1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rearely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boudaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9820, 0x983c,
1383 		0x9850, 0x9864,
1384 		0x9c00, 0x9c6c,
1385 		0x9c80, 0x9cec,
1386 		0x9d00, 0x9d6c,
1387 		0x9d80, 0x9dec,
1388 		0x9e00, 0x9e6c,
1389 		0x9e80, 0x9eec,
1390 		0x9f00, 0x9f6c,
1391 		0x9f80, 0xa020,
1392 		0xd004, 0xd004,
1393 		0xd010, 0xd03c,
1394 		0xdfc0, 0xdfe0,
1395 		0xe000, 0x1106c,
1396 		0x11074, 0x11088,
1397 		0x1109c, 0x1117c,
1398 		0x11190, 0x11204,
1399 		0x19040, 0x1906c,
1400 		0x19078, 0x19080,
1401 		0x1908c, 0x190e8,
1402 		0x190f0, 0x190f8,
1403 		0x19100, 0x19110,
1404 		0x19120, 0x19124,
1405 		0x19150, 0x19194,
1406 		0x1919c, 0x191b0,
1407 		0x191d0, 0x191e8,
1408 		0x19238, 0x19290,
1409 		0x193f8, 0x19428,
1410 		0x19430, 0x19444,
1411 		0x1944c, 0x1946c,
1412 		0x19474, 0x19474,
1413 		0x19490, 0x194cc,
1414 		0x194f0, 0x194f8,
1415 		0x19c00, 0x19c08,
1416 		0x19c10, 0x19c60,
1417 		0x19c94, 0x19ce4,
1418 		0x19cf0, 0x19d40,
1419 		0x19d50, 0x19d94,
1420 		0x19da0, 0x19de8,
1421 		0x19df0, 0x19e10,
1422 		0x19e50, 0x19e90,
1423 		0x19ea0, 0x19f24,
1424 		0x19f34, 0x19f34,
1425 		0x19f40, 0x19f50,
1426 		0x19f90, 0x19fb4,
1427 		0x19fc4, 0x19fe4,
1428 		0x1a000, 0x1a004,
1429 		0x1a010, 0x1a06c,
1430 		0x1a0b0, 0x1a0e4,
1431 		0x1a0ec, 0x1a0f8,
1432 		0x1a100, 0x1a108,
1433 		0x1a114, 0x1a120,
1434 		0x1a128, 0x1a130,
1435 		0x1a138, 0x1a138,
1436 		0x1a190, 0x1a1c4,
1437 		0x1a1fc, 0x1a1fc,
1438 		0x1e008, 0x1e00c,
1439 		0x1e040, 0x1e044,
1440 		0x1e04c, 0x1e04c,
1441 		0x1e284, 0x1e290,
1442 		0x1e2c0, 0x1e2c0,
1443 		0x1e2e0, 0x1e2e0,
1444 		0x1e300, 0x1e384,
1445 		0x1e3c0, 0x1e3c8,
1446 		0x1e408, 0x1e40c,
1447 		0x1e440, 0x1e444,
1448 		0x1e44c, 0x1e44c,
1449 		0x1e684, 0x1e690,
1450 		0x1e6c0, 0x1e6c0,
1451 		0x1e6e0, 0x1e6e0,
1452 		0x1e700, 0x1e784,
1453 		0x1e7c0, 0x1e7c8,
1454 		0x1e808, 0x1e80c,
1455 		0x1e840, 0x1e844,
1456 		0x1e84c, 0x1e84c,
1457 		0x1ea84, 0x1ea90,
1458 		0x1eac0, 0x1eac0,
1459 		0x1eae0, 0x1eae0,
1460 		0x1eb00, 0x1eb84,
1461 		0x1ebc0, 0x1ebc8,
1462 		0x1ec08, 0x1ec0c,
1463 		0x1ec40, 0x1ec44,
1464 		0x1ec4c, 0x1ec4c,
1465 		0x1ee84, 0x1ee90,
1466 		0x1eec0, 0x1eec0,
1467 		0x1eee0, 0x1eee0,
1468 		0x1ef00, 0x1ef84,
1469 		0x1efc0, 0x1efc8,
1470 		0x1f008, 0x1f00c,
1471 		0x1f040, 0x1f044,
1472 		0x1f04c, 0x1f04c,
1473 		0x1f284, 0x1f290,
1474 		0x1f2c0, 0x1f2c0,
1475 		0x1f2e0, 0x1f2e0,
1476 		0x1f300, 0x1f384,
1477 		0x1f3c0, 0x1f3c8,
1478 		0x1f408, 0x1f40c,
1479 		0x1f440, 0x1f444,
1480 		0x1f44c, 0x1f44c,
1481 		0x1f684, 0x1f690,
1482 		0x1f6c0, 0x1f6c0,
1483 		0x1f6e0, 0x1f6e0,
1484 		0x1f700, 0x1f784,
1485 		0x1f7c0, 0x1f7c8,
1486 		0x1f808, 0x1f80c,
1487 		0x1f840, 0x1f844,
1488 		0x1f84c, 0x1f84c,
1489 		0x1fa84, 0x1fa90,
1490 		0x1fac0, 0x1fac0,
1491 		0x1fae0, 0x1fae0,
1492 		0x1fb00, 0x1fb84,
1493 		0x1fbc0, 0x1fbc8,
1494 		0x1fc08, 0x1fc0c,
1495 		0x1fc40, 0x1fc44,
1496 		0x1fc4c, 0x1fc4c,
1497 		0x1fe84, 0x1fe90,
1498 		0x1fec0, 0x1fec0,
1499 		0x1fee0, 0x1fee0,
1500 		0x1ff00, 0x1ff84,
1501 		0x1ffc0, 0x1ffc8,
1502 		0x30000, 0x30030,
1503 		0x30100, 0x30144,
1504 		0x30190, 0x301a0,
1505 		0x301a8, 0x301b8,
1506 		0x301c4, 0x301c8,
1507 		0x301d0, 0x301d0,
1508 		0x30200, 0x30318,
1509 		0x30400, 0x304b4,
1510 		0x304c0, 0x3052c,
1511 		0x30540, 0x3061c,
1512 		0x30800, 0x30828,
1513 		0x30834, 0x30834,
1514 		0x308c0, 0x30908,
1515 		0x30910, 0x309ac,
1516 		0x30a00, 0x30a14,
1517 		0x30a1c, 0x30a2c,
1518 		0x30a44, 0x30a50,
1519 		0x30a74, 0x30a74,
1520 		0x30a7c, 0x30afc,
1521 		0x30b08, 0x30c24,
1522 		0x30d00, 0x30d00,
1523 		0x30d08, 0x30d14,
1524 		0x30d1c, 0x30d20,
1525 		0x30d3c, 0x30d3c,
1526 		0x30d48, 0x30d50,
1527 		0x31200, 0x3120c,
1528 		0x31220, 0x31220,
1529 		0x31240, 0x31240,
1530 		0x31600, 0x3160c,
1531 		0x31a00, 0x31a1c,
1532 		0x31e00, 0x31e20,
1533 		0x31e38, 0x31e3c,
1534 		0x31e80, 0x31e80,
1535 		0x31e88, 0x31ea8,
1536 		0x31eb0, 0x31eb4,
1537 		0x31ec8, 0x31ed4,
1538 		0x31fb8, 0x32004,
1539 		0x32200, 0x32200,
1540 		0x32208, 0x32240,
1541 		0x32248, 0x32280,
1542 		0x32288, 0x322c0,
1543 		0x322c8, 0x322fc,
1544 		0x32600, 0x32630,
1545 		0x32a00, 0x32abc,
1546 		0x32b00, 0x32b10,
1547 		0x32b20, 0x32b30,
1548 		0x32b40, 0x32b50,
1549 		0x32b60, 0x32b70,
1550 		0x33000, 0x33028,
1551 		0x33030, 0x33048,
1552 		0x33060, 0x33068,
1553 		0x33070, 0x3309c,
1554 		0x330f0, 0x33128,
1555 		0x33130, 0x33148,
1556 		0x33160, 0x33168,
1557 		0x33170, 0x3319c,
1558 		0x331f0, 0x33238,
1559 		0x33240, 0x33240,
1560 		0x33248, 0x33250,
1561 		0x3325c, 0x33264,
1562 		0x33270, 0x332b8,
1563 		0x332c0, 0x332e4,
1564 		0x332f8, 0x33338,
1565 		0x33340, 0x33340,
1566 		0x33348, 0x33350,
1567 		0x3335c, 0x33364,
1568 		0x33370, 0x333b8,
1569 		0x333c0, 0x333e4,
1570 		0x333f8, 0x33428,
1571 		0x33430, 0x33448,
1572 		0x33460, 0x33468,
1573 		0x33470, 0x3349c,
1574 		0x334f0, 0x33528,
1575 		0x33530, 0x33548,
1576 		0x33560, 0x33568,
1577 		0x33570, 0x3359c,
1578 		0x335f0, 0x33638,
1579 		0x33640, 0x33640,
1580 		0x33648, 0x33650,
1581 		0x3365c, 0x33664,
1582 		0x33670, 0x336b8,
1583 		0x336c0, 0x336e4,
1584 		0x336f8, 0x33738,
1585 		0x33740, 0x33740,
1586 		0x33748, 0x33750,
1587 		0x3375c, 0x33764,
1588 		0x33770, 0x337b8,
1589 		0x337c0, 0x337e4,
1590 		0x337f8, 0x337fc,
1591 		0x33814, 0x33814,
1592 		0x3382c, 0x3382c,
1593 		0x33880, 0x3388c,
1594 		0x338e8, 0x338ec,
1595 		0x33900, 0x33928,
1596 		0x33930, 0x33948,
1597 		0x33960, 0x33968,
1598 		0x33970, 0x3399c,
1599 		0x339f0, 0x33a38,
1600 		0x33a40, 0x33a40,
1601 		0x33a48, 0x33a50,
1602 		0x33a5c, 0x33a64,
1603 		0x33a70, 0x33ab8,
1604 		0x33ac0, 0x33ae4,
1605 		0x33af8, 0x33b10,
1606 		0x33b28, 0x33b28,
1607 		0x33b3c, 0x33b50,
1608 		0x33bf0, 0x33c10,
1609 		0x33c28, 0x33c28,
1610 		0x33c3c, 0x33c50,
1611 		0x33cf0, 0x33cfc,
1612 		0x34000, 0x34030,
1613 		0x34100, 0x34144,
1614 		0x34190, 0x341a0,
1615 		0x341a8, 0x341b8,
1616 		0x341c4, 0x341c8,
1617 		0x341d0, 0x341d0,
1618 		0x34200, 0x34318,
1619 		0x34400, 0x344b4,
1620 		0x344c0, 0x3452c,
1621 		0x34540, 0x3461c,
1622 		0x34800, 0x34828,
1623 		0x34834, 0x34834,
1624 		0x348c0, 0x34908,
1625 		0x34910, 0x349ac,
1626 		0x34a00, 0x34a14,
1627 		0x34a1c, 0x34a2c,
1628 		0x34a44, 0x34a50,
1629 		0x34a74, 0x34a74,
1630 		0x34a7c, 0x34afc,
1631 		0x34b08, 0x34c24,
1632 		0x34d00, 0x34d00,
1633 		0x34d08, 0x34d14,
1634 		0x34d1c, 0x34d20,
1635 		0x34d3c, 0x34d3c,
1636 		0x34d48, 0x34d50,
1637 		0x35200, 0x3520c,
1638 		0x35220, 0x35220,
1639 		0x35240, 0x35240,
1640 		0x35600, 0x3560c,
1641 		0x35a00, 0x35a1c,
1642 		0x35e00, 0x35e20,
1643 		0x35e38, 0x35e3c,
1644 		0x35e80, 0x35e80,
1645 		0x35e88, 0x35ea8,
1646 		0x35eb0, 0x35eb4,
1647 		0x35ec8, 0x35ed4,
1648 		0x35fb8, 0x36004,
1649 		0x36200, 0x36200,
1650 		0x36208, 0x36240,
1651 		0x36248, 0x36280,
1652 		0x36288, 0x362c0,
1653 		0x362c8, 0x362fc,
1654 		0x36600, 0x36630,
1655 		0x36a00, 0x36abc,
1656 		0x36b00, 0x36b10,
1657 		0x36b20, 0x36b30,
1658 		0x36b40, 0x36b50,
1659 		0x36b60, 0x36b70,
1660 		0x37000, 0x37028,
1661 		0x37030, 0x37048,
1662 		0x37060, 0x37068,
1663 		0x37070, 0x3709c,
1664 		0x370f0, 0x37128,
1665 		0x37130, 0x37148,
1666 		0x37160, 0x37168,
1667 		0x37170, 0x3719c,
1668 		0x371f0, 0x37238,
1669 		0x37240, 0x37240,
1670 		0x37248, 0x37250,
1671 		0x3725c, 0x37264,
1672 		0x37270, 0x372b8,
1673 		0x372c0, 0x372e4,
1674 		0x372f8, 0x37338,
1675 		0x37340, 0x37340,
1676 		0x37348, 0x37350,
1677 		0x3735c, 0x37364,
1678 		0x37370, 0x373b8,
1679 		0x373c0, 0x373e4,
1680 		0x373f8, 0x37428,
1681 		0x37430, 0x37448,
1682 		0x37460, 0x37468,
1683 		0x37470, 0x3749c,
1684 		0x374f0, 0x37528,
1685 		0x37530, 0x37548,
1686 		0x37560, 0x37568,
1687 		0x37570, 0x3759c,
1688 		0x375f0, 0x37638,
1689 		0x37640, 0x37640,
1690 		0x37648, 0x37650,
1691 		0x3765c, 0x37664,
1692 		0x37670, 0x376b8,
1693 		0x376c0, 0x376e4,
1694 		0x376f8, 0x37738,
1695 		0x37740, 0x37740,
1696 		0x37748, 0x37750,
1697 		0x3775c, 0x37764,
1698 		0x37770, 0x377b8,
1699 		0x377c0, 0x377e4,
1700 		0x377f8, 0x377fc,
1701 		0x37814, 0x37814,
1702 		0x3782c, 0x3782c,
1703 		0x37880, 0x3788c,
1704 		0x378e8, 0x378ec,
1705 		0x37900, 0x37928,
1706 		0x37930, 0x37948,
1707 		0x37960, 0x37968,
1708 		0x37970, 0x3799c,
1709 		0x379f0, 0x37a38,
1710 		0x37a40, 0x37a40,
1711 		0x37a48, 0x37a50,
1712 		0x37a5c, 0x37a64,
1713 		0x37a70, 0x37ab8,
1714 		0x37ac0, 0x37ae4,
1715 		0x37af8, 0x37b10,
1716 		0x37b28, 0x37b28,
1717 		0x37b3c, 0x37b50,
1718 		0x37bf0, 0x37c10,
1719 		0x37c28, 0x37c28,
1720 		0x37c3c, 0x37c50,
1721 		0x37cf0, 0x37cfc,
1722 		0x38000, 0x38030,
1723 		0x38100, 0x38144,
1724 		0x38190, 0x381a0,
1725 		0x381a8, 0x381b8,
1726 		0x381c4, 0x381c8,
1727 		0x381d0, 0x381d0,
1728 		0x38200, 0x38318,
1729 		0x38400, 0x384b4,
1730 		0x384c0, 0x3852c,
1731 		0x38540, 0x3861c,
1732 		0x38800, 0x38828,
1733 		0x38834, 0x38834,
1734 		0x388c0, 0x38908,
1735 		0x38910, 0x389ac,
1736 		0x38a00, 0x38a14,
1737 		0x38a1c, 0x38a2c,
1738 		0x38a44, 0x38a50,
1739 		0x38a74, 0x38a74,
1740 		0x38a7c, 0x38afc,
1741 		0x38b08, 0x38c24,
1742 		0x38d00, 0x38d00,
1743 		0x38d08, 0x38d14,
1744 		0x38d1c, 0x38d20,
1745 		0x38d3c, 0x38d3c,
1746 		0x38d48, 0x38d50,
1747 		0x39200, 0x3920c,
1748 		0x39220, 0x39220,
1749 		0x39240, 0x39240,
1750 		0x39600, 0x3960c,
1751 		0x39a00, 0x39a1c,
1752 		0x39e00, 0x39e20,
1753 		0x39e38, 0x39e3c,
1754 		0x39e80, 0x39e80,
1755 		0x39e88, 0x39ea8,
1756 		0x39eb0, 0x39eb4,
1757 		0x39ec8, 0x39ed4,
1758 		0x39fb8, 0x3a004,
1759 		0x3a200, 0x3a200,
1760 		0x3a208, 0x3a240,
1761 		0x3a248, 0x3a280,
1762 		0x3a288, 0x3a2c0,
1763 		0x3a2c8, 0x3a2fc,
1764 		0x3a600, 0x3a630,
1765 		0x3aa00, 0x3aabc,
1766 		0x3ab00, 0x3ab10,
1767 		0x3ab20, 0x3ab30,
1768 		0x3ab40, 0x3ab50,
1769 		0x3ab60, 0x3ab70,
1770 		0x3b000, 0x3b028,
1771 		0x3b030, 0x3b048,
1772 		0x3b060, 0x3b068,
1773 		0x3b070, 0x3b09c,
1774 		0x3b0f0, 0x3b128,
1775 		0x3b130, 0x3b148,
1776 		0x3b160, 0x3b168,
1777 		0x3b170, 0x3b19c,
1778 		0x3b1f0, 0x3b238,
1779 		0x3b240, 0x3b240,
1780 		0x3b248, 0x3b250,
1781 		0x3b25c, 0x3b264,
1782 		0x3b270, 0x3b2b8,
1783 		0x3b2c0, 0x3b2e4,
1784 		0x3b2f8, 0x3b338,
1785 		0x3b340, 0x3b340,
1786 		0x3b348, 0x3b350,
1787 		0x3b35c, 0x3b364,
1788 		0x3b370, 0x3b3b8,
1789 		0x3b3c0, 0x3b3e4,
1790 		0x3b3f8, 0x3b428,
1791 		0x3b430, 0x3b448,
1792 		0x3b460, 0x3b468,
1793 		0x3b470, 0x3b49c,
1794 		0x3b4f0, 0x3b528,
1795 		0x3b530, 0x3b548,
1796 		0x3b560, 0x3b568,
1797 		0x3b570, 0x3b59c,
1798 		0x3b5f0, 0x3b638,
1799 		0x3b640, 0x3b640,
1800 		0x3b648, 0x3b650,
1801 		0x3b65c, 0x3b664,
1802 		0x3b670, 0x3b6b8,
1803 		0x3b6c0, 0x3b6e4,
1804 		0x3b6f8, 0x3b738,
1805 		0x3b740, 0x3b740,
1806 		0x3b748, 0x3b750,
1807 		0x3b75c, 0x3b764,
1808 		0x3b770, 0x3b7b8,
1809 		0x3b7c0, 0x3b7e4,
1810 		0x3b7f8, 0x3b7fc,
1811 		0x3b814, 0x3b814,
1812 		0x3b82c, 0x3b82c,
1813 		0x3b880, 0x3b88c,
1814 		0x3b8e8, 0x3b8ec,
1815 		0x3b900, 0x3b928,
1816 		0x3b930, 0x3b948,
1817 		0x3b960, 0x3b968,
1818 		0x3b970, 0x3b99c,
1819 		0x3b9f0, 0x3ba38,
1820 		0x3ba40, 0x3ba40,
1821 		0x3ba48, 0x3ba50,
1822 		0x3ba5c, 0x3ba64,
1823 		0x3ba70, 0x3bab8,
1824 		0x3bac0, 0x3bae4,
1825 		0x3baf8, 0x3bb10,
1826 		0x3bb28, 0x3bb28,
1827 		0x3bb3c, 0x3bb50,
1828 		0x3bbf0, 0x3bc10,
1829 		0x3bc28, 0x3bc28,
1830 		0x3bc3c, 0x3bc50,
1831 		0x3bcf0, 0x3bcfc,
1832 		0x3c000, 0x3c030,
1833 		0x3c100, 0x3c144,
1834 		0x3c190, 0x3c1a0,
1835 		0x3c1a8, 0x3c1b8,
1836 		0x3c1c4, 0x3c1c8,
1837 		0x3c1d0, 0x3c1d0,
1838 		0x3c200, 0x3c318,
1839 		0x3c400, 0x3c4b4,
1840 		0x3c4c0, 0x3c52c,
1841 		0x3c540, 0x3c61c,
1842 		0x3c800, 0x3c828,
1843 		0x3c834, 0x3c834,
1844 		0x3c8c0, 0x3c908,
1845 		0x3c910, 0x3c9ac,
1846 		0x3ca00, 0x3ca14,
1847 		0x3ca1c, 0x3ca2c,
1848 		0x3ca44, 0x3ca50,
1849 		0x3ca74, 0x3ca74,
1850 		0x3ca7c, 0x3cafc,
1851 		0x3cb08, 0x3cc24,
1852 		0x3cd00, 0x3cd00,
1853 		0x3cd08, 0x3cd14,
1854 		0x3cd1c, 0x3cd20,
1855 		0x3cd3c, 0x3cd3c,
1856 		0x3cd48, 0x3cd50,
1857 		0x3d200, 0x3d20c,
1858 		0x3d220, 0x3d220,
1859 		0x3d240, 0x3d240,
1860 		0x3d600, 0x3d60c,
1861 		0x3da00, 0x3da1c,
1862 		0x3de00, 0x3de20,
1863 		0x3de38, 0x3de3c,
1864 		0x3de80, 0x3de80,
1865 		0x3de88, 0x3dea8,
1866 		0x3deb0, 0x3deb4,
1867 		0x3dec8, 0x3ded4,
1868 		0x3dfb8, 0x3e004,
1869 		0x3e200, 0x3e200,
1870 		0x3e208, 0x3e240,
1871 		0x3e248, 0x3e280,
1872 		0x3e288, 0x3e2c0,
1873 		0x3e2c8, 0x3e2fc,
1874 		0x3e600, 0x3e630,
1875 		0x3ea00, 0x3eabc,
1876 		0x3eb00, 0x3eb10,
1877 		0x3eb20, 0x3eb30,
1878 		0x3eb40, 0x3eb50,
1879 		0x3eb60, 0x3eb70,
1880 		0x3f000, 0x3f028,
1881 		0x3f030, 0x3f048,
1882 		0x3f060, 0x3f068,
1883 		0x3f070, 0x3f09c,
1884 		0x3f0f0, 0x3f128,
1885 		0x3f130, 0x3f148,
1886 		0x3f160, 0x3f168,
1887 		0x3f170, 0x3f19c,
1888 		0x3f1f0, 0x3f238,
1889 		0x3f240, 0x3f240,
1890 		0x3f248, 0x3f250,
1891 		0x3f25c, 0x3f264,
1892 		0x3f270, 0x3f2b8,
1893 		0x3f2c0, 0x3f2e4,
1894 		0x3f2f8, 0x3f338,
1895 		0x3f340, 0x3f340,
1896 		0x3f348, 0x3f350,
1897 		0x3f35c, 0x3f364,
1898 		0x3f370, 0x3f3b8,
1899 		0x3f3c0, 0x3f3e4,
1900 		0x3f3f8, 0x3f428,
1901 		0x3f430, 0x3f448,
1902 		0x3f460, 0x3f468,
1903 		0x3f470, 0x3f49c,
1904 		0x3f4f0, 0x3f528,
1905 		0x3f530, 0x3f548,
1906 		0x3f560, 0x3f568,
1907 		0x3f570, 0x3f59c,
1908 		0x3f5f0, 0x3f638,
1909 		0x3f640, 0x3f640,
1910 		0x3f648, 0x3f650,
1911 		0x3f65c, 0x3f664,
1912 		0x3f670, 0x3f6b8,
1913 		0x3f6c0, 0x3f6e4,
1914 		0x3f6f8, 0x3f738,
1915 		0x3f740, 0x3f740,
1916 		0x3f748, 0x3f750,
1917 		0x3f75c, 0x3f764,
1918 		0x3f770, 0x3f7b8,
1919 		0x3f7c0, 0x3f7e4,
1920 		0x3f7f8, 0x3f7fc,
1921 		0x3f814, 0x3f814,
1922 		0x3f82c, 0x3f82c,
1923 		0x3f880, 0x3f88c,
1924 		0x3f8e8, 0x3f8ec,
1925 		0x3f900, 0x3f928,
1926 		0x3f930, 0x3f948,
1927 		0x3f960, 0x3f968,
1928 		0x3f970, 0x3f99c,
1929 		0x3f9f0, 0x3fa38,
1930 		0x3fa40, 0x3fa40,
1931 		0x3fa48, 0x3fa50,
1932 		0x3fa5c, 0x3fa64,
1933 		0x3fa70, 0x3fab8,
1934 		0x3fac0, 0x3fae4,
1935 		0x3faf8, 0x3fb10,
1936 		0x3fb28, 0x3fb28,
1937 		0x3fb3c, 0x3fb50,
1938 		0x3fbf0, 0x3fc10,
1939 		0x3fc28, 0x3fc28,
1940 		0x3fc3c, 0x3fc50,
1941 		0x3fcf0, 0x3fcfc,
1942 		0x40000, 0x4000c,
1943 		0x40040, 0x40050,
1944 		0x40060, 0x40068,
1945 		0x4007c, 0x4008c,
1946 		0x40094, 0x400b0,
1947 		0x400c0, 0x40144,
1948 		0x40180, 0x4018c,
1949 		0x40200, 0x40254,
1950 		0x40260, 0x40264,
1951 		0x40270, 0x40288,
1952 		0x40290, 0x40298,
1953 		0x402ac, 0x402c8,
1954 		0x402d0, 0x402e0,
1955 		0x402f0, 0x402f0,
1956 		0x40300, 0x4033c,
1957 		0x403f8, 0x403fc,
1958 		0x41304, 0x413c4,
1959 		0x41400, 0x4140c,
1960 		0x41414, 0x4141c,
1961 		0x41480, 0x414d0,
1962 		0x44000, 0x44054,
1963 		0x4405c, 0x44078,
1964 		0x440c0, 0x44174,
1965 		0x44180, 0x441ac,
1966 		0x441b4, 0x441b8,
1967 		0x441c0, 0x44254,
1968 		0x4425c, 0x44278,
1969 		0x442c0, 0x44374,
1970 		0x44380, 0x443ac,
1971 		0x443b4, 0x443b8,
1972 		0x443c0, 0x44454,
1973 		0x4445c, 0x44478,
1974 		0x444c0, 0x44574,
1975 		0x44580, 0x445ac,
1976 		0x445b4, 0x445b8,
1977 		0x445c0, 0x44654,
1978 		0x4465c, 0x44678,
1979 		0x446c0, 0x44774,
1980 		0x44780, 0x447ac,
1981 		0x447b4, 0x447b8,
1982 		0x447c0, 0x44854,
1983 		0x4485c, 0x44878,
1984 		0x448c0, 0x44974,
1985 		0x44980, 0x449ac,
1986 		0x449b4, 0x449b8,
1987 		0x449c0, 0x449fc,
1988 		0x45000, 0x45004,
1989 		0x45010, 0x45030,
1990 		0x45040, 0x45060,
1991 		0x45068, 0x45068,
1992 		0x45080, 0x45084,
1993 		0x450a0, 0x450b0,
1994 		0x45200, 0x45204,
1995 		0x45210, 0x45230,
1996 		0x45240, 0x45260,
1997 		0x45268, 0x45268,
1998 		0x45280, 0x45284,
1999 		0x452a0, 0x452b0,
2000 		0x460c0, 0x460e4,
2001 		0x47000, 0x4703c,
2002 		0x47044, 0x4708c,
2003 		0x47200, 0x47250,
2004 		0x47400, 0x47408,
2005 		0x47414, 0x47420,
2006 		0x47600, 0x47618,
2007 		0x47800, 0x47814,
2008 		0x48000, 0x4800c,
2009 		0x48040, 0x48050,
2010 		0x48060, 0x48068,
2011 		0x4807c, 0x4808c,
2012 		0x48094, 0x480b0,
2013 		0x480c0, 0x48144,
2014 		0x48180, 0x4818c,
2015 		0x48200, 0x48254,
2016 		0x48260, 0x48264,
2017 		0x48270, 0x48288,
2018 		0x48290, 0x48298,
2019 		0x482ac, 0x482c8,
2020 		0x482d0, 0x482e0,
2021 		0x482f0, 0x482f0,
2022 		0x48300, 0x4833c,
2023 		0x483f8, 0x483fc,
2024 		0x49304, 0x493c4,
2025 		0x49400, 0x4940c,
2026 		0x49414, 0x4941c,
2027 		0x49480, 0x494d0,
2028 		0x4c000, 0x4c054,
2029 		0x4c05c, 0x4c078,
2030 		0x4c0c0, 0x4c174,
2031 		0x4c180, 0x4c1ac,
2032 		0x4c1b4, 0x4c1b8,
2033 		0x4c1c0, 0x4c254,
2034 		0x4c25c, 0x4c278,
2035 		0x4c2c0, 0x4c374,
2036 		0x4c380, 0x4c3ac,
2037 		0x4c3b4, 0x4c3b8,
2038 		0x4c3c0, 0x4c454,
2039 		0x4c45c, 0x4c478,
2040 		0x4c4c0, 0x4c574,
2041 		0x4c580, 0x4c5ac,
2042 		0x4c5b4, 0x4c5b8,
2043 		0x4c5c0, 0x4c654,
2044 		0x4c65c, 0x4c678,
2045 		0x4c6c0, 0x4c774,
2046 		0x4c780, 0x4c7ac,
2047 		0x4c7b4, 0x4c7b8,
2048 		0x4c7c0, 0x4c854,
2049 		0x4c85c, 0x4c878,
2050 		0x4c8c0, 0x4c974,
2051 		0x4c980, 0x4c9ac,
2052 		0x4c9b4, 0x4c9b8,
2053 		0x4c9c0, 0x4c9fc,
2054 		0x4d000, 0x4d004,
2055 		0x4d010, 0x4d030,
2056 		0x4d040, 0x4d060,
2057 		0x4d068, 0x4d068,
2058 		0x4d080, 0x4d084,
2059 		0x4d0a0, 0x4d0b0,
2060 		0x4d200, 0x4d204,
2061 		0x4d210, 0x4d230,
2062 		0x4d240, 0x4d260,
2063 		0x4d268, 0x4d268,
2064 		0x4d280, 0x4d284,
2065 		0x4d2a0, 0x4d2b0,
2066 		0x4e0c0, 0x4e0e4,
2067 		0x4f000, 0x4f03c,
2068 		0x4f044, 0x4f08c,
2069 		0x4f200, 0x4f250,
2070 		0x4f400, 0x4f408,
2071 		0x4f414, 0x4f420,
2072 		0x4f600, 0x4f618,
2073 		0x4f800, 0x4f814,
2074 		0x50000, 0x50084,
2075 		0x50090, 0x500cc,
2076 		0x50400, 0x50400,
2077 		0x50800, 0x50884,
2078 		0x50890, 0x508cc,
2079 		0x50c00, 0x50c00,
2080 		0x51000, 0x5101c,
2081 		0x51300, 0x51308,
2082 	};
2083 
2084 	static const unsigned int t6_reg_ranges[] = {
2085 		0x1008, 0x101c,
2086 		0x1024, 0x10a8,
2087 		0x10b4, 0x10f8,
2088 		0x1100, 0x1114,
2089 		0x111c, 0x112c,
2090 		0x1138, 0x113c,
2091 		0x1144, 0x114c,
2092 		0x1180, 0x1184,
2093 		0x1190, 0x1194,
2094 		0x11a0, 0x11a4,
2095 		0x11b0, 0x11b4,
2096 		0x11fc, 0x1274,
2097 		0x1280, 0x133c,
2098 		0x1800, 0x18fc,
2099 		0x3000, 0x302c,
2100 		0x3060, 0x30b0,
2101 		0x30b8, 0x30d8,
2102 		0x30e0, 0x30fc,
2103 		0x3140, 0x357c,
2104 		0x35a8, 0x35cc,
2105 		0x35ec, 0x35ec,
2106 		0x3600, 0x5624,
2107 		0x56cc, 0x56ec,
2108 		0x56f4, 0x5720,
2109 		0x5728, 0x575c,
2110 		0x580c, 0x5814,
2111 		0x5890, 0x589c,
2112 		0x58a4, 0x58ac,
2113 		0x58b8, 0x58bc,
2114 		0x5940, 0x595c,
2115 		0x5980, 0x598c,
2116 		0x59b0, 0x59c8,
2117 		0x59d0, 0x59dc,
2118 		0x59fc, 0x5a18,
2119 		0x5a60, 0x5a6c,
2120 		0x5a80, 0x5a8c,
2121 		0x5a94, 0x5a9c,
2122 		0x5b94, 0x5bfc,
2123 		0x5c10, 0x5e48,
2124 		0x5e50, 0x5e94,
2125 		0x5ea0, 0x5eb0,
2126 		0x5ec0, 0x5ec0,
2127 		0x5ec8, 0x5ed0,
2128 		0x5ee0, 0x5ee0,
2129 		0x5ef0, 0x5ef0,
2130 		0x5f00, 0x5f00,
2131 		0x6000, 0x6020,
2132 		0x6028, 0x6040,
2133 		0x6058, 0x609c,
2134 		0x60a8, 0x619c,
2135 		0x7700, 0x7798,
2136 		0x77c0, 0x7880,
2137 		0x78cc, 0x78fc,
2138 		0x7b00, 0x7b58,
2139 		0x7b60, 0x7b84,
2140 		0x7b8c, 0x7c54,
2141 		0x7d00, 0x7d38,
2142 		0x7d40, 0x7d84,
2143 		0x7d8c, 0x7ddc,
2144 		0x7de4, 0x7e04,
2145 		0x7e10, 0x7e1c,
2146 		0x7e24, 0x7e38,
2147 		0x7e40, 0x7e44,
2148 		0x7e4c, 0x7e78,
2149 		0x7e80, 0x7edc,
2150 		0x7ee8, 0x7efc,
2151 		0x8dc0, 0x8de4,
2152 		0x8df8, 0x8e04,
2153 		0x8e10, 0x8e84,
2154 		0x8ea0, 0x8f88,
2155 		0x8fb8, 0x9058,
2156 		0x9060, 0x9060,
2157 		0x9068, 0x90f8,
2158 		0x9100, 0x9124,
2159 		0x9400, 0x9470,
2160 		0x9600, 0x9600,
2161 		0x9608, 0x9638,
2162 		0x9640, 0x9704,
2163 		0x9710, 0x971c,
2164 		0x9800, 0x9808,
2165 		0x9820, 0x983c,
2166 		0x9850, 0x9864,
2167 		0x9c00, 0x9c6c,
2168 		0x9c80, 0x9cec,
2169 		0x9d00, 0x9d6c,
2170 		0x9d80, 0x9dec,
2171 		0x9e00, 0x9e6c,
2172 		0x9e80, 0x9eec,
2173 		0x9f00, 0x9f6c,
2174 		0x9f80, 0xa020,
2175 		0xd004, 0xd03c,
2176 		0xd100, 0xd118,
2177 		0xd200, 0xd214,
2178 		0xd220, 0xd234,
2179 		0xd240, 0xd254,
2180 		0xd260, 0xd274,
2181 		0xd280, 0xd294,
2182 		0xd2a0, 0xd2b4,
2183 		0xd2c0, 0xd2d4,
2184 		0xd2e0, 0xd2f4,
2185 		0xd300, 0xd31c,
2186 		0xdfc0, 0xdfe0,
2187 		0xe000, 0xf008,
2188 		0xf010, 0xf018,
2189 		0xf020, 0xf028,
2190 		0x11000, 0x11014,
2191 		0x11048, 0x1106c,
2192 		0x11074, 0x11088,
2193 		0x11098, 0x11120,
2194 		0x1112c, 0x1117c,
2195 		0x11190, 0x112e0,
2196 		0x11300, 0x1130c,
2197 		0x12000, 0x1206c,
2198 		0x19040, 0x1906c,
2199 		0x19078, 0x19080,
2200 		0x1908c, 0x190e8,
2201 		0x190f0, 0x190f8,
2202 		0x19100, 0x19110,
2203 		0x19120, 0x19124,
2204 		0x19150, 0x19194,
2205 		0x1919c, 0x191b0,
2206 		0x191d0, 0x191e8,
2207 		0x19238, 0x19290,
2208 		0x192a4, 0x192b0,
2209 		0x192bc, 0x192bc,
2210 		0x19348, 0x1934c,
2211 		0x193f8, 0x19418,
2212 		0x19420, 0x19428,
2213 		0x19430, 0x19444,
2214 		0x1944c, 0x1946c,
2215 		0x19474, 0x19474,
2216 		0x19490, 0x194cc,
2217 		0x194f0, 0x194f8,
2218 		0x19c00, 0x19c48,
2219 		0x19c50, 0x19c80,
2220 		0x19c94, 0x19c98,
2221 		0x19ca0, 0x19cbc,
2222 		0x19ce4, 0x19ce4,
2223 		0x19cf0, 0x19cf8,
2224 		0x19d00, 0x19d28,
2225 		0x19d50, 0x19d78,
2226 		0x19d94, 0x19d98,
2227 		0x19da0, 0x19dc8,
2228 		0x19df0, 0x19e10,
2229 		0x19e50, 0x19e6c,
2230 		0x19ea0, 0x19ebc,
2231 		0x19ec4, 0x19ef4,
2232 		0x19f04, 0x19f2c,
2233 		0x19f34, 0x19f34,
2234 		0x19f40, 0x19f50,
2235 		0x19f90, 0x19fac,
2236 		0x19fc4, 0x19fc8,
2237 		0x19fd0, 0x19fe4,
2238 		0x1a000, 0x1a004,
2239 		0x1a010, 0x1a06c,
2240 		0x1a0b0, 0x1a0e4,
2241 		0x1a0ec, 0x1a0f8,
2242 		0x1a100, 0x1a108,
2243 		0x1a114, 0x1a120,
2244 		0x1a128, 0x1a130,
2245 		0x1a138, 0x1a138,
2246 		0x1a190, 0x1a1c4,
2247 		0x1a1fc, 0x1a1fc,
2248 		0x1e008, 0x1e00c,
2249 		0x1e040, 0x1e044,
2250 		0x1e04c, 0x1e04c,
2251 		0x1e284, 0x1e290,
2252 		0x1e2c0, 0x1e2c0,
2253 		0x1e2e0, 0x1e2e0,
2254 		0x1e300, 0x1e384,
2255 		0x1e3c0, 0x1e3c8,
2256 		0x1e408, 0x1e40c,
2257 		0x1e440, 0x1e444,
2258 		0x1e44c, 0x1e44c,
2259 		0x1e684, 0x1e690,
2260 		0x1e6c0, 0x1e6c0,
2261 		0x1e6e0, 0x1e6e0,
2262 		0x1e700, 0x1e784,
2263 		0x1e7c0, 0x1e7c8,
2264 		0x1e808, 0x1e80c,
2265 		0x1e840, 0x1e844,
2266 		0x1e84c, 0x1e84c,
2267 		0x1ea84, 0x1ea90,
2268 		0x1eac0, 0x1eac0,
2269 		0x1eae0, 0x1eae0,
2270 		0x1eb00, 0x1eb84,
2271 		0x1ebc0, 0x1ebc8,
2272 		0x1ec08, 0x1ec0c,
2273 		0x1ec40, 0x1ec44,
2274 		0x1ec4c, 0x1ec4c,
2275 		0x1ee84, 0x1ee90,
2276 		0x1eec0, 0x1eec0,
2277 		0x1eee0, 0x1eee0,
2278 		0x1ef00, 0x1ef84,
2279 		0x1efc0, 0x1efc8,
2280 		0x1f008, 0x1f00c,
2281 		0x1f040, 0x1f044,
2282 		0x1f04c, 0x1f04c,
2283 		0x1f284, 0x1f290,
2284 		0x1f2c0, 0x1f2c0,
2285 		0x1f2e0, 0x1f2e0,
2286 		0x1f300, 0x1f384,
2287 		0x1f3c0, 0x1f3c8,
