1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rearely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boudaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9820, 0x983c, 1383 0x9850, 0x9864, 1384 0x9c00, 0x9c6c, 1385 0x9c80, 0x9cec, 1386 0x9d00, 0x9d6c, 1387 0x9d80, 0x9dec, 1388 0x9e00, 0x9e6c, 1389 0x9e80, 0x9eec, 1390 0x9f00, 0x9f6c, 1391 0x9f80, 0xa020, 1392 0xd004, 0xd004, 1393 0xd010, 0xd03c, 1394 0xdfc0, 0xdfe0, 1395 0xe000, 0x1106c, 1396 0x11074, 0x11088, 1397 0x1109c, 0x1117c, 1398 0x11190, 0x11204, 1399 0x19040, 0x1906c, 1400 0x19078, 0x19080, 1401 0x1908c, 0x190e8, 1402 0x190f0, 0x190f8, 1403 0x19100, 0x19110, 1404 0x19120, 0x19124, 1405 0x19150, 0x19194, 1406 0x1919c, 0x191b0, 1407 0x191d0, 0x191e8, 1408 0x19238, 0x19290, 1409 0x193f8, 0x19428, 1410 0x19430, 0x19444, 1411 0x1944c, 0x1946c, 1412 0x19474, 0x19474, 1413 0x19490, 0x194cc, 1414 0x194f0, 0x194f8, 1415 0x19c00, 0x19c08, 1416 0x19c10, 0x19c60, 1417 0x19c94, 0x19ce4, 1418 0x19cf0, 0x19d40, 1419 0x19d50, 0x19d94, 1420 0x19da0, 0x19de8, 1421 0x19df0, 0x19e10, 1422 0x19e50, 0x19e90, 1423 0x19ea0, 0x19f24, 1424 0x19f34, 0x19f34, 1425 0x19f40, 0x19f50, 1426 0x19f90, 0x19fb4, 1427 0x19fc4, 0x19fe4, 1428 0x1a000, 0x1a004, 1429 0x1a010, 0x1a06c, 1430 0x1a0b0, 0x1a0e4, 1431 0x1a0ec, 0x1a0f8, 1432 0x1a100, 0x1a108, 1433 0x1a114, 0x1a120, 1434 0x1a128, 0x1a130, 1435 0x1a138, 0x1a138, 1436 0x1a190, 0x1a1c4, 1437 0x1a1fc, 0x1a1fc, 1438 0x1e008, 0x1e00c, 1439 0x1e040, 0x1e044, 1440 0x1e04c, 0x1e04c, 1441 0x1e284, 0x1e290, 1442 0x1e2c0, 0x1e2c0, 1443 0x1e2e0, 0x1e2e0, 1444 0x1e300, 0x1e384, 1445 0x1e3c0, 0x1e3c8, 1446 0x1e408, 0x1e40c, 1447 0x1e440, 0x1e444, 1448 0x1e44c, 0x1e44c, 1449 0x1e684, 0x1e690, 1450 0x1e6c0, 0x1e6c0, 1451 0x1e6e0, 0x1e6e0, 1452 0x1e700, 0x1e784, 1453 0x1e7c0, 0x1e7c8, 1454 0x1e808, 0x1e80c, 1455 0x1e840, 0x1e844, 1456 0x1e84c, 0x1e84c, 1457 0x1ea84, 0x1ea90, 1458 0x1eac0, 0x1eac0, 1459 0x1eae0, 0x1eae0, 1460 0x1eb00, 0x1eb84, 1461 0x1ebc0, 0x1ebc8, 1462 0x1ec08, 0x1ec0c, 1463 0x1ec40, 0x1ec44, 1464 0x1ec4c, 0x1ec4c, 1465 0x1ee84, 0x1ee90, 1466 0x1eec0, 0x1eec0, 1467 0x1eee0, 0x1eee0, 1468 0x1ef00, 0x1ef84, 1469 0x1efc0, 0x1efc8, 1470 0x1f008, 0x1f00c, 1471 0x1f040, 0x1f044, 1472 0x1f04c, 0x1f04c, 1473 0x1f284, 0x1f290, 1474 0x1f2c0, 0x1f2c0, 1475 0x1f2e0, 0x1f2e0, 1476 0x1f300, 0x1f384, 1477 0x1f3c0, 0x1f3c8, 1478 0x1f408, 0x1f40c, 1479 0x1f440, 0x1f444, 1480 0x1f44c, 0x1f44c, 1481 0x1f684, 0x1f690, 1482 0x1f6c0, 0x1f6c0, 1483 0x1f6e0, 0x1f6e0, 1484 0x1f700, 0x1f784, 1485 0x1f7c0, 0x1f7c8, 1486 0x1f808, 0x1f80c, 1487 0x1f840, 0x1f844, 1488 0x1f84c, 0x1f84c, 1489 0x1fa84, 0x1fa90, 1490 0x1fac0, 0x1fac0, 1491 0x1fae0, 0x1fae0, 1492 0x1fb00, 0x1fb84, 1493 0x1fbc0, 0x1fbc8, 1494 0x1fc08, 0x1fc0c, 1495 0x1fc40, 0x1fc44, 1496 0x1fc4c, 0x1fc4c, 1497 0x1fe84, 0x1fe90, 1498 0x1fec0, 0x1fec0, 1499 0x1fee0, 0x1fee0, 1500 0x1ff00, 0x1ff84, 1501 0x1ffc0, 0x1ffc8, 1502 0x30000, 0x30030, 1503 0x30100, 0x30144, 1504 0x30190, 0x301a0, 1505 0x301a8, 0x301b8, 1506 0x301c4, 0x301c8, 1507 0x301d0, 0x301d0, 1508 0x30200, 0x30318, 1509 0x30400, 0x304b4, 1510 0x304c0, 0x3052c, 1511 0x30540, 0x3061c, 1512 0x30800, 0x30828, 1513 0x30834, 0x30834, 1514 0x308c0, 0x30908, 1515 0x30910, 0x309ac, 1516 0x30a00, 0x30a14, 1517 0x30a1c, 0x30a2c, 1518 0x30a44, 0x30a50, 1519 0x30a74, 0x30a74, 1520 0x30a7c, 0x30afc, 1521 0x30b08, 0x30c24, 1522 0x30d00, 0x30d00, 1523 0x30d08, 0x30d14, 1524 0x30d1c, 0x30d20, 1525 0x30d3c, 0x30d3c, 1526 0x30d48, 0x30d50, 1527 0x31200, 0x3120c, 1528 0x31220, 0x31220, 1529 0x31240, 0x31240, 1530 0x31600, 0x3160c, 1531 0x31a00, 0x31a1c, 1532 0x31e00, 0x31e20, 1533 0x31e38, 0x31e3c, 1534 0x31e80, 0x31e80, 1535 0x31e88, 0x31ea8, 1536 0x31eb0, 0x31eb4, 1537 0x31ec8, 0x31ed4, 1538 0x31fb8, 0x32004, 1539 0x32200, 0x32200, 1540 0x32208, 0x32240, 1541 0x32248, 0x32280, 1542 0x32288, 0x322c0, 1543 0x322c8, 0x322fc, 1544 0x32600, 0x32630, 1545 0x32a00, 0x32abc, 1546 0x32b00, 0x32b10, 1547 0x32b20, 0x32b30, 1548 0x32b40, 0x32b50, 1549 0x32b60, 0x32b70, 1550 0x33000, 0x33028, 1551 0x33030, 0x33048, 1552 0x33060, 0x33068, 1553 0x33070, 0x3309c, 1554 0x330f0, 0x33128, 1555 0x33130, 0x33148, 1556 0x33160, 0x33168, 1557 0x33170, 0x3319c, 1558 0x331f0, 0x33238, 1559 0x33240, 0x33240, 1560 0x33248, 0x33250, 1561 0x3325c, 0x33264, 1562 0x33270, 0x332b8, 1563 0x332c0, 0x332e4, 1564 0x332f8, 0x33338, 1565 0x33340, 0x33340, 1566 0x33348, 0x33350, 1567 0x3335c, 0x33364, 1568 0x33370, 0x333b8, 1569 0x333c0, 0x333e4, 1570 0x333f8, 0x33428, 1571 0x33430, 0x33448, 1572 0x33460, 0x33468, 1573 0x33470, 0x3349c, 1574 0x334f0, 0x33528, 1575 0x33530, 0x33548, 1576 0x33560, 0x33568, 1577 0x33570, 0x3359c, 1578 0x335f0, 0x33638, 1579 0x33640, 0x33640, 1580 0x33648, 0x33650, 1581 0x3365c, 0x33664, 1582 0x33670, 0x336b8, 1583 0x336c0, 0x336e4, 1584 0x336f8, 0x33738, 1585 0x33740, 0x33740, 1586 0x33748, 0x33750, 1587 0x3375c, 0x33764, 1588 0x33770, 0x337b8, 1589 0x337c0, 0x337e4, 1590 0x337f8, 0x337fc, 1591 0x33814, 0x33814, 1592 0x3382c, 0x3382c, 1593 0x33880, 0x3388c, 1594 0x338e8, 0x338ec, 1595 0x33900, 0x33928, 1596 0x33930, 0x33948, 1597 0x33960, 0x33968, 1598 0x33970, 0x3399c, 1599 0x339f0, 0x33a38, 1600 0x33a40, 0x33a40, 1601 0x33a48, 0x33a50, 1602 0x33a5c, 0x33a64, 1603 0x33a70, 0x33ab8, 1604 0x33ac0, 0x33ae4, 1605 0x33af8, 0x33b10, 1606 0x33b28, 0x33b28, 1607 0x33b3c, 0x33b50, 1608 0x33bf0, 0x33c10, 1609 0x33c28, 0x33c28, 1610 0x33c3c, 0x33c50, 1611 0x33cf0, 0x33cfc, 1612 0x34000, 0x34030, 1613 0x34100, 0x34144, 1614 0x34190, 0x341a0, 1615 0x341a8, 0x341b8, 1616 0x341c4, 0x341c8, 1617 0x341d0, 0x341d0, 1618 0x34200, 0x34318, 1619 0x34400, 0x344b4, 1620 0x344c0, 0x3452c, 1621 0x34540, 0x3461c, 1622 0x34800, 0x34828, 1623 0x34834, 0x34834, 1624 0x348c0, 0x34908, 1625 0x34910, 0x349ac, 1626 0x34a00, 0x34a14, 1627 0x34a1c, 0x34a2c, 1628 0x34a44, 0x34a50, 1629 0x34a74, 0x34a74, 1630 0x34a7c, 0x34afc, 1631 0x34b08, 0x34c24, 1632 0x34d00, 0x34d00, 1633 0x34d08, 0x34d14, 1634 0x34d1c, 0x34d20, 1635 0x34d3c, 0x34d3c, 1636 0x34d48, 0x34d50, 1637 0x35200, 0x3520c, 1638 0x35220, 0x35220, 1639 0x35240, 0x35240, 1640 0x35600, 0x3560c, 1641 0x35a00, 0x35a1c, 1642 0x35e00, 0x35e20, 1643 0x35e38, 0x35e3c, 1644 0x35e80, 0x35e80, 1645 0x35e88, 0x35ea8, 1646 0x35eb0, 0x35eb4, 1647 0x35ec8, 0x35ed4, 1648 0x35fb8, 0x36004, 1649 0x36200, 0x36200, 1650 0x36208, 0x36240, 1651 0x36248, 0x36280, 1652 0x36288, 0x362c0, 1653 0x362c8, 0x362fc, 1654 0x36600, 0x36630, 1655 0x36a00, 0x36abc, 1656 0x36b00, 0x36b10, 1657 0x36b20, 0x36b30, 1658 0x36b40, 0x36b50, 1659 0x36b60, 0x36b70, 1660 0x37000, 0x37028, 1661 0x37030, 0x37048, 1662 0x37060, 0x37068, 1663 0x37070, 0x3709c, 1664 0x370f0, 0x37128, 1665 0x37130, 0x37148, 1666 0x37160, 0x37168, 1667 0x37170, 0x3719c, 1668 0x371f0, 0x37238, 1669 0x37240, 0x37240, 1670 0x37248, 0x37250, 1671 0x3725c, 0x37264, 1672 0x37270, 0x372b8, 1673 0x372c0, 0x372e4, 1674 0x372f8, 0x37338, 1675 0x37340, 0x37340, 1676 0x37348, 0x37350, 1677 0x3735c, 0x37364, 1678 0x37370, 0x373b8, 1679 0x373c0, 0x373e4, 1680 0x373f8, 0x37428, 1681 0x37430, 0x37448, 1682 0x37460, 0x37468, 1683 0x37470, 0x3749c, 1684 0x374f0, 0x37528, 1685 0x37530, 0x37548, 1686 0x37560, 0x37568, 1687 0x37570, 0x3759c, 1688 0x375f0, 0x37638, 1689 0x37640, 0x37640, 1690 0x37648, 0x37650, 1691 0x3765c, 0x37664, 1692 0x37670, 0x376b8, 1693 0x376c0, 0x376e4, 1694 0x376f8, 0x37738, 1695 0x37740, 0x37740, 1696 0x37748, 0x37750, 1697 0x3775c, 0x37764, 1698 0x37770, 0x377b8, 1699 0x377c0, 0x377e4, 1700 0x377f8, 0x377fc, 1701 0x37814, 0x37814, 1702 0x3782c, 0x3782c, 1703 0x37880, 0x3788c, 1704 0x378e8, 0x378ec, 1705 0x37900, 0x37928, 1706 0x37930, 0x37948, 1707 0x37960, 0x37968, 1708 0x37970, 0x3799c, 1709 0x379f0, 0x37a38, 1710 0x37a40, 0x37a40, 1711 0x37a48, 0x37a50, 1712 0x37a5c, 0x37a64, 1713 0x37a70, 0x37ab8, 1714 0x37ac0, 0x37ae4, 1715 0x37af8, 0x37b10, 1716 0x37b28, 0x37b28, 1717 0x37b3c, 0x37b50, 1718 0x37bf0, 0x37c10, 1719 0x37c28, 0x37c28, 1720 0x37c3c, 0x37c50, 1721 0x37cf0, 0x37cfc, 1722 0x38000, 0x38030, 1723 0x38100, 0x38144, 1724 0x38190, 0x381a0, 1725 0x381a8, 0x381b8, 1726 0x381c4, 0x381c8, 1727 0x381d0, 0x381d0, 1728 0x38200, 0x38318, 1729 0x38400, 0x384b4, 1730 0x384c0, 0x3852c, 1731 0x38540, 0x3861c, 1732 0x38800, 0x38828, 1733 0x38834, 0x38834, 1734 0x388c0, 0x38908, 1735 0x38910, 0x389ac, 1736 0x38a00, 0x38a14, 1737 0x38a1c, 0x38a2c, 1738 0x38a44, 0x38a50, 1739 0x38a74, 0x38a74, 1740 0x38a7c, 0x38afc, 1741 0x38b08, 0x38c24, 1742 0x38d00, 0x38d00, 1743 0x38d08, 0x38d14, 1744 0x38d1c, 0x38d20, 1745 0x38d3c, 0x38d3c, 1746 0x38d48, 0x38d50, 1747 0x39200, 0x3920c, 1748 0x39220, 0x39220, 1749 0x39240, 0x39240, 1750 0x39600, 0x3960c, 1751 0x39a00, 0x39a1c, 1752 0x39e00, 0x39e20, 1753 0x39e38, 0x39e3c, 1754 0x39e80, 0x39e80, 1755 0x39e88, 0x39ea8, 1756 0x39eb0, 0x39eb4, 1757 0x39ec8, 0x39ed4, 1758 0x39fb8, 0x3a004, 1759 0x3a200, 0x3a200, 1760 0x3a208, 0x3a240, 1761 0x3a248, 0x3a280, 1762 0x3a288, 0x3a2c0, 1763 0x3a2c8, 0x3a2fc, 1764 0x3a600, 0x3a630, 1765 0x3aa00, 0x3aabc, 1766 0x3ab00, 0x3ab10, 1767 0x3ab20, 0x3ab30, 1768 0x3ab40, 0x3ab50, 1769 0x3ab60, 0x3ab70, 1770 0x3b000, 0x3b028, 1771 0x3b030, 0x3b048, 1772 0x3b060, 0x3b068, 1773 0x3b070, 0x3b09c, 1774 0x3b0f0, 0x3b128, 1775 0x3b130, 0x3b148, 1776 0x3b160, 0x3b168, 1777 0x3b170, 0x3b19c, 1778 0x3b1f0, 0x3b238, 1779 0x3b240, 0x3b240, 1780 0x3b248, 0x3b250, 1781 0x3b25c, 0x3b264, 1782 0x3b270, 0x3b2b8, 1783 0x3b2c0, 0x3b2e4, 1784 0x3b2f8, 0x3b338, 1785 0x3b340, 0x3b340, 1786 0x3b348, 0x3b350, 1787 0x3b35c, 0x3b364, 1788 0x3b370, 0x3b3b8, 1789 0x3b3c0, 0x3b3e4, 1790 0x3b3f8, 0x3b428, 1791 0x3b430, 0x3b448, 1792 0x3b460, 0x3b468, 1793 0x3b470, 0x3b49c, 1794 0x3b4f0, 0x3b528, 1795 0x3b530, 0x3b548, 1796 0x3b560, 0x3b568, 1797 0x3b570, 0x3b59c, 1798 0x3b5f0, 0x3b638, 1799 0x3b640, 0x3b640, 1800 0x3b648, 0x3b650, 1801 0x3b65c, 0x3b664, 1802 0x3b670, 0x3b6b8, 1803 0x3b6c0, 0x3b6e4, 1804 0x3b6f8, 0x3b738, 1805 0x3b740, 0x3b740, 1806 0x3b748, 0x3b750, 1807 0x3b75c, 0x3b764, 1808 0x3b770, 0x3b7b8, 1809 0x3b7c0, 0x3b7e4, 1810 0x3b7f8, 0x3b7fc, 1811 0x3b814, 0x3b814, 1812 0x3b82c, 0x3b82c, 1813 0x3b880, 0x3b88c, 1814 0x3b8e8, 0x3b8ec, 1815 0x3b900, 0x3b928, 1816 0x3b930, 0x3b948, 1817 0x3b960, 0x3b968, 1818 0x3b970, 0x3b99c, 1819 0x3b9f0, 0x3ba38, 1820 0x3ba40, 0x3ba40, 1821 0x3ba48, 0x3ba50, 1822 0x3ba5c, 0x3ba64, 1823 0x3ba70, 0x3bab8, 1824 0x3bac0, 0x3bae4, 1825 0x3baf8, 0x3bb10, 1826 0x3bb28, 0x3bb28, 1827 0x3bb3c, 0x3bb50, 1828 0x3bbf0, 0x3bc10, 1829 0x3bc28, 0x3bc28, 1830 0x3bc3c, 0x3bc50, 1831 0x3bcf0, 0x3bcfc, 1832 0x3c000, 0x3c030, 1833 0x3c100, 0x3c144, 1834 0x3c190, 0x3c1a0, 1835 0x3c1a8, 0x3c1b8, 1836 0x3c1c4, 0x3c1c8, 1837 0x3c1d0, 0x3c1d0, 1838 0x3c200, 0x3c318, 1839 0x3c400, 0x3c4b4, 1840 0x3c4c0, 0x3c52c, 1841 0x3c540, 0x3c61c, 1842 0x3c800, 0x3c828, 1843 0x3c834, 0x3c834, 1844 0x3c8c0, 0x3c908, 1845 0x3c910, 0x3c9ac, 1846 0x3ca00, 0x3ca14, 1847 0x3ca1c, 0x3ca2c, 1848 0x3ca44, 0x3ca50, 1849 0x3ca74, 0x3ca74, 1850 0x3ca7c, 0x3cafc, 1851 0x3cb08, 0x3cc24, 1852 0x3cd00, 0x3cd00, 1853 0x3cd08, 0x3cd14, 1854 0x3cd1c, 0x3cd20, 1855 0x3cd3c, 0x3cd3c, 1856 0x3cd48, 0x3cd50, 1857 0x3d200, 0x3d20c, 1858 0x3d220, 0x3d220, 1859 0x3d240, 0x3d240, 1860 0x3d600, 0x3d60c, 1861 0x3da00, 0x3da1c, 1862 0x3de00, 0x3de20, 1863 0x3de38, 0x3de3c, 1864 0x3de80, 0x3de80, 1865 0x3de88, 0x3dea8, 1866 0x3deb0, 0x3deb4, 1867 0x3dec8, 0x3ded4, 1868 0x3dfb8, 0x3e004, 1869 0x3e200, 0x3e200, 1870 0x3e208, 0x3e240, 1871 0x3e248, 0x3e280, 1872 0x3e288, 0x3e2c0, 1873 0x3e2c8, 0x3e2fc, 1874 0x3e600, 0x3e630, 1875 0x3ea00, 0x3eabc, 1876 0x3eb00, 0x3eb10, 1877 0x3eb20, 0x3eb30, 1878 0x3eb40, 0x3eb50, 1879 0x3eb60, 0x3eb70, 1880 0x3f000, 0x3f028, 1881 0x3f030, 0x3f048, 1882 0x3f060, 0x3f068, 1883 0x3f070, 0x3f09c, 1884 0x3f0f0, 0x3f128, 1885 0x3f130, 0x3f148, 1886 0x3f160, 0x3f168, 1887 0x3f170, 0x3f19c, 1888 0x3f1f0, 0x3f238, 1889 0x3f240, 0x3f240, 1890 0x3f248, 0x3f250, 1891 0x3f25c, 0x3f264, 1892 0x3f270, 0x3f2b8, 1893 0x3f2c0, 0x3f2e4, 1894 0x3f2f8, 0x3f338, 1895 0x3f340, 0x3f340, 1896 0x3f348, 0x3f350, 1897 0x3f35c, 0x3f364, 1898 0x3f370, 0x3f3b8, 1899 0x3f3c0, 0x3f3e4, 1900 0x3f3f8, 0x3f428, 1901 0x3f430, 0x3f448, 1902 0x3f460, 0x3f468, 1903 0x3f470, 0x3f49c, 1904 0x3f4f0, 0x3f528, 1905 0x3f530, 0x3f548, 1906 0x3f560, 0x3f568, 1907 0x3f570, 0x3f59c, 1908 0x3f5f0, 0x3f638, 1909 0x3f640, 0x3f640, 1910 0x3f648, 0x3f650, 1911 0x3f65c, 0x3f664, 1912 0x3f670, 0x3f6b8, 1913 0x3f6c0, 0x3f6e4, 1914 0x3f6f8, 0x3f738, 1915 0x3f740, 0x3f740, 1916 0x3f748, 0x3f750, 1917 0x3f75c, 0x3f764, 1918 0x3f770, 0x3f7b8, 1919 0x3f7c0, 0x3f7e4, 1920 0x3f7f8, 0x3f7fc, 1921 0x3f814, 0x3f814, 1922 0x3f82c, 0x3f82c, 1923 0x3f880, 0x3f88c, 1924 0x3f8e8, 0x3f8ec, 1925 0x3f900, 0x3f928, 1926 0x3f930, 0x3f948, 1927 0x3f960, 0x3f968, 1928 0x3f970, 0x3f99c, 1929 0x3f9f0, 0x3fa38, 1930 0x3fa40, 0x3fa40, 1931 0x3fa48, 0x3fa50, 1932 0x3fa5c, 0x3fa64, 1933 0x3fa70, 0x3fab8, 1934 0x3fac0, 0x3fae4, 1935 0x3faf8, 0x3fb10, 1936 0x3fb28, 0x3fb28, 1937 0x3fb3c, 0x3fb50, 1938 0x3fbf0, 0x3fc10, 1939 0x3fc28, 0x3fc28, 1940 0x3fc3c, 0x3fc50, 1941 0x3fcf0, 0x3fcfc, 1942 0x40000, 0x4000c, 1943 0x40040, 0x40050, 1944 0x40060, 0x40068, 1945 0x4007c, 0x4008c, 1946 0x40094, 0x400b0, 1947 0x400c0, 0x40144, 1948 0x40180, 0x4018c, 1949 0x40200, 0x40254, 1950 0x40260, 0x40264, 1951 0x40270, 0x40288, 1952 0x40290, 0x40298, 1953 0x402ac, 0x402c8, 1954 0x402d0, 0x402e0, 1955 0x402f0, 0x402f0, 1956 0x40300, 0x4033c, 1957 0x403f8, 0x403fc, 1958 0x41304, 0x413c4, 1959 0x41400, 0x4140c, 1960 0x41414, 0x4141c, 1961 0x41480, 0x414d0, 1962 0x44000, 0x44054, 1963 0x4405c, 0x44078, 1964 0x440c0, 0x44174, 1965 0x44180, 0x441ac, 1966 0x441b4, 0x441b8, 1967 0x441c0, 0x44254, 1968 0x4425c, 0x44278, 1969 0x442c0, 0x44374, 1970 0x44380, 0x443ac, 1971 0x443b4, 0x443b8, 1972 0x443c0, 0x44454, 1973 0x4445c, 0x44478, 1974 0x444c0, 0x44574, 1975 0x44580, 0x445ac, 1976 0x445b4, 0x445b8, 1977 0x445c0, 0x44654, 1978 0x4465c, 0x44678, 1979 0x446c0, 0x44774, 1980 0x44780, 0x447ac, 1981 0x447b4, 0x447b8, 1982 0x447c0, 0x44854, 1983 0x4485c, 0x44878, 1984 0x448c0, 0x44974, 1985 0x44980, 0x449ac, 1986 0x449b4, 0x449b8, 1987 0x449c0, 0x449fc, 1988 0x45000, 0x45004, 1989 0x45010, 0x45030, 1990 0x45040, 0x45060, 1991 0x45068, 0x45068, 1992 0x45080, 0x45084, 1993 0x450a0, 0x450b0, 1994 0x45200, 0x45204, 1995 0x45210, 0x45230, 1996 0x45240, 0x45260, 1997 0x45268, 0x45268, 1998 0x45280, 0x45284, 1999 0x452a0, 0x452b0, 2000 0x460c0, 0x460e4, 2001 0x47000, 0x4703c, 2002 0x47044, 0x4708c, 2003 0x47200, 0x47250, 2004 0x47400, 0x47408, 2005 0x47414, 0x47420, 2006 0x47600, 0x47618, 2007 0x47800, 0x47814, 2008 0x48000, 0x4800c, 2009 0x48040, 0x48050, 2010 0x48060, 0x48068, 2011 0x4807c, 0x4808c, 2012 0x48094, 0x480b0, 2013 0x480c0, 0x48144, 2014 0x48180, 0x4818c, 2015 0x48200, 0x48254, 2016 0x48260, 0x48264, 2017 0x48270, 0x48288, 2018 0x48290, 0x48298, 2019 0x482ac, 0x482c8, 2020 0x482d0, 0x482e0, 2021 0x482f0, 0x482f0, 2022 0x48300, 0x4833c, 2023 0x483f8, 0x483fc, 2024 0x49304, 0x493c4, 2025 0x49400, 0x4940c, 2026 0x49414, 0x4941c, 2027 0x49480, 0x494d0, 2028 0x4c000, 0x4c054, 2029 0x4c05c, 0x4c078, 2030 0x4c0c0, 0x4c174, 2031 0x4c180, 0x4c1ac, 2032 0x4c1b4, 0x4c1b8, 2033 0x4c1c0, 0x4c254, 2034 0x4c25c, 0x4c278, 2035 0x4c2c0, 0x4c374, 2036 0x4c380, 0x4c3ac, 2037 0x4c3b4, 0x4c3b8, 2038 0x4c3c0, 0x4c454, 2039 0x4c45c, 0x4c478, 2040 0x4c4c0, 0x4c574, 2041 0x4c580, 0x4c5ac, 2042 0x4c5b4, 0x4c5b8, 2043 0x4c5c0, 0x4c654, 2044 0x4c65c, 0x4c678, 2045 0x4c6c0, 0x4c774, 2046 0x4c780, 0x4c7ac, 2047 0x4c7b4, 0x4c7b8, 2048 0x4c7c0, 0x4c854, 2049 0x4c85c, 0x4c878, 2050 0x4c8c0, 0x4c974, 2051 0x4c980, 0x4c9ac, 2052 0x4c9b4, 0x4c9b8, 2053 0x4c9c0, 0x4c9fc, 2054 0x4d000, 0x4d004, 2055 0x4d010, 0x4d030, 2056 0x4d040, 0x4d060, 2057 0x4d068, 0x4d068, 2058 0x4d080, 0x4d084, 2059 0x4d0a0, 0x4d0b0, 2060 0x4d200, 0x4d204, 2061 0x4d210, 0x4d230, 2062 0x4d240, 0x4d260, 2063 0x4d268, 0x4d268, 2064 0x4d280, 0x4d284, 2065 0x4d2a0, 0x4d2b0, 2066 0x4e0c0, 0x4e0e4, 2067 0x4f000, 0x4f03c, 2068 0x4f044, 0x4f08c, 2069 0x4f200, 0x4f250, 2070 0x4f400, 0x4f408, 2071 0x4f414, 0x4f420, 2072 0x4f600, 0x4f618, 2073 0x4f800, 0x4f814, 2074 0x50000, 0x50084, 2075 0x50090, 0x500cc, 2076 0x50400, 0x50400, 2077 0x50800, 0x50884, 2078 0x50890, 0x508cc, 2079 0x50c00, 0x50c00, 2080 0x51000, 0x5101c, 2081 0x51300, 0x51308, 2082 }; 2083 2084 static const unsigned int t6_reg_ranges[] = { 2085 0x1008, 0x101c, 2086 0x1024, 0x10a8, 2087 0x10b4, 0x10f8, 2088 0x1100, 0x1114, 2089 0x111c, 0x112c, 2090 0x1138, 0x113c, 2091 0x1144, 0x114c, 2092 0x1180, 0x1184, 2093 0x1190, 0x1194, 2094 0x11a0, 0x11a4, 2095 0x11b0, 0x11b4, 2096 0x11fc, 0x1274, 2097 0x1280, 0x133c, 2098 0x1800, 0x18fc, 2099 0x3000, 0x302c, 2100 0x3060, 0x30b0, 2101 0x30b8, 0x30d8, 2102 0x30e0, 0x30fc, 2103 0x3140, 0x357c, 2104 0x35a8, 0x35cc, 2105 0x35ec, 0x35ec, 2106 0x3600, 0x5624, 2107 0x56cc, 0x56ec, 2108 0x56f4, 0x5720, 2109 0x5728, 0x575c, 2110 0x580c, 0x5814, 2111 0x5890, 0x589c, 2112 0x58a4, 0x58ac, 2113 0x58b8, 0x58bc, 2114 0x5940, 0x595c, 2115 0x5980, 0x598c, 2116 0x59b0, 0x59c8, 2117 0x59d0, 0x59dc, 2118 0x59fc, 0x5a18, 2119 0x5a60, 0x5a6c, 2120 0x5a80, 0x5a8c, 2121 0x5a94, 0x5a9c, 2122 0x5b94, 0x5bfc, 2123 0x5c10, 0x5e48, 2124 0x5e50, 0x5e94, 2125 0x5ea0, 0x5eb0, 2126 0x5ec0, 0x5ec0, 2127 0x5ec8, 0x5ed0, 2128 0x5ee0, 0x5ee0, 2129 0x5ef0, 0x5ef0, 2130 0x5f00, 0x5f00, 2131 0x6000, 0x6020, 2132 0x6028, 0x6040, 2133 0x6058, 0x609c, 2134 0x60a8, 0x619c, 2135 0x7700, 0x7798, 2136 0x77c0, 0x7880, 2137 0x78cc, 0x78fc, 2138 0x7b00, 0x7b58, 2139 0x7b60, 0x7b84, 2140 0x7b8c, 0x7c54, 2141 0x7d00, 0x7d38, 2142 0x7d40, 0x7d84, 2143 0x7d8c, 0x7ddc, 2144 0x7de4, 0x7e04, 2145 0x7e10, 0x7e1c, 2146 0x7e24, 0x7e38, 2147 0x7e40, 0x7e44, 2148 0x7e4c, 0x7e78, 2149 0x7e80, 0x7edc, 2150 0x7ee8, 0x7efc, 2151 0x8dc0, 0x8de4, 2152 0x8df8, 0x8e04, 2153 0x8e10, 0x8e84, 2154 0x8ea0, 0x8f88, 2155 0x8fb8, 0x9058, 2156 0x9060, 0x9060, 2157 0x9068, 0x90f8, 2158 0x9100, 0x9124, 2159 0x9400, 0x9470, 2160 0x9600, 0x9600, 2161 0x9608, 0x9638, 2162 0x9640, 0x9704, 2163 0x9710, 0x971c, 2164 0x9800, 0x9808, 2165 0x9820, 0x983c, 2166 0x9850, 0x9864, 2167 0x9c00, 0x9c6c, 2168 0x9c80, 0x9cec, 2169 0x9d00, 0x9d6c, 2170 0x9d80, 0x9dec, 2171 0x9e00, 0x9e6c, 2172 0x9e80, 0x9eec, 2173 0x9f00, 0x9f6c, 2174 0x9f80, 0xa020, 2175 0xd004, 0xd03c, 2176 0xd100, 0xd118, 2177 0xd200, 0xd214, 2178 0xd220, 0xd234, 2179 0xd240, 0xd254, 2180 0xd260, 0xd274, 2181 0xd280, 0xd294, 2182 0xd2a0, 0xd2b4, 2183 0xd2c0, 0xd2d4, 2184 0xd2e0, 0xd2f4, 2185 0xd300, 0xd31c, 2186 0xdfc0, 0xdfe0, 2187 0xe000, 0xf008, 2188 0xf010, 0xf018, 2189 0xf020, 0xf028, 2190 0x11000, 0x11014, 2191 0x11048, 0x1106c, 2192 0x11074, 0x11088, 2193 0x11098, 0x11120, 2194 0x1112c, 0x1117c, 2195 0x11190, 0x112e0, 2196 0x11300, 0x1130c, 2197 0x12000, 0x1206c, 2198 0x19040, 0x1906c, 2199 0x19078, 0x19080, 2200 0x1908c, 0x190e8, 2201 0x190f0, 0x190f8, 2202 0x19100, 0x19110, 2203 0x19120, 0x19124, 2204 0x19150, 0x19194, 2205 0x1919c, 0x191b0, 2206 0x191d0, 0x191e8, 2207 0x19238, 0x19290, 2208 0x192a4, 0x192b0, 2209 0x192bc, 0x192bc, 2210 0x19348, 0x1934c, 2211 0x193f8, 0x19418, 2212 0x19420, 0x19428, 2213 0x19430, 0x19444, 2214 0x1944c, 0x1946c, 2215 0x19474, 0x19474, 2216 0x19490, 0x194cc, 2217 0x194f0, 0x194f8, 2218 0x19c00, 0x19c48, 2219 0x19c50, 0x19c80, 2220 0x19c94, 0x19c98, 2221 0x19ca0, 0x19cbc, 2222 0x19ce4, 0x19ce4, 2223 0x19cf0, 0x19cf8, 2224 0x19d00, 0x19d28, 2225 0x19d50, 0x19d78, 2226 0x19d94, 0x19d98, 2227 0x19da0, 0x19dc8, 2228 0x19df0, 0x19e10, 2229 0x19e50, 0x19e6c, 2230 0x19ea0, 0x19ebc, 2231 0x19ec4, 0x19ef4, 2232 0x19f04, 0x19f2c, 2233 0x19f34, 0x19f34, 2234 0x19f40, 0x19f50, 2235 0x19f90, 0x19fac, 2236 0x19fc4, 0x19fc8, 2237 0x19fd0, 0x19fe4, 2238 0x1a000, 0x1a004, 2239 0x1a010, 0x1a06c, 2240 0x1a0b0, 0x1a0e4, 2241 0x1a0ec, 0x1a0f8, 2242 0x1a100, 0x1a108, 2243 0x1a114, 0x1a120, 2244 0x1a128, 0x1a130, 2245 0x1a138, 0x1a138, 2246 0x1a190, 0x1a1c4, 2247 0x1a1fc, 0x1a1fc, 2248 0x1e008, 0x1e00c, 2249 0x1e040, 0x1e044, 2250 0x1e04c, 0x1e04c, 2251 0x1e284, 0x1e290, 2252 0x1e2c0, 0x1e2c0, 2253 0x1e2e0, 0x1e2e0, 2254 0x1e300, 0x1e384, 2255 0x1e3c0, 0x1e3c8, 2256 0x1e408, 0x1e40c, 2257 0x1e440, 0x1e444, 2258 0x1e44c, 0x1e44c, 2259 0x1e684, 0x1e690, 2260 0x1e6c0, 0x1e6c0, 2261 0x1e6e0, 0x1e6e0, 2262 0x1e700, 0x1e784, 2263 0x1e7c0, 0x1e7c8, 2264 0x1e808, 0x1e80c, 2265 0x1e840, 0x1e844, 2266 0x1e84c, 0x1e84c, 2267 0x1ea84, 0x1ea90, 2268 0x1eac0, 0x1eac0, 2269 0x1eae0, 0x1eae0, 2270 0x1eb00, 0x1eb84, 2271 0x1ebc0, 0x1ebc8, 2272 0x1ec08, 0x1ec0c, 2273 0x1ec40, 0x1ec44, 2274 0x1ec4c, 0x1ec4c, 2275 0x1ee84, 0x1ee90, 2276 0x1eec0, 0x1eec0, 2277 0x1eee0, 0x1eee0, 2278 0x1ef00, 0x1ef84, 2279 0x1efc0, 0x1efc8, 2280 0x1f008, 0x1f00c, 2281 0x1f040, 0x1f044, 2282 0x1f04c, 0x1f04c, 2283 0x1f284, 0x1f290, 2284 0x1f2c0, 0x1f2c0, 2285 0x1f2e0, 0x1f2e0, 2286 0x1f300, 0x1f384, 2287 0x1f3c0, 0x1f3c8, 2288 0x1f408, 0x1f40c, 2289 0x1f440, 0x1f444, 2290 0x1f44c, 0x1f44c, 2291 0x1f684, 0x1f690, 2292 0x1f6c0, 0x1f6c0, 2293 0x1f6e0, 0x1f6e0, 2294 0x1f700, 0x1f784, 2295 0x1f7c0, 0x1f7c8, 2296 0x1f808, 0x1f80c, 2297 0x1f840, 0x1f844, 2298 0x1f84c, 0x1f84c, 2299 0x1fa84, 0x1fa90, 2300 0x1fac0, 0x1fac0, 2301 0x1fae0, 0x1fae0, 2302 0x1fb00, 0x1fb84, 2303 0x1fbc0, 0x1fbc8, 2304 0x1fc08, 0x1fc0c, 2305 0x1fc40, 0x1fc44, 2306 0x1fc4c, 0x1fc4c, 2307 0x1fe84, 0x1fe90, 2308 0x1fec0, 0x1fec0, 2309 0x1fee0, 0x1fee0, 2310 0x1ff00, 0x1ff84, 2311 0x1ffc0, 0x1ffc8, 2312 0x30000, 0x30030, 2313 0x30100, 0x30168, 2314 0x30190, 0x301a0, 2315 0x301a8, 0x301b8, 2316 0x301c4, 0x301c8, 2317 0x301d0, 0x301d0, 2318 0x30200, 0x30320, 2319 0x30400, 0x304b4, 2320 0x304c0, 0x3052c, 2321 0x30540, 0x3061c, 2322 0x30800, 0x308a0, 2323 0x308c0, 0x30908, 2324 0x30910, 0x309b8, 2325 0x30a00, 0x30a04, 2326 0x30a0c, 0x30a14, 2327 0x30a1c, 0x30a2c, 2328 0x30a44, 0x30a50, 2329 0x30a74, 0x30a74, 2330 0x30a7c, 0x30afc, 2331 0x30b08, 0x30c24, 2332 0x30d00, 0x30d14, 2333 0x30d1c, 0x30d3c, 2334 0x30d44, 0x30d4c, 2335 0x30d54, 0x30d74, 2336 0x30d7c, 0x30d7c, 2337 0x30de0, 0x30de0, 2338 0x30e00, 0x30ed4, 2339 0x30f00, 0x30fa4, 2340 0x30fc0, 0x30fc4, 2341 0x31000, 0x31004, 2342 0x31080, 0x310fc, 2343 0x31208, 0x31220, 2344 0x3123c, 0x31254, 2345 0x31300, 0x31300, 2346 0x31308, 0x3131c, 2347 0x31338, 0x3133c, 2348 0x31380, 0x31380, 2349 0x31388, 0x313a8, 2350 0x313b4, 0x313b4, 2351 0x31400, 0x31420, 2352 0x31438, 0x3143c, 2353 0x31480, 0x31480, 2354 0x314a8, 0x314a8, 2355 0x314b0, 0x314b4, 2356 0x314c8, 0x314d4, 2357 0x31a40, 0x31a4c, 2358 0x31af0, 0x31b20, 2359 0x31b38, 0x31b3c, 2360 0x31b80, 0x31b80, 2361 0x31ba8, 0x31ba8, 2362 0x31bb0, 0x31bb4, 2363 0x31bc8, 0x31bd4, 2364 0x32140, 0x3218c, 2365 0x321f0, 0x321f4, 2366 0x32200, 0x32200, 2367 0x32218, 0x32218, 2368 0x32400, 0x32400, 2369 0x32408, 0x3241c, 2370 0x32618, 0x32620, 2371 0x32664, 0x32664, 2372 0x326a8, 0x326a8, 2373 0x326ec, 0x326ec, 2374 0x32a00, 0x32abc, 2375 0x32b00, 0x32b18, 2376 0x32b20, 0x32b38, 2377 0x32b40, 0x32b58, 2378 0x32b60, 0x32b78, 2379 0x32c00, 0x32c00, 2380 0x32c08, 0x32c3c, 2381 0x33000, 0x3302c, 2382 0x33034, 0x33050, 2383 0x33058, 0x33058, 2384 0x33060, 0x3308c, 2385 0x3309c, 0x330ac, 2386 0x330c0, 0x330c0, 2387 0x330c8, 0x330d0, 2388 0x330d8, 0x330e0, 2389 0x330ec, 0x3312c, 2390 0x33134, 0x33150, 2391 0x33158, 0x33158, 2392 0x33160, 0x3318c, 2393 0x3319c, 0x331ac, 2394 0x331c0, 0x331c0, 2395 0x331c8, 0x331d0, 2396 0x331d8, 0x331e0, 2397 0x331ec, 0x33290, 2398 0x33298, 0x332c4, 2399 0x332e4, 0x33390, 2400 0x33398, 0x333c4, 2401 0x333e4, 0x3342c, 2402 0x33434, 0x33450, 2403 0x33458, 0x33458, 2404 0x33460, 0x3348c, 2405 0x3349c, 0x334ac, 2406 0x334c0, 0x334c0, 2407 0x334c8, 0x334d0, 2408 0x334d8, 0x334e0, 2409 0x334ec, 0x3352c, 2410 0x33534, 0x33550, 2411 0x33558, 0x33558, 2412 0x33560, 0x3358c, 2413 0x3359c, 0x335ac, 2414 0x335c0, 0x335c0, 2415 0x335c8, 0x335d0, 2416 0x335d8, 0x335e0, 2417 0x335ec, 0x33690, 2418 0x33698, 0x336c4, 2419 0x336e4, 0x33790, 2420 0x33798, 0x337c4, 2421 0x337e4, 0x337fc, 2422 0x33814, 0x33814, 2423 0x33854, 0x33868, 2424 0x33880, 0x3388c, 2425 0x338c0, 0x338d0, 2426 0x338e8, 0x338ec, 2427 0x33900, 0x3392c, 2428 0x33934, 0x33950, 2429 0x33958, 0x33958, 2430 0x33960, 0x3398c, 2431 0x3399c, 0x339ac, 2432 0x339c0, 0x339c0, 2433 0x339c8, 0x339d0, 2434 0x339d8, 0x339e0, 2435 0x339ec, 0x33a90, 2436 0x33a98, 0x33ac4, 2437 0x33ae4, 0x33b10, 2438 0x33b24, 0x33b28, 2439 0x33b38, 0x33b50, 2440 0x33bf0, 0x33c10, 2441 0x33c24, 0x33c28, 2442 0x33c38, 0x33c50, 2443 0x33cf0, 0x33cfc, 2444 0x34000, 0x34030, 2445 0x34100, 0x34168, 2446 0x34190, 0x341a0, 2447 0x341a8, 0x341b8, 2448 0x341c4, 0x341c8, 2449 0x341d0, 0x341d0, 2450 0x34200, 0x34320, 2451 0x34400, 0x344b4, 2452 0x344c0, 0x3452c, 2453 0x34540, 0x3461c, 2454 0x34800, 0x348a0, 2455 0x348c0, 0x34908, 2456 0x34910, 0x349b8, 2457 0x34a00, 0x34a04, 2458 0x34a0c, 0x34a14, 2459 0x34a1c, 0x34a2c, 2460 0x34a44, 0x34a50, 2461 0x34a74, 0x34a74, 2462 0x34a7c, 0x34afc, 2463 0x34b08, 0x34c24, 2464 0x34d00, 0x34d14, 2465 0x34d1c, 0x34d3c, 2466 0x34d44, 0x34d4c, 2467 0x34d54, 0x34d74, 2468 0x34d7c, 0x34d7c, 2469 0x34de0, 0x34de0, 2470 0x34e00, 0x34ed4, 2471 0x34f00, 0x34fa4, 2472 0x34fc0, 0x34fc4, 2473 0x35000, 0x35004, 2474 0x35080, 0x350fc, 2475 0x35208, 0x35220, 2476 0x3523c, 0x35254, 2477 0x35300, 0x35300, 2478 0x35308, 0x3531c, 2479 0x35338, 0x3533c, 2480 0x35380, 0x35380, 2481 0x35388, 0x353a8, 2482 0x353b4, 0x353b4, 2483 0x35400, 0x35420, 2484 0x35438, 0x3543c, 2485 0x35480, 0x35480, 2486 0x354a8, 0x354a8, 2487 0x354b0, 0x354b4, 2488 0x354c8, 0x354d4, 2489 0x35a40, 0x35a4c, 2490 0x35af0, 0x35b20, 2491 0x35b38, 0x35b3c, 2492 0x35b80, 0x35b80, 2493 0x35ba8, 0x35ba8, 2494 0x35bb0, 0x35bb4, 2495 0x35bc8, 0x35bd4, 2496 0x36140, 0x3618c, 2497 0x361f0, 0x361f4, 2498 0x36200, 0x36200, 2499 0x36218, 0x36218, 2500 0x36400, 0x36400, 2501 0x36408, 0x3641c, 2502 0x36618, 0x36620, 2503 0x36664, 0x36664, 2504 0x366a8, 0x366a8, 2505 0x366ec, 0x366ec, 2506 0x36a00, 0x36abc, 2507 0x36b00, 0x36b18, 2508 0x36b20, 0x36b38, 2509 0x36b40, 0x36b58, 2510 0x36b60, 0x36b78, 2511 0x36c00, 0x36c00, 2512 0x36c08, 0x36c3c, 2513 0x37000, 0x3702c, 2514 0x37034, 0x37050, 2515 0x37058, 0x37058, 2516 0x37060, 0x3708c, 2517 0x3709c, 0x370ac, 2518 0x370c0, 0x370c0, 2519 0x370c8, 0x370d0, 2520 0x370d8, 0x370e0, 2521 0x370ec, 0x3712c, 2522 0x37134, 0x37150, 2523 0x37158, 0x37158, 2524 0x37160, 0x3718c, 2525 0x3719c, 0x371ac, 2526 0x371c0, 0x371c0, 2527 0x371c8, 0x371d0, 2528 0x371d8, 0x371e0, 2529 0x371ec, 0x37290, 2530 0x37298, 0x372c4, 2531 0x372e4, 0x37390, 2532 0x37398, 0x373c4, 2533 0x373e4, 0x3742c, 2534 0x37434, 0x37450, 2535 0x37458, 0x37458, 2536 0x37460, 0x3748c, 2537 0x3749c, 0x374ac, 2538 0x374c0, 0x374c0, 2539 0x374c8, 0x374d0, 2540 0x374d8, 0x374e0, 2541 0x374ec, 0x3752c, 2542 0x37534, 0x37550, 2543 0x37558, 0x37558, 2544 0x37560, 0x3758c, 2545 0x3759c, 0x375ac, 2546 0x375c0, 0x375c0, 2547 0x375c8, 0x375d0, 2548 0x375d8, 0x375e0, 2549 0x375ec, 0x37690, 2550 0x37698, 0x376c4, 2551 0x376e4, 0x37790, 2552 0x37798, 0x377c4, 2553 0x377e4, 0x377fc, 2554 0x37814, 0x37814, 2555 0x37854, 0x37868, 2556 0x37880, 0x3788c, 2557 0x378c0, 0x378d0, 2558 0x378e8, 0x378ec, 2559 0x37900, 0x3792c, 2560 0x37934, 0x37950, 2561 0x37958, 0x37958, 2562 0x37960, 0x3798c, 2563 0x3799c, 0x379ac, 2564 0x379c0, 0x379c0, 2565 0x379c8, 0x379d0, 2566 0x379d8, 0x379e0, 2567 0x379ec, 0x37a90, 2568 0x37a98, 0x37ac4, 2569 0x37ae4, 0x37b10, 2570 0x37b24, 0x37b28, 2571 0x37b38, 0x37b50, 2572 0x37bf0, 0x37c10, 2573 0x37c24, 0x37c28, 2574 0x37c38, 0x37c50, 2575 0x37cf0, 0x37cfc, 2576 0x40040, 0x40040, 2577 0x40080, 0x40084, 2578 0x40100, 0x40100, 2579 0x40140, 0x401bc, 2580 0x40200, 0x40214, 2581 0x40228, 0x40228, 2582 0x40240, 0x40258, 2583 0x40280, 0x40280, 2584 0x40304, 0x40304, 2585 0x40330, 0x4033c, 2586 0x41304, 0x413c8, 2587 0x413d0, 0x413dc, 2588 0x413f0, 0x413f0, 2589 0x41400, 0x4140c, 2590 0x41414, 0x4141c, 2591 0x41480, 0x414d0, 2592 0x44000, 0x4407c, 2593 0x440c0, 0x441ac, 2594 0x441b4, 0x4427c, 2595 0x442c0, 0x443ac, 2596 0x443b4, 0x4447c, 2597 0x444c0, 0x445ac, 2598 0x445b4, 0x4467c, 2599 0x446c0, 0x447ac, 2600 0x447b4, 0x4487c, 2601 0x448c0, 0x449ac, 2602 0x449b4, 0x44a7c, 2603 0x44ac0, 0x44bac, 2604 0x44bb4, 0x44c7c, 2605 0x44cc0, 0x44dac, 2606 0x44db4, 0x44e7c, 2607 0x44ec0, 0x44fac, 2608 0x44fb4, 0x4507c, 2609 0x450c0, 0x451ac, 2610 0x451b4, 0x451fc, 2611 0x45800, 0x45804, 2612 0x45810, 0x45830, 2613 0x45840, 0x45860, 2614 0x45868, 0x45868, 2615 0x45880, 0x45884, 2616 0x458a0, 0x458b0, 2617 0x45a00, 0x45a04, 2618 0x45a10, 0x45a30, 2619 0x45a40, 0x45a60, 2620 0x45a68, 0x45a68, 2621 0x45a80, 0x45a84, 2622 0x45aa0, 0x45ab0, 2623 0x460c0, 0x460e4, 2624 0x47000, 0x4703c, 2625 0x47044, 0x4708c, 2626 0x47200, 0x47250, 2627 0x47400, 0x47408, 2628 0x47414, 0x47420, 2629 0x47600, 0x47618, 2630 0x47800, 0x47814, 2631 0x47820, 0x4782c, 2632 0x50000, 0x50084, 2633 0x50090, 0x500cc, 2634 0x50300, 0x50384, 2635 0x50400, 0x50400, 2636 0x50800, 0x50884, 2637 0x50890, 0x508cc, 2638 0x50b00, 0x50b84, 2639 0x50c00, 0x50c00, 2640 0x51000, 0x51020, 2641 0x51028, 0x510b0, 2642 0x51300, 0x51324, 2643 }; 2644 2645 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2646 const unsigned int *reg_ranges; 2647 int reg_ranges_size, range; 2648 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2649 2650 /* Select the right set of register ranges to dump depending on the 2651 * adapter chip type. 2652 */ 2653 switch (chip_version) { 2654 case CHELSIO_T4: 2655 reg_ranges = t4_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T5: 2660 reg_ranges = t5_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2662 break; 2663 2664 case CHELSIO_T6: 2665 reg_ranges = t6_reg_ranges; 2666 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2667 break; 2668 2669 default: 2670 dev_err(adap->pdev_dev, 2671 "Unsupported chip version %d\n", chip_version); 2672 return; 2673 } 2674 2675 /* Clear the register buffer and insert the appropriate register 2676 * values selected by the above register ranges. 2677 */ 2678 memset(buf, 0, buf_size); 2679 for (range = 0; range < reg_ranges_size; range += 2) { 2680 unsigned int reg = reg_ranges[range]; 2681 unsigned int last_reg = reg_ranges[range + 1]; 2682 u32 *bufp = (u32 *)((char *)buf + reg); 2683 2684 /* Iterate across the register range filling in the register 2685 * buffer but don't write past the end of the register buffer. 2686 */ 2687 while (reg <= last_reg && bufp < buf_end) { 2688 *bufp++ = t4_read_reg(adap, reg); 2689 reg += sizeof(u32); 2690 } 2691 } 2692 } 2693 2694 #define EEPROM_STAT_ADDR 0x7bfc 2695 #define VPD_BASE 0x400 2696 #define VPD_BASE_OLD 0 2697 #define VPD_LEN 1024 2698 #define CHELSIO_VPD_UNIQUE_ID 0x82 2699 2700 /** 2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2702 * @phys_addr: the physical EEPROM address 2703 * @fn: the PCI function number 2704 * @sz: size of function-specific area 2705 * 2706 * Translate a physical EEPROM address to virtual. The first 1K is 2707 * accessed through virtual addresses starting at 31K, the rest is 2708 * accessed through virtual addresses starting at 0. 2709 * 2710 * The mapping is as follows: 2711 * [0..1K) -> [31K..32K) 2712 * [1K..1K+A) -> [31K-A..31K) 2713 * [1K+A..ES) -> [0..ES-A-1K) 2714 * 2715 * where A = @fn * @sz, and ES = EEPROM size. 2716 */ 2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2718 { 2719 fn *= sz; 2720 if (phys_addr < 1024) 2721 return phys_addr + (31 << 10); 2722 if (phys_addr < 1024 + fn) 2723 return 31744 - fn + phys_addr - 1024; 2724 if (phys_addr < EEPROMSIZE) 2725 return phys_addr - 1024 - fn; 2726 return -EINVAL; 2727 } 2728 2729 /** 2730 * t4_seeprom_wp - enable/disable EEPROM write protection 2731 * @adapter: the adapter 2732 * @enable: whether to enable or disable write protection 2733 * 2734 * Enables or disables write protection on the serial EEPROM. 2735 */ 2736 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2737 { 2738 unsigned int v = enable ? 0xc : 0; 2739 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2740 return ret < 0 ? ret : 0; 2741 } 2742 2743 /** 2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2745 * @adapter: adapter to read 2746 * @p: where to store the parameters 2747 * 2748 * Reads card parameters stored in VPD EEPROM. 2749 */ 2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2751 { 2752 int i, ret = 0, addr; 2753 int ec, sn, pn, na; 2754 u8 *vpd, csum; 2755 unsigned int vpdr_len, kw_offset, id_len; 2756 2757 vpd = vmalloc(VPD_LEN); 2758 if (!vpd) 2759 return -ENOMEM; 2760 2761 /* Card information normally starts at VPD_BASE but early cards had 2762 * it at 0. 2763 */ 2764 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 /* The VPD shall have a unique identifier specified by the PCI SIG. 2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2771 * is expected to automatically put this entry at the 2772 * beginning of the VPD. 2773 */ 2774 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2775 2776 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2777 if (ret < 0) 2778 goto out; 2779 2780 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2781 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2782 ret = -EINVAL; 2783 goto out; 2784 } 2785 2786 id_len = pci_vpd_lrdt_size(vpd); 2787 if (id_len > ID_LEN) 2788 id_len = ID_LEN; 2789 2790 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2791 if (i < 0) { 2792 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2793 ret = -EINVAL; 2794 goto out; 2795 } 2796 2797 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2798 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2799 if (vpdr_len + kw_offset > VPD_LEN) { 2800 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2801 ret = -EINVAL; 2802 goto out; 2803 } 2804 2805 #define FIND_VPD_KW(var, name) do { \ 2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2807 if (var < 0) { \ 2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2809 ret = -EINVAL; \ 2810 goto out; \ 2811 } \ 2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2813 } while (0) 2814 2815 FIND_VPD_KW(i, "RV"); 2816 for (csum = 0; i >= 0; i--) 2817 csum += vpd[i]; 2818 2819 if (csum) { 2820 dev_err(adapter->pdev_dev, 2821 "corrupted VPD EEPROM, actual csum %u\n", csum); 2822 ret = -EINVAL; 2823 goto out; 2824 } 2825 2826 FIND_VPD_KW(ec, "EC"); 2827 FIND_VPD_KW(sn, "SN"); 2828 FIND_VPD_KW(pn, "PN"); 2829 FIND_VPD_KW(na, "NA"); 2830 #undef FIND_VPD_KW 2831 2832 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2833 strim(p->id); 2834 memcpy(p->ec, vpd + ec, EC_LEN); 2835 strim(p->ec); 2836 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2837 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2838 strim(p->sn); 2839 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2840 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2841 strim(p->pn); 2842 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2843 strim((char *)p->na); 2844 2845 out: 2846 vfree(vpd); 2847 return ret < 0 ? ret : 0; 2848 } 2849 2850 /** 2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2852 * @adapter: adapter to read 2853 * @p: where to store the parameters 2854 * 2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2856 * Clock. This can only be called after a connection to the firmware 2857 * is established. 2858 */ 2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2860 { 2861 u32 cclk_param, cclk_val; 2862 int ret; 2863 2864 /* Grab the raw VPD parameters. 