1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/init.h> 36 #include <linux/delay.h> 37 #include "cxgb4.h" 38 #include "t4_regs.h" 39 #include "t4fw_api.h" 40 41 /** 42 * t4_wait_op_done_val - wait until an operation is completed 43 * @adapter: the adapter performing the operation 44 * @reg: the register to check for completion 45 * @mask: a single-bit field within @reg that indicates completion 46 * @polarity: the value of the field when the operation is completed 47 * @attempts: number of check iterations 48 * @delay: delay in usecs between iterations 49 * @valp: where to store the value of the register at completion time 50 * 51 * Wait until an operation is completed by checking a bit in a register 52 * up to @attempts times. If @valp is not NULL the value of the register 53 * at the time it indicated completion is stored there. Returns 0 if the 54 * operation completes and -EAGAIN otherwise. 55 */ 56 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 57 int polarity, int attempts, int delay, u32 *valp) 58 { 59 while (1) { 60 u32 val = t4_read_reg(adapter, reg); 61 62 if (!!(val & mask) == polarity) { 63 if (valp) 64 *valp = val; 65 return 0; 66 } 67 if (--attempts == 0) 68 return -EAGAIN; 69 if (delay) 70 udelay(delay); 71 } 72 } 73 74 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 75 int polarity, int attempts, int delay) 76 { 77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 78 delay, NULL); 79 } 80 81 /** 82 * t4_set_reg_field - set a register field to a value 83 * @adapter: the adapter to program 84 * @addr: the register address 85 * @mask: specifies the portion of the register to modify 86 * @val: the new value for the register field 87 * 88 * Sets a register field specified by the supplied mask to the 89 * given value. 90 */ 91 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 92 u32 val) 93 { 94 u32 v = t4_read_reg(adapter, addr) & ~mask; 95 96 t4_write_reg(adapter, addr, v | val); 97 (void) t4_read_reg(adapter, addr); /* flush */ 98 } 99 100 /** 101 * t4_read_indirect - read indirectly addressed registers 102 * @adap: the adapter 103 * @addr_reg: register holding the indirect address 104 * @data_reg: register holding the value of the indirect register 105 * @vals: where the read register values are stored 106 * @nregs: how many indirect registers to read 107 * @start_idx: index of first indirect register to read 108 * 109 * Reads registers that are accessed indirectly through an address/data 110 * register pair. 111 */ 112 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 113 unsigned int data_reg, u32 *vals, 114 unsigned int nregs, unsigned int start_idx) 115 { 116 while (nregs--) { 117 t4_write_reg(adap, addr_reg, start_idx); 118 *vals++ = t4_read_reg(adap, data_reg); 119 start_idx++; 120 } 121 } 122 123 /** 124 * t4_write_indirect - write indirectly addressed registers 125 * @adap: the adapter 126 * @addr_reg: register holding the indirect addresses 127 * @data_reg: register holding the value for the indirect registers 128 * @vals: values to write 129 * @nregs: how many indirect registers to write 130 * @start_idx: address of first indirect register to write 131 * 132 * Writes a sequential block of registers that are accessed indirectly 133 * through an address/data register pair. 134 */ 135 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 136 unsigned int data_reg, const u32 *vals, 137 unsigned int nregs, unsigned int start_idx) 138 { 139 while (nregs--) { 140 t4_write_reg(adap, addr_reg, start_idx++); 141 t4_write_reg(adap, data_reg, *vals++); 142 } 143 } 144 145 /* 146 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 147 */ 148 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 149 u32 mbox_addr) 150 { 151 for ( ; nflit; nflit--, mbox_addr += 8) 152 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 153 } 154 155 /* 156 * Handle a FW assertion reported in a mailbox. 157 */ 158 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 159 { 160 struct fw_debug_cmd asrt; 161 162 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 163 dev_alert(adap->pdev_dev, 164 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 165 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line), 166 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y)); 167 } 168 169 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg) 170 { 171 dev_err(adap->pdev_dev, 172 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox, 173 (unsigned long long)t4_read_reg64(adap, data_reg), 174 (unsigned long long)t4_read_reg64(adap, data_reg + 8), 175 (unsigned long long)t4_read_reg64(adap, data_reg + 16), 176 (unsigned long long)t4_read_reg64(adap, data_reg + 24), 177 (unsigned long long)t4_read_reg64(adap, data_reg + 32), 178 (unsigned long long)t4_read_reg64(adap, data_reg + 40), 179 (unsigned long long)t4_read_reg64(adap, data_reg + 48), 180 (unsigned long long)t4_read_reg64(adap, data_reg + 56)); 181 } 182 183 /** 184 * t4_wr_mbox_meat - send a command to FW through the given mailbox 185 * @adap: the adapter 186 * @mbox: index of the mailbox to use 187 * @cmd: the command to write 188 * @size: command length in bytes 189 * @rpl: where to optionally store the reply 190 * @sleep_ok: if true we may sleep while awaiting command completion 191 * 192 * Sends the given command to FW through the selected mailbox and waits 193 * for the FW to execute the command. If @rpl is not %NULL it is used to 194 * store the FW's reply to the command. The command and its optional 195 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 196 * to respond. @sleep_ok determines whether we may sleep while awaiting 197 * the response. If sleeping is allowed we use progressive backoff 198 * otherwise we spin. 199 * 200 * The return value is 0 on success or a negative errno on failure. A 201 * failure can happen either because we are not able to execute the 202 * command or FW executes it but signals an error. In the latter case 203 * the return value is the error code indicated by FW (negated). 204 */ 205 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 206 void *rpl, bool sleep_ok) 207 { 208 static const int delay[] = { 209 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 210 }; 211 212 u32 v; 213 u64 res; 214 int i, ms, delay_idx; 215 const __be64 *p = cmd; 216 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA); 217 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL); 218 219 if ((size & 15) || size > MBOX_LEN) 220 return -EINVAL; 221 222 /* 223 * If the device is off-line, as in EEH, commands will time out. 224 * Fail them early so we don't waste time waiting. 225 */ 226 if (adap->pdev->error_state != pci_channel_io_normal) 227 return -EIO; 228 229 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg)); 230 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 231 v = MBOWNER_GET(t4_read_reg(adap, ctl_reg)); 232 233 if (v != MBOX_OWNER_DRV) 234 return v ? -EBUSY : -ETIMEDOUT; 235 236 for (i = 0; i < size; i += 8) 237 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 238 239 t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW)); 240 t4_read_reg(adap, ctl_reg); /* flush write */ 241 242 delay_idx = 0; 243 ms = delay[0]; 244 245 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { 246 if (sleep_ok) { 247 ms = delay[delay_idx]; /* last element may repeat */ 248 if (delay_idx < ARRAY_SIZE(delay) - 1) 249 delay_idx++; 250 msleep(ms); 251 } else 252 mdelay(ms); 253 254 v = t4_read_reg(adap, ctl_reg); 255 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) { 256 if (!(v & MBMSGVALID)) { 257 t4_write_reg(adap, ctl_reg, 0); 258 continue; 259 } 260 261 res = t4_read_reg64(adap, data_reg); 262 if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) { 263 fw_asrt(adap, data_reg); 264 res = FW_CMD_RETVAL(EIO); 265 } else if (rpl) 266 get_mbox_rpl(adap, rpl, size / 8, data_reg); 267 268 if (FW_CMD_RETVAL_GET((int)res)) 269 dump_mbox(adap, mbox, data_reg); 270 t4_write_reg(adap, ctl_reg, 0); 271 return -FW_CMD_RETVAL_GET((int)res); 272 } 273 } 274 275 dump_mbox(adap, mbox, data_reg); 276 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 277 *(const u8 *)cmd, mbox); 278 return -ETIMEDOUT; 279 } 280 281 /** 282 * t4_mc_read - read from MC through backdoor accesses 283 * @adap: the adapter 284 * @addr: address of first byte requested 285 * @idx: which MC to access 286 * @data: 64 bytes of data containing the requested address 287 * @ecc: where to store the corresponding 64-bit ECC word 288 * 289 * Read 64 bytes of data from MC starting at a 64-byte-aligned address 290 * that covers the requested address @addr. If @parity is not %NULL it 291 * is assigned the 64-bit ECC word for the read data. 292 */ 293 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 294 { 295 int i; 296 u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len; 297 u32 mc_bist_status_rdata, mc_bist_data_pattern; 298 299 if (is_t4(adap->params.chip)) { 300 mc_bist_cmd = MC_BIST_CMD; 301 mc_bist_cmd_addr = MC_BIST_CMD_ADDR; 302 mc_bist_cmd_len = MC_BIST_CMD_LEN; 303 mc_bist_status_rdata = MC_BIST_STATUS_RDATA; 304 mc_bist_data_pattern = MC_BIST_DATA_PATTERN; 305 } else { 306 mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx); 307 mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx); 308 mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx); 309 mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx); 310 mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx); 311 } 312 313 if (t4_read_reg(adap, mc_bist_cmd) & START_BIST) 314 return -EBUSY; 315 t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU); 316 t4_write_reg(adap, mc_bist_cmd_len, 64); 317 t4_write_reg(adap, mc_bist_data_pattern, 0xc); 318 t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST | 319 BIST_CMD_GAP(1)); 320 i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1); 321 if (i) 322 return i; 323 324 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i) 325 326 for (i = 15; i >= 0; i--) 327 *data++ = htonl(t4_read_reg(adap, MC_DATA(i))); 328 if (ecc) 329 *ecc = t4_read_reg64(adap, MC_DATA(16)); 330 #undef MC_DATA 331 return 0; 332 } 333 334 /** 335 * t4_edc_read - read from EDC through backdoor accesses 336 * @adap: the adapter 337 * @idx: which EDC to access 338 * @addr: address of first byte requested 339 * @data: 64 bytes of data containing the requested address 340 * @ecc: where to store the corresponding 64-bit ECC word 341 * 342 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address 343 * that covers the requested address @addr. If @parity is not %NULL it 344 * is assigned the 64-bit ECC word for the read data. 345 */ 346 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 347 { 348 int i; 349 u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len; 350 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata; 351 352 if (is_t4(adap->params.chip)) { 353 edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx); 354 edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx); 355 edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx); 356 edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN, 357 idx); 358 edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA, 359 idx); 360 } else { 361 edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx); 362 edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx); 363 edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx); 364 edc_bist_cmd_data_pattern = 365 EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx); 366 edc_bist_status_rdata = 367 EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx); 368 } 369 370 if (t4_read_reg(adap, edc_bist_cmd) & START_BIST) 371 return -EBUSY; 372 t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU); 373 t4_write_reg(adap, edc_bist_cmd_len, 64); 374 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); 375 t4_write_reg(adap, edc_bist_cmd, 376 BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST); 377 i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1); 378 if (i) 379 return i; 380 381 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i)) 382 383 for (i = 15; i >= 0; i--) 384 *data++ = htonl(t4_read_reg(adap, EDC_DATA(i))); 385 if (ecc) 386 *ecc = t4_read_reg64(adap, EDC_DATA(16)); 387 #undef EDC_DATA 388 return 0; 389 } 390 391 /* 392 * t4_mem_win_rw - read/write memory through PCIE memory window 393 * @adap: the adapter 394 * @addr: address of first byte requested 395 * @data: MEMWIN0_APERTURE bytes of data containing the requested address 396 * @dir: direction of transfer 1 => read, 0 => write 397 * 398 * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a 399 * MEMWIN0_APERTURE-byte-aligned address that covers the requested 400 * address @addr. 401 */ 402 static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir) 403 { 404 int i; 405 u32 win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn); 406 407 /* 408 * Setup offset into PCIE memory window. Address must be a 409 * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to 410 * ensure that changes propagate before we attempt to use the new 411 * values.) 412 */ 413 t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, 414 (addr & ~(MEMWIN0_APERTURE - 1)) | win_pf); 415 t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET); 416 417 /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */ 418 for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) { 419 if (dir) 420 *data++ = (__force __be32) t4_read_reg(adap, 421 (MEMWIN0_BASE + i)); 422 else 423 t4_write_reg(adap, (MEMWIN0_BASE + i), 424 (__force u32) *data++); 425 } 426 427 return 0; 428 } 429 430 /** 431 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 432 * @adap: the adapter 433 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 434 * @addr: address within indicated memory type 435 * @len: amount of memory to transfer 436 * @buf: host memory buffer 437 * @dir: direction of transfer 1 => read, 0 => write 438 * 439 * Reads/writes an [almost] arbitrary memory region in the firmware: the 440 * firmware memory address, length and host buffer must be aligned on 441 * 32-bit boudaries. The memory is transferred as a raw byte sequence 442 * from/to the firmware's memory. If this memory contains data 443 * structures which contain multi-byte integers, it's the callers 444 * responsibility to perform appropriate byte order conversions. 445 */ 446 static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len, 447 __be32 *buf, int dir) 448 { 449 u32 pos, start, end, offset, memoffset; 450 u32 edc_size, mc_size; 451 int ret = 0; 452 __be32 *data; 453 454 /* 455 * Argument sanity checks ... 456 */ 457 if ((addr & 0x3) || (len & 0x3)) 458 return -EINVAL; 459 460 data = vmalloc(MEMWIN0_APERTURE); 461 if (!data) 462 return -ENOMEM; 463 464 /* Offset into the region of memory which is being accessed 465 * MEM_EDC0 = 0 466 * MEM_EDC1 = 1 467 * MEM_MC = 2 -- T4 468 * MEM_MC0 = 2 -- For T5 469 * MEM_MC1 = 3 -- For T5 470 */ 471 edc_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)); 472 if (mtype != MEM_MC1) 473 memoffset = (mtype * (edc_size * 1024 * 1024)); 474 else { 475 mc_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, 476 MA_EXT_MEMORY_BAR)); 477 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 478 } 479 480 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 481 addr = addr + memoffset; 482 483 /* 484 * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes 485 * at a time so we need to round down the start and round up the end. 486 * We'll start copying out of the first line at (addr - start) a word 487 * at a time. 488 */ 489 start = addr & ~(MEMWIN0_APERTURE-1); 490 end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1); 491 offset = (addr - start)/sizeof(__be32); 492 493 for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) { 494 495 /* 496 * If we're writing, copy the data from the caller's memory 497 * buffer 498 */ 499 if (!dir) { 500 /* 501 * If we're doing a partial write, then we need to do 502 * a read-modify-write ... 503 */ 504 if (offset || len < MEMWIN0_APERTURE) { 505 ret = t4_mem_win_rw(adap, pos, data, 1); 506 if (ret) 507 break; 508 } 509 while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) && 510 len > 0) { 511 data[offset++] = *buf++; 512 len -= sizeof(__be32); 513 } 514 } 515 516 /* 517 * Transfer a block of memory and bail if there's an error. 