1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rearely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boudaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9820, 0x983c, 1383 0x9850, 0x9864, 1384 0x9c00, 0x9c6c, 1385 0x9c80, 0x9cec, 1386 0x9d00, 0x9d6c, 1387 0x9d80, 0x9dec, 1388 0x9e00, 0x9e6c, 1389 0x9e80, 0x9eec, 1390 0x9f00, 0x9f6c, 1391 0x9f80, 0xa020, 1392 0xd004, 0xd004, 1393 0xd010, 0xd03c, 1394 0xdfc0, 0xdfe0, 1395 0xe000, 0x1106c, 1396 0x11074, 0x11088, 1397 0x1109c, 0x1117c, 1398 0x11190, 0x11204, 1399 0x19040, 0x1906c, 1400 0x19078, 0x19080, 1401 0x1908c, 0x190e8, 1402 0x190f0, 0x190f8, 1403 0x19100, 0x19110, 1404 0x19120, 0x19124, 1405 0x19150, 0x19194, 1406 0x1919c, 0x191b0, 1407 0x191d0, 0x191e8, 1408 0x19238, 0x19290, 1409 0x193f8, 0x19428, 1410 0x19430, 0x19444, 1411 0x1944c, 0x1946c, 1412 0x19474, 0x19474, 1413 0x19490, 0x194cc, 1414 0x194f0, 0x194f8, 1415 0x19c00, 0x19c08, 1416 0x19c10, 0x19c60, 1417 0x19c94, 0x19ce4, 1418 0x19cf0, 0x19d40, 1419 0x19d50, 0x19d94, 1420 0x19da0, 0x19de8, 1421 0x19df0, 0x19e10, 1422 0x19e50, 0x19e90, 1423 0x19ea0, 0x19f24, 1424 0x19f34, 0x19f34, 1425 0x19f40, 0x19f50, 1426 0x19f90, 0x19fb4, 1427 0x19fc4, 0x19fe4, 1428 0x1a000, 0x1a004, 1429 0x1a010, 0x1a06c, 1430 0x1a0b0, 0x1a0e4, 1431 0x1a0ec, 0x1a0f8, 1432 0x1a100, 0x1a108, 1433 0x1a114, 0x1a120, 1434 0x1a128, 0x1a130, 1435 0x1a138, 0x1a138, 1436 0x1a190, 0x1a1c4, 1437 0x1a1fc, 0x1a1fc, 1438 0x1e008, 0x1e00c, 1439 0x1e040, 0x1e044, 1440 0x1e04c, 0x1e04c, 1441 0x1e284, 0x1e290, 1442 0x1e2c0, 0x1e2c0, 1443 0x1e2e0, 0x1e2e0, 1444 0x1e300, 0x1e384, 1445 0x1e3c0, 0x1e3c8, 1446 0x1e408, 0x1e40c, 1447 0x1e440, 0x1e444, 1448 0x1e44c, 0x1e44c, 1449 0x1e684, 0x1e690, 1450 0x1e6c0, 0x1e6c0, 1451 0x1e6e0, 0x1e6e0, 1452 0x1e700, 0x1e784, 1453 0x1e7c0, 0x1e7c8, 1454 0x1e808, 0x1e80c, 1455 0x1e840, 0x1e844, 1456 0x1e84c, 0x1e84c, 1457 0x1ea84, 0x1ea90, 1458 0x1eac0, 0x1eac0, 1459 0x1eae0, 0x1eae0, 1460 0x1eb00, 0x1eb84, 1461 0x1ebc0, 0x1ebc8, 1462 0x1ec08, 0x1ec0c, 1463 0x1ec40, 0x1ec44, 1464 0x1ec4c, 0x1ec4c, 1465 0x1ee84, 0x1ee90, 1466 0x1eec0, 0x1eec0, 1467 0x1eee0, 0x1eee0, 1468 0x1ef00, 0x1ef84, 1469 0x1efc0, 0x1efc8, 1470 0x1f008, 0x1f00c, 1471 0x1f040, 0x1f044, 1472 0x1f04c, 0x1f04c, 1473 0x1f284, 0x1f290, 1474 0x1f2c0, 0x1f2c0, 1475 0x1f2e0, 0x1f2e0, 1476 0x1f300, 0x1f384, 1477 0x1f3c0, 0x1f3c8, 1478 0x1f408, 0x1f40c, 1479 0x1f440, 0x1f444, 1480 0x1f44c, 0x1f44c, 1481 0x1f684, 0x1f690, 1482 0x1f6c0, 0x1f6c0, 1483 0x1f6e0, 0x1f6e0, 1484 0x1f700, 0x1f784, 1485 0x1f7c0, 0x1f7c8, 1486 0x1f808, 0x1f80c, 1487 0x1f840, 0x1f844, 1488 0x1f84c, 0x1f84c, 1489 0x1fa84, 0x1fa90, 1490 0x1fac0, 0x1fac0, 1491 0x1fae0, 0x1fae0, 1492 0x1fb00, 0x1fb84, 1493 0x1fbc0, 0x1fbc8, 1494 0x1fc08, 0x1fc0c, 1495 0x1fc40, 0x1fc44, 1496 0x1fc4c, 0x1fc4c, 1497 0x1fe84, 0x1fe90, 1498 0x1fec0, 0x1fec0, 1499 0x1fee0, 0x1fee0, 1500 0x1ff00, 0x1ff84, 1501 0x1ffc0, 0x1ffc8, 1502 0x30000, 0x30030, 1503 0x30100, 0x30144, 1504 0x30190, 0x301a0, 1505 0x301a8, 0x301b8, 1506 0x301c4, 0x301c8, 1507 0x301d0, 0x301d0, 1508 0x30200, 0x30318, 1509 0x30400, 0x304b4, 1510 0x304c0, 0x3052c, 1511 0x30540, 0x3061c, 1512 0x30800, 0x30828, 1513 0x30834, 0x30834, 1514 0x308c0, 0x30908, 1515 0x30910, 0x309ac, 1516 0x30a00, 0x30a14, 1517 0x30a1c, 0x30a2c, 1518 0x30a44, 0x30a50, 1519 0x30a74, 0x30a74, 1520 0x30a7c, 0x30afc, 1521 0x30b08, 0x30c24, 1522 0x30d00, 0x30d00, 1523 0x30d08, 0x30d14, 1524 0x30d1c, 0x30d20, 1525 0x30d3c, 0x30d3c, 1526 0x30d48, 0x30d50, 1527 0x31200, 0x3120c, 1528 0x31220, 0x31220, 1529 0x31240, 0x31240, 1530 0x31600, 0x3160c, 1531 0x31a00, 0x31a1c, 1532 0x31e00, 0x31e20, 1533 0x31e38, 0x31e3c, 1534 0x31e80, 0x31e80, 1535 0x31e88, 0x31ea8, 1536 0x31eb0, 0x31eb4, 1537 0x31ec8, 0x31ed4, 1538 0x31fb8, 0x32004, 1539 0x32200, 0x32200, 1540 0x32208, 0x32240, 1541 0x32248, 0x32280, 1542 0x32288, 0x322c0, 1543 0x322c8, 0x322fc, 1544 0x32600, 0x32630, 1545 0x32a00, 0x32abc, 1546 0x32b00, 0x32b10, 1547 0x32b20, 0x32b30, 1548 0x32b40, 0x32b50, 1549 0x32b60, 0x32b70, 1550 0x33000, 0x33028, 1551 0x33030, 0x33048, 1552 0x33060, 0x33068, 1553 0x33070, 0x3309c, 1554 0x330f0, 0x33128, 1555 0x33130, 0x33148, 1556 0x33160, 0x33168, 1557 0x33170, 0x3319c, 1558 0x331f0, 0x33238, 1559 0x33240, 0x33240, 1560 0x33248, 0x33250, 1561 0x3325c, 0x33264, 1562 0x33270, 0x332b8, 1563 0x332c0, 0x332e4, 1564 0x332f8, 0x33338, 1565 0x33340, 0x33340, 1566 0x33348, 0x33350, 1567 0x3335c, 0x33364, 1568 0x33370, 0x333b8, 1569 0x333c0, 0x333e4, 1570 0x333f8, 0x33428, 1571 0x33430, 0x33448, 1572 0x33460, 0x33468, 1573 0x33470, 0x3349c, 1574 0x334f0, 0x33528, 1575 0x33530, 0x33548, 1576 0x33560, 0x33568, 1577 0x33570, 0x3359c, 1578 0x335f0, 0x33638, 1579 0x33640, 0x33640, 1580 0x33648, 0x33650, 1581 0x3365c, 0x33664, 1582 0x33670, 0x336b8, 1583 0x336c0, 0x336e4, 1584 0x336f8, 0x33738, 1585 0x33740, 0x33740, 1586 0x33748, 0x33750, 1587 0x3375c, 0x33764, 1588 0x33770, 0x337b8, 1589 0x337c0, 0x337e4, 1590 0x337f8, 0x337fc, 1591 0x33814, 0x33814, 1592 0x3382c, 0x3382c, 1593 0x33880, 0x3388c, 1594 0x338e8, 0x338ec, 1595 0x33900, 0x33928, 1596 0x33930, 0x33948, 1597 0x33960, 0x33968, 1598 0x33970, 0x3399c, 1599 0x339f0, 0x33a38, 1600 0x33a40, 0x33a40, 1601 0x33a48, 0x33a50, 1602 0x33a5c, 0x33a64, 1603 0x33a70, 0x33ab8, 1604 0x33ac0, 0x33ae4, 1605 0x33af8, 0x33b10, 1606 0x33b28, 0x33b28, 1607 0x33b3c, 0x33b50, 1608 0x33bf0, 0x33c10, 1609 0x33c28, 0x33c28, 1610 0x33c3c, 0x33c50, 1611 0x33cf0, 0x33cfc, 1612 0x34000, 0x34030, 1613 0x34100, 0x34144, 1614 0x34190, 0x341a0, 1615 0x341a8, 0x341b8, 1616 0x341c4, 0x341c8, 1617 0x341d0, 0x341d0, 1618 0x34200, 0x34318, 1619 0x34400, 0x344b4, 1620 0x344c0, 0x3452c, 1621 0x34540, 0x3461c, 1622 0x34800, 0x34828, 1623 0x34834, 0x34834, 1624 0x348c0, 0x34908, 1625 0x34910, 0x349ac, 1626 0x34a00, 0x34a14, 1627 0x34a1c, 0x34a2c, 1628 0x34a44, 0x34a50, 1629 0x34a74, 0x34a74, 1630 0x34a7c, 0x34afc, 1631 0x34b08, 0x34c24, 1632 0x34d00, 0x34d00, 1633 0x34d08, 0x34d14, 1634 0x34d1c, 0x34d20, 1635 0x34d3c, 0x34d3c, 1636 0x34d48, 0x34d50, 1637 0x35200, 0x3520c, 1638 0x35220, 0x35220, 1639 0x35240, 0x35240, 1640 0x35600, 0x3560c, 1641 0x35a00, 0x35a1c, 1642 0x35e00, 0x35e20, 1643 0x35e38, 0x35e3c, 1644 0x35e80, 0x35e80, 1645 0x35e88, 0x35ea8, 1646 0x35eb0, 0x35eb4, 1647 0x35ec8, 0x35ed4, 1648 0x35fb8, 0x36004, 1649 0x36200, 0x36200, 1650 0x36208, 0x36240, 1651 0x36248, 0x36280, 1652 0x36288, 0x362c0, 1653 0x362c8, 0x362fc, 1654 0x36600, 0x36630, 1655 0x36a00, 0x36abc, 1656 0x36b00, 0x36b10, 1657 0x36b20, 0x36b30, 1658 0x36b40, 0x36b50, 1659 0x36b60, 0x36b70, 1660 0x37000, 0x37028, 1661 0x37030, 0x37048, 1662 0x37060, 0x37068, 1663 0x37070, 0x3709c, 1664 0x370f0, 0x37128, 1665 0x37130, 0x37148, 1666 0x37160, 0x37168, 1667 0x37170, 0x3719c, 1668 0x371f0, 0x37238, 1669 0x37240, 0x37240, 1670 0x37248, 0x37250, 1671 0x3725c, 0x37264, 1672 0x37270, 0x372b8, 1673 0x372c0, 0x372e4, 1674 0x372f8, 0x37338, 1675 0x37340, 0x37340, 1676 0x37348, 0x37350, 1677 0x3735c, 0x37364, 1678 0x37370, 0x373b8, 1679 0x373c0, 0x373e4, 1680 0x373f8, 0x37428, 1681 0x37430, 0x37448, 1682 0x37460, 0x37468, 1683 0x37470, 0x3749c, 1684 0x374f0, 0x37528, 1685 0x37530, 0x37548, 1686 0x37560, 0x37568, 1687 0x37570, 0x3759c, 1688 0x375f0, 0x37638, 1689 0x37640, 0x37640, 1690 0x37648, 0x37650, 1691 0x3765c, 0x37664, 1692 0x37670, 0x376b8, 1693 0x376c0, 0x376e4, 1694 0x376f8, 0x37738, 1695 0x37740, 0x37740, 1696 0x37748, 0x37750, 1697 0x3775c, 0x37764, 1698 0x37770, 0x377b8, 1699 0x377c0, 0x377e4, 1700 0x377f8, 0x377fc, 1701 0x37814, 0x37814, 1702 0x3782c, 0x3782c, 1703 0x37880, 0x3788c, 1704 0x378e8, 0x378ec, 1705 0x37900, 0x37928, 1706 0x37930, 0x37948, 1707 0x37960, 0x37968, 1708 0x37970, 0x3799c, 1709 0x379f0, 0x37a38, 1710 0x37a40, 0x37a40, 1711 0x37a48, 0x37a50, 1712 0x37a5c, 0x37a64, 1713 0x37a70, 0x37ab8, 1714 0x37ac0, 0x37ae4, 1715 0x37af8, 0x37b10, 1716 0x37b28, 0x37b28, 1717 0x37b3c, 0x37b50, 1718 0x37bf0, 0x37c10, 1719 0x37c28, 0x37c28, 1720 0x37c3c, 0x37c50, 1721 0x37cf0, 0x37cfc, 1722 0x38000, 0x38030, 1723 0x38100, 0x38144, 1724 0x38190, 0x381a0, 1725 0x381a8, 0x381b8, 1726 0x381c4, 0x381c8, 1727 0x381d0, 0x381d0, 1728 0x38200, 0x38318, 1729 0x38400, 0x384b4, 1730 0x384c0, 0x3852c, 1731 0x38540, 0x3861c, 1732 0x38800, 0x38828, 1733 0x38834, 0x38834, 1734 0x388c0, 0x38908, 1735 0x38910, 0x389ac, 1736 0x38a00, 0x38a14, 1737 0x38a1c, 0x38a2c, 1738 0x38a44, 0x38a50, 1739 0x38a74, 0x38a74, 1740 0x38a7c, 0x38afc, 1741 0x38b08, 0x38c24, 1742 0x38d00, 0x38d00, 1743 0x38d08, 0x38d14, 1744 0x38d1c, 0x38d20, 1745 0x38d3c, 0x38d3c, 1746 0x38d48, 0x38d50, 1747 0x39200, 0x3920c, 1748 0x39220, 0x39220, 1749 0x39240, 0x39240, 1750 0x39600, 0x3960c, 1751 0x39a00, 0x39a1c, 1752 0x39e00, 0x39e20, 1753 0x39e38, 0x39e3c, 1754 0x39e80, 0x39e80, 1755 0x39e88, 0x39ea8, 1756 0x39eb0, 0x39eb4, 1757 0x39ec8, 0x39ed4, 1758 0x39fb8, 0x3a004, 1759 0x3a200, 0x3a200, 1760 0x3a208, 0x3a240, 1761 0x3a248, 0x3a280, 1762 0x3a288, 0x3a2c0, 1763 0x3a2c8, 0x3a2fc, 1764 0x3a600, 0x3a630, 1765 0x3aa00, 0x3aabc, 1766 0x3ab00, 0x3ab10, 1767 0x3ab20, 0x3ab30, 1768 0x3ab40, 0x3ab50, 1769 0x3ab60, 0x3ab70, 1770 0x3b000, 0x3b028, 1771 0x3b030, 0x3b048, 1772 0x3b060, 0x3b068, 1773 0x3b070, 0x3b09c, 1774 0x3b0f0, 0x3b128, 1775 0x3b130, 0x3b148, 1776 0x3b160, 0x3b168, 1777 0x3b170, 0x3b19c, 1778 0x3b1f0, 0x3b238, 1779 0x3b240, 0x3b240, 1780 0x3b248, 0x3b250, 1781 0x3b25c, 0x3b264, 1782 0x3b270, 0x3b2b8, 1783 0x3b2c0, 0x3b2e4, 1784 0x3b2f8, 0x3b338, 1785 0x3b340, 0x3b340, 1786 0x3b348, 0x3b350, 1787 0x3b35c, 0x3b364, 1788 0x3b370, 0x3b3b8, 1789 0x3b3c0, 0x3b3e4, 1790 0x3b3f8, 0x3b428, 1791 0x3b430, 0x3b448, 1792 0x3b460, 0x3b468, 1793 0x3b470, 0x3b49c, 1794 0x3b4f0, 0x3b528, 1795 0x3b530, 0x3b548, 1796 0x3b560, 0x3b568, 1797 0x3b570, 0x3b59c, 1798 0x3b5f0, 0x3b638, 1799 0x3b640, 0x3b640, 1800 0x3b648, 0x3b650, 1801 0x3b65c, 0x3b664, 1802 0x3b670, 0x3b6b8, 1803 0x3b6c0, 0x3b6e4, 1804 0x3b6f8, 0x3b738, 1805 0x3b740, 0x3b740, 1806 0x3b748, 0x3b750, 1807 0x3b75c, 0x3b764, 1808 0x3b770, 0x3b7b8, 1809 0x3b7c0, 0x3b7e4, 1810 0x3b7f8, 0x3b7fc, 1811 0x3b814, 0x3b814, 1812 0x3b82c, 0x3b82c, 1813 0x3b880, 0x3b88c, 1814 0x3b8e8, 0x3b8ec, 1815 0x3b900, 0x3b928, 1816 0x3b930, 0x3b948, 1817 0x3b960, 0x3b968, 1818 0x3b970, 0x3b99c, 1819 0x3b9f0, 0x3ba38, 1820 0x3ba40, 0x3ba40, 1821 0x3ba48, 0x3ba50, 1822 0x3ba5c, 0x3ba64, 1823 0x3ba70, 0x3bab8, 1824 0x3bac0, 0x3bae4, 1825 0x3baf8, 0x3bb10, 1826 0x3bb28, 0x3bb28, 1827 0x3bb3c, 0x3bb50, 1828 0x3bbf0, 0x3bc10, 1829 0x3bc28, 0x3bc28, 1830 0x3bc3c, 0x3bc50, 1831 0x3bcf0, 0x3bcfc, 1832 0x3c000, 0x3c030, 1833 0x3c100, 0x3c144, 1834 0x3c190, 0x3c1a0, 1835 0x3c1a8, 0x3c1b8, 1836 0x3c1c4, 0x3c1c8, 1837 0x3c1d0, 0x3c1d0, 1838 0x3c200, 0x3c318, 1839 0x3c400, 0x3c4b4, 1840 0x3c4c0, 0x3c52c, 1841 0x3c540, 0x3c61c, 1842 0x3c800, 0x3c828, 1843 0x3c834, 0x3c834, 1844 0x3c8c0, 0x3c908, 1845 0x3c910, 0x3c9ac, 1846 0x3ca00, 0x3ca14, 1847 0x3ca1c, 0x3ca2c, 1848 0x3ca44, 0x3ca50, 1849 0x3ca74, 0x3ca74, 1850 0x3ca7c, 0x3cafc, 1851 0x3cb08, 0x3cc24, 1852 0x3cd00, 0x3cd00, 1853 0x3cd08, 0x3cd14, 1854 0x3cd1c, 0x3cd20, 1855 0x3cd3c, 0x3cd3c, 1856 0x3cd48, 0x3cd50, 1857 0x3d200, 0x3d20c, 1858 0x3d220, 0x3d220, 1859 0x3d240, 0x3d240, 1860 0x3d600, 0x3d60c, 1861 0x3da00, 0x3da1c, 1862 0x3de00, 0x3de20, 1863 0x3de38, 0x3de3c, 1864 0x3de80, 0x3de80, 1865 0x3de88, 0x3dea8, 1866 0x3deb0, 0x3deb4, 1867 0x3dec8, 0x3ded4, 1868 0x3dfb8, 0x3e004, 1869 0x3e200, 0x3e200, 1870 0x3e208, 0x3e240, 1871 0x3e248, 0x3e280, 1872 0x3e288, 0x3e2c0, 1873 0x3e2c8, 0x3e2fc, 1874 0x3e600, 0x3e630, 1875 0x3ea00, 0x3eabc, 1876 0x3eb00, 0x3eb10, 1877 0x3eb20, 0x3eb30, 1878 0x3eb40, 0x3eb50, 1879 0x3eb60, 0x3eb70, 1880 0x3f000, 0x3f028, 1881 0x3f030, 0x3f048, 1882 0x3f060, 0x3f068, 1883 0x3f070, 0x3f09c, 1884 0x3f0f0, 0x3f128, 1885 0x3f130, 0x3f148, 1886 0x3f160, 0x3f168, 1887 0x3f170, 0x3f19c, 1888 0x3f1f0, 0x3f238, 1889 0x3f240, 0x3f240, 1890 0x3f248, 0x3f250, 1891 0x3f25c, 0x3f264, 1892 0x3f270, 0x3f2b8, 1893 0x3f2c0, 0x3f2e4, 1894 0x3f2f8, 0x3f338, 1895 0x3f340, 0x3f340, 1896 0x3f348, 0x3f350, 1897 0x3f35c, 0x3f364, 1898 0x3f370, 0x3f3b8, 1899 0x3f3c0, 0x3f3e4, 1900 0x3f3f8, 0x3f428, 1901 0x3f430, 0x3f448, 1902 0x3f460, 0x3f468, 1903 0x3f470, 0x3f49c, 1904 0x3f4f0, 0x3f528, 1905 0x3f530, 0x3f548, 1906 0x3f560, 0x3f568, 1907 0x3f570, 0x3f59c, 1908 0x3f5f0, 0x3f638, 1909 0x3f640, 0x3f640, 1910 0x3f648, 0x3f650, 1911 0x3f65c, 0x3f664, 1912 0x3f670, 0x3f6b8, 1913 0x3f6c0, 0x3f6e4, 1914 0x3f6f8, 0x3f738, 1915 0x3f740, 0x3f740, 1916 0x3f748, 0x3f750, 1917 0x3f75c, 0x3f764, 1918 0x3f770, 0x3f7b8, 1919 0x3f7c0, 0x3f7e4, 1920 0x3f7f8, 0x3f7fc, 1921 0x3f814, 0x3f814, 1922 0x3f82c, 0x3f82c, 1923 0x3f880, 0x3f88c, 1924 0x3f8e8, 0x3f8ec, 1925 0x3f900, 0x3f928, 1926 0x3f930, 0x3f948, 1927 0x3f960, 0x3f968, 1928 0x3f970, 0x3f99c, 1929 0x3f9f0, 0x3fa38, 1930 0x3fa40, 0x3fa40, 1931 0x3fa48, 0x3fa50, 1932 0x3fa5c, 0x3fa64, 1933 0x3fa70, 0x3fab8, 1934 0x3fac0, 0x3fae4, 1935 0x3faf8, 0x3fb10, 1936 0x3fb28, 0x3fb28, 1937 0x3fb3c, 0x3fb50, 1938 0x3fbf0, 0x3fc10, 1939 0x3fc28, 0x3fc28, 1940 0x3fc3c, 0x3fc50, 1941 0x3fcf0, 0x3fcfc, 1942 0x40000, 0x4000c, 1943 0x40040, 0x40050, 1944 0x40060, 0x40068, 1945 0x4007c, 0x4008c, 1946 0x40094, 0x400b0, 1947 0x400c0, 0x40144, 1948 0x40180, 0x4018c, 1949 0x40200, 0x40254, 1950 0x40260, 0x40264, 1951 0x40270, 0x40288, 1952 0x40290, 0x40298, 1953 0x402ac, 0x402c8, 1954 0x402d0, 0x402e0, 1955 0x402f0, 0x402f0, 1956 0x40300, 0x4033c, 1957 0x403f8, 0x403fc, 1958 0x41304, 0x413c4, 1959 0x41400, 0x4140c, 1960 0x41414, 0x4141c, 1961 0x41480, 0x414d0, 1962 0x44000, 0x44054, 1963 0x4405c, 0x44078, 1964 0x440c0, 0x44174, 1965 0x44180, 0x441ac, 1966 0x441b4, 0x441b8, 1967 0x441c0, 0x44254, 1968 0x4425c, 0x44278, 1969 0x442c0, 0x44374, 1970 0x44380, 0x443ac, 1971 0x443b4, 0x443b8, 1972 0x443c0, 0x44454, 1973 0x4445c, 0x44478, 1974 0x444c0, 0x44574, 1975 0x44580, 0x445ac, 1976 0x445b4, 0x445b8, 1977 0x445c0, 0x44654, 1978 0x4465c, 0x44678, 1979 0x446c0, 0x44774, 1980 0x44780, 0x447ac, 1981 0x447b4, 0x447b8, 1982 0x447c0, 0x44854, 1983 0x4485c, 0x44878, 1984 0x448c0, 0x44974, 1985 0x44980, 0x449ac, 1986 0x449b4, 0x449b8, 1987 0x449c0, 0x449fc, 1988 0x45000, 0x45004, 1989 0x45010, 0x45030, 1990 0x45040, 0x45060, 1991 0x45068, 0x45068, 1992 0x45080, 0x45084, 1993 0x450a0, 0x450b0, 1994 0x45200, 0x45204, 1995 0x45210, 0x45230, 1996 0x45240, 0x45260, 1997 0x45268, 0x45268, 1998 0x45280, 0x45284, 1999 0x452a0, 0x452b0, 2000 0x460c0, 0x460e4, 2001 0x47000, 0x4703c, 2002 0x47044, 0x4708c, 2003 0x47200, 0x47250, 2004 0x47400, 0x47408, 2005 0x47414, 0x47420, 2006 0x47600, 0x47618, 2007 0x47800, 0x47814, 2008 0x48000, 0x4800c, 2009 0x48040, 0x48050, 2010 0x48060, 0x48068, 2011 0x4807c, 0x4808c, 2012 0x48094, 0x480b0, 2013 0x480c0, 0x48144, 2014 0x48180, 0x4818c, 2015 0x48200, 0x48254, 2016 0x48260, 0x48264, 2017 0x48270, 0x48288, 2018 0x48290, 0x48298, 2019 0x482ac, 0x482c8, 2020 0x482d0, 0x482e0, 2021 0x482f0, 0x482f0, 2022 0x48300, 0x4833c, 2023 0x483f8, 0x483fc, 2024 0x49304, 0x493c4, 2025 0x49400, 0x4940c, 2026 0x49414, 0x4941c, 2027 0x49480, 0x494d0, 2028 0x4c000, 0x4c054, 2029 0x4c05c, 0x4c078, 2030 0x4c0c0, 0x4c174, 2031 0x4c180, 0x4c1ac, 2032 0x4c1b4, 0x4c1b8, 2033 0x4c1c0, 0x4c254, 2034 0x4c25c, 0x4c278, 2035 0x4c2c0, 0x4c374, 2036 0x4c380, 0x4c3ac, 2037 0x4c3b4, 0x4c3b8, 2038 0x4c3c0, 0x4c454, 2039 0x4c45c, 0x4c478, 2040 0x4c4c0, 0x4c574, 2041 0x4c580, 0x4c5ac, 2042 0x4c5b4, 0x4c5b8, 2043 0x4c5c0, 0x4c654, 2044 0x4c65c, 0x4c678, 2045 0x4c6c0, 0x4c774, 2046 0x4c780, 0x4c7ac, 2047 0x4c7b4, 0x4c7b8, 2048 0x4c7c0, 0x4c854, 2049 0x4c85c, 0x4c878, 2050 0x4c8c0, 0x4c974, 2051 0x4c980, 0x4c9ac, 2052 0x4c9b4, 0x4c9b8, 2053 0x4c9c0, 0x4c9fc, 2054 0x4d000, 0x4d004, 2055 0x4d010, 0x4d030, 2056 0x4d040, 0x4d060, 2057 0x4d068, 0x4d068, 2058 0x4d080, 0x4d084, 2059 0x4d0a0, 0x4d0b0, 2060 0x4d200, 0x4d204, 2061 0x4d210, 0x4d230, 2062 0x4d240, 0x4d260, 2063 0x4d268, 0x4d268, 2064 0x4d280, 0x4d284, 2065 0x4d2a0, 0x4d2b0, 2066 0x4e0c0, 0x4e0e4, 2067 0x4f000, 0x4f03c, 2068 0x4f044, 0x4f08c, 2069 0x4f200, 0x4f250, 2070 0x4f400, 0x4f408, 2071 0x4f414, 0x4f420, 2072 0x4f600, 0x4f618, 2073 0x4f800, 0x4f814, 2074 0x50000, 0x50084, 2075 0x50090, 0x500cc, 2076 0x50400, 0x50400, 2077 0x50800, 0x50884, 2078 0x50890, 0x508cc, 2079 0x50c00, 0x50c00, 2080 0x51000, 0x5101c, 2081 0x51300, 0x51308, 2082 }; 2083 2084 static const unsigned int t6_reg_ranges[] = { 2085 0x1008, 0x101c, 2086 0x1024, 0x10a8, 2087 0x10b4, 0x10f8, 2088 0x1100, 0x1114, 2089 0x111c, 0x112c, 2090 0x1138, 0x113c, 2091 0x1144, 0x114c, 2092 0x1180, 0x1184, 2093 0x1190, 0x1194, 2094 0x11a0, 0x11a4, 2095 0x11b0, 0x11b4, 2096 0x11fc, 0x1274, 2097 0x1280, 0x133c, 2098 0x1800, 0x18fc, 2099 0x3000, 0x302c, 2100 0x3060, 0x30b0, 2101 0x30b8, 0x30d8, 2102 0x30e0, 0x30fc, 2103 0x3140, 0x357c, 2104 0x35a8, 0x35cc, 2105 0x35ec, 0x35ec, 2106 0x3600, 0x5624, 2107 0x56cc, 0x56ec, 2108 0x56f4, 0x5720, 2109 0x5728, 0x575c, 2110 0x580c, 0x5814, 2111 0x5890, 0x589c, 2112 0x58a4, 0x58ac, 2113 0x58b8, 0x58bc, 2114 0x5940, 0x595c, 2115 0x5980, 0x598c, 2116 0x59b0, 0x59c8, 2117 0x59d0, 0x59dc, 2118 0x59fc, 0x5a18, 2119 0x5a60, 0x5a6c, 2120 0x5a80, 0x5a8c, 2121 0x5a94, 0x5a9c, 2122 0x5b94, 0x5bfc, 2123 0x5c10, 0x5e48, 2124 0x5e50, 0x5e94, 2125 0x5ea0, 0x5eb0, 2126 0x5ec0, 0x5ec0, 2127 0x5ec8, 0x5ed0, 2128 0x5ee0, 0x5ee0, 2129 0x5ef0, 0x5ef0, 2130 0x5f00, 0x5f00, 2131 0x6000, 0x6020, 2132 0x6028, 0x6040, 2133 0x6058, 0x609c, 2134 0x60a8, 0x619c, 2135 0x7700, 0x7798, 2136 0x77c0, 0x7880, 2137 0x78cc, 0x78fc, 2138 0x7b00, 0x7b58, 2139 0x7b60, 0x7b84, 2140 0x7b8c, 0x7c54, 2141 0x7d00, 0x7d38, 2142 0x7d40, 0x7d84, 2143 0x7d8c, 0x7ddc, 2144 0x7de4, 0x7e04, 2145 0x7e10, 0x7e1c, 2146 0x7e24, 0x7e38, 2147 0x7e40, 0x7e44, 2148 0x7e4c, 0x7e78, 2149 0x7e80, 0x7edc, 2150 0x7ee8, 0x7efc, 2151 0x8dc0, 0x8de4, 2152 0x8df8, 0x8e04, 2153 0x8e10, 0x8e84, 2154 0x8ea0, 0x8f88, 2155 0x8fb8, 0x9058, 2156 0x9060, 0x9060, 2157 0x9068, 0x90f8, 2158 0x9100, 0x9124, 2159 0x9400, 0x9470, 2160 0x9600, 0x9600, 2161 0x9608, 0x9638, 2162 0x9640, 0x9704, 2163 0x9710, 0x971c, 2164 0x9800, 0x9808, 2165 0x9820, 0x983c, 2166 0x9850, 0x9864, 2167 0x9c00, 0x9c6c, 2168 0x9c80, 0x9cec, 2169 0x9d00, 0x9d6c, 2170 0x9d80, 0x9dec, 2171 0x9e00, 0x9e6c, 2172 0x9e80, 0x9eec, 2173 0x9f00, 0x9f6c, 2174 0x9f80, 0xa020, 2175 0xd004, 0xd03c, 2176 0xd100, 0xd118, 2177 0xd200, 0xd214, 2178 0xd220, 0xd234, 2179 0xd240, 0xd254, 2180 0xd260, 0xd274, 2181 0xd280, 0xd294, 2182 0xd2a0, 0xd2b4, 2183 0xd2c0, 0xd2d4, 2184 0xd2e0, 0xd2f4, 2185 0xd300, 0xd31c, 2186 0xdfc0, 0xdfe0, 2187 0xe000, 0xf008, 2188 0xf010, 0xf018, 2189 0xf020, 0xf028, 2190 0x11000, 0x11014, 2191 0x11048, 0x1106c, 2192 0x11074, 0x11088, 2193 0x11098, 0x11120, 2194 0x1112c, 0x1117c, 2195 0x11190, 0x112e0, 2196 0x11300, 0x1130c, 2197 0x12000, 0x1206c, 2198 0x19040, 0x1906c, 2199 0x19078, 0x19080, 2200 0x1908c, 0x190e8, 2201 0x190f0, 0x190f8, 2202 0x19100, 0x19110, 2203 0x19120, 0x19124, 2204 0x19150, 0x19194, 2205 0x1919c, 0x191b0, 2206 0x191d0, 0x191e8, 2207 0x19238, 0x19290, 2208 0x192a4, 0x192b0, 2209 0x192bc, 0x192bc, 2210 0x19348, 0x1934c, 2211 0x193f8, 0x19418, 2212 0x19420, 0x19428, 2213 0x19430, 0x19444, 2214 0x1944c, 0x1946c, 2215 0x19474, 0x19474, 2216 0x19490, 0x194cc, 2217 0x194f0, 0x194f8, 2218 0x19c00, 0x19c48, 2219 0x19c50, 0x19c80, 2220 0x19c94, 0x19c98, 2221 0x19ca0, 0x19cbc, 2222 0x19ce4, 0x19ce4, 2223 0x19cf0, 0x19cf8, 2224 0x19d00, 0x19d28, 2225 0x19d50, 0x19d78, 2226 0x19d94, 0x19d98, 2227 0x19da0, 0x19dc8, 2228 0x19df0, 0x19e10, 2229 0x19e50, 0x19e6c, 2230 0x19ea0, 0x19ebc, 2231 0x19ec4, 0x19ef4, 2232 0x19f04, 0x19f2c, 2233 0x19f34, 0x19f34, 2234 0x19f40, 0x19f50, 2235 0x19f90, 0x19fac, 2236 0x19fc4, 0x19fc8, 2237 0x19fd0, 0x19fe4, 2238 0x1a000, 0x1a004, 2239 0x1a010, 0x1a06c, 2240 0x1a0b0, 0x1a0e4, 2241 0x1a0ec, 0x1a0f8, 2242 0x1a100, 0x1a108, 2243 0x1a114, 0x1a120, 2244 0x1a128, 0x1a130, 2245 0x1a138, 0x1a138, 2246 0x1a190, 0x1a1c4, 2247 0x1a1fc, 0x1a1fc, 2248 0x1e008, 0x1e00c, 2249 0x1e040, 0x1e044, 2250 0x1e04c, 0x1e04c, 2251 0x1e284, 0x1e290, 2252 0x1e2c0, 0x1e2c0, 2253 0x1e2e0, 0x1e2e0, 2254 0x1e300, 0x1e384, 2255 0x1e3c0, 0x1e3c8, 2256 0x1e408, 0x1e40c, 2257 0x1e440, 0x1e444, 2258 0x1e44c, 0x1e44c, 2259 0x1e684, 0x1e690, 2260 0x1e6c0, 0x1e6c0, 2261 0x1e6e0, 0x1e6e0, 2262 0x1e700, 0x1e784, 2263 0x1e7c0, 0x1e7c8, 2264 0x1e808, 0x1e80c, 2265 0x1e840, 0x1e844, 2266 0x1e84c, 0x1e84c, 2267 0x1ea84, 0x1ea90, 2268 0x1eac0, 0x1eac0, 2269 0x1eae0, 0x1eae0, 2270 0x1eb00, 0x1eb84, 2271 0x1ebc0, 0x1ebc8, 2272 0x1ec08, 0x1ec0c, 2273 0x1ec40, 0x1ec44, 2274 0x1ec4c, 0x1ec4c, 2275 0x1ee84, 0x1ee90, 2276 0x1eec0, 0x1eec0, 2277 0x1eee0, 0x1eee0, 2278 0x1ef00, 0x1ef84, 2279 0x1efc0, 0x1efc8, 2280 0x1f008, 0x1f00c, 2281 0x1f040, 0x1f044, 2282 0x1f04c, 0x1f04c, 2283 0x1f284, 0x1f290, 2284 0x1f2c0, 0x1f2c0, 2285 0x1f2e0, 0x1f2e0, 2286 0x1f300, 0x1f384, 2287 0x1f3c0, 0x1f3c8, 2288 0x1f408, 0x1f40c, 2289 0x1f440, 0x1f444, 2290 0x1f44c, 0x1f44c, 2291 0x1f684, 0x1f690, 2292 0x1f6c0, 0x1f6c0, 2293 0x1f6e0, 0x1f6e0, 2294 0x1f700, 0x1f784, 2295 0x1f7c0, 0x1f7c8, 2296 0x1f808, 0x1f80c, 2297 0x1f840, 0x1f844, 2298 0x1f84c, 0x1f84c, 2299 0x1fa84, 0x1fa90, 2300 0x1fac0, 0x1fac0, 2301 0x1fae0, 0x1fae0, 2302 0x1fb00, 0x1fb84, 2303 0x1fbc0, 0x1fbc8, 2304 0x1fc08, 0x1fc0c, 2305 0x1fc40, 0x1fc44, 2306 0x1fc4c, 0x1fc4c, 2307 0x1fe84, 0x1fe90, 2308 0x1fec0, 0x1fec0, 2309 0x1fee0, 0x1fee0, 2310 0x1ff00, 0x1ff84, 2311 0x1ffc0, 0x1ffc8, 2312 0x30000, 0x30030, 2313 0x30100, 0x30168, 2314 0x30190, 0x301a0, 2315 0x301a8, 0x301b8, 2316 0x301c4, 0x301c8, 2317 0x301d0, 0x301d0, 2318 0x30200, 0x30320, 2319 0x30400, 0x304b4, 2320 0x304c0, 0x3052c, 2321 0x30540, 0x3061c, 2322 0x30800, 0x308a0, 2323 0x308c0, 0x30908, 2324 0x30910, 0x309b8, 2325 0x30a00, 0x30a04, 2326 0x30a0c, 0x30a14, 2327 0x30a1c, 0x30a2c, 2328 0x30a44, 0x30a50, 2329 0x30a74, 0x30a74, 2330 0x30a7c, 0x30afc, 2331 0x30b08, 0x30c24, 2332 0x30d00, 0x30d14, 2333 0x30d1c, 0x30d3c, 2334 0x30d44, 0x30d4c, 2335 0x30d54, 0x30d74, 2336 0x30d7c, 0x30d7c, 2337 0x30de0, 0x30de0, 2338 0x30e00, 0x30ed4, 2339 0x30f00, 0x30fa4, 2340 0x30fc0, 0x30fc4, 2341 0x31000, 0x31004, 2342 0x31080, 0x310fc, 2343 0x31208, 0x31220, 2344 0x3123c, 0x31254, 2345 0x31300, 0x31300, 2346 0x31308, 0x3131c, 2347 0x31338, 0x3133c, 2348 0x31380, 0x31380, 2349 0x31388, 0x313a8, 2350 0x313b4, 0x313b4, 2351 0x31400, 0x31420, 2352 0x31438, 0x3143c, 2353 0x31480, 0x31480, 2354 0x314a8, 0x314a8, 2355 0x314b0, 0x314b4, 2356 0x314c8, 0x314d4, 2357 0x31a40, 0x31a4c, 2358 0x31af0, 0x31b20, 2359 0x31b38, 0x31b3c, 2360 0x31b80, 0x31b80, 2361 0x31ba8, 0x31ba8, 2362 0x31bb0, 0x31bb4, 2363 0x31bc8, 0x31bd4, 2364 0x32140, 0x3218c, 2365 0x321f0, 0x321f4, 2366 0x32200, 0x32200, 2367 0x32218, 0x32218, 2368 0x32400, 0x32400, 2369 0x32408, 0x3241c, 2370 0x32618, 0x32620, 2371 0x32664, 0x32664, 2372 0x326a8, 0x326a8, 2373 0x326ec, 0x326ec, 2374 0x32a00, 0x32abc, 2375 0x32b00, 0x32b18, 2376 0x32b20, 0x32b38, 2377 0x32b40, 0x32b58, 2378 0x32b60, 0x32b78, 2379 0x32c00, 0x32c00, 2380 0x32c08, 0x32c3c, 2381 0x33000, 0x3302c, 2382 0x33034, 0x33050, 2383 0x33058, 0x33058, 2384 0x33060, 0x3308c, 2385 0x3309c, 0x330ac, 2386 0x330c0, 0x330c0, 2387 0x330c8, 0x330d0, 2388 0x330d8, 0x330e0, 2389 0x330ec, 0x3312c, 2390 0x33134, 0x33150, 2391 0x33158, 0x33158, 2392 0x33160, 0x3318c, 2393 0x3319c, 0x331ac, 2394 0x331c0, 0x331c0, 2395 0x331c8, 0x331d0, 2396 0x331d8, 0x331e0, 2397 0x331ec, 0x33290, 2398 0x33298, 0x332c4, 2399 0x332e4, 0x33390, 2400 0x33398, 0x333c4, 2401 0x333e4, 0x3342c, 2402 0x33434, 0x33450, 2403 0x33458, 0x33458, 2404 0x33460, 0x3348c, 2405 0x3349c, 0x334ac, 2406 0x334c0, 0x334c0, 2407 0x334c8, 0x334d0, 2408 0x334d8, 0x334e0, 2409 0x334ec, 0x3352c, 2410 0x33534, 0x33550, 2411 0x33558, 0x33558, 2412 0x33560, 0x3358c, 2413 0x3359c, 0x335ac, 2414 0x335c0, 0x335c0, 2415 0x335c8, 0x335d0, 2416 0x335d8, 0x335e0, 2417 0x335ec, 0x33690, 2418 0x33698, 0x336c4, 2419 0x336e4, 0x33790, 2420 0x33798, 0x337c4, 2421 0x337e4, 0x337fc, 2422 0x33814, 0x33814, 2423 0x33854, 0x33868, 2424 0x33880, 0x3388c, 2425 0x338c0, 0x338d0, 2426 0x338e8, 0x338ec, 2427 0x33900, 0x3392c, 2428 0x33934, 0x33950, 2429 0x33958, 0x33958, 2430 0x33960, 0x3398c, 2431 0x3399c, 0x339ac, 2432 0x339c0, 0x339c0, 2433 0x339c8, 0x339d0, 2434 0x339d8, 0x339e0, 2435 0x339ec, 0x33a90, 2436 0x33a98, 0x33ac4, 2437 0x33ae4, 0x33b10, 2438 0x33b24, 0x33b28, 2439 0x33b38, 0x33b50, 2440 0x33bf0, 0x33c10, 2441 0x33c24, 0x33c28, 2442 0x33c38, 0x33c50, 2443 0x33cf0, 0x33cfc, 2444 0x34000, 0x34030, 2445 0x34100, 0x34168, 2446 0x34190, 0x341a0, 2447 0x341a8, 0x341b8, 2448 0x341c4, 0x341c8, 2449 0x341d0, 0x341d0, 2450 0x34200, 0x34320, 2451 0x34400, 0x344b4, 2452 0x344c0, 0x3452c, 2453 0x34540, 0x3461c, 2454 0x34800, 0x348a0, 2455 0x348c0, 0x34908, 2456 0x34910, 0x349b8, 2457 0x34a00, 0x34a04, 2458 0x34a0c, 0x34a14, 2459 0x34a1c, 0x34a2c, 2460 0x34a44, 0x34a50, 2461 0x34a74, 0x34a74, 2462 0x34a7c, 0x34afc, 2463 0x34b08, 0x34c24, 2464 0x34d00, 0x34d14, 2465 0x34d1c, 0x34d3c, 2466 0x34d44, 0x34d4c, 2467 0x34d54, 0x34d74, 2468 0x34d7c, 0x34d7c, 2469 0x34de0, 0x34de0, 2470 0x34e00, 0x34ed4, 2471 0x34f00, 0x34fa4, 2472 0x34fc0, 0x34fc4, 2473 0x35000, 0x35004, 2474 0x35080, 0x350fc, 2475 0x35208, 0x35220, 2476 0x3523c, 0x35254, 2477 0x35300, 0x35300, 2478 0x35308, 0x3531c, 2479 0x35338, 0x3533c, 2480 0x35380, 0x35380, 2481 0x35388, 0x353a8, 2482 0x353b4, 0x353b4, 2483 0x35400, 0x35420, 2484 0x35438, 0x3543c, 2485 0x35480, 0x35480, 2486 0x354a8, 0x354a8, 2487 0x354b0, 0x354b4, 2488 0x354c8, 0x354d4, 2489 0x35a40, 0x35a4c, 2490 0x35af0, 0x35b20, 2491 0x35b38, 0x35b3c, 2492 0x35b80, 0x35b80, 2493 0x35ba8, 0x35ba8, 2494 0x35bb0, 0x35bb4, 2495 0x35bc8, 0x35bd4, 2496 0x36140, 0x3618c, 2497 0x361f0, 0x361f4, 2498 0x36200, 0x36200, 2499 0x36218, 0x36218, 2500 0x36400, 0x36400, 2501 0x36408, 0x3641c, 2502 0x36618, 0x36620, 2503 0x36664, 0x36664, 2504 0x366a8, 0x366a8, 2505 0x366ec, 0x366ec, 2506 0x36a00, 0x36abc, 2507 0x36b00, 0x36b18, 2508 0x36b20, 0x36b38, 2509 0x36b40, 0x36b58, 2510 0x36b60, 0x36b78, 2511 0x36c00, 0x36c00, 2512 0x36c08, 0x36c3c, 2513 0x37000, 0x3702c, 2514 0x37034, 0x37050, 2515 0x37058, 0x37058, 2516 0x37060, 0x3708c, 2517 0x3709c, 0x370ac, 2518 0x370c0, 0x370c0, 2519 0x370c8, 0x370d0, 2520 0x370d8, 0x370e0, 2521 0x370ec, 0x3712c, 2522 0x37134, 0x37150, 2523 0x37158, 0x37158, 2524 0x37160, 0x3718c, 2525 0x3719c, 0x371ac, 2526 0x371c0, 0x371c0, 2527 0x371c8, 0x371d0, 2528 0x371d8, 0x371e0, 2529 0x371ec, 0x37290, 2530 0x37298, 0x372c4, 2531 0x372e4, 0x37390, 2532 0x37398, 0x373c4, 2533 0x373e4, 0x3742c, 2534 0x37434, 0x37450, 2535 0x37458, 0x37458, 2536 0x37460, 0x3748c, 2537 0x3749c, 0x374ac, 2538 0x374c0, 0x374c0, 2539 0x374c8, 0x374d0, 2540 0x374d8, 0x374e0, 2541 0x374ec, 0x3752c, 2542 0x37534, 0x37550, 2543 0x37558, 0x37558, 2544 0x37560, 0x3758c, 2545 0x3759c, 0x375ac, 2546 0x375c0, 0x375c0, 2547 0x375c8, 0x375d0, 2548 0x375d8, 0x375e0, 2549 0x375ec, 0x37690, 2550 0x37698, 0x376c4, 2551 0x376e4, 0x37790, 2552 0x37798, 0x377c4, 2553 0x377e4, 0x377fc, 2554 0x37814, 0x37814, 2555 0x37854, 0x37868, 2556 0x37880, 0x3788c, 2557 0x378c0, 0x378d0, 2558 0x378e8, 0x378ec, 2559 0x37900, 0x3792c, 2560 0x37934, 0x37950, 2561 0x37958, 0x37958, 2562 0x37960, 0x3798c, 2563 0x3799c, 0x379ac, 2564 0x379c0, 0x379c0, 2565 0x379c8, 0x379d0, 2566 0x379d8, 0x379e0, 2567 0x379ec, 0x37a90, 2568 0x37a98, 0x37ac4, 2569 0x37ae4, 0x37b10, 2570 0x37b24, 0x37b28, 2571 0x37b38, 0x37b50, 2572 0x37bf0, 0x37c10, 2573 0x37c24, 0x37c28, 2574 0x37c38, 0x37c50, 2575 0x37cf0, 0x37cfc, 2576 0x40040, 0x40040, 2577 0x40080, 0x40084, 2578 0x40100, 0x40100, 2579 0x40140, 0x401bc, 2580 0x40200, 0x40214, 2581 0x40228, 0x40228, 2582 0x40240, 0x40258, 2583 0x40280, 0x40280, 2584 0x40304, 0x40304, 2585 0x40330, 0x4033c, 2586 0x41304, 0x413c8, 2587 0x413d0, 0x413dc, 2588 0x413f0, 0x413f0, 2589 0x41400, 0x4140c, 2590 0x41414, 0x4141c, 2591 0x41480, 0x414d0, 2592 0x44000, 0x4407c, 2593 0x440c0, 0x441ac, 2594 0x441b4, 0x4427c, 2595 0x442c0, 0x443ac, 2596 0x443b4, 0x4447c, 2597 0x444c0, 0x445ac, 2598 0x445b4, 0x4467c, 2599 0x446c0, 0x447ac, 2600 0x447b4, 0x4487c, 2601 0x448c0, 0x449ac, 2602 0x449b4, 0x44a7c, 2603 0x44ac0, 0x44bac, 2604 0x44bb4, 0x44c7c, 2605 0x44cc0, 0x44dac, 2606 0x44db4, 0x44e7c, 2607 0x44ec0, 0x44fac, 2608 0x44fb4, 0x4507c, 2609 0x450c0, 0x451ac, 2610 0x451b4, 0x451fc, 2611 0x45800, 0x45804, 2612 0x45810, 0x45830, 2613 0x45840, 0x45860, 2614 0x45868, 0x45868, 2615 0x45880, 0x45884, 2616 0x458a0, 0x458b0, 2617 0x45a00, 0x45a04, 2618 0x45a10, 0x45a30, 2619 0x45a40, 0x45a60, 2620 0x45a68, 0x45a68, 2621 0x45a80, 0x45a84, 2622 0x45aa0, 0x45ab0, 2623 0x460c0, 0x460e4, 2624 0x47000, 0x4703c, 2625 0x47044, 0x4708c, 2626 0x47200, 0x47250, 2627 0x47400, 0x47408, 2628 0x47414, 0x47420, 2629 0x47600, 0x47618, 2630 0x47800, 0x47814, 2631 0x47820, 0x4782c, 2632 0x50000, 0x50084, 2633 0x50090, 0x500cc, 2634 0x50300, 0x50384, 2635 0x50400, 0x50400, 2636 0x50800, 0x50884, 2637 0x50890, 0x508cc, 2638 0x50b00, 0x50b84, 2639 0x50c00, 0x50c00, 2640 0x51000, 0x51020, 2641 0x51028, 0x510b0, 2642 0x51300, 0x51324, 2643 }; 2644 2645 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2646 const unsigned int *reg_ranges; 2647 int reg_ranges_size, range; 2648 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2649 2650 /* Select the right set of register ranges to dump depending on the 2651 * adapter chip type. 2652 */ 2653 switch (chip_version) { 2654 case CHELSIO_T4: 2655 reg_ranges = t4_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T5: 2660 reg_ranges = t5_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2662 break; 2663 2664 case CHELSIO_T6: 2665 reg_ranges = t6_reg_ranges; 2666 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2667 break; 2668 2669 default: 2670 dev_err(adap->pdev_dev, 2671 "Unsupported chip version %d\n", chip_version); 2672 return; 2673 } 2674 2675 /* Clear the register buffer and insert the appropriate register 2676 * values selected by the above register ranges. 2677 */ 2678 memset(buf, 0, buf_size); 2679 for (range = 0; range < reg_ranges_size; range += 2) { 2680 unsigned int reg = reg_ranges[range]; 2681 unsigned int last_reg = reg_ranges[range + 1]; 2682 u32 *bufp = (u32 *)((char *)buf + reg); 2683 2684 /* Iterate across the register range filling in the register 2685 * buffer but don't write past the end of the register buffer. 2686 */ 2687 while (reg <= last_reg && bufp < buf_end) { 2688 *bufp++ = t4_read_reg(adap, reg); 2689 reg += sizeof(u32); 2690 } 2691 } 2692 } 2693 2694 #define EEPROM_STAT_ADDR 0x7bfc 2695 #define VPD_BASE 0x400 2696 #define VPD_BASE_OLD 0 2697 #define VPD_LEN 1024 2698 #define CHELSIO_VPD_UNIQUE_ID 0x82 2699 2700 /** 2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2702 * @phys_addr: the physical EEPROM address 2703 * @fn: the PCI function number 2704 * @sz: size of function-specific area 2705 * 2706 * Translate a physical EEPROM address to virtual. The first 1K is 2707 * accessed through virtual addresses starting at 31K, the rest is 2708 * accessed through virtual addresses starting at 0. 2709 * 2710 * The mapping is as follows: 2711 * [0..1K) -> [31K..32K) 2712 * [1K..1K+A) -> [31K-A..31K) 2713 * [1K+A..ES) -> [0..ES-A-1K) 2714 * 2715 * where A = @fn * @sz, and ES = EEPROM size. 2716 */ 2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2718 { 2719 fn *= sz; 2720 if (phys_addr < 1024) 2721 return phys_addr + (31 << 10); 2722 if (phys_addr < 1024 + fn) 2723 return 31744 - fn + phys_addr - 1024; 2724 if (phys_addr < EEPROMSIZE) 2725 return phys_addr - 1024 - fn; 2726 return -EINVAL; 2727 } 2728 2729 /** 2730 * t4_seeprom_wp - enable/disable EEPROM write protection 2731 * @adapter: the adapter 2732 * @enable: whether to enable or disable write protection 2733 * 2734 * Enables or disables write protection on the serial EEPROM. 2735 */ 2736 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2737 { 2738 unsigned int v = enable ? 0xc : 0; 2739 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2740 return ret < 0 ? ret : 0; 2741 } 2742 2743 /** 2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2745 * @adapter: adapter to read 2746 * @p: where to store the parameters 2747 * 2748 * Reads card parameters stored in VPD EEPROM. 2749 */ 2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2751 { 2752 int i, ret = 0, addr; 2753 int ec, sn, pn, na; 2754 u8 *vpd, csum; 2755 unsigned int vpdr_len, kw_offset, id_len; 2756 2757 vpd = vmalloc(VPD_LEN); 2758 if (!vpd) 2759 return -ENOMEM; 2760 2761 /* Card information normally starts at VPD_BASE but early cards had 2762 * it at 0. 2763 */ 2764 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 /* The VPD shall have a unique identifier specified by the PCI SIG. 2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2771 * is expected to automatically put this entry at the 2772 * beginning of the VPD. 2773 */ 2774 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2775 2776 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2777 if (ret < 0) 2778 goto out; 2779 2780 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2781 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2782 ret = -EINVAL; 2783 goto out; 2784 } 2785 2786 id_len = pci_vpd_lrdt_size(vpd); 2787 if (id_len > ID_LEN) 2788 id_len = ID_LEN; 2789 2790 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2791 if (i < 0) { 2792 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2793 ret = -EINVAL; 2794 goto out; 2795 } 2796 2797 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2798 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2799 if (vpdr_len + kw_offset > VPD_LEN) { 2800 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2801 ret = -EINVAL; 2802 goto out; 2803 } 2804 2805 #define FIND_VPD_KW(var, name) do { \ 2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2807 if (var < 0) { \ 2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2809 ret = -EINVAL; \ 2810 goto out; \ 2811 } \ 2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2813 } while (0) 2814 2815 FIND_VPD_KW(i, "RV"); 2816 for (csum = 0; i >= 0; i--) 2817 csum += vpd[i]; 2818 2819 if (csum) { 2820 dev_err(adapter->pdev_dev, 2821 "corrupted VPD EEPROM, actual csum %u\n", csum); 2822 ret = -EINVAL; 2823 goto out; 2824 } 2825 2826 FIND_VPD_KW(ec, "EC"); 2827 FIND_VPD_KW(sn, "SN"); 2828 FIND_VPD_KW(pn, "PN"); 2829 FIND_VPD_KW(na, "NA"); 2830 #undef FIND_VPD_KW 2831 2832 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2833 strim(p->id); 2834 memcpy(p->ec, vpd + ec, EC_LEN); 2835 strim(p->ec); 2836 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2837 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2838 strim(p->sn); 2839 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2840 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2841 strim(p->pn); 2842 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2843 strim((char *)p->na); 2844 2845 out: 2846 vfree(vpd); 2847 return ret < 0 ? ret : 0; 2848 } 2849 2850 /** 2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2852 * @adapter: adapter to read 2853 * @p: where to store the parameters 2854 * 2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2856 * Clock. This can only be called after a connection to the firmware 2857 * is established. 2858 */ 2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2860 { 2861 u32 cclk_param, cclk_val; 2862 int ret; 2863 2864 /* Grab the raw VPD parameters. 2865 */ 2866 ret = t4_get_raw_vpd_params(adapter, p); 2867 if (ret) 2868 return ret; 2869 2870 /* Ask firmware for the Core Clock since it knows how to translate the 2871 * Reference Clock ('V2') VPD field into a Core Clock value ... 2872 */ 2873 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2875 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2876 1, &cclk_param, &cclk_val); 2877 2878 if (ret) 2879 return ret; 2880 p->cclk = cclk_val; 2881 2882 return 0; 2883 } 2884 2885 /** 2886 * t4_get_pfres - retrieve VF resource limits 2887 * @adapter: the adapter 2888 * 2889 * Retrieves configured resource limits and capabilities for a physical 2890 * function. The results are stored in @adapter->pfres. 