2865 */ 2866 ret = t4_get_raw_vpd_params(adapter, p); 2867 if (ret) 2868 return ret; 2869 2870 /* Ask firmware for the Core Clock since it knows how to translate the 2871 * Reference Clock ('V2') VPD field into a Core Clock value ... 2872 */ 2873 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2875 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2876 1, &cclk_param, &cclk_val); 2877 2878 if (ret) 2879 return ret; 2880 p->cclk = cclk_val; 2881 2882 return 0; 2883 } 2884 2885 /* serial flash and firmware constants */ 2886 enum { 2887 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2888 2889 /* flash command opcodes */ 2890 SF_PROG_PAGE = 2, /* program page */ 2891 SF_WR_DISABLE = 4, /* disable writes */ 2892 SF_RD_STATUS = 5, /* read status register */ 2893 SF_WR_ENABLE = 6, /* enable writes */ 2894 SF_RD_DATA_FAST = 0xb, /* read flash */ 2895 SF_RD_ID = 0x9f, /* read ID */ 2896 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2897 }; 2898 2899 /** 2900 * sf1_read - read data from the serial flash 2901 * @adapter: the adapter 2902 * @byte_cnt: number of bytes to read 2903 * @cont: whether another operation will be chained 2904 * @lock: whether to lock SF for PL access only 2905 * @valp: where to store the read data 2906 * 2907 * Reads up to 4 bytes of data from the serial flash. The location of 2908 * the read needs to be specified prior to calling this by issuing the 2909 * appropriate commands to the serial flash. 2910 */ 2911 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2912 int lock, u32 *valp) 2913 { 2914 int ret; 2915 2916 if (!byte_cnt || byte_cnt > 4) 2917 return -EINVAL; 2918 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2919 return -EBUSY; 2920 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2921 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2922 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2923 if (!ret) 2924 *valp = t4_read_reg(adapter, SF_DATA_A); 2925 return ret; 2926 } 2927 2928 /** 2929 * sf1_write - write data to the serial flash 2930 * @adapter: the adapter 2931 * @byte_cnt: number of bytes to write 2932 * @cont: whether another operation will be chained 2933 * @lock: whether to lock SF for PL access only 2934 * @val: value to write 2935 * 2936 * Writes up to 4 bytes of data to the serial flash. The location of 2937 * the write needs to be specified prior to calling this by issuing the 2938 * appropriate commands to the serial flash. 2939 */ 2940 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2941 int lock, u32 val) 2942 { 2943 if (!byte_cnt || byte_cnt > 4) 2944 return -EINVAL; 2945 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2946 return -EBUSY; 2947 t4_write_reg(adapter, SF_DATA_A, val); 2948 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2949 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2950 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2951 } 2952 2953 /** 2954 * flash_wait_op - wait for a flash operation to complete 2955 * @adapter: the adapter 2956 * @attempts: max number of polls of the status register 2957 * @delay: delay between polls in ms 2958 * 2959 * Wait for a flash operation to complete by polling the status register. 2960 */ 2961 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2962 { 2963 int ret; 2964 u32 status; 2965 2966 while (1) { 2967 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2968 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2969 return ret; 2970 if (!(status & 1)) 2971 return 0; 2972 if (--attempts == 0) 2973 return -EAGAIN; 2974 if (delay) 2975 msleep(delay); 2976 } 2977 } 2978 2979 /** 2980 * t4_read_flash - read words from serial flash 2981 * @adapter: the adapter 2982 * @addr: the start address for the read 2983 * @nwords: how many 32-bit words to read 2984 * @data: where to store the read data 2985 * @byte_oriented: whether to store data as bytes or as words 2986 * 2987 * Read the specified number of 32-bit words from the serial flash. 2988 * If @byte_oriented is set the read data is stored as a byte array 2989 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2990 * natural endianness. 2991 */ 2992 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2993 unsigned int nwords, u32 *data, int byte_oriented) 2994 { 2995 int ret; 2996 2997 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2998 return -EINVAL; 2999 3000 addr = swab32(addr) | SF_RD_DATA_FAST; 3001 3002 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3003 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3004 return ret; 3005 3006 for ( ; nwords; nwords--, data++) { 3007 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3008 if (nwords == 1) 3009 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3010 if (ret) 3011 return ret; 3012 if (byte_oriented) 3013 *data = (__force __u32)(cpu_to_be32(*data)); 3014 } 3015 return 0; 3016 } 3017 3018 /** 3019 * t4_write_flash - write up to a page of data to the serial flash 3020 * @adapter: the adapter 3021 * @addr: the start address to write 3022 * @n: length of data to write in bytes 3023 * @data: the data to write 3024 * 3025 * Writes up to a page of data (256 bytes) to the serial flash starting 3026 * at the given address. All the data must be written to the same page. 3027 */ 3028 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3029 unsigned int n, const u8 *data) 3030 { 3031 int ret; 3032 u32 buf[64]; 3033 unsigned int i, c, left, val, offset = addr & 0xff; 3034 3035 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3036 return -EINVAL; 3037 3038 val = swab32(addr) | SF_PROG_PAGE; 3039 3040 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3041 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3042 goto unlock; 3043 3044 for (left = n; left; left -= c) { 3045 c = min(left, 4U); 3046 for (val = 0, i = 0; i < c; ++i) 3047 val = (val << 8) + *data++; 3048 3049 ret = sf1_write(adapter, c, c != left, 1, val); 3050 if (ret) 3051 goto unlock; 3052 } 3053 ret = flash_wait_op(adapter, 8, 1); 3054 if (ret) 3055 goto unlock; 3056 3057 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3058 3059 /* Read the page to verify the write succeeded */ 3060 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3061 if (ret) 3062 return ret; 3063 3064 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3065 dev_err(adapter->pdev_dev, 3066 "failed to correctly write the flash page at %#x\n", 3067 addr); 3068 return -EIO; 3069 } 3070 return 0; 3071 3072 unlock: 3073 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3074 return ret; 3075 } 3076 3077 /** 3078 * t4_get_fw_version - read the firmware version 3079 * @adapter: the adapter 3080 * @vers: where to place the version 3081 * 3082 * Reads the FW version from flash. 3083 */ 3084 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3085 { 3086 return t4_read_flash(adapter, FLASH_FW_START + 3087 offsetof(struct fw_hdr, fw_ver), 1, 3088 vers, 0); 3089 } 3090 3091 /** 3092 * t4_get_bs_version - read the firmware bootstrap version 3093 * @adapter: the adapter 3094 * @vers: where to place the version 3095 * 3096 * Reads the FW Bootstrap version from flash. 3097 */ 3098 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3099 { 3100 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3101 offsetof(struct fw_hdr, fw_ver), 1, 3102 vers, 0); 3103 } 3104 3105 /** 3106 * t4_get_tp_version - read the TP microcode version 3107 * @adapter: the adapter 3108 * @vers: where to place the version 3109 * 3110 * Reads the TP microcode version from flash. 3111 */ 3112 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3113 { 3114 return t4_read_flash(adapter, FLASH_FW_START + 3115 offsetof(struct fw_hdr, tp_microcode_ver), 3116 1, vers, 0); 3117 } 3118 3119 /** 3120 * t4_get_exprom_version - return the Expansion ROM version (if any) 3121 * @adapter: the adapter 3122 * @vers: where to place the version 3123 * 3124 * Reads the Expansion ROM header from FLASH and returns the version 3125 * number (if present) through the @vers return value pointer. We return 3126 * this in the Firmware Version Format since it's convenient. Return 3127 * 0 on success, -ENOENT if no Expansion ROM is present. 3128 */ 3129 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3130 { 3131 struct exprom_header { 3132 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3133 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3134 } *hdr; 3135 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3136 sizeof(u32))]; 3137 int ret; 3138 3139 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3140 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3141 0); 3142 if (ret) 3143 return ret; 3144 3145 hdr = (struct exprom_header *)exprom_header_buf; 3146 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3147 return -ENOENT; 3148 3149 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3150 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3151 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3152 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3153 return 0; 3154 } 3155 3156 /** 3157 * t4_get_vpd_version - return the VPD version 3158 * @adapter: the adapter 3159 * @vers: where to place the version 3160 * 3161 * Reads the VPD via the Firmware interface (thus this can only be called 3162 * once we're ready to issue Firmware commands). The format of the 3163 * VPD version is adapter specific. Returns 0 on success, an error on 3164 * failure. 3165 * 3166 * Note that early versions of the Firmware didn't include the ability 3167 * to retrieve the VPD version, so we zero-out the return-value parameter 3168 * in that case to avoid leaving it with garbage in it. 3169 * 3170 * Also note that the Firmware will return its cached copy of the VPD 3171 * Revision ID, not the actual Revision ID as written in the Serial 3172 * EEPROM. This is only an issue if a new VPD has been written and the 3173 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3174 * to defer calling this routine till after a FW_RESET_CMD has been issued 3175 * if the Host Driver will be performing a full adapter initialization. 3176 */ 3177 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3178 { 3179 u32 vpdrev_param; 3180 int ret; 3181 3182 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3183 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3184 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3185 1, &vpdrev_param, vers); 3186 if (ret) 3187 *vers = 0; 3188 return ret; 3189 } 3190 3191 /** 3192 * t4_get_scfg_version - return the Serial Configuration version 3193 * @adapter: the adapter 3194 * @vers: where to place the version 3195 * 3196 * Reads the Serial Configuration Version via the Firmware interface 3197 * (thus this can only be called once we're ready to issue Firmware 3198 * commands). The format of the Serial Configuration version is 3199 * adapter specific. Returns 0 on success, an error on failure. 3200 * 3201 * Note that early versions of the Firmware didn't include the ability 3202 * to retrieve the Serial Configuration version, so we zero-out the 3203 * return-value parameter in that case to avoid leaving it with 3204 * garbage in it. 3205 * 3206 * Also note that the Firmware will return its cached copy of the Serial 3207 * Initialization Revision ID, not the actual Revision ID as written in 3208 * the Serial EEPROM. This is only an issue if a new VPD has been written 3209 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3210 * it's best to defer calling this routine till after a FW_RESET_CMD has 3211 * been issued if the Host Driver will be performing a full adapter 3212 * initialization. 3213 */ 3214 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3215 { 3216 u32 scfgrev_param; 3217 int ret; 3218 3219 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3220 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3221 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3222 1, &scfgrev_param, vers); 3223 if (ret) 3224 *vers = 0; 3225 return ret; 3226 } 3227 3228 /** 3229 * t4_get_version_info - extract various chip/firmware version information 3230 * @adapter: the adapter 3231 * 3232 * Reads various chip/firmware version numbers and stores them into the 3233 * adapter Adapter Parameters structure. If any of the efforts fails 3234 * the first failure will be returned, but all of the version numbers 3235 * will be read. 3236 */ 3237 int t4_get_version_info(struct adapter *adapter) 3238 { 3239 int ret = 0; 3240 3241 #define FIRST_RET(__getvinfo) \ 3242 do { \ 3243 int __ret = __getvinfo; \ 3244 if (__ret && !ret) \ 3245 ret = __ret; \ 3246 } while (0) 3247 3248 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3249 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3250 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3251 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3252 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3253 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3254 3255 #undef FIRST_RET 3256 return ret; 3257 } 3258 3259 /** 3260 * t4_dump_version_info - dump all of the adapter configuration IDs 3261 * @adapter: the adapter 3262 * 3263 * Dumps all of the various bits of adapter configuration version/revision 3264 * IDs information. This is typically called at some point after 3265 * t4_get_version_info() has been called. 3266 */ 3267 void t4_dump_version_info(struct adapter *adapter) 3268 { 3269 /* Device information */ 3270 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3271 adapter->params.vpd.id, 3272 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3273 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3274 adapter->params.vpd.sn, adapter->params.vpd.pn); 3275 3276 /* Firmware Version */ 3277 if (!adapter->params.fw_vers) 3278 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3279 else 3280 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3281 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3282 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3283 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3284 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3285 3286 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3287 * Firmware, so dev_info() is more appropriate here.) 3288 */ 3289 if (!adapter->params.bs_vers) 3290 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3291 else 3292 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3293 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3294 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3295 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3296 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3297 3298 /* TP Microcode Version */ 3299 if (!adapter->params.tp_vers) 3300 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3301 else 3302 dev_info(adapter->pdev_dev, 3303 "TP Microcode version: %u.%u.%u.%u\n", 3304 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3305 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3306 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3307 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3308 3309 /* Expansion ROM version */ 3310 if (!adapter->params.er_vers) 3311 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3312 else 3313 dev_info(adapter->pdev_dev, 3314 "Expansion ROM version: %u.%u.%u.%u\n", 3315 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3316 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3317 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3318 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3319 3320 /* Serial Configuration version */ 3321 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3322 adapter->params.scfg_vers); 3323 3324 /* VPD Version */ 3325 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3326 adapter->params.vpd_vers); 3327 } 3328 3329 /** 3330 * t4_check_fw_version - check if the FW is supported with this driver 3331 * @adap: the adapter 3332 * 3333 * Checks if an adapter's FW is compatible with the driver. Returns 0 3334 * if there's exact match, a negative error if the version could not be 3335 * read or there's a major version mismatch 3336 */ 3337 int t4_check_fw_version(struct adapter *adap) 3338 { 3339 int i, ret, major, minor, micro; 3340 int exp_major, exp_minor, exp_micro; 3341 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3342 3343 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3344 /* Try multiple times before returning error */ 3345 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3346 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3347 3348 if (ret) 3349 return ret; 3350 3351 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3352 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3353 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3354 3355 switch (chip_version) { 3356 case CHELSIO_T4: 3357 exp_major = T4FW_MIN_VERSION_MAJOR; 3358 exp_minor = T4FW_MIN_VERSION_MINOR; 3359 exp_micro = T4FW_MIN_VERSION_MICRO; 3360 break; 3361 case CHELSIO_T5: 3362 exp_major = T5FW_MIN_VERSION_MAJOR; 3363 exp_minor = T5FW_MIN_VERSION_MINOR; 3364 exp_micro = T5FW_MIN_VERSION_MICRO; 3365 break; 3366 case CHELSIO_T6: 3367 exp_major = T6FW_MIN_VERSION_MAJOR; 3368 exp_minor = T6FW_MIN_VERSION_MINOR; 3369 exp_micro = T6FW_MIN_VERSION_MICRO; 3370 break; 3371 default: 3372 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3373 adap->chip); 3374 return -EINVAL; 3375 } 3376 3377 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3378 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3379 dev_err(adap->pdev_dev, 3380 "Card has firmware version %u.%u.%u, minimum " 3381 "supported firmware is %u.%u.%u.\n", major, minor, 3382 micro, exp_major, exp_minor, exp_micro); 3383 return -EFAULT; 3384 } 3385 return 0; 3386 } 3387 3388 /* Is the given firmware API compatible with the one the driver was compiled 3389 * with? 3390 */ 3391 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3392 { 3393 3394 /* short circuit if it's the exact same firmware version */ 3395 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3396 return 1; 3397 3398 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3399 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3400 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3401 return 1; 3402 #undef SAME_INTF 3403 3404 return 0; 3405 } 3406 3407 /* The firmware in the filesystem is usable, but should it be installed? 3408 * This routine explains itself in detail if it indicates the filesystem 3409 * firmware should be installed. 3410 */ 3411 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3412 int k, int c) 3413 { 3414 const char *reason; 3415 3416 if (!card_fw_usable) { 3417 reason = "incompatible or unusable"; 3418 goto install; 3419 } 3420 3421 if (k > c) { 3422 reason = "older than the version supported with this driver"; 3423 goto install; 3424 } 3425 3426 return 0; 3427 3428 install: 3429 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3430 "installing firmware %u.%u.%u.%u on card.\n", 3431 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3432 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3433 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3434 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3435 3436 return 1; 3437 } 3438 3439 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3440 const u8 *fw_data, unsigned int fw_size, 3441 struct fw_hdr *card_fw, enum dev_state state, 3442 int *reset) 3443 { 3444 int ret, card_fw_usable, fs_fw_usable; 3445 const struct fw_hdr *fs_fw; 3446 const struct fw_hdr *drv_fw; 3447 3448 drv_fw = &fw_info->fw_hdr; 3449 3450 /* Read the header of the firmware on the card */ 3451 ret = -t4_read_flash(adap, FLASH_FW_START, 3452 sizeof(*card_fw) / sizeof(uint32_t), 3453 (uint32_t *)card_fw, 1); 3454 if (ret == 0) { 3455 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3456 } else { 3457 dev_err(adap->pdev_dev, 3458 "Unable to read card's firmware header: %d\n", ret); 3459 card_fw_usable = 0; 3460 } 3461 3462 if (fw_data != NULL) { 3463 fs_fw = (const void *)fw_data; 3464 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3465 } else { 3466 fs_fw = NULL; 3467 fs_fw_usable = 0; 3468 } 3469 3470 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3471 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3472 /* Common case: the firmware on the card is an exact match and 3473 * the filesystem one is an exact match too, or the filesystem 3474 * one is absent/incompatible. 3475 */ 3476 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3477 should_install_fs_fw(adap, card_fw_usable, 3478 be32_to_cpu(fs_fw->fw_ver), 3479 be32_to_cpu(card_fw->fw_ver))) { 3480 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3481 fw_size, 0); 3482 if (ret != 0) { 3483 dev_err(adap->pdev_dev, 3484 "failed to install firmware: %d\n", ret); 3485 goto bye; 3486 } 3487 3488 /* Installed successfully, update the cached header too. */ 3489 *card_fw = *fs_fw; 3490 card_fw_usable = 1; 3491 *reset = 0; /* already reset as part of load_fw */ 3492 } 3493 3494 if (!card_fw_usable) { 3495 uint32_t d, c, k; 3496 3497 d = be32_to_cpu(drv_fw->fw_ver); 3498 c = be32_to_cpu(card_fw->fw_ver); 3499 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3500 3501 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3502 "chip state %d, " 3503 "driver compiled with %d.%d.%d.%d, " 3504 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3505 state, 3506 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3507 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3508 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3509 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3510 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3511 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3512 ret = EINVAL; 3513 goto bye; 3514 } 3515 3516 /* We're using whatever's on the card and it's known to be good. */ 3517 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3518 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3519 3520 bye: 3521 return ret; 3522 } 3523 3524 /** 3525 * t4_flash_erase_sectors - erase a range of flash sectors 3526 * @adapter: the adapter 3527 * @start: the first sector to erase 3528 * @end: the last sector to erase 3529 * 3530 * Erases the sectors in the given inclusive range. 3531 */ 3532 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3533 { 3534 int ret = 0; 3535 3536 if (end >= adapter->params.sf_nsec) 3537 return -EINVAL; 3538 3539 while (start <= end) { 3540 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3541 (ret = sf1_write(adapter, 4, 0, 1, 3542 SF_ERASE_SECTOR | (start << 8))) != 0 || 3543 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3544 dev_err(adapter->pdev_dev, 3545 "erase of flash sector %d failed, error %d\n", 3546 start, ret); 3547 break; 3548 } 3549 start++; 3550 } 3551 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3552 return ret; 3553 } 3554 3555 /** 3556 * t4_flash_cfg_addr - return the address of the flash configuration file 3557 * @adapter: the adapter 3558 * 3559 * Return the address within the flash where the Firmware Configuration 3560 * File is stored. 3561 */ 3562 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3563 { 3564 if (adapter->params.sf_size == 0x100000) 3565 return FLASH_FPGA_CFG_START; 3566 else 3567 return FLASH_CFG_START; 3568 } 3569 3570 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3571 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3572 * and emit an error message for mismatched firmware to save our caller the 3573 * effort ... 3574 */ 3575 static bool t4_fw_matches_chip(const struct adapter *adap, 3576 const struct fw_hdr *hdr) 3577 { 3578 /* The expression below will return FALSE for any unsupported adapter 3579 * which will keep us "honest" in the future ... 3580 */ 3581 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3582 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3583 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3584 return true; 3585 3586 dev_err(adap->pdev_dev, 3587 "FW image (%d) is not suitable for this adapter (%d)\n", 3588 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3589 return false; 3590 } 3591 3592 /** 3593 * t4_load_fw - download firmware 3594 * @adap: the adapter 3595 * @fw_data: the firmware image to write 3596 * @size: image size 3597 * 3598 * Write the supplied firmware image to the card's serial flash. 3599 */ 3600 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3601 { 3602 u32 csum; 3603 int ret, addr; 3604 unsigned int i; 3605 u8 first_page[SF_PAGE_SIZE]; 3606 const __be32 *p = (const __be32 *)fw_data; 3607 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3608 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3609 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3610 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3611 unsigned int fw_start = FLASH_FW_START; 3612 3613 if (!size) { 3614 dev_err(adap->pdev_dev, "FW image has no data\n"); 3615 return -EINVAL; 3616 } 3617 if (size & 511) { 3618 dev_err(adap->pdev_dev, 3619 "FW image size not multiple of 512 bytes\n"); 3620 return -EINVAL; 3621 } 3622 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3623 dev_err(adap->pdev_dev, 3624 "FW image size differs from size in FW header\n"); 3625 return -EINVAL; 3626 } 3627 if (size > fw_size) { 3628 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3629 fw_size); 3630 return -EFBIG; 3631 } 3632 if (!t4_fw_matches_chip(adap, hdr)) 3633 return -EINVAL; 3634 3635 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3636 csum += be32_to_cpu(p[i]); 3637 3638 if (csum != 0xffffffff) { 3639 dev_err(adap->pdev_dev, 3640 "corrupted firmware image, checksum %#x\n", csum); 3641 return -EINVAL; 3642 } 3643 3644 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3645 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3646 if (ret) 3647 goto out; 3648 3649 /* 3650 * We write the correct version at the end so the driver can see a bad 3651 * version if the FW write fails. Start by writing a copy of the 3652 * first page with a bad version. 3653 */ 3654 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3655 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3656 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3657 if (ret) 3658 goto out; 3659 3660 addr = fw_start; 3661 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3662 addr += SF_PAGE_SIZE; 3663 fw_data += SF_PAGE_SIZE; 3664 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3665 if (ret) 3666 goto out; 3667 } 3668 3669 ret = t4_write_flash(adap, 3670 fw_start + offsetof(struct fw_hdr, fw_ver), 3671 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3672 out: 3673 if (ret) 3674 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3675 ret); 3676 else 3677 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3678 return ret; 3679 } 3680 3681 /** 3682 * t4_phy_fw_ver - return current PHY firmware version 3683 * @adap: the adapter 3684 * @phy_fw_ver: return value buffer for PHY firmware version 3685 * 3686 * Returns the current version of external PHY firmware on the 3687 * adapter. 3688 */ 3689 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3690 { 3691 u32 param, val; 3692 int ret; 3693 3694 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3695 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3696 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3697 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3698 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3699 ¶m, &val); 3700 if (ret < 0) 3701 return ret; 3702 *phy_fw_ver = val; 3703 return 0; 3704 } 3705 3706 /** 3707 * t4_load_phy_fw - download port PHY firmware 3708 * @adap: the adapter 3709 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3710 * @win_lock: the lock to use to guard the memory copy 3711 * @phy_fw_version: function to check PHY firmware versions 3712 * @phy_fw_data: the PHY firmware image to write 3713 * @phy_fw_size: image size 3714 * 3715 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3716 * @phy_fw_version is supplied, then it will be used to determine if 3717 * it's necessary to perform the transfer by comparing the version 3718 * of any existing adapter PHY firmware with that of the passed in 3719 * PHY firmware image. If @win_lock is non-NULL then it will be used 3720 * around the call to t4_memory_rw() which transfers the PHY firmware 3721 * to the adapter. 3722 * 3723 * A negative error number will be returned if an error occurs. If 3724 * version number support is available and there's no need to upgrade 3725 * the firmware, 0 will be returned. If firmware is successfully 3726 * transferred to the adapter, 1 will be retured. 3727 * 3728 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3729 * a result, a RESET of the adapter would cause that RAM to lose its 3730 * contents. Thus, loading PHY firmware on such adapters must happen 3731 * after any FW_RESET_CMDs ... 3732 */ 3733 int t4_load_phy_fw(struct adapter *adap, 3734 int win, spinlock_t *win_lock, 3735 int (*phy_fw_version)(const u8 *, size_t), 3736 const u8 *phy_fw_data, size_t phy_fw_size) 3737 { 3738 unsigned long mtype = 0, maddr = 0; 3739 u32 param, val; 3740 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3741 int ret; 3742 3743 /* If we have version number support, then check to see if the adapter 3744 * already has up-to-date PHY firmware loaded. 3745 */ 3746 if (phy_fw_version) { 3747 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3748 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3749 if (ret < 0) 3750 return ret; 3751 3752 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3753 CH_WARN(adap, "PHY Firmware already up-to-date, " 3754 "version %#x\n", cur_phy_fw_ver); 3755 return 0; 3756 } 3757 } 3758 3759 /* Ask the firmware where it wants us to copy the PHY firmware image. 3760 * The size of the file requires a special version of the READ coommand 3761 * which will pass the file size via the values field in PARAMS_CMD and 3762 * retrieve the return value from firmware and place it in the same 3763 * buffer values 3764 */ 3765 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3766 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3767 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3768 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3769 val = phy_fw_size; 3770 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3771 ¶m, &val, 1, true); 3772 if (ret < 0) 3773 return ret; 3774 mtype = val >> 8; 3775 maddr = (val & 0xff) << 16; 3776 3777 /* Copy the supplied PHY Firmware image to the adapter memory location 3778 * allocated by the adapter firmware. 3779 */ 3780 if (win_lock) 3781 spin_lock_bh(win_lock); 3782 ret = t4_memory_rw(adap, win, mtype, maddr, 3783 phy_fw_size, (__be32 *)phy_fw_data, 3784 T4_MEMORY_WRITE); 3785 if (win_lock) 3786 spin_unlock_bh(win_lock); 3787 if (ret) 3788 return ret; 3789 3790 /* Tell the firmware that the PHY firmware image has been written to 3791 * RAM and it can now start copying it over to the PHYs. The chip 3792 * firmware will RESET the affected PHYs as part of this operation 3793 * leaving them running the new PHY firmware image. 3794 */ 3795 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3796 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3797 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3798 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3799 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3800 ¶m, &val, 30000); 3801 3802 /* If we have version number support, then check to see that the new 3803 * firmware got loaded properly. 3804 */ 3805 if (phy_fw_version) { 3806 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3807 if (ret < 0) 3808 return ret; 3809 3810 if (cur_phy_fw_ver != new_phy_fw_vers) { 3811 CH_WARN(adap, "PHY Firmware did not update: " 3812 "version on adapter %#x, " 3813 "version flashed %#x\n", 3814 cur_phy_fw_ver, new_phy_fw_vers); 3815 return -ENXIO; 3816 } 3817 } 3818 3819 return 1; 3820 } 3821 3822 /** 3823 * t4_fwcache - firmware cache operation 3824 * @adap: the adapter 3825 * @op : the operation (flush or flush and invalidate) 3826 */ 3827 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3828 { 3829 struct fw_params_cmd c; 3830 3831 memset(&c, 0, sizeof(c)); 3832 c.op_to_vfn = 3833 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3834 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3835 FW_PARAMS_CMD_PFN_V(adap->pf) | 3836 FW_PARAMS_CMD_VFN_V(0)); 3837 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3838 c.param[0].mnem = 3839 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3840 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3841 c.param[0].val = (__force __be32)op; 3842 3843 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3844 } 3845 3846 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3847 unsigned int *pif_req_wrptr, 3848 unsigned int *pif_rsp_wrptr) 3849 { 3850 int i, j; 3851 u32 cfg, val, req, rsp; 3852 3853 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3854 if (cfg & LADBGEN_F) 3855 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3856 3857 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3858 req = POLADBGWRPTR_G(val); 3859 rsp = PILADBGWRPTR_G(val); 3860 if (pif_req_wrptr) 3861 *pif_req_wrptr = req; 3862 if (pif_rsp_wrptr) 3863 *pif_rsp_wrptr = rsp; 3864 3865 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3866 for (j = 0; j < 6; j++) { 3867 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3868 PILADBGRDPTR_V(rsp)); 3869 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3870 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3871 req++; 3872 rsp++; 3873 } 3874 req = (req + 2) & POLADBGRDPTR_M; 3875 rsp = (rsp + 2) & PILADBGRDPTR_M; 3876 } 3877 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3878 } 3879 3880 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3881 { 3882 u32 cfg; 3883 int i, j, idx; 3884 3885 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3886 if (cfg & LADBGEN_F) 3887 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3888 3889 for (i = 0; i < CIM_MALA_SIZE; i++) { 3890 for (j = 0; j < 5; j++) { 3891 idx = 8 * i + j; 3892 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3893 PILADBGRDPTR_V(idx)); 3894 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3895 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3896 } 3897 } 3898 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3899 } 3900 3901 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3902 { 3903 unsigned int i, j; 3904 3905 for (i = 0; i < 8; i++) { 3906 u32 *p = la_buf + i; 3907 3908 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3909 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3910 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3911 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3912 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3913 } 3914 } 3915 3916 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3917 FW_PORT_CAP32_ANEG) 3918 3919 /** 3920 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3921 * @caps16: a 16-bit Port Capabilities value 3922 * 3923 * Returns the equivalent 32-bit Port Capabilities value. 