518 */ 519 ret = t4_mem_win_rw(adap, pos, data, dir); 520 if (ret) 521 break; 522 523 /* 524 * If we're reading, copy the data into the caller's memory 525 * buffer. 526 */ 527 if (dir) 528 while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) && 529 len > 0) { 530 *buf++ = data[offset++]; 531 len -= sizeof(__be32); 532 } 533 } 534 535 vfree(data); 536 return ret; 537 } 538 539 int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len, 540 __be32 *buf) 541 { 542 return t4_memory_rw(adap, mtype, addr, len, buf, 0); 543 } 544 545 #define EEPROM_STAT_ADDR 0x7bfc 546 #define VPD_BASE 0x400 547 #define VPD_BASE_OLD 0 548 #define VPD_LEN 1024 549 550 /** 551 * t4_seeprom_wp - enable/disable EEPROM write protection 552 * @adapter: the adapter 553 * @enable: whether to enable or disable write protection 554 * 555 * Enables or disables write protection on the serial EEPROM. 556 */ 557 int t4_seeprom_wp(struct adapter *adapter, bool enable) 558 { 559 unsigned int v = enable ? 0xc : 0; 560 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 561 return ret < 0 ? ret : 0; 562 } 563 564 /** 565 * get_vpd_params - read VPD parameters from VPD EEPROM 566 * @adapter: adapter to read 567 * @p: where to store the parameters 568 * 569 * Reads card parameters stored in VPD EEPROM. 570 */ 571 int get_vpd_params(struct adapter *adapter, struct vpd_params *p) 572 { 573 u32 cclk_param, cclk_val; 574 int i, ret, addr; 575 int ec, sn; 576 u8 *vpd, csum; 577 unsigned int vpdr_len, kw_offset, id_len; 578 579 vpd = vmalloc(VPD_LEN); 580 if (!vpd) 581 return -ENOMEM; 582 583 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 584 if (ret < 0) 585 goto out; 586 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD; 587 588 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 589 if (ret < 0) 590 goto out; 591 592 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 593 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 594 ret = -EINVAL; 595 goto out; 596 } 597 598 id_len = pci_vpd_lrdt_size(vpd); 599 if (id_len > ID_LEN) 600 id_len = ID_LEN; 601 602 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 603 if (i < 0) { 604 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 605 ret = -EINVAL; 606 goto out; 607 } 608 609 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 610 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 611 if (vpdr_len + kw_offset > VPD_LEN) { 612 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 613 ret = -EINVAL; 614 goto out; 615 } 616 617 #define FIND_VPD_KW(var, name) do { \ 618 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 619 if (var < 0) { \ 620 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 621 ret = -EINVAL; \ 622 goto out; \ 623 } \ 624 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 625 } while (0) 626 627 FIND_VPD_KW(i, "RV"); 628 for (csum = 0; i >= 0; i--) 629 csum += vpd[i]; 630 631 if (csum) { 632 dev_err(adapter->pdev_dev, 633 "corrupted VPD EEPROM, actual csum %u\n", csum); 634 ret = -EINVAL; 635 goto out; 636 } 637 638 FIND_VPD_KW(ec, "EC"); 639 FIND_VPD_KW(sn, "SN"); 640 #undef FIND_VPD_KW 641 642 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 643 strim(p->id); 644 memcpy(p->ec, vpd + ec, EC_LEN); 645 strim(p->ec); 646 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 647 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 648 strim(p->sn); 649 650 /* 651 * Ask firmware for the Core Clock since it knows how to translate the 652 * Reference Clock ('V2') VPD field into a Core Clock value ... 653 */ 654 cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 655 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK)); 656 ret = t4_query_params(adapter, adapter->mbox, 0, 0, 657 1, &cclk_param, &cclk_val); 658 659 out: 660 vfree(vpd); 661 if (ret) 662 return ret; 663 p->cclk = cclk_val; 664 665 return 0; 666 } 667 668 /* serial flash and firmware constants */ 669 enum { 670 SF_ATTEMPTS = 10, /* max retries for SF operations */ 671 672 /* flash command opcodes */ 673 SF_PROG_PAGE = 2, /* program page */ 674 SF_WR_DISABLE = 4, /* disable writes */ 675 SF_RD_STATUS = 5, /* read status register */ 676 SF_WR_ENABLE = 6, /* enable writes */ 677 SF_RD_DATA_FAST = 0xb, /* read flash */ 678 SF_RD_ID = 0x9f, /* read ID */ 679 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 680 681 FW_MAX_SIZE = 512 * 1024, 682 }; 683 684 /** 685 * sf1_read - read data from the serial flash 686 * @adapter: the adapter 687 * @byte_cnt: number of bytes to read 688 * @cont: whether another operation will be chained 689 * @lock: whether to lock SF for PL access only 690 * @valp: where to store the read data 691 * 692 * Reads up to 4 bytes of data from the serial flash. The location of 693 * the read needs to be specified prior to calling this by issuing the 694 * appropriate commands to the serial flash. 695 */ 696 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 697 int lock, u32 *valp) 698 { 699 int ret; 700 701 if (!byte_cnt || byte_cnt > 4) 702 return -EINVAL; 703 if (t4_read_reg(adapter, SF_OP) & SF_BUSY) 704 return -EBUSY; 705 cont = cont ? SF_CONT : 0; 706 lock = lock ? SF_LOCK : 0; 707 t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1)); 708 ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5); 709 if (!ret) 710 *valp = t4_read_reg(adapter, SF_DATA); 711 return ret; 712 } 713 714 /** 715 * sf1_write - write data to the serial flash 716 * @adapter: the adapter 717 * @byte_cnt: number of bytes to write 718 * @cont: whether another operation will be chained 719 * @lock: whether to lock SF for PL access only 720 * @val: value to write 721 * 722 * Writes up to 4 bytes of data to the serial flash. The location of 723 * the write needs to be specified prior to calling this by issuing the 724 * appropriate commands to the serial flash. 725 */ 726 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 727 int lock, u32 val) 728 { 729 if (!byte_cnt || byte_cnt > 4) 730 return -EINVAL; 731 if (t4_read_reg(adapter, SF_OP) & SF_BUSY) 732 return -EBUSY; 733 cont = cont ? SF_CONT : 0; 734 lock = lock ? SF_LOCK : 0; 735 t4_write_reg(adapter, SF_DATA, val); 736 t4_write_reg(adapter, SF_OP, lock | 737 cont | BYTECNT(byte_cnt - 1) | OP_WR); 738 return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5); 739 } 740 741 /** 742 * flash_wait_op - wait for a flash operation to complete 743 * @adapter: the adapter 744 * @attempts: max number of polls of the status register 745 * @delay: delay between polls in ms 746 * 747 * Wait for a flash operation to complete by polling the status register. 748 */ 749 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 750 { 751 int ret; 752 u32 status; 753 754 while (1) { 755 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 756 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 757 return ret; 758 if (!(status & 1)) 759 return 0; 760 if (--attempts == 0) 761 return -EAGAIN; 762 if (delay) 763 msleep(delay); 764 } 765 } 766 767 /** 768 * t4_read_flash - read words from serial flash 769 * @adapter: the adapter 770 * @addr: the start address for the read 771 * @nwords: how many 32-bit words to read 772 * @data: where to store the read data 773 * @byte_oriented: whether to store data as bytes or as words 774 * 775 * Read the specified number of 32-bit words from the serial flash. 776 * If @byte_oriented is set the read data is stored as a byte array 777 * (i.e., big-endian), otherwise as 32-bit words in the platform's 778 * natural endianess. 779 */ 780 static int t4_read_flash(struct adapter *adapter, unsigned int addr, 781 unsigned int nwords, u32 *data, int byte_oriented) 782 { 783 int ret; 784 785 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 786 return -EINVAL; 787 788 addr = swab32(addr) | SF_RD_DATA_FAST; 789 790 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 791 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 792 return ret; 793 794 for ( ; nwords; nwords--, data++) { 795 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 796 if (nwords == 1) 797 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ 798 if (ret) 799 return ret; 800 if (byte_oriented) 801 *data = (__force __u32) (htonl(*data)); 802 } 803 return 0; 804 } 805 806 /** 807 * t4_write_flash - write up to a page of data to the serial flash 808 * @adapter: the adapter 809 * @addr: the start address to write 810 * @n: length of data to write in bytes 811 * @data: the data to write 812 * 813 * Writes up to a page of data (256 bytes) to the serial flash starting 814 * at the given address. All the data must be written to the same page. 815 */ 816 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 817 unsigned int n, const u8 *data) 818 { 819 int ret; 820 u32 buf[64]; 821 unsigned int i, c, left, val, offset = addr & 0xff; 822 823 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 824 return -EINVAL; 825 826 val = swab32(addr) | SF_PROG_PAGE; 827 828 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 829 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 830 goto unlock; 831 832 for (left = n; left; left -= c) { 833 c = min(left, 4U); 834 for (val = 0, i = 0; i < c; ++i) 835 val = (val << 8) + *data++; 836 837 ret = sf1_write(adapter, c, c != left, 1, val); 838 if (ret) 839 goto unlock; 840 } 841 ret = flash_wait_op(adapter, 8, 1); 842 if (ret) 843 goto unlock; 844 845 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ 846 847 /* Read the page to verify the write succeeded */ 848 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 849 if (ret) 850 return ret; 851 852 if (memcmp(data - n, (u8 *)buf + offset, n)) { 853 dev_err(adapter->pdev_dev, 854 "failed to correctly write the flash page at %#x\n", 855 addr); 856 return -EIO; 857 } 858 return 0; 859 860 unlock: 861 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ 862 return ret; 863 } 864 865 /** 866 * t4_get_fw_version - read the firmware version 867 * @adapter: the adapter 868 * @vers: where to place the version 869 * 870 * Reads the FW version from flash. 871 */ 872 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 873 { 874 return t4_read_flash(adapter, FLASH_FW_START + 875 offsetof(struct fw_hdr, fw_ver), 1, 876 vers, 0); 877 } 878 879 /** 880 * t4_get_tp_version - read the TP microcode version 881 * @adapter: the adapter 882 * @vers: where to place the version 883 * 884 * Reads the TP microcode version from flash. 885 */ 886 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 887 { 888 return t4_read_flash(adapter, FLASH_FW_START + 889 offsetof(struct fw_hdr, tp_microcode_ver), 890 1, vers, 0); 891 } 892 893 /* Is the given firmware API compatible with the one the driver was compiled 894 * with? 895 */ 896 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 897 { 898 899 /* short circuit if it's the exact same firmware version */ 900 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 901 return 1; 902 903 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 904 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 905 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 906 return 1; 907 #undef SAME_INTF 908 909 return 0; 910 } 911 912 /* The firmware in the filesystem is usable, but should it be installed? 913 * This routine explains itself in detail if it indicates the filesystem 914 * firmware should be installed. 915 */ 916 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 917 int k, int c) 918 { 919 const char *reason; 920 921 if (!card_fw_usable) { 922 reason = "incompatible or unusable"; 923 goto install; 924 } 925 926 if (k > c) { 927 reason = "older than the version supported with this driver"; 928 goto install; 929 } 930 931 return 0; 932 933 install: 934 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 935 "installing firmware %u.%u.%u.%u on card.\n", 936 FW_HDR_FW_VER_MAJOR_GET(c), FW_HDR_FW_VER_MINOR_GET(c), 937 FW_HDR_FW_VER_MICRO_GET(c), FW_HDR_FW_VER_BUILD_GET(c), reason, 938 FW_HDR_FW_VER_MAJOR_GET(k), FW_HDR_FW_VER_MINOR_GET(k), 939 FW_HDR_FW_VER_MICRO_GET(k), FW_HDR_FW_VER_BUILD_GET(k)); 940 941 return 1; 942 } 943 944 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 945 const u8 *fw_data, unsigned int fw_size, 946 struct fw_hdr *card_fw, enum dev_state state, 947 int *reset) 948 { 949 int ret, card_fw_usable, fs_fw_usable; 950 const struct fw_hdr *fs_fw; 951 const struct fw_hdr *drv_fw; 952 953 drv_fw = &fw_info->fw_hdr; 954 955 /* Read the header of the firmware on the card */ 956 ret = -t4_read_flash(adap, FLASH_FW_START, 957 sizeof(*card_fw) / sizeof(uint32_t), 958 (uint32_t *)card_fw, 1); 959 if (ret == 0) { 960 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 961 } else { 962 dev_err(adap->pdev_dev, 963 "Unable to read card's firmware header: %d\n", ret); 964 card_fw_usable = 0; 965 } 966 967 if (fw_data != NULL) { 968 fs_fw = (const void *)fw_data; 969 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 970 } else { 971 fs_fw = NULL; 972 fs_fw_usable = 0; 973 } 974 975 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 976 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 977 /* Common case: the firmware on the card is an exact match and 978 * the filesystem one is an exact match too, or the filesystem 979 * one is absent/incompatible. 980 */ 981 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 982 should_install_fs_fw(adap, card_fw_usable, 983 be32_to_cpu(fs_fw->fw_ver), 984 be32_to_cpu(card_fw->fw_ver))) { 985 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 986 fw_size, 0); 987 if (ret != 0) { 988 dev_err(adap->pdev_dev, 989 "failed to install firmware: %d\n", ret); 990 goto bye; 991 } 992 993 /* Installed successfully, update the cached header too. */ 994 memcpy(card_fw, fs_fw, sizeof(*card_fw)); 995 card_fw_usable = 1; 996 *reset = 0; /* already reset as part of load_fw */ 997 } 998 999 if (!card_fw_usable) { 1000 uint32_t d, c, k; 1001 1002 d = be32_to_cpu(drv_fw->fw_ver); 1003 c = be32_to_cpu(card_fw->fw_ver); 1004 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 1005 1006 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 1007 "chip state %d, " 1008 "driver compiled with %d.%d.%d.%d, " 1009 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 1010 state, 1011 FW_HDR_FW_VER_MAJOR_GET(d), FW_HDR_FW_VER_MINOR_GET(d), 1012 FW_HDR_FW_VER_MICRO_GET(d), FW_HDR_FW_VER_BUILD_GET(d), 1013 FW_HDR_FW_VER_MAJOR_GET(c), FW_HDR_FW_VER_MINOR_GET(c), 1014 FW_HDR_FW_VER_MICRO_GET(c), FW_HDR_FW_VER_BUILD_GET(c), 1015 FW_HDR_FW_VER_MAJOR_GET(k), FW_HDR_FW_VER_MINOR_GET(k), 1016 FW_HDR_FW_VER_MICRO_GET(k), FW_HDR_FW_VER_BUILD_GET(k)); 1017 ret = EINVAL; 1018 goto bye; 1019 } 1020 1021 /* We're using whatever's on the card and it's known to be good. */ 1022 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 1023 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 1024 1025 bye: 1026 return ret; 1027 } 1028 1029 /** 1030 * t4_flash_erase_sectors - erase a range of flash sectors 1031 * @adapter: the adapter 1032 * @start: the first sector to erase 1033 * @end: the last sector to erase 1034 * 1035 * Erases the sectors in the given inclusive range. 1036 */ 1037 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 1038 { 1039 int ret = 0; 1040 1041 while (start <= end) { 1042 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 1043 (ret = sf1_write(adapter, 4, 0, 1, 1044 SF_ERASE_SECTOR | (start << 8))) != 0 || 1045 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 1046 dev_err(adapter->pdev_dev, 1047 "erase of flash sector %d failed, error %d\n", 1048 start, ret); 1049 break; 1050 } 1051 start++; 1052 } 1053 t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ 1054 return ret; 1055 } 1056 1057 /** 1058 * t4_flash_cfg_addr - return the address of the flash configuration file 1059 * @adapter: the adapter 1060 * 1061 * Return the address within the flash where the Firmware Configuration 1062 * File is stored. 1063 */ 1064 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 1065 { 1066 if (adapter->params.sf_size == 0x100000) 1067 return FLASH_FPGA_CFG_START; 1068 else 1069 return FLASH_CFG_START; 1070 } 1071 1072 /** 1073 * t4_load_cfg - download config file 1074 * @adap: the adapter 1075 * @cfg_data: the cfg text file to write 1076 * @size: text file size 1077 * 1078 * Write the supplied config text file to the card's serial flash. 