xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rearely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boudaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9820, 0x983c,
1383 		0x9850, 0x9864,
1384 		0x9c00, 0x9c6c,
1385 		0x9c80, 0x9cec,
1386 		0x9d00, 0x9d6c,
1387 		0x9d80, 0x9dec,
1388 		0x9e00, 0x9e6c,
1389 		0x9e80, 0x9eec,
1390 		0x9f00, 0x9f6c,
1391 		0x9f80, 0xa020,
1392 		0xd004, 0xd004,
1393 		0xd010, 0xd03c,
1394 		0xdfc0, 0xdfe0,
1395 		0xe000, 0x1106c,
1396 		0x11074, 0x11088,
1397 		0x1109c, 0x1117c,
1398 		0x11190, 0x11204,
1399 		0x19040, 0x1906c,
1400 		0x19078, 0x19080,
1401 		0x1908c, 0x190e8,
1402 		0x190f0, 0x190f8,
1403 		0x19100, 0x19110,
1404 		0x19120, 0x19124,
1405 		0x19150, 0x19194,
1406 		0x1919c, 0x191b0,
1407 		0x191d0, 0x191e8,
1408 		0x19238, 0x19290,
1409 		0x193f8, 0x19428,
1410 		0x19430, 0x19444,
1411 		0x1944c, 0x1946c,
1412 		0x19474, 0x19474,
1413 		0x19490, 0x194cc,
1414 		0x194f0, 0x194f8,
1415 		0x19c00, 0x19c08,
1416 		0x19c10, 0x19c60,
1417 		0x19c94, 0x19ce4,
1418 		0x19cf0, 0x19d40,
1419 		0x19d50, 0x19d94,
1420 		0x19da0, 0x19de8,
1421 		0x19df0, 0x19e10,
1422 		0x19e50, 0x19e90,
1423 		0x19ea0, 0x19f24,
1424 		0x19f34, 0x19f34,
1425 		0x19f40, 0x19f50,
1426 		0x19f90, 0x19fb4,
1427 		0x19fc4, 0x19fe4,
1428 		0x1a000, 0x1a004,
1429 		0x1a010, 0x1a06c,
1430 		0x1a0b0, 0x1a0e4,
1431 		0x1a0ec, 0x1a0f8,
1432 		0x1a100, 0x1a108,
1433 		0x1a114, 0x1a120,
1434 		0x1a128, 0x1a130,
1435 		0x1a138, 0x1a138,
1436 		0x1a190, 0x1a1c4,
1437 		0x1a1fc, 0x1a1fc,
1438 		0x1e008, 0x1e00c,
1439 		0x1e040, 0x1e044,
1440 		0x1e04c, 0x1e04c,
1441 		0x1e284, 0x1e290,
1442 		0x1e2c0, 0x1e2c0,
1443 		0x1e2e0, 0x1e2e0,
1444 		0x1e300, 0x1e384,
1445 		0x1e3c0, 0x1e3c8,
1446 		0x1e408, 0x1e40c,
1447 		0x1e440, 0x1e444,
1448 		0x1e44c, 0x1e44c,
1449 		0x1e684, 0x1e690,
1450 		0x1e6c0, 0x1e6c0,
1451 		0x1e6e0, 0x1e6e0,
1452 		0x1e700, 0x1e784,
1453 		0x1e7c0, 0x1e7c8,
1454 		0x1e808, 0x1e80c,
1455 		0x1e840, 0x1e844,
1456 		0x1e84c, 0x1e84c,
1457 		0x1ea84, 0x1ea90,
1458 		0x1eac0, 0x1eac0,
1459 		0x1eae0, 0x1eae0,
1460 		0x1eb00, 0x1eb84,
1461 		0x1ebc0, 0x1ebc8,
1462 		0x1ec08, 0x1ec0c,
1463 		0x1ec40, 0x1ec44,
1464 		0x1ec4c, 0x1ec4c,
1465 		0x1ee84, 0x1ee90,
1466 		0x1eec0, 0x1eec0,
1467 		0x1eee0, 0x1eee0,
1468 		0x1ef00, 0x1ef84,
1469 		0x1efc0, 0x1efc8,
1470 		0x1f008, 0x1f00c,
1471 		0x1f040, 0x1f044,
1472 		0x1f04c, 0x1f04c,
1473 		0x1f284, 0x1f290,
1474 		0x1f2c0, 0x1f2c0,
1475 		0x1f2e0, 0x1f2e0,
1476 		0x1f300, 0x1f384,
1477 		0x1f3c0, 0x1f3c8,
1478 		0x1f408, 0x1f40c,
1479 		0x1f440, 0x1f444,
1480 		0x1f44c, 0x1f44c,
1481 		0x1f684, 0x1f690,
1482 		0x1f6c0, 0x1f6c0,
1483 		0x1f6e0, 0x1f6e0,
1484 		0x1f700, 0x1f784,
1485 		0x1f7c0, 0x1f7c8,
1486 		0x1f808, 0x1f80c,
1487 		0x1f840, 0x1f844,
1488 		0x1f84c, 0x1f84c,
1489 		0x1fa84, 0x1fa90,
1490 		0x1fac0, 0x1fac0,
1491 		0x1fae0, 0x1fae0,
1492 		0x1fb00, 0x1fb84,
1493 		0x1fbc0, 0x1fbc8,
1494 		0x1fc08, 0x1fc0c,
1495 		0x1fc40, 0x1fc44,
1496 		0x1fc4c, 0x1fc4c,
1497 		0x1fe84, 0x1fe90,
1498 		0x1fec0, 0x1fec0,
1499 		0x1fee0, 0x1fee0,
1500 		0x1ff00, 0x1ff84,
1501 		0x1ffc0, 0x1ffc8,
1502 		0x30000, 0x30030,
1503 		0x30100, 0x30144,
1504 		0x30190, 0x301a0,
1505 		0x301a8, 0x301b8,
1506 		0x301c4, 0x301c8,
1507 		0x301d0, 0x301d0,
1508 		0x30200, 0x30318,
1509 		0x30400, 0x304b4,
1510 		0x304c0, 0x3052c,
1511 		0x30540, 0x3061c,
1512 		0x30800, 0x30828,
1513 		0x30834, 0x30834,
1514 		0x308c0, 0x30908,
1515 		0x30910, 0x309ac,
1516 		0x30a00, 0x30a14,
1517 		0x30a1c, 0x30a2c,
1518 		0x30a44, 0x30a50,
1519 		0x30a74, 0x30a74,
1520 		0x30a7c, 0x30afc,
1521 		0x30b08, 0x30c24,
1522 		0x30d00, 0x30d00,
1523 		0x30d08, 0x30d14,
1524 		0x30d1c, 0x30d20,
1525 		0x30d3c, 0x30d3c,
1526 		0x30d48, 0x30d50,
1527 		0x31200, 0x3120c,
1528 		0x31220, 0x31220,
1529 		0x31240, 0x31240,
1530 		0x31600, 0x3160c,
1531 		0x31a00, 0x31a1c,
1532 		0x31e00, 0x31e20,
1533 		0x31e38, 0x31e3c,
1534 		0x31e80, 0x31e80,
1535 		0x31e88, 0x31ea8,
1536 		0x31eb0, 0x31eb4,
1537 		0x31ec8, 0x31ed4,
1538 		0x31fb8, 0x32004,
1539 		0x32200, 0x32200,
1540 		0x32208, 0x32240,
1541 		0x32248, 0x32280,
1542 		0x32288, 0x322c0,
1543 		0x322c8, 0x322fc,
1544 		0x32600, 0x32630,
1545 		0x32a00, 0x32abc,
1546 		0x32b00, 0x32b10,
1547 		0x32b20, 0x32b30,
1548 		0x32b40, 0x32b50,
1549 		0x32b60, 0x32b70,
1550 		0x33000, 0x33028,
1551 		0x33030, 0x33048,
1552 		0x33060, 0x33068,
1553 		0x33070, 0x3309c,
1554 		0x330f0, 0x33128,
1555 		0x33130, 0x33148,
1556 		0x33160, 0x33168,
1557 		0x33170, 0x3319c,
1558 		0x331f0, 0x33238,
1559 		0x33240, 0x33240,
1560 		0x33248, 0x33250,
1561 		0x3325c, 0x33264,
1562 		0x33270, 0x332b8,
1563 		0x332c0, 0x332e4,
1564 		0x332f8, 0x33338,
1565 		0x33340, 0x33340,
1566 		0x33348, 0x33350,
1567 		0x3335c, 0x33364,
1568 		0x33370, 0x333b8,
1569 		0x333c0, 0x333e4,
1570 		0x333f8, 0x33428,
1571 		0x33430, 0x33448,
1572 		0x33460, 0x33468,
1573 		0x33470, 0x3349c,
1574 		0x334f0, 0x33528,
1575 		0x33530, 0x33548,
1576 		0x33560, 0x33568,
1577 		0x33570, 0x3359c,
1578 		0x335f0, 0x33638,
1579 		0x33640, 0x33640,
1580 		0x33648, 0x33650,
1581 		0x3365c, 0x33664,
1582 		0x33670, 0x336b8,
1583 		0x336c0, 0x336e4,
1584 		0x336f8, 0x33738,
1585 		0x33740, 0x33740,
1586 		0x33748, 0x33750,
1587 		0x3375c, 0x33764,
1588 		0x33770, 0x337b8,
1589 		0x337c0, 0x337e4,
1590 		0x337f8, 0x337fc,
1591 		0x33814, 0x33814,
1592 		0x3382c, 0x3382c,
1593 		0x33880, 0x3388c,
1594 		0x338e8, 0x338ec,
1595 		0x33900, 0x33928,
1596 		0x33930, 0x33948,
1597 		0x33960, 0x33968,
1598 		0x33970, 0x3399c,
1599 		0x339f0, 0x33a38,
1600 		0x33a40, 0x33a40,
1601 		0x33a48, 0x33a50,
1602 		0x33a5c, 0x33a64,
1603 		0x33a70, 0x33ab8,
1604 		0x33ac0, 0x33ae4,
1605 		0x33af8, 0x33b10,
1606 		0x33b28, 0x33b28,
1607 		0x33b3c, 0x33b50,
1608 		0x33bf0, 0x33c10,
1609 		0x33c28, 0x33c28,
1610 		0x33c3c, 0x33c50,
1611 		0x33cf0, 0x33cfc,
1612 		0x34000, 0x34030,
1613 		0x34100, 0x34144,
1614 		0x34190, 0x341a0,
1615 		0x341a8, 0x341b8,
1616 		0x341c4, 0x341c8,
1617 		0x341d0, 0x341d0,
1618 		0x34200, 0x34318,
1619 		0x34400, 0x344b4,
1620 		0x344c0, 0x3452c,
1621 		0x34540, 0x3461c,
1622 		0x34800, 0x34828,
1623 		0x34834, 0x34834,
1624 		0x348c0, 0x34908,
1625 		0x34910, 0x349ac,
1626 		0x34a00, 0x34a14,
1627 		0x34a1c, 0x34a2c,
1628 		0x34a44, 0x34a50,
1629 		0x34a74, 0x34a74,
1630 		0x34a7c, 0x34afc,
1631 		0x34b08, 0x34c24,
1632 		0x34d00, 0x34d00,
1633 		0x34d08, 0x34d14,
1634 		0x34d1c, 0x34d20,
1635 		0x34d3c, 0x34d3c,
1636 		0x34d48, 0x34d50,
1637 		0x35200, 0x3520c,
1638 		0x35220, 0x35220,
1639 		0x35240, 0x35240,
1640 		0x35600, 0x3560c,
1641 		0x35a00, 0x35a1c,
1642 		0x35e00, 0x35e20,
1643 		0x35e38, 0x35e3c,
1644 		0x35e80, 0x35e80,
1645 		0x35e88, 0x35ea8,
1646 		0x35eb0, 0x35eb4,
1647 		0x35ec8, 0x35ed4,
1648 		0x35fb8, 0x36004,
1649 		0x36200, 0x36200,
1650 		0x36208, 0x36240,
1651 		0x36248, 0x36280,
1652 		0x36288, 0x362c0,
1653 		0x362c8, 0x362fc,
1654 		0x36600, 0x36630,
1655 		0x36a00, 0x36abc,
1656 		0x36b00, 0x36b10,
1657 		0x36b20, 0x36b30,
1658 		0x36b40, 0x36b50,
1659 		0x36b60, 0x36b70,
1660 		0x37000, 0x37028,
1661 		0x37030, 0x37048,
1662 		0x37060, 0x37068,
1663 		0x37070, 0x3709c,
1664 		0x370f0, 0x37128,
1665 		0x37130, 0x37148,
1666 		0x37160, 0x37168,
1667 		0x37170, 0x3719c,
1668 		0x371f0, 0x37238,
1669 		0x37240, 0x37240,
1670 		0x37248, 0x37250,
1671 		0x3725c, 0x37264,
1672 		0x37270, 0x372b8,
1673 		0x372c0, 0x372e4,
1674 		0x372f8, 0x37338,
1675 		0x37340, 0x37340,
1676 		0x37348, 0x37350,
1677 		0x3735c, 0x37364,
1678 		0x37370, 0x373b8,
1679 		0x373c0, 0x373e4,
1680 		0x373f8, 0x37428,
1681 		0x37430, 0x37448,
1682 		0x37460, 0x37468,
1683 		0x37470, 0x3749c,
1684 		0x374f0, 0x37528,
1685 		0x37530, 0x37548,
1686 		0x37560, 0x37568,
1687 		0x37570, 0x3759c,
1688 		0x375f0, 0x37638,
1689 		0x37640, 0x37640,
1690 		0x37648, 0x37650,
1691 		0x3765c, 0x37664,
1692 		0x37670, 0x376b8,
1693 		0x376c0, 0x376e4,
1694 		0x376f8, 0x37738,
1695 		0x37740, 0x37740,
1696 		0x37748, 0x37750,
1697 		0x3775c, 0x37764,
1698 		0x37770, 0x377b8,
1699 		0x377c0, 0x377e4,
1700 		0x377f8, 0x377fc,
1701 		0x37814, 0x37814,
1702 		0x3782c, 0x3782c,
1703 		0x37880, 0x3788c,
1704 		0x378e8, 0x378ec,
1705 		0x37900, 0x37928,
1706 		0x37930, 0x37948,
1707 		0x37960, 0x37968,
1708 		0x37970, 0x3799c,
1709 		0x379f0, 0x37a38,
1710 		0x37a40, 0x37a40,
1711 		0x37a48, 0x37a50,
1712 		0x37a5c, 0x37a64,
1713 		0x37a70, 0x37ab8,
1714 		0x37ac0, 0x37ae4,
1715 		0x37af8, 0x37b10,
1716 		0x37b28, 0x37b28,
1717 		0x37b3c, 0x37b50,
1718 		0x37bf0, 0x37c10,
1719 		0x37c28, 0x37c28,
1720 		0x37c3c, 0x37c50,
1721 		0x37cf0, 0x37cfc,
1722 		0x38000, 0x38030,
1723 		0x38100, 0x38144,
1724 		0x38190, 0x381a0,
1725 		0x381a8, 0x381b8,
1726 		0x381c4, 0x381c8,
1727 		0x381d0, 0x381d0,
1728 		0x38200, 0x38318,
1729 		0x38400, 0x384b4,
1730 		0x384c0, 0x3852c,
1731 		0x38540, 0x3861c,
1732 		0x38800, 0x38828,
1733 		0x38834, 0x38834,
1734 		0x388c0, 0x38908,
1735 		0x38910, 0x389ac,
1736 		0x38a00, 0x38a14,
1737 		0x38a1c, 0x38a2c,
1738 		0x38a44, 0x38a50,
1739 		0x38a74, 0x38a74,
1740 		0x38a7c, 0x38afc,
1741 		0x38b08, 0x38c24,
1742 		0x38d00, 0x38d00,
1743 		0x38d08, 0x38d14,
1744 		0x38d1c, 0x38d20,
1745 		0x38d3c, 0x38d3c,
1746 		0x38d48, 0x38d50,
1747 		0x39200, 0x3920c,
1748 		0x39220, 0x39220,
1749 		0x39240, 0x39240,
1750 		0x39600, 0x3960c,
1751 		0x39a00, 0x39a1c,
1752 		0x39e00, 0x39e20,
1753 		0x39e38, 0x39e3c,
1754 		0x39e80, 0x39e80,
1755 		0x39e88, 0x39ea8,
1756 		0x39eb0, 0x39eb4,
1757 		0x39ec8, 0x39ed4,
1758 		0x39fb8, 0x3a004,
1759 		0x3a200, 0x3a200,
1760 		0x3a208, 0x3a240,
1761 		0x3a248, 0x3a280,
1762 		0x3a288, 0x3a2c0,
1763 		0x3a2c8, 0x3a2fc,
1764 		0x3a600, 0x3a630,
1765 		0x3aa00, 0x3aabc,
1766 		0x3ab00, 0x3ab10,
1767 		0x3ab20, 0x3ab30,
1768 		0x3ab40, 0x3ab50,
1769 		0x3ab60, 0x3ab70,
1770 		0x3b000, 0x3b028,
1771 		0x3b030, 0x3b048,
1772 		0x3b060, 0x3b068,
1773 		0x3b070, 0x3b09c,
1774 		0x3b0f0, 0x3b128,
1775 		0x3b130, 0x3b148,
1776 		0x3b160, 0x3b168,
1777 		0x3b170, 0x3b19c,
1778 		0x3b1f0, 0x3b238,
1779 		0x3b240, 0x3b240,
1780 		0x3b248, 0x3b250,
1781 		0x3b25c, 0x3b264,
1782 		0x3b270, 0x3b2b8,
1783 		0x3b2c0, 0x3b2e4,
1784 		0x3b2f8, 0x3b338,
1785 		0x3b340, 0x3b340,
1786 		0x3b348, 0x3b350,
1787 		0x3b35c, 0x3b364,
1788 		0x3b370, 0x3b3b8,
1789 		0x3b3c0, 0x3b3e4,
1790 		0x3b3f8, 0x3b428,
1791 		0x3b430, 0x3b448,
1792 		0x3b460, 0x3b468,
1793 		0x3b470, 0x3b49c,
1794 		0x3b4f0, 0x3b528,
1795 		0x3b530, 0x3b548,
1796 		0x3b560, 0x3b568,
1797 		0x3b570, 0x3b59c,
1798 		0x3b5f0, 0x3b638,
1799 		0x3b640, 0x3b640,
1800 		0x3b648, 0x3b650,
1801 		0x3b65c, 0x3b664,
1802 		0x3b670, 0x3b6b8,
1803 		0x3b6c0, 0x3b6e4,
1804 		0x3b6f8, 0x3b738,
1805 		0x3b740, 0x3b740,
1806 		0x3b748, 0x3b750,
1807 		0x3b75c, 0x3b764,
1808 		0x3b770, 0x3b7b8,
1809 		0x3b7c0, 0x3b7e4,
1810 		0x3b7f8, 0x3b7fc,
1811 		0x3b814, 0x3b814,
1812 		0x3b82c, 0x3b82c,
1813 		0x3b880, 0x3b88c,
1814 		0x3b8e8, 0x3b8ec,
1815 		0x3b900, 0x3b928,
1816 		0x3b930, 0x3b948,
1817 		0x3b960, 0x3b968,
1818 		0x3b970, 0x3b99c,
1819 		0x3b9f0, 0x3ba38,
1820 		0x3ba40, 0x3ba40,
1821 		0x3ba48, 0x3ba50,
1822 		0x3ba5c, 0x3ba64,
1823 		0x3ba70, 0x3bab8,
1824 		0x3bac0, 0x3bae4,
1825 		0x3baf8, 0x3bb10,
1826 		0x3bb28, 0x3bb28,
1827 		0x3bb3c, 0x3bb50,
1828 		0x3bbf0, 0x3bc10,
1829 		0x3bc28, 0x3bc28,
1830 		0x3bc3c, 0x3bc50,
1831 		0x3bcf0, 0x3bcfc,
1832 		0x3c000, 0x3c030,
1833 		0x3c100, 0x3c144,
1834 		0x3c190, 0x3c1a0,
1835 		0x3c1a8, 0x3c1b8,
1836 		0x3c1c4, 0x3c1c8,
1837 		0x3c1d0, 0x3c1d0,
1838 		0x3c200, 0x3c318,
1839 		0x3c400, 0x3c4b4,
1840 		0x3c4c0, 0x3c52c,
1841 		0x3c540, 0x3c61c,
1842 		0x3c800, 0x3c828,
1843 		0x3c834, 0x3c834,
1844 		0x3c8c0, 0x3c908,
1845 		0x3c910, 0x3c9ac,
1846 		0x3ca00, 0x3ca14,
1847 		0x3ca1c, 0x3ca2c,
1848 		0x3ca44, 0x3ca50,
1849 		0x3ca74, 0x3ca74,
1850 		0x3ca7c, 0x3cafc,
1851 		0x3cb08, 0x3cc24,
1852 		0x3cd00, 0x3cd00,
1853 		0x3cd08, 0x3cd14,
1854 		0x3cd1c, 0x3cd20,
1855 		0x3cd3c, 0x3cd3c,
1856 		0x3cd48, 0x3cd50,
1857 		0x3d200, 0x3d20c,
1858 		0x3d220, 0x3d220,
1859 		0x3d240, 0x3d240,
1860 		0x3d600, 0x3d60c,
1861 		0x3da00, 0x3da1c,
1862 		0x3de00, 0x3de20,
1863 		0x3de38, 0x3de3c,
1864 		0x3de80, 0x3de80,
1865 		0x3de88, 0x3dea8,
1866 		0x3deb0, 0x3deb4,
1867 		0x3dec8, 0x3ded4,
1868 		0x3dfb8, 0x3e004,
1869 		0x3e200, 0x3e200,
1870 		0x3e208, 0x3e240,
1871 		0x3e248, 0x3e280,
1872 		0x3e288, 0x3e2c0,
1873 		0x3e2c8, 0x3e2fc,
1874 		0x3e600, 0x3e630,
1875 		0x3ea00, 0x3eabc,
1876 		0x3eb00, 0x3eb10,
1877 		0x3eb20, 0x3eb30,
1878 		0x3eb40, 0x3eb50,
1879 		0x3eb60, 0x3eb70,
1880 		0x3f000, 0x3f028,
1881 		0x3f030, 0x3f048,
1882 		0x3f060, 0x3f068,
1883 		0x3f070, 0x3f09c,
1884 		0x3f0f0, 0x3f128,
1885 		0x3f130, 0x3f148,
1886 		0x3f160, 0x3f168,
1887 		0x3f170, 0x3f19c,
1888 		0x3f1f0, 0x3f238,
1889 		0x3f240, 0x3f240,
1890 		0x3f248, 0x3f250,
1891 		0x3f25c, 0x3f264,
1892 		0x3f270, 0x3f2b8,
1893 		0x3f2c0, 0x3f2e4,
1894 		0x3f2f8, 0x3f338,
1895 		0x3f340, 0x3f340,
1896 		0x3f348, 0x3f350,
1897 		0x3f35c, 0x3f364,
1898 		0x3f370, 0x3f3b8,
1899 		0x3f3c0, 0x3f3e4,
1900 		0x3f3f8, 0x3f428,
1901 		0x3f430, 0x3f448,
1902 		0x3f460, 0x3f468,
1903 		0x3f470, 0x3f49c,
1904 		0x3f4f0, 0x3f528,
1905 		0x3f530, 0x3f548,
1906 		0x3f560, 0x3f568,
1907 		0x3f570, 0x3f59c,
1908 		0x3f5f0, 0x3f638,
1909 		0x3f640, 0x3f640,
1910 		0x3f648, 0x3f650,
1911 		0x3f65c, 0x3f664,
1912 		0x3f670, 0x3f6b8,
1913 		0x3f6c0, 0x3f6e4,
1914 		0x3f6f8, 0x3f738,
1915 		0x3f740, 0x3f740,
1916 		0x3f748, 0x3f750,
1917 		0x3f75c, 0x3f764,
1918 		0x3f770, 0x3f7b8,
1919 		0x3f7c0, 0x3f7e4,
1920 		0x3f7f8, 0x3f7fc,
1921 		0x3f814, 0x3f814,
1922 		0x3f82c, 0x3f82c,
1923 		0x3f880, 0x3f88c,
1924 		0x3f8e8, 0x3f8ec,
1925 		0x3f900, 0x3f928,
1926 		0x3f930, 0x3f948,
1927 		0x3f960, 0x3f968,
1928 		0x3f970, 0x3f99c,
1929 		0x3f9f0, 0x3fa38,
1930 		0x3fa40, 0x3fa40,
1931 		0x3fa48, 0x3fa50,
1932 		0x3fa5c, 0x3fa64,
1933 		0x3fa70, 0x3fab8,
1934 		0x3fac0, 0x3fae4,
1935 		0x3faf8, 0x3fb10,
1936 		0x3fb28, 0x3fb28,
1937 		0x3fb3c, 0x3fb50,
1938 		0x3fbf0, 0x3fc10,
1939 		0x3fc28, 0x3fc28,
1940 		0x3fc3c, 0x3fc50,
1941 		0x3fcf0, 0x3fcfc,
1942 		0x40000, 0x4000c,
1943 		0x40040, 0x40050,
1944 		0x40060, 0x40068,
1945 		0x4007c, 0x4008c,
1946 		0x40094, 0x400b0,
1947 		0x400c0, 0x40144,
1948 		0x40180, 0x4018c,
1949 		0x40200, 0x40254,
1950 		0x40260, 0x40264,
1951 		0x40270, 0x40288,
1952 		0x40290, 0x40298,
1953 		0x402ac, 0x402c8,
1954 		0x402d0, 0x402e0,
1955 		0x402f0, 0x402f0,
1956 		0x40300, 0x4033c,
1957 		0x403f8, 0x403fc,
1958 		0x41304, 0x413c4,
1959 		0x41400, 0x4140c,
1960 		0x41414, 0x4141c,
1961 		0x41480, 0x414d0,
1962 		0x44000, 0x44054,
1963 		0x4405c, 0x44078,
1964 		0x440c0, 0x44174,
1965 		0x44180, 0x441ac,
1966 		0x441b4, 0x441b8,
1967 		0x441c0, 0x44254,
1968 		0x4425c, 0x44278,
1969 		0x442c0, 0x44374,
1970 		0x44380, 0x443ac,
1971 		0x443b4, 0x443b8,
1972 		0x443c0, 0x44454,
1973 		0x4445c, 0x44478,
1974 		0x444c0, 0x44574,
1975 		0x44580, 0x445ac,
1976 		0x445b4, 0x445b8,
1977 		0x445c0, 0x44654,
1978 		0x4465c, 0x44678,
1979 		0x446c0, 0x44774,
1980 		0x44780, 0x447ac,
1981 		0x447b4, 0x447b8,
1982 		0x447c0, 0x44854,
1983 		0x4485c, 0x44878,
1984 		0x448c0, 0x44974,
1985 		0x44980, 0x449ac,
1986 		0x449b4, 0x449b8,
1987 		0x449c0, 0x449fc,
1988 		0x45000, 0x45004,
1989 		0x45010, 0x45030,
1990 		0x45040, 0x45060,
1991 		0x45068, 0x45068,
1992 		0x45080, 0x45084,
1993 		0x450a0, 0x450b0,
1994 		0x45200, 0x45204,
1995 		0x45210, 0x45230,
1996 		0x45240, 0x45260,
1997 		0x45268, 0x45268,
1998 		0x45280, 0x45284,
1999 		0x452a0, 0x452b0,
2000 		0x460c0, 0x460e4,
2001 		0x47000, 0x4703c,
2002 		0x47044, 0x4708c,
2003 		0x47200, 0x47250,
2004 		0x47400, 0x47408,
2005 		0x47414, 0x47420,
2006 		0x47600, 0x47618,
2007 		0x47800, 0x47814,
2008 		0x48000, 0x4800c,
2009 		0x48040, 0x48050,
2010 		0x48060, 0x48068,
2011 		0x4807c, 0x4808c,
2012 		0x48094, 0x480b0,
2013 		0x480c0, 0x48144,
2014 		0x48180, 0x4818c,
2015 		0x48200, 0x48254,
2016 		0x48260, 0x48264,
2017 		0x48270, 0x48288,
2018 		0x48290, 0x48298,
2019 		0x482ac, 0x482c8,
2020 		0x482d0, 0x482e0,
2021 		0x482f0, 0x482f0,
2022 		0x48300, 0x4833c,
2023 		0x483f8, 0x483fc,
2024 		0x49304, 0x493c4,
2025 		0x49400, 0x4940c,
2026 		0x49414, 0x4941c,
2027 		0x49480, 0x494d0,
2028 		0x4c000, 0x4c054,
2029 		0x4c05c, 0x4c078,
2030 		0x4c0c0, 0x4c174,
2031 		0x4c180, 0x4c1ac,
2032 		0x4c1b4, 0x4c1b8,
2033 		0x4c1c0, 0x4c254,
2034 		0x4c25c, 0x4c278,
2035 		0x4c2c0, 0x4c374,
2036 		0x4c380, 0x4c3ac,
2037 		0x4c3b4, 0x4c3b8,
2038 		0x4c3c0, 0x4c454,
2039 		0x4c45c, 0x4c478,
2040 		0x4c4c0, 0x4c574,
2041 		0x4c580, 0x4c5ac,
2042 		0x4c5b4, 0x4c5b8,
2043 		0x4c5c0, 0x4c654,
2044 		0x4c65c, 0x4c678,
2045 		0x4c6c0, 0x4c774,
2046 		0x4c780, 0x4c7ac,
2047 		0x4c7b4, 0x4c7b8,
2048 		0x4c7c0, 0x4c854,
2049 		0x4c85c, 0x4c878,
2050 		0x4c8c0, 0x4c974,
2051 		0x4c980, 0x4c9ac,
2052 		0x4c9b4, 0x4c9b8,
2053 		0x4c9c0, 0x4c9fc,
2054 		0x4d000, 0x4d004,
2055 		0x4d010, 0x4d030,
2056 		0x4d040, 0x4d060,
2057 		0x4d068, 0x4d068,
2058 		0x4d080, 0x4d084,
2059 		0x4d0a0, 0x4d0b0,
2060 		0x4d200, 0x4d204,
2061 		0x4d210, 0x4d230,
2062 		0x4d240, 0x4d260,
2063 		0x4d268, 0x4d268,
2064 		0x4d280, 0x4d284,
2065 		0x4d2a0, 0x4d2b0,
2066 		0x4e0c0, 0x4e0e4,
2067 		0x4f000, 0x4f03c,
2068 		0x4f044, 0x4f08c,
2069 		0x4f200, 0x4f250,
2070 		0x4f400, 0x4f408,
2071 		0x4f414, 0x4f420,
2072 		0x4f600, 0x4f618,
2073 		0x4f800, 0x4f814,
2074 		0x50000, 0x50084,
2075 		0x50090, 0x500cc,
2076 		0x50400, 0x50400,
2077 		0x50800, 0x50884,
2078 		0x50890, 0x508cc,
2079 		0x50c00, 0x50c00,
2080 		0x51000, 0x5101c,
2081 		0x51300, 0x51308,
2082 	};
2083 
2084 	static const unsigned int t6_reg_ranges[] = {
2085 		0x1008, 0x101c,
2086 		0x1024, 0x10a8,
2087 		0x10b4, 0x10f8,
2088 		0x1100, 0x1114,
2089 		0x111c, 0x112c,
2090 		0x1138, 0x113c,
2091 		0x1144, 0x114c,
2092 		0x1180, 0x1184,
2093 		0x1190, 0x1194,
2094 		0x11a0, 0x11a4,
2095 		0x11b0, 0x11b4,
2096 		0x11fc, 0x1274,
2097 		0x1280, 0x133c,
2098 		0x1800, 0x18fc,
2099 		0x3000, 0x302c,
2100 		0x3060, 0x30b0,
2101 		0x30b8, 0x30d8,
2102 		0x30e0, 0x30fc,
2103 		0x3140, 0x357c,
2104 		0x35a8, 0x35cc,
2105 		0x35ec, 0x35ec,
2106 		0x3600, 0x5624,
2107 		0x56cc, 0x56ec,
2108 		0x56f4, 0x5720,
2109 		0x5728, 0x575c,
2110 		0x580c, 0x5814,
2111 		0x5890, 0x589c,
2112 		0x58a4, 0x58ac,
2113 		0x58b8, 0x58bc,
2114 		0x5940, 0x595c,
2115 		0x5980, 0x598c,
2116 		0x59b0, 0x59c8,
2117 		0x59d0, 0x59dc,
2118 		0x59fc, 0x5a18,
2119 		0x5a60, 0x5a6c,
2120 		0x5a80, 0x5a8c,
2121 		0x5a94, 0x5a9c,
2122 		0x5b94, 0x5bfc,
2123 		0x5c10, 0x5e48,
2124 		0x5e50, 0x5e94,
2125 		0x5ea0, 0x5eb0,
2126 		0x5ec0, 0x5ec0,
2127 		0x5ec8, 0x5ed0,
2128 		0x5ee0, 0x5ee0,
2129 		0x5ef0, 0x5ef0,
2130 		0x5f00, 0x5f00,
2131 		0x6000, 0x6020,
2132 		0x6028, 0x6040,
2133 		0x6058, 0x609c,
2134 		0x60a8, 0x619c,
2135 		0x7700, 0x7798,
2136 		0x77c0, 0x7880,
2137 		0x78cc, 0x78fc,
2138 		0x7b00, 0x7b58,
2139 		0x7b60, 0x7b84,
2140 		0x7b8c, 0x7c54,
2141 		0x7d00, 0x7d38,
2142 		0x7d40, 0x7d84,
2143 		0x7d8c, 0x7ddc,
2144 		0x7de4, 0x7e04,
2145 		0x7e10, 0x7e1c,
2146 		0x7e24, 0x7e38,
2147 		0x7e40, 0x7e44,
2148 		0x7e4c, 0x7e78,
2149 		0x7e80, 0x7edc,
2150 		0x7ee8, 0x7efc,
2151 		0x8dc0, 0x8de4,
2152 		0x8df8, 0x8e04,
2153 		0x8e10, 0x8e84,
2154 		0x8ea0, 0x8f88,
2155 		0x8fb8, 0x9058,
2156 		0x9060, 0x9060,
2157 		0x9068, 0x90f8,
2158 		0x9100, 0x9124,
2159 		0x9400, 0x9470,
2160 		0x9600, 0x9600,
2161 		0x9608, 0x9638,
2162 		0x9640, 0x9704,
2163 		0x9710, 0x971c,
2164 		0x9800, 0x9808,
2165 		0x9820, 0x983c,
2166 		0x9850, 0x9864,
2167 		0x9c00, 0x9c6c,
2168 		0x9c80, 0x9cec,
2169 		0x9d00, 0x9d6c,
2170 		0x9d80, 0x9dec,
2171 		0x9e00, 0x9e6c,
2172 		0x9e80, 0x9eec,
2173 		0x9f00, 0x9f6c,
2174 		0x9f80, 0xa020,
2175 		0xd004, 0xd03c,
2176 		0xd100, 0xd118,
2177 		0xd200, 0xd214,
2178 		0xd220, 0xd234,
2179 		0xd240, 0xd254,
2180 		0xd260, 0xd274,
2181 		0xd280, 0xd294,
2182 		0xd2a0, 0xd2b4,
2183 		0xd2c0, 0xd2d4,
2184 		0xd2e0, 0xd2f4,
2185 		0xd300, 0xd31c,
2186 		0xdfc0, 0xdfe0,
2187 		0xe000, 0xf008,
2188 		0xf010, 0xf018,
2189 		0xf020, 0xf028,
2190 		0x11000, 0x11014,
2191 		0x11048, 0x1106c,
2192 		0x11074, 0x11088,
2193 		0x11098, 0x11120,
2194 		0x1112c, 0x1117c,
2195 		0x11190, 0x112e0,
2196 		0x11300, 0x1130c,
2197 		0x12000, 0x1206c,
2198 		0x19040, 0x1906c,
2199 		0x19078, 0x19080,
2200 		0x1908c, 0x190e8,
2201 		0x190f0, 0x190f8,
2202 		0x19100, 0x19110,
2203 		0x19120, 0x19124,
2204 		0x19150, 0x19194,
2205 		0x1919c, 0x191b0,
2206 		0x191d0, 0x191e8,
2207 		0x19238, 0x19290,
2208 		0x192a4, 0x192b0,
2209 		0x192bc, 0x192bc,
2210 		0x19348, 0x1934c,
2211 		0x193f8, 0x19418,
2212 		0x19420, 0x19428,
2213 		0x19430, 0x19444,
2214 		0x1944c, 0x1946c,
2215 		0x19474, 0x19474,
2216 		0x19490, 0x194cc,
2217 		0x194f0, 0x194f8,
2218 		0x19c00, 0x19c48,
2219 		0x19c50, 0x19c80,
2220 		0x19c94, 0x19c98,
2221 		0x19ca0, 0x19cbc,
2222 		0x19ce4, 0x19ce4,
2223 		0x19cf0, 0x19cf8,
2224 		0x19d00, 0x19d28,
2225 		0x19d50, 0x19d78,
2226 		0x19d94, 0x19d98,
2227 		0x19da0, 0x19dc8,
2228 		0x19df0, 0x19e10,
2229 		0x19e50, 0x19e6c,
2230 		0x19ea0, 0x19ebc,
2231 		0x19ec4, 0x19ef4,
2232 		0x19f04, 0x19f2c,
2233 		0x19f34, 0x19f34,
2234 		0x19f40, 0x19f50,
2235 		0x19f90, 0x19fac,
2236 		0x19fc4, 0x19fc8,
2237 		0x19fd0, 0x19fe4,
2238 		0x1a000, 0x1a004,
2239 		0x1a010, 0x1a06c,
2240 		0x1a0b0, 0x1a0e4,
2241 		0x1a0ec, 0x1a0f8,
2242 		0x1a100, 0x1a108,
2243 		0x1a114, 0x1a120,
2244 		0x1a128, 0x1a130,
2245 		0x1a138, 0x1a138,
2246 		0x1a190, 0x1a1c4,
2247 		0x1a1fc, 0x1a1fc,
2248 		0x1e008, 0x1e00c,
2249 		0x1e040, 0x1e044,
2250 		0x1e04c, 0x1e04c,
2251 		0x1e284, 0x1e290,
2252 		0x1e2c0, 0x1e2c0,
2253 		0x1e2e0, 0x1e2e0,
2254 		0x1e300, 0x1e384,
2255 		0x1e3c0, 0x1e3c8,
2256 		0x1e408, 0x1e40c,
2257 		0x1e440, 0x1e444,
2258 		0x1e44c, 0x1e44c,
2259 		0x1e684, 0x1e690,
2260 		0x1e6c0, 0x1e6c0,
2261 		0x1e6e0, 0x1e6e0,
2262 		0x1e700, 0x1e784,
2263 		0x1e7c0, 0x1e7c8,
2264 		0x1e808, 0x1e80c,
2265 		0x1e840, 0x1e844,
2266 		0x1e84c, 0x1e84c,
2267 		0x1ea84, 0x1ea90,
2268 		0x1eac0, 0x1eac0,
2269 		0x1eae0, 0x1eae0,
2270 		0x1eb00, 0x1eb84,
2271 		0x1ebc0, 0x1ebc8,
2272 		0x1ec08, 0x1ec0c,
2273 		0x1ec40, 0x1ec44,
2274 		0x1ec4c, 0x1ec4c,
2275 		0x1ee84, 0x1ee90,
2276 		0x1eec0, 0x1eec0,
2277 		0x1eee0, 0x1eee0,
2278 		0x1ef00, 0x1ef84,
2279 		0x1efc0, 0x1efc8,
2280 		0x1f008, 0x1f00c,
2281 		0x1f040, 0x1f044,
2282 		0x1f04c, 0x1f04c,
2283 		0x1f284, 0x1f290,
2284 		0x1f2c0, 0x1f2c0,
2285 		0x1f2e0, 0x1f2e0,
2286 		0x1f300, 0x1f384,
2287 		0x1f3c0, 0x1f3c8,
2288 		0x1f408, 0x1f40c,
2289 		0x1f440, 0x1f444,
2290 		0x1f44c, 0x1f44c,
2291 		0x1f684, 0x1f690,
2292 		0x1f6c0, 0x1f6c0,
2293 		0x1f6e0, 0x1f6e0,
2294 		0x1f700, 0x1f784,
2295 		0x1f7c0, 0x1f7c8,
2296 		0x1f808, 0x1f80c,
2297 		0x1f840, 0x1f844,
2298 		0x1f84c, 0x1f84c,
2299 		0x1fa84, 0x1fa90,
2300 		0x1fac0, 0x1fac0,
2301 		0x1fae0, 0x1fae0,
2302 		0x1fb00, 0x1fb84,
2303 		0x1fbc0, 0x1fbc8,
2304 		0x1fc08, 0x1fc0c,
2305 		0x1fc40, 0x1fc44,
2306 		0x1fc4c, 0x1fc4c,
2307 		0x1fe84, 0x1fe90,
2308 		0x1fec0, 0x1fec0,
2309 		0x1fee0, 0x1fee0,
2310 		0x1ff00, 0x1ff84,