3924 */ 3925 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3926 { 3927 fw_port_cap32_t caps32 = 0; 3928 3929 #define CAP16_TO_CAP32(__cap) \ 3930 do { \ 3931 if (caps16 & FW_PORT_CAP_##__cap) \ 3932 caps32 |= FW_PORT_CAP32_##__cap; \ 3933 } while (0) 3934 3935 CAP16_TO_CAP32(SPEED_100M); 3936 CAP16_TO_CAP32(SPEED_1G); 3937 CAP16_TO_CAP32(SPEED_25G); 3938 CAP16_TO_CAP32(SPEED_10G); 3939 CAP16_TO_CAP32(SPEED_40G); 3940 CAP16_TO_CAP32(SPEED_100G); 3941 CAP16_TO_CAP32(FC_RX); 3942 CAP16_TO_CAP32(FC_TX); 3943 CAP16_TO_CAP32(ANEG); 3944 CAP16_TO_CAP32(MDIAUTO); 3945 CAP16_TO_CAP32(MDISTRAIGHT); 3946 CAP16_TO_CAP32(FEC_RS); 3947 CAP16_TO_CAP32(FEC_BASER_RS); 3948 CAP16_TO_CAP32(802_3_PAUSE); 3949 CAP16_TO_CAP32(802_3_ASM_DIR); 3950 3951 #undef CAP16_TO_CAP32 3952 3953 return caps32; 3954 } 3955 3956 /** 3957 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3958 * @caps32: a 32-bit Port Capabilities value 3959 * 3960 * Returns the equivalent 16-bit Port Capabilities value. Note that 3961 * not all 32-bit Port Capabilities can be represented in the 16-bit 3962 * Port Capabilities and some fields/values may not make it. 3963 */ 3964 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 3965 { 3966 fw_port_cap16_t caps16 = 0; 3967 3968 #define CAP32_TO_CAP16(__cap) \ 3969 do { \ 3970 if (caps32 & FW_PORT_CAP32_##__cap) \ 3971 caps16 |= FW_PORT_CAP_##__cap; \ 3972 } while (0) 3973 3974 CAP32_TO_CAP16(SPEED_100M); 3975 CAP32_TO_CAP16(SPEED_1G); 3976 CAP32_TO_CAP16(SPEED_10G); 3977 CAP32_TO_CAP16(SPEED_25G); 3978 CAP32_TO_CAP16(SPEED_40G); 3979 CAP32_TO_CAP16(SPEED_100G); 3980 CAP32_TO_CAP16(FC_RX); 3981 CAP32_TO_CAP16(FC_TX); 3982 CAP32_TO_CAP16(802_3_PAUSE); 3983 CAP32_TO_CAP16(802_3_ASM_DIR); 3984 CAP32_TO_CAP16(ANEG); 3985 CAP32_TO_CAP16(MDIAUTO); 3986 CAP32_TO_CAP16(MDISTRAIGHT); 3987 CAP32_TO_CAP16(FEC_RS); 3988 CAP32_TO_CAP16(FEC_BASER_RS); 3989 3990 #undef CAP32_TO_CAP16 3991 3992 return caps16; 3993 } 3994 3995 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 3996 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 3997 { 3998 enum cc_pause cc_pause = 0; 3999 4000 if (fw_pause & FW_PORT_CAP32_FC_RX) 4001 cc_pause |= PAUSE_RX; 4002 if (fw_pause & FW_PORT_CAP32_FC_TX) 4003 cc_pause |= PAUSE_TX; 4004 4005 return cc_pause; 4006 } 4007 4008 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4009 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4010 { 4011 fw_port_cap32_t fw_pause = 0; 4012 4013 if (cc_pause & PAUSE_RX) 4014 fw_pause |= FW_PORT_CAP32_FC_RX; 4015 if (cc_pause & PAUSE_TX) 4016 fw_pause |= FW_PORT_CAP32_FC_TX; 4017 4018 return fw_pause; 4019 } 4020 4021 /* Translate Firmware Forward Error Correction specification to Common Code */ 4022 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4023 { 4024 enum cc_fec cc_fec = 0; 4025 4026 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4027 cc_fec |= FEC_RS; 4028 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4029 cc_fec |= FEC_BASER_RS; 4030 4031 return cc_fec; 4032 } 4033 4034 /* Translate Common Code Forward Error Correction specification to Firmware */ 4035 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4036 { 4037 fw_port_cap32_t fw_fec = 0; 4038 4039 if (cc_fec & FEC_RS) 4040 fw_fec |= FW_PORT_CAP32_FEC_RS; 4041 if (cc_fec & FEC_BASER_RS) 4042 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4043 4044 return fw_fec; 4045 } 4046 4047 /** 4048 * t4_link_l1cfg - apply link configuration to MAC/PHY 4049 * @adapter: the adapter 4050 * @mbox: the Firmware Mailbox to use 4051 * @port: the Port ID 4052 * @lc: the Port's Link Configuration 4053 * 4054 * Set up a port's MAC and PHY according to a desired link configuration. 4055 * - If the PHY can auto-negotiate first decide what to advertise, then 4056 * enable/disable auto-negotiation as desired, and reset. 4057 * - If the PHY does not auto-negotiate just reset it. 4058 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4059 * otherwise do it later based on the outcome of auto-negotiation. 4060 */ 4061 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4062 unsigned int port, struct link_config *lc, 4063 bool sleep_ok, int timeout) 4064 { 4065 unsigned int fw_caps = adapter->params.fw_caps_support; 4066 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 4067 struct fw_port_cmd cmd; 4068 unsigned int fw_mdi; 4069 int ret; 4070 4071 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4072 /* Convert driver coding of Pause Frame Flow Control settings into the 4073 * Firmware's API. 4074 */ 4075 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4076 4077 /* Convert Common Code Forward Error Control settings into the 4078 * Firmware's API. If the current Requested FEC has "Automatic" 4079 * (IEEE 802.3) specified, then we use whatever the Firmware 4080 * sent us as part of it's IEEE 802.3-based interpratation of 4081 * the Transceiver Module EPROM FEC parameters. Otherwise we 4082 * use whatever is in the current Requested FEC settings. 4083 */ 4084 if (lc->requested_fec & FEC_AUTO) 4085 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4086 else 4087 cc_fec = lc->requested_fec; 4088 fw_fec = cc_to_fwcap_fec(cc_fec); 4089 4090 /* Figure out what our Requested Port Capabilities are going to be. 4091 */ 4092 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4093 rcap = lc->acaps | fw_fc | fw_fec; 4094 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4095 lc->fec = cc_fec; 4096 } else if (lc->autoneg == AUTONEG_DISABLE) { 4097 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4098 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4099 lc->fec = cc_fec; 4100 } else { 4101 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4102 } 4103 4104 if (rcap & ~lc->pcaps) { 4105 dev_err(adapter->pdev_dev, 4106 "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4107 rcap, lc->pcaps); 4108 return -EINVAL; 4109 } 4110 4111 /* And send that on to the Firmware ... 4112 */ 4113 memset(&cmd, 0, sizeof(cmd)); 4114 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4115 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4116 FW_PORT_CMD_PORTID_V(port)); 4117 cmd.action_to_len16 = 4118 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4119 ? FW_PORT_ACTION_L1_CFG 4120 : FW_PORT_ACTION_L1_CFG32) | 4121 FW_LEN16(cmd)); 4122 if (fw_caps == FW_CAPS16) 4123 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4124 else 4125 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4126 4127 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4128 sleep_ok, timeout); 4129 if (ret) { 4130 dev_err(adapter->pdev_dev, 4131 "Requested Port Capabilities %#x rejected, error %d\n", 4132 rcap, -ret); 4133 return ret; 4134 } 4135 return ret; 4136 } 4137 4138 /** 4139 * t4_restart_aneg - restart autonegotiation 4140 * @adap: the adapter 4141 * @mbox: mbox to use for the FW command 4142 * @port: the port id 4143 * 4144 * Restarts autonegotiation for the selected port. 4145 */ 4146 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4147 { 4148 struct fw_port_cmd c; 4149 4150 memset(&c, 0, sizeof(c)); 4151 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4152 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4153 FW_PORT_CMD_PORTID_V(port)); 4154 c.action_to_len16 = 4155 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 4156 FW_LEN16(c)); 4157 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG); 4158 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4159 } 4160 4161 typedef void (*int_handler_t)(struct adapter *adap); 4162 4163 struct intr_info { 4164 unsigned int mask; /* bits to check in interrupt status */ 4165 const char *msg; /* message to print or NULL */ 4166 short stat_idx; /* stat counter to increment or -1 */ 4167 unsigned short fatal; /* whether the condition reported is fatal */ 4168 int_handler_t int_handler; /* platform-specific int handler */ 4169 }; 4170 4171 /** 4172 * t4_handle_intr_status - table driven interrupt handler 4173 * @adapter: the adapter that generated the interrupt 4174 * @reg: the interrupt status register to process 4175 * @acts: table of interrupt actions 4176 * 4177 * A table driven interrupt handler that applies a set of masks to an 4178 * interrupt status word and performs the corresponding actions if the 4179 * interrupts described by the mask have occurred. The actions include 4180 * optionally emitting a warning or alert message. The table is terminated 4181 * by an entry specifying mask 0. Returns the number of fatal interrupt 4182 * conditions. 4183 */ 4184 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4185 const struct intr_info *acts) 4186 { 4187 int fatal = 0; 4188 unsigned int mask = 0; 4189 unsigned int status = t4_read_reg(adapter, reg); 4190 4191 for ( ; acts->mask; ++acts) { 4192 if (!(status & acts->mask)) 4193 continue; 4194 if (acts->fatal) { 4195 fatal++; 4196 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4197 status & acts->mask); 4198 } else if (acts->msg && printk_ratelimit()) 4199 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4200 status & acts->mask); 4201 if (acts->int_handler) 4202 acts->int_handler(adapter); 4203 mask |= acts->mask; 4204 } 4205 status &= mask; 4206 if (status) /* clear processed interrupts */ 4207 t4_write_reg(adapter, reg, status); 4208 return fatal; 4209 } 4210 4211 /* 4212 * Interrupt handler for the PCIE module. 4213 */ 4214 static void pcie_intr_handler(struct adapter *adapter) 4215 { 4216 static const struct intr_info sysbus_intr_info[] = { 4217 { RNPP_F, "RXNP array parity error", -1, 1 }, 4218 { RPCP_F, "RXPC array parity error", -1, 1 }, 4219 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4220 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4221 { RFTP_F, "RXFT array parity error", -1, 1 }, 4222 { 0 } 4223 }; 4224 static const struct intr_info pcie_port_intr_info[] = { 4225 { TPCP_F, "TXPC array parity error", -1, 1 }, 4226 { TNPP_F, "TXNP array parity error", -1, 1 }, 4227 { TFTP_F, "TXFT array parity error", -1, 1 }, 4228 { TCAP_F, "TXCA array parity error", -1, 1 }, 4229 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4230 { RCAP_F, "RXCA array parity error", -1, 1 }, 4231 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4232 { RDPE_F, "Rx data parity error", -1, 1 }, 4233 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4234 { 0 } 4235 }; 4236 static const struct intr_info pcie_intr_info[] = { 4237 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4238 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4239 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4240 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4241 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4242 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4243 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4244 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4245 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4246 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4247 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4248 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4249 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4250 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4251 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4252 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4253 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4254 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4255 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4256 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4257 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4258 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4259 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4260 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4261 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4262 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4263 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4264 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4265 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4266 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4267 -1, 0 }, 4268 { 0 } 4269 }; 4270 4271 static struct intr_info t5_pcie_intr_info[] = { 4272 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4273 -1, 1 }, 4274 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4275 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4276 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4277 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4278 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4279 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4280 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4281 -1, 1 }, 4282 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4283 -1, 1 }, 4284 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4285 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4286 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4287 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4288 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4289 -1, 1 }, 4290 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4291 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4292 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4293 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4294 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4295 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4296 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4297 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4298 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4299 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4300 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4301 -1, 1 }, 4302 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4303 -1, 1 }, 4304 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4305 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4306 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4307 { READRSPERR_F, "Outbound read error", -1, 0 }, 4308 { 0 } 4309 }; 4310 4311 int fat; 4312 4313 if (is_t4(adapter->params.chip)) 4314 fat = t4_handle_intr_status(adapter, 4315 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4316 sysbus_intr_info) + 4317 t4_handle_intr_status(adapter, 4318 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4319 pcie_port_intr_info) + 4320 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4321 pcie_intr_info); 4322 else 4323 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4324 t5_pcie_intr_info); 4325 4326 if (fat) 4327 t4_fatal_err(adapter); 4328 } 4329 4330 /* 4331 * TP interrupt handler. 4332 */ 4333 static void tp_intr_handler(struct adapter *adapter) 4334 { 4335 static const struct intr_info tp_intr_info[] = { 4336 { 0x3fffffff, "TP parity error", -1, 1 }, 4337 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4338 { 0 } 4339 }; 4340 4341 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4342 t4_fatal_err(adapter); 4343 } 4344 4345 /* 4346 * SGE interrupt handler. 4347 */ 4348 static void sge_intr_handler(struct adapter *adapter) 4349 { 4350 u64 v; 4351 u32 err; 4352 4353 static const struct intr_info sge_intr_info[] = { 4354 { ERR_CPL_EXCEED_IQE_SIZE_F, 4355 "SGE received CPL exceeding IQE size", -1, 1 }, 4356 { ERR_INVALID_CIDX_INC_F, 4357 "SGE GTS CIDX increment too large", -1, 0 }, 4358 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4359 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4360 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4361 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4362 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4363 0 }, 4364 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4365 0 }, 4366 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4367 0 }, 4368 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4369 0 }, 4370 { ERR_ING_CTXT_PRIO_F, 4371 "SGE too many priority ingress contexts", -1, 0 }, 4372 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4373 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4374 { 0 } 4375 }; 4376 4377 static struct intr_info t4t5_sge_intr_info[] = { 4378 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4379 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4380 { ERR_EGR_CTXT_PRIO_F, 4381 "SGE too many priority egress contexts", -1, 0 }, 4382 { 0 } 4383 }; 4384 4385 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4386 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4387 if (v) { 4388 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4389 (unsigned long long)v); 4390 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4391 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4392 } 4393 4394 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4395 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4396 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4397 t4t5_sge_intr_info); 4398 4399 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4400 if (err & ERROR_QID_VALID_F) { 4401 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4402 ERROR_QID_G(err)); 4403 if (err & UNCAPTURED_ERROR_F) 4404 dev_err(adapter->pdev_dev, 4405 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4406 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4407 UNCAPTURED_ERROR_F); 4408 } 4409 4410 if (v != 0) 4411 t4_fatal_err(adapter); 4412 } 4413 4414 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4415 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4416 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4417 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4418 4419 /* 4420 * CIM interrupt handler. 4421 */ 4422 static void cim_intr_handler(struct adapter *adapter) 4423 { 4424 static const struct intr_info cim_intr_info[] = { 4425 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4426 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4427 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4428 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4429 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4430 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4431 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4432 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4433 { 0 } 4434 }; 4435 static const struct intr_info cim_upintr_info[] = { 4436 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4437 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4438 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4439 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4440 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4441 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4442 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4443 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4444 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4445 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4446 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4447 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4448 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4449 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4450 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4451 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4452 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4453 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4454 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4455 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4456 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4457 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4458 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4459 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4460 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4461 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4462 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4463 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4464 { 0 } 4465 }; 4466 4467 u32 val, fw_err; 4468 int fat; 4469 4470 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4471 if (fw_err & PCIE_FW_ERR_F) 4472 t4_report_fw_error(adapter); 4473 4474 /* When the Firmware detects an internal error which normally 4475 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4476 * in order to make sure the Host sees the Firmware Crash. So 4477 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4478 * ignore the Timer0 interrupt. 4479 */ 4480 4481 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4482 if (val & TIMER0INT_F) 4483 if (!(fw_err & PCIE_FW_ERR_F) || 4484 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4485 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4486 TIMER0INT_F); 4487 4488 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4489 cim_intr_info) + 4490 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4491 cim_upintr_info); 4492 if (fat) 4493 t4_fatal_err(adapter); 4494 } 4495 4496 /* 4497 * ULP RX interrupt handler. 4498 */ 4499 static void ulprx_intr_handler(struct adapter *adapter) 4500 { 4501 static const struct intr_info ulprx_intr_info[] = { 4502 { 0x1800000, "ULPRX context error", -1, 1 }, 4503 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4504 { 0 } 4505 }; 4506 4507 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4508 t4_fatal_err(adapter); 4509 } 4510 4511 /* 4512 * ULP TX interrupt handler. 4513 */ 4514 static void ulptx_intr_handler(struct adapter *adapter) 4515 { 4516 static const struct intr_info ulptx_intr_info[] = { 4517 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4518 0 }, 4519 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4520 0 }, 4521 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4522 0 }, 4523 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4524 0 }, 4525 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4526 { 0 } 4527 }; 4528 4529 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4530 t4_fatal_err(adapter); 4531 } 4532 4533 /* 4534 * PM TX interrupt handler. 4535 */ 4536 static void pmtx_intr_handler(struct adapter *adapter) 4537 { 4538 static const struct intr_info pmtx_intr_info[] = { 4539 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4540 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4541 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4542 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4543 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4544 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4545 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4546 -1, 1 }, 4547 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4548 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4549 { 0 } 4550 }; 4551 4552 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4553 t4_fatal_err(adapter); 4554 } 4555 4556 /* 4557 * PM RX interrupt handler. 4558 */ 4559 static void pmrx_intr_handler(struct adapter *adapter) 4560 { 4561 static const struct intr_info pmrx_intr_info[] = { 4562 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4563 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4564 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4565 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4566 -1, 1 }, 4567 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4568 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4569 { 0 } 4570 }; 4571 4572 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4573 t4_fatal_err(adapter); 4574 } 4575 4576 /* 4577 * CPL switch interrupt handler. 4578 */ 4579 static void cplsw_intr_handler(struct adapter *adapter) 4580 { 4581 static const struct intr_info cplsw_intr_info[] = { 4582 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4583 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4584 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4585 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4586 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4587 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4588 { 0 } 4589 }; 4590 4591 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4592 t4_fatal_err(adapter); 4593 } 4594 4595 /* 4596 * LE interrupt handler. 4597 */ 4598 static void le_intr_handler(struct adapter *adap) 4599 { 4600 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4601 static const struct intr_info le_intr_info[] = { 4602 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4603 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4604 { PARITYERR_F, "LE parity error", -1, 1 }, 4605 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4606 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4607 { 0 } 4608 }; 4609 4610 static struct intr_info t6_le_intr_info[] = { 4611 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4612 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4613 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4614 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4615 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4616 { 0 } 4617 }; 4618 4619 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4620 (chip <= CHELSIO_T5) ? 4621 le_intr_info : t6_le_intr_info)) 4622 t4_fatal_err(adap); 4623 } 4624 4625 /* 4626 * MPS interrupt handler. 4627 */ 4628 static void mps_intr_handler(struct adapter *adapter) 4629 { 4630 static const struct intr_info mps_rx_intr_info[] = { 4631 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4632 { 0 } 4633 }; 4634 static const struct intr_info mps_tx_intr_info[] = { 4635 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4636 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4637 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4638 -1, 1 }, 4639 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4640 -1, 1 }, 4641 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4642 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4643 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4644 { 0 } 4645 }; 4646 static const struct intr_info t6_mps_tx_intr_info[] = { 4647 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4648 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4649 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4650 -1, 1 }, 4651 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4652 -1, 1 }, 4653 /* MPS Tx Bubble is normal for T6 */ 4654 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4655 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4656 { 0 } 4657 }; 4658 static const struct intr_info mps_trc_intr_info[] = { 4659 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4660 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4661 -1, 1 }, 4662 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4663 { 0 } 4664 }; 4665 static const struct intr_info mps_stat_sram_intr_info[] = { 4666 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4667 { 0 } 4668 }; 4669 static const struct intr_info mps_stat_tx_intr_info[] = { 4670 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4671 { 0 } 4672 }; 4673 static const struct intr_info mps_stat_rx_intr_info[] = { 4674 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4675 { 0 } 4676 }; 4677 static const struct intr_info mps_cls_intr_info[] = { 4678 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4679 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4680 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4681 { 0 } 4682 }; 4683 4684 int fat; 4685 4686 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4687 mps_rx_intr_info) + 4688 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4689 is_t6(adapter->params.chip) 4690 ? t6_mps_tx_intr_info 4691 : mps_tx_intr_info) + 4692 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4693 mps_trc_intr_info) + 4694 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4695 mps_stat_sram_intr_info) + 4696 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4697 mps_stat_tx_intr_info) + 4698 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4699 mps_stat_rx_intr_info) + 4700 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4701 mps_cls_intr_info); 4702 4703 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4704 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4705 if (fat) 4706 t4_fatal_err(adapter); 4707 } 4708 4709 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4710 ECC_UE_INT_CAUSE_F) 4711 4712 /* 4713 * EDC/MC interrupt handler. 4714 */ 4715 static void mem_intr_handler(struct adapter *adapter, int idx) 4716 { 4717 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4718 4719 unsigned int addr, cnt_addr, v; 4720 4721 if (idx <= MEM_EDC1) { 4722 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4723 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4724 } else if (idx == MEM_MC) { 4725 if (is_t4(adapter->params.chip)) { 4726 addr = MC_INT_CAUSE_A; 4727 cnt_addr = MC_ECC_STATUS_A; 4728 } else { 4729 addr = MC_P_INT_CAUSE_A; 4730 cnt_addr = MC_P_ECC_STATUS_A; 4731 } 4732 } else { 4733 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4734 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4735 } 4736 4737 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4738 if (v & PERR_INT_CAUSE_F) 4739 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4740 name[idx]); 4741 if (v & ECC_CE_INT_CAUSE_F) { 4742 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4743 4744 t4_edc_err_read(adapter, idx); 4745 4746 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4747 if (printk_ratelimit()) 4748 dev_warn(adapter->pdev_dev, 4749 "%u %s correctable ECC data error%s\n", 4750 cnt, name[idx], cnt > 1 ? "s" : ""); 4751 } 4752 if (v & ECC_UE_INT_CAUSE_F) 4753 dev_alert(adapter->pdev_dev, 4754 "%s uncorrectable ECC data error\n", name[idx]); 4755 4756 t4_write_reg(adapter, addr, v); 4757 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4758 t4_fatal_err(adapter); 4759 } 4760 4761 /* 4762 * MA interrupt handler. 4763 */ 4764 static void ma_intr_handler(struct adapter *adap) 4765 { 4766 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4767 4768 if (status & MEM_PERR_INT_CAUSE_F) { 4769 dev_alert(adap->pdev_dev, 4770 "MA parity error, parity status %#x\n", 4771 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4772 if (is_t5(adap->params.chip)) 4773 dev_alert(adap->pdev_dev, 4774 "MA parity error, parity status %#x\n", 4775 t4_read_reg(adap, 4776 MA_PARITY_ERROR_STATUS2_A)); 4777 } 4778 if (status & MEM_WRAP_INT_CAUSE_F) { 4779 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4780 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4781 "client %u to address %#x\n", 4782 MEM_WRAP_CLIENT_NUM_G(v), 4783 MEM_WRAP_ADDRESS_G(v) << 4); 4784 } 4785 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4786 t4_fatal_err(adap); 4787 } 4788 4789 /* 4790 * SMB interrupt handler. 4791 */ 4792 static void smb_intr_handler(struct adapter *adap) 4793 { 4794 static const struct intr_info smb_intr_info[] = { 4795 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4796 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4797 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4798 { 0 } 4799 }; 4800 4801 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4802 t4_fatal_err(adap); 4803 } 4804 4805 /* 4806 * NC-SI interrupt handler. 4807 */ 4808 static void ncsi_intr_handler(struct adapter *adap) 4809 { 4810 static const struct intr_info ncsi_intr_info[] = { 4811 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4812 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4813 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4814 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4815 { 0 } 4816 }; 4817 4818 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4819 t4_fatal_err(adap); 4820 } 4821 4822 /* 4823 * XGMAC interrupt handler. 4824 */ 4825 static void xgmac_intr_handler(struct adapter *adap, int port) 4826 { 4827 u32 v, int_cause_reg; 4828 4829 if (is_t4(adap->params.chip)) 4830 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4831 else 4832 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4833 4834 v = t4_read_reg(adap, int_cause_reg); 4835 4836 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4837 if (!v) 4838 return; 4839 4840 if (v & TXFIFO_PRTY_ERR_F) 4841 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4842 port); 4843 if (v & RXFIFO_PRTY_ERR_F) 4844 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4845 port); 4846 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4847 t4_fatal_err(adap); 4848 } 4849 4850 /* 4851 * PL interrupt handler. 4852 */ 4853 static void pl_intr_handler(struct adapter *adap) 4854 { 4855 static const struct intr_info pl_intr_info[] = { 4856 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4857 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4858 { 0 } 4859 }; 4860 4861 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4862 t4_fatal_err(adap); 4863 } 4864 4865 #define PF_INTR_MASK (PFSW_F) 4866 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4867 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4868 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4869 4870 /** 4871 * t4_slow_intr_handler - control path interrupt handler 4872 * @adapter: the adapter 4873 * 4874 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4875 * The designation 'slow' is because it involves register reads, while 4876 * data interrupts typically don't involve any MMIOs. 4877 */ 4878 int t4_slow_intr_handler(struct adapter *adapter) 4879 { 4880 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4881 4882 if (!(cause & GLBL_INTR_MASK)) 4883 return 0; 4884 if (cause & CIM_F) 4885 cim_intr_handler(adapter); 4886 if (cause & MPS_F) 4887 mps_intr_handler(adapter); 4888 if (cause & NCSI_F) 4889 ncsi_intr_handler(adapter); 4890 if (cause & PL_F) 4891 pl_intr_handler(adapter); 4892 if (cause & SMB_F) 4893 smb_intr_handler(adapter); 4894 if (cause & XGMAC0_F) 4895 xgmac_intr_handler(adapter, 0); 4896 if (cause & XGMAC1_F) 4897 xgmac_intr_handler(adapter, 1); 4898 if (cause & XGMAC_KR0_F) 4899 xgmac_intr_handler(adapter, 2); 4900 if (cause & XGMAC_KR1_F) 4901 xgmac_intr_handler(adapter, 3); 4902 if (cause & PCIE_F) 4903 pcie_intr_handler(adapter); 4904 if (cause & MC_F) 4905 mem_intr_handler(adapter, MEM_MC); 4906 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4907 mem_intr_handler(adapter, MEM_MC1); 4908 if (cause & EDC0_F) 4909 mem_intr_handler(adapter, MEM_EDC0); 4910 if (cause & EDC1_F) 4911 mem_intr_handler(adapter, MEM_EDC1); 4912 if (cause & LE_F) 4913 le_intr_handler(adapter); 4914 if (cause & TP_F) 4915 tp_intr_handler(adapter); 4916 if (cause & MA_F) 4917 ma_intr_handler(adapter); 4918 if (cause & PM_TX_F) 4919 pmtx_intr_handler(adapter); 4920 if (cause & PM_RX_F) 4921 pmrx_intr_handler(adapter); 4922 if (cause & ULP_RX_F) 4923 ulprx_intr_handler(adapter); 4924 if (cause & CPL_SWITCH_F) 4925 cplsw_intr_handler(adapter); 4926 if (cause & SGE_F) 4927 sge_intr_handler(adapter); 4928 if (cause & ULP_TX_F) 4929 ulptx_intr_handler(adapter); 4930 4931 /* Clear the interrupts just processed for which we are the master. */ 4932 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4933 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4934 return 1; 4935 } 4936 4937 /** 4938 * t4_intr_enable - enable interrupts 4939 * @adapter: the adapter whose interrupts should be enabled 4940 * 4941 * Enable PF-specific interrupts for the calling function and the top-level 4942 * interrupt concentrator for global interrupts. Interrupts are already 4943 * enabled at each module, here we just enable the roots of the interrupt 4944 * hierarchies. 