5833 	a[18] = 14;
5834 	a[19] = 17;
5835 	a[20] = 21;
5836 	a[21] = 25;
5837 	a[22] = 30;
5838 	a[23] = 35;
5839 	a[24] = 45;
5840 	a[25] = 60;
5841 	a[26] = 80;
5842 	a[27] = 100;
5843 	a[28] = 200;
5844 	a[29] = 300;
5845 	a[30] = 400;
5846 	a[31] = 500;
5847 
5848 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5849 	b[9] = b[10] = 1;
5850 	b[11] = b[12] = 2;
5851 	b[13] = b[14] = b[15] = b[16] = 3;
5852 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5853 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5854 	b[28] = b[29] = 6;
5855 	b[30] = b[31] = 7;
5856 }
5857 
5858 /* The minimum additive increment value for the congestion control table */
5859 #define CC_MIN_INCR 2U
5860 
5861 /**
5862  *	t4_load_mtus - write the MTU and congestion control HW tables
5863  *	@adap: the adapter
5864  *	@mtus: the values for the MTU table
5865  *	@alpha: the values for the congestion control alpha parameter
5866  *	@beta: the values for the congestion control beta parameter
5867  *
5868  *	Write the HW MTU table with the supplied MTUs and the high-speed
5869  *	congestion control table with the supplied alpha, beta, and MTUs.
5870  *	We write the two tables together because the additive increments
5871  *	depend on the MTUs.
5872  */
5873 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5874 		  const unsigned short *alpha, const unsigned short *beta)
5875 {
5876 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5877 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5878 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5879 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5880 	};
5881 
5882 	unsigned int i, w;
5883 
5884 	for (i = 0; i < NMTUS; ++i) {
5885 		unsigned int mtu = mtus[i];
5886 		unsigned int log2 = fls(mtu);
5887 
5888 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5889 			log2--;
5890 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5891 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5892 
5893 		for (w = 0; w < NCCTRL_WIN; ++w) {
5894 			unsigned int inc;
5895 
5896 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5897 				  CC_MIN_INCR);
5898 
5899 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5900 				     (w << 16) | (beta[w] << 13) | inc);
5901 		}
5902 	}
5903 }
5904 
5905 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5906  * clocks.  The formula is
5907  *
5908  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5909  *
5910  * which is equivalent to
5911  *
5912  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5913  */
5914 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5915 {
5916 	u64 v = bytes256 * adap->params.vpd.cclk;
5917 
5918 	return v * 62 + v / 2;
5919 }
5920 
5921 /**
5922  *	t4_get_chan_txrate - get the current per channel Tx rates
5923  *	@adap: the adapter
5924  *	@nic_rate: rates for NIC traffic
5925  *	@ofld_rate: rates for offloaded traffic
5926  *
5927  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5928  *	for each channel.
5929  */
5930 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5931 {
5932 	u32 v;
5933 
5934 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5935 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5936 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5937 	if (adap->params.arch.nchan == NCHAN) {
5938 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5939 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5940 	}
5941 
5942 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5943 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5944 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5945 	if (adap->params.arch.nchan == NCHAN) {
5946 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5947 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5948 	}
5949 }
5950 
5951 /**
5952  *	t4_set_trace_filter - configure one of the tracing filters
5953  *	@adap: the adapter
5954  *	@tp: the desired trace filter parameters
5955  *	@idx: which filter to configure
5956  *	@enable: whether to enable or disable the filter
5957  *
5958  *	Configures one of the tracing filters available in HW.  If @enable is
5959  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5960  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5961  */
5962 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5963 			int idx, int enable)
5964 {
5965 	int i, ofst = idx * 4;
5966 	u32 data_reg, mask_reg, cfg;
5967 
5968 	if (!enable) {
5969 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5970 		return 0;
5971 	}
5972 
5973 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5974 	if (cfg & TRCMULTIFILTER_F) {
5975 		/* If multiple tracers are enabled, then maximum
5976 		 * capture size is 2.5KB (FIFO size of a single channel)
5977 		 * minus 2 flits for CPL_TRACE_PKT header.
5978 		 */
5979 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5980 			return -EINVAL;
5981 	} else {
5982 		/* If multiple tracers are disabled, to avoid deadlocks
5983 		 * maximum packet capture size of 9600 bytes is recommended.
5984 		 * Also in this mode, only trace0 can be enabled and running.
5985 		 */
5986 		if (tp->snap_len > 9600 || idx)
5987 			return -EINVAL;
5988 	}
5989 
5990 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5991 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5992 	    tp->min_len > TFMINPKTSIZE_M)
5993 		return -EINVAL;
5994 
5995 	/* stop the tracer we'll be changing */
5996 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5997 
5998 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5999 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
6000 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
6001 
6002 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6003 		t4_write_reg(adap, data_reg, tp->data[i]);
6004 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6005 	}
6006 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
6007 		     TFCAPTUREMAX_V(tp->snap_len) |
6008 		     TFMINPKTSIZE_V(tp->min_len));
6009 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6010 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6011 		     (is_t4(adap->params.chip) ?
6012 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6013 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6014 		     T5_TFINVERTMATCH_V(tp->invert)));
6015 
6016 	return 0;
6017 }
6018 
6019 /**
6020  *	t4_get_trace_filter - query one of the tracing filters
6021  *	@adap: the adapter
6022  *	@tp: the current trace filter parameters
6023  *	@idx: which trace filter to query
6024  *	@enabled: non-zero if the filter is enabled
6025  *
6026  *	Returns the current settings of one of the HW tracing filters.
6027  */
6028 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6029 			 int *enabled)
6030 {
6031 	u32 ctla, ctlb;
6032 	int i, ofst = idx * 4;
6033 	u32 data_reg, mask_reg;
6034 
6035 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6036 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6037 
6038 	if (is_t4(adap->params.chip)) {
6039 		*enabled = !!(ctla & TFEN_F);
6040 		tp->port =  TFPORT_G(ctla);
6041 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6042 	} else {
6043 		*enabled = !!(ctla & T5_TFEN_F);
6044 		tp->port = T5_TFPORT_G(ctla);
6045 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6046 	}
6047 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6048 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6049 	tp->skip_ofst = TFOFFSET_G(ctla);
6050 	tp->skip_len = TFLENGTH_G(ctla);
6051 
6052 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6053 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6054 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6055 
6056 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6057 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6058 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6059 	}
6060 }
6061 
6062 /**
6063  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6064  *	@adap: the adapter
6065  *	@cnt: where to store the count statistics
6066  *	@cycles: where to store the cycle statistics
6067  *
6068  *	Returns performance statistics from PMTX.
6069  */
6070 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6071 {
6072 	int i;
6073 	u32 data[2];
6074 
6075 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6076 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6077 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6078 		if (is_t4(adap->params.chip)) {
6079 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6080 		} else {
6081 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6082 					 PM_TX_DBG_DATA_A, data, 2,
6083 					 PM_TX_DBG_STAT_MSB_A);
6084 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6085 		}
6086 	}
6087 }
6088 
6089 /**
6090  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6091  *	@adap: the adapter
6092  *	@cnt: where to store the count statistics
6093  *	@cycles: where to store the cycle statistics
6094  *
6095  *	Returns performance statistics from PMRX.
6096  */
6097 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6098 {
6099 	int i;
6100 	u32 data[2];
6101 
6102 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6103 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6104 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6105 		if (is_t4(adap->params.chip)) {
6106 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6107 		} else {
6108 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6109 					 PM_RX_DBG_DATA_A, data, 2,
6110 					 PM_RX_DBG_STAT_MSB_A);
6111 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6112 		}
6113 	}
6114 }
6115 
6116 /**
6117  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6118  *	@adap: the adapter
6119  *	@pidx: the port index
6120  *
6121  *	Computes and returns a bitmap indicating which MPS buffer groups are
6122  *	associated with the given Port.  Bit i is set if buffer group i is
6123  *	used by the Port.
6124  */
6125 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6126 					      int pidx)
6127 {
6128 	unsigned int chip_version, nports;
6129 
6130 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6131 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6132 
6133 	switch (chip_version) {
6134 	case CHELSIO_T4:
6135 	case CHELSIO_T5:
6136 		switch (nports) {
6137 		case 1: return 0xf;
6138 		case 2: return 3 << (2 * pidx);
6139 		case 4: return 1 << pidx;
6140 		}
6141 		break;
6142 
6143 	case CHELSIO_T6:
6144 		switch (nports) {
6145 		case 2: return 1 << (2 * pidx);
6146 		}
6147 		break;
6148 	}
6149 
6150 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6151 		chip_version, nports);
6152 
6153 	return 0;
6154 }
6155 
6156 /**
6157  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6158  *	@adapter: the adapter
6159  *	@pidx: the port index
6160  *
6161  *	Returns a bitmap indicating which MPS buffer groups are associated
6162  *	with the given Port.  Bit i is set if buffer group i is used by the
6163  *	Port.
6164  */
6165 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6166 {
6167 	u8 *mps_bg_map;
6168 	unsigned int nports;
6169 
6170 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6171 	if (pidx >= nports) {
6172 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6173 			pidx, nports);
6174 		return 0;
6175 	}
6176 
6177 	/* If we've already retrieved/computed this, just return the result.
6178 	 */
6179 	mps_bg_map = adapter->params.mps_bg_map;
6180 	if (mps_bg_map[pidx])
6181 		return mps_bg_map[pidx];
6182 
6183 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6184 	 * If we're talking to such Firmware, let it tell us.  If the new
6185 	 * API isn't supported, revert back to old hardcoded way.  The value
6186 	 * obtained from Firmware is encoded in below format:
6187 	 *
6188 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6189 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6190 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6191 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6192 	 */
6193 	if (adapter->flags & CXGB4_FW_OK) {
6194 		u32 param, val;
6195 		int ret;
6196 
6197 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6198 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6199 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6200 					 0, 1, &param, &val);
6201 		if (!ret) {
6202 			int p;
6203 
6204 			/* Store the BG Map for all of the Ports in order to
6205 			 * avoid more calls to the Firmware in the future.
6206 			 */
6207 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6208 				mps_bg_map[p] = val & 0xff;
6209 
6210 			return mps_bg_map[pidx];
6211 		}
6212 	}
6213 
6214 	/* Either we're not talking to the Firmware or we're dealing with
6215 	 * older Firmware which doesn't support the new API to get the MPS
6216 	 * Buffer Group Map.  Fall back to computing it ourselves.
6217 	 */
6218 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6219 	return mps_bg_map[pidx];
6220 }
6221 
6222 /**
6223  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6224  *      @adapter: the adapter
6225  *      @pidx: the port index
6226  */
6227 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6228 {
6229 	unsigned int nports;
6230 	u32 param, val = 0;
6231 	int ret;
6232 
6233 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6234 	if (pidx >= nports) {
6235 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6236 			pidx, nports);
6237 		return 0;
6238 	}
6239 
6240 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6241 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6242 	 */
6243 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6244 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6245 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6246 				 0, 1, &param, &val);
6247 	if (!ret)
6248 		return (val >> (8 * pidx)) & 0xff;
6249 
6250 	return 0;
6251 }
6252 
6253 /**
6254  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6255  *	@adapter: the adapter
6256  *	@pidx: the port index
6257  *
6258  *	Returns a bitmap indicating which TP Ingress Channels are associated
6259  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6260  *	the Port.
6261  */
6262 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6263 {
6264 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6265 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6266 
6267 	if (pidx >= nports) {
6268 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6269 			 pidx, nports);
6270 		return 0;
6271 	}
6272 
6273 	switch (chip_version) {
6274 	case CHELSIO_T4:
6275 	case CHELSIO_T5:
6276 		/* Note that this happens to be the same values as the MPS
6277 		 * Buffer Group Map for these Chips.  But we replicate the code
6278 		 * here because they're really separate concepts.
6279 		 */
6280 		switch (nports) {
6281 		case 1: return 0xf;
6282 		case 2: return 3 << (2 * pidx);
6283 		case 4: return 1 << pidx;
6284 		}
6285 		break;
6286 
6287 	case CHELSIO_T6:
6288 		switch (nports) {
6289 		case 1:
6290 		case 2: return 1 << pidx;
6291 		}
6292 		break;
6293 	}
6294 
6295 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6296 		chip_version, nports);
6297 	return 0;
6298 }
6299 
6300 /**
6301  *      t4_get_port_type_description - return Port Type string description
6302  *      @port_type: firmware Port Type enumeration
6303  */
6304 const char *t4_get_port_type_description(enum fw_port_type port_type)
6305 {
6306 	static const char *const port_type_description[] = {
6307 		"Fiber_XFI",
6308 		"Fiber_XAUI",
6309 		"BT_SGMII",
6310 		"BT_XFI",
6311 		"BT_XAUI",
6312 		"KX4",
6313 		"CX4",
6314 		"KX",
6315 		"KR",
6316 		"SFP",
6317 		"BP_AP",
6318 		"BP4_AP",
6319 		"QSFP_10G",
6320 		"QSA",
6321 		"QSFP",
6322 		"BP40_BA",
6323 		"KR4_100G",
6324 		"CR4_QSFP",
6325 		"CR_QSFP",
6326 		"CR2_QSFP",
6327 		"SFP28",
6328 		"KR_SFP28",
6329 		"KR_XLAUI"
6330 	};
6331 
6332 	if (port_type < ARRAY_SIZE(port_type_description))
6333 		return port_type_description[port_type];
6334 	return "UNKNOWN";
6335 }
6336 
6337 /**
6338  *      t4_get_port_stats_offset - collect port stats relative to a previous
6339  *                                 snapshot
6340  *      @adap: The adapter
6341  *      @idx: The port
6342  *      @stats: Current stats to fill
6343  *      @offset: Previous stats snapshot
6344  */
6345 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6346 			      struct port_stats *stats,
6347 			      struct port_stats *offset)
6348 {
6349 	u64 *s, *o;
6350 	int i;
6351 
6352 	t4_get_port_stats(adap, idx, stats);
6353 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6354 			i < (sizeof(struct port_stats) / sizeof(u64));
6355 			i++, s++, o++)
6356 		*s -= *o;
6357 }
6358 
6359 /**
6360  *	t4_get_port_stats - collect port statistics
6361  *	@adap: the adapter
6362  *	@idx: the port index
6363  *	@p: the stats structure to fill
6364  *
6365  *	Collect statistics related to the given port from HW.
6366  */
6367 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6368 {
6369 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6370 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6371 
6372 #define GET_STAT(name) \
6373 	t4_read_reg64(adap, \
6374 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6375 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6376 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6377 
6378 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6379 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6380 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6381 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6382 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6383 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6384 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6385 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6386 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6387 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6388 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6389 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6390 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6391 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6392 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6393 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6394 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6395 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6396 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6397 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6398 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6399 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6400 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6401 
6402 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6403 		if (stat_ctl & COUNTPAUSESTATTX_F)
6404 			p->tx_frames_64 -= p->tx_pause;
6405 		if (stat_ctl & COUNTPAUSEMCTX_F)
6406 			p->tx_mcast_frames -= p->tx_pause;
6407 	}
6408 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6409 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6410 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6411 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6412 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6413 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6414 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6415 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6416 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6417 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6418 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6419 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6420 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6421 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6422 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6423 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6424 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6425 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6426 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6427 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6428 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6429 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6430 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6431 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6432 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6433 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6434 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6435 
6436 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6437 		if (stat_ctl & COUNTPAUSESTATRX_F)
6438 			p->rx_frames_64 -= p->rx_pause;
6439 		if (stat_ctl & COUNTPAUSEMCRX_F)
6440 			p->rx_mcast_frames -= p->rx_pause;
6441 	}
6442 
6443 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6444 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6445 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6446 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6447 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6448 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6449 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6450 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6451 
6452 #undef GET_STAT
6453 #undef GET_STAT_COM
6454 }
6455 
6456 /**
6457  *	t4_get_lb_stats - collect loopback port statistics
6458  *	@adap: the adapter
6459  *	@idx: the loopback port index
6460  *	@p: the stats structure to fill
6461  *
6462  *	Return HW statistics for the given loopback port.
6463  */
6464 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6465 {
6466 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6467 
6468 #define GET_STAT(name) \
6469 	t4_read_reg64(adap, \
6470 	(is_t4(adap->params.chip) ? \
6471 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6472 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6473 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6474 
6475 	p->octets           = GET_STAT(BYTES);
6476 	p->frames           = GET_STAT(FRAMES);
6477 	p->bcast_frames     = GET_STAT(BCAST);
6478 	p->mcast_frames     = GET_STAT(MCAST);
6479 	p->ucast_frames     = GET_STAT(UCAST);
6480 	p->error_frames     = GET_STAT(ERROR);
6481 
6482 	p->frames_64        = GET_STAT(64B);
6483 	p->frames_65_127    = GET_STAT(65B_127B);
6484 	p->frames_128_255   = GET_STAT(128B_255B);
6485 	p->frames_256_511   = GET_STAT(256B_511B);
6486 	p->frames_512_1023  = GET_STAT(512B_1023B);
6487 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6488 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6489 	p->drop             = GET_STAT(DROP_FRAMES);
6490 
6491 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6492 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6493 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6494 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6495 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6496 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6497 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6498 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6499 
6500 #undef GET_STAT
6501 #undef GET_STAT_COM
6502 }
6503 
6504 /*     t4_mk_filtdelwr - create a delete filter WR
6505  *     @ftid: the filter ID
6506  *     @wr: the filter work request to populate
6507  *     @qid: ingress queue to receive the delete notification
6508  *
6509  *     Creates a filter work request to delete the supplied filter.  If @qid is
6510  *     negative the delete notification is suppressed.