2311 		0x1ffc0, 0x1ffc8,
2312 		0x30000, 0x30030,
2313 		0x30100, 0x30168,
2314 		0x30190, 0x301a0,
2315 		0x301a8, 0x301b8,
2316 		0x301c4, 0x301c8,
2317 		0x301d0, 0x301d0,
2318 		0x30200, 0x30320,
2319 		0x30400, 0x304b4,
2320 		0x304c0, 0x3052c,
2321 		0x30540, 0x3061c,
2322 		0x30800, 0x308a0,
2323 		0x308c0, 0x30908,
2324 		0x30910, 0x309b8,
2325 		0x30a00, 0x30a04,
2326 		0x30a0c, 0x30a14,
2327 		0x30a1c, 0x30a2c,
2328 		0x30a44, 0x30a50,
2329 		0x30a74, 0x30a74,
2330 		0x30a7c, 0x30afc,
2331 		0x30b08, 0x30c24,
2332 		0x30d00, 0x30d14,
2333 		0x30d1c, 0x30d3c,
2334 		0x30d44, 0x30d4c,
2335 		0x30d54, 0x30d74,
2336 		0x30d7c, 0x30d7c,
2337 		0x30de0, 0x30de0,
2338 		0x30e00, 0x30ed4,
2339 		0x30f00, 0x30fa4,
2340 		0x30fc0, 0x30fc4,
2341 		0x31000, 0x31004,
2342 		0x31080, 0x310fc,
2343 		0x31208, 0x31220,
2344 		0x3123c, 0x31254,
2345 		0x31300, 0x31300,
2346 		0x31308, 0x3131c,
2347 		0x31338, 0x3133c,
2348 		0x31380, 0x31380,
2349 		0x31388, 0x313a8,
2350 		0x313b4, 0x313b4,
2351 		0x31400, 0x31420,
2352 		0x31438, 0x3143c,
2353 		0x31480, 0x31480,
2354 		0x314a8, 0x314a8,
2355 		0x314b0, 0x314b4,
2356 		0x314c8, 0x314d4,
2357 		0x31a40, 0x31a4c,
2358 		0x31af0, 0x31b20,
2359 		0x31b38, 0x31b3c,
2360 		0x31b80, 0x31b80,
2361 		0x31ba8, 0x31ba8,
2362 		0x31bb0, 0x31bb4,
2363 		0x31bc8, 0x31bd4,
2364 		0x32140, 0x3218c,
2365 		0x321f0, 0x321f4,
2366 		0x32200, 0x32200,
2367 		0x32218, 0x32218,
2368 		0x32400, 0x32400,
2369 		0x32408, 0x3241c,
2370 		0x32618, 0x32620,
2371 		0x32664, 0x32664,
2372 		0x326a8, 0x326a8,
2373 		0x326ec, 0x326ec,
2374 		0x32a00, 0x32abc,
2375 		0x32b00, 0x32b18,
2376 		0x32b20, 0x32b38,
2377 		0x32b40, 0x32b58,
2378 		0x32b60, 0x32b78,
2379 		0x32c00, 0x32c00,
2380 		0x32c08, 0x32c3c,
2381 		0x33000, 0x3302c,
2382 		0x33034, 0x33050,
2383 		0x33058, 0x33058,
2384 		0x33060, 0x3308c,
2385 		0x3309c, 0x330ac,
2386 		0x330c0, 0x330c0,
2387 		0x330c8, 0x330d0,
2388 		0x330d8, 0x330e0,
2389 		0x330ec, 0x3312c,
2390 		0x33134, 0x33150,
2391 		0x33158, 0x33158,
2392 		0x33160, 0x3318c,
2393 		0x3319c, 0x331ac,
2394 		0x331c0, 0x331c0,
2395 		0x331c8, 0x331d0,
2396 		0x331d8, 0x331e0,
2397 		0x331ec, 0x33290,
2398 		0x33298, 0x332c4,
2399 		0x332e4, 0x33390,
2400 		0x33398, 0x333c4,
2401 		0x333e4, 0x3342c,
2402 		0x33434, 0x33450,
2403 		0x33458, 0x33458,
2404 		0x33460, 0x3348c,
2405 		0x3349c, 0x334ac,
2406 		0x334c0, 0x334c0,
2407 		0x334c8, 0x334d0,
2408 		0x334d8, 0x334e0,
2409 		0x334ec, 0x3352c,
2410 		0x33534, 0x33550,
2411 		0x33558, 0x33558,
2412 		0x33560, 0x3358c,
2413 		0x3359c, 0x335ac,
2414 		0x335c0, 0x335c0,
2415 		0x335c8, 0x335d0,
2416 		0x335d8, 0x335e0,
2417 		0x335ec, 0x33690,
2418 		0x33698, 0x336c4,
2419 		0x336e4, 0x33790,
2420 		0x33798, 0x337c4,
2421 		0x337e4, 0x337fc,
2422 		0x33814, 0x33814,
2423 		0x33854, 0x33868,
2424 		0x33880, 0x3388c,
2425 		0x338c0, 0x338d0,
2426 		0x338e8, 0x338ec,
2427 		0x33900, 0x3392c,
2428 		0x33934, 0x33950,
2429 		0x33958, 0x33958,
2430 		0x33960, 0x3398c,
2431 		0x3399c, 0x339ac,
2432 		0x339c0, 0x339c0,
2433 		0x339c8, 0x339d0,
2434 		0x339d8, 0x339e0,
2435 		0x339ec, 0x33a90,
2436 		0x33a98, 0x33ac4,
2437 		0x33ae4, 0x33b10,
2438 		0x33b24, 0x33b28,
2439 		0x33b38, 0x33b50,
2440 		0x33bf0, 0x33c10,
2441 		0x33c24, 0x33c28,
2442 		0x33c38, 0x33c50,
2443 		0x33cf0, 0x33cfc,
2444 		0x34000, 0x34030,
2445 		0x34100, 0x34168,
2446 		0x34190, 0x341a0,
2447 		0x341a8, 0x341b8,
2448 		0x341c4, 0x341c8,
2449 		0x341d0, 0x341d0,
2450 		0x34200, 0x34320,
2451 		0x34400, 0x344b4,
2452 		0x344c0, 0x3452c,
2453 		0x34540, 0x3461c,
2454 		0x34800, 0x348a0,
2455 		0x348c0, 0x34908,
2456 		0x34910, 0x349b8,
2457 		0x34a00, 0x34a04,
2458 		0x34a0c, 0x34a14,
2459 		0x34a1c, 0x34a2c,
2460 		0x34a44, 0x34a50,
2461 		0x34a74, 0x34a74,
2462 		0x34a7c, 0x34afc,
2463 		0x34b08, 0x34c24,
2464 		0x34d00, 0x34d14,
2465 		0x34d1c, 0x34d3c,
2466 		0x34d44, 0x34d4c,
2467 		0x34d54, 0x34d74,
2468 		0x34d7c, 0x34d7c,
2469 		0x34de0, 0x34de0,
2470 		0x34e00, 0x34ed4,
2471 		0x34f00, 0x34fa4,
2472 		0x34fc0, 0x34fc4,
2473 		0x35000, 0x35004,
2474 		0x35080, 0x350fc,
2475 		0x35208, 0x35220,
2476 		0x3523c, 0x35254,
2477 		0x35300, 0x35300,
2478 		0x35308, 0x3531c,
2479 		0x35338, 0x3533c,
2480 		0x35380, 0x35380,
2481 		0x35388, 0x353a8,
2482 		0x353b4, 0x353b4,
2483 		0x35400, 0x35420,
2484 		0x35438, 0x3543c,
2485 		0x35480, 0x35480,
2486 		0x354a8, 0x354a8,
2487 		0x354b0, 0x354b4,
2488 		0x354c8, 0x354d4,
2489 		0x35a40, 0x35a4c,
2490 		0x35af0, 0x35b20,
2491 		0x35b38, 0x35b3c,
2492 		0x35b80, 0x35b80,
2493 		0x35ba8, 0x35ba8,
2494 		0x35bb0, 0x35bb4,
2495 		0x35bc8, 0x35bd4,
2496 		0x36140, 0x3618c,
2497 		0x361f0, 0x361f4,
2498 		0x36200, 0x36200,
2499 		0x36218, 0x36218,
2500 		0x36400, 0x36400,
2501 		0x36408, 0x3641c,
2502 		0x36618, 0x36620,
2503 		0x36664, 0x36664,
2504 		0x366a8, 0x366a8,
2505 		0x366ec, 0x366ec,
2506 		0x36a00, 0x36abc,
2507 		0x36b00, 0x36b18,
2508 		0x36b20, 0x36b38,
2509 		0x36b40, 0x36b58,
2510 		0x36b60, 0x36b78,
2511 		0x36c00, 0x36c00,
2512 		0x36c08, 0x36c3c,
2513 		0x37000, 0x3702c,
2514 		0x37034, 0x37050,
2515 		0x37058, 0x37058,
2516 		0x37060, 0x3708c,
2517 		0x3709c, 0x370ac,
2518 		0x370c0, 0x370c0,
2519 		0x370c8, 0x370d0,
2520 		0x370d8, 0x370e0,
2521 		0x370ec, 0x3712c,
2522 		0x37134, 0x37150,
2523 		0x37158, 0x37158,
2524 		0x37160, 0x3718c,
2525 		0x3719c, 0x371ac,
2526 		0x371c0, 0x371c0,
2527 		0x371c8, 0x371d0,
2528 		0x371d8, 0x371e0,
2529 		0x371ec, 0x37290,
2530 		0x37298, 0x372c4,
2531 		0x372e4, 0x37390,
2532 		0x37398, 0x373c4,
2533 		0x373e4, 0x3742c,
2534 		0x37434, 0x37450,
2535 		0x37458, 0x37458,
2536 		0x37460, 0x3748c,
2537 		0x3749c, 0x374ac,
2538 		0x374c0, 0x374c0,
2539 		0x374c8, 0x374d0,
2540 		0x374d8, 0x374e0,
2541 		0x374ec, 0x3752c,
2542 		0x37534, 0x37550,
2543 		0x37558, 0x37558,
2544 		0x37560, 0x3758c,
2545 		0x3759c, 0x375ac,
2546 		0x375c0, 0x375c0,
2547 		0x375c8, 0x375d0,
2548 		0x375d8, 0x375e0,
2549 		0x375ec, 0x37690,
2550 		0x37698, 0x376c4,
2551 		0x376e4, 0x37790,
2552 		0x37798, 0x377c4,
2553 		0x377e4, 0x377fc,
2554 		0x37814, 0x37814,
2555 		0x37854, 0x37868,
2556 		0x37880, 0x3788c,
2557 		0x378c0, 0x378d0,
2558 		0x378e8, 0x378ec,
2559 		0x37900, 0x3792c,
2560 		0x37934, 0x37950,
2561 		0x37958, 0x37958,
2562 		0x37960, 0x3798c,
2563 		0x3799c, 0x379ac,
2564 		0x379c0, 0x379c0,
2565 		0x379c8, 0x379d0,
2566 		0x379d8, 0x379e0,
2567 		0x379ec, 0x37a90,
2568 		0x37a98, 0x37ac4,
2569 		0x37ae4, 0x37b10,
2570 		0x37b24, 0x37b28,
2571 		0x37b38, 0x37b50,
2572 		0x37bf0, 0x37c10,
2573 		0x37c24, 0x37c28,
2574 		0x37c38, 0x37c50,
2575 		0x37cf0, 0x37cfc,
2576 		0x40040, 0x40040,
2577 		0x40080, 0x40084,
2578 		0x40100, 0x40100,
2579 		0x40140, 0x401bc,
2580 		0x40200, 0x40214,
2581 		0x40228, 0x40228,
2582 		0x40240, 0x40258,
2583 		0x40280, 0x40280,
2584 		0x40304, 0x40304,
2585 		0x40330, 0x4033c,
2586 		0x41304, 0x413c8,
2587 		0x413d0, 0x413dc,
2588 		0x413f0, 0x413f0,
2589 		0x41400, 0x4140c,
2590 		0x41414, 0x4141c,
2591 		0x41480, 0x414d0,
2592 		0x44000, 0x4407c,
2593 		0x440c0, 0x441ac,
2594 		0x441b4, 0x4427c,
2595 		0x442c0, 0x443ac,
2596 		0x443b4, 0x4447c,
2597 		0x444c0, 0x445ac,
2598 		0x445b4, 0x4467c,
2599 		0x446c0, 0x447ac,
2600 		0x447b4, 0x4487c,
2601 		0x448c0, 0x449ac,
2602 		0x449b4, 0x44a7c,
2603 		0x44ac0, 0x44bac,
2604 		0x44bb4, 0x44c7c,
2605 		0x44cc0, 0x44dac,
2606 		0x44db4, 0x44e7c,
2607 		0x44ec0, 0x44fac,
2608 		0x44fb4, 0x4507c,
2609 		0x450c0, 0x451ac,
2610 		0x451b4, 0x451fc,
2611 		0x45800, 0x45804,
2612 		0x45810, 0x45830,
2613 		0x45840, 0x45860,
2614 		0x45868, 0x45868,
2615 		0x45880, 0x45884,
2616 		0x458a0, 0x458b0,
2617 		0x45a00, 0x45a04,
2618 		0x45a10, 0x45a30,
2619 		0x45a40, 0x45a60,
2620 		0x45a68, 0x45a68,
2621 		0x45a80, 0x45a84,
2622 		0x45aa0, 0x45ab0,
2623 		0x460c0, 0x460e4,
2624 		0x47000, 0x4703c,
2625 		0x47044, 0x4708c,
2626 		0x47200, 0x47250,
2627 		0x47400, 0x47408,
2628 		0x47414, 0x47420,
2629 		0x47600, 0x47618,
2630 		0x47800, 0x47814,
2631 		0x47820, 0x4782c,
2632 		0x50000, 0x50084,
2633 		0x50090, 0x500cc,
2634 		0x50300, 0x50384,
2635 		0x50400, 0x50400,
2636 		0x50800, 0x50884,
2637 		0x50890, 0x508cc,
2638 		0x50b00, 0x50b84,
2639 		0x50c00, 0x50c00,
2640 		0x51000, 0x51020,
2641 		0x51028, 0x510b0,
2642 		0x51300, 0x51324,
2643 	};
2644 
2645 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646 	const unsigned int *reg_ranges;
2647 	int reg_ranges_size, range;
2648 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649 
2650 	/* Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		reg_ranges = t4_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T5:
2660 		reg_ranges = t5_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662 		break;
2663 
2664 	case CHELSIO_T6:
2665 		reg_ranges = t6_reg_ranges;
2666 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667 		break;
2668 
2669 	default:
2670 		dev_err(adap->pdev_dev,
2671 			"Unsupported chip version %d\n", chip_version);
2672 		return;
2673 	}
2674 
2675 	/* Clear the register buffer and insert the appropriate register
2676 	 * values selected by the above register ranges.
2677 	 */
2678 	memset(buf, 0, buf_size);
2679 	for (range = 0; range < reg_ranges_size; range += 2) {
2680 		unsigned int reg = reg_ranges[range];
2681 		unsigned int last_reg = reg_ranges[range + 1];
2682 		u32 *bufp = (u32 *)((char *)buf + reg);
2683 
2684 		/* Iterate across the register range filling in the register
2685 		 * buffer but don't write past the end of the register buffer.
2686 		 */
2687 		while (reg <= last_reg && bufp < buf_end) {
2688 			*bufp++ = t4_read_reg(adap, reg);
2689 			reg += sizeof(u32);
2690 		}
2691 	}
2692 }
2693 
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699 
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719 	fn *= sz;
2720 	if (phys_addr < 1024)
2721 		return phys_addr + (31 << 10);
2722 	if (phys_addr < 1024 + fn)
2723 		return 31744 - fn + phys_addr - 1024;
2724 	if (phys_addr < EEPROMSIZE)
2725 		return phys_addr - 1024 - fn;
2726 	return -EINVAL;
2727 }
2728 
2729 /**
2730  *	t4_seeprom_wp - enable/disable EEPROM write protection
2731  *	@adapter: the adapter
2732  *	@enable: whether to enable or disable write protection
2733  *
2734  *	Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738 	unsigned int v = enable ? 0xc : 0;
2739 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740 	return ret < 0 ? ret : 0;
2741 }
2742 
2743 /**
2744  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *	@adapter: adapter to read
2746  *	@p: where to store the parameters
2747  *
2748  *	Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752 	int i, ret = 0, addr;
2753 	int ec, sn, pn, na;
2754 	u8 *vpd, csum;
2755 	unsigned int vpdr_len, kw_offset, id_len;
2756 
2757 	vpd = vmalloc(VPD_LEN);
2758 	if (!vpd)
2759 		return -ENOMEM;
2760 
2761 	/* Card information normally starts at VPD_BASE but early cards had
2762 	 * it at 0.
2763 	 */
2764 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2769 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 	 * is expected to automatically put this entry at the
2772 	 * beginning of the VPD.
2773 	 */
2774 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775 
2776 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777 	if (ret < 0)
2778 		goto out;
2779 
2780 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782 		ret = -EINVAL;
2783 		goto out;
2784 	}
2785 
2786 	id_len = pci_vpd_lrdt_size(vpd);
2787 	if (id_len > ID_LEN)
2788 		id_len = ID_LEN;
2789 
2790 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791 	if (i < 0) {
2792 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793 		ret = -EINVAL;
2794 		goto out;
2795 	}
2796 
2797 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799 	if (vpdr_len + kw_offset > VPD_LEN) {
2800 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801 		ret = -EINVAL;
2802 		goto out;
2803 	}
2804 
2805 #define FIND_VPD_KW(var, name) do { \
2806 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807 	if (var < 0) { \
2808 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809 		ret = -EINVAL; \
2810 		goto out; \
2811 	} \
2812 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814 
2815 	FIND_VPD_KW(i, "RV");
2816 	for (csum = 0; i >= 0; i--)
2817 		csum += vpd[i];
2818 
2819 	if (csum) {
2820 		dev_err(adapter->pdev_dev,
2821 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2822 		ret = -EINVAL;
2823 		goto out;
2824 	}
2825 
2826 	FIND_VPD_KW(ec, "EC");
2827 	FIND_VPD_KW(sn, "SN");
2828 	FIND_VPD_KW(pn, "PN");
2829 	FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831 
2832 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833 	strim(p->id);
2834 	memcpy(p->ec, vpd + ec, EC_LEN);
2835 	strim(p->ec);
2836 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838 	strim(p->sn);
2839 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841 	strim(p->pn);
2842 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843 	strim((char *)p->na);
2844 
2845 out:
2846 	vfree(vpd);
2847 	return ret < 0 ? ret : 0;
2848 }
2849 
2850 /**
2851  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *	@adapter: adapter to read
2853  *	@p: where to store the parameters
2854  *
2855  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *	Clock.  This can only be called after a connection to the firmware
2857  *	is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861 	u32 cclk_param, cclk_val;
2862 	int ret;
2863 
2864 	/* Grab the raw VPD parameters.
2865 	 */
2866 	ret = t4_get_raw_vpd_params(adapter, p);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/* Ask firmware for the Core Clock since it knows how to translate the
2871 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2872 	 */
2873 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876 			      1, &cclk_param, &cclk_val);
2877 
2878 	if (ret)
2879 		return ret;
2880 	p->cclk = cclk_val;
2881 
2882 	return 0;
2883 }
2884 
2885 /**
2886  *	t4_get_pfres - retrieve VF resource limits
2887  *	@adapter: the adapter
2888  *
2889  *	Retrieves configured resource limits and capabilities for a physical
2890  *	function.  The results are stored in @adapter->pfres.
2891  */
2892 int t4_get_pfres(struct adapter *adapter)
2893 {
2894 	struct pf_resources *pfres = &adapter->params.pfres;
2895 	struct fw_pfvf_cmd cmd, rpl;
2896 	int v;
2897 	u32 word;
2898 
2899 	/* Execute PFVF Read command to get VF resource limits; bail out early
2900 	 * with error on command failure.
2901 	 */
2902 	memset(&cmd, 0, sizeof(cmd));
2903 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2904 				    FW_CMD_REQUEST_F |
2905 				    FW_CMD_READ_F |
2906 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2907 				    FW_PFVF_CMD_VFN_V(0));
2908 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2909 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2910 	if (v != FW_SUCCESS)
2911 		return v;
2912 
2913 	/* Extract PF resource limits and return success.
2914 	 */
2915 	word = be32_to_cpu(rpl.niqflint_niq);
2916 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2917 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2918 
2919 	word = be32_to_cpu(rpl.type_to_neq);
2920 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2921 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2922 
2923 	word = be32_to_cpu(rpl.tc_to_nexactf);
2924 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2925 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2926 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2927 
2928 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2929 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2930 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2931 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2932 
2933 	return 0;
2934 }
2935 
2936 /* serial flash and firmware constants */
2937 enum {
2938 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2939 
2940 	/* flash command opcodes */
2941 	SF_PROG_PAGE    = 2,          /* program page */
2942 	SF_WR_DISABLE   = 4,          /* disable writes */
2943 	SF_RD_STATUS    = 5,          /* read status register */
2944 	SF_WR_ENABLE    = 6,          /* enable writes */
2945 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2946 	SF_RD_ID        = 0x9f,       /* read ID */
2947 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2948 };
2949 
2950 /**
2951  *	sf1_read - read data from the serial flash
2952  *	@adapter: the adapter
2953  *	@byte_cnt: number of bytes to read
2954  *	@cont: whether another operation will be chained
2955  *	@lock: whether to lock SF for PL access only
2956  *	@valp: where to store the read data
2957  *
2958  *	Reads up to 4 bytes of data from the serial flash.  The location of
2959  *	the read needs to be specified prior to calling this by issuing the
2960  *	appropriate commands to the serial flash.
2961  */
2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2963 		    int lock, u32 *valp)
2964 {
2965 	int ret;
2966 
2967 	if (!byte_cnt || byte_cnt > 4)
2968 		return -EINVAL;
2969 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2970 		return -EBUSY;
2971 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2972 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2973 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2974 	if (!ret)
2975 		*valp = t4_read_reg(adapter, SF_DATA_A);
2976 	return ret;
2977 }
2978 
2979 /**
2980  *	sf1_write - write data to the serial flash
2981  *	@adapter: the adapter
2982  *	@byte_cnt: number of bytes to write
2983  *	@cont: whether another operation will be chained
2984  *	@lock: whether to lock SF for PL access only
2985  *	@val: value to write
2986  *
2987  *	Writes up to 4 bytes of data to the serial flash.  The location of
2988  *	the write needs to be specified prior to calling this by issuing the
2989  *	appropriate commands to the serial flash.
2990  */
2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2992 		     int lock, u32 val)
2993 {
2994 	if (!byte_cnt || byte_cnt > 4)
2995 		return -EINVAL;
2996 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2997 		return -EBUSY;
2998 	t4_write_reg(adapter, SF_DATA_A, val);
2999 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
3000 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
3001 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
3002 }
3003 
3004 /**
3005  *	flash_wait_op - wait for a flash operation to complete
3006  *	@adapter: the adapter
3007  *	@attempts: max number of polls of the status register
3008  *	@delay: delay between polls in ms
3009  *
3010  *	Wait for a flash operation to complete by polling the status register.
3011  */
3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3013 {
3014 	int ret;
3015 	u32 status;
3016 
3017 	while (1) {
3018 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3019 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3020 			return ret;
3021 		if (!(status & 1))
3022 			return 0;
3023 		if (--attempts == 0)
3024 			return -EAGAIN;
3025 		if (delay)
3026 			msleep(delay);
3027 	}
3028 }
3029 
3030 /**
3031  *	t4_read_flash - read words from serial flash
3032  *	@adapter: the adapter
3033  *	@addr: the start address for the read
3034  *	@nwords: how many 32-bit words to read
3035  *	@data: where to store the read data
3036  *	@byte_oriented: whether to store data as bytes or as words
3037  *
3038  *	Read the specified number of 32-bit words from the serial flash.
3039  *	If @byte_oriented is set the read data is stored as a byte array
3040  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3041  *	natural endianness.
3042  */
3043 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3044 		  unsigned int nwords, u32 *data, int byte_oriented)
3045 {
3046 	int ret;
3047 
3048 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3049 		return -EINVAL;
3050 
3051 	addr = swab32(addr) | SF_RD_DATA_FAST;
3052 
3053 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3054 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3055 		return ret;
3056 
3057 	for ( ; nwords; nwords--, data++) {
3058 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3059 		if (nwords == 1)
3060 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3061 		if (ret)
3062 			return ret;
3063 		if (byte_oriented)
3064 			*data = (__force __u32)(cpu_to_be32(*data));
3065 	}
3066 	return 0;
3067 }
3068 
3069 /**
3070  *	t4_write_flash - write up to a page of data to the serial flash
3071  *	@adapter: the adapter
3072  *	@addr: the start address to write
3073  *	@n: length of data to write in bytes
3074  *	@data: the data to write
3075  *
3076  *	Writes up to a page of data (256 bytes) to the serial flash starting
3077  *	at the given address.  All the data must be written to the same page.
3078  */
3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3080 			  unsigned int n, const u8 *data)
3081 {
3082 	int ret;
3083 	u32 buf[64];
3084 	unsigned int i, c, left, val, offset = addr & 0xff;
3085 
3086 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3087 		return -EINVAL;
3088 
3089 	val = swab32(addr) | SF_PROG_PAGE;
3090 
3091 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3092 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3093 		goto unlock;
3094 
3095 	for (left = n; left; left -= c) {
3096 		c = min(left, 4U);
3097 		for (val = 0, i = 0; i < c; ++i)
3098 			val = (val << 8) + *data++;
3099 
3100 		ret = sf1_write(adapter, c, c != left, 1, val);
3101 		if (ret)
3102 			goto unlock;
3103 	}
3104 	ret = flash_wait_op(adapter, 8, 1);
3105 	if (ret)
3106 		goto unlock;
3107 
3108 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3109 
3110 	/* Read the page to verify the write succeeded */
3111 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3112 	if (ret)
3113 		return ret;
3114 
3115 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3116 		dev_err(adapter->pdev_dev,
3117 			"failed to correctly write the flash page at %#x\n",
3118 			addr);
3119 		return -EIO;
3120 	}
3121 	return 0;
3122 
3123 unlock:
3124 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3125 	return ret;
3126 }
3127 
3128 /**
3129  *	t4_get_fw_version - read the firmware version
3130  *	@adapter: the adapter
3131  *	@vers: where to place the version
3132  *
3133  *	Reads the FW version from flash.
3134  */
3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3136 {
3137 	return t4_read_flash(adapter, FLASH_FW_START +
3138 			     offsetof(struct fw_hdr, fw_ver), 1,
3139 			     vers, 0);
3140 }
3141 
3142 /**
3143  *	t4_get_bs_version - read the firmware bootstrap version
3144  *	@adapter: the adapter
3145  *	@vers: where to place the version
3146  *
3147  *	Reads the FW Bootstrap version from flash.
3148  */
3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3150 {
3151 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3152 			     offsetof(struct fw_hdr, fw_ver), 1,
3153 			     vers, 0);
3154 }
3155 
3156 /**
3157  *	t4_get_tp_version - read the TP microcode version
3158  *	@adapter: the adapter
3159  *	@vers: where to place the version
3160  *
3161  *	Reads the TP microcode version from flash.