2891 */ 2892 int t4_get_pfres(struct adapter *adapter) 2893 { 2894 struct pf_resources *pfres = &adapter->params.pfres; 2895 struct fw_pfvf_cmd cmd, rpl; 2896 int v; 2897 u32 word; 2898 2899 /* Execute PFVF Read command to get VF resource limits; bail out early 2900 * with error on command failure. 2901 */ 2902 memset(&cmd, 0, sizeof(cmd)); 2903 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2904 FW_CMD_REQUEST_F | 2905 FW_CMD_READ_F | 2906 FW_PFVF_CMD_PFN_V(adapter->pf) | 2907 FW_PFVF_CMD_VFN_V(0)); 2908 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2909 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2910 if (v != FW_SUCCESS) 2911 return v; 2912 2913 /* Extract PF resource limits and return success. 2914 */ 2915 word = be32_to_cpu(rpl.niqflint_niq); 2916 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2917 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2918 2919 word = be32_to_cpu(rpl.type_to_neq); 2920 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2921 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2922 2923 word = be32_to_cpu(rpl.tc_to_nexactf); 2924 pfres->tc = FW_PFVF_CMD_TC_G(word); 2925 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2926 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2927 2928 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2929 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2930 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2931 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2932 2933 return 0; 2934 } 2935 2936 /* serial flash and firmware constants */ 2937 enum { 2938 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2939 2940 /* flash command opcodes */ 2941 SF_PROG_PAGE = 2, /* program page */ 2942 SF_WR_DISABLE = 4, /* disable writes */ 2943 SF_RD_STATUS = 5, /* read status register */ 2944 SF_WR_ENABLE = 6, /* enable writes */ 2945 SF_RD_DATA_FAST = 0xb, /* read flash */ 2946 SF_RD_ID = 0x9f, /* read ID */ 2947 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2948 }; 2949 2950 /** 2951 * sf1_read - read data from the serial flash 2952 * @adapter: the adapter 2953 * @byte_cnt: number of bytes to read 2954 * @cont: whether another operation will be chained 2955 * @lock: whether to lock SF for PL access only 2956 * @valp: where to store the read data 2957 * 2958 * Reads up to 4 bytes of data from the serial flash. The location of 2959 * the read needs to be specified prior to calling this by issuing the 2960 * appropriate commands to the serial flash. 2961 */ 2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2963 int lock, u32 *valp) 2964 { 2965 int ret; 2966 2967 if (!byte_cnt || byte_cnt > 4) 2968 return -EINVAL; 2969 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2970 return -EBUSY; 2971 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2972 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2973 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2974 if (!ret) 2975 *valp = t4_read_reg(adapter, SF_DATA_A); 2976 return ret; 2977 } 2978 2979 /** 2980 * sf1_write - write data to the serial flash 2981 * @adapter: the adapter 2982 * @byte_cnt: number of bytes to write 2983 * @cont: whether another operation will be chained 2984 * @lock: whether to lock SF for PL access only 2985 * @val: value to write 2986 * 2987 * Writes up to 4 bytes of data to the serial flash. The location of 2988 * the write needs to be specified prior to calling this by issuing the 2989 * appropriate commands to the serial flash. 2990 */ 2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2992 int lock, u32 val) 2993 { 2994 if (!byte_cnt || byte_cnt > 4) 2995 return -EINVAL; 2996 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2997 return -EBUSY; 2998 t4_write_reg(adapter, SF_DATA_A, val); 2999 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 3000 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 3001 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 3002 } 3003 3004 /** 3005 * flash_wait_op - wait for a flash operation to complete 3006 * @adapter: the adapter 3007 * @attempts: max number of polls of the status register 3008 * @delay: delay between polls in ms 3009 * 3010 * Wait for a flash operation to complete by polling the status register. 3011 */ 3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3013 { 3014 int ret; 3015 u32 status; 3016 3017 while (1) { 3018 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3019 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3020 return ret; 3021 if (!(status & 1)) 3022 return 0; 3023 if (--attempts == 0) 3024 return -EAGAIN; 3025 if (delay) 3026 msleep(delay); 3027 } 3028 } 3029 3030 /** 3031 * t4_read_flash - read words from serial flash 3032 * @adapter: the adapter 3033 * @addr: the start address for the read 3034 * @nwords: how many 32-bit words to read 3035 * @data: where to store the read data 3036 * @byte_oriented: whether to store data as bytes or as words 3037 * 3038 * Read the specified number of 32-bit words from the serial flash. 3039 * If @byte_oriented is set the read data is stored as a byte array 3040 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3041 * natural endianness. 3042 */ 3043 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3044 unsigned int nwords, u32 *data, int byte_oriented) 3045 { 3046 int ret; 3047 3048 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3049 return -EINVAL; 3050 3051 addr = swab32(addr) | SF_RD_DATA_FAST; 3052 3053 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3054 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3055 return ret; 3056 3057 for ( ; nwords; nwords--, data++) { 3058 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3059 if (nwords == 1) 3060 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3061 if (ret) 3062 return ret; 3063 if (byte_oriented) 3064 *data = (__force __u32)(cpu_to_be32(*data)); 3065 } 3066 return 0; 3067 } 3068 3069 /** 3070 * t4_write_flash - write up to a page of data to the serial flash 3071 * @adapter: the adapter 3072 * @addr: the start address to write 3073 * @n: length of data to write in bytes 3074 * @data: the data to write 3075 * 3076 * Writes up to a page of data (256 bytes) to the serial flash starting 3077 * at the given address. All the data must be written to the same page. 3078 */ 3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3080 unsigned int n, const u8 *data) 3081 { 3082 int ret; 3083 u32 buf[64]; 3084 unsigned int i, c, left, val, offset = addr & 0xff; 3085 3086 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3087 return -EINVAL; 3088 3089 val = swab32(addr) | SF_PROG_PAGE; 3090 3091 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3092 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3093 goto unlock; 3094 3095 for (left = n; left; left -= c) { 3096 c = min(left, 4U); 3097 for (val = 0, i = 0; i < c; ++i) 3098 val = (val << 8) + *data++; 3099 3100 ret = sf1_write(adapter, c, c != left, 1, val); 3101 if (ret) 3102 goto unlock; 3103 } 3104 ret = flash_wait_op(adapter, 8, 1); 3105 if (ret) 3106 goto unlock; 3107 3108 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3109 3110 /* Read the page to verify the write succeeded */ 3111 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3112 if (ret) 3113 return ret; 3114 3115 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3116 dev_err(adapter->pdev_dev, 3117 "failed to correctly write the flash page at %#x\n", 3118 addr); 3119 return -EIO; 3120 } 3121 return 0; 3122 3123 unlock: 3124 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3125 return ret; 3126 } 3127 3128 /** 3129 * t4_get_fw_version - read the firmware version 3130 * @adapter: the adapter 3131 * @vers: where to place the version 3132 * 3133 * Reads the FW version from flash. 3134 */ 3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3136 { 3137 return t4_read_flash(adapter, FLASH_FW_START + 3138 offsetof(struct fw_hdr, fw_ver), 1, 3139 vers, 0); 3140 } 3141 3142 /** 3143 * t4_get_bs_version - read the firmware bootstrap version 3144 * @adapter: the adapter 3145 * @vers: where to place the version 3146 * 3147 * Reads the FW Bootstrap version from flash. 3148 */ 3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3150 { 3151 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3152 offsetof(struct fw_hdr, fw_ver), 1, 3153 vers, 0); 3154 } 3155 3156 /** 3157 * t4_get_tp_version - read the TP microcode version 3158 * @adapter: the adapter 3159 * @vers: where to place the version 3160 * 3161 * Reads the TP microcode version from flash. 3162 */ 3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3164 { 3165 return t4_read_flash(adapter, FLASH_FW_START + 3166 offsetof(struct fw_hdr, tp_microcode_ver), 3167 1, vers, 0); 3168 } 3169 3170 /** 3171 * t4_get_exprom_version - return the Expansion ROM version (if any) 3172 * @adapter: the adapter 3173 * @vers: where to place the version 3174 * 3175 * Reads the Expansion ROM header from FLASH and returns the version 3176 * number (if present) through the @vers return value pointer. We return 3177 * this in the Firmware Version Format since it's convenient. Return 3178 * 0 on success, -ENOENT if no Expansion ROM is present. 3179 */ 3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3181 { 3182 struct exprom_header { 3183 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3184 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3185 } *hdr; 3186 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3187 sizeof(u32))]; 3188 int ret; 3189 3190 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3191 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3192 0); 3193 if (ret) 3194 return ret; 3195 3196 hdr = (struct exprom_header *)exprom_header_buf; 3197 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3198 return -ENOENT; 3199 3200 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3201 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3202 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3203 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3204 return 0; 3205 } 3206 3207 /** 3208 * t4_get_vpd_version - return the VPD version 3209 * @adapter: the adapter 3210 * @vers: where to place the version 3211 * 3212 * Reads the VPD via the Firmware interface (thus this can only be called 3213 * once we're ready to issue Firmware commands). The format of the 3214 * VPD version is adapter specific. Returns 0 on success, an error on 3215 * failure. 3216 * 3217 * Note that early versions of the Firmware didn't include the ability 3218 * to retrieve the VPD version, so we zero-out the return-value parameter 3219 * in that case to avoid leaving it with garbage in it. 3220 * 3221 * Also note that the Firmware will return its cached copy of the VPD 3222 * Revision ID, not the actual Revision ID as written in the Serial 3223 * EEPROM. This is only an issue if a new VPD has been written and the 3224 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3225 * to defer calling this routine till after a FW_RESET_CMD has been issued 3226 * if the Host Driver will be performing a full adapter initialization. 3227 */ 3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3229 { 3230 u32 vpdrev_param; 3231 int ret; 3232 3233 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3234 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3235 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3236 1, &vpdrev_param, vers); 3237 if (ret) 3238 *vers = 0; 3239 return ret; 3240 } 3241 3242 /** 3243 * t4_get_scfg_version - return the Serial Configuration version 3244 * @adapter: the adapter 3245 * @vers: where to place the version 3246 * 3247 * Reads the Serial Configuration Version via the Firmware interface 3248 * (thus this can only be called once we're ready to issue Firmware 3249 * commands). The format of the Serial Configuration version is 3250 * adapter specific. Returns 0 on success, an error on failure. 3251 * 3252 * Note that early versions of the Firmware didn't include the ability 3253 * to retrieve the Serial Configuration version, so we zero-out the 3254 * return-value parameter in that case to avoid leaving it with 3255 * garbage in it. 3256 * 3257 * Also note that the Firmware will return its cached copy of the Serial 3258 * Initialization Revision ID, not the actual Revision ID as written in 3259 * the Serial EEPROM. This is only an issue if a new VPD has been written 3260 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3261 * it's best to defer calling this routine till after a FW_RESET_CMD has 3262 * been issued if the Host Driver will be performing a full adapter 3263 * initialization. 3264 */ 3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3266 { 3267 u32 scfgrev_param; 3268 int ret; 3269 3270 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3271 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3272 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3273 1, &scfgrev_param, vers); 3274 if (ret) 3275 *vers = 0; 3276 return ret; 3277 } 3278 3279 /** 3280 * t4_get_version_info - extract various chip/firmware version information 3281 * @adapter: the adapter 3282 * 3283 * Reads various chip/firmware version numbers and stores them into the 3284 * adapter Adapter Parameters structure. If any of the efforts fails 3285 * the first failure will be returned, but all of the version numbers 3286 * will be read. 3287 */ 3288 int t4_get_version_info(struct adapter *adapter) 3289 { 3290 int ret = 0; 3291 3292 #define FIRST_RET(__getvinfo) \ 3293 do { \ 3294 int __ret = __getvinfo; \ 3295 if (__ret && !ret) \ 3296 ret = __ret; \ 3297 } while (0) 3298 3299 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3300 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3301 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3302 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3303 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3304 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3305 3306 #undef FIRST_RET 3307 return ret; 3308 } 3309 3310 /** 3311 * t4_dump_version_info - dump all of the adapter configuration IDs 3312 * @adapter: the adapter 3313 * 3314 * Dumps all of the various bits of adapter configuration version/revision 3315 * IDs information. This is typically called at some point after 3316 * t4_get_version_info() has been called. 3317 */ 3318 void t4_dump_version_info(struct adapter *adapter) 3319 { 3320 /* Device information */ 3321 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3322 adapter->params.vpd.id, 3323 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3324 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3325 adapter->params.vpd.sn, adapter->params.vpd.pn); 3326 3327 /* Firmware Version */ 3328 if (!adapter->params.fw_vers) 3329 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3330 else 3331 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3332 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3333 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3334 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3335 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3336 3337 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3338 * Firmware, so dev_info() is more appropriate here.) 3339 */ 3340 if (!adapter->params.bs_vers) 3341 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3342 else 3343 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3344 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3345 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3346 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3347 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3348 3349 /* TP Microcode Version */ 3350 if (!adapter->params.tp_vers) 3351 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3352 else 3353 dev_info(adapter->pdev_dev, 3354 "TP Microcode version: %u.%u.%u.%u\n", 3355 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3356 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3357 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3358 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3359 3360 /* Expansion ROM version */ 3361 if (!adapter->params.er_vers) 3362 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3363 else 3364 dev_info(adapter->pdev_dev, 3365 "Expansion ROM version: %u.%u.%u.%u\n", 3366 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3367 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3368 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3369 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3370 3371 /* Serial Configuration version */ 3372 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3373 adapter->params.scfg_vers); 3374 3375 /* VPD Version */ 3376 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3377 adapter->params.vpd_vers); 3378 } 3379 3380 /** 3381 * t4_check_fw_version - check if the FW is supported with this driver 3382 * @adap: the adapter 3383 * 3384 * Checks if an adapter's FW is compatible with the driver. Returns 0 3385 * if there's exact match, a negative error if the version could not be 3386 * read or there's a major version mismatch 3387 */ 3388 int t4_check_fw_version(struct adapter *adap) 3389 { 3390 int i, ret, major, minor, micro; 3391 int exp_major, exp_minor, exp_micro; 3392 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3393 3394 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3395 /* Try multiple times before returning error */ 3396 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3397 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3398 3399 if (ret) 3400 return ret; 3401 3402 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3403 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3404 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3405 3406 switch (chip_version) { 3407 case CHELSIO_T4: 3408 exp_major = T4FW_MIN_VERSION_MAJOR; 3409 exp_minor = T4FW_MIN_VERSION_MINOR; 3410 exp_micro = T4FW_MIN_VERSION_MICRO; 3411 break; 3412 case CHELSIO_T5: 3413 exp_major = T5FW_MIN_VERSION_MAJOR; 3414 exp_minor = T5FW_MIN_VERSION_MINOR; 3415 exp_micro = T5FW_MIN_VERSION_MICRO; 3416 break; 3417 case CHELSIO_T6: 3418 exp_major = T6FW_MIN_VERSION_MAJOR; 3419 exp_minor = T6FW_MIN_VERSION_MINOR; 3420 exp_micro = T6FW_MIN_VERSION_MICRO; 3421 break; 3422 default: 3423 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3424 adap->chip); 3425 return -EINVAL; 3426 } 3427 3428 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3429 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3430 dev_err(adap->pdev_dev, 3431 "Card has firmware version %u.%u.%u, minimum " 3432 "supported firmware is %u.%u.%u.\n", major, minor, 3433 micro, exp_major, exp_minor, exp_micro); 3434 return -EFAULT; 3435 } 3436 return 0; 3437 } 3438 3439 /* Is the given firmware API compatible with the one the driver was compiled 3440 * with? 3441 */ 3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3443 { 3444 3445 /* short circuit if it's the exact same firmware version */ 3446 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3447 return 1; 3448 3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3450 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3451 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3452 return 1; 3453 #undef SAME_INTF 3454 3455 return 0; 3456 } 3457 3458 /* The firmware in the filesystem is usable, but should it be installed? 3459 * This routine explains itself in detail if it indicates the filesystem 3460 * firmware should be installed. 3461 */ 3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3463 int k, int c) 3464 { 3465 const char *reason; 3466 3467 if (!card_fw_usable) { 3468 reason = "incompatible or unusable"; 3469 goto install; 3470 } 3471 3472 if (k > c) { 3473 reason = "older than the version supported with this driver"; 3474 goto install; 3475 } 3476 3477 return 0; 3478 3479 install: 3480 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3481 "installing firmware %u.%u.%u.%u on card.\n", 3482 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3483 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3484 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3485 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3486 3487 return 1; 3488 } 3489 3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3491 const u8 *fw_data, unsigned int fw_size, 3492 struct fw_hdr *card_fw, enum dev_state state, 3493 int *reset) 3494 { 3495 int ret, card_fw_usable, fs_fw_usable; 3496 const struct fw_hdr *fs_fw; 3497 const struct fw_hdr *drv_fw; 3498 3499 drv_fw = &fw_info->fw_hdr; 3500 3501 /* Read the header of the firmware on the card */ 3502 ret = -t4_read_flash(adap, FLASH_FW_START, 3503 sizeof(*card_fw) / sizeof(uint32_t), 3504 (uint32_t *)card_fw, 1); 3505 if (ret == 0) { 3506 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3507 } else { 3508 dev_err(adap->pdev_dev, 3509 "Unable to read card's firmware header: %d\n", ret); 3510 card_fw_usable = 0; 3511 } 3512 3513 if (fw_data != NULL) { 3514 fs_fw = (const void *)fw_data; 3515 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3516 } else { 3517 fs_fw = NULL; 3518 fs_fw_usable = 0; 3519 } 3520 3521 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3522 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3523 /* Common case: the firmware on the card is an exact match and 3524 * the filesystem one is an exact match too, or the filesystem 3525 * one is absent/incompatible. 3526 */ 3527 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3528 should_install_fs_fw(adap, card_fw_usable, 3529 be32_to_cpu(fs_fw->fw_ver), 3530 be32_to_cpu(card_fw->fw_ver))) { 3531 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3532 fw_size, 0); 3533 if (ret != 0) { 3534 dev_err(adap->pdev_dev, 3535 "failed to install firmware: %d\n", ret); 3536 goto bye; 3537 } 3538 3539 /* Installed successfully, update the cached header too. */ 3540 *card_fw = *fs_fw; 3541 card_fw_usable = 1; 3542 *reset = 0; /* already reset as part of load_fw */ 3543 } 3544 3545 if (!card_fw_usable) { 3546 uint32_t d, c, k; 3547 3548 d = be32_to_cpu(drv_fw->fw_ver); 3549 c = be32_to_cpu(card_fw->fw_ver); 3550 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3551 3552 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3553 "chip state %d, " 3554 "driver compiled with %d.%d.%d.%d, " 3555 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3556 state, 3557 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3558 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3559 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3560 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3561 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3562 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3563 ret = EINVAL; 3564 goto bye; 3565 } 3566 3567 /* We're using whatever's on the card and it's known to be good. */ 3568 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3569 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3570 3571 bye: 3572 return ret; 3573 } 3574 3575 /** 3576 * t4_flash_erase_sectors - erase a range of flash sectors 3577 * @adapter: the adapter 3578 * @start: the first sector to erase 3579 * @end: the last sector to erase 3580 * 3581 * Erases the sectors in the given inclusive range. 3582 */ 3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3584 { 3585 int ret = 0; 3586 3587 if (end >= adapter->params.sf_nsec) 3588 return -EINVAL; 3589 3590 while (start <= end) { 3591 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3592 (ret = sf1_write(adapter, 4, 0, 1, 3593 SF_ERASE_SECTOR | (start << 8))) != 0 || 3594 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3595 dev_err(adapter->pdev_dev, 3596 "erase of flash sector %d failed, error %d\n", 3597 start, ret); 3598 break; 3599 } 3600 start++; 3601 } 3602 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3603 return ret; 3604 } 3605 3606 /** 3607 * t4_flash_cfg_addr - return the address of the flash configuration file 3608 * @adapter: the adapter 3609 * 3610 * Return the address within the flash where the Firmware Configuration 3611 * File is stored. 3612 */ 3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3614 { 3615 if (adapter->params.sf_size == 0x100000) 3616 return FLASH_FPGA_CFG_START; 3617 else 3618 return FLASH_CFG_START; 3619 } 3620 3621 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3622 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3623 * and emit an error message for mismatched firmware to save our caller the 3624 * effort ... 3625 */ 3626 static bool t4_fw_matches_chip(const struct adapter *adap, 3627 const struct fw_hdr *hdr) 3628 { 3629 /* The expression below will return FALSE for any unsupported adapter 3630 * which will keep us "honest" in the future ... 3631 */ 3632 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3633 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3634 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3635 return true; 3636 3637 dev_err(adap->pdev_dev, 3638 "FW image (%d) is not suitable for this adapter (%d)\n", 3639 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3640 return false; 3641 } 3642 3643 /** 3644 * t4_load_fw - download firmware 3645 * @adap: the adapter 3646 * @fw_data: the firmware image to write 3647 * @size: image size 3648 * 3649 * Write the supplied firmware image to the card's serial flash. 3650 */ 3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3652 { 3653 u32 csum; 3654 int ret, addr; 3655 unsigned int i; 3656 u8 first_page[SF_PAGE_SIZE]; 3657 const __be32 *p = (const __be32 *)fw_data; 3658 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3659 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3660 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3661 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3662 unsigned int fw_start = FLASH_FW_START; 3663 3664 if (!size) { 3665 dev_err(adap->pdev_dev, "FW image has no data\n"); 3666 return -EINVAL; 3667 } 3668 if (size & 511) { 3669 dev_err(adap->pdev_dev, 3670 "FW image size not multiple of 512 bytes\n"); 3671 return -EINVAL; 3672 } 3673 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3674 dev_err(adap->pdev_dev, 3675 "FW image size differs from size in FW header\n"); 3676 return -EINVAL; 3677 } 3678 if (size > fw_size) { 3679 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3680 fw_size); 3681 return -EFBIG; 3682 } 3683 if (!t4_fw_matches_chip(adap, hdr)) 3684 return -EINVAL; 3685 3686 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3687 csum += be32_to_cpu(p[i]); 3688 3689 if (csum != 0xffffffff) { 3690 dev_err(adap->pdev_dev, 3691 "corrupted firmware image, checksum %#x\n", csum); 3692 return -EINVAL; 3693 } 3694 3695 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3696 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3697 if (ret) 3698 goto out; 3699 3700 /* 3701 * We write the correct version at the end so the driver can see a bad 3702 * version if the FW write fails. Start by writing a copy of the 3703 * first page with a bad version. 3704 */ 3705 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3706 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3707 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3708 if (ret) 3709 goto out; 3710 3711 addr = fw_start; 3712 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3713 addr += SF_PAGE_SIZE; 3714 fw_data += SF_PAGE_SIZE; 3715 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3716 if (ret) 3717 goto out; 3718 } 3719 3720 ret = t4_write_flash(adap, 3721 fw_start + offsetof(struct fw_hdr, fw_ver), 3722 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3723 out: 3724 if (ret) 3725 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3726 ret); 3727 else 3728 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3729 return ret; 3730 } 3731 3732 /** 3733 * t4_phy_fw_ver - return current PHY firmware version 3734 * @adap: the adapter 3735 * @phy_fw_ver: return value buffer for PHY firmware version 3736 * 3737 * Returns the current version of external PHY firmware on the 3738 * adapter. 3739 */ 3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3741 { 3742 u32 param, val; 3743 int ret; 3744 3745 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3746 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3747 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3748 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3749 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3750 ¶m, &val); 3751 if (ret < 0) 3752 return ret; 3753 *phy_fw_ver = val; 3754 return 0; 3755 } 3756 3757 /** 3758 * t4_load_phy_fw - download port PHY firmware 3759 * @adap: the adapter 3760 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3761 * @win_lock: the lock to use to guard the memory copy 3762 * @phy_fw_version: function to check PHY firmware versions 3763 * @phy_fw_data: the PHY firmware image to write 3764 * @phy_fw_size: image size 3765 * 3766 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3767 * @phy_fw_version is supplied, then it will be used to determine if 3768 * it's necessary to perform the transfer by comparing the version 3769 * of any existing adapter PHY firmware with that of the passed in 3770 * PHY firmware image. If @win_lock is non-NULL then it will be used 3771 * around the call to t4_memory_rw() which transfers the PHY firmware 3772 * to the adapter. 3773 * 3774 * A negative error number will be returned if an error occurs. If 3775 * version number support is available and there's no need to upgrade 3776 * the firmware, 0 will be returned. If firmware is successfully 3777 * transferred to the adapter, 1 will be retured. 3778 * 3779 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3780 * a result, a RESET of the adapter would cause that RAM to lose its 3781 * contents. Thus, loading PHY firmware on such adapters must happen 3782 * after any FW_RESET_CMDs ... 3783 */ 3784 int t4_load_phy_fw(struct adapter *adap, 3785 int win, spinlock_t *win_lock, 3786 int (*phy_fw_version)(const u8 *, size_t), 3787 const u8 *phy_fw_data, size_t phy_fw_size) 3788 { 3789 unsigned long mtype = 0, maddr = 0; 3790 u32 param, val; 3791 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3792 int ret; 3793 3794 /* If we have version number support, then check to see if the adapter 3795 * already has up-to-date PHY firmware loaded. 3796 */ 3797 if (phy_fw_version) { 3798 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3799 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3800 if (ret < 0) 3801 return ret; 3802 3803 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3804 CH_WARN(adap, "PHY Firmware already up-to-date, " 3805 "version %#x\n", cur_phy_fw_ver); 3806 return 0; 3807 } 3808 } 3809 3810 /* Ask the firmware where it wants us to copy the PHY firmware image. 3811 * The size of the file requires a special version of the READ coommand 3812 * which will pass the file size via the values field in PARAMS_CMD and 3813 * retrieve the return value from firmware and place it in the same 3814 * buffer values 3815 */ 3816 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3817 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3818 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3819 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3820 val = phy_fw_size; 3821 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3822 ¶m, &val, 1, true); 3823 if (ret < 0) 3824 return ret; 3825 mtype = val >> 8; 3826 maddr = (val & 0xff) << 16; 3827 3828 /* Copy the supplied PHY Firmware image to the adapter memory location 3829 * allocated by the adapter firmware. 3830 */ 3831 if (win_lock) 3832 spin_lock_bh(win_lock); 3833 ret = t4_memory_rw(adap, win, mtype, maddr, 3834 phy_fw_size, (__be32 *)phy_fw_data, 3835 T4_MEMORY_WRITE); 3836 if (win_lock) 3837 spin_unlock_bh(win_lock); 3838 if (ret) 3839 return ret; 3840 3841 /* Tell the firmware that the PHY firmware image has been written to 3842 * RAM and it can now start copying it over to the PHYs. The chip 3843 * firmware will RESET the affected PHYs as part of this operation 3844 * leaving them running the new PHY firmware image. 3845 */ 3846 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3847 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3848 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3849 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3850 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3851 ¶m, &val, 30000); 3852 3853 /* If we have version number support, then check to see that the new 3854 * firmware got loaded properly. 3855 */ 3856 if (phy_fw_version) { 3857 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3858 if (ret < 0) 3859 return ret; 3860 3861 if (cur_phy_fw_ver != new_phy_fw_vers) { 3862 CH_WARN(adap, "PHY Firmware did not update: " 3863 "version on adapter %#x, " 3864 "version flashed %#x\n", 3865 cur_phy_fw_ver, new_phy_fw_vers); 3866 return -ENXIO; 3867 } 3868 } 3869 3870 return 1; 3871 } 3872 3873 /** 3874 * t4_fwcache - firmware cache operation 3875 * @adap: the adapter 3876 * @op : the operation (flush or flush and invalidate) 3877 */ 3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3879 { 3880 struct fw_params_cmd c; 3881 3882 memset(&c, 0, sizeof(c)); 3883 c.op_to_vfn = 3884 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3885 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3886 FW_PARAMS_CMD_PFN_V(adap->pf) | 3887 FW_PARAMS_CMD_VFN_V(0)); 3888 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3889 c.param[0].mnem = 3890 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3891 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3892 c.param[0].val = cpu_to_be32(op); 3893 3894 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3895 } 3896 3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3898 unsigned int *pif_req_wrptr, 3899 unsigned int *pif_rsp_wrptr) 3900 { 3901 int i, j; 3902 u32 cfg, val, req, rsp; 3903 3904 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3905 if (cfg & LADBGEN_F) 3906 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3907 3908 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3909 req = POLADBGWRPTR_G(val); 3910 rsp = PILADBGWRPTR_G(val); 3911 if (pif_req_wrptr) 3912 *pif_req_wrptr = req; 3913 if (pif_rsp_wrptr) 3914 *pif_rsp_wrptr = rsp; 3915 3916 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3917 for (j = 0; j < 6; j++) { 3918 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3919 PILADBGRDPTR_V(rsp)); 3920 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3921 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3922 req++; 3923 rsp++; 3924 } 3925 req = (req + 2) & POLADBGRDPTR_M; 3926 rsp = (rsp + 2) & PILADBGRDPTR_M; 3927 } 3928 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3929 } 3930 3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3932 { 3933 u32 cfg; 3934 int i, j, idx; 3935 3936 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3937 if (cfg & LADBGEN_F) 3938 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3939 3940 for (i = 0; i < CIM_MALA_SIZE; i++) { 3941 for (j = 0; j < 5; j++) { 3942 idx = 8 * i + j; 3943 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3944 PILADBGRDPTR_V(idx)); 3945 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3946 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3947 } 3948 } 3949 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3950 } 3951 3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3953 { 3954 unsigned int i, j; 3955 3956 for (i = 0; i < 8; i++) { 3957 u32 *p = la_buf + i; 3958 3959 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3960 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3961 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3962 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3963 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3964 } 3965 } 3966 3967 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3968 FW_PORT_CAP32_ANEG) 3969 3970 /** 3971 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3972 * @caps16: a 16-bit Port Capabilities value 3973 * 3974 * Returns the equivalent 32-bit Port Capabilities value. 