6511  */
6512 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6513 {
6514 	memset(wr, 0, sizeof(*wr));
6515 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6516 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6517 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6518 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6519 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6520 	if (qid >= 0)
6521 		wr->rx_chan_rx_rpl_iq =
6522 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6523 }
6524 
6525 #define INIT_CMD(var, cmd, rd_wr) do { \
6526 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6527 					FW_CMD_REQUEST_F | \
6528 					FW_CMD_##rd_wr##_F); \
6529 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6530 } while (0)
6531 
6532 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6533 			  u32 addr, u32 val)
6534 {
6535 	u32 ldst_addrspace;
6536 	struct fw_ldst_cmd c;
6537 
6538 	memset(&c, 0, sizeof(c));
6539 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6540 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6541 					FW_CMD_REQUEST_F |
6542 					FW_CMD_WRITE_F |
6543 					ldst_addrspace);
6544 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6545 	c.u.addrval.addr = cpu_to_be32(addr);
6546 	c.u.addrval.val = cpu_to_be32(val);
6547 
6548 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6549 }
6550 
6551 /**
6552  *	t4_mdio_rd - read a PHY register through MDIO
6553  *	@adap: the adapter
6554  *	@mbox: mailbox to use for the FW command
6555  *	@phy_addr: the PHY address
6556  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6557  *	@reg: the register to read
6558  *	@valp: where to store the value
6559  *
6560  *	Issues a FW command through the given mailbox to read a PHY register.
6561  */
6562 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6563 	       unsigned int mmd, unsigned int reg, u16 *valp)
6564 {
6565 	int ret;
6566 	u32 ldst_addrspace;
6567 	struct fw_ldst_cmd c;
6568 
6569 	memset(&c, 0, sizeof(c));
6570 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6571 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6572 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6573 					ldst_addrspace);
6574 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6575 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6576 					 FW_LDST_CMD_MMD_V(mmd));
6577 	c.u.mdio.raddr = cpu_to_be16(reg);
6578 
6579 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6580 	if (ret == 0)
6581 		*valp = be16_to_cpu(c.u.mdio.rval);
6582 	return ret;
6583 }
6584 
6585 /**
6586  *	t4_mdio_wr - write a PHY register through MDIO
6587  *	@adap: the adapter
6588  *	@mbox: mailbox to use for the FW command
6589  *	@phy_addr: the PHY address
6590  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6591  *	@reg: the register to write
6592  *	@valp: value to write
6593  *
6594  *	Issues a FW command through the given mailbox to write a PHY register.
6595  */
6596 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6597 	       unsigned int mmd, unsigned int reg, u16 val)
6598 {
6599 	u32 ldst_addrspace;
6600 	struct fw_ldst_cmd c;
6601 
6602 	memset(&c, 0, sizeof(c));
6603 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6604 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6605 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6606 					ldst_addrspace);
6607 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6608 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6609 					 FW_LDST_CMD_MMD_V(mmd));
6610 	c.u.mdio.raddr = cpu_to_be16(reg);
6611 	c.u.mdio.rval = cpu_to_be16(val);
6612 
6613 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6614 }
6615 
6616 /**
6617  *	t4_sge_decode_idma_state - decode the idma state
6618  *	@adap: the adapter
6619  *	@state: the state idma is stuck in
6620  */
6621 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6622 {
6623 	static const char * const t4_decode[] = {
6624 		"IDMA_IDLE",
6625 		"IDMA_PUSH_MORE_CPL_FIFO",
6626 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6627 		"Not used",
6628 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6629 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6630 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6631 		"IDMA_SEND_FIFO_TO_IMSG",
6632 		"IDMA_FL_REQ_DATA_FL_PREP",
6633 		"IDMA_FL_REQ_DATA_FL",
6634 		"IDMA_FL_DROP",
6635 		"IDMA_FL_H_REQ_HEADER_FL",
6636 		"IDMA_FL_H_SEND_PCIEHDR",
6637 		"IDMA_FL_H_PUSH_CPL_FIFO",
6638 		"IDMA_FL_H_SEND_CPL",
6639 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6640 		"IDMA_FL_H_SEND_IP_HDR",
6641 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6642 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6643 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6644 		"IDMA_FL_D_SEND_PCIEHDR",
6645 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6646 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6647 		"IDMA_FL_SEND_PCIEHDR",
6648 		"IDMA_FL_PUSH_CPL_FIFO",
6649 		"IDMA_FL_SEND_CPL",
6650 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6651 		"IDMA_FL_SEND_PAYLOAD",
6652 		"IDMA_FL_REQ_NEXT_DATA_FL",
6653 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6654 		"IDMA_FL_SEND_PADDING",
6655 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6656 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6657 		"IDMA_FL_REQ_DATAFL_DONE",
6658 		"IDMA_FL_REQ_HEADERFL_DONE",
6659 	};
6660 	static const char * const t5_decode[] = {
6661 		"IDMA_IDLE",
6662 		"IDMA_ALMOST_IDLE",
6663 		"IDMA_PUSH_MORE_CPL_FIFO",
6664 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6665 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6666 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6667 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6668 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6669 		"IDMA_SEND_FIFO_TO_IMSG",
6670 		"IDMA_FL_REQ_DATA_FL",
6671 		"IDMA_FL_DROP",
6672 		"IDMA_FL_DROP_SEND_INC",
6673 		"IDMA_FL_H_REQ_HEADER_FL",
6674 		"IDMA_FL_H_SEND_PCIEHDR",
6675 		"IDMA_FL_H_PUSH_CPL_FIFO",
6676 		"IDMA_FL_H_SEND_CPL",
6677 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6678 		"IDMA_FL_H_SEND_IP_HDR",
6679 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6680 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6681 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6682 		"IDMA_FL_D_SEND_PCIEHDR",
6683 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6684 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6685 		"IDMA_FL_SEND_PCIEHDR",
6686 		"IDMA_FL_PUSH_CPL_FIFO",
6687 		"IDMA_FL_SEND_CPL",
6688 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6689 		"IDMA_FL_SEND_PAYLOAD",
6690 		"IDMA_FL_REQ_NEXT_DATA_FL",
6691 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6692 		"IDMA_FL_SEND_PADDING",
6693 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6694 	};
6695 	static const char * const t6_decode[] = {
6696 		"IDMA_IDLE",
6697 		"IDMA_PUSH_MORE_CPL_FIFO",
6698 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6699 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6700 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6701 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6702 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6703 		"IDMA_FL_REQ_DATA_FL",
6704 		"IDMA_FL_DROP",
6705 		"IDMA_FL_DROP_SEND_INC",
6706 		"IDMA_FL_H_REQ_HEADER_FL",
6707 		"IDMA_FL_H_SEND_PCIEHDR",
6708 		"IDMA_FL_H_PUSH_CPL_FIFO",
6709 		"IDMA_FL_H_SEND_CPL",
6710 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6711 		"IDMA_FL_H_SEND_IP_HDR",
6712 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6713 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6714 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6715 		"IDMA_FL_D_SEND_PCIEHDR",
6716 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6717 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6718 		"IDMA_FL_SEND_PCIEHDR",
6719 		"IDMA_FL_PUSH_CPL_FIFO",
6720 		"IDMA_FL_SEND_CPL",
6721 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6722 		"IDMA_FL_SEND_PAYLOAD",
6723 		"IDMA_FL_REQ_NEXT_DATA_FL",
6724 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6725 		"IDMA_FL_SEND_PADDING",
6726 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6727 	};
6728 	static const u32 sge_regs[] = {
6729 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6730 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6731 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6732 	};
6733 	const char **sge_idma_decode;
6734 	int sge_idma_decode_nstates;
6735 	int i;
6736 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6737 
6738 	/* Select the right set of decode strings to dump depending on the
6739 	 * adapter chip type.
6740 	 */
6741 	switch (chip_version) {
6742 	case CHELSIO_T4:
6743 		sge_idma_decode = (const char **)t4_decode;
6744 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6745 		break;
6746 
6747 	case CHELSIO_T5:
6748 		sge_idma_decode = (const char **)t5_decode;
6749 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6750 		break;
6751 
6752 	case CHELSIO_T6:
6753 		sge_idma_decode = (const char **)t6_decode;
6754 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6755 		break;
6756 
6757 	default:
6758 		dev_err(adapter->pdev_dev,
6759 			"Unsupported chip version %d\n", chip_version);
6760 		return;
6761 	}
6762 
6763 	if (is_t4(adapter->params.chip)) {
6764 		sge_idma_decode = (const char **)t4_decode;
6765 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6766 	} else {
6767 		sge_idma_decode = (const char **)t5_decode;
6768 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6769 	}
6770 
6771 	if (state < sge_idma_decode_nstates)
6772 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6773 	else
6774 		CH_WARN(adapter, "idma state %d unknown\n", state);
6775 
6776 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6777 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6778 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6779 }
6780 
6781 /**
6782  *      t4_sge_ctxt_flush - flush the SGE context cache
6783  *      @adap: the adapter
6784  *      @mbox: mailbox to use for the FW command
6785  *      @ctx_type: Egress or Ingress
6786  *
6787  *      Issues a FW command through the given mailbox to flush the
6788  *      SGE context cache.
6789  */
6790 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6791 {
6792 	int ret;
6793 	u32 ldst_addrspace;
6794 	struct fw_ldst_cmd c;
6795 
6796 	memset(&c, 0, sizeof(c));
6797 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6798 						 FW_LDST_ADDRSPC_SGE_EGRC :
6799 						 FW_LDST_ADDRSPC_SGE_INGC);
6800 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6801 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6802 					ldst_addrspace);
6803 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6804 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6805 
6806 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6807 	return ret;
6808 }
6809 
6810 /**
6811  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6812  *	@adap - the adapter
6813  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6814  *	@dbqtimers: SGE Doorbell Queue Timer table
6815  *
6816  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6817  *	Returns 0 on success (Firmware and Hardware support this feature),
6818  *	an error on failure.
6819  */
6820 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6821 			  u16 *dbqtimers)
6822 {
6823 	int ret, dbqtimerix;
6824 
6825 	ret = 0;
6826 	dbqtimerix = 0;
6827 	while (dbqtimerix < ndbqtimers) {
6828 		int nparams, param;
6829 		u32 params[7], vals[7];
6830 
6831 		nparams = ndbqtimers - dbqtimerix;
6832 		if (nparams > ARRAY_SIZE(params))
6833 			nparams = ARRAY_SIZE(params);
6834 
6835 		for (param = 0; param < nparams; param++)
6836 			params[param] =
6837 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6838 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6839 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6840 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6841 				      nparams, params, vals);
6842 		if (ret)
6843 			break;
6844 
6845 		for (param = 0; param < nparams; param++)
6846 			dbqtimers[dbqtimerix++] = vals[param];
6847 	}
6848 	return ret;
6849 }
6850 
6851 /**
6852  *      t4_fw_hello - establish communication with FW
6853  *      @adap: the adapter
6854  *      @mbox: mailbox to use for the FW command
6855  *      @evt_mbox: mailbox to receive async FW events
6856  *      @master: specifies the caller's willingness to be the device master
6857  *	@state: returns the current device state (if non-NULL)
6858  *
6859  *	Issues a command to establish communication with FW.  Returns either
6860  *	an error (negative integer) or the mailbox of the Master PF.
6861  */
6862 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6863 		enum dev_master master, enum dev_state *state)
6864 {
6865 	int ret;
6866 	struct fw_hello_cmd c;
6867 	u32 v;
6868 	unsigned int master_mbox;
6869 	int retries = FW_CMD_HELLO_RETRIES;
6870 
6871 retry:
6872 	memset(&c, 0, sizeof(c));
6873 	INIT_CMD(c, HELLO, WRITE);
6874 	c.err_to_clearinit = cpu_to_be32(
6875 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6876 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6877 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6878 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6879 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6880 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6881 		FW_HELLO_CMD_CLEARINIT_F);
6882 
6883 	/*
6884 	 * Issue the HELLO command to the firmware.  If it's not successful
6885 	 * but indicates that we got a "busy" or "timeout" condition, retry
6886 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6887 	 * retry limit, check to see if the firmware left us any error
6888 	 * information and report that if so.
6889 	 */
6890 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6891 	if (ret < 0) {
6892 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6893 			goto retry;
6894 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6895 			t4_report_fw_error(adap);
6896 		return ret;
6897 	}
6898 
6899 	v = be32_to_cpu(c.err_to_clearinit);
6900 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6901 	if (state) {
6902 		if (v & FW_HELLO_CMD_ERR_F)
6903 			*state = DEV_STATE_ERR;
6904 		else if (v & FW_HELLO_CMD_INIT_F)
6905 			*state = DEV_STATE_INIT;
6906 		else
6907 			*state = DEV_STATE_UNINIT;
6908 	}
6909 
6910 	/*
6911 	 * If we're not the Master PF then we need to wait around for the
6912 	 * Master PF Driver to finish setting up the adapter.
6913 	 *
6914 	 * Note that we also do this wait if we're a non-Master-capable PF and
6915 	 * there is no current Master PF; a Master PF may show up momentarily
6916 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6917 	 * OS loads lots of different drivers rapidly at the same time).  In
6918 	 * this case, the Master PF returned by the firmware will be
6919 	 * PCIE_FW_MASTER_M so the test below will work ...
6920 	 */
6921 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6922 	    master_mbox != mbox) {
6923 		int waiting = FW_CMD_HELLO_TIMEOUT;
6924 
6925 		/*
6926 		 * Wait for the firmware to either indicate an error or
6927 		 * initialized state.  If we see either of these we bail out
6928 		 * and report the issue to the caller.  If we exhaust the
6929 		 * "hello timeout" and we haven't exhausted our retries, try
6930 		 * again.  Otherwise bail with a timeout error.
6931 		 */
6932 		for (;;) {
6933 			u32 pcie_fw;
6934 
6935 			msleep(50);
6936 			waiting -= 50;
6937 
6938 			/*
6939 			 * If neither Error nor Initialized are indicated
6940 			 * by the firmware keep waiting till we exhaust our
6941 			 * timeout ... and then retry if we haven't exhausted
6942 			 * our retries ...
6943 			 */
6944 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6945 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6946 				if (waiting <= 0) {
6947 					if (retries-- > 0)
6948 						goto retry;
6949 
6950 					return -ETIMEDOUT;
6951 				}
6952 				continue;
6953 			}
6954 
6955 			/*
6956 			 * We either have an Error or Initialized condition
6957 			 * report errors preferentially.
6958 			 */
6959 			if (state) {
6960 				if (pcie_fw & PCIE_FW_ERR_F)
6961 					*state = DEV_STATE_ERR;
6962 				else if (pcie_fw & PCIE_FW_INIT_F)
6963 					*state = DEV_STATE_INIT;
6964 			}
6965 
6966 			/*
6967 			 * If we arrived before a Master PF was selected and
6968 			 * there's not a valid Master PF, grab its identity
6969 			 * for our caller.
6970 			 */
6971 			if (master_mbox == PCIE_FW_MASTER_M &&
6972 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6973 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6974 			break;
6975 		}
6976 	}
6977 
6978 	return master_mbox;
6979 }
6980 
6981 /**
6982  *	t4_fw_bye - end communication with FW
6983  *	@adap: the adapter
6984  *	@mbox: mailbox to use for the FW command
6985  *
6986  *	Issues a command to terminate communication with FW.
6987  */
6988 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6989 {
6990 	struct fw_bye_cmd c;
6991 
6992 	memset(&c, 0, sizeof(c));
6993 	INIT_CMD(c, BYE, WRITE);
6994 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6995 }
6996 
6997 /**
6998  *	t4_init_cmd - ask FW to initialize the device
6999  *	@adap: the adapter
7000  *	@mbox: mailbox to use for the FW command
7001  *
7002  *	Issues a command to FW to partially initialize the device.  This
7003  *	performs initialization that generally doesn't depend on user input.
7004  */
7005 int t4_early_init(struct adapter *adap, unsigned int mbox)
7006 {
7007 	struct fw_initialize_cmd c;
7008 
7009 	memset(&c, 0, sizeof(c));
7010 	INIT_CMD(c, INITIALIZE, WRITE);
7011 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7012 }
7013 
7014 /**
7015  *	t4_fw_reset - issue a reset to FW
7016  *	@adap: the adapter
7017  *	@mbox: mailbox to use for the FW command
7018  *	@reset: specifies the type of reset to perform
7019  *
7020  *	Issues a reset command of the specified type to FW.
7021  */
7022 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7023 {
7024 	struct fw_reset_cmd c;
7025 
7026 	memset(&c, 0, sizeof(c));
7027 	INIT_CMD(c, RESET, WRITE);
7028 	c.val = cpu_to_be32(reset);
7029 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7030 }
7031 
7032 /**
7033  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7034  *	@adap: the adapter
7035  *	@mbox: mailbox to use for the FW RESET command (if desired)
7036  *	@force: force uP into RESET even if FW RESET command fails
7037  *
7038  *	Issues a RESET command to firmware (if desired) with a HALT indication
7039  *	and then puts the microprocessor into RESET state.  The RESET command
7040  *	will only be issued if a legitimate mailbox is provided (mbox <=
7041  *	PCIE_FW_MASTER_M).
