xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rearely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boudaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9820, 0x983c,
1383 		0x9850, 0x9864,
1384 		0x9c00, 0x9c6c,
1385 		0x9c80, 0x9cec,
1386 		0x9d00, 0x9d6c,
1387 		0x9d80, 0x9dec,
1388 		0x9e00, 0x9e6c,
1389 		0x9e80, 0x9eec,
1390 		0x9f00, 0x9f6c,
1391 		0x9f80, 0xa020,
1392 		0xd004, 0xd004,
1393 		0xd010, 0xd03c,
1394 		0xdfc0, 0xdfe0,
1395 		0xe000, 0x1106c,
1396 		0x11074, 0x11088,
1397 		0x1109c, 0x1117c,
1398 		0x11190, 0x11204,
1399 		0x19040, 0x1906c,
1400 		0x19078, 0x19080,
1401 		0x1908c, 0x190e8,
1402 		0x190f0, 0x190f8,
1403 		0x19100, 0x19110,
1404 		0x19120, 0x19124,
1405 		0x19150, 0x19194,
1406 		0x1919c, 0x191b0,
1407 		0x191d0, 0x191e8,
1408 		0x19238, 0x19290,
1409 		0x193f8, 0x19428,
1410 		0x19430, 0x19444,
1411 		0x1944c, 0x1946c,
1412 		0x19474, 0x19474,
1413 		0x19490, 0x194cc,
1414 		0x194f0, 0x194f8,
1415 		0x19c00, 0x19c08,
1416 		0x19c10, 0x19c60,
1417 		0x19c94, 0x19ce4,
1418 		0x19cf0, 0x19d40,
1419 		0x19d50, 0x19d94,
1420 		0x19da0, 0x19de8,
1421 		0x19df0, 0x19e10,
1422 		0x19e50, 0x19e90,
1423 		0x19ea0, 0x19f24,
1424 		0x19f34, 0x19f34,
1425 		0x19f40, 0x19f50,
1426 		0x19f90, 0x19fb4,
1427 		0x19fc4, 0x19fe4,
1428 		0x1a000, 0x1a004,
1429 		0x1a010, 0x1a06c,
1430 		0x1a0b0, 0x1a0e4,
1431 		0x1a0ec, 0x1a0f8,
1432 		0x1a100, 0x1a108,
1433 		0x1a114, 0x1a120,
1434 		0x1a128, 0x1a130,
1435 		0x1a138, 0x1a138,
1436 		0x1a190, 0x1a1c4,
1437 		0x1a1fc, 0x1a1fc,
1438 		0x1e008, 0x1e00c,
1439 		0x1e040, 0x1e044,
1440 		0x1e04c, 0x1e04c,
1441 		0x1e284, 0x1e290,
1442 		0x1e2c0, 0x1e2c0,
1443 		0x1e2e0, 0x1e2e0,
1444 		0x1e300, 0x1e384,
1445 		0x1e3c0, 0x1e3c8,
1446 		0x1e408, 0x1e40c,
1447 		0x1e440, 0x1e444,
1448 		0x1e44c, 0x1e44c,
1449 		0x1e684, 0x1e690,
1450 		0x1e6c0, 0x1e6c0,
1451 		0x1e6e0, 0x1e6e0,
1452 		0x1e700, 0x1e784,
1453 		0x1e7c0, 0x1e7c8,
1454 		0x1e808, 0x1e80c,
1455 		0x1e840, 0x1e844,
1456 		0x1e84c, 0x1e84c,
1457 		0x1ea84, 0x1ea90,
1458 		0x1eac0, 0x1eac0,
1459 		0x1eae0, 0x1eae0,
1460 		0x1eb00, 0x1eb84,
1461 		0x1ebc0, 0x1ebc8,
1462 		0x1ec08, 0x1ec0c,
1463 		0x1ec40, 0x1ec44,
1464 		0x1ec4c, 0x1ec4c,
1465 		0x1ee84, 0x1ee90,
1466 		0x1eec0, 0x1eec0,
1467 		0x1eee0, 0x1eee0,
1468 		0x1ef00, 0x1ef84,
1469 		0x1efc0, 0x1efc8,