3975 */ 3976 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3977 { 3978 fw_port_cap32_t caps32 = 0; 3979 3980 #define CAP16_TO_CAP32(__cap) \ 3981 do { \ 3982 if (caps16 & FW_PORT_CAP_##__cap) \ 3983 caps32 |= FW_PORT_CAP32_##__cap; \ 3984 } while (0) 3985 3986 CAP16_TO_CAP32(SPEED_100M); 3987 CAP16_TO_CAP32(SPEED_1G); 3988 CAP16_TO_CAP32(SPEED_25G); 3989 CAP16_TO_CAP32(SPEED_10G); 3990 CAP16_TO_CAP32(SPEED_40G); 3991 CAP16_TO_CAP32(SPEED_100G); 3992 CAP16_TO_CAP32(FC_RX); 3993 CAP16_TO_CAP32(FC_TX); 3994 CAP16_TO_CAP32(ANEG); 3995 CAP16_TO_CAP32(FORCE_PAUSE); 3996 CAP16_TO_CAP32(MDIAUTO); 3997 CAP16_TO_CAP32(MDISTRAIGHT); 3998 CAP16_TO_CAP32(FEC_RS); 3999 CAP16_TO_CAP32(FEC_BASER_RS); 4000 CAP16_TO_CAP32(802_3_PAUSE); 4001 CAP16_TO_CAP32(802_3_ASM_DIR); 4002 4003 #undef CAP16_TO_CAP32 4004 4005 return caps32; 4006 } 4007 4008 /** 4009 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 4010 * @caps32: a 32-bit Port Capabilities value 4011 * 4012 * Returns the equivalent 16-bit Port Capabilities value. Note that 4013 * not all 32-bit Port Capabilities can be represented in the 16-bit 4014 * Port Capabilities and some fields/values may not make it. 4015 */ 4016 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4017 { 4018 fw_port_cap16_t caps16 = 0; 4019 4020 #define CAP32_TO_CAP16(__cap) \ 4021 do { \ 4022 if (caps32 & FW_PORT_CAP32_##__cap) \ 4023 caps16 |= FW_PORT_CAP_##__cap; \ 4024 } while (0) 4025 4026 CAP32_TO_CAP16(SPEED_100M); 4027 CAP32_TO_CAP16(SPEED_1G); 4028 CAP32_TO_CAP16(SPEED_10G); 4029 CAP32_TO_CAP16(SPEED_25G); 4030 CAP32_TO_CAP16(SPEED_40G); 4031 CAP32_TO_CAP16(SPEED_100G); 4032 CAP32_TO_CAP16(FC_RX); 4033 CAP32_TO_CAP16(FC_TX); 4034 CAP32_TO_CAP16(802_3_PAUSE); 4035 CAP32_TO_CAP16(802_3_ASM_DIR); 4036 CAP32_TO_CAP16(ANEG); 4037 CAP32_TO_CAP16(FORCE_PAUSE); 4038 CAP32_TO_CAP16(MDIAUTO); 4039 CAP32_TO_CAP16(MDISTRAIGHT); 4040 CAP32_TO_CAP16(FEC_RS); 4041 CAP32_TO_CAP16(FEC_BASER_RS); 4042 4043 #undef CAP32_TO_CAP16 4044 4045 return caps16; 4046 } 4047 4048 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4049 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4050 { 4051 enum cc_pause cc_pause = 0; 4052 4053 if (fw_pause & FW_PORT_CAP32_FC_RX) 4054 cc_pause |= PAUSE_RX; 4055 if (fw_pause & FW_PORT_CAP32_FC_TX) 4056 cc_pause |= PAUSE_TX; 4057 4058 return cc_pause; 4059 } 4060 4061 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4062 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4063 { 4064 fw_port_cap32_t fw_pause = 0; 4065 4066 if (cc_pause & PAUSE_RX) 4067 fw_pause |= FW_PORT_CAP32_FC_RX; 4068 if (cc_pause & PAUSE_TX) 4069 fw_pause |= FW_PORT_CAP32_FC_TX; 4070 if (!(cc_pause & PAUSE_AUTONEG)) 4071 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4072 4073 return fw_pause; 4074 } 4075 4076 /* Translate Firmware Forward Error Correction specification to Common Code */ 4077 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4078 { 4079 enum cc_fec cc_fec = 0; 4080 4081 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4082 cc_fec |= FEC_RS; 4083 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4084 cc_fec |= FEC_BASER_RS; 4085 4086 return cc_fec; 4087 } 4088 4089 /* Translate Common Code Forward Error Correction specification to Firmware */ 4090 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4091 { 4092 fw_port_cap32_t fw_fec = 0; 4093 4094 if (cc_fec & FEC_RS) 4095 fw_fec |= FW_PORT_CAP32_FEC_RS; 4096 if (cc_fec & FEC_BASER_RS) 4097 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4098 4099 return fw_fec; 4100 } 4101 4102 /** 4103 * t4_link_l1cfg - apply link configuration to MAC/PHY 4104 * @adapter: the adapter 4105 * @mbox: the Firmware Mailbox to use 4106 * @port: the Port ID 4107 * @lc: the Port's Link Configuration 4108 * @sleep_ok: if true we may sleep while awaiting command completion 4109 * @timeout: time to wait for command to finish before timing out 4110 * (negative implies @sleep_ok=false) 4111 * 4112 * Set up a port's MAC and PHY according to a desired link configuration. 4113 * - If the PHY can auto-negotiate first decide what to advertise, then 4114 * enable/disable auto-negotiation as desired, and reset. 4115 * - If the PHY does not auto-negotiate just reset it. 4116 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4117 * otherwise do it later based on the outcome of auto-negotiation. 4118 */ 4119 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4120 unsigned int port, struct link_config *lc, 4121 bool sleep_ok, int timeout) 4122 { 4123 unsigned int fw_caps = adapter->params.fw_caps_support; 4124 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 4125 struct fw_port_cmd cmd; 4126 unsigned int fw_mdi; 4127 int ret; 4128 4129 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4130 4131 /* Convert driver coding of Pause Frame Flow Control settings into the 4132 * Firmware's API. 4133 */ 4134 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4135 4136 /* Convert Common Code Forward Error Control settings into the 4137 * Firmware's API. If the current Requested FEC has "Automatic" 4138 * (IEEE 802.3) specified, then we use whatever the Firmware 4139 * sent us as part of it's IEEE 802.3-based interpratation of 4140 * the Transceiver Module EPROM FEC parameters. Otherwise we 4141 * use whatever is in the current Requested FEC settings. 4142 */ 4143 if (lc->requested_fec & FEC_AUTO) 4144 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4145 else 4146 cc_fec = lc->requested_fec; 4147 fw_fec = cc_to_fwcap_fec(cc_fec); 4148 4149 /* Figure out what our Requested Port Capabilities are going to be. 4150 * Note parallel structure in t4_handle_get_port_info() and 4151 * init_link_config(). 4152 */ 4153 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4154 if (lc->autoneg == AUTONEG_ENABLE) 4155 return -EINVAL; 4156 4157 rcap = lc->acaps | fw_fc | fw_fec; 4158 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4159 lc->fec = cc_fec; 4160 } else if (lc->autoneg == AUTONEG_DISABLE) { 4161 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4162 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4163 lc->fec = cc_fec; 4164 } else { 4165 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4166 } 4167 4168 /* Some Requested Port Capabilities are trivially wrong if they exceed 4169 * the Physical Port Capabilities. We can check that here and provide 4170 * moderately useful feedback in the system log. 4171 * 4172 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4173 * we need to exclude this from this check in order to maintain 4174 * compatibility ... 4175 */ 4176 if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4177 dev_err(adapter->pdev_dev, 4178 "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4179 rcap, lc->pcaps); 4180 return -EINVAL; 4181 } 4182 4183 /* And send that on to the Firmware ... 4184 */ 4185 memset(&cmd, 0, sizeof(cmd)); 4186 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4187 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4188 FW_PORT_CMD_PORTID_V(port)); 4189 cmd.action_to_len16 = 4190 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4191 ? FW_PORT_ACTION_L1_CFG 4192 : FW_PORT_ACTION_L1_CFG32) | 4193 FW_LEN16(cmd)); 4194 if (fw_caps == FW_CAPS16) 4195 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4196 else 4197 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4198 4199 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4200 sleep_ok, timeout); 4201 4202 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4203 * the Physical Port Capabilities, some combinations of features may 4204 * still not be leagal. For example, 40Gb/s and Reed-Solomon Forward 4205 * Error Correction. So if the Firmware rejects the L1 Configure 4206 * request, flag that here. 4207 */ 4208 if (ret) { 4209 dev_err(adapter->pdev_dev, 4210 "Requested Port Capabilities %#x rejected, error %d\n", 4211 rcap, -ret); 4212 return ret; 4213 } 4214 return ret; 4215 } 4216 4217 /** 4218 * t4_restart_aneg - restart autonegotiation 4219 * @adap: the adapter 4220 * @mbox: mbox to use for the FW command 4221 * @port: the port id 4222 * 4223 * Restarts autonegotiation for the selected port. 4224 */ 4225 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4226 { 4227 unsigned int fw_caps = adap->params.fw_caps_support; 4228 struct fw_port_cmd c; 4229 4230 memset(&c, 0, sizeof(c)); 4231 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4232 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4233 FW_PORT_CMD_PORTID_V(port)); 4234 c.action_to_len16 = 4235 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4236 ? FW_PORT_ACTION_L1_CFG 4237 : FW_PORT_ACTION_L1_CFG32) | 4238 FW_LEN16(c)); 4239 if (fw_caps == FW_CAPS16) 4240 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4241 else 4242 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4243 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4244 } 4245 4246 typedef void (*int_handler_t)(struct adapter *adap); 4247 4248 struct intr_info { 4249 unsigned int mask; /* bits to check in interrupt status */ 4250 const char *msg; /* message to print or NULL */ 4251 short stat_idx; /* stat counter to increment or -1 */ 4252 unsigned short fatal; /* whether the condition reported is fatal */ 4253 int_handler_t int_handler; /* platform-specific int handler */ 4254 }; 4255 4256 /** 4257 * t4_handle_intr_status - table driven interrupt handler 4258 * @adapter: the adapter that generated the interrupt 4259 * @reg: the interrupt status register to process 4260 * @acts: table of interrupt actions 4261 * 4262 * A table driven interrupt handler that applies a set of masks to an 4263 * interrupt status word and performs the corresponding actions if the 4264 * interrupts described by the mask have occurred. The actions include 4265 * optionally emitting a warning or alert message. The table is terminated 4266 * by an entry specifying mask 0. Returns the number of fatal interrupt 4267 * conditions. 4268 */ 4269 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4270 const struct intr_info *acts) 4271 { 4272 int fatal = 0; 4273 unsigned int mask = 0; 4274 unsigned int status = t4_read_reg(adapter, reg); 4275 4276 for ( ; acts->mask; ++acts) { 4277 if (!(status & acts->mask)) 4278 continue; 4279 if (acts->fatal) { 4280 fatal++; 4281 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4282 status & acts->mask); 4283 } else if (acts->msg && printk_ratelimit()) 4284 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4285 status & acts->mask); 4286 if (acts->int_handler) 4287 acts->int_handler(adapter); 4288 mask |= acts->mask; 4289 } 4290 status &= mask; 4291 if (status) /* clear processed interrupts */ 4292 t4_write_reg(adapter, reg, status); 4293 return fatal; 4294 } 4295 4296 /* 4297 * Interrupt handler for the PCIE module. 4298 */ 4299 static void pcie_intr_handler(struct adapter *adapter) 4300 { 4301 static const struct intr_info sysbus_intr_info[] = { 4302 { RNPP_F, "RXNP array parity error", -1, 1 }, 4303 { RPCP_F, "RXPC array parity error", -1, 1 }, 4304 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4305 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4306 { RFTP_F, "RXFT array parity error", -1, 1 }, 4307 { 0 } 4308 }; 4309 static const struct intr_info pcie_port_intr_info[] = { 4310 { TPCP_F, "TXPC array parity error", -1, 1 }, 4311 { TNPP_F, "TXNP array parity error", -1, 1 }, 4312 { TFTP_F, "TXFT array parity error", -1, 1 }, 4313 { TCAP_F, "TXCA array parity error", -1, 1 }, 4314 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4315 { RCAP_F, "RXCA array parity error", -1, 1 }, 4316 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4317 { RDPE_F, "Rx data parity error", -1, 1 }, 4318 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4319 { 0 } 4320 }; 4321 static const struct intr_info pcie_intr_info[] = { 4322 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4323 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4324 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4325 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4326 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4327 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4328 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4329 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4330 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4331 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4332 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4333 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4334 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4335 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4336 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4337 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4338 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4339 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4340 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4341 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4342 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4343 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4344 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4345 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4346 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4347 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4348 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4349 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4350 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4351 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4352 -1, 0 }, 4353 { 0 } 4354 }; 4355 4356 static struct intr_info t5_pcie_intr_info[] = { 4357 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4358 -1, 1 }, 4359 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4360 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4361 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4362 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4363 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4364 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4365 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4366 -1, 1 }, 4367 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4368 -1, 1 }, 4369 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4370 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4371 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4372 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4373 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4374 -1, 1 }, 4375 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4376 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4377 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4378 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4379 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4380 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4381 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4382 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4383 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4384 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4385 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4386 -1, 1 }, 4387 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4388 -1, 1 }, 4389 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4390 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4391 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4392 { READRSPERR_F, "Outbound read error", -1, 0 }, 4393 { 0 } 4394 }; 4395 4396 int fat; 4397 4398 if (is_t4(adapter->params.chip)) 4399 fat = t4_handle_intr_status(adapter, 4400 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4401 sysbus_intr_info) + 4402 t4_handle_intr_status(adapter, 4403 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4404 pcie_port_intr_info) + 4405 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4406 pcie_intr_info); 4407 else 4408 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4409 t5_pcie_intr_info); 4410 4411 if (fat) 4412 t4_fatal_err(adapter); 4413 } 4414 4415 /* 4416 * TP interrupt handler. 4417 */ 4418 static void tp_intr_handler(struct adapter *adapter) 4419 { 4420 static const struct intr_info tp_intr_info[] = { 4421 { 0x3fffffff, "TP parity error", -1, 1 }, 4422 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4423 { 0 } 4424 }; 4425 4426 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4427 t4_fatal_err(adapter); 4428 } 4429 4430 /* 4431 * SGE interrupt handler. 4432 */ 4433 static void sge_intr_handler(struct adapter *adapter) 4434 { 4435 u64 v; 4436 u32 err; 4437 4438 static const struct intr_info sge_intr_info[] = { 4439 { ERR_CPL_EXCEED_IQE_SIZE_F, 4440 "SGE received CPL exceeding IQE size", -1, 1 }, 4441 { ERR_INVALID_CIDX_INC_F, 4442 "SGE GTS CIDX increment too large", -1, 0 }, 4443 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4444 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4445 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4446 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4447 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4448 0 }, 4449 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4450 0 }, 4451 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4452 0 }, 4453 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4454 0 }, 4455 { ERR_ING_CTXT_PRIO_F, 4456 "SGE too many priority ingress contexts", -1, 0 }, 4457 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4458 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4459 { 0 } 4460 }; 4461 4462 static struct intr_info t4t5_sge_intr_info[] = { 4463 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4464 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4465 { ERR_EGR_CTXT_PRIO_F, 4466 "SGE too many priority egress contexts", -1, 0 }, 4467 { 0 } 4468 }; 4469 4470 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4471 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4472 if (v) { 4473 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4474 (unsigned long long)v); 4475 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4476 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4477 } 4478 4479 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4480 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4481 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4482 t4t5_sge_intr_info); 4483 4484 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4485 if (err & ERROR_QID_VALID_F) { 4486 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4487 ERROR_QID_G(err)); 4488 if (err & UNCAPTURED_ERROR_F) 4489 dev_err(adapter->pdev_dev, 4490 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4491 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4492 UNCAPTURED_ERROR_F); 4493 } 4494 4495 if (v != 0) 4496 t4_fatal_err(adapter); 4497 } 4498 4499 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4500 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4501 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4502 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4503 4504 /* 4505 * CIM interrupt handler. 4506 */ 4507 static void cim_intr_handler(struct adapter *adapter) 4508 { 4509 static const struct intr_info cim_intr_info[] = { 4510 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4511 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4512 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4513 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4514 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4515 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4516 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4517 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4518 { 0 } 4519 }; 4520 static const struct intr_info cim_upintr_info[] = { 4521 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4522 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4523 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4524 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4525 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4526 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4527 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4528 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4529 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4530 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4531 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4532 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4533 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4534 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4535 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4536 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4537 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4538 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4539 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4540 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4541 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4542 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4543 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4544 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4545 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4546 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4547 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4548 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4549 { 0 } 4550 }; 4551 4552 u32 val, fw_err; 4553 int fat; 4554 4555 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4556 if (fw_err & PCIE_FW_ERR_F) 4557 t4_report_fw_error(adapter); 4558 4559 /* When the Firmware detects an internal error which normally 4560 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4561 * in order to make sure the Host sees the Firmware Crash. So 4562 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4563 * ignore the Timer0 interrupt. 4564 */ 4565 4566 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4567 if (val & TIMER0INT_F) 4568 if (!(fw_err & PCIE_FW_ERR_F) || 4569 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4570 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4571 TIMER0INT_F); 4572 4573 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4574 cim_intr_info) + 4575 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4576 cim_upintr_info); 4577 if (fat) 4578 t4_fatal_err(adapter); 4579 } 4580 4581 /* 4582 * ULP RX interrupt handler. 4583 */ 4584 static void ulprx_intr_handler(struct adapter *adapter) 4585 { 4586 static const struct intr_info ulprx_intr_info[] = { 4587 { 0x1800000, "ULPRX context error", -1, 1 }, 4588 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4589 { 0 } 4590 }; 4591 4592 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4593 t4_fatal_err(adapter); 4594 } 4595 4596 /* 4597 * ULP TX interrupt handler. 4598 */ 4599 static void ulptx_intr_handler(struct adapter *adapter) 4600 { 4601 static const struct intr_info ulptx_intr_info[] = { 4602 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4603 0 }, 4604 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4605 0 }, 4606 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4607 0 }, 4608 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4609 0 }, 4610 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4611 { 0 } 4612 }; 4613 4614 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4615 t4_fatal_err(adapter); 4616 } 4617 4618 /* 4619 * PM TX interrupt handler. 4620 */ 4621 static void pmtx_intr_handler(struct adapter *adapter) 4622 { 4623 static const struct intr_info pmtx_intr_info[] = { 4624 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4625 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4626 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4627 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4628 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4629 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4630 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4631 -1, 1 }, 4632 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4633 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4634 { 0 } 4635 }; 4636 4637 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4638 t4_fatal_err(adapter); 4639 } 4640 4641 /* 4642 * PM RX interrupt handler. 4643 */ 4644 static void pmrx_intr_handler(struct adapter *adapter) 4645 { 4646 static const struct intr_info pmrx_intr_info[] = { 4647 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4648 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4649 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4650 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4651 -1, 1 }, 4652 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4653 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4654 { 0 } 4655 }; 4656 4657 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4658 t4_fatal_err(adapter); 4659 } 4660 4661 /* 4662 * CPL switch interrupt handler. 4663 */ 4664 static void cplsw_intr_handler(struct adapter *adapter) 4665 { 4666 static const struct intr_info cplsw_intr_info[] = { 4667 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4668 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4669 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4670 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4671 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4672 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4673 { 0 } 4674 }; 4675 4676 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4677 t4_fatal_err(adapter); 4678 } 4679 4680 /* 4681 * LE interrupt handler. 4682 */ 4683 static void le_intr_handler(struct adapter *adap) 4684 { 4685 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4686 static const struct intr_info le_intr_info[] = { 4687 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4688 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4689 { PARITYERR_F, "LE parity error", -1, 1 }, 4690 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4691 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4692 { 0 } 4693 }; 4694 4695 static struct intr_info t6_le_intr_info[] = { 4696 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4697 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4698 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4699 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4700 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4701 { 0 } 4702 }; 4703 4704 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4705 (chip <= CHELSIO_T5) ? 4706 le_intr_info : t6_le_intr_info)) 4707 t4_fatal_err(adap); 4708 } 4709 4710 /* 4711 * MPS interrupt handler. 4712 */ 4713 static void mps_intr_handler(struct adapter *adapter) 4714 { 4715 static const struct intr_info mps_rx_intr_info[] = { 4716 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4717 { 0 } 4718 }; 4719 static const struct intr_info mps_tx_intr_info[] = { 4720 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4721 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4722 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4723 -1, 1 }, 4724 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4725 -1, 1 }, 4726 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4727 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4728 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4729 { 0 } 4730 }; 4731 static const struct intr_info t6_mps_tx_intr_info[] = { 4732 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4733 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4734 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4735 -1, 1 }, 4736 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4737 -1, 1 }, 4738 /* MPS Tx Bubble is normal for T6 */ 4739 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4740 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4741 { 0 } 4742 }; 4743 static const struct intr_info mps_trc_intr_info[] = { 4744 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4745 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4746 -1, 1 }, 4747 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4748 { 0 } 4749 }; 4750 static const struct intr_info mps_stat_sram_intr_info[] = { 4751 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4752 { 0 } 4753 }; 4754 static const struct intr_info mps_stat_tx_intr_info[] = { 4755 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4756 { 0 } 4757 }; 4758 static const struct intr_info mps_stat_rx_intr_info[] = { 4759 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4760 { 0 } 4761 }; 4762 static const struct intr_info mps_cls_intr_info[] = { 4763 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4764 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4765 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4766 { 0 } 4767 }; 4768 4769 int fat; 4770 4771 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4772 mps_rx_intr_info) + 4773 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4774 is_t6(adapter->params.chip) 4775 ? t6_mps_tx_intr_info 4776 : mps_tx_intr_info) + 4777 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4778 mps_trc_intr_info) + 4779 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4780 mps_stat_sram_intr_info) + 4781 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4782 mps_stat_tx_intr_info) + 4783 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4784 mps_stat_rx_intr_info) + 4785 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4786 mps_cls_intr_info); 4787 4788 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4789 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4790 if (fat) 4791 t4_fatal_err(adapter); 4792 } 4793 4794 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4795 ECC_UE_INT_CAUSE_F) 4796 4797 /* 4798 * EDC/MC interrupt handler. 4799 */ 4800 static void mem_intr_handler(struct adapter *adapter, int idx) 4801 { 4802 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4803 4804 unsigned int addr, cnt_addr, v; 4805 4806 if (idx <= MEM_EDC1) { 4807 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4808 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4809 } else if (idx == MEM_MC) { 4810 if (is_t4(adapter->params.chip)) { 4811 addr = MC_INT_CAUSE_A; 4812 cnt_addr = MC_ECC_STATUS_A; 4813 } else { 4814 addr = MC_P_INT_CAUSE_A; 4815 cnt_addr = MC_P_ECC_STATUS_A; 4816 } 4817 } else { 4818 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4819 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4820 } 4821 4822 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4823 if (v & PERR_INT_CAUSE_F) 4824 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4825 name[idx]); 4826 if (v & ECC_CE_INT_CAUSE_F) { 4827 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4828 4829 t4_edc_err_read(adapter, idx); 4830 4831 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4832 if (printk_ratelimit()) 4833 dev_warn(adapter->pdev_dev, 4834 "%u %s correctable ECC data error%s\n", 4835 cnt, name[idx], cnt > 1 ? "s" : ""); 4836 } 4837 if (v & ECC_UE_INT_CAUSE_F) 4838 dev_alert(adapter->pdev_dev, 4839 "%s uncorrectable ECC data error\n", name[idx]); 4840 4841 t4_write_reg(adapter, addr, v); 4842 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4843 t4_fatal_err(adapter); 4844 } 4845 4846 /* 4847 * MA interrupt handler. 4848 */ 4849 static void ma_intr_handler(struct adapter *adap) 4850 { 4851 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4852 4853 if (status & MEM_PERR_INT_CAUSE_F) { 4854 dev_alert(adap->pdev_dev, 4855 "MA parity error, parity status %#x\n", 4856 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4857 if (is_t5(adap->params.chip)) 4858 dev_alert(adap->pdev_dev, 4859 "MA parity error, parity status %#x\n", 4860 t4_read_reg(adap, 4861 MA_PARITY_ERROR_STATUS2_A)); 4862 } 4863 if (status & MEM_WRAP_INT_CAUSE_F) { 4864 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4865 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4866 "client %u to address %#x\n", 4867 MEM_WRAP_CLIENT_NUM_G(v), 4868 MEM_WRAP_ADDRESS_G(v) << 4); 4869 } 4870 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4871 t4_fatal_err(adap); 4872 } 4873 4874 /* 4875 * SMB interrupt handler. 4876 */ 4877 static void smb_intr_handler(struct adapter *adap) 4878 { 4879 static const struct intr_info smb_intr_info[] = { 4880 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4881 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4882 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4883 { 0 } 4884 }; 4885 4886 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4887 t4_fatal_err(adap); 4888 } 4889 4890 /* 4891 * NC-SI interrupt handler. 4892 */ 4893 static void ncsi_intr_handler(struct adapter *adap) 4894 { 4895 static const struct intr_info ncsi_intr_info[] = { 4896 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4897 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4898 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4899 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4900 { 0 } 4901 }; 4902 4903 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4904 t4_fatal_err(adap); 4905 } 4906 4907 /* 4908 * XGMAC interrupt handler. 4909 */ 4910 static void xgmac_intr_handler(struct adapter *adap, int port) 4911 { 4912 u32 v, int_cause_reg; 4913 4914 if (is_t4(adap->params.chip)) 4915 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4916 else 4917 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4918 4919 v = t4_read_reg(adap, int_cause_reg); 4920 4921 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4922 if (!v) 4923 return; 4924 4925 if (v & TXFIFO_PRTY_ERR_F) 4926 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4927 port); 4928 if (v & RXFIFO_PRTY_ERR_F) 4929 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4930 port); 4931 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4932 t4_fatal_err(adap); 4933 } 4934 4935 /* 4936 * PL interrupt handler. 4937 */ 4938 static void pl_intr_handler(struct adapter *adap) 4939 { 4940 static const struct intr_info pl_intr_info[] = { 4941 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4942 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4943 { 0 } 4944 }; 4945 4946 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4947 t4_fatal_err(adap); 4948 } 4949 4950 #define PF_INTR_MASK (PFSW_F) 4951 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4952 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4953 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4954 4955 /** 4956 * t4_slow_intr_handler - control path interrupt handler 4957 * @adapter: the adapter 4958 * 4959 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4960 * The designation 'slow' is because it involves register reads, while 4961 * data interrupts typically don't involve any MMIOs. 4962 */ 4963 int t4_slow_intr_handler(struct adapter *adapter) 4964 { 4965 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4966 4967 if (!