7042  *
7043  *	This is generally used in order for the host to safely manipulate the
7044  *	adapter without fear of conflicting with whatever the firmware might
7045  *	be doing.  The only way out of this state is to RESTART the firmware
7046  *	...
7047  */
7048 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7049 {
7050 	int ret = 0;
7051 
7052 	/*
7053 	 * If a legitimate mailbox is provided, issue a RESET command
7054 	 * with a HALT indication.
7055 	 */
7056 	if (mbox <= PCIE_FW_MASTER_M) {
7057 		struct fw_reset_cmd c;
7058 
7059 		memset(&c, 0, sizeof(c));
7060 		INIT_CMD(c, RESET, WRITE);
7061 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7062 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7063 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7064 	}
7065 
7066 	/*
7067 	 * Normally we won't complete the operation if the firmware RESET
7068 	 * command fails but if our caller insists we'll go ahead and put the
7069 	 * uP into RESET.  This can be useful if the firmware is hung or even
7070 	 * missing ...  We'll have to take the risk of putting the uP into
7071 	 * RESET without the cooperation of firmware in that case.
7072 	 *
7073 	 * We also force the firmware's HALT flag to be on in case we bypassed
7074 	 * the firmware RESET command above or we're dealing with old firmware
7075 	 * which doesn't have the HALT capability.  This will serve as a flag
7076 	 * for the incoming firmware to know that it's coming out of a HALT
7077 	 * rather than a RESET ... if it's new enough to understand that ...
7078 	 */
7079 	if (ret == 0 || force) {
7080 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7081 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7082 				 PCIE_FW_HALT_F);
7083 	}
7084 
7085 	/*
7086 	 * And we always return the result of the firmware RESET command
7087 	 * even when we force the uP into RESET ...
7088 	 */
7089 	return ret;
7090 }
7091 
7092 /**
7093  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7094  *	@adap: the adapter
7095  *	@reset: if we want to do a RESET to restart things
7096  *
7097  *	Restart firmware previously halted by t4_fw_halt().  On successful
7098  *	return the previous PF Master remains as the new PF Master and there
7099  *	is no need to issue a new HELLO command, etc.
7100  *
7101  *	We do this in two ways:
7102  *
7103  *	 1. If we're dealing with newer firmware we'll simply want to take
7104  *	    the chip's microprocessor out of RESET.  This will cause the
7105  *	    firmware to start up from its start vector.  And then we'll loop
7106  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7107  *	    reset to 0) or we timeout.
7108  *
7109  *	 2. If we're dealing with older firmware then we'll need to RESET
7110  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7111  *	    flag and automatically RESET itself on startup.
7112  */
7113 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7114 {
7115 	if (reset) {
7116 		/*
7117 		 * Since we're directing the RESET instead of the firmware
7118 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7119 		 * bit.
7120 		 */
7121 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7122 
7123 		/*
7124 		 * If we've been given a valid mailbox, first try to get the
7125 		 * firmware to do the RESET.  If that works, great and we can
7126 		 * return success.  Otherwise, if we haven't been given a
7127 		 * valid mailbox or the RESET command failed, fall back to
7128 		 * hitting the chip with a hammer.
7129 		 */
7130 		if (mbox <= PCIE_FW_MASTER_M) {
7131 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7132 			msleep(100);
7133 			if (t4_fw_reset(adap, mbox,
7134 					PIORST_F | PIORSTMODE_F) == 0)
7135 				return 0;
7136 		}
7137 
7138 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7139 		msleep(2000);
7140 	} else {
7141 		int ms;
7142 
7143 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7144 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7145 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7146 				return 0;
7147 			msleep(100);
7148 			ms += 100;
7149 		}
7150 		return -ETIMEDOUT;
7151 	}
7152 	return 0;
7153 }
7154 
7155 /**
7156  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7157  *	@adap: the adapter
7158  *	@mbox: mailbox to use for the FW RESET command (if desired)
7159  *	@fw_data: the firmware image to write
7160  *	@size: image size
7161  *	@force: force upgrade even if firmware doesn't cooperate
7162  *
7163  *	Perform all of the steps necessary for upgrading an adapter's
7164  *	firmware image.  Normally this requires the cooperation of the
7165  *	existing firmware in order to halt all existing activities
7166  *	but if an invalid mailbox token is passed in we skip that step
7167  *	(though we'll still put the adapter microprocessor into RESET in
7168  *	that case).
7169  *
7170  *	On successful return the new firmware will have been loaded and
7171  *	the adapter will have been fully RESET losing all previous setup
7172  *	state.  On unsuccessful return the adapter may be completely hosed ...
7173  *	positive errno indicates that the adapter is ~probably~ intact, a
7174  *	negative errno indicates that things are looking bad ...
7175  */
7176 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7177 		  const u8 *fw_data, unsigned int size, int force)
7178 {
7179 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7180 	int reset, ret;
7181 
7182 	if (!t4_fw_matches_chip(adap, fw_hdr))
7183 		return -EINVAL;
7184 
7185 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7186 	 * set wont be sent when we are flashing FW.
7187 	 */
7188 	adap->flags &= ~CXGB4_FW_OK;
7189 
7190 	ret = t4_fw_halt(adap, mbox, force);
7191 	if (ret < 0 && !force)
7192 		goto out;
7193 
7194 	ret = t4_load_fw(adap, fw_data, size);
7195 	if (ret < 0)
7196 		goto out;
7197 
7198 	/*
7199 	 * If there was a Firmware Configuration File stored in FLASH,
7200 	 * there's a good chance that it won't be compatible with the new
7201 	 * Firmware.  In order to prevent difficult to diagnose adapter
7202 	 * initialization issues, we clear out the Firmware Configuration File
7203 	 * portion of the FLASH .  The user will need to re-FLASH a new
7204 	 * Firmware Configuration File which is compatible with the new
7205 	 * Firmware if that's desired.
7206 	 */
7207 	(void)t4_load_cfg(adap, NULL, 0);
7208 
7209 	/*
7210 	 * Older versions of the firmware don't understand the new
7211 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7212 	 * restart.  So for newly loaded older firmware we'll have to do the
7213 	 * RESET for it so it starts up on a clean slate.  We can tell if
7214 	 * the newly loaded firmware will handle this right by checking
7215 	 * its header flags to see if it advertises the capability.
7216 	 */
7217 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7218 	ret = t4_fw_restart(adap, mbox, reset);
7219 
7220 	/* Grab potentially new Firmware Device Log parameters so we can see
7221 	 * how healthy the new Firmware is.  It's okay to contact the new
7222 	 * Firmware for these parameters even though, as far as it's
7223 	 * concerned, we've never said "HELLO" to it ...
7224 	 */
7225 	(void)t4_init_devlog_params(adap);
7226 out:
7227 	adap->flags |= CXGB4_FW_OK;
7228 	return ret;
7229 }
7230 
7231 /**
7232  *	t4_fl_pkt_align - return the fl packet alignment
7233  *	@adap: the adapter
7234  *
7235  *	T4 has a single field to specify the packing and padding boundary.
7236  *	T5 onwards has separate fields for this and hence the alignment for
7237  *	next packet offset is maximum of these two.
7238  *
7239  */
7240 int t4_fl_pkt_align(struct adapter *adap)
7241 {
7242 	u32 sge_control, sge_control2;
7243 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7244 
7245 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7246 
7247 	/* T4 uses a single control field to specify both the PCIe Padding and
7248 	 * Packing Boundary.  T5 introduced the ability to specify these
7249 	 * separately.  The actual Ingress Packet Data alignment boundary
7250 	 * within Packed Buffer Mode is the maximum of these two
7251 	 * specifications.  (Note that it makes no real practical sense to
7252 	 * have the Padding Boundary be larger than the Packing Boundary but you
7253 	 * could set the chip up that way and, in fact, legacy T4 code would
7254 	 * end doing this because it would initialize the Padding Boundary and
7255 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7256 	 * Padding Boundary values in T6 starts from 8B,
7257 	 * where as it is 32B for T4 and T5.
7258 	 */
7259 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7260 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7261 	else
7262 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7263 
7264 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7265 
7266 	fl_align = ingpadboundary;
7267 	if (!is_t4(adap->params.chip)) {
7268 		/* T5 has a weird interpretation of one of the PCIe Packing
7269 		 * Boundary values.  No idea why ...
7270 		 */
7271 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7272 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7273 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7274 			ingpackboundary = 16;
7275 		else
7276 			ingpackboundary = 1 << (ingpackboundary +
7277 						INGPACKBOUNDARY_SHIFT_X);
7278 
7279 		fl_align = max(ingpadboundary, ingpackboundary);
7280 	}
7281 	return fl_align;
7282 }
7283 
7284 /**
7285  *	t4_fixup_host_params - fix up host-dependent parameters
7286  *	@adap: the adapter
7287  *	@page_size: the host's Base Page Size
7288  *	@cache_line_size: the host's Cache Line Size
7289  *
7290  *	Various registers in T4 contain values which are dependent on the
7291  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7292  *	those registers with the appropriate values as passed in ...
7293  */
7294 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7295 			 unsigned int cache_line_size)
7296 {
7297 	unsigned int page_shift = fls(page_size) - 1;
7298 	unsigned int sge_hps = page_shift - 10;
7299 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7300 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7301 	unsigned int fl_align_log = fls(fl_align) - 1;
7302 
7303 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7304 		     HOSTPAGESIZEPF0_V(sge_hps) |
7305 		     HOSTPAGESIZEPF1_V(sge_hps) |
7306 		     HOSTPAGESIZEPF2_V(sge_hps) |
7307 		     HOSTPAGESIZEPF3_V(sge_hps) |
7308 		     HOSTPAGESIZEPF4_V(sge_hps) |
7309 		     HOSTPAGESIZEPF5_V(sge_hps) |
7310 		     HOSTPAGESIZEPF6_V(sge_hps) |
7311 		     HOSTPAGESIZEPF7_V(sge_hps));
7312 
7313 	if (is_t4(adap->params.chip)) {
7314 		t4_set_reg_field(adap, SGE_CONTROL_A,
7315 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7316 				 EGRSTATUSPAGESIZE_F,
7317 				 INGPADBOUNDARY_V(fl_align_log -
7318 						  INGPADBOUNDARY_SHIFT_X) |
7319 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7320 	} else {
7321 		unsigned int pack_align;
7322 		unsigned int ingpad, ingpack;
7323 
7324 		/* T5 introduced the separation of the Free List Padding and
7325 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7326 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7327 		 * Bandwidth, and use a Packing Boundary which is large enough
7328 		 * to avoid false sharing between CPUs, etc.
7329 		 *
7330 		 * For the PCI Link, the smaller the Padding Boundary the
7331 		 * better.  For the Memory Controller, a smaller Padding
7332 		 * Boundary is better until we cross under the Memory Line
7333 		 * Size (the minimum unit of transfer to/from Memory).  If we
7334 		 * have a Padding Boundary which is smaller than the Memory
7335 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7336 		 * Memory Controller which is never good.
7337 		 */
7338 
7339 		/* We want the Packing Boundary to be based on the Cache Line
7340 		 * Size in order to help avoid False Sharing performance
7341 		 * issues between CPUs, etc.  We also want the Packing
7342 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7343 		 * get best performance when the Packing Boundary is a
7344 		 * multiple of the Maximum Payload Size.
7345 		 */
7346 		pack_align = fl_align;
7347 		if (pci_is_pcie(adap->pdev)) {
7348 			unsigned int mps, mps_log;
7349 			u16 devctl;
7350 
7351 			/* The PCIe Device Control Maximum Payload Size field
7352 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7353 			 * 128 bytes.
7354 			 */
7355 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7356 						  &devctl);
7357 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7358 			mps = 1 << mps_log;
7359 			if (mps > pack_align)
7360 				pack_align = mps;
7361 		}
7362 
7363 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7364 		 * value for the Packing Boundary.  This corresponds to 16
7365 		 * bytes instead of the expected 32 bytes.  So if we want 32
7366 		 * bytes, the best we can really do is 64 bytes ...
7367 		 */
7368 		if (pack_align <= 16) {
7369 			ingpack = INGPACKBOUNDARY_16B_X;
7370 			fl_align = 16;
7371 		} else if (pack_align == 32) {
7372 			ingpack = INGPACKBOUNDARY_64B_X;
7373 			fl_align = 64;
7374 		} else {
7375 			unsigned int pack_align_log = fls(pack_align) - 1;
7376 
7377 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7378 			fl_align = pack_align;
7379 		}
7380 
7381 		/* Use the smallest Ingress Padding which isn't smaller than
7382 		 * the Memory Controller Read/Write Size.  We'll take that as
7383 		 * being 8 bytes since we don't know of any system with a
7384 		 * wider Memory Controller Bus Width.
7385 		 */
7386 		if (is_t5(adap->params.chip))
7387 			ingpad = INGPADBOUNDARY_32B_X;
7388 		else
7389 			ingpad = T6_INGPADBOUNDARY_8B_X;
7390 
7391 		t4_set_reg_field(adap, SGE_CONTROL_A,
7392 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7393 				 EGRSTATUSPAGESIZE_F,
7394 				 INGPADBOUNDARY_V(ingpad) |
7395 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7396 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7397 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7398 				 INGPACKBOUNDARY_V(ingpack));
7399 	}
7400 	/*
7401 	 * Adjust various SGE Free List Host Buffer Sizes.
7402 	 *
7403 	 * This is something of a crock since we're using fixed indices into
7404 	 * the array which are also known by the sge.c code and the T4
7405 	 * Firmware Configuration File.  We need to come up with a much better
7406 	 * approach to managing this array.  For now, the first four entries
7407 	 * are:
7408 	 *
7409 	 *   0: Host Page Size
7410 	 *   1: 64KB
7411 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7412 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7413 	 *
7414 	 * For the single-MTU buffers in unpacked mode we need to include
7415 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7416 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7417 	 * Padding boundary.  All of these are accommodated in the Factory
7418 	 * Default Firmware Configuration File but we need to adjust it for
7419 	 * this host's cache line size.
7420 	 */
7421 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7422 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7423 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7424 		     & ~(fl_align-1));
7425 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7426 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7427 		     & ~(fl_align-1));
7428 
7429 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7430 
7431 	return 0;
7432 }
7433 
7434 /**
7435  *	t4_fw_initialize - ask FW to initialize the device
7436  *	@adap: the adapter
7437  *	@mbox: mailbox to use for the FW command
7438  *
7439  *	Issues a command to FW to partially initialize the device.  This
7440  *	performs initialization that generally doesn't depend on user input.
7441  */
7442 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7443 {
7444 	struct fw_initialize_cmd c;
7445 
7446 	memset(&c, 0, sizeof(c));
7447 	INIT_CMD(c, INITIALIZE, WRITE);
7448 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7449 }
7450 
7451 /**
7452  *	t4_query_params_rw - query FW or device parameters
7453  *	@adap: the adapter
7454  *	@mbox: mailbox to use for the FW command
7455  *	@pf: the PF
7456  *	@vf: the VF
7457  *	@nparams: the number of parameters
7458  *	@params: the parameter names
7459  *	@val: the parameter values
7460  *	@rw: Write and read flag
7461  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7462  *
7463  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7464  *	queried at once.
7465  */
7466 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7467 		       unsigned int vf, unsigned int nparams, const u32 *params,
7468 		       u32 *val, int rw, bool sleep_ok)
7469 {
7470 	int i, ret;
7471 	struct fw_params_cmd c;
7472 	__be32 *p = &c.param[0].mnem;
7473 
7474 	if (nparams > 7)
7475 		return -EINVAL;
7476 
7477 	memset(&c, 0, sizeof(c));
7478 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7479 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7480 				  FW_PARAMS_CMD_PFN_V(pf) |
7481 				  FW_PARAMS_CMD_VFN_V(vf));
7482 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7483 
7484 	for (i = 0; i < nparams; i++) {
7485 		*p++ = cpu_to_be32(*params++);
7486 		if (rw)
7487 			*p = cpu_to_be32(*(val + i));
7488 		p++;
7489 	}
7490 
7491 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7492 	if (ret == 0)
7493 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7494 			*val++ = be32_to_cpu(*p);
7495 	return ret;
7496 }
7497 
7498 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7499 		    unsigned int vf, unsigned int nparams, const u32 *params,
7500 		    u32 *val)
7501 {
7502 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7503 				  true);
7504 }
7505 
7506 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7507 		       unsigned int vf, unsigned int nparams, const u32 *params,
7508 		       u32 *val)
7509 {
7510 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7511 				  false);
7512 }
7513 
7514 /**
7515  *      t4_set_params_timeout - sets FW or device parameters
7516  *      @adap: the adapter
7517  *      @mbox: mailbox to use for the FW command
7518  *      @pf: the PF
7519  *      @vf: the VF
7520  *      @nparams: the number of parameters
7521  *      @params: the parameter names
7522  *      @val: the parameter values
7523  *      @timeout: the timeout time
7524  *
7525  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7526  *      specified at once.