1079 */ 1080 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 1081 { 1082 int ret, i, n; 1083 unsigned int addr; 1084 unsigned int flash_cfg_start_sec; 1085 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 1086 1087 addr = t4_flash_cfg_addr(adap); 1088 flash_cfg_start_sec = addr / SF_SEC_SIZE; 1089 1090 if (size > FLASH_CFG_MAX_SIZE) { 1091 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 1092 FLASH_CFG_MAX_SIZE); 1093 return -EFBIG; 1094 } 1095 1096 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 1097 sf_sec_size); 1098 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 1099 flash_cfg_start_sec + i - 1); 1100 /* 1101 * If size == 0 then we're simply erasing the FLASH sectors associated 1102 * with the on-adapter Firmware Configuration File. 1103 */ 1104 if (ret || size == 0) 1105 goto out; 1106 1107 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 1108 for (i = 0; i < size; i += SF_PAGE_SIZE) { 1109 if ((size - i) < SF_PAGE_SIZE) 1110 n = size - i; 1111 else 1112 n = SF_PAGE_SIZE; 1113 ret = t4_write_flash(adap, addr, n, cfg_data); 1114 if (ret) 1115 goto out; 1116 1117 addr += SF_PAGE_SIZE; 1118 cfg_data += SF_PAGE_SIZE; 1119 } 1120 1121 out: 1122 if (ret) 1123 dev_err(adap->pdev_dev, "config file %s failed %d\n", 1124 (size == 0 ? "clear" : "download"), ret); 1125 return ret; 1126 } 1127 1128 /** 1129 * t4_load_fw - download firmware 1130 * @adap: the adapter 1131 * @fw_data: the firmware image to write 1132 * @size: image size 1133 * 1134 * Write the supplied firmware image to the card's serial flash. 1135 */ 1136 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 1137 { 1138 u32 csum; 1139 int ret, addr; 1140 unsigned int i; 1141 u8 first_page[SF_PAGE_SIZE]; 1142 const __be32 *p = (const __be32 *)fw_data; 1143 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 1144 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 1145 unsigned int fw_img_start = adap->params.sf_fw_start; 1146 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 1147 1148 if (!size) { 1149 dev_err(adap->pdev_dev, "FW image has no data\n"); 1150 return -EINVAL; 1151 } 1152 if (size & 511) { 1153 dev_err(adap->pdev_dev, 1154 "FW image size not multiple of 512 bytes\n"); 1155 return -EINVAL; 1156 } 1157 if (ntohs(hdr->len512) * 512 != size) { 1158 dev_err(adap->pdev_dev, 1159 "FW image size differs from size in FW header\n"); 1160 return -EINVAL; 1161 } 1162 if (size > FW_MAX_SIZE) { 1163 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 1164 FW_MAX_SIZE); 1165 return -EFBIG; 1166 } 1167 1168 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 1169 csum += ntohl(p[i]); 1170 1171 if (csum != 0xffffffff) { 1172 dev_err(adap->pdev_dev, 1173 "corrupted firmware image, checksum %#x\n", csum); 1174 return -EINVAL; 1175 } 1176 1177 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 1178 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 1179 if (ret) 1180 goto out; 1181 1182 /* 1183 * We write the correct version at the end so the driver can see a bad 1184 * version if the FW write fails. Start by writing a copy of the 1185 * first page with a bad version. 1186 */ 1187 memcpy(first_page, fw_data, SF_PAGE_SIZE); 1188 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); 1189 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 1190 if (ret) 1191 goto out; 1192 1193 addr = fw_img_start; 1194 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 1195 addr += SF_PAGE_SIZE; 1196 fw_data += SF_PAGE_SIZE; 1197 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 1198 if (ret) 1199 goto out; 1200 } 1201 1202 ret = t4_write_flash(adap, 1203 fw_img_start + offsetof(struct fw_hdr, fw_ver), 1204 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 1205 out: 1206 if (ret) 1207 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 1208 ret); 1209 return ret; 1210 } 1211 1212 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 1213 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG) 1214 1215 /** 1216 * t4_link_start - apply link configuration to MAC/PHY 1217 * @phy: the PHY to setup 1218 * @mac: the MAC to setup 1219 * @lc: the requested link configuration 1220 * 1221 * Set up a port's MAC and PHY according to a desired link configuration. 1222 * - If the PHY can auto-negotiate first decide what to advertise, then 1223 * enable/disable auto-negotiation as desired, and reset. 1224 * - If the PHY does not auto-negotiate just reset it. 1225 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 1226 * otherwise do it later based on the outcome of auto-negotiation. 1227 */ 1228 int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port, 1229 struct link_config *lc) 1230 { 1231 struct fw_port_cmd c; 1232 unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO); 1233 1234 lc->link_ok = 0; 1235 if (lc->requested_fc & PAUSE_RX) 1236 fc |= FW_PORT_CAP_FC_RX; 1237 if (lc->requested_fc & PAUSE_TX) 1238 fc |= FW_PORT_CAP_FC_TX; 1239 1240 memset(&c, 0, sizeof(c)); 1241 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST | 1242 FW_CMD_EXEC | FW_PORT_CMD_PORTID(port)); 1243 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 1244 FW_LEN16(c)); 1245 1246 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 1247 c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc); 1248 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1249 } else if (lc->autoneg == AUTONEG_DISABLE) { 1250 c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi); 1251 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1252 } else 1253 c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi); 1254 1255 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 1256 } 1257 1258 /** 1259 * t4_restart_aneg - restart autonegotiation 1260 * @adap: the adapter 1261 * @mbox: mbox to use for the FW command 1262 * @port: the port id 1263 * 1264 * Restarts autonegotiation for the selected port. 1265 */ 1266 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 1267 { 1268 struct fw_port_cmd c; 1269 1270 memset(&c, 0, sizeof(c)); 1271 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST | 1272 FW_CMD_EXEC | FW_PORT_CMD_PORTID(port)); 1273 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 1274 FW_LEN16(c)); 1275 c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG); 1276 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 1277 } 1278 1279 typedef void (*int_handler_t)(struct adapter *adap); 1280 1281 struct intr_info { 1282 unsigned int mask; /* bits to check in interrupt status */ 1283 const char *msg; /* message to print or NULL */ 1284 short stat_idx; /* stat counter to increment or -1 */ 1285 unsigned short fatal; /* whether the condition reported is fatal */ 1286 int_handler_t int_handler; /* platform-specific int handler */ 1287 }; 1288 1289 /** 1290 * t4_handle_intr_status - table driven interrupt handler 1291 * @adapter: the adapter that generated the interrupt 1292 * @reg: the interrupt status register to process 1293 * @acts: table of interrupt actions 1294 * 1295 * A table driven interrupt handler that applies a set of masks to an 1296 * interrupt status word and performs the corresponding actions if the 1297 * interrupts described by the mask have occurred. The actions include 1298 * optionally emitting a warning or alert message. The table is terminated 1299 * by an entry specifying mask 0. Returns the number of fatal interrupt 1300 * conditions. 1301 */ 1302 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 1303 const struct intr_info *acts) 1304 { 1305 int fatal = 0; 1306 unsigned int mask = 0; 1307 unsigned int status = t4_read_reg(adapter, reg); 1308 1309 for ( ; acts->mask; ++acts) { 1310 if (!(status & acts->mask)) 1311 continue; 1312 if (acts->fatal) { 1313 fatal++; 1314 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 1315 status & acts->mask); 1316 } else if (acts->msg && printk_ratelimit()) 1317 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 1318 status & acts->mask); 1319 if (acts->int_handler) 1320 acts->int_handler(adapter); 1321 mask |= acts->mask; 1322 } 1323 status &= mask; 1324 if (status) /* clear processed interrupts */ 1325 t4_write_reg(adapter, reg, status); 1326 return fatal; 1327 } 1328 1329 /* 1330 * Interrupt handler for the PCIE module. 1331 */ 1332 static void pcie_intr_handler(struct adapter *adapter) 1333 { 1334 static const struct intr_info sysbus_intr_info[] = { 1335 { RNPP, "RXNP array parity error", -1, 1 }, 1336 { RPCP, "RXPC array parity error", -1, 1 }, 1337 { RCIP, "RXCIF array parity error", -1, 1 }, 1338 { RCCP, "Rx completions control array parity error", -1, 1 }, 1339 { RFTP, "RXFT array parity error", -1, 1 }, 1340 { 0 } 1341 }; 1342 static const struct intr_info pcie_port_intr_info[] = { 1343 { TPCP, "TXPC array parity error", -1, 1 }, 1344 { TNPP, "TXNP array parity error", -1, 1 }, 1345 { TFTP, "TXFT array parity error", -1, 1 }, 1346 { TCAP, "TXCA array parity error", -1, 1 }, 1347 { TCIP, "TXCIF array parity error", -1, 1 }, 1348 { RCAP, "RXCA array parity error", -1, 1 }, 1349 { OTDD, "outbound request TLP discarded", -1, 1 }, 1350 { RDPE, "Rx data parity error", -1, 1 }, 1351 { TDUE, "Tx uncorrectable data error", -1, 1 }, 1352 { 0 } 1353 }; 1354 static const struct intr_info pcie_intr_info[] = { 1355 { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 }, 1356 { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 }, 1357 { MSIDATAPERR, "MSI data parity error", -1, 1 }, 1358 { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, 1359 { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, 1360 { MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, 1361 { MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, 1362 { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 }, 1363 { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 }, 1364 { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, 1365 { CCNTPERR, "PCI CMD channel count parity error", -1, 1 }, 1366 { CREQPERR, "PCI CMD channel request parity error", -1, 1 }, 1367 { CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, 1368 { DCNTPERR, "PCI DMA channel count parity error", -1, 1 }, 1369 { DREQPERR, "PCI DMA channel request parity error", -1, 1 }, 1370 { DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, 1371 { HCNTPERR, "PCI HMA channel count parity error", -1, 1 }, 1372 { HREQPERR, "PCI HMA channel request parity error", -1, 1 }, 1373 { HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, 1374 { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, 1375 { FIDPERR, "PCI FID parity error", -1, 1 }, 1376 { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 }, 1377 { MATAGPERR, "PCI MA tag parity error", -1, 1 }, 1378 { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, 1379 { RXCPLPERR, "PCI Rx completion parity error", -1, 1 }, 1380 { RXWRPERR, "PCI Rx write parity error", -1, 1 }, 1381 { RPLPERR, "PCI replay buffer parity error", -1, 1 }, 1382 { PCIESINT, "PCI core secondary fault", -1, 1 }, 1383 { PCIEPINT, "PCI core primary fault", -1, 1 }, 1384 { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 }, 1385 { 0 } 1386 }; 1387 1388 static struct intr_info t5_pcie_intr_info[] = { 1389 { MSTGRPPERR, "Master Response Read Queue parity error", 1390 -1, 1 }, 1391 { MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 }, 1392 { MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 }, 1393 { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, 1394 { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, 1395 { MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, 1396 { MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, 1397 { PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error", 1398 -1, 1 }, 1399 { PIOREQGRPPERR, "PCI PIO request Group FIFO parity error", 1400 -1, 1 }, 1401 { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, 1402 { MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 }, 1403 { CREQPERR, "PCI CMD channel request parity error", -1, 1 }, 1404 { CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, 1405 { DREQWRPERR, "PCI DMA channel write request parity error", 1406 -1, 1 }, 1407 { DREQPERR, "PCI DMA channel request parity error", -1, 1 }, 1408 { DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, 1409 { HREQWRPERR, "PCI HMA channel count parity error", -1, 1 }, 1410 { HREQPERR, "PCI HMA channel request parity error", -1, 1 }, 1411 { HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, 1412 { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, 1413 { FIDPERR, "PCI FID parity error", -1, 1 }, 1414 { VFIDPERR, "PCI INTx clear parity error", -1, 1 }, 1415 { MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 }, 1416 { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, 1417 { IPRXHDRGRPPERR, "PCI IP Rx header group parity error", 1418 -1, 1 }, 1419 { IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 }, 1420 { RPLPERR, "PCI IP replay buffer parity error", -1, 1 }, 1421 { IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 }, 1422 { TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 1423 { READRSPERR, "Outbound read error", -1, 0 }, 1424 { 0 } 1425 }; 1426 1427 int fat; 1428 1429 fat = t4_handle_intr_status(adapter, 1430 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 1431 sysbus_intr_info) + 1432 t4_handle_intr_status(adapter, 1433 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 1434 pcie_port_intr_info) + 1435 t4_handle_intr_status(adapter, PCIE_INT_CAUSE, 1436 is_t4(adapter->params.chip) ? 1437 pcie_intr_info : t5_pcie_intr_info); 1438 1439 if (fat) 1440 t4_fatal_err(adapter); 1441 } 1442 1443 /* 1444 * TP interrupt handler. 1445 */ 1446 static void tp_intr_handler(struct adapter *adapter) 1447 { 1448 static const struct intr_info tp_intr_info[] = { 1449 { 0x3fffffff, "TP parity error", -1, 1 }, 1450 { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 }, 1451 { 0 } 1452 }; 1453 1454 if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info)) 1455 t4_fatal_err(adapter); 1456 } 1457 1458 /* 1459 * SGE interrupt handler. 1460 */ 1461 static void sge_intr_handler(struct adapter *adapter) 1462 { 1463 u64 v; 1464 1465 static const struct intr_info sge_intr_info[] = { 1466 { ERR_CPL_EXCEED_IQE_SIZE, 1467 "SGE received CPL exceeding IQE size", -1, 1 }, 1468 { ERR_INVALID_CIDX_INC, 1469 "SGE GTS CIDX increment too large", -1, 0 }, 1470 { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 }, 1471 { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full }, 1472 { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full }, 1473 { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped }, 1474 { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0, 1475 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 1476 { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1, 1477 0 }, 1478 { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1, 1479 0 }, 1480 { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1, 1481 0 }, 1482 { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1, 1483 0 }, 1484 { ERR_ING_CTXT_PRIO, 1485 "SGE too many priority ingress contexts", -1, 0 }, 1486 { ERR_EGR_CTXT_PRIO, 1487 "SGE too many priority egress contexts", -1, 0 }, 1488 { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 }, 1489 { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 }, 1490 { 0 } 1491 }; 1492 1493 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) | 1494 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32); 1495 if (v) { 1496 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 1497 (unsigned long long)v); 1498 t4_write_reg(adapter, SGE_INT_CAUSE1, v); 1499 t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32); 1500 } 1501 1502 if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) || 1503 v != 0) 1504 t4_fatal_err(adapter); 1505 } 1506 1507 /* 1508 * CIM interrupt handler. 