2288 		0x1f408, 0x1f40c,
2289 		0x1f440, 0x1f444,
2290 		0x1f44c, 0x1f44c,
2291 		0x1f684, 0x1f690,
2292 		0x1f6c0, 0x1f6c0,
2293 		0x1f6e0, 0x1f6e0,
2294 		0x1f700, 0x1f784,
2295 		0x1f7c0, 0x1f7c8,
2296 		0x1f808, 0x1f80c,
2297 		0x1f840, 0x1f844,
2298 		0x1f84c, 0x1f84c,
2299 		0x1fa84, 0x1fa90,
2300 		0x1fac0, 0x1fac0,
2301 		0x1fae0, 0x1fae0,
2302 		0x1fb00, 0x1fb84,
2303 		0x1fbc0, 0x1fbc8,
2304 		0x1fc08, 0x1fc0c,
2305 		0x1fc40, 0x1fc44,
2306 		0x1fc4c, 0x1fc4c,
2307 		0x1fe84, 0x1fe90,
2308 		0x1fec0, 0x1fec0,
2309 		0x1fee0, 0x1fee0,
2310 		0x1ff00, 0x1ff84,
2311 		0x1ffc0, 0x1ffc8,
2312 		0x30000, 0x30030,
2313 		0x30100, 0x30168,
2314 		0x30190, 0x301a0,
2315 		0x301a8, 0x301b8,
2316 		0x301c4, 0x301c8,
2317 		0x301d0, 0x301d0,
2318 		0x30200, 0x30320,
2319 		0x30400, 0x304b4,
2320 		0x304c0, 0x3052c,
2321 		0x30540, 0x3061c,
2322 		0x30800, 0x308a0,
2323 		0x308c0, 0x30908,
2324 		0x30910, 0x309b8,
2325 		0x30a00, 0x30a04,
2326 		0x30a0c, 0x30a14,
2327 		0x30a1c, 0x30a2c,
2328 		0x30a44, 0x30a50,
2329 		0x30a74, 0x30a74,
2330 		0x30a7c, 0x30afc,
2331 		0x30b08, 0x30c24,
2332 		0x30d00, 0x30d14,
2333 		0x30d1c, 0x30d3c,
2334 		0x30d44, 0x30d4c,
2335 		0x30d54, 0x30d74,
2336 		0x30d7c, 0x30d7c,
2337 		0x30de0, 0x30de0,
2338 		0x30e00, 0x30ed4,
2339 		0x30f00, 0x30fa4,
2340 		0x30fc0, 0x30fc4,
2341 		0x31000, 0x31004,
2342 		0x31080, 0x310fc,
2343 		0x31208, 0x31220,
2344 		0x3123c, 0x31254,
2345 		0x31300, 0x31300,
2346 		0x31308, 0x3131c,
2347 		0x31338, 0x3133c,
2348 		0x31380, 0x31380,
2349 		0x31388, 0x313a8,
2350 		0x313b4, 0x313b4,
2351 		0x31400, 0x31420,
2352 		0x31438, 0x3143c,
2353 		0x31480, 0x31480,
2354 		0x314a8, 0x314a8,
2355 		0x314b0, 0x314b4,
2356 		0x314c8, 0x314d4,
2357 		0x31a40, 0x31a4c,
2358 		0x31af0, 0x31b20,
2359 		0x31b38, 0x31b3c,
2360 		0x31b80, 0x31b80,
2361 		0x31ba8, 0x31ba8,
2362 		0x31bb0, 0x31bb4,
2363 		0x31bc8, 0x31bd4,
2364 		0x32140, 0x3218c,
2365 		0x321f0, 0x321f4,
2366 		0x32200, 0x32200,
2367 		0x32218, 0x32218,
2368 		0x32400, 0x32400,
2369 		0x32408, 0x3241c,
2370 		0x32618, 0x32620,
2371 		0x32664, 0x32664,
2372 		0x326a8, 0x326a8,
2373 		0x326ec, 0x326ec,
2374 		0x32a00, 0x32abc,
2375 		0x32b00, 0x32b18,
2376 		0x32b20, 0x32b38,
2377 		0x32b40, 0x32b58,
2378 		0x32b60, 0x32b78,
2379 		0x32c00, 0x32c00,
2380 		0x32c08, 0x32c3c,
2381 		0x33000, 0x3302c,
2382 		0x33034, 0x33050,
2383 		0x33058, 0x33058,
2384 		0x33060, 0x3308c,
2385 		0x3309c, 0x330ac,
2386 		0x330c0, 0x330c0,
2387 		0x330c8, 0x330d0,
2388 		0x330d8, 0x330e0,
2389 		0x330ec, 0x3312c,
2390 		0x33134, 0x33150,
2391 		0x33158, 0x33158,
2392 		0x33160, 0x3318c,
2393 		0x3319c, 0x331ac,
2394 		0x331c0, 0x331c0,
2395 		0x331c8, 0x331d0,
2396 		0x331d8, 0x331e0,
2397 		0x331ec, 0x33290,
2398 		0x33298, 0x332c4,
2399 		0x332e4, 0x33390,
2400 		0x33398, 0x333c4,
2401 		0x333e4, 0x3342c,
2402 		0x33434, 0x33450,
2403 		0x33458, 0x33458,
2404 		0x33460, 0x3348c,
2405 		0x3349c, 0x334ac,
2406 		0x334c0, 0x334c0,
2407 		0x334c8, 0x334d0,
2408 		0x334d8, 0x334e0,
2409 		0x334ec, 0x3352c,
2410 		0x33534, 0x33550,
2411 		0x33558, 0x33558,
2412 		0x33560, 0x3358c,
2413 		0x3359c, 0x335ac,
2414 		0x335c0, 0x335c0,
2415 		0x335c8, 0x335d0,
2416 		0x335d8, 0x335e0,
2417 		0x335ec, 0x33690,
2418 		0x33698, 0x336c4,
2419 		0x336e4, 0x33790,
2420 		0x33798, 0x337c4,
2421 		0x337e4, 0x337fc,
2422 		0x33814, 0x33814,
2423 		0x33854, 0x33868,
2424 		0x33880, 0x3388c,
2425 		0x338c0, 0x338d0,
2426 		0x338e8, 0x338ec,
2427 		0x33900, 0x3392c,
2428 		0x33934, 0x33950,
2429 		0x33958, 0x33958,
2430 		0x33960, 0x3398c,
2431 		0x3399c, 0x339ac,
2432 		0x339c0, 0x339c0,
2433 		0x339c8, 0x339d0,
2434 		0x339d8, 0x339e0,
2435 		0x339ec, 0x33a90,
2436 		0x33a98, 0x33ac4,
2437 		0x33ae4, 0x33b10,
2438 		0x33b24, 0x33b28,
2439 		0x33b38, 0x33b50,
2440 		0x33bf0, 0x33c10,
2441 		0x33c24, 0x33c28,
2442 		0x33c38, 0x33c50,
2443 		0x33cf0, 0x33cfc,
2444 		0x34000, 0x34030,
2445 		0x34100, 0x34168,
2446 		0x34190, 0x341a0,
2447 		0x341a8, 0x341b8,
2448 		0x341c4, 0x341c8,
2449 		0x341d0, 0x341d0,
2450 		0x34200, 0x34320,
2451 		0x34400, 0x344b4,
2452 		0x344c0, 0x3452c,
2453 		0x34540, 0x3461c,
2454 		0x34800, 0x348a0,
2455 		0x348c0, 0x34908,
2456 		0x34910, 0x349b8,
2457 		0x34a00, 0x34a04,
2458 		0x34a0c, 0x34a14,
2459 		0x34a1c, 0x34a2c,
2460 		0x34a44, 0x34a50,
2461 		0x34a74, 0x34a74,
2462 		0x34a7c, 0x34afc,
2463 		0x34b08, 0x34c24,
2464 		0x34d00, 0x34d14,
2465 		0x34d1c, 0x34d3c,
2466 		0x34d44, 0x34d4c,
2467 		0x34d54, 0x34d74,
2468 		0x34d7c, 0x34d7c,
2469 		0x34de0, 0x34de0,
2470 		0x34e00, 0x34ed4,
2471 		0x34f00, 0x34fa4,
2472 		0x34fc0, 0x34fc4,
2473 		0x35000, 0x35004,
2474 		0x35080, 0x350fc,
2475 		0x35208, 0x35220,
2476 		0x3523c, 0x35254,
2477 		0x35300, 0x35300,
2478 		0x35308, 0x3531c,
2479 		0x35338, 0x3533c,
2480 		0x35380, 0x35380,
2481 		0x35388, 0x353a8,
2482 		0x353b4, 0x353b4,
2483 		0x35400, 0x35420,
2484 		0x35438, 0x3543c,
2485 		0x35480, 0x35480,
2486 		0x354a8, 0x354a8,
2487 		0x354b0, 0x354b4,
2488 		0x354c8, 0x354d4,
2489 		0x35a40, 0x35a4c,
2490 		0x35af0, 0x35b20,
2491 		0x35b38, 0x35b3c,
2492 		0x35b80, 0x35b80,
2493 		0x35ba8, 0x35ba8,
2494 		0x35bb0, 0x35bb4,
2495 		0x35bc8, 0x35bd4,
2496 		0x36140, 0x3618c,
2497 		0x361f0, 0x361f4,
2498 		0x36200, 0x36200,
2499 		0x36218, 0x36218,
2500 		0x36400, 0x36400,
2501 		0x36408, 0x3641c,
2502 		0x36618, 0x36620,
2503 		0x36664, 0x36664,
2504 		0x366a8, 0x366a8,
2505 		0x366ec, 0x366ec,
2506 		0x36a00, 0x36abc,
2507 		0x36b00, 0x36b18,
2508 		0x36b20, 0x36b38,
2509 		0x36b40, 0x36b58,
2510 		0x36b60, 0x36b78,
2511 		0x36c00, 0x36c00,
2512 		0x36c08, 0x36c3c,
2513 		0x37000, 0x3702c,
2514 		0x37034, 0x37050,
2515 		0x37058, 0x37058,
2516 		0x37060, 0x3708c,
2517 		0x3709c, 0x370ac,
2518 		0x370c0, 0x370c0,
2519 		0x370c8, 0x370d0,
2520 		0x370d8, 0x370e0,
2521 		0x370ec, 0x3712c,
2522 		0x37134, 0x37150,
2523 		0x37158, 0x37158,
2524 		0x37160, 0x3718c,
2525 		0x3719c, 0x371ac,
2526 		0x371c0, 0x371c0,
2527 		0x371c8, 0x371d0,
2528 		0x371d8, 0x371e0,
2529 		0x371ec, 0x37290,
2530 		0x37298, 0x372c4,
2531 		0x372e4, 0x37390,
2532 		0x37398, 0x373c4,
2533 		0x373e4, 0x3742c,
2534 		0x37434, 0x37450,
2535 		0x37458, 0x37458,
2536 		0x37460, 0x3748c,
2537 		0x3749c, 0x374ac,
2538 		0x374c0, 0x374c0,
2539 		0x374c8, 0x374d0,
2540 		0x374d8, 0x374e0,
2541 		0x374ec, 0x3752c,
2542 		0x37534, 0x37550,
2543 		0x37558, 0x37558,
2544 		0x37560, 0x3758c,
2545 		0x3759c, 0x375ac,
2546 		0x375c0, 0x375c0,
2547 		0x375c8, 0x375d0,
2548 		0x375d8, 0x375e0,
2549 		0x375ec, 0x37690,
2550 		0x37698, 0x376c4,
2551 		0x376e4, 0x37790,
2552 		0x37798, 0x377c4,
2553 		0x377e4, 0x377fc,
2554 		0x37814, 0x37814,
2555 		0x37854, 0x37868,
2556 		0x37880, 0x3788c,
2557 		0x378c0, 0x378d0,
2558 		0x378e8, 0x378ec,
2559 		0x37900, 0x3792c,
2560 		0x37934, 0x37950,
2561 		0x37958, 0x37958,
2562 		0x37960, 0x3798c,
2563 		0x3799c, 0x379ac,
2564 		0x379c0, 0x379c0,
2565 		0x379c8, 0x379d0,
2566 		0x379d8, 0x379e0,
2567 		0x379ec, 0x37a90,
2568 		0x37a98, 0x37ac4,
2569 		0x37ae4, 0x37b10,
2570 		0x37b24, 0x37b28,
2571 		0x37b38, 0x37b50,
2572 		0x37bf0, 0x37c10,
2573 		0x37c24, 0x37c28,
2574 		0x37c38, 0x37c50,
2575 		0x37cf0, 0x37cfc,
2576 		0x40040, 0x40040,
2577 		0x40080, 0x40084,
2578 		0x40100, 0x40100,
2579 		0x40140, 0x401bc,
2580 		0x40200, 0x40214,
2581 		0x40228, 0x40228,
2582 		0x40240, 0x40258,
2583 		0x40280, 0x40280,
2584 		0x40304, 0x40304,
2585 		0x40330, 0x4033c,
2586 		0x41304, 0x413c8,
2587 		0x413d0, 0x413dc,
2588 		0x413f0, 0x413f0,
2589 		0x41400, 0x4140c,
2590 		0x41414, 0x4141c,
2591 		0x41480, 0x414d0,
2592 		0x44000, 0x4407c,
2593 		0x440c0, 0x441ac,
2594 		0x441b4, 0x4427c,
2595 		0x442c0, 0x443ac,
2596 		0x443b4, 0x4447c,
2597 		0x444c0, 0x445ac,
2598 		0x445b4, 0x4467c,
2599 		0x446c0, 0x447ac,
2600 		0x447b4, 0x4487c,
2601 		0x448c0, 0x449ac,
2602 		0x449b4, 0x44a7c,
2603 		0x44ac0, 0x44bac,
2604 		0x44bb4, 0x44c7c,
2605 		0x44cc0, 0x44dac,
2606 		0x44db4, 0x44e7c,
2607 		0x44ec0, 0x44fac,
2608 		0x44fb4, 0x4507c,
2609 		0x450c0, 0x451ac,
2610 		0x451b4, 0x451fc,
2611 		0x45800, 0x45804,
2612 		0x45810, 0x45830,
2613 		0x45840, 0x45860,
2614 		0x45868, 0x45868,
2615 		0x45880, 0x45884,
2616 		0x458a0, 0x458b0,
2617 		0x45a00, 0x45a04,
2618 		0x45a10, 0x45a30,
2619 		0x45a40, 0x45a60,
2620 		0x45a68, 0x45a68,
2621 		0x45a80, 0x45a84,
2622 		0x45aa0, 0x45ab0,
2623 		0x460c0, 0x460e4,
2624 		0x47000, 0x4703c,
2625 		0x47044, 0x4708c,
2626 		0x47200, 0x47250,
2627 		0x47400, 0x47408,
2628 		0x47414, 0x47420,
2629 		0x47600, 0x47618,
2630 		0x47800, 0x47814,
2631 		0x47820, 0x4782c,
2632 		0x50000, 0x50084,
2633 		0x50090, 0x500cc,
2634 		0x50300, 0x50384,
2635 		0x50400, 0x50400,
2636 		0x50800, 0x50884,
2637 		0x50890, 0x508cc,
2638 		0x50b00, 0x50b84,
2639 		0x50c00, 0x50c00,
2640 		0x51000, 0x51020,
2641 		0x51028, 0x510b0,
2642 		0x51300, 0x51324,
2643 	};
2644 
2645 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646 	const unsigned int *reg_ranges;
2647 	int reg_ranges_size, range;
2648 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649 
2650 	/* Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		reg_ranges = t4_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T5:
2660 		reg_ranges = t5_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662 		break;
2663 
2664 	case CHELSIO_T6:
2665 		reg_ranges = t6_reg_ranges;
2666 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667 		break;
2668 
2669 	default:
2670 		dev_err(adap->pdev_dev,
2671 			"Unsupported chip version %d\n", chip_version);
2672 		return;
2673 	}
2674 
2675 	/* Clear the register buffer and insert the appropriate register
2676 	 * values selected by the above register ranges.
2677 	 */
2678 	memset(buf, 0, buf_size);
2679 	for (range = 0; range < reg_ranges_size; range += 2) {
2680 		unsigned int reg = reg_ranges[range];
2681 		unsigned int last_reg = reg_ranges[range + 1];
2682 		u32 *bufp = (u32 *)((char *)buf + reg);
2683 
2684 		/* Iterate across the register range filling in the register
2685 		 * buffer but don't write past the end of the register buffer.
2686 		 */
2687 		while (reg <= last_reg && bufp < buf_end) {
2688 			*bufp++ = t4_read_reg(adap, reg);
2689 			reg += sizeof(u32);
2690 		}
2691 	}
2692 }
2693 
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699 
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719 	fn *= sz;
2720 	if (phys_addr < 1024)
2721 		return phys_addr + (31 << 10);
2722 	if (phys_addr < 1024 + fn)
2723 		return 31744 - fn + phys_addr - 1024;
2724 	if (phys_addr < EEPROMSIZE)
2725 		return phys_addr - 1024 - fn;
2726 	return -EINVAL;
2727 }
2728 
2729 /**
2730  *	t4_seeprom_wp - enable/disable EEPROM write protection
2731  *	@adapter: the adapter
2732  *	@enable: whether to enable or disable write protection
2733  *
2734  *	Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738 	unsigned int v = enable ? 0xc : 0;
2739 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740 	return ret < 0 ? ret : 0;
2741 }
2742 
2743 /**
2744  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *	@adapter: adapter to read
2746  *	@p: where to store the parameters
2747  *
2748  *	Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752 	int i, ret = 0, addr;
2753 	int ec, sn, pn, na;
2754 	u8 *vpd, csum;
2755 	unsigned int vpdr_len, kw_offset, id_len;
2756 
2757 	vpd = vmalloc(VPD_LEN);
2758 	if (!vpd)
2759 		return -ENOMEM;
2760 
2761 	/* Card information normally starts at VPD_BASE but early cards had
2762 	 * it at 0.
2763 	 */
2764 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2769 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 	 * is expected to automatically put this entry at the
2772 	 * beginning of the VPD.
2773 	 */
2774 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775 
2776 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777 	if (ret < 0)
2778 		goto out;
2779 
2780 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782 		ret = -EINVAL;
2783 		goto out;
2784 	}
2785 
2786 	id_len = pci_vpd_lrdt_size(vpd);
2787 	if (id_len > ID_LEN)
2788 		id_len = ID_LEN;
2789 
2790 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791 	if (i < 0) {
2792 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793 		ret = -EINVAL;
2794 		goto out;
2795 	}
2796 
2797 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799 	if (vpdr_len + kw_offset > VPD_LEN) {
2800 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801 		ret = -EINVAL;
2802 		goto out;
2803 	}
2804 
2805 #define FIND_VPD_KW(var, name) do { \
2806 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807 	if (var < 0) { \
2808 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809 		ret = -EINVAL; \
2810 		goto out; \
2811 	} \
2812 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814 
2815 	FIND_VPD_KW(i, "RV");
2816 	for (csum = 0; i >= 0; i--)
2817 		csum += vpd[i];
2818 
2819 	if (csum) {
2820 		dev_err(adapter->pdev_dev,
2821 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2822 		ret = -EINVAL;
2823 		goto out;
2824 	}
2825 
2826 	FIND_VPD_KW(ec, "EC");
2827 	FIND_VPD_KW(sn, "SN");
2828 	FIND_VPD_KW(pn, "PN");
2829 	FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831 
2832 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833 	strim(p->id);
2834 	memcpy(p->ec, vpd + ec, EC_LEN);
2835 	strim(p->ec);
2836 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838 	strim(p->sn);
2839 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841 	strim(p->pn);
2842 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843 	strim((char *)p->na);
2844 
2845 out:
2846 	vfree(vpd);
2847 	return ret < 0 ? ret : 0;
2848 }
2849 
2850 /**
2851  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *	@adapter: adapter to read
2853  *	@p: where to store the parameters
2854  *
2855  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *	Clock.  This can only be called after a connection to the firmware
2857  *	is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861 	u32 cclk_param, cclk_val;
2862 	int ret;
2863 
2864 	/* Grab the raw VPD parameters.
2865 	 */
2866 	ret = t4_get_raw_vpd_params(adapter, p);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/* Ask firmware for the Core Clock since it knows how to translate the
2871 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2872 	 */
2873 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876 			      1, &cclk_param, &cclk_val);
2877 
2878 	if (ret)
2879 		return ret;
2880 	p->cclk = cclk_val;
2881 
2882 	return 0;
2883 }
2884 
2885 /* serial flash and firmware constants */
2886 enum {
2887 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2888 
2889 	/* flash command opcodes */
2890 	SF_PROG_PAGE    = 2,          /* program page */
2891 	SF_WR_DISABLE   = 4,          /* disable writes */
2892 	SF_RD_STATUS    = 5,          /* read status register */
2893 	SF_WR_ENABLE    = 6,          /* enable writes */
2894 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2895 	SF_RD_ID        = 0x9f,       /* read ID */
2896 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2897 };
2898 
2899 /**
2900  *	sf1_read - read data from the serial flash
2901  *	@adapter: the adapter
2902  *	@byte_cnt: number of bytes to read
2903  *	@cont: whether another operation will be chained
2904  *	@lock: whether to lock SF for PL access only
2905  *	@valp: where to store the read data
2906  *
2907  *	Reads up to 4 bytes of data from the serial flash.  The location of
2908  *	the read needs to be specified prior to calling this by issuing the
2909  *	appropriate commands to the serial flash.
2910  */
2911 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2912 		    int lock, u32 *valp)
2913 {
2914 	int ret;
2915 
2916 	if (!byte_cnt || byte_cnt > 4)
2917 		return -EINVAL;
2918 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2919 		return -EBUSY;
2920 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2921 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2922 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2923 	if (!ret)
2924 		*valp = t4_read_reg(adapter, SF_DATA_A);
2925 	return ret;
2926 }
2927 
2928 /**
2929  *	sf1_write - write data to the serial flash
2930  *	@adapter: the adapter
2931  *	@byte_cnt: number of bytes to write
2932  *	@cont: whether another operation will be chained
2933  *	@lock: whether to lock SF for PL access only
2934  *	@val: value to write
2935  *
2936  *	Writes up to 4 bytes of data to the serial flash.  The location of
2937  *	the write needs to be specified prior to calling this by issuing the
2938  *	appropriate commands to the serial flash.
2939  */
2940 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2941 		     int lock, u32 val)
2942 {
2943 	if (!byte_cnt || byte_cnt > 4)
2944 		return -EINVAL;
2945 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2946 		return -EBUSY;
2947 	t4_write_reg(adapter, SF_DATA_A, val);
2948 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2949 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2950 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2951 }
2952 
2953 /**
2954  *	flash_wait_op - wait for a flash operation to complete
2955  *	@adapter: the adapter
2956  *	@attempts: max number of polls of the status register
2957  *	@delay: delay between polls in ms
2958  *
2959  *	Wait for a flash operation to complete by polling the status register.
2960  */
2961 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2962 {
2963 	int ret;
2964 	u32 status;
2965 
2966 	while (1) {
2967 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2968 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2969 			return ret;
2970 		if (!(status & 1))
2971 			return 0;
2972 		if (--attempts == 0)
2973 			return -EAGAIN;
2974 		if (delay)
2975 			msleep(delay);
2976 	}
2977 }
2978 
2979 /**
2980  *	t4_read_flash - read words from serial flash
2981  *	@adapter: the adapter
2982  *	@addr: the start address for the read
2983  *	@nwords: how many 32-bit words to read
2984  *	@data: where to store the read data
2985  *	@byte_oriented: whether to store data as bytes or as words
2986  *
2987  *	Read the specified number of 32-bit words from the serial flash.
2988  *	If @byte_oriented is set the read data is stored as a byte array
2989  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2990  *	natural endianness.
2991  */
2992 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2993 		  unsigned int nwords, u32 *data, int byte_oriented)
2994 {
2995 	int ret;
2996 
2997 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2998 		return -EINVAL;
2999 
3000 	addr = swab32(addr) | SF_RD_DATA_FAST;
3001 
3002 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3003 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3004 		return ret;
3005 
3006 	for ( ; nwords; nwords--, data++) {
3007 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3008 		if (nwords == 1)
3009 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3010 		if (ret)
3011 			return ret;
3012 		if (byte_oriented)
3013 			*data = (__force __u32)(cpu_to_be32(*data));
3014 	}
3015 	return 0;
3016 }
3017 
3018 /**
3019  *	t4_write_flash - write up to a page of data to the serial flash
3020  *	@adapter: the adapter
3021  *	@addr: the start address to write
3022  *	@n: length of data to write in bytes
3023  *	@data: the data to write
3024  *
3025  *	Writes up to a page of data (256 bytes) to the serial flash starting
3026  *	at the given address.  All the data must be written to the same page.
3027  */
3028 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3029 			  unsigned int n, const u8 *data)
3030 {
3031 	int ret;
3032 	u32 buf[64];
3033 	unsigned int i, c, left, val, offset = addr & 0xff;
3034 
3035 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3036 		return -EINVAL;
3037 
3038 	val = swab32(addr) | SF_PROG_PAGE;
3039 
3040 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3041 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3042 		goto unlock;
3043 
3044 	for (left = n; left; left -= c) {
3045 		c = min(left, 4U);
3046 		for (val = 0, i = 0; i < c; ++i)
3047 			val = (val << 8) + *data++;
3048 
3049 		ret = sf1_write(adapter, c, c != left, 1, val);
3050 		if (ret)
3051 			goto unlock;
3052 	}
3053 	ret = flash_wait_op(adapter, 8, 1);
3054 	if (ret)
3055 		goto unlock;
3056 
3057 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3058 
3059 	/* Read the page to verify the write succeeded */
3060 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3061 	if (ret)
3062 		return ret;
3063 
3064 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3065 		dev_err(adapter->pdev_dev,
3066 			"failed to correctly write the flash page at %#x\n",
3067 			addr);
3068 		return -EIO;
3069 	}
3070 	return 0;
3071 
3072 unlock:
3073 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3074 	return ret;
3075 }
3076 
3077 /**
3078  *	t4_get_fw_version - read the firmware version
3079  *	@adapter: the adapter
3080  *	@vers: where to place the version
3081  *
3082  *	Reads the FW version from flash.
3083  */
3084 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3085 {
3086 	return t4_read_flash(adapter, FLASH_FW_START +
3087 			     offsetof(struct fw_hdr, fw_ver), 1,
3088 			     vers, 0);
3089 }
3090 
3091 /**
3092  *	t4_get_bs_version - read the firmware bootstrap version
3093  *	@adapter: the adapter
3094  *	@vers: where to place the version
3095  *
3096  *	Reads the FW Bootstrap version from flash.
3097  */
3098 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3099 {
3100 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3101 			     offsetof(struct fw_hdr, fw_ver), 1,
3102 			     vers, 0);
3103 }
3104 
3105 /**
3106  *	t4_get_tp_version - read the TP microcode version
3107  *	@adapter: the adapter
3108  *	@vers: where to place the version
3109  *
3110  *	Reads the TP microcode version from flash.
3111  */
3112 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3113 {
3114 	return t4_read_flash(adapter, FLASH_FW_START +
3115 			     offsetof(struct fw_hdr, tp_microcode_ver),
3116 			     1, vers, 0);
3117 }
3118 
3119 /**
3120  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3121  *	@adapter: the adapter
3122  *	@vers: where to place the version
3123  *
3124  *	Reads the Expansion ROM header from FLASH and returns the version
3125  *	number (if present) through the @vers return value pointer.  We return
3126  *	this in the Firmware Version Format since it's convenient.  Return
3127  *	0 on success, -ENOENT if no Expansion ROM is present.