(cause & GLBL_INTR_MASK)) 4968 return 0; 4969 if (cause & CIM_F) 4970 cim_intr_handler(adapter); 4971 if (cause & MPS_F) 4972 mps_intr_handler(adapter); 4973 if (cause & NCSI_F) 4974 ncsi_intr_handler(adapter); 4975 if (cause & PL_F) 4976 pl_intr_handler(adapter); 4977 if (cause & SMB_F) 4978 smb_intr_handler(adapter); 4979 if (cause & XGMAC0_F) 4980 xgmac_intr_handler(adapter, 0); 4981 if (cause & XGMAC1_F) 4982 xgmac_intr_handler(adapter, 1); 4983 if (cause & XGMAC_KR0_F) 4984 xgmac_intr_handler(adapter, 2); 4985 if (cause & XGMAC_KR1_F) 4986 xgmac_intr_handler(adapter, 3); 4987 if (cause & PCIE_F) 4988 pcie_intr_handler(adapter); 4989 if (cause & MC_F) 4990 mem_intr_handler(adapter, MEM_MC); 4991 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4992 mem_intr_handler(adapter, MEM_MC1); 4993 if (cause & EDC0_F) 4994 mem_intr_handler(adapter, MEM_EDC0); 4995 if (cause & EDC1_F) 4996 mem_intr_handler(adapter, MEM_EDC1); 4997 if (cause & LE_F) 4998 le_intr_handler(adapter); 4999 if (cause & TP_F) 5000 tp_intr_handler(adapter); 5001 if (cause & MA_F) 5002 ma_intr_handler(adapter); 5003 if (cause & PM_TX_F) 5004 pmtx_intr_handler(adapter); 5005 if (cause & PM_RX_F) 5006 pmrx_intr_handler(adapter); 5007 if (cause & ULP_RX_F) 5008 ulprx_intr_handler(adapter); 5009 if (cause & CPL_SWITCH_F) 5010 cplsw_intr_handler(adapter); 5011 if (cause & SGE_F) 5012 sge_intr_handler(adapter); 5013 if (cause & ULP_TX_F) 5014 ulptx_intr_handler(adapter); 5015 5016 /* Clear the interrupts just processed for which we are the master. */ 5017 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 5018 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5019 return 1; 5020 } 5021 5022 /** 5023 * t4_intr_enable - enable interrupts 5024 * @adapter: the adapter whose interrupts should be enabled 5025 * 5026 * Enable PF-specific interrupts for the calling function and the top-level 5027 * interrupt concentrator for global interrupts. Interrupts are already 5028 * enabled at each module, here we just enable the roots of the interrupt 5029 * hierarchies. 5030 * 5031 * Note: this function should be called only when the driver manages 5032 * non PF-specific interrupts from the various HW modules. Only one PCI 5033 * function at a time should be doing this. 5034 */ 5035 void t4_intr_enable(struct adapter *adapter) 5036 { 5037 u32 val = 0; 5038 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5039 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5040 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5041 5042 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5043 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5044 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5045 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5046 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5047 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5048 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5049 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5050 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5051 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5052 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5053 } 5054 5055 /** 5056 * t4_intr_disable - disable interrupts 5057 * @adapter: the adapter whose interrupts should be disabled 5058 * 5059 * Disable interrupts. We only disable the top-level interrupt 5060 * concentrators. The caller must be a PCI function managing global 5061 * interrupts. 5062 */ 5063 void t4_intr_disable(struct adapter *adapter) 5064 { 5065 u32 whoami, pf; 5066 5067 if (pci_channel_offline(adapter->pdev)) 5068 return; 5069 5070 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5071 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5072 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5073 5074 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5075 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5076 } 5077 5078 unsigned int t4_chip_rss_size(struct adapter *adap) 5079 { 5080 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5081 return RSS_NENTRIES; 5082 else 5083 return T6_RSS_NENTRIES; 5084 } 5085 5086 /** 5087 * t4_config_rss_range - configure a portion of the RSS mapping table 5088 * @adapter: the adapter 5089 * @mbox: mbox to use for the FW command 5090 * @viid: virtual interface whose RSS subtable is to be written 5091 * @start: start entry in the table to write 5092 * @n: how many table entries to write 5093 * @rspq: values for the response queue lookup table 5094 * @nrspq: number of values in @rspq 5095 * 5096 * Programs the selected part of the VI's RSS mapping table with the 5097 * provided values. If @nrspq < @n the supplied values are used repeatedly 5098 * until the full table range is populated. 5099 * 5100 * The caller must ensure the values in @rspq are in the range allowed for 5101 * @viid. 5102 */ 5103 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5104 int start, int n, const u16 *rspq, unsigned int nrspq) 5105 { 5106 int ret; 5107 const u16 *rsp = rspq; 5108 const u16 *rsp_end = rspq + nrspq; 5109 struct fw_rss_ind_tbl_cmd cmd; 5110 5111 memset(&cmd, 0, sizeof(cmd)); 5112 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5113 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5114 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5115 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5116 5117 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5118 while (n > 0) { 5119 int nq = min(n, 32); 5120 __be32 *qp = &cmd.iq0_to_iq2; 5121 5122 cmd.niqid = cpu_to_be16(nq); 5123 cmd.startidx = cpu_to_be16(start); 5124 5125 start += nq; 5126 n -= nq; 5127 5128 while (nq > 0) { 5129 unsigned int v; 5130 5131 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5132 if (++rsp >= rsp_end) 5133 rsp = rspq; 5134 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5135 if (++rsp >= rsp_end) 5136 rsp = rspq; 5137 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5138 if (++rsp >= rsp_end) 5139 rsp = rspq; 5140 5141 *qp++ = cpu_to_be32(v); 5142 nq -= 3; 5143 } 5144 5145 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5146 if (ret) 5147 return ret; 5148 } 5149 return 0; 5150 } 5151 5152 /** 5153 * t4_config_glbl_rss - configure the global RSS mode 5154 * @adapter: the adapter 5155 * @mbox: mbox to use for the FW command 5156 * @mode: global RSS mode 5157 * @flags: mode-specific flags 5158 * 5159 * Sets the global RSS mode. 5160 */ 5161 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5162 unsigned int flags) 5163 { 5164 struct fw_rss_glb_config_cmd c; 5165 5166 memset(&c, 0, sizeof(c)); 5167 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5168 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5169 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5170 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5171 c.u.manual.mode_pkd = 5172 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5173 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5174 c.u.basicvirtual.mode_pkd = 5175 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5176 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5177 } else 5178 return -EINVAL; 5179 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5180 } 5181 5182 /** 5183 * t4_config_vi_rss - configure per VI RSS settings 5184 * @adapter: the adapter 5185 * @mbox: mbox to use for the FW command 5186 * @viid: the VI id 5187 * @flags: RSS flags 5188 * @defq: id of the default RSS queue for the VI. 5189 * 5190 * Configures VI-specific RSS properties. 5191 */ 5192 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5193 unsigned int flags, unsigned int defq) 5194 { 5195 struct fw_rss_vi_config_cmd c; 5196 5197 memset(&c, 0, sizeof(c)); 5198 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5199 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5200 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5201 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5202 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5203 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5204 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5205 } 5206 5207 /* Read an RSS table row */ 5208 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5209 { 5210 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5211 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5212 5, 0, val); 5213 } 5214 5215 /** 5216 * t4_read_rss - read the contents of the RSS mapping table 5217 * @adapter: the adapter 5218 * @map: holds the contents of the RSS mapping table 5219 * 5220 * Reads the contents of the RSS hash->queue mapping table. 5221 */ 5222 int t4_read_rss(struct adapter *adapter, u16 *map) 5223 { 5224 int i, ret, nentries; 5225 u32 val; 5226 5227 nentries = t4_chip_rss_size(adapter); 5228 for (i = 0; i < nentries / 2; ++i) { 5229 ret = rd_rss_row(adapter, i, &val); 5230 if (ret) 5231 return ret; 5232 *map++ = LKPTBLQUEUE0_G(val); 5233 *map++ = LKPTBLQUEUE1_G(val); 5234 } 5235 return 0; 5236 } 5237 5238 static unsigned int t4_use_ldst(struct adapter *adap) 5239 { 5240 return (adap->flags & FW_OK) && !adap->use_bd; 5241 } 5242 5243 /** 5244 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5245 * @adap: the adapter 5246 * @cmd: TP fw ldst address space type 5247 * @vals: where the indirect register values are stored/written 5248 * @nregs: how many indirect registers to read/write 5249 * @start_idx: index of first indirect register to read/write 5250 * @rw: Read (1) or Write (0) 5251 * @sleep_ok: if true we may sleep while awaiting command completion 5252 * 5253 * Access TP indirect registers through LDST 5254 */ 5255 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5256 unsigned int nregs, unsigned int start_index, 5257 unsigned int rw, bool sleep_ok) 5258 { 5259 int ret = 0; 5260 unsigned int i; 5261 struct fw_ldst_cmd c; 5262 5263 for (i = 0; i < nregs; i++) { 5264 memset(&c, 0, sizeof(c)); 5265 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5266 FW_CMD_REQUEST_F | 5267 (rw ? FW_CMD_READ_F : 5268 FW_CMD_WRITE_F) | 5269 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5270 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5271 5272 c.u.addrval.addr = cpu_to_be32(start_index + i); 5273 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5274 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5275 sleep_ok); 5276 if (ret) 5277 return ret; 5278 5279 if (rw) 5280 vals[i] = be32_to_cpu(c.u.addrval.val); 5281 } 5282 return 0; 5283 } 5284 5285 /** 5286 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5287 * @adap: the adapter 5288 * @reg_addr: Address Register 5289 * @reg_data: Data register 5290 * @buff: where the indirect register values are stored/written 5291 * @nregs: how many indirect registers to read/write 5292 * @start_index: index of first indirect register to read/write 5293 * @rw: READ(1) or WRITE(0) 5294 * @sleep_ok: if true we may sleep while awaiting command completion 5295 * 5296 * Read/Write TP indirect registers through LDST if possible. 5297 * Else, use backdoor access 5298 **/ 5299 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5300 u32 *buff, u32 nregs, u32 start_index, int rw, 5301 bool sleep_ok) 5302 { 5303 int rc = -EINVAL; 5304 int cmd; 5305 5306 switch (reg_addr) { 5307 case TP_PIO_ADDR_A: 5308 cmd = FW_LDST_ADDRSPC_TP_PIO; 5309 break; 5310 case TP_TM_PIO_ADDR_A: 5311 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5312 break; 5313 case TP_MIB_INDEX_A: 5314 cmd = FW_LDST_ADDRSPC_TP_MIB; 5315 break; 5316 default: 5317 goto indirect_access; 5318 } 5319 5320 if (t4_use_ldst(adap)) 5321 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5322 sleep_ok); 5323 5324 indirect_access: 5325 5326 if (rc) { 5327 if (rw) 5328 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5329 start_index); 5330 else 5331 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5332 start_index); 5333 } 5334 } 5335 5336 /** 5337 * t4_tp_pio_read - Read TP PIO registers 5338 * @adap: the adapter 5339 * @buff: where the indirect register values are written 5340 * @nregs: how many indirect registers to read 5341 * @start_index: index of first indirect register to read 5342 * @sleep_ok: if true we may sleep while awaiting command completion 5343 * 5344 * Read TP PIO Registers 5345 **/ 5346 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5347 u32 start_index, bool sleep_ok) 5348 { 5349 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5350 start_index, 1, sleep_ok); 5351 } 5352 5353 /** 5354 * t4_tp_pio_write - Write TP PIO registers 5355 * @adap: the adapter 5356 * @buff: where the indirect register values are stored 5357 * @nregs: how many indirect registers to write 5358 * @start_index: index of first indirect register to write 5359 * @sleep_ok: if true we may sleep while awaiting command completion 5360 * 5361 * Write TP PIO Registers 5362 **/ 5363 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5364 u32 start_index, bool sleep_ok) 5365 { 5366 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5367 start_index, 0, sleep_ok); 5368 } 5369 5370 /** 5371 * t4_tp_tm_pio_read - Read TP TM PIO registers 5372 * @adap: the adapter 5373 * @buff: where the indirect register values are written 5374 * @nregs: how many indirect registers to read 5375 * @start_index: index of first indirect register to read 5376 * @sleep_ok: if true we may sleep while awaiting command completion 5377 * 5378 * Read TP TM PIO Registers 5379 **/ 5380 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5381 u32 start_index, bool sleep_ok) 5382 { 5383 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5384 nregs, start_index, 1, sleep_ok); 5385 } 5386 5387 /** 5388 * t4_tp_mib_read - Read TP MIB registers 5389 * @adap: the adapter 5390 * @buff: where the indirect register values are written 5391 * @nregs: how many indirect registers to read 5392 * @start_index: index of first indirect register to read 5393 * @sleep_ok: if true we may sleep while awaiting command completion 5394 * 5395 * Read TP MIB Registers 5396 **/ 5397 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5398 bool sleep_ok) 5399 { 5400 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5401 start_index, 1, sleep_ok); 5402 } 5403 5404 /** 5405 * t4_read_rss_key - read the global RSS key 5406 * @adap: the adapter 5407 * @key: 10-entry array holding the 320-bit RSS key 5408 * @sleep_ok: if true we may sleep while awaiting command completion 5409 * 5410 * Reads the global 320-bit RSS key. 5411 */ 5412 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5413 { 5414 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5415 } 5416 5417 /** 5418 * t4_write_rss_key - program one of the RSS keys 5419 * @adap: the adapter 5420 * @key: 10-entry array holding the 320-bit RSS key 5421 * @idx: which RSS key to write 5422 * @sleep_ok: if true we may sleep while awaiting command completion 5423 * 5424 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5425 * 0..15 the corresponding entry in the RSS key table is written, 5426 * otherwise the global RSS key is written. 5427 */ 5428 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5429 bool sleep_ok) 5430 { 5431 u8 rss_key_addr_cnt = 16; 5432 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5433 5434 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5435 * allows access to key addresses 16-63 by using KeyWrAddrX 5436 * as index[5:4](upper 2) into key table 5437 */ 5438 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5439 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5440 rss_key_addr_cnt = 32; 5441 5442 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5443 5444 if (idx >= 0 && idx < rss_key_addr_cnt) { 5445 if (rss_key_addr_cnt > 16) 5446 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5447 KEYWRADDRX_V(idx >> 4) | 5448 T6_VFWRADDR_V(idx) | KEYWREN_F); 5449 else 5450 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5451 KEYWRADDR_V(idx) | KEYWREN_F); 5452 } 5453 } 5454 5455 /** 5456 * t4_read_rss_pf_config - read PF RSS Configuration Table 5457 * @adapter: the adapter 5458 * @index: the entry in the PF RSS table to read 5459 * @valp: where to store the returned value 5460 * @sleep_ok: if true we may sleep while awaiting command completion 5461 * 5462 * Reads the PF RSS Configuration Table at the specified index and returns 5463 * the value found there. 5464 */ 5465 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5466 u32 *valp, bool sleep_ok) 5467 { 5468 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5469 } 5470 5471 /** 5472 * t4_read_rss_vf_config - read VF RSS Configuration Table 5473 * @adapter: the adapter 5474 * @index: the entry in the VF RSS table to read 5475 * @vfl: where to store the returned VFL 5476 * @vfh: where to store the returned VFH 5477 * @sleep_ok: if true we may sleep while awaiting command completion 5478 * 5479 * Reads the VF RSS Configuration Table at the specified index and returns 5480 * the (VFL, VFH) values found there. 5481 */ 5482 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5483 u32 *vfl, u32 *vfh, bool sleep_ok) 5484 { 5485 u32 vrt, mask, data; 5486 5487 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5488 mask = VFWRADDR_V(VFWRADDR_M); 5489 data = VFWRADDR_V(index); 5490 } else { 5491 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5492 data = T6_VFWRADDR_V(index); 5493 } 5494 5495 /* Request that the index'th VF Table values be read into VFL/VFH. 5496 */ 5497 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5498 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5499 vrt |= data | VFRDEN_F; 5500 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5501 5502 /* Grab the VFL/VFH values ... 5503 */ 5504 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5505 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5506 } 5507 5508 /** 5509 * t4_read_rss_pf_map - read PF RSS Map 5510 * @adapter: the adapter 5511 * @sleep_ok: if true we may sleep while awaiting command completion 5512 * 5513 * Reads the PF RSS Map register and returns its value. 5514 */ 5515 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5516 { 5517 u32 pfmap; 5518 5519 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5520 return pfmap; 5521 } 5522 5523 /** 5524 * t4_read_rss_pf_mask - read PF RSS Mask 5525 * @adapter: the adapter 5526 * @sleep_ok: if true we may sleep while awaiting command completion 5527 * 5528 * Reads the PF RSS Mask register and returns its value. 5529 */ 5530 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5531 { 5532 u32 pfmask; 5533 5534 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5535 return pfmask; 5536 } 5537 5538 /** 5539 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5540 * @adap: the adapter 5541 * @v4: holds the TCP/IP counter values 5542 * @v6: holds the TCP/IPv6 counter values 5543 * @sleep_ok: if true we may sleep while awaiting command completion 5544 * 5545 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5546 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5547 */ 5548 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5549 struct tp_tcp_stats *v6, bool sleep_ok) 5550 { 5551 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5552 5553 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5554 #define STAT(x) val[STAT_IDX(x)] 5555 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5556 5557 if (v4) { 5558 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5559 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5560 v4->tcp_out_rsts = STAT(OUT_RST); 5561 v4->tcp_in_segs = STAT64(IN_SEG); 5562 v4->tcp_out_segs = STAT64(OUT_SEG); 5563 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5564 } 5565 if (v6) { 5566 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5567 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5568 v6->tcp_out_rsts = STAT(OUT_RST); 5569 v6->tcp_in_segs = STAT64(IN_SEG); 5570 v6->tcp_out_segs = STAT64(OUT_SEG); 5571 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5572 } 5573 #undef STAT64 5574 #undef STAT 5575 #undef STAT_IDX 5576 } 5577 5578 /** 5579 * t4_tp_get_err_stats - read TP's error MIB counters 5580 * @adap: the adapter 5581 * @st: holds the counter values 5582 * @sleep_ok: if true we may sleep while awaiting command completion 5583 * 5584 * Returns the values of TP's error counters. 5585 */ 5586 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5587 bool sleep_ok) 5588 { 5589 int nchan = adap->params.arch.nchan; 5590 5591 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5592 sleep_ok); 5593 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5594 sleep_ok); 5595 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5596 sleep_ok); 5597 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5598 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5599 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5600 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5601 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5602 sleep_ok); 5603 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5604 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5605 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5606 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5607 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5608 sleep_ok); 5609 } 5610 5611 /** 5612 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5613 * @adap: the adapter 5614 * @st: holds the counter values 5615 * @sleep_ok: if true we may sleep while awaiting command completion 5616 * 5617 * Returns the values of TP's CPL counters. 5618 */ 5619 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5620 bool sleep_ok) 5621 { 5622 int nchan = adap->params.arch.nchan; 5623 5624 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5625 5626 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5627 } 5628 5629 /** 5630 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5631 * @adap: the adapter 5632 * @st: holds the counter values 5633 * @sleep_ok: if true we may sleep while awaiting command completion 5634 * 5635 * Returns the values of TP's RDMA counters. 5636 */ 5637 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5638 bool sleep_ok) 5639 { 5640 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5641 sleep_ok); 5642 } 5643 5644 /** 5645 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5646 * @adap: the adapter 5647 * @idx: the port index 5648 * @st: holds the counter values 5649 * @sleep_ok: if true we may sleep while awaiting command completion 5650 * 5651 * Returns the values of TP's FCoE counters for the selected port. 5652 */ 5653 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5654 struct tp_fcoe_stats *st, bool sleep_ok) 5655 { 5656 u32 val[2]; 5657 5658 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5659 sleep_ok); 5660 5661 t4_tp_mib_read(adap, &st->frames_drop, 1, 5662 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5663 5664 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5665 sleep_ok); 5666 5667 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5668 } 5669 5670 /** 5671 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5672 * @adap: the adapter 5673 * @st: holds the counter values 5674 * @sleep_ok: if true we may sleep while awaiting command completion 5675 * 5676 * Returns the values of TP's counters for non-TCP directly-placed packets. 5677 */ 5678 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5679 bool sleep_ok) 5680 { 5681 u32 val[4]; 5682 5683 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5684 st->frames = val[0]; 5685 st->drops = val[1]; 5686 st->octets = ((u64)val[2] << 32) | val[3]; 5687 } 5688 5689 /** 5690 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5691 * @adap: the adapter 5692 * @mtus: where to store the MTU values 5693 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5694 * 5695 * Reads the HW path MTU table. 5696 */ 5697 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5698 { 5699 u32 v; 5700 int i; 5701 5702 for (i = 0; i < NMTUS; ++i) { 5703 t4_write_reg(adap, TP_MTU_TABLE_A, 5704 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5705 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5706 mtus[i] = MTUVALUE_G(v); 5707 if (mtu_log) 5708 mtu_log[i] = MTUWIDTH_G(v); 5709 } 5710 } 5711 5712 /** 5713 * t4_read_cong_tbl - reads the congestion control table 5714 * @adap: the adapter 5715 * @incr: where to store the alpha values 5716 * 5717 * Reads the additive increments programmed into the HW congestion 5718 * control table. 5719 */ 5720 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5721 { 5722 unsigned int mtu, w; 5723 5724 for (mtu = 0; mtu < NMTUS; ++mtu) 5725 for (w = 0; w < NCCTRL_WIN; ++w) { 5726 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5727 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5728 incr[mtu][w] = (u16)t4_read_reg(adap, 5729 TP_CCTRL_TABLE_A) & 0x1fff; 5730 } 5731 } 5732 5733 /** 5734 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5735 * @adap: the adapter 5736 * @addr: the indirect TP register address 5737 * @mask: specifies the field within the register to modify 5738 * @val: new value for the field 5739 * 5740 * Sets a field of an indirect TP register to the given value. 5741 */ 5742 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5743 unsigned int mask, unsigned int val) 5744 { 5745 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5746 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5747 t4_write_reg(adap, TP_PIO_DATA_A, val); 5748 } 5749 5750 /** 5751 * init_cong_ctrl - initialize congestion control parameters 5752 * @a: the alpha values for congestion control 5753 * @b: the beta values for congestion control 5754 * 5755 * Initialize the congestion control parameters. 5756 */ 5757 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5758 { 5759 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5760 a[9] = 2; 5761 a[10] = 3; 5762 a[11] = 4; 5763 a[12] = 5; 5764 a[13] = 6; 5765 a[14] = 7; 5766 a[15] = 8; 5767 a[16] = 9; 5768 a[17] = 10; 5769 a[18] = 14; 5770 a[19] = 17; 5771 a[20] = 21; 5772 a[21] = 25; 5773 a[22] = 30; 5774 a[23] = 35; 5775 a[24] = 45; 5776 a[25] = 60; 5777 a[26] = 80; 5778 a[27] = 100; 5779 a[28] = 200; 5780 a[29] = 300; 5781 a[30] = 400; 5782 a[31] = 500; 5783 5784 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5785 b[9] = b[10] = 1; 5786 b[11] = b[12] = 2; 5787 b[13] = b[14] = b[15] = b[16] = 3; 5788 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5789 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5790 b[28] = b[29] = 6; 5791 b[30] = b[31] = 7; 5792 } 5793 5794 /* The minimum additive increment value for the congestion control table */ 5795 #define CC_MIN_INCR 2U 5796 5797 /** 5798 * t4_load_mtus - write the MTU and congestion control HW tables 5799 * @adap: the adapter 5800 * @mtus: the values for the MTU table 5801 * @alpha: the values for the congestion control alpha parameter 5802 * @beta: the values for the congestion control beta parameter 5803 * 5804 * Write the HW MTU table with the supplied MTUs and the high-speed 5805 * congestion control table with the supplied alpha, beta, and MTUs. 5806 * We write the two tables together because the additive increments 5807 * depend on the MTUs. 5808 */ 5809 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5810 const unsigned short *alpha, const unsigned short *beta) 5811 { 5812 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5813 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5814 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5815 28672, 40960, 57344, 81920, 114688, 163840, 229376 5816 }; 5817 5818 unsigned int i, w; 5819 5820 for (i = 0; i < NMTUS; ++i) { 5821 unsigned int mtu = mtus[i]; 5822 unsigned int log2 = fls(mtu); 5823 5824 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5825 log2--; 5826 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5827 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5828 5829 for (w = 0; w < NCCTRL_WIN; ++w) { 5830 unsigned int inc; 5831 5832 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5833 CC_MIN_INCR); 5834 5835 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5836 (w << 16) | (beta[w] << 13) | inc); 5837 } 5838 } 5839 } 5840 5841 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5842 * clocks. The formula is 5843 * 5844 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5845 * 5846 * which is equivalent to 5847 * 5848 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5849 */ 5850 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5851 { 5852 u64 v = bytes256 * adap->params.vpd.cclk; 5853 5854 return v * 62 + v / 2; 5855 } 5856 5857 /** 5858 * t4_get_chan_txrate - get the current per channel Tx rates 5859 * @adap: the adapter 5860 * @nic_rate: rates for NIC traffic 5861 * @ofld_rate: rates for offloaded traffic 5862 * 5863 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5864 * for each channel. 5865 */ 5866 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5867 { 5868 u32 v; 5869 5870 v = t4_read_reg(adap, TP_TX_TRATE_A); 5871 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5872 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5873 if (adap->params.arch.nchan == NCHAN) { 5874 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5875 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5876 } 5877 5878 v = t4_read_reg(adap, TP_TX_ORATE_A); 5879 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5880 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5881 if (adap->params.arch.nchan == NCHAN) { 5882 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5883 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5884 } 5885 } 5886 5887 /** 5888 * t4_set_trace_filter - configure one of the tracing filters 5889 * @adap: the adapter 5890 * @tp: the desired trace filter parameters 5891 * @idx: which filter to configure 5892 * @enable: whether to enable or disable the filter 5893 * 5894 * Configures one of the tracing filters available in HW. If @enable is 5895 * %0 @tp is not examined and may be %NULL. The user is responsible to 5896 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5897 */ 5898 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5899 int idx, int enable) 5900 { 5901 int i, ofst = idx * 4; 5902 u32 data_reg, mask_reg, cfg; 5903 5904 if (!enable) { 5905 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5906 return 0; 5907 } 5908 5909 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5910 if (cfg & TRCMULTIFILTER_F) { 5911 /* If multiple tracers are enabled, then maximum 5912 * capture size is 2.5KB (FIFO size of a single channel) 5913 * minus 2 flits for CPL_TRACE_PKT header. 5914 */ 5915 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5916 return -EINVAL; 5917 } else { 5918 /* If multiple tracers are disabled, to avoid deadlocks 5919 * maximum packet capture size of 9600 bytes is recommended. 5920 * Also in this mode, only trace0 can be enabled and running. 5921 */ 5922 if (tp->snap_len > 9600 || idx) 5923 return -EINVAL; 5924 } 5925 5926 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5927 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5928 tp->min_len > TFMINPKTSIZE_M) 5929 return -EINVAL; 5930 5931 /* stop the tracer we'll be changing */ 5932 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5933 5934 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5935 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5936 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5937 5938 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5939 t4_write_reg(adap, data_reg, tp->data[i]); 5940 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5941 } 5942 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5943 TFCAPTUREMAX_V(tp->snap_len) | 5944 TFMINPKTSIZE_V(tp->min_len)); 5945 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5946 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5947 (is_t4(adap->params.chip) ? 5948 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5949 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5950 T5_TFINVERTMATCH_V(tp->invert))); 5951 5952 return 0; 5953 } 5954 5955 /** 5956 * t4_get_trace_filter - query one of the tracing filters 5957 * @adap: the adapter 5958 * @tp: the current trace filter parameters 5959 * @idx: which trace filter to query 5960 * @enabled: non-zero if the filter is enabled 5961 * 5962 * Returns the current settings of one of the HW tracing filters. 5963 */ 5964 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5965 int *enabled) 5966 { 5967 u32 ctla, ctlb; 5968 int i, ofst = idx * 4; 5969 u32 data_reg, mask_reg; 5970 5971 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5972 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5973 5974 if (is_t4(adap->params.chip)) { 5975 *enabled = !!(ctla & TFEN_F); 5976 tp->port = TFPORT_G(ctla); 5977 tp->invert = !!(ctla & TFINVERTMATCH_F); 5978 } else { 5979 *enabled = !!(ctla & T5_TFEN_F); 5980 tp->port = T5_TFPORT_G(ctla); 5981 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5982 } 5983 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5984 tp->min_len = TFMINPKTSIZE_G(ctlb); 5985 tp->skip_ofst = TFOFFSET_G(ctla); 5986 tp->skip_len = TFLENGTH_G(ctla); 5987 5988 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5989 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5990 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5991 5992 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5993 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5994 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5995 } 5996 } 5997 5998 /** 5999 * t4_pmtx_get_stats - returns the HW stats from PMTX 6000 * @adap: the adapter 6001 * @cnt: where to store the count statistics 6002 * @cycles: where to store the cycle statistics 6003 * 6004 * Returns performance statistics from PMTX. 6005 */ 6006 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6007 { 6008 int i; 6009 u32 data[2]; 6010 6011 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6012 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6013 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6014 if (is_t4(adap->params.chip)) { 6015 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6016 } else { 6017 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6018 PM_TX_DBG_DATA_A, data, 2, 6019 PM_TX_DBG_STAT_MSB_A); 6020 cycles[i] = (((u64)data[0] << 32) | data[1]); 6021 } 6022 } 6023 } 6024 6025 /** 6026 * t4_pmrx_get_stats - returns the HW stats from PMRX 6027 * @adap: the adapter 6028 * @cnt: where to store the count statistics 6029 * @cycles: where to store the cycle statistics 6030 * 6031 * Returns performance statistics from PMRX. 6032 */ 6033 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6034 { 6035 int i; 6036 u32 data[2]; 6037 6038 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6039 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6040 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6041 if (is_t4(adap->params.chip)) { 6042 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6043 } else { 6044 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6045 PM_RX_DBG_DATA_A, data, 2, 6046 PM_RX_DBG_STAT_MSB_A); 6047 cycles[i] = (((u64)data[0] << 32) | data[1]); 6048 } 6049 } 6050 } 6051 6052 /** 6053 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6054 * @adap: the adapter 6055 * @pidx: the port index 6056 * 6057 * Computes and returns a bitmap indicating which MPS buffer groups are 6058 * associated with the given Port. Bit i is set if buffer group i is 6059 * used by the Port. 6060 */ 6061 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6062 int pidx) 6063 { 6064 unsigned int chip_version, nports; 6065 6066 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6067 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6068 6069 switch (chip_version) { 6070 case CHELSIO_T4: 6071 case CHELSIO_T5: 6072 switch (nports) { 6073 case 1: return 0xf; 6074 case 2: return 3 << (2 * pidx); 6075 case 4: return 1 << pidx; 6076 } 6077 break; 6078 6079 case CHELSIO_T6: 6080 switch (nports) { 6081 case 2: return 1 << (2 * pidx); 6082 } 6083 break; 6084 } 6085 6086 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6087 chip_version, nports); 6088 6089 return 0; 6090 } 6091 6092 /** 6093 * t4_get_mps_bg_map - return the buffer groups associated with a port 6094 * @adapter: the adapter 6095 * @pidx: the port index 6096 * 6097 * Returns a bitmap indicating which MPS buffer groups are associated 6098 * with the given Port. Bit i is set if buffer group i is used by the 6099 * Port. 6100 */ 6101 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6102 { 6103 u8 *mps_bg_map; 6104 unsigned int nports; 6105 6106 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6107 if (pidx >= nports) { 6108 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6109 pidx, nports); 6110 return 0; 6111 } 6112 6113 /* If we've already retrieved/computed this, just return the result. 