3162  */
3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3164 {
3165 	return t4_read_flash(adapter, FLASH_FW_START +
3166 			     offsetof(struct fw_hdr, tp_microcode_ver),
3167 			     1, vers, 0);
3168 }
3169 
3170 /**
3171  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3172  *	@adapter: the adapter
3173  *	@vers: where to place the version
3174  *
3175  *	Reads the Expansion ROM header from FLASH and returns the version
3176  *	number (if present) through the @vers return value pointer.  We return
3177  *	this in the Firmware Version Format since it's convenient.  Return
3178  *	0 on success, -ENOENT if no Expansion ROM is present.
3179  */
3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3181 {
3182 	struct exprom_header {
3183 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3184 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3185 	} *hdr;
3186 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3187 					   sizeof(u32))];
3188 	int ret;
3189 
3190 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3191 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3192 			    0);
3193 	if (ret)
3194 		return ret;
3195 
3196 	hdr = (struct exprom_header *)exprom_header_buf;
3197 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3198 		return -ENOENT;
3199 
3200 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3201 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3202 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3203 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3204 	return 0;
3205 }
3206 
3207 /**
3208  *      t4_get_vpd_version - return the VPD version
3209  *      @adapter: the adapter
3210  *      @vers: where to place the version
3211  *
3212  *      Reads the VPD via the Firmware interface (thus this can only be called
3213  *      once we're ready to issue Firmware commands).  The format of the
3214  *      VPD version is adapter specific.  Returns 0 on success, an error on
3215  *      failure.
3216  *
3217  *      Note that early versions of the Firmware didn't include the ability
3218  *      to retrieve the VPD version, so we zero-out the return-value parameter
3219  *      in that case to avoid leaving it with garbage in it.
3220  *
3221  *      Also note that the Firmware will return its cached copy of the VPD
3222  *      Revision ID, not the actual Revision ID as written in the Serial
3223  *      EEPROM.  This is only an issue if a new VPD has been written and the
3224  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3225  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3226  *      if the Host Driver will be performing a full adapter initialization.
3227  */
3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3229 {
3230 	u32 vpdrev_param;
3231 	int ret;
3232 
3233 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3234 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3235 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3236 			      1, &vpdrev_param, vers);
3237 	if (ret)
3238 		*vers = 0;
3239 	return ret;
3240 }
3241 
3242 /**
3243  *      t4_get_scfg_version - return the Serial Configuration version
3244  *      @adapter: the adapter
3245  *      @vers: where to place the version
3246  *
3247  *      Reads the Serial Configuration Version via the Firmware interface
3248  *      (thus this can only be called once we're ready to issue Firmware
3249  *      commands).  The format of the Serial Configuration version is
3250  *      adapter specific.  Returns 0 on success, an error on failure.
3251  *
3252  *      Note that early versions of the Firmware didn't include the ability
3253  *      to retrieve the Serial Configuration version, so we zero-out the
3254  *      return-value parameter in that case to avoid leaving it with
3255  *      garbage in it.
3256  *
3257  *      Also note that the Firmware will return its cached copy of the Serial
3258  *      Initialization Revision ID, not the actual Revision ID as written in
3259  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3260  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3261  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3262  *      been issued if the Host Driver will be performing a full adapter
3263  *      initialization.
3264  */
3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3266 {
3267 	u32 scfgrev_param;
3268 	int ret;
3269 
3270 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3271 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3272 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3273 			      1, &scfgrev_param, vers);
3274 	if (ret)
3275 		*vers = 0;
3276 	return ret;
3277 }
3278 
3279 /**
3280  *      t4_get_version_info - extract various chip/firmware version information
3281  *      @adapter: the adapter
3282  *
3283  *      Reads various chip/firmware version numbers and stores them into the
3284  *      adapter Adapter Parameters structure.  If any of the efforts fails
3285  *      the first failure will be returned, but all of the version numbers
3286  *      will be read.
3287  */
3288 int t4_get_version_info(struct adapter *adapter)
3289 {
3290 	int ret = 0;
3291 
3292 	#define FIRST_RET(__getvinfo) \
3293 	do { \
3294 		int __ret = __getvinfo; \
3295 		if (__ret && !ret) \
3296 			ret = __ret; \
3297 	} while (0)
3298 
3299 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3300 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3301 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3302 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3303 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3304 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3305 
3306 	#undef FIRST_RET
3307 	return ret;
3308 }
3309 
3310 /**
3311  *      t4_dump_version_info - dump all of the adapter configuration IDs
3312  *      @adapter: the adapter
3313  *
3314  *      Dumps all of the various bits of adapter configuration version/revision
3315  *      IDs information.  This is typically called at some point after
3316  *      t4_get_version_info() has been called.
3317  */
3318 void t4_dump_version_info(struct adapter *adapter)
3319 {
3320 	/* Device information */
3321 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3322 		 adapter->params.vpd.id,
3323 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3324 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3325 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3326 
3327 	/* Firmware Version */
3328 	if (!adapter->params.fw_vers)
3329 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3330 	else
3331 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3332 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3333 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3334 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3335 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3336 
3337 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3338 	 * Firmware, so dev_info() is more appropriate here.)
3339 	 */
3340 	if (!adapter->params.bs_vers)
3341 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3342 	else
3343 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3344 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3345 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3346 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3347 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3348 
3349 	/* TP Microcode Version */
3350 	if (!adapter->params.tp_vers)
3351 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3352 	else
3353 		dev_info(adapter->pdev_dev,
3354 			 "TP Microcode version: %u.%u.%u.%u\n",
3355 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3356 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3357 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3358 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3359 
3360 	/* Expansion ROM version */
3361 	if (!adapter->params.er_vers)
3362 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3363 	else
3364 		dev_info(adapter->pdev_dev,
3365 			 "Expansion ROM version: %u.%u.%u.%u\n",
3366 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3367 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3368 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3369 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3370 
3371 	/* Serial Configuration version */
3372 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3373 		 adapter->params.scfg_vers);
3374 
3375 	/* VPD Version */
3376 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3377 		 adapter->params.vpd_vers);
3378 }
3379 
3380 /**
3381  *	t4_check_fw_version - check if the FW is supported with this driver
3382  *	@adap: the adapter
3383  *
3384  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3385  *	if there's exact match, a negative error if the version could not be
3386  *	read or there's a major version mismatch
3387  */
3388 int t4_check_fw_version(struct adapter *adap)
3389 {
3390 	int i, ret, major, minor, micro;
3391 	int exp_major, exp_minor, exp_micro;
3392 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3393 
3394 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3395 	/* Try multiple times before returning error */
3396 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3397 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3398 
3399 	if (ret)
3400 		return ret;
3401 
3402 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3403 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3404 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3405 
3406 	switch (chip_version) {
3407 	case CHELSIO_T4:
3408 		exp_major = T4FW_MIN_VERSION_MAJOR;
3409 		exp_minor = T4FW_MIN_VERSION_MINOR;
3410 		exp_micro = T4FW_MIN_VERSION_MICRO;
3411 		break;
3412 	case CHELSIO_T5:
3413 		exp_major = T5FW_MIN_VERSION_MAJOR;
3414 		exp_minor = T5FW_MIN_VERSION_MINOR;
3415 		exp_micro = T5FW_MIN_VERSION_MICRO;
3416 		break;
3417 	case CHELSIO_T6:
3418 		exp_major = T6FW_MIN_VERSION_MAJOR;
3419 		exp_minor = T6FW_MIN_VERSION_MINOR;
3420 		exp_micro = T6FW_MIN_VERSION_MICRO;
3421 		break;
3422 	default:
3423 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3424 			adap->chip);
3425 		return -EINVAL;
3426 	}
3427 
3428 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3429 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3430 		dev_err(adap->pdev_dev,
3431 			"Card has firmware version %u.%u.%u, minimum "
3432 			"supported firmware is %u.%u.%u.\n", major, minor,
3433 			micro, exp_major, exp_minor, exp_micro);
3434 		return -EFAULT;
3435 	}
3436 	return 0;
3437 }
3438 
3439 /* Is the given firmware API compatible with the one the driver was compiled
3440  * with?
3441  */
3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3443 {
3444 
3445 	/* short circuit if it's the exact same firmware version */
3446 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3447 		return 1;
3448 
3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3450 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3451 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3452 		return 1;
3453 #undef SAME_INTF
3454 
3455 	return 0;
3456 }
3457 
3458 /* The firmware in the filesystem is usable, but should it be installed?
3459  * This routine explains itself in detail if it indicates the filesystem
3460  * firmware should be installed.
3461  */
3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3463 				int k, int c)
3464 {
3465 	const char *reason;
3466 
3467 	if (!card_fw_usable) {
3468 		reason = "incompatible or unusable";
3469 		goto install;
3470 	}
3471 
3472 	if (k > c) {
3473 		reason = "older than the version supported with this driver";
3474 		goto install;
3475 	}
3476 
3477 	return 0;
3478 
3479 install:
3480 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3481 		"installing firmware %u.%u.%u.%u on card.\n",
3482 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3483 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3484 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3485 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3486 
3487 	return 1;
3488 }
3489 
3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3491 	       const u8 *fw_data, unsigned int fw_size,
3492 	       struct fw_hdr *card_fw, enum dev_state state,
3493 	       int *reset)
3494 {
3495 	int ret, card_fw_usable, fs_fw_usable;
3496 	const struct fw_hdr *fs_fw;
3497 	const struct fw_hdr *drv_fw;
3498 
3499 	drv_fw = &fw_info->fw_hdr;
3500 
3501 	/* Read the header of the firmware on the card */
3502 	ret = -t4_read_flash(adap, FLASH_FW_START,
3503 			    sizeof(*card_fw) / sizeof(uint32_t),
3504 			    (uint32_t *)card_fw, 1);
3505 	if (ret == 0) {
3506 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3507 	} else {
3508 		dev_err(adap->pdev_dev,
3509 			"Unable to read card's firmware header: %d\n", ret);
3510 		card_fw_usable = 0;
3511 	}
3512 
3513 	if (fw_data != NULL) {
3514 		fs_fw = (const void *)fw_data;
3515 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3516 	} else {
3517 		fs_fw = NULL;
3518 		fs_fw_usable = 0;
3519 	}
3520 
3521 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3522 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3523 		/* Common case: the firmware on the card is an exact match and
3524 		 * the filesystem one is an exact match too, or the filesystem
3525 		 * one is absent/incompatible.
3526 		 */
3527 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3528 		   should_install_fs_fw(adap, card_fw_usable,
3529 					be32_to_cpu(fs_fw->fw_ver),
3530 					be32_to_cpu(card_fw->fw_ver))) {
3531 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3532 				     fw_size, 0);
3533 		if (ret != 0) {
3534 			dev_err(adap->pdev_dev,
3535 				"failed to install firmware: %d\n", ret);
3536 			goto bye;
3537 		}
3538 
3539 		/* Installed successfully, update the cached header too. */
3540 		*card_fw = *fs_fw;
3541 		card_fw_usable = 1;
3542 		*reset = 0;	/* already reset as part of load_fw */
3543 	}
3544 
3545 	if (!card_fw_usable) {
3546 		uint32_t d, c, k;
3547 
3548 		d = be32_to_cpu(drv_fw->fw_ver);
3549 		c = be32_to_cpu(card_fw->fw_ver);
3550 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3551 
3552 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3553 			"chip state %d, "
3554 			"driver compiled with %d.%d.%d.%d, "
3555 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3556 			state,
3557 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3558 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3559 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3560 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3561 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3562 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3563 		ret = EINVAL;
3564 		goto bye;
3565 	}
3566 
3567 	/* We're using whatever's on the card and it's known to be good. */
3568 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3569 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3570 
3571 bye:
3572 	return ret;
3573 }
3574 
3575 /**
3576  *	t4_flash_erase_sectors - erase a range of flash sectors
3577  *	@adapter: the adapter
3578  *	@start: the first sector to erase
3579  *	@end: the last sector to erase
3580  *
3581  *	Erases the sectors in the given inclusive range.
3582  */
3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3584 {
3585 	int ret = 0;
3586 
3587 	if (end >= adapter->params.sf_nsec)
3588 		return -EINVAL;
3589 
3590 	while (start <= end) {
3591 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3592 		    (ret = sf1_write(adapter, 4, 0, 1,
3593 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3594 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3595 			dev_err(adapter->pdev_dev,
3596 				"erase of flash sector %d failed, error %d\n",
3597 				start, ret);
3598 			break;
3599 		}
3600 		start++;
3601 	}
3602 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3603 	return ret;
3604 }
3605 
3606 /**
3607  *	t4_flash_cfg_addr - return the address of the flash configuration file
3608  *	@adapter: the adapter
3609  *
3610  *	Return the address within the flash where the Firmware Configuration
3611  *	File is stored.
3612  */
3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3614 {
3615 	if (adapter->params.sf_size == 0x100000)
3616 		return FLASH_FPGA_CFG_START;
3617 	else
3618 		return FLASH_CFG_START;
3619 }
3620 
3621 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3622  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3623  * and emit an error message for mismatched firmware to save our caller the
3624  * effort ...
3625  */
3626 static bool t4_fw_matches_chip(const struct adapter *adap,
3627 			       const struct fw_hdr *hdr)
3628 {
3629 	/* The expression below will return FALSE for any unsupported adapter
3630 	 * which will keep us "honest" in the future ...
3631 	 */
3632 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3633 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3634 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3635 		return true;
3636 
3637 	dev_err(adap->pdev_dev,
3638 		"FW image (%d) is not suitable for this adapter (%d)\n",
3639 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3640 	return false;
3641 }
3642 
3643 /**
3644  *	t4_load_fw - download firmware
3645  *	@adap: the adapter
3646  *	@fw_data: the firmware image to write
3647  *	@size: image size
3648  *
3649  *	Write the supplied firmware image to the card's serial flash.
3650  */
3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3652 {
3653 	u32 csum;
3654 	int ret, addr;
3655 	unsigned int i;
3656 	u8 first_page[SF_PAGE_SIZE];
3657 	const __be32 *p = (const __be32 *)fw_data;
3658 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3659 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3660 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3661 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3662 	unsigned int fw_start = FLASH_FW_START;
3663 
3664 	if (!size) {
3665 		dev_err(adap->pdev_dev, "FW image has no data\n");
3666 		return -EINVAL;
3667 	}
3668 	if (size & 511) {
3669 		dev_err(adap->pdev_dev,
3670 			"FW image size not multiple of 512 bytes\n");
3671 		return -EINVAL;
3672 	}
3673 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3674 		dev_err(adap->pdev_dev,
3675 			"FW image size differs from size in FW header\n");
3676 		return -EINVAL;
3677 	}
3678 	if (size > fw_size) {
3679 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3680 			fw_size);
3681 		return -EFBIG;
3682 	}
3683 	if (!t4_fw_matches_chip(adap, hdr))
3684 		return -EINVAL;
3685 
3686 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3687 		csum += be32_to_cpu(p[i]);
3688 
3689 	if (csum != 0xffffffff) {
3690 		dev_err(adap->pdev_dev,
3691 			"corrupted firmware image, checksum %#x\n", csum);
3692 		return -EINVAL;
3693 	}
3694 
3695 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3696 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3697 	if (ret)
3698 		goto out;
3699 
3700 	/*
3701 	 * We write the correct version at the end so the driver can see a bad
3702 	 * version if the FW write fails.  Start by writing a copy of the
3703 	 * first page with a bad version.
3704 	 */
3705 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3706 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3707 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3708 	if (ret)
3709 		goto out;
3710 
3711 	addr = fw_start;
3712 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3713 		addr += SF_PAGE_SIZE;
3714 		fw_data += SF_PAGE_SIZE;
3715 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3716 		if (ret)
3717 			goto out;
3718 	}
3719 
3720 	ret = t4_write_flash(adap,
3721 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3722 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3723 out:
3724 	if (ret)
3725 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3726 			ret);
3727 	else
3728 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3729 	return ret;
3730 }
3731 
3732 /**
3733  *	t4_phy_fw_ver - return current PHY firmware version
3734  *	@adap: the adapter
3735  *	@phy_fw_ver: return value buffer for PHY firmware version
3736  *
3737  *	Returns the current version of external PHY firmware on the
3738  *	adapter.
3739  */
3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3741 {
3742 	u32 param, val;
3743 	int ret;
3744 
3745 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3746 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3747 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3748 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3749 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3750 			      &param, &val);
3751 	if (ret < 0)
3752 		return ret;
3753 	*phy_fw_ver = val;
3754 	return 0;
3755 }
3756 
3757 /**
3758  *	t4_load_phy_fw - download port PHY firmware
3759  *	@adap: the adapter
3760  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3761  *	@win_lock: the lock to use to guard the memory copy
3762  *	@phy_fw_version: function to check PHY firmware versions
3763  *	@phy_fw_data: the PHY firmware image to write
3764  *	@phy_fw_size: image size
3765  *
3766  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3767  *	@phy_fw_version is supplied, then it will be used to determine if
3768  *	it's necessary to perform the transfer by comparing the version
3769  *	of any existing adapter PHY firmware with that of the passed in
3770  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3771  *	around the call to t4_memory_rw() which transfers the PHY firmware
3772  *	to the adapter.
3773  *
3774  *	A negative error number will be returned if an error occurs.  If
3775  *	version number support is available and there's no need to upgrade
3776  *	the firmware, 0 will be returned.  If firmware is successfully
3777  *	transferred to the adapter, 1 will be retured.
3778  *
3779  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3780  *	a result, a RESET of the adapter would cause that RAM to lose its
3781  *	contents.  Thus, loading PHY firmware on such adapters must happen
3782  *	after any FW_RESET_CMDs ...
3783  */
3784 int t4_load_phy_fw(struct adapter *adap,
3785 		   int win, spinlock_t *win_lock,
3786 		   int (*phy_fw_version)(const u8 *, size_t),
3787 		   const u8 *phy_fw_data, size_t phy_fw_size)
3788 {
3789 	unsigned long mtype = 0, maddr = 0;
3790 	u32 param, val;
3791 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3792 	int ret;
3793 
3794 	/* If we have version number support, then check to see if the adapter
3795 	 * already has up-to-date PHY firmware loaded.
3796 	 */
3797 	if (phy_fw_version) {
3798 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3799 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3800 		if (ret < 0)
3801 			return ret;
3802 
3803 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3804 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3805 				"version %#x\n", cur_phy_fw_ver);
3806 			return 0;
3807 		}
3808 	}
3809 
3810 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3811 	 * The size of the file requires a special version of the READ coommand
3812 	 * which will pass the file size via the values field in PARAMS_CMD and
3813 	 * retrieve the return value from firmware and place it in the same
3814 	 * buffer values
3815 	 */
3816 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3817 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3818 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3819 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3820 	val = phy_fw_size;
3821 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3822 				 &param, &val, 1, true);
3823 	if (ret < 0)
3824 		return ret;
3825 	mtype = val >> 8;
3826 	maddr = (val & 0xff) << 16;
3827 
3828 	/* Copy the supplied PHY Firmware image to the adapter memory location
3829 	 * allocated by the adapter firmware.
3830 	 */
3831 	if (win_lock)
3832 		spin_lock_bh(win_lock);
3833 	ret = t4_memory_rw(adap, win, mtype, maddr,
3834 			   phy_fw_size, (__be32 *)phy_fw_data,
3835 			   T4_MEMORY_WRITE);
3836 	if (win_lock)
3837 		spin_unlock_bh(win_lock);
3838 	if (ret)
3839 		return ret;
3840 
3841 	/* Tell the firmware that the PHY firmware image has been written to
3842 	 * RAM and it can now start copying it over to the PHYs.  The chip
3843 	 * firmware will RESET the affected PHYs as part of this operation
3844 	 * leaving them running the new PHY firmware image.
3845 	 */
3846 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3847 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3848 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3849 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3850 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3851 				    &param, &val, 30000);
3852 
3853 	/* If we have version number support, then check to see that the new
3854 	 * firmware got loaded properly.
3855 	 */
3856 	if (phy_fw_version) {
3857 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3858 		if (ret < 0)
3859 			return ret;
3860 
3861 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3862 			CH_WARN(adap, "PHY Firmware did not update: "
3863 				"version on adapter %#x, "
3864 				"version flashed %#x\n",
3865 				cur_phy_fw_ver, new_phy_fw_vers);
3866 			return -ENXIO;
3867 		}
3868 	}
3869 
3870 	return 1;
3871 }
3872 
3873 /**
3874  *	t4_fwcache - firmware cache operation
3875  *	@adap: the adapter
3876  *	@op  : the operation (flush or flush and invalidate)
3877  */
3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3879 {
3880 	struct fw_params_cmd c;
3881 
3882 	memset(&c, 0, sizeof(c));
3883 	c.op_to_vfn =
3884 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3885 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3886 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3887 			    FW_PARAMS_CMD_VFN_V(0));
3888 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3889 	c.param[0].mnem =
3890 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3891 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3892 	c.param[0].val = cpu_to_be32(op);
3893 
3894 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3895 }
3896 
3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3898 			unsigned int *pif_req_wrptr,
3899 			unsigned int *pif_rsp_wrptr)
3900 {
3901 	int i, j;
3902 	u32 cfg, val, req, rsp;
3903 
3904 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3905 	if (cfg & LADBGEN_F)
3906 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3907 
3908 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3909 	req = POLADBGWRPTR_G(val);
3910 	rsp = PILADBGWRPTR_G(val);
3911 	if (pif_req_wrptr)
3912 		*pif_req_wrptr = req;
3913 	if (pif_rsp_wrptr)
3914 		*pif_rsp_wrptr = rsp;
3915 
3916 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3917 		for (j = 0; j < 6; j++) {
3918 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3919 				     PILADBGRDPTR_V(rsp));
3920 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3921 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3922 			req++;
3923 			rsp++;
3924 		}
3925 		req = (req + 2) & POLADBGRDPTR_M;
3926 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3927 	}
3928 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3929 }
3930 
3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3932 {
3933 	u32 cfg;
3934 	int i, j, idx;
3935 
3936 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3937 	if (cfg & LADBGEN_F)
3938 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3939 
3940 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3941 		for (j = 0; j < 5; j++) {
3942 			idx = 8 * i + j;
3943 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3944 				     PILADBGRDPTR_V(idx));
3945 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3946 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3947 		}
3948 	}
3949 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3950 }
3951 
3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3953 {
3954 	unsigned int i, j;
3955 
3956 	for (i = 0; i < 8; i++) {
3957 		u32 *p = la_buf + i;
3958 
3959 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3960 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3961 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3962 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3963 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3964 	}
3965 }
3966 
3967 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3968 		     FW_PORT_CAP32_ANEG)
3969 
3970 /**
3971  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3972  *	@caps16: a 16-bit Port Capabilities value
3973  *
3974  *	Returns the equivalent 32-bit Port Capabilities value.
3975  */
3976 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3977 {
3978 	fw_port_cap32_t caps32 = 0;
3979 
3980 	#define CAP16_TO_CAP32(__cap) \
3981 		do { \
3982 			if (caps16 & FW_PORT_CAP_##__cap) \
3983 				caps32 |= FW_PORT_CAP32_##__cap; \
3984 		} while (0)
3985 
3986 	CAP16_TO_CAP32(SPEED_100M);
3987 	CAP16_TO_CAP32(SPEED_1G);
3988 	CAP16_TO_CAP32(SPEED_25G);
3989 	CAP16_TO_CAP32(SPEED_10G);
3990 	CAP16_TO_CAP32(SPEED_40G);
3991 	CAP16_TO_CAP32(SPEED_100G);
3992 	CAP16_TO_CAP32(FC_RX);
3993 	CAP16_TO_CAP32(FC_TX);
3994 	CAP16_TO_CAP32(ANEG);
3995 	CAP16_TO_CAP32(FORCE_PAUSE);
3996 	CAP16_TO_CAP32(MDIAUTO);
3997 	CAP16_TO_CAP32(MDISTRAIGHT);
3998 	CAP16_TO_CAP32(FEC_RS);
3999 	CAP16_TO_CAP32(FEC_BASER_RS);
4000 	CAP16_TO_CAP32(802_3_PAUSE);
4001 	CAP16_TO_CAP32(802_3_ASM_DIR);
4002 
4003 	#undef CAP16_TO_CAP32
4004 
4005 	return caps32;
4006 }
4007 
4008 /**
4009  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4010  *	@caps32: a 32-bit Port Capabilities value
4011  *
4012  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4013  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4014  *	Port Capabilities and some fields/values may not make it.
4015  */
4016 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4017 {
4018 	fw_port_cap16_t caps16 = 0;
4019 
4020 	#define CAP32_TO_CAP16(__cap) \
4021 		do { \
4022 			if (caps32 & FW_PORT_CAP32_##__cap) \
4023 				caps16 |= FW_PORT_CAP_##__cap; \
4024 		} while (0)
4025 
4026 	CAP32_TO_CAP16(SPEED_100M);
4027 	CAP32_TO_CAP16(SPEED_1G);
4028 	CAP32_TO_CAP16(SPEED_10G);
4029 	CAP32_TO_CAP16(SPEED_25G);
4030 	CAP32_TO_CAP16(SPEED_40G);
4031 	CAP32_TO_CAP16(SPEED_100G);
4032 	CAP32_TO_CAP16(FC_RX);
4033 	CAP32_TO_CAP16(FC_TX);
4034 	CAP32_TO_CAP16(802_3_PAUSE);
4035 	CAP32_TO_CAP16(802_3_ASM_DIR);
4036 	CAP32_TO_CAP16(ANEG);
4037 	CAP32_TO_CAP16(FORCE_PAUSE);
4038 	CAP32_TO_CAP16(MDIAUTO);
4039 	CAP32_TO_CAP16(MDISTRAIGHT);
4040 	CAP32_TO_CAP16(FEC_RS);
4041 	CAP32_TO_CAP16(FEC_BASER_RS);
4042 
4043 	#undef CAP32_TO_CAP16
4044 
4045 	return caps16;
4046 }
4047 
4048 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4049 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4050 {
4051 	enum cc_pause cc_pause = 0;
4052 
4053 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4054 		cc_pause |= PAUSE_RX;
4055 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4056 		cc_pause |= PAUSE_TX;
4057 
4058 	return cc_pause;
4059 }
4060 
4061 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4062 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4063 {
4064 	fw_port_cap32_t fw_pause = 0;
4065 
4066 	if (cc_pause & PAUSE_RX)
4067 		fw_pause |= FW_PORT_CAP32_FC_RX;
4068 	if (cc_pause & PAUSE_TX)
4069 		fw_pause |= FW_PORT_CAP32_FC_TX;
4070 	if (!(cc_pause & PAUSE_AUTONEG))
4071 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4072 
4073 	return fw_pause;
4074 }
4075 
4076 /* Translate Firmware Forward Error Correction specification to Common Code */
4077 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4078 {
4079 	enum cc_fec cc_fec = 0;
4080 
4081 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4082 		cc_fec |= FEC_RS;
4083 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4084 		cc_fec |= FEC_BASER_RS;
4085 
4086 	return cc_fec;
4087 }
4088 
4089 /* Translate Common Code Forward Error Correction specification to Firmware */
4090 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4091 {
4092 	fw_port_cap32_t fw_fec = 0;
4093 
4094 	if (cc_fec & FEC_RS)
4095 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4096 	if (cc_fec & FEC_BASER_RS)
4097 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4098 
4099 	return fw_fec;
4100 }
4101 
4102 /**
4103  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4104  *	@adapter: the adapter
4105  *	@mbox: the Firmware Mailbox to use
4106  *	@port: the Port ID
4107  *	@lc: the Port's Link Configuration
4108  *	@sleep_ok: if true we may sleep while awaiting command completion
4109  *	@timeout: time to wait for command to finish before timing out
4110  *		(negative implies @sleep_ok=false)
4111  *
4112  *	Set up a port's MAC and PHY according to a desired link configuration.
4113  *	- If the PHY can auto-negotiate first decide what to advertise, then
4114  *	  enable/disable auto-negotiation as desired, and reset.
4115  *	- If the PHY does not auto-negotiate just reset it.
4116  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4117  *	  otherwise do it later based on the outcome of auto-negotiation.
4118  */
4119 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4120 		       unsigned int port, struct link_config *lc,
4121 		       bool sleep_ok, int timeout)
4122 {
4123 	unsigned int fw_caps = adapter->params.fw_caps_support;
4124 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4125 	struct fw_port_cmd cmd;
4126 	unsigned int fw_mdi;
4127 	int ret;
4128 
4129 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4130 
4131 	/* Convert driver coding of Pause Frame Flow Control settings into the
4132 	 * Firmware's API.
4133 	 */
4134 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4135 
4136 	/* Convert Common Code Forward Error Control settings into the
4137 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4138 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4139 	 * sent us as part of it's IEEE 802.3-based interpratation of
4140 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4141 	 * use whatever is in the current Requested FEC settings.
4142 	 */
4143 	if (lc->requested_fec & FEC_AUTO)
4144 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4145 	else
4146 		cc_fec = lc->requested_fec;
4147 	fw_fec = cc_to_fwcap_fec(cc_fec);
4148 
4149 	/* Figure out what our Requested Port Capabilities are going to be.
4150 	 * Note parallel structure in t4_handle_get_port_info() and
4151 	 * init_link_config().
4152 	 */
4153 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4154 		if (lc->autoneg == AUTONEG_ENABLE)
4155 			return -EINVAL;
4156 
4157 		rcap = lc->acaps | fw_fc | fw_fec;
4158 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4159 		lc->fec = cc_fec;
4160 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4161 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4162 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4163 		lc->fec = cc_fec;
4164 	} else {
4165 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4166 	}
4167 
4168 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4169 	 * the Physical Port Capabilities.  We can check that here and provide
4170 	 * moderately useful feedback in the system log.
4171 	 *
4172 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4173 	 * we need to exclude this from this check in order to maintain
4174 	 * compatibility ...
4175 	 */
4176 	if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4177 		dev_err(adapter->pdev_dev,
4178 			"Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4179 			rcap, lc->pcaps);
4180 		return -EINVAL;
4181 	}
4182 
4183 	/* And send that on to the Firmware ...
4184 	 */
4185 	memset(&cmd, 0, sizeof(cmd));
4186 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4187 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4188 				       FW_PORT_CMD_PORTID_V(port));
4189 	cmd.action_to_len16 =
4190 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4191 						 ? FW_PORT_ACTION_L1_CFG
4192 						 : FW_PORT_ACTION_L1_CFG32) |
4193 						 FW_LEN16(cmd));
4194 	if (fw_caps == FW_CAPS16)
4195 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4196 	else
4197 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4198 
4199 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4200 				      sleep_ok, timeout);
4201 
4202 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4203 	 * the Physical Port Capabilities, some combinations of features may
4204 	 * still not be leagal.  For example, 40Gb/s and Reed-Solomon Forward
4205 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4206 	 * request, flag that here.
4207 	 */
4208 	if (ret) {
4209 		dev_err(adapter->pdev_dev,
4210 			"Requested Port Capabilities %#x rejected, error %d\n",
4211 			rcap, -ret);
4212 		return ret;
4213 	}
4214 	return ret;
4215 }
4216 
4217 /**
4218  *	t4_restart_aneg - restart autonegotiation
4219  *	@adap: the adapter
4220  *	@mbox: mbox to use for the FW command
4221  *	@port: the port id
4222  *
4223  *	Restarts autonegotiation for the selected port.
4224  */
4225 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4226 {
4227 	unsigned int fw_caps = adap->params.fw_caps_support;
4228 	struct fw_port_cmd c;
4229 
4230 	memset(&c, 0, sizeof(c));
4231 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4232 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4233 				     FW_PORT_CMD_PORTID_V(port));
4234 	c.action_to_len16 =
4235 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4236 						 ? FW_PORT_ACTION_L1_CFG
4237 						 : FW_PORT_ACTION_L1_CFG32) |
4238 			    FW_LEN16(c));
4239 	if (fw_caps == FW_CAPS16)
4240 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4241 	else
4242 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4243 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4244 }
4245 
4246 typedef void (*int_handler_t)(struct adapter *adap);
4247 
4248 struct intr_info {
4249 	unsigned int mask;       /* bits to check in interrupt status */
4250 	const char *msg;         /* message to print or NULL */
4251 	short stat_idx;          /* stat counter to increment or -1 */
4252 	unsigned short fatal;    /* whether the condition reported is fatal */
4253 	int_handler_t int_handler; /* platform-specific int handler */
4254 };
4255 
4256 /**
4257  *	t4_handle_intr_status - table driven interrupt handler
4258  *	@adapter: the adapter that generated the interrupt
4259  *	@reg: the interrupt status register to process
4260  *	@acts: table of interrupt actions
4261  *
4262  *	A table driven interrupt handler that applies a set of masks to an
4263  *	interrupt status word and performs the corresponding actions if the
4264  *	interrupts described by the mask have occurred.  The actions include
4265  *	optionally emitting a warning or alert message.  The table is terminated
4266  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4267  *	conditions.
4268  */
4269 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4270 				 const struct intr_info *acts)
4271 {
4272 	int fatal = 0;
4273 	unsigned int mask = 0;
4274 	unsigned int status = t4_read_reg(adapter, reg);
4275 
4276 	for ( ; acts->mask; ++acts) {
4277 		if (!(status & acts->mask))
4278 			continue;
4279 		if (acts->fatal) {
4280 			fatal++;
4281 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4282 				  status & acts->mask);
4283 		} else if (acts->msg && printk_ratelimit())
4284 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4285 				 status & acts->mask);
4286 		if (acts->int_handler)
4287 			acts->int_handler(adapter);
4288 		mask |= acts->mask;
4289 	}
4290 	status &= mask;
4291 	if (status)                           /* clear processed interrupts */
4292 		t4_write_reg(adapter, reg, status);
4293 	return fatal;
4294 }
4295 
4296 /*
4297  * Interrupt handler for the PCIE module.