3128  */
3129 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3130 {
3131 	struct exprom_header {
3132 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3133 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3134 	} *hdr;
3135 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3136 					   sizeof(u32))];
3137 	int ret;
3138 
3139 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3140 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3141 			    0);
3142 	if (ret)
3143 		return ret;
3144 
3145 	hdr = (struct exprom_header *)exprom_header_buf;
3146 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3147 		return -ENOENT;
3148 
3149 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3150 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3151 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3152 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3153 	return 0;
3154 }
3155 
3156 /**
3157  *      t4_get_vpd_version - return the VPD version
3158  *      @adapter: the adapter
3159  *      @vers: where to place the version
3160  *
3161  *      Reads the VPD via the Firmware interface (thus this can only be called
3162  *      once we're ready to issue Firmware commands).  The format of the
3163  *      VPD version is adapter specific.  Returns 0 on success, an error on
3164  *      failure.
3165  *
3166  *      Note that early versions of the Firmware didn't include the ability
3167  *      to retrieve the VPD version, so we zero-out the return-value parameter
3168  *      in that case to avoid leaving it with garbage in it.
3169  *
3170  *      Also note that the Firmware will return its cached copy of the VPD
3171  *      Revision ID, not the actual Revision ID as written in the Serial
3172  *      EEPROM.  This is only an issue if a new VPD has been written and the
3173  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3174  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3175  *      if the Host Driver will be performing a full adapter initialization.
3176  */
3177 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3178 {
3179 	u32 vpdrev_param;
3180 	int ret;
3181 
3182 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3183 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3184 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3185 			      1, &vpdrev_param, vers);
3186 	if (ret)
3187 		*vers = 0;
3188 	return ret;
3189 }
3190 
3191 /**
3192  *      t4_get_scfg_version - return the Serial Configuration version
3193  *      @adapter: the adapter
3194  *      @vers: where to place the version
3195  *
3196  *      Reads the Serial Configuration Version via the Firmware interface
3197  *      (thus this can only be called once we're ready to issue Firmware
3198  *      commands).  The format of the Serial Configuration version is
3199  *      adapter specific.  Returns 0 on success, an error on failure.
3200  *
3201  *      Note that early versions of the Firmware didn't include the ability
3202  *      to retrieve the Serial Configuration version, so we zero-out the
3203  *      return-value parameter in that case to avoid leaving it with
3204  *      garbage in it.
3205  *
3206  *      Also note that the Firmware will return its cached copy of the Serial
3207  *      Initialization Revision ID, not the actual Revision ID as written in
3208  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3209  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3210  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3211  *      been issued if the Host Driver will be performing a full adapter
3212  *      initialization.
3213  */
3214 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3215 {
3216 	u32 scfgrev_param;
3217 	int ret;
3218 
3219 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3220 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3221 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3222 			      1, &scfgrev_param, vers);
3223 	if (ret)
3224 		*vers = 0;
3225 	return ret;
3226 }
3227 
3228 /**
3229  *      t4_get_version_info - extract various chip/firmware version information
3230  *      @adapter: the adapter
3231  *
3232  *      Reads various chip/firmware version numbers and stores them into the
3233  *      adapter Adapter Parameters structure.  If any of the efforts fails
3234  *      the first failure will be returned, but all of the version numbers
3235  *      will be read.
3236  */
3237 int t4_get_version_info(struct adapter *adapter)
3238 {
3239 	int ret = 0;
3240 
3241 	#define FIRST_RET(__getvinfo) \
3242 	do { \
3243 		int __ret = __getvinfo; \
3244 		if (__ret && !ret) \
3245 			ret = __ret; \
3246 	} while (0)
3247 
3248 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3249 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3250 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3251 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3252 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3253 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3254 
3255 	#undef FIRST_RET
3256 	return ret;
3257 }
3258 
3259 /**
3260  *      t4_dump_version_info - dump all of the adapter configuration IDs
3261  *      @adapter: the adapter
3262  *
3263  *      Dumps all of the various bits of adapter configuration version/revision
3264  *      IDs information.  This is typically called at some point after
3265  *      t4_get_version_info() has been called.
3266  */
3267 void t4_dump_version_info(struct adapter *adapter)
3268 {
3269 	/* Device information */
3270 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3271 		 adapter->params.vpd.id,
3272 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3273 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3274 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3275 
3276 	/* Firmware Version */
3277 	if (!adapter->params.fw_vers)
3278 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3279 	else
3280 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3281 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3282 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3283 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3284 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3285 
3286 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3287 	 * Firmware, so dev_info() is more appropriate here.)
3288 	 */
3289 	if (!adapter->params.bs_vers)
3290 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3291 	else
3292 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3293 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3294 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3295 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3296 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3297 
3298 	/* TP Microcode Version */
3299 	if (!adapter->params.tp_vers)
3300 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3301 	else
3302 		dev_info(adapter->pdev_dev,
3303 			 "TP Microcode version: %u.%u.%u.%u\n",
3304 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3305 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3306 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3307 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3308 
3309 	/* Expansion ROM version */
3310 	if (!adapter->params.er_vers)
3311 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3312 	else
3313 		dev_info(adapter->pdev_dev,
3314 			 "Expansion ROM version: %u.%u.%u.%u\n",
3315 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3316 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3317 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3318 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3319 
3320 	/* Serial Configuration version */
3321 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3322 		 adapter->params.scfg_vers);
3323 
3324 	/* VPD Version */
3325 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3326 		 adapter->params.vpd_vers);
3327 }
3328 
3329 /**
3330  *	t4_check_fw_version - check if the FW is supported with this driver
3331  *	@adap: the adapter
3332  *
3333  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3334  *	if there's exact match, a negative error if the version could not be
3335  *	read or there's a major version mismatch
3336  */
3337 int t4_check_fw_version(struct adapter *adap)
3338 {
3339 	int i, ret, major, minor, micro;
3340 	int exp_major, exp_minor, exp_micro;
3341 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3342 
3343 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3344 	/* Try multiple times before returning error */
3345 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3346 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3347 
3348 	if (ret)
3349 		return ret;
3350 
3351 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3352 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3353 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3354 
3355 	switch (chip_version) {
3356 	case CHELSIO_T4:
3357 		exp_major = T4FW_MIN_VERSION_MAJOR;
3358 		exp_minor = T4FW_MIN_VERSION_MINOR;
3359 		exp_micro = T4FW_MIN_VERSION_MICRO;
3360 		break;
3361 	case CHELSIO_T5:
3362 		exp_major = T5FW_MIN_VERSION_MAJOR;
3363 		exp_minor = T5FW_MIN_VERSION_MINOR;
3364 		exp_micro = T5FW_MIN_VERSION_MICRO;
3365 		break;
3366 	case CHELSIO_T6:
3367 		exp_major = T6FW_MIN_VERSION_MAJOR;
3368 		exp_minor = T6FW_MIN_VERSION_MINOR;
3369 		exp_micro = T6FW_MIN_VERSION_MICRO;
3370 		break;
3371 	default:
3372 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3373 			adap->chip);
3374 		return -EINVAL;
3375 	}
3376 
3377 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3378 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3379 		dev_err(adap->pdev_dev,
3380 			"Card has firmware version %u.%u.%u, minimum "
3381 			"supported firmware is %u.%u.%u.\n", major, minor,
3382 			micro, exp_major, exp_minor, exp_micro);
3383 		return -EFAULT;
3384 	}
3385 	return 0;
3386 }
3387 
3388 /* Is the given firmware API compatible with the one the driver was compiled
3389  * with?
3390  */
3391 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3392 {
3393 
3394 	/* short circuit if it's the exact same firmware version */
3395 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3396 		return 1;
3397 
3398 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3399 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3400 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3401 		return 1;
3402 #undef SAME_INTF
3403 
3404 	return 0;
3405 }
3406 
3407 /* The firmware in the filesystem is usable, but should it be installed?
3408  * This routine explains itself in detail if it indicates the filesystem
3409  * firmware should be installed.
3410  */
3411 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3412 				int k, int c)
3413 {
3414 	const char *reason;
3415 
3416 	if (!card_fw_usable) {
3417 		reason = "incompatible or unusable";
3418 		goto install;
3419 	}
3420 
3421 	if (k > c) {
3422 		reason = "older than the version supported with this driver";
3423 		goto install;
3424 	}
3425 
3426 	return 0;
3427 
3428 install:
3429 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3430 		"installing firmware %u.%u.%u.%u on card.\n",
3431 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3432 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3433 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3434 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3435 
3436 	return 1;
3437 }
3438 
3439 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3440 	       const u8 *fw_data, unsigned int fw_size,
3441 	       struct fw_hdr *card_fw, enum dev_state state,
3442 	       int *reset)
3443 {
3444 	int ret, card_fw_usable, fs_fw_usable;
3445 	const struct fw_hdr *fs_fw;
3446 	const struct fw_hdr *drv_fw;
3447 
3448 	drv_fw = &fw_info->fw_hdr;
3449 
3450 	/* Read the header of the firmware on the card */
3451 	ret = -t4_read_flash(adap, FLASH_FW_START,
3452 			    sizeof(*card_fw) / sizeof(uint32_t),
3453 			    (uint32_t *)card_fw, 1);
3454 	if (ret == 0) {
3455 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3456 	} else {
3457 		dev_err(adap->pdev_dev,
3458 			"Unable to read card's firmware header: %d\n", ret);
3459 		card_fw_usable = 0;
3460 	}
3461 
3462 	if (fw_data != NULL) {
3463 		fs_fw = (const void *)fw_data;
3464 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3465 	} else {
3466 		fs_fw = NULL;
3467 		fs_fw_usable = 0;
3468 	}
3469 
3470 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3471 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3472 		/* Common case: the firmware on the card is an exact match and
3473 		 * the filesystem one is an exact match too, or the filesystem
3474 		 * one is absent/incompatible.
3475 		 */
3476 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3477 		   should_install_fs_fw(adap, card_fw_usable,
3478 					be32_to_cpu(fs_fw->fw_ver),
3479 					be32_to_cpu(card_fw->fw_ver))) {
3480 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3481 				     fw_size, 0);
3482 		if (ret != 0) {
3483 			dev_err(adap->pdev_dev,
3484 				"failed to install firmware: %d\n", ret);
3485 			goto bye;
3486 		}
3487 
3488 		/* Installed successfully, update the cached header too. */
3489 		*card_fw = *fs_fw;
3490 		card_fw_usable = 1;
3491 		*reset = 0;	/* already reset as part of load_fw */
3492 	}
3493 
3494 	if (!card_fw_usable) {
3495 		uint32_t d, c, k;
3496 
3497 		d = be32_to_cpu(drv_fw->fw_ver);
3498 		c = be32_to_cpu(card_fw->fw_ver);
3499 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3500 
3501 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3502 			"chip state %d, "
3503 			"driver compiled with %d.%d.%d.%d, "
3504 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3505 			state,
3506 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3507 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3508 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3509 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3510 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3511 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3512 		ret = EINVAL;
3513 		goto bye;
3514 	}
3515 
3516 	/* We're using whatever's on the card and it's known to be good. */
3517 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3518 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3519 
3520 bye:
3521 	return ret;
3522 }
3523 
3524 /**
3525  *	t4_flash_erase_sectors - erase a range of flash sectors
3526  *	@adapter: the adapter
3527  *	@start: the first sector to erase
3528  *	@end: the last sector to erase
3529  *
3530  *	Erases the sectors in the given inclusive range.
3531  */
3532 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3533 {
3534 	int ret = 0;
3535 
3536 	if (end >= adapter->params.sf_nsec)
3537 		return -EINVAL;
3538 
3539 	while (start <= end) {
3540 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3541 		    (ret = sf1_write(adapter, 4, 0, 1,
3542 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3543 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3544 			dev_err(adapter->pdev_dev,
3545 				"erase of flash sector %d failed, error %d\n",
3546 				start, ret);
3547 			break;
3548 		}
3549 		start++;
3550 	}
3551 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3552 	return ret;
3553 }
3554 
3555 /**
3556  *	t4_flash_cfg_addr - return the address of the flash configuration file
3557  *	@adapter: the adapter
3558  *
3559  *	Return the address within the flash where the Firmware Configuration
3560  *	File is stored.
3561  */
3562 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3563 {
3564 	if (adapter->params.sf_size == 0x100000)
3565 		return FLASH_FPGA_CFG_START;
3566 	else
3567 		return FLASH_CFG_START;
3568 }
3569 
3570 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3571  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3572  * and emit an error message for mismatched firmware to save our caller the
3573  * effort ...
3574  */
3575 static bool t4_fw_matches_chip(const struct adapter *adap,
3576 			       const struct fw_hdr *hdr)
3577 {
3578 	/* The expression below will return FALSE for any unsupported adapter
3579 	 * which will keep us "honest" in the future ...
3580 	 */
3581 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3582 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3583 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3584 		return true;
3585 
3586 	dev_err(adap->pdev_dev,
3587 		"FW image (%d) is not suitable for this adapter (%d)\n",
3588 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3589 	return false;
3590 }
3591 
3592 /**
3593  *	t4_load_fw - download firmware
3594  *	@adap: the adapter
3595  *	@fw_data: the firmware image to write
3596  *	@size: image size
3597  *
3598  *	Write the supplied firmware image to the card's serial flash.
3599  */
3600 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3601 {
3602 	u32 csum;
3603 	int ret, addr;
3604 	unsigned int i;
3605 	u8 first_page[SF_PAGE_SIZE];
3606 	const __be32 *p = (const __be32 *)fw_data;
3607 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3608 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3609 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3610 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3611 	unsigned int fw_start = FLASH_FW_START;
3612 
3613 	if (!size) {
3614 		dev_err(adap->pdev_dev, "FW image has no data\n");
3615 		return -EINVAL;
3616 	}
3617 	if (size & 511) {
3618 		dev_err(adap->pdev_dev,
3619 			"FW image size not multiple of 512 bytes\n");
3620 		return -EINVAL;
3621 	}
3622 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3623 		dev_err(adap->pdev_dev,
3624 			"FW image size differs from size in FW header\n");
3625 		return -EINVAL;
3626 	}
3627 	if (size > fw_size) {
3628 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3629 			fw_size);
3630 		return -EFBIG;
3631 	}
3632 	if (!t4_fw_matches_chip(adap, hdr))
3633 		return -EINVAL;
3634 
3635 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3636 		csum += be32_to_cpu(p[i]);
3637 
3638 	if (csum != 0xffffffff) {
3639 		dev_err(adap->pdev_dev,
3640 			"corrupted firmware image, checksum %#x\n", csum);
3641 		return -EINVAL;
3642 	}
3643 
3644 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3645 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3646 	if (ret)
3647 		goto out;
3648 
3649 	/*
3650 	 * We write the correct version at the end so the driver can see a bad
3651 	 * version if the FW write fails.  Start by writing a copy of the
3652 	 * first page with a bad version.
3653 	 */
3654 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3655 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3656 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3657 	if (ret)
3658 		goto out;
3659 
3660 	addr = fw_start;
3661 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3662 		addr += SF_PAGE_SIZE;
3663 		fw_data += SF_PAGE_SIZE;
3664 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3665 		if (ret)
3666 			goto out;
3667 	}
3668 
3669 	ret = t4_write_flash(adap,
3670 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3671 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3672 out:
3673 	if (ret)
3674 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3675 			ret);
3676 	else
3677 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3678 	return ret;
3679 }
3680 
3681 /**
3682  *	t4_phy_fw_ver - return current PHY firmware version
3683  *	@adap: the adapter
3684  *	@phy_fw_ver: return value buffer for PHY firmware version
3685  *
3686  *	Returns the current version of external PHY firmware on the
3687  *	adapter.
3688  */
3689 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3690 {
3691 	u32 param, val;
3692 	int ret;
3693 
3694 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3695 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3696 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3697 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3698 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3699 			      &param, &val);
3700 	if (ret < 0)
3701 		return ret;
3702 	*phy_fw_ver = val;
3703 	return 0;
3704 }
3705 
3706 /**
3707  *	t4_load_phy_fw - download port PHY firmware
3708  *	@adap: the adapter
3709  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3710  *	@win_lock: the lock to use to guard the memory copy
3711  *	@phy_fw_version: function to check PHY firmware versions
3712  *	@phy_fw_data: the PHY firmware image to write
3713  *	@phy_fw_size: image size
3714  *
3715  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3716  *	@phy_fw_version is supplied, then it will be used to determine if
3717  *	it's necessary to perform the transfer by comparing the version
3718  *	of any existing adapter PHY firmware with that of the passed in
3719  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3720  *	around the call to t4_memory_rw() which transfers the PHY firmware
3721  *	to the adapter.
3722  *
3723  *	A negative error number will be returned if an error occurs.  If
3724  *	version number support is available and there's no need to upgrade
3725  *	the firmware, 0 will be returned.  If firmware is successfully
3726  *	transferred to the adapter, 1 will be retured.
3727  *
3728  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3729  *	a result, a RESET of the adapter would cause that RAM to lose its
3730  *	contents.  Thus, loading PHY firmware on such adapters must happen
3731  *	after any FW_RESET_CMDs ...
3732  */
3733 int t4_load_phy_fw(struct adapter *adap,
3734 		   int win, spinlock_t *win_lock,
3735 		   int (*phy_fw_version)(const u8 *, size_t),
3736 		   const u8 *phy_fw_data, size_t phy_fw_size)
3737 {
3738 	unsigned long mtype = 0, maddr = 0;
3739 	u32 param, val;
3740 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3741 	int ret;
3742 
3743 	/* If we have version number support, then check to see if the adapter
3744 	 * already has up-to-date PHY firmware loaded.
3745 	 */
3746 	 if (phy_fw_version) {
3747 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3748 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3749 		if (ret < 0)
3750 			return ret;
3751 
3752 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3753 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3754 				"version %#x\n", cur_phy_fw_ver);
3755 			return 0;
3756 		}
3757 	}
3758 
3759 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3760 	 * The size of the file requires a special version of the READ coommand
3761 	 * which will pass the file size via the values field in PARAMS_CMD and
3762 	 * retrieve the return value from firmware and place it in the same
3763 	 * buffer values
3764 	 */
3765 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3766 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3767 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3768 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3769 	val = phy_fw_size;
3770 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3771 				 &param, &val, 1, true);
3772 	if (ret < 0)
3773 		return ret;
3774 	mtype = val >> 8;
3775 	maddr = (val & 0xff) << 16;
3776 
3777 	/* Copy the supplied PHY Firmware image to the adapter memory location
3778 	 * allocated by the adapter firmware.
3779 	 */
3780 	if (win_lock)
3781 		spin_lock_bh(win_lock);
3782 	ret = t4_memory_rw(adap, win, mtype, maddr,
3783 			   phy_fw_size, (__be32 *)phy_fw_data,
3784 			   T4_MEMORY_WRITE);
3785 	if (win_lock)
3786 		spin_unlock_bh(win_lock);
3787 	if (ret)
3788 		return ret;
3789 
3790 	/* Tell the firmware that the PHY firmware image has been written to
3791 	 * RAM and it can now start copying it over to the PHYs.  The chip
3792 	 * firmware will RESET the affected PHYs as part of this operation
3793 	 * leaving them running the new PHY firmware image.
3794 	 */
3795 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3796 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3797 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3798 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3799 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3800 				    &param, &val, 30000);
3801 
3802 	/* If we have version number support, then check to see that the new
3803 	 * firmware got loaded properly.
3804 	 */
3805 	if (phy_fw_version) {
3806 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3807 		if (ret < 0)
3808 			return ret;
3809 
3810 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3811 			CH_WARN(adap, "PHY Firmware did not update: "
3812 				"version on adapter %#x, "
3813 				"version flashed %#x\n",
3814 				cur_phy_fw_ver, new_phy_fw_vers);
3815 			return -ENXIO;
3816 		}
3817 	}
3818 
3819 	return 1;
3820 }
3821 
3822 /**
3823  *	t4_fwcache - firmware cache operation
3824  *	@adap: the adapter
3825  *	@op  : the operation (flush or flush and invalidate)
3826  */
3827 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3828 {
3829 	struct fw_params_cmd c;
3830 
3831 	memset(&c, 0, sizeof(c));
3832 	c.op_to_vfn =
3833 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3834 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3835 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3836 			    FW_PARAMS_CMD_VFN_V(0));
3837 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3838 	c.param[0].mnem =
3839 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3840 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3841 	c.param[0].val = (__force __be32)op;
3842 
3843 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3844 }
3845 
3846 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3847 			unsigned int *pif_req_wrptr,
3848 			unsigned int *pif_rsp_wrptr)
3849 {
3850 	int i, j;
3851 	u32 cfg, val, req, rsp;
3852 
3853 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3854 	if (cfg & LADBGEN_F)
3855 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3856 
3857 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3858 	req = POLADBGWRPTR_G(val);
3859 	rsp = PILADBGWRPTR_G(val);
3860 	if (pif_req_wrptr)
3861 		*pif_req_wrptr = req;
3862 	if (pif_rsp_wrptr)
3863 		*pif_rsp_wrptr = rsp;
3864 
3865 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3866 		for (j = 0; j < 6; j++) {
3867 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3868 				     PILADBGRDPTR_V(rsp));
3869 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3870 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3871 			req++;
3872 			rsp++;
3873 		}
3874 		req = (req + 2) & POLADBGRDPTR_M;
3875 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3876 	}
3877 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3878 }
3879 
3880 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3881 {
3882 	u32 cfg;
3883 	int i, j, idx;
3884 
3885 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3886 	if (cfg & LADBGEN_F)
3887 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3888 
3889 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3890 		for (j = 0; j < 5; j++) {
3891 			idx = 8 * i + j;
3892 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3893 				     PILADBGRDPTR_V(idx));
3894 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3895 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3896 		}
3897 	}
3898 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3899 }
3900 
3901 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3902 {
3903 	unsigned int i, j;
3904 
3905 	for (i = 0; i < 8; i++) {
3906 		u32 *p = la_buf + i;
3907 
3908 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3909 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3910 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3911 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3912 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3913 	}
3914 }
3915 
3916 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3917 		     FW_PORT_CAP32_ANEG)
3918 
3919 /**
3920  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3921  *	@caps16: a 16-bit Port Capabilities value
3922  *
3923  *	Returns the equivalent 32-bit Port Capabilities value.
3924  */
3925 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3926 {
3927 	fw_port_cap32_t caps32 = 0;
3928 
3929 	#define CAP16_TO_CAP32(__cap) \
3930 		do { \
3931 			if (caps16 & FW_PORT_CAP_##__cap) \
3932 				caps32 |= FW_PORT_CAP32_##__cap; \
3933 		} while (0)
3934 
3935 	CAP16_TO_CAP32(SPEED_100M);
3936 	CAP16_TO_CAP32(SPEED_1G);
3937 	CAP16_TO_CAP32(SPEED_25G);
3938 	CAP16_TO_CAP32(SPEED_10G);
3939 	CAP16_TO_CAP32(SPEED_40G);
3940 	CAP16_TO_CAP32(SPEED_100G);
3941 	CAP16_TO_CAP32(FC_RX);
3942 	CAP16_TO_CAP32(FC_TX);
3943 	CAP16_TO_CAP32(ANEG);
3944 	CAP16_TO_CAP32(MDIAUTO);
3945 	CAP16_TO_CAP32(MDISTRAIGHT);
3946 	CAP16_TO_CAP32(FEC_RS);
3947 	CAP16_TO_CAP32(FEC_BASER_RS);
3948 	CAP16_TO_CAP32(802_3_PAUSE);
3949 	CAP16_TO_CAP32(802_3_ASM_DIR);
3950 
3951 	#undef CAP16_TO_CAP32
3952 
3953 	return caps32;
3954 }
3955 
3956 /**
3957  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3958  *	@caps32: a 32-bit Port Capabilities value
3959  *
3960  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3961  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3962  *	Port Capabilities and some fields/values may not make it.
3963  */
3964 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3965 {
3966 	fw_port_cap16_t caps16 = 0;
3967 
3968 	#define CAP32_TO_CAP16(__cap) \
3969 		do { \
3970 			if (caps32 & FW_PORT_CAP32_##__cap) \
3971 				caps16 |= FW_PORT_CAP_##__cap; \
3972 		} while (0)
3973 
3974 	CAP32_TO_CAP16(SPEED_100M);
3975 	CAP32_TO_CAP16(SPEED_1G);
3976 	CAP32_TO_CAP16(SPEED_10G);
3977 	CAP32_TO_CAP16(SPEED_25G);
3978 	CAP32_TO_CAP16(SPEED_40G);
3979 	CAP32_TO_CAP16(SPEED_100G);
3980 	CAP32_TO_CAP16(FC_RX);
3981 	CAP32_TO_CAP16(FC_TX);
3982 	CAP32_TO_CAP16(802_3_PAUSE);
3983 	CAP32_TO_CAP16(802_3_ASM_DIR);
3984 	CAP32_TO_CAP16(ANEG);
3985 	CAP32_TO_CAP16(MDIAUTO);
3986 	CAP32_TO_CAP16(MDISTRAIGHT);
3987 	CAP32_TO_CAP16(FEC_RS);
3988 	CAP32_TO_CAP16(FEC_BASER_RS);
3989 
3990 	#undef CAP32_TO_CAP16
3991 
3992 	return caps16;
3993 }
3994 
3995 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3996 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3997 {
3998 	enum cc_pause cc_pause = 0;
3999 
4000 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4001 		cc_pause |= PAUSE_RX;
4002 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4003 		cc_pause |= PAUSE_TX;
4004 
4005 	return cc_pause;
4006 }
4007 
4008 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4009 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4010 {
4011 	fw_port_cap32_t fw_pause = 0;
4012 
4013 	if (cc_pause & PAUSE_RX)
4014 		fw_pause |= FW_PORT_CAP32_FC_RX;
4015 	if (cc_pause & PAUSE_TX)
4016 		fw_pause |= FW_PORT_CAP32_FC_TX;
4017 
4018 	return fw_pause;
4019 }
4020 
4021 /* Translate Firmware Forward Error Correction specification to Common Code */
4022 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4023 {
4024 	enum cc_fec cc_fec = 0;
4025 
4026 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4027 		cc_fec |= FEC_RS;
4028 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4029 		cc_fec |= FEC_BASER_RS;
4030 
4031 	return cc_fec;
4032 }
4033 
4034 /* Translate Common Code Forward Error Correction specification to Firmware */
4035 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4036 {
4037 	fw_port_cap32_t fw_fec = 0;
4038 
4039 	if (cc_fec & FEC_RS)
4040 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4041 	if (cc_fec & FEC_BASER_RS)
4042 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4043 
4044 	return fw_fec;
4045 }
4046 
4047 /**
4048  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4049  *	@adapter: the adapter
4050  *	@mbox: the Firmware Mailbox to use
4051  *	@port: the Port ID
4052  *	@lc: the Port's Link Configuration
4053  *
4054  *	Set up a port's MAC and PHY according to a desired link configuration.
4055  *	- If the PHY can auto-negotiate first decide what to advertise, then
4056  *	  enable/disable auto-negotiation as desired, and reset.
4057  *	- If the PHY does not auto-negotiate just reset it.
4058  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4059  *	  otherwise do it later based on the outcome of auto-negotiation.
4060  */
4061 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4062 		       unsigned int port, struct link_config *lc,
4063 		       bool sleep_ok, int timeout)
4064 {
4065 	unsigned int fw_caps = adapter->params.fw_caps_support;
4066 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4067 	struct fw_port_cmd cmd;
4068 	unsigned int fw_mdi;
4069 	int ret;
4070 
4071 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4072 	/* Convert driver coding of Pause Frame Flow Control settings into the
4073 	 * Firmware's API.
4074 	 */
4075 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4076 
4077 	/* Convert Common Code Forward Error Control settings into the
4078 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4079 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4080 	 * sent us as part of it's IEEE 802.3-based interpratation of
4081 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4082 	 * use whatever is in the current Requested FEC settings.
4083 	 */
4084 	if (lc->requested_fec & FEC_AUTO)
4085 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4086 	else
4087 		cc_fec = lc->requested_fec;
4088 	fw_fec = cc_to_fwcap_fec(cc_fec);
4089 
4090 	/* Figure out what our Requested Port Capabilities are going to be.
4091 	 */
4092 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4093 		rcap = lc->acaps | fw_fc | fw_fec;
4094 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4095 		lc->fec = cc_fec;
4096 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4097 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4098 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4099 		lc->fec = cc_fec;
4100 	} else {
4101 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4102 	}
4103 
4104 	if (rcap & ~lc->pcaps) {
4105 		dev_err(adapter->pdev_dev,
4106 			"Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4107 			rcap, lc->pcaps);
4108 		return -EINVAL;
4109 	}
4110 
4111 	/* And send that on to the Firmware ...
4112 	 */
4113 	memset(&cmd, 0, sizeof(cmd));
4114 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4115 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4116 				       FW_PORT_CMD_PORTID_V(port));
4117 	cmd.action_to_len16 =
4118 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4119 						 ? FW_PORT_ACTION_L1_CFG
4120 						 : FW_PORT_ACTION_L1_CFG32) |
4121 						 FW_LEN16(cmd));
4122 	if (fw_caps == FW_CAPS16)
4123 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4124 	else
4125 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4126 
4127 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4128 				      sleep_ok, timeout);
4129 	if (ret) {
4130 		dev_err(adapter->pdev_dev,
4131 			"Requested Port Capabilities %#x rejected, error %d\n",
4132 			rcap, -ret);
4133 		return ret;
4134 	}
4135 	return ret;
4136 }
4137 
4138 /**
4139  *	t4_restart_aneg - restart autonegotiation
4140  *	@adap: the adapter
4141  *	@mbox: mbox to use for the FW command
4142  *	@port: the port id
4143  *
4144  *	Restarts autonegotiation for the selected port.
4145  */
4146 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4147 {
4148 	struct fw_port_cmd c;
4149 
4150 	memset(&c, 0, sizeof(c));
4151 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4152 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4153 				     FW_PORT_CMD_PORTID_V(port));
4154 	c.action_to_len16 =
4155 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4156 			    FW_LEN16(c));
4157 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4158 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4159 }
4160 
4161 typedef void (*int_handler_t)(struct adapter *adap);
4162 
4163 struct intr_info {
4164 	unsigned int mask;       /* bits to check in interrupt status */
4165 	const char *msg;         /* message to print or NULL */
4166 	short stat_idx;          /* stat counter to increment or -1 */
4167 	unsigned short fatal;    /* whether the condition reported is fatal */
4168 	int_handler_t int_handler; /* platform-specific int handler */
4169 };
4170 
4171 /**
4172  *	t4_handle_intr_status - table driven interrupt handler
4173  *	@adapter: the adapter that generated the interrupt
4174  *	@reg: the interrupt status register to process
4175  *	@acts: table of interrupt actions
4176  *
4177  *	A table driven interrupt handler that applies a set of masks to an
4178  *	interrupt status word and performs the corresponding actions if the
4179  *	interrupts described by the mask have occurred.  The actions include
4180  *	optionally emitting a warning or alert message.  The table is terminated
4181  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4182  *	conditions.
4183  */
4184 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4185 				 const struct intr_info *acts)
4186 {
4187 	int fatal = 0;
4188 	unsigned int mask = 0;
4189 	unsigned int status = t4_read_reg(adapter, reg);
4190 
4191 	for ( ; acts->mask; ++acts) {
4192 		if (!(status & acts->mask))
4193 			continue;
4194 		if (acts->fatal) {
4195 			fatal++;
4196 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4197 				  status & acts->mask);
4198 		} else if (acts->msg && printk_ratelimit())
4199 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4200 				 status & acts->mask);
4201 		if (acts->int_handler)
4202 			acts->int_handler(adapter);
4203 		mask |= acts->mask;
4204 	}
4205 	status &= mask;
4206 	if (status)                           /* clear processed interrupts */
4207 		t4_write_reg(adapter, reg, status);
4208 	return fatal;
4209 }
4210 
4211 /*
4212  * Interrupt handler for the PCIE module.
4213  */
4214 static void pcie_intr_handler(struct adapter *adapter)
4215 {
4216 	static const struct intr_info sysbus_intr_info[] = {
4217 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4218 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4219 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4220 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4221 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4222 		{ 0 }
4223 	};
4224 	static const struct intr_info pcie_port_intr_info[] = {
4225 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4226 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4227 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4228 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4229 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4230 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4231 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4232 		{ RDPE_F, "Rx data parity error", -1, 1 },
4233 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4234 		{ 0 }
4235 	};
4236 	static const struct intr_info pcie_intr_info[] = {
4237 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4238 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4239 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4240 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4241 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4242 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4243 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4244 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4245 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4246 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4247 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4248 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4249 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4250 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4251 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4252 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4253 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4254 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4255 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4256 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4257 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4258 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4259 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4260 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4261 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4262 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4263 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4264 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4265 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4266 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4267 		  -1, 0 },
4268 		{ 0 }
4269 	};
4270 
4271 	static struct intr_info t5_pcie_intr_info[] = {
4272 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4273 		  -1, 1 },
4274 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4275 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4276 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4277 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4278 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4279 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4280 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4281 		  -1, 1 },
4282 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4283 		  -1, 1 },
4284 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4285 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4286 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4287 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4288 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4289 		  -1, 1 },
4290 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4291 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4292 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4293 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4294 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4295 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4296 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4297 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4298 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4299 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4300 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4301 		  -1, 1 },
4302 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4303 		  -1, 1 },
4304 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4305 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4306 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4307 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4308 		{ 0 }
4309 	};
4310 
4311 	int fat;
4312 
4313 	if (is_t4(adapter->params.chip))
4314 		fat = t4_handle_intr_status(adapter,
4315 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4316 				sysbus_intr_info) +
4317 			t4_handle_intr_status(adapter,
4318 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4319 					pcie_port_intr_info) +
4320 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4321 					      pcie_intr_info);
4322 	else
4323 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4324 					    t5_pcie_intr_info);
4325 
4326 	if (fat)
4327 		t4_fatal_err(adapter);
4328 }
4329 
4330 /*
4331  * TP interrupt handler.