4945 * 4946 * Note: this function should be called only when the driver manages 4947 * non PF-specific interrupts from the various HW modules. Only one PCI 4948 * function at a time should be doing this. 4949 */ 4950 void t4_intr_enable(struct adapter *adapter) 4951 { 4952 u32 val = 0; 4953 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4954 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4955 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4956 4957 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4958 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4959 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4960 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4961 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4962 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4963 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4964 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4965 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4966 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4967 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4968 } 4969 4970 /** 4971 * t4_intr_disable - disable interrupts 4972 * @adapter: the adapter whose interrupts should be disabled 4973 * 4974 * Disable interrupts. We only disable the top-level interrupt 4975 * concentrators. The caller must be a PCI function managing global 4976 * interrupts. 4977 */ 4978 void t4_intr_disable(struct adapter *adapter) 4979 { 4980 u32 whoami, pf; 4981 4982 if (pci_channel_offline(adapter->pdev)) 4983 return; 4984 4985 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4986 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4987 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4988 4989 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4990 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4991 } 4992 4993 unsigned int t4_chip_rss_size(struct adapter *adap) 4994 { 4995 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 4996 return RSS_NENTRIES; 4997 else 4998 return T6_RSS_NENTRIES; 4999 } 5000 5001 /** 5002 * t4_config_rss_range - configure a portion of the RSS mapping table 5003 * @adapter: the adapter 5004 * @mbox: mbox to use for the FW command 5005 * @viid: virtual interface whose RSS subtable is to be written 5006 * @start: start entry in the table to write 5007 * @n: how many table entries to write 5008 * @rspq: values for the response queue lookup table 5009 * @nrspq: number of values in @rspq 5010 * 5011 * Programs the selected part of the VI's RSS mapping table with the 5012 * provided values. If @nrspq < @n the supplied values are used repeatedly 5013 * until the full table range is populated. 5014 * 5015 * The caller must ensure the values in @rspq are in the range allowed for 5016 * @viid. 5017 */ 5018 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5019 int start, int n, const u16 *rspq, unsigned int nrspq) 5020 { 5021 int ret; 5022 const u16 *rsp = rspq; 5023 const u16 *rsp_end = rspq + nrspq; 5024 struct fw_rss_ind_tbl_cmd cmd; 5025 5026 memset(&cmd, 0, sizeof(cmd)); 5027 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5028 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5029 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5030 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5031 5032 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5033 while (n > 0) { 5034 int nq = min(n, 32); 5035 __be32 *qp = &cmd.iq0_to_iq2; 5036 5037 cmd.niqid = cpu_to_be16(nq); 5038 cmd.startidx = cpu_to_be16(start); 5039 5040 start += nq; 5041 n -= nq; 5042 5043 while (nq > 0) { 5044 unsigned int v; 5045 5046 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5047 if (++rsp >= rsp_end) 5048 rsp = rspq; 5049 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5050 if (++rsp >= rsp_end) 5051 rsp = rspq; 5052 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5053 if (++rsp >= rsp_end) 5054 rsp = rspq; 5055 5056 *qp++ = cpu_to_be32(v); 5057 nq -= 3; 5058 } 5059 5060 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5061 if (ret) 5062 return ret; 5063 } 5064 return 0; 5065 } 5066 5067 /** 5068 * t4_config_glbl_rss - configure the global RSS mode 5069 * @adapter: the adapter 5070 * @mbox: mbox to use for the FW command 5071 * @mode: global RSS mode 5072 * @flags: mode-specific flags 5073 * 5074 * Sets the global RSS mode. 5075 */ 5076 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5077 unsigned int flags) 5078 { 5079 struct fw_rss_glb_config_cmd c; 5080 5081 memset(&c, 0, sizeof(c)); 5082 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5083 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5084 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5085 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5086 c.u.manual.mode_pkd = 5087 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5088 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5089 c.u.basicvirtual.mode_pkd = 5090 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5091 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5092 } else 5093 return -EINVAL; 5094 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5095 } 5096 5097 /** 5098 * t4_config_vi_rss - configure per VI RSS settings 5099 * @adapter: the adapter 5100 * @mbox: mbox to use for the FW command 5101 * @viid: the VI id 5102 * @flags: RSS flags 5103 * @defq: id of the default RSS queue for the VI. 5104 * 5105 * Configures VI-specific RSS properties. 5106 */ 5107 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5108 unsigned int flags, unsigned int defq) 5109 { 5110 struct fw_rss_vi_config_cmd c; 5111 5112 memset(&c, 0, sizeof(c)); 5113 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5114 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5115 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5116 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5117 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5118 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5119 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5120 } 5121 5122 /* Read an RSS table row */ 5123 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5124 { 5125 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5126 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5127 5, 0, val); 5128 } 5129 5130 /** 5131 * t4_read_rss - read the contents of the RSS mapping table 5132 * @adapter: the adapter 5133 * @map: holds the contents of the RSS mapping table 5134 * 5135 * Reads the contents of the RSS hash->queue mapping table. 5136 */ 5137 int t4_read_rss(struct adapter *adapter, u16 *map) 5138 { 5139 int i, ret, nentries; 5140 u32 val; 5141 5142 nentries = t4_chip_rss_size(adapter); 5143 for (i = 0; i < nentries / 2; ++i) { 5144 ret = rd_rss_row(adapter, i, &val); 5145 if (ret) 5146 return ret; 5147 *map++ = LKPTBLQUEUE0_G(val); 5148 *map++ = LKPTBLQUEUE1_G(val); 5149 } 5150 return 0; 5151 } 5152 5153 static unsigned int t4_use_ldst(struct adapter *adap) 5154 { 5155 return (adap->flags & FW_OK) && !adap->use_bd; 5156 } 5157 5158 /** 5159 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5160 * @adap: the adapter 5161 * @cmd: TP fw ldst address space type 5162 * @vals: where the indirect register values are stored/written 5163 * @nregs: how many indirect registers to read/write 5164 * @start_idx: index of first indirect register to read/write 5165 * @rw: Read (1) or Write (0) 5166 * @sleep_ok: if true we may sleep while awaiting command completion 5167 * 5168 * Access TP indirect registers through LDST 5169 */ 5170 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5171 unsigned int nregs, unsigned int start_index, 5172 unsigned int rw, bool sleep_ok) 5173 { 5174 int ret = 0; 5175 unsigned int i; 5176 struct fw_ldst_cmd c; 5177 5178 for (i = 0; i < nregs; i++) { 5179 memset(&c, 0, sizeof(c)); 5180 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5181 FW_CMD_REQUEST_F | 5182 (rw ? FW_CMD_READ_F : 5183 FW_CMD_WRITE_F) | 5184 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5185 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5186 5187 c.u.addrval.addr = cpu_to_be32(start_index + i); 5188 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5189 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5190 sleep_ok); 5191 if (ret) 5192 return ret; 5193 5194 if (rw) 5195 vals[i] = be32_to_cpu(c.u.addrval.val); 5196 } 5197 return 0; 5198 } 5199 5200 /** 5201 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5202 * @adap: the adapter 5203 * @reg_addr: Address Register 5204 * @reg_data: Data register 5205 * @buff: where the indirect register values are stored/written 5206 * @nregs: how many indirect registers to read/write 5207 * @start_index: index of first indirect register to read/write 5208 * @rw: READ(1) or WRITE(0) 5209 * @sleep_ok: if true we may sleep while awaiting command completion 5210 * 5211 * Read/Write TP indirect registers through LDST if possible. 5212 * Else, use backdoor access 5213 **/ 5214 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5215 u32 *buff, u32 nregs, u32 start_index, int rw, 5216 bool sleep_ok) 5217 { 5218 int rc = -EINVAL; 5219 int cmd; 5220 5221 switch (reg_addr) { 5222 case TP_PIO_ADDR_A: 5223 cmd = FW_LDST_ADDRSPC_TP_PIO; 5224 break; 5225 case TP_TM_PIO_ADDR_A: 5226 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5227 break; 5228 case TP_MIB_INDEX_A: 5229 cmd = FW_LDST_ADDRSPC_TP_MIB; 5230 break; 5231 default: 5232 goto indirect_access; 5233 } 5234 5235 if (t4_use_ldst(adap)) 5236 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5237 sleep_ok); 5238 5239 indirect_access: 5240 5241 if (rc) { 5242 if (rw) 5243 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5244 start_index); 5245 else 5246 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5247 start_index); 5248 } 5249 } 5250 5251 /** 5252 * t4_tp_pio_read - Read TP PIO registers 5253 * @adap: the adapter 5254 * @buff: where the indirect register values are written 5255 * @nregs: how many indirect registers to read 5256 * @start_index: index of first indirect register to read 5257 * @sleep_ok: if true we may sleep while awaiting command completion 5258 * 5259 * Read TP PIO Registers 5260 **/ 5261 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5262 u32 start_index, bool sleep_ok) 5263 { 5264 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5265 start_index, 1, sleep_ok); 5266 } 5267 5268 /** 5269 * t4_tp_pio_write - Write TP PIO registers 5270 * @adap: the adapter 5271 * @buff: where the indirect register values are stored 5272 * @nregs: how many indirect registers to write 5273 * @start_index: index of first indirect register to write 5274 * @sleep_ok: if true we may sleep while awaiting command completion 5275 * 5276 * Write TP PIO Registers 5277 **/ 5278 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5279 u32 start_index, bool sleep_ok) 5280 { 5281 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5282 start_index, 0, sleep_ok); 5283 } 5284 5285 /** 5286 * t4_tp_tm_pio_read - Read TP TM PIO registers 5287 * @adap: the adapter 5288 * @buff: where the indirect register values are written 5289 * @nregs: how many indirect registers to read 5290 * @start_index: index of first indirect register to read 5291 * @sleep_ok: if true we may sleep while awaiting command completion 5292 * 5293 * Read TP TM PIO Registers 5294 **/ 5295 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5296 u32 start_index, bool sleep_ok) 5297 { 5298 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5299 nregs, start_index, 1, sleep_ok); 5300 } 5301 5302 /** 5303 * t4_tp_mib_read - Read TP MIB registers 5304 * @adap: the adapter 5305 * @buff: where the indirect register values are written 5306 * @nregs: how many indirect registers to read 5307 * @start_index: index of first indirect register to read 5308 * @sleep_ok: if true we may sleep while awaiting command completion 5309 * 5310 * Read TP MIB Registers 5311 **/ 5312 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5313 bool sleep_ok) 5314 { 5315 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5316 start_index, 1, sleep_ok); 5317 } 5318 5319 /** 5320 * t4_read_rss_key - read the global RSS key 5321 * @adap: the adapter 5322 * @key: 10-entry array holding the 320-bit RSS key 5323 * @sleep_ok: if true we may sleep while awaiting command completion 5324 * 5325 * Reads the global 320-bit RSS key. 5326 */ 5327 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5328 { 5329 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5330 } 5331 5332 /** 5333 * t4_write_rss_key - program one of the RSS keys 5334 * @adap: the adapter 5335 * @key: 10-entry array holding the 320-bit RSS key 5336 * @idx: which RSS key to write 5337 * @sleep_ok: if true we may sleep while awaiting command completion 5338 * 5339 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5340 * 0..15 the corresponding entry in the RSS key table is written, 5341 * otherwise the global RSS key is written. 5342 */ 5343 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5344 bool sleep_ok) 5345 { 5346 u8 rss_key_addr_cnt = 16; 5347 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5348 5349 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5350 * allows access to key addresses 16-63 by using KeyWrAddrX 5351 * as index[5:4](upper 2) into key table 5352 */ 5353 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5354 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5355 rss_key_addr_cnt = 32; 5356 5357 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5358 5359 if (idx >= 0 && idx < rss_key_addr_cnt) { 5360 if (rss_key_addr_cnt > 16) 5361 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5362 KEYWRADDRX_V(idx >> 4) | 5363 T6_VFWRADDR_V(idx) | KEYWREN_F); 5364 else 5365 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5366 KEYWRADDR_V(idx) | KEYWREN_F); 5367 } 5368 } 5369 5370 /** 5371 * t4_read_rss_pf_config - read PF RSS Configuration Table 5372 * @adapter: the adapter 5373 * @index: the entry in the PF RSS table to read 5374 * @valp: where to store the returned value 5375 * @sleep_ok: if true we may sleep while awaiting command completion 5376 * 5377 * Reads the PF RSS Configuration Table at the specified index and returns 5378 * the value found there. 5379 */ 5380 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5381 u32 *valp, bool sleep_ok) 5382 { 5383 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5384 } 5385 5386 /** 5387 * t4_read_rss_vf_config - read VF RSS Configuration Table 5388 * @adapter: the adapter 5389 * @index: the entry in the VF RSS table to read 5390 * @vfl: where to store the returned VFL 5391 * @vfh: where to store the returned VFH 5392 * @sleep_ok: if true we may sleep while awaiting command completion 5393 * 5394 * Reads the VF RSS Configuration Table at the specified index and returns 5395 * the (VFL, VFH) values found there. 5396 */ 5397 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5398 u32 *vfl, u32 *vfh, bool sleep_ok) 5399 { 5400 u32 vrt, mask, data; 5401 5402 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5403 mask = VFWRADDR_V(VFWRADDR_M); 5404 data = VFWRADDR_V(index); 5405 } else { 5406 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5407 data = T6_VFWRADDR_V(index); 5408 } 5409 5410 /* Request that the index'th VF Table values be read into VFL/VFH. 5411 */ 5412 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5413 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5414 vrt |= data | VFRDEN_F; 5415 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5416 5417 /* Grab the VFL/VFH values ... 5418 */ 5419 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5420 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5421 } 5422 5423 /** 5424 * t4_read_rss_pf_map - read PF RSS Map 5425 * @adapter: the adapter 5426 * @sleep_ok: if true we may sleep while awaiting command completion 5427 * 5428 * Reads the PF RSS Map register and returns its value. 5429 */ 5430 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5431 { 5432 u32 pfmap; 5433 5434 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5435 return pfmap; 5436 } 5437 5438 /** 5439 * t4_read_rss_pf_mask - read PF RSS Mask 5440 * @adapter: the adapter 5441 * @sleep_ok: if true we may sleep while awaiting command completion 5442 * 5443 * Reads the PF RSS Mask register and returns its value. 5444 */ 5445 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5446 { 5447 u32 pfmask; 5448 5449 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5450 return pfmask; 5451 } 5452 5453 /** 5454 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5455 * @adap: the adapter 5456 * @v4: holds the TCP/IP counter values 5457 * @v6: holds the TCP/IPv6 counter values 5458 * @sleep_ok: if true we may sleep while awaiting command completion 5459 * 5460 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5461 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5462 */ 5463 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5464 struct tp_tcp_stats *v6, bool sleep_ok) 5465 { 5466 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5467 5468 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5469 #define STAT(x) val[STAT_IDX(x)] 5470 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5471 5472 if (v4) { 5473 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5474 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5475 v4->tcp_out_rsts = STAT(OUT_RST); 5476 v4->tcp_in_segs = STAT64(IN_SEG); 5477 v4->tcp_out_segs = STAT64(OUT_SEG); 5478 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5479 } 5480 if (v6) { 5481 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5482 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5483 v6->tcp_out_rsts = STAT(OUT_RST); 5484 v6->tcp_in_segs = STAT64(IN_SEG); 5485 v6->tcp_out_segs = STAT64(OUT_SEG); 5486 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5487 } 5488 #undef STAT64 5489 #undef STAT 5490 #undef STAT_IDX 5491 } 5492 5493 /** 5494 * t4_tp_get_err_stats - read TP's error MIB counters 5495 * @adap: the adapter 5496 * @st: holds the counter values 5497 * @sleep_ok: if true we may sleep while awaiting command completion 5498 * 5499 * Returns the values of TP's error counters. 5500 */ 5501 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5502 bool sleep_ok) 5503 { 5504 int nchan = adap->params.arch.nchan; 5505 5506 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5507 sleep_ok); 5508 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5509 sleep_ok); 5510 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5511 sleep_ok); 5512 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5513 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5514 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5515 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5516 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5517 sleep_ok); 5518 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5519 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5520 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5521 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5522 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5523 sleep_ok); 5524 } 5525 5526 /** 5527 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5528 * @adap: the adapter 5529 * @st: holds the counter values 5530 * @sleep_ok: if true we may sleep while awaiting command completion 5531 * 5532 * Returns the values of TP's CPL counters. 5533 */ 5534 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5535 bool sleep_ok) 5536 { 5537 int nchan = adap->params.arch.nchan; 5538 5539 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5540 5541 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5542 } 5543 5544 /** 5545 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5546 * @adap: the adapter 5547 * @st: holds the counter values 5548 * @sleep_ok: if true we may sleep while awaiting command completion 5549 * 5550 * Returns the values of TP's RDMA counters. 5551 */ 5552 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5553 bool sleep_ok) 5554 { 5555 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5556 sleep_ok); 5557 } 5558 5559 /** 5560 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5561 * @adap: the adapter 5562 * @idx: the port index 5563 * @st: holds the counter values 5564 * @sleep_ok: if true we may sleep while awaiting command completion 5565 * 5566 * Returns the values of TP's FCoE counters for the selected port. 5567 */ 5568 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5569 struct tp_fcoe_stats *st, bool sleep_ok) 5570 { 5571 u32 val[2]; 5572 5573 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5574 sleep_ok); 5575 5576 t4_tp_mib_read(adap, &st->frames_drop, 1, 5577 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5578 5579 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5580 sleep_ok); 5581 5582 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5583 } 5584 5585 /** 5586 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5587 * @adap: the adapter 5588 * @st: holds the counter values 5589 * @sleep_ok: if true we may sleep while awaiting command completion 5590 * 5591 * Returns the values of TP's counters for non-TCP directly-placed packets. 5592 */ 5593 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5594 bool sleep_ok) 5595 { 5596 u32 val[4]; 5597 5598 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5599 st->frames = val[0]; 5600 st->drops = val[1]; 5601 st->octets = ((u64)val[2] << 32) | val[3]; 5602 } 5603 5604 /** 5605 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5606 * @adap: the adapter 5607 * @mtus: where to store the MTU values 5608 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5609 * 5610 * Reads the HW path MTU table. 5611 */ 5612 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5613 { 5614 u32 v; 5615 int i; 5616 5617 for (i = 0; i < NMTUS; ++i) { 5618 t4_write_reg(adap, TP_MTU_TABLE_A, 5619 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5620 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5621 mtus[i] = MTUVALUE_G(v); 5622 if (mtu_log) 5623 mtu_log[i] = MTUWIDTH_G(v); 5624 } 5625 } 5626 5627 /** 5628 * t4_read_cong_tbl - reads the congestion control table 5629 * @adap: the adapter 5630 * @incr: where to store the alpha values 5631 * 5632 * Reads the additive increments programmed into the HW congestion 5633 * control table. 5634 */ 5635 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5636 { 5637 unsigned int mtu, w; 5638 5639 for (mtu = 0; mtu < NMTUS; ++mtu) 5640 for (w = 0; w < NCCTRL_WIN; ++w) { 5641 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5642 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5643 incr[mtu][w] = (u16)t4_read_reg(adap, 5644 TP_CCTRL_TABLE_A) & 0x1fff; 5645 } 5646 } 5647 5648 /** 5649 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5650 * @adap: the adapter 5651 * @addr: the indirect TP register address 5652 * @mask: specifies the field within the register to modify 5653 * @val: new value for the field 5654 * 5655 * Sets a field of an indirect TP register to the given value. 5656 */ 5657 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5658 unsigned int mask, unsigned int val) 5659 { 5660 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5661 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5662 t4_write_reg(adap, TP_PIO_DATA_A, val); 5663 } 5664 5665 /** 5666 * init_cong_ctrl - initialize congestion control parameters 5667 * @a: the alpha values for congestion control 5668 * @b: the beta values for congestion control 5669 * 5670 * Initialize the congestion control parameters. 5671 */ 5672 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5673 { 5674 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5675 a[9] = 2; 5676 a[10] = 3; 5677 a[11] = 4; 5678 a[12] = 5; 5679 a[13] = 6; 5680 a[14] = 7; 5681 a[15] = 8; 5682 a[16] = 9; 5683 a[17] = 10; 5684 a[18] = 14; 5685 a[19] = 17; 5686 a[20] = 21; 5687 a[21] = 25; 5688 a[22] = 30; 5689 a[23] = 35; 5690 a[24] = 45; 5691 a[25] = 60; 5692 a[26] = 80; 5693 a[27] = 100; 5694 a[28] = 200; 5695 a[29] = 300; 5696 a[30] = 400; 5697 a[31] = 500; 5698 5699 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5700 b[9] = b[10] = 1; 5701 b[11] = b[12] = 2; 5702 b[13] = b[14] = b[15] = b[16] = 3; 5703 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5704 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5705 b[28] = b[29] = 6; 5706 b[30] = b[31] = 7; 5707 } 5708 5709 /* The minimum additive increment value for the congestion control table */ 5710 #define CC_MIN_INCR 2U 5711 5712 /** 5713 * t4_load_mtus - write the MTU and congestion control HW tables 5714 * @adap: the adapter 5715 * @mtus: the values for the MTU table 5716 * @alpha: the values for the congestion control alpha parameter 5717 * @beta: the values for the congestion control beta parameter 5718 * 5719 * Write the HW MTU table with the supplied MTUs and the high-speed 5720 * congestion control table with the supplied alpha, beta, and MTUs. 5721 * We write the two tables together because the additive increments 5722 * depend on the MTUs. 5723 */ 5724 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5725 const unsigned short *alpha, const unsigned short *beta) 5726 { 5727 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5728 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5729 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5730 28672, 40960, 57344, 81920, 114688, 163840, 229376 5731 }; 5732 5733 unsigned int i, w; 5734 5735 for (i = 0; i < NMTUS; ++i) { 5736 unsigned int mtu = mtus[i]; 5737 unsigned int log2 = fls(mtu); 5738 5739 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5740 log2--; 5741 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5742 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5743 5744 for (w = 0; w < NCCTRL_WIN; ++w) { 5745 unsigned int inc; 5746 5747 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5748 CC_MIN_INCR); 5749 5750 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5751 (w << 16) | (beta[w] << 13) | inc); 5752 } 5753 } 5754 } 5755 5756 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5757 * clocks. The formula is 5758 * 5759 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5760 * 5761 * which is equivalent to 5762 * 5763 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5764 */ 5765 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5766 { 5767 u64 v = bytes256 * adap->params.vpd.cclk; 5768 5769 return v * 62 + v / 2; 5770 } 5771 5772 /** 5773 * t4_get_chan_txrate - get the current per channel Tx rates 5774 * @adap: the adapter 5775 * @nic_rate: rates for NIC traffic 5776 * @ofld_rate: rates for offloaded traffic 5777 * 5778 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5779 * for each channel. 5780 */ 5781 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5782 { 5783 u32 v; 5784 5785 v = t4_read_reg(adap, TP_TX_TRATE_A); 5786 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5787 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5788 if (adap->params.arch.nchan == NCHAN) { 5789 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5790 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5791 } 5792 5793 v = t4_read_reg(adap, TP_TX_ORATE_A); 5794 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5795 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5796 if (adap->params.arch.nchan == NCHAN) { 5797 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5798 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5799 } 5800 } 5801 5802 /** 5803 * t4_set_trace_filter - configure one of the tracing filters 5804 * @adap: the adapter 5805 * @tp: the desired trace filter parameters 5806 * @idx: which filter to configure 5807 * @enable: whether to enable or disable the filter 5808 * 5809 * Configures one of the tracing filters available in HW. If @enable is 5810 * %0 @tp is not examined and may be %NULL. The user is responsible to 5811 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5812 */ 5813 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5814 int idx, int enable) 5815 { 5816 int i, ofst = idx * 4; 5817 u32 data_reg, mask_reg, cfg; 5818 u32 multitrc = TRCMULTIFILTER_F; 5819 5820 if (!enable) { 5821 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5822 return 0; 5823 } 5824 5825 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5826 if (cfg & TRCMULTIFILTER_F) { 5827 /* If multiple tracers are enabled, then maximum 5828 * capture size is 2.5KB (FIFO size of a single channel) 5829 * minus 2 flits for CPL_TRACE_PKT header. 5830 */ 5831 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5832 return -EINVAL; 5833 } else { 5834 /* If multiple tracers are disabled, to avoid deadlocks 5835 * maximum packet capture size of 9600 bytes is recommended. 5836 * Also in this mode, only trace0 can be enabled and running. 5837 */ 5838 multitrc = 0; 5839 if (tp->snap_len > 9600 || idx) 5840 return -EINVAL; 5841 } 5842 5843 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5844 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5845 tp->min_len > TFMINPKTSIZE_M) 5846 return -EINVAL; 5847 5848 /* stop the tracer we'll be changing */ 5849 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5850 5851 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5852 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5853 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5854 5855 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5856 t4_write_reg(adap, data_reg, tp->data[i]); 5857 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5858 } 5859 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5860 TFCAPTUREMAX_V(tp->snap_len) | 5861 TFMINPKTSIZE_V(tp->min_len)); 5862 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5863 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5864 (is_t4(adap->params.chip) ? 5865 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5866 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5867 T5_TFINVERTMATCH_V(tp->invert))); 5868 5869 return 0; 5870 } 5871 5872 /** 5873 * t4_get_trace_filter - query one of the tracing filters 5874 * @adap: the adapter 5875 * @tp: the current trace filter parameters 5876 * @idx: which trace filter to query 5877 * @enabled: non-zero if the filter is enabled 5878 * 5879 * Returns the current settings of one of the HW tracing filters. 5880 */ 5881 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5882 int *enabled) 5883 { 5884 u32 ctla, ctlb; 5885 int i, ofst = idx * 4; 5886 u32 data_reg, mask_reg; 5887 5888 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5889 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5890 5891 if (is_t4(adap->params.chip)) { 5892 *enabled = !!(ctla & TFEN_F); 5893 tp->port = TFPORT_G(ctla); 5894 tp->invert = !!(ctla & TFINVERTMATCH_F); 5895 } else { 5896 *enabled = !!(ctla & T5_TFEN_F); 5897 tp->port = T5_TFPORT_G(ctla); 5898 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5899 } 5900 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5901 tp->min_len = TFMINPKTSIZE_G(ctlb); 5902 tp->skip_ofst = TFOFFSET_G(ctla); 5903 tp->skip_len = TFLENGTH_G(ctla); 5904 5905 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5906 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5907 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5908 5909 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5910 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5911 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5912 } 5913 } 5914 5915 /** 5916 * t4_pmtx_get_stats - returns the HW stats from PMTX 5917 * @adap: the adapter 5918 * @cnt: where to store the count statistics 5919 * @cycles: where to store the cycle statistics 5920 * 5921 * Returns performance statistics from PMTX. 5922 */ 5923 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5924 { 5925 int i; 5926 u32 data[2]; 5927 5928 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5929 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5930 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5931 if (is_t4(adap->params.chip)) { 5932 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5933 } else { 5934 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5935 PM_TX_DBG_DATA_A, data, 2, 5936 PM_TX_DBG_STAT_MSB_A); 5937 cycles[i] = (((u64)data[0] << 32) | data[1]); 5938 } 5939 } 5940 } 5941 5942 /** 5943 * t4_pmrx_get_stats - returns the HW stats from PMRX 5944 * @adap: the adapter 5945 * @cnt: where to store the count statistics 5946 * @cycles: where to store the cycle statistics 5947 * 5948 * Returns performance statistics from PMRX. 5949 */ 5950 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5951 { 5952 int i; 5953 u32 data[2]; 5954 5955 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5956 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5957 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5958 if (is_t4(adap->params.chip)) { 5959 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5960 } else { 5961 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5962 PM_RX_DBG_DATA_A, data, 2, 5963 PM_RX_DBG_STAT_MSB_A); 5964 cycles[i] = (((u64)data[0] << 32) | data[1]); 5965 } 5966 } 5967 } 5968 5969 /** 5970 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 5971 * @adap: the adapter 5972 * @pidx: the port index 5973 * 5974 * Computes and returns a bitmap indicating which MPS buffer groups are 5975 * associated with the given Port. Bit i is set if buffer group i is 5976 * used by the Port. 5977 */ 5978 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 5979 int pidx) 5980 { 5981 unsigned int chip_version, nports; 5982 5983 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5984 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5985 5986 switch (chip_version) { 5987 case CHELSIO_T4: 5988 case CHELSIO_T5: 5989 switch (nports) { 5990 case 1: return 0xf; 5991 case 2: return 3 << (2 * pidx); 5992 case 4: return 1 << pidx; 5993 } 5994 break; 5995 5996 case CHELSIO_T6: 5997 switch (nports) { 5998 case 2: return 1 << (2 * pidx); 5999 } 6000 break; 6001 } 6002 6003 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6004 chip_version, nports); 6005 6006 return 0; 6007 } 6008 6009 /** 6010 * t4_get_mps_bg_map - return the buffer groups associated with a port 6011 * @adapter: the adapter 6012 * @pidx: the port index 6013 * 6014 * Returns a bitmap indicating which MPS buffer groups are associated 6015 * with the given Port. Bit i is set if buffer group i is used by the 6016 * Port. 6017 */ 6018 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6019 { 6020 u8 *mps_bg_map; 6021 unsigned int nports; 6022 6023 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6024 if (pidx >= nports) { 6025 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6026 pidx, nports); 6027 return 0; 6028 } 6029 6030 /* If we've already retrieved/computed this, just return the result. 