7527  */
7528 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7529 			  unsigned int pf, unsigned int vf,
7530 			  unsigned int nparams, const u32 *params,
7531 			  const u32 *val, int timeout)
7532 {
7533 	struct fw_params_cmd c;
7534 	__be32 *p = &c.param[0].mnem;
7535 
7536 	if (nparams > 7)
7537 		return -EINVAL;
7538 
7539 	memset(&c, 0, sizeof(c));
7540 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7541 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7542 				  FW_PARAMS_CMD_PFN_V(pf) |
7543 				  FW_PARAMS_CMD_VFN_V(vf));
7544 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7545 
7546 	while (nparams--) {
7547 		*p++ = cpu_to_be32(*params++);
7548 		*p++ = cpu_to_be32(*val++);
7549 	}
7550 
7551 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7552 }
7553 
7554 /**
7555  *	t4_set_params - sets FW or device parameters
7556  *	@adap: the adapter
7557  *	@mbox: mailbox to use for the FW command
7558  *	@pf: the PF
7559  *	@vf: the VF
7560  *	@nparams: the number of parameters
7561  *	@params: the parameter names
7562  *	@val: the parameter values
7563  *
7564  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7565  *	specified at once.
7566  */
7567 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7568 		  unsigned int vf, unsigned int nparams, const u32 *params,
7569 		  const u32 *val)
7570 {
7571 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7572 				     FW_CMD_MAX_TIMEOUT);
7573 }
7574 
7575 /**
7576  *	t4_cfg_pfvf - configure PF/VF resource limits
7577  *	@adap: the adapter
7578  *	@mbox: mailbox to use for the FW command
7579  *	@pf: the PF being configured
7580  *	@vf: the VF being configured
7581  *	@txq: the max number of egress queues
7582  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7583  *	@rxqi: the max number of interrupt-capable ingress queues
7584  *	@rxq: the max number of interruptless ingress queues
7585  *	@tc: the PCI traffic class
7586  *	@vi: the max number of virtual interfaces
7587  *	@cmask: the channel access rights mask for the PF/VF
7588  *	@pmask: the port access rights mask for the PF/VF
7589  *	@nexact: the maximum number of exact MPS filters
7590  *	@rcaps: read capabilities
7591  *	@wxcaps: write/execute capabilities
7592  *
7593  *	Configures resource limits and capabilities for a physical or virtual
7594  *	function.
7595  */
7596 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7597 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7598 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7599 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7600 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7601 {
7602 	struct fw_pfvf_cmd c;
7603 
7604 	memset(&c, 0, sizeof(c));
7605 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7606 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7607 				  FW_PFVF_CMD_VFN_V(vf));
7608 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7609 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7610 				     FW_PFVF_CMD_NIQ_V(rxq));
7611 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7612 				    FW_PFVF_CMD_PMASK_V(pmask) |
7613 				    FW_PFVF_CMD_NEQ_V(txq));
7614 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7615 				      FW_PFVF_CMD_NVI_V(vi) |
7616 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7617 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7618 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7619 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7620 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7621 }
7622 
7623 /**
7624  *	t4_alloc_vi - allocate a virtual interface
7625  *	@adap: the adapter
7626  *	@mbox: mailbox to use for the FW command
7627  *	@port: physical port associated with the VI
7628  *	@pf: the PF owning the VI
7629  *	@vf: the VF owning the VI
7630  *	@nmac: number of MAC addresses needed (1 to 5)
7631  *	@mac: the MAC addresses of the VI
7632  *	@rss_size: size of RSS table slice associated with this VI
7633  *
7634  *	Allocates a virtual interface for the given physical port.  If @mac is
7635  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7636  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7637  *	stored consecutively so the space needed is @nmac * 6 bytes.
7638  *	Returns a negative error number or the non-negative VI id.
7639  */
7640 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7641 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7642 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7643 {
7644 	int ret;
7645 	struct fw_vi_cmd c;
7646 
7647 	memset(&c, 0, sizeof(c));
7648 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7649 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7650 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7651 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7652 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7653 	c.nmac = nmac - 1;
7654 
7655 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7656 	if (ret)
7657 		return ret;
7658 
7659 	if (mac) {
7660 		memcpy(mac, c.mac, sizeof(c.mac));
7661 		switch (nmac) {
7662 		case 5:
7663 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7664 			/* Fall through */
7665 		case 4:
7666 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7667 			/* Fall through */
7668 		case 3:
7669 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7670 			/* Fall through */
7671 		case 2:
7672 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7673 		}
7674 	}
7675 	if (rss_size)
7676 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7677 
7678 	if (vivld)
7679 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7680 
7681 	if (vin)
7682 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7683 
7684 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7685 }
7686 
7687 /**
7688  *	t4_free_vi - free a virtual interface
7689  *	@adap: the adapter
7690  *	@mbox: mailbox to use for the FW command
7691  *	@pf: the PF owning the VI
7692  *	@vf: the VF owning the VI
7693  *	@viid: virtual interface identifiler
7694  *
7695  *	Free a previously allocated virtual interface.
7696  */
7697 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7698 	       unsigned int vf, unsigned int viid)
7699 {
7700 	struct fw_vi_cmd c;
7701 
7702 	memset(&c, 0, sizeof(c));
7703 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7704 				  FW_CMD_REQUEST_F |
7705 				  FW_CMD_EXEC_F |
7706 				  FW_VI_CMD_PFN_V(pf) |
7707 				  FW_VI_CMD_VFN_V(vf));
7708 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7709 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7710 
7711 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7712 }
7713 
7714 /**
7715  *	t4_set_rxmode - set Rx properties of a virtual interface
7716  *	@adap: the adapter
7717  *	@mbox: mailbox to use for the FW command
7718  *	@viid: the VI id
7719  *	@mtu: the new MTU or -1
7720  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7721  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7722  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7723  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7724  *	@sleep_ok: if true we may sleep while awaiting command completion
7725  *
7726  *	Sets Rx properties of a virtual interface.
7727  */
7728 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7729 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7730 		  bool sleep_ok)
7731 {
7732 	struct fw_vi_rxmode_cmd c;
7733 
7734 	/* convert to FW values */
7735 	if (mtu < 0)
7736 		mtu = FW_RXMODE_MTU_NO_CHG;
7737 	if (promisc < 0)
7738 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7739 	if (all_multi < 0)
7740 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7741 	if (bcast < 0)
7742 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7743 	if (vlanex < 0)
7744 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7745 
7746 	memset(&c, 0, sizeof(c));
7747 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7748 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7749 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7750 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7751 	c.mtu_to_vlanexen =
7752 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7753 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7754 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7755 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7756 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7757 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7758 }
7759 
7760 /**
7761  *      t4_free_encap_mac_filt - frees MPS entry at given index
7762  *      @adap: the adapter
7763  *      @viid: the VI id
7764  *      @idx: index of MPS entry to be freed
7765  *      @sleep_ok: call is allowed to sleep
7766  *
7767  *      Frees the MPS entry at supplied index
7768  *
7769  *      Returns a negative error number or zero on success
7770  */
7771 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7772 			   int idx, bool sleep_ok)
7773 {
7774 	struct fw_vi_mac_exact *p;
7775 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7776 	struct fw_vi_mac_cmd c;
7777 	int ret = 0;
7778 	u32 exact;
7779 
7780 	memset(&c, 0, sizeof(c));
7781 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7782 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7783 				   FW_CMD_EXEC_V(0) |
7784 				   FW_VI_MAC_CMD_VIID_V(viid));
7785 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7786 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7787 					  exact |
7788 					  FW_CMD_LEN16_V(1));
7789 	p = c.u.exact;
7790 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7791 				      FW_VI_MAC_CMD_IDX_V(idx));
7792 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7793 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7794 	return ret;
7795 }
7796 
7797 /**
7798  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7799  *	@adap: the adapter
7800  *	@viid: the VI id
7801  *	@addr: the MAC address
7802  *	@mask: the mask
7803  *	@idx: index of the entry in mps tcam
7804  *	@lookup_type: MAC address for inner (1) or outer (0) header
7805  *	@port_id: the port index
7806  *	@sleep_ok: call is allowed to sleep
7807  *
7808  *	Removes the mac entry at the specified index using raw mac interface.
7809  *
7810  *	Returns a negative error number on failure.
7811  */
7812 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7813 			 const u8 *addr, const u8 *mask, unsigned int idx,
7814 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7815 {
7816 	struct fw_vi_mac_cmd c;
7817 	struct fw_vi_mac_raw *p = &c.u.raw;
7818 	u32 val;
7819 
7820 	memset(&c, 0, sizeof(c));
7821 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7822 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7823 				   FW_CMD_EXEC_V(0) |
7824 				   FW_VI_MAC_CMD_VIID_V(viid));
7825 	val = FW_CMD_LEN16_V(1) |
7826 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7827 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7828 					  FW_CMD_LEN16_V(val));
7829 
7830 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7831 				     FW_VI_MAC_ID_BASED_FREE);
7832 
7833 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7834 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7835 				   DATAPORTNUM_V(port_id));
7836 	/* Lookup mask and port mask */
7837 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7838 				    DATAPORTNUM_V(DATAPORTNUM_M));
7839 
7840 	/* Copy the address and the mask */
7841 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7842 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7843 
7844 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7845 }
7846 
7847 /**
7848  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7849  *      @adap: the adapter
7850  *      @viid: the VI id
7851  *      @mac: the MAC address
7852  *      @mask: the mask
7853  *      @vni: the VNI id for the tunnel protocol
7854  *      @vni_mask: mask for the VNI id
7855  *      @dip_hit: to enable DIP match for the MPS entry
7856  *      @lookup_type: MAC address for inner (1) or outer (0) header
7857  *      @sleep_ok: call is allowed to sleep
7858  *
7859  *      Allocates an MPS entry with specified MAC address and VNI value.
7860  *
7861  *      Returns a negative error number or the allocated index for this mac.
7862  */
7863 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7864 			    const u8 *addr, const u8 *mask, unsigned int vni,
7865 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7866 			    bool sleep_ok)
7867 {
7868 	struct fw_vi_mac_cmd c;
7869 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7870 	int ret = 0;
7871 	u32 val;
7872 
7873 	memset(&c, 0, sizeof(c));
7874 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7875 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7876 				   FW_VI_MAC_CMD_VIID_V(viid));
7877 	val = FW_CMD_LEN16_V(1) |
7878 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7879 	c.freemacs_to_len16 = cpu_to_be32(val);
7880 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7881 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7882 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7883 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7884 
7885 	p->lookup_type_to_vni =
7886 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7887 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7888 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7889 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7890 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7891 	if (ret == 0)
7892 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7893 	return ret;
7894 }
7895 
7896 /**
7897  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7898  *	@adap: the adapter
7899  *	@viid: the VI id
7900  *	@mac: the MAC address
7901  *	@mask: the mask
7902  *	@idx: index at which to add this entry
7903  *	@port_id: the port index
7904  *	@lookup_type: MAC address for inner (1) or outer (0) header
7905  *	@sleep_ok: call is allowed to sleep
7906  *
7907  *	Adds the mac entry at the specified index using raw mac interface.
7908  *
7909  *	Returns a negative error number or the allocated index for this mac.
7910  */
7911 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7912 			  const u8 *addr, const u8 *mask, unsigned int idx,
7913 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7914 {
7915 	int ret = 0;
7916 	struct fw_vi_mac_cmd c;
7917 	struct fw_vi_mac_raw *p = &c.u.raw;
7918 	u32 val;
7919 
7920 	memset(&c, 0, sizeof(c));
7921 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7922 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7923 				   FW_VI_MAC_CMD_VIID_V(viid));
7924 	val = FW_CMD_LEN16_V(1) |
7925 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7926 	c.freemacs_to_len16 = cpu_to_be32(val);
7927 
7928 	/* Specify that this is an inner mac address */
7929 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7930 
7931 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7932 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7933 				   DATAPORTNUM_V(port_id));
7934 	/* Lookup mask and port mask */
7935 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7936 				    DATAPORTNUM_V(DATAPORTNUM_M));
7937 
7938 	/* Copy the address and the mask */
7939 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7940 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7941 
7942 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7943 	if (ret == 0) {
7944 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7945 		if (ret != idx)
7946 			ret = -ENOMEM;
7947 	}
7948 
7949 	return ret;
7950 }
7951 
7952 /**
7953  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7954  *	@adap: the adapter
7955  *	@mbox: mailbox to use for the FW command
7956  *	@viid: the VI id
7957  *	@free: if true any existing filters for this VI id are first removed
7958  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7959  *	@addr: the MAC address(es)
7960  *	@idx: where to store the index of each allocated filter
7961  *	@hash: pointer to hash address filter bitmap
7962  *	@sleep_ok: call is allowed to sleep
7963  *
7964  *	Allocates an exact-match filter for each of the supplied addresses and
7965  *	sets it to the corresponding address.  If @idx is not %NULL it should
7966  *	have at least @naddr entries, each of which will be set to the index of
7967  *	the filter allocated for the corresponding MAC address.  If a filter
7968  *	could not be allocated for an address its index is set to 0xffff.
7969  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7970  *	are hashed and update the hash filter bitmap pointed at by @hash.
7971  *
7972  *	Returns a negative error number or the number of filters allocated.
7973  */
7974 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7975 		      unsigned int viid, bool free, unsigned int naddr,
7976 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7977 {
7978 	int offset, ret = 0;
7979 	struct fw_vi_mac_cmd c;
7980 	unsigned int nfilters = 0;
7981 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7982 	unsigned int rem = naddr;
7983 
7984 	if (naddr > max_naddr)
7985 		return -EINVAL;
7986 
7987 	for (offset = 0; offset < naddr ; /**/) {
7988 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7989 					 rem : ARRAY_SIZE(c.u.exact));
7990 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7991 						     u.exact[fw_naddr]), 16);
7992 		struct fw_vi_mac_exact *p;
7993 		int i;
7994 
7995 		memset(&c, 0, sizeof(c));
7996 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7997 					   FW_CMD_REQUEST_F |
7998 					   FW_CMD_WRITE_F |
7999 					   FW_CMD_EXEC_V(free) |
8000 					   FW_VI_MAC_CMD_VIID_V(viid));
8001 		c.freemacs_to_len16 =
8002 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8003 				    FW_CMD_LEN16_V(len16));
8004 
8005 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8006 			p->valid_to_idx =
8007 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8008 					    FW_VI_MAC_CMD_IDX_V(
8009 						    FW_VI_MAC_ADD_MAC));
8010 			memcpy(p->macaddr, addr[offset + i],
8011 			       sizeof(p->macaddr));
8012 		}
8013 
8014 		/* It's okay if we run out of space in our MAC address arena.
8015 		 * Some of the addresses we submit may get stored so we need
8016 		 * to run through the reply to see what the results were ...
8017 		 */
8018 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8019 		if (ret && ret != -FW_ENOMEM)
8020 			break;
8021 
8022 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8023 			u16 index = FW_VI_MAC_CMD_IDX_G(
8024 					be16_to_cpu(p->valid_to_idx));
8025 
8026 			if (idx)
8027 				idx[offset + i] = (index >= max_naddr ?
8028 						   0xffff : index);
8029 			if (index < max_naddr)
8030 				nfilters++;
8031 			else if (hash)
8032 				*hash |= (1ULL <<
8033 					  hash_mac_addr(addr[offset + i]));
8034 		}
8035 
8036 		free = false;
8037 		offset += fw_naddr;
8038 		rem -= fw_naddr;
8039 	}
8040 
8041 	if (ret == 0 || ret == -FW_ENOMEM)
8042 		ret = nfilters;
8043 	return ret;
8044 }
8045 
8046 /**
8047  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8048  *	@adap: the adapter
8049  *	@mbox: mailbox to use for the FW command
8050  *	@viid: the VI id
8051  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8052  *	@addr: the MAC address(es)
8053  *	@sleep_ok: call is allowed to sleep
8054  *
8055  *	Frees the exact-match filter for each of the supplied addresses
8056  *
8057  *	Returns a negative error number or the number of filters freed.
8058  */
8059 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8060 		     unsigned int viid, unsigned int naddr,
8061 		     const u8 **addr, bool sleep_ok)
8062 {
8063 	int offset, ret = 0;
8064 	struct fw_vi_mac_cmd c;
8065 	unsigned int nfilters = 0;
8066 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8067 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8068 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8069 	unsigned int rem = naddr;
8070 
8071 	if (naddr > max_naddr)
8072 		return -EINVAL;
8073 
8074 	for (offset = 0; offset < (int)naddr ; /**/) {
8075 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8076 					 ? rem
8077 					 : ARRAY_SIZE(c.u.exact));
8078 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8079 						     u.exact[fw_naddr]), 16);
8080 		struct fw_vi_mac_exact *p;
8081 		int i;
8082 
8083 		memset(&c, 0, sizeof(c));
8084 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8085 				     FW_CMD_REQUEST_F |
8086 				     FW_CMD_WRITE_F |
8087 				     FW_CMD_EXEC_V(0) |
8088 				     FW_VI_MAC_CMD_VIID_V(viid));
8089 		c.freemacs_to_len16 =
8090 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8091 					    FW_CMD_LEN16_V(len16));
8092 
8093 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8094 			p->valid_to_idx = cpu_to_be16(
8095 				FW_VI_MAC_CMD_VALID_F |
8096 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8097 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8098 		}
8099 
8100 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8101 		if (ret)
8102 			break;
8103 
8104 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8105 			u16 index = FW_VI_MAC_CMD_IDX_G(
8106 						be16_to_cpu(p->valid_to_idx));
8107 
8108 			if (index < max_naddr)
8109 				nfilters++;
8110 		}
8111 
8112 		offset += fw_naddr;
8113 		rem -= fw_naddr;
8114 	}
8115 
8116 	if (ret == 0)
8117 		ret = nfilters;
8118 	return ret;
8119 }
8120 
8121 /**
8122  *	t4_change_mac - modifies the exact-match filter for a MAC address
8123  *	@adap: the adapter
8124  *	@mbox: mailbox to use for the FW command
8125  *	@viid: the VI id
8126  *	@idx: index of existing filter for old value of MAC address, or -1
8127  *	@addr: the new MAC address value
8128  *	@persist: whether a new MAC allocation should be persistent
8129  *	@add_smt: if true also add the address to the HW SMT
8130  *
8131  *	Modifies an exact-match filter and sets it to the new MAC address.