6114 */ 6115 mps_bg_map = adapter->params.mps_bg_map; 6116 if (mps_bg_map[pidx]) 6117 return mps_bg_map[pidx]; 6118 6119 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6120 * If we're talking to such Firmware, let it tell us. If the new 6121 * API isn't supported, revert back to old hardcoded way. The value 6122 * obtained from Firmware is encoded in below format: 6123 * 6124 * val = (( MPSBGMAP[Port 3] << 24 ) | 6125 * ( MPSBGMAP[Port 2] << 16 ) | 6126 * ( MPSBGMAP[Port 1] << 8 ) | 6127 * ( MPSBGMAP[Port 0] << 0 )) 6128 */ 6129 if (adapter->flags & FW_OK) { 6130 u32 param, val; 6131 int ret; 6132 6133 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6134 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6135 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6136 0, 1, ¶m, &val); 6137 if (!ret) { 6138 int p; 6139 6140 /* Store the BG Map for all of the Ports in order to 6141 * avoid more calls to the Firmware in the future. 6142 */ 6143 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6144 mps_bg_map[p] = val & 0xff; 6145 6146 return mps_bg_map[pidx]; 6147 } 6148 } 6149 6150 /* Either we're not talking to the Firmware or we're dealing with 6151 * older Firmware which doesn't support the new API to get the MPS 6152 * Buffer Group Map. Fall back to computing it ourselves. 6153 */ 6154 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6155 return mps_bg_map[pidx]; 6156 } 6157 6158 /** 6159 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6160 * @adapter: the adapter 6161 * @pidx: the port index 6162 * 6163 * Returns a bitmap indicating which TP Ingress Channels are associated 6164 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6165 * the Port. 6166 */ 6167 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6168 { 6169 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6170 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6171 6172 if (pidx >= nports) { 6173 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6174 pidx, nports); 6175 return 0; 6176 } 6177 6178 switch (chip_version) { 6179 case CHELSIO_T4: 6180 case CHELSIO_T5: 6181 /* Note that this happens to be the same values as the MPS 6182 * Buffer Group Map for these Chips. But we replicate the code 6183 * here because they're really separate concepts. 6184 */ 6185 switch (nports) { 6186 case 1: return 0xf; 6187 case 2: return 3 << (2 * pidx); 6188 case 4: return 1 << pidx; 6189 } 6190 break; 6191 6192 case CHELSIO_T6: 6193 switch (nports) { 6194 case 1: 6195 case 2: return 1 << pidx; 6196 } 6197 break; 6198 } 6199 6200 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6201 chip_version, nports); 6202 return 0; 6203 } 6204 6205 /** 6206 * t4_get_port_type_description - return Port Type string description 6207 * @port_type: firmware Port Type enumeration 6208 */ 6209 const char *t4_get_port_type_description(enum fw_port_type port_type) 6210 { 6211 static const char *const port_type_description[] = { 6212 "Fiber_XFI", 6213 "Fiber_XAUI", 6214 "BT_SGMII", 6215 "BT_XFI", 6216 "BT_XAUI", 6217 "KX4", 6218 "CX4", 6219 "KX", 6220 "KR", 6221 "SFP", 6222 "BP_AP", 6223 "BP4_AP", 6224 "QSFP_10G", 6225 "QSA", 6226 "QSFP", 6227 "BP40_BA", 6228 "KR4_100G", 6229 "CR4_QSFP", 6230 "CR_QSFP", 6231 "CR2_QSFP", 6232 "SFP28", 6233 "KR_SFP28", 6234 "KR_XLAUI" 6235 }; 6236 6237 if (port_type < ARRAY_SIZE(port_type_description)) 6238 return port_type_description[port_type]; 6239 return "UNKNOWN"; 6240 } 6241 6242 /** 6243 * t4_get_port_stats_offset - collect port stats relative to a previous 6244 * snapshot 6245 * @adap: The adapter 6246 * @idx: The port 6247 * @stats: Current stats to fill 6248 * @offset: Previous stats snapshot 6249 */ 6250 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6251 struct port_stats *stats, 6252 struct port_stats *offset) 6253 { 6254 u64 *s, *o; 6255 int i; 6256 6257 t4_get_port_stats(adap, idx, stats); 6258 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6259 i < (sizeof(struct port_stats) / sizeof(u64)); 6260 i++, s++, o++) 6261 *s -= *o; 6262 } 6263 6264 /** 6265 * t4_get_port_stats - collect port statistics 6266 * @adap: the adapter 6267 * @idx: the port index 6268 * @p: the stats structure to fill 6269 * 6270 * Collect statistics related to the given port from HW. 6271 */ 6272 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6273 { 6274 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6275 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6276 6277 #define GET_STAT(name) \ 6278 t4_read_reg64(adap, \ 6279 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6280 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6281 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6282 6283 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6284 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6285 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6286 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6287 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6288 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6289 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6290 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6291 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6292 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6293 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6294 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6295 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6296 p->tx_drop = GET_STAT(TX_PORT_DROP); 6297 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6298 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6299 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6300 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6301 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6302 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6303 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6304 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6305 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6306 6307 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6308 if (stat_ctl & COUNTPAUSESTATTX_F) 6309 p->tx_frames_64 -= p->tx_pause; 6310 if (stat_ctl & COUNTPAUSEMCTX_F) 6311 p->tx_mcast_frames -= p->tx_pause; 6312 } 6313 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6314 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6315 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6316 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6317 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6318 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6319 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6320 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6321 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6322 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6323 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6324 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6325 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6326 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6327 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6328 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6329 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6330 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6331 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6332 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6333 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6334 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6335 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6336 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6337 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6338 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6339 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6340 6341 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6342 if (stat_ctl & COUNTPAUSESTATRX_F) 6343 p->rx_frames_64 -= p->rx_pause; 6344 if (stat_ctl & COUNTPAUSEMCRX_F) 6345 p->rx_mcast_frames -= p->rx_pause; 6346 } 6347 6348 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6349 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6350 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6351 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6352 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6353 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6354 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6355 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6356 6357 #undef GET_STAT 6358 #undef GET_STAT_COM 6359 } 6360 6361 /** 6362 * t4_get_lb_stats - collect loopback port statistics 6363 * @adap: the adapter 6364 * @idx: the loopback port index 6365 * @p: the stats structure to fill 6366 * 6367 * Return HW statistics for the given loopback port. 6368 */ 6369 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6370 { 6371 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6372 6373 #define GET_STAT(name) \ 6374 t4_read_reg64(adap, \ 6375 (is_t4(adap->params.chip) ? \ 6376 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6377 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6378 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6379 6380 p->octets = GET_STAT(BYTES); 6381 p->frames = GET_STAT(FRAMES); 6382 p->bcast_frames = GET_STAT(BCAST); 6383 p->mcast_frames = GET_STAT(MCAST); 6384 p->ucast_frames = GET_STAT(UCAST); 6385 p->error_frames = GET_STAT(ERROR); 6386 6387 p->frames_64 = GET_STAT(64B); 6388 p->frames_65_127 = GET_STAT(65B_127B); 6389 p->frames_128_255 = GET_STAT(128B_255B); 6390 p->frames_256_511 = GET_STAT(256B_511B); 6391 p->frames_512_1023 = GET_STAT(512B_1023B); 6392 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6393 p->frames_1519_max = GET_STAT(1519B_MAX); 6394 p->drop = GET_STAT(DROP_FRAMES); 6395 6396 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6397 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6398 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6399 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6400 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6401 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6402 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6403 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6404 6405 #undef GET_STAT 6406 #undef GET_STAT_COM 6407 } 6408 6409 /* t4_mk_filtdelwr - create a delete filter WR 6410 * @ftid: the filter ID 6411 * @wr: the filter work request to populate 6412 * @qid: ingress queue to receive the delete notification 6413 * 6414 * Creates a filter work request to delete the supplied filter. If @qid is 6415 * negative the delete notification is suppressed. 6416 */ 6417 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6418 { 6419 memset(wr, 0, sizeof(*wr)); 6420 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6421 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6422 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6423 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6424 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6425 if (qid >= 0) 6426 wr->rx_chan_rx_rpl_iq = 6427 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6428 } 6429 6430 #define INIT_CMD(var, cmd, rd_wr) do { \ 6431 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6432 FW_CMD_REQUEST_F | \ 6433 FW_CMD_##rd_wr##_F); \ 6434 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6435 } while (0) 6436 6437 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6438 u32 addr, u32 val) 6439 { 6440 u32 ldst_addrspace; 6441 struct fw_ldst_cmd c; 6442 6443 memset(&c, 0, sizeof(c)); 6444 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6445 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6446 FW_CMD_REQUEST_F | 6447 FW_CMD_WRITE_F | 6448 ldst_addrspace); 6449 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6450 c.u.addrval.addr = cpu_to_be32(addr); 6451 c.u.addrval.val = cpu_to_be32(val); 6452 6453 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6454 } 6455 6456 /** 6457 * t4_mdio_rd - read a PHY register through MDIO 6458 * @adap: the adapter 6459 * @mbox: mailbox to use for the FW command 6460 * @phy_addr: the PHY address 6461 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6462 * @reg: the register to read 6463 * @valp: where to store the value 6464 * 6465 * Issues a FW command through the given mailbox to read a PHY register. 6466 */ 6467 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6468 unsigned int mmd, unsigned int reg, u16 *valp) 6469 { 6470 int ret; 6471 u32 ldst_addrspace; 6472 struct fw_ldst_cmd c; 6473 6474 memset(&c, 0, sizeof(c)); 6475 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6476 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6477 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6478 ldst_addrspace); 6479 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6480 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6481 FW_LDST_CMD_MMD_V(mmd)); 6482 c.u.mdio.raddr = cpu_to_be16(reg); 6483 6484 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6485 if (ret == 0) 6486 *valp = be16_to_cpu(c.u.mdio.rval); 6487 return ret; 6488 } 6489 6490 /** 6491 * t4_mdio_wr - write a PHY register through MDIO 6492 * @adap: the adapter 6493 * @mbox: mailbox to use for the FW command 6494 * @phy_addr: the PHY address 6495 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6496 * @reg: the register to write 6497 * @valp: value to write 6498 * 6499 * Issues a FW command through the given mailbox to write a PHY register. 6500 */ 6501 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6502 unsigned int mmd, unsigned int reg, u16 val) 6503 { 6504 u32 ldst_addrspace; 6505 struct fw_ldst_cmd c; 6506 6507 memset(&c, 0, sizeof(c)); 6508 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6509 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6510 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6511 ldst_addrspace); 6512 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6513 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6514 FW_LDST_CMD_MMD_V(mmd)); 6515 c.u.mdio.raddr = cpu_to_be16(reg); 6516 c.u.mdio.rval = cpu_to_be16(val); 6517 6518 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6519 } 6520 6521 /** 6522 * t4_sge_decode_idma_state - decode the idma state 6523 * @adap: the adapter 6524 * @state: the state idma is stuck in 6525 */ 6526 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6527 { 6528 static const char * const t4_decode[] = { 6529 "IDMA_IDLE", 6530 "IDMA_PUSH_MORE_CPL_FIFO", 6531 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6532 "Not used", 6533 "IDMA_PHYSADDR_SEND_PCIEHDR", 6534 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6535 "IDMA_PHYSADDR_SEND_PAYLOAD", 6536 "IDMA_SEND_FIFO_TO_IMSG", 6537 "IDMA_FL_REQ_DATA_FL_PREP", 6538 "IDMA_FL_REQ_DATA_FL", 6539 "IDMA_FL_DROP", 6540 "IDMA_FL_H_REQ_HEADER_FL", 6541 "IDMA_FL_H_SEND_PCIEHDR", 6542 "IDMA_FL_H_PUSH_CPL_FIFO", 6543 "IDMA_FL_H_SEND_CPL", 6544 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6545 "IDMA_FL_H_SEND_IP_HDR", 6546 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6547 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6548 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6549 "IDMA_FL_D_SEND_PCIEHDR", 6550 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6551 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6552 "IDMA_FL_SEND_PCIEHDR", 6553 "IDMA_FL_PUSH_CPL_FIFO", 6554 "IDMA_FL_SEND_CPL", 6555 "IDMA_FL_SEND_PAYLOAD_FIRST", 6556 "IDMA_FL_SEND_PAYLOAD", 6557 "IDMA_FL_REQ_NEXT_DATA_FL", 6558 "IDMA_FL_SEND_NEXT_PCIEHDR", 6559 "IDMA_FL_SEND_PADDING", 6560 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6561 "IDMA_FL_SEND_FIFO_TO_IMSG", 6562 "IDMA_FL_REQ_DATAFL_DONE", 6563 "IDMA_FL_REQ_HEADERFL_DONE", 6564 }; 6565 static const char * const t5_decode[] = { 6566 "IDMA_IDLE", 6567 "IDMA_ALMOST_IDLE", 6568 "IDMA_PUSH_MORE_CPL_FIFO", 6569 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6570 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6571 "IDMA_PHYSADDR_SEND_PCIEHDR", 6572 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6573 "IDMA_PHYSADDR_SEND_PAYLOAD", 6574 "IDMA_SEND_FIFO_TO_IMSG", 6575 "IDMA_FL_REQ_DATA_FL", 6576 "IDMA_FL_DROP", 6577 "IDMA_FL_DROP_SEND_INC", 6578 "IDMA_FL_H_REQ_HEADER_FL", 6579 "IDMA_FL_H_SEND_PCIEHDR", 6580 "IDMA_FL_H_PUSH_CPL_FIFO", 6581 "IDMA_FL_H_SEND_CPL", 6582 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6583 "IDMA_FL_H_SEND_IP_HDR", 6584 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6585 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6586 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6587 "IDMA_FL_D_SEND_PCIEHDR", 6588 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6589 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6590 "IDMA_FL_SEND_PCIEHDR", 6591 "IDMA_FL_PUSH_CPL_FIFO", 6592 "IDMA_FL_SEND_CPL", 6593 "IDMA_FL_SEND_PAYLOAD_FIRST", 6594 "IDMA_FL_SEND_PAYLOAD", 6595 "IDMA_FL_REQ_NEXT_DATA_FL", 6596 "IDMA_FL_SEND_NEXT_PCIEHDR", 6597 "IDMA_FL_SEND_PADDING", 6598 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6599 }; 6600 static const char * const t6_decode[] = { 6601 "IDMA_IDLE", 6602 "IDMA_PUSH_MORE_CPL_FIFO", 6603 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6604 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6605 "IDMA_PHYSADDR_SEND_PCIEHDR", 6606 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6607 "IDMA_PHYSADDR_SEND_PAYLOAD", 6608 "IDMA_FL_REQ_DATA_FL", 6609 "IDMA_FL_DROP", 6610 "IDMA_FL_DROP_SEND_INC", 6611 "IDMA_FL_H_REQ_HEADER_FL", 6612 "IDMA_FL_H_SEND_PCIEHDR", 6613 "IDMA_FL_H_PUSH_CPL_FIFO", 6614 "IDMA_FL_H_SEND_CPL", 6615 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6616 "IDMA_FL_H_SEND_IP_HDR", 6617 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6618 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6619 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6620 "IDMA_FL_D_SEND_PCIEHDR", 6621 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6622 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6623 "IDMA_FL_SEND_PCIEHDR", 6624 "IDMA_FL_PUSH_CPL_FIFO", 6625 "IDMA_FL_SEND_CPL", 6626 "IDMA_FL_SEND_PAYLOAD_FIRST", 6627 "IDMA_FL_SEND_PAYLOAD", 6628 "IDMA_FL_REQ_NEXT_DATA_FL", 6629 "IDMA_FL_SEND_NEXT_PCIEHDR", 6630 "IDMA_FL_SEND_PADDING", 6631 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6632 }; 6633 static const u32 sge_regs[] = { 6634 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6635 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6636 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6637 }; 6638 const char **sge_idma_decode; 6639 int sge_idma_decode_nstates; 6640 int i; 6641 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6642 6643 /* Select the right set of decode strings to dump depending on the 6644 * adapter chip type. 6645 */ 6646 switch (chip_version) { 6647 case CHELSIO_T4: 6648 sge_idma_decode = (const char **)t4_decode; 6649 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6650 break; 6651 6652 case CHELSIO_T5: 6653 sge_idma_decode = (const char **)t5_decode; 6654 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6655 break; 6656 6657 case CHELSIO_T6: 6658 sge_idma_decode = (const char **)t6_decode; 6659 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6660 break; 6661 6662 default: 6663 dev_err(adapter->pdev_dev, 6664 "Unsupported chip version %d\n", chip_version); 6665 return; 6666 } 6667 6668 if (is_t4(adapter->params.chip)) { 6669 sge_idma_decode = (const char **)t4_decode; 6670 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6671 } else { 6672 sge_idma_decode = (const char **)t5_decode; 6673 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6674 } 6675 6676 if (state < sge_idma_decode_nstates) 6677 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6678 else 6679 CH_WARN(adapter, "idma state %d unknown\n", state); 6680 6681 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6682 CH_WARN(adapter, "SGE register %#x value %#x\n", 6683 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6684 } 6685 6686 /** 6687 * t4_sge_ctxt_flush - flush the SGE context cache 6688 * @adap: the adapter 6689 * @mbox: mailbox to use for the FW command 6690 * @ctx_type: Egress or Ingress 6691 * 6692 * Issues a FW command through the given mailbox to flush the 6693 * SGE context cache. 6694 */ 6695 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6696 { 6697 int ret; 6698 u32 ldst_addrspace; 6699 struct fw_ldst_cmd c; 6700 6701 memset(&c, 0, sizeof(c)); 6702 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6703 FW_LDST_ADDRSPC_SGE_EGRC : 6704 FW_LDST_ADDRSPC_SGE_INGC); 6705 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6706 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6707 ldst_addrspace); 6708 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6709 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6710 6711 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6712 return ret; 6713 } 6714 6715 /** 6716 * t4_fw_hello - establish communication with FW 6717 * @adap: the adapter 6718 * @mbox: mailbox to use for the FW command 6719 * @evt_mbox: mailbox to receive async FW events 6720 * @master: specifies the caller's willingness to be the device master 6721 * @state: returns the current device state (if non-NULL) 6722 * 6723 * Issues a command to establish communication with FW. Returns either 6724 * an error (negative integer) or the mailbox of the Master PF. 6725 */ 6726 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6727 enum dev_master master, enum dev_state *state) 6728 { 6729 int ret; 6730 struct fw_hello_cmd c; 6731 u32 v; 6732 unsigned int master_mbox; 6733 int retries = FW_CMD_HELLO_RETRIES; 6734 6735 retry: 6736 memset(&c, 0, sizeof(c)); 6737 INIT_CMD(c, HELLO, WRITE); 6738 c.err_to_clearinit = cpu_to_be32( 6739 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6740 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6741 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6742 mbox : FW_HELLO_CMD_MBMASTER_M) | 6743 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6744 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6745 FW_HELLO_CMD_CLEARINIT_F); 6746 6747 /* 6748 * Issue the HELLO command to the firmware. If it's not successful 6749 * but indicates that we got a "busy" or "timeout" condition, retry 6750 * the HELLO until we exhaust our retry limit. If we do exceed our 6751 * retry limit, check to see if the firmware left us any error 6752 * information and report that if so. 6753 */ 6754 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6755 if (ret < 0) { 6756 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6757 goto retry; 6758 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6759 t4_report_fw_error(adap); 6760 return ret; 6761 } 6762 6763 v = be32_to_cpu(c.err_to_clearinit); 6764 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6765 if (state) { 6766 if (v & FW_HELLO_CMD_ERR_F) 6767 *state = DEV_STATE_ERR; 6768 else if (v & FW_HELLO_CMD_INIT_F) 6769 *state = DEV_STATE_INIT; 6770 else 6771 *state = DEV_STATE_UNINIT; 6772 } 6773 6774 /* 6775 * If we're not the Master PF then we need to wait around for the 6776 * Master PF Driver to finish setting up the adapter. 6777 * 6778 * Note that we also do this wait if we're a non-Master-capable PF and 6779 * there is no current Master PF; a Master PF may show up momentarily 6780 * and we wouldn't want to fail pointlessly. (This can happen when an 6781 * OS loads lots of different drivers rapidly at the same time). In 6782 * this case, the Master PF returned by the firmware will be 6783 * PCIE_FW_MASTER_M so the test below will work ... 6784 */ 6785 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6786 master_mbox != mbox) { 6787 int waiting = FW_CMD_HELLO_TIMEOUT; 6788 6789 /* 6790 * Wait for the firmware to either indicate an error or 6791 * initialized state. If we see either of these we bail out 6792 * and report the issue to the caller. If we exhaust the 6793 * "hello timeout" and we haven't exhausted our retries, try 6794 * again. Otherwise bail with a timeout error. 6795 */ 6796 for (;;) { 6797 u32 pcie_fw; 6798 6799 msleep(50); 6800 waiting -= 50; 6801 6802 /* 6803 * If neither Error nor Initialialized are indicated 6804 * by the firmware keep waiting till we exaust our 6805 * timeout ... and then retry if we haven't exhausted 6806 * our retries ... 6807 */ 6808 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6809 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6810 if (waiting <= 0) { 6811 if (retries-- > 0) 6812 goto retry; 6813 6814 return -ETIMEDOUT; 6815 } 6816 continue; 6817 } 6818 6819 /* 6820 * We either have an Error or Initialized condition 6821 * report errors preferentially. 6822 */ 6823 if (state) { 6824 if (pcie_fw & PCIE_FW_ERR_F) 6825 *state = DEV_STATE_ERR; 6826 else if (pcie_fw & PCIE_FW_INIT_F) 6827 *state = DEV_STATE_INIT; 6828 } 6829 6830 /* 6831 * If we arrived before a Master PF was selected and 6832 * there's not a valid Master PF, grab its identity 6833 * for our caller. 6834 */ 6835 if (master_mbox == PCIE_FW_MASTER_M && 6836 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6837 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6838 break; 6839 } 6840 } 6841 6842 return master_mbox; 6843 } 6844 6845 /** 6846 * t4_fw_bye - end communication with FW 6847 * @adap: the adapter 6848 * @mbox: mailbox to use for the FW command 6849 * 6850 * Issues a command to terminate communication with FW. 6851 */ 6852 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6853 { 6854 struct fw_bye_cmd c; 6855 6856 memset(&c, 0, sizeof(c)); 6857 INIT_CMD(c, BYE, WRITE); 6858 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6859 } 6860 6861 /** 6862 * t4_init_cmd - ask FW to initialize the device 6863 * @adap: the adapter 6864 * @mbox: mailbox to use for the FW command 6865 * 6866 * Issues a command to FW to partially initialize the device. This 6867 * performs initialization that generally doesn't depend on user input. 6868 */ 6869 int t4_early_init(struct adapter *adap, unsigned int mbox) 6870 { 6871 struct fw_initialize_cmd c; 6872 6873 memset(&c, 0, sizeof(c)); 6874 INIT_CMD(c, INITIALIZE, WRITE); 6875 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6876 } 6877 6878 /** 6879 * t4_fw_reset - issue a reset to FW 6880 * @adap: the adapter 6881 * @mbox: mailbox to use for the FW command 6882 * @reset: specifies the type of reset to perform 6883 * 6884 * Issues a reset command of the specified type to FW. 6885 */ 6886 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6887 { 6888 struct fw_reset_cmd c; 6889 6890 memset(&c, 0, sizeof(c)); 6891 INIT_CMD(c, RESET, WRITE); 6892 c.val = cpu_to_be32(reset); 6893 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6894 } 6895 6896 /** 6897 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6898 * @adap: the adapter 6899 * @mbox: mailbox to use for the FW RESET command (if desired) 6900 * @force: force uP into RESET even if FW RESET command fails 6901 * 6902 * Issues a RESET command to firmware (if desired) with a HALT indication 6903 * and then puts the microprocessor into RESET state. The RESET command 6904 * will only be issued if a legitimate mailbox is provided (mbox <= 6905 * PCIE_FW_MASTER_M). 6906 * 6907 * This is generally used in order for the host to safely manipulate the 6908 * adapter without fear of conflicting with whatever the firmware might 6909 * be doing. The only way out of this state is to RESTART the firmware 6910 * ... 6911 */ 6912 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6913 { 6914 int ret = 0; 6915 6916 /* 6917 * If a legitimate mailbox is provided, issue a RESET command 6918 * with a HALT indication. 6919 */ 6920 if (mbox <= PCIE_FW_MASTER_M) { 6921 struct fw_reset_cmd c; 6922 6923 memset(&c, 0, sizeof(c)); 6924 INIT_CMD(c, RESET, WRITE); 6925 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6926 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6927 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6928 } 6929 6930 /* 6931 * Normally we won't complete the operation if the firmware RESET 6932 * command fails but if our caller insists we'll go ahead and put the 6933 * uP into RESET. This can be useful if the firmware is hung or even 6934 * missing ... We'll have to take the risk of putting the uP into 6935 * RESET without the cooperation of firmware in that case. 6936 * 6937 * We also force the firmware's HALT flag to be on in case we bypassed 6938 * the firmware RESET command above or we're dealing with old firmware 6939 * which doesn't have the HALT capability. This will serve as a flag 6940 * for the incoming firmware to know that it's coming out of a HALT 6941 * rather than a RESET ... if it's new enough to understand that ... 6942 */ 6943 if (ret == 0 || force) { 6944 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6945 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6946 PCIE_FW_HALT_F); 6947 } 6948 6949 /* 6950 * And we always return the result of the firmware RESET command 6951 * even when we force the uP into RESET ... 6952 */ 6953 return ret; 6954 } 6955 6956 /** 6957 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6958 * @adap: the adapter 6959 * @reset: if we want to do a RESET to restart things 6960 * 6961 * Restart firmware previously halted by t4_fw_halt(). On successful 6962 * return the previous PF Master remains as the new PF Master and there 6963 * is no need to issue a new HELLO command, etc. 6964 * 6965 * We do this in two ways: 6966 * 6967 * 1. If we're dealing with newer firmware we'll simply want to take 6968 * the chip's microprocessor out of RESET. This will cause the 6969 * firmware to start up from its start vector. And then we'll loop 6970 * until the firmware indicates it's started again (PCIE_FW.HALT 6971 * reset to 0) or we timeout. 6972 * 6973 * 2. If we're dealing with older firmware then we'll need to RESET 6974 * the chip since older firmware won't recognize the PCIE_FW.HALT 6975 * flag and automatically RESET itself on startup. 6976 */ 6977 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6978 { 6979 if (reset) { 6980 /* 6981 * Since we're directing the RESET instead of the firmware 6982 * doing it automatically, we need to clear the PCIE_FW.HALT 6983 * bit. 6984 */ 6985 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6986 6987 /* 6988 * If we've been given a valid mailbox, first try to get the 6989 * firmware to do the RESET. If that works, great and we can 6990 * return success. Otherwise, if we haven't been given a 6991 * valid mailbox or the RESET command failed, fall back to 6992 * hitting the chip with a hammer. 6993 */ 6994 if (mbox <= PCIE_FW_MASTER_M) { 6995 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6996 msleep(100); 6997 if (t4_fw_reset(adap, mbox, 6998 PIORST_F | PIORSTMODE_F) == 0) 6999 return 0; 7000 } 7001 7002 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7003 msleep(2000); 7004 } else { 7005 int ms; 7006 7007 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7008 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7009 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7010 return 0; 7011 msleep(100); 7012 ms += 100; 7013 } 7014 return -ETIMEDOUT; 7015 } 7016 return 0; 7017 } 7018 7019 /** 7020 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7021 * @adap: the adapter 7022 * @mbox: mailbox to use for the FW RESET command (if desired) 7023 * @fw_data: the firmware image to write 7024 * @size: image size 7025 * @force: force upgrade even if firmware doesn't cooperate 7026 * 7027 * Perform all of the steps necessary for upgrading an adapter's 7028 * firmware image. Normally this requires the cooperation of the 7029 * existing firmware in order to halt all existing activities 7030 * but if an invalid mailbox token is passed in we skip that step 7031 * (though we'll still put the adapter microprocessor into RESET in 7032 * that case). 7033 * 7034 * On successful return the new firmware will have been loaded and 7035 * the adapter will have been fully RESET losing all previous setup 7036 * state. On unsuccessful return the adapter may be completely hosed ... 7037 * positive errno indicates that the adapter is ~probably~ intact, a 7038 * negative errno indicates that things are looking bad ... 7039 */ 7040 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7041 const u8 *fw_data, unsigned int size, int force) 7042 { 7043 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7044 int reset, ret; 7045 7046 if (!t4_fw_matches_chip(adap, fw_hdr)) 7047 return -EINVAL; 7048 7049 /* Disable FW_OK flag so that mbox commands with FW_OK flag set 7050 * wont be sent when we are flashing FW. 7051 */ 7052 adap->flags &= ~FW_OK; 7053 7054 ret = t4_fw_halt(adap, mbox, force); 7055 if (ret < 0 && !force) 7056 goto out; 7057 7058 ret = t4_load_fw(adap, fw_data, size); 7059 if (ret < 0) 7060 goto out; 7061 7062 /* 7063 * If there was a Firmware Configuration File stored in FLASH, 7064 * there's a good chance that it won't be compatible with the new 7065 * Firmware. In order to prevent difficult to diagnose adapter 7066 * initialization issues, we clear out the Firmware Configuration File 7067 * portion of the FLASH . The user will need to re-FLASH a new 7068 * Firmware Configuration File which is compatible with the new 7069 * Firmware if that's desired. 7070 */ 7071 (void)t4_load_cfg(adap, NULL, 0); 7072 7073 /* 7074 * Older versions of the firmware don't understand the new 7075 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7076 * restart. So for newly loaded older firmware we'll have to do the 7077 * RESET for it so it starts up on a clean slate. We can tell if 7078 * the newly loaded firmware will handle this right by checking 7079 * its header flags to see if it advertises the capability. 7080 */ 7081 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7082 ret = t4_fw_restart(adap, mbox, reset); 7083 7084 /* Grab potentially new Firmware Device Log parameters so we can see 7085 * how healthy the new Firmware is. It's okay to contact the new 7086 * Firmware for these parameters even though, as far as it's 7087 * concerned, we've never said "HELLO" to it ... 7088 */ 7089 (void)t4_init_devlog_params(adap); 7090 out: 7091 adap->flags |= FW_OK; 7092 return ret; 7093 } 7094 7095 /** 7096 * t4_fl_pkt_align - return the fl packet alignment 7097 * @adap: the adapter 7098 * 7099 * T4 has a single field to specify the packing and padding boundary. 7100 * T5 onwards has separate fields for this and hence the alignment for 7101 * next packet offset is maximum of these two. 7102 * 7103 */ 7104 int t4_fl_pkt_align(struct adapter *adap) 7105 { 7106 u32 sge_control, sge_control2; 7107 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7108 7109 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7110 7111 /* T4 uses a single control field to specify both the PCIe Padding and 7112 * Packing Boundary. T5 introduced the ability to specify these 7113 * separately. The actual Ingress Packet Data alignment boundary 7114 * within Packed Buffer Mode is the maximum of these two 7115 * specifications. (Note that it makes no real practical sense to 7116 * have the Pading Boudary be larger than the Packing Boundary but you 7117 * could set the chip up that way and, in fact, legacy T4 code would 7118 * end doing this because it would initialize the Padding Boundary and 7119 * leave the Packing Boundary initialized to 0 (16 bytes).) 