6031 */ 6032 mps_bg_map = adapter->params.mps_bg_map; 6033 if (mps_bg_map[pidx]) 6034 return mps_bg_map[pidx]; 6035 6036 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6037 * If we're talking to such Firmware, let it tell us. If the new 6038 * API isn't supported, revert back to old hardcoded way. The value 6039 * obtained from Firmware is encoded in below format: 6040 * 6041 * val = (( MPSBGMAP[Port 3] << 24 ) | 6042 * ( MPSBGMAP[Port 2] << 16 ) | 6043 * ( MPSBGMAP[Port 1] << 8 ) | 6044 * ( MPSBGMAP[Port 0] << 0 )) 6045 */ 6046 if (adapter->flags & FW_OK) { 6047 u32 param, val; 6048 int ret; 6049 6050 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6051 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6052 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6053 0, 1, ¶m, &val); 6054 if (!ret) { 6055 int p; 6056 6057 /* Store the BG Map for all of the Ports in order to 6058 * avoid more calls to the Firmware in the future. 6059 */ 6060 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6061 mps_bg_map[p] = val & 0xff; 6062 6063 return mps_bg_map[pidx]; 6064 } 6065 } 6066 6067 /* Either we're not talking to the Firmware or we're dealing with 6068 * older Firmware which doesn't support the new API to get the MPS 6069 * Buffer Group Map. Fall back to computing it ourselves. 6070 */ 6071 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6072 return mps_bg_map[pidx]; 6073 } 6074 6075 /** 6076 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6077 * @adapter: the adapter 6078 * @pidx: the port index 6079 * 6080 * Returns a bitmap indicating which TP Ingress Channels are associated 6081 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6082 * the Port. 6083 */ 6084 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6085 { 6086 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6087 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6088 6089 if (pidx >= nports) { 6090 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6091 pidx, nports); 6092 return 0; 6093 } 6094 6095 switch (chip_version) { 6096 case CHELSIO_T4: 6097 case CHELSIO_T5: 6098 /* Note that this happens to be the same values as the MPS 6099 * Buffer Group Map for these Chips. But we replicate the code 6100 * here because they're really separate concepts. 6101 */ 6102 switch (nports) { 6103 case 1: return 0xf; 6104 case 2: return 3 << (2 * pidx); 6105 case 4: return 1 << pidx; 6106 } 6107 break; 6108 6109 case CHELSIO_T6: 6110 switch (nports) { 6111 case 1: 6112 case 2: return 1 << pidx; 6113 } 6114 break; 6115 } 6116 6117 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6118 chip_version, nports); 6119 return 0; 6120 } 6121 6122 /** 6123 * t4_get_port_type_description - return Port Type string description 6124 * @port_type: firmware Port Type enumeration 6125 */ 6126 const char *t4_get_port_type_description(enum fw_port_type port_type) 6127 { 6128 static const char *const port_type_description[] = { 6129 "Fiber_XFI", 6130 "Fiber_XAUI", 6131 "BT_SGMII", 6132 "BT_XFI", 6133 "BT_XAUI", 6134 "KX4", 6135 "CX4", 6136 "KX", 6137 "KR", 6138 "SFP", 6139 "BP_AP", 6140 "BP4_AP", 6141 "QSFP_10G", 6142 "QSA", 6143 "QSFP", 6144 "BP40_BA", 6145 "KR4_100G", 6146 "CR4_QSFP", 6147 "CR_QSFP", 6148 "CR2_QSFP", 6149 "SFP28", 6150 "KR_SFP28", 6151 "KR_XLAUI" 6152 }; 6153 6154 if (port_type < ARRAY_SIZE(port_type_description)) 6155 return port_type_description[port_type]; 6156 return "UNKNOWN"; 6157 } 6158 6159 /** 6160 * t4_get_port_stats_offset - collect port stats relative to a previous 6161 * snapshot 6162 * @adap: The adapter 6163 * @idx: The port 6164 * @stats: Current stats to fill 6165 * @offset: Previous stats snapshot 6166 */ 6167 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6168 struct port_stats *stats, 6169 struct port_stats *offset) 6170 { 6171 u64 *s, *o; 6172 int i; 6173 6174 t4_get_port_stats(adap, idx, stats); 6175 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6176 i < (sizeof(struct port_stats) / sizeof(u64)); 6177 i++, s++, o++) 6178 *s -= *o; 6179 } 6180 6181 /** 6182 * t4_get_port_stats - collect port statistics 6183 * @adap: the adapter 6184 * @idx: the port index 6185 * @p: the stats structure to fill 6186 * 6187 * Collect statistics related to the given port from HW. 6188 */ 6189 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6190 { 6191 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6192 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6193 6194 #define GET_STAT(name) \ 6195 t4_read_reg64(adap, \ 6196 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6197 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6198 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6199 6200 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6201 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6202 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6203 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6204 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6205 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6206 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6207 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6208 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6209 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6210 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6211 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6212 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6213 p->tx_drop = GET_STAT(TX_PORT_DROP); 6214 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6215 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6216 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6217 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6218 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6219 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6220 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6221 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6222 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6223 6224 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6225 if (stat_ctl & COUNTPAUSESTATTX_F) 6226 p->tx_frames_64 -= p->tx_pause; 6227 if (stat_ctl & COUNTPAUSEMCTX_F) 6228 p->tx_mcast_frames -= p->tx_pause; 6229 } 6230 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6231 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6232 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6233 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6234 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6235 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6236 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6237 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6238 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6239 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6240 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6241 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6242 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6243 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6244 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6245 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6246 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6247 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6248 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6249 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6250 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6251 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6252 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6253 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6254 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6255 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6256 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6257 6258 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6259 if (stat_ctl & COUNTPAUSESTATRX_F) 6260 p->rx_frames_64 -= p->rx_pause; 6261 if (stat_ctl & COUNTPAUSEMCRX_F) 6262 p->rx_mcast_frames -= p->rx_pause; 6263 } 6264 6265 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6266 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6267 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6268 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6269 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6270 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6271 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6272 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6273 6274 #undef GET_STAT 6275 #undef GET_STAT_COM 6276 } 6277 6278 /** 6279 * t4_get_lb_stats - collect loopback port statistics 6280 * @adap: the adapter 6281 * @idx: the loopback port index 6282 * @p: the stats structure to fill 6283 * 6284 * Return HW statistics for the given loopback port. 6285 */ 6286 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6287 { 6288 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6289 6290 #define GET_STAT(name) \ 6291 t4_read_reg64(adap, \ 6292 (is_t4(adap->params.chip) ? \ 6293 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6294 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6295 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6296 6297 p->octets = GET_STAT(BYTES); 6298 p->frames = GET_STAT(FRAMES); 6299 p->bcast_frames = GET_STAT(BCAST); 6300 p->mcast_frames = GET_STAT(MCAST); 6301 p->ucast_frames = GET_STAT(UCAST); 6302 p->error_frames = GET_STAT(ERROR); 6303 6304 p->frames_64 = GET_STAT(64B); 6305 p->frames_65_127 = GET_STAT(65B_127B); 6306 p->frames_128_255 = GET_STAT(128B_255B); 6307 p->frames_256_511 = GET_STAT(256B_511B); 6308 p->frames_512_1023 = GET_STAT(512B_1023B); 6309 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6310 p->frames_1519_max = GET_STAT(1519B_MAX); 6311 p->drop = GET_STAT(DROP_FRAMES); 6312 6313 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6314 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6315 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6316 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6317 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6318 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6319 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6320 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6321 6322 #undef GET_STAT 6323 #undef GET_STAT_COM 6324 } 6325 6326 /* t4_mk_filtdelwr - create a delete filter WR 6327 * @ftid: the filter ID 6328 * @wr: the filter work request to populate 6329 * @qid: ingress queue to receive the delete notification 6330 * 6331 * Creates a filter work request to delete the supplied filter. If @qid is 6332 * negative the delete notification is suppressed. 6333 */ 6334 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6335 { 6336 memset(wr, 0, sizeof(*wr)); 6337 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6338 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6339 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6340 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6341 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6342 if (qid >= 0) 6343 wr->rx_chan_rx_rpl_iq = 6344 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6345 } 6346 6347 #define INIT_CMD(var, cmd, rd_wr) do { \ 6348 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6349 FW_CMD_REQUEST_F | \ 6350 FW_CMD_##rd_wr##_F); \ 6351 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6352 } while (0) 6353 6354 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6355 u32 addr, u32 val) 6356 { 6357 u32 ldst_addrspace; 6358 struct fw_ldst_cmd c; 6359 6360 memset(&c, 0, sizeof(c)); 6361 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6362 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6363 FW_CMD_REQUEST_F | 6364 FW_CMD_WRITE_F | 6365 ldst_addrspace); 6366 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6367 c.u.addrval.addr = cpu_to_be32(addr); 6368 c.u.addrval.val = cpu_to_be32(val); 6369 6370 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6371 } 6372 6373 /** 6374 * t4_mdio_rd - read a PHY register through MDIO 6375 * @adap: the adapter 6376 * @mbox: mailbox to use for the FW command 6377 * @phy_addr: the PHY address 6378 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6379 * @reg: the register to read 6380 * @valp: where to store the value 6381 * 6382 * Issues a FW command through the given mailbox to read a PHY register. 6383 */ 6384 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6385 unsigned int mmd, unsigned int reg, u16 *valp) 6386 { 6387 int ret; 6388 u32 ldst_addrspace; 6389 struct fw_ldst_cmd c; 6390 6391 memset(&c, 0, sizeof(c)); 6392 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6393 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6394 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6395 ldst_addrspace); 6396 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6397 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6398 FW_LDST_CMD_MMD_V(mmd)); 6399 c.u.mdio.raddr = cpu_to_be16(reg); 6400 6401 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6402 if (ret == 0) 6403 *valp = be16_to_cpu(c.u.mdio.rval); 6404 return ret; 6405 } 6406 6407 /** 6408 * t4_mdio_wr - write a PHY register through MDIO 6409 * @adap: the adapter 6410 * @mbox: mailbox to use for the FW command 6411 * @phy_addr: the PHY address 6412 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6413 * @reg: the register to write 6414 * @valp: value to write 6415 * 6416 * Issues a FW command through the given mailbox to write a PHY register. 6417 */ 6418 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6419 unsigned int mmd, unsigned int reg, u16 val) 6420 { 6421 u32 ldst_addrspace; 6422 struct fw_ldst_cmd c; 6423 6424 memset(&c, 0, sizeof(c)); 6425 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6426 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6427 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6428 ldst_addrspace); 6429 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6430 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6431 FW_LDST_CMD_MMD_V(mmd)); 6432 c.u.mdio.raddr = cpu_to_be16(reg); 6433 c.u.mdio.rval = cpu_to_be16(val); 6434 6435 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6436 } 6437 6438 /** 6439 * t4_sge_decode_idma_state - decode the idma state 6440 * @adap: the adapter 6441 * @state: the state idma is stuck in 6442 */ 6443 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6444 { 6445 static const char * const t4_decode[] = { 6446 "IDMA_IDLE", 6447 "IDMA_PUSH_MORE_CPL_FIFO", 6448 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6449 "Not used", 6450 "IDMA_PHYSADDR_SEND_PCIEHDR", 6451 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6452 "IDMA_PHYSADDR_SEND_PAYLOAD", 6453 "IDMA_SEND_FIFO_TO_IMSG", 6454 "IDMA_FL_REQ_DATA_FL_PREP", 6455 "IDMA_FL_REQ_DATA_FL", 6456 "IDMA_FL_DROP", 6457 "IDMA_FL_H_REQ_HEADER_FL", 6458 "IDMA_FL_H_SEND_PCIEHDR", 6459 "IDMA_FL_H_PUSH_CPL_FIFO", 6460 "IDMA_FL_H_SEND_CPL", 6461 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6462 "IDMA_FL_H_SEND_IP_HDR", 6463 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6464 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6465 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6466 "IDMA_FL_D_SEND_PCIEHDR", 6467 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6468 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6469 "IDMA_FL_SEND_PCIEHDR", 6470 "IDMA_FL_PUSH_CPL_FIFO", 6471 "IDMA_FL_SEND_CPL", 6472 "IDMA_FL_SEND_PAYLOAD_FIRST", 6473 "IDMA_FL_SEND_PAYLOAD", 6474 "IDMA_FL_REQ_NEXT_DATA_FL", 6475 "IDMA_FL_SEND_NEXT_PCIEHDR", 6476 "IDMA_FL_SEND_PADDING", 6477 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6478 "IDMA_FL_SEND_FIFO_TO_IMSG", 6479 "IDMA_FL_REQ_DATAFL_DONE", 6480 "IDMA_FL_REQ_HEADERFL_DONE", 6481 }; 6482 static const char * const t5_decode[] = { 6483 "IDMA_IDLE", 6484 "IDMA_ALMOST_IDLE", 6485 "IDMA_PUSH_MORE_CPL_FIFO", 6486 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6487 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6488 "IDMA_PHYSADDR_SEND_PCIEHDR", 6489 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6490 "IDMA_PHYSADDR_SEND_PAYLOAD", 6491 "IDMA_SEND_FIFO_TO_IMSG", 6492 "IDMA_FL_REQ_DATA_FL", 6493 "IDMA_FL_DROP", 6494 "IDMA_FL_DROP_SEND_INC", 6495 "IDMA_FL_H_REQ_HEADER_FL", 6496 "IDMA_FL_H_SEND_PCIEHDR", 6497 "IDMA_FL_H_PUSH_CPL_FIFO", 6498 "IDMA_FL_H_SEND_CPL", 6499 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6500 "IDMA_FL_H_SEND_IP_HDR", 6501 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6502 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6503 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6504 "IDMA_FL_D_SEND_PCIEHDR", 6505 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6506 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6507 "IDMA_FL_SEND_PCIEHDR", 6508 "IDMA_FL_PUSH_CPL_FIFO", 6509 "IDMA_FL_SEND_CPL", 6510 "IDMA_FL_SEND_PAYLOAD_FIRST", 6511 "IDMA_FL_SEND_PAYLOAD", 6512 "IDMA_FL_REQ_NEXT_DATA_FL", 6513 "IDMA_FL_SEND_NEXT_PCIEHDR", 6514 "IDMA_FL_SEND_PADDING", 6515 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6516 }; 6517 static const char * const t6_decode[] = { 6518 "IDMA_IDLE", 6519 "IDMA_PUSH_MORE_CPL_FIFO", 6520 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6521 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6522 "IDMA_PHYSADDR_SEND_PCIEHDR", 6523 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6524 "IDMA_PHYSADDR_SEND_PAYLOAD", 6525 "IDMA_FL_REQ_DATA_FL", 6526 "IDMA_FL_DROP", 6527 "IDMA_FL_DROP_SEND_INC", 6528 "IDMA_FL_H_REQ_HEADER_FL", 6529 "IDMA_FL_H_SEND_PCIEHDR", 6530 "IDMA_FL_H_PUSH_CPL_FIFO", 6531 "IDMA_FL_H_SEND_CPL", 6532 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6533 "IDMA_FL_H_SEND_IP_HDR", 6534 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6535 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6536 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6537 "IDMA_FL_D_SEND_PCIEHDR", 6538 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6539 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6540 "IDMA_FL_SEND_PCIEHDR", 6541 "IDMA_FL_PUSH_CPL_FIFO", 6542 "IDMA_FL_SEND_CPL", 6543 "IDMA_FL_SEND_PAYLOAD_FIRST", 6544 "IDMA_FL_SEND_PAYLOAD", 6545 "IDMA_FL_REQ_NEXT_DATA_FL", 6546 "IDMA_FL_SEND_NEXT_PCIEHDR", 6547 "IDMA_FL_SEND_PADDING", 6548 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6549 }; 6550 static const u32 sge_regs[] = { 6551 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6552 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6553 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6554 }; 6555 const char **sge_idma_decode; 6556 int sge_idma_decode_nstates; 6557 int i; 6558 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6559 6560 /* Select the right set of decode strings to dump depending on the 6561 * adapter chip type. 6562 */ 6563 switch (chip_version) { 6564 case CHELSIO_T4: 6565 sge_idma_decode = (const char **)t4_decode; 6566 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6567 break; 6568 6569 case CHELSIO_T5: 6570 sge_idma_decode = (const char **)t5_decode; 6571 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6572 break; 6573 6574 case CHELSIO_T6: 6575 sge_idma_decode = (const char **)t6_decode; 6576 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6577 break; 6578 6579 default: 6580 dev_err(adapter->pdev_dev, 6581 "Unsupported chip version %d\n", chip_version); 6582 return; 6583 } 6584 6585 if (is_t4(adapter->params.chip)) { 6586 sge_idma_decode = (const char **)t4_decode; 6587 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6588 } else { 6589 sge_idma_decode = (const char **)t5_decode; 6590 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6591 } 6592 6593 if (state < sge_idma_decode_nstates) 6594 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6595 else 6596 CH_WARN(adapter, "idma state %d unknown\n", state); 6597 6598 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6599 CH_WARN(adapter, "SGE register %#x value %#x\n", 6600 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6601 } 6602 6603 /** 6604 * t4_sge_ctxt_flush - flush the SGE context cache 6605 * @adap: the adapter 6606 * @mbox: mailbox to use for the FW command 6607 * @ctx_type: Egress or Ingress 6608 * 6609 * Issues a FW command through the given mailbox to flush the 6610 * SGE context cache. 6611 */ 6612 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6613 { 6614 int ret; 6615 u32 ldst_addrspace; 6616 struct fw_ldst_cmd c; 6617 6618 memset(&c, 0, sizeof(c)); 6619 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6620 FW_LDST_ADDRSPC_SGE_EGRC : 6621 FW_LDST_ADDRSPC_SGE_INGC); 6622 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6623 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6624 ldst_addrspace); 6625 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6626 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6627 6628 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6629 return ret; 6630 } 6631 6632 /** 6633 * t4_fw_hello - establish communication with FW 6634 * @adap: the adapter 6635 * @mbox: mailbox to use for the FW command 6636 * @evt_mbox: mailbox to receive async FW events 6637 * @master: specifies the caller's willingness to be the device master 6638 * @state: returns the current device state (if non-NULL) 6639 * 6640 * Issues a command to establish communication with FW. Returns either 6641 * an error (negative integer) or the mailbox of the Master PF. 6642 */ 6643 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6644 enum dev_master master, enum dev_state *state) 6645 { 6646 int ret; 6647 struct fw_hello_cmd c; 6648 u32 v; 6649 unsigned int master_mbox; 6650 int retries = FW_CMD_HELLO_RETRIES; 6651 6652 retry: 6653 memset(&c, 0, sizeof(c)); 6654 INIT_CMD(c, HELLO, WRITE); 6655 c.err_to_clearinit = cpu_to_be32( 6656 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6657 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6658 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6659 mbox : FW_HELLO_CMD_MBMASTER_M) | 6660 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6661 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6662 FW_HELLO_CMD_CLEARINIT_F); 6663 6664 /* 6665 * Issue the HELLO command to the firmware. If it's not successful 6666 * but indicates that we got a "busy" or "timeout" condition, retry 6667 * the HELLO until we exhaust our retry limit. If we do exceed our 6668 * retry limit, check to see if the firmware left us any error 6669 * information and report that if so. 6670 */ 6671 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6672 if (ret < 0) { 6673 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6674 goto retry; 6675 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6676 t4_report_fw_error(adap); 6677 return ret; 6678 } 6679 6680 v = be32_to_cpu(c.err_to_clearinit); 6681 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6682 if (state) { 6683 if (v & FW_HELLO_CMD_ERR_F) 6684 *state = DEV_STATE_ERR; 6685 else if (v & FW_HELLO_CMD_INIT_F) 6686 *state = DEV_STATE_INIT; 6687 else 6688 *state = DEV_STATE_UNINIT; 6689 } 6690 6691 /* 6692 * If we're not the Master PF then we need to wait around for the 6693 * Master PF Driver to finish setting up the adapter. 6694 * 6695 * Note that we also do this wait if we're a non-Master-capable PF and 6696 * there is no current Master PF; a Master PF may show up momentarily 6697 * and we wouldn't want to fail pointlessly. (This can happen when an 6698 * OS loads lots of different drivers rapidly at the same time). In 6699 * this case, the Master PF returned by the firmware will be 6700 * PCIE_FW_MASTER_M so the test below will work ... 6701 */ 6702 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6703 master_mbox != mbox) { 6704 int waiting = FW_CMD_HELLO_TIMEOUT; 6705 6706 /* 6707 * Wait for the firmware to either indicate an error or 6708 * initialized state. If we see either of these we bail out 6709 * and report the issue to the caller. If we exhaust the 6710 * "hello timeout" and we haven't exhausted our retries, try 6711 * again. Otherwise bail with a timeout error. 6712 */ 6713 for (;;) { 6714 u32 pcie_fw; 6715 6716 msleep(50); 6717 waiting -= 50; 6718 6719 /* 6720 * If neither Error nor Initialialized are indicated 6721 * by the firmware keep waiting till we exaust our 6722 * timeout ... and then retry if we haven't exhausted 6723 * our retries ... 6724 */ 6725 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6726 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6727 if (waiting <= 0) { 6728 if (retries-- > 0) 6729 goto retry; 6730 6731 return -ETIMEDOUT; 6732 } 6733 continue; 6734 } 6735 6736 /* 6737 * We either have an Error or Initialized condition 6738 * report errors preferentially. 6739 */ 6740 if (state) { 6741 if (pcie_fw & PCIE_FW_ERR_F) 6742 *state = DEV_STATE_ERR; 6743 else if (pcie_fw & PCIE_FW_INIT_F) 6744 *state = DEV_STATE_INIT; 6745 } 6746 6747 /* 6748 * If we arrived before a Master PF was selected and 6749 * there's not a valid Master PF, grab its identity 6750 * for our caller. 6751 */ 6752 if (master_mbox == PCIE_FW_MASTER_M && 6753 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6754 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6755 break; 6756 } 6757 } 6758 6759 return master_mbox; 6760 } 6761 6762 /** 6763 * t4_fw_bye - end communication with FW 6764 * @adap: the adapter 6765 * @mbox: mailbox to use for the FW command 6766 * 6767 * Issues a command to terminate communication with FW. 6768 */ 6769 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6770 { 6771 struct fw_bye_cmd c; 6772 6773 memset(&c, 0, sizeof(c)); 6774 INIT_CMD(c, BYE, WRITE); 6775 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6776 } 6777 6778 /** 6779 * t4_init_cmd - ask FW to initialize the device 6780 * @adap: the adapter 6781 * @mbox: mailbox to use for the FW command 6782 * 6783 * Issues a command to FW to partially initialize the device. This 6784 * performs initialization that generally doesn't depend on user input. 6785 */ 6786 int t4_early_init(struct adapter *adap, unsigned int mbox) 6787 { 6788 struct fw_initialize_cmd c; 6789 6790 memset(&c, 0, sizeof(c)); 6791 INIT_CMD(c, INITIALIZE, WRITE); 6792 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6793 } 6794 6795 /** 6796 * t4_fw_reset - issue a reset to FW 6797 * @adap: the adapter 6798 * @mbox: mailbox to use for the FW command 6799 * @reset: specifies the type of reset to perform 6800 * 6801 * Issues a reset command of the specified type to FW. 6802 */ 6803 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6804 { 6805 struct fw_reset_cmd c; 6806 6807 memset(&c, 0, sizeof(c)); 6808 INIT_CMD(c, RESET, WRITE); 6809 c.val = cpu_to_be32(reset); 6810 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6811 } 6812 6813 /** 6814 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6815 * @adap: the adapter 6816 * @mbox: mailbox to use for the FW RESET command (if desired) 6817 * @force: force uP into RESET even if FW RESET command fails 6818 * 6819 * Issues a RESET command to firmware (if desired) with a HALT indication 6820 * and then puts the microprocessor into RESET state. The RESET command 6821 * will only be issued if a legitimate mailbox is provided (mbox <= 6822 * PCIE_FW_MASTER_M). 6823 * 6824 * This is generally used in order for the host to safely manipulate the 6825 * adapter without fear of conflicting with whatever the firmware might 6826 * be doing. The only way out of this state is to RESTART the firmware 6827 * ... 6828 */ 6829 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6830 { 6831 int ret = 0; 6832 6833 /* 6834 * If a legitimate mailbox is provided, issue a RESET command 6835 * with a HALT indication. 6836 */ 6837 if (mbox <= PCIE_FW_MASTER_M) { 6838 struct fw_reset_cmd c; 6839 6840 memset(&c, 0, sizeof(c)); 6841 INIT_CMD(c, RESET, WRITE); 6842 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6843 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6844 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6845 } 6846 6847 /* 6848 * Normally we won't complete the operation if the firmware RESET 6849 * command fails but if our caller insists we'll go ahead and put the 6850 * uP into RESET. This can be useful if the firmware is hung or even 6851 * missing ... We'll have to take the risk of putting the uP into 6852 * RESET without the cooperation of firmware in that case. 6853 * 6854 * We also force the firmware's HALT flag to be on in case we bypassed 6855 * the firmware RESET command above or we're dealing with old firmware 6856 * which doesn't have the HALT capability. This will serve as a flag 6857 * for the incoming firmware to know that it's coming out of a HALT 6858 * rather than a RESET ... if it's new enough to understand that ... 6859 */ 6860 if (ret == 0 || force) { 6861 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6862 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6863 PCIE_FW_HALT_F); 6864 } 6865 6866 /* 6867 * And we always return the result of the firmware RESET command 6868 * even when we force the uP into RESET ... 6869 */ 6870 return ret; 6871 } 6872 6873 /** 6874 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6875 * @adap: the adapter 6876 * @reset: if we want to do a RESET to restart things 6877 * 6878 * Restart firmware previously halted by t4_fw_halt(). On successful 6879 * return the previous PF Master remains as the new PF Master and there 6880 * is no need to issue a new HELLO command, etc. 6881 * 6882 * We do this in two ways: 6883 * 6884 * 1. If we're dealing with newer firmware we'll simply want to take 6885 * the chip's microprocessor out of RESET. This will cause the 6886 * firmware to start up from its start vector. And then we'll loop 6887 * until the firmware indicates it's started again (PCIE_FW.HALT 6888 * reset to 0) or we timeout. 6889 * 6890 * 2. If we're dealing with older firmware then we'll need to RESET 6891 * the chip since older firmware won't recognize the PCIE_FW.HALT 6892 * flag and automatically RESET itself on startup. 6893 */ 6894 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6895 { 6896 if (reset) { 6897 /* 6898 * Since we're directing the RESET instead of the firmware 6899 * doing it automatically, we need to clear the PCIE_FW.HALT 6900 * bit. 6901 */ 6902 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6903 6904 /* 6905 * If we've been given a valid mailbox, first try to get the 6906 * firmware to do the RESET. If that works, great and we can 6907 * return success. Otherwise, if we haven't been given a 6908 * valid mailbox or the RESET command failed, fall back to 6909 * hitting the chip with a hammer. 6910 */ 6911 if (mbox <= PCIE_FW_MASTER_M) { 6912 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6913 msleep(100); 6914 if (t4_fw_reset(adap, mbox, 6915 PIORST_F | PIORSTMODE_F) == 0) 6916 return 0; 6917 } 6918 6919 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6920 msleep(2000); 6921 } else { 6922 int ms; 6923 6924 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6925 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6926 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6927 return 0; 6928 msleep(100); 6929 ms += 100; 6930 } 6931 return -ETIMEDOUT; 6932 } 6933 return 0; 6934 } 6935 6936 /** 6937 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6938 * @adap: the adapter 6939 * @mbox: mailbox to use for the FW RESET command (if desired) 6940 * @fw_data: the firmware image to write 6941 * @size: image size 6942 * @force: force upgrade even if firmware doesn't cooperate 6943 * 6944 * Perform all of the steps necessary for upgrading an adapter's 6945 * firmware image. Normally this requires the cooperation of the 6946 * existing firmware in order to halt all existing activities 6947 * but if an invalid mailbox token is passed in we skip that step 6948 * (though we'll still put the adapter microprocessor into RESET in 6949 * that case). 6950 * 6951 * On successful return the new firmware will have been loaded and 6952 * the adapter will have been fully RESET losing all previous setup 6953 * state. On unsuccessful return the adapter may be completely hosed ... 6954 * positive errno indicates that the adapter is ~probably~ intact, a 6955 * negative errno indicates that things are looking bad ... 6956 */ 6957 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6958 const u8 *fw_data, unsigned int size, int force) 6959 { 6960 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6961 int reset, ret; 6962 6963 if (!t4_fw_matches_chip(adap, fw_hdr)) 6964 return -EINVAL; 6965 6966 /* Disable FW_OK flag so that mbox commands with FW_OK flag set 6967 * wont be sent when we are flashing FW. 6968 */ 6969 adap->flags &= ~FW_OK; 6970 6971 ret = t4_fw_halt(adap, mbox, force); 6972 if (ret < 0 && !force) 6973 goto out; 6974 6975 ret = t4_load_fw(adap, fw_data, size); 6976 if (ret < 0) 6977 goto out; 6978 6979 /* 6980 * If there was a Firmware Configuration File stored in FLASH, 6981 * there's a good chance that it won't be compatible with the new 6982 * Firmware. In order to prevent difficult to diagnose adapter 6983 * initialization issues, we clear out the Firmware Configuration File 6984 * portion of the FLASH . The user will need to re-FLASH a new 6985 * Firmware Configuration File which is compatible with the new 6986 * Firmware if that's desired. 6987 */ 6988 (void)t4_load_cfg(adap, NULL, 0); 6989 6990 /* 6991 * Older versions of the firmware don't understand the new 6992 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6993 * restart. So for newly loaded older firmware we'll have to do the 6994 * RESET for it so it starts up on a clean slate. We can tell if 6995 * the newly loaded firmware will handle this right by checking 6996 * its header flags to see if it advertises the capability. 6997 */ 6998 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6999 ret = t4_fw_restart(adap, mbox, reset); 7000 7001 /* Grab potentially new Firmware Device Log parameters so we can see 7002 * how healthy the new Firmware is. It's okay to contact the new 7003 * Firmware for these parameters even though, as far as it's 7004 * concerned, we've never said "HELLO" to it ... 7005 */ 7006 (void)t4_init_devlog_params(adap); 7007 out: 7008 adap->flags |= FW_OK; 7009 return ret; 7010 } 7011 7012 /** 7013 * t4_fl_pkt_align - return the fl packet alignment 7014 * @adap: the adapter 7015 * 7016 * T4 has a single field to specify the packing and padding boundary. 7017 * T5 onwards has separate fields for this and hence the alignment for 7018 * next packet offset is maximum of these two. 7019 * 7020 */ 7021 int t4_fl_pkt_align(struct adapter *adap) 7022 { 7023 u32 sge_control, sge_control2; 7024 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7025 7026 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7027 7028 /* T4 uses a single control field to specify both the PCIe Padding and 7029 * Packing Boundary. T5 introduced the ability to specify these 7030 * separately. The actual Ingress Packet Data alignment boundary 7031 * within Packed Buffer Mode is the maximum of these two 7032 * specifications. (Note that it makes no real practical sense to 7033 * have the Pading Boudary be larger than the Packing Boundary but you 7034 * could set the chip up that way and, in fact, legacy T4 code would 7035 * end doing this because it would initialize the Padding Boundary and 7036 * leave the Packing Boundary initialized to 0 (16 bytes).) 7037 * Padding Boundary values in T6 starts from 8B, 7038 * where as it is 32B for T4 and T5. 