4332  */
4333 static void tp_intr_handler(struct adapter *adapter)
4334 {
4335 	static const struct intr_info tp_intr_info[] = {
4336 		{ 0x3fffffff, "TP parity error", -1, 1 },
4337 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4338 		{ 0 }
4339 	};
4340 
4341 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4342 		t4_fatal_err(adapter);
4343 }
4344 
4345 /*
4346  * SGE interrupt handler.
4347  */
4348 static void sge_intr_handler(struct adapter *adapter)
4349 {
4350 	u64 v;
4351 	u32 err;
4352 
4353 	static const struct intr_info sge_intr_info[] = {
4354 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4355 		  "SGE received CPL exceeding IQE size", -1, 1 },
4356 		{ ERR_INVALID_CIDX_INC_F,
4357 		  "SGE GTS CIDX increment too large", -1, 0 },
4358 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4359 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4360 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4361 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4362 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4363 		  0 },
4364 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4365 		  0 },
4366 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4367 		  0 },
4368 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4369 		  0 },
4370 		{ ERR_ING_CTXT_PRIO_F,
4371 		  "SGE too many priority ingress contexts", -1, 0 },
4372 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4373 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4374 		{ 0 }
4375 	};
4376 
4377 	static struct intr_info t4t5_sge_intr_info[] = {
4378 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4379 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4380 		{ ERR_EGR_CTXT_PRIO_F,
4381 		  "SGE too many priority egress contexts", -1, 0 },
4382 		{ 0 }
4383 	};
4384 
4385 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4386 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4387 	if (v) {
4388 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4389 				(unsigned long long)v);
4390 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4391 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4392 	}
4393 
4394 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4395 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4396 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4397 					   t4t5_sge_intr_info);
4398 
4399 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4400 	if (err & ERROR_QID_VALID_F) {
4401 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4402 			ERROR_QID_G(err));
4403 		if (err & UNCAPTURED_ERROR_F)
4404 			dev_err(adapter->pdev_dev,
4405 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4406 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4407 			     UNCAPTURED_ERROR_F);
4408 	}
4409 
4410 	if (v != 0)
4411 		t4_fatal_err(adapter);
4412 }
4413 
4414 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4415 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4416 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4417 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4418 
4419 /*
4420  * CIM interrupt handler.
4421  */
4422 static void cim_intr_handler(struct adapter *adapter)
4423 {
4424 	static const struct intr_info cim_intr_info[] = {
4425 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4426 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4427 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4428 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4429 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4430 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4431 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4432 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4433 		{ 0 }
4434 	};
4435 	static const struct intr_info cim_upintr_info[] = {
4436 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4437 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4438 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4439 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4440 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4441 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4442 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4443 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4444 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4445 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4446 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4447 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4448 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4449 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4450 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4451 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4452 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4453 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4454 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4455 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4456 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4457 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4458 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4459 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4460 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4461 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4462 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4463 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4464 		{ 0 }
4465 	};
4466 
4467 	u32 val, fw_err;
4468 	int fat;
4469 
4470 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4471 	if (fw_err & PCIE_FW_ERR_F)
4472 		t4_report_fw_error(adapter);
4473 
4474 	/* When the Firmware detects an internal error which normally
4475 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4476 	 * in order to make sure the Host sees the Firmware Crash.  So
4477 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4478 	 * ignore the Timer0 interrupt.
4479 	 */
4480 
4481 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4482 	if (val & TIMER0INT_F)
4483 		if (!(fw_err & PCIE_FW_ERR_F) ||
4484 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4485 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4486 				     TIMER0INT_F);
4487 
4488 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4489 				    cim_intr_info) +
4490 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4491 				    cim_upintr_info);
4492 	if (fat)
4493 		t4_fatal_err(adapter);
4494 }
4495 
4496 /*
4497  * ULP RX interrupt handler.
4498  */
4499 static void ulprx_intr_handler(struct adapter *adapter)
4500 {
4501 	static const struct intr_info ulprx_intr_info[] = {
4502 		{ 0x1800000, "ULPRX context error", -1, 1 },
4503 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4504 		{ 0 }
4505 	};
4506 
4507 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4508 		t4_fatal_err(adapter);
4509 }
4510 
4511 /*
4512  * ULP TX interrupt handler.
4513  */
4514 static void ulptx_intr_handler(struct adapter *adapter)
4515 {
4516 	static const struct intr_info ulptx_intr_info[] = {
4517 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4518 		  0 },
4519 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4520 		  0 },
4521 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4522 		  0 },
4523 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4524 		  0 },
4525 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4526 		{ 0 }
4527 	};
4528 
4529 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4530 		t4_fatal_err(adapter);
4531 }
4532 
4533 /*
4534  * PM TX interrupt handler.
4535  */
4536 static void pmtx_intr_handler(struct adapter *adapter)
4537 {
4538 	static const struct intr_info pmtx_intr_info[] = {
4539 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4540 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4541 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4542 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4543 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4544 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4545 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4546 		  -1, 1 },
4547 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4548 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4549 		{ 0 }
4550 	};
4551 
4552 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4553 		t4_fatal_err(adapter);
4554 }
4555 
4556 /*
4557  * PM RX interrupt handler.
4558  */
4559 static void pmrx_intr_handler(struct adapter *adapter)
4560 {
4561 	static const struct intr_info pmrx_intr_info[] = {
4562 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4563 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4564 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4565 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4566 		  -1, 1 },
4567 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4568 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4569 		{ 0 }
4570 	};
4571 
4572 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4573 		t4_fatal_err(adapter);
4574 }
4575 
4576 /*
4577  * CPL switch interrupt handler.
4578  */
4579 static void cplsw_intr_handler(struct adapter *adapter)
4580 {
4581 	static const struct intr_info cplsw_intr_info[] = {
4582 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4583 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4584 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4585 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4586 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4587 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4588 		{ 0 }
4589 	};
4590 
4591 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4592 		t4_fatal_err(adapter);
4593 }
4594 
4595 /*
4596  * LE interrupt handler.
4597  */
4598 static void le_intr_handler(struct adapter *adap)
4599 {
4600 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4601 	static const struct intr_info le_intr_info[] = {
4602 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4603 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4604 		{ PARITYERR_F, "LE parity error", -1, 1 },
4605 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4606 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4607 		{ 0 }
4608 	};
4609 
4610 	static struct intr_info t6_le_intr_info[] = {
4611 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4612 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4613 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4614 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4615 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4616 		{ 0 }
4617 	};
4618 
4619 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4620 				  (chip <= CHELSIO_T5) ?
4621 				  le_intr_info : t6_le_intr_info))
4622 		t4_fatal_err(adap);
4623 }
4624 
4625 /*
4626  * MPS interrupt handler.
4627  */
4628 static void mps_intr_handler(struct adapter *adapter)
4629 {
4630 	static const struct intr_info mps_rx_intr_info[] = {
4631 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4632 		{ 0 }
4633 	};
4634 	static const struct intr_info mps_tx_intr_info[] = {
4635 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4636 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4637 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4638 		  -1, 1 },
4639 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4640 		  -1, 1 },
4641 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4642 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4643 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4644 		{ 0 }
4645 	};
4646 	static const struct intr_info t6_mps_tx_intr_info[] = {
4647 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4648 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4649 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4650 		  -1, 1 },
4651 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4652 		  -1, 1 },
4653 		/* MPS Tx Bubble is normal for T6 */
4654 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4655 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4656 		{ 0 }
4657 	};
4658 	static const struct intr_info mps_trc_intr_info[] = {
4659 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4660 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4661 		  -1, 1 },
4662 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4663 		{ 0 }
4664 	};
4665 	static const struct intr_info mps_stat_sram_intr_info[] = {
4666 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4667 		{ 0 }
4668 	};
4669 	static const struct intr_info mps_stat_tx_intr_info[] = {
4670 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4671 		{ 0 }
4672 	};
4673 	static const struct intr_info mps_stat_rx_intr_info[] = {
4674 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4675 		{ 0 }
4676 	};
4677 	static const struct intr_info mps_cls_intr_info[] = {
4678 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4679 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4680 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4681 		{ 0 }
4682 	};
4683 
4684 	int fat;
4685 
4686 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4687 				    mps_rx_intr_info) +
4688 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4689 				    is_t6(adapter->params.chip)
4690 				    ? t6_mps_tx_intr_info
4691 				    : mps_tx_intr_info) +
4692 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4693 				    mps_trc_intr_info) +
4694 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4695 				    mps_stat_sram_intr_info) +
4696 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4697 				    mps_stat_tx_intr_info) +
4698 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4699 				    mps_stat_rx_intr_info) +
4700 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4701 				    mps_cls_intr_info);
4702 
4703 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4704 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4705 	if (fat)
4706 		t4_fatal_err(adapter);
4707 }
4708 
4709 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4710 		      ECC_UE_INT_CAUSE_F)
4711 
4712 /*
4713  * EDC/MC interrupt handler.
4714  */
4715 static void mem_intr_handler(struct adapter *adapter, int idx)
4716 {
4717 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4718 
4719 	unsigned int addr, cnt_addr, v;
4720 
4721 	if (idx <= MEM_EDC1) {
4722 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4723 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4724 	} else if (idx == MEM_MC) {
4725 		if (is_t4(adapter->params.chip)) {
4726 			addr = MC_INT_CAUSE_A;
4727 			cnt_addr = MC_ECC_STATUS_A;
4728 		} else {
4729 			addr = MC_P_INT_CAUSE_A;
4730 			cnt_addr = MC_P_ECC_STATUS_A;
4731 		}
4732 	} else {
4733 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4734 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4735 	}
4736 
4737 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4738 	if (v & PERR_INT_CAUSE_F)
4739 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4740 			  name[idx]);
4741 	if (v & ECC_CE_INT_CAUSE_F) {
4742 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4743 
4744 		t4_edc_err_read(adapter, idx);
4745 
4746 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4747 		if (printk_ratelimit())
4748 			dev_warn(adapter->pdev_dev,
4749 				 "%u %s correctable ECC data error%s\n",
4750 				 cnt, name[idx], cnt > 1 ? "s" : "");
4751 	}
4752 	if (v & ECC_UE_INT_CAUSE_F)
4753 		dev_alert(adapter->pdev_dev,
4754 			  "%s uncorrectable ECC data error\n", name[idx]);
4755 
4756 	t4_write_reg(adapter, addr, v);
4757 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4758 		t4_fatal_err(adapter);
4759 }
4760 
4761 /*
4762  * MA interrupt handler.
4763  */
4764 static void ma_intr_handler(struct adapter *adap)
4765 {
4766 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4767 
4768 	if (status & MEM_PERR_INT_CAUSE_F) {
4769 		dev_alert(adap->pdev_dev,
4770 			  "MA parity error, parity status %#x\n",
4771 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4772 		if (is_t5(adap->params.chip))
4773 			dev_alert(adap->pdev_dev,
4774 				  "MA parity error, parity status %#x\n",
4775 				  t4_read_reg(adap,
4776 					      MA_PARITY_ERROR_STATUS2_A));
4777 	}
4778 	if (status & MEM_WRAP_INT_CAUSE_F) {
4779 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4780 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4781 			  "client %u to address %#x\n",
4782 			  MEM_WRAP_CLIENT_NUM_G(v),
4783 			  MEM_WRAP_ADDRESS_G(v) << 4);
4784 	}
4785 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4786 	t4_fatal_err(adap);
4787 }
4788 
4789 /*
4790  * SMB interrupt handler.
4791  */
4792 static void smb_intr_handler(struct adapter *adap)
4793 {
4794 	static const struct intr_info smb_intr_info[] = {
4795 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4796 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4797 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4798 		{ 0 }
4799 	};
4800 
4801 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4802 		t4_fatal_err(adap);
4803 }
4804 
4805 /*
4806  * NC-SI interrupt handler.
4807  */
4808 static void ncsi_intr_handler(struct adapter *adap)
4809 {
4810 	static const struct intr_info ncsi_intr_info[] = {
4811 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4812 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4813 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4814 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4815 		{ 0 }
4816 	};
4817 
4818 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4819 		t4_fatal_err(adap);
4820 }
4821 
4822 /*
4823  * XGMAC interrupt handler.
4824  */
4825 static void xgmac_intr_handler(struct adapter *adap, int port)
4826 {
4827 	u32 v, int_cause_reg;
4828 
4829 	if (is_t4(adap->params.chip))
4830 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4831 	else
4832 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4833 
4834 	v = t4_read_reg(adap, int_cause_reg);
4835 
4836 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4837 	if (!v)
4838 		return;
4839 
4840 	if (v & TXFIFO_PRTY_ERR_F)
4841 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4842 			  port);
4843 	if (v & RXFIFO_PRTY_ERR_F)
4844 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4845 			  port);
4846 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4847 	t4_fatal_err(adap);
4848 }
4849 
4850 /*
4851  * PL interrupt handler.
4852  */
4853 static void pl_intr_handler(struct adapter *adap)
4854 {
4855 	static const struct intr_info pl_intr_info[] = {
4856 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4857 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4858 		{ 0 }
4859 	};
4860 
4861 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4862 		t4_fatal_err(adap);
4863 }
4864 
4865 #define PF_INTR_MASK (PFSW_F)
4866 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4867 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4868 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4869 
4870 /**
4871  *	t4_slow_intr_handler - control path interrupt handler
4872  *	@adapter: the adapter
4873  *
4874  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4875  *	The designation 'slow' is because it involves register reads, while
4876  *	data interrupts typically don't involve any MMIOs.
4877  */
4878 int t4_slow_intr_handler(struct adapter *adapter)
4879 {
4880 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4881 
4882 	if (!(cause & GLBL_INTR_MASK))
4883 		return 0;
4884 	if (cause & CIM_F)
4885 		cim_intr_handler(adapter);
4886 	if (cause & MPS_F)
4887 		mps_intr_handler(adapter);
4888 	if (cause & NCSI_F)
4889 		ncsi_intr_handler(adapter);
4890 	if (cause & PL_F)
4891 		pl_intr_handler(adapter);
4892 	if (cause & SMB_F)
4893 		smb_intr_handler(adapter);
4894 	if (cause & XGMAC0_F)
4895 		xgmac_intr_handler(adapter, 0);
4896 	if (cause & XGMAC1_F)
4897 		xgmac_intr_handler(adapter, 1);
4898 	if (cause & XGMAC_KR0_F)
4899 		xgmac_intr_handler(adapter, 2);
4900 	if (cause & XGMAC_KR1_F)
4901 		xgmac_intr_handler(adapter, 3);
4902 	if (cause & PCIE_F)
4903 		pcie_intr_handler(adapter);
4904 	if (cause & MC_F)
4905 		mem_intr_handler(adapter, MEM_MC);
4906 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4907 		mem_intr_handler(adapter, MEM_MC1);
4908 	if (cause & EDC0_F)
4909 		mem_intr_handler(adapter, MEM_EDC0);
4910 	if (cause & EDC1_F)
4911 		mem_intr_handler(adapter, MEM_EDC1);
4912 	if (cause & LE_F)
4913 		le_intr_handler(adapter);
4914 	if (cause & TP_F)
4915 		tp_intr_handler(adapter);
4916 	if (cause & MA_F)
4917 		ma_intr_handler(adapter);
4918 	if (cause & PM_TX_F)
4919 		pmtx_intr_handler(adapter);
4920 	if (cause & PM_RX_F)
4921 		pmrx_intr_handler(adapter);
4922 	if (cause & ULP_RX_F)
4923 		ulprx_intr_handler(adapter);
4924 	if (cause & CPL_SWITCH_F)
4925 		cplsw_intr_handler(adapter);
4926 	if (cause & SGE_F)
4927 		sge_intr_handler(adapter);
4928 	if (cause & ULP_TX_F)
4929 		ulptx_intr_handler(adapter);
4930 
4931 	/* Clear the interrupts just processed for which we are the master. */
4932 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4933 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4934 	return 1;
4935 }
4936 
4937 /**
4938  *	t4_intr_enable - enable interrupts
4939  *	@adapter: the adapter whose interrupts should be enabled
4940  *
4941  *	Enable PF-specific interrupts for the calling function and the top-level
4942  *	interrupt concentrator for global interrupts.  Interrupts are already
4943  *	enabled at each module,	here we just enable the roots of the interrupt
4944  *	hierarchies.
4945  *
4946  *	Note: this function should be called only when the driver manages
4947  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4948  *	function at a time should be doing this.
4949  */
4950 void t4_intr_enable(struct adapter *adapter)
4951 {
4952 	u32 val = 0;
4953 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4954 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4955 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4956 
4957 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4958 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4959 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4960 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4961 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4962 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4963 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4964 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4965 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4966 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4967 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4968 }
4969 
4970 /**
4971  *	t4_intr_disable - disable interrupts
4972  *	@adapter: the adapter whose interrupts should be disabled
4973  *
4974  *	Disable interrupts.  We only disable the top-level interrupt
4975  *	concentrators.  The caller must be a PCI function managing global
4976  *	interrupts.
4977  */
4978 void t4_intr_disable(struct adapter *adapter)
4979 {
4980 	u32 whoami, pf;
4981 
4982 	if (pci_channel_offline(adapter->pdev))
4983 		return;
4984 
4985 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4986 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4987 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4988 
4989 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4990 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4991 }
4992 
4993 unsigned int t4_chip_rss_size(struct adapter *adap)
4994 {
4995 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
4996 		return RSS_NENTRIES;
4997 	else
4998 		return T6_RSS_NENTRIES;
4999 }
5000 
5001 /**
5002  *	t4_config_rss_range - configure a portion of the RSS mapping table
5003  *	@adapter: the adapter
5004  *	@mbox: mbox to use for the FW command
5005  *	@viid: virtual interface whose RSS subtable is to be written
5006  *	@start: start entry in the table to write
5007  *	@n: how many table entries to write
5008  *	@rspq: values for the response queue lookup table
5009  *	@nrspq: number of values in @rspq
5010  *
5011  *	Programs the selected part of the VI's RSS mapping table with the
5012  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5013  *	until the full table range is populated.
5014  *
5015  *	The caller must ensure the values in @rspq are in the range allowed for
5016  *	@viid.
5017  */
5018 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5019 			int start, int n, const u16 *rspq, unsigned int nrspq)
5020 {
5021 	int ret;
5022 	const u16 *rsp = rspq;
5023 	const u16 *rsp_end = rspq + nrspq;
5024 	struct fw_rss_ind_tbl_cmd cmd;
5025 
5026 	memset(&cmd, 0, sizeof(cmd));
5027 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5028 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5029 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5030 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5031 
5032 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5033 	while (n > 0) {
5034 		int nq = min(n, 32);
5035 		__be32 *qp = &cmd.iq0_to_iq2;
5036 
5037 		cmd.niqid = cpu_to_be16(nq);
5038 		cmd.startidx = cpu_to_be16(start);
5039 
5040 		start += nq;
5041 		n -= nq;
5042 
5043 		while (nq > 0) {
5044 			unsigned int v;
5045 
5046 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5047 			if (++rsp >= rsp_end)
5048 				rsp = rspq;
5049 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5050 			if (++rsp >= rsp_end)
5051 				rsp = rspq;
5052 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5053 			if (++rsp >= rsp_end)
5054 				rsp = rspq;
5055 
5056 			*qp++ = cpu_to_be32(v);
5057 			nq -= 3;
5058 		}
5059 
5060 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5061 		if (ret)
5062 			return ret;
5063 	}
5064 	return 0;
5065 }
5066 
5067 /**
5068  *	t4_config_glbl_rss - configure the global RSS mode
5069  *	@adapter: the adapter
5070  *	@mbox: mbox to use for the FW command
5071  *	@mode: global RSS mode
5072  *	@flags: mode-specific flags
5073  *
5074  *	Sets the global RSS mode.
5075  */
5076 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5077 		       unsigned int flags)
5078 {
5079 	struct fw_rss_glb_config_cmd c;
5080 
5081 	memset(&c, 0, sizeof(c));
5082 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5083 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5084 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5085 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5086 		c.u.manual.mode_pkd =
5087 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5088 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5089 		c.u.basicvirtual.mode_pkd =
5090 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5091 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5092 	} else
5093 		return -EINVAL;
5094 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5095 }
5096 
5097 /**
5098  *	t4_config_vi_rss - configure per VI RSS settings
5099  *	@adapter: the adapter
5100  *	@mbox: mbox to use for the FW command
5101  *	@viid: the VI id
5102  *	@flags: RSS flags
5103  *	@defq: id of the default RSS queue for the VI.
5104  *
5105  *	Configures VI-specific RSS properties.
5106  */
5107 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5108 		     unsigned int flags, unsigned int defq)
5109 {
5110 	struct fw_rss_vi_config_cmd c;
5111 
5112 	memset(&c, 0, sizeof(c));
5113 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5114 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5115 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5116 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5117 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5118 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5119 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5120 }
5121 
5122 /* Read an RSS table row */
5123 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5124 {
5125 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5126 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5127 				   5, 0, val);
5128 }
5129 
5130 /**
5131  *	t4_read_rss - read the contents of the RSS mapping table
5132  *	@adapter: the adapter
5133  *	@map: holds the contents of the RSS mapping table
5134  *
5135  *	Reads the contents of the RSS hash->queue mapping table.
5136  */
5137 int t4_read_rss(struct adapter *adapter, u16 *map)
5138 {
5139 	int i, ret, nentries;
5140 	u32 val;
5141 
5142 	nentries = t4_chip_rss_size(adapter);
5143 	for (i = 0; i < nentries / 2; ++i) {
5144 		ret = rd_rss_row(adapter, i, &val);
5145 		if (ret)
5146 			return ret;
5147 		*map++ = LKPTBLQUEUE0_G(val);
5148 		*map++ = LKPTBLQUEUE1_G(val);
5149 	}
5150 	return 0;
5151 }
5152 
5153 static unsigned int t4_use_ldst(struct adapter *adap)
5154 {
5155 	return (adap->flags & FW_OK) && !adap->use_bd;
5156 }
5157 
5158 /**
5159  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5160  * @adap: the adapter
5161  * @cmd: TP fw ldst address space type
5162  * @vals: where the indirect register values are stored/written
5163  * @nregs: how many indirect registers to read/write
5164  * @start_idx: index of first indirect register to read/write
5165  * @rw: Read (1) or Write (0)
5166  * @sleep_ok: if true we may sleep while awaiting command completion
5167  *
5168  * Access TP indirect registers through LDST
5169  */
5170 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5171 			    unsigned int nregs, unsigned int start_index,
5172 			    unsigned int rw, bool sleep_ok)
5173 {
5174 	int ret = 0;
5175 	unsigned int i;
5176 	struct fw_ldst_cmd c;
5177 
5178 	for (i = 0; i < nregs; i++) {
5179 		memset(&c, 0, sizeof(c));
5180 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5181 						FW_CMD_REQUEST_F |
5182 						(rw ? FW_CMD_READ_F :
5183 						      FW_CMD_WRITE_F) |
5184 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5185 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5186 
5187 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5188 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5189 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5190 				      sleep_ok);
5191 		if (ret)
5192 			return ret;
5193 
5194 		if (rw)
5195 			vals[i] = be32_to_cpu(c.u.addrval.val);
5196 	}
5197 	return 0;
5198 }
5199 
5200 /**
5201  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5202  * @adap: the adapter
5203  * @reg_addr: Address Register
5204  * @reg_data: Data register
5205  * @buff: where the indirect register values are stored/written
5206  * @nregs: how many indirect registers to read/write
5207  * @start_index: index of first indirect register to read/write
5208  * @rw: READ(1) or WRITE(0)
5209  * @sleep_ok: if true we may sleep while awaiting command completion
5210  *
5211  * Read/Write TP indirect registers through LDST if possible.
5212  * Else, use backdoor access
5213  **/
5214 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5215 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5216 			      bool sleep_ok)
5217 {
5218 	int rc = -EINVAL;
5219 	int cmd;
5220 
5221 	switch (reg_addr) {
5222 	case TP_PIO_ADDR_A:
5223 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5224 		break;
5225 	case TP_TM_PIO_ADDR_A:
5226 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5227 		break;
5228 	case TP_MIB_INDEX_A:
5229 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5230 		break;
5231 	default:
5232 		goto indirect_access;
5233 	}
5234 
5235 	if (t4_use_ldst(adap))
5236 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5237 				      sleep_ok);
5238 
5239 indirect_access:
5240 
5241 	if (rc) {
5242 		if (rw)
5243 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5244 					 start_index);
5245 		else
5246 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5247 					  start_index);
5248 	}
5249 }
5250 
5251 /**
5252  * t4_tp_pio_read - Read TP PIO registers
5253  * @adap: the adapter
5254  * @buff: where the indirect register values are written
5255  * @nregs: how many indirect registers to read
5256  * @start_index: index of first indirect register to read
5257  * @sleep_ok: if true we may sleep while awaiting command completion
5258  *
5259  * Read TP PIO Registers
5260  **/
5261 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5262 		    u32 start_index, bool sleep_ok)
5263 {
5264 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5265 			  start_index, 1, sleep_ok);
5266 }
5267 
5268 /**
5269  * t4_tp_pio_write - Write TP PIO registers
5270  * @adap: the adapter
5271  * @buff: where the indirect register values are stored
5272  * @nregs: how many indirect registers to write
5273  * @start_index: index of first indirect register to write
5274  * @sleep_ok: if true we may sleep while awaiting command completion
5275  *
5276  * Write TP PIO Registers
5277  **/
5278 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5279 			    u32 start_index, bool sleep_ok)
5280 {
5281 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5282 			  start_index, 0, sleep_ok);
5283 }
5284 
5285 /**
5286  * t4_tp_tm_pio_read - Read TP TM PIO registers
5287  * @adap: the adapter
5288  * @buff: where the indirect register values are written
5289  * @nregs: how many indirect registers to read
5290  * @start_index: index of first indirect register to read
5291  * @sleep_ok: if true we may sleep while awaiting command completion
5292  *
5293  * Read TP TM PIO Registers
5294  **/
5295 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5296 		       u32 start_index, bool sleep_ok)
5297 {
5298 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5299 			  nregs, start_index, 1, sleep_ok);
5300 }
5301 
5302 /**
5303  * t4_tp_mib_read - Read TP MIB registers
5304  * @adap: the adapter
5305  * @buff: where the indirect register values are written
5306  * @nregs: how many indirect registers to read
5307  * @start_index: index of first indirect register to read
5308  * @sleep_ok: if true we may sleep while awaiting command completion
5309  *
5310  * Read TP MIB Registers
5311  **/
5312 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5313 		    bool sleep_ok)
5314 {
5315 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5316 			  start_index, 1, sleep_ok);
5317 }
5318 
5319 /**
5320  *	t4_read_rss_key - read the global RSS key
5321  *	@adap: the adapter
5322  *	@key: 10-entry array holding the 320-bit RSS key
5323  *      @sleep_ok: if true we may sleep while awaiting command completion
5324  *
5325  *	Reads the global 320-bit RSS key.
5326  */
5327 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5328 {
5329 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5330 }
5331 
5332 /**
5333  *	t4_write_rss_key - program one of the RSS keys
5334  *	@adap: the adapter
5335  *	@key: 10-entry array holding the 320-bit RSS key
5336  *	@idx: which RSS key to write
5337  *      @sleep_ok: if true we may sleep while awaiting command completion
5338  *
5339  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5340  *	0..15 the corresponding entry in the RSS key table is written,
5341  *	otherwise the global RSS key is written.
5342  */
5343 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5344 		      bool sleep_ok)
5345 {
5346 	u8 rss_key_addr_cnt = 16;
5347 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5348 
5349 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5350 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5351 	 * as index[5:4](upper 2) into key table
5352 	 */
5353 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5354 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5355 		rss_key_addr_cnt = 32;
5356 
5357 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5358 
5359 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5360 		if (rss_key_addr_cnt > 16)
5361 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5362 				     KEYWRADDRX_V(idx >> 4) |
5363 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5364 		else
5365 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5366 				     KEYWRADDR_V(idx) | KEYWREN_F);
5367 	}
5368 }
5369 
5370 /**
5371  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5372  *	@adapter: the adapter
5373  *	@index: the entry in the PF RSS table to read
5374  *	@valp: where to store the returned value
5375  *      @sleep_ok: if true we may sleep while awaiting command completion
5376  *
5377  *	Reads the PF RSS Configuration Table at the specified index and returns
5378  *	the value found there.
5379  */
5380 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5381 			   u32 *valp, bool sleep_ok)
5382 {
5383 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5384 }
5385 
5386 /**
5387  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5388  *	@adapter: the adapter
5389  *	@index: the entry in the VF RSS table to read
5390  *	@vfl: where to store the returned VFL
5391  *	@vfh: where to store the returned VFH
5392  *      @sleep_ok: if true we may sleep while awaiting command completion
5393  *
5394  *	Reads the VF RSS Configuration Table at the specified index and returns
5395  *	the (VFL, VFH) values found there.
5396  */
5397 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5398 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5399 {
5400 	u32 vrt, mask, data;
5401 
5402 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5403 		mask = VFWRADDR_V(VFWRADDR_M);
5404 		data = VFWRADDR_V(index);
5405 	} else {
5406 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5407 		 data = T6_VFWRADDR_V(index);
5408 	}
5409 
5410 	/* Request that the index'th VF Table values be read into VFL/VFH.
5411 	 */
5412 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5413 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5414 	vrt |= data | VFRDEN_F;
5415 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5416 
5417 	/* Grab the VFL/VFH values ...
5418 	 */
5419 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5420 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5421 }
5422 
5423 /**
5424  *	t4_read_rss_pf_map - read PF RSS Map
5425  *	@adapter: the adapter
5426  *      @sleep_ok: if true we may sleep while awaiting command completion
5427  *
5428  *	Reads the PF RSS Map register and returns its value.
5429  */
5430 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5431 {
5432 	u32 pfmap;
5433 
5434 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5435 	return pfmap;
5436 }
5437 
5438 /**
5439  *	t4_read_rss_pf_mask - read PF RSS Mask
5440  *	@adapter: the adapter
5441  *      @sleep_ok: if true we may sleep while awaiting command completion
5442  *
5443  *	Reads the PF RSS Mask register and returns its value.
5444  */
5445 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5446 {
5447 	u32 pfmask;
5448 
5449 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5450 	return pfmask;
5451 }
5452 
5453 /**
5454  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5455  *	@adap: the adapter
5456  *	@v4: holds the TCP/IP counter values
5457  *	@v6: holds the TCP/IPv6 counter values
5458  *      @sleep_ok: if true we may sleep while awaiting command completion
5459  *
5460  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5461  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5462  */
5463 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5464 			 struct tp_tcp_stats *v6, bool sleep_ok)
5465 {
5466 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5467 
5468 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5469 #define STAT(x)     val[STAT_IDX(x)]
5470 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5471 
5472 	if (v4) {
5473 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5474 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5475 		v4->tcp_out_rsts = STAT(OUT_RST);
5476 		v4->tcp_in_segs  = STAT64(IN_SEG);
5477 		v4->tcp_out_segs = STAT64(OUT_SEG);
5478 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5479 	}
5480 	if (v6) {
5481 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5482 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5483 		v6->tcp_out_rsts = STAT(OUT_RST);
5484 		v6->tcp_in_segs  = STAT64(IN_SEG);
5485 		v6->tcp_out_segs = STAT64(OUT_SEG);
5486 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5487 	}
5488 #undef STAT64
5489 #undef STAT
5490 #undef STAT_IDX
5491 }
5492 
5493 /**
5494  *	t4_tp_get_err_stats - read TP's error MIB counters
5495  *	@adap: the adapter
5496  *	@st: holds the counter values
5497  *      @sleep_ok: if true we may sleep while awaiting command completion
5498  *
5499  *	Returns the values of TP's error counters.
5500  */
5501 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5502 			 bool sleep_ok)
5503 {
5504 	int nchan = adap->params.arch.nchan;
5505 
5506 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5507 		       sleep_ok);
5508 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5509 		       sleep_ok);
5510 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5511 		       sleep_ok);
5512 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5513 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5514 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5515 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5516 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5517 		       sleep_ok);
5518 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5519 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5520 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5521 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5522 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5523 		       sleep_ok);
5524 }
5525 
5526 /**
5527  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5528  *	@adap: the adapter
5529  *	@st: holds the counter values
5530  *      @sleep_ok: if true we may sleep while awaiting command completion
5531  *
5532  *	Returns the values of TP's CPL counters.
5533  */
5534 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5535 			 bool sleep_ok)
5536 {
5537 	int nchan = adap->params.arch.nchan;
5538 
5539 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5540 
5541 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5542 }
5543 
5544 /**
5545  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5546  *	@adap: the adapter
5547  *	@st: holds the counter values
5548  *      @sleep_ok: if true we may sleep while awaiting command completion
5549  *
5550  *	Returns the values of TP's RDMA counters.
5551  */
5552 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5553 			  bool sleep_ok)
5554 {
5555 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5556 		       sleep_ok);
5557 }
5558 
5559 /**
5560  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5561  *	@adap: the adapter
5562  *	@idx: the port index
5563  *	@st: holds the counter values
5564  *      @sleep_ok: if true we may sleep while awaiting command completion
5565  *
5566  *	Returns the values of TP's FCoE counters for the selected port.
5567  */
5568 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5569 		       struct tp_fcoe_stats *st, bool sleep_ok)
5570 {
5571 	u32 val[2];
5572 
5573 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5574 		       sleep_ok);
5575 
5576 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5577 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5578 
5579 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5580 		       sleep_ok);
5581 
5582 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5583 }
5584 
5585 /**
5586  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5587  *	@adap: the adapter
5588  *	@st: holds the counter values
5589  *      @sleep_ok: if true we may sleep while awaiting command completion
5590  *
5591  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5592  */
5593 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5594 		      bool sleep_ok)
5595 {
5596 	u32 val[4];
5597 
5598 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5599 	st->frames = val[0];
5600 	st->drops = val[1];
5601 	st->octets = ((u64)val[2] << 32) | val[3];
5602 }
5603 
5604 /**
5605  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5606  *	@adap: the adapter
5607  *	@mtus: where to store the MTU values
5608  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5609  *
5610  *	Reads the HW path MTU table.