7120 * Padding Boundary values in T6 starts from 8B, 7121 * where as it is 32B for T4 and T5. 7122 */ 7123 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7124 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7125 else 7126 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7127 7128 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7129 7130 fl_align = ingpadboundary; 7131 if (!is_t4(adap->params.chip)) { 7132 /* T5 has a weird interpretation of one of the PCIe Packing 7133 * Boundary values. No idea why ... 7134 */ 7135 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7136 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7137 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7138 ingpackboundary = 16; 7139 else 7140 ingpackboundary = 1 << (ingpackboundary + 7141 INGPACKBOUNDARY_SHIFT_X); 7142 7143 fl_align = max(ingpadboundary, ingpackboundary); 7144 } 7145 return fl_align; 7146 } 7147 7148 /** 7149 * t4_fixup_host_params - fix up host-dependent parameters 7150 * @adap: the adapter 7151 * @page_size: the host's Base Page Size 7152 * @cache_line_size: the host's Cache Line Size 7153 * 7154 * Various registers in T4 contain values which are dependent on the 7155 * host's Base Page and Cache Line Sizes. This function will fix all of 7156 * those registers with the appropriate values as passed in ... 7157 */ 7158 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7159 unsigned int cache_line_size) 7160 { 7161 unsigned int page_shift = fls(page_size) - 1; 7162 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7163 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7164 unsigned int fl_align_log = fls(fl_align) - 1; 7165 7166 if (is_t4(adap->params.chip)) { 7167 t4_set_reg_field(adap, SGE_CONTROL_A, 7168 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7169 EGRSTATUSPAGESIZE_F, 7170 INGPADBOUNDARY_V(fl_align_log - 7171 INGPADBOUNDARY_SHIFT_X) | 7172 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7173 } else { 7174 unsigned int pack_align; 7175 unsigned int ingpad, ingpack; 7176 unsigned int pcie_cap; 7177 7178 /* T5 introduced the separation of the Free List Padding and 7179 * Packing Boundaries. Thus, we can select a smaller Padding 7180 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7181 * Bandwidth, and use a Packing Boundary which is large enough 7182 * to avoid false sharing between CPUs, etc. 7183 * 7184 * For the PCI Link, the smaller the Padding Boundary the 7185 * better. For the Memory Controller, a smaller Padding 7186 * Boundary is better until we cross under the Memory Line 7187 * Size (the minimum unit of transfer to/from Memory). If we 7188 * have a Padding Boundary which is smaller than the Memory 7189 * Line Size, that'll involve a Read-Modify-Write cycle on the 7190 * Memory Controller which is never good. 7191 */ 7192 7193 /* We want the Packing Boundary to be based on the Cache Line 7194 * Size in order to help avoid False Sharing performance 7195 * issues between CPUs, etc. We also want the Packing 7196 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7197 * get best performance when the Packing Boundary is a 7198 * multiple of the Maximum Payload Size. 7199 */ 7200 pack_align = fl_align; 7201 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7202 if (pcie_cap) { 7203 unsigned int mps, mps_log; 7204 u16 devctl; 7205 7206 /* The PCIe Device Control Maximum Payload Size field 7207 * [bits 7:5] encodes sizes as powers of 2 starting at 7208 * 128 bytes. 7209 */ 7210 pci_read_config_word(adap->pdev, 7211 pcie_cap + PCI_EXP_DEVCTL, 7212 &devctl); 7213 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7214 mps = 1 << mps_log; 7215 if (mps > pack_align) 7216 pack_align = mps; 7217 } 7218 7219 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7220 * value for the Packing Boundary. This corresponds to 16 7221 * bytes instead of the expected 32 bytes. So if we want 32 7222 * bytes, the best we can really do is 64 bytes ... 7223 */ 7224 if (pack_align <= 16) { 7225 ingpack = INGPACKBOUNDARY_16B_X; 7226 fl_align = 16; 7227 } else if (pack_align == 32) { 7228 ingpack = INGPACKBOUNDARY_64B_X; 7229 fl_align = 64; 7230 } else { 7231 unsigned int pack_align_log = fls(pack_align) - 1; 7232 7233 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7234 fl_align = pack_align; 7235 } 7236 7237 /* Use the smallest Ingress Padding which isn't smaller than 7238 * the Memory Controller Read/Write Size. We'll take that as 7239 * being 8 bytes since we don't know of any system with a 7240 * wider Memory Controller Bus Width. 7241 */ 7242 if (is_t5(adap->params.chip)) 7243 ingpad = INGPADBOUNDARY_32B_X; 7244 else 7245 ingpad = T6_INGPADBOUNDARY_8B_X; 7246 7247 t4_set_reg_field(adap, SGE_CONTROL_A, 7248 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7249 EGRSTATUSPAGESIZE_F, 7250 INGPADBOUNDARY_V(ingpad) | 7251 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7252 t4_set_reg_field(adap, SGE_CONTROL2_A, 7253 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7254 INGPACKBOUNDARY_V(ingpack)); 7255 } 7256 /* 7257 * Adjust various SGE Free List Host Buffer Sizes. 7258 * 7259 * This is something of a crock since we're using fixed indices into 7260 * the array which are also known by the sge.c code and the T4 7261 * Firmware Configuration File. We need to come up with a much better 7262 * approach to managing this array. For now, the first four entries 7263 * are: 7264 * 7265 * 0: Host Page Size 7266 * 1: 64KB 7267 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7268 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7269 * 7270 * For the single-MTU buffers in unpacked mode we need to include 7271 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7272 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7273 * Padding boundary. All of these are accommodated in the Factory 7274 * Default Firmware Configuration File but we need to adjust it for 7275 * this host's cache line size. 7276 */ 7277 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7278 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7279 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7280 & ~(fl_align-1)); 7281 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7282 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7283 & ~(fl_align-1)); 7284 7285 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7286 7287 return 0; 7288 } 7289 7290 /** 7291 * t4_fw_initialize - ask FW to initialize the device 7292 * @adap: the adapter 7293 * @mbox: mailbox to use for the FW command 7294 * 7295 * Issues a command to FW to partially initialize the device. This 7296 * performs initialization that generally doesn't depend on user input. 7297 */ 7298 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7299 { 7300 struct fw_initialize_cmd c; 7301 7302 memset(&c, 0, sizeof(c)); 7303 INIT_CMD(c, INITIALIZE, WRITE); 7304 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7305 } 7306 7307 /** 7308 * t4_query_params_rw - query FW or device parameters 7309 * @adap: the adapter 7310 * @mbox: mailbox to use for the FW command 7311 * @pf: the PF 7312 * @vf: the VF 7313 * @nparams: the number of parameters 7314 * @params: the parameter names 7315 * @val: the parameter values 7316 * @rw: Write and read flag 7317 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7318 * 7319 * Reads the value of FW or device parameters. Up to 7 parameters can be 7320 * queried at once. 7321 */ 7322 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7323 unsigned int vf, unsigned int nparams, const u32 *params, 7324 u32 *val, int rw, bool sleep_ok) 7325 { 7326 int i, ret; 7327 struct fw_params_cmd c; 7328 __be32 *p = &c.param[0].mnem; 7329 7330 if (nparams > 7) 7331 return -EINVAL; 7332 7333 memset(&c, 0, sizeof(c)); 7334 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7335 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7336 FW_PARAMS_CMD_PFN_V(pf) | 7337 FW_PARAMS_CMD_VFN_V(vf)); 7338 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7339 7340 for (i = 0; i < nparams; i++) { 7341 *p++ = cpu_to_be32(*params++); 7342 if (rw) 7343 *p = cpu_to_be32(*(val + i)); 7344 p++; 7345 } 7346 7347 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7348 if (ret == 0) 7349 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7350 *val++ = be32_to_cpu(*p); 7351 return ret; 7352 } 7353 7354 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7355 unsigned int vf, unsigned int nparams, const u32 *params, 7356 u32 *val) 7357 { 7358 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7359 true); 7360 } 7361 7362 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7363 unsigned int vf, unsigned int nparams, const u32 *params, 7364 u32 *val) 7365 { 7366 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7367 false); 7368 } 7369 7370 /** 7371 * t4_set_params_timeout - sets FW or device parameters 7372 * @adap: the adapter 7373 * @mbox: mailbox to use for the FW command 7374 * @pf: the PF 7375 * @vf: the VF 7376 * @nparams: the number of parameters 7377 * @params: the parameter names 7378 * @val: the parameter values 7379 * @timeout: the timeout time 7380 * 7381 * Sets the value of FW or device parameters. Up to 7 parameters can be 7382 * specified at once. 7383 */ 7384 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7385 unsigned int pf, unsigned int vf, 7386 unsigned int nparams, const u32 *params, 7387 const u32 *val, int timeout) 7388 { 7389 struct fw_params_cmd c; 7390 __be32 *p = &c.param[0].mnem; 7391 7392 if (nparams > 7) 7393 return -EINVAL; 7394 7395 memset(&c, 0, sizeof(c)); 7396 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7397 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7398 FW_PARAMS_CMD_PFN_V(pf) | 7399 FW_PARAMS_CMD_VFN_V(vf)); 7400 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7401 7402 while (nparams--) { 7403 *p++ = cpu_to_be32(*params++); 7404 *p++ = cpu_to_be32(*val++); 7405 } 7406 7407 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7408 } 7409 7410 /** 7411 * t4_set_params - sets FW or device parameters 7412 * @adap: the adapter 7413 * @mbox: mailbox to use for the FW command 7414 * @pf: the PF 7415 * @vf: the VF 7416 * @nparams: the number of parameters 7417 * @params: the parameter names 7418 * @val: the parameter values 7419 * 7420 * Sets the value of FW or device parameters. Up to 7 parameters can be 7421 * specified at once. 7422 */ 7423 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7424 unsigned int vf, unsigned int nparams, const u32 *params, 7425 const u32 *val) 7426 { 7427 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7428 FW_CMD_MAX_TIMEOUT); 7429 } 7430 7431 /** 7432 * t4_cfg_pfvf - configure PF/VF resource limits 7433 * @adap: the adapter 7434 * @mbox: mailbox to use for the FW command 7435 * @pf: the PF being configured 7436 * @vf: the VF being configured 7437 * @txq: the max number of egress queues 7438 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7439 * @rxqi: the max number of interrupt-capable ingress queues 7440 * @rxq: the max number of interruptless ingress queues 7441 * @tc: the PCI traffic class 7442 * @vi: the max number of virtual interfaces 7443 * @cmask: the channel access rights mask for the PF/VF 7444 * @pmask: the port access rights mask for the PF/VF 7445 * @nexact: the maximum number of exact MPS filters 7446 * @rcaps: read capabilities 7447 * @wxcaps: write/execute capabilities 7448 * 7449 * Configures resource limits and capabilities for a physical or virtual 7450 * function. 7451 */ 7452 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7453 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7454 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7455 unsigned int vi, unsigned int cmask, unsigned int pmask, 7456 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7457 { 7458 struct fw_pfvf_cmd c; 7459 7460 memset(&c, 0, sizeof(c)); 7461 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7462 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7463 FW_PFVF_CMD_VFN_V(vf)); 7464 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7465 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7466 FW_PFVF_CMD_NIQ_V(rxq)); 7467 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7468 FW_PFVF_CMD_PMASK_V(pmask) | 7469 FW_PFVF_CMD_NEQ_V(txq)); 7470 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7471 FW_PFVF_CMD_NVI_V(vi) | 7472 FW_PFVF_CMD_NEXACTF_V(nexact)); 7473 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7474 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7475 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7476 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7477 } 7478 7479 /** 7480 * t4_alloc_vi - allocate a virtual interface 7481 * @adap: the adapter 7482 * @mbox: mailbox to use for the FW command 7483 * @port: physical port associated with the VI 7484 * @pf: the PF owning the VI 7485 * @vf: the VF owning the VI 7486 * @nmac: number of MAC addresses needed (1 to 5) 7487 * @mac: the MAC addresses of the VI 7488 * @rss_size: size of RSS table slice associated with this VI 7489 * 7490 * Allocates a virtual interface for the given physical port. If @mac is 7491 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7492 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7493 * stored consecutively so the space needed is @nmac * 6 bytes. 7494 * Returns a negative error number or the non-negative VI id. 7495 */ 7496 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7497 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7498 unsigned int *rss_size, u8 *vivld, u8 *vin) 7499 { 7500 int ret; 7501 struct fw_vi_cmd c; 7502 7503 memset(&c, 0, sizeof(c)); 7504 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7505 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7506 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7507 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7508 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7509 c.nmac = nmac - 1; 7510 7511 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7512 if (ret) 7513 return ret; 7514 7515 if (mac) { 7516 memcpy(mac, c.mac, sizeof(c.mac)); 7517 switch (nmac) { 7518 case 5: 7519 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7520 /* Fall through */ 7521 case 4: 7522 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7523 /* Fall through */ 7524 case 3: 7525 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7526 /* Fall through */ 7527 case 2: 7528 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7529 } 7530 } 7531 if (rss_size) 7532 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7533 7534 if (vivld) 7535 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7536 7537 if (vin) 7538 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7539 7540 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7541 } 7542 7543 /** 7544 * t4_free_vi - free a virtual interface 7545 * @adap: the adapter 7546 * @mbox: mailbox to use for the FW command 7547 * @pf: the PF owning the VI 7548 * @vf: the VF owning the VI 7549 * @viid: virtual interface identifiler 7550 * 7551 * Free a previously allocated virtual interface. 7552 */ 7553 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7554 unsigned int vf, unsigned int viid) 7555 { 7556 struct fw_vi_cmd c; 7557 7558 memset(&c, 0, sizeof(c)); 7559 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7560 FW_CMD_REQUEST_F | 7561 FW_CMD_EXEC_F | 7562 FW_VI_CMD_PFN_V(pf) | 7563 FW_VI_CMD_VFN_V(vf)); 7564 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7565 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7566 7567 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7568 } 7569 7570 /** 7571 * t4_set_rxmode - set Rx properties of a virtual interface 7572 * @adap: the adapter 7573 * @mbox: mailbox to use for the FW command 7574 * @viid: the VI id 7575 * @mtu: the new MTU or -1 7576 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7577 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7578 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7579 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7580 * @sleep_ok: if true we may sleep while awaiting command completion 7581 * 7582 * Sets Rx properties of a virtual interface. 7583 */ 7584 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7585 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7586 bool sleep_ok) 7587 { 7588 struct fw_vi_rxmode_cmd c; 7589 7590 /* convert to FW values */ 7591 if (mtu < 0) 7592 mtu = FW_RXMODE_MTU_NO_CHG; 7593 if (promisc < 0) 7594 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7595 if (all_multi < 0) 7596 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7597 if (bcast < 0) 7598 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7599 if (vlanex < 0) 7600 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7601 7602 memset(&c, 0, sizeof(c)); 7603 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7604 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7605 FW_VI_RXMODE_CMD_VIID_V(viid)); 7606 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7607 c.mtu_to_vlanexen = 7608 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7609 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7610 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7611 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7612 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7613 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7614 } 7615 7616 /** 7617 * t4_free_encap_mac_filt - frees MPS entry at given index 7618 * @adap: the adapter 7619 * @viid: the VI id 7620 * @idx: index of MPS entry to be freed 7621 * @sleep_ok: call is allowed to sleep 7622 * 7623 * Frees the MPS entry at supplied index 7624 * 7625 * Returns a negative error number or zero on success 7626 */ 7627 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7628 int idx, bool sleep_ok) 7629 { 7630 struct fw_vi_mac_exact *p; 7631 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7632 struct fw_vi_mac_cmd c; 7633 int ret = 0; 7634 u32 exact; 7635 7636 memset(&c, 0, sizeof(c)); 7637 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7638 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7639 FW_CMD_EXEC_V(0) | 7640 FW_VI_MAC_CMD_VIID_V(viid)); 7641 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7642 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7643 exact | 7644 FW_CMD_LEN16_V(1)); 7645 p = c.u.exact; 7646 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7647 FW_VI_MAC_CMD_IDX_V(idx)); 7648 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7649 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7650 return ret; 7651 } 7652 7653 /** 7654 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7655 * @adap: the adapter 7656 * @viid: the VI id 7657 * @addr: the MAC address 7658 * @mask: the mask 7659 * @idx: index of the entry in mps tcam 7660 * @lookup_type: MAC address for inner (1) or outer (0) header 7661 * @port_id: the port index 7662 * @sleep_ok: call is allowed to sleep 7663 * 7664 * Removes the mac entry at the specified index using raw mac interface. 7665 * 7666 * Returns a negative error number on failure. 7667 */ 7668 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7669 const u8 *addr, const u8 *mask, unsigned int idx, 7670 u8 lookup_type, u8 port_id, bool sleep_ok) 7671 { 7672 struct fw_vi_mac_cmd c; 7673 struct fw_vi_mac_raw *p = &c.u.raw; 7674 u32 val; 7675 7676 memset(&c, 0, sizeof(c)); 7677 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7678 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7679 FW_CMD_EXEC_V(0) | 7680 FW_VI_MAC_CMD_VIID_V(viid)); 7681 val = FW_CMD_LEN16_V(1) | 7682 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7683 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7684 FW_CMD_LEN16_V(val)); 7685 7686 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7687 FW_VI_MAC_ID_BASED_FREE); 7688 7689 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7690 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7691 DATAPORTNUM_V(port_id)); 7692 /* Lookup mask and port mask */ 7693 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7694 DATAPORTNUM_V(DATAPORTNUM_M)); 7695 7696 /* Copy the address and the mask */ 7697 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7698 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7699 7700 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7701 } 7702 7703 /** 7704 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7705 * @adap: the adapter 7706 * @viid: the VI id 7707 * @mac: the MAC address 7708 * @mask: the mask 7709 * @vni: the VNI id for the tunnel protocol 7710 * @vni_mask: mask for the VNI id 7711 * @dip_hit: to enable DIP match for the MPS entry 7712 * @lookup_type: MAC address for inner (1) or outer (0) header 7713 * @sleep_ok: call is allowed to sleep 7714 * 7715 * Allocates an MPS entry with specified MAC address and VNI value. 7716 * 7717 * Returns a negative error number or the allocated index for this mac. 7718 */ 7719 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7720 const u8 *addr, const u8 *mask, unsigned int vni, 7721 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7722 bool sleep_ok) 7723 { 7724 struct fw_vi_mac_cmd c; 7725 struct fw_vi_mac_vni *p = c.u.exact_vni; 7726 int ret = 0; 7727 u32 val; 7728 7729 memset(&c, 0, sizeof(c)); 7730 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7731 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7732 FW_VI_MAC_CMD_VIID_V(viid)); 7733 val = FW_CMD_LEN16_V(1) | 7734 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7735 c.freemacs_to_len16 = cpu_to_be32(val); 7736 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7737 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7738 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7739 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7740 7741 p->lookup_type_to_vni = 7742 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7743 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7744 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7745 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7746 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7747 if (ret == 0) 7748 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7749 return ret; 7750 } 7751 7752 /** 7753 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7754 * @adap: the adapter 7755 * @viid: the VI id 7756 * @mac: the MAC address 7757 * @mask: the mask 7758 * @idx: index at which to add this entry 7759 * @port_id: the port index 7760 * @lookup_type: MAC address for inner (1) or outer (0) header 7761 * @sleep_ok: call is allowed to sleep 7762 * 7763 * Adds the mac entry at the specified index using raw mac interface. 7764 * 7765 * Returns a negative error number or the allocated index for this mac. 7766 */ 7767 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7768 const u8 *addr, const u8 *mask, unsigned int idx, 7769 u8 lookup_type, u8 port_id, bool sleep_ok) 7770 { 7771 int ret = 0; 7772 struct fw_vi_mac_cmd c; 7773 struct fw_vi_mac_raw *p = &c.u.raw; 7774 u32 val; 7775 7776 memset(&c, 0, sizeof(c)); 7777 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7778 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7779 FW_VI_MAC_CMD_VIID_V(viid)); 7780 val = FW_CMD_LEN16_V(1) | 7781 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7782 c.freemacs_to_len16 = cpu_to_be32(val); 7783 7784 /* Specify that this is an inner mac address */ 7785 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7786 7787 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7788 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7789 DATAPORTNUM_V(port_id)); 7790 /* Lookup mask and port mask */ 7791 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7792 DATAPORTNUM_V(DATAPORTNUM_M)); 7793 7794 /* Copy the address and the mask */ 7795 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7796 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7797 7798 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7799 if (ret == 0) { 7800 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7801 if (ret != idx) 7802 ret = -ENOMEM; 7803 } 7804 7805 return ret; 7806 } 7807 7808 /** 7809 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7810 * @adap: the adapter 7811 * @mbox: mailbox to use for the FW command 7812 * @viid: the VI id 7813 * @free: if true any existing filters for this VI id are first removed 7814 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7815 * @addr: the MAC address(es) 7816 * @idx: where to store the index of each allocated filter 7817 * @hash: pointer to hash address filter bitmap 7818 * @sleep_ok: call is allowed to sleep 7819 * 7820 * Allocates an exact-match filter for each of the supplied addresses and 7821 * sets it to the corresponding address. If @idx is not %NULL it should 7822 * have at least @naddr entries, each of which will be set to the index of 7823 * the filter allocated for the corresponding MAC address. If a filter 7824 * could not be allocated for an address its index is set to 0xffff. 7825 * If @hash is not %NULL addresses that fail to allocate an exact filter 7826 * are hashed and update the hash filter bitmap pointed at by @hash. 7827 * 7828 * Returns a negative error number or the number of filters allocated. 7829 */ 7830 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7831 unsigned int viid, bool free, unsigned int naddr, 7832 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7833 { 7834 int offset, ret = 0; 7835 struct fw_vi_mac_cmd c; 7836 unsigned int nfilters = 0; 7837 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7838 unsigned int rem = naddr; 7839 7840 if (naddr > max_naddr) 7841 return -EINVAL; 7842 7843 for (offset = 0; offset < naddr ; /**/) { 7844 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7845 rem : ARRAY_SIZE(c.u.exact)); 7846 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7847 u.exact[fw_naddr]), 16); 7848 struct fw_vi_mac_exact *p; 7849 int i; 7850 7851 memset(&c, 0, sizeof(c)); 7852 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7853 FW_CMD_REQUEST_F | 7854 FW_CMD_WRITE_F | 7855 FW_CMD_EXEC_V(free) | 7856 FW_VI_MAC_CMD_VIID_V(viid)); 7857 c.freemacs_to_len16 = 7858 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7859 FW_CMD_LEN16_V(len16)); 7860 7861 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7862 p->valid_to_idx = 7863 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7864 FW_VI_MAC_CMD_IDX_V( 7865 FW_VI_MAC_ADD_MAC)); 7866 memcpy(p->macaddr, addr[offset + i], 7867 sizeof(p->macaddr)); 7868 } 7869 7870 /* It's okay if we run out of space in our MAC address arena. 7871 * Some of the addresses we submit may get stored so we need 7872 * to run through the reply to see what the results were ... 7873 */ 7874 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7875 if (ret && ret != -FW_ENOMEM) 7876 break; 7877 7878 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7879 u16 index = FW_VI_MAC_CMD_IDX_G( 7880 be16_to_cpu(p->valid_to_idx)); 7881 7882 if (idx) 7883 idx[offset + i] = (index >= max_naddr ? 7884 0xffff : index); 7885 if (index < max_naddr) 7886 nfilters++; 7887 else if (hash) 7888 *hash |= (1ULL << 7889 hash_mac_addr(addr[offset + i])); 7890 } 7891 7892 free = false; 7893 offset += fw_naddr; 7894 rem -= fw_naddr; 7895 } 7896 7897 if (ret == 0 || ret == -FW_ENOMEM) 7898 ret = nfilters; 7899 return ret; 7900 } 7901 7902 /** 7903 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7904 * @adap: the adapter 7905 * @mbox: mailbox to use for the FW command 7906 * @viid: the VI id 7907 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7908 * @addr: the MAC address(es) 7909 * @sleep_ok: call is allowed to sleep 7910 * 7911 * Frees the exact-match filter for each of the supplied addresses 7912 * 7913 * Returns a negative error number or the number of filters freed. 7914 */ 7915 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7916 unsigned int viid, unsigned int naddr, 7917 const u8 **addr, bool sleep_ok) 7918 { 7919 int offset, ret = 0; 7920 struct fw_vi_mac_cmd c; 7921 unsigned int nfilters = 0; 7922 unsigned int max_naddr = is_t4(adap->params.chip) ? 7923 NUM_MPS_CLS_SRAM_L_INSTANCES : 7924 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7925 unsigned int rem = naddr; 7926 7927 if (naddr > max_naddr) 7928 return -EINVAL; 7929 7930 for (offset = 0; offset < (int)naddr ; /**/) { 7931 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7932 ? rem 7933 : ARRAY_SIZE(c.u.exact)); 7934 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7935 u.exact[fw_naddr]), 16); 7936 struct fw_vi_mac_exact *p; 7937 int i; 7938 7939 memset(&c, 0, sizeof(c)); 7940 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7941 FW_CMD_REQUEST_F | 7942 FW_CMD_WRITE_F | 7943 FW_CMD_EXEC_V(0) | 7944 FW_VI_MAC_CMD_VIID_V(viid)); 7945 c.freemacs_to_len16 = 7946 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7947 FW_CMD_LEN16_V(len16)); 7948 7949 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7950 p->valid_to_idx = cpu_to_be16( 7951 FW_VI_MAC_CMD_VALID_F | 7952 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 7953 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7954 } 7955 7956 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7957 if (ret) 7958 break; 7959 7960 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7961 u16 index = FW_VI_MAC_CMD_IDX_G( 7962 be16_to_cpu(p->valid_to_idx)); 7963 7964 if (index < max_naddr) 7965 nfilters++; 7966 } 7967 7968 offset += fw_naddr; 7969 rem -= fw_naddr; 7970 } 7971 7972 if (ret == 0) 7973 ret = nfilters; 7974 return ret; 7975 } 7976 7977 /** 7978 * t4_change_mac - modifies the exact-match filter for a MAC address 7979 * @adap: the adapter 7980 * @mbox: mailbox to use for the FW command 7981 * @viid: the VI id 7982 * @idx: index of existing filter for old value of MAC address, or -1 7983 * @addr: the new MAC address value 7984 * @persist: whether a new MAC allocation should be persistent 7985 * @add_smt: if true also add the address to the HW SMT 7986 * 7987 * Modifies an exact-match filter and sets it to the new MAC address. 7988 * Note that in general it is not possible to modify the value of a given 7989 * filter so the generic way to modify an address filter is to free the one 7990 * being used by the old address value and allocate a new filter for the 7991 * new address value. @idx can be -1 if the address is a new addition. 7992 * 7993 * Returns a negative error number or the index of the filter with the new 7994 * MAC value. 7995 */ 7996 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7997 int idx, const u8 *addr, bool persist, u8 *smt_idx) 7998 { 7999 int ret, mode; 8000 struct fw_vi_mac_cmd c; 8001 struct fw_vi_mac_exact *p = c.u.exact; 8002 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8003 8004 if (idx < 0) /* new allocation */ 8005 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8006 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8007 8008 memset(&c, 0, sizeof(c)); 8009 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8010 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8011 FW_VI_MAC_CMD_VIID_V(viid)); 8012 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8013 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8014 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8015 FW_VI_MAC_CMD_IDX_V(idx)); 8016 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8017 8018 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8019 if (ret == 0) { 8020 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8021 if (ret >= max_mac_addr) 8022 ret = -ENOMEM; 8023 if (smt_idx) { 8024 if (adap->params.viid_smt_extn_support) { 8025 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8026 (be32_to_cpu(c.op_to_viid)); 8027 } else { 8028 /* In T4/T5, SMT contains 256 SMAC entries 8029 * organized in 128 rows of 2 entries each. 8030 * In T6, SMT contains 256 SMAC entries in 8031 * 256 rows. 8032 */ 8033 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8034 CHELSIO_T5) 8035 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8036 else 8037 *smt_idx = (viid & FW_VIID_VIN_M); 8038 } 8039 } 8040 } 8041 return ret; 8042 } 8043 8044 /** 8045 * t4_set_addr_hash - program the MAC inexact-match hash filter 8046 * @adap: the adapter 8047 * @mbox: mailbox to use for the FW command 8048 * @viid: the VI id 8049 * @ucast: whether the hash filter should also match unicast addresses 8050 * @vec: the value to be written to the hash filter 8051 * @sleep_ok: call is allowed to sleep 8052 * 8053 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8054 */ 8055 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8056 bool ucast, u64 vec, bool sleep_ok) 8057 { 8058 struct fw_vi_mac_cmd c; 8059 8060 memset(&c, 0, sizeof(c)); 8061 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8062 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8063 FW_VI_ENABLE_CMD_VIID_V(viid)); 8064 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8065 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8066 FW_CMD_LEN16_V(1)); 8067 c.u.hash.hashvec = cpu_to_be64(vec); 8068 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8069 } 8070 8071 /** 8072 * t4_enable_vi_params - enable/disable a virtual interface 8073 * @adap: the adapter 8074 * @mbox: mailbox to use for the FW command 8075 * @viid: the VI id 8076 * @rx_en: 1=enable Rx, 0=disable Rx 8077 * @tx_en: 1=enable Tx, 0=disable Tx 8078 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8079 * 8080 * Enables/disables a virtual interface. Note that setting DCB Enable 8081 * only makes sense when enabling a Virtual Interface ... 8082 */ 8083 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8084 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8085 { 8086 struct fw_vi_enable_cmd c; 8087 8088 memset(&c, 0, sizeof(c)); 8089 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8090 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8091 FW_VI_ENABLE_CMD_VIID_V(viid)); 8092 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8093 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8094 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8095 FW_LEN16(c)); 8096 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8097 } 8098 8099 /** 8100 * t4_enable_vi - enable/disable a virtual interface 8101 * @adap: the adapter 8102 * @mbox: mailbox to use for the FW command 8103 * @viid: the VI id 8104 * @rx_en: 1=enable Rx, 0=disable Rx 8105 * @tx_en: 1=enable Tx, 0=disable Tx 8106 * 8107 * Enables/disables a virtual interface. 8108 */ 8109 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8110 bool rx_en, bool tx_en) 8111 { 8112 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8113 } 8114 8115 /** 8116 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8117 * @adap: the adapter 8118 * @mbox: mailbox to use for the FW command 8119 * @pi: the Port Information structure 8120 * @rx_en: 1=enable Rx, 0=disable Rx 8121 * @tx_en: 1=enable Tx, 0=disable Tx 8122 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8123 * 8124 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8125 * Enable only makes sense when enabling a Virtual Interface ... 8126 * If the Virtual Interface enable/disable operation is successful, 8127 * we notify the OS-specific code of a potential Link Status change 8128 * via the OS Contract API t4_os_link_changed(). 