4298  */
4299 static void pcie_intr_handler(struct adapter *adapter)
4300 {
4301 	static const struct intr_info sysbus_intr_info[] = {
4302 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4303 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4304 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4305 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4306 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4307 		{ 0 }
4308 	};
4309 	static const struct intr_info pcie_port_intr_info[] = {
4310 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4311 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4312 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4313 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4314 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4315 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4316 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4317 		{ RDPE_F, "Rx data parity error", -1, 1 },
4318 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4319 		{ 0 }
4320 	};
4321 	static const struct intr_info pcie_intr_info[] = {
4322 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4323 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4324 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4325 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4326 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4327 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4328 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4329 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4330 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4331 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4332 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4333 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4334 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4335 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4336 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4337 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4338 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4339 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4340 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4341 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4342 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4343 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4344 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4345 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4346 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4347 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4348 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4349 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4350 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4351 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4352 		  -1, 0 },
4353 		{ 0 }
4354 	};
4355 
4356 	static struct intr_info t5_pcie_intr_info[] = {
4357 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4358 		  -1, 1 },
4359 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4360 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4361 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4362 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4363 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4364 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4365 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4366 		  -1, 1 },
4367 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4368 		  -1, 1 },
4369 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4370 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4371 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4372 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4373 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4374 		  -1, 1 },
4375 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4376 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4377 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4378 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4379 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4380 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4381 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4382 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4383 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4384 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4385 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4386 		  -1, 1 },
4387 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4388 		  -1, 1 },
4389 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4390 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4391 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4392 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4393 		{ 0 }
4394 	};
4395 
4396 	int fat;
4397 
4398 	if (is_t4(adapter->params.chip))
4399 		fat = t4_handle_intr_status(adapter,
4400 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4401 				sysbus_intr_info) +
4402 			t4_handle_intr_status(adapter,
4403 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4404 					pcie_port_intr_info) +
4405 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4406 					      pcie_intr_info);
4407 	else
4408 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4409 					    t5_pcie_intr_info);
4410 
4411 	if (fat)
4412 		t4_fatal_err(adapter);
4413 }
4414 
4415 /*
4416  * TP interrupt handler.
4417  */
4418 static void tp_intr_handler(struct adapter *adapter)
4419 {
4420 	static const struct intr_info tp_intr_info[] = {
4421 		{ 0x3fffffff, "TP parity error", -1, 1 },
4422 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4423 		{ 0 }
4424 	};
4425 
4426 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4427 		t4_fatal_err(adapter);
4428 }
4429 
4430 /*
4431  * SGE interrupt handler.
4432  */
4433 static void sge_intr_handler(struct adapter *adapter)
4434 {
4435 	u64 v;
4436 	u32 err;
4437 
4438 	static const struct intr_info sge_intr_info[] = {
4439 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4440 		  "SGE received CPL exceeding IQE size", -1, 1 },
4441 		{ ERR_INVALID_CIDX_INC_F,
4442 		  "SGE GTS CIDX increment too large", -1, 0 },
4443 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4444 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4445 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4446 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4447 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4448 		  0 },
4449 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4450 		  0 },
4451 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4452 		  0 },
4453 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4454 		  0 },
4455 		{ ERR_ING_CTXT_PRIO_F,
4456 		  "SGE too many priority ingress contexts", -1, 0 },
4457 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4458 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4459 		{ 0 }
4460 	};
4461 
4462 	static struct intr_info t4t5_sge_intr_info[] = {
4463 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4464 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4465 		{ ERR_EGR_CTXT_PRIO_F,
4466 		  "SGE too many priority egress contexts", -1, 0 },
4467 		{ 0 }
4468 	};
4469 
4470 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4471 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4472 	if (v) {
4473 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4474 				(unsigned long long)v);
4475 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4476 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4477 	}
4478 
4479 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4480 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4481 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4482 					   t4t5_sge_intr_info);
4483 
4484 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4485 	if (err & ERROR_QID_VALID_F) {
4486 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4487 			ERROR_QID_G(err));
4488 		if (err & UNCAPTURED_ERROR_F)
4489 			dev_err(adapter->pdev_dev,
4490 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4491 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4492 			     UNCAPTURED_ERROR_F);
4493 	}
4494 
4495 	if (v != 0)
4496 		t4_fatal_err(adapter);
4497 }
4498 
4499 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4500 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4501 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4502 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4503 
4504 /*
4505  * CIM interrupt handler.
4506  */
4507 static void cim_intr_handler(struct adapter *adapter)
4508 {
4509 	static const struct intr_info cim_intr_info[] = {
4510 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4511 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4512 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4513 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4514 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4515 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4516 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4517 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4518 		{ 0 }
4519 	};
4520 	static const struct intr_info cim_upintr_info[] = {
4521 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4522 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4523 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4524 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4525 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4526 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4527 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4528 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4529 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4530 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4531 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4532 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4533 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4534 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4535 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4536 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4537 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4538 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4539 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4540 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4541 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4542 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4543 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4544 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4545 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4546 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4547 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4548 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4549 		{ 0 }
4550 	};
4551 
4552 	u32 val, fw_err;
4553 	int fat;
4554 
4555 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4556 	if (fw_err & PCIE_FW_ERR_F)
4557 		t4_report_fw_error(adapter);
4558 
4559 	/* When the Firmware detects an internal error which normally
4560 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4561 	 * in order to make sure the Host sees the Firmware Crash.  So
4562 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4563 	 * ignore the Timer0 interrupt.
4564 	 */
4565 
4566 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4567 	if (val & TIMER0INT_F)
4568 		if (!(fw_err & PCIE_FW_ERR_F) ||
4569 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4570 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4571 				     TIMER0INT_F);
4572 
4573 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4574 				    cim_intr_info) +
4575 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4576 				    cim_upintr_info);
4577 	if (fat)
4578 		t4_fatal_err(adapter);
4579 }
4580 
4581 /*
4582  * ULP RX interrupt handler.
4583  */
4584 static void ulprx_intr_handler(struct adapter *adapter)
4585 {
4586 	static const struct intr_info ulprx_intr_info[] = {
4587 		{ 0x1800000, "ULPRX context error", -1, 1 },
4588 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4589 		{ 0 }
4590 	};
4591 
4592 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4593 		t4_fatal_err(adapter);
4594 }
4595 
4596 /*
4597  * ULP TX interrupt handler.
4598  */
4599 static void ulptx_intr_handler(struct adapter *adapter)
4600 {
4601 	static const struct intr_info ulptx_intr_info[] = {
4602 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4603 		  0 },
4604 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4605 		  0 },
4606 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4607 		  0 },
4608 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4609 		  0 },
4610 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4611 		{ 0 }
4612 	};
4613 
4614 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4615 		t4_fatal_err(adapter);
4616 }
4617 
4618 /*
4619  * PM TX interrupt handler.
4620  */
4621 static void pmtx_intr_handler(struct adapter *adapter)
4622 {
4623 	static const struct intr_info pmtx_intr_info[] = {
4624 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4625 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4626 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4627 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4628 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4629 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4630 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4631 		  -1, 1 },
4632 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4633 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4634 		{ 0 }
4635 	};
4636 
4637 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4638 		t4_fatal_err(adapter);
4639 }
4640 
4641 /*
4642  * PM RX interrupt handler.
4643  */
4644 static void pmrx_intr_handler(struct adapter *adapter)
4645 {
4646 	static const struct intr_info pmrx_intr_info[] = {
4647 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4648 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4649 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4650 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4651 		  -1, 1 },
4652 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4653 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4654 		{ 0 }
4655 	};
4656 
4657 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4658 		t4_fatal_err(adapter);
4659 }
4660 
4661 /*
4662  * CPL switch interrupt handler.
4663  */
4664 static void cplsw_intr_handler(struct adapter *adapter)
4665 {
4666 	static const struct intr_info cplsw_intr_info[] = {
4667 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4668 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4669 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4670 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4671 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4672 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4673 		{ 0 }
4674 	};
4675 
4676 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4677 		t4_fatal_err(adapter);
4678 }
4679 
4680 /*
4681  * LE interrupt handler.
4682  */
4683 static void le_intr_handler(struct adapter *adap)
4684 {
4685 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4686 	static const struct intr_info le_intr_info[] = {
4687 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4688 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4689 		{ PARITYERR_F, "LE parity error", -1, 1 },
4690 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4691 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4692 		{ 0 }
4693 	};
4694 
4695 	static struct intr_info t6_le_intr_info[] = {
4696 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4697 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4698 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4699 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4700 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4701 		{ 0 }
4702 	};
4703 
4704 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4705 				  (chip <= CHELSIO_T5) ?
4706 				  le_intr_info : t6_le_intr_info))
4707 		t4_fatal_err(adap);
4708 }
4709 
4710 /*
4711  * MPS interrupt handler.
4712  */
4713 static void mps_intr_handler(struct adapter *adapter)
4714 {
4715 	static const struct intr_info mps_rx_intr_info[] = {
4716 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4717 		{ 0 }
4718 	};
4719 	static const struct intr_info mps_tx_intr_info[] = {
4720 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4721 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4722 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4723 		  -1, 1 },
4724 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4725 		  -1, 1 },
4726 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4727 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4728 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4729 		{ 0 }
4730 	};
4731 	static const struct intr_info t6_mps_tx_intr_info[] = {
4732 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4733 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4734 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4735 		  -1, 1 },
4736 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4737 		  -1, 1 },
4738 		/* MPS Tx Bubble is normal for T6 */
4739 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4740 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4741 		{ 0 }
4742 	};
4743 	static const struct intr_info mps_trc_intr_info[] = {
4744 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4745 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4746 		  -1, 1 },
4747 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4748 		{ 0 }
4749 	};
4750 	static const struct intr_info mps_stat_sram_intr_info[] = {
4751 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4752 		{ 0 }
4753 	};
4754 	static const struct intr_info mps_stat_tx_intr_info[] = {
4755 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4756 		{ 0 }
4757 	};
4758 	static const struct intr_info mps_stat_rx_intr_info[] = {
4759 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4760 		{ 0 }
4761 	};
4762 	static const struct intr_info mps_cls_intr_info[] = {
4763 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4764 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4765 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4766 		{ 0 }
4767 	};
4768 
4769 	int fat;
4770 
4771 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4772 				    mps_rx_intr_info) +
4773 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4774 				    is_t6(adapter->params.chip)
4775 				    ? t6_mps_tx_intr_info
4776 				    : mps_tx_intr_info) +
4777 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4778 				    mps_trc_intr_info) +
4779 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4780 				    mps_stat_sram_intr_info) +
4781 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4782 				    mps_stat_tx_intr_info) +
4783 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4784 				    mps_stat_rx_intr_info) +
4785 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4786 				    mps_cls_intr_info);
4787 
4788 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4789 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4790 	if (fat)
4791 		t4_fatal_err(adapter);
4792 }
4793 
4794 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4795 		      ECC_UE_INT_CAUSE_F)
4796 
4797 /*
4798  * EDC/MC interrupt handler.
4799  */
4800 static void mem_intr_handler(struct adapter *adapter, int idx)
4801 {
4802 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4803 
4804 	unsigned int addr, cnt_addr, v;
4805 
4806 	if (idx <= MEM_EDC1) {
4807 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4808 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4809 	} else if (idx == MEM_MC) {
4810 		if (is_t4(adapter->params.chip)) {
4811 			addr = MC_INT_CAUSE_A;
4812 			cnt_addr = MC_ECC_STATUS_A;
4813 		} else {
4814 			addr = MC_P_INT_CAUSE_A;
4815 			cnt_addr = MC_P_ECC_STATUS_A;
4816 		}
4817 	} else {
4818 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4819 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4820 	}
4821 
4822 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4823 	if (v & PERR_INT_CAUSE_F)
4824 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4825 			  name[idx]);
4826 	if (v & ECC_CE_INT_CAUSE_F) {
4827 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4828 
4829 		t4_edc_err_read(adapter, idx);
4830 
4831 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4832 		if (printk_ratelimit())
4833 			dev_warn(adapter->pdev_dev,
4834 				 "%u %s correctable ECC data error%s\n",
4835 				 cnt, name[idx], cnt > 1 ? "s" : "");
4836 	}
4837 	if (v & ECC_UE_INT_CAUSE_F)
4838 		dev_alert(adapter->pdev_dev,
4839 			  "%s uncorrectable ECC data error\n", name[idx]);
4840 
4841 	t4_write_reg(adapter, addr, v);
4842 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4843 		t4_fatal_err(adapter);
4844 }
4845 
4846 /*
4847  * MA interrupt handler.
4848  */
4849 static void ma_intr_handler(struct adapter *adap)
4850 {
4851 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4852 
4853 	if (status & MEM_PERR_INT_CAUSE_F) {
4854 		dev_alert(adap->pdev_dev,
4855 			  "MA parity error, parity status %#x\n",
4856 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4857 		if (is_t5(adap->params.chip))
4858 			dev_alert(adap->pdev_dev,
4859 				  "MA parity error, parity status %#x\n",
4860 				  t4_read_reg(adap,
4861 					      MA_PARITY_ERROR_STATUS2_A));
4862 	}
4863 	if (status & MEM_WRAP_INT_CAUSE_F) {
4864 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4865 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4866 			  "client %u to address %#x\n",
4867 			  MEM_WRAP_CLIENT_NUM_G(v),
4868 			  MEM_WRAP_ADDRESS_G(v) << 4);
4869 	}
4870 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4871 	t4_fatal_err(adap);
4872 }
4873 
4874 /*
4875  * SMB interrupt handler.
4876  */
4877 static void smb_intr_handler(struct adapter *adap)
4878 {
4879 	static const struct intr_info smb_intr_info[] = {
4880 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4881 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4882 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4883 		{ 0 }
4884 	};
4885 
4886 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4887 		t4_fatal_err(adap);
4888 }
4889 
4890 /*
4891  * NC-SI interrupt handler.
4892  */
4893 static void ncsi_intr_handler(struct adapter *adap)
4894 {
4895 	static const struct intr_info ncsi_intr_info[] = {
4896 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4897 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4898 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4899 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4900 		{ 0 }
4901 	};
4902 
4903 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4904 		t4_fatal_err(adap);
4905 }
4906 
4907 /*
4908  * XGMAC interrupt handler.
4909  */
4910 static void xgmac_intr_handler(struct adapter *adap, int port)
4911 {
4912 	u32 v, int_cause_reg;
4913 
4914 	if (is_t4(adap->params.chip))
4915 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4916 	else
4917 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4918 
4919 	v = t4_read_reg(adap, int_cause_reg);
4920 
4921 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4922 	if (!v)
4923 		return;
4924 
4925 	if (v & TXFIFO_PRTY_ERR_F)
4926 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4927 			  port);
4928 	if (v & RXFIFO_PRTY_ERR_F)
4929 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4930 			  port);
4931 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4932 	t4_fatal_err(adap);
4933 }
4934 
4935 /*
4936  * PL interrupt handler.
4937  */
4938 static void pl_intr_handler(struct adapter *adap)
4939 {
4940 	static const struct intr_info pl_intr_info[] = {
4941 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4942 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4943 		{ 0 }
4944 	};
4945 
4946 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4947 		t4_fatal_err(adap);
4948 }
4949 
4950 #define PF_INTR_MASK (PFSW_F)
4951 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4952 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4953 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4954 
4955 /**
4956  *	t4_slow_intr_handler - control path interrupt handler
4957  *	@adapter: the adapter
4958  *
4959  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4960  *	The designation 'slow' is because it involves register reads, while
4961  *	data interrupts typically don't involve any MMIOs.
4962  */
4963 int t4_slow_intr_handler(struct adapter *adapter)
4964 {
4965 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4966 
4967 	if (!(cause & GLBL_INTR_MASK))
4968 		return 0;
4969 	if (cause & CIM_F)
4970 		cim_intr_handler(adapter);
4971 	if (cause & MPS_F)
4972 		mps_intr_handler(adapter);
4973 	if (cause & NCSI_F)
4974 		ncsi_intr_handler(adapter);
4975 	if (cause & PL_F)
4976 		pl_intr_handler(adapter);
4977 	if (cause & SMB_F)
4978 		smb_intr_handler(adapter);
4979 	if (cause & XGMAC0_F)
4980 		xgmac_intr_handler(adapter, 0);
4981 	if (cause & XGMAC1_F)
4982 		xgmac_intr_handler(adapter, 1);
4983 	if (cause & XGMAC_KR0_F)
4984 		xgmac_intr_handler(adapter, 2);
4985 	if (cause & XGMAC_KR1_F)
4986 		xgmac_intr_handler(adapter, 3);
4987 	if (cause & PCIE_F)
4988 		pcie_intr_handler(adapter);
4989 	if (cause & MC_F)
4990 		mem_intr_handler(adapter, MEM_MC);
4991 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4992 		mem_intr_handler(adapter, MEM_MC1);
4993 	if (cause & EDC0_F)
4994 		mem_intr_handler(adapter, MEM_EDC0);
4995 	if (cause & EDC1_F)
4996 		mem_intr_handler(adapter, MEM_EDC1);
4997 	if (cause & LE_F)
4998 		le_intr_handler(adapter);
4999 	if (cause & TP_F)
5000 		tp_intr_handler(adapter);
5001 	if (cause & MA_F)
5002 		ma_intr_handler(adapter);
5003 	if (cause & PM_TX_F)
5004 		pmtx_intr_handler(adapter);
5005 	if (cause & PM_RX_F)
5006 		pmrx_intr_handler(adapter);
5007 	if (cause & ULP_RX_F)
5008 		ulprx_intr_handler(adapter);
5009 	if (cause & CPL_SWITCH_F)
5010 		cplsw_intr_handler(adapter);
5011 	if (cause & SGE_F)
5012 		sge_intr_handler(adapter);
5013 	if (cause & ULP_TX_F)
5014 		ulptx_intr_handler(adapter);
5015 
5016 	/* Clear the interrupts just processed for which we are the master. */
5017 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
5018 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5019 	return 1;
5020 }
5021 
5022 /**
5023  *	t4_intr_enable - enable interrupts
5024  *	@adapter: the adapter whose interrupts should be enabled
5025  *
5026  *	Enable PF-specific interrupts for the calling function and the top-level
5027  *	interrupt concentrator for global interrupts.  Interrupts are already
5028  *	enabled at each module,	here we just enable the roots of the interrupt
5029  *	hierarchies.
5030  *
5031  *	Note: this function should be called only when the driver manages
5032  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5033  *	function at a time should be doing this.
5034  */
5035 void t4_intr_enable(struct adapter *adapter)
5036 {
5037 	u32 val = 0;
5038 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5039 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5040 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5041 
5042 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5043 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5044 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5045 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5046 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5047 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5048 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5049 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5050 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5051 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5052 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5053 }
5054 
5055 /**
5056  *	t4_intr_disable - disable interrupts
5057  *	@adapter: the adapter whose interrupts should be disabled
5058  *
5059  *	Disable interrupts.  We only disable the top-level interrupt
5060  *	concentrators.  The caller must be a PCI function managing global
5061  *	interrupts.
5062  */
5063 void t4_intr_disable(struct adapter *adapter)
5064 {
5065 	u32 whoami, pf;
5066 
5067 	if (pci_channel_offline(adapter->pdev))
5068 		return;
5069 
5070 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5071 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5072 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5073 
5074 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5075 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5076 }
5077 
5078 unsigned int t4_chip_rss_size(struct adapter *adap)
5079 {
5080 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5081 		return RSS_NENTRIES;
5082 	else
5083 		return T6_RSS_NENTRIES;
5084 }
5085 
5086 /**
5087  *	t4_config_rss_range - configure a portion of the RSS mapping table
5088  *	@adapter: the adapter
5089  *	@mbox: mbox to use for the FW command
5090  *	@viid: virtual interface whose RSS subtable is to be written
5091  *	@start: start entry in the table to write
5092  *	@n: how many table entries to write
5093  *	@rspq: values for the response queue lookup table
5094  *	@nrspq: number of values in @rspq
5095  *
5096  *	Programs the selected part of the VI's RSS mapping table with the
5097  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5098  *	until the full table range is populated.
5099  *
5100  *	The caller must ensure the values in @rspq are in the range allowed for
5101  *	@viid.
5102  */
5103 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5104 			int start, int n, const u16 *rspq, unsigned int nrspq)
5105 {
5106 	int ret;
5107 	const u16 *rsp = rspq;
5108 	const u16 *rsp_end = rspq + nrspq;
5109 	struct fw_rss_ind_tbl_cmd cmd;
5110 
5111 	memset(&cmd, 0, sizeof(cmd));
5112 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5113 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5114 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5115 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5116 
5117 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5118 	while (n > 0) {
5119 		int nq = min(n, 32);
5120 		__be32 *qp = &cmd.iq0_to_iq2;
5121 
5122 		cmd.niqid = cpu_to_be16(nq);
5123 		cmd.startidx = cpu_to_be16(start);
5124 
5125 		start += nq;
5126 		n -= nq;
5127 
5128 		while (nq > 0) {
5129 			unsigned int v;
5130 
5131 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5132 			if (++rsp >= rsp_end)
5133 				rsp = rspq;
5134 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5135 			if (++rsp >= rsp_end)
5136 				rsp = rspq;
5137 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5138 			if (++rsp >= rsp_end)
5139 				rsp = rspq;
5140 
5141 			*qp++ = cpu_to_be32(v);
5142 			nq -= 3;
5143 		}
5144 
5145 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5146 		if (ret)
5147 			return ret;
5148 	}
5149 	return 0;
5150 }
5151 
5152 /**
5153  *	t4_config_glbl_rss - configure the global RSS mode
5154  *	@adapter: the adapter
5155  *	@mbox: mbox to use for the FW command
5156  *	@mode: global RSS mode
5157  *	@flags: mode-specific flags
5158  *
5159  *	Sets the global RSS mode.
5160  */
5161 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5162 		       unsigned int flags)
5163 {
5164 	struct fw_rss_glb_config_cmd c;
5165 
5166 	memset(&c, 0, sizeof(c));
5167 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5168 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5169 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5170 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5171 		c.u.manual.mode_pkd =
5172 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5173 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5174 		c.u.basicvirtual.mode_pkd =
5175 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5176 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5177 	} else
5178 		return -EINVAL;
5179 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5180 }
5181 
5182 /**
5183  *	t4_config_vi_rss - configure per VI RSS settings
5184  *	@adapter: the adapter
5185  *	@mbox: mbox to use for the FW command
5186  *	@viid: the VI id
5187  *	@flags: RSS flags
5188  *	@defq: id of the default RSS queue for the VI.
5189  *
5190  *	Configures VI-specific RSS properties.
5191  */
5192 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5193 		     unsigned int flags, unsigned int defq)
5194 {
5195 	struct fw_rss_vi_config_cmd c;
5196 
5197 	memset(&c, 0, sizeof(c));
5198 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5199 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5200 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5201 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5202 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5203 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5204 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5205 }
5206 
5207 /* Read an RSS table row */
5208 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5209 {
5210 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5211 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5212 				   5, 0, val);
5213 }
5214 
5215 /**
5216  *	t4_read_rss - read the contents of the RSS mapping table
5217  *	@adapter: the adapter
5218  *	@map: holds the contents of the RSS mapping table
5219  *
5220  *	Reads the contents of the RSS hash->queue mapping table.
5221  */
5222 int t4_read_rss(struct adapter *adapter, u16 *map)
5223 {
5224 	int i, ret, nentries;
5225 	u32 val;
5226 
5227 	nentries = t4_chip_rss_size(adapter);
5228 	for (i = 0; i < nentries / 2; ++i) {
5229 		ret = rd_rss_row(adapter, i, &val);
5230 		if (ret)
5231 			return ret;
5232 		*map++ = LKPTBLQUEUE0_G(val);
5233 		*map++ = LKPTBLQUEUE1_G(val);
5234 	}
5235 	return 0;
5236 }
5237 
5238 static unsigned int t4_use_ldst(struct adapter *adap)
5239 {
5240 	return (adap->flags & FW_OK) && !adap->use_bd;
5241 }
5242 
5243 /**
5244  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5245  * @adap: the adapter
5246  * @cmd: TP fw ldst address space type
5247  * @vals: where the indirect register values are stored/written
5248  * @nregs: how many indirect registers to read/write
5249  * @start_idx: index of first indirect register to read/write
5250  * @rw: Read (1) or Write (0)
5251  * @sleep_ok: if true we may sleep while awaiting command completion
5252  *
5253  * Access TP indirect registers through LDST
5254  */
5255 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5256 			    unsigned int nregs, unsigned int start_index,
5257 			    unsigned int rw, bool sleep_ok)
5258 {
5259 	int ret = 0;
5260 	unsigned int i;
5261 	struct fw_ldst_cmd c;
5262 
5263 	for (i = 0; i < nregs; i++) {
5264 		memset(&c, 0, sizeof(c));
5265 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5266 						FW_CMD_REQUEST_F |
5267 						(rw ? FW_CMD_READ_F :
5268 						      FW_CMD_WRITE_F) |
5269 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5270 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5271 
5272 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5273 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5274 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5275 				      sleep_ok);
5276 		if (ret)
5277 			return ret;
5278 
5279 		if (rw)
5280 			vals[i] = be32_to_cpu(c.u.addrval.val);
5281 	}
5282 	return 0;
5283 }
5284 
5285 /**
5286  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5287  * @adap: the adapter
5288  * @reg_addr: Address Register
5289  * @reg_data: Data register
5290  * @buff: where the indirect register values are stored/written
5291  * @nregs: how many indirect registers to read/write
5292  * @start_index: index of first indirect register to read/write
5293  * @rw: READ(1) or WRITE(0)
5294  * @sleep_ok: if true we may sleep while awaiting command completion
5295  *
5296  * Read/Write TP indirect registers through LDST if possible.
5297  * Else, use backdoor access
5298  **/
5299 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5300 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5301 			      bool sleep_ok)
5302 {
5303 	int rc = -EINVAL;
5304 	int cmd;
5305 
5306 	switch (reg_addr) {
5307 	case TP_PIO_ADDR_A:
5308 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5309 		break;
5310 	case TP_TM_PIO_ADDR_A:
5311 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5312 		break;
5313 	case TP_MIB_INDEX_A:
5314 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5315 		break;
5316 	default:
5317 		goto indirect_access;
5318 	}
5319 
5320 	if (t4_use_ldst(adap))
5321 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5322 				      sleep_ok);
5323 
5324 indirect_access:
5325 
5326 	if (rc) {
5327 		if (rw)
5328 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5329 					 start_index);
5330 		else
5331 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5332 					  start_index);
5333 	}
5334 }
5335 
5336 /**
5337  * t4_tp_pio_read - Read TP PIO registers
5338  * @adap: the adapter
5339  * @buff: where the indirect register values are written
5340  * @nregs: how many indirect registers to read
5341  * @start_index: index of first indirect register to read
5342  * @sleep_ok: if true we may sleep while awaiting command completion
5343  *
5344  * Read TP PIO Registers
5345  **/
5346 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5347 		    u32 start_index, bool sleep_ok)
5348 {
5349 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5350 			  start_index, 1, sleep_ok);
5351 }
5352 
5353 /**
5354  * t4_tp_pio_write - Write TP PIO registers
5355  * @adap: the adapter
5356  * @buff: where the indirect register values are stored
5357  * @nregs: how many indirect registers to write
5358  * @start_index: index of first indirect register to write
5359  * @sleep_ok: if true we may sleep while awaiting command completion
5360  *
5361  * Write TP PIO Registers
5362  **/
5363 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5364 			    u32 start_index, bool sleep_ok)
5365 {
5366 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5367 			  start_index, 0, sleep_ok);
5368 }
5369 
5370 /**
5371  * t4_tp_tm_pio_read - Read TP TM PIO registers
5372  * @adap: the adapter
5373  * @buff: where the indirect register values are written
5374  * @nregs: how many indirect registers to read
5375  * @start_index: index of first indirect register to read
5376  * @sleep_ok: if true we may sleep while awaiting command completion
5377  *
5378  * Read TP TM PIO Registers
5379  **/
5380 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5381 		       u32 start_index, bool sleep_ok)
5382 {
5383 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5384 			  nregs, start_index, 1, sleep_ok);
5385 }
5386 
5387 /**
5388  * t4_tp_mib_read - Read TP MIB registers
5389  * @adap: the adapter
5390  * @buff: where the indirect register values are written
5391  * @nregs: how many indirect registers to read
5392  * @start_index: index of first indirect register to read
5393  * @sleep_ok: if true we may sleep while awaiting command completion
5394  *
5395  * Read TP MIB Registers
5396  **/
5397 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5398 		    bool sleep_ok)
5399 {
5400 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5401 			  start_index, 1, sleep_ok);
5402 }
5403 
5404 /**
5405  *	t4_read_rss_key - read the global RSS key
5406  *	@adap: the adapter
5407  *	@key: 10-entry array holding the 320-bit RSS key
5408  *      @sleep_ok: if true we may sleep while awaiting command completion
5409  *
5410  *	Reads the global 320-bit RSS key.
5411  */
5412 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5413 {
5414 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5415 }
5416 
5417 /**
5418  *	t4_write_rss_key - program one of the RSS keys
5419  *	@adap: the adapter
5420  *	@key: 10-entry array holding the 320-bit RSS key
5421  *	@idx: which RSS key to write
5422  *      @sleep_ok: if true we may sleep while awaiting command completion
5423  *
5424  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5425  *	0..15 the corresponding entry in the RSS key table is written,
5426  *	otherwise the global RSS key is written.
5427  */
5428 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5429 		      bool sleep_ok)
5430 {
5431 	u8 rss_key_addr_cnt = 16;
5432 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5433 
5434 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5435 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5436 	 * as index[5:4](upper 2) into key table
5437 	 */
5438 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5439 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5440 		rss_key_addr_cnt = 32;
5441 
5442 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5443 
5444 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5445 		if (rss_key_addr_cnt > 16)
5446 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5447 				     KEYWRADDRX_V(idx >> 4) |
5448 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5449 		else
5450 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5451 				     KEYWRADDR_V(idx) | KEYWREN_F);
5452 	}
5453 }
5454 
5455 /**
5456  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5457  *	@adapter: the adapter
5458  *	@index: the entry in the PF RSS table to read
5459  *	@valp: where to store the returned value
5460  *      @sleep_ok: if true we may sleep while awaiting command completion
5461  *
5462  *	Reads the PF RSS Configuration Table at the specified index and returns
5463  *	the value found there.
5464  */
5465 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5466 			   u32 *valp, bool sleep_ok)
5467 {
5468 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5469 }
5470 
5471 /**
5472  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5473  *	@adapter: the adapter
5474  *	@index: the entry in the VF RSS table to read
5475  *	@vfl: where to store the returned VFL
5476  *	@vfh: where to store the returned VFH
5477  *      @sleep_ok: if true we may sleep while awaiting command completion
5478  *
5479  *	Reads the VF RSS Configuration Table at the specified index and returns
5480  *	the (VFL, VFH) values found there.
5481  */
5482 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5483 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5484 {
5485 	u32 vrt, mask, data;
5486 
5487 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5488 		mask = VFWRADDR_V(VFWRADDR_M);
5489 		data = VFWRADDR_V(index);
5490 	} else {
5491 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5492 		 data = T6_VFWRADDR_V(index);
5493 	}
5494 
5495 	/* Request that the index'th VF Table values be read into VFL/VFH.
5496 	 */
5497 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5498 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5499 	vrt |= data | VFRDEN_F;
5500 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5501 
5502 	/* Grab the VFL/VFH values ...
5503 	 */
5504 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5505 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5506 }
5507 
5508 /**
5509  *	t4_read_rss_pf_map - read PF RSS Map
5510  *	@adapter: the adapter
5511  *      @sleep_ok: if true we may sleep while awaiting command completion
5512  *
5513  *	Reads the PF RSS Map register and returns its value.
5514  */
5515 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5516 {
5517 	u32 pfmap;
5518 
5519 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5520 	return pfmap;
5521 }
5522 
5523 /**
5524  *	t4_read_rss_pf_mask - read PF RSS Mask
5525  *	@adapter: the adapter
5526  *      @sleep_ok: if true we may sleep while awaiting command completion
5527  *
5528  *	Reads the PF RSS Mask register and returns its value.
5529  */
5530 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5531 {
5532 	u32 pfmask;
5533 
5534 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5535 	return pfmask;
5536 }
5537 
5538 /**
5539  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5540  *	@adap: the adapter
5541  *	@v4: holds the TCP/IP counter values
5542  *	@v6: holds the TCP/IPv6 counter values
5543  *      @sleep_ok: if true we may sleep while awaiting command completion
5544  *
5545  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5546  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5547  */
5548 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5549 			 struct tp_tcp_stats *v6, bool sleep_ok)
5550 {
5551 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5552 
5553 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5554 #define STAT(x)     val[STAT_IDX(x)]
5555 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5556 
5557 	if (v4) {
5558 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5559 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5560 		v4->tcp_out_rsts = STAT(OUT_RST);
5561 		v4->tcp_in_segs  = STAT64(IN_SEG);
5562 		v4->tcp_out_segs = STAT64(OUT_SEG);
5563 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5564 	}
5565 	if (v6) {
5566 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5567 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5568 		v6->tcp_out_rsts = STAT(OUT_RST);
5569 		v6->tcp_in_segs  = STAT64(IN_SEG);
5570 		v6->tcp_out_segs = STAT64(OUT_SEG);
5571 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5572 	}
5573 #undef STAT64
5574 #undef STAT
5575 #undef STAT_IDX
5576 }
5577 
5578 /**
5579  *	t4_tp_get_err_stats - read TP's error MIB counters
5580  *	@adap: the adapter
5581  *	@st: holds the counter values
5582  *      @sleep_ok: if true we may sleep while awaiting command completion
5583  *
5584  *	Returns the values of TP's error counters.
5585  */
5586 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5587 			 bool sleep_ok)
5588 {
5589 	int nchan = adap->params.arch.nchan;
5590 
5591 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5592 		       sleep_ok);
5593 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5594 		       sleep_ok);
5595 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5596 		       sleep_ok);
5597 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5598 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5599 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5600 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5601 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5602 		       sleep_ok);
5603 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5604 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5605 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5606 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5607 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5608 		       sleep_ok);
5609 }
5610 
5611 /**
5612  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5613  *	@adap: the adapter
5614  *	@st: holds the counter values
5615  *      @sleep_ok: if true we may sleep while awaiting command completion
5616  *
5617  *	Returns the values of TP's CPL counters.
5618  */
5619 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5620 			 bool sleep_ok)
5621 {
5622 	int nchan = adap->params.arch.nchan;
5623 
5624 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5625 
5626 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5627 }
5628 
5629 /**
5630  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5631  *	@adap: the adapter
5632  *	@st: holds the counter values
5633  *      @sleep_ok: if true we may sleep while awaiting command completion
5634  *
5635  *	Returns the values of TP's RDMA counters.
5636  */
5637 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5638 			  bool sleep_ok)
5639 {
5640 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5641 		       sleep_ok);
5642 }
5643 
5644 /**
5645  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5646  *	@adap: the adapter
5647  *	@idx: the port index
5648  *	@st: holds the counter values
5649  *      @sleep_ok: if true we may sleep while awaiting command completion
5650  *
5651  *	Returns the values of TP's FCoE counters for the selected port.