5611  */
5612 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5613 {
5614 	u32 v;
5615 	int i;
5616 
5617 	for (i = 0; i < NMTUS; ++i) {
5618 		t4_write_reg(adap, TP_MTU_TABLE_A,
5619 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5620 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5621 		mtus[i] = MTUVALUE_G(v);
5622 		if (mtu_log)
5623 			mtu_log[i] = MTUWIDTH_G(v);
5624 	}
5625 }
5626 
5627 /**
5628  *	t4_read_cong_tbl - reads the congestion control table
5629  *	@adap: the adapter
5630  *	@incr: where to store the alpha values
5631  *
5632  *	Reads the additive increments programmed into the HW congestion
5633  *	control table.
5634  */
5635 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5636 {
5637 	unsigned int mtu, w;
5638 
5639 	for (mtu = 0; mtu < NMTUS; ++mtu)
5640 		for (w = 0; w < NCCTRL_WIN; ++w) {
5641 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5642 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5643 			incr[mtu][w] = (u16)t4_read_reg(adap,
5644 						TP_CCTRL_TABLE_A) & 0x1fff;
5645 		}
5646 }
5647 
5648 /**
5649  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5650  *	@adap: the adapter
5651  *	@addr: the indirect TP register address
5652  *	@mask: specifies the field within the register to modify
5653  *	@val: new value for the field
5654  *
5655  *	Sets a field of an indirect TP register to the given value.
5656  */
5657 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5658 			    unsigned int mask, unsigned int val)
5659 {
5660 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5661 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5662 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5663 }
5664 
5665 /**
5666  *	init_cong_ctrl - initialize congestion control parameters
5667  *	@a: the alpha values for congestion control
5668  *	@b: the beta values for congestion control
5669  *
5670  *	Initialize the congestion control parameters.
5671  */
5672 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5673 {
5674 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5675 	a[9] = 2;
5676 	a[10] = 3;
5677 	a[11] = 4;
5678 	a[12] = 5;
5679 	a[13] = 6;
5680 	a[14] = 7;
5681 	a[15] = 8;
5682 	a[16] = 9;
5683 	a[17] = 10;
5684 	a[18] = 14;
5685 	a[19] = 17;
5686 	a[20] = 21;
5687 	a[21] = 25;
5688 	a[22] = 30;
5689 	a[23] = 35;
5690 	a[24] = 45;
5691 	a[25] = 60;
5692 	a[26] = 80;
5693 	a[27] = 100;
5694 	a[28] = 200;
5695 	a[29] = 300;
5696 	a[30] = 400;
5697 	a[31] = 500;
5698 
5699 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5700 	b[9] = b[10] = 1;
5701 	b[11] = b[12] = 2;
5702 	b[13] = b[14] = b[15] = b[16] = 3;
5703 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5704 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5705 	b[28] = b[29] = 6;
5706 	b[30] = b[31] = 7;
5707 }
5708 
5709 /* The minimum additive increment value for the congestion control table */
5710 #define CC_MIN_INCR 2U
5711 
5712 /**
5713  *	t4_load_mtus - write the MTU and congestion control HW tables
5714  *	@adap: the adapter
5715  *	@mtus: the values for the MTU table
5716  *	@alpha: the values for the congestion control alpha parameter
5717  *	@beta: the values for the congestion control beta parameter
5718  *
5719  *	Write the HW MTU table with the supplied MTUs and the high-speed
5720  *	congestion control table with the supplied alpha, beta, and MTUs.
5721  *	We write the two tables together because the additive increments
5722  *	depend on the MTUs.
5723  */
5724 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5725 		  const unsigned short *alpha, const unsigned short *beta)
5726 {
5727 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5728 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5729 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5730 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5731 	};
5732 
5733 	unsigned int i, w;
5734 
5735 	for (i = 0; i < NMTUS; ++i) {
5736 		unsigned int mtu = mtus[i];
5737 		unsigned int log2 = fls(mtu);
5738 
5739 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5740 			log2--;
5741 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5742 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5743 
5744 		for (w = 0; w < NCCTRL_WIN; ++w) {
5745 			unsigned int inc;
5746 
5747 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5748 				  CC_MIN_INCR);
5749 
5750 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5751 				     (w << 16) | (beta[w] << 13) | inc);
5752 		}
5753 	}
5754 }
5755 
5756 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5757  * clocks.  The formula is
5758  *
5759  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5760  *
5761  * which is equivalent to
5762  *
5763  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5764  */
5765 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5766 {
5767 	u64 v = bytes256 * adap->params.vpd.cclk;
5768 
5769 	return v * 62 + v / 2;
5770 }
5771 
5772 /**
5773  *	t4_get_chan_txrate - get the current per channel Tx rates
5774  *	@adap: the adapter
5775  *	@nic_rate: rates for NIC traffic
5776  *	@ofld_rate: rates for offloaded traffic
5777  *
5778  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5779  *	for each channel.
5780  */
5781 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5782 {
5783 	u32 v;
5784 
5785 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5786 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5787 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5788 	if (adap->params.arch.nchan == NCHAN) {
5789 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5790 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5791 	}
5792 
5793 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5794 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5795 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5796 	if (adap->params.arch.nchan == NCHAN) {
5797 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5798 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5799 	}
5800 }
5801 
5802 /**
5803  *	t4_set_trace_filter - configure one of the tracing filters
5804  *	@adap: the adapter
5805  *	@tp: the desired trace filter parameters
5806  *	@idx: which filter to configure
5807  *	@enable: whether to enable or disable the filter
5808  *
5809  *	Configures one of the tracing filters available in HW.  If @enable is
5810  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5811  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5812  */
5813 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5814 			int idx, int enable)
5815 {
5816 	int i, ofst = idx * 4;
5817 	u32 data_reg, mask_reg, cfg;
5818 	u32 multitrc = TRCMULTIFILTER_F;
5819 
5820 	if (!enable) {
5821 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5822 		return 0;
5823 	}
5824 
5825 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5826 	if (cfg & TRCMULTIFILTER_F) {
5827 		/* If multiple tracers are enabled, then maximum
5828 		 * capture size is 2.5KB (FIFO size of a single channel)
5829 		 * minus 2 flits for CPL_TRACE_PKT header.
5830 		 */
5831 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5832 			return -EINVAL;
5833 	} else {
5834 		/* If multiple tracers are disabled, to avoid deadlocks
5835 		 * maximum packet capture size of 9600 bytes is recommended.
5836 		 * Also in this mode, only trace0 can be enabled and running.
5837 		 */
5838 		multitrc = 0;
5839 		if (tp->snap_len > 9600 || idx)
5840 			return -EINVAL;
5841 	}
5842 
5843 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5844 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5845 	    tp->min_len > TFMINPKTSIZE_M)
5846 		return -EINVAL;
5847 
5848 	/* stop the tracer we'll be changing */
5849 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5850 
5851 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5852 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5853 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5854 
5855 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5856 		t4_write_reg(adap, data_reg, tp->data[i]);
5857 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5858 	}
5859 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5860 		     TFCAPTUREMAX_V(tp->snap_len) |
5861 		     TFMINPKTSIZE_V(tp->min_len));
5862 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5863 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5864 		     (is_t4(adap->params.chip) ?
5865 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5866 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5867 		     T5_TFINVERTMATCH_V(tp->invert)));
5868 
5869 	return 0;
5870 }
5871 
5872 /**
5873  *	t4_get_trace_filter - query one of the tracing filters
5874  *	@adap: the adapter
5875  *	@tp: the current trace filter parameters
5876  *	@idx: which trace filter to query
5877  *	@enabled: non-zero if the filter is enabled
5878  *
5879  *	Returns the current settings of one of the HW tracing filters.
5880  */
5881 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5882 			 int *enabled)
5883 {
5884 	u32 ctla, ctlb;
5885 	int i, ofst = idx * 4;
5886 	u32 data_reg, mask_reg;
5887 
5888 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5889 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5890 
5891 	if (is_t4(adap->params.chip)) {
5892 		*enabled = !!(ctla & TFEN_F);
5893 		tp->port =  TFPORT_G(ctla);
5894 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5895 	} else {
5896 		*enabled = !!(ctla & T5_TFEN_F);
5897 		tp->port = T5_TFPORT_G(ctla);
5898 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5899 	}
5900 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5901 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5902 	tp->skip_ofst = TFOFFSET_G(ctla);
5903 	tp->skip_len = TFLENGTH_G(ctla);
5904 
5905 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5906 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5907 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5908 
5909 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5910 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5911 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5912 	}
5913 }
5914 
5915 /**
5916  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5917  *	@adap: the adapter
5918  *	@cnt: where to store the count statistics
5919  *	@cycles: where to store the cycle statistics
5920  *
5921  *	Returns performance statistics from PMTX.
5922  */
5923 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5924 {
5925 	int i;
5926 	u32 data[2];
5927 
5928 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5929 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5930 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5931 		if (is_t4(adap->params.chip)) {
5932 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5933 		} else {
5934 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5935 					 PM_TX_DBG_DATA_A, data, 2,
5936 					 PM_TX_DBG_STAT_MSB_A);
5937 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5938 		}
5939 	}
5940 }
5941 
5942 /**
5943  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5944  *	@adap: the adapter
5945  *	@cnt: where to store the count statistics
5946  *	@cycles: where to store the cycle statistics
5947  *
5948  *	Returns performance statistics from PMRX.
5949  */
5950 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5951 {
5952 	int i;
5953 	u32 data[2];
5954 
5955 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5956 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5957 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5958 		if (is_t4(adap->params.chip)) {
5959 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5960 		} else {
5961 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5962 					 PM_RX_DBG_DATA_A, data, 2,
5963 					 PM_RX_DBG_STAT_MSB_A);
5964 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5965 		}
5966 	}
5967 }
5968 
5969 /**
5970  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5971  *	@adap: the adapter
5972  *	@pidx: the port index
5973  *
5974  *	Computes and returns a bitmap indicating which MPS buffer groups are
5975  *	associated with the given Port.  Bit i is set if buffer group i is
5976  *	used by the Port.
5977  */
5978 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5979 					      int pidx)
5980 {
5981 	unsigned int chip_version, nports;
5982 
5983 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5984 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5985 
5986 	switch (chip_version) {
5987 	case CHELSIO_T4:
5988 	case CHELSIO_T5:
5989 		switch (nports) {
5990 		case 1: return 0xf;
5991 		case 2: return 3 << (2 * pidx);
5992 		case 4: return 1 << pidx;
5993 		}
5994 		break;
5995 
5996 	case CHELSIO_T6:
5997 		switch (nports) {
5998 		case 2: return 1 << (2 * pidx);
5999 		}
6000 		break;
6001 	}
6002 
6003 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6004 		chip_version, nports);
6005 
6006 	return 0;
6007 }
6008 
6009 /**
6010  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6011  *	@adapter: the adapter
6012  *	@pidx: the port index
6013  *
6014  *	Returns a bitmap indicating which MPS buffer groups are associated
6015  *	with the given Port.  Bit i is set if buffer group i is used by the
6016  *	Port.
6017  */
6018 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6019 {
6020 	u8 *mps_bg_map;
6021 	unsigned int nports;
6022 
6023 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6024 	if (pidx >= nports) {
6025 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6026 			pidx, nports);
6027 		return 0;
6028 	}
6029 
6030 	/* If we've already retrieved/computed this, just return the result.
6031 	 */
6032 	mps_bg_map = adapter->params.mps_bg_map;
6033 	if (mps_bg_map[pidx])
6034 		return mps_bg_map[pidx];
6035 
6036 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6037 	 * If we're talking to such Firmware, let it tell us.  If the new
6038 	 * API isn't supported, revert back to old hardcoded way.  The value
6039 	 * obtained from Firmware is encoded in below format:
6040 	 *
6041 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6042 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6043 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6044 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6045 	 */
6046 	if (adapter->flags & FW_OK) {
6047 		u32 param, val;
6048 		int ret;
6049 
6050 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6051 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6052 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6053 					 0, 1, &param, &val);
6054 		if (!ret) {
6055 			int p;
6056 
6057 			/* Store the BG Map for all of the Ports in order to
6058 			 * avoid more calls to the Firmware in the future.
6059 			 */
6060 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6061 				mps_bg_map[p] = val & 0xff;
6062 
6063 			return mps_bg_map[pidx];
6064 		}
6065 	}
6066 
6067 	/* Either we're not talking to the Firmware or we're dealing with
6068 	 * older Firmware which doesn't support the new API to get the MPS
6069 	 * Buffer Group Map.  Fall back to computing it ourselves.
6070 	 */
6071 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6072 	return mps_bg_map[pidx];
6073 }
6074 
6075 /**
6076  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6077  *	@adapter: the adapter
6078  *	@pidx: the port index
6079  *
6080  *	Returns a bitmap indicating which TP Ingress Channels are associated
6081  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6082  *	the Port.
6083  */
6084 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6085 {
6086 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6087 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6088 
6089 	if (pidx >= nports) {
6090 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6091 			 pidx, nports);
6092 		return 0;
6093 	}
6094 
6095 	switch (chip_version) {
6096 	case CHELSIO_T4:
6097 	case CHELSIO_T5:
6098 		/* Note that this happens to be the same values as the MPS
6099 		 * Buffer Group Map for these Chips.  But we replicate the code
6100 		 * here because they're really separate concepts.
6101 		 */
6102 		switch (nports) {
6103 		case 1: return 0xf;
6104 		case 2: return 3 << (2 * pidx);
6105 		case 4: return 1 << pidx;
6106 		}
6107 		break;
6108 
6109 	case CHELSIO_T6:
6110 		switch (nports) {
6111 		case 1:
6112 		case 2: return 1 << pidx;
6113 		}
6114 		break;
6115 	}
6116 
6117 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6118 		chip_version, nports);
6119 	return 0;
6120 }
6121 
6122 /**
6123  *      t4_get_port_type_description - return Port Type string description
6124  *      @port_type: firmware Port Type enumeration
6125  */
6126 const char *t4_get_port_type_description(enum fw_port_type port_type)
6127 {
6128 	static const char *const port_type_description[] = {
6129 		"Fiber_XFI",
6130 		"Fiber_XAUI",
6131 		"BT_SGMII",
6132 		"BT_XFI",
6133 		"BT_XAUI",
6134 		"KX4",
6135 		"CX4",
6136 		"KX",
6137 		"KR",
6138 		"SFP",
6139 		"BP_AP",
6140 		"BP4_AP",
6141 		"QSFP_10G",
6142 		"QSA",
6143 		"QSFP",
6144 		"BP40_BA",
6145 		"KR4_100G",
6146 		"CR4_QSFP",
6147 		"CR_QSFP",
6148 		"CR2_QSFP",
6149 		"SFP28",
6150 		"KR_SFP28",
6151 		"KR_XLAUI"
6152 	};
6153 
6154 	if (port_type < ARRAY_SIZE(port_type_description))
6155 		return port_type_description[port_type];
6156 	return "UNKNOWN";
6157 }
6158 
6159 /**
6160  *      t4_get_port_stats_offset - collect port stats relative to a previous
6161  *                                 snapshot
6162  *      @adap: The adapter
6163  *      @idx: The port
6164  *      @stats: Current stats to fill
6165  *      @offset: Previous stats snapshot
6166  */
6167 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6168 			      struct port_stats *stats,
6169 			      struct port_stats *offset)
6170 {
6171 	u64 *s, *o;
6172 	int i;
6173 
6174 	t4_get_port_stats(adap, idx, stats);
6175 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6176 			i < (sizeof(struct port_stats) / sizeof(u64));
6177 			i++, s++, o++)
6178 		*s -= *o;
6179 }
6180 
6181 /**
6182  *	t4_get_port_stats - collect port statistics
6183  *	@adap: the adapter
6184  *	@idx: the port index
6185  *	@p: the stats structure to fill
6186  *
6187  *	Collect statistics related to the given port from HW.
6188  */
6189 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6190 {
6191 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6192 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6193 
6194 #define GET_STAT(name) \
6195 	t4_read_reg64(adap, \
6196 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6197 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6198 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6199 
6200 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6201 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6202 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6203 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6204 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6205 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6206 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6207 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6208 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6209 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6210 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6211 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6212 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6213 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6214 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6215 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6216 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6217 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6218 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6219 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6220 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6221 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6222 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6223 
6224 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6225 		if (stat_ctl & COUNTPAUSESTATTX_F)
6226 			p->tx_frames_64 -= p->tx_pause;
6227 		if (stat_ctl & COUNTPAUSEMCTX_F)
6228 			p->tx_mcast_frames -= p->tx_pause;
6229 	}
6230 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6231 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6232 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6233 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6234 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6235 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6236 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6237 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6238 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6239 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6240 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6241 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6242 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6243 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6244 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6245 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6246 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6247 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6248 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6249 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6250 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6251 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6252 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6253 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6254 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6255 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6256 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6257 
6258 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6259 		if (stat_ctl & COUNTPAUSESTATRX_F)
6260 			p->rx_frames_64 -= p->rx_pause;
6261 		if (stat_ctl & COUNTPAUSEMCRX_F)
6262 			p->rx_mcast_frames -= p->rx_pause;
6263 	}
6264 
6265 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6266 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6267 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6268 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6269 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6270 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6271 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6272 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6273 
6274 #undef GET_STAT
6275 #undef GET_STAT_COM
6276 }
6277 
6278 /**
6279  *	t4_get_lb_stats - collect loopback port statistics
6280  *	@adap: the adapter
6281  *	@idx: the loopback port index
6282  *	@p: the stats structure to fill
6283  *
6284  *	Return HW statistics for the given loopback port.
6285  */
6286 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6287 {
6288 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6289 
6290 #define GET_STAT(name) \
6291 	t4_read_reg64(adap, \
6292 	(is_t4(adap->params.chip) ? \
6293 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6294 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6295 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6296 
6297 	p->octets           = GET_STAT(BYTES);
6298 	p->frames           = GET_STAT(FRAMES);
6299 	p->bcast_frames     = GET_STAT(BCAST);
6300 	p->mcast_frames     = GET_STAT(MCAST);
6301 	p->ucast_frames     = GET_STAT(UCAST);
6302 	p->error_frames     = GET_STAT(ERROR);
6303 
6304 	p->frames_64        = GET_STAT(64B);
6305 	p->frames_65_127    = GET_STAT(65B_127B);
6306 	p->frames_128_255   = GET_STAT(128B_255B);
6307 	p->frames_256_511   = GET_STAT(256B_511B);
6308 	p->frames_512_1023  = GET_STAT(512B_1023B);
6309 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6310 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6311 	p->drop             = GET_STAT(DROP_FRAMES);
6312 
6313 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6314 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6315 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6316 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6317 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6318 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6319 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6320 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6321 
6322 #undef GET_STAT
6323 #undef GET_STAT_COM
6324 }
6325 
6326 /*     t4_mk_filtdelwr - create a delete filter WR
6327  *     @ftid: the filter ID
6328  *     @wr: the filter work request to populate
6329  *     @qid: ingress queue to receive the delete notification
6330  *
6331  *     Creates a filter work request to delete the supplied filter.  If @qid is
6332  *     negative the delete notification is suppressed.
6333  */
6334 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6335 {
6336 	memset(wr, 0, sizeof(*wr));
6337 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6338 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6339 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6340 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6341 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6342 	if (qid >= 0)
6343 		wr->rx_chan_rx_rpl_iq =
6344 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6345 }
6346 
6347 #define INIT_CMD(var, cmd, rd_wr) do { \
6348 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6349 					FW_CMD_REQUEST_F | \
6350 					FW_CMD_##rd_wr##_F); \
6351 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6352 } while (0)
6353 
6354 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6355 			  u32 addr, u32 val)
6356 {
6357 	u32 ldst_addrspace;
6358 	struct fw_ldst_cmd c;
6359 
6360 	memset(&c, 0, sizeof(c));
6361 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6362 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6363 					FW_CMD_REQUEST_F |
6364 					FW_CMD_WRITE_F |
6365 					ldst_addrspace);
6366 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6367 	c.u.addrval.addr = cpu_to_be32(addr);
6368 	c.u.addrval.val = cpu_to_be32(val);
6369 
6370 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6371 }
6372 
6373 /**
6374  *	t4_mdio_rd - read a PHY register through MDIO
6375  *	@adap: the adapter
6376  *	@mbox: mailbox to use for the FW command
6377  *	@phy_addr: the PHY address
6378  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6379  *	@reg: the register to read
6380  *	@valp: where to store the value
6381  *
6382  *	Issues a FW command through the given mailbox to read a PHY register.
6383  */
6384 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6385 	       unsigned int mmd, unsigned int reg, u16 *valp)
6386 {
6387 	int ret;
6388 	u32 ldst_addrspace;
6389 	struct fw_ldst_cmd c;
6390 
6391 	memset(&c, 0, sizeof(c));
6392 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6393 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6394 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6395 					ldst_addrspace);
6396 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6397 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6398 					 FW_LDST_CMD_MMD_V(mmd));
6399 	c.u.mdio.raddr = cpu_to_be16(reg);
6400 
6401 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6402 	if (ret == 0)
6403 		*valp = be16_to_cpu(c.u.mdio.rval);
6404 	return ret;
6405 }
6406 
6407 /**
6408  *	t4_mdio_wr - write a PHY register through MDIO
6409  *	@adap: the adapter
6410  *	@mbox: mailbox to use for the FW command
6411  *	@phy_addr: the PHY address
6412  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6413  *	@reg: the register to write
6414  *	@valp: value to write
6415  *
6416  *	Issues a FW command through the given mailbox to write a PHY register.
6417  */
6418 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6419 	       unsigned int mmd, unsigned int reg, u16 val)
6420 {
6421 	u32 ldst_addrspace;
6422 	struct fw_ldst_cmd c;
6423 
6424 	memset(&c, 0, sizeof(c));
6425 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6426 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6427 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6428 					ldst_addrspace);
6429 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6430 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6431 					 FW_LDST_CMD_MMD_V(mmd));
6432 	c.u.mdio.raddr = cpu_to_be16(reg);
6433 	c.u.mdio.rval = cpu_to_be16(val);
6434 
6435 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6436 }
6437 
6438 /**
6439  *	t4_sge_decode_idma_state - decode the idma state
6440  *	@adap: the adapter
6441  *	@state: the state idma is stuck in
6442  */
6443 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6444 {
6445 	static const char * const t4_decode[] = {
6446 		"IDMA_IDLE",
6447 		"IDMA_PUSH_MORE_CPL_FIFO",
6448 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6449 		"Not used",
6450 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6451 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6452 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6453 		"IDMA_SEND_FIFO_TO_IMSG",
6454 		"IDMA_FL_REQ_DATA_FL_PREP",
6455 		"IDMA_FL_REQ_DATA_FL",
6456 		"IDMA_FL_DROP",
6457 		"IDMA_FL_H_REQ_HEADER_FL",
6458 		"IDMA_FL_H_SEND_PCIEHDR",
6459 		"IDMA_FL_H_PUSH_CPL_FIFO",
6460 		"IDMA_FL_H_SEND_CPL",
6461 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6462 		"IDMA_FL_H_SEND_IP_HDR",
6463 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6464 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6465 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6466 		"IDMA_FL_D_SEND_PCIEHDR",
6467 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6468 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6469 		"IDMA_FL_SEND_PCIEHDR",
6470 		"IDMA_FL_PUSH_CPL_FIFO",
6471 		"IDMA_FL_SEND_CPL",
6472 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6473 		"IDMA_FL_SEND_PAYLOAD",
6474 		"IDMA_FL_REQ_NEXT_DATA_FL",
6475 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6476 		"IDMA_FL_SEND_PADDING",
6477 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6478 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6479 		"IDMA_FL_REQ_DATAFL_DONE",
6480 		"IDMA_FL_REQ_HEADERFL_DONE",
6481 	};
6482 	static const char * const t5_decode[] = {
6483 		"IDMA_IDLE",
6484 		"IDMA_ALMOST_IDLE",
6485 		"IDMA_PUSH_MORE_CPL_FIFO",
6486 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6487 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6488 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6489 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6490 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6491 		"IDMA_SEND_FIFO_TO_IMSG",
6492 		"IDMA_FL_REQ_DATA_FL",
6493 		"IDMA_FL_DROP",
6494 		"IDMA_FL_DROP_SEND_INC",
6495 		"IDMA_FL_H_REQ_HEADER_FL",
6496 		"IDMA_FL_H_SEND_PCIEHDR",
6497 		"IDMA_FL_H_PUSH_CPL_FIFO",
6498 		"IDMA_FL_H_SEND_CPL",
6499 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6500 		"IDMA_FL_H_SEND_IP_HDR",
6501 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6502 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6503 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6504 		"IDMA_FL_D_SEND_PCIEHDR",
6505 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6506 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6507 		"IDMA_FL_SEND_PCIEHDR",
6508 		"IDMA_FL_PUSH_CPL_FIFO",
6509 		"IDMA_FL_SEND_CPL",
6510 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6511 		"IDMA_FL_SEND_PAYLOAD",
6512 		"IDMA_FL_REQ_NEXT_DATA_FL",
6513 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6514 		"IDMA_FL_SEND_PADDING",
6515 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6516 	};
6517 	static const char * const t6_decode[] = {
6518 		"IDMA_IDLE",
6519 		"IDMA_PUSH_MORE_CPL_FIFO",
6520 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6521 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6522 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6523 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6524 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6525 		"IDMA_FL_REQ_DATA_FL",
6526 		"IDMA_FL_DROP",
6527 		"IDMA_FL_DROP_SEND_INC",
6528 		"IDMA_FL_H_REQ_HEADER_FL",
6529 		"IDMA_FL_H_SEND_PCIEHDR",
6530 		"IDMA_FL_H_PUSH_CPL_FIFO",
6531 		"IDMA_FL_H_SEND_CPL",
6532 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6533 		"IDMA_FL_H_SEND_IP_HDR",
6534 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6535 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6536 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6537 		"IDMA_FL_D_SEND_PCIEHDR",
6538 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6539 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6540 		"IDMA_FL_SEND_PCIEHDR",
6541 		"IDMA_FL_PUSH_CPL_FIFO",
6542 		"IDMA_FL_SEND_CPL",
6543 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6544 		"IDMA_FL_SEND_PAYLOAD",
6545 		"IDMA_FL_REQ_NEXT_DATA_FL",
6546 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6547 		"IDMA_FL_SEND_PADDING",
6548 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6549 	};
6550 	static const u32 sge_regs[] = {
6551 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6552 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6553 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6554 	};
6555 	const char **sge_idma_decode;
6556 	int sge_idma_decode_nstates;
6557 	int i;
6558 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6559 
6560 	/* Select the right set of decode strings to dump depending on the
6561 	 * adapter chip type.
6562 	 */
6563 	switch (chip_version) {
6564 	case CHELSIO_T4:
6565 		sge_idma_decode = (const char **)t4_decode;
6566 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6567 		break;
6568 
6569 	case CHELSIO_T5:
6570 		sge_idma_decode = (const char **)t5_decode;
6571 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6572 		break;
6573 
6574 	case CHELSIO_T6:
6575 		sge_idma_decode = (const char **)t6_decode;
6576 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6577 		break;
6578 
6579 	default:
6580 		dev_err(adapter->pdev_dev,
6581 			"Unsupported chip version %d\n", chip_version);
6582 		return;
6583 	}
6584 
6585 	if (is_t4(adapter->params.chip)) {
6586 		sge_idma_decode = (const char **)t4_decode;
6587 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6588 	} else {
6589 		sge_idma_decode = (const char **)t5_decode;
6590 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6591 	}
6592 
6593 	if (state < sge_idma_decode_nstates)
6594 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6595 	else
6596 		CH_WARN(adapter, "idma state %d unknown\n", state);
6597 
6598 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6599 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6600 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6601 }
6602 
6603 /**
6604  *      t4_sge_ctxt_flush - flush the SGE context cache
6605  *      @adap: the adapter
6606  *      @mbox: mailbox to use for the FW command
6607  *      @ctx_type: Egress or Ingress
6608  *
6609  *      Issues a FW command through the given mailbox to flush the
6610  *      SGE context cache.
6611  */
6612 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6613 {
6614 	int ret;
6615 	u32 ldst_addrspace;
6616 	struct fw_ldst_cmd c;
6617 
6618 	memset(&c, 0, sizeof(c));
6619 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6620 						 FW_LDST_ADDRSPC_SGE_EGRC :
6621 						 FW_LDST_ADDRSPC_SGE_INGC);
6622 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6623 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6624 					ldst_addrspace);
6625 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6626 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6627 
6628 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6629 	return ret;
6630 }
6631 
6632 /**
6633  *      t4_fw_hello - establish communication with FW
6634  *      @adap: the adapter
6635  *      @mbox: mailbox to use for the FW command
6636  *      @evt_mbox: mailbox to receive async FW events
6637  *      @master: specifies the caller's willingness to be the device master
6638  *	@state: returns the current device state (if non-NULL)
6639  *
6640  *	Issues a command to establish communication with FW.  Returns either
6641  *	an error (negative integer) or the mailbox of the Master PF.
6642  */
6643 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6644 		enum dev_master master, enum dev_state *state)
6645 {
6646 	int ret;
6647 	struct fw_hello_cmd c;
6648 	u32 v;
6649 	unsigned int master_mbox;
6650 	int retries = FW_CMD_HELLO_RETRIES;
6651 
6652 retry:
6653 	memset(&c, 0, sizeof(c));
6654 	INIT_CMD(c, HELLO, WRITE);
6655 	c.err_to_clearinit = cpu_to_be32(
6656 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6657 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6658 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6659 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6660 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6661 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6662 		FW_HELLO_CMD_CLEARINIT_F);
6663 
6664 	/*
6665 	 * Issue the HELLO command to the firmware.  If it's not successful
6666 	 * but indicates that we got a "busy" or "timeout" condition, retry
6667 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6668 	 * retry limit, check to see if the firmware left us any error
6669 	 * information and report that if so.
6670 	 */
6671 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6672 	if (ret < 0) {
6673 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6674 			goto retry;
6675 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6676 			t4_report_fw_error(adap);
6677 		return ret;
6678 	}
6679 
6680 	v = be32_to_cpu(c.err_to_clearinit);
6681 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6682 	if (state) {
6683 		if (v & FW_HELLO_CMD_ERR_F)
6684 			*state = DEV_STATE_ERR;
6685 		else if (v & FW_HELLO_CMD_INIT_F)
6686 			*state = DEV_STATE_INIT;
6687 		else
6688 			*state = DEV_STATE_UNINIT;
6689 	}
6690 
6691 	/*
6692 	 * If we're not the Master PF then we need to wait around for the
6693 	 * Master PF Driver to finish setting up the adapter.
6694 	 *
6695 	 * Note that we also do this wait if we're a non-Master-capable PF and
6696 	 * there is no current Master PF; a Master PF may show up momentarily
6697 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6698 	 * OS loads lots of different drivers rapidly at the same time).  In
6699 	 * this case, the Master PF returned by the firmware will be
6700 	 * PCIE_FW_MASTER_M so the test below will work ...
6701 	 */
6702 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6703 	    master_mbox != mbox) {
6704 		int waiting = FW_CMD_HELLO_TIMEOUT;
6705 
6706 		/*
6707 		 * Wait for the firmware to either indicate an error or
6708 		 * initialized state.  If we see either of these we bail out
6709 		 * and report the issue to the caller.  If we exhaust the
6710 		 * "hello timeout" and we haven't exhausted our retries, try
6711 		 * again.  Otherwise bail with a timeout error.
6712 		 */
6713 		for (;;) {
6714 			u32 pcie_fw;
6715 
6716 			msleep(50);
6717 			waiting -= 50;
6718 
6719 			/*
6720 			 * If neither Error nor Initialialized are indicated
6721 			 * by the firmware keep waiting till we exaust our
6722 			 * timeout ... and then retry if we haven't exhausted
6723 			 * our retries ...
6724 			 */
6725 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6726 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6727 				if (waiting <= 0) {
6728 					if (retries-- > 0)
6729 						goto retry;
6730 
6731 					return -ETIMEDOUT;
6732 				}
6733 				continue;
6734 			}
6735 
6736 			/*
6737 			 * We either have an Error or Initialized condition
6738 			 * report errors preferentially.
6739 			 */
6740 			if (state) {
6741 				if (pcie_fw & PCIE_FW_ERR_F)
6742 					*state = DEV_STATE_ERR;
6743 				else if (pcie_fw & PCIE_FW_INIT_F)
6744 					*state = DEV_STATE_INIT;
6745 			}
6746 
6747 			/*
6748 			 * If we arrived before a Master PF was selected and
6749 			 * there's not a valid Master PF, grab its identity
6750 			 * for our caller.
6751 			 */
6752 			if (master_mbox == PCIE_FW_MASTER_M &&
6753 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6754 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6755 			break;
6756 		}
6757 	}
6758 
6759 	return master_mbox;
6760 }
6761 
6762 /**
6763  *	t4_fw_bye - end communication with FW
6764  *	@adap: the adapter
6765  *	@mbox: mailbox to use for the FW command
6766  *
6767  *	Issues a command to terminate communication with FW.
6768  */
6769 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6770 {
6771 	struct fw_bye_cmd c;
6772 
6773 	memset(&c, 0, sizeof(c));
6774 	INIT_CMD(c, BYE, WRITE);
6775 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6776 }
6777 
6778 /**
6779  *	t4_init_cmd - ask FW to initialize the device
6780  *	@adap: the adapter
6781  *	@mbox: mailbox to use for the FW command
6782  *
6783  *	Issues a command to FW to partially initialize the device.  This
6784  *	performs initialization that generally doesn't depend on user input.
6785  */
6786 int t4_early_init(struct adapter *adap, unsigned int mbox)
6787 {
6788 	struct fw_initialize_cmd c;
6789 
6790 	memset(&c, 0, sizeof(c));
6791 	INIT_CMD(c, INITIALIZE, WRITE);
6792 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6793 }
6794 
6795 /**
6796  *	t4_fw_reset - issue a reset to FW
6797  *	@adap: the adapter
6798  *	@mbox: mailbox to use for the FW command
6799  *	@reset: specifies the type of reset to perform
6800  *
6801  *	Issues a reset command of the specified type to FW.