7039 */ 7040 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7041 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7042 else 7043 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7044 7045 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7046 7047 fl_align = ingpadboundary; 7048 if (!is_t4(adap->params.chip)) { 7049 /* T5 has a weird interpretation of one of the PCIe Packing 7050 * Boundary values. No idea why ... 7051 */ 7052 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7053 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7054 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7055 ingpackboundary = 16; 7056 else 7057 ingpackboundary = 1 << (ingpackboundary + 7058 INGPACKBOUNDARY_SHIFT_X); 7059 7060 fl_align = max(ingpadboundary, ingpackboundary); 7061 } 7062 return fl_align; 7063 } 7064 7065 /** 7066 * t4_fixup_host_params - fix up host-dependent parameters 7067 * @adap: the adapter 7068 * @page_size: the host's Base Page Size 7069 * @cache_line_size: the host's Cache Line Size 7070 * 7071 * Various registers in T4 contain values which are dependent on the 7072 * host's Base Page and Cache Line Sizes. This function will fix all of 7073 * those registers with the appropriate values as passed in ... 7074 */ 7075 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7076 unsigned int cache_line_size) 7077 { 7078 unsigned int page_shift = fls(page_size) - 1; 7079 unsigned int sge_hps = page_shift - 10; 7080 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7081 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7082 unsigned int fl_align_log = fls(fl_align) - 1; 7083 7084 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7085 HOSTPAGESIZEPF0_V(sge_hps) | 7086 HOSTPAGESIZEPF1_V(sge_hps) | 7087 HOSTPAGESIZEPF2_V(sge_hps) | 7088 HOSTPAGESIZEPF3_V(sge_hps) | 7089 HOSTPAGESIZEPF4_V(sge_hps) | 7090 HOSTPAGESIZEPF5_V(sge_hps) | 7091 HOSTPAGESIZEPF6_V(sge_hps) | 7092 HOSTPAGESIZEPF7_V(sge_hps)); 7093 7094 if (is_t4(adap->params.chip)) { 7095 t4_set_reg_field(adap, SGE_CONTROL_A, 7096 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7097 EGRSTATUSPAGESIZE_F, 7098 INGPADBOUNDARY_V(fl_align_log - 7099 INGPADBOUNDARY_SHIFT_X) | 7100 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7101 } else { 7102 unsigned int pack_align; 7103 unsigned int ingpad, ingpack; 7104 unsigned int pcie_cap; 7105 7106 /* T5 introduced the separation of the Free List Padding and 7107 * Packing Boundaries. Thus, we can select a smaller Padding 7108 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7109 * Bandwidth, and use a Packing Boundary which is large enough 7110 * to avoid false sharing between CPUs, etc. 7111 * 7112 * For the PCI Link, the smaller the Padding Boundary the 7113 * better. For the Memory Controller, a smaller Padding 7114 * Boundary is better until we cross under the Memory Line 7115 * Size (the minimum unit of transfer to/from Memory). If we 7116 * have a Padding Boundary which is smaller than the Memory 7117 * Line Size, that'll involve a Read-Modify-Write cycle on the 7118 * Memory Controller which is never good. 7119 */ 7120 7121 /* We want the Packing Boundary to be based on the Cache Line 7122 * Size in order to help avoid False Sharing performance 7123 * issues between CPUs, etc. We also want the Packing 7124 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7125 * get best performance when the Packing Boundary is a 7126 * multiple of the Maximum Payload Size. 7127 */ 7128 pack_align = fl_align; 7129 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7130 if (pcie_cap) { 7131 unsigned int mps, mps_log; 7132 u16 devctl; 7133 7134 /* The PCIe Device Control Maximum Payload Size field 7135 * [bits 7:5] encodes sizes as powers of 2 starting at 7136 * 128 bytes. 7137 */ 7138 pci_read_config_word(adap->pdev, 7139 pcie_cap + PCI_EXP_DEVCTL, 7140 &devctl); 7141 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7142 mps = 1 << mps_log; 7143 if (mps > pack_align) 7144 pack_align = mps; 7145 } 7146 7147 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7148 * value for the Packing Boundary. This corresponds to 16 7149 * bytes instead of the expected 32 bytes. So if we want 32 7150 * bytes, the best we can really do is 64 bytes ... 7151 */ 7152 if (pack_align <= 16) { 7153 ingpack = INGPACKBOUNDARY_16B_X; 7154 fl_align = 16; 7155 } else if (pack_align == 32) { 7156 ingpack = INGPACKBOUNDARY_64B_X; 7157 fl_align = 64; 7158 } else { 7159 unsigned int pack_align_log = fls(pack_align) - 1; 7160 7161 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7162 fl_align = pack_align; 7163 } 7164 7165 /* Use the smallest Ingress Padding which isn't smaller than 7166 * the Memory Controller Read/Write Size. We'll take that as 7167 * being 8 bytes since we don't know of any system with a 7168 * wider Memory Controller Bus Width. 7169 */ 7170 if (is_t5(adap->params.chip)) 7171 ingpad = INGPADBOUNDARY_32B_X; 7172 else 7173 ingpad = T6_INGPADBOUNDARY_8B_X; 7174 7175 t4_set_reg_field(adap, SGE_CONTROL_A, 7176 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7177 EGRSTATUSPAGESIZE_F, 7178 INGPADBOUNDARY_V(ingpad) | 7179 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7180 t4_set_reg_field(adap, SGE_CONTROL2_A, 7181 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7182 INGPACKBOUNDARY_V(ingpack)); 7183 } 7184 /* 7185 * Adjust various SGE Free List Host Buffer Sizes. 7186 * 7187 * This is something of a crock since we're using fixed indices into 7188 * the array which are also known by the sge.c code and the T4 7189 * Firmware Configuration File. We need to come up with a much better 7190 * approach to managing this array. For now, the first four entries 7191 * are: 7192 * 7193 * 0: Host Page Size 7194 * 1: 64KB 7195 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7196 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7197 * 7198 * For the single-MTU buffers in unpacked mode we need to include 7199 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7200 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7201 * Padding boundary. All of these are accommodated in the Factory 7202 * Default Firmware Configuration File but we need to adjust it for 7203 * this host's cache line size. 7204 */ 7205 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7206 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7207 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7208 & ~(fl_align-1)); 7209 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7210 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7211 & ~(fl_align-1)); 7212 7213 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7214 7215 return 0; 7216 } 7217 7218 /** 7219 * t4_fw_initialize - ask FW to initialize the device 7220 * @adap: the adapter 7221 * @mbox: mailbox to use for the FW command 7222 * 7223 * Issues a command to FW to partially initialize the device. This 7224 * performs initialization that generally doesn't depend on user input. 7225 */ 7226 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7227 { 7228 struct fw_initialize_cmd c; 7229 7230 memset(&c, 0, sizeof(c)); 7231 INIT_CMD(c, INITIALIZE, WRITE); 7232 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7233 } 7234 7235 /** 7236 * t4_query_params_rw - query FW or device parameters 7237 * @adap: the adapter 7238 * @mbox: mailbox to use for the FW command 7239 * @pf: the PF 7240 * @vf: the VF 7241 * @nparams: the number of parameters 7242 * @params: the parameter names 7243 * @val: the parameter values 7244 * @rw: Write and read flag 7245 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7246 * 7247 * Reads the value of FW or device parameters. Up to 7 parameters can be 7248 * queried at once. 7249 */ 7250 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7251 unsigned int vf, unsigned int nparams, const u32 *params, 7252 u32 *val, int rw, bool sleep_ok) 7253 { 7254 int i, ret; 7255 struct fw_params_cmd c; 7256 __be32 *p = &c.param[0].mnem; 7257 7258 if (nparams > 7) 7259 return -EINVAL; 7260 7261 memset(&c, 0, sizeof(c)); 7262 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7263 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7264 FW_PARAMS_CMD_PFN_V(pf) | 7265 FW_PARAMS_CMD_VFN_V(vf)); 7266 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7267 7268 for (i = 0; i < nparams; i++) { 7269 *p++ = cpu_to_be32(*params++); 7270 if (rw) 7271 *p = cpu_to_be32(*(val + i)); 7272 p++; 7273 } 7274 7275 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7276 if (ret == 0) 7277 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7278 *val++ = be32_to_cpu(*p); 7279 return ret; 7280 } 7281 7282 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7283 unsigned int vf, unsigned int nparams, const u32 *params, 7284 u32 *val) 7285 { 7286 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7287 true); 7288 } 7289 7290 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7291 unsigned int vf, unsigned int nparams, const u32 *params, 7292 u32 *val) 7293 { 7294 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7295 false); 7296 } 7297 7298 /** 7299 * t4_set_params_timeout - sets FW or device parameters 7300 * @adap: the adapter 7301 * @mbox: mailbox to use for the FW command 7302 * @pf: the PF 7303 * @vf: the VF 7304 * @nparams: the number of parameters 7305 * @params: the parameter names 7306 * @val: the parameter values 7307 * @timeout: the timeout time 7308 * 7309 * Sets the value of FW or device parameters. Up to 7 parameters can be 7310 * specified at once. 7311 */ 7312 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7313 unsigned int pf, unsigned int vf, 7314 unsigned int nparams, const u32 *params, 7315 const u32 *val, int timeout) 7316 { 7317 struct fw_params_cmd c; 7318 __be32 *p = &c.param[0].mnem; 7319 7320 if (nparams > 7) 7321 return -EINVAL; 7322 7323 memset(&c, 0, sizeof(c)); 7324 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7325 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7326 FW_PARAMS_CMD_PFN_V(pf) | 7327 FW_PARAMS_CMD_VFN_V(vf)); 7328 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7329 7330 while (nparams--) { 7331 *p++ = cpu_to_be32(*params++); 7332 *p++ = cpu_to_be32(*val++); 7333 } 7334 7335 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7336 } 7337 7338 /** 7339 * t4_set_params - sets FW or device parameters 7340 * @adap: the adapter 7341 * @mbox: mailbox to use for the FW command 7342 * @pf: the PF 7343 * @vf: the VF 7344 * @nparams: the number of parameters 7345 * @params: the parameter names 7346 * @val: the parameter values 7347 * 7348 * Sets the value of FW or device parameters. Up to 7 parameters can be 7349 * specified at once. 7350 */ 7351 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7352 unsigned int vf, unsigned int nparams, const u32 *params, 7353 const u32 *val) 7354 { 7355 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7356 FW_CMD_MAX_TIMEOUT); 7357 } 7358 7359 /** 7360 * t4_cfg_pfvf - configure PF/VF resource limits 7361 * @adap: the adapter 7362 * @mbox: mailbox to use for the FW command 7363 * @pf: the PF being configured 7364 * @vf: the VF being configured 7365 * @txq: the max number of egress queues 7366 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7367 * @rxqi: the max number of interrupt-capable ingress queues 7368 * @rxq: the max number of interruptless ingress queues 7369 * @tc: the PCI traffic class 7370 * @vi: the max number of virtual interfaces 7371 * @cmask: the channel access rights mask for the PF/VF 7372 * @pmask: the port access rights mask for the PF/VF 7373 * @nexact: the maximum number of exact MPS filters 7374 * @rcaps: read capabilities 7375 * @wxcaps: write/execute capabilities 7376 * 7377 * Configures resource limits and capabilities for a physical or virtual 7378 * function. 7379 */ 7380 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7381 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7382 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7383 unsigned int vi, unsigned int cmask, unsigned int pmask, 7384 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7385 { 7386 struct fw_pfvf_cmd c; 7387 7388 memset(&c, 0, sizeof(c)); 7389 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7390 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7391 FW_PFVF_CMD_VFN_V(vf)); 7392 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7393 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7394 FW_PFVF_CMD_NIQ_V(rxq)); 7395 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7396 FW_PFVF_CMD_PMASK_V(pmask) | 7397 FW_PFVF_CMD_NEQ_V(txq)); 7398 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7399 FW_PFVF_CMD_NVI_V(vi) | 7400 FW_PFVF_CMD_NEXACTF_V(nexact)); 7401 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7402 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7403 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7404 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7405 } 7406 7407 /** 7408 * t4_alloc_vi - allocate a virtual interface 7409 * @adap: the adapter 7410 * @mbox: mailbox to use for the FW command 7411 * @port: physical port associated with the VI 7412 * @pf: the PF owning the VI 7413 * @vf: the VF owning the VI 7414 * @nmac: number of MAC addresses needed (1 to 5) 7415 * @mac: the MAC addresses of the VI 7416 * @rss_size: size of RSS table slice associated with this VI 7417 * 7418 * Allocates a virtual interface for the given physical port. If @mac is 7419 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7420 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7421 * stored consecutively so the space needed is @nmac * 6 bytes. 7422 * Returns a negative error number or the non-negative VI id. 7423 */ 7424 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7425 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7426 unsigned int *rss_size) 7427 { 7428 int ret; 7429 struct fw_vi_cmd c; 7430 7431 memset(&c, 0, sizeof(c)); 7432 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7433 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7434 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7435 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7436 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7437 c.nmac = nmac - 1; 7438 7439 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7440 if (ret) 7441 return ret; 7442 7443 if (mac) { 7444 memcpy(mac, c.mac, sizeof(c.mac)); 7445 switch (nmac) { 7446 case 5: 7447 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7448 case 4: 7449 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7450 case 3: 7451 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7452 case 2: 7453 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7454 } 7455 } 7456 if (rss_size) 7457 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7458 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7459 } 7460 7461 /** 7462 * t4_free_vi - free a virtual interface 7463 * @adap: the adapter 7464 * @mbox: mailbox to use for the FW command 7465 * @pf: the PF owning the VI 7466 * @vf: the VF owning the VI 7467 * @viid: virtual interface identifiler 7468 * 7469 * Free a previously allocated virtual interface. 7470 */ 7471 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7472 unsigned int vf, unsigned int viid) 7473 { 7474 struct fw_vi_cmd c; 7475 7476 memset(&c, 0, sizeof(c)); 7477 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7478 FW_CMD_REQUEST_F | 7479 FW_CMD_EXEC_F | 7480 FW_VI_CMD_PFN_V(pf) | 7481 FW_VI_CMD_VFN_V(vf)); 7482 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7483 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7484 7485 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7486 } 7487 7488 /** 7489 * t4_set_rxmode - set Rx properties of a virtual interface 7490 * @adap: the adapter 7491 * @mbox: mailbox to use for the FW command 7492 * @viid: the VI id 7493 * @mtu: the new MTU or -1 7494 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7495 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7496 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7497 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7498 * @sleep_ok: if true we may sleep while awaiting command completion 7499 * 7500 * Sets Rx properties of a virtual interface. 7501 */ 7502 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7503 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7504 bool sleep_ok) 7505 { 7506 struct fw_vi_rxmode_cmd c; 7507 7508 /* convert to FW values */ 7509 if (mtu < 0) 7510 mtu = FW_RXMODE_MTU_NO_CHG; 7511 if (promisc < 0) 7512 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7513 if (all_multi < 0) 7514 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7515 if (bcast < 0) 7516 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7517 if (vlanex < 0) 7518 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7519 7520 memset(&c, 0, sizeof(c)); 7521 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7522 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7523 FW_VI_RXMODE_CMD_VIID_V(viid)); 7524 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7525 c.mtu_to_vlanexen = 7526 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7527 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7528 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7529 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7530 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7531 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7532 } 7533 7534 /** 7535 * t4_free_encap_mac_filt - frees MPS entry at given index 7536 * @adap: the adapter 7537 * @viid: the VI id 7538 * @idx: index of MPS entry to be freed 7539 * @sleep_ok: call is allowed to sleep 7540 * 7541 * Frees the MPS entry at supplied index 7542 * 7543 * Returns a negative error number or zero on success 7544 */ 7545 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7546 int idx, bool sleep_ok) 7547 { 7548 struct fw_vi_mac_exact *p; 7549 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7550 struct fw_vi_mac_cmd c; 7551 int ret = 0; 7552 u32 exact; 7553 7554 memset(&c, 0, sizeof(c)); 7555 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7556 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7557 FW_CMD_EXEC_V(0) | 7558 FW_VI_MAC_CMD_VIID_V(viid)); 7559 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7560 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7561 exact | 7562 FW_CMD_LEN16_V(1)); 7563 p = c.u.exact; 7564 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7565 FW_VI_MAC_CMD_IDX_V(idx)); 7566 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7567 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7568 return ret; 7569 } 7570 7571 /** 7572 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7573 * @adap: the adapter 7574 * @viid: the VI id 7575 * @addr: the MAC address 7576 * @mask: the mask 7577 * @idx: index of the entry in mps tcam 7578 * @lookup_type: MAC address for inner (1) or outer (0) header 7579 * @port_id: the port index 7580 * @sleep_ok: call is allowed to sleep 7581 * 7582 * Removes the mac entry at the specified index using raw mac interface. 7583 * 7584 * Returns a negative error number on failure. 7585 */ 7586 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7587 const u8 *addr, const u8 *mask, unsigned int idx, 7588 u8 lookup_type, u8 port_id, bool sleep_ok) 7589 { 7590 struct fw_vi_mac_cmd c; 7591 struct fw_vi_mac_raw *p = &c.u.raw; 7592 u32 val; 7593 7594 memset(&c, 0, sizeof(c)); 7595 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7596 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7597 FW_CMD_EXEC_V(0) | 7598 FW_VI_MAC_CMD_VIID_V(viid)); 7599 val = FW_CMD_LEN16_V(1) | 7600 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7601 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7602 FW_CMD_LEN16_V(val)); 7603 7604 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7605 FW_VI_MAC_ID_BASED_FREE); 7606 7607 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7608 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7609 DATAPORTNUM_V(port_id)); 7610 /* Lookup mask and port mask */ 7611 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7612 DATAPORTNUM_V(DATAPORTNUM_M)); 7613 7614 /* Copy the address and the mask */ 7615 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7616 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7617 7618 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7619 } 7620 7621 /** 7622 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7623 * @adap: the adapter 7624 * @viid: the VI id 7625 * @mac: the MAC address 7626 * @mask: the mask 7627 * @vni: the VNI id for the tunnel protocol 7628 * @vni_mask: mask for the VNI id 7629 * @dip_hit: to enable DIP match for the MPS entry 7630 * @lookup_type: MAC address for inner (1) or outer (0) header 7631 * @sleep_ok: call is allowed to sleep 7632 * 7633 * Allocates an MPS entry with specified MAC address and VNI value. 7634 * 7635 * Returns a negative error number or the allocated index for this mac. 7636 */ 7637 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7638 const u8 *addr, const u8 *mask, unsigned int vni, 7639 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7640 bool sleep_ok) 7641 { 7642 struct fw_vi_mac_cmd c; 7643 struct fw_vi_mac_vni *p = c.u.exact_vni; 7644 int ret = 0; 7645 u32 val; 7646 7647 memset(&c, 0, sizeof(c)); 7648 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7649 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7650 FW_VI_MAC_CMD_VIID_V(viid)); 7651 val = FW_CMD_LEN16_V(1) | 7652 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7653 c.freemacs_to_len16 = cpu_to_be32(val); 7654 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7655 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7656 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7657 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7658 7659 p->lookup_type_to_vni = 7660 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7661 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7662 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7663 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7664 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7665 if (ret == 0) 7666 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7667 return ret; 7668 } 7669 7670 /** 7671 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7672 * @adap: the adapter 7673 * @viid: the VI id 7674 * @mac: the MAC address 7675 * @mask: the mask 7676 * @idx: index at which to add this entry 7677 * @port_id: the port index 7678 * @lookup_type: MAC address for inner (1) or outer (0) header 7679 * @sleep_ok: call is allowed to sleep 7680 * 7681 * Adds the mac entry at the specified index using raw mac interface. 7682 * 7683 * Returns a negative error number or the allocated index for this mac. 7684 */ 7685 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7686 const u8 *addr, const u8 *mask, unsigned int idx, 7687 u8 lookup_type, u8 port_id, bool sleep_ok) 7688 { 7689 int ret = 0; 7690 struct fw_vi_mac_cmd c; 7691 struct fw_vi_mac_raw *p = &c.u.raw; 7692 u32 val; 7693 7694 memset(&c, 0, sizeof(c)); 7695 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7696 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7697 FW_VI_MAC_CMD_VIID_V(viid)); 7698 val = FW_CMD_LEN16_V(1) | 7699 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7700 c.freemacs_to_len16 = cpu_to_be32(val); 7701 7702 /* Specify that this is an inner mac address */ 7703 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7704 7705 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7706 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7707 DATAPORTNUM_V(port_id)); 7708 /* Lookup mask and port mask */ 7709 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7710 DATAPORTNUM_V(DATAPORTNUM_M)); 7711 7712 /* Copy the address and the mask */ 7713 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7714 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7715 7716 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7717 if (ret == 0) { 7718 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7719 if (ret != idx) 7720 ret = -ENOMEM; 7721 } 7722 7723 return ret; 7724 } 7725 7726 /** 7727 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7728 * @adap: the adapter 7729 * @mbox: mailbox to use for the FW command 7730 * @viid: the VI id 7731 * @free: if true any existing filters for this VI id are first removed 7732 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7733 * @addr: the MAC address(es) 7734 * @idx: where to store the index of each allocated filter 7735 * @hash: pointer to hash address filter bitmap 7736 * @sleep_ok: call is allowed to sleep 7737 * 7738 * Allocates an exact-match filter for each of the supplied addresses and 7739 * sets it to the corresponding address. If @idx is not %NULL it should 7740 * have at least @naddr entries, each of which will be set to the index of 7741 * the filter allocated for the corresponding MAC address. If a filter 7742 * could not be allocated for an address its index is set to 0xffff. 7743 * If @hash is not %NULL addresses that fail to allocate an exact filter 7744 * are hashed and update the hash filter bitmap pointed at by @hash. 7745 * 7746 * Returns a negative error number or the number of filters allocated. 7747 */ 7748 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7749 unsigned int viid, bool free, unsigned int naddr, 7750 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7751 { 7752 int offset, ret = 0; 7753 struct fw_vi_mac_cmd c; 7754 unsigned int nfilters = 0; 7755 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7756 unsigned int rem = naddr; 7757 7758 if (naddr > max_naddr) 7759 return -EINVAL; 7760 7761 for (offset = 0; offset < naddr ; /**/) { 7762 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7763 rem : ARRAY_SIZE(c.u.exact)); 7764 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7765 u.exact[fw_naddr]), 16); 7766 struct fw_vi_mac_exact *p; 7767 int i; 7768 7769 memset(&c, 0, sizeof(c)); 7770 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7771 FW_CMD_REQUEST_F | 7772 FW_CMD_WRITE_F | 7773 FW_CMD_EXEC_V(free) | 7774 FW_VI_MAC_CMD_VIID_V(viid)); 7775 c.freemacs_to_len16 = 7776 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7777 FW_CMD_LEN16_V(len16)); 7778 7779 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7780 p->valid_to_idx = 7781 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7782 FW_VI_MAC_CMD_IDX_V( 7783 FW_VI_MAC_ADD_MAC)); 7784 memcpy(p->macaddr, addr[offset + i], 7785 sizeof(p->macaddr)); 7786 } 7787 7788 /* It's okay if we run out of space in our MAC address arena. 7789 * Some of the addresses we submit may get stored so we need 7790 * to run through the reply to see what the results were ... 7791 */ 7792 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7793 if (ret && ret != -FW_ENOMEM) 7794 break; 7795 7796 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7797 u16 index = FW_VI_MAC_CMD_IDX_G( 7798 be16_to_cpu(p->valid_to_idx)); 7799 7800 if (idx) 7801 idx[offset + i] = (index >= max_naddr ? 7802 0xffff : index); 7803 if (index < max_naddr) 7804 nfilters++; 7805 else if (hash) 7806 *hash |= (1ULL << 7807 hash_mac_addr(addr[offset + i])); 7808 } 7809 7810 free = false; 7811 offset += fw_naddr; 7812 rem -= fw_naddr; 7813 } 7814 7815 if (ret == 0 || ret == -FW_ENOMEM) 7816 ret = nfilters; 7817 return ret; 7818 } 7819 7820 /** 7821 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7822 * @adap: the adapter 7823 * @mbox: mailbox to use for the FW command 7824 * @viid: the VI id 7825 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7826 * @addr: the MAC address(es) 7827 * @sleep_ok: call is allowed to sleep 7828 * 7829 * Frees the exact-match filter for each of the supplied addresses 7830 * 7831 * Returns a negative error number or the number of filters freed. 7832 */ 7833 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7834 unsigned int viid, unsigned int naddr, 7835 const u8 **addr, bool sleep_ok) 7836 { 7837 int offset, ret = 0; 7838 struct fw_vi_mac_cmd c; 7839 unsigned int nfilters = 0; 7840 unsigned int max_naddr = is_t4(adap->params.chip) ? 7841 NUM_MPS_CLS_SRAM_L_INSTANCES : 7842 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7843 unsigned int rem = naddr; 7844 7845 if (naddr > max_naddr) 7846 return -EINVAL; 7847 7848 for (offset = 0; offset < (int)naddr ; /**/) { 7849 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7850 ? rem 7851 : ARRAY_SIZE(c.u.exact)); 7852 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7853 u.exact[fw_naddr]), 16); 7854 struct fw_vi_mac_exact *p; 7855 int i; 7856 7857 memset(&c, 0, sizeof(c)); 7858 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7859 FW_CMD_REQUEST_F | 7860 FW_CMD_WRITE_F | 7861 FW_CMD_EXEC_V(0) | 7862 FW_VI_MAC_CMD_VIID_V(viid)); 7863 c.freemacs_to_len16 = 7864 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7865 FW_CMD_LEN16_V(len16)); 7866 7867 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7868 p->valid_to_idx = cpu_to_be16( 7869 FW_VI_MAC_CMD_VALID_F | 7870 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 7871 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7872 } 7873 7874 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7875 if (ret) 7876 break; 7877 7878 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7879 u16 index = FW_VI_MAC_CMD_IDX_G( 7880 be16_to_cpu(p->valid_to_idx)); 7881 7882 if (index < max_naddr) 7883 nfilters++; 7884 } 7885 7886 offset += fw_naddr; 7887 rem -= fw_naddr; 7888 } 7889 7890 if (ret == 0) 7891 ret = nfilters; 7892 return ret; 7893 } 7894 7895 /** 7896 * t4_change_mac - modifies the exact-match filter for a MAC address 7897 * @adap: the adapter 7898 * @mbox: mailbox to use for the FW command 7899 * @viid: the VI id 7900 * @idx: index of existing filter for old value of MAC address, or -1 7901 * @addr: the new MAC address value 7902 * @persist: whether a new MAC allocation should be persistent 7903 * @add_smt: if true also add the address to the HW SMT 7904 * 7905 * Modifies an exact-match filter and sets it to the new MAC address. 7906 * Note that in general it is not possible to modify the value of a given 7907 * filter so the generic way to modify an address filter is to free the one 7908 * being used by the old address value and allocate a new filter for the 7909 * new address value. @idx can be -1 if the address is a new addition. 7910 * 7911 * Returns a negative error number or the index of the filter with the new 7912 * MAC value. 7913 */ 7914 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7915 int idx, const u8 *addr, bool persist, bool add_smt) 7916 { 7917 int ret, mode; 7918 struct fw_vi_mac_cmd c; 7919 struct fw_vi_mac_exact *p = c.u.exact; 7920 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 7921 7922 if (idx < 0) /* new allocation */ 7923 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 7924 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 7925 7926 memset(&c, 0, sizeof(c)); 7927 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7928 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7929 FW_VI_MAC_CMD_VIID_V(viid)); 7930 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 7931 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7932 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 7933 FW_VI_MAC_CMD_IDX_V(idx)); 7934 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7935 7936 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7937 if (ret == 0) { 7938 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7939 if (ret >= max_mac_addr) 7940 ret = -ENOMEM; 7941 } 7942 return ret; 7943 } 7944 7945 /** 7946 * t4_set_addr_hash - program the MAC inexact-match hash filter 7947 * @adap: the adapter 7948 * @mbox: mailbox to use for the FW command 7949 * @viid: the VI id 7950 * @ucast: whether the hash filter should also match unicast addresses 7951 * @vec: the value to be written to the hash filter 7952 * @sleep_ok: call is allowed to sleep 7953 * 7954 * Sets the 64-bit inexact-match hash filter for a virtual interface. 7955 */ 7956 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 7957 bool ucast, u64 vec, bool sleep_ok) 7958 { 7959 struct fw_vi_mac_cmd c; 7960 7961 memset(&c, 0, sizeof(c)); 7962 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7963 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7964 FW_VI_ENABLE_CMD_VIID_V(viid)); 7965 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 7966 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 7967 FW_CMD_LEN16_V(1)); 7968 c.u.hash.hashvec = cpu_to_be64(vec); 7969 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7970 } 7971 7972 /** 7973 * t4_enable_vi_params - enable/disable a virtual interface 7974 * @adap: the adapter 7975 * @mbox: mailbox to use for the FW command 7976 * @viid: the VI id 7977 * @rx_en: 1=enable Rx, 0=disable Rx 7978 * @tx_en: 1=enable Tx, 0=disable Tx 7979 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 7980 * 7981 * Enables/disables a virtual interface. Note that setting DCB Enable 7982 * only makes sense when enabling a Virtual Interface ... 7983 */ 7984 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 7985 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 7986 { 7987 struct fw_vi_enable_cmd c; 7988 7989 memset(&c, 0, sizeof(c)); 7990 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7991 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7992 FW_VI_ENABLE_CMD_VIID_V(viid)); 7993 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 7994 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 7995 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 7996 FW_LEN16(c)); 7997 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 7998 } 7999 8000 /** 8001 * t4_enable_vi - enable/disable a virtual interface 8002 * @adap: the adapter 8003 * @mbox: mailbox to use for the FW command 8004 * @viid: the VI id 8005 * @rx_en: 1=enable Rx, 0=disable Rx 8006 * @tx_en: 1=enable Tx, 0=disable Tx 8007 * 8008 * Enables/disables a virtual interface. 8009 */ 8010 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8011 bool rx_en, bool tx_en) 8012 { 8013 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8014 } 8015 8016 /** 8017 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8018 * @adap: the adapter 8019 * @mbox: mailbox to use for the FW command 8020 * @pi: the Port Information structure 8021 * @rx_en: 1=enable Rx, 0=disable Rx 8022 * @tx_en: 1=enable Tx, 0=disable Tx 8023 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8024 * 8025 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8026 * Enable only makes sense when enabling a Virtual Interface ... 8027 * If the Virtual Interface enable/disable operation is successful, 8028 * we notify the OS-specific code of a potential Link Status change 8029 * via the OS Contract API t4_os_link_changed(). 