8132  *	Note that in general it is not possible to modify the value of a given
8133  *	filter so the generic way to modify an address filter is to free the one
8134  *	being used by the old address value and allocate a new filter for the
8135  *	new address value.  @idx can be -1 if the address is a new addition.
8136  *
8137  *	Returns a negative error number or the index of the filter with the new
8138  *	MAC value.
8139  */
8140 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8141 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8142 {
8143 	int ret, mode;
8144 	struct fw_vi_mac_cmd c;
8145 	struct fw_vi_mac_exact *p = c.u.exact;
8146 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8147 
8148 	if (idx < 0)                             /* new allocation */
8149 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8150 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8151 
8152 	memset(&c, 0, sizeof(c));
8153 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8154 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8155 				   FW_VI_MAC_CMD_VIID_V(viid));
8156 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8157 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8158 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8159 				      FW_VI_MAC_CMD_IDX_V(idx));
8160 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8161 
8162 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8163 	if (ret == 0) {
8164 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8165 		if (ret >= max_mac_addr)
8166 			ret = -ENOMEM;
8167 		if (smt_idx) {
8168 			if (adap->params.viid_smt_extn_support) {
8169 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8170 						    (be32_to_cpu(c.op_to_viid));
8171 			} else {
8172 				/* In T4/T5, SMT contains 256 SMAC entries
8173 				 * organized in 128 rows of 2 entries each.
8174 				 * In T6, SMT contains 256 SMAC entries in
8175 				 * 256 rows.
8176 				 */
8177 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8178 								     CHELSIO_T5)
8179 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8180 				else
8181 					*smt_idx = (viid & FW_VIID_VIN_M);
8182 			}
8183 		}
8184 	}
8185 	return ret;
8186 }
8187 
8188 /**
8189  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8190  *	@adap: the adapter
8191  *	@mbox: mailbox to use for the FW command
8192  *	@viid: the VI id
8193  *	@ucast: whether the hash filter should also match unicast addresses
8194  *	@vec: the value to be written to the hash filter
8195  *	@sleep_ok: call is allowed to sleep
8196  *
8197  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8198  */
8199 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8200 		     bool ucast, u64 vec, bool sleep_ok)
8201 {
8202 	struct fw_vi_mac_cmd c;
8203 
8204 	memset(&c, 0, sizeof(c));
8205 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8206 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8207 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8208 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8209 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8210 					  FW_CMD_LEN16_V(1));
8211 	c.u.hash.hashvec = cpu_to_be64(vec);
8212 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8213 }
8214 
8215 /**
8216  *      t4_enable_vi_params - enable/disable a virtual interface
8217  *      @adap: the adapter
8218  *      @mbox: mailbox to use for the FW command
8219  *      @viid: the VI id
8220  *      @rx_en: 1=enable Rx, 0=disable Rx
8221  *      @tx_en: 1=enable Tx, 0=disable Tx
8222  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8223  *
8224  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8225  *      only makes sense when enabling a Virtual Interface ...
8226  */
8227 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8228 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8229 {
8230 	struct fw_vi_enable_cmd c;
8231 
8232 	memset(&c, 0, sizeof(c));
8233 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8234 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8235 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8236 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8237 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8238 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8239 				     FW_LEN16(c));
8240 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8241 }
8242 
8243 /**
8244  *	t4_enable_vi - enable/disable a virtual interface
8245  *	@adap: the adapter
8246  *	@mbox: mailbox to use for the FW command
8247  *	@viid: the VI id
8248  *	@rx_en: 1=enable Rx, 0=disable Rx
8249  *	@tx_en: 1=enable Tx, 0=disable Tx
8250  *
8251  *	Enables/disables a virtual interface.
8252  */
8253 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8254 		 bool rx_en, bool tx_en)
8255 {
8256 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8257 }
8258 
8259 /**
8260  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8261  *      @adap: the adapter
8262  *      @mbox: mailbox to use for the FW command
8263  *      @pi: the Port Information structure
8264  *      @rx_en: 1=enable Rx, 0=disable Rx
8265  *      @tx_en: 1=enable Tx, 0=disable Tx
8266  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8267  *
8268  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8269  *	Enable only makes sense when enabling a Virtual Interface ...
8270  *	If the Virtual Interface enable/disable operation is successful,
8271  *	we notify the OS-specific code of a potential Link Status change
8272  *	via the OS Contract API t4_os_link_changed().
8273  */
8274 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8275 			struct port_info *pi,
8276 			bool rx_en, bool tx_en, bool dcb_en)
8277 {
8278 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8279 				      rx_en, tx_en, dcb_en);
8280 	if (ret)
8281 		return ret;
8282 	t4_os_link_changed(adap, pi->port_id,
8283 			   rx_en && tx_en && pi->link_cfg.link_ok);
8284 	return 0;
8285 }
8286 
8287 /**
8288  *	t4_identify_port - identify a VI's port by blinking its LED
8289  *	@adap: the adapter
8290  *	@mbox: mailbox to use for the FW command
8291  *	@viid: the VI id
8292  *	@nblinks: how many times to blink LED at 2.5 Hz
8293  *
8294  *	Identifies a VI's port by blinking its LED.
8295  */
8296 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8297 		     unsigned int nblinks)
8298 {
8299 	struct fw_vi_enable_cmd c;
8300 
8301 	memset(&c, 0, sizeof(c));
8302 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8303 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8304 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8305 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8306 	c.blinkdur = cpu_to_be16(nblinks);
8307 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8308 }
8309 
8310 /**
8311  *	t4_iq_stop - stop an ingress queue and its FLs
8312  *	@adap: the adapter
8313  *	@mbox: mailbox to use for the FW command
8314  *	@pf: the PF owning the queues
8315  *	@vf: the VF owning the queues
8316  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8317  *	@iqid: ingress queue id
8318  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8319  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8320  *
8321  *	Stops an ingress queue and its associated FLs, if any.  This causes
8322  *	any current or future data/messages destined for these queues to be
8323  *	tossed.
8324  */
8325 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8326 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8327 	       unsigned int fl0id, unsigned int fl1id)
8328 {
8329 	struct fw_iq_cmd c;
8330 
8331 	memset(&c, 0, sizeof(c));
8332 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8333 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8334 				  FW_IQ_CMD_VFN_V(vf));
8335 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8336 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8337 	c.iqid = cpu_to_be16(iqid);
8338 	c.fl0id = cpu_to_be16(fl0id);
8339 	c.fl1id = cpu_to_be16(fl1id);
8340 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8341 }
8342 
8343 /**
8344  *	t4_iq_free - free an ingress queue and its FLs
8345  *	@adap: the adapter
8346  *	@mbox: mailbox to use for the FW command
8347  *	@pf: the PF owning the queues
8348  *	@vf: the VF owning the queues
8349  *	@iqtype: the ingress queue type
8350  *	@iqid: ingress queue id
8351  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8352  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8353  *
8354  *	Frees an ingress queue and its associated FLs, if any.
8355  */
8356 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8357 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8358 	       unsigned int fl0id, unsigned int fl1id)
8359 {
8360 	struct fw_iq_cmd c;
8361 
8362 	memset(&c, 0, sizeof(c));
8363 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8364 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8365 				  FW_IQ_CMD_VFN_V(vf));
8366 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8367 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8368 	c.iqid = cpu_to_be16(iqid);
8369 	c.fl0id = cpu_to_be16(fl0id);
8370 	c.fl1id = cpu_to_be16(fl1id);
8371 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8372 }
8373 
8374 /**
8375  *	t4_eth_eq_free - free an Ethernet egress queue
8376  *	@adap: the adapter
8377  *	@mbox: mailbox to use for the FW command
8378  *	@pf: the PF owning the queue
8379  *	@vf: the VF owning the queue
8380  *	@eqid: egress queue id
8381  *
8382  *	Frees an Ethernet egress queue.
8383  */
8384 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8385 		   unsigned int vf, unsigned int eqid)
8386 {
8387 	struct fw_eq_eth_cmd c;
8388 
8389 	memset(&c, 0, sizeof(c));
8390 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8391 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8392 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8393 				  FW_EQ_ETH_CMD_VFN_V(vf));
8394 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8395 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8396 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8397 }
8398 
8399 /**
8400  *	t4_ctrl_eq_free - free a control egress queue
8401  *	@adap: the adapter
8402  *	@mbox: mailbox to use for the FW command
8403  *	@pf: the PF owning the queue
8404  *	@vf: the VF owning the queue
8405  *	@eqid: egress queue id
8406  *
8407  *	Frees a control egress queue.
8408  */
8409 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8410 		    unsigned int vf, unsigned int eqid)
8411 {
8412 	struct fw_eq_ctrl_cmd c;
8413 
8414 	memset(&c, 0, sizeof(c));
8415 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8416 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8417 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8418 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8419 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8420 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8421 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8422 }
8423 
8424 /**
8425  *	t4_ofld_eq_free - free an offload egress queue
8426  *	@adap: the adapter
8427  *	@mbox: mailbox to use for the FW command
8428  *	@pf: the PF owning the queue
8429  *	@vf: the VF owning the queue
8430  *	@eqid: egress queue id
8431  *
8432  *	Frees a control egress queue.
8433  */
8434 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8435 		    unsigned int vf, unsigned int eqid)
8436 {
8437 	struct fw_eq_ofld_cmd c;
8438 
8439 	memset(&c, 0, sizeof(c));
8440 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8441 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8442 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8443 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8444 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8445 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8446 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8447 }
8448 
8449 /**
8450  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8451  *	@adap: the adapter
8452  *	@link_down_rc: Link Down Reason Code
8453  *
8454  *	Returns a string representation of the Link Down Reason Code.
8455  */
8456 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8457 {
8458 	static const char * const reason[] = {
8459 		"Link Down",
8460 		"Remote Fault",
8461 		"Auto-negotiation Failure",
8462 		"Reserved",
8463 		"Insufficient Airflow",
8464 		"Unable To Determine Reason",
8465 		"No RX Signal Detected",
8466 		"Reserved",
8467 	};
8468 
8469 	if (link_down_rc >= ARRAY_SIZE(reason))
8470 		return "Bad Reason Code";
8471 
8472 	return reason[link_down_rc];
8473 }
8474 
8475 /**
8476  * Return the highest speed set in the port capabilities, in Mb/s.
8477  */
8478 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8479 {
8480 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8481 		do { \
8482 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8483 				return __speed; \
8484 		} while (0)
8485 
8486 	TEST_SPEED_RETURN(400G, 400000);
8487 	TEST_SPEED_RETURN(200G, 200000);
8488 	TEST_SPEED_RETURN(100G, 100000);
8489 	TEST_SPEED_RETURN(50G,   50000);
8490 	TEST_SPEED_RETURN(40G,   40000);
8491 	TEST_SPEED_RETURN(25G,   25000);
8492 	TEST_SPEED_RETURN(10G,   10000);
8493 	TEST_SPEED_RETURN(1G,     1000);
8494 	TEST_SPEED_RETURN(100M,    100);
8495 
8496 	#undef TEST_SPEED_RETURN
8497 
8498 	return 0;
8499 }
8500 
8501 /**
8502  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8503  *	@acaps: advertised Port Capabilities
8504  *
8505  *	Get the highest speed for the port from the advertised Port
8506  *	Capabilities.  It will be either the highest speed from the list of
8507  *	speeds or whatever user has set using ethtool.
8508  */
8509 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8510 {
8511 	#define TEST_SPEED_RETURN(__caps_speed) \
8512 		do { \
8513 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8514 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8515 		} while (0)
8516 
8517 	TEST_SPEED_RETURN(400G);
8518 	TEST_SPEED_RETURN(200G);
8519 	TEST_SPEED_RETURN(100G);
8520 	TEST_SPEED_RETURN(50G);
8521 	TEST_SPEED_RETURN(40G);
8522 	TEST_SPEED_RETURN(25G);
8523 	TEST_SPEED_RETURN(10G);
8524 	TEST_SPEED_RETURN(1G);
8525 	TEST_SPEED_RETURN(100M);
8526 
8527 	#undef TEST_SPEED_RETURN
8528 
8529 	return 0;
8530 }
8531 
8532 /**
8533  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8534  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8535  *
8536  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8537  *	32-bit Port Capabilities value.
8538  */
8539 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8540 {
8541 	fw_port_cap32_t linkattr = 0;
8542 
8543 	/* Unfortunately the format of the Link Status in the old
8544 	 * 16-bit Port Information message isn't the same as the
8545 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8546 	 */
8547 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8548 		linkattr |= FW_PORT_CAP32_FC_RX;
8549 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8550 		linkattr |= FW_PORT_CAP32_FC_TX;
8551 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8552 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8553 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8554 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8555 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8556 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8557 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8558 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8559 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8560 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8561 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8562 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8563 
8564 	return linkattr;
8565 }
8566 
8567 /**
8568  *	t4_handle_get_port_info - process a FW reply message
8569  *	@pi: the port info
8570  *	@rpl: start of the FW message
8571  *
8572  *	Processes a GET_PORT_INFO FW reply message.
8573  */
8574 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8575 {
8576 	const struct fw_port_cmd *cmd = (const void *)rpl;
8577 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8578 	struct link_config *lc = &pi->link_cfg;
8579 	struct adapter *adapter = pi->adapter;
8580 	unsigned int speed, fc, fec, adv_fc;
8581 	enum fw_port_module_type mod_type;
8582 	int action, link_ok, linkdnrc;
8583 	enum fw_port_type port_type;
8584 
8585 	/* Extract the various fields from the Port Information message.
8586 	 */
8587 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8588 	switch (action) {
8589 	case FW_PORT_ACTION_GET_PORT_INFO: {
8590 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8591 
8592 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8593 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8594 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8595 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8596 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8597 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8598 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8599 		linkattr = lstatus_to_fwcap(lstatus);
8600 		break;
8601 	}
8602 
8603 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8604 		u32 lstatus32;
8605 
8606 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8607 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8608 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8609 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8610 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8611 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8612 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8613 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8614 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8615 		break;
8616 	}
8617 
8618 	default:
8619 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8620 			be32_to_cpu(cmd->action_to_len16));
8621 		return;
8622 	}
8623 
8624 	fec = fwcap_to_cc_fec(acaps);
8625 	adv_fc = fwcap_to_cc_pause(acaps);
8626 	fc = fwcap_to_cc_pause(linkattr);
8627 	speed = fwcap_to_speed(linkattr);
8628 
8629 	/* Reset state for communicating new Transceiver Module status and
8630 	 * whether the OS-dependent layer wants us to redo the current
8631 	 * "sticky" L1 Configure Link Parameters.
8632 	 */
8633 	lc->new_module = false;
8634 	lc->redo_l1cfg = false;
8635 
8636 	if (mod_type != pi->mod_type) {
8637 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8638 		 * various fundamental Port Capabilities which used to be
8639 		 * immutable can now change radically.  We can now have
8640 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8641 		 * all change based on what Transceiver Module is inserted.
8642 		 * So we need to record the Physical "Port" Capabilities on
8643 		 * every Transceiver Module change.
8644 		 */
8645 		lc->pcaps = pcaps;
8646 
8647 		/* When a new Transceiver Module is inserted, the Firmware
8648 		 * will examine its i2c EPROM to determine its type and
8649 		 * general operating parameters including things like Forward
8650 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8651 		 * how to interpret these i2c values to determine default
8652 		 * "sutomatic" settings.  We record these for future use when
8653 		 * the user explicitly requests these standards-based values.
8654 		 */
8655 		lc->def_acaps = acaps;
8656 
8657 		/* Some versions of the early T6 Firmware "cheated" when
8658 		 * handling different Transceiver Modules by changing the
8659 		 * underlaying Port Type reported to the Host Drivers.  As
8660 		 * such we need to capture whatever Port Type the Firmware
8661 		 * sends us and record it in case it's different from what we
8662 		 * were told earlier.  Unfortunately, since Firmware is
8663 		 * forever, we'll need to keep this code here forever, but in
8664 		 * later T6 Firmware it should just be an assignment of the
8665 		 * same value already recorded.
8666 		 */
8667 		pi->port_type = port_type;
8668 
8669 		/* Record new Module Type information.
8670 		 */
8671 		pi->mod_type = mod_type;
8672 
8673 		/* Let the OS-dependent layer know if we have a new
8674 		 * Transceiver Module inserted.
8675 		 */
8676 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8677 
8678 		t4_os_portmod_changed(adapter, pi->port_id);
8679 	}
8680 
8681 	if (link_ok != lc->link_ok || speed != lc->speed ||
8682 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8683 	    fec != lc->fec) {
8684 		/* something changed */
8685 		if (!link_ok && lc->link_ok) {
8686 			lc->link_down_rc = linkdnrc;
8687 			dev_warn_ratelimited(adapter->pdev_dev,
8688 					     "Port %d link down, reason: %s\n",
8689 					     pi->tx_chan,
8690 					     t4_link_down_rc_str(linkdnrc));
8691 		}
8692 		lc->link_ok = link_ok;
8693 		lc->speed = speed;
8694 		lc->advertised_fc = adv_fc;
8695 		lc->fc = fc;
8696 		lc->fec = fec;
8697 
8698 		lc->lpacaps = lpacaps;
8699 		lc->acaps = acaps & ADVERT_MASK;
8700 
8701 		/* If we're not physically capable of Auto-Negotiation, note
8702 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8703 		 * what Auto-Negotiation settings we have.  Note parallel
8704 		 * structure in t4_link_l1cfg_core() and init_link_config().