1509 */ 1510 static void cim_intr_handler(struct adapter *adapter) 1511 { 1512 static const struct intr_info cim_intr_info[] = { 1513 { PREFDROPINT, "CIM control register prefetch drop", -1, 1 }, 1514 { OBQPARERR, "CIM OBQ parity error", -1, 1 }, 1515 { IBQPARERR, "CIM IBQ parity error", -1, 1 }, 1516 { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 }, 1517 { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 }, 1518 { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 }, 1519 { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 }, 1520 { 0 } 1521 }; 1522 static const struct intr_info cim_upintr_info[] = { 1523 { RSVDSPACEINT, "CIM reserved space access", -1, 1 }, 1524 { ILLTRANSINT, "CIM illegal transaction", -1, 1 }, 1525 { ILLWRINT, "CIM illegal write", -1, 1 }, 1526 { ILLRDINT, "CIM illegal read", -1, 1 }, 1527 { ILLRDBEINT, "CIM illegal read BE", -1, 1 }, 1528 { ILLWRBEINT, "CIM illegal write BE", -1, 1 }, 1529 { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 }, 1530 { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 }, 1531 { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 }, 1532 { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 }, 1533 { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 }, 1534 { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 }, 1535 { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 }, 1536 { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 }, 1537 { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 }, 1538 { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 }, 1539 { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 }, 1540 { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 }, 1541 { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 }, 1542 { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 }, 1543 { SGLRDPLINT , "CIM single read from PL space", -1, 1 }, 1544 { SGLWRPLINT , "CIM single write to PL space", -1, 1 }, 1545 { BLKRDPLINT , "CIM block read from PL space", -1, 1 }, 1546 { BLKWRPLINT , "CIM block write to PL space", -1, 1 }, 1547 { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 }, 1548 { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 }, 1549 { TIMEOUTINT , "CIM PIF timeout", -1, 1 }, 1550 { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 }, 1551 { 0 } 1552 }; 1553 1554 int fat; 1555 1556 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE, 1557 cim_intr_info) + 1558 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE, 1559 cim_upintr_info); 1560 if (fat) 1561 t4_fatal_err(adapter); 1562 } 1563 1564 /* 1565 * ULP RX interrupt handler. 1566 */ 1567 static void ulprx_intr_handler(struct adapter *adapter) 1568 { 1569 static const struct intr_info ulprx_intr_info[] = { 1570 { 0x1800000, "ULPRX context error", -1, 1 }, 1571 { 0x7fffff, "ULPRX parity error", -1, 1 }, 1572 { 0 } 1573 }; 1574 1575 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info)) 1576 t4_fatal_err(adapter); 1577 } 1578 1579 /* 1580 * ULP TX interrupt handler. 1581 */ 1582 static void ulptx_intr_handler(struct adapter *adapter) 1583 { 1584 static const struct intr_info ulptx_intr_info[] = { 1585 { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1, 1586 0 }, 1587 { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1, 1588 0 }, 1589 { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1, 1590 0 }, 1591 { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1, 1592 0 }, 1593 { 0xfffffff, "ULPTX parity error", -1, 1 }, 1594 { 0 } 1595 }; 1596 1597 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info)) 1598 t4_fatal_err(adapter); 1599 } 1600 1601 /* 1602 * PM TX interrupt handler. 1603 */ 1604 static void pmtx_intr_handler(struct adapter *adapter) 1605 { 1606 static const struct intr_info pmtx_intr_info[] = { 1607 { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 }, 1608 { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 }, 1609 { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 }, 1610 { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 }, 1611 { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 }, 1612 { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 }, 1613 { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 }, 1614 { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 }, 1615 { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1}, 1616 { 0 } 1617 }; 1618 1619 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info)) 1620 t4_fatal_err(adapter); 1621 } 1622 1623 /* 1624 * PM RX interrupt handler. 1625 */ 1626 static void pmrx_intr_handler(struct adapter *adapter) 1627 { 1628 static const struct intr_info pmrx_intr_info[] = { 1629 { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 }, 1630 { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 }, 1631 { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 }, 1632 { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 }, 1633 { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 }, 1634 { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1}, 1635 { 0 } 1636 }; 1637 1638 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info)) 1639 t4_fatal_err(adapter); 1640 } 1641 1642 /* 1643 * CPL switch interrupt handler. 1644 */ 1645 static void cplsw_intr_handler(struct adapter *adapter) 1646 { 1647 static const struct intr_info cplsw_intr_info[] = { 1648 { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 }, 1649 { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 }, 1650 { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 }, 1651 { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 }, 1652 { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 }, 1653 { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 }, 1654 { 0 } 1655 }; 1656 1657 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info)) 1658 t4_fatal_err(adapter); 1659 } 1660 1661 /* 1662 * LE interrupt handler. 1663 */ 1664 static void le_intr_handler(struct adapter *adap) 1665 { 1666 static const struct intr_info le_intr_info[] = { 1667 { LIPMISS, "LE LIP miss", -1, 0 }, 1668 { LIP0, "LE 0 LIP error", -1, 0 }, 1669 { PARITYERR, "LE parity error", -1, 1 }, 1670 { UNKNOWNCMD, "LE unknown command", -1, 1 }, 1671 { REQQPARERR, "LE request queue parity error", -1, 1 }, 1672 { 0 } 1673 }; 1674 1675 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info)) 1676 t4_fatal_err(adap); 1677 } 1678 1679 /* 1680 * MPS interrupt handler. 1681 */ 1682 static void mps_intr_handler(struct adapter *adapter) 1683 { 1684 static const struct intr_info mps_rx_intr_info[] = { 1685 { 0xffffff, "MPS Rx parity error", -1, 1 }, 1686 { 0 } 1687 }; 1688 static const struct intr_info mps_tx_intr_info[] = { 1689 { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 }, 1690 { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 1691 { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 }, 1692 { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 }, 1693 { BUBBLE, "MPS Tx underflow", -1, 1 }, 1694 { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 }, 1695 { FRMERR, "MPS Tx framing error", -1, 1 }, 1696 { 0 } 1697 }; 1698 static const struct intr_info mps_trc_intr_info[] = { 1699 { FILTMEM, "MPS TRC filter parity error", -1, 1 }, 1700 { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 }, 1701 { MISCPERR, "MPS TRC misc parity error", -1, 1 }, 1702 { 0 } 1703 }; 1704 static const struct intr_info mps_stat_sram_intr_info[] = { 1705 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 1706 { 0 } 1707 }; 1708 static const struct intr_info mps_stat_tx_intr_info[] = { 1709 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 1710 { 0 } 1711 }; 1712 static const struct intr_info mps_stat_rx_intr_info[] = { 1713 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 1714 { 0 } 1715 }; 1716 static const struct intr_info mps_cls_intr_info[] = { 1717 { MATCHSRAM, "MPS match SRAM parity error", -1, 1 }, 1718 { MATCHTCAM, "MPS match TCAM parity error", -1, 1 }, 1719 { HASHSRAM, "MPS hash SRAM parity error", -1, 1 }, 1720 { 0 } 1721 }; 1722 1723 int fat; 1724 1725 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE, 1726 mps_rx_intr_info) + 1727 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE, 1728 mps_tx_intr_info) + 1729 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE, 1730 mps_trc_intr_info) + 1731 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM, 1732 mps_stat_sram_intr_info) + 1733 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 1734 mps_stat_tx_intr_info) + 1735 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 1736 mps_stat_rx_intr_info) + 1737 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE, 1738 mps_cls_intr_info); 1739 1740 t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT | 1741 RXINT | TXINT | STATINT); 1742 t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */ 1743 if (fat) 1744 t4_fatal_err(adapter); 1745 } 1746 1747 #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE) 1748 1749 /* 1750 * EDC/MC interrupt handler. 1751 */ 1752 static void mem_intr_handler(struct adapter *adapter, int idx) 1753 { 1754 static const char name[3][5] = { "EDC0", "EDC1", "MC" }; 1755 1756 unsigned int addr, cnt_addr, v; 1757 1758 if (idx <= MEM_EDC1) { 1759 addr = EDC_REG(EDC_INT_CAUSE, idx); 1760 cnt_addr = EDC_REG(EDC_ECC_STATUS, idx); 1761 } else { 1762 addr = MC_INT_CAUSE; 1763 cnt_addr = MC_ECC_STATUS; 1764 } 1765 1766 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 1767 if (v & PERR_INT_CAUSE) 1768 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 1769 name[idx]); 1770 if (v & ECC_CE_INT_CAUSE) { 1771 u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr)); 1772 1773 t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK); 1774 if (printk_ratelimit()) 1775 dev_warn(adapter->pdev_dev, 1776 "%u %s correctable ECC data error%s\n", 1777 cnt, name[idx], cnt > 1 ? "s" : ""); 1778 } 1779 if (v & ECC_UE_INT_CAUSE) 1780 dev_alert(adapter->pdev_dev, 1781 "%s uncorrectable ECC data error\n", name[idx]); 1782 1783 t4_write_reg(adapter, addr, v); 1784 if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE)) 1785 t4_fatal_err(adapter); 1786 } 1787 1788 /* 1789 * MA interrupt handler. 1790 */ 1791 static void ma_intr_handler(struct adapter *adap) 1792 { 1793 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE); 1794 1795 if (status & MEM_PERR_INT_CAUSE) 1796 dev_alert(adap->pdev_dev, 1797 "MA parity error, parity status %#x\n", 1798 t4_read_reg(adap, MA_PARITY_ERROR_STATUS)); 1799 if (status & MEM_WRAP_INT_CAUSE) { 1800 v = t4_read_reg(adap, MA_INT_WRAP_STATUS); 1801 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 1802 "client %u to address %#x\n", 1803 MEM_WRAP_CLIENT_NUM_GET(v), 1804 MEM_WRAP_ADDRESS_GET(v) << 4); 1805 } 1806 t4_write_reg(adap, MA_INT_CAUSE, status); 1807 t4_fatal_err(adap); 1808 } 1809 1810 /* 1811 * SMB interrupt handler. 1812 */ 1813 static void smb_intr_handler(struct adapter *adap) 1814 { 1815 static const struct intr_info smb_intr_info[] = { 1816 { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 }, 1817 { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 }, 1818 { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 }, 1819 { 0 } 1820 }; 1821 1822 if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info)) 1823 t4_fatal_err(adap); 1824 } 1825 1826 /* 1827 * NC-SI interrupt handler. 1828 */ 1829 static void ncsi_intr_handler(struct adapter *adap) 1830 { 1831 static const struct intr_info ncsi_intr_info[] = { 1832 { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 }, 1833 { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 }, 1834 { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 }, 1835 { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 }, 1836 { 0 } 1837 }; 1838 1839 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info)) 1840 t4_fatal_err(adap); 1841 } 1842 1843 /* 1844 * XGMAC interrupt handler. 1845 */ 1846 static void xgmac_intr_handler(struct adapter *adap, int port) 1847 { 1848 u32 v, int_cause_reg; 1849 1850 if (is_t4(adap->params.chip)) 1851 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE); 1852 else 1853 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE); 1854 1855 v = t4_read_reg(adap, int_cause_reg); 1856 1857 v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR; 1858 if (!v) 1859 return; 1860 1861 if (v & TXFIFO_PRTY_ERR) 1862 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 1863 port); 1864 if (v & RXFIFO_PRTY_ERR) 1865 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 1866 port); 1867 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v); 1868 t4_fatal_err(adap); 1869 } 1870 1871 /* 1872 * PL interrupt handler. 1873 */ 1874 static void pl_intr_handler(struct adapter *adap) 1875 { 1876 static const struct intr_info pl_intr_info[] = { 1877 { FATALPERR, "T4 fatal parity error", -1, 1 }, 1878 { PERRVFID, "PL VFID_MAP parity error", -1, 1 }, 1879 { 0 } 1880 }; 1881 1882 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info)) 1883 t4_fatal_err(adap); 1884 } 1885 1886 #define PF_INTR_MASK (PFSW) 1887 #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \ 1888 EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \ 1889 CPL_SWITCH | SGE | ULP_TX) 1890 1891 /** 1892 * t4_slow_intr_handler - control path interrupt handler 1893 * @adapter: the adapter 1894 * 1895 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 1896 * The designation 'slow' is because it involves register reads, while 1897 * data interrupts typically don't involve any MMIOs. 1898 */ 1899 int t4_slow_intr_handler(struct adapter *adapter) 1900 { 1901 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE); 1902 1903 if (!(cause & GLBL_INTR_MASK)) 1904 return 0; 1905 if (cause & CIM) 1906 cim_intr_handler(adapter); 1907 if (cause & MPS) 1908 mps_intr_handler(adapter); 1909 if (cause & NCSI) 1910 ncsi_intr_handler(adapter); 1911 if (cause & PL) 1912 pl_intr_handler(adapter); 1913 if (cause & SMB) 1914 smb_intr_handler(adapter); 1915 if (cause & XGMAC0) 1916 xgmac_intr_handler(adapter, 0); 1917 if (cause & XGMAC1) 1918 xgmac_intr_handler(adapter, 1); 1919 if (cause & XGMAC_KR0) 1920 xgmac_intr_handler(adapter, 2); 1921 if (cause & XGMAC_KR1) 1922 xgmac_intr_handler(adapter, 3); 1923 if (cause & PCIE) 1924 pcie_intr_handler(adapter); 1925 if (cause & MC) 1926 mem_intr_handler(adapter, MEM_MC); 1927 if (cause & EDC0) 1928 mem_intr_handler(adapter, MEM_EDC0); 1929 if (cause & EDC1) 1930 mem_intr_handler(adapter, MEM_EDC1); 1931 if (cause & LE) 1932 le_intr_handler(adapter); 1933 if (cause & TP) 1934 tp_intr_handler(adapter); 1935 if (cause & MA) 1936 ma_intr_handler(adapter); 1937 if (cause & PM_TX) 1938 pmtx_intr_handler(adapter); 1939 if (cause & PM_RX) 1940 pmrx_intr_handler(adapter); 1941 if (cause & ULP_RX) 1942 ulprx_intr_handler(adapter); 1943 if (cause & CPL_SWITCH) 1944 cplsw_intr_handler(adapter); 1945 if (cause & SGE) 1946 sge_intr_handler(adapter); 1947 if (cause & ULP_TX) 1948 ulptx_intr_handler(adapter); 1949 1950 /* Clear the interrupts just processed for which we are the master. */ 1951 t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK); 1952 (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */ 1953 return 1; 1954 } 1955 1956 /** 1957 * t4_intr_enable - enable interrupts 1958 * @adapter: the adapter whose interrupts should be enabled 1959 * 1960 * Enable PF-specific interrupts for the calling function and the top-level 1961 * interrupt concentrator for global interrupts. Interrupts are already 1962 * enabled at each module, here we just enable the roots of the interrupt 1963 * hierarchies. 1964 * 1965 * Note: this function should be called only when the driver manages 1966 * non PF-specific interrupts from the various HW modules. Only one PCI 1967 * function at a time should be doing this. 1968 */ 1969 void t4_intr_enable(struct adapter *adapter) 1970 { 1971 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI)); 1972 1973 t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE | 1974 ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 | 1975 ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 | 1976 ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 | 1977 ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 | 1978 ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO | 1979 ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR | 1980 DBFIFO_HP_INT | DBFIFO_LP_INT | 1981 EGRESS_SIZE_ERR); 1982 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK); 1983 t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf); 1984 } 1985 1986 /** 1987 * t4_intr_disable - disable interrupts 1988 * @adapter: the adapter whose interrupts should be disabled 1989 * 1990 * Disable interrupts. We only disable the top-level interrupt 1991 * concentrators. The caller must be a PCI function managing global 1992 * interrupts. 