5652  */
5653 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5654 		       struct tp_fcoe_stats *st, bool sleep_ok)
5655 {
5656 	u32 val[2];
5657 
5658 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5659 		       sleep_ok);
5660 
5661 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5662 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5663 
5664 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5665 		       sleep_ok);
5666 
5667 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5668 }
5669 
5670 /**
5671  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5672  *	@adap: the adapter
5673  *	@st: holds the counter values
5674  *      @sleep_ok: if true we may sleep while awaiting command completion
5675  *
5676  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5677  */
5678 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5679 		      bool sleep_ok)
5680 {
5681 	u32 val[4];
5682 
5683 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5684 	st->frames = val[0];
5685 	st->drops = val[1];
5686 	st->octets = ((u64)val[2] << 32) | val[3];
5687 }
5688 
5689 /**
5690  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5691  *	@adap: the adapter
5692  *	@mtus: where to store the MTU values
5693  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5694  *
5695  *	Reads the HW path MTU table.
5696  */
5697 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5698 {
5699 	u32 v;
5700 	int i;
5701 
5702 	for (i = 0; i < NMTUS; ++i) {
5703 		t4_write_reg(adap, TP_MTU_TABLE_A,
5704 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5705 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5706 		mtus[i] = MTUVALUE_G(v);
5707 		if (mtu_log)
5708 			mtu_log[i] = MTUWIDTH_G(v);
5709 	}
5710 }
5711 
5712 /**
5713  *	t4_read_cong_tbl - reads the congestion control table
5714  *	@adap: the adapter
5715  *	@incr: where to store the alpha values
5716  *
5717  *	Reads the additive increments programmed into the HW congestion
5718  *	control table.
5719  */
5720 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5721 {
5722 	unsigned int mtu, w;
5723 
5724 	for (mtu = 0; mtu < NMTUS; ++mtu)
5725 		for (w = 0; w < NCCTRL_WIN; ++w) {
5726 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5727 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5728 			incr[mtu][w] = (u16)t4_read_reg(adap,
5729 						TP_CCTRL_TABLE_A) & 0x1fff;
5730 		}
5731 }
5732 
5733 /**
5734  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5735  *	@adap: the adapter
5736  *	@addr: the indirect TP register address
5737  *	@mask: specifies the field within the register to modify
5738  *	@val: new value for the field
5739  *
5740  *	Sets a field of an indirect TP register to the given value.
5741  */
5742 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5743 			    unsigned int mask, unsigned int val)
5744 {
5745 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5746 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5747 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5748 }
5749 
5750 /**
5751  *	init_cong_ctrl - initialize congestion control parameters
5752  *	@a: the alpha values for congestion control
5753  *	@b: the beta values for congestion control
5754  *
5755  *	Initialize the congestion control parameters.
5756  */
5757 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5758 {
5759 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5760 	a[9] = 2;
5761 	a[10] = 3;
5762 	a[11] = 4;
5763 	a[12] = 5;
5764 	a[13] = 6;
5765 	a[14] = 7;
5766 	a[15] = 8;
5767 	a[16] = 9;
5768 	a[17] = 10;
5769 	a[18] = 14;
5770 	a[19] = 17;
5771 	a[20] = 21;
5772 	a[21] = 25;
5773 	a[22] = 30;
5774 	a[23] = 35;
5775 	a[24] = 45;
5776 	a[25] = 60;
5777 	a[26] = 80;
5778 	a[27] = 100;
5779 	a[28] = 200;
5780 	a[29] = 300;
5781 	a[30] = 400;
5782 	a[31] = 500;
5783 
5784 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5785 	b[9] = b[10] = 1;
5786 	b[11] = b[12] = 2;
5787 	b[13] = b[14] = b[15] = b[16] = 3;
5788 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5789 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5790 	b[28] = b[29] = 6;
5791 	b[30] = b[31] = 7;
5792 }
5793 
5794 /* The minimum additive increment value for the congestion control table */
5795 #define CC_MIN_INCR 2U
5796 
5797 /**
5798  *	t4_load_mtus - write the MTU and congestion control HW tables
5799  *	@adap: the adapter
5800  *	@mtus: the values for the MTU table
5801  *	@alpha: the values for the congestion control alpha parameter
5802  *	@beta: the values for the congestion control beta parameter
5803  *
5804  *	Write the HW MTU table with the supplied MTUs and the high-speed
5805  *	congestion control table with the supplied alpha, beta, and MTUs.
5806  *	We write the two tables together because the additive increments
5807  *	depend on the MTUs.
5808  */
5809 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5810 		  const unsigned short *alpha, const unsigned short *beta)
5811 {
5812 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5813 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5814 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5815 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5816 	};
5817 
5818 	unsigned int i, w;
5819 
5820 	for (i = 0; i < NMTUS; ++i) {
5821 		unsigned int mtu = mtus[i];
5822 		unsigned int log2 = fls(mtu);
5823 
5824 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5825 			log2--;
5826 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5827 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5828 
5829 		for (w = 0; w < NCCTRL_WIN; ++w) {
5830 			unsigned int inc;
5831 
5832 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5833 				  CC_MIN_INCR);
5834 
5835 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5836 				     (w << 16) | (beta[w] << 13) | inc);
5837 		}
5838 	}
5839 }
5840 
5841 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5842  * clocks.  The formula is
5843  *
5844  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5845  *
5846  * which is equivalent to
5847  *
5848  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5849  */
5850 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5851 {
5852 	u64 v = bytes256 * adap->params.vpd.cclk;
5853 
5854 	return v * 62 + v / 2;
5855 }
5856 
5857 /**
5858  *	t4_get_chan_txrate - get the current per channel Tx rates
5859  *	@adap: the adapter
5860  *	@nic_rate: rates for NIC traffic
5861  *	@ofld_rate: rates for offloaded traffic
5862  *
5863  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5864  *	for each channel.
5865  */
5866 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5867 {
5868 	u32 v;
5869 
5870 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5871 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5872 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5873 	if (adap->params.arch.nchan == NCHAN) {
5874 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5875 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5876 	}
5877 
5878 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5879 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5880 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5881 	if (adap->params.arch.nchan == NCHAN) {
5882 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5883 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5884 	}
5885 }
5886 
5887 /**
5888  *	t4_set_trace_filter - configure one of the tracing filters
5889  *	@adap: the adapter
5890  *	@tp: the desired trace filter parameters
5891  *	@idx: which filter to configure
5892  *	@enable: whether to enable or disable the filter
5893  *
5894  *	Configures one of the tracing filters available in HW.  If @enable is
5895  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5896  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5897  */
5898 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5899 			int idx, int enable)
5900 {
5901 	int i, ofst = idx * 4;
5902 	u32 data_reg, mask_reg, cfg;
5903 
5904 	if (!enable) {
5905 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5906 		return 0;
5907 	}
5908 
5909 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5910 	if (cfg & TRCMULTIFILTER_F) {
5911 		/* If multiple tracers are enabled, then maximum
5912 		 * capture size is 2.5KB (FIFO size of a single channel)
5913 		 * minus 2 flits for CPL_TRACE_PKT header.
5914 		 */
5915 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5916 			return -EINVAL;
5917 	} else {
5918 		/* If multiple tracers are disabled, to avoid deadlocks
5919 		 * maximum packet capture size of 9600 bytes is recommended.
5920 		 * Also in this mode, only trace0 can be enabled and running.
5921 		 */
5922 		if (tp->snap_len > 9600 || idx)
5923 			return -EINVAL;
5924 	}
5925 
5926 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5927 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5928 	    tp->min_len > TFMINPKTSIZE_M)
5929 		return -EINVAL;
5930 
5931 	/* stop the tracer we'll be changing */
5932 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5933 
5934 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5935 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5936 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5937 
5938 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5939 		t4_write_reg(adap, data_reg, tp->data[i]);
5940 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5941 	}
5942 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5943 		     TFCAPTUREMAX_V(tp->snap_len) |
5944 		     TFMINPKTSIZE_V(tp->min_len));
5945 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5946 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5947 		     (is_t4(adap->params.chip) ?
5948 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5949 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5950 		     T5_TFINVERTMATCH_V(tp->invert)));
5951 
5952 	return 0;
5953 }
5954 
5955 /**
5956  *	t4_get_trace_filter - query one of the tracing filters
5957  *	@adap: the adapter
5958  *	@tp: the current trace filter parameters
5959  *	@idx: which trace filter to query
5960  *	@enabled: non-zero if the filter is enabled
5961  *
5962  *	Returns the current settings of one of the HW tracing filters.
5963  */
5964 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5965 			 int *enabled)
5966 {
5967 	u32 ctla, ctlb;
5968 	int i, ofst = idx * 4;
5969 	u32 data_reg, mask_reg;
5970 
5971 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5972 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5973 
5974 	if (is_t4(adap->params.chip)) {
5975 		*enabled = !!(ctla & TFEN_F);
5976 		tp->port =  TFPORT_G(ctla);
5977 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5978 	} else {
5979 		*enabled = !!(ctla & T5_TFEN_F);
5980 		tp->port = T5_TFPORT_G(ctla);
5981 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5982 	}
5983 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5984 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5985 	tp->skip_ofst = TFOFFSET_G(ctla);
5986 	tp->skip_len = TFLENGTH_G(ctla);
5987 
5988 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5989 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5990 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5991 
5992 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5993 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5994 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5995 	}
5996 }
5997 
5998 /**
5999  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6000  *	@adap: the adapter
6001  *	@cnt: where to store the count statistics
6002  *	@cycles: where to store the cycle statistics
6003  *
6004  *	Returns performance statistics from PMTX.
6005  */
6006 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6007 {
6008 	int i;
6009 	u32 data[2];
6010 
6011 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6012 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6013 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6014 		if (is_t4(adap->params.chip)) {
6015 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6016 		} else {
6017 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6018 					 PM_TX_DBG_DATA_A, data, 2,
6019 					 PM_TX_DBG_STAT_MSB_A);
6020 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6021 		}
6022 	}
6023 }
6024 
6025 /**
6026  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6027  *	@adap: the adapter
6028  *	@cnt: where to store the count statistics
6029  *	@cycles: where to store the cycle statistics
6030  *
6031  *	Returns performance statistics from PMRX.
6032  */
6033 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6034 {
6035 	int i;
6036 	u32 data[2];
6037 
6038 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6039 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6040 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6041 		if (is_t4(adap->params.chip)) {
6042 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6043 		} else {
6044 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6045 					 PM_RX_DBG_DATA_A, data, 2,
6046 					 PM_RX_DBG_STAT_MSB_A);
6047 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6048 		}
6049 	}
6050 }
6051 
6052 /**
6053  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6054  *	@adap: the adapter
6055  *	@pidx: the port index
6056  *
6057  *	Computes and returns a bitmap indicating which MPS buffer groups are
6058  *	associated with the given Port.  Bit i is set if buffer group i is
6059  *	used by the Port.
6060  */
6061 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6062 					      int pidx)
6063 {
6064 	unsigned int chip_version, nports;
6065 
6066 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6067 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6068 
6069 	switch (chip_version) {
6070 	case CHELSIO_T4:
6071 	case CHELSIO_T5:
6072 		switch (nports) {
6073 		case 1: return 0xf;
6074 		case 2: return 3 << (2 * pidx);
6075 		case 4: return 1 << pidx;
6076 		}
6077 		break;
6078 
6079 	case CHELSIO_T6:
6080 		switch (nports) {
6081 		case 2: return 1 << (2 * pidx);
6082 		}
6083 		break;
6084 	}
6085 
6086 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6087 		chip_version, nports);
6088 
6089 	return 0;
6090 }
6091 
6092 /**
6093  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6094  *	@adapter: the adapter
6095  *	@pidx: the port index
6096  *
6097  *	Returns a bitmap indicating which MPS buffer groups are associated
6098  *	with the given Port.  Bit i is set if buffer group i is used by the
6099  *	Port.
6100  */
6101 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6102 {
6103 	u8 *mps_bg_map;
6104 	unsigned int nports;
6105 
6106 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6107 	if (pidx >= nports) {
6108 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6109 			pidx, nports);
6110 		return 0;
6111 	}
6112 
6113 	/* If we've already retrieved/computed this, just return the result.
6114 	 */
6115 	mps_bg_map = adapter->params.mps_bg_map;
6116 	if (mps_bg_map[pidx])
6117 		return mps_bg_map[pidx];
6118 
6119 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6120 	 * If we're talking to such Firmware, let it tell us.  If the new
6121 	 * API isn't supported, revert back to old hardcoded way.  The value
6122 	 * obtained from Firmware is encoded in below format:
6123 	 *
6124 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6125 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6126 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6127 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6128 	 */
6129 	if (adapter->flags & FW_OK) {
6130 		u32 param, val;
6131 		int ret;
6132 
6133 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6134 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6135 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6136 					 0, 1, &param, &val);
6137 		if (!ret) {
6138 			int p;
6139 
6140 			/* Store the BG Map for all of the Ports in order to
6141 			 * avoid more calls to the Firmware in the future.
6142 			 */
6143 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6144 				mps_bg_map[p] = val & 0xff;
6145 
6146 			return mps_bg_map[pidx];
6147 		}
6148 	}
6149 
6150 	/* Either we're not talking to the Firmware or we're dealing with
6151 	 * older Firmware which doesn't support the new API to get the MPS
6152 	 * Buffer Group Map.  Fall back to computing it ourselves.
6153 	 */
6154 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6155 	return mps_bg_map[pidx];
6156 }
6157 
6158 /**
6159  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6160  *	@adapter: the adapter
6161  *	@pidx: the port index
6162  *
6163  *	Returns a bitmap indicating which TP Ingress Channels are associated
6164  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6165  *	the Port.
6166  */
6167 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6168 {
6169 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6170 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6171 
6172 	if (pidx >= nports) {
6173 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6174 			 pidx, nports);
6175 		return 0;
6176 	}
6177 
6178 	switch (chip_version) {
6179 	case CHELSIO_T4:
6180 	case CHELSIO_T5:
6181 		/* Note that this happens to be the same values as the MPS
6182 		 * Buffer Group Map for these Chips.  But we replicate the code
6183 		 * here because they're really separate concepts.
6184 		 */
6185 		switch (nports) {
6186 		case 1: return 0xf;
6187 		case 2: return 3 << (2 * pidx);
6188 		case 4: return 1 << pidx;
6189 		}
6190 		break;
6191 
6192 	case CHELSIO_T6:
6193 		switch (nports) {
6194 		case 1:
6195 		case 2: return 1 << pidx;
6196 		}
6197 		break;
6198 	}
6199 
6200 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6201 		chip_version, nports);
6202 	return 0;
6203 }
6204 
6205 /**
6206  *      t4_get_port_type_description - return Port Type string description
6207  *      @port_type: firmware Port Type enumeration
6208  */
6209 const char *t4_get_port_type_description(enum fw_port_type port_type)
6210 {
6211 	static const char *const port_type_description[] = {
6212 		"Fiber_XFI",
6213 		"Fiber_XAUI",
6214 		"BT_SGMII",
6215 		"BT_XFI",
6216 		"BT_XAUI",
6217 		"KX4",
6218 		"CX4",
6219 		"KX",
6220 		"KR",
6221 		"SFP",
6222 		"BP_AP",
6223 		"BP4_AP",
6224 		"QSFP_10G",
6225 		"QSA",
6226 		"QSFP",
6227 		"BP40_BA",
6228 		"KR4_100G",
6229 		"CR4_QSFP",
6230 		"CR_QSFP",
6231 		"CR2_QSFP",
6232 		"SFP28",
6233 		"KR_SFP28",
6234 		"KR_XLAUI"
6235 	};
6236 
6237 	if (port_type < ARRAY_SIZE(port_type_description))
6238 		return port_type_description[port_type];
6239 	return "UNKNOWN";
6240 }
6241 
6242 /**
6243  *      t4_get_port_stats_offset - collect port stats relative to a previous
6244  *                                 snapshot
6245  *      @adap: The adapter
6246  *      @idx: The port
6247  *      @stats: Current stats to fill
6248  *      @offset: Previous stats snapshot
6249  */
6250 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6251 			      struct port_stats *stats,
6252 			      struct port_stats *offset)
6253 {
6254 	u64 *s, *o;
6255 	int i;
6256 
6257 	t4_get_port_stats(adap, idx, stats);
6258 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6259 			i < (sizeof(struct port_stats) / sizeof(u64));
6260 			i++, s++, o++)
6261 		*s -= *o;
6262 }
6263 
6264 /**
6265  *	t4_get_port_stats - collect port statistics
6266  *	@adap: the adapter
6267  *	@idx: the port index
6268  *	@p: the stats structure to fill
6269  *
6270  *	Collect statistics related to the given port from HW.
6271  */
6272 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6273 {
6274 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6275 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6276 
6277 #define GET_STAT(name) \
6278 	t4_read_reg64(adap, \
6279 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6280 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6281 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6282 
6283 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6284 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6285 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6286 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6287 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6288 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6289 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6290 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6291 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6292 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6293 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6294 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6295 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6296 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6297 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6298 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6299 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6300 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6301 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6302 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6303 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6304 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6305 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6306 
6307 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6308 		if (stat_ctl & COUNTPAUSESTATTX_F)
6309 			p->tx_frames_64 -= p->tx_pause;
6310 		if (stat_ctl & COUNTPAUSEMCTX_F)
6311 			p->tx_mcast_frames -= p->tx_pause;
6312 	}
6313 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6314 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6315 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6316 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6317 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6318 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6319 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6320 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6321 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6322 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6323 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6324 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6325 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6326 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6327 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6328 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6329 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6330 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6331 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6332 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6333 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6334 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6335 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6336 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6337 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6338 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6339 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6340 
6341 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6342 		if (stat_ctl & COUNTPAUSESTATRX_F)
6343 			p->rx_frames_64 -= p->rx_pause;
6344 		if (stat_ctl & COUNTPAUSEMCRX_F)
6345 			p->rx_mcast_frames -= p->rx_pause;
6346 	}
6347 
6348 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6349 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6350 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6351 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6352 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6353 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6354 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6355 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6356 
6357 #undef GET_STAT
6358 #undef GET_STAT_COM
6359 }
6360 
6361 /**
6362  *	t4_get_lb_stats - collect loopback port statistics
6363  *	@adap: the adapter
6364  *	@idx: the loopback port index
6365  *	@p: the stats structure to fill
6366  *
6367  *	Return HW statistics for the given loopback port.
6368  */
6369 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6370 {
6371 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6372 
6373 #define GET_STAT(name) \
6374 	t4_read_reg64(adap, \
6375 	(is_t4(adap->params.chip) ? \
6376 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6377 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6378 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6379 
6380 	p->octets           = GET_STAT(BYTES);
6381 	p->frames           = GET_STAT(FRAMES);
6382 	p->bcast_frames     = GET_STAT(BCAST);
6383 	p->mcast_frames     = GET_STAT(MCAST);
6384 	p->ucast_frames     = GET_STAT(UCAST);
6385 	p->error_frames     = GET_STAT(ERROR);
6386 
6387 	p->frames_64        = GET_STAT(64B);
6388 	p->frames_65_127    = GET_STAT(65B_127B);
6389 	p->frames_128_255   = GET_STAT(128B_255B);
6390 	p->frames_256_511   = GET_STAT(256B_511B);
6391 	p->frames_512_1023  = GET_STAT(512B_1023B);
6392 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6393 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6394 	p->drop             = GET_STAT(DROP_FRAMES);
6395 
6396 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6397 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6398 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6399 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6400 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6401 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6402 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6403 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6404 
6405 #undef GET_STAT
6406 #undef GET_STAT_COM
6407 }
6408 
6409 /*     t4_mk_filtdelwr - create a delete filter WR
6410  *     @ftid: the filter ID
6411  *     @wr: the filter work request to populate
6412  *     @qid: ingress queue to receive the delete notification
6413  *
6414  *     Creates a filter work request to delete the supplied filter.  If @qid is
6415  *     negative the delete notification is suppressed.
6416  */
6417 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6418 {
6419 	memset(wr, 0, sizeof(*wr));
6420 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6421 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6422 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6423 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6424 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6425 	if (qid >= 0)
6426 		wr->rx_chan_rx_rpl_iq =
6427 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6428 }
6429 
6430 #define INIT_CMD(var, cmd, rd_wr) do { \
6431 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6432 					FW_CMD_REQUEST_F | \
6433 					FW_CMD_##rd_wr##_F); \
6434 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6435 } while (0)
6436 
6437 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6438 			  u32 addr, u32 val)
6439 {
6440 	u32 ldst_addrspace;
6441 	struct fw_ldst_cmd c;
6442 
6443 	memset(&c, 0, sizeof(c));
6444 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6445 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6446 					FW_CMD_REQUEST_F |
6447 					FW_CMD_WRITE_F |
6448 					ldst_addrspace);
6449 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6450 	c.u.addrval.addr = cpu_to_be32(addr);
6451 	c.u.addrval.val = cpu_to_be32(val);
6452 
6453 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6454 }
6455 
6456 /**
6457  *	t4_mdio_rd - read a PHY register through MDIO
6458  *	@adap: the adapter
6459  *	@mbox: mailbox to use for the FW command
6460  *	@phy_addr: the PHY address
6461  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6462  *	@reg: the register to read
6463  *	@valp: where to store the value
6464  *
6465  *	Issues a FW command through the given mailbox to read a PHY register.
6466  */
6467 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6468 	       unsigned int mmd, unsigned int reg, u16 *valp)
6469 {
6470 	int ret;
6471 	u32 ldst_addrspace;
6472 	struct fw_ldst_cmd c;
6473 
6474 	memset(&c, 0, sizeof(c));
6475 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6476 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6477 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6478 					ldst_addrspace);
6479 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6480 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6481 					 FW_LDST_CMD_MMD_V(mmd));
6482 	c.u.mdio.raddr = cpu_to_be16(reg);
6483 
6484 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6485 	if (ret == 0)
6486 		*valp = be16_to_cpu(c.u.mdio.rval);
6487 	return ret;
6488 }
6489 
6490 /**
6491  *	t4_mdio_wr - write a PHY register through MDIO
6492  *	@adap: the adapter
6493  *	@mbox: mailbox to use for the FW command
6494  *	@phy_addr: the PHY address
6495  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6496  *	@reg: the register to write
6497  *	@valp: value to write
6498  *
6499  *	Issues a FW command through the given mailbox to write a PHY register.
6500  */
6501 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6502 	       unsigned int mmd, unsigned int reg, u16 val)
6503 {
6504 	u32 ldst_addrspace;
6505 	struct fw_ldst_cmd c;
6506 
6507 	memset(&c, 0, sizeof(c));
6508 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6509 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6510 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6511 					ldst_addrspace);
6512 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6513 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6514 					 FW_LDST_CMD_MMD_V(mmd));
6515 	c.u.mdio.raddr = cpu_to_be16(reg);
6516 	c.u.mdio.rval = cpu_to_be16(val);
6517 
6518 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6519 }
6520 
6521 /**
6522  *	t4_sge_decode_idma_state - decode the idma state
6523  *	@adap: the adapter
6524  *	@state: the state idma is stuck in
6525  */
6526 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6527 {
6528 	static const char * const t4_decode[] = {
6529 		"IDMA_IDLE",
6530 		"IDMA_PUSH_MORE_CPL_FIFO",
6531 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6532 		"Not used",
6533 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6534 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6535 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6536 		"IDMA_SEND_FIFO_TO_IMSG",
6537 		"IDMA_FL_REQ_DATA_FL_PREP",
6538 		"IDMA_FL_REQ_DATA_FL",
6539 		"IDMA_FL_DROP",
6540 		"IDMA_FL_H_REQ_HEADER_FL",
6541 		"IDMA_FL_H_SEND_PCIEHDR",
6542 		"IDMA_FL_H_PUSH_CPL_FIFO",
6543 		"IDMA_FL_H_SEND_CPL",
6544 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6545 		"IDMA_FL_H_SEND_IP_HDR",
6546 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6547 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6548 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6549 		"IDMA_FL_D_SEND_PCIEHDR",
6550 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6551 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6552 		"IDMA_FL_SEND_PCIEHDR",
6553 		"IDMA_FL_PUSH_CPL_FIFO",
6554 		"IDMA_FL_SEND_CPL",
6555 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6556 		"IDMA_FL_SEND_PAYLOAD",
6557 		"IDMA_FL_REQ_NEXT_DATA_FL",
6558 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6559 		"IDMA_FL_SEND_PADDING",
6560 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6561 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6562 		"IDMA_FL_REQ_DATAFL_DONE",
6563 		"IDMA_FL_REQ_HEADERFL_DONE",
6564 	};
6565 	static const char * const t5_decode[] = {
6566 		"IDMA_IDLE",
6567 		"IDMA_ALMOST_IDLE",
6568 		"IDMA_PUSH_MORE_CPL_FIFO",
6569 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6570 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6571 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6572 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6573 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6574 		"IDMA_SEND_FIFO_TO_IMSG",
6575 		"IDMA_FL_REQ_DATA_FL",
6576 		"IDMA_FL_DROP",
6577 		"IDMA_FL_DROP_SEND_INC",
6578 		"IDMA_FL_H_REQ_HEADER_FL",
6579 		"IDMA_FL_H_SEND_PCIEHDR",
6580 		"IDMA_FL_H_PUSH_CPL_FIFO",
6581 		"IDMA_FL_H_SEND_CPL",
6582 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6583 		"IDMA_FL_H_SEND_IP_HDR",
6584 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6585 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6586 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6587 		"IDMA_FL_D_SEND_PCIEHDR",
6588 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6589 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6590 		"IDMA_FL_SEND_PCIEHDR",
6591 		"IDMA_FL_PUSH_CPL_FIFO",
6592 		"IDMA_FL_SEND_CPL",
6593 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6594 		"IDMA_FL_SEND_PAYLOAD",
6595 		"IDMA_FL_REQ_NEXT_DATA_FL",
6596 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6597 		"IDMA_FL_SEND_PADDING",
6598 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6599 	};
6600 	static const char * const t6_decode[] = {
6601 		"IDMA_IDLE",
6602 		"IDMA_PUSH_MORE_CPL_FIFO",
6603 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6604 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6605 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6606 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6607 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6608 		"IDMA_FL_REQ_DATA_FL",
6609 		"IDMA_FL_DROP",
6610 		"IDMA_FL_DROP_SEND_INC",
6611 		"IDMA_FL_H_REQ_HEADER_FL",
6612 		"IDMA_FL_H_SEND_PCIEHDR",
6613 		"IDMA_FL_H_PUSH_CPL_FIFO",
6614 		"IDMA_FL_H_SEND_CPL",
6615 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6616 		"IDMA_FL_H_SEND_IP_HDR",
6617 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6618 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6619 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6620 		"IDMA_FL_D_SEND_PCIEHDR",
6621 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6622 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6623 		"IDMA_FL_SEND_PCIEHDR",
6624 		"IDMA_FL_PUSH_CPL_FIFO",
6625 		"IDMA_FL_SEND_CPL",
6626 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6627 		"IDMA_FL_SEND_PAYLOAD",
6628 		"IDMA_FL_REQ_NEXT_DATA_FL",
6629 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6630 		"IDMA_FL_SEND_PADDING",
6631 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6632 	};
6633 	static const u32 sge_regs[] = {
6634 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6635 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6636 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6637 	};
6638 	const char **sge_idma_decode;
6639 	int sge_idma_decode_nstates;
6640 	int i;
6641 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6642 
6643 	/* Select the right set of decode strings to dump depending on the
6644 	 * adapter chip type.
6645 	 */
6646 	switch (chip_version) {
6647 	case CHELSIO_T4:
6648 		sge_idma_decode = (const char **)t4_decode;
6649 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6650 		break;
6651 
6652 	case CHELSIO_T5:
6653 		sge_idma_decode = (const char **)t5_decode;
6654 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6655 		break;
6656 
6657 	case CHELSIO_T6:
6658 		sge_idma_decode = (const char **)t6_decode;
6659 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6660 		break;
6661 
6662 	default:
6663 		dev_err(adapter->pdev_dev,
6664 			"Unsupported chip version %d\n", chip_version);
6665 		return;
6666 	}
6667 
6668 	if (is_t4(adapter->params.chip)) {
6669 		sge_idma_decode = (const char **)t4_decode;
6670 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6671 	} else {
6672 		sge_idma_decode = (const char **)t5_decode;
6673 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6674 	}
6675 
6676 	if (state < sge_idma_decode_nstates)
6677 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6678 	else
6679 		CH_WARN(adapter, "idma state %d unknown\n", state);
6680 
6681 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6682 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6683 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6684 }
6685 
6686 /**
6687  *      t4_sge_ctxt_flush - flush the SGE context cache
6688  *      @adap: the adapter
6689  *      @mbox: mailbox to use for the FW command
6690  *      @ctx_type: Egress or Ingress
6691  *
6692  *      Issues a FW command through the given mailbox to flush the
6693  *      SGE context cache.
6694  */
6695 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6696 {
6697 	int ret;
6698 	u32 ldst_addrspace;
6699 	struct fw_ldst_cmd c;
6700 
6701 	memset(&c, 0, sizeof(c));
6702 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6703 						 FW_LDST_ADDRSPC_SGE_EGRC :
6704 						 FW_LDST_ADDRSPC_SGE_INGC);
6705 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6706 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6707 					ldst_addrspace);
6708 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6709 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6710 
6711 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6712 	return ret;
6713 }
6714 
6715 /**
6716  *      t4_fw_hello - establish communication with FW
6717  *      @adap: the adapter
6718  *      @mbox: mailbox to use for the FW command
6719  *      @evt_mbox: mailbox to receive async FW events
6720  *      @master: specifies the caller's willingness to be the device master
6721  *	@state: returns the current device state (if non-NULL)
6722  *
6723  *	Issues a command to establish communication with FW.  Returns either
6724  *	an error (negative integer) or the mailbox of the Master PF.
6725  */
6726 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6727 		enum dev_master master, enum dev_state *state)
6728 {
6729 	int ret;
6730 	struct fw_hello_cmd c;
6731 	u32 v;
6732 	unsigned int master_mbox;
6733 	int retries = FW_CMD_HELLO_RETRIES;
6734 
6735 retry:
6736 	memset(&c, 0, sizeof(c));
6737 	INIT_CMD(c, HELLO, WRITE);
6738 	c.err_to_clearinit = cpu_to_be32(
6739 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6740 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6741 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6742 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6743 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6744 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6745 		FW_HELLO_CMD_CLEARINIT_F);
6746 
6747 	/*
6748 	 * Issue the HELLO command to the firmware.  If it's not successful
6749 	 * but indicates that we got a "busy" or "timeout" condition, retry
6750 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6751 	 * retry limit, check to see if the firmware left us any error
6752 	 * information and report that if so.
6753 	 */
6754 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6755 	if (ret < 0) {
6756 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6757 			goto retry;
6758 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6759 			t4_report_fw_error(adap);
6760 		return ret;
6761 	}
6762 
6763 	v = be32_to_cpu(c.err_to_clearinit);
6764 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6765 	if (state) {
6766 		if (v & FW_HELLO_CMD_ERR_F)
6767 			*state = DEV_STATE_ERR;
6768 		else if (v & FW_HELLO_CMD_INIT_F)
6769 			*state = DEV_STATE_INIT;
6770 		else
6771 			*state = DEV_STATE_UNINIT;
6772 	}
6773 
6774 	/*
6775 	 * If we're not the Master PF then we need to wait around for the
6776 	 * Master PF Driver to finish setting up the adapter.
6777 	 *
6778 	 * Note that we also do this wait if we're a non-Master-capable PF and
6779 	 * there is no current Master PF; a Master PF may show up momentarily
6780 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6781 	 * OS loads lots of different drivers rapidly at the same time).  In
6782 	 * this case, the Master PF returned by the firmware will be
6783 	 * PCIE_FW_MASTER_M so the test below will work ...
6784 	 */
6785 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6786 	    master_mbox != mbox) {
6787 		int waiting = FW_CMD_HELLO_TIMEOUT;
6788 
6789 		/*
6790 		 * Wait for the firmware to either indicate an error or
6791 		 * initialized state.  If we see either of these we bail out
6792 		 * and report the issue to the caller.  If we exhaust the
6793 		 * "hello timeout" and we haven't exhausted our retries, try
6794 		 * again.  Otherwise bail with a timeout error.
6795 		 */
6796 		for (;;) {
6797 			u32 pcie_fw;
6798 
6799 			msleep(50);
6800 			waiting -= 50;
6801 
6802 			/*
6803 			 * If neither Error nor Initialialized are indicated
6804 			 * by the firmware keep waiting till we exaust our
6805 			 * timeout ... and then retry if we haven't exhausted
6806 			 * our retries ...
6807 			 */
6808 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6809 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6810 				if (waiting <= 0) {
6811 					if (retries-- > 0)
6812 						goto retry;
6813 
6814 					return -ETIMEDOUT;
6815 				}
6816 				continue;
6817 			}
6818 
6819 			/*
6820 			 * We either have an Error or Initialized condition
6821 			 * report errors preferentially.
6822 			 */
6823 			if (state) {
6824 				if (pcie_fw & PCIE_FW_ERR_F)
6825 					*state = DEV_STATE_ERR;
6826 				else if (pcie_fw & PCIE_FW_INIT_F)
6827 					*state = DEV_STATE_INIT;
6828 			}
6829 
6830 			/*
6831 			 * If we arrived before a Master PF was selected and
6832 			 * there's not a valid Master PF, grab its identity
6833 			 * for our caller.
6834 			 */
6835 			if (master_mbox == PCIE_FW_MASTER_M &&
6836 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6837 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6838 			break;
6839 		}
6840 	}
6841 
6842 	return master_mbox;
6843 }
6844 
6845 /**
6846  *	t4_fw_bye - end communication with FW
6847  *	@adap: the adapter
6848  *	@mbox: mailbox to use for the FW command
6849  *
6850  *	Issues a command to terminate communication with FW.
6851  */
6852 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6853 {
6854 	struct fw_bye_cmd c;
6855 
6856 	memset(&c, 0, sizeof(c));
6857 	INIT_CMD(c, BYE, WRITE);
6858 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6859 }
6860 
6861 /**
6862  *	t4_init_cmd - ask FW to initialize the device
6863  *	@adap: the adapter
6864  *	@mbox: mailbox to use for the FW command
6865  *
6866  *	Issues a command to FW to partially initialize the device.  This
6867  *	performs initialization that generally doesn't depend on user input.