8705 		 */
8706 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8707 			lc->autoneg = AUTONEG_DISABLE;
8708 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8709 			lc->autoneg = AUTONEG_ENABLE;
8710 		} else {
8711 			/* When Autoneg is disabled, user needs to set
8712 			 * single speed.
8713 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8714 			 */
8715 			lc->acaps = 0;
8716 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8717 			lc->autoneg = AUTONEG_DISABLE;
8718 		}
8719 
8720 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8721 	}
8722 
8723 	/* If we have a new Transceiver Module and the OS-dependent code has
8724 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8725 	 * Link Parameters are set, do that now.
8726 	 */
8727 	if (lc->new_module && lc->redo_l1cfg) {
8728 		struct link_config old_lc;
8729 		int ret;
8730 
8731 		/* Save the current L1 Configuration and restore it if an
8732 		 * error occurs.  We probably should fix the l1_cfg*()
8733 		 * routines not to change the link_config when an error
8734 		 * occurs ...
8735 		 */
8736 		old_lc = *lc;
8737 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8738 		if (ret) {
8739 			*lc = old_lc;
8740 			dev_warn(adapter->pdev_dev,
8741 				 "Attempt to update new Transceiver Module settings failed\n");
8742 		}
8743 	}
8744 	lc->new_module = false;
8745 	lc->redo_l1cfg = false;
8746 }
8747 
8748 /**
8749  *	t4_update_port_info - retrieve and update port information if changed
8750  *	@pi: the port_info
8751  *
8752  *	We issue a Get Port Information Command to the Firmware and, if
8753  *	successful, we check to see if anything is different from what we
8754  *	last recorded and update things accordingly.
8755  */
8756 int t4_update_port_info(struct port_info *pi)
8757 {
8758 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8759 	struct fw_port_cmd port_cmd;
8760 	int ret;
8761 
8762 	memset(&port_cmd, 0, sizeof(port_cmd));
8763 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8764 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8765 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8766 	port_cmd.action_to_len16 = cpu_to_be32(
8767 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8768 				     ? FW_PORT_ACTION_GET_PORT_INFO
8769 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8770 		FW_LEN16(port_cmd));
8771 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8772 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8773 	if (ret)
8774 		return ret;
8775 
8776 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8777 	return 0;
8778 }
8779 
8780 /**
8781  *	t4_get_link_params - retrieve basic link parameters for given port
8782  *	@pi: the port
8783  *	@link_okp: value return pointer for link up/down
8784  *	@speedp: value return pointer for speed (Mb/s)
8785  *	@mtup: value return pointer for mtu
8786  *
8787  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8788  *	and MTU for a specified port.  A negative error is returned on
8789  *	failure; 0 on success.
8790  */
8791 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8792 		       unsigned int *speedp, unsigned int *mtup)
8793 {
8794 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8795 	unsigned int action, link_ok, mtu;
8796 	struct fw_port_cmd port_cmd;
8797 	fw_port_cap32_t linkattr;
8798 	int ret;
8799 
8800 	memset(&port_cmd, 0, sizeof(port_cmd));
8801 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8802 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8803 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8804 	action = (fw_caps == FW_CAPS16
8805 		  ? FW_PORT_ACTION_GET_PORT_INFO
8806 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8807 	port_cmd.action_to_len16 = cpu_to_be32(
8808 		FW_PORT_CMD_ACTION_V(action) |
8809 		FW_LEN16(port_cmd));
8810 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8811 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8812 	if (ret)
8813 		return ret;
8814 
8815 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8816 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8817 
8818 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8819 		linkattr = lstatus_to_fwcap(lstatus);
8820 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8821 	} else {
8822 		u32 lstatus32 =
8823 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8824 
8825 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8826 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8827 		mtu = FW_PORT_CMD_MTU32_G(
8828 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8829 	}
8830 
8831 	if (link_okp)
8832 		*link_okp = link_ok;
8833 	if (speedp)
8834 		*speedp = fwcap_to_speed(linkattr);
8835 	if (mtup)
8836 		*mtup = mtu;
8837 
8838 	return 0;
8839 }
8840 
8841 /**
8842  *      t4_handle_fw_rpl - process a FW reply message
8843  *      @adap: the adapter
8844  *      @rpl: start of the FW message
8845  *
8846  *      Processes a FW message, such as link state change messages.
8847  */
8848 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8849 {
8850 	u8 opcode = *(const u8 *)rpl;
8851 
8852 	/* This might be a port command ... this simplifies the following
8853 	 * conditionals ...  We can get away with pre-dereferencing
8854 	 * action_to_len16 because it's in the first 16 bytes and all messages
8855 	 * will be at least that long.
8856 	 */
8857 	const struct fw_port_cmd *p = (const void *)rpl;
8858 	unsigned int action =
8859 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8860 
8861 	if (opcode == FW_PORT_CMD &&
8862 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8863 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8864 		int i;
8865 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8866 		struct port_info *pi = NULL;
8867 
8868 		for_each_port(adap, i) {
8869 			pi = adap2pinfo(adap, i);
8870 			if (pi->tx_chan == chan)
8871 				break;
8872 		}
8873 
8874 		t4_handle_get_port_info(pi, rpl);
8875 	} else {
8876 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8877 			 opcode);
8878 		return -EINVAL;
8879 	}
8880 	return 0;
8881 }
8882 
8883 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8884 {
8885 	u16 val;
8886 
8887 	if (pci_is_pcie(adapter->pdev)) {
8888 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8889 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8890 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8891 	}
8892 }
8893 
8894 /**
8895  *	init_link_config - initialize a link's SW state
8896  *	@lc: pointer to structure holding the link state
8897  *	@pcaps: link Port Capabilities
8898  *	@acaps: link current Advertised Port Capabilities
8899  *
8900  *	Initializes the SW state maintained for each link, including the link's
8901  *	capabilities and default speed/flow-control/autonegotiation settings.
8902  */
8903 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8904 			     fw_port_cap32_t acaps)
8905 {
8906 	lc->pcaps = pcaps;
8907 	lc->def_acaps = acaps;
8908 	lc->lpacaps = 0;
8909 	lc->speed_caps = 0;
8910 	lc->speed = 0;
8911 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8912 
8913 	/* For Forward Error Control, we default to whatever the Firmware
8914 	 * tells us the Link is currently advertising.
8915 	 */
8916 	lc->requested_fec = FEC_AUTO;
8917 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8918 
8919 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8920 	 * "enabled" and copy over all of the Physical Port Capabilities
8921 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8922 	 * Auto-Negotiate disabled and select the highest supported speed
8923 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8924 	 * and t4_handle_get_port_info().
8925 	 */
8926 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8927 		lc->acaps = lc->pcaps & ADVERT_MASK;
8928 		lc->autoneg = AUTONEG_ENABLE;
8929 		lc->requested_fc |= PAUSE_AUTONEG;
8930 	} else {
8931 		lc->acaps = 0;
8932 		lc->autoneg = AUTONEG_DISABLE;
8933 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8934 	}
8935 }
8936 
8937 #define CIM_PF_NOACCESS 0xeeeeeeee
8938 
8939 int t4_wait_dev_ready(void __iomem *regs)
8940 {
8941 	u32 whoami;
8942 
8943 	whoami = readl(regs + PL_WHOAMI_A);
8944 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8945 		return 0;
8946 
8947 	msleep(500);
8948 	whoami = readl(regs + PL_WHOAMI_A);
8949 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8950 }
8951 
8952 struct flash_desc {
8953 	u32 vendor_and_model_id;
8954 	u32 size_mb;
8955 };
8956 
8957 static int t4_get_flash_params(struct adapter *adap)
8958 {
8959 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8960 	 * to the preexisting code.  All flash parts have 64KB sectors.
8961 	 */
8962 	static struct flash_desc supported_flash[] = {
8963 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8964 	};
8965 
8966 	unsigned int part, manufacturer;
8967 	unsigned int density, size = 0;
8968 	u32 flashid = 0;
8969 	int ret;
8970 
8971 	/* Issue a Read ID Command to the Flash part.  We decode supported
8972 	 * Flash parts and their sizes from this.  There's a newer Query
8973 	 * Command which can retrieve detailed geometry information but many
8974 	 * Flash parts don't support it.
8975 	 */
8976 
8977 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8978 	if (!ret)
8979 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8980 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8981 	if (ret)
8982 		return ret;
8983 
8984 	/* Check to see if it's one of our non-standard supported Flash parts.
8985 	 */
8986 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8987 		if (supported_flash[part].vendor_and_model_id == flashid) {
8988 			adap->params.sf_size = supported_flash[part].size_mb;
8989 			adap->params.sf_nsec =
8990 				adap->params.sf_size / SF_SEC_SIZE;
8991 			goto found;
8992 		}
8993 
8994 	/* Decode Flash part size.  The code below looks repetitive with
8995 	 * common encodings, but that's not guaranteed in the JEDEC
8996 	 * specification for the Read JEDEC ID command.  The only thing that
8997 	 * we're guaranteed by the JEDEC specification is where the
8998 	 * Manufacturer ID is in the returned result.  After that each
8999 	 * Manufacturer ~could~ encode things completely differently.
9000 	 * Note, all Flash parts must have 64KB sectors.
9001 	 */
9002 	manufacturer = flashid & 0xff;
9003 	switch (manufacturer) {
9004 	case 0x20: { /* Micron/Numonix */
9005 		/* This Density -> Size decoding table is taken from Micron
9006 		 * Data Sheets.
9007 		 */
9008 		density = (flashid >> 16) & 0xff;
9009 		switch (density) {
9010 		case 0x14: /* 1MB */
9011 			size = 1 << 20;
9012 			break;
9013 		case 0x15: /* 2MB */
9014 			size = 1 << 21;
9015 			break;
9016 		case 0x16: /* 4MB */
9017 			size = 1 << 22;
9018 			break;
9019 		case 0x17: /* 8MB */
9020 			size = 1 << 23;
9021 			break;
9022 		case 0x18: /* 16MB */
9023 			size = 1 << 24;
9024 			break;
9025 		case 0x19: /* 32MB */
9026 			size = 1 << 25;
9027 			break;
9028 		case 0x20: /* 64MB */
9029 			size = 1 << 26;
9030 			break;
9031 		case 0x21: /* 128MB */
9032 			size = 1 << 27;
9033 			break;
9034 		case 0x22: /* 256MB */
9035 			size = 1 << 28;
9036 			break;
9037 		}
9038 		break;
9039 	}
9040 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9041 		/* This Density -> Size decoding table is taken from ISSI
9042 		 * Data Sheets.
9043 		 */
9044 		density = (flashid >> 16) & 0xff;
9045 		switch (density) {
9046 		case 0x16: /* 32 MB */
9047 			size = 1 << 25;
9048 			break;
9049 		case 0x17: /* 64MB */
9050 			size = 1 << 26;
9051 			break;
9052 		}
9053 		break;
9054 	}
9055 	case 0xc2: { /* Macronix */
9056 		/* This Density -> Size decoding table is taken from Macronix
9057 		 * Data Sheets.
9058 		 */
9059 		density = (flashid >> 16) & 0xff;
9060 		switch (density) {
9061 		case 0x17: /* 8MB */
9062 			size = 1 << 23;
9063 			break;
9064 		case 0x18: /* 16MB */
9065 			size = 1 << 24;
9066 			break;
9067 		}
9068 		break;
9069 	}
9070 	case 0xef: { /* Winbond */
9071 		/* This Density -> Size decoding table is taken from Winbond
9072 		 * Data Sheets.
9073 		 */
9074 		density = (flashid >> 16) & 0xff;
9075 		switch (density) {
9076 		case 0x17: /* 8MB */
9077 			size = 1 << 23;
9078 			break;
9079 		case 0x18: /* 16MB */
9080 			size = 1 << 24;
9081 			break;
9082 		}
9083 		break;
9084 	}
9085 	}
9086 
9087 	/* If we didn't recognize the FLASH part, that's no real issue: the
9088 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9089 	 * use a FLASH part which is at least 4MB in size and has 64KB
9090 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9091 	 * than 4MB, but that's all we really need.
9092 	 */
9093 	if (size == 0) {
9094 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9095 			 flashid);
9096 		size = 1 << 22;
9097 	}
9098 
9099 	/* Store decoded Flash size and fall through into vetting code. */
9100 	adap->params.sf_size = size;
9101 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9102 
9103 found:
9104 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9105 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9106 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9107 	return 0;
9108 }
9109 
9110 /**
9111  *	t4_prep_adapter - prepare SW and HW for operation
9112  *	@adapter: the adapter
9113  *	@reset: if true perform a HW reset
9114  *
9115  *	Initialize adapter SW state for the various HW modules, set initial
9116  *	values for some adapter tunables, take PHYs out of reset, and
9117  *	initialize the MDIO interface.
9118  */
9119 int t4_prep_adapter(struct adapter *adapter)
9120 {
9121 	int ret, ver;
9122 	uint16_t device_id;
9123 	u32 pl_rev;
9124 
9125 	get_pci_mode(adapter, &adapter->params.pci);
9126 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9127 
9128 	ret = t4_get_flash_params(adapter);
9129 	if (ret < 0) {
9130 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9131 		return ret;
9132 	}
9133 
9134 	/* Retrieve adapter's device ID
9135 	 */
9136 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9137 	ver = device_id >> 12;
9138 	adapter->params.chip = 0;
9139 	switch (ver) {
9140 	case CHELSIO_T4:
9141 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9142 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9143 		adapter->params.arch.mps_tcam_size =
9144 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9145 		adapter->params.arch.mps_rplc_size = 128;
9146 		adapter->params.arch.nchan = NCHAN;
9147 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9148 		adapter->params.arch.vfcount = 128;
9149 		/* Congestion map is for 4 channels so that
9150 		 * MPS can have 4 priority per port.
9151 		 */
9152 		adapter->params.arch.cng_ch_bits_log = 2;
9153 		break;
9154 	case CHELSIO_T5:
9155 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9156 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9157 		adapter->params.arch.mps_tcam_size =
9158 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9159 		adapter->params.arch.mps_rplc_size = 128;
9160 		adapter->params.arch.nchan = NCHAN;
9161 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9162 		adapter->params.arch.vfcount = 128;
9163 		adapter->params.arch.cng_ch_bits_log = 2;
9164 		break;
9165 	case CHELSIO_T6:
9166 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9167 		adapter->params.arch.sge_fl_db = 0;
9168 		adapter->params.arch.mps_tcam_size =
9169 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9170 		adapter->params.arch.mps_rplc_size = 256;
9171 		adapter->params.arch.nchan = 2;
9172 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9173 		adapter->params.arch.vfcount = 256;
9174 		/* Congestion map will be for 2 channels so that
9175 		 * MPS can have 8 priority per port.
9176 		 */
9177 		adapter->params.arch.cng_ch_bits_log = 3;
9178 		break;
9179 	default:
9180 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9181 			device_id);
9182 		return -EINVAL;
9183 	}
9184 
9185 	adapter->params.cim_la_size = CIMLA_SIZE;
9186 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9187 
9188 	/*
9189 	 * Default port for debugging in case we can't reach FW.
9190 	 */
9191 	adapter->params.nports = 1;
9192 	adapter->params.portvec = 1;
9193 	adapter->params.vpd.cclk = 50000;
9194 
9195 	/* Set PCIe completion timeout to 4 seconds. */
9196 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9197 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9198 	return 0;
9199 }
9200 
9201 /**
9202  *	t4_shutdown_adapter - shut down adapter, host & wire
9203  *	@adapter: the adapter
9204  *
9205  *	Perform an emergency shutdown of the adapter and stop it from
9206  *	continuing any further communication on the ports or DMA to the
9207  *	host.  This is typically used when the adapter and/or firmware
9208  *	have crashed and we want to prevent any further accidental
9209  *	communication with the rest of the world.  This will also force
9210  *	the port Link Status to go down -- if register writes work --
9211  *	which should help our peers figure out that we're down.
9212  */
9213 int t4_shutdown_adapter(struct adapter *adapter)
9214 {
9215 	int port;
9216 
9217 	t4_intr_disable(adapter);
9218 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9219 	for_each_port(adapter, port) {
9220 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9221 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9222 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9223 
9224 		t4_write_reg(adapter, a_port_cfg,
9225 			     t4_read_reg(adapter, a_port_cfg)
9226 			     & ~SIGNAL_DET_V(1));
9227 	}
9228 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9229 
9230 	return 0;
9231 }
9232 
9233 /**
9234  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9235  *	@adapter: the adapter
9236  *	@qid: the Queue ID
9237  *	@qtype: the Ingress or Egress type for @qid
9238  *	@user: true if this request is for a user mode queue
9239  *	@pbar2_qoffset: BAR2 Queue Offset
9240  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9241  *
9242  *	Returns the BAR2 SGE Queue Registers information associated with the
9243  *	indicated Absolute Queue ID.  These are passed back in return value
9244  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9245  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9246  *
9247  *	This may return an error which indicates that BAR2 SGE Queue
9248  *	registers aren't available.  If an error is not returned, then the
9249  *	following values are returned:
9250  *
9251  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9252  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9253  *
9254  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9255  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9256  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9257  *	then these "Inferred Queue ID" register may not be used.