6802  */
6803 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6804 {
6805 	struct fw_reset_cmd c;
6806 
6807 	memset(&c, 0, sizeof(c));
6808 	INIT_CMD(c, RESET, WRITE);
6809 	c.val = cpu_to_be32(reset);
6810 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6811 }
6812 
6813 /**
6814  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6815  *	@adap: the adapter
6816  *	@mbox: mailbox to use for the FW RESET command (if desired)
6817  *	@force: force uP into RESET even if FW RESET command fails
6818  *
6819  *	Issues a RESET command to firmware (if desired) with a HALT indication
6820  *	and then puts the microprocessor into RESET state.  The RESET command
6821  *	will only be issued if a legitimate mailbox is provided (mbox <=
6822  *	PCIE_FW_MASTER_M).
6823  *
6824  *	This is generally used in order for the host to safely manipulate the
6825  *	adapter without fear of conflicting with whatever the firmware might
6826  *	be doing.  The only way out of this state is to RESTART the firmware
6827  *	...
6828  */
6829 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6830 {
6831 	int ret = 0;
6832 
6833 	/*
6834 	 * If a legitimate mailbox is provided, issue a RESET command
6835 	 * with a HALT indication.
6836 	 */
6837 	if (mbox <= PCIE_FW_MASTER_M) {
6838 		struct fw_reset_cmd c;
6839 
6840 		memset(&c, 0, sizeof(c));
6841 		INIT_CMD(c, RESET, WRITE);
6842 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6843 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6844 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6845 	}
6846 
6847 	/*
6848 	 * Normally we won't complete the operation if the firmware RESET
6849 	 * command fails but if our caller insists we'll go ahead and put the
6850 	 * uP into RESET.  This can be useful if the firmware is hung or even
6851 	 * missing ...  We'll have to take the risk of putting the uP into
6852 	 * RESET without the cooperation of firmware in that case.
6853 	 *
6854 	 * We also force the firmware's HALT flag to be on in case we bypassed
6855 	 * the firmware RESET command above or we're dealing with old firmware
6856 	 * which doesn't have the HALT capability.  This will serve as a flag
6857 	 * for the incoming firmware to know that it's coming out of a HALT
6858 	 * rather than a RESET ... if it's new enough to understand that ...
6859 	 */
6860 	if (ret == 0 || force) {
6861 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6862 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6863 				 PCIE_FW_HALT_F);
6864 	}
6865 
6866 	/*
6867 	 * And we always return the result of the firmware RESET command
6868 	 * even when we force the uP into RESET ...
6869 	 */
6870 	return ret;
6871 }
6872 
6873 /**
6874  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6875  *	@adap: the adapter
6876  *	@reset: if we want to do a RESET to restart things
6877  *
6878  *	Restart firmware previously halted by t4_fw_halt().  On successful
6879  *	return the previous PF Master remains as the new PF Master and there
6880  *	is no need to issue a new HELLO command, etc.
6881  *
6882  *	We do this in two ways:
6883  *
6884  *	 1. If we're dealing with newer firmware we'll simply want to take
6885  *	    the chip's microprocessor out of RESET.  This will cause the
6886  *	    firmware to start up from its start vector.  And then we'll loop
6887  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6888  *	    reset to 0) or we timeout.
6889  *
6890  *	 2. If we're dealing with older firmware then we'll need to RESET
6891  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6892  *	    flag and automatically RESET itself on startup.
6893  */
6894 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6895 {
6896 	if (reset) {
6897 		/*
6898 		 * Since we're directing the RESET instead of the firmware
6899 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6900 		 * bit.
6901 		 */
6902 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6903 
6904 		/*
6905 		 * If we've been given a valid mailbox, first try to get the
6906 		 * firmware to do the RESET.  If that works, great and we can
6907 		 * return success.  Otherwise, if we haven't been given a
6908 		 * valid mailbox or the RESET command failed, fall back to
6909 		 * hitting the chip with a hammer.
6910 		 */
6911 		if (mbox <= PCIE_FW_MASTER_M) {
6912 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6913 			msleep(100);
6914 			if (t4_fw_reset(adap, mbox,
6915 					PIORST_F | PIORSTMODE_F) == 0)
6916 				return 0;
6917 		}
6918 
6919 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6920 		msleep(2000);
6921 	} else {
6922 		int ms;
6923 
6924 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6925 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6926 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6927 				return 0;
6928 			msleep(100);
6929 			ms += 100;
6930 		}
6931 		return -ETIMEDOUT;
6932 	}
6933 	return 0;
6934 }
6935 
6936 /**
6937  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6938  *	@adap: the adapter
6939  *	@mbox: mailbox to use for the FW RESET command (if desired)
6940  *	@fw_data: the firmware image to write
6941  *	@size: image size
6942  *	@force: force upgrade even if firmware doesn't cooperate
6943  *
6944  *	Perform all of the steps necessary for upgrading an adapter's
6945  *	firmware image.  Normally this requires the cooperation of the
6946  *	existing firmware in order to halt all existing activities
6947  *	but if an invalid mailbox token is passed in we skip that step
6948  *	(though we'll still put the adapter microprocessor into RESET in
6949  *	that case).
6950  *
6951  *	On successful return the new firmware will have been loaded and
6952  *	the adapter will have been fully RESET losing all previous setup
6953  *	state.  On unsuccessful return the adapter may be completely hosed ...
6954  *	positive errno indicates that the adapter is ~probably~ intact, a
6955  *	negative errno indicates that things are looking bad ...
6956  */
6957 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6958 		  const u8 *fw_data, unsigned int size, int force)
6959 {
6960 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6961 	int reset, ret;
6962 
6963 	if (!t4_fw_matches_chip(adap, fw_hdr))
6964 		return -EINVAL;
6965 
6966 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6967 	 * wont be sent when we are flashing FW.
6968 	 */
6969 	adap->flags &= ~FW_OK;
6970 
6971 	ret = t4_fw_halt(adap, mbox, force);
6972 	if (ret < 0 && !force)
6973 		goto out;
6974 
6975 	ret = t4_load_fw(adap, fw_data, size);
6976 	if (ret < 0)
6977 		goto out;
6978 
6979 	/*
6980 	 * If there was a Firmware Configuration File stored in FLASH,
6981 	 * there's a good chance that it won't be compatible with the new
6982 	 * Firmware.  In order to prevent difficult to diagnose adapter
6983 	 * initialization issues, we clear out the Firmware Configuration File
6984 	 * portion of the FLASH .  The user will need to re-FLASH a new
6985 	 * Firmware Configuration File which is compatible with the new
6986 	 * Firmware if that's desired.
6987 	 */
6988 	(void)t4_load_cfg(adap, NULL, 0);
6989 
6990 	/*
6991 	 * Older versions of the firmware don't understand the new
6992 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6993 	 * restart.  So for newly loaded older firmware we'll have to do the
6994 	 * RESET for it so it starts up on a clean slate.  We can tell if
6995 	 * the newly loaded firmware will handle this right by checking
6996 	 * its header flags to see if it advertises the capability.
6997 	 */
6998 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6999 	ret = t4_fw_restart(adap, mbox, reset);
7000 
7001 	/* Grab potentially new Firmware Device Log parameters so we can see
7002 	 * how healthy the new Firmware is.  It's okay to contact the new
7003 	 * Firmware for these parameters even though, as far as it's
7004 	 * concerned, we've never said "HELLO" to it ...
7005 	 */
7006 	(void)t4_init_devlog_params(adap);
7007 out:
7008 	adap->flags |= FW_OK;
7009 	return ret;
7010 }
7011 
7012 /**
7013  *	t4_fl_pkt_align - return the fl packet alignment
7014  *	@adap: the adapter
7015  *
7016  *	T4 has a single field to specify the packing and padding boundary.
7017  *	T5 onwards has separate fields for this and hence the alignment for
7018  *	next packet offset is maximum of these two.
7019  *
7020  */
7021 int t4_fl_pkt_align(struct adapter *adap)
7022 {
7023 	u32 sge_control, sge_control2;
7024 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7025 
7026 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7027 
7028 	/* T4 uses a single control field to specify both the PCIe Padding and
7029 	 * Packing Boundary.  T5 introduced the ability to specify these
7030 	 * separately.  The actual Ingress Packet Data alignment boundary
7031 	 * within Packed Buffer Mode is the maximum of these two
7032 	 * specifications.  (Note that it makes no real practical sense to
7033 	 * have the Pading Boudary be larger than the Packing Boundary but you
7034 	 * could set the chip up that way and, in fact, legacy T4 code would
7035 	 * end doing this because it would initialize the Padding Boundary and
7036 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7037 	 * Padding Boundary values in T6 starts from 8B,
7038 	 * where as it is 32B for T4 and T5.
7039 	 */
7040 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7041 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7042 	else
7043 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7044 
7045 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7046 
7047 	fl_align = ingpadboundary;
7048 	if (!is_t4(adap->params.chip)) {
7049 		/* T5 has a weird interpretation of one of the PCIe Packing
7050 		 * Boundary values.  No idea why ...
7051 		 */
7052 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7053 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7054 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7055 			ingpackboundary = 16;
7056 		else
7057 			ingpackboundary = 1 << (ingpackboundary +
7058 						INGPACKBOUNDARY_SHIFT_X);
7059 
7060 		fl_align = max(ingpadboundary, ingpackboundary);
7061 	}
7062 	return fl_align;
7063 }
7064 
7065 /**
7066  *	t4_fixup_host_params - fix up host-dependent parameters
7067  *	@adap: the adapter
7068  *	@page_size: the host's Base Page Size
7069  *	@cache_line_size: the host's Cache Line Size
7070  *
7071  *	Various registers in T4 contain values which are dependent on the
7072  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7073  *	those registers with the appropriate values as passed in ...
7074  */
7075 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7076 			 unsigned int cache_line_size)
7077 {
7078 	unsigned int page_shift = fls(page_size) - 1;
7079 	unsigned int sge_hps = page_shift - 10;
7080 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7081 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7082 	unsigned int fl_align_log = fls(fl_align) - 1;
7083 
7084 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7085 		     HOSTPAGESIZEPF0_V(sge_hps) |
7086 		     HOSTPAGESIZEPF1_V(sge_hps) |
7087 		     HOSTPAGESIZEPF2_V(sge_hps) |
7088 		     HOSTPAGESIZEPF3_V(sge_hps) |
7089 		     HOSTPAGESIZEPF4_V(sge_hps) |
7090 		     HOSTPAGESIZEPF5_V(sge_hps) |
7091 		     HOSTPAGESIZEPF6_V(sge_hps) |
7092 		     HOSTPAGESIZEPF7_V(sge_hps));
7093 
7094 	if (is_t4(adap->params.chip)) {
7095 		t4_set_reg_field(adap, SGE_CONTROL_A,
7096 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7097 				 EGRSTATUSPAGESIZE_F,
7098 				 INGPADBOUNDARY_V(fl_align_log -
7099 						  INGPADBOUNDARY_SHIFT_X) |
7100 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7101 	} else {
7102 		unsigned int pack_align;
7103 		unsigned int ingpad, ingpack;
7104 		unsigned int pcie_cap;
7105 
7106 		/* T5 introduced the separation of the Free List Padding and
7107 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7108 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7109 		 * Bandwidth, and use a Packing Boundary which is large enough
7110 		 * to avoid false sharing between CPUs, etc.
7111 		 *
7112 		 * For the PCI Link, the smaller the Padding Boundary the
7113 		 * better.  For the Memory Controller, a smaller Padding
7114 		 * Boundary is better until we cross under the Memory Line
7115 		 * Size (the minimum unit of transfer to/from Memory).  If we
7116 		 * have a Padding Boundary which is smaller than the Memory
7117 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7118 		 * Memory Controller which is never good.
7119 		 */
7120 
7121 		/* We want the Packing Boundary to be based on the Cache Line
7122 		 * Size in order to help avoid False Sharing performance
7123 		 * issues between CPUs, etc.  We also want the Packing
7124 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7125 		 * get best performance when the Packing Boundary is a
7126 		 * multiple of the Maximum Payload Size.
7127 		 */
7128 		pack_align = fl_align;
7129 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7130 		if (pcie_cap) {
7131 			unsigned int mps, mps_log;
7132 			u16 devctl;
7133 
7134 			/* The PCIe Device Control Maximum Payload Size field
7135 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7136 			 * 128 bytes.
7137 			 */
7138 			pci_read_config_word(adap->pdev,
7139 					     pcie_cap + PCI_EXP_DEVCTL,
7140 					     &devctl);
7141 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7142 			mps = 1 << mps_log;
7143 			if (mps > pack_align)
7144 				pack_align = mps;
7145 		}
7146 
7147 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7148 		 * value for the Packing Boundary.  This corresponds to 16
7149 		 * bytes instead of the expected 32 bytes.  So if we want 32
7150 		 * bytes, the best we can really do is 64 bytes ...
7151 		 */
7152 		if (pack_align <= 16) {
7153 			ingpack = INGPACKBOUNDARY_16B_X;
7154 			fl_align = 16;
7155 		} else if (pack_align == 32) {
7156 			ingpack = INGPACKBOUNDARY_64B_X;
7157 			fl_align = 64;
7158 		} else {
7159 			unsigned int pack_align_log = fls(pack_align) - 1;
7160 
7161 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7162 			fl_align = pack_align;
7163 		}
7164 
7165 		/* Use the smallest Ingress Padding which isn't smaller than
7166 		 * the Memory Controller Read/Write Size.  We'll take that as
7167 		 * being 8 bytes since we don't know of any system with a
7168 		 * wider Memory Controller Bus Width.
7169 		 */
7170 		if (is_t5(adap->params.chip))
7171 			ingpad = INGPADBOUNDARY_32B_X;
7172 		else
7173 			ingpad = T6_INGPADBOUNDARY_8B_X;
7174 
7175 		t4_set_reg_field(adap, SGE_CONTROL_A,
7176 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7177 				 EGRSTATUSPAGESIZE_F,
7178 				 INGPADBOUNDARY_V(ingpad) |
7179 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7180 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7181 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7182 				 INGPACKBOUNDARY_V(ingpack));
7183 	}
7184 	/*
7185 	 * Adjust various SGE Free List Host Buffer Sizes.
7186 	 *
7187 	 * This is something of a crock since we're using fixed indices into
7188 	 * the array which are also known by the sge.c code and the T4
7189 	 * Firmware Configuration File.  We need to come up with a much better
7190 	 * approach to managing this array.  For now, the first four entries
7191 	 * are:
7192 	 *
7193 	 *   0: Host Page Size
7194 	 *   1: 64KB
7195 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7196 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7197 	 *
7198 	 * For the single-MTU buffers in unpacked mode we need to include
7199 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7200 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7201 	 * Padding boundary.  All of these are accommodated in the Factory
7202 	 * Default Firmware Configuration File but we need to adjust it for
7203 	 * this host's cache line size.
7204 	 */
7205 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7206 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7207 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7208 		     & ~(fl_align-1));
7209 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7210 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7211 		     & ~(fl_align-1));
7212 
7213 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7214 
7215 	return 0;
7216 }
7217 
7218 /**
7219  *	t4_fw_initialize - ask FW to initialize the device
7220  *	@adap: the adapter
7221  *	@mbox: mailbox to use for the FW command
7222  *
7223  *	Issues a command to FW to partially initialize the device.  This
7224  *	performs initialization that generally doesn't depend on user input.
7225  */
7226 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7227 {
7228 	struct fw_initialize_cmd c;
7229 
7230 	memset(&c, 0, sizeof(c));
7231 	INIT_CMD(c, INITIALIZE, WRITE);
7232 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7233 }
7234 
7235 /**
7236  *	t4_query_params_rw - query FW or device parameters
7237  *	@adap: the adapter
7238  *	@mbox: mailbox to use for the FW command
7239  *	@pf: the PF
7240  *	@vf: the VF
7241  *	@nparams: the number of parameters
7242  *	@params: the parameter names
7243  *	@val: the parameter values
7244  *	@rw: Write and read flag
7245  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7246  *
7247  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7248  *	queried at once.
7249  */
7250 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7251 		       unsigned int vf, unsigned int nparams, const u32 *params,
7252 		       u32 *val, int rw, bool sleep_ok)
7253 {
7254 	int i, ret;
7255 	struct fw_params_cmd c;
7256 	__be32 *p = &c.param[0].mnem;
7257 
7258 	if (nparams > 7)
7259 		return -EINVAL;
7260 
7261 	memset(&c, 0, sizeof(c));
7262 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7263 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7264 				  FW_PARAMS_CMD_PFN_V(pf) |
7265 				  FW_PARAMS_CMD_VFN_V(vf));
7266 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7267 
7268 	for (i = 0; i < nparams; i++) {
7269 		*p++ = cpu_to_be32(*params++);
7270 		if (rw)
7271 			*p = cpu_to_be32(*(val + i));
7272 		p++;
7273 	}
7274 
7275 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7276 	if (ret == 0)
7277 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7278 			*val++ = be32_to_cpu(*p);
7279 	return ret;
7280 }
7281 
7282 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7283 		    unsigned int vf, unsigned int nparams, const u32 *params,
7284 		    u32 *val)
7285 {
7286 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7287 				  true);
7288 }
7289 
7290 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7291 		       unsigned int vf, unsigned int nparams, const u32 *params,
7292 		       u32 *val)
7293 {
7294 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7295 				  false);
7296 }
7297 
7298 /**
7299  *      t4_set_params_timeout - sets FW or device parameters
7300  *      @adap: the adapter
7301  *      @mbox: mailbox to use for the FW command
7302  *      @pf: the PF
7303  *      @vf: the VF
7304  *      @nparams: the number of parameters
7305  *      @params: the parameter names
7306  *      @val: the parameter values
7307  *      @timeout: the timeout time
7308  *
7309  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7310  *      specified at once.
7311  */
7312 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7313 			  unsigned int pf, unsigned int vf,
7314 			  unsigned int nparams, const u32 *params,
7315 			  const u32 *val, int timeout)
7316 {
7317 	struct fw_params_cmd c;
7318 	__be32 *p = &c.param[0].mnem;
7319 
7320 	if (nparams > 7)
7321 		return -EINVAL;
7322 
7323 	memset(&c, 0, sizeof(c));
7324 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7325 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7326 				  FW_PARAMS_CMD_PFN_V(pf) |
7327 				  FW_PARAMS_CMD_VFN_V(vf));
7328 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7329 
7330 	while (nparams--) {
7331 		*p++ = cpu_to_be32(*params++);
7332 		*p++ = cpu_to_be32(*val++);
7333 	}
7334 
7335 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7336 }
7337 
7338 /**
7339  *	t4_set_params - sets FW or device parameters
7340  *	@adap: the adapter
7341  *	@mbox: mailbox to use for the FW command
7342  *	@pf: the PF
7343  *	@vf: the VF
7344  *	@nparams: the number of parameters
7345  *	@params: the parameter names
7346  *	@val: the parameter values
7347  *
7348  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7349  *	specified at once.
7350  */
7351 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7352 		  unsigned int vf, unsigned int nparams, const u32 *params,
7353 		  const u32 *val)
7354 {
7355 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7356 				     FW_CMD_MAX_TIMEOUT);
7357 }
7358 
7359 /**
7360  *	t4_cfg_pfvf - configure PF/VF resource limits
7361  *	@adap: the adapter
7362  *	@mbox: mailbox to use for the FW command
7363  *	@pf: the PF being configured
7364  *	@vf: the VF being configured
7365  *	@txq: the max number of egress queues
7366  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7367  *	@rxqi: the max number of interrupt-capable ingress queues
7368  *	@rxq: the max number of interruptless ingress queues
7369  *	@tc: the PCI traffic class
7370  *	@vi: the max number of virtual interfaces
7371  *	@cmask: the channel access rights mask for the PF/VF
7372  *	@pmask: the port access rights mask for the PF/VF
7373  *	@nexact: the maximum number of exact MPS filters
7374  *	@rcaps: read capabilities
7375  *	@wxcaps: write/execute capabilities
7376  *
7377  *	Configures resource limits and capabilities for a physical or virtual
7378  *	function.
7379  */
7380 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7381 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7382 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7383 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7384 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7385 {
7386 	struct fw_pfvf_cmd c;
7387 
7388 	memset(&c, 0, sizeof(c));
7389 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7390 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7391 				  FW_PFVF_CMD_VFN_V(vf));
7392 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7393 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7394 				     FW_PFVF_CMD_NIQ_V(rxq));
7395 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7396 				    FW_PFVF_CMD_PMASK_V(pmask) |
7397 				    FW_PFVF_CMD_NEQ_V(txq));
7398 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7399 				      FW_PFVF_CMD_NVI_V(vi) |
7400 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7401 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7402 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7403 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7404 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7405 }
7406 
7407 /**
7408  *	t4_alloc_vi - allocate a virtual interface
7409  *	@adap: the adapter
7410  *	@mbox: mailbox to use for the FW command
7411  *	@port: physical port associated with the VI
7412  *	@pf: the PF owning the VI
7413  *	@vf: the VF owning the VI
7414  *	@nmac: number of MAC addresses needed (1 to 5)
7415  *	@mac: the MAC addresses of the VI
7416  *	@rss_size: size of RSS table slice associated with this VI
7417  *
7418  *	Allocates a virtual interface for the given physical port.  If @mac is
7419  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7420  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7421  *	stored consecutively so the space needed is @nmac * 6 bytes.
7422  *	Returns a negative error number or the non-negative VI id.
7423  */
7424 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7425 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7426 		unsigned int *rss_size)
7427 {
7428 	int ret;
7429 	struct fw_vi_cmd c;
7430 
7431 	memset(&c, 0, sizeof(c));
7432 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7433 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7434 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7435 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7436 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7437 	c.nmac = nmac - 1;
7438 
7439 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7440 	if (ret)
7441 		return ret;
7442 
7443 	if (mac) {
7444 		memcpy(mac, c.mac, sizeof(c.mac));
7445 		switch (nmac) {
7446 		case 5:
7447 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7448 		case 4:
7449 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7450 		case 3:
7451 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7452 		case 2:
7453 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7454 		}
7455 	}
7456 	if (rss_size)
7457 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7458 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7459 }
7460 
7461 /**
7462  *	t4_free_vi - free a virtual interface
7463  *	@adap: the adapter
7464  *	@mbox: mailbox to use for the FW command
7465  *	@pf: the PF owning the VI
7466  *	@vf: the VF owning the VI
7467  *	@viid: virtual interface identifiler
7468  *
7469  *	Free a previously allocated virtual interface.
7470  */
7471 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7472 	       unsigned int vf, unsigned int viid)
7473 {
7474 	struct fw_vi_cmd c;
7475 
7476 	memset(&c, 0, sizeof(c));
7477 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7478 				  FW_CMD_REQUEST_F |
7479 				  FW_CMD_EXEC_F |
7480 				  FW_VI_CMD_PFN_V(pf) |
7481 				  FW_VI_CMD_VFN_V(vf));
7482 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7483 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7484 
7485 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7486 }
7487 
7488 /**
7489  *	t4_set_rxmode - set Rx properties of a virtual interface
7490  *	@adap: the adapter
7491  *	@mbox: mailbox to use for the FW command
7492  *	@viid: the VI id
7493  *	@mtu: the new MTU or -1
7494  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7495  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7496  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7497  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7498  *	@sleep_ok: if true we may sleep while awaiting command completion
7499  *
7500  *	Sets Rx properties of a virtual interface.
7501  */
7502 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7503 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7504 		  bool sleep_ok)
7505 {
7506 	struct fw_vi_rxmode_cmd c;
7507 
7508 	/* convert to FW values */
7509 	if (mtu < 0)
7510 		mtu = FW_RXMODE_MTU_NO_CHG;
7511 	if (promisc < 0)
7512 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7513 	if (all_multi < 0)
7514 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7515 	if (bcast < 0)
7516 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7517 	if (vlanex < 0)
7518 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7519 
7520 	memset(&c, 0, sizeof(c));
7521 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7522 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7523 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7524 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7525 	c.mtu_to_vlanexen =
7526 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7527 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7528 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7529 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7530 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7531 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7532 }
7533 
7534 /**
7535  *      t4_free_encap_mac_filt - frees MPS entry at given index
7536  *      @adap: the adapter
7537  *      @viid: the VI id
7538  *      @idx: index of MPS entry to be freed
7539  *      @sleep_ok: call is allowed to sleep
7540  *
7541  *      Frees the MPS entry at supplied index
7542  *
7543  *      Returns a negative error number or zero on success
7544  */
7545 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7546 			   int idx, bool sleep_ok)
7547 {
7548 	struct fw_vi_mac_exact *p;
7549 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7550 	struct fw_vi_mac_cmd c;
7551 	int ret = 0;
7552 	u32 exact;
7553 
7554 	memset(&c, 0, sizeof(c));
7555 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7556 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7557 				   FW_CMD_EXEC_V(0) |
7558 				   FW_VI_MAC_CMD_VIID_V(viid));
7559 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7560 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7561 					  exact |
7562 					  FW_CMD_LEN16_V(1));
7563 	p = c.u.exact;
7564 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7565 				      FW_VI_MAC_CMD_IDX_V(idx));
7566 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7567 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7568 	return ret;
7569 }
7570 
7571 /**
7572  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7573  *	@adap: the adapter
7574  *	@viid: the VI id
7575  *	@addr: the MAC address
7576  *	@mask: the mask
7577  *	@idx: index of the entry in mps tcam
7578  *	@lookup_type: MAC address for inner (1) or outer (0) header
7579  *	@port_id: the port index
7580  *	@sleep_ok: call is allowed to sleep
7581  *
7582  *	Removes the mac entry at the specified index using raw mac interface.
7583  *
7584  *	Returns a negative error number on failure.
7585  */
7586 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7587 			 const u8 *addr, const u8 *mask, unsigned int idx,
7588 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7589 {
7590 	struct fw_vi_mac_cmd c;
7591 	struct fw_vi_mac_raw *p = &c.u.raw;
7592 	u32 val;
7593 
7594 	memset(&c, 0, sizeof(c));
7595 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7596 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7597 				   FW_CMD_EXEC_V(0) |
7598 				   FW_VI_MAC_CMD_VIID_V(viid));
7599 	val = FW_CMD_LEN16_V(1) |
7600 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7601 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7602 					  FW_CMD_LEN16_V(val));
7603 
7604 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7605 				     FW_VI_MAC_ID_BASED_FREE);
7606 
7607 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7608 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7609 				   DATAPORTNUM_V(port_id));
7610 	/* Lookup mask and port mask */
7611 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7612 				    DATAPORTNUM_V(DATAPORTNUM_M));
7613 
7614 	/* Copy the address and the mask */
7615 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7616 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7617 
7618 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7619 }
7620 
7621 /**
7622  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7623  *      @adap: the adapter
7624  *      @viid: the VI id
7625  *      @mac: the MAC address
7626  *      @mask: the mask
7627  *      @vni: the VNI id for the tunnel protocol
7628  *      @vni_mask: mask for the VNI id
7629  *      @dip_hit: to enable DIP match for the MPS entry
7630  *      @lookup_type: MAC address for inner (1) or outer (0) header
7631  *      @sleep_ok: call is allowed to sleep
7632  *
7633  *      Allocates an MPS entry with specified MAC address and VNI value.
7634  *
7635  *      Returns a negative error number or the allocated index for this mac.
7636  */
7637 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7638 			    const u8 *addr, const u8 *mask, unsigned int vni,
7639 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7640 			    bool sleep_ok)
7641 {
7642 	struct fw_vi_mac_cmd c;
7643 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7644 	int ret = 0;
7645 	u32 val;
7646 
7647 	memset(&c, 0, sizeof(c));
7648 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7649 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7650 				   FW_VI_MAC_CMD_VIID_V(viid));
7651 	val = FW_CMD_LEN16_V(1) |
7652 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7653 	c.freemacs_to_len16 = cpu_to_be32(val);
7654 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7655 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7656 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7657 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7658 
7659 	p->lookup_type_to_vni =
7660 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7661 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7662 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7663 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7664 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7665 	if (ret == 0)
7666 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7667 	return ret;
7668 }
7669 
7670 /**
7671  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7672  *	@adap: the adapter
7673  *	@viid: the VI id
7674  *	@mac: the MAC address
7675  *	@mask: the mask
7676  *	@idx: index at which to add this entry
7677  *	@port_id: the port index
7678  *	@lookup_type: MAC address for inner (1) or outer (0) header
7679  *	@sleep_ok: call is allowed to sleep
7680  *
7681  *	Adds the mac entry at the specified index using raw mac interface.
7682  *
7683  *	Returns a negative error number or the allocated index for this mac.
7684  */
7685 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7686 			  const u8 *addr, const u8 *mask, unsigned int idx,
7687 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7688 {
7689 	int ret = 0;
7690 	struct fw_vi_mac_cmd c;
7691 	struct fw_vi_mac_raw *p = &c.u.raw;
7692 	u32 val;
7693 
7694 	memset(&c, 0, sizeof(c));
7695 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7696 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7697 				   FW_VI_MAC_CMD_VIID_V(viid));
7698 	val = FW_CMD_LEN16_V(1) |
7699 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7700 	c.freemacs_to_len16 = cpu_to_be32(val);
7701 
7702 	/* Specify that this is an inner mac address */
7703 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7704 
7705 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7706 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7707 				   DATAPORTNUM_V(port_id));
7708 	/* Lookup mask and port mask */
7709 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7710 				    DATAPORTNUM_V(DATAPORTNUM_M));
7711 
7712 	/* Copy the address and the mask */
7713 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7714 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7715 
7716 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7717 	if (ret == 0) {
7718 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7719 		if (ret != idx)
7720 			ret = -ENOMEM;
7721 	}
7722 
7723 	return ret;
7724 }
7725 
7726 /**
7727  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7728  *	@adap: the adapter
7729  *	@mbox: mailbox to use for the FW command
7730  *	@viid: the VI id
7731  *	@free: if true any existing filters for this VI id are first removed
7732  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7733  *	@addr: the MAC address(es)
7734  *	@idx: where to store the index of each allocated filter
7735  *	@hash: pointer to hash address filter bitmap
7736  *	@sleep_ok: call is allowed to sleep
7737  *
7738  *	Allocates an exact-match filter for each of the supplied addresses and
7739  *	sets it to the corresponding address.  If @idx is not %NULL it should
7740  *	have at least @naddr entries, each of which will be set to the index of
7741  *	the filter allocated for the corresponding MAC address.  If a filter
7742  *	could not be allocated for an address its index is set to 0xffff.
7743  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7744  *	are hashed and update the hash filter bitmap pointed at by @hash.
7745  *
7746  *	Returns a negative error number or the number of filters allocated.
7747  */
7748 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7749 		      unsigned int viid, bool free, unsigned int naddr,
7750 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7751 {
7752 	int offset, ret = 0;
7753 	struct fw_vi_mac_cmd c;
7754 	unsigned int nfilters = 0;
7755 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7756 	unsigned int rem = naddr;
7757 
7758 	if (naddr > max_naddr)
7759 		return -EINVAL;
7760 
7761 	for (offset = 0; offset < naddr ; /**/) {
7762 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7763 					 rem : ARRAY_SIZE(c.u.exact));
7764 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7765 						     u.exact[fw_naddr]), 16);
7766 		struct fw_vi_mac_exact *p;
7767 		int i;
7768 
7769 		memset(&c, 0, sizeof(c));
7770 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7771 					   FW_CMD_REQUEST_F |
7772 					   FW_CMD_WRITE_F |
7773 					   FW_CMD_EXEC_V(free) |
7774 					   FW_VI_MAC_CMD_VIID_V(viid));
7775 		c.freemacs_to_len16 =
7776 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7777 				    FW_CMD_LEN16_V(len16));
7778 
7779 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7780 			p->valid_to_idx =
7781 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7782 					    FW_VI_MAC_CMD_IDX_V(
7783 						    FW_VI_MAC_ADD_MAC));
7784 			memcpy(p->macaddr, addr[offset + i],
7785 			       sizeof(p->macaddr));
7786 		}
7787 
7788 		/* It's okay if we run out of space in our MAC address arena.
7789 		 * Some of the addresses we submit may get stored so we need
7790 		 * to run through the reply to see what the results were ...
7791 		 */
7792 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7793 		if (ret && ret != -FW_ENOMEM)
7794 			break;
7795 
7796 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7797 			u16 index = FW_VI_MAC_CMD_IDX_G(
7798 					be16_to_cpu(p->valid_to_idx));
7799 
7800 			if (idx)
7801 				idx[offset + i] = (index >= max_naddr ?
7802 						   0xffff : index);
7803 			if (index < max_naddr)
7804 				nfilters++;
7805 			else if (hash)
7806 				*hash |= (1ULL <<
7807 					  hash_mac_addr(addr[offset + i]));
7808 		}
7809 
7810 		free = false;
7811 		offset += fw_naddr;
7812 		rem -= fw_naddr;
7813 	}
7814 
7815 	if (ret == 0 || ret == -FW_ENOMEM)
7816 		ret = nfilters;
7817 	return ret;
7818 }
7819 
7820 /**
7821  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7822  *	@adap: the adapter
7823  *	@mbox: mailbox to use for the FW command
7824  *	@viid: the VI id
7825  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7826  *	@addr: the MAC address(es)
7827  *	@sleep_ok: call is allowed to sleep
7828  *
7829  *	Frees the exact-match filter for each of the supplied addresses
7830  *
7831  *	Returns a negative error number or the number of filters freed.