1993 */ 1994 void t4_intr_disable(struct adapter *adapter) 1995 { 1996 u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI)); 1997 1998 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0); 1999 t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0); 2000 } 2001 2002 /** 2003 * hash_mac_addr - return the hash value of a MAC address 2004 * @addr: the 48-bit Ethernet MAC address 2005 * 2006 * Hashes a MAC address according to the hash function used by HW inexact 2007 * (hash) address matching. 2008 */ 2009 static int hash_mac_addr(const u8 *addr) 2010 { 2011 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 2012 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 2013 a ^= b; 2014 a ^= (a >> 12); 2015 a ^= (a >> 6); 2016 return a & 0x3f; 2017 } 2018 2019 /** 2020 * t4_config_rss_range - configure a portion of the RSS mapping table 2021 * @adapter: the adapter 2022 * @mbox: mbox to use for the FW command 2023 * @viid: virtual interface whose RSS subtable is to be written 2024 * @start: start entry in the table to write 2025 * @n: how many table entries to write 2026 * @rspq: values for the response queue lookup table 2027 * @nrspq: number of values in @rspq 2028 * 2029 * Programs the selected part of the VI's RSS mapping table with the 2030 * provided values. If @nrspq < @n the supplied values are used repeatedly 2031 * until the full table range is populated. 2032 * 2033 * The caller must ensure the values in @rspq are in the range allowed for 2034 * @viid. 2035 */ 2036 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 2037 int start, int n, const u16 *rspq, unsigned int nrspq) 2038 { 2039 int ret; 2040 const u16 *rsp = rspq; 2041 const u16 *rsp_end = rspq + nrspq; 2042 struct fw_rss_ind_tbl_cmd cmd; 2043 2044 memset(&cmd, 0, sizeof(cmd)); 2045 cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 2046 FW_CMD_REQUEST | FW_CMD_WRITE | 2047 FW_RSS_IND_TBL_CMD_VIID(viid)); 2048 cmd.retval_len16 = htonl(FW_LEN16(cmd)); 2049 2050 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 2051 while (n > 0) { 2052 int nq = min(n, 32); 2053 __be32 *qp = &cmd.iq0_to_iq2; 2054 2055 cmd.niqid = htons(nq); 2056 cmd.startidx = htons(start); 2057 2058 start += nq; 2059 n -= nq; 2060 2061 while (nq > 0) { 2062 unsigned int v; 2063 2064 v = FW_RSS_IND_TBL_CMD_IQ0(*rsp); 2065 if (++rsp >= rsp_end) 2066 rsp = rspq; 2067 v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp); 2068 if (++rsp >= rsp_end) 2069 rsp = rspq; 2070 v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp); 2071 if (++rsp >= rsp_end) 2072 rsp = rspq; 2073 2074 *qp++ = htonl(v); 2075 nq -= 3; 2076 } 2077 2078 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 2079 if (ret) 2080 return ret; 2081 } 2082 return 0; 2083 } 2084 2085 /** 2086 * t4_config_glbl_rss - configure the global RSS mode 2087 * @adapter: the adapter 2088 * @mbox: mbox to use for the FW command 2089 * @mode: global RSS mode 2090 * @flags: mode-specific flags 2091 * 2092 * Sets the global RSS mode. 2093 */ 2094 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 2095 unsigned int flags) 2096 { 2097 struct fw_rss_glb_config_cmd c; 2098 2099 memset(&c, 0, sizeof(c)); 2100 c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 2101 FW_CMD_REQUEST | FW_CMD_WRITE); 2102 c.retval_len16 = htonl(FW_LEN16(c)); 2103 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 2104 c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 2105 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 2106 c.u.basicvirtual.mode_pkd = 2107 htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 2108 c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags); 2109 } else 2110 return -EINVAL; 2111 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 2112 } 2113 2114 /** 2115 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 2116 * @adap: the adapter 2117 * @v4: holds the TCP/IP counter values 2118 * @v6: holds the TCP/IPv6 counter values 2119 * 2120 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 2121 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 2122 */ 2123 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 2124 struct tp_tcp_stats *v6) 2125 { 2126 u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1]; 2127 2128 #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST) 2129 #define STAT(x) val[STAT_IDX(x)] 2130 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 2131 2132 if (v4) { 2133 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val, 2134 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST); 2135 v4->tcpOutRsts = STAT(OUT_RST); 2136 v4->tcpInSegs = STAT64(IN_SEG); 2137 v4->tcpOutSegs = STAT64(OUT_SEG); 2138 v4->tcpRetransSegs = STAT64(RXT_SEG); 2139 } 2140 if (v6) { 2141 t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val, 2142 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST); 2143 v6->tcpOutRsts = STAT(OUT_RST); 2144 v6->tcpInSegs = STAT64(IN_SEG); 2145 v6->tcpOutSegs = STAT64(OUT_SEG); 2146 v6->tcpRetransSegs = STAT64(RXT_SEG); 2147 } 2148 #undef STAT64 2149 #undef STAT 2150 #undef STAT_IDX 2151 } 2152 2153 /** 2154 * t4_read_mtu_tbl - returns the values in the HW path MTU table 2155 * @adap: the adapter 2156 * @mtus: where to store the MTU values 2157 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 2158 * 2159 * Reads the HW path MTU table. 2160 */ 2161 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 2162 { 2163 u32 v; 2164 int i; 2165 2166 for (i = 0; i < NMTUS; ++i) { 2167 t4_write_reg(adap, TP_MTU_TABLE, 2168 MTUINDEX(0xff) | MTUVALUE(i)); 2169 v = t4_read_reg(adap, TP_MTU_TABLE); 2170 mtus[i] = MTUVALUE_GET(v); 2171 if (mtu_log) 2172 mtu_log[i] = MTUWIDTH_GET(v); 2173 } 2174 } 2175 2176 /** 2177 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 2178 * @adap: the adapter 2179 * @addr: the indirect TP register address 2180 * @mask: specifies the field within the register to modify 2181 * @val: new value for the field 2182 * 2183 * Sets a field of an indirect TP register to the given value. 2184 */ 2185 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 2186 unsigned int mask, unsigned int val) 2187 { 2188 t4_write_reg(adap, TP_PIO_ADDR, addr); 2189 val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask; 2190 t4_write_reg(adap, TP_PIO_DATA, val); 2191 } 2192 2193 /** 2194 * init_cong_ctrl - initialize congestion control parameters 2195 * @a: the alpha values for congestion control 2196 * @b: the beta values for congestion control 2197 * 2198 * Initialize the congestion control parameters. 2199 */ 2200 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 2201 { 2202 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 2203 a[9] = 2; 2204 a[10] = 3; 2205 a[11] = 4; 2206 a[12] = 5; 2207 a[13] = 6; 2208 a[14] = 7; 2209 a[15] = 8; 2210 a[16] = 9; 2211 a[17] = 10; 2212 a[18] = 14; 2213 a[19] = 17; 2214 a[20] = 21; 2215 a[21] = 25; 2216 a[22] = 30; 2217 a[23] = 35; 2218 a[24] = 45; 2219 a[25] = 60; 2220 a[26] = 80; 2221 a[27] = 100; 2222 a[28] = 200; 2223 a[29] = 300; 2224 a[30] = 400; 2225 a[31] = 500; 2226 2227 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 2228 b[9] = b[10] = 1; 2229 b[11] = b[12] = 2; 2230 b[13] = b[14] = b[15] = b[16] = 3; 2231 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 2232 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 2233 b[28] = b[29] = 6; 2234 b[30] = b[31] = 7; 2235 } 2236 2237 /* The minimum additive increment value for the congestion control table */ 2238 #define CC_MIN_INCR 2U 2239 2240 /** 2241 * t4_load_mtus - write the MTU and congestion control HW tables 2242 * @adap: the adapter 2243 * @mtus: the values for the MTU table 2244 * @alpha: the values for the congestion control alpha parameter 2245 * @beta: the values for the congestion control beta parameter 2246 * 2247 * Write the HW MTU table with the supplied MTUs and the high-speed 2248 * congestion control table with the supplied alpha, beta, and MTUs. 2249 * We write the two tables together because the additive increments 2250 * depend on the MTUs. 2251 */ 2252 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 2253 const unsigned short *alpha, const unsigned short *beta) 2254 { 2255 static const unsigned int avg_pkts[NCCTRL_WIN] = { 2256 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 2257 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 2258 28672, 40960, 57344, 81920, 114688, 163840, 229376 2259 }; 2260 2261 unsigned int i, w; 2262 2263 for (i = 0; i < NMTUS; ++i) { 2264 unsigned int mtu = mtus[i]; 2265 unsigned int log2 = fls(mtu); 2266 2267 if (!(mtu & ((1 << log2) >> 2))) /* round */ 2268 log2--; 2269 t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) | 2270 MTUWIDTH(log2) | MTUVALUE(mtu)); 2271 2272 for (w = 0; w < NCCTRL_WIN; ++w) { 2273 unsigned int inc; 2274 2275 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 2276 CC_MIN_INCR); 2277 2278 t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) | 2279 (w << 16) | (beta[w] << 13) | inc); 2280 } 2281 } 2282 } 2283 2284 /** 2285 * get_mps_bg_map - return the buffer groups associated with a port 2286 * @adap: the adapter 2287 * @idx: the port index 2288 * 2289 * Returns a bitmap indicating which MPS buffer groups are associated 2290 * with the given port. Bit i is set if buffer group i is used by the 2291 * port. 2292 */ 2293 static unsigned int get_mps_bg_map(struct adapter *adap, int idx) 2294 { 2295 u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL)); 2296 2297 if (n == 0) 2298 return idx == 0 ? 0xf : 0; 2299 if (n == 1) 2300 return idx < 2 ? (3 << (2 * idx)) : 0; 2301 return 1 << idx; 2302 } 2303 2304 /** 2305 * t4_get_port_stats - collect port statistics 2306 * @adap: the adapter 2307 * @idx: the port index 2308 * @p: the stats structure to fill 2309 * 2310 * Collect statistics related to the given port from HW. 2311 */ 2312 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 2313 { 2314 u32 bgmap = get_mps_bg_map(adap, idx); 2315 2316 #define GET_STAT(name) \ 2317 t4_read_reg64(adap, \ 2318 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 2319 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 2320 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 2321 2322 p->tx_octets = GET_STAT(TX_PORT_BYTES); 2323 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 2324 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 2325 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 2326 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 2327 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 2328 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 2329 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 2330 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 2331 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 2332 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 2333 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 2334 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 2335 p->tx_drop = GET_STAT(TX_PORT_DROP); 2336 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 2337 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 2338 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 2339 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 2340 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 2341 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 2342 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 2343 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 2344 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 2345 2346 p->rx_octets = GET_STAT(RX_PORT_BYTES); 2347 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 2348 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 2349 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 2350 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 2351 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 2352 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 2353 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 2354 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 2355 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 2356 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 2357 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 2358 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 2359 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 2360 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 2361 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 2362 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 2363 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 2364 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 2365 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 2366 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 2367 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 2368 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 2369 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 2370 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 2371 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 2372 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 2373 2374 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 2375 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 2376 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 2377 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 2378 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 2379 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 2380 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 2381 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 2382 2383 #undef GET_STAT 2384 #undef GET_STAT_COM 2385 } 2386 2387 /** 2388 * t4_wol_magic_enable - enable/disable magic packet WoL 2389 * @adap: the adapter 2390 * @port: the physical port index 2391 * @addr: MAC address expected in magic packets, %NULL to disable 2392 * 2393 * Enables/disables magic packet wake-on-LAN for the selected port. 2394 */ 2395 void t4_wol_magic_enable(struct adapter *adap, unsigned int port, 2396 const u8 *addr) 2397 { 2398 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; 2399 2400 if (is_t4(adap->params.chip)) { 2401 mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO); 2402 mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI); 2403 port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2); 2404 } else { 2405 mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO); 2406 mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI); 2407 port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2); 2408 } 2409 2410 if (addr) { 2411 t4_write_reg(adap, mag_id_reg_l, 2412 (addr[2] << 24) | (addr[3] << 16) | 2413 (addr[4] << 8) | addr[5]); 2414 t4_write_reg(adap, mag_id_reg_h, 2415 (addr[0] << 8) | addr[1]); 2416 } 2417 t4_set_reg_field(adap, port_cfg_reg, MAGICEN, 2418 addr ? MAGICEN : 0); 2419 } 2420 2421 /** 2422 * t4_wol_pat_enable - enable/disable pattern-based WoL 2423 * @adap: the adapter 2424 * @port: the physical port index 2425 * @map: bitmap of which HW pattern filters to set 2426 * @mask0: byte mask for bytes 0-63 of a packet 2427 * @mask1: byte mask for bytes 64-127 of a packet 2428 * @crc: Ethernet CRC for selected bytes 2429 * @enable: enable/disable switch 2430 * 2431 * Sets the pattern filters indicated in @map to mask out the bytes 2432 * specified in @mask0/@mask1 in received packets and compare the CRC of 2433 * the resulting packet against @crc. If @enable is %true pattern-based 2434 * WoL is enabled, otherwise disabled. 2435 */ 2436 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, 2437 u64 mask0, u64 mask1, unsigned int crc, bool enable) 2438 { 2439 int i; 2440 u32 port_cfg_reg; 2441 2442 if (is_t4(adap->params.chip)) 2443 port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2); 2444 else 2445 port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2); 2446 2447 if (!enable) { 2448 t4_set_reg_field(adap, port_cfg_reg, PATEN, 0); 2449 return 0; 2450 } 2451 if (map > 0xff) 2452 return -EINVAL; 2453 2454 #define EPIO_REG(name) \ 2455 (is_t4(adap->params.chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \ 2456 T5_PORT_REG(port, MAC_PORT_EPIO_##name)) 2457 2458 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); 2459 t4_write_reg(adap, EPIO_REG(DATA2), mask1); 2460 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); 2461 2462 for (i = 0; i < NWOL_PAT; i++, map >>= 1) { 2463 if (!