9258  */
9259 int t4_bar2_sge_qregs(struct adapter *adapter,
9260 		      unsigned int qid,
9261 		      enum t4_bar2_qtype qtype,
9262 		      int user,
9263 		      u64 *pbar2_qoffset,
9264 		      unsigned int *pbar2_qid)
9265 {
9266 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9267 	u64 bar2_page_offset, bar2_qoffset;
9268 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9269 
9270 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9271 	if (!user && is_t4(adapter->params.chip))
9272 		return -EINVAL;
9273 
9274 	/* Get our SGE Page Size parameters.
9275 	 */
9276 	page_shift = adapter->params.sge.hps + 10;
9277 	page_size = 1 << page_shift;
9278 
9279 	/* Get the right Queues per Page parameters for our Queue.
9280 	 */
9281 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9282 		     ? adapter->params.sge.eq_qpp
9283 		     : adapter->params.sge.iq_qpp);
9284 	qpp_mask = (1 << qpp_shift) - 1;
9285 
9286 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9287 	 *  o The BAR2 page the Queue registers will be in.
9288 	 *  o The BAR2 Queue ID.
9289 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9290 	 */
9291 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9292 	bar2_qid = qid & qpp_mask;
9293 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9294 
9295 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9296 	 * hardware will infer the Absolute Queue ID simply from the writes to
9297 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9298 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9299 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9300 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9301 	 * from the BAR2 Page and BAR2 Queue ID.
9302 	 *
9303 	 * One important censequence of this is that some BAR2 SGE registers
9304 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9305 	 * there.  But other registers synthesize the SGE Queue ID purely
9306 	 * from the writes to the registers -- the Write Combined Doorbell
9307 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9308 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9309 	 * Queue ID can be inferred from simple writes.
9310 	 */
9311 	bar2_qoffset = bar2_page_offset;
9312 	bar2_qinferred = (bar2_qid_offset < page_size);
9313 	if (bar2_qinferred) {
9314 		bar2_qoffset += bar2_qid_offset;
9315 		bar2_qid = 0;
9316 	}
9317 
9318 	*pbar2_qoffset = bar2_qoffset;
9319 	*pbar2_qid = bar2_qid;
9320 	return 0;
9321 }
9322 
9323 /**
9324  *	t4_init_devlog_params - initialize adapter->params.devlog
9325  *	@adap: the adapter
9326  *
9327  *	Initialize various fields of the adapter's Firmware Device Log
9328  *	Parameters structure.
9329  */
9330 int t4_init_devlog_params(struct adapter *adap)
9331 {
9332 	struct devlog_params *dparams = &adap->params.devlog;
9333 	u32 pf_dparams;
9334 	unsigned int devlog_meminfo;
9335 	struct fw_devlog_cmd devlog_cmd;
9336 	int ret;
9337 
9338 	/* If we're dealing with newer firmware, the Device Log Parameters
9339 	 * are stored in a designated register which allows us to access the
9340 	 * Device Log even if we can't talk to the firmware.
9341 	 */
9342 	pf_dparams =
9343 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9344 	if (pf_dparams) {
9345 		unsigned int nentries, nentries128;
9346 
9347 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9348 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9349 
9350 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9351 		nentries = (nentries128 + 1) * 128;
9352 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9353 
9354 		return 0;
9355 	}
9356 
9357 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9358 	 */
9359 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9360 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9361 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9362 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9363 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9364 			 &devlog_cmd);
9365 	if (ret)
9366 		return ret;
9367 
9368 	devlog_meminfo =
9369 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9370 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9371 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9372 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9373 
9374 	return 0;
9375 }
9376 
9377 /**
9378  *	t4_init_sge_params - initialize adap->params.sge
9379  *	@adapter: the adapter
9380  *
9381  *	Initialize various fields of the adapter's SGE Parameters structure.
9382  */
9383 int t4_init_sge_params(struct adapter *adapter)
9384 {
9385 	struct sge_params *sge_params = &adapter->params.sge;
9386 	u32 hps, qpp;
9387 	unsigned int s_hps, s_qpp;
9388 
9389 	/* Extract the SGE Page Size for our PF.
9390 	 */
9391 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9392 	s_hps = (HOSTPAGESIZEPF0_S +
9393 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9394 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9395 
9396 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9397 	 */
9398 	s_qpp = (QUEUESPERPAGEPF0_S +
9399 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9400 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9401 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9402 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9403 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9404 
9405 	return 0;
9406 }
9407 
9408 /**
9409  *      t4_init_tp_params - initialize adap->params.tp
9410  *      @adap: the adapter
9411  *      @sleep_ok: if true we may sleep while awaiting command completion
9412  *
9413  *      Initialize various fields of the adapter's TP Parameters structure.
9414  */
9415 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9416 {
9417 	u32 param, val, v;
9418 	int chan, ret;
9419 
9420 
9421 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9422 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9423 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9424 
9425 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9426 	for (chan = 0; chan < NCHAN; chan++)
9427 		adap->params.tp.tx_modq[chan] = chan;
9428 
9429 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9430 	 * Configuration.
9431 	 */
9432 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9433 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9434 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9435 
9436 	/* Read current value */
9437 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9438 			      &param, &val);
9439 	if (ret == 0) {
9440 		dev_info(adap->pdev_dev,
9441 			 "Current filter mode/mask 0x%x:0x%x\n",
9442 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9443 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9444 		adap->params.tp.vlan_pri_map =
9445 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9446 		adap->params.tp.filter_mask =
9447 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9448 	} else {
9449 		dev_info(adap->pdev_dev,
9450 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9451 
9452 		/* Incase of older-fw (which doesn't expose the api
9453 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9454 		 * the fw api) combination, fall-back to older method of reading
9455 		 * the filter mode from indirect-register
9456 		 */
9457 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9458 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9459 
9460 		/* With the older-fw and newer-driver combination we might run
9461 		 * into an issue when user wants to use hash filter region but
9462 		 * the filter_mask is zero, in this case filter_mask validation
9463 		 * is tough. To avoid that we set the filter_mask same as filter
9464 		 * mode, which will behave exactly as the older way of ignoring
9465 		 * the filter mask validation.
9466 		 */
9467 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9468 	}
9469 
9470 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9471 		       TP_INGRESS_CONFIG_A, sleep_ok);
9472 
9473 	/* For T6, cache the adapter's compressed error vector
9474 	 * and passing outer header info for encapsulated packets.
9475 	 */
9476 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9477 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9478 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9479 	}
9480 
9481 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9482 	 * shift positions of several elements of the Compressed Filter Tuple
9483 	 * for this adapter which we need frequently ...
9484 	 */
9485 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9486 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9487 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9488 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9489 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9490 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9491 							       PROTOCOL_F);
9492 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9493 								ETHERTYPE_F);
9494 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9495 							       MACMATCH_F);
9496 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9497 								MPSHITTYPE_F);
9498 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9499 							   FRAGMENTATION_F);
9500 
9501 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9502 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9503 	 */
9504 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9505 		adap->params.tp.vnic_shift = -1;
9506 
9507 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9508 	adap->params.tp.hash_filter_mask = v;
9509 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9510 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9511 	return 0;
9512 }
9513 
9514 /**
9515  *      t4_filter_field_shift - calculate filter field shift
9516  *      @adap: the adapter
9517  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9518  *
9519  *      Return the shift position of a filter field within the Compressed
9520  *      Filter Tuple.  The filter field is specified via its selection bit
9521  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9522  */
9523 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9524 {
9525 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9526 	unsigned int sel;
9527 	int field_shift;
9528 
9529 	if ((filter_mode & filter_sel) == 0)
9530 		return -1;
9531 
9532 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9533 		switch (filter_mode & sel) {
9534 		case FCOE_F:
9535 			field_shift += FT_FCOE_W;
9536 			break;
9537 		case PORT_F:
9538 			field_shift += FT_PORT_W;
9539 			break;
9540 		case VNIC_ID_F:
9541 			field_shift += FT_VNIC_ID_W;
9542 			break;
9543 		case VLAN_F:
9544 			field_shift += FT_VLAN_W;
9545 			break;
9546 		case TOS_F:
9547 			field_shift += FT_TOS_W;
9548 			break;
9549 		case PROTOCOL_F:
9550 			field_shift += FT_PROTOCOL_W;
9551 			break;
9552 		case ETHERTYPE_F:
9553 			field_shift += FT_ETHERTYPE_W;
9554 			break;
9555 		case MACMATCH_F:
9556 			field_shift += FT_MACMATCH_W;
9557 			break;
9558 		case MPSHITTYPE_F:
9559 			field_shift += FT_MPSHITTYPE_W;
9560 			break;
9561 		case FRAGMENTATION_F:
9562 			field_shift += FT_FRAGMENTATION_W;
9563 			break;
9564 		}
9565 	}
9566 	return field_shift;
9567 }
9568 
9569 int t4_init_rss_mode(struct adapter *adap, int mbox)
9570 {
9571 	int i, ret;
9572 	struct fw_rss_vi_config_cmd rvc;
9573 
9574 	memset(&rvc, 0, sizeof(rvc));
9575 
9576 	for_each_port(adap, i) {
9577 		struct port_info *p = adap2pinfo(adap, i);
9578 
9579 		rvc.op_to_viid =
9580 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9581 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9582 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9583 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9584 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9585 		if (ret)
9586 			return ret;
9587 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9588 	}
9589 	return 0;
9590 }
9591 
9592 /**
9593  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9594  *	@pi: the port_info
9595  *	@mbox: mailbox to use for the FW command
9596  *	@port: physical port associated with the VI
9597  *	@pf: the PF owning the VI
9598  *	@vf: the VF owning the VI
9599  *	@mac: the MAC address of the VI
9600  *
9601  *	Allocates a virtual interface for the given physical port.  If @mac is
9602  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9603  *	@mac should be large enough to hold an Ethernet address.
9604  *	Returns < 0 on error.
9605  */
9606 int t4_init_portinfo(struct port_info *pi, int mbox,
9607 		     int port, int pf, int vf, u8 mac[])
9608 {
9609 	struct adapter *adapter = pi->adapter;
9610 	unsigned int fw_caps = adapter->params.fw_caps_support;
9611 	struct fw_port_cmd cmd;
9612 	unsigned int rss_size;
9613 	enum fw_port_type port_type;
9614 	int mdio_addr;
9615 	fw_port_cap32_t pcaps, acaps;
9616 	u8 vivld = 0, vin = 0;
9617 	int ret;
9618 
9619 	/* If we haven't yet determined whether we're talking to Firmware
9620 	 * which knows the new 32-bit Port Capabilities, it's time to find
9621 	 * out now.  This will also tell new Firmware to send us Port Status
9622 	 * Updates using the new 32-bit Port Capabilities version of the
9623 	 * Port Information message.
9624 	 */
9625 	if (fw_caps == FW_CAPS_UNKNOWN) {
9626 		u32 param, val;
9627 
9628 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9629 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9630 		val = 1;
9631 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9632 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9633 		adapter->params.fw_caps_support = fw_caps;
9634 	}
9635 
9636 	memset(&cmd, 0, sizeof(cmd));
9637 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9638 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9639 				       FW_PORT_CMD_PORTID_V(port));
9640 	cmd.action_to_len16 = cpu_to_be32(
9641 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9642 				     ? FW_PORT_ACTION_GET_PORT_INFO
9643 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9644 		FW_LEN16(cmd));
9645 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9646 	if (ret)
9647 		return ret;
9648 
9649 	/* Extract the various fields from the Port Information message.
9650 	 */
9651 	if (fw_caps == FW_CAPS16) {
9652 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9653 
9654 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9655 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9656 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9657 			     : -1);
9658 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9659 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9660 	} else {
9661 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9662 
9663 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9664 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9665 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9666 			     : -1);
9667 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9668 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9669 	}
9670 
9671 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9672 			  &vivld, &vin);
9673 	if (ret < 0)
9674 		return ret;
9675 
9676 	pi->viid = ret;
9677 	pi->tx_chan = port;
9678 	pi->lport = port;
9679 	pi->rss_size = rss_size;
9680 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9681 
9682 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9683 	 * save the returned values.
9684 	 */
9685 	if (adapter->params.viid_smt_extn_support) {
9686 		pi->vivld = vivld;
9687 		pi->vin = vin;
9688 	} else {
9689 		/* Retrieve the values from VIID */
9690 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9691 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9692 	}
9693 
9694 	pi->port_type = port_type;
9695 	pi->mdio_addr = mdio_addr;
9696 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9697 
9698 	init_link_config(&pi->link_cfg, pcaps, acaps);
9699 	return 0;
9700 }
9701 
9702 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9703 {
9704 	u8 addr[6];
9705 	int ret, i, j = 0;
9706 
9707 	for_each_port(adap, i) {
9708 		struct port_info *pi = adap2pinfo(adap, i);
9709 
9710 		while ((adap->params.portvec & (1 << j)) == 0)
9711 			j++;
9712 
9713 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9714 		if (ret)
9715 			return ret;
9716 
9717 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9718 		j++;
9719 	}
9720 	return 0;
9721 }
9722 
9723 /**
9724  *	t4_read_cimq_cfg - read CIM queue configuration
9725  *	@adap: the adapter
9726  *	@base: holds the queue base addresses in bytes
9727  *	@size: holds the queue sizes in bytes
9728  *	@thres: holds the queue full thresholds in bytes
9729  *
9730  *	Returns the current configuration of the CIM queues, starting with
9731  *	the IBQs, then the OBQs.
9732  */
9733 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9734 {
9735 	unsigned int i, v;
9736 	int cim_num_obq = is_t4(adap->params.chip) ?
9737 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9738 
9739 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9740 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9741 			     QUENUMSELECT_V(i));
9742 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9743 		/* value is in 256-byte units */
9744 		*base++ = CIMQBASE_G(v) * 256;
9745 		*size++ = CIMQSIZE_G(v) * 256;
9746 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9747 	}
9748 	for (i = 0; i < cim_num_obq; i++) {
9749 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9750 			     QUENUMSELECT_V(i));
9751 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9752 		/* value is in 256-byte units */
9753 		*base++ = CIMQBASE_G(v) * 256;
9754 		*size++ = CIMQSIZE_G(v) * 256;
9755 	}
9756 }
9757 
9758 /**
9759  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9760  *	@adap: the adapter
9761  *	@qid: the queue index
9762  *	@data: where to store the queue contents
9763  *	@n: capacity of @data in 32-bit words
9764  *
9765  *	Reads the contents of the selected CIM queue starting at address 0 up
9766  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9767  *	error and the number of 32-bit words actually read on success.
9768  */
9769 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9770 {
9771 	int i, err, attempts;
9772 	unsigned int addr;
9773 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9774 
9775 	if (qid > 5 || (n & 3))
9776 		return -EINVAL;
9777 
9778 	addr = qid * nwords;
9779 	if (n > nwords)
9780 		n = nwords;
9781 
9782 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9783 	 * Wait for 1 Sec with a delay of 1 usec.
9784 	 */
9785 	attempts = 1000000;
9786 
9787 	for (i = 0; i < n; i++, addr++) {
9788 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9789 			     IBQDBGEN_F);
9790 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9791 				      attempts, 1);
9792 		if (err)
9793 			return err;
9794 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9795 	}
9796 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9797 	return i;
9798 }
9799 
9800 /**
9801  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9802  *	@adap: the adapter
9803  *	@qid: the queue index
9804  *	@data: where to store the queue contents
9805  *	@n: capacity of @data in 32-bit words
9806  *
9807  *	Reads the contents of the selected CIM queue starting at address 0 up
9808  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9809  *	error and the number of 32-bit words actually read on success.
9810  */
9811 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9812 {
9813 	int i, err;
9814 	unsigned int addr, v, nwords;
9815 	int cim_num_obq = is_t4(adap->params.chip) ?
9816 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9817 
9818 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9819 		return -EINVAL;
9820 
9821 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9822 		     QUENUMSELECT_V(qid));
9823 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9824 
9825 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9826 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9827 	if (n > nwords)
9828 		n = nwords;
9829 
9830 	for (i = 0; i < n; i++, addr++) {
9831 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9832 			     OBQDBGEN_F);
9833 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9834 				      2, 1);
9835 		if (err)
9836 			return err;
9837 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9838 	}
9839 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9840 	return i;
9841 }
9842 
9843 /**
9844  *	t4_cim_read - read a block from CIM internal address space
9845  *	@adap: the adapter
9846  *	@addr: the start address within the CIM address space
9847  *	@n: number of words to read
9848  *	@valp: where to store the result
9849  *
9850  *	Reads a block of 4-byte words from the CIM intenal address space.
9851  */
9852 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9853 		unsigned int *valp)
9854 {
9855 	int ret = 0;
9856 
9857 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9858 		return -EBUSY;
9859 
9860 	for ( ; !ret && n--; addr += 4) {
9861 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9862 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9863 				      0, 5, 2);
9864 		if (!ret)
9865 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9866 	}
9867 	return ret;
9868 }
9869 
9870 /**
9871  *	t4_cim_write - write a block into CIM internal address space
9872  *	@adap: the adapter
9873  *	@addr: the start address within the CIM address space
9874  *	@n: number of words to write
9875  *	@valp: set of values to write
9876  *
9877  *	Writes a block of 4-byte words into the CIM intenal address space.