1470 		0x1f008, 0x1f00c,
1471 		0x1f040, 0x1f044,
1472 		0x1f04c, 0x1f04c,
1473 		0x1f284, 0x1f290,
1474 		0x1f2c0, 0x1f2c0,
1475 		0x1f2e0, 0x1f2e0,
1476 		0x1f300, 0x1f384,
1477 		0x1f3c0, 0x1f3c8,
1478 		0x1f408, 0x1f40c,
1479 		0x1f440, 0x1f444,
1480 		0x1f44c, 0x1f44c,
1481 		0x1f684, 0x1f690,
1482 		0x1f6c0, 0x1f6c0,
1483 		0x1f6e0, 0x1f6e0,
1484 		0x1f700, 0x1f784,
1485 		0x1f7c0, 0x1f7c8,
1486 		0x1f808, 0x1f80c,
1487 		0x1f840, 0x1f844,
1488 		0x1f84c, 0x1f84c,
1489 		0x1fa84, 0x1fa90,
1490 		0x1fac0, 0x1fac0,
1491 		0x1fae0, 0x1fae0,
1492 		0x1fb00, 0x1fb84,
1493 		0x1fbc0, 0x1fbc8,
1494 		0x1fc08, 0x1fc0c,
1495 		0x1fc40, 0x1fc44,
1496 		0x1fc4c, 0x1fc4c,
1497 		0x1fe84, 0x1fe90,
1498 		0x1fec0, 0x1fec0,
1499 		0x1fee0, 0x1fee0,
1500 		0x1ff00, 0x1ff84,
1501 		0x1ffc0, 0x1ffc8,
1502 		0x30000, 0x30030,
1503 		0x30100, 0x30144,
1504 		0x30190, 0x301a0,
1505 		0x301a8, 0x301b8,
1506 		0x301c4, 0x301c8,
1507 		0x301d0, 0x301d0,
1508 		0x30200, 0x30318,
1509 		0x30400, 0x304b4,
1510 		0x304c0, 0x3052c,
1511 		0x30540, 0x3061c,
1512 		0x30800, 0x30828,
1513 		0x30834, 0x30834,
1514 		0x308c0, 0x30908,
1515 		0x30910, 0x309ac,
1516 		0x30a00, 0x30a14,
1517 		0x30a1c, 0x30a2c,
1518 		0x30a44, 0x30a50,
1519 		0x30a74, 0x30a74,
1520 		0x30a7c, 0x30afc,
1521 		0x30b08, 0x30c24,
1522 		0x30d00, 0x30d00,
1523 		0x30d08, 0x30d14,
1524 		0x30d1c, 0x30d20,
1525 		0x30d3c, 0x30d3c,
1526 		0x30d48, 0x30d50,
1527 		0x31200, 0x3120c,
1528 		0x31220, 0x31220,
1529 		0x31240, 0x31240,
1530 		0x31600, 0x3160c,
1531 		0x31a00, 0x31a1c,
1532 		0x31e00, 0x31e20,
1533 		0x31e38, 0x31e3c,
1534 		0x31e80, 0x31e80,
1535 		0x31e88, 0x31ea8,
1536 		0x31eb0, 0x31eb4,
1537 		0x31ec8, 0x31ed4,
1538 		0x31fb8, 0x32004,
1539 		0x32200, 0x32200,
1540 		0x32208, 0x32240,
1541 		0x32248, 0x32280,
1542 		0x32288, 0x322c0,
1543 		0x322c8, 0x322fc,
1544 		0x32600, 0x32630,
1545 		0x32a00, 0x32abc,
1546 		0x32b00, 0x32b10,
1547 		0x32b20, 0x32b30,
1548 		0x32b40, 0x32b50,
1549 		0x32b60, 0x32b70,
1550 		0x33000, 0x33028,
1551 		0x33030, 0x33048,
1552 		0x33060, 0x33068,
1553 		0x33070, 0x3309c,
1554 		0x330f0, 0x33128,
1555 		0x33130, 0x33148,
1556 		0x33160, 0x33168,
1557 		0x33170, 0x3319c,
1558 		0x331f0, 0x33238,
1559 		0x33240, 0x33240,
1560 		0x33248, 0x33250,
1561 		0x3325c, 0x33264,
1562 		0x33270, 0x332b8,
1563 		0x332c0, 0x332e4,