(map & 1)) 2464 continue; 2465 2466 /* write byte masks */ 2467 t4_write_reg(adap, EPIO_REG(DATA0), mask0); 2468 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR); 2469 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 2470 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY) 2471 return -ETIMEDOUT; 2472 2473 /* write CRC */ 2474 t4_write_reg(adap, EPIO_REG(DATA0), crc); 2475 t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR); 2476 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 2477 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY) 2478 return -ETIMEDOUT; 2479 } 2480 #undef EPIO_REG 2481 2482 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN); 2483 return 0; 2484 } 2485 2486 /* t4_mk_filtdelwr - create a delete filter WR 2487 * @ftid: the filter ID 2488 * @wr: the filter work request to populate 2489 * @qid: ingress queue to receive the delete notification 2490 * 2491 * Creates a filter work request to delete the supplied filter. If @qid is 2492 * negative the delete notification is suppressed. 2493 */ 2494 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 2495 { 2496 memset(wr, 0, sizeof(*wr)); 2497 wr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR)); 2498 wr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*wr) / 16)); 2499 wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) | 2500 V_FW_FILTER_WR_NOREPLY(qid < 0)); 2501 wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER); 2502 if (qid >= 0) 2503 wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid)); 2504 } 2505 2506 #define INIT_CMD(var, cmd, rd_wr) do { \ 2507 (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \ 2508 FW_CMD_REQUEST | FW_CMD_##rd_wr); \ 2509 (var).retval_len16 = htonl(FW_LEN16(var)); \ 2510 } while (0) 2511 2512 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 2513 u32 addr, u32 val) 2514 { 2515 struct fw_ldst_cmd c; 2516 2517 memset(&c, 0, sizeof(c)); 2518 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST | 2519 FW_CMD_WRITE | 2520 FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE)); 2521 c.cycles_to_len16 = htonl(FW_LEN16(c)); 2522 c.u.addrval.addr = htonl(addr); 2523 c.u.addrval.val = htonl(val); 2524 2525 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2526 } 2527 2528 /** 2529 * t4_mem_win_read_len - read memory through PCIE memory window 2530 * @adap: the adapter 2531 * @addr: address of first byte requested aligned on 32b. 2532 * @data: len bytes to hold the data read 2533 * @len: amount of data to read from window. Must be <= 2534 * MEMWIN0_APERATURE after adjusting for 16B for T4 and 2535 * 128B for T5 alignment requirements of the the memory window. 2536 * 2537 * Read len bytes of data from MC starting at @addr. 2538 */ 2539 int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len) 2540 { 2541 int i, off; 2542 u32 win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn); 2543 2544 /* Align on a 2KB boundary. 2545 */ 2546 off = addr & MEMWIN0_APERTURE; 2547 if ((addr & 3) || (len + off) > MEMWIN0_APERTURE) 2548 return -EINVAL; 2549 2550 t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, 2551 (addr & ~MEMWIN0_APERTURE) | win_pf); 2552 t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET); 2553 2554 for (i = 0; i < len; i += 4) 2555 *data++ = (__force __be32) t4_read_reg(adap, 2556 (MEMWIN0_BASE + off + i)); 2557 2558 return 0; 2559 } 2560 2561 /** 2562 * t4_mdio_rd - read a PHY register through MDIO 2563 * @adap: the adapter 2564 * @mbox: mailbox to use for the FW command 2565 * @phy_addr: the PHY address 2566 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 2567 * @reg: the register to read 2568 * @valp: where to store the value 2569 * 2570 * Issues a FW command through the given mailbox to read a PHY register. 2571 */ 2572 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 2573 unsigned int mmd, unsigned int reg, u16 *valp) 2574 { 2575 int ret; 2576 struct fw_ldst_cmd c; 2577 2578 memset(&c, 0, sizeof(c)); 2579 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST | 2580 FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO)); 2581 c.cycles_to_len16 = htonl(FW_LEN16(c)); 2582 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) | 2583 FW_LDST_CMD_MMD(mmd)); 2584 c.u.mdio.raddr = htons(reg); 2585 2586 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 2587 if (ret == 0) 2588 *valp = ntohs(c.u.mdio.rval); 2589 return ret; 2590 } 2591 2592 /** 2593 * t4_mdio_wr - write a PHY register through MDIO 2594 * @adap: the adapter 2595 * @mbox: mailbox to use for the FW command 2596 * @phy_addr: the PHY address 2597 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 2598 * @reg: the register to write 2599 * @valp: value to write 2600 * 2601 * Issues a FW command through the given mailbox to write a PHY register. 2602 */ 2603 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 2604 unsigned int mmd, unsigned int reg, u16 val) 2605 { 2606 struct fw_ldst_cmd c; 2607 2608 memset(&c, 0, sizeof(c)); 2609 c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST | 2610 FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO)); 2611 c.cycles_to_len16 = htonl(FW_LEN16(c)); 2612 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) | 2613 FW_LDST_CMD_MMD(mmd)); 2614 c.u.mdio.raddr = htons(reg); 2615 c.u.mdio.rval = htons(val); 2616 2617 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2618 } 2619 2620 /** 2621 * t4_fw_hello - establish communication with FW 2622 * @adap: the adapter 2623 * @mbox: mailbox to use for the FW command 2624 * @evt_mbox: mailbox to receive async FW events 2625 * @master: specifies the caller's willingness to be the device master 2626 * @state: returns the current device state (if non-NULL) 2627 * 2628 * Issues a command to establish communication with FW. Returns either 2629 * an error (negative integer) or the mailbox of the Master PF. 2630 */ 2631 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 2632 enum dev_master master, enum dev_state *state) 2633 { 2634 int ret; 2635 struct fw_hello_cmd c; 2636 u32 v; 2637 unsigned int master_mbox; 2638 int retries = FW_CMD_HELLO_RETRIES; 2639 2640 retry: 2641 memset(&c, 0, sizeof(c)); 2642 INIT_CMD(c, HELLO, WRITE); 2643 c.err_to_clearinit = htonl( 2644 FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | 2645 FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | 2646 FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : 2647 FW_HELLO_CMD_MBMASTER_MASK) | 2648 FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | 2649 FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) | 2650 FW_HELLO_CMD_CLEARINIT); 2651 2652 /* 2653 * Issue the HELLO command to the firmware. If it's not successful 2654 * but indicates that we got a "busy" or "timeout" condition, retry 2655 * the HELLO until we exhaust our retry limit. 2656 */ 2657 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 2658 if (ret < 0) { 2659 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 2660 goto retry; 2661 return ret; 2662 } 2663 2664 v = ntohl(c.err_to_clearinit); 2665 master_mbox = FW_HELLO_CMD_MBMASTER_GET(v); 2666 if (state) { 2667 if (v & FW_HELLO_CMD_ERR) 2668 *state = DEV_STATE_ERR; 2669 else if (v & FW_HELLO_CMD_INIT) 2670 *state = DEV_STATE_INIT; 2671 else 2672 *state = DEV_STATE_UNINIT; 2673 } 2674 2675 /* 2676 * If we're not the Master PF then we need to wait around for the 2677 * Master PF Driver to finish setting up the adapter. 2678 * 2679 * Note that we also do this wait if we're a non-Master-capable PF and 2680 * there is no current Master PF; a Master PF may show up momentarily 2681 * and we wouldn't want to fail pointlessly. (This can happen when an 2682 * OS loads lots of different drivers rapidly at the same time). In 2683 * this case, the Master PF returned by the firmware will be 2684 * FW_PCIE_FW_MASTER_MASK so the test below will work ... 2685 */ 2686 if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 && 2687 master_mbox != mbox) { 2688 int waiting = FW_CMD_HELLO_TIMEOUT; 2689 2690 /* 2691 * Wait for the firmware to either indicate an error or 2692 * initialized state. If we see either of these we bail out 2693 * and report the issue to the caller. If we exhaust the 2694 * "hello timeout" and we haven't exhausted our retries, try 2695 * again. Otherwise bail with a timeout error. 2696 */ 2697 for (;;) { 2698 u32 pcie_fw; 2699 2700 msleep(50); 2701 waiting -= 50; 2702 2703 /* 2704 * If neither Error nor Initialialized are indicated 2705 * by the firmware keep waiting till we exaust our 2706 * timeout ... and then retry if we haven't exhausted 2707 * our retries ... 2708 */ 2709 pcie_fw = t4_read_reg(adap, MA_PCIE_FW); 2710 if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) { 2711 if (waiting <= 0) { 2712 if (retries-- > 0) 2713 goto retry; 2714 2715 return -ETIMEDOUT; 2716 } 2717 continue; 2718 } 2719 2720 /* 2721 * We either have an Error or Initialized condition 2722 * report errors preferentially. 2723 */ 2724 if (state) { 2725 if (pcie_fw & FW_PCIE_FW_ERR) 2726 *state = DEV_STATE_ERR; 2727 else if (pcie_fw & FW_PCIE_FW_INIT) 2728 *state = DEV_STATE_INIT; 2729 } 2730 2731 /* 2732 * If we arrived before a Master PF was selected and 2733 * there's not a valid Master PF, grab its identity 2734 * for our caller. 2735 */ 2736 if (master_mbox == FW_PCIE_FW_MASTER_MASK && 2737 (pcie_fw & FW_PCIE_FW_MASTER_VLD)) 2738 master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw); 2739 break; 2740 } 2741 } 2742 2743 return master_mbox; 2744 } 2745 2746 /** 2747 * t4_fw_bye - end communication with FW 2748 * @adap: the adapter 2749 * @mbox: mailbox to use for the FW command 2750 * 2751 * Issues a command to terminate communication with FW. 2752 */ 2753 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 2754 { 2755 struct fw_bye_cmd c; 2756 2757 memset(&c, 0, sizeof(c)); 2758 INIT_CMD(c, BYE, WRITE); 2759 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2760 } 2761 2762 /** 2763 * t4_init_cmd - ask FW to initialize the device 2764 * @adap: the adapter 2765 * @mbox: mailbox to use for the FW command 2766 * 2767 * Issues a command to FW to partially initialize the device. This 2768 * performs initialization that generally doesn't depend on user input. 2769 */ 2770 int t4_early_init(struct adapter *adap, unsigned int mbox) 2771 { 2772 struct fw_initialize_cmd c; 2773 2774 memset(&c, 0, sizeof(c)); 2775 INIT_CMD(c, INITIALIZE, WRITE); 2776 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2777 } 2778 2779 /** 2780 * t4_fw_reset - issue a reset to FW 2781 * @adap: the adapter 2782 * @mbox: mailbox to use for the FW command 2783 * @reset: specifies the type of reset to perform 2784 * 2785 * Issues a reset command of the specified type to FW. 2786 */ 2787 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 2788 { 2789 struct fw_reset_cmd c; 2790 2791 memset(&c, 0, sizeof(c)); 2792 INIT_CMD(c, RESET, WRITE); 2793 c.val = htonl(reset); 2794 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2795 } 2796 2797 /** 2798 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 2799 * @adap: the adapter 2800 * @mbox: mailbox to use for the FW RESET command (if desired) 2801 * @force: force uP into RESET even if FW RESET command fails 2802 * 2803 * Issues a RESET command to firmware (if desired) with a HALT indication 2804 * and then puts the microprocessor into RESET state. The RESET command 2805 * will only be issued if a legitimate mailbox is provided (mbox <= 2806 * FW_PCIE_FW_MASTER_MASK). 2807 * 2808 * This is generally used in order for the host to safely manipulate the 2809 * adapter without fear of conflicting with whatever the firmware might 2810 * be doing. The only way out of this state is to RESTART the firmware 2811 * ... 2812 */ 2813 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 2814 { 2815 int ret = 0; 2816 2817 /* 2818 * If a legitimate mailbox is provided, issue a RESET command 2819 * with a HALT indication. 2820 */ 2821 if (mbox <= FW_PCIE_FW_MASTER_MASK) { 2822 struct fw_reset_cmd c; 2823 2824 memset(&c, 0, sizeof(c)); 2825 INIT_CMD(c, RESET, WRITE); 2826 c.val = htonl(PIORST | PIORSTMODE); 2827 c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U)); 2828 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 2829 } 2830 2831 /* 2832 * Normally we won't complete the operation if the firmware RESET 2833 * command fails but if our caller insists we'll go ahead and put the 2834 * uP into RESET. This can be useful if the firmware is hung or even 2835 * missing ... We'll have to take the risk of putting the uP into 2836 * RESET without the cooperation of firmware in that case. 2837 * 2838 * We also force the firmware's HALT flag to be on in case we bypassed 2839 * the firmware RESET command above or we're dealing with old firmware 2840 * which doesn't have the HALT capability. This will serve as a flag 2841 * for the incoming firmware to know that it's coming out of a HALT 2842 * rather than a RESET ... if it's new enough to understand that ... 2843 */ 2844 if (ret == 0 || force) { 2845 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST); 2846 t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 2847 FW_PCIE_FW_HALT); 2848 } 2849 2850 /* 2851 * And we always return the result of the firmware RESET command 2852 * even when we force the uP into RESET ... 2853 */ 2854 return ret; 2855 } 2856 2857 /** 2858 * t4_fw_restart - restart the firmware by taking the uP out of RESET 2859 * @adap: the adapter 2860 * @reset: if we want to do a RESET to restart things 2861 * 2862 * Restart firmware previously halted by t4_fw_halt(). On successful 2863 * return the previous PF Master remains as the new PF Master and there 2864 * is no need to issue a new HELLO command, etc. 2865 * 2866 * We do this in two ways: 2867 * 2868 * 1. If we're dealing with newer firmware we'll simply want to take 2869 * the chip's microprocessor out of RESET. This will cause the 2870 * firmware to start up from its start vector. And then we'll loop 2871 * until the firmware indicates it's started again (PCIE_FW.HALT 2872 * reset to 0) or we timeout. 2873 * 2874 * 2. If we're dealing with older firmware then we'll need to RESET 2875 * the chip since older firmware won't recognize the PCIE_FW.HALT 2876 * flag and automatically RESET itself on startup. 2877 */ 2878 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 2879 { 2880 if (reset) { 2881 /* 2882 * Since we're directing the RESET instead of the firmware 2883 * doing it automatically, we need to clear the PCIE_FW.HALT 2884 * bit. 2885 */ 2886 t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0); 2887 2888 /* 2889 * If we've been given a valid mailbox, first try to get the 2890 * firmware to do the RESET. If that works, great and we can 2891 * return success. Otherwise, if we haven't been given a 2892 * valid mailbox or the RESET command failed, fall back to 2893 * hitting the chip with a hammer. 2894 */ 2895 if (mbox <= FW_PCIE_FW_MASTER_MASK) { 2896 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0); 2897 msleep(100); 2898 if (t4_fw_reset(adap, mbox, 2899 PIORST | PIORSTMODE) == 0) 2900 return 0; 2901 } 2902 2903 t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE); 2904 msleep(2000); 2905 } else { 2906 int ms; 2907 2908 t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0); 2909 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 2910 if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT)) 2911 return 0; 2912 msleep(100); 2913 ms += 100; 2914 } 2915 return -ETIMEDOUT; 2916 } 2917 return 0; 2918 } 2919 2920 /** 2921 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 2922 * @adap: the adapter 2923 * @mbox: mailbox to use for the FW RESET command (if desired) 2924 * @fw_data: the firmware image to write 2925 * @size: image size 2926 * @force: force upgrade even if firmware doesn't cooperate 2927 * 2928 * Perform all of the steps necessary for upgrading an adapter's 2929 * firmware image. Normally this requires the cooperation of the 2930 * existing firmware in order to halt all existing activities 2931 * but if an invalid mailbox token is passed in we skip that step 2932 * (though we'll still put the adapter microprocessor into RESET in 2933 * that case). 2934 * 2935 * On successful return the new firmware will have been loaded and 2936 * the adapter will have been fully RESET losing all previous setup 2937 * state. On unsuccessful return the adapter may be completely hosed ... 2938 * positive errno indicates that the adapter is ~probably~ intact, a 2939 * negative errno indicates that things are looking bad ... 