6868  */
6869 int t4_early_init(struct adapter *adap, unsigned int mbox)
6870 {
6871 	struct fw_initialize_cmd c;
6872 
6873 	memset(&c, 0, sizeof(c));
6874 	INIT_CMD(c, INITIALIZE, WRITE);
6875 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6876 }
6877 
6878 /**
6879  *	t4_fw_reset - issue a reset to FW
6880  *	@adap: the adapter
6881  *	@mbox: mailbox to use for the FW command
6882  *	@reset: specifies the type of reset to perform
6883  *
6884  *	Issues a reset command of the specified type to FW.
6885  */
6886 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6887 {
6888 	struct fw_reset_cmd c;
6889 
6890 	memset(&c, 0, sizeof(c));
6891 	INIT_CMD(c, RESET, WRITE);
6892 	c.val = cpu_to_be32(reset);
6893 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6894 }
6895 
6896 /**
6897  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6898  *	@adap: the adapter
6899  *	@mbox: mailbox to use for the FW RESET command (if desired)
6900  *	@force: force uP into RESET even if FW RESET command fails
6901  *
6902  *	Issues a RESET command to firmware (if desired) with a HALT indication
6903  *	and then puts the microprocessor into RESET state.  The RESET command
6904  *	will only be issued if a legitimate mailbox is provided (mbox <=
6905  *	PCIE_FW_MASTER_M).
6906  *
6907  *	This is generally used in order for the host to safely manipulate the
6908  *	adapter without fear of conflicting with whatever the firmware might
6909  *	be doing.  The only way out of this state is to RESTART the firmware
6910  *	...
6911  */
6912 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6913 {
6914 	int ret = 0;
6915 
6916 	/*
6917 	 * If a legitimate mailbox is provided, issue a RESET command
6918 	 * with a HALT indication.
6919 	 */
6920 	if (mbox <= PCIE_FW_MASTER_M) {
6921 		struct fw_reset_cmd c;
6922 
6923 		memset(&c, 0, sizeof(c));
6924 		INIT_CMD(c, RESET, WRITE);
6925 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6926 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6927 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6928 	}
6929 
6930 	/*
6931 	 * Normally we won't complete the operation if the firmware RESET
6932 	 * command fails but if our caller insists we'll go ahead and put the
6933 	 * uP into RESET.  This can be useful if the firmware is hung or even
6934 	 * missing ...  We'll have to take the risk of putting the uP into
6935 	 * RESET without the cooperation of firmware in that case.
6936 	 *
6937 	 * We also force the firmware's HALT flag to be on in case we bypassed
6938 	 * the firmware RESET command above or we're dealing with old firmware
6939 	 * which doesn't have the HALT capability.  This will serve as a flag
6940 	 * for the incoming firmware to know that it's coming out of a HALT
6941 	 * rather than a RESET ... if it's new enough to understand that ...
6942 	 */
6943 	if (ret == 0 || force) {
6944 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6945 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6946 				 PCIE_FW_HALT_F);
6947 	}
6948 
6949 	/*
6950 	 * And we always return the result of the firmware RESET command
6951 	 * even when we force the uP into RESET ...
6952 	 */
6953 	return ret;
6954 }
6955 
6956 /**
6957  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6958  *	@adap: the adapter
6959  *	@reset: if we want to do a RESET to restart things
6960  *
6961  *	Restart firmware previously halted by t4_fw_halt().  On successful
6962  *	return the previous PF Master remains as the new PF Master and there
6963  *	is no need to issue a new HELLO command, etc.
6964  *
6965  *	We do this in two ways:
6966  *
6967  *	 1. If we're dealing with newer firmware we'll simply want to take
6968  *	    the chip's microprocessor out of RESET.  This will cause the
6969  *	    firmware to start up from its start vector.  And then we'll loop
6970  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6971  *	    reset to 0) or we timeout.
6972  *
6973  *	 2. If we're dealing with older firmware then we'll need to RESET
6974  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6975  *	    flag and automatically RESET itself on startup.
6976  */
6977 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6978 {
6979 	if (reset) {
6980 		/*
6981 		 * Since we're directing the RESET instead of the firmware
6982 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6983 		 * bit.
6984 		 */
6985 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6986 
6987 		/*
6988 		 * If we've been given a valid mailbox, first try to get the
6989 		 * firmware to do the RESET.  If that works, great and we can
6990 		 * return success.  Otherwise, if we haven't been given a
6991 		 * valid mailbox or the RESET command failed, fall back to
6992 		 * hitting the chip with a hammer.
6993 		 */
6994 		if (mbox <= PCIE_FW_MASTER_M) {
6995 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6996 			msleep(100);
6997 			if (t4_fw_reset(adap, mbox,
6998 					PIORST_F | PIORSTMODE_F) == 0)
6999 				return 0;
7000 		}
7001 
7002 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7003 		msleep(2000);
7004 	} else {
7005 		int ms;
7006 
7007 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7008 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7009 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7010 				return 0;
7011 			msleep(100);
7012 			ms += 100;
7013 		}
7014 		return -ETIMEDOUT;
7015 	}
7016 	return 0;
7017 }
7018 
7019 /**
7020  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7021  *	@adap: the adapter
7022  *	@mbox: mailbox to use for the FW RESET command (if desired)
7023  *	@fw_data: the firmware image to write
7024  *	@size: image size
7025  *	@force: force upgrade even if firmware doesn't cooperate
7026  *
7027  *	Perform all of the steps necessary for upgrading an adapter's
7028  *	firmware image.  Normally this requires the cooperation of the
7029  *	existing firmware in order to halt all existing activities
7030  *	but if an invalid mailbox token is passed in we skip that step
7031  *	(though we'll still put the adapter microprocessor into RESET in
7032  *	that case).
7033  *
7034  *	On successful return the new firmware will have been loaded and
7035  *	the adapter will have been fully RESET losing all previous setup
7036  *	state.  On unsuccessful return the adapter may be completely hosed ...
7037  *	positive errno indicates that the adapter is ~probably~ intact, a
7038  *	negative errno indicates that things are looking bad ...
7039  */
7040 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7041 		  const u8 *fw_data, unsigned int size, int force)
7042 {
7043 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7044 	int reset, ret;
7045 
7046 	if (!t4_fw_matches_chip(adap, fw_hdr))
7047 		return -EINVAL;
7048 
7049 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
7050 	 * wont be sent when we are flashing FW.
7051 	 */
7052 	adap->flags &= ~FW_OK;
7053 
7054 	ret = t4_fw_halt(adap, mbox, force);
7055 	if (ret < 0 && !force)
7056 		goto out;
7057 
7058 	ret = t4_load_fw(adap, fw_data, size);
7059 	if (ret < 0)
7060 		goto out;
7061 
7062 	/*
7063 	 * If there was a Firmware Configuration File stored in FLASH,
7064 	 * there's a good chance that it won't be compatible with the new
7065 	 * Firmware.  In order to prevent difficult to diagnose adapter
7066 	 * initialization issues, we clear out the Firmware Configuration File
7067 	 * portion of the FLASH .  The user will need to re-FLASH a new
7068 	 * Firmware Configuration File which is compatible with the new
7069 	 * Firmware if that's desired.
7070 	 */
7071 	(void)t4_load_cfg(adap, NULL, 0);
7072 
7073 	/*
7074 	 * Older versions of the firmware don't understand the new
7075 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7076 	 * restart.  So for newly loaded older firmware we'll have to do the
7077 	 * RESET for it so it starts up on a clean slate.  We can tell if
7078 	 * the newly loaded firmware will handle this right by checking
7079 	 * its header flags to see if it advertises the capability.
7080 	 */
7081 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7082 	ret = t4_fw_restart(adap, mbox, reset);
7083 
7084 	/* Grab potentially new Firmware Device Log parameters so we can see
7085 	 * how healthy the new Firmware is.  It's okay to contact the new
7086 	 * Firmware for these parameters even though, as far as it's
7087 	 * concerned, we've never said "HELLO" to it ...
7088 	 */
7089 	(void)t4_init_devlog_params(adap);
7090 out:
7091 	adap->flags |= FW_OK;
7092 	return ret;
7093 }
7094 
7095 /**
7096  *	t4_fl_pkt_align - return the fl packet alignment
7097  *	@adap: the adapter
7098  *
7099  *	T4 has a single field to specify the packing and padding boundary.
7100  *	T5 onwards has separate fields for this and hence the alignment for
7101  *	next packet offset is maximum of these two.
7102  *
7103  */
7104 int t4_fl_pkt_align(struct adapter *adap)
7105 {
7106 	u32 sge_control, sge_control2;
7107 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7108 
7109 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7110 
7111 	/* T4 uses a single control field to specify both the PCIe Padding and
7112 	 * Packing Boundary.  T5 introduced the ability to specify these
7113 	 * separately.  The actual Ingress Packet Data alignment boundary
7114 	 * within Packed Buffer Mode is the maximum of these two
7115 	 * specifications.  (Note that it makes no real practical sense to
7116 	 * have the Pading Boudary be larger than the Packing Boundary but you
7117 	 * could set the chip up that way and, in fact, legacy T4 code would
7118 	 * end doing this because it would initialize the Padding Boundary and
7119 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7120 	 * Padding Boundary values in T6 starts from 8B,
7121 	 * where as it is 32B for T4 and T5.
7122 	 */
7123 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7124 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7125 	else
7126 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7127 
7128 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7129 
7130 	fl_align = ingpadboundary;
7131 	if (!is_t4(adap->params.chip)) {
7132 		/* T5 has a weird interpretation of one of the PCIe Packing
7133 		 * Boundary values.  No idea why ...
7134 		 */
7135 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7136 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7137 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7138 			ingpackboundary = 16;
7139 		else
7140 			ingpackboundary = 1 << (ingpackboundary +
7141 						INGPACKBOUNDARY_SHIFT_X);
7142 
7143 		fl_align = max(ingpadboundary, ingpackboundary);
7144 	}
7145 	return fl_align;
7146 }
7147 
7148 /**
7149  *	t4_fixup_host_params - fix up host-dependent parameters
7150  *	@adap: the adapter
7151  *	@page_size: the host's Base Page Size
7152  *	@cache_line_size: the host's Cache Line Size
7153  *
7154  *	Various registers in T4 contain values which are dependent on the
7155  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7156  *	those registers with the appropriate values as passed in ...
7157  */
7158 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7159 			 unsigned int cache_line_size)
7160 {
7161 	unsigned int page_shift = fls(page_size) - 1;
7162 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7163 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7164 	unsigned int fl_align_log = fls(fl_align) - 1;
7165 
7166 	if (is_t4(adap->params.chip)) {
7167 		t4_set_reg_field(adap, SGE_CONTROL_A,
7168 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7169 				 EGRSTATUSPAGESIZE_F,
7170 				 INGPADBOUNDARY_V(fl_align_log -
7171 						  INGPADBOUNDARY_SHIFT_X) |
7172 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7173 	} else {
7174 		unsigned int pack_align;
7175 		unsigned int ingpad, ingpack;
7176 		unsigned int pcie_cap;
7177 
7178 		/* T5 introduced the separation of the Free List Padding and
7179 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7180 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7181 		 * Bandwidth, and use a Packing Boundary which is large enough
7182 		 * to avoid false sharing between CPUs, etc.
7183 		 *
7184 		 * For the PCI Link, the smaller the Padding Boundary the
7185 		 * better.  For the Memory Controller, a smaller Padding
7186 		 * Boundary is better until we cross under the Memory Line
7187 		 * Size (the minimum unit of transfer to/from Memory).  If we
7188 		 * have a Padding Boundary which is smaller than the Memory
7189 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7190 		 * Memory Controller which is never good.
7191 		 */
7192 
7193 		/* We want the Packing Boundary to be based on the Cache Line
7194 		 * Size in order to help avoid False Sharing performance
7195 		 * issues between CPUs, etc.  We also want the Packing
7196 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7197 		 * get best performance when the Packing Boundary is a
7198 		 * multiple of the Maximum Payload Size.
7199 		 */
7200 		pack_align = fl_align;
7201 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7202 		if (pcie_cap) {
7203 			unsigned int mps, mps_log;
7204 			u16 devctl;
7205 
7206 			/* The PCIe Device Control Maximum Payload Size field
7207 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7208 			 * 128 bytes.
7209 			 */
7210 			pci_read_config_word(adap->pdev,
7211 					     pcie_cap + PCI_EXP_DEVCTL,
7212 					     &devctl);
7213 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7214 			mps = 1 << mps_log;
7215 			if (mps > pack_align)
7216 				pack_align = mps;
7217 		}
7218 
7219 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7220 		 * value for the Packing Boundary.  This corresponds to 16
7221 		 * bytes instead of the expected 32 bytes.  So if we want 32
7222 		 * bytes, the best we can really do is 64 bytes ...
7223 		 */
7224 		if (pack_align <= 16) {
7225 			ingpack = INGPACKBOUNDARY_16B_X;
7226 			fl_align = 16;
7227 		} else if (pack_align == 32) {
7228 			ingpack = INGPACKBOUNDARY_64B_X;
7229 			fl_align = 64;
7230 		} else {
7231 			unsigned int pack_align_log = fls(pack_align) - 1;
7232 
7233 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7234 			fl_align = pack_align;
7235 		}
7236 
7237 		/* Use the smallest Ingress Padding which isn't smaller than
7238 		 * the Memory Controller Read/Write Size.  We'll take that as
7239 		 * being 8 bytes since we don't know of any system with a
7240 		 * wider Memory Controller Bus Width.
7241 		 */
7242 		if (is_t5(adap->params.chip))
7243 			ingpad = INGPADBOUNDARY_32B_X;
7244 		else
7245 			ingpad = T6_INGPADBOUNDARY_8B_X;
7246 
7247 		t4_set_reg_field(adap, SGE_CONTROL_A,
7248 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7249 				 EGRSTATUSPAGESIZE_F,
7250 				 INGPADBOUNDARY_V(ingpad) |
7251 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7252 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7253 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7254 				 INGPACKBOUNDARY_V(ingpack));
7255 	}
7256 	/*
7257 	 * Adjust various SGE Free List Host Buffer Sizes.
7258 	 *
7259 	 * This is something of a crock since we're using fixed indices into
7260 	 * the array which are also known by the sge.c code and the T4
7261 	 * Firmware Configuration File.  We need to come up with a much better
7262 	 * approach to managing this array.  For now, the first four entries
7263 	 * are:
7264 	 *
7265 	 *   0: Host Page Size
7266 	 *   1: 64KB
7267 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7268 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7269 	 *
7270 	 * For the single-MTU buffers in unpacked mode we need to include
7271 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7272 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7273 	 * Padding boundary.  All of these are accommodated in the Factory
7274 	 * Default Firmware Configuration File but we need to adjust it for
7275 	 * this host's cache line size.
7276 	 */
7277 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7278 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7279 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7280 		     & ~(fl_align-1));
7281 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7282 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7283 		     & ~(fl_align-1));
7284 
7285 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7286 
7287 	return 0;
7288 }
7289 
7290 /**
7291  *	t4_fw_initialize - ask FW to initialize the device
7292  *	@adap: the adapter
7293  *	@mbox: mailbox to use for the FW command
7294  *
7295  *	Issues a command to FW to partially initialize the device.  This
7296  *	performs initialization that generally doesn't depend on user input.
7297  */
7298 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7299 {
7300 	struct fw_initialize_cmd c;
7301 
7302 	memset(&c, 0, sizeof(c));
7303 	INIT_CMD(c, INITIALIZE, WRITE);
7304 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7305 }
7306 
7307 /**
7308  *	t4_query_params_rw - query FW or device parameters
7309  *	@adap: the adapter
7310  *	@mbox: mailbox to use for the FW command
7311  *	@pf: the PF
7312  *	@vf: the VF
7313  *	@nparams: the number of parameters
7314  *	@params: the parameter names
7315  *	@val: the parameter values
7316  *	@rw: Write and read flag
7317  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7318  *
7319  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7320  *	queried at once.
7321  */
7322 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7323 		       unsigned int vf, unsigned int nparams, const u32 *params,
7324 		       u32 *val, int rw, bool sleep_ok)
7325 {
7326 	int i, ret;
7327 	struct fw_params_cmd c;
7328 	__be32 *p = &c.param[0].mnem;
7329 
7330 	if (nparams > 7)
7331 		return -EINVAL;
7332 
7333 	memset(&c, 0, sizeof(c));
7334 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7335 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7336 				  FW_PARAMS_CMD_PFN_V(pf) |
7337 				  FW_PARAMS_CMD_VFN_V(vf));
7338 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7339 
7340 	for (i = 0; i < nparams; i++) {
7341 		*p++ = cpu_to_be32(*params++);
7342 		if (rw)
7343 			*p = cpu_to_be32(*(val + i));
7344 		p++;
7345 	}
7346 
7347 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7348 	if (ret == 0)
7349 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7350 			*val++ = be32_to_cpu(*p);
7351 	return ret;
7352 }
7353 
7354 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7355 		    unsigned int vf, unsigned int nparams, const u32 *params,
7356 		    u32 *val)
7357 {
7358 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7359 				  true);
7360 }
7361 
7362 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7363 		       unsigned int vf, unsigned int nparams, const u32 *params,
7364 		       u32 *val)
7365 {
7366 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7367 				  false);
7368 }
7369 
7370 /**
7371  *      t4_set_params_timeout - sets FW or device parameters
7372  *      @adap: the adapter
7373  *      @mbox: mailbox to use for the FW command
7374  *      @pf: the PF
7375  *      @vf: the VF
7376  *      @nparams: the number of parameters
7377  *      @params: the parameter names
7378  *      @val: the parameter values
7379  *      @timeout: the timeout time
7380  *
7381  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7382  *      specified at once.
7383  */
7384 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7385 			  unsigned int pf, unsigned int vf,
7386 			  unsigned int nparams, const u32 *params,
7387 			  const u32 *val, int timeout)
7388 {
7389 	struct fw_params_cmd c;
7390 	__be32 *p = &c.param[0].mnem;
7391 
7392 	if (nparams > 7)
7393 		return -EINVAL;
7394 
7395 	memset(&c, 0, sizeof(c));
7396 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7397 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7398 				  FW_PARAMS_CMD_PFN_V(pf) |
7399 				  FW_PARAMS_CMD_VFN_V(vf));
7400 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7401 
7402 	while (nparams--) {
7403 		*p++ = cpu_to_be32(*params++);
7404 		*p++ = cpu_to_be32(*val++);
7405 	}
7406 
7407 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7408 }
7409 
7410 /**
7411  *	t4_set_params - sets FW or device parameters
7412  *	@adap: the adapter
7413  *	@mbox: mailbox to use for the FW command
7414  *	@pf: the PF
7415  *	@vf: the VF
7416  *	@nparams: the number of parameters
7417  *	@params: the parameter names
7418  *	@val: the parameter values
7419  *
7420  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7421  *	specified at once.
7422  */
7423 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7424 		  unsigned int vf, unsigned int nparams, const u32 *params,
7425 		  const u32 *val)
7426 {
7427 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7428 				     FW_CMD_MAX_TIMEOUT);
7429 }
7430 
7431 /**
7432  *	t4_cfg_pfvf - configure PF/VF resource limits
7433  *	@adap: the adapter
7434  *	@mbox: mailbox to use for the FW command
7435  *	@pf: the PF being configured
7436  *	@vf: the VF being configured
7437  *	@txq: the max number of egress queues
7438  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7439  *	@rxqi: the max number of interrupt-capable ingress queues
7440  *	@rxq: the max number of interruptless ingress queues
7441  *	@tc: the PCI traffic class
7442  *	@vi: the max number of virtual interfaces
7443  *	@cmask: the channel access rights mask for the PF/VF
7444  *	@pmask: the port access rights mask for the PF/VF
7445  *	@nexact: the maximum number of exact MPS filters
7446  *	@rcaps: read capabilities
7447  *	@wxcaps: write/execute capabilities
7448  *
7449  *	Configures resource limits and capabilities for a physical or virtual
7450  *	function.
7451  */
7452 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7453 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7454 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7455 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7456 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7457 {
7458 	struct fw_pfvf_cmd c;
7459 
7460 	memset(&c, 0, sizeof(c));
7461 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7462 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7463 				  FW_PFVF_CMD_VFN_V(vf));
7464 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7465 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7466 				     FW_PFVF_CMD_NIQ_V(rxq));
7467 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7468 				    FW_PFVF_CMD_PMASK_V(pmask) |
7469 				    FW_PFVF_CMD_NEQ_V(txq));
7470 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7471 				      FW_PFVF_CMD_NVI_V(vi) |
7472 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7473 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7474 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7475 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7476 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7477 }
7478 
7479 /**
7480  *	t4_alloc_vi - allocate a virtual interface
7481  *	@adap: the adapter
7482  *	@mbox: mailbox to use for the FW command
7483  *	@port: physical port associated with the VI
7484  *	@pf: the PF owning the VI
7485  *	@vf: the VF owning the VI
7486  *	@nmac: number of MAC addresses needed (1 to 5)
7487  *	@mac: the MAC addresses of the VI
7488  *	@rss_size: size of RSS table slice associated with this VI
7489  *
7490  *	Allocates a virtual interface for the given physical port.  If @mac is
7491  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7492  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7493  *	stored consecutively so the space needed is @nmac * 6 bytes.
7494  *	Returns a negative error number or the non-negative VI id.
7495  */
7496 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7497 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7498 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7499 {
7500 	int ret;
7501 	struct fw_vi_cmd c;
7502 
7503 	memset(&c, 0, sizeof(c));
7504 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7505 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7506 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7507 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7508 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7509 	c.nmac = nmac - 1;
7510 
7511 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7512 	if (ret)
7513 		return ret;
7514 
7515 	if (mac) {
7516 		memcpy(mac, c.mac, sizeof(c.mac));
7517 		switch (nmac) {
7518 		case 5:
7519 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7520 			/* Fall through */
7521 		case 4:
7522 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7523 			/* Fall through */
7524 		case 3:
7525 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7526 			/* Fall through */
7527 		case 2:
7528 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7529 		}
7530 	}
7531 	if (rss_size)
7532 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7533 
7534 	if (vivld)
7535 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7536 
7537 	if (vin)
7538 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7539 
7540 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7541 }
7542 
7543 /**
7544  *	t4_free_vi - free a virtual interface
7545  *	@adap: the adapter
7546  *	@mbox: mailbox to use for the FW command
7547  *	@pf: the PF owning the VI
7548  *	@vf: the VF owning the VI
7549  *	@viid: virtual interface identifiler
7550  *
7551  *	Free a previously allocated virtual interface.
7552  */
7553 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7554 	       unsigned int vf, unsigned int viid)
7555 {
7556 	struct fw_vi_cmd c;
7557 
7558 	memset(&c, 0, sizeof(c));
7559 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7560 				  FW_CMD_REQUEST_F |
7561 				  FW_CMD_EXEC_F |
7562 				  FW_VI_CMD_PFN_V(pf) |
7563 				  FW_VI_CMD_VFN_V(vf));
7564 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7565 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7566 
7567 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7568 }
7569 
7570 /**
7571  *	t4_set_rxmode - set Rx properties of a virtual interface
7572  *	@adap: the adapter
7573  *	@mbox: mailbox to use for the FW command
7574  *	@viid: the VI id
7575  *	@mtu: the new MTU or -1
7576  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7577  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7578  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7579  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7580  *	@sleep_ok: if true we may sleep while awaiting command completion
7581  *
7582  *	Sets Rx properties of a virtual interface.
7583  */
7584 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7585 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7586 		  bool sleep_ok)
7587 {
7588 	struct fw_vi_rxmode_cmd c;
7589 
7590 	/* convert to FW values */
7591 	if (mtu < 0)
7592 		mtu = FW_RXMODE_MTU_NO_CHG;
7593 	if (promisc < 0)
7594 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7595 	if (all_multi < 0)
7596 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7597 	if (bcast < 0)
7598 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7599 	if (vlanex < 0)
7600 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7601 
7602 	memset(&c, 0, sizeof(c));
7603 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7604 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7605 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7606 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7607 	c.mtu_to_vlanexen =
7608 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7609 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7610 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7611 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7612 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7613 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7614 }
7615 
7616 /**
7617  *      t4_free_encap_mac_filt - frees MPS entry at given index
7618  *      @adap: the adapter
7619  *      @viid: the VI id
7620  *      @idx: index of MPS entry to be freed
7621  *      @sleep_ok: call is allowed to sleep
7622  *
7623  *      Frees the MPS entry at supplied index
7624  *
7625  *      Returns a negative error number or zero on success
7626  */
7627 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7628 			   int idx, bool sleep_ok)
7629 {
7630 	struct fw_vi_mac_exact *p;
7631 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7632 	struct fw_vi_mac_cmd c;
7633 	int ret = 0;
7634 	u32 exact;
7635 
7636 	memset(&c, 0, sizeof(c));
7637 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7638 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7639 				   FW_CMD_EXEC_V(0) |
7640 				   FW_VI_MAC_CMD_VIID_V(viid));
7641 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7642 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7643 					  exact |
7644 					  FW_CMD_LEN16_V(1));
7645 	p = c.u.exact;
7646 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7647 				      FW_VI_MAC_CMD_IDX_V(idx));
7648 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7649 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7650 	return ret;
7651 }
7652 
7653 /**
7654  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7655  *	@adap: the adapter
7656  *	@viid: the VI id
7657  *	@addr: the MAC address
7658  *	@mask: the mask
7659  *	@idx: index of the entry in mps tcam
7660  *	@lookup_type: MAC address for inner (1) or outer (0) header
7661  *	@port_id: the port index
7662  *	@sleep_ok: call is allowed to sleep
7663  *
7664  *	Removes the mac entry at the specified index using raw mac interface.
7665  *
7666  *	Returns a negative error number on failure.
7667  */
7668 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7669 			 const u8 *addr, const u8 *mask, unsigned int idx,
7670 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7671 {
7672 	struct fw_vi_mac_cmd c;
7673 	struct fw_vi_mac_raw *p = &c.u.raw;
7674 	u32 val;
7675 
7676 	memset(&c, 0, sizeof(c));
7677 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7678 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7679 				   FW_CMD_EXEC_V(0) |
7680 				   FW_VI_MAC_CMD_VIID_V(viid));
7681 	val = FW_CMD_LEN16_V(1) |
7682 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7683 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7684 					  FW_CMD_LEN16_V(val));
7685 
7686 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7687 				     FW_VI_MAC_ID_BASED_FREE);
7688 
7689 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7690 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7691 				   DATAPORTNUM_V(port_id));
7692 	/* Lookup mask and port mask */
7693 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7694 				    DATAPORTNUM_V(DATAPORTNUM_M));
7695 
7696 	/* Copy the address and the mask */
7697 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7698 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7699 
7700 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7701 }
7702 
7703 /**
7704  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7705  *      @adap: the adapter
7706  *      @viid: the VI id
7707  *      @mac: the MAC address
7708  *      @mask: the mask
7709  *      @vni: the VNI id for the tunnel protocol
7710  *      @vni_mask: mask for the VNI id
7711  *      @dip_hit: to enable DIP match for the MPS entry
7712  *      @lookup_type: MAC address for inner (1) or outer (0) header
7713  *      @sleep_ok: call is allowed to sleep
7714  *
7715  *      Allocates an MPS entry with specified MAC address and VNI value.
7716  *
7717  *      Returns a negative error number or the allocated index for this mac.
7718  */
7719 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7720 			    const u8 *addr, const u8 *mask, unsigned int vni,
7721 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7722 			    bool sleep_ok)
7723 {
7724 	struct fw_vi_mac_cmd c;
7725 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7726 	int ret = 0;
7727 	u32 val;
7728 
7729 	memset(&c, 0, sizeof(c));
7730 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7731 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7732 				   FW_VI_MAC_CMD_VIID_V(viid));
7733 	val = FW_CMD_LEN16_V(1) |
7734 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7735 	c.freemacs_to_len16 = cpu_to_be32(val);
7736 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7737 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7738 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7739 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7740 
7741 	p->lookup_type_to_vni =
7742 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7743 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7744 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7745 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7746 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7747 	if (ret == 0)
7748 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7749 	return ret;
7750 }
7751 
7752 /**
7753  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7754  *	@adap: the adapter
7755  *	@viid: the VI id
7756  *	@mac: the MAC address
7757  *	@mask: the mask
7758  *	@idx: index at which to add this entry
7759  *	@port_id: the port index
7760  *	@lookup_type: MAC address for inner (1) or outer (0) header
7761  *	@sleep_ok: call is allowed to sleep
7762  *
7763  *	Adds the mac entry at the specified index using raw mac interface.
7764  *
7765  *	Returns a negative error number or the allocated index for this mac.
7766  */
7767 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7768 			  const u8 *addr, const u8 *mask, unsigned int idx,
7769 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7770 {
7771 	int ret = 0;
7772 	struct fw_vi_mac_cmd c;
7773 	struct fw_vi_mac_raw *p = &c.u.raw;
7774 	u32 val;
7775 
7776 	memset(&c, 0, sizeof(c));
7777 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7778 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7779 				   FW_VI_MAC_CMD_VIID_V(viid));
7780 	val = FW_CMD_LEN16_V(1) |
7781 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7782 	c.freemacs_to_len16 = cpu_to_be32(val);
7783 
7784 	/* Specify that this is an inner mac address */
7785 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7786 
7787 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7788 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7789 				   DATAPORTNUM_V(port_id));
7790 	/* Lookup mask and port mask */
7791 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7792 				    DATAPORTNUM_V(DATAPORTNUM_M));
7793 
7794 	/* Copy the address and the mask */
7795 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7796 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7797 
7798 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7799 	if (ret == 0) {
7800 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7801 		if (ret != idx)
7802 			ret = -ENOMEM;
7803 	}
7804 
7805 	return ret;
7806 }
7807 
7808 /**
7809  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7810  *	@adap: the adapter
7811  *	@mbox: mailbox to use for the FW command
7812  *	@viid: the VI id
7813  *	@free: if true any existing filters for this VI id are first removed
7814  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7815  *	@addr: the MAC address(es)
7816  *	@idx: where to store the index of each allocated filter
7817  *	@hash: pointer to hash address filter bitmap
7818  *	@sleep_ok: call is allowed to sleep
7819  *
7820  *	Allocates an exact-match filter for each of the supplied addresses and
7821  *	sets it to the corresponding address.  If @idx is not %NULL it should
7822  *	have at least @naddr entries, each of which will be set to the index of
7823  *	the filter allocated for the corresponding MAC address.  If a filter
7824  *	could not be allocated for an address its index is set to 0xffff.
7825  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7826  *	are hashed and update the hash filter bitmap pointed at by @hash.
7827  *
7828  *	Returns a negative error number or the number of filters allocated.
7829  */
7830 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7831 		      unsigned int viid, bool free, unsigned int naddr,
7832 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7833 {
7834 	int offset, ret = 0;
7835 	struct fw_vi_mac_cmd c;
7836 	unsigned int nfilters = 0;
7837 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7838 	unsigned int rem = naddr;
7839 
7840 	if (naddr > max_naddr)
7841 		return -EINVAL;
7842 
7843 	for (offset = 0; offset < naddr ; /**/) {
7844 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7845 					 rem : ARRAY_SIZE(c.u.exact));
7846 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7847 						     u.exact[fw_naddr]), 16);
7848 		struct fw_vi_mac_exact *p;
7849 		int i;
7850 
7851 		memset(&c, 0, sizeof(c));
7852 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7853 					   FW_CMD_REQUEST_F |
7854 					   FW_CMD_WRITE_F |
7855 					   FW_CMD_EXEC_V(free) |
7856 					   FW_VI_MAC_CMD_VIID_V(viid));
7857 		c.freemacs_to_len16 =
7858 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7859 				    FW_CMD_LEN16_V(len16));
7860 
7861 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7862 			p->valid_to_idx =
7863 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7864 					    FW_VI_MAC_CMD_IDX_V(
7865 						    FW_VI_MAC_ADD_MAC));
7866 			memcpy(p->macaddr, addr[offset + i],
7867 			       sizeof(p->macaddr));
7868 		}
7869 
7870 		/* It's okay if we run out of space in our MAC address arena.
7871 		 * Some of the addresses we submit may get stored so we need
7872 		 * to run through the reply to see what the results were ...
7873 		 */
7874 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7875 		if (ret && ret != -FW_ENOMEM)
7876 			break;
7877 
7878 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7879 			u16 index = FW_VI_MAC_CMD_IDX_G(
7880 					be16_to_cpu(p->valid_to_idx));
7881 
7882 			if (idx)
7883 				idx[offset + i] = (index >= max_naddr ?
7884 						   0xffff : index);
7885 			if (index < max_naddr)
7886 				nfilters++;
7887 			else if (hash)
7888 				*hash |= (1ULL <<
7889 					  hash_mac_addr(addr[offset + i]));
7890 		}
7891 
7892 		free = false;
7893 		offset += fw_naddr;
7894 		rem -= fw_naddr;
7895 	}
7896 
7897 	if (ret == 0 || ret == -FW_ENOMEM)
7898 		ret = nfilters;
7899 	return ret;
7900 }
7901 
7902 /**
7903  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7904  *	@adap: the adapter
7905  *	@mbox: mailbox to use for the FW command
7906  *	@viid: the VI id
7907  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7908  *	@addr: the MAC address(es)
7909  *	@sleep_ok: call is allowed to sleep
7910  *
7911  *	Frees the exact-match filter for each of the supplied addresses
7912  *
7913  *	Returns a negative error number or the number of filters freed.