1564 		0x332f8, 0x33338,
1565 		0x33340, 0x33340,
1566 		0x33348, 0x33350,
1567 		0x3335c, 0x33364,
1568 		0x33370, 0x333b8,
1569 		0x333c0, 0x333e4,
1570 		0x333f8, 0x33428,
1571 		0x33430, 0x33448,
1572 		0x33460, 0x33468,
1573 		0x33470, 0x3349c,
1574 		0x334f0, 0x33528,
1575 		0x33530, 0x33548,
1576 		0x33560, 0x33568,
1577 		0x33570, 0x3359c,
1578 		0x335f0, 0x33638,
1579 		0x33640, 0x33640,
1580 		0x33648, 0x33650,
1581 		0x3365c, 0x33664,
1582 		0x33670, 0x336b8,
1583 		0x336c0, 0x336e4,
1584 		0x336f8, 0x33738,
1585 		0x33740, 0x33740,
1586 		0x33748, 0x33750,
1587 		0x3375c, 0x33764,
1588 		0x33770, 0x337b8,
1589 		0x337c0, 0x337e4,
1590 		0x337f8, 0x337fc,
1591 		0x33814, 0x33814,
1592 		0x3382c, 0x3382c,
1593 		0x33880, 0x3388c,
1594 		0x338e8, 0x338ec,
1595 		0x33900, 0x33928,
1596 		0x33930, 0x33948,
1597 		0x33960, 0x33968,
1598 		0x33970, 0x3399c,
1599 		0x339f0, 0x33a38,
1600 		0x33a40, 0x33a40,
1601 		0x33a48, 0x33a50,
1602 		0x33a5c, 0x33a64,
1603 		0x33a70, 0x33ab8,
1604 		0x33ac0, 0x33ae4,
1605 		0x33af8, 0x33b10,
1606 		0x33b28, 0x33b28,
1607 		0x33b3c, 0x33b50,
1608 		0x33bf0, 0x33c10,
1609 		0x33c28, 0x33c28,
1610 		0x33c3c, 0x33c50,
1611 		0x33cf0, 0x33cfc,
1612 		0x34000, 0x34030,
1613 		0x34100, 0x34144,
1614 		0x34190, 0x341a0,
1615 		0x341a8, 0x341b8,
1616 		0x341c4, 0x341c8,
1617 		0x341d0, 0x341d0,
1618 		0x34200, 0x34318,
1619 		0x34400, 0x344b4,
1620 		0x344c0, 0x3452c,
1621 		0x34540, 0x3461c,
1622 		0x34800, 0x34828,
1623 		0x34834, 0x34834,
1624 		0x348c0, 0x34908,
1625 		0x34910, 0x349ac,
1626 		0x34a00, 0x34a14,
1627 		0x34a1c, 0x34a2c,
1628 		0x34a44, 0x34a50,
1629 		0x34a74, 0x34a74,
1630 		0x34a7c, 0x34afc,
1631 		0x34b08, 0x34c24,
1632 		0x34d00, 0x34d00,
1633 		0x34d08, 0x34d14,
1634 		0x34d1c, 0x34d20,
1635 		0x34d3c, 0x34d3c,
1636 		0x34d48, 0x34d50,
1637 		0x35200, 0x3520c,
1638 		0x35220, 0x35220,
1639 		0x35240, 0x35240,
1640 		0x35600, 0x3560c,
1641 		0x35a00, 0x35a1c,
1642 		0x35e00, 0x35e20,
1643 		0x35e38, 0x35e3c,
1644 		0x35e80, 0x35e80,
1645 		0x35e88, 0x35ea8,
1646 		0x35eb0, 0x35eb4,
1647 		0x35ec8, 0x35ed4,
1648 		0x35fb8, 0x36004,
1649 		0x36200, 0x36200,
1650 		0x36208, 0x36240,
1651 		0x36248, 0x36280,
1652 		0x36288, 0x362c0,
1653 		0x362c8, 0x362fc,
1654 		0x36600, 0x36630,
1655 		0x36a00, 0x36abc,
1656 		0x36b00, 0x36b10,
1657 		0x36b20, 0x36b30,