2940 */ 2941 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 2942 const u8 *fw_data, unsigned int size, int force) 2943 { 2944 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 2945 int reset, ret; 2946 2947 ret = t4_fw_halt(adap, mbox, force); 2948 if (ret < 0 && !force) 2949 return ret; 2950 2951 ret = t4_load_fw(adap, fw_data, size); 2952 if (ret < 0) 2953 return ret; 2954 2955 /* 2956 * Older versions of the firmware don't understand the new 2957 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 2958 * restart. So for newly loaded older firmware we'll have to do the 2959 * RESET for it so it starts up on a clean slate. We can tell if 2960 * the newly loaded firmware will handle this right by checking 2961 * its header flags to see if it advertises the capability. 2962 */ 2963 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 2964 return t4_fw_restart(adap, mbox, reset); 2965 } 2966 2967 2968 /** 2969 * t4_fw_config_file - setup an adapter via a Configuration File 2970 * @adap: the adapter 2971 * @mbox: mailbox to use for the FW command 2972 * @mtype: the memory type where the Configuration File is located 2973 * @maddr: the memory address where the Configuration File is located 2974 * @finiver: return value for CF [fini] version 2975 * @finicsum: return value for CF [fini] checksum 2976 * @cfcsum: return value for CF computed checksum 2977 * 2978 * Issue a command to get the firmware to process the Configuration 2979 * File located at the specified mtype/maddress. If the Configuration 2980 * File is processed successfully and return value pointers are 2981 * provided, the Configuration File "[fini] section version and 2982 * checksum values will be returned along with the computed checksum. 2983 * It's up to the caller to decide how it wants to respond to the 2984 * checksums not matching but it recommended that a prominant warning 2985 * be emitted in order to help people rapidly identify changed or 2986 * corrupted Configuration Files. 2987 * 2988 * Also note that it's possible to modify things like "niccaps", 2989 * "toecaps",etc. between processing the Configuration File and telling 2990 * the firmware to use the new configuration. Callers which want to 2991 * do this will need to "hand-roll" their own CAPS_CONFIGS commands for 2992 * Configuration Files if they want to do this. 2993 */ 2994 int t4_fw_config_file(struct adapter *adap, unsigned int mbox, 2995 unsigned int mtype, unsigned int maddr, 2996 u32 *finiver, u32 *finicsum, u32 *cfcsum) 2997 { 2998 struct fw_caps_config_cmd caps_cmd; 2999 int ret; 3000 3001 /* 3002 * Tell the firmware to process the indicated Configuration File. 3003 * If there are no errors and the caller has provided return value 3004 * pointers for the [fini] section version, checksum and computed 3005 * checksum, pass those back to the caller. 3006 */ 3007 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3008 caps_cmd.op_to_write = 3009 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3010 FW_CMD_REQUEST | 3011 FW_CMD_READ); 3012 caps_cmd.cfvalid_to_len16 = 3013 htonl(FW_CAPS_CONFIG_CMD_CFVALID | 3014 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 3015 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | 3016 FW_LEN16(caps_cmd)); 3017 ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd); 3018 if (ret < 0) 3019 return ret; 3020 3021 if (finiver) 3022 *finiver = ntohl(caps_cmd.finiver); 3023 if (finicsum) 3024 *finicsum = ntohl(caps_cmd.finicsum); 3025 if (cfcsum) 3026 *cfcsum = ntohl(caps_cmd.cfcsum); 3027 3028 /* 3029 * And now tell the firmware to use the configuration we just loaded. 3030 */ 3031 caps_cmd.op_to_write = 3032 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3033 FW_CMD_REQUEST | 3034 FW_CMD_WRITE); 3035 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3036 return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL); 3037 } 3038 3039 /** 3040 * t4_fixup_host_params - fix up host-dependent parameters 3041 * @adap: the adapter 3042 * @page_size: the host's Base Page Size 3043 * @cache_line_size: the host's Cache Line Size 3044 * 3045 * Various registers in T4 contain values which are dependent on the 3046 * host's Base Page and Cache Line Sizes. This function will fix all of 3047 * those registers with the appropriate values as passed in ... 3048 */ 3049 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 3050 unsigned int cache_line_size) 3051 { 3052 unsigned int page_shift = fls(page_size) - 1; 3053 unsigned int sge_hps = page_shift - 10; 3054 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 3055 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 3056 unsigned int fl_align_log = fls(fl_align) - 1; 3057 3058 t4_write_reg(adap, SGE_HOST_PAGE_SIZE, 3059 HOSTPAGESIZEPF0(sge_hps) | 3060 HOSTPAGESIZEPF1(sge_hps) | 3061 HOSTPAGESIZEPF2(sge_hps) | 3062 HOSTPAGESIZEPF3(sge_hps) | 3063 HOSTPAGESIZEPF4(sge_hps) | 3064 HOSTPAGESIZEPF5(sge_hps) | 3065 HOSTPAGESIZEPF6(sge_hps) | 3066 HOSTPAGESIZEPF7(sge_hps)); 3067 3068 t4_set_reg_field(adap, SGE_CONTROL, 3069 INGPADBOUNDARY_MASK | 3070 EGRSTATUSPAGESIZE_MASK, 3071 INGPADBOUNDARY(fl_align_log - 5) | 3072 EGRSTATUSPAGESIZE(stat_len != 64)); 3073 3074 /* 3075 * Adjust various SGE Free List Host Buffer Sizes. 3076 * 3077 * This is something of a crock since we're using fixed indices into 3078 * the array which are also known by the sge.c code and the T4 3079 * Firmware Configuration File. We need to come up with a much better 3080 * approach to managing this array. For now, the first four entries 3081 * are: 3082 * 3083 * 0: Host Page Size 3084 * 1: 64KB 3085 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 3086 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 3087 * 3088 * For the single-MTU buffers in unpacked mode we need to include 3089 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 3090 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 3091 * Padding boundry. All of these are accommodated in the Factory 3092 * Default Firmware Configuration File but we need to adjust it for 3093 * this host's cache line size. 3094 */ 3095 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size); 3096 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2, 3097 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1) 3098 & ~(fl_align-1)); 3099 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3, 3100 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1) 3101 & ~(fl_align-1)); 3102 3103 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12)); 3104 3105 return 0; 3106 } 3107 3108 /** 3109 * t4_fw_initialize - ask FW to initialize the device 3110 * @adap: the adapter 3111 * @mbox: mailbox to use for the FW command 3112 * 3113 * Issues a command to FW to partially initialize the device. This 3114 * performs initialization that generally doesn't depend on user input. 3115 */ 3116 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 3117 { 3118 struct fw_initialize_cmd c; 3119 3120 memset(&c, 0, sizeof(c)); 3121 INIT_CMD(c, INITIALIZE, WRITE); 3122 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3123 } 3124 3125 /** 3126 * t4_query_params - query FW or device parameters 3127 * @adap: the adapter 3128 * @mbox: mailbox to use for the FW command 3129 * @pf: the PF 3130 * @vf: the VF 3131 * @nparams: the number of parameters 3132 * @params: the parameter names 3133 * @val: the parameter values 3134 * 3135 * Reads the value of FW or device parameters. Up to 7 parameters can be 3136 * queried at once. 3137 */ 3138 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 3139 unsigned int vf, unsigned int nparams, const u32 *params, 3140 u32 *val) 3141 { 3142 int i, ret; 3143 struct fw_params_cmd c; 3144 __be32 *p = &c.param[0].mnem; 3145 3146 if (nparams > 7) 3147 return -EINVAL; 3148 3149 memset(&c, 0, sizeof(c)); 3150 c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST | 3151 FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) | 3152 FW_PARAMS_CMD_VFN(vf)); 3153 c.retval_len16 = htonl(FW_LEN16(c)); 3154 for (i = 0; i < nparams; i++, p += 2) 3155 *p = htonl(*params++); 3156 3157 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 3158 if (ret == 0) 3159 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 3160 *val++ = ntohl(*p); 3161 return ret; 3162 } 3163 3164 /** 3165 * t4_set_params - sets FW or device parameters 3166 * @adap: the adapter 3167 * @mbox: mailbox to use for the FW command 3168 * @pf: the PF 3169 * @vf: the VF 3170 * @nparams: the number of parameters 3171 * @params: the parameter names 3172 * @val: the parameter values 3173 * 3174 * Sets the value of FW or device parameters. Up to 7 parameters can be 3175 * specified at once. 3176 */ 3177 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 3178 unsigned int vf, unsigned int nparams, const u32 *params, 3179 const u32 *val) 3180 { 3181 struct fw_params_cmd c; 3182 __be32 *p = &c.param[0].mnem; 3183 3184 if (nparams > 7) 3185 return -EINVAL; 3186 3187 memset(&c, 0, sizeof(c)); 3188 c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST | 3189 FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) | 3190 FW_PARAMS_CMD_VFN(vf)); 3191 c.retval_len16 = htonl(FW_LEN16(c)); 3192 while (nparams--) { 3193 *p++ = htonl(*params++); 3194 *p++ = htonl(*val++); 3195 } 3196 3197 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3198 } 3199 3200 /** 3201 * t4_cfg_pfvf - configure PF/VF resource limits 3202 * @adap: the adapter 3203 * @mbox: mailbox to use for the FW command 3204 * @pf: the PF being configured 3205 * @vf: the VF being configured 3206 * @txq: the max number of egress queues 3207 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 3208 * @rxqi: the max number of interrupt-capable ingress queues 3209 * @rxq: the max number of interruptless ingress queues 3210 * @tc: the PCI traffic class 3211 * @vi: the max number of virtual interfaces 3212 * @cmask: the channel access rights mask for the PF/VF 3213 * @pmask: the port access rights mask for the PF/VF 3214 * @nexact: the maximum number of exact MPS filters 3215 * @rcaps: read capabilities 3216 * @wxcaps: write/execute capabilities 3217 * 3218 * Configures resource limits and capabilities for a physical or virtual 3219 * function. 3220 */ 3221 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 3222 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 3223 unsigned int rxqi, unsigned int rxq, unsigned int tc, 3224 unsigned int vi, unsigned int cmask, unsigned int pmask, 3225 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 3226 { 3227 struct fw_pfvf_cmd c; 3228 3229 memset(&c, 0, sizeof(c)); 3230 c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST | 3231 FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) | 3232 FW_PFVF_CMD_VFN(vf)); 3233 c.retval_len16 = htonl(FW_LEN16(c)); 3234 c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) | 3235 FW_PFVF_CMD_NIQ(rxq)); 3236 c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) | 3237 FW_PFVF_CMD_PMASK(pmask) | 3238 FW_PFVF_CMD_NEQ(txq)); 3239 c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) | 3240 FW_PFVF_CMD_NEXACTF(nexact)); 3241 c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) | 3242 FW_PFVF_CMD_WX_CAPS(wxcaps) | 3243 FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); 3244 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3245 } 3246 3247 /** 3248 * t4_alloc_vi - allocate a virtual interface 3249 * @adap: the adapter 3250 * @mbox: mailbox to use for the FW command 3251 * @port: physical port associated with the VI 3252 * @pf: the PF owning the VI 3253 * @vf: the VF owning the VI 3254 * @nmac: number of MAC addresses needed (1 to 5) 3255 * @mac: the MAC addresses of the VI 3256 * @rss_size: size of RSS table slice associated with this VI 3257 * 3258 * Allocates a virtual interface for the given physical port. If @mac is 3259 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 3260 * @mac should be large enough to hold @nmac Ethernet addresses, they are 3261 * stored consecutively so the space needed is @nmac * 6 bytes. 3262 * Returns a negative error number or the non-negative VI id. 3263 */ 3264 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 3265 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 3266 unsigned int *rss_size) 3267 { 3268 int ret; 3269 struct fw_vi_cmd c; 3270 3271 memset(&c, 0, sizeof(c)); 3272 c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST | 3273 FW_CMD_WRITE | FW_CMD_EXEC | 3274 FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf)); 3275 c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c)); 3276 c.portid_pkd = FW_VI_CMD_PORTID(port); 3277 c.nmac = nmac - 1; 3278 3279 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 3280 if (ret) 3281 return ret; 3282 3283 if (mac) { 3284 memcpy(mac, c.mac, sizeof(c.mac)); 3285 switch (nmac) { 3286 case 5: 3287 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 3288 case 4: 3289 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 3290 case 3: 3291 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 3292 case 2: 3293 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 3294 } 3295 } 3296 if (rss_size) 3297 *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd)); 3298 return FW_VI_CMD_VIID_GET(ntohs(c.type_viid)); 3299 } 3300 3301 /** 3302 * t4_set_rxmode - set Rx properties of a virtual interface 3303 * @adap: the adapter 3304 * @mbox: mailbox to use for the FW command 3305 * @viid: the VI id 3306 * @mtu: the new MTU or -1 3307 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 3308 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 3309 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 3310 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 3311 * @sleep_ok: if true we may sleep while awaiting command completion 3312 * 3313 * Sets Rx properties of a virtual interface. 3314 */ 3315 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 3316 int mtu, int promisc, int all_multi, int bcast, int vlanex, 3317 bool sleep_ok) 3318 { 3319 struct fw_vi_rxmode_cmd c; 3320 3321 /* convert to FW values */ 3322 if (mtu < 0) 3323 mtu = FW_RXMODE_MTU_NO_CHG; 3324 if (promisc < 0) 3325 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK; 3326 if (all_multi < 0) 3327 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK; 3328 if (bcast < 0) 3329 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK; 3330 if (vlanex < 0) 3331 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK; 3332 3333 memset(&c, 0, sizeof(c)); 3334 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST | 3335 FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid)); 3336 c.retval_len16 = htonl(FW_LEN16(c)); 3337 c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) | 3338 FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 3339 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 3340 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 3341 FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 3342 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 3343 } 3344 3345 /** 3346 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 3347 * @adap: the adapter 3348 * @mbox: mailbox to use for the FW command 3349 * @viid: the VI id 3350 * @free: if true any existing filters for this VI id are first removed 3351 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 3352 * @addr: the MAC address(es) 3353 * @idx: where to store the index of each allocated filter 3354 * @hash: pointer to hash address filter bitmap 3355 * @sleep_ok: call is allowed to sleep 3356 * 3357 * Allocates an exact-match filter for each of the supplied addresses and 3358 * sets it to the corresponding address. If @idx is not %NULL it should 3359 * have at least @naddr entries, each of which will be set to the index of 3360 * the filter allocated for the corresponding MAC address. If a filter 3361 * could not be allocated for an address its index is set to 0xffff. 3362 * If @hash is not %NULL addresses that fail to allocate an exact filter 3363 * are hashed and update the hash filter bitmap pointed at by @hash. 3364 * 3365 * Returns a negative error number or the number of filters allocated. 3366 */ 3367 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 3368 unsigned int viid, bool free, unsigned int naddr, 3369 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 3370 { 3371 int i, ret; 3372 struct fw_vi_mac_cmd c; 3373 struct fw_vi_mac_exact *p; 3374 unsigned int max_naddr = is_t4(adap->params.chip) ? 