8030 */ 8031 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8032 struct port_info *pi, 8033 bool rx_en, bool tx_en, bool dcb_en) 8034 { 8035 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8036 rx_en, tx_en, dcb_en); 8037 if (ret) 8038 return ret; 8039 t4_os_link_changed(adap, pi->port_id, 8040 rx_en && tx_en && pi->link_cfg.link_ok); 8041 return 0; 8042 } 8043 8044 /** 8045 * t4_identify_port - identify a VI's port by blinking its LED 8046 * @adap: the adapter 8047 * @mbox: mailbox to use for the FW command 8048 * @viid: the VI id 8049 * @nblinks: how many times to blink LED at 2.5 Hz 8050 * 8051 * Identifies a VI's port by blinking its LED. 8052 */ 8053 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8054 unsigned int nblinks) 8055 { 8056 struct fw_vi_enable_cmd c; 8057 8058 memset(&c, 0, sizeof(c)); 8059 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8060 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8061 FW_VI_ENABLE_CMD_VIID_V(viid)); 8062 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8063 c.blinkdur = cpu_to_be16(nblinks); 8064 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8065 } 8066 8067 /** 8068 * t4_iq_stop - stop an ingress queue and its FLs 8069 * @adap: the adapter 8070 * @mbox: mailbox to use for the FW command 8071 * @pf: the PF owning the queues 8072 * @vf: the VF owning the queues 8073 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8074 * @iqid: ingress queue id 8075 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8076 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8077 * 8078 * Stops an ingress queue and its associated FLs, if any. This causes 8079 * any current or future data/messages destined for these queues to be 8080 * tossed. 8081 */ 8082 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8083 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8084 unsigned int fl0id, unsigned int fl1id) 8085 { 8086 struct fw_iq_cmd c; 8087 8088 memset(&c, 0, sizeof(c)); 8089 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8090 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8091 FW_IQ_CMD_VFN_V(vf)); 8092 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8093 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8094 c.iqid = cpu_to_be16(iqid); 8095 c.fl0id = cpu_to_be16(fl0id); 8096 c.fl1id = cpu_to_be16(fl1id); 8097 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8098 } 8099 8100 /** 8101 * t4_iq_free - free an ingress queue and its FLs 8102 * @adap: the adapter 8103 * @mbox: mailbox to use for the FW command 8104 * @pf: the PF owning the queues 8105 * @vf: the VF owning the queues 8106 * @iqtype: the ingress queue type 8107 * @iqid: ingress queue id 8108 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8109 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8110 * 8111 * Frees an ingress queue and its associated FLs, if any. 8112 */ 8113 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8114 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8115 unsigned int fl0id, unsigned int fl1id) 8116 { 8117 struct fw_iq_cmd c; 8118 8119 memset(&c, 0, sizeof(c)); 8120 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8121 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8122 FW_IQ_CMD_VFN_V(vf)); 8123 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8124 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8125 c.iqid = cpu_to_be16(iqid); 8126 c.fl0id = cpu_to_be16(fl0id); 8127 c.fl1id = cpu_to_be16(fl1id); 8128 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8129 } 8130 8131 /** 8132 * t4_eth_eq_free - free an Ethernet egress queue 8133 * @adap: the adapter 8134 * @mbox: mailbox to use for the FW command 8135 * @pf: the PF owning the queue 8136 * @vf: the VF owning the queue 8137 * @eqid: egress queue id 8138 * 8139 * Frees an Ethernet egress queue. 8140 */ 8141 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8142 unsigned int vf, unsigned int eqid) 8143 { 8144 struct fw_eq_eth_cmd c; 8145 8146 memset(&c, 0, sizeof(c)); 8147 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8148 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8149 FW_EQ_ETH_CMD_PFN_V(pf) | 8150 FW_EQ_ETH_CMD_VFN_V(vf)); 8151 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8152 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8153 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8154 } 8155 8156 /** 8157 * t4_ctrl_eq_free - free a control egress queue 8158 * @adap: the adapter 8159 * @mbox: mailbox to use for the FW command 8160 * @pf: the PF owning the queue 8161 * @vf: the VF owning the queue 8162 * @eqid: egress queue id 8163 * 8164 * Frees a control egress queue. 8165 */ 8166 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8167 unsigned int vf, unsigned int eqid) 8168 { 8169 struct fw_eq_ctrl_cmd c; 8170 8171 memset(&c, 0, sizeof(c)); 8172 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8173 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8174 FW_EQ_CTRL_CMD_PFN_V(pf) | 8175 FW_EQ_CTRL_CMD_VFN_V(vf)); 8176 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8177 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8178 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8179 } 8180 8181 /** 8182 * t4_ofld_eq_free - free an offload egress queue 8183 * @adap: the adapter 8184 * @mbox: mailbox to use for the FW command 8185 * @pf: the PF owning the queue 8186 * @vf: the VF owning the queue 8187 * @eqid: egress queue id 8188 * 8189 * Frees a control egress queue. 8190 */ 8191 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8192 unsigned int vf, unsigned int eqid) 8193 { 8194 struct fw_eq_ofld_cmd c; 8195 8196 memset(&c, 0, sizeof(c)); 8197 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8198 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8199 FW_EQ_OFLD_CMD_PFN_V(pf) | 8200 FW_EQ_OFLD_CMD_VFN_V(vf)); 8201 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8202 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8203 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8204 } 8205 8206 /** 8207 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8208 * @adap: the adapter 8209 * @link_down_rc: Link Down Reason Code 8210 * 8211 * Returns a string representation of the Link Down Reason Code. 8212 */ 8213 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8214 { 8215 static const char * const reason[] = { 8216 "Link Down", 8217 "Remote Fault", 8218 "Auto-negotiation Failure", 8219 "Reserved", 8220 "Insufficient Airflow", 8221 "Unable To Determine Reason", 8222 "No RX Signal Detected", 8223 "Reserved", 8224 }; 8225 8226 if (link_down_rc >= ARRAY_SIZE(reason)) 8227 return "Bad Reason Code"; 8228 8229 return reason[link_down_rc]; 8230 } 8231 8232 /** 8233 * Return the highest speed set in the port capabilities, in Mb/s. 8234 */ 8235 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8236 { 8237 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8238 do { \ 8239 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8240 return __speed; \ 8241 } while (0) 8242 8243 TEST_SPEED_RETURN(400G, 400000); 8244 TEST_SPEED_RETURN(200G, 200000); 8245 TEST_SPEED_RETURN(100G, 100000); 8246 TEST_SPEED_RETURN(50G, 50000); 8247 TEST_SPEED_RETURN(40G, 40000); 8248 TEST_SPEED_RETURN(25G, 25000); 8249 TEST_SPEED_RETURN(10G, 10000); 8250 TEST_SPEED_RETURN(1G, 1000); 8251 TEST_SPEED_RETURN(100M, 100); 8252 8253 #undef TEST_SPEED_RETURN 8254 8255 return 0; 8256 } 8257 8258 /** 8259 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8260 * @acaps: advertised Port Capabilities 8261 * 8262 * Get the highest speed for the port from the advertised Port 8263 * Capabilities. It will be either the highest speed from the list of 8264 * speeds or whatever user has set using ethtool. 8265 */ 8266 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8267 { 8268 #define TEST_SPEED_RETURN(__caps_speed) \ 8269 do { \ 8270 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8271 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8272 } while (0) 8273 8274 TEST_SPEED_RETURN(400G); 8275 TEST_SPEED_RETURN(200G); 8276 TEST_SPEED_RETURN(100G); 8277 TEST_SPEED_RETURN(50G); 8278 TEST_SPEED_RETURN(40G); 8279 TEST_SPEED_RETURN(25G); 8280 TEST_SPEED_RETURN(10G); 8281 TEST_SPEED_RETURN(1G); 8282 TEST_SPEED_RETURN(100M); 8283 8284 #undef TEST_SPEED_RETURN 8285 8286 return 0; 8287 } 8288 8289 /** 8290 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8291 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8292 * 8293 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8294 * 32-bit Port Capabilities value. 8295 */ 8296 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8297 { 8298 fw_port_cap32_t linkattr = 0; 8299 8300 /* Unfortunately the format of the Link Status in the old 8301 * 16-bit Port Information message isn't the same as the 8302 * 16-bit Port Capabilities bitfield used everywhere else ... 8303 */ 8304 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8305 linkattr |= FW_PORT_CAP32_FC_RX; 8306 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8307 linkattr |= FW_PORT_CAP32_FC_TX; 8308 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8309 linkattr |= FW_PORT_CAP32_SPEED_100M; 8310 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8311 linkattr |= FW_PORT_CAP32_SPEED_1G; 8312 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8313 linkattr |= FW_PORT_CAP32_SPEED_10G; 8314 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8315 linkattr |= FW_PORT_CAP32_SPEED_25G; 8316 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8317 linkattr |= FW_PORT_CAP32_SPEED_40G; 8318 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8319 linkattr |= FW_PORT_CAP32_SPEED_100G; 8320 8321 return linkattr; 8322 } 8323 8324 /** 8325 * t4_handle_get_port_info - process a FW reply message 8326 * @pi: the port info 8327 * @rpl: start of the FW message 8328 * 8329 * Processes a GET_PORT_INFO FW reply message. 8330 */ 8331 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8332 { 8333 const struct fw_port_cmd *cmd = (const void *)rpl; 8334 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8335 struct adapter *adapter = pi->adapter; 8336 struct link_config *lc = &pi->link_cfg; 8337 int link_ok, linkdnrc; 8338 enum fw_port_type port_type; 8339 enum fw_port_module_type mod_type; 8340 unsigned int speed, fc, fec; 8341 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8342 8343 /* Extract the various fields from the Port Information message. 8344 */ 8345 switch (action) { 8346 case FW_PORT_ACTION_GET_PORT_INFO: { 8347 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8348 8349 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8350 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8351 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8352 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8353 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8354 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8355 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8356 linkattr = lstatus_to_fwcap(lstatus); 8357 break; 8358 } 8359 8360 case FW_PORT_ACTION_GET_PORT_INFO32: { 8361 u32 lstatus32; 8362 8363 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8364 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8365 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8366 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8367 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8368 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8369 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8370 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8371 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8372 break; 8373 } 8374 8375 default: 8376 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8377 be32_to_cpu(cmd->action_to_len16)); 8378 return; 8379 } 8380 8381 fec = fwcap_to_cc_fec(acaps); 8382 fc = fwcap_to_cc_pause(linkattr); 8383 speed = fwcap_to_speed(linkattr); 8384 8385 lc->new_module = false; 8386 lc->redo_l1cfg = false; 8387 8388 if (mod_type != pi->mod_type) { 8389 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8390 * various fundamental Port Capabilities which used to be 8391 * immutable can now change radically. We can now have 8392 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8393 * all change based on what Transceiver Module is inserted. 8394 * So we need to record the Physical "Port" Capabilities on 8395 * every Transceiver Module change. 8396 */ 8397 lc->pcaps = pcaps; 8398 8399 /* When a new Transceiver Module is inserted, the Firmware 8400 * will examine its i2c EPROM to determine its type and 8401 * general operating parameters including things like Forward 8402 * Error Control, etc. Various IEEE 802.3 standards dictate 8403 * how to interpret these i2c values to determine default 8404 * "sutomatic" settings. We record these for future use when 8405 * the user explicitly requests these standards-based values. 8406 */ 8407 lc->def_acaps = acaps; 8408 8409 /* Some versions of the early T6 Firmware "cheated" when 8410 * handling different Transceiver Modules by changing the 8411 * underlaying Port Type reported to the Host Drivers. As 8412 * such we need to capture whatever Port Type the Firmware 8413 * sends us and record it in case it's different from what we 8414 * were told earlier. Unfortunately, since Firmware is 8415 * forever, we'll need to keep this code here forever, but in 8416 * later T6 Firmware it should just be an assignment of the 8417 * same value already recorded. 8418 */ 8419 pi->port_type = port_type; 8420 8421 pi->mod_type = mod_type; 8422 8423 lc->new_module = t4_is_inserted_mod_type(mod_type); 8424 t4_os_portmod_changed(adapter, pi->port_id); 8425 } 8426 8427 if (link_ok != lc->link_ok || speed != lc->speed || 8428 fc != lc->fc || fec != lc->fec) { /* something changed */ 8429 if (!link_ok && lc->link_ok) { 8430 lc->link_down_rc = linkdnrc; 8431 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n", 8432 pi->tx_chan, t4_link_down_rc_str(linkdnrc)); 8433 } 8434 lc->link_ok = link_ok; 8435 lc->speed = speed; 8436 lc->fc = fc; 8437 lc->fec = fec; 8438 8439 lc->lpacaps = lpacaps; 8440 lc->acaps = acaps & ADVERT_MASK; 8441 8442 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8443 lc->autoneg = AUTONEG_DISABLE; 8444 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8445 lc->autoneg = AUTONEG_ENABLE; 8446 } else { 8447 /* When Autoneg is disabled, user needs to set 8448 * single speed. 8449 * Similar to cxgb4_ethtool.c: set_link_ksettings 8450 */ 8451 lc->acaps = 0; 8452 lc->speed_caps = fwcap_to_fwspeed(acaps); 8453 lc->autoneg = AUTONEG_DISABLE; 8454 } 8455 8456 t4_os_link_changed(adapter, pi->port_id, link_ok); 8457 } 8458 8459 if (lc->new_module && lc->redo_l1cfg) { 8460 struct link_config old_lc; 8461 int ret; 8462 8463 /* Save the current L1 Configuration and restore it if an 8464 * error occurs. We probably should fix the l1_cfg*() 8465 * routines not to change the link_config when an error 8466 * occurs ... 8467 */ 8468 old_lc = *lc; 8469 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8470 if (ret) { 8471 *lc = old_lc; 8472 dev_warn(adapter->pdev_dev, 8473 "Attempt to update new Transceiver Module settings failed\n"); 8474 } 8475 } 8476 lc->new_module = false; 8477 lc->redo_l1cfg = false; 8478 } 8479 8480 /** 8481 * t4_update_port_info - retrieve and update port information if changed 8482 * @pi: the port_info 8483 * 8484 * We issue a Get Port Information Command to the Firmware and, if 8485 * successful, we check to see if anything is different from what we 8486 * last recorded and update things accordingly. 8487 */ 8488 int t4_update_port_info(struct port_info *pi) 8489 { 8490 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8491 struct fw_port_cmd port_cmd; 8492 int ret; 8493 8494 memset(&port_cmd, 0, sizeof(port_cmd)); 8495 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8496 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8497 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8498 port_cmd.action_to_len16 = cpu_to_be32( 8499 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8500 ? FW_PORT_ACTION_GET_PORT_INFO 8501 : FW_PORT_ACTION_GET_PORT_INFO32) | 8502 FW_LEN16(port_cmd)); 8503 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8504 &port_cmd, sizeof(port_cmd), &port_cmd); 8505 if (ret) 8506 return ret; 8507 8508 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8509 return 0; 8510 } 8511 8512 /** 8513 * t4_get_link_params - retrieve basic link parameters for given port 8514 * @pi: the port 8515 * @link_okp: value return pointer for link up/down 8516 * @speedp: value return pointer for speed (Mb/s) 8517 * @mtup: value return pointer for mtu 8518 * 8519 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8520 * and MTU for a specified port. A negative error is returned on 8521 * failure; 0 on success. 8522 */ 8523 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8524 unsigned int *speedp, unsigned int *mtup) 8525 { 8526 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8527 struct fw_port_cmd port_cmd; 8528 unsigned int action, link_ok, speed, mtu; 8529 fw_port_cap32_t linkattr; 8530 int ret; 8531 8532 memset(&port_cmd, 0, sizeof(port_cmd)); 8533 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8534 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8535 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8536 action = (fw_caps == FW_CAPS16 8537 ? FW_PORT_ACTION_GET_PORT_INFO 8538 : FW_PORT_ACTION_GET_PORT_INFO32); 8539 port_cmd.action_to_len16 = cpu_to_be32( 8540 FW_PORT_CMD_ACTION_V(action) | 8541 FW_LEN16(port_cmd)); 8542 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8543 &port_cmd, sizeof(port_cmd), &port_cmd); 8544 if (ret) 8545 return ret; 8546 8547 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8548 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8549 8550 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8551 linkattr = lstatus_to_fwcap(lstatus); 8552 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8553 } else { 8554 u32 lstatus32 = 8555 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8556 8557 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8558 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8559 mtu = FW_PORT_CMD_MTU32_G( 8560 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8561 } 8562 speed = fwcap_to_speed(linkattr); 8563 8564 *link_okp = link_ok; 8565 *speedp = fwcap_to_speed(linkattr); 8566 *mtup = mtu; 8567 8568 return 0; 8569 } 8570 8571 /** 8572 * t4_handle_fw_rpl - process a FW reply message 8573 * @adap: the adapter 8574 * @rpl: start of the FW message 8575 * 8576 * Processes a FW message, such as link state change messages. 8577 */ 8578 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8579 { 8580 u8 opcode = *(const u8 *)rpl; 8581 8582 /* This might be a port command ... this simplifies the following 8583 * conditionals ... We can get away with pre-dereferencing 8584 * action_to_len16 because it's in the first 16 bytes and all messages 8585 * will be at least that long. 8586 */ 8587 const struct fw_port_cmd *p = (const void *)rpl; 8588 unsigned int action = 8589 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8590 8591 if (opcode == FW_PORT_CMD && 8592 (action == FW_PORT_ACTION_GET_PORT_INFO || 8593 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8594 int i; 8595 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8596 struct port_info *pi = NULL; 8597 8598 for_each_port(adap, i) { 8599 pi = adap2pinfo(adap, i); 8600 if (pi->tx_chan == chan) 8601 break; 8602 } 8603 8604 t4_handle_get_port_info(pi, rpl); 8605 } else { 8606 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8607 opcode); 8608 return -EINVAL; 8609 } 8610 return 0; 8611 } 8612 8613 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8614 { 8615 u16 val; 8616 8617 if (pci_is_pcie(adapter->pdev)) { 8618 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8619 p->speed = val & PCI_EXP_LNKSTA_CLS; 8620 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8621 } 8622 } 8623 8624 /** 8625 * init_link_config - initialize a link's SW state 8626 * @lc: pointer to structure holding the link state 8627 * @pcaps: link Port Capabilities 8628 * @acaps: link current Advertised Port Capabilities 8629 * 8630 * Initializes the SW state maintained for each link, including the link's 8631 * capabilities and default speed/flow-control/autonegotiation settings. 8632 */ 8633 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8634 fw_port_cap32_t acaps) 8635 { 8636 lc->pcaps = pcaps; 8637 lc->def_acaps = acaps; 8638 lc->lpacaps = 0; 8639 lc->speed_caps = 0; 8640 lc->speed = 0; 8641 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8642 8643 /* For Forward Error Control, we default to whatever the Firmware 8644 * tells us the Link is currently advertising. 8645 */ 8646 lc->requested_fec = FEC_AUTO; 8647 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8648 8649 /* If the Port is capable of Auto-Negtotiation, initialize it as 8650 * "enabled" and copy over all of the Physical Port Capabilities 8651 * to the Advertised Port Capabilities. Otherwise mark it as 8652 * Auto-Negotiate disabled and select the highest supported speed 8653 * for the link. Note parallel structure in t4_link_l1cfg_core() 8654 * and t4_handle_get_port_info(). 8655 */ 8656 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8657 lc->acaps = lc->pcaps & ADVERT_MASK; 8658 lc->autoneg = AUTONEG_ENABLE; 8659 lc->requested_fc |= PAUSE_AUTONEG; 8660 } else { 8661 lc->acaps = 0; 8662 lc->autoneg = AUTONEG_DISABLE; 8663 lc->speed_caps = fwcap_to_fwspeed(acaps); 8664 } 8665 } 8666 8667 #define CIM_PF_NOACCESS 0xeeeeeeee 8668 8669 int t4_wait_dev_ready(void __iomem *regs) 8670 { 8671 u32 whoami; 8672 8673 whoami = readl(regs + PL_WHOAMI_A); 8674 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8675 return 0; 8676 8677 msleep(500); 8678 whoami = readl(regs + PL_WHOAMI_A); 8679 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8680 } 8681 8682 struct flash_desc { 8683 u32 vendor_and_model_id; 8684 u32 size_mb; 8685 }; 8686 8687 static int t4_get_flash_params(struct adapter *adap) 8688 { 8689 /* Table for non-Numonix supported flash parts. Numonix parts are left 8690 * to the preexisting code. All flash parts have 64KB sectors. 8691 */ 8692 static struct flash_desc supported_flash[] = { 8693 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8694 }; 8695 8696 unsigned int part, manufacturer; 8697 unsigned int density, size; 8698 u32 flashid = 0; 8699 int ret; 8700 8701 /* Issue a Read ID Command to the Flash part. We decode supported 8702 * Flash parts and their sizes from this. There's a newer Query 8703 * Command which can retrieve detailed geometry information but many 8704 * Flash parts don't support it. 8705 */ 8706 8707 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8708 if (!ret) 8709 ret = sf1_read(adap, 3, 0, 1, &flashid); 8710 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8711 if (ret) 8712 return ret; 8713 8714 /* Check to see if it's one of our non-standard supported Flash parts. 8715 */ 8716 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8717 if (supported_flash[part].vendor_and_model_id == flashid) { 8718 adap->params.sf_size = supported_flash[part].size_mb; 8719 adap->params.sf_nsec = 8720 adap->params.sf_size / SF_SEC_SIZE; 8721 goto found; 8722 } 8723 8724 /* Decode Flash part size. The code below looks repetative with 8725 * common encodings, but that's not guaranteed in the JEDEC 8726 * specification for the Read JADEC ID command. The only thing that 8727 * we're guaranteed by the JADEC specification is where the 8728 * Manufacturer ID is in the returned result. After that each 8729 * Manufacturer ~could~ encode things completely differently. 8730 * Note, all Flash parts must have 64KB sectors. 8731 */ 8732 manufacturer = flashid & 0xff; 8733 switch (manufacturer) { 8734 case 0x20: { /* Micron/Numonix */ 8735 /* This Density -> Size decoding table is taken from Micron 8736 * Data Sheets. 8737 */ 8738 density = (flashid >> 16) & 0xff; 8739 switch (density) { 8740 case 0x14: /* 1MB */ 8741 size = 1 << 20; 8742 break; 8743 case 0x15: /* 2MB */ 8744 size = 1 << 21; 8745 break; 8746 case 0x16: /* 4MB */ 8747 size = 1 << 22; 8748 break; 8749 case 0x17: /* 8MB */ 8750 size = 1 << 23; 8751 break; 8752 case 0x18: /* 16MB */ 8753 size = 1 << 24; 8754 break; 8755 case 0x19: /* 32MB */ 8756 size = 1 << 25; 8757 break; 8758 case 0x20: /* 64MB */ 8759 size = 1 << 26; 8760 break; 8761 case 0x21: /* 128MB */ 8762 size = 1 << 27; 8763 break; 8764 case 0x22: /* 256MB */ 8765 size = 1 << 28; 8766 break; 8767 8768 default: 8769 dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n", 8770 flashid, density); 8771 return -EINVAL; 8772 } 8773 break; 8774 } 8775 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 8776 /* This Density -> Size decoding table is taken from ISSI 8777 * Data Sheets. 8778 */ 8779 density = (flashid >> 16) & 0xff; 8780 switch (density) { 8781 case 0x16: /* 32 MB */ 8782 size = 1 << 25; 8783 break; 8784 case 0x17: /* 64MB */ 8785 size = 1 << 26; 8786 break; 8787 default: 8788 dev_err(adap->pdev_dev, "ISSI Flash Part has bad size, ID = %#x, Density code = %#x\n", 8789 flashid, density); 8790 return -EINVAL; 8791 } 8792 break; 8793 } 8794 case 0xc2: { /* Macronix */ 8795 /* This Density -> Size decoding table is taken from Macronix 8796 * Data Sheets. 8797 */ 8798 density = (flashid >> 16) & 0xff; 8799 switch (density) { 8800 case 0x17: /* 8MB */ 8801 size = 1 << 23; 8802 break; 8803 case 0x18: /* 16MB */ 8804 size = 1 << 24; 8805 break; 8806 default: 8807 dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n", 8808 flashid, density); 8809 return -EINVAL; 8810 } 8811 break; 8812 } 8813 case 0xef: { /* Winbond */ 8814 /* This Density -> Size decoding table is taken from Winbond 8815 * Data Sheets. 8816 */ 8817 density = (flashid >> 16) & 0xff; 8818 switch (density) { 8819 case 0x17: /* 8MB */ 8820 size = 1 << 23; 8821 break; 8822 case 0x18: /* 16MB */ 8823 size = 1 << 24; 8824 break; 8825 default: 8826 dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n", 8827 flashid, density); 8828 return -EINVAL; 8829 } 8830 break; 8831 } 8832 default: 8833 dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n", 8834 flashid); 8835 return -EINVAL; 8836 } 8837 8838 /* Store decoded Flash size and fall through into vetting code. */ 8839 adap->params.sf_size = size; 8840 adap->params.sf_nsec = size / SF_SEC_SIZE; 8841 8842 found: 8843 if (adap->params.sf_size < FLASH_MIN_SIZE) 8844 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8845 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 8846 return 0; 8847 } 8848 8849 /** 8850 * t4_prep_adapter - prepare SW and HW for operation 8851 * @adapter: the adapter 8852 * @reset: if true perform a HW reset 8853 * 8854 * Initialize adapter SW state for the various HW modules, set initial 8855 * values for some adapter tunables, take PHYs out of reset, and 8856 * initialize the MDIO interface. 8857 */ 8858 int t4_prep_adapter(struct adapter *adapter) 8859 { 8860 int ret, ver; 8861 uint16_t device_id; 8862 u32 pl_rev; 8863 8864 get_pci_mode(adapter, &adapter->params.pci); 8865 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 8866 8867 ret = t4_get_flash_params(adapter); 8868 if (ret < 0) { 8869 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 8870 return ret; 8871 } 8872 8873 /* Retrieve adapter's device ID 8874 */ 8875 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 8876 ver = device_id >> 12; 8877 adapter->params.chip = 0; 8878 switch (ver) { 8879 case CHELSIO_T4: 8880 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 8881 adapter->params.arch.sge_fl_db = DBPRIO_F; 8882 adapter->params.arch.mps_tcam_size = 8883 NUM_MPS_CLS_SRAM_L_INSTANCES; 8884 adapter->params.arch.mps_rplc_size = 128; 8885 adapter->params.arch.nchan = NCHAN; 8886 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8887 adapter->params.arch.vfcount = 128; 8888 /* Congestion map is for 4 channels so that 8889 * MPS can have 4 priority per port. 8890 */ 8891 adapter->params.arch.cng_ch_bits_log = 2; 8892 break; 8893 case CHELSIO_T5: 8894 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 8895 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 8896 adapter->params.arch.mps_tcam_size = 8897 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8898 adapter->params.arch.mps_rplc_size = 128; 8899 adapter->params.arch.nchan = NCHAN; 8900 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8901 adapter->params.arch.vfcount = 128; 8902 adapter->params.arch.cng_ch_bits_log = 2; 8903 break; 8904 case CHELSIO_T6: 8905 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 8906 adapter->params.arch.sge_fl_db = 0; 8907 adapter->params.arch.mps_tcam_size = 8908 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8909 adapter->params.arch.mps_rplc_size = 256; 8910 adapter->params.arch.nchan = 2; 8911 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 8912 adapter->params.arch.vfcount = 256; 8913 /* Congestion map will be for 2 channels so that 8914 * MPS can have 8 priority per port. 8915 */ 8916 adapter->params.arch.cng_ch_bits_log = 3; 8917 break; 8918 default: 8919 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 8920 device_id); 8921 return -EINVAL; 8922 } 8923 8924 adapter->params.cim_la_size = CIMLA_SIZE; 8925 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8926 8927 /* 8928 * Default port for debugging in case we can't reach FW. 8929 */ 8930 adapter->params.nports = 1; 8931 adapter->params.portvec = 1; 8932 adapter->params.vpd.cclk = 50000; 8933 8934 /* Set PCIe completion timeout to 4 seconds. */ 8935 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 8936 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 8937 return 0; 8938 } 8939 8940 /** 8941 * t4_shutdown_adapter - shut down adapter, host & wire 8942 * @adapter: the adapter 8943 * 8944 * Perform an emergency shutdown of the adapter and stop it from 8945 * continuing any further communication on the ports or DMA to the 8946 * host. This is typically used when the adapter and/or firmware 8947 * have crashed and we want to prevent any further accidental 8948 * communication with the rest of the world. This will also force 8949 * the port Link Status to go down -- if register writes work -- 8950 * which should help our peers figure out that we're down. 8951 */ 8952 int t4_shutdown_adapter(struct adapter *adapter) 8953 { 8954 int port; 8955 8956 t4_intr_disable(adapter); 8957 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 8958 for_each_port(adapter, port) { 8959 u32 a_port_cfg = is_t4(adapter->params.chip) ? 8960 PORT_REG(port, XGMAC_PORT_CFG_A) : 8961 T5_PORT_REG(port, MAC_PORT_CFG_A); 8962 8963 t4_write_reg(adapter, a_port_cfg, 8964 t4_read_reg(adapter, a_port_cfg) 8965 & ~SIGNAL_DET_V(1)); 8966 } 8967 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 8968 8969 return 0; 8970 } 8971 8972 /** 8973 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 8974 * @adapter: the adapter 8975 * @qid: the Queue ID 8976 * @qtype: the Ingress or Egress type for @qid 8977 * @user: true if this request is for a user mode queue 8978 * @pbar2_qoffset: BAR2 Queue Offset 8979 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 8980 * 8981 * Returns the BAR2 SGE Queue Registers information associated with the 8982 * indicated Absolute Queue ID. These are passed back in return value 8983 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 8984 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 8985 * 8986 * This may return an error which indicates that BAR2 SGE Queue 8987 * registers aren't available. If an error is not returned, then the 8988 * following values are returned: 8989 * 8990 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 8991 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 8992 * 8993 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 8994 * require the "Inferred Queue ID" ability may be used. E.g. the 8995 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 8996 * then these "Inferred Queue ID" register may not be used. 8997 */ 8998 int t4_bar2_sge_qregs(struct adapter *adapter, 8999 unsigned int qid, 9000 enum t4_bar2_qtype qtype, 9001 int user, 9002 u64 *pbar2_qoffset, 9003 unsigned int *pbar2_qid) 9004 { 9005 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9006 u64 bar2_page_offset, bar2_qoffset; 9007 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9008 9009 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9010 if (!user && is_t4(adapter->params.chip)) 9011 return -EINVAL; 9012 9013 /* Get our SGE Page Size parameters. 9014 */ 9015 page_shift = adapter->params.sge.hps + 10; 9016 page_size = 1 << page_shift; 9017 9018 /* Get the right Queues per Page parameters for our Queue. 9019 */ 9020 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9021 ? adapter->params.sge.eq_qpp 9022 : adapter->params.sge.iq_qpp); 9023 qpp_mask = (1 << qpp_shift) - 1; 9024 9025 /* Calculate the basics of the BAR2 SGE Queue register area: 9026 * o The BAR2 page the Queue registers will be in. 9027 * o The BAR2 Queue ID. 9028 * o The BAR2 Queue ID Offset into the BAR2 page. 9029 */ 9030 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9031 bar2_qid = qid & qpp_mask; 9032 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9033 9034 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9035 * hardware will infer the Absolute Queue ID simply from the writes to 9036 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9037 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9038 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9039 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9040 * from the BAR2 Page and BAR2 Queue ID. 9041 * 9042 * One important censequence of this is that some BAR2 SGE registers 9043 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9044 * there. But other registers synthesize the SGE Queue ID purely 9045 * from the writes to the registers -- the Write Combined Doorbell 9046 * Buffer is a good example. These BAR2 SGE Registers are only 9047 * available for those BAR2 SGE Register areas where the SGE Absolute 9048 * Queue ID can be inferred from simple writes. 9049 */ 9050 bar2_qoffset = bar2_page_offset; 9051 bar2_qinferred = (bar2_qid_offset < page_size); 9052 if (bar2_qinferred) { 9053 bar2_qoffset += bar2_qid_offset; 9054 bar2_qid = 0; 9055 } 9056 9057 *pbar2_qoffset = bar2_qoffset; 9058 *pbar2_qid = bar2_qid; 9059 return 0; 9060 } 9061 9062 /** 9063 * t4_init_devlog_params - initialize adapter->params.devlog 9064 * @adap: the adapter 9065 * 9066 * Initialize various fields of the adapter's Firmware Device Log 9067 * Parameters structure. 9068 */ 9069 int t4_init_devlog_params(struct adapter *adap) 9070 { 9071 struct devlog_params *dparams = &adap->params.devlog; 9072 u32 pf_dparams; 9073 unsigned int devlog_meminfo; 9074 struct fw_devlog_cmd devlog_cmd; 9075 int ret; 9076 9077 /* If we're dealing with newer firmware, the Device Log Paramerters 9078 * are stored in a designated register which allows us to access the 9079 * Device Log even if we can't talk to the firmware. 9080 */ 9081 pf_dparams = 9082 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9083 if (pf_dparams) { 9084 unsigned int nentries, nentries128; 9085 9086 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9087 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9088 9089 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9090 nentries = (nentries128 + 1) * 128; 9091 dparams->size = nentries * sizeof(struct fw_devlog_e); 9092 9093 return 0; 9094 } 9095 9096 /* Otherwise, ask the firmware for it's Device Log Parameters. 