8129 */ 8130 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8131 struct port_info *pi, 8132 bool rx_en, bool tx_en, bool dcb_en) 8133 { 8134 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8135 rx_en, tx_en, dcb_en); 8136 if (ret) 8137 return ret; 8138 t4_os_link_changed(adap, pi->port_id, 8139 rx_en && tx_en && pi->link_cfg.link_ok); 8140 return 0; 8141 } 8142 8143 /** 8144 * t4_identify_port - identify a VI's port by blinking its LED 8145 * @adap: the adapter 8146 * @mbox: mailbox to use for the FW command 8147 * @viid: the VI id 8148 * @nblinks: how many times to blink LED at 2.5 Hz 8149 * 8150 * Identifies a VI's port by blinking its LED. 8151 */ 8152 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8153 unsigned int nblinks) 8154 { 8155 struct fw_vi_enable_cmd c; 8156 8157 memset(&c, 0, sizeof(c)); 8158 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8159 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8160 FW_VI_ENABLE_CMD_VIID_V(viid)); 8161 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8162 c.blinkdur = cpu_to_be16(nblinks); 8163 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8164 } 8165 8166 /** 8167 * t4_iq_stop - stop an ingress queue and its FLs 8168 * @adap: the adapter 8169 * @mbox: mailbox to use for the FW command 8170 * @pf: the PF owning the queues 8171 * @vf: the VF owning the queues 8172 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8173 * @iqid: ingress queue id 8174 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8175 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8176 * 8177 * Stops an ingress queue and its associated FLs, if any. This causes 8178 * any current or future data/messages destined for these queues to be 8179 * tossed. 8180 */ 8181 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8182 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8183 unsigned int fl0id, unsigned int fl1id) 8184 { 8185 struct fw_iq_cmd c; 8186 8187 memset(&c, 0, sizeof(c)); 8188 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8189 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8190 FW_IQ_CMD_VFN_V(vf)); 8191 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8192 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8193 c.iqid = cpu_to_be16(iqid); 8194 c.fl0id = cpu_to_be16(fl0id); 8195 c.fl1id = cpu_to_be16(fl1id); 8196 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8197 } 8198 8199 /** 8200 * t4_iq_free - free an ingress queue and its FLs 8201 * @adap: the adapter 8202 * @mbox: mailbox to use for the FW command 8203 * @pf: the PF owning the queues 8204 * @vf: the VF owning the queues 8205 * @iqtype: the ingress queue type 8206 * @iqid: ingress queue id 8207 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8208 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8209 * 8210 * Frees an ingress queue and its associated FLs, if any. 8211 */ 8212 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8213 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8214 unsigned int fl0id, unsigned int fl1id) 8215 { 8216 struct fw_iq_cmd c; 8217 8218 memset(&c, 0, sizeof(c)); 8219 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8220 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8221 FW_IQ_CMD_VFN_V(vf)); 8222 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8223 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8224 c.iqid = cpu_to_be16(iqid); 8225 c.fl0id = cpu_to_be16(fl0id); 8226 c.fl1id = cpu_to_be16(fl1id); 8227 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8228 } 8229 8230 /** 8231 * t4_eth_eq_free - free an Ethernet egress queue 8232 * @adap: the adapter 8233 * @mbox: mailbox to use for the FW command 8234 * @pf: the PF owning the queue 8235 * @vf: the VF owning the queue 8236 * @eqid: egress queue id 8237 * 8238 * Frees an Ethernet egress queue. 8239 */ 8240 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8241 unsigned int vf, unsigned int eqid) 8242 { 8243 struct fw_eq_eth_cmd c; 8244 8245 memset(&c, 0, sizeof(c)); 8246 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8247 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8248 FW_EQ_ETH_CMD_PFN_V(pf) | 8249 FW_EQ_ETH_CMD_VFN_V(vf)); 8250 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8251 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8252 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8253 } 8254 8255 /** 8256 * t4_ctrl_eq_free - free a control egress queue 8257 * @adap: the adapter 8258 * @mbox: mailbox to use for the FW command 8259 * @pf: the PF owning the queue 8260 * @vf: the VF owning the queue 8261 * @eqid: egress queue id 8262 * 8263 * Frees a control egress queue. 8264 */ 8265 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8266 unsigned int vf, unsigned int eqid) 8267 { 8268 struct fw_eq_ctrl_cmd c; 8269 8270 memset(&c, 0, sizeof(c)); 8271 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8272 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8273 FW_EQ_CTRL_CMD_PFN_V(pf) | 8274 FW_EQ_CTRL_CMD_VFN_V(vf)); 8275 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8276 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8277 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8278 } 8279 8280 /** 8281 * t4_ofld_eq_free - free an offload egress queue 8282 * @adap: the adapter 8283 * @mbox: mailbox to use for the FW command 8284 * @pf: the PF owning the queue 8285 * @vf: the VF owning the queue 8286 * @eqid: egress queue id 8287 * 8288 * Frees a control egress queue. 8289 */ 8290 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8291 unsigned int vf, unsigned int eqid) 8292 { 8293 struct fw_eq_ofld_cmd c; 8294 8295 memset(&c, 0, sizeof(c)); 8296 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8297 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8298 FW_EQ_OFLD_CMD_PFN_V(pf) | 8299 FW_EQ_OFLD_CMD_VFN_V(vf)); 8300 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8301 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8302 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8303 } 8304 8305 /** 8306 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8307 * @adap: the adapter 8308 * @link_down_rc: Link Down Reason Code 8309 * 8310 * Returns a string representation of the Link Down Reason Code. 8311 */ 8312 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8313 { 8314 static const char * const reason[] = { 8315 "Link Down", 8316 "Remote Fault", 8317 "Auto-negotiation Failure", 8318 "Reserved", 8319 "Insufficient Airflow", 8320 "Unable To Determine Reason", 8321 "No RX Signal Detected", 8322 "Reserved", 8323 }; 8324 8325 if (link_down_rc >= ARRAY_SIZE(reason)) 8326 return "Bad Reason Code"; 8327 8328 return reason[link_down_rc]; 8329 } 8330 8331 /** 8332 * Return the highest speed set in the port capabilities, in Mb/s. 8333 */ 8334 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8335 { 8336 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8337 do { \ 8338 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8339 return __speed; \ 8340 } while (0) 8341 8342 TEST_SPEED_RETURN(400G, 400000); 8343 TEST_SPEED_RETURN(200G, 200000); 8344 TEST_SPEED_RETURN(100G, 100000); 8345 TEST_SPEED_RETURN(50G, 50000); 8346 TEST_SPEED_RETURN(40G, 40000); 8347 TEST_SPEED_RETURN(25G, 25000); 8348 TEST_SPEED_RETURN(10G, 10000); 8349 TEST_SPEED_RETURN(1G, 1000); 8350 TEST_SPEED_RETURN(100M, 100); 8351 8352 #undef TEST_SPEED_RETURN 8353 8354 return 0; 8355 } 8356 8357 /** 8358 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8359 * @acaps: advertised Port Capabilities 8360 * 8361 * Get the highest speed for the port from the advertised Port 8362 * Capabilities. It will be either the highest speed from the list of 8363 * speeds or whatever user has set using ethtool. 8364 */ 8365 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8366 { 8367 #define TEST_SPEED_RETURN(__caps_speed) \ 8368 do { \ 8369 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8370 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8371 } while (0) 8372 8373 TEST_SPEED_RETURN(400G); 8374 TEST_SPEED_RETURN(200G); 8375 TEST_SPEED_RETURN(100G); 8376 TEST_SPEED_RETURN(50G); 8377 TEST_SPEED_RETURN(40G); 8378 TEST_SPEED_RETURN(25G); 8379 TEST_SPEED_RETURN(10G); 8380 TEST_SPEED_RETURN(1G); 8381 TEST_SPEED_RETURN(100M); 8382 8383 #undef TEST_SPEED_RETURN 8384 8385 return 0; 8386 } 8387 8388 /** 8389 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8390 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8391 * 8392 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8393 * 32-bit Port Capabilities value. 8394 */ 8395 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8396 { 8397 fw_port_cap32_t linkattr = 0; 8398 8399 /* Unfortunately the format of the Link Status in the old 8400 * 16-bit Port Information message isn't the same as the 8401 * 16-bit Port Capabilities bitfield used everywhere else ... 8402 */ 8403 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8404 linkattr |= FW_PORT_CAP32_FC_RX; 8405 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8406 linkattr |= FW_PORT_CAP32_FC_TX; 8407 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8408 linkattr |= FW_PORT_CAP32_SPEED_100M; 8409 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8410 linkattr |= FW_PORT_CAP32_SPEED_1G; 8411 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8412 linkattr |= FW_PORT_CAP32_SPEED_10G; 8413 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8414 linkattr |= FW_PORT_CAP32_SPEED_25G; 8415 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8416 linkattr |= FW_PORT_CAP32_SPEED_40G; 8417 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8418 linkattr |= FW_PORT_CAP32_SPEED_100G; 8419 8420 return linkattr; 8421 } 8422 8423 /** 8424 * t4_handle_get_port_info - process a FW reply message 8425 * @pi: the port info 8426 * @rpl: start of the FW message 8427 * 8428 * Processes a GET_PORT_INFO FW reply message. 8429 */ 8430 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8431 { 8432 const struct fw_port_cmd *cmd = (const void *)rpl; 8433 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8434 struct adapter *adapter = pi->adapter; 8435 struct link_config *lc = &pi->link_cfg; 8436 int link_ok, linkdnrc; 8437 enum fw_port_type port_type; 8438 enum fw_port_module_type mod_type; 8439 unsigned int speed, fc, fec; 8440 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8441 8442 /* Extract the various fields from the Port Information message. 8443 */ 8444 switch (action) { 8445 case FW_PORT_ACTION_GET_PORT_INFO: { 8446 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8447 8448 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8449 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8450 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8451 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8452 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8453 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8454 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8455 linkattr = lstatus_to_fwcap(lstatus); 8456 break; 8457 } 8458 8459 case FW_PORT_ACTION_GET_PORT_INFO32: { 8460 u32 lstatus32; 8461 8462 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8463 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8464 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8465 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8466 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8467 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8468 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8469 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8470 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8471 break; 8472 } 8473 8474 default: 8475 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8476 be32_to_cpu(cmd->action_to_len16)); 8477 return; 8478 } 8479 8480 fec = fwcap_to_cc_fec(acaps); 8481 fc = fwcap_to_cc_pause(linkattr); 8482 speed = fwcap_to_speed(linkattr); 8483 8484 /* Reset state for communicating new Transceiver Module status and 8485 * whether the OS-dependent layer wants us to redo the current 8486 * "sticky" L1 Configure Link Parameters. 8487 */ 8488 lc->new_module = false; 8489 lc->redo_l1cfg = false; 8490 8491 if (mod_type != pi->mod_type) { 8492 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8493 * various fundamental Port Capabilities which used to be 8494 * immutable can now change radically. We can now have 8495 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8496 * all change based on what Transceiver Module is inserted. 8497 * So we need to record the Physical "Port" Capabilities on 8498 * every Transceiver Module change. 8499 */ 8500 lc->pcaps = pcaps; 8501 8502 /* When a new Transceiver Module is inserted, the Firmware 8503 * will examine its i2c EPROM to determine its type and 8504 * general operating parameters including things like Forward 8505 * Error Control, etc. Various IEEE 802.3 standards dictate 8506 * how to interpret these i2c values to determine default 8507 * "sutomatic" settings. We record these for future use when 8508 * the user explicitly requests these standards-based values. 8509 */ 8510 lc->def_acaps = acaps; 8511 8512 /* Some versions of the early T6 Firmware "cheated" when 8513 * handling different Transceiver Modules by changing the 8514 * underlaying Port Type reported to the Host Drivers. As 8515 * such we need to capture whatever Port Type the Firmware 8516 * sends us and record it in case it's different from what we 8517 * were told earlier. Unfortunately, since Firmware is 8518 * forever, we'll need to keep this code here forever, but in 8519 * later T6 Firmware it should just be an assignment of the 8520 * same value already recorded. 8521 */ 8522 pi->port_type = port_type; 8523 8524 /* Record new Module Type information. 8525 */ 8526 pi->mod_type = mod_type; 8527 8528 /* Let the OS-dependent layer know if we have a new 8529 * Transceiver Module inserted. 8530 */ 8531 lc->new_module = t4_is_inserted_mod_type(mod_type); 8532 8533 t4_os_portmod_changed(adapter, pi->port_id); 8534 } 8535 8536 if (link_ok != lc->link_ok || speed != lc->speed || 8537 fc != lc->fc || fec != lc->fec) { /* something changed */ 8538 if (!link_ok && lc->link_ok) { 8539 lc->link_down_rc = linkdnrc; 8540 dev_warn_ratelimited(adapter->pdev_dev, 8541 "Port %d link down, reason: %s\n", 8542 pi->tx_chan, 8543 t4_link_down_rc_str(linkdnrc)); 8544 } 8545 lc->link_ok = link_ok; 8546 lc->speed = speed; 8547 lc->fc = fc; 8548 lc->fec = fec; 8549 8550 lc->lpacaps = lpacaps; 8551 lc->acaps = acaps & ADVERT_MASK; 8552 8553 /* If we're not physically capable of Auto-Negotiation, note 8554 * this as Auto-Negotiation disabled. Otherwise, we track 8555 * what Auto-Negotiation settings we have. Note parallel 8556 * structure in t4_link_l1cfg_core() and init_link_config(). 8557 */ 8558 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8559 lc->autoneg = AUTONEG_DISABLE; 8560 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8561 lc->autoneg = AUTONEG_ENABLE; 8562 } else { 8563 /* When Autoneg is disabled, user needs to set 8564 * single speed. 8565 * Similar to cxgb4_ethtool.c: set_link_ksettings 8566 */ 8567 lc->acaps = 0; 8568 lc->speed_caps = fwcap_to_fwspeed(acaps); 8569 lc->autoneg = AUTONEG_DISABLE; 8570 } 8571 8572 t4_os_link_changed(adapter, pi->port_id, link_ok); 8573 } 8574 8575 /* If we have a new Transceiver Module and the OS-dependent code has 8576 * told us that it wants us to redo whatever "sticky" L1 Configuration 8577 * Link Parameters are set, do that now. 8578 */ 8579 if (lc->new_module && lc->redo_l1cfg) { 8580 struct link_config old_lc; 8581 int ret; 8582 8583 /* Save the current L1 Configuration and restore it if an 8584 * error occurs. We probably should fix the l1_cfg*() 8585 * routines not to change the link_config when an error 8586 * occurs ... 8587 */ 8588 old_lc = *lc; 8589 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8590 if (ret) { 8591 *lc = old_lc; 8592 dev_warn(adapter->pdev_dev, 8593 "Attempt to update new Transceiver Module settings failed\n"); 8594 } 8595 } 8596 lc->new_module = false; 8597 lc->redo_l1cfg = false; 8598 } 8599 8600 /** 8601 * t4_update_port_info - retrieve and update port information if changed 8602 * @pi: the port_info 8603 * 8604 * We issue a Get Port Information Command to the Firmware and, if 8605 * successful, we check to see if anything is different from what we 8606 * last recorded and update things accordingly. 8607 */ 8608 int t4_update_port_info(struct port_info *pi) 8609 { 8610 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8611 struct fw_port_cmd port_cmd; 8612 int ret; 8613 8614 memset(&port_cmd, 0, sizeof(port_cmd)); 8615 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8616 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8617 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8618 port_cmd.action_to_len16 = cpu_to_be32( 8619 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8620 ? FW_PORT_ACTION_GET_PORT_INFO 8621 : FW_PORT_ACTION_GET_PORT_INFO32) | 8622 FW_LEN16(port_cmd)); 8623 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8624 &port_cmd, sizeof(port_cmd), &port_cmd); 8625 if (ret) 8626 return ret; 8627 8628 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8629 return 0; 8630 } 8631 8632 /** 8633 * t4_get_link_params - retrieve basic link parameters for given port 8634 * @pi: the port 8635 * @link_okp: value return pointer for link up/down 8636 * @speedp: value return pointer for speed (Mb/s) 8637 * @mtup: value return pointer for mtu 8638 * 8639 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8640 * and MTU for a specified port. A negative error is returned on 8641 * failure; 0 on success. 8642 */ 8643 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8644 unsigned int *speedp, unsigned int *mtup) 8645 { 8646 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8647 struct fw_port_cmd port_cmd; 8648 unsigned int action, link_ok, mtu; 8649 fw_port_cap32_t linkattr; 8650 int ret; 8651 8652 memset(&port_cmd, 0, sizeof(port_cmd)); 8653 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8654 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8655 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8656 action = (fw_caps == FW_CAPS16 8657 ? FW_PORT_ACTION_GET_PORT_INFO 8658 : FW_PORT_ACTION_GET_PORT_INFO32); 8659 port_cmd.action_to_len16 = cpu_to_be32( 8660 FW_PORT_CMD_ACTION_V(action) | 8661 FW_LEN16(port_cmd)); 8662 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8663 &port_cmd, sizeof(port_cmd), &port_cmd); 8664 if (ret) 8665 return ret; 8666 8667 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8668 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8669 8670 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8671 linkattr = lstatus_to_fwcap(lstatus); 8672 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8673 } else { 8674 u32 lstatus32 = 8675 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8676 8677 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8678 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8679 mtu = FW_PORT_CMD_MTU32_G( 8680 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8681 } 8682 8683 *link_okp = link_ok; 8684 *speedp = fwcap_to_speed(linkattr); 8685 *mtup = mtu; 8686 8687 return 0; 8688 } 8689 8690 /** 8691 * t4_handle_fw_rpl - process a FW reply message 8692 * @adap: the adapter 8693 * @rpl: start of the FW message 8694 * 8695 * Processes a FW message, such as link state change messages. 8696 */ 8697 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8698 { 8699 u8 opcode = *(const u8 *)rpl; 8700 8701 /* This might be a port command ... this simplifies the following 8702 * conditionals ... We can get away with pre-dereferencing 8703 * action_to_len16 because it's in the first 16 bytes and all messages 8704 * will be at least that long. 8705 */ 8706 const struct fw_port_cmd *p = (const void *)rpl; 8707 unsigned int action = 8708 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8709 8710 if (opcode == FW_PORT_CMD && 8711 (action == FW_PORT_ACTION_GET_PORT_INFO || 8712 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8713 int i; 8714 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8715 struct port_info *pi = NULL; 8716 8717 for_each_port(adap, i) { 8718 pi = adap2pinfo(adap, i); 8719 if (pi->tx_chan == chan) 8720 break; 8721 } 8722 8723 t4_handle_get_port_info(pi, rpl); 8724 } else { 8725 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8726 opcode); 8727 return -EINVAL; 8728 } 8729 return 0; 8730 } 8731 8732 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8733 { 8734 u16 val; 8735 8736 if (pci_is_pcie(adapter->pdev)) { 8737 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8738 p->speed = val & PCI_EXP_LNKSTA_CLS; 8739 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8740 } 8741 } 8742 8743 /** 8744 * init_link_config - initialize a link's SW state 8745 * @lc: pointer to structure holding the link state 8746 * @pcaps: link Port Capabilities 8747 * @acaps: link current Advertised Port Capabilities 8748 * 8749 * Initializes the SW state maintained for each link, including the link's 8750 * capabilities and default speed/flow-control/autonegotiation settings. 8751 */ 8752 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8753 fw_port_cap32_t acaps) 8754 { 8755 lc->pcaps = pcaps; 8756 lc->def_acaps = acaps; 8757 lc->lpacaps = 0; 8758 lc->speed_caps = 0; 8759 lc->speed = 0; 8760 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8761 8762 /* For Forward Error Control, we default to whatever the Firmware 8763 * tells us the Link is currently advertising. 8764 */ 8765 lc->requested_fec = FEC_AUTO; 8766 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8767 8768 /* If the Port is capable of Auto-Negtotiation, initialize it as 8769 * "enabled" and copy over all of the Physical Port Capabilities 8770 * to the Advertised Port Capabilities. Otherwise mark it as 8771 * Auto-Negotiate disabled and select the highest supported speed 8772 * for the link. Note parallel structure in t4_link_l1cfg_core() 8773 * and t4_handle_get_port_info(). 8774 */ 8775 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8776 lc->acaps = lc->pcaps & ADVERT_MASK; 8777 lc->autoneg = AUTONEG_ENABLE; 8778 lc->requested_fc |= PAUSE_AUTONEG; 8779 } else { 8780 lc->acaps = 0; 8781 lc->autoneg = AUTONEG_DISABLE; 8782 lc->speed_caps = fwcap_to_fwspeed(acaps); 8783 } 8784 } 8785 8786 #define CIM_PF_NOACCESS 0xeeeeeeee 8787 8788 int t4_wait_dev_ready(void __iomem *regs) 8789 { 8790 u32 whoami; 8791 8792 whoami = readl(regs + PL_WHOAMI_A); 8793 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8794 return 0; 8795 8796 msleep(500); 8797 whoami = readl(regs + PL_WHOAMI_A); 8798 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8799 } 8800 8801 struct flash_desc { 8802 u32 vendor_and_model_id; 8803 u32 size_mb; 8804 }; 8805 8806 static int t4_get_flash_params(struct adapter *adap) 8807 { 8808 /* Table for non-Numonix supported flash parts. Numonix parts are left 8809 * to the preexisting code. All flash parts have 64KB sectors. 8810 */ 8811 static struct flash_desc supported_flash[] = { 8812 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8813 }; 8814 8815 unsigned int part, manufacturer; 8816 unsigned int density, size = 0; 8817 u32 flashid = 0; 8818 int ret; 8819 8820 /* Issue a Read ID Command to the Flash part. We decode supported 8821 * Flash parts and their sizes from this. There's a newer Query 8822 * Command which can retrieve detailed geometry information but many 8823 * Flash parts don't support it. 8824 */ 8825 8826 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8827 if (!ret) 8828 ret = sf1_read(adap, 3, 0, 1, &flashid); 8829 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8830 if (ret) 8831 return ret; 8832 8833 /* Check to see if it's one of our non-standard supported Flash parts. 8834 */ 8835 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8836 if (supported_flash[part].vendor_and_model_id == flashid) { 8837 adap->params.sf_size = supported_flash[part].size_mb; 8838 adap->params.sf_nsec = 8839 adap->params.sf_size / SF_SEC_SIZE; 8840 goto found; 8841 } 8842 8843 /* Decode Flash part size. The code below looks repetative with 8844 * common encodings, but that's not guaranteed in the JEDEC 8845 * specification for the Read JADEC ID command. The only thing that 8846 * we're guaranteed by the JADEC specification is where the 8847 * Manufacturer ID is in the returned result. After that each 8848 * Manufacturer ~could~ encode things completely differently. 8849 * Note, all Flash parts must have 64KB sectors. 8850 */ 8851 manufacturer = flashid & 0xff; 8852 switch (manufacturer) { 8853 case 0x20: { /* Micron/Numonix */ 8854 /* This Density -> Size decoding table is taken from Micron 8855 * Data Sheets. 8856 */ 8857 density = (flashid >> 16) & 0xff; 8858 switch (density) { 8859 case 0x14: /* 1MB */ 8860 size = 1 << 20; 8861 break; 8862 case 0x15: /* 2MB */ 8863 size = 1 << 21; 8864 break; 8865 case 0x16: /* 4MB */ 8866 size = 1 << 22; 8867 break; 8868 case 0x17: /* 8MB */ 8869 size = 1 << 23; 8870 break; 8871 case 0x18: /* 16MB */ 8872 size = 1 << 24; 8873 break; 8874 case 0x19: /* 32MB */ 8875 size = 1 << 25; 8876 break; 8877 case 0x20: /* 64MB */ 8878 size = 1 << 26; 8879 break; 8880 case 0x21: /* 128MB */ 8881 size = 1 << 27; 8882 break; 8883 case 0x22: /* 256MB */ 8884 size = 1 << 28; 8885 break; 8886 } 8887 break; 8888 } 8889 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 8890 /* This Density -> Size decoding table is taken from ISSI 8891 * Data Sheets. 8892 */ 8893 density = (flashid >> 16) & 0xff; 8894 switch (density) { 8895 case 0x16: /* 32 MB */ 8896 size = 1 << 25; 8897 break; 8898 case 0x17: /* 64MB */ 8899 size = 1 << 26; 8900 break; 8901 } 8902 break; 8903 } 8904 case 0xc2: { /* Macronix */ 8905 /* This Density -> Size decoding table is taken from Macronix 8906 * Data Sheets. 8907 */ 8908 density = (flashid >> 16) & 0xff; 8909 switch (density) { 8910 case 0x17: /* 8MB */ 8911 size = 1 << 23; 8912 break; 8913 case 0x18: /* 16MB */ 8914 size = 1 << 24; 8915 break; 8916 } 8917 break; 8918 } 8919 case 0xef: { /* Winbond */ 8920 /* This Density -> Size decoding table is taken from Winbond 8921 * Data Sheets. 8922 */ 8923 density = (flashid >> 16) & 0xff; 8924 switch (density) { 8925 case 0x17: /* 8MB */ 8926 size = 1 << 23; 8927 break; 8928 case 0x18: /* 16MB */ 8929 size = 1 << 24; 8930 break; 8931 } 8932 break; 8933 } 8934 } 8935 8936 /* If we didn't recognize the FLASH part, that's no real issue: the 8937 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 8938 * use a FLASH part which is at least 4MB in size and has 64KB 8939 * sectors. The unrecognized FLASH part is likely to be much larger 8940 * than 4MB, but that's all we really need. 8941 */ 8942 if (size == 0) { 8943 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 8944 flashid); 8945 size = 1 << 22; 8946 } 8947 8948 /* Store decoded Flash size and fall through into vetting code. */ 8949 adap->params.sf_size = size; 8950 adap->params.sf_nsec = size / SF_SEC_SIZE; 8951 8952 found: 8953 if (adap->params.sf_size < FLASH_MIN_SIZE) 8954 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8955 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 8956 return 0; 8957 } 8958 8959 /** 8960 * t4_prep_adapter - prepare SW and HW for operation 8961 * @adapter: the adapter 8962 * @reset: if true perform a HW reset 8963 * 8964 * Initialize adapter SW state for the various HW modules, set initial 8965 * values for some adapter tunables, take PHYs out of reset, and 8966 * initialize the MDIO interface. 8967 */ 8968 int t4_prep_adapter(struct adapter *adapter) 8969 { 8970 int ret, ver; 8971 uint16_t device_id; 8972 u32 pl_rev; 8973 8974 get_pci_mode(adapter, &adapter->params.pci); 8975 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 8976 8977 ret = t4_get_flash_params(adapter); 8978 if (ret < 0) { 8979 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 8980 return ret; 8981 } 8982 8983 /* Retrieve adapter's device ID 8984 */ 8985 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 8986 ver = device_id >> 12; 8987 adapter->params.chip = 0; 8988 switch (ver) { 8989 case CHELSIO_T4: 8990 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 8991 adapter->params.arch.sge_fl_db = DBPRIO_F; 8992 adapter->params.arch.mps_tcam_size = 8993 NUM_MPS_CLS_SRAM_L_INSTANCES; 8994 adapter->params.arch.mps_rplc_size = 128; 8995 adapter->params.arch.nchan = NCHAN; 8996 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8997 adapter->params.arch.vfcount = 128; 8998 /* Congestion map is for 4 channels so that 8999 * MPS can have 4 priority per port. 9000 */ 9001 adapter->params.arch.cng_ch_bits_log = 2; 9002 break; 9003 case CHELSIO_T5: 9004 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9005 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9006 adapter->params.arch.mps_tcam_size = 9007 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9008 adapter->params.arch.mps_rplc_size = 128; 9009 adapter->params.arch.nchan = NCHAN; 9010 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9011 adapter->params.arch.vfcount = 128; 9012 adapter->params.arch.cng_ch_bits_log = 2; 9013 break; 9014 case CHELSIO_T6: 9015 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9016 adapter->params.arch.sge_fl_db = 0; 9017 adapter->params.arch.mps_tcam_size = 9018 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9019 adapter->params.arch.mps_rplc_size = 256; 9020 adapter->params.arch.nchan = 2; 9021 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9022 adapter->params.arch.vfcount = 256; 9023 /* Congestion map will be for 2 channels so that 9024 * MPS can have 8 priority per port. 9025 */ 9026 adapter->params.arch.cng_ch_bits_log = 3; 9027 break; 9028 default: 9029 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9030 device_id); 9031 return -EINVAL; 9032 } 9033 9034 adapter->params.cim_la_size = CIMLA_SIZE; 9035 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9036 9037 /* 9038 * Default port for debugging in case we can't reach FW. 9039 */ 9040 adapter->params.nports = 1; 9041 adapter->params.portvec = 1; 9042 adapter->params.vpd.cclk = 50000; 9043 9044 /* Set PCIe completion timeout to 4 seconds. */ 9045 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9046 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9047 return 0; 9048 } 9049 9050 /** 9051 * t4_shutdown_adapter - shut down adapter, host & wire 9052 * @adapter: the adapter 9053 * 9054 * Perform an emergency shutdown of the adapter and stop it from 9055 * continuing any further communication on the ports or DMA to the 9056 * host. This is typically used when the adapter and/or firmware 9057 * have crashed and we want to prevent any further accidental 9058 * communication with the rest of the world. This will also force 9059 * the port Link Status to go down -- if register writes work -- 9060 * which should help our peers figure out that we're down. 9061 */ 9062 int t4_shutdown_adapter(struct adapter *adapter) 9063 { 9064 int port; 9065 9066 t4_intr_disable(adapter); 9067 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9068 for_each_port(adapter, port) { 9069 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9070 PORT_REG(port, XGMAC_PORT_CFG_A) : 9071 T5_PORT_REG(port, MAC_PORT_CFG_A); 9072 9073 t4_write_reg(adapter, a_port_cfg, 9074 t4_read_reg(adapter, a_port_cfg) 9075 & ~SIGNAL_DET_V(1)); 9076 } 9077 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9078 9079 return 0; 9080 } 9081 9082 /** 9083 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9084 * @adapter: the adapter 9085 * @qid: the Queue ID 9086 * @qtype: the Ingress or Egress type for @qid 9087 * @user: true if this request is for a user mode queue 9088 * @pbar2_qoffset: BAR2 Queue Offset 9089 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9090 * 9091 * Returns the BAR2 SGE Queue Registers information associated with the 9092 * indicated Absolute Queue ID. These are passed back in return value 9093 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9094 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9095 * 9096 * This may return an error which indicates that BAR2 SGE Queue 9097 * registers aren't available. If an error is not returned, then the 9098 * following values are returned: 9099 * 9100 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9101 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9102 * 9103 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9104 * require the "Inferred Queue ID" ability may be used. E.g. the 9105 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9106 * then these "Inferred Queue ID" register may not be used. 9107 */ 9108 int t4_bar2_sge_qregs(struct adapter *adapter, 9109 unsigned int qid, 9110 enum t4_bar2_qtype qtype, 9111 int user, 9112 u64 *pbar2_qoffset, 9113 unsigned int *pbar2_qid) 9114 { 9115 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9116 u64 bar2_page_offset, bar2_qoffset; 9117 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9118 9119 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9120 if (!user && is_t4(adapter->params.chip)) 9121 return -EINVAL; 9122 9123 /* Get our SGE Page Size parameters. 9124 */ 9125 page_shift = adapter->params.sge.hps + 10; 9126 page_size = 1 << page_shift; 9127 9128 /* Get the right Queues per Page parameters for our Queue. 9129 */ 9130 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9131 ? adapter->params.sge.eq_qpp 9132 : adapter->params.sge.iq_qpp); 9133 qpp_mask = (1 << qpp_shift) - 1; 9134 9135 /* Calculate the basics of the BAR2 SGE Queue register area: 9136 * o The BAR2 page the Queue registers will be in. 9137 * o The BAR2 Queue ID. 9138 * o The BAR2 Queue ID Offset into the BAR2 page. 9139 */ 9140 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9141 bar2_qid = qid & qpp_mask; 9142 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9143 9144 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9145 * hardware will infer the Absolute Queue ID simply from the writes to 9146 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9147 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9148 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9149 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9150 * from the BAR2 Page and BAR2 Queue ID. 9151 * 9152 * One important censequence of this is that some BAR2 SGE registers 9153 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9154 * there. But other registers synthesize the SGE Queue ID purely 9155 * from the writes to the registers -- the Write Combined Doorbell 9156 * Buffer is a good example. These BAR2 SGE Registers are only 9157 * available for those BAR2 SGE Register areas where the SGE Absolute 9158 * Queue ID can be inferred from simple writes. 9159 */ 9160 bar2_qoffset = bar2_page_offset; 9161 bar2_qinferred = (bar2_qid_offset < page_size); 9162 if (bar2_qinferred) { 9163 bar2_qoffset += bar2_qid_offset; 9164 bar2_qid = 0; 9165 } 9166 9167 *pbar2_qoffset = bar2_qoffset; 9168 *pbar2_qid = bar2_qid; 9169 return 0; 9170 } 9171 9172 /** 9173 * t4_init_devlog_params - initialize adapter->params.devlog 9174 * @adap: the adapter 9175 * 9176 * Initialize various fields of the adapter's Firmware Device Log 9177 * Parameters structure. 9178 */ 9179 int t4_init_devlog_params(struct adapter *adap) 9180 { 9181 struct devlog_params *dparams = &adap->params.devlog; 9182 u32 pf_dparams; 9183 unsigned int devlog_meminfo; 9184 struct fw_devlog_cmd devlog_cmd; 9185 int ret; 9186 9187 /* If we're dealing with newer firmware, the Device Log Paramerters 9188 * are stored in a designated register which allows us to access the 9189 * Device Log even if we can't talk to the firmware. 9190 */ 9191 pf_dparams = 9192 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9193 if (pf_dparams) { 9194 unsigned int nentries, nentries128; 9195 9196 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9197 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9198 9199 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9200 nentries = (nentries128 + 1) * 128; 9201 dparams->size = nentries * sizeof(struct fw_devlog_e); 9202 9203 return 0; 9204 } 9205 9206 /* Otherwise, ask the firmware for it's Device Log Parameters. 