7832  */
7833 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7834 		     unsigned int viid, unsigned int naddr,
7835 		     const u8 **addr, bool sleep_ok)
7836 {
7837 	int offset, ret = 0;
7838 	struct fw_vi_mac_cmd c;
7839 	unsigned int nfilters = 0;
7840 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7841 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7842 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7843 	unsigned int rem = naddr;
7844 
7845 	if (naddr > max_naddr)
7846 		return -EINVAL;
7847 
7848 	for (offset = 0; offset < (int)naddr ; /**/) {
7849 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7850 					 ? rem
7851 					 : ARRAY_SIZE(c.u.exact));
7852 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7853 						     u.exact[fw_naddr]), 16);
7854 		struct fw_vi_mac_exact *p;
7855 		int i;
7856 
7857 		memset(&c, 0, sizeof(c));
7858 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7859 				     FW_CMD_REQUEST_F |
7860 				     FW_CMD_WRITE_F |
7861 				     FW_CMD_EXEC_V(0) |
7862 				     FW_VI_MAC_CMD_VIID_V(viid));
7863 		c.freemacs_to_len16 =
7864 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7865 					    FW_CMD_LEN16_V(len16));
7866 
7867 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7868 			p->valid_to_idx = cpu_to_be16(
7869 				FW_VI_MAC_CMD_VALID_F |
7870 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7871 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7872 		}
7873 
7874 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7875 		if (ret)
7876 			break;
7877 
7878 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7879 			u16 index = FW_VI_MAC_CMD_IDX_G(
7880 						be16_to_cpu(p->valid_to_idx));
7881 
7882 			if (index < max_naddr)
7883 				nfilters++;
7884 		}
7885 
7886 		offset += fw_naddr;
7887 		rem -= fw_naddr;
7888 	}
7889 
7890 	if (ret == 0)
7891 		ret = nfilters;
7892 	return ret;
7893 }
7894 
7895 /**
7896  *	t4_change_mac - modifies the exact-match filter for a MAC address
7897  *	@adap: the adapter
7898  *	@mbox: mailbox to use for the FW command
7899  *	@viid: the VI id
7900  *	@idx: index of existing filter for old value of MAC address, or -1
7901  *	@addr: the new MAC address value
7902  *	@persist: whether a new MAC allocation should be persistent
7903  *	@add_smt: if true also add the address to the HW SMT
7904  *
7905  *	Modifies an exact-match filter and sets it to the new MAC address.
7906  *	Note that in general it is not possible to modify the value of a given
7907  *	filter so the generic way to modify an address filter is to free the one
7908  *	being used by the old address value and allocate a new filter for the
7909  *	new address value.  @idx can be -1 if the address is a new addition.
7910  *
7911  *	Returns a negative error number or the index of the filter with the new
7912  *	MAC value.
7913  */
7914 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7915 		  int idx, const u8 *addr, bool persist, bool add_smt)
7916 {
7917 	int ret, mode;
7918 	struct fw_vi_mac_cmd c;
7919 	struct fw_vi_mac_exact *p = c.u.exact;
7920 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7921 
7922 	if (idx < 0)                             /* new allocation */
7923 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7924 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7925 
7926 	memset(&c, 0, sizeof(c));
7927 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7928 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7929 				   FW_VI_MAC_CMD_VIID_V(viid));
7930 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7931 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7932 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7933 				      FW_VI_MAC_CMD_IDX_V(idx));
7934 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7935 
7936 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7937 	if (ret == 0) {
7938 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7939 		if (ret >= max_mac_addr)
7940 			ret = -ENOMEM;
7941 	}
7942 	return ret;
7943 }
7944 
7945 /**
7946  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7947  *	@adap: the adapter
7948  *	@mbox: mailbox to use for the FW command
7949  *	@viid: the VI id
7950  *	@ucast: whether the hash filter should also match unicast addresses
7951  *	@vec: the value to be written to the hash filter
7952  *	@sleep_ok: call is allowed to sleep
7953  *
7954  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7955  */
7956 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7957 		     bool ucast, u64 vec, bool sleep_ok)
7958 {
7959 	struct fw_vi_mac_cmd c;
7960 
7961 	memset(&c, 0, sizeof(c));
7962 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7963 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7964 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7965 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7966 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7967 					  FW_CMD_LEN16_V(1));
7968 	c.u.hash.hashvec = cpu_to_be64(vec);
7969 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7970 }
7971 
7972 /**
7973  *      t4_enable_vi_params - enable/disable a virtual interface
7974  *      @adap: the adapter
7975  *      @mbox: mailbox to use for the FW command
7976  *      @viid: the VI id
7977  *      @rx_en: 1=enable Rx, 0=disable Rx
7978  *      @tx_en: 1=enable Tx, 0=disable Tx
7979  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7980  *
7981  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7982  *      only makes sense when enabling a Virtual Interface ...
7983  */
7984 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7985 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7986 {
7987 	struct fw_vi_enable_cmd c;
7988 
7989 	memset(&c, 0, sizeof(c));
7990 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7991 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7992 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7993 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7994 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7995 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7996 				     FW_LEN16(c));
7997 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7998 }
7999 
8000 /**
8001  *	t4_enable_vi - enable/disable a virtual interface
8002  *	@adap: the adapter
8003  *	@mbox: mailbox to use for the FW command
8004  *	@viid: the VI id
8005  *	@rx_en: 1=enable Rx, 0=disable Rx
8006  *	@tx_en: 1=enable Tx, 0=disable Tx
8007  *
8008  *	Enables/disables a virtual interface.
8009  */
8010 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8011 		 bool rx_en, bool tx_en)
8012 {
8013 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8014 }
8015 
8016 /**
8017  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8018  *      @adap: the adapter
8019  *      @mbox: mailbox to use for the FW command
8020  *      @pi: the Port Information structure
8021  *      @rx_en: 1=enable Rx, 0=disable Rx
8022  *      @tx_en: 1=enable Tx, 0=disable Tx
8023  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8024  *
8025  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8026  *	Enable only makes sense when enabling a Virtual Interface ...
8027  *	If the Virtual Interface enable/disable operation is successful,
8028  *	we notify the OS-specific code of a potential Link Status change
8029  *	via the OS Contract API t4_os_link_changed().
8030  */
8031 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8032 			struct port_info *pi,
8033 			bool rx_en, bool tx_en, bool dcb_en)
8034 {
8035 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8036 				      rx_en, tx_en, dcb_en);
8037 	if (ret)
8038 		return ret;
8039 	t4_os_link_changed(adap, pi->port_id,
8040 			   rx_en && tx_en && pi->link_cfg.link_ok);
8041 	return 0;
8042 }
8043 
8044 /**
8045  *	t4_identify_port - identify a VI's port by blinking its LED
8046  *	@adap: the adapter
8047  *	@mbox: mailbox to use for the FW command
8048  *	@viid: the VI id
8049  *	@nblinks: how many times to blink LED at 2.5 Hz
8050  *
8051  *	Identifies a VI's port by blinking its LED.
8052  */
8053 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8054 		     unsigned int nblinks)
8055 {
8056 	struct fw_vi_enable_cmd c;
8057 
8058 	memset(&c, 0, sizeof(c));
8059 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8060 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8061 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8062 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8063 	c.blinkdur = cpu_to_be16(nblinks);
8064 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8065 }
8066 
8067 /**
8068  *	t4_iq_stop - stop an ingress queue and its FLs
8069  *	@adap: the adapter
8070  *	@mbox: mailbox to use for the FW command
8071  *	@pf: the PF owning the queues
8072  *	@vf: the VF owning the queues
8073  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8074  *	@iqid: ingress queue id
8075  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8076  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8077  *
8078  *	Stops an ingress queue and its associated FLs, if any.  This causes
8079  *	any current or future data/messages destined for these queues to be
8080  *	tossed.
8081  */
8082 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8083 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8084 	       unsigned int fl0id, unsigned int fl1id)
8085 {
8086 	struct fw_iq_cmd c;
8087 
8088 	memset(&c, 0, sizeof(c));
8089 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8090 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8091 				  FW_IQ_CMD_VFN_V(vf));
8092 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8093 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8094 	c.iqid = cpu_to_be16(iqid);
8095 	c.fl0id = cpu_to_be16(fl0id);
8096 	c.fl1id = cpu_to_be16(fl1id);
8097 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8098 }
8099 
8100 /**
8101  *	t4_iq_free - free an ingress queue and its FLs
8102  *	@adap: the adapter
8103  *	@mbox: mailbox to use for the FW command
8104  *	@pf: the PF owning the queues
8105  *	@vf: the VF owning the queues
8106  *	@iqtype: the ingress queue type
8107  *	@iqid: ingress queue id
8108  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8109  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8110  *
8111  *	Frees an ingress queue and its associated FLs, if any.
8112  */
8113 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8114 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8115 	       unsigned int fl0id, unsigned int fl1id)
8116 {
8117 	struct fw_iq_cmd c;
8118 
8119 	memset(&c, 0, sizeof(c));
8120 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8121 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8122 				  FW_IQ_CMD_VFN_V(vf));
8123 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8124 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8125 	c.iqid = cpu_to_be16(iqid);
8126 	c.fl0id = cpu_to_be16(fl0id);
8127 	c.fl1id = cpu_to_be16(fl1id);
8128 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8129 }
8130 
8131 /**
8132  *	t4_eth_eq_free - free an Ethernet egress queue
8133  *	@adap: the adapter
8134  *	@mbox: mailbox to use for the FW command
8135  *	@pf: the PF owning the queue
8136  *	@vf: the VF owning the queue
8137  *	@eqid: egress queue id
8138  *
8139  *	Frees an Ethernet egress queue.
8140  */
8141 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8142 		   unsigned int vf, unsigned int eqid)
8143 {
8144 	struct fw_eq_eth_cmd c;
8145 
8146 	memset(&c, 0, sizeof(c));
8147 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8148 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8149 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8150 				  FW_EQ_ETH_CMD_VFN_V(vf));
8151 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8152 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8153 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8154 }
8155 
8156 /**
8157  *	t4_ctrl_eq_free - free a control egress queue
8158  *	@adap: the adapter
8159  *	@mbox: mailbox to use for the FW command
8160  *	@pf: the PF owning the queue
8161  *	@vf: the VF owning the queue
8162  *	@eqid: egress queue id
8163  *
8164  *	Frees a control egress queue.
8165  */
8166 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8167 		    unsigned int vf, unsigned int eqid)
8168 {
8169 	struct fw_eq_ctrl_cmd c;
8170 
8171 	memset(&c, 0, sizeof(c));
8172 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8173 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8174 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8175 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8176 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8177 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8178 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8179 }
8180 
8181 /**
8182  *	t4_ofld_eq_free - free an offload egress queue
8183  *	@adap: the adapter
8184  *	@mbox: mailbox to use for the FW command
8185  *	@pf: the PF owning the queue
8186  *	@vf: the VF owning the queue
8187  *	@eqid: egress queue id
8188  *
8189  *	Frees a control egress queue.
8190  */
8191 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8192 		    unsigned int vf, unsigned int eqid)
8193 {
8194 	struct fw_eq_ofld_cmd c;
8195 
8196 	memset(&c, 0, sizeof(c));
8197 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8198 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8199 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8200 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8201 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8202 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8203 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8204 }
8205 
8206 /**
8207  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8208  *	@adap: the adapter
8209  *	@link_down_rc: Link Down Reason Code
8210  *
8211  *	Returns a string representation of the Link Down Reason Code.
8212  */
8213 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8214 {
8215 	static const char * const reason[] = {
8216 		"Link Down",
8217 		"Remote Fault",
8218 		"Auto-negotiation Failure",
8219 		"Reserved",
8220 		"Insufficient Airflow",
8221 		"Unable To Determine Reason",
8222 		"No RX Signal Detected",
8223 		"Reserved",
8224 	};
8225 
8226 	if (link_down_rc >= ARRAY_SIZE(reason))
8227 		return "Bad Reason Code";
8228 
8229 	return reason[link_down_rc];
8230 }
8231 
8232 /**
8233  * Return the highest speed set in the port capabilities, in Mb/s.
8234  */
8235 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8236 {
8237 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8238 		do { \
8239 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8240 				return __speed; \
8241 		} while (0)
8242 
8243 	TEST_SPEED_RETURN(400G, 400000);
8244 	TEST_SPEED_RETURN(200G, 200000);
8245 	TEST_SPEED_RETURN(100G, 100000);
8246 	TEST_SPEED_RETURN(50G,   50000);
8247 	TEST_SPEED_RETURN(40G,   40000);
8248 	TEST_SPEED_RETURN(25G,   25000);
8249 	TEST_SPEED_RETURN(10G,   10000);
8250 	TEST_SPEED_RETURN(1G,     1000);
8251 	TEST_SPEED_RETURN(100M,    100);
8252 
8253 	#undef TEST_SPEED_RETURN
8254 
8255 	return 0;
8256 }
8257 
8258 /**
8259  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8260  *	@acaps: advertised Port Capabilities
8261  *
8262  *	Get the highest speed for the port from the advertised Port
8263  *	Capabilities.  It will be either the highest speed from the list of
8264  *	speeds or whatever user has set using ethtool.
8265  */
8266 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8267 {
8268 	#define TEST_SPEED_RETURN(__caps_speed) \
8269 		do { \
8270 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8271 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8272 		} while (0)
8273 
8274 	TEST_SPEED_RETURN(400G);
8275 	TEST_SPEED_RETURN(200G);
8276 	TEST_SPEED_RETURN(100G);
8277 	TEST_SPEED_RETURN(50G);
8278 	TEST_SPEED_RETURN(40G);
8279 	TEST_SPEED_RETURN(25G);
8280 	TEST_SPEED_RETURN(10G);
8281 	TEST_SPEED_RETURN(1G);
8282 	TEST_SPEED_RETURN(100M);
8283 
8284 	#undef TEST_SPEED_RETURN
8285 
8286 	return 0;
8287 }
8288 
8289 /**
8290  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8291  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8292  *
8293  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8294  *	32-bit Port Capabilities value.
8295  */
8296 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8297 {
8298 	fw_port_cap32_t linkattr = 0;
8299 
8300 	/* Unfortunately the format of the Link Status in the old
8301 	 * 16-bit Port Information message isn't the same as the
8302 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8303 	 */
8304 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8305 		linkattr |= FW_PORT_CAP32_FC_RX;
8306 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8307 		linkattr |= FW_PORT_CAP32_FC_TX;
8308 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8309 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8310 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8311 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8312 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8313 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8314 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8315 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8316 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8317 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8318 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8319 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8320 
8321 	return linkattr;
8322 }
8323 
8324 /**
8325  *	t4_handle_get_port_info - process a FW reply message
8326  *	@pi: the port info
8327  *	@rpl: start of the FW message
8328  *
8329  *	Processes a GET_PORT_INFO FW reply message.
8330  */
8331 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8332 {
8333 	const struct fw_port_cmd *cmd = (const void *)rpl;
8334 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8335 	struct adapter *adapter = pi->adapter;
8336 	struct link_config *lc = &pi->link_cfg;
8337 	int link_ok, linkdnrc;
8338 	enum fw_port_type port_type;
8339 	enum fw_port_module_type mod_type;
8340 	unsigned int speed, fc, fec;
8341 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8342 
8343 	/* Extract the various fields from the Port Information message.
8344 	 */
8345 	switch (action) {
8346 	case FW_PORT_ACTION_GET_PORT_INFO: {
8347 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8348 
8349 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8350 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8351 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8352 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8353 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8354 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8355 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8356 		linkattr = lstatus_to_fwcap(lstatus);
8357 		break;
8358 	}
8359 
8360 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8361 		u32 lstatus32;
8362 
8363 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8364 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8365 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8366 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8367 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8368 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8369 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8370 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8371 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8372 		break;
8373 	}
8374 
8375 	default:
8376 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8377 			be32_to_cpu(cmd->action_to_len16));
8378 		return;
8379 	}
8380 
8381 	fec = fwcap_to_cc_fec(acaps);
8382 	fc = fwcap_to_cc_pause(linkattr);
8383 	speed = fwcap_to_speed(linkattr);
8384 
8385 	lc->new_module = false;
8386 	lc->redo_l1cfg = false;
8387 
8388 	if (mod_type != pi->mod_type) {
8389 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8390 		 * various fundamental Port Capabilities which used to be
8391 		 * immutable can now change radically.  We can now have
8392 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8393 		 * all change based on what Transceiver Module is inserted.
8394 		 * So we need to record the Physical "Port" Capabilities on
8395 		 * every Transceiver Module change.
8396 		 */
8397 		lc->pcaps = pcaps;
8398 
8399 		/* When a new Transceiver Module is inserted, the Firmware
8400 		 * will examine its i2c EPROM to determine its type and
8401 		 * general operating parameters including things like Forward
8402 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8403 		 * how to interpret these i2c values to determine default
8404 		 * "sutomatic" settings.  We record these for future use when
8405 		 * the user explicitly requests these standards-based values.
8406 		 */
8407 		lc->def_acaps = acaps;
8408 
8409 		/* Some versions of the early T6 Firmware "cheated" when
8410 		 * handling different Transceiver Modules by changing the
8411 		 * underlaying Port Type reported to the Host Drivers.  As
8412 		 * such we need to capture whatever Port Type the Firmware
8413 		 * sends us and record it in case it's different from what we
8414 		 * were told earlier.  Unfortunately, since Firmware is
8415 		 * forever, we'll need to keep this code here forever, but in
8416 		 * later T6 Firmware it should just be an assignment of the
8417 		 * same value already recorded.
8418 		 */
8419 		pi->port_type = port_type;
8420 
8421 		pi->mod_type = mod_type;
8422 
8423 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8424 		t4_os_portmod_changed(adapter, pi->port_id);
8425 	}
8426 
8427 	if (link_ok != lc->link_ok || speed != lc->speed ||
8428 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8429 		if (!link_ok && lc->link_ok) {
8430 			lc->link_down_rc = linkdnrc;
8431 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8432 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8433 		}
8434 		lc->link_ok = link_ok;
8435 		lc->speed = speed;
8436 		lc->fc = fc;
8437 		lc->fec = fec;
8438 
8439 		lc->lpacaps = lpacaps;
8440 		lc->acaps = acaps & ADVERT_MASK;
8441 
8442 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8443 			lc->autoneg = AUTONEG_DISABLE;
8444 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8445 			lc->autoneg = AUTONEG_ENABLE;
8446 		} else {
8447 			/* When Autoneg is disabled, user needs to set
8448 			 * single speed.
8449 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8450 			 */
8451 			lc->acaps = 0;
8452 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8453 			lc->autoneg = AUTONEG_DISABLE;
8454 		}
8455 
8456 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8457 	}
8458 
8459 	if (lc->new_module && lc->redo_l1cfg) {
8460 		struct link_config old_lc;
8461 		int ret;
8462 
8463 		/* Save the current L1 Configuration and restore it if an
8464 		 * error occurs.  We probably should fix the l1_cfg*()
8465 		 * routines not to change the link_config when an error
8466 		 * occurs ...
8467 		 */
8468 		old_lc = *lc;
8469 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8470 		if (ret) {
8471 			*lc = old_lc;
8472 			dev_warn(adapter->pdev_dev,
8473 				 "Attempt to update new Transceiver Module settings failed\n");
8474 		}
8475 	}
8476 	lc->new_module = false;
8477 	lc->redo_l1cfg = false;
8478 }
8479 
8480 /**
8481  *	t4_update_port_info - retrieve and update port information if changed
8482  *	@pi: the port_info
8483  *
8484  *	We issue a Get Port Information Command to the Firmware and, if
8485  *	successful, we check to see if anything is different from what we
8486  *	last recorded and update things accordingly.
8487  */
8488 int t4_update_port_info(struct port_info *pi)
8489 {
8490 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8491 	struct fw_port_cmd port_cmd;
8492 	int ret;
8493 
8494 	memset(&port_cmd, 0, sizeof(port_cmd));
8495 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8496 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8497 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8498 	port_cmd.action_to_len16 = cpu_to_be32(
8499 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8500 				     ? FW_PORT_ACTION_GET_PORT_INFO
8501 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8502 		FW_LEN16(port_cmd));
8503 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8504 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8505 	if (ret)
8506 		return ret;
8507 
8508 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8509 	return 0;
8510 }
8511 
8512 /**
8513  *	t4_get_link_params - retrieve basic link parameters for given port
8514  *	@pi: the port
8515  *	@link_okp: value return pointer for link up/down
8516  *	@speedp: value return pointer for speed (Mb/s)
8517  *	@mtup: value return pointer for mtu
8518  *
8519  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8520  *	and MTU for a specified port.  A negative error is returned on
8521  *	failure; 0 on success.
8522  */
8523 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8524 		       unsigned int *speedp, unsigned int *mtup)
8525 {
8526 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8527 	struct fw_port_cmd port_cmd;
8528 	unsigned int action, link_ok, speed, mtu;
8529 	fw_port_cap32_t linkattr;
8530 	int ret;
8531 
8532 	memset(&port_cmd, 0, sizeof(port_cmd));
8533 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8534 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8535 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8536 	action = (fw_caps == FW_CAPS16
8537 		  ? FW_PORT_ACTION_GET_PORT_INFO
8538 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8539 	port_cmd.action_to_len16 = cpu_to_be32(
8540 		FW_PORT_CMD_ACTION_V(action) |
8541 		FW_LEN16(port_cmd));
8542 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8543 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8544 	if (ret)
8545 		return ret;
8546 
8547 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8548 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8549 
8550 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8551 		linkattr = lstatus_to_fwcap(lstatus);
8552 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8553 	} else {
8554 		u32 lstatus32 =
8555 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8556 
8557 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8558 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8559 		mtu = FW_PORT_CMD_MTU32_G(
8560 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8561 	}
8562 	speed = fwcap_to_speed(linkattr);
8563 
8564 	*link_okp = link_ok;
8565 	*speedp = fwcap_to_speed(linkattr);
8566 	*mtup = mtu;
8567 
8568 	return 0;
8569 }
8570 
8571 /**
8572  *      t4_handle_fw_rpl - process a FW reply message
8573  *      @adap: the adapter
8574  *      @rpl: start of the FW message
8575  *
8576  *      Processes a FW message, such as link state change messages.
8577  */
8578 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8579 {
8580 	u8 opcode = *(const u8 *)rpl;
8581 
8582 	/* This might be a port command ... this simplifies the following
8583 	 * conditionals ...  We can get away with pre-dereferencing
8584 	 * action_to_len16 because it's in the first 16 bytes and all messages
8585 	 * will be at least that long.
8586 	 */
8587 	const struct fw_port_cmd *p = (const void *)rpl;
8588 	unsigned int action =
8589 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8590 
8591 	if (opcode == FW_PORT_CMD &&
8592 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8593 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8594 		int i;
8595 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8596 		struct port_info *pi = NULL;
8597 
8598 		for_each_port(adap, i) {
8599 			pi = adap2pinfo(adap, i);
8600 			if (pi->tx_chan == chan)
8601 				break;
8602 		}
8603 
8604 		t4_handle_get_port_info(pi, rpl);
8605 	} else {
8606 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8607 			 opcode);
8608 		return -EINVAL;
8609 	}
8610 	return 0;
8611 }
8612 
8613 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8614 {
8615 	u16 val;
8616 
8617 	if (pci_is_pcie(adapter->pdev)) {
8618 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8619 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8620 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8621 	}
8622 }
8623 
8624 /**
8625  *	init_link_config - initialize a link's SW state
8626  *	@lc: pointer to structure holding the link state
8627  *	@pcaps: link Port Capabilities
8628  *	@acaps: link current Advertised Port Capabilities
8629  *
8630  *	Initializes the SW state maintained for each link, including the link's
8631  *	capabilities and default speed/flow-control/autonegotiation settings.
8632  */
8633 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8634 			     fw_port_cap32_t acaps)
8635 {
8636 	lc->pcaps = pcaps;
8637 	lc->def_acaps = acaps;
8638 	lc->lpacaps = 0;
8639 	lc->speed_caps = 0;
8640 	lc->speed = 0;
8641 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8642 
8643 	/* For Forward Error Control, we default to whatever the Firmware
8644 	 * tells us the Link is currently advertising.
8645 	 */
8646 	lc->requested_fec = FEC_AUTO;
8647 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8648 
8649 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8650 	 * "enabled" and copy over all of the Physical Port Capabilities
8651 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8652 	 * Auto-Negotiate disabled and select the highest supported speed
8653 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8654 	 * and t4_handle_get_port_info().
8655 	 */
8656 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8657 		lc->acaps = lc->pcaps & ADVERT_MASK;
8658 		lc->autoneg = AUTONEG_ENABLE;
8659 		lc->requested_fc |= PAUSE_AUTONEG;
8660 	} else {
8661 		lc->acaps = 0;
8662 		lc->autoneg = AUTONEG_DISABLE;
8663 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8664 	}
8665 }
8666 
8667 #define CIM_PF_NOACCESS 0xeeeeeeee
8668 
8669 int t4_wait_dev_ready(void __iomem *regs)
8670 {
8671 	u32 whoami;
8672 
8673 	whoami = readl(regs + PL_WHOAMI_A);
8674 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8675 		return 0;
8676 
8677 	msleep(500);
8678 	whoami = readl(regs + PL_WHOAMI_A);
8679 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8680 }
8681 
8682 struct flash_desc {
8683 	u32 vendor_and_model_id;
8684 	u32 size_mb;
8685 };
8686 
8687 static int t4_get_flash_params(struct adapter *adap)
8688 {
8689 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8690 	 * to the preexisting code.  All flash parts have 64KB sectors.
8691 	 */
8692 	static struct flash_desc supported_flash[] = {
8693 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8694 	};
8695 
8696 	unsigned int part, manufacturer;
8697 	unsigned int density, size;
8698 	u32 flashid = 0;
8699 	int ret;
8700 
8701 	/* Issue a Read ID Command to the Flash part.  We decode supported
8702 	 * Flash parts and their sizes from this.  There's a newer Query
8703 	 * Command which can retrieve detailed geometry information but many
8704 	 * Flash parts don't support it.
8705 	 */
8706 
8707 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8708 	if (!ret)
8709 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8710 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8711 	if (ret)
8712 		return ret;
8713 
8714 	/* Check to see if it's one of our non-standard supported Flash parts.
8715 	 */
8716 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8717 		if (supported_flash[part].vendor_and_model_id == flashid) {
8718 			adap->params.sf_size = supported_flash[part].size_mb;
8719 			adap->params.sf_nsec =
8720 				adap->params.sf_size / SF_SEC_SIZE;
8721 			goto found;
8722 		}
8723 
8724 	/* Decode Flash part size.  The code below looks repetative with
8725 	 * common encodings, but that's not guaranteed in the JEDEC
8726 	 * specification for the Read JADEC ID command.  The only thing that
8727 	 * we're guaranteed by the JADEC specification is where the
8728 	 * Manufacturer ID is in the returned result.  After that each
8729 	 * Manufacturer ~could~ encode things completely differently.
8730 	 * Note, all Flash parts must have 64KB sectors.
8731 	 */
8732 	manufacturer = flashid & 0xff;
8733 	switch (manufacturer) {
8734 	case 0x20: { /* Micron/Numonix */
8735 		/* This Density -> Size decoding table is taken from Micron
8736 		 * Data Sheets.
8737 		 */
8738 		density = (flashid >> 16) & 0xff;
8739 		switch (density) {
8740 		case 0x14: /* 1MB */
8741 			size = 1 << 20;
8742 			break;
8743 		case 0x15: /* 2MB */
8744 			size = 1 << 21;
8745 			break;
8746 		case 0x16: /* 4MB */
8747 			size = 1 << 22;
8748 			break;
8749 		case 0x17: /* 8MB */
8750 			size = 1 << 23;
8751 			break;
8752 		case 0x18: /* 16MB */
8753 			size = 1 << 24;
8754 			break;
8755 		case 0x19: /* 32MB */
8756 			size = 1 << 25;
8757 			break;
8758 		case 0x20: /* 64MB */
8759 			size = 1 << 26;
8760 			break;
8761 		case 0x21: /* 128MB */
8762 			size = 1 << 27;
8763 			break;
8764 		case 0x22: /* 256MB */
8765 			size = 1 << 28;
8766 			break;
8767 
8768 		default:
8769 			dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n",
8770 				flashid, density);
8771 			return -EINVAL;
8772 		}
8773 		break;
8774 	}
8775 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
8776 		/* This Density -> Size decoding table is taken from ISSI
8777 		 * Data Sheets.
8778 		 */
8779 		density = (flashid >> 16) & 0xff;
8780 		switch (density) {
8781 		case 0x16: /* 32 MB */
8782 			size = 1 << 25;
8783 			break;
8784 		case 0x17: /* 64MB */
8785 			size = 1 << 26;
8786 			break;
8787 		default:
8788 			dev_err(adap->pdev_dev, "ISSI Flash Part has bad size, ID = %#x, Density code = %#x\n",
8789 				flashid, density);
8790 			return -EINVAL;
8791 		}
8792 		break;
8793 	}
8794 	case 0xc2: { /* Macronix */
8795 		/* This Density -> Size decoding table is taken from Macronix
8796 		 * Data Sheets.
8797 		 */
8798 		density = (flashid >> 16) & 0xff;
8799 		switch (density) {
8800 		case 0x17: /* 8MB */
8801 			size = 1 << 23;
8802 			break;
8803 		case 0x18: /* 16MB */
8804 			size = 1 << 24;
8805 			break;
8806 		default:
8807 			dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n",
8808 				flashid, density);
8809 			return -EINVAL;
8810 		}
8811 		break;
8812 	}
8813 	case 0xef: { /* Winbond */
8814 		/* This Density -> Size decoding table is taken from Winbond
8815 		 * Data Sheets.
8816 		 */
8817 		density = (flashid >> 16) & 0xff;
8818 		switch (density) {
8819 		case 0x17: /* 8MB */
8820 			size = 1 << 23;
8821 			break;
8822 		case 0x18: /* 16MB */
8823 			size = 1 << 24;
8824 			break;
8825 		default:
8826 			dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n",
8827 				flashid, density);
8828 			return -EINVAL;
8829 		}
8830 		break;
8831 	}
8832 	default:
8833 		dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n",
8834 			flashid);
8835 		return -EINVAL;
8836 	}
8837 
8838 	/* Store decoded Flash size and fall through into vetting code. */
8839 	adap->params.sf_size = size;
8840 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8841 
8842 found:
8843 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8844 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8845 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8846 	return 0;
8847 }
8848 
8849 /**
8850  *	t4_prep_adapter - prepare SW and HW for operation
8851  *	@adapter: the adapter
8852  *	@reset: if true perform a HW reset
8853  *
8854  *	Initialize adapter SW state for the various HW modules, set initial
8855  *	values for some adapter tunables, take PHYs out of reset, and
8856  *	initialize the MDIO interface.
8857  */
8858 int t4_prep_adapter(struct adapter *adapter)
8859 {
8860 	int ret, ver;
8861 	uint16_t device_id;
8862 	u32 pl_rev;
8863 
8864 	get_pci_mode(adapter, &adapter->params.pci);
8865 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8866 
8867 	ret = t4_get_flash_params(adapter);
8868 	if (ret < 0) {
8869 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8870 		return ret;
8871 	}
8872 
8873 	/* Retrieve adapter's device ID
8874 	 */
8875 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8876 	ver = device_id >> 12;
8877 	adapter->params.chip = 0;
8878 	switch (ver) {
8879 	case CHELSIO_T4:
8880 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8881 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8882 		adapter->params.arch.mps_tcam_size =
8883 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8884 		adapter->params.arch.mps_rplc_size = 128;
8885 		adapter->params.arch.nchan = NCHAN;
8886 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8887 		adapter->params.arch.vfcount = 128;
8888 		/* Congestion map is for 4 channels so that
8889 		 * MPS can have 4 priority per port.
8890 		 */
8891 		adapter->params.arch.cng_ch_bits_log = 2;
8892 		break;
8893 	case CHELSIO_T5:
8894 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8895 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8896 		adapter->params.arch.mps_tcam_size =
8897 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8898 		adapter->params.arch.mps_rplc_size = 128;
8899 		adapter->params.arch.nchan = NCHAN;
8900 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8901 		adapter->params.arch.vfcount = 128;
8902 		adapter->params.arch.cng_ch_bits_log = 2;
8903 		break;
8904 	case CHELSIO_T6:
8905 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8906 		adapter->params.arch.sge_fl_db = 0;
8907 		adapter->params.arch.mps_tcam_size =
8908 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8909 		adapter->params.arch.mps_rplc_size = 256;
8910 		adapter->params.arch.nchan = 2;
8911 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8912 		adapter->params.arch.vfcount = 256;
8913 		/* Congestion map will be for 2 channels so that
8914 		 * MPS can have 8 priority per port.
8915 		 */
8916 		adapter->params.arch.cng_ch_bits_log = 3;
8917 		break;
8918 	default:
8919 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8920 			device_id);
8921 		return -EINVAL;
8922 	}
8923 
8924 	adapter->params.cim_la_size = CIMLA_SIZE;
8925 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8926 
8927 	/*
8928 	 * Default port for debugging in case we can't reach FW.
8929 	 */
8930 	adapter->params.nports = 1;
8931 	adapter->params.portvec = 1;
8932 	adapter->params.vpd.cclk = 50000;
8933 
8934 	/* Set PCIe completion timeout to 4 seconds. */
8935 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
8936 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
8937 	return 0;
8938 }
8939 
8940 /**
8941  *	t4_shutdown_adapter - shut down adapter, host & wire
8942  *	@adapter: the adapter
8943  *
8944  *	Perform an emergency shutdown of the adapter and stop it from
8945  *	continuing any further communication on the ports or DMA to the
8946  *	host.  This is typically used when the adapter and/or firmware
8947  *	have crashed and we want to prevent any further accidental
8948  *	communication with the rest of the world.  This will also force
8949  *	the port Link Status to go down -- if register writes work --
8950  *	which should help our peers figure out that we're down.