9097 */ 9098 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9099 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9100 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9101 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9102 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9103 &devlog_cmd); 9104 if (ret) 9105 return ret; 9106 9107 devlog_meminfo = 9108 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9109 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9110 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9111 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9112 9113 return 0; 9114 } 9115 9116 /** 9117 * t4_init_sge_params - initialize adap->params.sge 9118 * @adapter: the adapter 9119 * 9120 * Initialize various fields of the adapter's SGE Parameters structure. 9121 */ 9122 int t4_init_sge_params(struct adapter *adapter) 9123 { 9124 struct sge_params *sge_params = &adapter->params.sge; 9125 u32 hps, qpp; 9126 unsigned int s_hps, s_qpp; 9127 9128 /* Extract the SGE Page Size for our PF. 9129 */ 9130 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9131 s_hps = (HOSTPAGESIZEPF0_S + 9132 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9133 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9134 9135 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9136 */ 9137 s_qpp = (QUEUESPERPAGEPF0_S + 9138 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9139 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9140 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9141 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9142 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9143 9144 return 0; 9145 } 9146 9147 /** 9148 * t4_init_tp_params - initialize adap->params.tp 9149 * @adap: the adapter 9150 * @sleep_ok: if true we may sleep while awaiting command completion 9151 * 9152 * Initialize various fields of the adapter's TP Parameters structure. 9153 */ 9154 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9155 { 9156 int chan; 9157 u32 v; 9158 9159 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9160 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9161 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9162 9163 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9164 for (chan = 0; chan < NCHAN; chan++) 9165 adap->params.tp.tx_modq[chan] = chan; 9166 9167 /* Cache the adapter's Compressed Filter Mode and global Incress 9168 * Configuration. 9169 */ 9170 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9171 TP_VLAN_PRI_MAP_A, sleep_ok); 9172 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9173 TP_INGRESS_CONFIG_A, sleep_ok); 9174 9175 /* For T6, cache the adapter's compressed error vector 9176 * and passing outer header info for encapsulated packets. 9177 */ 9178 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9179 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9180 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9181 } 9182 9183 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9184 * shift positions of several elements of the Compressed Filter Tuple 9185 * for this adapter which we need frequently ... 9186 */ 9187 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9188 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9189 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9190 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9191 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9192 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9193 PROTOCOL_F); 9194 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9195 ETHERTYPE_F); 9196 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9197 MACMATCH_F); 9198 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9199 MPSHITTYPE_F); 9200 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9201 FRAGMENTATION_F); 9202 9203 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9204 * represents the presence of an Outer VLAN instead of a VNIC ID. 9205 */ 9206 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9207 adap->params.tp.vnic_shift = -1; 9208 9209 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9210 adap->params.tp.hash_filter_mask = v; 9211 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9212 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9213 return 0; 9214 } 9215 9216 /** 9217 * t4_filter_field_shift - calculate filter field shift 9218 * @adap: the adapter 9219 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9220 * 9221 * Return the shift position of a filter field within the Compressed 9222 * Filter Tuple. The filter field is specified via its selection bit 9223 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9224 */ 9225 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9226 { 9227 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9228 unsigned int sel; 9229 int field_shift; 9230 9231 if ((filter_mode & filter_sel) == 0) 9232 return -1; 9233 9234 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9235 switch (filter_mode & sel) { 9236 case FCOE_F: 9237 field_shift += FT_FCOE_W; 9238 break; 9239 case PORT_F: 9240 field_shift += FT_PORT_W; 9241 break; 9242 case VNIC_ID_F: 9243 field_shift += FT_VNIC_ID_W; 9244 break; 9245 case VLAN_F: 9246 field_shift += FT_VLAN_W; 9247 break; 9248 case TOS_F: 9249 field_shift += FT_TOS_W; 9250 break; 9251 case PROTOCOL_F: 9252 field_shift += FT_PROTOCOL_W; 9253 break; 9254 case ETHERTYPE_F: 9255 field_shift += FT_ETHERTYPE_W; 9256 break; 9257 case MACMATCH_F: 9258 field_shift += FT_MACMATCH_W; 9259 break; 9260 case MPSHITTYPE_F: 9261 field_shift += FT_MPSHITTYPE_W; 9262 break; 9263 case FRAGMENTATION_F: 9264 field_shift += FT_FRAGMENTATION_W; 9265 break; 9266 } 9267 } 9268 return field_shift; 9269 } 9270 9271 int t4_init_rss_mode(struct adapter *adap, int mbox) 9272 { 9273 int i, ret; 9274 struct fw_rss_vi_config_cmd rvc; 9275 9276 memset(&rvc, 0, sizeof(rvc)); 9277 9278 for_each_port(adap, i) { 9279 struct port_info *p = adap2pinfo(adap, i); 9280 9281 rvc.op_to_viid = 9282 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9283 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9284 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9285 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9286 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9287 if (ret) 9288 return ret; 9289 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9290 } 9291 return 0; 9292 } 9293 9294 /** 9295 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9296 * @pi: the port_info 9297 * @mbox: mailbox to use for the FW command 9298 * @port: physical port associated with the VI 9299 * @pf: the PF owning the VI 9300 * @vf: the VF owning the VI 9301 * @mac: the MAC address of the VI 9302 * 9303 * Allocates a virtual interface for the given physical port. If @mac is 9304 * not %NULL it contains the MAC address of the VI as assigned by FW. 9305 * @mac should be large enough to hold an Ethernet address. 9306 * Returns < 0 on error. 9307 */ 9308 int t4_init_portinfo(struct port_info *pi, int mbox, 9309 int port, int pf, int vf, u8 mac[]) 9310 { 9311 struct adapter *adapter = pi->adapter; 9312 unsigned int fw_caps = adapter->params.fw_caps_support; 9313 struct fw_port_cmd cmd; 9314 unsigned int rss_size; 9315 enum fw_port_type port_type; 9316 int mdio_addr; 9317 fw_port_cap32_t pcaps, acaps; 9318 int ret; 9319 9320 /* If we haven't yet determined whether we're talking to Firmware 9321 * which knows the new 32-bit Port Capabilities, it's time to find 9322 * out now. This will also tell new Firmware to send us Port Status 9323 * Updates using the new 32-bit Port Capabilities version of the 9324 * Port Information message. 9325 */ 9326 if (fw_caps == FW_CAPS_UNKNOWN) { 9327 u32 param, val; 9328 9329 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9330 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9331 val = 1; 9332 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9333 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9334 adapter->params.fw_caps_support = fw_caps; 9335 } 9336 9337 memset(&cmd, 0, sizeof(cmd)); 9338 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9339 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9340 FW_PORT_CMD_PORTID_V(port)); 9341 cmd.action_to_len16 = cpu_to_be32( 9342 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9343 ? FW_PORT_ACTION_GET_PORT_INFO 9344 : FW_PORT_ACTION_GET_PORT_INFO32) | 9345 FW_LEN16(cmd)); 9346 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9347 if (ret) 9348 return ret; 9349 9350 /* Extract the various fields from the Port Information message. 9351 */ 9352 if (fw_caps == FW_CAPS16) { 9353 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9354 9355 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9356 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9357 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9358 : -1); 9359 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9360 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9361 } else { 9362 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9363 9364 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9365 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9366 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9367 : -1); 9368 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9369 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9370 } 9371 9372 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 9373 if (ret < 0) 9374 return ret; 9375 9376 pi->viid = ret; 9377 pi->tx_chan = port; 9378 pi->lport = port; 9379 pi->rss_size = rss_size; 9380 9381 pi->port_type = port_type; 9382 pi->mdio_addr = mdio_addr; 9383 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9384 9385 init_link_config(&pi->link_cfg, pcaps, acaps); 9386 return 0; 9387 } 9388 9389 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9390 { 9391 u8 addr[6]; 9392 int ret, i, j = 0; 9393 9394 for_each_port(adap, i) { 9395 struct port_info *pi = adap2pinfo(adap, i); 9396 9397 while ((adap->params.portvec & (1 << j)) == 0) 9398 j++; 9399 9400 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9401 if (ret) 9402 return ret; 9403 9404 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9405 j++; 9406 } 9407 return 0; 9408 } 9409 9410 /** 9411 * t4_read_cimq_cfg - read CIM queue configuration 9412 * @adap: the adapter 9413 * @base: holds the queue base addresses in bytes 9414 * @size: holds the queue sizes in bytes 9415 * @thres: holds the queue full thresholds in bytes 9416 * 9417 * Returns the current configuration of the CIM queues, starting with 9418 * the IBQs, then the OBQs. 9419 */ 9420 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9421 { 9422 unsigned int i, v; 9423 int cim_num_obq = is_t4(adap->params.chip) ? 9424 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9425 9426 for (i = 0; i < CIM_NUM_IBQ; i++) { 9427 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9428 QUENUMSELECT_V(i)); 9429 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9430 /* value is in 256-byte units */ 9431 *base++ = CIMQBASE_G(v) * 256; 9432 *size++ = CIMQSIZE_G(v) * 256; 9433 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9434 } 9435 for (i = 0; i < cim_num_obq; i++) { 9436 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9437 QUENUMSELECT_V(i)); 9438 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9439 /* value is in 256-byte units */ 9440 *base++ = CIMQBASE_G(v) * 256; 9441 *size++ = CIMQSIZE_G(v) * 256; 9442 } 9443 } 9444 9445 /** 9446 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9447 * @adap: the adapter 9448 * @qid: the queue index 9449 * @data: where to store the queue contents 9450 * @n: capacity of @data in 32-bit words 9451 * 9452 * Reads the contents of the selected CIM queue starting at address 0 up 9453 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9454 * error and the number of 32-bit words actually read on success. 9455 */ 9456 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9457 { 9458 int i, err, attempts; 9459 unsigned int addr; 9460 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9461 9462 if (qid > 5 || (n & 3)) 9463 return -EINVAL; 9464 9465 addr = qid * nwords; 9466 if (n > nwords) 9467 n = nwords; 9468 9469 /* It might take 3-10ms before the IBQ debug read access is allowed. 9470 * Wait for 1 Sec with a delay of 1 usec. 9471 */ 9472 attempts = 1000000; 9473 9474 for (i = 0; i < n; i++, addr++) { 9475 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9476 IBQDBGEN_F); 9477 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9478 attempts, 1); 9479 if (err) 9480 return err; 9481 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9482 } 9483 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9484 return i; 9485 } 9486 9487 /** 9488 * t4_read_cim_obq - read the contents of a CIM outbound queue 9489 * @adap: the adapter 9490 * @qid: the queue index 9491 * @data: where to store the queue contents 9492 * @n: capacity of @data in 32-bit words 9493 * 9494 * Reads the contents of the selected CIM queue starting at address 0 up 9495 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9496 * error and the number of 32-bit words actually read on success. 9497 */ 9498 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9499 { 9500 int i, err; 9501 unsigned int addr, v, nwords; 9502 int cim_num_obq = is_t4(adap->params.chip) ? 9503 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9504 9505 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9506 return -EINVAL; 9507 9508 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9509 QUENUMSELECT_V(qid)); 9510 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9511 9512 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9513 nwords = CIMQSIZE_G(v) * 64; /* same */ 9514 if (n > nwords) 9515 n = nwords; 9516 9517 for (i = 0; i < n; i++, addr++) { 9518 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9519 OBQDBGEN_F); 9520 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9521 2, 1); 9522 if (err) 9523 return err; 9524 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9525 } 9526 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9527 return i; 9528 } 9529 9530 /** 9531 * t4_cim_read - read a block from CIM internal address space 9532 * @adap: the adapter 9533 * @addr: the start address within the CIM address space 9534 * @n: number of words to read 9535 * @valp: where to store the result 9536 * 9537 * Reads a block of 4-byte words from the CIM intenal address space. 9538 */ 9539 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9540 unsigned int *valp) 9541 { 9542 int ret = 0; 9543 9544 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9545 return -EBUSY; 9546 9547 for ( ; !ret && n--; addr += 4) { 9548 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9549 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9550 0, 5, 2); 9551 if (!ret) 9552 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9553 } 9554 return ret; 9555 } 9556 9557 /** 9558 * t4_cim_write - write a block into CIM internal address space 9559 * @adap: the adapter 9560 * @addr: the start address within the CIM address space 9561 * @n: number of words to write 9562 * @valp: set of values to write 9563 * 9564 * Writes a block of 4-byte words into the CIM intenal address space. 9565 */ 9566 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9567 const unsigned int *valp) 9568 { 9569 int ret = 0; 9570 9571 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9572 return -EBUSY; 9573 9574 for ( ; !ret && n--; addr += 4) { 9575 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9576 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9577 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9578 0, 5, 2); 9579 } 9580 return ret; 9581 } 9582 9583 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9584 unsigned int val) 9585 { 9586 return t4_cim_write(adap, addr, 1, &val); 9587 } 9588 9589 /** 9590 * t4_cim_read_la - read CIM LA capture buffer 9591 * @adap: the adapter 9592 * @la_buf: where to store the LA data 9593 * @wrptr: the HW write pointer within the capture buffer 9594 * 9595 * Reads the contents of the CIM LA buffer with the most recent entry at 9596 * the end of the returned data and with the entry at @wrptr first. 9597 * We try to leave the LA in the running state we find it in. 9598 */ 9599 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9600 { 9601 int i, ret; 9602 unsigned int cfg, val, idx; 9603 9604 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9605 if (ret) 9606 return ret; 9607 9608 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9609 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9610 if (ret) 9611 return ret; 9612 } 9613 9614 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9615 if (ret) 9616 goto restart; 9617 9618 idx = UPDBGLAWRPTR_G(val); 9619 if (wrptr) 9620 *wrptr = idx; 9621 9622 for (i = 0; i < adap->params.cim_la_size; i++) { 9623 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9624 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9625 if (ret) 9626 break; 9627 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9628 if (ret) 9629 break; 9630 if (val & UPDBGLARDEN_F) { 9631 ret = -ETIMEDOUT; 9632 break; 9633 } 9634 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9635 if (ret) 9636 break; 9637 9638 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9639 * identify the 32-bit portion of the full 312-bit data 9640 */ 9641 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9642 idx = (idx & 0xff0) + 0x10; 9643 else 9644 idx++; 9645 /* address can't exceed 0xfff */ 9646 idx &= UPDBGLARDPTR_M; 9647 } 9648 restart: 9649 if (cfg & UPDBGLAEN_F) { 9650 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9651 cfg & ~UPDBGLARDEN_F); 9652 if (!ret) 9653 ret = r; 9654 } 9655 return ret; 9656 } 9657 9658 /** 9659 * t4_tp_read_la - read TP LA capture buffer 9660 * @adap: the adapter 9661 * @la_buf: where to store the LA data 9662 * @wrptr: the HW write pointer within the capture buffer 9663 * 9664 * Reads the contents of the TP LA buffer with the most recent entry at 9665 * the end of the returned data and with the entry at @wrptr first. 9666 * We leave the LA in the running state we find it in. 9667 */ 9668 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9669 { 9670 bool last_incomplete; 9671 unsigned int i, cfg, val, idx; 9672 9673 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9674 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9675 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9676 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9677 9678 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9679 idx = DBGLAWPTR_G(val); 9680 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9681 if (last_incomplete) 9682 idx = (idx + 1) & DBGLARPTR_M; 9683 if (wrptr) 9684 *wrptr = idx; 9685 9686 val &= 0xffff; 9687 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9688 val |= adap->params.tp.la_mask; 9689 9690 for (i = 0; i < TPLA_SIZE; i++) { 9691 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9692 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9693 idx = (idx + 1) & DBGLARPTR_M; 9694 } 9695 9696 /* Wipe out last entry if it isn't valid */ 9697 if (last_incomplete) 9698 la_buf[TPLA_SIZE - 1] = ~0ULL; 9699 9700 if (cfg & DBGLAENABLE_F) /* restore running state */ 9701 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9702 cfg | adap->params.tp.la_mask); 9703 } 9704 9705 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9706 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9707 * state for more than the Warning Threshold then we'll issue a warning about 9708 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9709 * appears to be hung every Warning Repeat second till the situation clears. 9710 * If the situation clears, we'll note that as well. 9711 */ 9712 #define SGE_IDMA_WARN_THRESH 1 9713 #define SGE_IDMA_WARN_REPEAT 300 9714 9715 /** 9716 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9717 * @adapter: the adapter 9718 * @idma: the adapter IDMA Monitor state 9719 * 9720 * Initialize the state of an SGE Ingress DMA Monitor. 9721 */ 9722 void t4_idma_monitor_init(struct adapter *adapter, 9723 struct sge_idma_monitor_state *idma) 9724 { 9725 /* Initialize the state variables for detecting an SGE Ingress DMA 9726 * hang. The SGE has internal counters which count up on each clock 9727 * tick whenever the SGE finds its Ingress DMA State Engines in the 9728 * same state they were on the previous clock tick. The clock used is 9729 * the Core Clock so we have a limit on the maximum "time" they can 9730 * record; typically a very small number of seconds. For instance, 9731 * with a 600MHz Core Clock, we can only count up to a bit more than 9732 * 7s. So we'll synthesize a larger counter in order to not run the 9733 * risk of having the "timers" overflow and give us the flexibility to 9734 * maintain a Hung SGE State Machine of our own which operates across 9735 * a longer time frame. 9736 */ 9737 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9738 idma->idma_stalled[0] = 0; 9739 idma->idma_stalled[1] = 0; 9740 } 9741 9742 /** 9743 * t4_idma_monitor - monitor SGE Ingress DMA state 9744 * @adapter: the adapter 9745 * @idma: the adapter IDMA Monitor state 9746 * @hz: number of ticks/second 9747 * @ticks: number of ticks since the last IDMA Monitor call 9748 */ 9749 void t4_idma_monitor(struct adapter *adapter, 9750 struct sge_idma_monitor_state *idma, 9751 int hz, int ticks) 9752 { 9753 int i, idma_same_state_cnt[2]; 9754 9755 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9756 * are counters inside the SGE which count up on each clock when the 9757 * SGE finds its Ingress DMA State Engines in the same states they 9758 * were in the previous clock. The counters will peg out at 9759 * 0xffffffff without wrapping around so once they pass the 1s 9760 * threshold they'll stay above that till the IDMA state changes. 9761 */ 9762 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9763 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9764 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9765 9766 for (i = 0; i < 2; i++) { 9767 u32 debug0, debug11; 9768 9769 /* If the Ingress DMA Same State Counter ("timer") is less 9770 * than 1s, then we can reset our synthesized Stall Timer and 9771 * continue. If we have previously emitted warnings about a 9772 * potential stalled Ingress Queue, issue a note indicating 9773 * that the Ingress Queue has resumed forward progress. 9774 */ 9775 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9776 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9777 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9778 "resumed after %d seconds\n", 9779 i, idma->idma_qid[i], 9780 idma->idma_stalled[i] / hz); 9781 idma->idma_stalled[i] = 0; 9782 continue; 9783 } 9784 9785 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9786 * domain. The first time we get here it'll be because we 9787 * passed the 1s Threshold; each additional time it'll be 9788 * because the RX Timer Callback is being fired on its regular 9789 * schedule. 9790 * 9791 * If the stall is below our Potential Hung Ingress Queue 9792 * Warning Threshold, continue. 9793 */ 9794 if (idma->idma_stalled[i] == 0) { 9795 idma->idma_stalled[i] = hz; 9796 idma->idma_warn[i] = 0; 9797 } else { 9798 idma->idma_stalled[i] += ticks; 9799 idma->idma_warn[i] -= ticks; 9800 } 9801 9802 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9803 continue; 9804 9805 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9806 */ 9807 if (idma->idma_warn[i] > 0) 9808 continue; 9809 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9810 9811 /* Read and save the SGE IDMA State and Queue ID information. 9812 * We do this every time in case it changes across time ... 9813 * can't be too careful ... 9814 */ 9815 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9816 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9817 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9818 9819 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9820 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9821 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9822 9823 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9824 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9825 i, idma->idma_qid[i], idma->idma_state[i], 9826 idma->idma_stalled[i] / hz, 9827 debug0, debug11); 9828 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9829 } 9830 } 9831 9832 /** 9833 * t4_load_cfg - download config file 9834 * @adap: the adapter 9835 * @cfg_data: the cfg text file to write 9836 * @size: text file size 9837 * 9838 * Write the supplied config text file to the card's serial flash. 9839 */ 9840 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9841 { 9842 int ret, i, n, cfg_addr; 9843 unsigned int addr; 9844 unsigned int flash_cfg_start_sec; 9845 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9846 9847 cfg_addr = t4_flash_cfg_addr(adap); 9848 if (cfg_addr < 0) 9849 return cfg_addr; 9850 9851 addr = cfg_addr; 9852 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9853 9854 if (size > FLASH_CFG_MAX_SIZE) { 9855 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 9856 FLASH_CFG_MAX_SIZE); 9857 return -EFBIG; 9858 } 9859 9860 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9861 sf_sec_size); 9862 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9863 flash_cfg_start_sec + i - 1); 9864 /* If size == 0 then we're simply erasing the FLASH sectors associated 9865 * with the on-adapter Firmware Configuration File. 9866 */ 9867 if (ret || size == 0) 9868 goto out; 9869 9870 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9871 for (i = 0; i < size; i += SF_PAGE_SIZE) { 9872 if ((size - i) < SF_PAGE_SIZE) 9873 n = size - i; 9874 else 9875 n = SF_PAGE_SIZE; 9876 ret = t4_write_flash(adap, addr, n, cfg_data); 9877 if (ret) 9878 goto out; 9879 9880 addr += SF_PAGE_SIZE; 9881 cfg_data += SF_PAGE_SIZE; 9882 } 9883 9884 out: 9885 if (ret) 9886 dev_err(adap->pdev_dev, "config file %s failed %d\n", 9887 (size == 0 ? "clear" : "download"), ret); 9888 return ret; 9889 } 9890 9891 /** 9892 * t4_set_vf_mac - Set MAC address for the specified VF 9893 * @adapter: The adapter 9894 * @vf: one of the VFs instantiated by the specified PF 9895 * @naddr: the number of MAC addresses 9896 * @addr: the MAC address(es) to be set to the specified VF 9897 */ 9898 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 9899 unsigned int naddr, u8 *addr) 9900 { 9901 struct fw_acl_mac_cmd cmd; 9902 9903 memset(&cmd, 0, sizeof(cmd)); 9904 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 9905 FW_CMD_REQUEST_F | 9906 FW_CMD_WRITE_F | 9907 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 9908 FW_ACL_MAC_CMD_VFN_V(vf)); 9909 9910 /* Note: Do not enable the ACL */ 9911 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 9912 cmd.nmac = naddr; 9913 9914 switch (adapter->pf) { 9915 case 3: 9916 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 9917 break; 9918 case 2: 9919 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 9920 break; 9921 case 1: 9922 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 9923 break; 9924 case 0: 9925 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 9926 break; 9927 } 9928 9929 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 9930 } 9931 9932 /** 9933 * t4_read_pace_tbl - read the pace table 9934 * @adap: the adapter 9935 * @pace_vals: holds the returned values 9936 * 9937 * Returns the values of TP's pace table in microseconds. 9938 */ 9939 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9940 { 9941 unsigned int i, v; 9942 9943 for (i = 0; i < NTX_SCHED; i++) { 9944 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 9945 v = t4_read_reg(adap, TP_PACE_TABLE_A); 9946 pace_vals[i] = dack_ticks_to_usec(adap, v); 9947 } 9948 } 9949 9950 /** 9951 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 9952 * @adap: the adapter 9953 * @sched: the scheduler index 9954 * @kbps: the byte rate in Kbps 9955 * @ipg: the interpacket delay in tenths of nanoseconds 9956 * @sleep_ok: if true we may sleep while awaiting command completion 9957 * 9958 * Return the current configuration of a HW Tx scheduler. 9959 */ 9960 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 9961 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 9962 { 9963 unsigned int v, addr, bpt, cpt; 9964 9965 if (kbps) { 9966 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 9967 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9968 if (sched & 1) 9969 v >>= 16; 9970 bpt = (v >> 8) & 0xff; 9971 cpt = v & 0xff; 9972 if (!cpt) { 9973 *kbps = 0; /* scheduler disabled */ 9974 } else { 9975 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 9976 *kbps = (v * bpt) / 125; 9977 } 9978 } 9979 if (ipg) { 9980 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 9981 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9982 if (sched & 1) 9983 v >>= 16; 9984 v &= 0xffff; 9985 *ipg = (10000 * v) / core_ticks_per_usec(adap); 9986 } 9987 } 9988 9989 /* t4_sge_ctxt_rd - read an SGE context through FW 9990 * @adap: the adapter 9991 * @mbox: mailbox to use for the FW command 9992 * @cid: the context id 9993 * @ctype: the context type 9994 * @data: where to store the context data 9995 * 9996 * Issues a FW command through the given mailbox to read an SGE context. 9997 */ 9998 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 9999 enum ctxt_type ctype, u32 *data) 10000 { 10001 struct fw_ldst_cmd c; 10002 int ret; 10003 10004 if (ctype == CTXT_FLM) 10005 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10006 else 10007 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10008 10009 memset(&c, 0, sizeof(c)); 10010 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10011 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10012 FW_LDST_CMD_ADDRSPACE_V(ret)); 10013 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10014 c.u.idctxt.physid = cpu_to_be32(cid); 10015 10016 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10017 if (ret == 0) { 10018 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10019 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10020 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10021 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10022 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10023 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10024 } 10025 return ret; 10026 } 10027 10028 /** 10029 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10030 * @adap: the adapter 10031 * @cid: the context id 10032 * @ctype: the context type 10033 * @data: where to store the context data 10034 * 10035 * Reads an SGE context directly, bypassing FW. This is only for 10036 * debugging when FW is unavailable. 10037 */ 10038 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10039 enum ctxt_type ctype, u32 *data) 10040 { 10041 int i, ret; 10042 10043 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10044 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10045 if (!ret) 10046 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10047 *data++ = t4_read_reg(adap, i); 10048 return ret; 10049 } 10050 10051 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10052 int rateunit, int ratemode, int channel, int class, 10053 int minrate, int maxrate, int weight, int pktsize) 10054 { 10055 struct fw_sched_cmd cmd; 10056 10057 memset(&cmd, 0, sizeof(cmd)); 10058 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10059 FW_CMD_REQUEST_F | 10060 FW_CMD_WRITE_F); 10061 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10062 10063 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10064 cmd.u.params.type = type; 10065 cmd.u.params.level = level; 10066 cmd.u.params.mode = mode; 10067 cmd.u.params.ch = channel; 10068 cmd.u.params.cl = class; 10069 cmd.u.params.unit = rateunit; 10070 cmd.u.params.rate = ratemode; 10071 cmd.u.params.min = cpu_to_be32(minrate); 10072 cmd.u.params.max = cpu_to_be32(maxrate); 10073 cmd.u.params.weight = cpu_to_be16(weight); 10074 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10075 10076 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10077 NULL, 1); 10078 } 10079 10080 /** 10081 * t4_i2c_rd - read I2C data from adapter 10082 * @adap: the adapter 10083 * @port: Port number if per-port device; <0 if not 10084 * @devid: per-port device ID or absolute device ID 10085 * @offset: byte offset into device I2C space 10086 * @len: byte length of I2C space data 10087 * @buf: buffer in which to return I2C data 10088 * 10089 * Reads the I2C data from the indicated device and location. 10090 */ 10091 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10092 unsigned int devid, unsigned int offset, 10093 unsigned int len, u8 *buf) 10094 { 10095 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10096 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10097 int ret = 0; 10098 10099 if (len > I2C_PAGE_SIZE) 10100 return -EINVAL; 10101 10102 /* Dont allow reads that spans multiple pages */ 10103 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10104 return -EINVAL; 10105 10106 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10107 ldst_cmd.op_to_addrspace = 10108 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10109 FW_CMD_REQUEST_F | 10110 FW_CMD_READ_F | 10111 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10112 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10113 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10114 ldst_cmd.u.i2c.did = devid; 10115 10116 while (len > 0) { 10117 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10118 10119 ldst_cmd.u.i2c.boffset = offset; 10120 ldst_cmd.u.i2c.blen = i2c_len; 10121 10122 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10123 &ldst_rpl); 10124 if (ret) 10125 break; 10126 10127 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10128 offset += i2c_len; 10129 buf += i2c_len; 10130 len -= i2c_len; 10131 } 10132 10133 return ret; 10134 } 10135 10136 /** 10137 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10138 * @adapter: the adapter 10139 * @mbox: mailbox to use for the FW command 10140 * @vf: one of the VFs instantiated by the specified PF 10141 * @vlan: The vlanid to be set 10142 */ 10143 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10144 u16 vlan) 10145 { 10146 struct fw_acl_vlan_cmd vlan_cmd; 10147 unsigned int enable; 10148 10149 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10150 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10151 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10152 FW_CMD_REQUEST_F | 10153 FW_CMD_WRITE_F | 10154 FW_CMD_EXEC_F | 10155 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10156 FW_ACL_VLAN_CMD_VFN_V(vf)); 10157 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10158 /* Drop all packets that donot match vlan id */ 10159 vlan_cmd.dropnovlan_fm = FW_ACL_VLAN_CMD_FM_F; 10160 if (enable != 0) { 10161 vlan_cmd.nvlan = 1; 10162 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10163 } 10164 10165 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10166 } 10167