9207 */ 9208 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9209 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9210 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9211 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9212 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9213 &devlog_cmd); 9214 if (ret) 9215 return ret; 9216 9217 devlog_meminfo = 9218 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9219 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9220 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9221 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9222 9223 return 0; 9224 } 9225 9226 /** 9227 * t4_init_sge_params - initialize adap->params.sge 9228 * @adapter: the adapter 9229 * 9230 * Initialize various fields of the adapter's SGE Parameters structure. 9231 */ 9232 int t4_init_sge_params(struct adapter *adapter) 9233 { 9234 struct sge_params *sge_params = &adapter->params.sge; 9235 u32 hps, qpp; 9236 unsigned int s_hps, s_qpp; 9237 9238 /* Extract the SGE Page Size for our PF. 9239 */ 9240 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9241 s_hps = (HOSTPAGESIZEPF0_S + 9242 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9243 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9244 9245 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9246 */ 9247 s_qpp = (QUEUESPERPAGEPF0_S + 9248 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9249 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9250 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9251 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9252 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9253 9254 return 0; 9255 } 9256 9257 /** 9258 * t4_init_tp_params - initialize adap->params.tp 9259 * @adap: the adapter 9260 * @sleep_ok: if true we may sleep while awaiting command completion 9261 * 9262 * Initialize various fields of the adapter's TP Parameters structure. 9263 */ 9264 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9265 { 9266 int chan; 9267 u32 v; 9268 9269 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9270 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9271 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9272 9273 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9274 for (chan = 0; chan < NCHAN; chan++) 9275 adap->params.tp.tx_modq[chan] = chan; 9276 9277 /* Cache the adapter's Compressed Filter Mode and global Incress 9278 * Configuration. 9279 */ 9280 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9281 TP_VLAN_PRI_MAP_A, sleep_ok); 9282 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9283 TP_INGRESS_CONFIG_A, sleep_ok); 9284 9285 /* For T6, cache the adapter's compressed error vector 9286 * and passing outer header info for encapsulated packets. 9287 */ 9288 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9289 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9290 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9291 } 9292 9293 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9294 * shift positions of several elements of the Compressed Filter Tuple 9295 * for this adapter which we need frequently ... 9296 */ 9297 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9298 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9299 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9300 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9301 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9302 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9303 PROTOCOL_F); 9304 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9305 ETHERTYPE_F); 9306 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9307 MACMATCH_F); 9308 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9309 MPSHITTYPE_F); 9310 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9311 FRAGMENTATION_F); 9312 9313 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9314 * represents the presence of an Outer VLAN instead of a VNIC ID. 9315 */ 9316 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9317 adap->params.tp.vnic_shift = -1; 9318 9319 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9320 adap->params.tp.hash_filter_mask = v; 9321 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9322 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9323 return 0; 9324 } 9325 9326 /** 9327 * t4_filter_field_shift - calculate filter field shift 9328 * @adap: the adapter 9329 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9330 * 9331 * Return the shift position of a filter field within the Compressed 9332 * Filter Tuple. The filter field is specified via its selection bit 9333 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9334 */ 9335 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9336 { 9337 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9338 unsigned int sel; 9339 int field_shift; 9340 9341 if ((filter_mode & filter_sel) == 0) 9342 return -1; 9343 9344 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9345 switch (filter_mode & sel) { 9346 case FCOE_F: 9347 field_shift += FT_FCOE_W; 9348 break; 9349 case PORT_F: 9350 field_shift += FT_PORT_W; 9351 break; 9352 case VNIC_ID_F: 9353 field_shift += FT_VNIC_ID_W; 9354 break; 9355 case VLAN_F: 9356 field_shift += FT_VLAN_W; 9357 break; 9358 case TOS_F: 9359 field_shift += FT_TOS_W; 9360 break; 9361 case PROTOCOL_F: 9362 field_shift += FT_PROTOCOL_W; 9363 break; 9364 case ETHERTYPE_F: 9365 field_shift += FT_ETHERTYPE_W; 9366 break; 9367 case MACMATCH_F: 9368 field_shift += FT_MACMATCH_W; 9369 break; 9370 case MPSHITTYPE_F: 9371 field_shift += FT_MPSHITTYPE_W; 9372 break; 9373 case FRAGMENTATION_F: 9374 field_shift += FT_FRAGMENTATION_W; 9375 break; 9376 } 9377 } 9378 return field_shift; 9379 } 9380 9381 int t4_init_rss_mode(struct adapter *adap, int mbox) 9382 { 9383 int i, ret; 9384 struct fw_rss_vi_config_cmd rvc; 9385 9386 memset(&rvc, 0, sizeof(rvc)); 9387 9388 for_each_port(adap, i) { 9389 struct port_info *p = adap2pinfo(adap, i); 9390 9391 rvc.op_to_viid = 9392 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9393 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9394 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9395 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9396 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9397 if (ret) 9398 return ret; 9399 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9400 } 9401 return 0; 9402 } 9403 9404 /** 9405 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9406 * @pi: the port_info 9407 * @mbox: mailbox to use for the FW command 9408 * @port: physical port associated with the VI 9409 * @pf: the PF owning the VI 9410 * @vf: the VF owning the VI 9411 * @mac: the MAC address of the VI 9412 * 9413 * Allocates a virtual interface for the given physical port. If @mac is 9414 * not %NULL it contains the MAC address of the VI as assigned by FW. 9415 * @mac should be large enough to hold an Ethernet address. 9416 * Returns < 0 on error. 9417 */ 9418 int t4_init_portinfo(struct port_info *pi, int mbox, 9419 int port, int pf, int vf, u8 mac[]) 9420 { 9421 struct adapter *adapter = pi->adapter; 9422 unsigned int fw_caps = adapter->params.fw_caps_support; 9423 struct fw_port_cmd cmd; 9424 unsigned int rss_size; 9425 enum fw_port_type port_type; 9426 int mdio_addr; 9427 fw_port_cap32_t pcaps, acaps; 9428 u8 vivld = 0, vin = 0; 9429 int ret; 9430 9431 /* If we haven't yet determined whether we're talking to Firmware 9432 * which knows the new 32-bit Port Capabilities, it's time to find 9433 * out now. This will also tell new Firmware to send us Port Status 9434 * Updates using the new 32-bit Port Capabilities version of the 9435 * Port Information message. 9436 */ 9437 if (fw_caps == FW_CAPS_UNKNOWN) { 9438 u32 param, val; 9439 9440 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9441 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9442 val = 1; 9443 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9444 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9445 adapter->params.fw_caps_support = fw_caps; 9446 } 9447 9448 memset(&cmd, 0, sizeof(cmd)); 9449 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9450 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9451 FW_PORT_CMD_PORTID_V(port)); 9452 cmd.action_to_len16 = cpu_to_be32( 9453 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9454 ? FW_PORT_ACTION_GET_PORT_INFO 9455 : FW_PORT_ACTION_GET_PORT_INFO32) | 9456 FW_LEN16(cmd)); 9457 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9458 if (ret) 9459 return ret; 9460 9461 /* Extract the various fields from the Port Information message. 9462 */ 9463 if (fw_caps == FW_CAPS16) { 9464 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9465 9466 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9467 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9468 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9469 : -1); 9470 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9471 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9472 } else { 9473 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9474 9475 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9476 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9477 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9478 : -1); 9479 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9480 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9481 } 9482 9483 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9484 &vivld, &vin); 9485 if (ret < 0) 9486 return ret; 9487 9488 pi->viid = ret; 9489 pi->tx_chan = port; 9490 pi->lport = port; 9491 pi->rss_size = rss_size; 9492 9493 /* If fw supports returning the VIN as part of FW_VI_CMD, 9494 * save the returned values. 9495 */ 9496 if (adapter->params.viid_smt_extn_support) { 9497 pi->vivld = vivld; 9498 pi->vin = vin; 9499 } else { 9500 /* Retrieve the values from VIID */ 9501 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9502 pi->vin = FW_VIID_VIN_G(pi->viid); 9503 } 9504 9505 pi->port_type = port_type; 9506 pi->mdio_addr = mdio_addr; 9507 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9508 9509 init_link_config(&pi->link_cfg, pcaps, acaps); 9510 return 0; 9511 } 9512 9513 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9514 { 9515 u8 addr[6]; 9516 int ret, i, j = 0; 9517 9518 for_each_port(adap, i) { 9519 struct port_info *pi = adap2pinfo(adap, i); 9520 9521 while ((adap->params.portvec & (1 << j)) == 0) 9522 j++; 9523 9524 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9525 if (ret) 9526 return ret; 9527 9528 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9529 j++; 9530 } 9531 return 0; 9532 } 9533 9534 /** 9535 * t4_read_cimq_cfg - read CIM queue configuration 9536 * @adap: the adapter 9537 * @base: holds the queue base addresses in bytes 9538 * @size: holds the queue sizes in bytes 9539 * @thres: holds the queue full thresholds in bytes 9540 * 9541 * Returns the current configuration of the CIM queues, starting with 9542 * the IBQs, then the OBQs. 9543 */ 9544 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9545 { 9546 unsigned int i, v; 9547 int cim_num_obq = is_t4(adap->params.chip) ? 9548 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9549 9550 for (i = 0; i < CIM_NUM_IBQ; i++) { 9551 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9552 QUENUMSELECT_V(i)); 9553 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9554 /* value is in 256-byte units */ 9555 *base++ = CIMQBASE_G(v) * 256; 9556 *size++ = CIMQSIZE_G(v) * 256; 9557 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9558 } 9559 for (i = 0; i < cim_num_obq; i++) { 9560 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9561 QUENUMSELECT_V(i)); 9562 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9563 /* value is in 256-byte units */ 9564 *base++ = CIMQBASE_G(v) * 256; 9565 *size++ = CIMQSIZE_G(v) * 256; 9566 } 9567 } 9568 9569 /** 9570 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9571 * @adap: the adapter 9572 * @qid: the queue index 9573 * @data: where to store the queue contents 9574 * @n: capacity of @data in 32-bit words 9575 * 9576 * Reads the contents of the selected CIM queue starting at address 0 up 9577 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9578 * error and the number of 32-bit words actually read on success. 9579 */ 9580 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9581 { 9582 int i, err, attempts; 9583 unsigned int addr; 9584 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9585 9586 if (qid > 5 || (n & 3)) 9587 return -EINVAL; 9588 9589 addr = qid * nwords; 9590 if (n > nwords) 9591 n = nwords; 9592 9593 /* It might take 3-10ms before the IBQ debug read access is allowed. 9594 * Wait for 1 Sec with a delay of 1 usec. 9595 */ 9596 attempts = 1000000; 9597 9598 for (i = 0; i < n; i++, addr++) { 9599 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9600 IBQDBGEN_F); 9601 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9602 attempts, 1); 9603 if (err) 9604 return err; 9605 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9606 } 9607 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9608 return i; 9609 } 9610 9611 /** 9612 * t4_read_cim_obq - read the contents of a CIM outbound queue 9613 * @adap: the adapter 9614 * @qid: the queue index 9615 * @data: where to store the queue contents 9616 * @n: capacity of @data in 32-bit words 9617 * 9618 * Reads the contents of the selected CIM queue starting at address 0 up 9619 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9620 * error and the number of 32-bit words actually read on success. 9621 */ 9622 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9623 { 9624 int i, err; 9625 unsigned int addr, v, nwords; 9626 int cim_num_obq = is_t4(adap->params.chip) ? 9627 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9628 9629 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9630 return -EINVAL; 9631 9632 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9633 QUENUMSELECT_V(qid)); 9634 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9635 9636 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9637 nwords = CIMQSIZE_G(v) * 64; /* same */ 9638 if (n > nwords) 9639 n = nwords; 9640 9641 for (i = 0; i < n; i++, addr++) { 9642 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9643 OBQDBGEN_F); 9644 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9645 2, 1); 9646 if (err) 9647 return err; 9648 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9649 } 9650 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9651 return i; 9652 } 9653 9654 /** 9655 * t4_cim_read - read a block from CIM internal address space 9656 * @adap: the adapter 9657 * @addr: the start address within the CIM address space 9658 * @n: number of words to read 9659 * @valp: where to store the result 9660 * 9661 * Reads a block of 4-byte words from the CIM intenal address space. 9662 */ 9663 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9664 unsigned int *valp) 9665 { 9666 int ret = 0; 9667 9668 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9669 return -EBUSY; 9670 9671 for ( ; !ret && n--; addr += 4) { 9672 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9673 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9674 0, 5, 2); 9675 if (!ret) 9676 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9677 } 9678 return ret; 9679 } 9680 9681 /** 9682 * t4_cim_write - write a block into CIM internal address space 9683 * @adap: the adapter 9684 * @addr: the start address within the CIM address space 9685 * @n: number of words to write 9686 * @valp: set of values to write 9687 * 9688 * Writes a block of 4-byte words into the CIM intenal address space. 9689 */ 9690 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9691 const unsigned int *valp) 9692 { 9693 int ret = 0; 9694 9695 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9696 return -EBUSY; 9697 9698 for ( ; !ret && n--; addr += 4) { 9699 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9700 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9701 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9702 0, 5, 2); 9703 } 9704 return ret; 9705 } 9706 9707 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9708 unsigned int val) 9709 { 9710 return t4_cim_write(adap, addr, 1, &val); 9711 } 9712 9713 /** 9714 * t4_cim_read_la - read CIM LA capture buffer 9715 * @adap: the adapter 9716 * @la_buf: where to store the LA data 9717 * @wrptr: the HW write pointer within the capture buffer 9718 * 9719 * Reads the contents of the CIM LA buffer with the most recent entry at 9720 * the end of the returned data and with the entry at @wrptr first. 9721 * We try to leave the LA in the running state we find it in. 9722 */ 9723 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9724 { 9725 int i, ret; 9726 unsigned int cfg, val, idx; 9727 9728 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9729 if (ret) 9730 return ret; 9731 9732 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9733 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9734 if (ret) 9735 return ret; 9736 } 9737 9738 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9739 if (ret) 9740 goto restart; 9741 9742 idx = UPDBGLAWRPTR_G(val); 9743 if (wrptr) 9744 *wrptr = idx; 9745 9746 for (i = 0; i < adap->params.cim_la_size; i++) { 9747 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9748 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9749 if (ret) 9750 break; 9751 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9752 if (ret) 9753 break; 9754 if (val & UPDBGLARDEN_F) { 9755 ret = -ETIMEDOUT; 9756 break; 9757 } 9758 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9759 if (ret) 9760 break; 9761 9762 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9763 * identify the 32-bit portion of the full 312-bit data 9764 */ 9765 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9766 idx = (idx & 0xff0) + 0x10; 9767 else 9768 idx++; 9769 /* address can't exceed 0xfff */ 9770 idx &= UPDBGLARDPTR_M; 9771 } 9772 restart: 9773 if (cfg & UPDBGLAEN_F) { 9774 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9775 cfg & ~UPDBGLARDEN_F); 9776 if (!ret) 9777 ret = r; 9778 } 9779 return ret; 9780 } 9781 9782 /** 9783 * t4_tp_read_la - read TP LA capture buffer 9784 * @adap: the adapter 9785 * @la_buf: where to store the LA data 9786 * @wrptr: the HW write pointer within the capture buffer 9787 * 9788 * Reads the contents of the TP LA buffer with the most recent entry at 9789 * the end of the returned data and with the entry at @wrptr first. 9790 * We leave the LA in the running state we find it in. 9791 */ 9792 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9793 { 9794 bool last_incomplete; 9795 unsigned int i, cfg, val, idx; 9796 9797 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9798 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9799 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9800 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9801 9802 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9803 idx = DBGLAWPTR_G(val); 9804 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9805 if (last_incomplete) 9806 idx = (idx + 1) & DBGLARPTR_M; 9807 if (wrptr) 9808 *wrptr = idx; 9809 9810 val &= 0xffff; 9811 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9812 val |= adap->params.tp.la_mask; 9813 9814 for (i = 0; i < TPLA_SIZE; i++) { 9815 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9816 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9817 idx = (idx + 1) & DBGLARPTR_M; 9818 } 9819 9820 /* Wipe out last entry if it isn't valid */ 9821 if (last_incomplete) 9822 la_buf[TPLA_SIZE - 1] = ~0ULL; 9823 9824 if (cfg & DBGLAENABLE_F) /* restore running state */ 9825 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9826 cfg | adap->params.tp.la_mask); 9827 } 9828 9829 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9830 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9831 * state for more than the Warning Threshold then we'll issue a warning about 9832 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9833 * appears to be hung every Warning Repeat second till the situation clears. 9834 * If the situation clears, we'll note that as well. 9835 */ 9836 #define SGE_IDMA_WARN_THRESH 1 9837 #define SGE_IDMA_WARN_REPEAT 300 9838 9839 /** 9840 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9841 * @adapter: the adapter 9842 * @idma: the adapter IDMA Monitor state 9843 * 9844 * Initialize the state of an SGE Ingress DMA Monitor. 9845 */ 9846 void t4_idma_monitor_init(struct adapter *adapter, 9847 struct sge_idma_monitor_state *idma) 9848 { 9849 /* Initialize the state variables for detecting an SGE Ingress DMA 9850 * hang. The SGE has internal counters which count up on each clock 9851 * tick whenever the SGE finds its Ingress DMA State Engines in the 9852 * same state they were on the previous clock tick. The clock used is 9853 * the Core Clock so we have a limit on the maximum "time" they can 9854 * record; typically a very small number of seconds. For instance, 9855 * with a 600MHz Core Clock, we can only count up to a bit more than 9856 * 7s. So we'll synthesize a larger counter in order to not run the 9857 * risk of having the "timers" overflow and give us the flexibility to 9858 * maintain a Hung SGE State Machine of our own which operates across 9859 * a longer time frame. 9860 */ 9861 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9862 idma->idma_stalled[0] = 0; 9863 idma->idma_stalled[1] = 0; 9864 } 9865 9866 /** 9867 * t4_idma_monitor - monitor SGE Ingress DMA state 9868 * @adapter: the adapter 9869 * @idma: the adapter IDMA Monitor state 9870 * @hz: number of ticks/second 9871 * @ticks: number of ticks since the last IDMA Monitor call 9872 */ 9873 void t4_idma_monitor(struct adapter *adapter, 9874 struct sge_idma_monitor_state *idma, 9875 int hz, int ticks) 9876 { 9877 int i, idma_same_state_cnt[2]; 9878 9879 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9880 * are counters inside the SGE which count up on each clock when the 9881 * SGE finds its Ingress DMA State Engines in the same states they 9882 * were in the previous clock. The counters will peg out at 9883 * 0xffffffff without wrapping around so once they pass the 1s 9884 * threshold they'll stay above that till the IDMA state changes. 9885 */ 9886 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9887 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9888 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9889 9890 for (i = 0; i < 2; i++) { 9891 u32 debug0, debug11; 9892 9893 /* If the Ingress DMA Same State Counter ("timer") is less 9894 * than 1s, then we can reset our synthesized Stall Timer and 9895 * continue. If we have previously emitted warnings about a 9896 * potential stalled Ingress Queue, issue a note indicating 9897 * that the Ingress Queue has resumed forward progress. 9898 */ 9899 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9900 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9901 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9902 "resumed after %d seconds\n", 9903 i, idma->idma_qid[i], 9904 idma->idma_stalled[i] / hz); 9905 idma->idma_stalled[i] = 0; 9906 continue; 9907 } 9908 9909 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9910 * domain. The first time we get here it'll be because we 9911 * passed the 1s Threshold; each additional time it'll be 9912 * because the RX Timer Callback is being fired on its regular 9913 * schedule. 9914 * 9915 * If the stall is below our Potential Hung Ingress Queue 9916 * Warning Threshold, continue. 9917 */ 9918 if (idma->idma_stalled[i] == 0) { 9919 idma->idma_stalled[i] = hz; 9920 idma->idma_warn[i] = 0; 9921 } else { 9922 idma->idma_stalled[i] += ticks; 9923 idma->idma_warn[i] -= ticks; 9924 } 9925 9926 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9927 continue; 9928 9929 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9930 */ 9931 if (idma->idma_warn[i] > 0) 9932 continue; 9933 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9934 9935 /* Read and save the SGE IDMA State and Queue ID information. 9936 * We do this every time in case it changes across time ... 9937 * can't be too careful ... 9938 */ 9939 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9940 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9941 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9942 9943 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9944 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9945 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9946 9947 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9948 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9949 i, idma->idma_qid[i], idma->idma_state[i], 9950 idma->idma_stalled[i] / hz, 9951 debug0, debug11); 9952 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9953 } 9954 } 9955 9956 /** 9957 * t4_load_cfg - download config file 9958 * @adap: the adapter 9959 * @cfg_data: the cfg text file to write 9960 * @size: text file size 9961 * 9962 * Write the supplied config text file to the card's serial flash. 9963 */ 9964 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9965 { 9966 int ret, i, n, cfg_addr; 9967 unsigned int addr; 9968 unsigned int flash_cfg_start_sec; 9969 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9970 9971 cfg_addr = t4_flash_cfg_addr(adap); 9972 if (cfg_addr < 0) 9973 return cfg_addr; 9974 9975 addr = cfg_addr; 9976 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9977 9978 if (size > FLASH_CFG_MAX_SIZE) { 9979 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 9980 FLASH_CFG_MAX_SIZE); 9981 return -EFBIG; 9982 } 9983 9984 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9985 sf_sec_size); 9986 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9987 flash_cfg_start_sec + i - 1); 9988 /* If size == 0 then we're simply erasing the FLASH sectors associated 9989 * with the on-adapter Firmware Configuration File. 9990 */ 9991 if (ret || size == 0) 9992 goto out; 9993 9994 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9995 for (i = 0; i < size; i += SF_PAGE_SIZE) { 9996 if ((size - i) < SF_PAGE_SIZE) 9997 n = size - i; 9998 else 9999 n = SF_PAGE_SIZE; 10000 ret = t4_write_flash(adap, addr, n, cfg_data); 10001 if (ret) 10002 goto out; 10003 10004 addr += SF_PAGE_SIZE; 10005 cfg_data += SF_PAGE_SIZE; 10006 } 10007 10008 out: 10009 if (ret) 10010 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10011 (size == 0 ? "clear" : "download"), ret); 10012 return ret; 10013 } 10014 10015 /** 10016 * t4_set_vf_mac - Set MAC address for the specified VF 10017 * @adapter: The adapter 10018 * @vf: one of the VFs instantiated by the specified PF 10019 * @naddr: the number of MAC addresses 10020 * @addr: the MAC address(es) to be set to the specified VF 10021 */ 10022 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10023 unsigned int naddr, u8 *addr) 10024 { 10025 struct fw_acl_mac_cmd cmd; 10026 10027 memset(&cmd, 0, sizeof(cmd)); 10028 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10029 FW_CMD_REQUEST_F | 10030 FW_CMD_WRITE_F | 10031 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10032 FW_ACL_MAC_CMD_VFN_V(vf)); 10033 10034 /* Note: Do not enable the ACL */ 10035 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10036 cmd.nmac = naddr; 10037 10038 switch (adapter->pf) { 10039 case 3: 10040 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10041 break; 10042 case 2: 10043 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10044 break; 10045 case 1: 10046 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10047 break; 10048 case 0: 10049 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10050 break; 10051 } 10052 10053 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10054 } 10055 10056 /** 10057 * t4_read_pace_tbl - read the pace table 10058 * @adap: the adapter 10059 * @pace_vals: holds the returned values 10060 * 10061 * Returns the values of TP's pace table in microseconds. 10062 */ 10063 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10064 { 10065 unsigned int i, v; 10066 10067 for (i = 0; i < NTX_SCHED; i++) { 10068 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10069 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10070 pace_vals[i] = dack_ticks_to_usec(adap, v); 10071 } 10072 } 10073 10074 /** 10075 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10076 * @adap: the adapter 10077 * @sched: the scheduler index 10078 * @kbps: the byte rate in Kbps 10079 * @ipg: the interpacket delay in tenths of nanoseconds 10080 * @sleep_ok: if true we may sleep while awaiting command completion 10081 * 10082 * Return the current configuration of a HW Tx scheduler. 10083 */ 10084 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10085 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10086 { 10087 unsigned int v, addr, bpt, cpt; 10088 10089 if (kbps) { 10090 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10091 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10092 if (sched & 1) 10093 v >>= 16; 10094 bpt = (v >> 8) & 0xff; 10095 cpt = v & 0xff; 10096 if (!cpt) { 10097 *kbps = 0; /* scheduler disabled */ 10098 } else { 10099 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10100 *kbps = (v * bpt) / 125; 10101 } 10102 } 10103 if (ipg) { 10104 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10105 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10106 if (sched & 1) 10107 v >>= 16; 10108 v &= 0xffff; 10109 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10110 } 10111 } 10112 10113 /* t4_sge_ctxt_rd - read an SGE context through FW 10114 * @adap: the adapter 10115 * @mbox: mailbox to use for the FW command 10116 * @cid: the context id 10117 * @ctype: the context type 10118 * @data: where to store the context data 10119 * 10120 * Issues a FW command through the given mailbox to read an SGE context. 10121 */ 10122 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10123 enum ctxt_type ctype, u32 *data) 10124 { 10125 struct fw_ldst_cmd c; 10126 int ret; 10127 10128 if (ctype == CTXT_FLM) 10129 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10130 else 10131 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10132 10133 memset(&c, 0, sizeof(c)); 10134 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10135 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10136 FW_LDST_CMD_ADDRSPACE_V(ret)); 10137 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10138 c.u.idctxt.physid = cpu_to_be32(cid); 10139 10140 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10141 if (ret == 0) { 10142 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10143 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10144 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10145 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10146 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10147 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10148 } 10149 return ret; 10150 } 10151 10152 /** 10153 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10154 * @adap: the adapter 10155 * @cid: the context id 10156 * @ctype: the context type 10157 * @data: where to store the context data 10158 * 10159 * Reads an SGE context directly, bypassing FW. This is only for 10160 * debugging when FW is unavailable. 10161 */ 10162 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10163 enum ctxt_type ctype, u32 *data) 10164 { 10165 int i, ret; 10166 10167 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10168 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10169 if (!ret) 10170 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10171 *data++ = t4_read_reg(adap, i); 10172 return ret; 10173 } 10174 10175 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10176 int rateunit, int ratemode, int channel, int class, 10177 int minrate, int maxrate, int weight, int pktsize) 10178 { 10179 struct fw_sched_cmd cmd; 10180 10181 memset(&cmd, 0, sizeof(cmd)); 10182 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10183 FW_CMD_REQUEST_F | 10184 FW_CMD_WRITE_F); 10185 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10186 10187 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10188 cmd.u.params.type = type; 10189 cmd.u.params.level = level; 10190 cmd.u.params.mode = mode; 10191 cmd.u.params.ch = channel; 10192 cmd.u.params.cl = class; 10193 cmd.u.params.unit = rateunit; 10194 cmd.u.params.rate = ratemode; 10195 cmd.u.params.min = cpu_to_be32(minrate); 10196 cmd.u.params.max = cpu_to_be32(maxrate); 10197 cmd.u.params.weight = cpu_to_be16(weight); 10198 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10199 10200 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10201 NULL, 1); 10202 } 10203 10204 /** 10205 * t4_i2c_rd - read I2C data from adapter 10206 * @adap: the adapter 10207 * @port: Port number if per-port device; <0 if not 10208 * @devid: per-port device ID or absolute device ID 10209 * @offset: byte offset into device I2C space 10210 * @len: byte length of I2C space data 10211 * @buf: buffer in which to return I2C data 10212 * 10213 * Reads the I2C data from the indicated device and location. 10214 */ 10215 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10216 unsigned int devid, unsigned int offset, 10217 unsigned int len, u8 *buf) 10218 { 10219 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10220 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10221 int ret = 0; 10222 10223 if (len > I2C_PAGE_SIZE) 10224 return -EINVAL; 10225 10226 /* Dont allow reads that spans multiple pages */ 10227 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10228 return -EINVAL; 10229 10230 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10231 ldst_cmd.op_to_addrspace = 10232 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10233 FW_CMD_REQUEST_F | 10234 FW_CMD_READ_F | 10235 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10236 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10237 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10238 ldst_cmd.u.i2c.did = devid; 10239 10240 while (len > 0) { 10241 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10242 10243 ldst_cmd.u.i2c.boffset = offset; 10244 ldst_cmd.u.i2c.blen = i2c_len; 10245 10246 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10247 &ldst_rpl); 10248 if (ret) 10249 break; 10250 10251 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10252 offset += i2c_len; 10253 buf += i2c_len; 10254 len -= i2c_len; 10255 } 10256 10257 return ret; 10258 } 10259 10260 /** 10261 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10262 * @adapter: the adapter 10263 * @mbox: mailbox to use for the FW command 10264 * @vf: one of the VFs instantiated by the specified PF 10265 * @vlan: The vlanid to be set 10266 */ 10267 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10268 u16 vlan) 10269 { 10270 struct fw_acl_vlan_cmd vlan_cmd; 10271 unsigned int enable; 10272 10273 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10274 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10275 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10276 FW_CMD_REQUEST_F | 10277 FW_CMD_WRITE_F | 10278 FW_CMD_EXEC_F | 10279 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10280 FW_ACL_VLAN_CMD_VFN_V(vf)); 10281 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10282 /* Drop all packets that donot match vlan id */ 10283 vlan_cmd.dropnovlan_fm = (enable 10284 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10285 FW_ACL_VLAN_CMD_FM_F) : 0); 10286 if (enable != 0) { 10287 vlan_cmd.nvlan = 1; 10288 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10289 } 10290 10291 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10292 } 10293