7914  */
7915 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7916 		     unsigned int viid, unsigned int naddr,
7917 		     const u8 **addr, bool sleep_ok)
7918 {
7919 	int offset, ret = 0;
7920 	struct fw_vi_mac_cmd c;
7921 	unsigned int nfilters = 0;
7922 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7923 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7924 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7925 	unsigned int rem = naddr;
7926 
7927 	if (naddr > max_naddr)
7928 		return -EINVAL;
7929 
7930 	for (offset = 0; offset < (int)naddr ; /**/) {
7931 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7932 					 ? rem
7933 					 : ARRAY_SIZE(c.u.exact));
7934 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7935 						     u.exact[fw_naddr]), 16);
7936 		struct fw_vi_mac_exact *p;
7937 		int i;
7938 
7939 		memset(&c, 0, sizeof(c));
7940 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7941 				     FW_CMD_REQUEST_F |
7942 				     FW_CMD_WRITE_F |
7943 				     FW_CMD_EXEC_V(0) |
7944 				     FW_VI_MAC_CMD_VIID_V(viid));
7945 		c.freemacs_to_len16 =
7946 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7947 					    FW_CMD_LEN16_V(len16));
7948 
7949 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7950 			p->valid_to_idx = cpu_to_be16(
7951 				FW_VI_MAC_CMD_VALID_F |
7952 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7953 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7954 		}
7955 
7956 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7957 		if (ret)
7958 			break;
7959 
7960 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7961 			u16 index = FW_VI_MAC_CMD_IDX_G(
7962 						be16_to_cpu(p->valid_to_idx));
7963 
7964 			if (index < max_naddr)
7965 				nfilters++;
7966 		}
7967 
7968 		offset += fw_naddr;
7969 		rem -= fw_naddr;
7970 	}
7971 
7972 	if (ret == 0)
7973 		ret = nfilters;
7974 	return ret;
7975 }
7976 
7977 /**
7978  *	t4_change_mac - modifies the exact-match filter for a MAC address
7979  *	@adap: the adapter
7980  *	@mbox: mailbox to use for the FW command
7981  *	@viid: the VI id
7982  *	@idx: index of existing filter for old value of MAC address, or -1
7983  *	@addr: the new MAC address value
7984  *	@persist: whether a new MAC allocation should be persistent
7985  *	@add_smt: if true also add the address to the HW SMT
7986  *
7987  *	Modifies an exact-match filter and sets it to the new MAC address.
7988  *	Note that in general it is not possible to modify the value of a given
7989  *	filter so the generic way to modify an address filter is to free the one
7990  *	being used by the old address value and allocate a new filter for the
7991  *	new address value.  @idx can be -1 if the address is a new addition.
7992  *
7993  *	Returns a negative error number or the index of the filter with the new
7994  *	MAC value.
7995  */
7996 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7997 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
7998 {
7999 	int ret, mode;
8000 	struct fw_vi_mac_cmd c;
8001 	struct fw_vi_mac_exact *p = c.u.exact;
8002 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8003 
8004 	if (idx < 0)                             /* new allocation */
8005 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8006 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8007 
8008 	memset(&c, 0, sizeof(c));
8009 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8010 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8011 				   FW_VI_MAC_CMD_VIID_V(viid));
8012 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8013 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8014 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8015 				      FW_VI_MAC_CMD_IDX_V(idx));
8016 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8017 
8018 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8019 	if (ret == 0) {
8020 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8021 		if (ret >= max_mac_addr)
8022 			ret = -ENOMEM;
8023 		if (smt_idx) {
8024 			if (adap->params.viid_smt_extn_support) {
8025 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8026 						    (be32_to_cpu(c.op_to_viid));
8027 			} else {
8028 				/* In T4/T5, SMT contains 256 SMAC entries
8029 				 * organized in 128 rows of 2 entries each.
8030 				 * In T6, SMT contains 256 SMAC entries in
8031 				 * 256 rows.
8032 				 */
8033 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8034 								     CHELSIO_T5)
8035 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8036 				else
8037 					*smt_idx = (viid & FW_VIID_VIN_M);
8038 			}
8039 		}
8040 	}
8041 	return ret;
8042 }
8043 
8044 /**
8045  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8046  *	@adap: the adapter
8047  *	@mbox: mailbox to use for the FW command
8048  *	@viid: the VI id
8049  *	@ucast: whether the hash filter should also match unicast addresses
8050  *	@vec: the value to be written to the hash filter
8051  *	@sleep_ok: call is allowed to sleep
8052  *
8053  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8054  */
8055 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8056 		     bool ucast, u64 vec, bool sleep_ok)
8057 {
8058 	struct fw_vi_mac_cmd c;
8059 
8060 	memset(&c, 0, sizeof(c));
8061 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8062 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8063 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8064 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8065 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8066 					  FW_CMD_LEN16_V(1));
8067 	c.u.hash.hashvec = cpu_to_be64(vec);
8068 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8069 }
8070 
8071 /**
8072  *      t4_enable_vi_params - enable/disable a virtual interface
8073  *      @adap: the adapter
8074  *      @mbox: mailbox to use for the FW command
8075  *      @viid: the VI id
8076  *      @rx_en: 1=enable Rx, 0=disable Rx
8077  *      @tx_en: 1=enable Tx, 0=disable Tx
8078  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8079  *
8080  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8081  *      only makes sense when enabling a Virtual Interface ...
8082  */
8083 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8084 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8085 {
8086 	struct fw_vi_enable_cmd c;
8087 
8088 	memset(&c, 0, sizeof(c));
8089 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8090 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8091 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8092 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8093 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8094 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8095 				     FW_LEN16(c));
8096 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8097 }
8098 
8099 /**
8100  *	t4_enable_vi - enable/disable a virtual interface
8101  *	@adap: the adapter
8102  *	@mbox: mailbox to use for the FW command
8103  *	@viid: the VI id
8104  *	@rx_en: 1=enable Rx, 0=disable Rx
8105  *	@tx_en: 1=enable Tx, 0=disable Tx
8106  *
8107  *	Enables/disables a virtual interface.
8108  */
8109 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8110 		 bool rx_en, bool tx_en)
8111 {
8112 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8113 }
8114 
8115 /**
8116  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8117  *      @adap: the adapter
8118  *      @mbox: mailbox to use for the FW command
8119  *      @pi: the Port Information structure
8120  *      @rx_en: 1=enable Rx, 0=disable Rx
8121  *      @tx_en: 1=enable Tx, 0=disable Tx
8122  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8123  *
8124  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8125  *	Enable only makes sense when enabling a Virtual Interface ...
8126  *	If the Virtual Interface enable/disable operation is successful,
8127  *	we notify the OS-specific code of a potential Link Status change
8128  *	via the OS Contract API t4_os_link_changed().
8129  */
8130 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8131 			struct port_info *pi,
8132 			bool rx_en, bool tx_en, bool dcb_en)
8133 {
8134 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8135 				      rx_en, tx_en, dcb_en);
8136 	if (ret)
8137 		return ret;
8138 	t4_os_link_changed(adap, pi->port_id,
8139 			   rx_en && tx_en && pi->link_cfg.link_ok);
8140 	return 0;
8141 }
8142 
8143 /**
8144  *	t4_identify_port - identify a VI's port by blinking its LED
8145  *	@adap: the adapter
8146  *	@mbox: mailbox to use for the FW command
8147  *	@viid: the VI id
8148  *	@nblinks: how many times to blink LED at 2.5 Hz
8149  *
8150  *	Identifies a VI's port by blinking its LED.
8151  */
8152 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8153 		     unsigned int nblinks)
8154 {
8155 	struct fw_vi_enable_cmd c;
8156 
8157 	memset(&c, 0, sizeof(c));
8158 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8159 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8160 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8161 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8162 	c.blinkdur = cpu_to_be16(nblinks);
8163 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8164 }
8165 
8166 /**
8167  *	t4_iq_stop - stop an ingress queue and its FLs
8168  *	@adap: the adapter
8169  *	@mbox: mailbox to use for the FW command
8170  *	@pf: the PF owning the queues
8171  *	@vf: the VF owning the queues
8172  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8173  *	@iqid: ingress queue id
8174  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8175  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8176  *
8177  *	Stops an ingress queue and its associated FLs, if any.  This causes
8178  *	any current or future data/messages destined for these queues to be
8179  *	tossed.
8180  */
8181 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8182 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8183 	       unsigned int fl0id, unsigned int fl1id)
8184 {
8185 	struct fw_iq_cmd c;
8186 
8187 	memset(&c, 0, sizeof(c));
8188 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8189 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8190 				  FW_IQ_CMD_VFN_V(vf));
8191 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8192 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8193 	c.iqid = cpu_to_be16(iqid);
8194 	c.fl0id = cpu_to_be16(fl0id);
8195 	c.fl1id = cpu_to_be16(fl1id);
8196 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8197 }
8198 
8199 /**
8200  *	t4_iq_free - free an ingress queue and its FLs
8201  *	@adap: the adapter
8202  *	@mbox: mailbox to use for the FW command
8203  *	@pf: the PF owning the queues
8204  *	@vf: the VF owning the queues
8205  *	@iqtype: the ingress queue type
8206  *	@iqid: ingress queue id
8207  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8208  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8209  *
8210  *	Frees an ingress queue and its associated FLs, if any.
8211  */
8212 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8213 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8214 	       unsigned int fl0id, unsigned int fl1id)
8215 {
8216 	struct fw_iq_cmd c;
8217 
8218 	memset(&c, 0, sizeof(c));
8219 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8220 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8221 				  FW_IQ_CMD_VFN_V(vf));
8222 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8223 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8224 	c.iqid = cpu_to_be16(iqid);
8225 	c.fl0id = cpu_to_be16(fl0id);
8226 	c.fl1id = cpu_to_be16(fl1id);
8227 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8228 }
8229 
8230 /**
8231  *	t4_eth_eq_free - free an Ethernet egress queue
8232  *	@adap: the adapter
8233  *	@mbox: mailbox to use for the FW command
8234  *	@pf: the PF owning the queue
8235  *	@vf: the VF owning the queue
8236  *	@eqid: egress queue id
8237  *
8238  *	Frees an Ethernet egress queue.
8239  */
8240 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8241 		   unsigned int vf, unsigned int eqid)
8242 {
8243 	struct fw_eq_eth_cmd c;
8244 
8245 	memset(&c, 0, sizeof(c));
8246 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8247 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8248 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8249 				  FW_EQ_ETH_CMD_VFN_V(vf));
8250 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8251 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8252 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8253 }
8254 
8255 /**
8256  *	t4_ctrl_eq_free - free a control egress queue
8257  *	@adap: the adapter
8258  *	@mbox: mailbox to use for the FW command
8259  *	@pf: the PF owning the queue
8260  *	@vf: the VF owning the queue
8261  *	@eqid: egress queue id
8262  *
8263  *	Frees a control egress queue.
8264  */
8265 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8266 		    unsigned int vf, unsigned int eqid)
8267 {
8268 	struct fw_eq_ctrl_cmd c;
8269 
8270 	memset(&c, 0, sizeof(c));
8271 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8272 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8273 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8274 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8275 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8276 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8277 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8278 }
8279 
8280 /**
8281  *	t4_ofld_eq_free - free an offload egress queue
8282  *	@adap: the adapter
8283  *	@mbox: mailbox to use for the FW command
8284  *	@pf: the PF owning the queue
8285  *	@vf: the VF owning the queue
8286  *	@eqid: egress queue id
8287  *
8288  *	Frees a control egress queue.
8289  */
8290 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8291 		    unsigned int vf, unsigned int eqid)
8292 {
8293 	struct fw_eq_ofld_cmd c;
8294 
8295 	memset(&c, 0, sizeof(c));
8296 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8297 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8298 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8299 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8300 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8301 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8302 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8303 }
8304 
8305 /**
8306  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8307  *	@adap: the adapter
8308  *	@link_down_rc: Link Down Reason Code
8309  *
8310  *	Returns a string representation of the Link Down Reason Code.
8311  */
8312 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8313 {
8314 	static const char * const reason[] = {
8315 		"Link Down",
8316 		"Remote Fault",
8317 		"Auto-negotiation Failure",
8318 		"Reserved",
8319 		"Insufficient Airflow",
8320 		"Unable To Determine Reason",
8321 		"No RX Signal Detected",
8322 		"Reserved",
8323 	};
8324 
8325 	if (link_down_rc >= ARRAY_SIZE(reason))
8326 		return "Bad Reason Code";
8327 
8328 	return reason[link_down_rc];
8329 }
8330 
8331 /**
8332  * Return the highest speed set in the port capabilities, in Mb/s.
8333  */
8334 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8335 {
8336 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8337 		do { \
8338 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8339 				return __speed; \
8340 		} while (0)
8341 
8342 	TEST_SPEED_RETURN(400G, 400000);
8343 	TEST_SPEED_RETURN(200G, 200000);
8344 	TEST_SPEED_RETURN(100G, 100000);
8345 	TEST_SPEED_RETURN(50G,   50000);
8346 	TEST_SPEED_RETURN(40G,   40000);
8347 	TEST_SPEED_RETURN(25G,   25000);
8348 	TEST_SPEED_RETURN(10G,   10000);
8349 	TEST_SPEED_RETURN(1G,     1000);
8350 	TEST_SPEED_RETURN(100M,    100);
8351 
8352 	#undef TEST_SPEED_RETURN
8353 
8354 	return 0;
8355 }
8356 
8357 /**
8358  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8359  *	@acaps: advertised Port Capabilities
8360  *
8361  *	Get the highest speed for the port from the advertised Port
8362  *	Capabilities.  It will be either the highest speed from the list of
8363  *	speeds or whatever user has set using ethtool.
8364  */
8365 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8366 {
8367 	#define TEST_SPEED_RETURN(__caps_speed) \
8368 		do { \
8369 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8370 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8371 		} while (0)
8372 
8373 	TEST_SPEED_RETURN(400G);
8374 	TEST_SPEED_RETURN(200G);
8375 	TEST_SPEED_RETURN(100G);
8376 	TEST_SPEED_RETURN(50G);
8377 	TEST_SPEED_RETURN(40G);
8378 	TEST_SPEED_RETURN(25G);
8379 	TEST_SPEED_RETURN(10G);
8380 	TEST_SPEED_RETURN(1G);
8381 	TEST_SPEED_RETURN(100M);
8382 
8383 	#undef TEST_SPEED_RETURN
8384 
8385 	return 0;
8386 }
8387 
8388 /**
8389  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8390  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8391  *
8392  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8393  *	32-bit Port Capabilities value.
8394  */
8395 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8396 {
8397 	fw_port_cap32_t linkattr = 0;
8398 
8399 	/* Unfortunately the format of the Link Status in the old
8400 	 * 16-bit Port Information message isn't the same as the
8401 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8402 	 */
8403 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8404 		linkattr |= FW_PORT_CAP32_FC_RX;
8405 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8406 		linkattr |= FW_PORT_CAP32_FC_TX;
8407 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8408 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8409 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8410 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8411 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8412 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8413 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8414 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8415 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8416 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8417 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8418 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8419 
8420 	return linkattr;
8421 }
8422 
8423 /**
8424  *	t4_handle_get_port_info - process a FW reply message
8425  *	@pi: the port info
8426  *	@rpl: start of the FW message
8427  *
8428  *	Processes a GET_PORT_INFO FW reply message.
8429  */
8430 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8431 {
8432 	const struct fw_port_cmd *cmd = (const void *)rpl;
8433 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8434 	struct adapter *adapter = pi->adapter;
8435 	struct link_config *lc = &pi->link_cfg;
8436 	int link_ok, linkdnrc;
8437 	enum fw_port_type port_type;
8438 	enum fw_port_module_type mod_type;
8439 	unsigned int speed, fc, fec;
8440 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8441 
8442 	/* Extract the various fields from the Port Information message.
8443 	 */
8444 	switch (action) {
8445 	case FW_PORT_ACTION_GET_PORT_INFO: {
8446 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8447 
8448 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8449 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8450 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8451 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8452 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8453 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8454 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8455 		linkattr = lstatus_to_fwcap(lstatus);
8456 		break;
8457 	}
8458 
8459 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8460 		u32 lstatus32;
8461 
8462 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8463 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8464 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8465 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8466 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8467 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8468 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8469 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8470 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8471 		break;
8472 	}
8473 
8474 	default:
8475 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8476 			be32_to_cpu(cmd->action_to_len16));
8477 		return;
8478 	}
8479 
8480 	fec = fwcap_to_cc_fec(acaps);
8481 	fc = fwcap_to_cc_pause(linkattr);
8482 	speed = fwcap_to_speed(linkattr);
8483 
8484 	/* Reset state for communicating new Transceiver Module status and
8485 	 * whether the OS-dependent layer wants us to redo the current
8486 	 * "sticky" L1 Configure Link Parameters.
8487 	 */
8488 	lc->new_module = false;
8489 	lc->redo_l1cfg = false;
8490 
8491 	if (mod_type != pi->mod_type) {
8492 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8493 		 * various fundamental Port Capabilities which used to be
8494 		 * immutable can now change radically.  We can now have
8495 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8496 		 * all change based on what Transceiver Module is inserted.
8497 		 * So we need to record the Physical "Port" Capabilities on
8498 		 * every Transceiver Module change.
8499 		 */
8500 		lc->pcaps = pcaps;
8501 
8502 		/* When a new Transceiver Module is inserted, the Firmware
8503 		 * will examine its i2c EPROM to determine its type and
8504 		 * general operating parameters including things like Forward
8505 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8506 		 * how to interpret these i2c values to determine default
8507 		 * "sutomatic" settings.  We record these for future use when
8508 		 * the user explicitly requests these standards-based values.
8509 		 */
8510 		lc->def_acaps = acaps;
8511 
8512 		/* Some versions of the early T6 Firmware "cheated" when
8513 		 * handling different Transceiver Modules by changing the
8514 		 * underlaying Port Type reported to the Host Drivers.  As
8515 		 * such we need to capture whatever Port Type the Firmware
8516 		 * sends us and record it in case it's different from what we
8517 		 * were told earlier.  Unfortunately, since Firmware is
8518 		 * forever, we'll need to keep this code here forever, but in
8519 		 * later T6 Firmware it should just be an assignment of the
8520 		 * same value already recorded.
8521 		 */
8522 		pi->port_type = port_type;
8523 
8524 		/* Record new Module Type information.
8525 		 */
8526 		pi->mod_type = mod_type;
8527 
8528 		/* Let the OS-dependent layer know if we have a new
8529 		 * Transceiver Module inserted.
8530 		 */
8531 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8532 
8533 		t4_os_portmod_changed(adapter, pi->port_id);
8534 	}
8535 
8536 	if (link_ok != lc->link_ok || speed != lc->speed ||
8537 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8538 		if (!link_ok && lc->link_ok) {
8539 			lc->link_down_rc = linkdnrc;
8540 			dev_warn_ratelimited(adapter->pdev_dev,
8541 					     "Port %d link down, reason: %s\n",
8542 					     pi->tx_chan,
8543 					     t4_link_down_rc_str(linkdnrc));
8544 		}
8545 		lc->link_ok = link_ok;
8546 		lc->speed = speed;
8547 		lc->fc = fc;
8548 		lc->fec = fec;
8549 
8550 		lc->lpacaps = lpacaps;
8551 		lc->acaps = acaps & ADVERT_MASK;
8552 
8553 		/* If we're not physically capable of Auto-Negotiation, note
8554 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8555 		 * what Auto-Negotiation settings we have.  Note parallel
8556 		 * structure in t4_link_l1cfg_core() and init_link_config().
8557 		 */
8558 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8559 			lc->autoneg = AUTONEG_DISABLE;
8560 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8561 			lc->autoneg = AUTONEG_ENABLE;
8562 		} else {
8563 			/* When Autoneg is disabled, user needs to set
8564 			 * single speed.
8565 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8566 			 */
8567 			lc->acaps = 0;
8568 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8569 			lc->autoneg = AUTONEG_DISABLE;
8570 		}
8571 
8572 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8573 	}
8574 
8575 	/* If we have a new Transceiver Module and the OS-dependent code has
8576 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8577 	 * Link Parameters are set, do that now.
8578 	 */
8579 	if (lc->new_module && lc->redo_l1cfg) {
8580 		struct link_config old_lc;
8581 		int ret;
8582 
8583 		/* Save the current L1 Configuration and restore it if an
8584 		 * error occurs.  We probably should fix the l1_cfg*()
8585 		 * routines not to change the link_config when an error
8586 		 * occurs ...
8587 		 */
8588 		old_lc = *lc;
8589 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8590 		if (ret) {
8591 			*lc = old_lc;
8592 			dev_warn(adapter->pdev_dev,
8593 				 "Attempt to update new Transceiver Module settings failed\n");
8594 		}
8595 	}
8596 	lc->new_module = false;
8597 	lc->redo_l1cfg = false;
8598 }
8599 
8600 /**
8601  *	t4_update_port_info - retrieve and update port information if changed
8602  *	@pi: the port_info
8603  *
8604  *	We issue a Get Port Information Command to the Firmware and, if
8605  *	successful, we check to see if anything is different from what we
8606  *	last recorded and update things accordingly.
8607  */
8608 int t4_update_port_info(struct port_info *pi)
8609 {
8610 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8611 	struct fw_port_cmd port_cmd;
8612 	int ret;
8613 
8614 	memset(&port_cmd, 0, sizeof(port_cmd));
8615 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8616 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8617 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8618 	port_cmd.action_to_len16 = cpu_to_be32(
8619 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8620 				     ? FW_PORT_ACTION_GET_PORT_INFO
8621 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8622 		FW_LEN16(port_cmd));
8623 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8624 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8625 	if (ret)
8626 		return ret;
8627 
8628 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8629 	return 0;
8630 }
8631 
8632 /**
8633  *	t4_get_link_params - retrieve basic link parameters for given port
8634  *	@pi: the port
8635  *	@link_okp: value return pointer for link up/down
8636  *	@speedp: value return pointer for speed (Mb/s)
8637  *	@mtup: value return pointer for mtu
8638  *
8639  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8640  *	and MTU for a specified port.  A negative error is returned on
8641  *	failure; 0 on success.
8642  */
8643 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8644 		       unsigned int *speedp, unsigned int *mtup)
8645 {
8646 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8647 	struct fw_port_cmd port_cmd;
8648 	unsigned int action, link_ok, mtu;
8649 	fw_port_cap32_t linkattr;
8650 	int ret;
8651 
8652 	memset(&port_cmd, 0, sizeof(port_cmd));
8653 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8654 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8655 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8656 	action = (fw_caps == FW_CAPS16
8657 		  ? FW_PORT_ACTION_GET_PORT_INFO
8658 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8659 	port_cmd.action_to_len16 = cpu_to_be32(
8660 		FW_PORT_CMD_ACTION_V(action) |
8661 		FW_LEN16(port_cmd));
8662 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8663 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8664 	if (ret)
8665 		return ret;
8666 
8667 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8668 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8669 
8670 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8671 		linkattr = lstatus_to_fwcap(lstatus);
8672 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8673 	} else {
8674 		u32 lstatus32 =
8675 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8676 
8677 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8678 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8679 		mtu = FW_PORT_CMD_MTU32_G(
8680 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8681 	}
8682 
8683 	*link_okp = link_ok;
8684 	*speedp = fwcap_to_speed(linkattr);
8685 	*mtup = mtu;
8686 
8687 	return 0;
8688 }
8689 
8690 /**
8691  *      t4_handle_fw_rpl - process a FW reply message
8692  *      @adap: the adapter
8693  *      @rpl: start of the FW message
8694  *
8695  *      Processes a FW message, such as link state change messages.
8696  */
8697 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8698 {
8699 	u8 opcode = *(const u8 *)rpl;
8700 
8701 	/* This might be a port command ... this simplifies the following
8702 	 * conditionals ...  We can get away with pre-dereferencing
8703 	 * action_to_len16 because it's in the first 16 bytes and all messages
8704 	 * will be at least that long.
8705 	 */
8706 	const struct fw_port_cmd *p = (const void *)rpl;
8707 	unsigned int action =
8708 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8709 
8710 	if (opcode == FW_PORT_CMD &&
8711 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8712 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8713 		int i;
8714 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8715 		struct port_info *pi = NULL;
8716 
8717 		for_each_port(adap, i) {
8718 			pi = adap2pinfo(adap, i);
8719 			if (pi->tx_chan == chan)
8720 				break;
8721 		}
8722 
8723 		t4_handle_get_port_info(pi, rpl);
8724 	} else {
8725 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8726 			 opcode);
8727 		return -EINVAL;
8728 	}
8729 	return 0;
8730 }
8731 
8732 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8733 {
8734 	u16 val;
8735 
8736 	if (pci_is_pcie(adapter->pdev)) {
8737 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8738 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8739 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8740 	}
8741 }
8742 
8743 /**
8744  *	init_link_config - initialize a link's SW state
8745  *	@lc: pointer to structure holding the link state
8746  *	@pcaps: link Port Capabilities
8747  *	@acaps: link current Advertised Port Capabilities
8748  *
8749  *	Initializes the SW state maintained for each link, including the link's
8750  *	capabilities and default speed/flow-control/autonegotiation settings.
8751  */
8752 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8753 			     fw_port_cap32_t acaps)
8754 {
8755 	lc->pcaps = pcaps;
8756 	lc->def_acaps = acaps;
8757 	lc->lpacaps = 0;
8758 	lc->speed_caps = 0;
8759 	lc->speed = 0;
8760 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8761 
8762 	/* For Forward Error Control, we default to whatever the Firmware
8763 	 * tells us the Link is currently advertising.
8764 	 */
8765 	lc->requested_fec = FEC_AUTO;
8766 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8767 
8768 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8769 	 * "enabled" and copy over all of the Physical Port Capabilities
8770 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8771 	 * Auto-Negotiate disabled and select the highest supported speed
8772 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8773 	 * and t4_handle_get_port_info().
8774 	 */
8775 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8776 		lc->acaps = lc->pcaps & ADVERT_MASK;
8777 		lc->autoneg = AUTONEG_ENABLE;
8778 		lc->requested_fc |= PAUSE_AUTONEG;
8779 	} else {
8780 		lc->acaps = 0;
8781 		lc->autoneg = AUTONEG_DISABLE;
8782 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8783 	}
8784 }
8785 
8786 #define CIM_PF_NOACCESS 0xeeeeeeee
8787 
8788 int t4_wait_dev_ready(void __iomem *regs)
8789 {
8790 	u32 whoami;
8791 
8792 	whoami = readl(regs + PL_WHOAMI_A);
8793 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8794 		return 0;
8795 
8796 	msleep(500);
8797 	whoami = readl(regs + PL_WHOAMI_A);
8798 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8799 }
8800 
8801 struct flash_desc {
8802 	u32 vendor_and_model_id;
8803 	u32 size_mb;
8804 };
8805 
8806 static int t4_get_flash_params(struct adapter *adap)
8807 {
8808 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8809 	 * to the preexisting code.  All flash parts have 64KB sectors.
8810 	 */
8811 	static struct flash_desc supported_flash[] = {
8812 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8813 	};
8814 
8815 	unsigned int part, manufacturer;
8816 	unsigned int density, size = 0;
8817 	u32 flashid = 0;
8818 	int ret;
8819 
8820 	/* Issue a Read ID Command to the Flash part.  We decode supported
8821 	 * Flash parts and their sizes from this.  There's a newer Query
8822 	 * Command which can retrieve detailed geometry information but many
8823 	 * Flash parts don't support it.
8824 	 */
8825 
8826 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8827 	if (!ret)
8828 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8829 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8830 	if (ret)
8831 		return ret;
8832 
8833 	/* Check to see if it's one of our non-standard supported Flash parts.
8834 	 */
8835 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8836 		if (supported_flash[part].vendor_and_model_id == flashid) {
8837 			adap->params.sf_size = supported_flash[part].size_mb;
8838 			adap->params.sf_nsec =
8839 				adap->params.sf_size / SF_SEC_SIZE;
8840 			goto found;
8841 		}
8842 
8843 	/* Decode Flash part size.  The code below looks repetative with
8844 	 * common encodings, but that's not guaranteed in the JEDEC
8845 	 * specification for the Read JADEC ID command.  The only thing that
8846 	 * we're guaranteed by the JADEC specification is where the
8847 	 * Manufacturer ID is in the returned result.  After that each
8848 	 * Manufacturer ~could~ encode things completely differently.
8849 	 * Note, all Flash parts must have 64KB sectors.
8850 	 */
8851 	manufacturer = flashid & 0xff;
8852 	switch (manufacturer) {
8853 	case 0x20: { /* Micron/Numonix */
8854 		/* This Density -> Size decoding table is taken from Micron
8855 		 * Data Sheets.
8856 		 */
8857 		density = (flashid >> 16) & 0xff;
8858 		switch (density) {
8859 		case 0x14: /* 1MB */
8860 			size = 1 << 20;
8861 			break;
8862 		case 0x15: /* 2MB */
8863 			size = 1 << 21;
8864 			break;
8865 		case 0x16: /* 4MB */
8866 			size = 1 << 22;
8867 			break;
8868 		case 0x17: /* 8MB */
8869 			size = 1 << 23;
8870 			break;
8871 		case 0x18: /* 16MB */
8872 			size = 1 << 24;
8873 			break;
8874 		case 0x19: /* 32MB */
8875 			size = 1 << 25;
8876 			break;
8877 		case 0x20: /* 64MB */
8878 			size = 1 << 26;
8879 			break;
8880 		case 0x21: /* 128MB */
8881 			size = 1 << 27;
8882 			break;
8883 		case 0x22: /* 256MB */
8884 			size = 1 << 28;
8885 			break;
8886 		}
8887 		break;
8888 	}
8889 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
8890 		/* This Density -> Size decoding table is taken from ISSI
8891 		 * Data Sheets.
8892 		 */
8893 		density = (flashid >> 16) & 0xff;
8894 		switch (density) {
8895 		case 0x16: /* 32 MB */
8896 			size = 1 << 25;
8897 			break;
8898 		case 0x17: /* 64MB */
8899 			size = 1 << 26;
8900 			break;
8901 		}
8902 		break;
8903 	}
8904 	case 0xc2: { /* Macronix */
8905 		/* This Density -> Size decoding table is taken from Macronix
8906 		 * Data Sheets.
8907 		 */
8908 		density = (flashid >> 16) & 0xff;
8909 		switch (density) {
8910 		case 0x17: /* 8MB */
8911 			size = 1 << 23;
8912 			break;
8913 		case 0x18: /* 16MB */
8914 			size = 1 << 24;
8915 			break;
8916 		}
8917 		break;
8918 	}
8919 	case 0xef: { /* Winbond */
8920 		/* This Density -> Size decoding table is taken from Winbond
8921 		 * Data Sheets.
8922 		 */
8923 		density = (flashid >> 16) & 0xff;
8924 		switch (density) {
8925 		case 0x17: /* 8MB */
8926 			size = 1 << 23;
8927 			break;
8928 		case 0x18: /* 16MB */
8929 			size = 1 << 24;
8930 			break;
8931 		}
8932 		break;
8933 	}
8934 	}
8935 
8936 	/* If we didn't recognize the FLASH part, that's no real issue: the
8937 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
8938 	 * use a FLASH part which is at least 4MB in size and has 64KB
8939 	 * sectors.  The unrecognized FLASH part is likely to be much larger
8940 	 * than 4MB, but that's all we really need.
8941 	 */
8942 	if (size == 0) {
8943 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
8944 			 flashid);
8945 		size = 1 << 22;
8946 	}
8947 
8948 	/* Store decoded Flash size and fall through into vetting code. */
8949 	adap->params.sf_size = size;
8950 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8951 
8952 found:
8953 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8954 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8955 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8956 	return 0;
8957 }
8958 
8959 /**
8960  *	t4_prep_adapter - prepare SW and HW for operation
8961  *	@adapter: the adapter
8962  *	@reset: if true perform a HW reset
8963  *
8964  *	Initialize adapter SW state for the various HW modules, set initial
8965  *	values for some adapter tunables, take PHYs out of reset, and
8966  *	initialize the MDIO interface.
8967  */
8968 int t4_prep_adapter(struct adapter *adapter)
8969 {
8970 	int ret, ver;
8971 	uint16_t device_id;
8972 	u32 pl_rev;
8973 
8974 	get_pci_mode(adapter, &adapter->params.pci);
8975 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8976 
8977 	ret = t4_get_flash_params(adapter);
8978 	if (ret < 0) {
8979 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8980 		return ret;
8981 	}
8982 
8983 	/* Retrieve adapter's device ID
8984 	 */
8985 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8986 	ver = device_id >> 12;
8987 	adapter->params.chip = 0;
8988 	switch (ver) {
8989 	case CHELSIO_T4:
8990 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8991 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8992 		adapter->params.arch.mps_tcam_size =
8993 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8994 		adapter->params.arch.mps_rplc_size = 128;
8995 		adapter->params.arch.nchan = NCHAN;
8996 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8997 		adapter->params.arch.vfcount = 128;
8998 		/* Congestion map is for 4 channels so that
8999 		 * MPS can have 4 priority per port.
9000 		 */
9001 		adapter->params.arch.cng_ch_bits_log = 2;
9002 		break;
9003 	case CHELSIO_T5:
9004 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9005 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9006 		adapter->params.arch.mps_tcam_size =
9007 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9008 		adapter->params.arch.mps_rplc_size = 128;
9009 		adapter->params.arch.nchan = NCHAN;
9010 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9011 		adapter->params.arch.vfcount = 128;
9012 		adapter->params.arch.cng_ch_bits_log = 2;
9013 		break;
9014 	case CHELSIO_T6:
9015 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9016 		adapter->params.arch.sge_fl_db = 0;
9017 		adapter->params.arch.mps_tcam_size =
9018 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9019 		adapter->params.arch.mps_rplc_size = 256;
9020 		adapter->params.arch.nchan = 2;
9021 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9022 		adapter->params.arch.vfcount = 256;
9023 		/* Congestion map will be for 2 channels so that
9024 		 * MPS can have 8 priority per port.
9025 		 */
9026 		adapter->params.arch.cng_ch_bits_log = 3;
9027 		break;
9028 	default:
9029 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9030 			device_id);
9031 		return -EINVAL;
9032 	}
9033 
9034 	adapter->params.cim_la_size = CIMLA_SIZE;
9035 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9036 
9037 	/*
9038 	 * Default port for debugging in case we can't reach FW.
9039 	 */
9040 	adapter->params.nports = 1;
9041 	adapter->params.portvec = 1;
9042 	adapter->params.vpd.cclk = 50000;
9043 
9044 	/* Set PCIe completion timeout to 4 seconds. */
9045 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9046 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9047 	return 0;
9048 }
9049 
9050 /**
9051  *	t4_shutdown_adapter - shut down adapter, host & wire
9052  *	@adapter: the adapter
9053  *
9054  *	Perform an emergency shutdown of the adapter and stop it from
9055  *	continuing any further communication on the ports or DMA to the
9056  *	host.  This is typically used when the adapter and/or firmware
9057  *	have crashed and we want to prevent any further accidental
9058  *	communication with the rest of the world.  This will also force
9059  *	the port Link Status to go down -- if register writes work --
9060  *	which should help our peers figure out that we're down.