9878  */
9879 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9880 		 const unsigned int *valp)
9881 {
9882 	int ret = 0;
9883 
9884 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9885 		return -EBUSY;
9886 
9887 	for ( ; !ret && n--; addr += 4) {
9888 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9889 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9890 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9891 				      0, 5, 2);
9892 	}
9893 	return ret;
9894 }
9895 
9896 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9897 			 unsigned int val)
9898 {
9899 	return t4_cim_write(adap, addr, 1, &val);
9900 }
9901 
9902 /**
9903  *	t4_cim_read_la - read CIM LA capture buffer
9904  *	@adap: the adapter
9905  *	@la_buf: where to store the LA data
9906  *	@wrptr: the HW write pointer within the capture buffer
9907  *
9908  *	Reads the contents of the CIM LA buffer with the most recent entry at
9909  *	the end	of the returned data and with the entry at @wrptr first.
9910  *	We try to leave the LA in the running state we find it in.
9911  */
9912 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9913 {
9914 	int i, ret;
9915 	unsigned int cfg, val, idx;
9916 
9917 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9918 	if (ret)
9919 		return ret;
9920 
9921 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9922 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9923 		if (ret)
9924 			return ret;
9925 	}
9926 
9927 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9928 	if (ret)
9929 		goto restart;
9930 
9931 	idx = UPDBGLAWRPTR_G(val);
9932 	if (wrptr)
9933 		*wrptr = idx;
9934 
9935 	for (i = 0; i < adap->params.cim_la_size; i++) {
9936 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9937 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9938 		if (ret)
9939 			break;
9940 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9941 		if (ret)
9942 			break;
9943 		if (val & UPDBGLARDEN_F) {
9944 			ret = -ETIMEDOUT;
9945 			break;
9946 		}
9947 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9948 		if (ret)
9949 			break;
9950 
9951 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9952 		 * identify the 32-bit portion of the full 312-bit data
9953 		 */
9954 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9955 			idx = (idx & 0xff0) + 0x10;
9956 		else
9957 			idx++;
9958 		/* address can't exceed 0xfff */
9959 		idx &= UPDBGLARDPTR_M;
9960 	}
9961 restart:
9962 	if (cfg & UPDBGLAEN_F) {
9963 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9964 				      cfg & ~UPDBGLARDEN_F);
9965 		if (!ret)
9966 			ret = r;
9967 	}
9968 	return ret;
9969 }
9970 
9971 /**
9972  *	t4_tp_read_la - read TP LA capture buffer
9973  *	@adap: the adapter
9974  *	@la_buf: where to store the LA data
9975  *	@wrptr: the HW write pointer within the capture buffer
9976  *
9977  *	Reads the contents of the TP LA buffer with the most recent entry at
9978  *	the end	of the returned data and with the entry at @wrptr first.
9979  *	We leave the LA in the running state we find it in.
9980  */
9981 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9982 {
9983 	bool last_incomplete;
9984 	unsigned int i, cfg, val, idx;
9985 
9986 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9987 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9988 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9989 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9990 
9991 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9992 	idx = DBGLAWPTR_G(val);
9993 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9994 	if (last_incomplete)
9995 		idx = (idx + 1) & DBGLARPTR_M;
9996 	if (wrptr)
9997 		*wrptr = idx;
9998 
9999 	val &= 0xffff;
10000 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10001 	val |= adap->params.tp.la_mask;
10002 
10003 	for (i = 0; i < TPLA_SIZE; i++) {
10004 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10005 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10006 		idx = (idx + 1) & DBGLARPTR_M;
10007 	}
10008 
10009 	/* Wipe out last entry if it isn't valid */
10010 	if (last_incomplete)
10011 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10012 
10013 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10014 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10015 			     cfg | adap->params.tp.la_mask);
10016 }
10017 
10018 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10019  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10020  * state for more than the Warning Threshold then we'll issue a warning about
10021  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10022  * appears to be hung every Warning Repeat second till the situation clears.
10023  * If the situation clears, we'll note that as well.
10024  */
10025 #define SGE_IDMA_WARN_THRESH 1
10026 #define SGE_IDMA_WARN_REPEAT 300
10027 
10028 /**
10029  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10030  *	@adapter: the adapter
10031  *	@idma: the adapter IDMA Monitor state
10032  *
10033  *	Initialize the state of an SGE Ingress DMA Monitor.
10034  */
10035 void t4_idma_monitor_init(struct adapter *adapter,
10036 			  struct sge_idma_monitor_state *idma)
10037 {
10038 	/* Initialize the state variables for detecting an SGE Ingress DMA
10039 	 * hang.  The SGE has internal counters which count up on each clock
10040 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10041 	 * same state they were on the previous clock tick.  The clock used is
10042 	 * the Core Clock so we have a limit on the maximum "time" they can
10043 	 * record; typically a very small number of seconds.  For instance,
10044 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10045 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10046 	 * risk of having the "timers" overflow and give us the flexibility to
10047 	 * maintain a Hung SGE State Machine of our own which operates across
10048 	 * a longer time frame.
10049 	 */
10050 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10051 	idma->idma_stalled[0] = 0;
10052 	idma->idma_stalled[1] = 0;
10053 }
10054 
10055 /**
10056  *	t4_idma_monitor - monitor SGE Ingress DMA state
10057  *	@adapter: the adapter
10058  *	@idma: the adapter IDMA Monitor state
10059  *	@hz: number of ticks/second
10060  *	@ticks: number of ticks since the last IDMA Monitor call
10061  */
10062 void t4_idma_monitor(struct adapter *adapter,
10063 		     struct sge_idma_monitor_state *idma,
10064 		     int hz, int ticks)
10065 {
10066 	int i, idma_same_state_cnt[2];
10067 
10068 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10069 	  * are counters inside the SGE which count up on each clock when the
10070 	  * SGE finds its Ingress DMA State Engines in the same states they
10071 	  * were in the previous clock.  The counters will peg out at
10072 	  * 0xffffffff without wrapping around so once they pass the 1s
10073 	  * threshold they'll stay above that till the IDMA state changes.
10074 	  */
10075 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10076 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10077 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10078 
10079 	for (i = 0; i < 2; i++) {
10080 		u32 debug0, debug11;
10081 
10082 		/* If the Ingress DMA Same State Counter ("timer") is less
10083 		 * than 1s, then we can reset our synthesized Stall Timer and
10084 		 * continue.  If we have previously emitted warnings about a
10085 		 * potential stalled Ingress Queue, issue a note indicating
10086 		 * that the Ingress Queue has resumed forward progress.
10087 		 */
10088 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10089 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10090 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10091 					 "resumed after %d seconds\n",
10092 					 i, idma->idma_qid[i],
10093 					 idma->idma_stalled[i] / hz);
10094 			idma->idma_stalled[i] = 0;
10095 			continue;
10096 		}
10097 
10098 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10099 		 * domain.  The first time we get here it'll be because we
10100 		 * passed the 1s Threshold; each additional time it'll be
10101 		 * because the RX Timer Callback is being fired on its regular
10102 		 * schedule.
10103 		 *
10104 		 * If the stall is below our Potential Hung Ingress Queue
10105 		 * Warning Threshold, continue.
10106 		 */
10107 		if (idma->idma_stalled[i] == 0) {
10108 			idma->idma_stalled[i] = hz;
10109 			idma->idma_warn[i] = 0;
10110 		} else {
10111 			idma->idma_stalled[i] += ticks;
10112 			idma->idma_warn[i] -= ticks;
10113 		}
10114 
10115 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10116 			continue;
10117 
10118 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10119 		 */
10120 		if (idma->idma_warn[i] > 0)
10121 			continue;
10122 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10123 
10124 		/* Read and save the SGE IDMA State and Queue ID information.
10125 		 * We do this every time in case it changes across time ...
10126 		 * can't be too careful ...
10127 		 */
10128 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10129 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10130 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10131 
10132 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10133 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10134 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10135 
10136 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10137 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10138 			 i, idma->idma_qid[i], idma->idma_state[i],
10139 			 idma->idma_stalled[i] / hz,
10140 			 debug0, debug11);
10141 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10142 	}
10143 }
10144 
10145 /**
10146  *	t4_load_cfg - download config file
10147  *	@adap: the adapter
10148  *	@cfg_data: the cfg text file to write
10149  *	@size: text file size
10150  *
10151  *	Write the supplied config text file to the card's serial flash.
10152  */
10153 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10154 {
10155 	int ret, i, n, cfg_addr;
10156 	unsigned int addr;
10157 	unsigned int flash_cfg_start_sec;
10158 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10159 
10160 	cfg_addr = t4_flash_cfg_addr(adap);
10161 	if (cfg_addr < 0)
10162 		return cfg_addr;
10163 
10164 	addr = cfg_addr;
10165 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10166 
10167 	if (size > FLASH_CFG_MAX_SIZE) {
10168 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10169 			FLASH_CFG_MAX_SIZE);
10170 		return -EFBIG;
10171 	}
10172 
10173 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10174 			 sf_sec_size);
10175 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10176 				     flash_cfg_start_sec + i - 1);
10177 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10178 	 * with the on-adapter Firmware Configuration File.
10179 	 */
10180 	if (ret || size == 0)
10181 		goto out;
10182 
10183 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10184 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10185 		if ((size - i) <  SF_PAGE_SIZE)
10186 			n = size - i;
10187 		else
10188 			n = SF_PAGE_SIZE;
10189 		ret = t4_write_flash(adap, addr, n, cfg_data);
10190 		if (ret)
10191 			goto out;
10192 
10193 		addr += SF_PAGE_SIZE;
10194 		cfg_data += SF_PAGE_SIZE;
10195 	}
10196 
10197 out:
10198 	if (ret)
10199 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10200 			(size == 0 ? "clear" : "download"), ret);
10201 	return ret;
10202 }
10203 
10204 /**
10205  *	t4_set_vf_mac - Set MAC address for the specified VF
10206  *	@adapter: The adapter
10207  *	@vf: one of the VFs instantiated by the specified PF
10208  *	@naddr: the number of MAC addresses
10209  *	@addr: the MAC address(es) to be set to the specified VF
10210  */
10211 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10212 		      unsigned int naddr, u8 *addr)
10213 {
10214 	struct fw_acl_mac_cmd cmd;
10215 
10216 	memset(&cmd, 0, sizeof(cmd));
10217 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10218 				    FW_CMD_REQUEST_F |
10219 				    FW_CMD_WRITE_F |
10220 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10221 				    FW_ACL_MAC_CMD_VFN_V(vf));
10222 
10223 	/* Note: Do not enable the ACL */
10224 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10225 	cmd.nmac = naddr;
10226 
10227 	switch (adapter->pf) {
10228 	case 3:
10229 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10230 		break;
10231 	case 2:
10232 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10233 		break;
10234 	case 1:
10235 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10236 		break;
10237 	case 0:
10238 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10239 		break;
10240 	}
10241 
10242 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10243 }
10244 
10245 /**
10246  * t4_read_pace_tbl - read the pace table
10247  * @adap: the adapter
10248  * @pace_vals: holds the returned values
10249  *
10250  * Returns the values of TP's pace table in microseconds.
10251  */
10252 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10253 {
10254 	unsigned int i, v;
10255 
10256 	for (i = 0; i < NTX_SCHED; i++) {
10257 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10258 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10259 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10260 	}
10261 }
10262 
10263 /**
10264  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10265  * @adap: the adapter
10266  * @sched: the scheduler index
10267  * @kbps: the byte rate in Kbps
10268  * @ipg: the interpacket delay in tenths of nanoseconds
10269  * @sleep_ok: if true we may sleep while awaiting command completion
10270  *
10271  * Return the current configuration of a HW Tx scheduler.
10272  */
10273 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10274 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10275 {
10276 	unsigned int v, addr, bpt, cpt;
10277 
10278 	if (kbps) {
10279 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10280 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10281 		if (sched & 1)
10282 			v >>= 16;
10283 		bpt = (v >> 8) & 0xff;
10284 		cpt = v & 0xff;
10285 		if (!cpt) {
10286 			*kbps = 0;	/* scheduler disabled */
10287 		} else {
10288 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10289 			*kbps = (v * bpt) / 125;
10290 		}
10291 	}
10292 	if (ipg) {
10293 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10294 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10295 		if (sched & 1)
10296 			v >>= 16;
10297 		v &= 0xffff;
10298 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10299 	}
10300 }
10301 
10302 /* t4_sge_ctxt_rd - read an SGE context through FW
10303  * @adap: the adapter
10304  * @mbox: mailbox to use for the FW command
10305  * @cid: the context id
10306  * @ctype: the context type
10307  * @data: where to store the context data
10308  *
10309  * Issues a FW command through the given mailbox to read an SGE context.
10310  */
10311 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10312 		   enum ctxt_type ctype, u32 *data)
10313 {
10314 	struct fw_ldst_cmd c;
10315 	int ret;
10316 
10317 	if (ctype == CTXT_FLM)
10318 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10319 	else
10320 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10321 
10322 	memset(&c, 0, sizeof(c));
10323 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10324 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10325 					FW_LDST_CMD_ADDRSPACE_V(ret));
10326 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10327 	c.u.idctxt.physid = cpu_to_be32(cid);
10328 
10329 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10330 	if (ret == 0) {
10331 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10332 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10333 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10334 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10335 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10336 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10337 	}
10338 	return ret;
10339 }
10340 
10341 /**
10342  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10343  * @adap: the adapter
10344  * @cid: the context id
10345  * @ctype: the context type
10346  * @data: where to store the context data
10347  *
10348  * Reads an SGE context directly, bypassing FW.  This is only for
10349  * debugging when FW is unavailable.
10350  */
10351 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10352 		      enum ctxt_type ctype, u32 *data)
10353 {
10354 	int i, ret;
10355 
10356 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10357 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10358 	if (!ret)
10359 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10360 			*data++ = t4_read_reg(adap, i);
10361 	return ret;
10362 }
10363 
10364 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10365 		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10366 		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10367 		    u16 burstsize)
10368 {
10369 	struct fw_sched_cmd cmd;
10370 
10371 	memset(&cmd, 0, sizeof(cmd));
10372 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10373 				      FW_CMD_REQUEST_F |
10374 				      FW_CMD_WRITE_F);
10375 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10376 
10377 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10378 	cmd.u.params.type = type;
10379 	cmd.u.params.level = level;
10380 	cmd.u.params.mode = mode;
10381 	cmd.u.params.ch = channel;
10382 	cmd.u.params.cl = class;
10383 	cmd.u.params.unit = rateunit;
10384 	cmd.u.params.rate = ratemode;
10385 	cmd.u.params.min = cpu_to_be32(minrate);
10386 	cmd.u.params.max = cpu_to_be32(maxrate);
10387 	cmd.u.params.weight = cpu_to_be16(weight);
10388 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10389 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10390 
10391 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10392 			       NULL, 1);
10393 }
10394 
10395 /**
10396  *	t4_i2c_rd - read I2C data from adapter
10397  *	@adap: the adapter
10398  *	@port: Port number if per-port device; <0 if not
10399  *	@devid: per-port device ID or absolute device ID
10400  *	@offset: byte offset into device I2C space
10401  *	@len: byte length of I2C space data
10402  *	@buf: buffer in which to return I2C data
10403  *
10404  *	Reads the I2C data from the indicated device and location.
10405  */
10406 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10407 	      unsigned int devid, unsigned int offset,
10408 	      unsigned int len, u8 *buf)
10409 {
10410 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10411 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10412 	int ret = 0;
10413 
10414 	if (len > I2C_PAGE_SIZE)
10415 		return -EINVAL;
10416 
10417 	/* Dont allow reads that spans multiple pages */
10418 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10419 		return -EINVAL;
10420 
10421 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10422 	ldst_cmd.op_to_addrspace =
10423 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10424 			    FW_CMD_REQUEST_F |
10425 			    FW_CMD_READ_F |
10426 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10427 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10428 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10429 	ldst_cmd.u.i2c.did = devid;
10430 
10431 	while (len > 0) {
10432 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10433 
10434 		ldst_cmd.u.i2c.boffset = offset;
10435 		ldst_cmd.u.i2c.blen = i2c_len;
10436 
10437 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10438 				 &ldst_rpl);
10439 		if (ret)
10440 			break;
10441 
10442 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10443 		offset += i2c_len;
10444 		buf += i2c_len;
10445 		len -= i2c_len;
10446 	}
10447 
10448 	return ret;
10449 }
10450 
10451 /**
10452  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10453  *      @adapter: the adapter
10454  *      @mbox: mailbox to use for the FW command
10455  *      @vf: one of the VFs instantiated by the specified PF
10456  *      @vlan: The vlanid to be set
10457  */
10458 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10459 		    u16 vlan)
10460 {
10461 	struct fw_acl_vlan_cmd vlan_cmd;
10462 	unsigned int enable;
10463 
10464 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10465 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10466 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10467 					 FW_CMD_REQUEST_F |
10468 					 FW_CMD_WRITE_F |
10469 					 FW_CMD_EXEC_F |
10470 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10471 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10472 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10473 	/* Drop all packets that donot match vlan id */
10474 	vlan_cmd.dropnovlan_fm = (enable
10475 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10476 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10477 	if (enable != 0) {
10478 		vlan_cmd.nvlan = 1;
10479 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10480 	}
10481 
10482 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10483 }
10484