3375 NUM_MPS_CLS_SRAM_L_INSTANCES : 3376 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 3377 3378 if (naddr > 7) 3379 return -EINVAL; 3380 3381 memset(&c, 0, sizeof(c)); 3382 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST | 3383 FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) | 3384 FW_VI_MAC_CMD_VIID(viid)); 3385 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) | 3386 FW_CMD_LEN16((naddr + 2) / 2)); 3387 3388 for (i = 0, p = c.u.exact; i < naddr; i++, p++) { 3389 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID | 3390 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 3391 memcpy(p->macaddr, addr[i], sizeof(p->macaddr)); 3392 } 3393 3394 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 3395 if (ret) 3396 return ret; 3397 3398 for (i = 0, p = c.u.exact; i < naddr; i++, p++) { 3399 u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx)); 3400 3401 if (idx) 3402 idx[i] = index >= max_naddr ? 0xffff : index; 3403 if (index < max_naddr) 3404 ret++; 3405 else if (hash) 3406 *hash |= (1ULL << hash_mac_addr(addr[i])); 3407 } 3408 return ret; 3409 } 3410 3411 /** 3412 * t4_change_mac - modifies the exact-match filter for a MAC address 3413 * @adap: the adapter 3414 * @mbox: mailbox to use for the FW command 3415 * @viid: the VI id 3416 * @idx: index of existing filter for old value of MAC address, or -1 3417 * @addr: the new MAC address value 3418 * @persist: whether a new MAC allocation should be persistent 3419 * @add_smt: if true also add the address to the HW SMT 3420 * 3421 * Modifies an exact-match filter and sets it to the new MAC address. 3422 * Note that in general it is not possible to modify the value of a given 3423 * filter so the generic way to modify an address filter is to free the one 3424 * being used by the old address value and allocate a new filter for the 3425 * new address value. @idx can be -1 if the address is a new addition. 3426 * 3427 * Returns a negative error number or the index of the filter with the new 3428 * MAC value. 3429 */ 3430 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 3431 int idx, const u8 *addr, bool persist, bool add_smt) 3432 { 3433 int ret, mode; 3434 struct fw_vi_mac_cmd c; 3435 struct fw_vi_mac_exact *p = c.u.exact; 3436 unsigned int max_mac_addr = is_t4(adap->params.chip) ? 3437 NUM_MPS_CLS_SRAM_L_INSTANCES : 3438 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 3439 3440 if (idx < 0) /* new allocation */ 3441 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 3442 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 3443 3444 memset(&c, 0, sizeof(c)); 3445 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST | 3446 FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid)); 3447 c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1)); 3448 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID | 3449 FW_VI_MAC_CMD_SMAC_RESULT(mode) | 3450 FW_VI_MAC_CMD_IDX(idx)); 3451 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 3452 3453 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 3454 if (ret == 0) { 3455 ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx)); 3456 if (ret >= max_mac_addr) 3457 ret = -ENOMEM; 3458 } 3459 return ret; 3460 } 3461 3462 /** 3463 * t4_set_addr_hash - program the MAC inexact-match hash filter 3464 * @adap: the adapter 3465 * @mbox: mailbox to use for the FW command 3466 * @viid: the VI id 3467 * @ucast: whether the hash filter should also match unicast addresses 3468 * @vec: the value to be written to the hash filter 3469 * @sleep_ok: call is allowed to sleep 3470 * 3471 * Sets the 64-bit inexact-match hash filter for a virtual interface. 3472 */ 3473 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 3474 bool ucast, u64 vec, bool sleep_ok) 3475 { 3476 struct fw_vi_mac_cmd c; 3477 3478 memset(&c, 0, sizeof(c)); 3479 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST | 3480 FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid)); 3481 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN | 3482 FW_VI_MAC_CMD_HASHUNIEN(ucast) | 3483 FW_CMD_LEN16(1)); 3484 c.u.hash.hashvec = cpu_to_be64(vec); 3485 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 3486 } 3487 3488 /** 3489 * t4_enable_vi - enable/disable a virtual interface 3490 * @adap: the adapter 3491 * @mbox: mailbox to use for the FW command 3492 * @viid: the VI id 3493 * @rx_en: 1=enable Rx, 0=disable Rx 3494 * @tx_en: 1=enable Tx, 0=disable Tx 3495 * 3496 * Enables/disables a virtual interface. 3497 */ 3498 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 3499 bool rx_en, bool tx_en) 3500 { 3501 struct fw_vi_enable_cmd c; 3502 3503 memset(&c, 0, sizeof(c)); 3504 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST | 3505 FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid)); 3506 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) | 3507 FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c)); 3508 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3509 } 3510 3511 /** 3512 * t4_identify_port - identify a VI's port by blinking its LED 3513 * @adap: the adapter 3514 * @mbox: mailbox to use for the FW command 3515 * @viid: the VI id 3516 * @nblinks: how many times to blink LED at 2.5 Hz 3517 * 3518 * Identifies a VI's port by blinking its LED. 3519 */ 3520 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 3521 unsigned int nblinks) 3522 { 3523 struct fw_vi_enable_cmd c; 3524 3525 memset(&c, 0, sizeof(c)); 3526 c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST | 3527 FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid)); 3528 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); 3529 c.blinkdur = htons(nblinks); 3530 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3531 } 3532 3533 /** 3534 * t4_iq_free - free an ingress queue and its FLs 3535 * @adap: the adapter 3536 * @mbox: mailbox to use for the FW command 3537 * @pf: the PF owning the queues 3538 * @vf: the VF owning the queues 3539 * @iqtype: the ingress queue type 3540 * @iqid: ingress queue id 3541 * @fl0id: FL0 queue id or 0xffff if no attached FL0 3542 * @fl1id: FL1 queue id or 0xffff if no attached FL1 3543 * 3544 * Frees an ingress queue and its associated FLs, if any. 3545 */ 3546 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 3547 unsigned int vf, unsigned int iqtype, unsigned int iqid, 3548 unsigned int fl0id, unsigned int fl1id) 3549 { 3550 struct fw_iq_cmd c; 3551 3552 memset(&c, 0, sizeof(c)); 3553 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST | 3554 FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) | 3555 FW_IQ_CMD_VFN(vf)); 3556 c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c)); 3557 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype)); 3558 c.iqid = htons(iqid); 3559 c.fl0id = htons(fl0id); 3560 c.fl1id = htons(fl1id); 3561 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3562 } 3563 3564 /** 3565 * t4_eth_eq_free - free an Ethernet egress queue 3566 * @adap: the adapter 3567 * @mbox: mailbox to use for the FW command 3568 * @pf: the PF owning the queue 3569 * @vf: the VF owning the queue 3570 * @eqid: egress queue id 3571 * 3572 * Frees an Ethernet egress queue. 3573 */ 3574 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 3575 unsigned int vf, unsigned int eqid) 3576 { 3577 struct fw_eq_eth_cmd c; 3578 3579 memset(&c, 0, sizeof(c)); 3580 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST | 3581 FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) | 3582 FW_EQ_ETH_CMD_VFN(vf)); 3583 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); 3584 c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid)); 3585 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3586 } 3587 3588 /** 3589 * t4_ctrl_eq_free - free a control egress queue 3590 * @adap: the adapter 3591 * @mbox: mailbox to use for the FW command 3592 * @pf: the PF owning the queue 3593 * @vf: the VF owning the queue 3594 * @eqid: egress queue id 3595 * 3596 * Frees a control egress queue. 3597 */ 3598 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 3599 unsigned int vf, unsigned int eqid) 3600 { 3601 struct fw_eq_ctrl_cmd c; 3602 3603 memset(&c, 0, sizeof(c)); 3604 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST | 3605 FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) | 3606 FW_EQ_CTRL_CMD_VFN(vf)); 3607 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); 3608 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid)); 3609 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3610 } 3611 3612 /** 3613 * t4_ofld_eq_free - free an offload egress queue 3614 * @adap: the adapter 3615 * @mbox: mailbox to use for the FW command 3616 * @pf: the PF owning the queue 3617 * @vf: the VF owning the queue 3618 * @eqid: egress queue id 3619 * 3620 * Frees a control egress queue. 3621 */ 3622 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 3623 unsigned int vf, unsigned int eqid) 3624 { 3625 struct fw_eq_ofld_cmd c; 3626 3627 memset(&c, 0, sizeof(c)); 3628 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST | 3629 FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) | 3630 FW_EQ_OFLD_CMD_VFN(vf)); 3631 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); 3632 c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid)); 3633 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3634 } 3635 3636 /** 3637 * t4_handle_fw_rpl - process a FW reply message 3638 * @adap: the adapter 3639 * @rpl: start of the FW message 3640 * 3641 * Processes a FW message, such as link state change messages. 3642 */ 3643 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 3644 { 3645 u8 opcode = *(const u8 *)rpl; 3646 3647 if (opcode == FW_PORT_CMD) { /* link/module state change message */ 3648 int speed = 0, fc = 0; 3649 const struct fw_port_cmd *p = (void *)rpl; 3650 int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid)); 3651 int port = adap->chan_map[chan]; 3652 struct port_info *pi = adap2pinfo(adap, port); 3653 struct link_config *lc = &pi->link_cfg; 3654 u32 stat = ntohl(p->u.info.lstatus_to_modtype); 3655 int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0; 3656 u32 mod = FW_PORT_CMD_MODTYPE_GET(stat); 3657 3658 if (stat & FW_PORT_CMD_RXPAUSE) 3659 fc |= PAUSE_RX; 3660 if (stat & FW_PORT_CMD_TXPAUSE) 3661 fc |= PAUSE_TX; 3662 if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 3663 speed = SPEED_100; 3664 else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 3665 speed = SPEED_1000; 3666 else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 3667 speed = SPEED_10000; 3668 3669 if (link_ok != lc->link_ok || speed != lc->speed || 3670 fc != lc->fc) { /* something changed */ 3671 lc->link_ok = link_ok; 3672 lc->speed = speed; 3673 lc->fc = fc; 3674 t4_os_link_changed(adap, port, link_ok); 3675 } 3676 if (mod != pi->mod_type) { 3677 pi->mod_type = mod; 3678 t4_os_portmod_changed(adap, port); 3679 } 3680 } 3681 return 0; 3682 } 3683 3684 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 3685 { 3686 u16 val; 3687 3688 if (pci_is_pcie(adapter->pdev)) { 3689 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 3690 p->speed = val & PCI_EXP_LNKSTA_CLS; 3691 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 3692 } 3693 } 3694 3695 /** 3696 * init_link_config - initialize a link's SW state 3697 * @lc: structure holding the link state 3698 * @caps: link capabilities 3699 * 3700 * Initializes the SW state maintained for each link, including the link's 3701 * capabilities and default speed/flow-control/autonegotiation settings. 3702 */ 3703 static void init_link_config(struct link_config *lc, unsigned int caps) 3704 { 3705 lc->supported = caps; 3706 lc->requested_speed = 0; 3707 lc->speed = 0; 3708 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 3709 if (lc->supported & FW_PORT_CAP_ANEG) { 3710 lc->advertising = lc->supported & ADVERT_MASK; 3711 lc->autoneg = AUTONEG_ENABLE; 3712 lc->requested_fc |= PAUSE_AUTONEG; 3713 } else { 3714 lc->advertising = 0; 3715 lc->autoneg = AUTONEG_DISABLE; 3716 } 3717 } 3718 3719 int t4_wait_dev_ready(struct adapter *adap) 3720 { 3721 if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff) 3722 return 0; 3723 msleep(500); 3724 return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO; 3725 } 3726 3727 static int get_flash_params(struct adapter *adap) 3728 { 3729 int ret; 3730 u32 info; 3731 3732 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 3733 if (!ret) 3734 ret = sf1_read(adap, 3, 0, 1, &info); 3735 t4_write_reg(adap, SF_OP, 0); /* unlock SF */ 3736 if (ret) 3737 return ret; 3738 3739 if ((info & 0xff) != 0x20) /* not a Numonix flash */ 3740 return -EINVAL; 3741 info >>= 16; /* log2 of size */ 3742 if (info >= 0x14 && info < 0x18) 3743 adap->params.sf_nsec = 1 << (info - 16); 3744 else if (info == 0x18) 3745 adap->params.sf_nsec = 64; 3746 else 3747 return -EINVAL; 3748 adap->params.sf_size = 1 << info; 3749 adap->params.sf_fw_start = 3750 t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK; 3751 return 0; 3752 } 3753 3754 /** 3755 * t4_prep_adapter - prepare SW and HW for operation 3756 * @adapter: the adapter 3757 * @reset: if true perform a HW reset 3758 * 3759 * Initialize adapter SW state for the various HW modules, set initial 3760 * values for some adapter tunables, take PHYs out of reset, and 3761 * initialize the MDIO interface. 3762 */ 3763 int t4_prep_adapter(struct adapter *adapter) 3764 { 3765 int ret, ver; 3766 uint16_t device_id; 3767 u32 pl_rev; 3768 3769 ret = t4_wait_dev_ready(adapter); 3770 if (ret < 0) 3771 return ret; 3772 3773 get_pci_mode(adapter, &adapter->params.pci); 3774 pl_rev = G_REV(t4_read_reg(adapter, PL_REV)); 3775 3776 ret = get_flash_params(adapter); 3777 if (ret < 0) { 3778 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 3779 return ret; 3780 } 3781 3782 /* Retrieve adapter's device ID 3783 */ 3784 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 3785 ver = device_id >> 12; 3786 adapter->params.chip = 0; 3787 switch (ver) { 3788 case CHELSIO_T4: 3789 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 3790 break; 3791 case CHELSIO_T5: 3792 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 3793 break; 3794 default: 3795 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3796 device_id); 3797 return -EINVAL; 3798 } 3799 3800 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 3801 3802 /* 3803 * Default port for debugging in case we can't reach FW. 3804 */ 3805 adapter->params.nports = 1; 3806 adapter->params.portvec = 1; 3807 adapter->params.vpd.cclk = 50000; 3808 return 0; 3809 } 3810 3811 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 3812 { 3813 u8 addr[6]; 3814 int ret, i, j = 0; 3815 struct fw_port_cmd c; 3816 struct fw_rss_vi_config_cmd rvc; 3817 3818 memset(&c, 0, sizeof(c)); 3819 memset(&rvc, 0, sizeof(rvc)); 3820 3821 for_each_port(adap, i) { 3822 unsigned int rss_size; 3823 struct port_info *p = adap2pinfo(adap, i); 3824 3825 while ((adap->params.portvec & (1 << j)) == 0) 3826 j++; 3827 3828 c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | 3829 FW_CMD_REQUEST | FW_CMD_READ | 3830 FW_PORT_CMD_PORTID(j)); 3831 c.action_to_len16 = htonl( 3832 FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) | 3833 FW_LEN16(c)); 3834 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 3835 if (ret) 3836 return ret; 3837 3838 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); 3839 if (ret < 0) 3840 return ret; 3841 3842 p->viid = ret; 3843 p->tx_chan = j; 3844 p->lport = j; 3845 p->rss_size = rss_size; 3846 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 3847 3848 ret = ntohl(c.u.info.lstatus_to_modtype); 3849 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ? 3850 FW_PORT_CMD_MDIOADDR_GET(ret) : -1; 3851 p->port_type = FW_PORT_CMD_PTYPE_GET(ret); 3852 p->mod_type = FW_PORT_MOD_TYPE_NA; 3853 3854 rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 3855 FW_CMD_REQUEST | FW_CMD_READ | 3856 FW_RSS_VI_CONFIG_CMD_VIID(p->viid)); 3857 rvc.retval_len16 = htonl(FW_LEN16(rvc)); 3858 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 3859 if (ret) 3860 return ret; 3861 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen); 3862 3863 init_link_config(&p->link_cfg, ntohs(c.u.info.pcap)); 3864 j++; 3865 } 3866 return 0; 3867 } 3868