9061  */
9062 int t4_shutdown_adapter(struct adapter *adapter)
9063 {
9064 	int port;
9065 
9066 	t4_intr_disable(adapter);
9067 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9068 	for_each_port(adapter, port) {
9069 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9070 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9071 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9072 
9073 		t4_write_reg(adapter, a_port_cfg,
9074 			     t4_read_reg(adapter, a_port_cfg)
9075 			     & ~SIGNAL_DET_V(1));
9076 	}
9077 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9078 
9079 	return 0;
9080 }
9081 
9082 /**
9083  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9084  *	@adapter: the adapter
9085  *	@qid: the Queue ID
9086  *	@qtype: the Ingress or Egress type for @qid
9087  *	@user: true if this request is for a user mode queue
9088  *	@pbar2_qoffset: BAR2 Queue Offset
9089  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9090  *
9091  *	Returns the BAR2 SGE Queue Registers information associated with the
9092  *	indicated Absolute Queue ID.  These are passed back in return value
9093  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9094  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9095  *
9096  *	This may return an error which indicates that BAR2 SGE Queue
9097  *	registers aren't available.  If an error is not returned, then the
9098  *	following values are returned:
9099  *
9100  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9101  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9102  *
9103  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9104  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9105  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9106  *	then these "Inferred Queue ID" register may not be used.
9107  */
9108 int t4_bar2_sge_qregs(struct adapter *adapter,
9109 		      unsigned int qid,
9110 		      enum t4_bar2_qtype qtype,
9111 		      int user,
9112 		      u64 *pbar2_qoffset,
9113 		      unsigned int *pbar2_qid)
9114 {
9115 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9116 	u64 bar2_page_offset, bar2_qoffset;
9117 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9118 
9119 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9120 	if (!user && is_t4(adapter->params.chip))
9121 		return -EINVAL;
9122 
9123 	/* Get our SGE Page Size parameters.
9124 	 */
9125 	page_shift = adapter->params.sge.hps + 10;
9126 	page_size = 1 << page_shift;
9127 
9128 	/* Get the right Queues per Page parameters for our Queue.
9129 	 */
9130 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9131 		     ? adapter->params.sge.eq_qpp
9132 		     : adapter->params.sge.iq_qpp);
9133 	qpp_mask = (1 << qpp_shift) - 1;
9134 
9135 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9136 	 *  o The BAR2 page the Queue registers will be in.
9137 	 *  o The BAR2 Queue ID.
9138 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9139 	 */
9140 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9141 	bar2_qid = qid & qpp_mask;
9142 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9143 
9144 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9145 	 * hardware will infer the Absolute Queue ID simply from the writes to
9146 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9147 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9148 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9149 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9150 	 * from the BAR2 Page and BAR2 Queue ID.
9151 	 *
9152 	 * One important censequence of this is that some BAR2 SGE registers
9153 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9154 	 * there.  But other registers synthesize the SGE Queue ID purely
9155 	 * from the writes to the registers -- the Write Combined Doorbell
9156 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9157 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9158 	 * Queue ID can be inferred from simple writes.
9159 	 */
9160 	bar2_qoffset = bar2_page_offset;
9161 	bar2_qinferred = (bar2_qid_offset < page_size);
9162 	if (bar2_qinferred) {
9163 		bar2_qoffset += bar2_qid_offset;
9164 		bar2_qid = 0;
9165 	}
9166 
9167 	*pbar2_qoffset = bar2_qoffset;
9168 	*pbar2_qid = bar2_qid;
9169 	return 0;
9170 }
9171 
9172 /**
9173  *	t4_init_devlog_params - initialize adapter->params.devlog
9174  *	@adap: the adapter
9175  *
9176  *	Initialize various fields of the adapter's Firmware Device Log
9177  *	Parameters structure.
9178  */
9179 int t4_init_devlog_params(struct adapter *adap)
9180 {
9181 	struct devlog_params *dparams = &adap->params.devlog;
9182 	u32 pf_dparams;
9183 	unsigned int devlog_meminfo;
9184 	struct fw_devlog_cmd devlog_cmd;
9185 	int ret;
9186 
9187 	/* If we're dealing with newer firmware, the Device Log Paramerters
9188 	 * are stored in a designated register which allows us to access the
9189 	 * Device Log even if we can't talk to the firmware.
9190 	 */
9191 	pf_dparams =
9192 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9193 	if (pf_dparams) {
9194 		unsigned int nentries, nentries128;
9195 
9196 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9197 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9198 
9199 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9200 		nentries = (nentries128 + 1) * 128;
9201 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9202 
9203 		return 0;
9204 	}
9205 
9206 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9207 	 */
9208 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9209 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9210 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9211 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9212 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9213 			 &devlog_cmd);
9214 	if (ret)
9215 		return ret;
9216 
9217 	devlog_meminfo =
9218 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9219 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9220 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9221 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9222 
9223 	return 0;
9224 }
9225 
9226 /**
9227  *	t4_init_sge_params - initialize adap->params.sge
9228  *	@adapter: the adapter
9229  *
9230  *	Initialize various fields of the adapter's SGE Parameters structure.
9231  */
9232 int t4_init_sge_params(struct adapter *adapter)
9233 {
9234 	struct sge_params *sge_params = &adapter->params.sge;
9235 	u32 hps, qpp;
9236 	unsigned int s_hps, s_qpp;
9237 
9238 	/* Extract the SGE Page Size for our PF.
9239 	 */
9240 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9241 	s_hps = (HOSTPAGESIZEPF0_S +
9242 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9243 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9244 
9245 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9246 	 */
9247 	s_qpp = (QUEUESPERPAGEPF0_S +
9248 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9249 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9250 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9251 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9252 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9253 
9254 	return 0;
9255 }
9256 
9257 /**
9258  *      t4_init_tp_params - initialize adap->params.tp
9259  *      @adap: the adapter
9260  *      @sleep_ok: if true we may sleep while awaiting command completion
9261  *
9262  *      Initialize various fields of the adapter's TP Parameters structure.
9263  */
9264 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9265 {
9266 	int chan;
9267 	u32 v;
9268 
9269 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9270 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9271 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9272 
9273 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9274 	for (chan = 0; chan < NCHAN; chan++)
9275 		adap->params.tp.tx_modq[chan] = chan;
9276 
9277 	/* Cache the adapter's Compressed Filter Mode and global Incress
9278 	 * Configuration.
9279 	 */
9280 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9281 		       TP_VLAN_PRI_MAP_A, sleep_ok);
9282 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9283 		       TP_INGRESS_CONFIG_A, sleep_ok);
9284 
9285 	/* For T6, cache the adapter's compressed error vector
9286 	 * and passing outer header info for encapsulated packets.
9287 	 */
9288 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9289 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9290 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9291 	}
9292 
9293 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9294 	 * shift positions of several elements of the Compressed Filter Tuple
9295 	 * for this adapter which we need frequently ...
9296 	 */
9297 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9298 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9299 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9300 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9301 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9302 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9303 							       PROTOCOL_F);
9304 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9305 								ETHERTYPE_F);
9306 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9307 							       MACMATCH_F);
9308 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9309 								MPSHITTYPE_F);
9310 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9311 							   FRAGMENTATION_F);
9312 
9313 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9314 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9315 	 */
9316 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9317 		adap->params.tp.vnic_shift = -1;
9318 
9319 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9320 	adap->params.tp.hash_filter_mask = v;
9321 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9322 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9323 	return 0;
9324 }
9325 
9326 /**
9327  *      t4_filter_field_shift - calculate filter field shift
9328  *      @adap: the adapter
9329  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9330  *
9331  *      Return the shift position of a filter field within the Compressed
9332  *      Filter Tuple.  The filter field is specified via its selection bit
9333  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9334  */
9335 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9336 {
9337 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9338 	unsigned int sel;
9339 	int field_shift;
9340 
9341 	if ((filter_mode & filter_sel) == 0)
9342 		return -1;
9343 
9344 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9345 		switch (filter_mode & sel) {
9346 		case FCOE_F:
9347 			field_shift += FT_FCOE_W;
9348 			break;
9349 		case PORT_F:
9350 			field_shift += FT_PORT_W;
9351 			break;
9352 		case VNIC_ID_F:
9353 			field_shift += FT_VNIC_ID_W;
9354 			break;
9355 		case VLAN_F:
9356 			field_shift += FT_VLAN_W;
9357 			break;
9358 		case TOS_F:
9359 			field_shift += FT_TOS_W;
9360 			break;
9361 		case PROTOCOL_F:
9362 			field_shift += FT_PROTOCOL_W;
9363 			break;
9364 		case ETHERTYPE_F:
9365 			field_shift += FT_ETHERTYPE_W;
9366 			break;
9367 		case MACMATCH_F:
9368 			field_shift += FT_MACMATCH_W;
9369 			break;
9370 		case MPSHITTYPE_F:
9371 			field_shift += FT_MPSHITTYPE_W;
9372 			break;
9373 		case FRAGMENTATION_F:
9374 			field_shift += FT_FRAGMENTATION_W;
9375 			break;
9376 		}
9377 	}
9378 	return field_shift;
9379 }
9380 
9381 int t4_init_rss_mode(struct adapter *adap, int mbox)
9382 {
9383 	int i, ret;
9384 	struct fw_rss_vi_config_cmd rvc;
9385 
9386 	memset(&rvc, 0, sizeof(rvc));
9387 
9388 	for_each_port(adap, i) {
9389 		struct port_info *p = adap2pinfo(adap, i);
9390 
9391 		rvc.op_to_viid =
9392 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9393 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9394 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9395 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9396 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9397 		if (ret)
9398 			return ret;
9399 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9400 	}
9401 	return 0;
9402 }
9403 
9404 /**
9405  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9406  *	@pi: the port_info
9407  *	@mbox: mailbox to use for the FW command
9408  *	@port: physical port associated with the VI
9409  *	@pf: the PF owning the VI
9410  *	@vf: the VF owning the VI
9411  *	@mac: the MAC address of the VI
9412  *
9413  *	Allocates a virtual interface for the given physical port.  If @mac is
9414  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9415  *	@mac should be large enough to hold an Ethernet address.
9416  *	Returns < 0 on error.
9417  */
9418 int t4_init_portinfo(struct port_info *pi, int mbox,
9419 		     int port, int pf, int vf, u8 mac[])
9420 {
9421 	struct adapter *adapter = pi->adapter;
9422 	unsigned int fw_caps = adapter->params.fw_caps_support;
9423 	struct fw_port_cmd cmd;
9424 	unsigned int rss_size;
9425 	enum fw_port_type port_type;
9426 	int mdio_addr;
9427 	fw_port_cap32_t pcaps, acaps;
9428 	u8 vivld = 0, vin = 0;
9429 	int ret;
9430 
9431 	/* If we haven't yet determined whether we're talking to Firmware
9432 	 * which knows the new 32-bit Port Capabilities, it's time to find
9433 	 * out now.  This will also tell new Firmware to send us Port Status
9434 	 * Updates using the new 32-bit Port Capabilities version of the
9435 	 * Port Information message.
9436 	 */
9437 	if (fw_caps == FW_CAPS_UNKNOWN) {
9438 		u32 param, val;
9439 
9440 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9441 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9442 		val = 1;
9443 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9444 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9445 		adapter->params.fw_caps_support = fw_caps;
9446 	}
9447 
9448 	memset(&cmd, 0, sizeof(cmd));
9449 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9450 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9451 				       FW_PORT_CMD_PORTID_V(port));
9452 	cmd.action_to_len16 = cpu_to_be32(
9453 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9454 				     ? FW_PORT_ACTION_GET_PORT_INFO
9455 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9456 		FW_LEN16(cmd));
9457 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9458 	if (ret)
9459 		return ret;
9460 
9461 	/* Extract the various fields from the Port Information message.
9462 	 */
9463 	if (fw_caps == FW_CAPS16) {
9464 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9465 
9466 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9467 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9468 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9469 			     : -1);
9470 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9471 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9472 	} else {
9473 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9474 
9475 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9476 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9477 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9478 			     : -1);
9479 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9480 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9481 	}
9482 
9483 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9484 			  &vivld, &vin);
9485 	if (ret < 0)
9486 		return ret;
9487 
9488 	pi->viid = ret;
9489 	pi->tx_chan = port;
9490 	pi->lport = port;
9491 	pi->rss_size = rss_size;
9492 
9493 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9494 	 * save the returned values.
9495 	 */
9496 	if (adapter->params.viid_smt_extn_support) {
9497 		pi->vivld = vivld;
9498 		pi->vin = vin;
9499 	} else {
9500 		/* Retrieve the values from VIID */
9501 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9502 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9503 	}
9504 
9505 	pi->port_type = port_type;
9506 	pi->mdio_addr = mdio_addr;
9507 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9508 
9509 	init_link_config(&pi->link_cfg, pcaps, acaps);
9510 	return 0;
9511 }
9512 
9513 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9514 {
9515 	u8 addr[6];
9516 	int ret, i, j = 0;
9517 
9518 	for_each_port(adap, i) {
9519 		struct port_info *pi = adap2pinfo(adap, i);
9520 
9521 		while ((adap->params.portvec & (1 << j)) == 0)
9522 			j++;
9523 
9524 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9525 		if (ret)
9526 			return ret;
9527 
9528 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9529 		j++;
9530 	}
9531 	return 0;
9532 }
9533 
9534 /**
9535  *	t4_read_cimq_cfg - read CIM queue configuration
9536  *	@adap: the adapter
9537  *	@base: holds the queue base addresses in bytes
9538  *	@size: holds the queue sizes in bytes
9539  *	@thres: holds the queue full thresholds in bytes
9540  *
9541  *	Returns the current configuration of the CIM queues, starting with
9542  *	the IBQs, then the OBQs.
9543  */
9544 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9545 {
9546 	unsigned int i, v;
9547 	int cim_num_obq = is_t4(adap->params.chip) ?
9548 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9549 
9550 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9551 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9552 			     QUENUMSELECT_V(i));
9553 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9554 		/* value is in 256-byte units */
9555 		*base++ = CIMQBASE_G(v) * 256;
9556 		*size++ = CIMQSIZE_G(v) * 256;
9557 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9558 	}
9559 	for (i = 0; i < cim_num_obq; i++) {
9560 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9561 			     QUENUMSELECT_V(i));
9562 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9563 		/* value is in 256-byte units */
9564 		*base++ = CIMQBASE_G(v) * 256;
9565 		*size++ = CIMQSIZE_G(v) * 256;
9566 	}
9567 }
9568 
9569 /**
9570  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9571  *	@adap: the adapter
9572  *	@qid: the queue index
9573  *	@data: where to store the queue contents
9574  *	@n: capacity of @data in 32-bit words
9575  *
9576  *	Reads the contents of the selected CIM queue starting at address 0 up
9577  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9578  *	error and the number of 32-bit words actually read on success.
9579  */
9580 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9581 {
9582 	int i, err, attempts;
9583 	unsigned int addr;
9584 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9585 
9586 	if (qid > 5 || (n & 3))
9587 		return -EINVAL;
9588 
9589 	addr = qid * nwords;
9590 	if (n > nwords)
9591 		n = nwords;
9592 
9593 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9594 	 * Wait for 1 Sec with a delay of 1 usec.
9595 	 */
9596 	attempts = 1000000;
9597 
9598 	for (i = 0; i < n; i++, addr++) {
9599 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9600 			     IBQDBGEN_F);
9601 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9602 				      attempts, 1);
9603 		if (err)
9604 			return err;
9605 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9606 	}
9607 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9608 	return i;
9609 }
9610 
9611 /**
9612  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9613  *	@adap: the adapter
9614  *	@qid: the queue index
9615  *	@data: where to store the queue contents
9616  *	@n: capacity of @data in 32-bit words
9617  *
9618  *	Reads the contents of the selected CIM queue starting at address 0 up
9619  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9620  *	error and the number of 32-bit words actually read on success.
9621  */
9622 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9623 {
9624 	int i, err;
9625 	unsigned int addr, v, nwords;
9626 	int cim_num_obq = is_t4(adap->params.chip) ?
9627 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9628 
9629 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9630 		return -EINVAL;
9631 
9632 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9633 		     QUENUMSELECT_V(qid));
9634 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9635 
9636 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9637 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9638 	if (n > nwords)
9639 		n = nwords;
9640 
9641 	for (i = 0; i < n; i++, addr++) {
9642 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9643 			     OBQDBGEN_F);
9644 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9645 				      2, 1);
9646 		if (err)
9647 			return err;
9648 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9649 	}
9650 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9651 	return i;
9652 }
9653 
9654 /**
9655  *	t4_cim_read - read a block from CIM internal address space
9656  *	@adap: the adapter
9657  *	@addr: the start address within the CIM address space
9658  *	@n: number of words to read
9659  *	@valp: where to store the result
9660  *
9661  *	Reads a block of 4-byte words from the CIM intenal address space.
9662  */
9663 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9664 		unsigned int *valp)
9665 {
9666 	int ret = 0;
9667 
9668 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9669 		return -EBUSY;
9670 
9671 	for ( ; !ret && n--; addr += 4) {
9672 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9673 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9674 				      0, 5, 2);
9675 		if (!ret)
9676 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9677 	}
9678 	return ret;
9679 }
9680 
9681 /**
9682  *	t4_cim_write - write a block into CIM internal address space
9683  *	@adap: the adapter
9684  *	@addr: the start address within the CIM address space
9685  *	@n: number of words to write
9686  *	@valp: set of values to write
9687  *
9688  *	Writes a block of 4-byte words into the CIM intenal address space.
9689  */
9690 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9691 		 const unsigned int *valp)
9692 {
9693 	int ret = 0;
9694 
9695 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9696 		return -EBUSY;
9697 
9698 	for ( ; !ret && n--; addr += 4) {
9699 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9700 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9701 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9702 				      0, 5, 2);
9703 	}
9704 	return ret;
9705 }
9706 
9707 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9708 			 unsigned int val)
9709 {
9710 	return t4_cim_write(adap, addr, 1, &val);
9711 }
9712 
9713 /**
9714  *	t4_cim_read_la - read CIM LA capture buffer
9715  *	@adap: the adapter
9716  *	@la_buf: where to store the LA data
9717  *	@wrptr: the HW write pointer within the capture buffer
9718  *
9719  *	Reads the contents of the CIM LA buffer with the most recent entry at
9720  *	the end	of the returned data and with the entry at @wrptr first.
9721  *	We try to leave the LA in the running state we find it in.
9722  */
9723 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9724 {
9725 	int i, ret;
9726 	unsigned int cfg, val, idx;
9727 
9728 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9729 	if (ret)
9730 		return ret;
9731 
9732 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9733 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9734 		if (ret)
9735 			return ret;
9736 	}
9737 
9738 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9739 	if (ret)
9740 		goto restart;
9741 
9742 	idx = UPDBGLAWRPTR_G(val);
9743 	if (wrptr)
9744 		*wrptr = idx;
9745 
9746 	for (i = 0; i < adap->params.cim_la_size; i++) {
9747 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9748 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9749 		if (ret)
9750 			break;
9751 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9752 		if (ret)
9753 			break;
9754 		if (val & UPDBGLARDEN_F) {
9755 			ret = -ETIMEDOUT;
9756 			break;
9757 		}
9758 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9759 		if (ret)
9760 			break;
9761 
9762 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9763 		 * identify the 32-bit portion of the full 312-bit data
9764 		 */
9765 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9766 			idx = (idx & 0xff0) + 0x10;
9767 		else
9768 			idx++;
9769 		/* address can't exceed 0xfff */
9770 		idx &= UPDBGLARDPTR_M;
9771 	}
9772 restart:
9773 	if (cfg & UPDBGLAEN_F) {
9774 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9775 				      cfg & ~UPDBGLARDEN_F);
9776 		if (!ret)
9777 			ret = r;
9778 	}
9779 	return ret;
9780 }
9781 
9782 /**
9783  *	t4_tp_read_la - read TP LA capture buffer
9784  *	@adap: the adapter
9785  *	@la_buf: where to store the LA data
9786  *	@wrptr: the HW write pointer within the capture buffer
9787  *
9788  *	Reads the contents of the TP LA buffer with the most recent entry at
9789  *	the end	of the returned data and with the entry at @wrptr first.
9790  *	We leave the LA in the running state we find it in.
9791  */
9792 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9793 {
9794 	bool last_incomplete;
9795 	unsigned int i, cfg, val, idx;
9796 
9797 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9798 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9799 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9800 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9801 
9802 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9803 	idx = DBGLAWPTR_G(val);
9804 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9805 	if (last_incomplete)
9806 		idx = (idx + 1) & DBGLARPTR_M;
9807 	if (wrptr)
9808 		*wrptr = idx;
9809 
9810 	val &= 0xffff;
9811 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9812 	val |= adap->params.tp.la_mask;
9813 
9814 	for (i = 0; i < TPLA_SIZE; i++) {
9815 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9816 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9817 		idx = (idx + 1) & DBGLARPTR_M;
9818 	}
9819 
9820 	/* Wipe out last entry if it isn't valid */
9821 	if (last_incomplete)
9822 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9823 
9824 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9825 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9826 			     cfg | adap->params.tp.la_mask);
9827 }
9828 
9829 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9830  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9831  * state for more than the Warning Threshold then we'll issue a warning about
9832  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9833  * appears to be hung every Warning Repeat second till the situation clears.
9834  * If the situation clears, we'll note that as well.
9835  */
9836 #define SGE_IDMA_WARN_THRESH 1
9837 #define SGE_IDMA_WARN_REPEAT 300
9838 
9839 /**
9840  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9841  *	@adapter: the adapter
9842  *	@idma: the adapter IDMA Monitor state
9843  *
9844  *	Initialize the state of an SGE Ingress DMA Monitor.
9845  */
9846 void t4_idma_monitor_init(struct adapter *adapter,
9847 			  struct sge_idma_monitor_state *idma)
9848 {
9849 	/* Initialize the state variables for detecting an SGE Ingress DMA
9850 	 * hang.  The SGE has internal counters which count up on each clock
9851 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9852 	 * same state they were on the previous clock tick.  The clock used is
9853 	 * the Core Clock so we have a limit on the maximum "time" they can
9854 	 * record; typically a very small number of seconds.  For instance,
9855 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9856 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9857 	 * risk of having the "timers" overflow and give us the flexibility to
9858 	 * maintain a Hung SGE State Machine of our own which operates across
9859 	 * a longer time frame.
9860 	 */
9861 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9862 	idma->idma_stalled[0] = 0;
9863 	idma->idma_stalled[1] = 0;
9864 }
9865 
9866 /**
9867  *	t4_idma_monitor - monitor SGE Ingress DMA state
9868  *	@adapter: the adapter
9869  *	@idma: the adapter IDMA Monitor state
9870  *	@hz: number of ticks/second
9871  *	@ticks: number of ticks since the last IDMA Monitor call
9872  */
9873 void t4_idma_monitor(struct adapter *adapter,
9874 		     struct sge_idma_monitor_state *idma,
9875 		     int hz, int ticks)
9876 {
9877 	int i, idma_same_state_cnt[2];
9878 
9879 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9880 	  * are counters inside the SGE which count up on each clock when the
9881 	  * SGE finds its Ingress DMA State Engines in the same states they
9882 	  * were in the previous clock.  The counters will peg out at
9883 	  * 0xffffffff without wrapping around so once they pass the 1s
9884 	  * threshold they'll stay above that till the IDMA state changes.
9885 	  */
9886 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9887 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9888 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9889 
9890 	for (i = 0; i < 2; i++) {
9891 		u32 debug0, debug11;
9892 
9893 		/* If the Ingress DMA Same State Counter ("timer") is less
9894 		 * than 1s, then we can reset our synthesized Stall Timer and
9895 		 * continue.  If we have previously emitted warnings about a
9896 		 * potential stalled Ingress Queue, issue a note indicating
9897 		 * that the Ingress Queue has resumed forward progress.
9898 		 */
9899 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9900 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9901 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9902 					 "resumed after %d seconds\n",
9903 					 i, idma->idma_qid[i],
9904 					 idma->idma_stalled[i] / hz);
9905 			idma->idma_stalled[i] = 0;
9906 			continue;
9907 		}
9908 
9909 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9910 		 * domain.  The first time we get here it'll be because we
9911 		 * passed the 1s Threshold; each additional time it'll be
9912 		 * because the RX Timer Callback is being fired on its regular
9913 		 * schedule.
9914 		 *
9915 		 * If the stall is below our Potential Hung Ingress Queue
9916 		 * Warning Threshold, continue.
9917 		 */
9918 		if (idma->idma_stalled[i] == 0) {
9919 			idma->idma_stalled[i] = hz;
9920 			idma->idma_warn[i] = 0;
9921 		} else {
9922 			idma->idma_stalled[i] += ticks;
9923 			idma->idma_warn[i] -= ticks;
9924 		}
9925 
9926 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9927 			continue;
9928 
9929 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9930 		 */
9931 		if (idma->idma_warn[i] > 0)
9932 			continue;
9933 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9934 
9935 		/* Read and save the SGE IDMA State and Queue ID information.
9936 		 * We do this every time in case it changes across time ...
9937 		 * can't be too careful ...
9938 		 */
9939 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9940 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9941 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9942 
9943 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9944 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9945 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9946 
9947 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9948 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9949 			 i, idma->idma_qid[i], idma->idma_state[i],
9950 			 idma->idma_stalled[i] / hz,
9951 			 debug0, debug11);
9952 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9953 	}
9954 }
9955 
9956 /**
9957  *	t4_load_cfg - download config file
9958  *	@adap: the adapter
9959  *	@cfg_data: the cfg text file to write
9960  *	@size: text file size
9961  *
9962  *	Write the supplied config text file to the card's serial flash.
9963  */
9964 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9965 {
9966 	int ret, i, n, cfg_addr;
9967 	unsigned int addr;
9968 	unsigned int flash_cfg_start_sec;
9969 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9970 
9971 	cfg_addr = t4_flash_cfg_addr(adap);
9972 	if (cfg_addr < 0)
9973 		return cfg_addr;
9974 
9975 	addr = cfg_addr;
9976 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9977 
9978 	if (size > FLASH_CFG_MAX_SIZE) {
9979 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9980 			FLASH_CFG_MAX_SIZE);
9981 		return -EFBIG;
9982 	}
9983 
9984 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9985 			 sf_sec_size);
9986 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9987 				     flash_cfg_start_sec + i - 1);
9988 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9989 	 * with the on-adapter Firmware Configuration File.
9990 	 */
9991 	if (ret || size == 0)
9992 		goto out;
9993 
9994 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9995 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9996 		if ((size - i) <  SF_PAGE_SIZE)
9997 			n = size - i;
9998 		else
9999 			n = SF_PAGE_SIZE;
10000 		ret = t4_write_flash(adap, addr, n, cfg_data);
10001 		if (ret)
10002 			goto out;
10003 
10004 		addr += SF_PAGE_SIZE;
10005 		cfg_data += SF_PAGE_SIZE;
10006 	}
10007 
10008 out:
10009 	if (ret)
10010 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10011 			(size == 0 ? "clear" : "download"), ret);
10012 	return ret;
10013 }
10014 
10015 /**
10016  *	t4_set_vf_mac - Set MAC address for the specified VF
10017  *	@adapter: The adapter
10018  *	@vf: one of the VFs instantiated by the specified PF
10019  *	@naddr: the number of MAC addresses
10020  *	@addr: the MAC address(es) to be set to the specified VF
10021  */
10022 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10023 		      unsigned int naddr, u8 *addr)
10024 {
10025 	struct fw_acl_mac_cmd cmd;
10026 
10027 	memset(&cmd, 0, sizeof(cmd));
10028 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10029 				    FW_CMD_REQUEST_F |
10030 				    FW_CMD_WRITE_F |
10031 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10032 				    FW_ACL_MAC_CMD_VFN_V(vf));
10033 
10034 	/* Note: Do not enable the ACL */
10035 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10036 	cmd.nmac = naddr;
10037 
10038 	switch (adapter->pf) {
10039 	case 3:
10040 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10041 		break;
10042 	case 2:
10043 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10044 		break;
10045 	case 1:
10046 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10047 		break;
10048 	case 0:
10049 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10050 		break;
10051 	}
10052 
10053 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10054 }
10055 
10056 /**
10057  * t4_read_pace_tbl - read the pace table
10058  * @adap: the adapter
10059  * @pace_vals: holds the returned values
10060  *
10061  * Returns the values of TP's pace table in microseconds.
10062  */
10063 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10064 {
10065 	unsigned int i, v;
10066 
10067 	for (i = 0; i < NTX_SCHED; i++) {
10068 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10069 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10070 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10071 	}
10072 }
10073 
10074 /**
10075  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10076  * @adap: the adapter
10077  * @sched: the scheduler index
10078  * @kbps: the byte rate in Kbps
10079  * @ipg: the interpacket delay in tenths of nanoseconds
10080  * @sleep_ok: if true we may sleep while awaiting command completion
10081  *
10082  * Return the current configuration of a HW Tx scheduler.
10083  */
10084 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10085 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10086 {
10087 	unsigned int v, addr, bpt, cpt;
10088 
10089 	if (kbps) {
10090 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10091 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10092 		if (sched & 1)
10093 			v >>= 16;
10094 		bpt = (v >> 8) & 0xff;
10095 		cpt = v & 0xff;
10096 		if (!cpt) {
10097 			*kbps = 0;	/* scheduler disabled */
10098 		} else {
10099 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10100 			*kbps = (v * bpt) / 125;
10101 		}
10102 	}
10103 	if (ipg) {
10104 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10105 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10106 		if (sched & 1)
10107 			v >>= 16;
10108 		v &= 0xffff;
10109 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10110 	}
10111 }
10112 
10113 /* t4_sge_ctxt_rd - read an SGE context through FW
10114  * @adap: the adapter
10115  * @mbox: mailbox to use for the FW command
10116  * @cid: the context id
10117  * @ctype: the context type
10118  * @data: where to store the context data
10119  *
10120  * Issues a FW command through the given mailbox to read an SGE context.
10121  */
10122 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10123 		   enum ctxt_type ctype, u32 *data)
10124 {
10125 	struct fw_ldst_cmd c;
10126 	int ret;
10127 
10128 	if (ctype == CTXT_FLM)
10129 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10130 	else
10131 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10132 
10133 	memset(&c, 0, sizeof(c));
10134 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10135 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10136 					FW_LDST_CMD_ADDRSPACE_V(ret));
10137 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10138 	c.u.idctxt.physid = cpu_to_be32(cid);
10139 
10140 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10141 	if (ret == 0) {
10142 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10143 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10144 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10145 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10146 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10147 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10148 	}
10149 	return ret;
10150 }
10151 
10152 /**
10153  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10154  * @adap: the adapter
10155  * @cid: the context id
10156  * @ctype: the context type
10157  * @data: where to store the context data
10158  *
10159  * Reads an SGE context directly, bypassing FW.  This is only for
10160  * debugging when FW is unavailable.
10161  */
10162 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10163 		      enum ctxt_type ctype, u32 *data)
10164 {
10165 	int i, ret;
10166 
10167 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10168 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10169 	if (!ret)
10170 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10171 			*data++ = t4_read_reg(adap, i);
10172 	return ret;
10173 }
10174 
10175 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10176 		    int rateunit, int ratemode, int channel, int class,
10177 		    int minrate, int maxrate, int weight, int pktsize)
10178 {
10179 	struct fw_sched_cmd cmd;
10180 
10181 	memset(&cmd, 0, sizeof(cmd));
10182 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10183 				      FW_CMD_REQUEST_F |
10184 				      FW_CMD_WRITE_F);
10185 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10186 
10187 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10188 	cmd.u.params.type = type;
10189 	cmd.u.params.level = level;
10190 	cmd.u.params.mode = mode;
10191 	cmd.u.params.ch = channel;
10192 	cmd.u.params.cl = class;
10193 	cmd.u.params.unit = rateunit;
10194 	cmd.u.params.rate = ratemode;
10195 	cmd.u.params.min = cpu_to_be32(minrate);
10196 	cmd.u.params.max = cpu_to_be32(maxrate);
10197 	cmd.u.params.weight = cpu_to_be16(weight);
10198 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10199 
10200 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10201 			       NULL, 1);
10202 }
10203 
10204 /**
10205  *	t4_i2c_rd - read I2C data from adapter
10206  *	@adap: the adapter
10207  *	@port: Port number if per-port device; <0 if not
10208  *	@devid: per-port device ID or absolute device ID
10209  *	@offset: byte offset into device I2C space
10210  *	@len: byte length of I2C space data
10211  *	@buf: buffer in which to return I2C data
10212  *
10213  *	Reads the I2C data from the indicated device and location.
10214  */
10215 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10216 	      unsigned int devid, unsigned int offset,
10217 	      unsigned int len, u8 *buf)
10218 {
10219 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10220 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10221 	int ret = 0;
10222 
10223 	if (len > I2C_PAGE_SIZE)
10224 		return -EINVAL;
10225 
10226 	/* Dont allow reads that spans multiple pages */
10227 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10228 		return -EINVAL;
10229 
10230 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10231 	ldst_cmd.op_to_addrspace =
10232 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10233 			    FW_CMD_REQUEST_F |
10234 			    FW_CMD_READ_F |
10235 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10236 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10237 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10238 	ldst_cmd.u.i2c.did = devid;
10239 
10240 	while (len > 0) {
10241 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10242 
10243 		ldst_cmd.u.i2c.boffset = offset;
10244 		ldst_cmd.u.i2c.blen = i2c_len;
10245 
10246 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10247 				 &ldst_rpl);
10248 		if (ret)
10249 			break;
10250 
10251 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10252 		offset += i2c_len;
10253 		buf += i2c_len;
10254 		len -= i2c_len;
10255 	}
10256 
10257 	return ret;
10258 }
10259 
10260 /**
10261  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10262  *      @adapter: the adapter
10263  *      @mbox: mailbox to use for the FW command
10264  *      @vf: one of the VFs instantiated by the specified PF
10265  *      @vlan: The vlanid to be set
10266  */
10267 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10268 		    u16 vlan)
10269 {
10270 	struct fw_acl_vlan_cmd vlan_cmd;
10271 	unsigned int enable;
10272 
10273 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10274 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10275 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10276 					 FW_CMD_REQUEST_F |
10277 					 FW_CMD_WRITE_F |
10278 					 FW_CMD_EXEC_F |
10279 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10280 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10281 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10282 	/* Drop all packets that donot match vlan id */
10283 	vlan_cmd.dropnovlan_fm = (enable
10284 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10285 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10286 	if (enable != 0) {
10287 		vlan_cmd.nvlan = 1;
10288 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10289 	}
10290 
10291 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10292 }
10293