8951  */
8952 int t4_shutdown_adapter(struct adapter *adapter)
8953 {
8954 	int port;
8955 
8956 	t4_intr_disable(adapter);
8957 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8958 	for_each_port(adapter, port) {
8959 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
8960 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
8961 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
8962 
8963 		t4_write_reg(adapter, a_port_cfg,
8964 			     t4_read_reg(adapter, a_port_cfg)
8965 			     & ~SIGNAL_DET_V(1));
8966 	}
8967 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8968 
8969 	return 0;
8970 }
8971 
8972 /**
8973  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8974  *	@adapter: the adapter
8975  *	@qid: the Queue ID
8976  *	@qtype: the Ingress or Egress type for @qid
8977  *	@user: true if this request is for a user mode queue
8978  *	@pbar2_qoffset: BAR2 Queue Offset
8979  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8980  *
8981  *	Returns the BAR2 SGE Queue Registers information associated with the
8982  *	indicated Absolute Queue ID.  These are passed back in return value
8983  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8984  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8985  *
8986  *	This may return an error which indicates that BAR2 SGE Queue
8987  *	registers aren't available.  If an error is not returned, then the
8988  *	following values are returned:
8989  *
8990  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8991  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8992  *
8993  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8994  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8995  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8996  *	then these "Inferred Queue ID" register may not be used.
8997  */
8998 int t4_bar2_sge_qregs(struct adapter *adapter,
8999 		      unsigned int qid,
9000 		      enum t4_bar2_qtype qtype,
9001 		      int user,
9002 		      u64 *pbar2_qoffset,
9003 		      unsigned int *pbar2_qid)
9004 {
9005 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9006 	u64 bar2_page_offset, bar2_qoffset;
9007 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9008 
9009 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9010 	if (!user && is_t4(adapter->params.chip))
9011 		return -EINVAL;
9012 
9013 	/* Get our SGE Page Size parameters.
9014 	 */
9015 	page_shift = adapter->params.sge.hps + 10;
9016 	page_size = 1 << page_shift;
9017 
9018 	/* Get the right Queues per Page parameters for our Queue.
9019 	 */
9020 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9021 		     ? adapter->params.sge.eq_qpp
9022 		     : adapter->params.sge.iq_qpp);
9023 	qpp_mask = (1 << qpp_shift) - 1;
9024 
9025 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9026 	 *  o The BAR2 page the Queue registers will be in.
9027 	 *  o The BAR2 Queue ID.
9028 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9029 	 */
9030 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9031 	bar2_qid = qid & qpp_mask;
9032 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9033 
9034 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9035 	 * hardware will infer the Absolute Queue ID simply from the writes to
9036 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9037 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9038 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9039 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9040 	 * from the BAR2 Page and BAR2 Queue ID.
9041 	 *
9042 	 * One important censequence of this is that some BAR2 SGE registers
9043 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9044 	 * there.  But other registers synthesize the SGE Queue ID purely
9045 	 * from the writes to the registers -- the Write Combined Doorbell
9046 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9047 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9048 	 * Queue ID can be inferred from simple writes.
9049 	 */
9050 	bar2_qoffset = bar2_page_offset;
9051 	bar2_qinferred = (bar2_qid_offset < page_size);
9052 	if (bar2_qinferred) {
9053 		bar2_qoffset += bar2_qid_offset;
9054 		bar2_qid = 0;
9055 	}
9056 
9057 	*pbar2_qoffset = bar2_qoffset;
9058 	*pbar2_qid = bar2_qid;
9059 	return 0;
9060 }
9061 
9062 /**
9063  *	t4_init_devlog_params - initialize adapter->params.devlog
9064  *	@adap: the adapter
9065  *
9066  *	Initialize various fields of the adapter's Firmware Device Log
9067  *	Parameters structure.
9068  */
9069 int t4_init_devlog_params(struct adapter *adap)
9070 {
9071 	struct devlog_params *dparams = &adap->params.devlog;
9072 	u32 pf_dparams;
9073 	unsigned int devlog_meminfo;
9074 	struct fw_devlog_cmd devlog_cmd;
9075 	int ret;
9076 
9077 	/* If we're dealing with newer firmware, the Device Log Paramerters
9078 	 * are stored in a designated register which allows us to access the
9079 	 * Device Log even if we can't talk to the firmware.
9080 	 */
9081 	pf_dparams =
9082 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9083 	if (pf_dparams) {
9084 		unsigned int nentries, nentries128;
9085 
9086 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9087 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9088 
9089 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9090 		nentries = (nentries128 + 1) * 128;
9091 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9092 
9093 		return 0;
9094 	}
9095 
9096 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9097 	 */
9098 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9099 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9100 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9101 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9102 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9103 			 &devlog_cmd);
9104 	if (ret)
9105 		return ret;
9106 
9107 	devlog_meminfo =
9108 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9109 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9110 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9111 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9112 
9113 	return 0;
9114 }
9115 
9116 /**
9117  *	t4_init_sge_params - initialize adap->params.sge
9118  *	@adapter: the adapter
9119  *
9120  *	Initialize various fields of the adapter's SGE Parameters structure.
9121  */
9122 int t4_init_sge_params(struct adapter *adapter)
9123 {
9124 	struct sge_params *sge_params = &adapter->params.sge;
9125 	u32 hps, qpp;
9126 	unsigned int s_hps, s_qpp;
9127 
9128 	/* Extract the SGE Page Size for our PF.
9129 	 */
9130 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9131 	s_hps = (HOSTPAGESIZEPF0_S +
9132 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9133 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9134 
9135 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9136 	 */
9137 	s_qpp = (QUEUESPERPAGEPF0_S +
9138 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9139 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9140 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9141 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9142 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9143 
9144 	return 0;
9145 }
9146 
9147 /**
9148  *      t4_init_tp_params - initialize adap->params.tp
9149  *      @adap: the adapter
9150  *      @sleep_ok: if true we may sleep while awaiting command completion
9151  *
9152  *      Initialize various fields of the adapter's TP Parameters structure.
9153  */
9154 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9155 {
9156 	int chan;
9157 	u32 v;
9158 
9159 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9160 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9161 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9162 
9163 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9164 	for (chan = 0; chan < NCHAN; chan++)
9165 		adap->params.tp.tx_modq[chan] = chan;
9166 
9167 	/* Cache the adapter's Compressed Filter Mode and global Incress
9168 	 * Configuration.
9169 	 */
9170 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9171 		       TP_VLAN_PRI_MAP_A, sleep_ok);
9172 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9173 		       TP_INGRESS_CONFIG_A, sleep_ok);
9174 
9175 	/* For T6, cache the adapter's compressed error vector
9176 	 * and passing outer header info for encapsulated packets.
9177 	 */
9178 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9179 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9180 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9181 	}
9182 
9183 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9184 	 * shift positions of several elements of the Compressed Filter Tuple
9185 	 * for this adapter which we need frequently ...
9186 	 */
9187 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9188 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9189 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9190 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9191 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9192 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9193 							       PROTOCOL_F);
9194 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9195 								ETHERTYPE_F);
9196 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9197 							       MACMATCH_F);
9198 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9199 								MPSHITTYPE_F);
9200 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9201 							   FRAGMENTATION_F);
9202 
9203 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9204 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9205 	 */
9206 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9207 		adap->params.tp.vnic_shift = -1;
9208 
9209 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9210 	adap->params.tp.hash_filter_mask = v;
9211 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9212 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9213 	return 0;
9214 }
9215 
9216 /**
9217  *      t4_filter_field_shift - calculate filter field shift
9218  *      @adap: the adapter
9219  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9220  *
9221  *      Return the shift position of a filter field within the Compressed
9222  *      Filter Tuple.  The filter field is specified via its selection bit
9223  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9224  */
9225 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9226 {
9227 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9228 	unsigned int sel;
9229 	int field_shift;
9230 
9231 	if ((filter_mode & filter_sel) == 0)
9232 		return -1;
9233 
9234 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9235 		switch (filter_mode & sel) {
9236 		case FCOE_F:
9237 			field_shift += FT_FCOE_W;
9238 			break;
9239 		case PORT_F:
9240 			field_shift += FT_PORT_W;
9241 			break;
9242 		case VNIC_ID_F:
9243 			field_shift += FT_VNIC_ID_W;
9244 			break;
9245 		case VLAN_F:
9246 			field_shift += FT_VLAN_W;
9247 			break;
9248 		case TOS_F:
9249 			field_shift += FT_TOS_W;
9250 			break;
9251 		case PROTOCOL_F:
9252 			field_shift += FT_PROTOCOL_W;
9253 			break;
9254 		case ETHERTYPE_F:
9255 			field_shift += FT_ETHERTYPE_W;
9256 			break;
9257 		case MACMATCH_F:
9258 			field_shift += FT_MACMATCH_W;
9259 			break;
9260 		case MPSHITTYPE_F:
9261 			field_shift += FT_MPSHITTYPE_W;
9262 			break;
9263 		case FRAGMENTATION_F:
9264 			field_shift += FT_FRAGMENTATION_W;
9265 			break;
9266 		}
9267 	}
9268 	return field_shift;
9269 }
9270 
9271 int t4_init_rss_mode(struct adapter *adap, int mbox)
9272 {
9273 	int i, ret;
9274 	struct fw_rss_vi_config_cmd rvc;
9275 
9276 	memset(&rvc, 0, sizeof(rvc));
9277 
9278 	for_each_port(adap, i) {
9279 		struct port_info *p = adap2pinfo(adap, i);
9280 
9281 		rvc.op_to_viid =
9282 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9283 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9284 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9285 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9286 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9287 		if (ret)
9288 			return ret;
9289 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9290 	}
9291 	return 0;
9292 }
9293 
9294 /**
9295  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9296  *	@pi: the port_info
9297  *	@mbox: mailbox to use for the FW command
9298  *	@port: physical port associated with the VI
9299  *	@pf: the PF owning the VI
9300  *	@vf: the VF owning the VI
9301  *	@mac: the MAC address of the VI
9302  *
9303  *	Allocates a virtual interface for the given physical port.  If @mac is
9304  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9305  *	@mac should be large enough to hold an Ethernet address.
9306  *	Returns < 0 on error.
9307  */
9308 int t4_init_portinfo(struct port_info *pi, int mbox,
9309 		     int port, int pf, int vf, u8 mac[])
9310 {
9311 	struct adapter *adapter = pi->adapter;
9312 	unsigned int fw_caps = adapter->params.fw_caps_support;
9313 	struct fw_port_cmd cmd;
9314 	unsigned int rss_size;
9315 	enum fw_port_type port_type;
9316 	int mdio_addr;
9317 	fw_port_cap32_t pcaps, acaps;
9318 	int ret;
9319 
9320 	/* If we haven't yet determined whether we're talking to Firmware
9321 	 * which knows the new 32-bit Port Capabilities, it's time to find
9322 	 * out now.  This will also tell new Firmware to send us Port Status
9323 	 * Updates using the new 32-bit Port Capabilities version of the
9324 	 * Port Information message.
9325 	 */
9326 	if (fw_caps == FW_CAPS_UNKNOWN) {
9327 		u32 param, val;
9328 
9329 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9330 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9331 		val = 1;
9332 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9333 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9334 		adapter->params.fw_caps_support = fw_caps;
9335 	}
9336 
9337 	memset(&cmd, 0, sizeof(cmd));
9338 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9339 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9340 				       FW_PORT_CMD_PORTID_V(port));
9341 	cmd.action_to_len16 = cpu_to_be32(
9342 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9343 				     ? FW_PORT_ACTION_GET_PORT_INFO
9344 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9345 		FW_LEN16(cmd));
9346 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9347 	if (ret)
9348 		return ret;
9349 
9350 	/* Extract the various fields from the Port Information message.
9351 	 */
9352 	if (fw_caps == FW_CAPS16) {
9353 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9354 
9355 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9356 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9357 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9358 			     : -1);
9359 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9360 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9361 	} else {
9362 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9363 
9364 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9365 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9366 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9367 			     : -1);
9368 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9369 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9370 	}
9371 
9372 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9373 	if (ret < 0)
9374 		return ret;
9375 
9376 	pi->viid = ret;
9377 	pi->tx_chan = port;
9378 	pi->lport = port;
9379 	pi->rss_size = rss_size;
9380 
9381 	pi->port_type = port_type;
9382 	pi->mdio_addr = mdio_addr;
9383 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9384 
9385 	init_link_config(&pi->link_cfg, pcaps, acaps);
9386 	return 0;
9387 }
9388 
9389 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9390 {
9391 	u8 addr[6];
9392 	int ret, i, j = 0;
9393 
9394 	for_each_port(adap, i) {
9395 		struct port_info *pi = adap2pinfo(adap, i);
9396 
9397 		while ((adap->params.portvec & (1 << j)) == 0)
9398 			j++;
9399 
9400 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9401 		if (ret)
9402 			return ret;
9403 
9404 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9405 		j++;
9406 	}
9407 	return 0;
9408 }
9409 
9410 /**
9411  *	t4_read_cimq_cfg - read CIM queue configuration
9412  *	@adap: the adapter
9413  *	@base: holds the queue base addresses in bytes
9414  *	@size: holds the queue sizes in bytes
9415  *	@thres: holds the queue full thresholds in bytes
9416  *
9417  *	Returns the current configuration of the CIM queues, starting with
9418  *	the IBQs, then the OBQs.
9419  */
9420 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9421 {
9422 	unsigned int i, v;
9423 	int cim_num_obq = is_t4(adap->params.chip) ?
9424 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9425 
9426 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9427 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9428 			     QUENUMSELECT_V(i));
9429 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9430 		/* value is in 256-byte units */
9431 		*base++ = CIMQBASE_G(v) * 256;
9432 		*size++ = CIMQSIZE_G(v) * 256;
9433 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9434 	}
9435 	for (i = 0; i < cim_num_obq; i++) {
9436 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9437 			     QUENUMSELECT_V(i));
9438 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9439 		/* value is in 256-byte units */
9440 		*base++ = CIMQBASE_G(v) * 256;
9441 		*size++ = CIMQSIZE_G(v) * 256;
9442 	}
9443 }
9444 
9445 /**
9446  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9447  *	@adap: the adapter
9448  *	@qid: the queue index
9449  *	@data: where to store the queue contents
9450  *	@n: capacity of @data in 32-bit words
9451  *
9452  *	Reads the contents of the selected CIM queue starting at address 0 up
9453  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9454  *	error and the number of 32-bit words actually read on success.
9455  */
9456 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9457 {
9458 	int i, err, attempts;
9459 	unsigned int addr;
9460 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9461 
9462 	if (qid > 5 || (n & 3))
9463 		return -EINVAL;
9464 
9465 	addr = qid * nwords;
9466 	if (n > nwords)
9467 		n = nwords;
9468 
9469 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9470 	 * Wait for 1 Sec with a delay of 1 usec.
9471 	 */
9472 	attempts = 1000000;
9473 
9474 	for (i = 0; i < n; i++, addr++) {
9475 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9476 			     IBQDBGEN_F);
9477 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9478 				      attempts, 1);
9479 		if (err)
9480 			return err;
9481 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9482 	}
9483 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9484 	return i;
9485 }
9486 
9487 /**
9488  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9489  *	@adap: the adapter
9490  *	@qid: the queue index
9491  *	@data: where to store the queue contents
9492  *	@n: capacity of @data in 32-bit words
9493  *
9494  *	Reads the contents of the selected CIM queue starting at address 0 up
9495  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9496  *	error and the number of 32-bit words actually read on success.
9497  */
9498 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9499 {
9500 	int i, err;
9501 	unsigned int addr, v, nwords;
9502 	int cim_num_obq = is_t4(adap->params.chip) ?
9503 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9504 
9505 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9506 		return -EINVAL;
9507 
9508 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9509 		     QUENUMSELECT_V(qid));
9510 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9511 
9512 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9513 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9514 	if (n > nwords)
9515 		n = nwords;
9516 
9517 	for (i = 0; i < n; i++, addr++) {
9518 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9519 			     OBQDBGEN_F);
9520 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9521 				      2, 1);
9522 		if (err)
9523 			return err;
9524 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9525 	}
9526 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9527 	return i;
9528 }
9529 
9530 /**
9531  *	t4_cim_read - read a block from CIM internal address space
9532  *	@adap: the adapter
9533  *	@addr: the start address within the CIM address space
9534  *	@n: number of words to read
9535  *	@valp: where to store the result
9536  *
9537  *	Reads a block of 4-byte words from the CIM intenal address space.
9538  */
9539 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9540 		unsigned int *valp)
9541 {
9542 	int ret = 0;
9543 
9544 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9545 		return -EBUSY;
9546 
9547 	for ( ; !ret && n--; addr += 4) {
9548 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9549 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9550 				      0, 5, 2);
9551 		if (!ret)
9552 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9553 	}
9554 	return ret;
9555 }
9556 
9557 /**
9558  *	t4_cim_write - write a block into CIM internal address space
9559  *	@adap: the adapter
9560  *	@addr: the start address within the CIM address space
9561  *	@n: number of words to write
9562  *	@valp: set of values to write
9563  *
9564  *	Writes a block of 4-byte words into the CIM intenal address space.
9565  */
9566 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9567 		 const unsigned int *valp)
9568 {
9569 	int ret = 0;
9570 
9571 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9572 		return -EBUSY;
9573 
9574 	for ( ; !ret && n--; addr += 4) {
9575 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9576 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9577 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9578 				      0, 5, 2);
9579 	}
9580 	return ret;
9581 }
9582 
9583 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9584 			 unsigned int val)
9585 {
9586 	return t4_cim_write(adap, addr, 1, &val);
9587 }
9588 
9589 /**
9590  *	t4_cim_read_la - read CIM LA capture buffer
9591  *	@adap: the adapter
9592  *	@la_buf: where to store the LA data
9593  *	@wrptr: the HW write pointer within the capture buffer
9594  *
9595  *	Reads the contents of the CIM LA buffer with the most recent entry at
9596  *	the end	of the returned data and with the entry at @wrptr first.
9597  *	We try to leave the LA in the running state we find it in.
9598  */
9599 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9600 {
9601 	int i, ret;
9602 	unsigned int cfg, val, idx;
9603 
9604 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9605 	if (ret)
9606 		return ret;
9607 
9608 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9609 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9610 		if (ret)
9611 			return ret;
9612 	}
9613 
9614 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9615 	if (ret)
9616 		goto restart;
9617 
9618 	idx = UPDBGLAWRPTR_G(val);
9619 	if (wrptr)
9620 		*wrptr = idx;
9621 
9622 	for (i = 0; i < adap->params.cim_la_size; i++) {
9623 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9624 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9625 		if (ret)
9626 			break;
9627 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9628 		if (ret)
9629 			break;
9630 		if (val & UPDBGLARDEN_F) {
9631 			ret = -ETIMEDOUT;
9632 			break;
9633 		}
9634 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9635 		if (ret)
9636 			break;
9637 
9638 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9639 		 * identify the 32-bit portion of the full 312-bit data
9640 		 */
9641 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9642 			idx = (idx & 0xff0) + 0x10;
9643 		else
9644 			idx++;
9645 		/* address can't exceed 0xfff */
9646 		idx &= UPDBGLARDPTR_M;
9647 	}
9648 restart:
9649 	if (cfg & UPDBGLAEN_F) {
9650 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9651 				      cfg & ~UPDBGLARDEN_F);
9652 		if (!ret)
9653 			ret = r;
9654 	}
9655 	return ret;
9656 }
9657 
9658 /**
9659  *	t4_tp_read_la - read TP LA capture buffer
9660  *	@adap: the adapter
9661  *	@la_buf: where to store the LA data
9662  *	@wrptr: the HW write pointer within the capture buffer
9663  *
9664  *	Reads the contents of the TP LA buffer with the most recent entry at
9665  *	the end	of the returned data and with the entry at @wrptr first.
9666  *	We leave the LA in the running state we find it in.
9667  */
9668 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9669 {
9670 	bool last_incomplete;
9671 	unsigned int i, cfg, val, idx;
9672 
9673 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9674 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9675 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9676 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9677 
9678 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9679 	idx = DBGLAWPTR_G(val);
9680 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9681 	if (last_incomplete)
9682 		idx = (idx + 1) & DBGLARPTR_M;
9683 	if (wrptr)
9684 		*wrptr = idx;
9685 
9686 	val &= 0xffff;
9687 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9688 	val |= adap->params.tp.la_mask;
9689 
9690 	for (i = 0; i < TPLA_SIZE; i++) {
9691 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9692 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9693 		idx = (idx + 1) & DBGLARPTR_M;
9694 	}
9695 
9696 	/* Wipe out last entry if it isn't valid */
9697 	if (last_incomplete)
9698 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9699 
9700 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9701 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9702 			     cfg | adap->params.tp.la_mask);
9703 }
9704 
9705 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9706  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9707  * state for more than the Warning Threshold then we'll issue a warning about
9708  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9709  * appears to be hung every Warning Repeat second till the situation clears.
9710  * If the situation clears, we'll note that as well.
9711  */
9712 #define SGE_IDMA_WARN_THRESH 1
9713 #define SGE_IDMA_WARN_REPEAT 300
9714 
9715 /**
9716  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9717  *	@adapter: the adapter
9718  *	@idma: the adapter IDMA Monitor state
9719  *
9720  *	Initialize the state of an SGE Ingress DMA Monitor.
9721  */
9722 void t4_idma_monitor_init(struct adapter *adapter,
9723 			  struct sge_idma_monitor_state *idma)
9724 {
9725 	/* Initialize the state variables for detecting an SGE Ingress DMA
9726 	 * hang.  The SGE has internal counters which count up on each clock
9727 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9728 	 * same state they were on the previous clock tick.  The clock used is
9729 	 * the Core Clock so we have a limit on the maximum "time" they can
9730 	 * record; typically a very small number of seconds.  For instance,
9731 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9732 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9733 	 * risk of having the "timers" overflow and give us the flexibility to
9734 	 * maintain a Hung SGE State Machine of our own which operates across
9735 	 * a longer time frame.
9736 	 */
9737 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9738 	idma->idma_stalled[0] = 0;
9739 	idma->idma_stalled[1] = 0;
9740 }
9741 
9742 /**
9743  *	t4_idma_monitor - monitor SGE Ingress DMA state
9744  *	@adapter: the adapter
9745  *	@idma: the adapter IDMA Monitor state
9746  *	@hz: number of ticks/second
9747  *	@ticks: number of ticks since the last IDMA Monitor call
9748  */
9749 void t4_idma_monitor(struct adapter *adapter,
9750 		     struct sge_idma_monitor_state *idma,
9751 		     int hz, int ticks)
9752 {
9753 	int i, idma_same_state_cnt[2];
9754 
9755 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9756 	  * are counters inside the SGE which count up on each clock when the
9757 	  * SGE finds its Ingress DMA State Engines in the same states they
9758 	  * were in the previous clock.  The counters will peg out at
9759 	  * 0xffffffff without wrapping around so once they pass the 1s
9760 	  * threshold they'll stay above that till the IDMA state changes.
9761 	  */
9762 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9763 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9764 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9765 
9766 	for (i = 0; i < 2; i++) {
9767 		u32 debug0, debug11;
9768 
9769 		/* If the Ingress DMA Same State Counter ("timer") is less
9770 		 * than 1s, then we can reset our synthesized Stall Timer and
9771 		 * continue.  If we have previously emitted warnings about a
9772 		 * potential stalled Ingress Queue, issue a note indicating
9773 		 * that the Ingress Queue has resumed forward progress.
9774 		 */
9775 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9776 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9777 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9778 					 "resumed after %d seconds\n",
9779 					 i, idma->idma_qid[i],
9780 					 idma->idma_stalled[i] / hz);
9781 			idma->idma_stalled[i] = 0;
9782 			continue;
9783 		}
9784 
9785 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9786 		 * domain.  The first time we get here it'll be because we
9787 		 * passed the 1s Threshold; each additional time it'll be
9788 		 * because the RX Timer Callback is being fired on its regular
9789 		 * schedule.
9790 		 *
9791 		 * If the stall is below our Potential Hung Ingress Queue
9792 		 * Warning Threshold, continue.
9793 		 */
9794 		if (idma->idma_stalled[i] == 0) {
9795 			idma->idma_stalled[i] = hz;
9796 			idma->idma_warn[i] = 0;
9797 		} else {
9798 			idma->idma_stalled[i] += ticks;
9799 			idma->idma_warn[i] -= ticks;
9800 		}
9801 
9802 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9803 			continue;
9804 
9805 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9806 		 */
9807 		if (idma->idma_warn[i] > 0)
9808 			continue;
9809 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9810 
9811 		/* Read and save the SGE IDMA State and Queue ID information.
9812 		 * We do this every time in case it changes across time ...
9813 		 * can't be too careful ...
9814 		 */
9815 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9816 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9817 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9818 
9819 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9820 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9821 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9822 
9823 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9824 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9825 			 i, idma->idma_qid[i], idma->idma_state[i],
9826 			 idma->idma_stalled[i] / hz,
9827 			 debug0, debug11);
9828 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9829 	}
9830 }
9831 
9832 /**
9833  *	t4_load_cfg - download config file
9834  *	@adap: the adapter
9835  *	@cfg_data: the cfg text file to write
9836  *	@size: text file size
9837  *
9838  *	Write the supplied config text file to the card's serial flash.
9839  */
9840 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9841 {
9842 	int ret, i, n, cfg_addr;
9843 	unsigned int addr;
9844 	unsigned int flash_cfg_start_sec;
9845 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9846 
9847 	cfg_addr = t4_flash_cfg_addr(adap);
9848 	if (cfg_addr < 0)
9849 		return cfg_addr;
9850 
9851 	addr = cfg_addr;
9852 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9853 
9854 	if (size > FLASH_CFG_MAX_SIZE) {
9855 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9856 			FLASH_CFG_MAX_SIZE);
9857 		return -EFBIG;
9858 	}
9859 
9860 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9861 			 sf_sec_size);
9862 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9863 				     flash_cfg_start_sec + i - 1);
9864 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9865 	 * with the on-adapter Firmware Configuration File.
9866 	 */
9867 	if (ret || size == 0)
9868 		goto out;
9869 
9870 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9871 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9872 		if ((size - i) <  SF_PAGE_SIZE)
9873 			n = size - i;
9874 		else
9875 			n = SF_PAGE_SIZE;
9876 		ret = t4_write_flash(adap, addr, n, cfg_data);
9877 		if (ret)
9878 			goto out;
9879 
9880 		addr += SF_PAGE_SIZE;
9881 		cfg_data += SF_PAGE_SIZE;
9882 	}
9883 
9884 out:
9885 	if (ret)
9886 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9887 			(size == 0 ? "clear" : "download"), ret);
9888 	return ret;
9889 }
9890 
9891 /**
9892  *	t4_set_vf_mac - Set MAC address for the specified VF
9893  *	@adapter: The adapter
9894  *	@vf: one of the VFs instantiated by the specified PF
9895  *	@naddr: the number of MAC addresses
9896  *	@addr: the MAC address(es) to be set to the specified VF
9897  */
9898 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9899 		      unsigned int naddr, u8 *addr)
9900 {
9901 	struct fw_acl_mac_cmd cmd;
9902 
9903 	memset(&cmd, 0, sizeof(cmd));
9904 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9905 				    FW_CMD_REQUEST_F |
9906 				    FW_CMD_WRITE_F |
9907 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9908 				    FW_ACL_MAC_CMD_VFN_V(vf));
9909 
9910 	/* Note: Do not enable the ACL */
9911 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9912 	cmd.nmac = naddr;
9913 
9914 	switch (adapter->pf) {
9915 	case 3:
9916 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9917 		break;
9918 	case 2:
9919 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9920 		break;
9921 	case 1:
9922 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9923 		break;
9924 	case 0:
9925 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9926 		break;
9927 	}
9928 
9929 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9930 }
9931 
9932 /**
9933  * t4_read_pace_tbl - read the pace table
9934  * @adap: the adapter
9935  * @pace_vals: holds the returned values
9936  *
9937  * Returns the values of TP's pace table in microseconds.
9938  */
9939 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9940 {
9941 	unsigned int i, v;
9942 
9943 	for (i = 0; i < NTX_SCHED; i++) {
9944 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
9945 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
9946 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9947 	}
9948 }
9949 
9950 /**
9951  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9952  * @adap: the adapter
9953  * @sched: the scheduler index
9954  * @kbps: the byte rate in Kbps
9955  * @ipg: the interpacket delay in tenths of nanoseconds
9956  * @sleep_ok: if true we may sleep while awaiting command completion
9957  *
9958  * Return the current configuration of a HW Tx scheduler.
9959  */
9960 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
9961 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
9962 {
9963 	unsigned int v, addr, bpt, cpt;
9964 
9965 	if (kbps) {
9966 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
9967 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9968 		if (sched & 1)
9969 			v >>= 16;
9970 		bpt = (v >> 8) & 0xff;
9971 		cpt = v & 0xff;
9972 		if (!cpt) {
9973 			*kbps = 0;	/* scheduler disabled */
9974 		} else {
9975 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9976 			*kbps = (v * bpt) / 125;
9977 		}
9978 	}
9979 	if (ipg) {
9980 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
9981 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9982 		if (sched & 1)
9983 			v >>= 16;
9984 		v &= 0xffff;
9985 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9986 	}
9987 }
9988 
9989 /* t4_sge_ctxt_rd - read an SGE context through FW
9990  * @adap: the adapter
9991  * @mbox: mailbox to use for the FW command
9992  * @cid: the context id
9993  * @ctype: the context type
9994  * @data: where to store the context data
9995  *
9996  * Issues a FW command through the given mailbox to read an SGE context.
9997  */
9998 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9999 		   enum ctxt_type ctype, u32 *data)
10000 {
10001 	struct fw_ldst_cmd c;
10002 	int ret;
10003 
10004 	if (ctype == CTXT_FLM)
10005 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10006 	else
10007 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10008 
10009 	memset(&c, 0, sizeof(c));
10010 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10011 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10012 					FW_LDST_CMD_ADDRSPACE_V(ret));
10013 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10014 	c.u.idctxt.physid = cpu_to_be32(cid);
10015 
10016 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10017 	if (ret == 0) {
10018 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10019 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10020 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10021 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10022 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10023 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10024 	}
10025 	return ret;
10026 }
10027 
10028 /**
10029  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10030  * @adap: the adapter
10031  * @cid: the context id
10032  * @ctype: the context type
10033  * @data: where to store the context data
10034  *
10035  * Reads an SGE context directly, bypassing FW.  This is only for
10036  * debugging when FW is unavailable.
10037  */
10038 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10039 		      enum ctxt_type ctype, u32 *data)
10040 {
10041 	int i, ret;
10042 
10043 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10044 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10045 	if (!ret)
10046 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10047 			*data++ = t4_read_reg(adap, i);
10048 	return ret;
10049 }
10050 
10051 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10052 		    int rateunit, int ratemode, int channel, int class,
10053 		    int minrate, int maxrate, int weight, int pktsize)
10054 {
10055 	struct fw_sched_cmd cmd;
10056 
10057 	memset(&cmd, 0, sizeof(cmd));
10058 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10059 				      FW_CMD_REQUEST_F |
10060 				      FW_CMD_WRITE_F);
10061 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10062 
10063 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10064 	cmd.u.params.type = type;
10065 	cmd.u.params.level = level;
10066 	cmd.u.params.mode = mode;
10067 	cmd.u.params.ch = channel;
10068 	cmd.u.params.cl = class;
10069 	cmd.u.params.unit = rateunit;
10070 	cmd.u.params.rate = ratemode;
10071 	cmd.u.params.min = cpu_to_be32(minrate);
10072 	cmd.u.params.max = cpu_to_be32(maxrate);
10073 	cmd.u.params.weight = cpu_to_be16(weight);
10074 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10075 
10076 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10077 			       NULL, 1);
10078 }
10079 
10080 /**
10081  *	t4_i2c_rd - read I2C data from adapter
10082  *	@adap: the adapter
10083  *	@port: Port number if per-port device; <0 if not
10084  *	@devid: per-port device ID or absolute device ID
10085  *	@offset: byte offset into device I2C space
10086  *	@len: byte length of I2C space data
10087  *	@buf: buffer in which to return I2C data
10088  *
10089  *	Reads the I2C data from the indicated device and location.
10090  */
10091 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10092 	      unsigned int devid, unsigned int offset,
10093 	      unsigned int len, u8 *buf)
10094 {
10095 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10096 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10097 	int ret = 0;
10098 
10099 	if (len > I2C_PAGE_SIZE)
10100 		return -EINVAL;
10101 
10102 	/* Dont allow reads that spans multiple pages */
10103 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10104 		return -EINVAL;
10105 
10106 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10107 	ldst_cmd.op_to_addrspace =
10108 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10109 			    FW_CMD_REQUEST_F |
10110 			    FW_CMD_READ_F |
10111 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10112 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10113 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10114 	ldst_cmd.u.i2c.did = devid;
10115 
10116 	while (len > 0) {
10117 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10118 
10119 		ldst_cmd.u.i2c.boffset = offset;
10120 		ldst_cmd.u.i2c.blen = i2c_len;
10121 
10122 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10123 				 &ldst_rpl);
10124 		if (ret)
10125 			break;
10126 
10127 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10128 		offset += i2c_len;
10129 		buf += i2c_len;
10130 		len -= i2c_len;
10131 	}
10132 
10133 	return ret;
10134 }
10135 
10136 /**
10137  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10138  *      @adapter: the adapter
10139  *      @mbox: mailbox to use for the FW command
10140  *      @vf: one of the VFs instantiated by the specified PF
10141  *      @vlan: The vlanid to be set
10142  */
10143 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10144 		    u16 vlan)
10145 {
10146 	struct fw_acl_vlan_cmd vlan_cmd;
10147 	unsigned int enable;
10148 
10149 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10150 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10151 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10152 					 FW_CMD_REQUEST_F |
10153 					 FW_CMD_WRITE_F |
10154 					 FW_CMD_EXEC_F |
10155 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10156 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10157 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10158 	/* Drop all packets that donot match vlan id */
10159 	vlan_cmd.dropnovlan_fm = FW_ACL_VLAN_CMD_FM_F;
10160 	if (enable != 0) {
10161 		vlan_cmd.nvlan = 1;
10162 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10163 	}
10164 
10165 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10166 }
10167