1658 		0x36b40, 0x36b50,
1659 		0x36b60, 0x36b70,
1660 		0x37000, 0x37028,
1661 		0x37030, 0x37048,
1662 		0x37060, 0x37068,
1663 		0x37070, 0x3709c,
1664 		0x370f0, 0x37128,
1665 		0x37130, 0x37148,
1666 		0x37160, 0x37168,
1667 		0x37170, 0x3719c,
1668 		0x371f0, 0x37238,
1669 		0x37240, 0x37240,
1670 		0x37248, 0x37250,
1671 		0x3725c, 0x37264,
1672 		0x37270, 0x372b8,
1673 		0x372c0, 0x372e4,
1674 		0x372f8, 0x37338,
1675 		0x37340, 0x37340,
1676 		0x37348, 0x37350,
1677 		0x3735c, 0x37364,
1678 		0x37370, 0x373b8,
1679 		0x373c0, 0x373e4,
1680 		0x373f8, 0x37428,
1681 		0x37430, 0x37448,
1682 		0x37460, 0x37468,
1683 		0x37470, 0x3749c,
1684 		0x374f0, 0x37528,
1685 		0x37530, 0x37548,
1686 		0x37560, 0x37568,
1687 		0x37570, 0x3759c,
1688 		0x375f0, 0x37638,
1689 		0x37640, 0x37640,
1690 		0x37648, 0x37650,
1691 		0x3765c, 0x37664,
1692 		0x37670, 0x376b8,
1693 		0x376c0, 0x376e4,
1694 		0x376f8, 0x37738,
1695 		0x37740, 0x37740,
1696 		0x37748, 0x37750,
1697 		0x3775c, 0x37764,
1698 		0x37770, 0x377b8,
1699 		0x377c0, 0x377e4,
1700 		0x377f8, 0x377fc,
1701 		0x37814, 0x37814,
1702 		0x3782c, 0x3782c,
1703 		0x37880, 0x3788c,
1704 		0x378e8, 0x378ec,
1705 		0x37900, 0x37928,
1706 		0x37930, 0x37948,
1707 		0x37960, 0x37968,
1708 		0x37970, 0x3799c,
1709 		0x379f0, 0x37a38,
1710 		0x37a40, 0x37a40,
1711 		0x37a48, 0x37a50,
1712 		0x37a5c, 0x37a64,
1713 		0x37a70, 0x37ab8,
1714 		0x37ac0, 0x37ae4,
1715 		0x37af8, 0x37b10,
1716 		0x37b28, 0x37b28,
1717 		0x37b3c, 0x37b50,
1718 		0x37bf0, 0x37c10,
1719 		0x37c28, 0x37c28,
1720 		0x37c3c, 0x37c50,
1721 		0x37cf0, 0x37cfc,
1722 		0x38000, 0x38030,
1723 		0x38100, 0x38144,
1724 		0x38190, 0x381a0,
1725 		0x381a8, 0x381b8,
1726 		0x381c4, 0x381c8,
1727 		0x381d0, 0x381d0,
1728 		0x38200, 0x38318,
1729 		0x38400, 0x384b4,
1730 		0x384c0, 0x3852c,
1731 		0x38540, 0x3861c,
1732 		0x38800, 0x38828,
1733 		0x38834, 0x38834,
1734 		0x388c0, 0x38908,
1735 		0x38910, 0x389ac,
1736 		0x38a00, 0x38a14,
1737 		0x38a1c, 0x38a2c,
1738 		0x38a44, 0x38a50,
1739 		0x38a74, 0x38a74,
1740 		0x38a7c, 0x38afc,
1741 		0x38b08, 0x38c24,
1742 		0x38d00, 0x38d00,
1743 		0x38d08, 0x38d14,
1744 		0x38d1c, 0x38d20,
1745 		0x38d3c, 0x38d3c,
1746 		0x38d48, 0x38d50,
1747 		0x39200, 0x3920c,
1748 		0x39220, 0x39220,
1749 		0x39240, 0x39240,
1750 		0x39600, 0x3960c,
1751 		0x39a00, 0x39a1c,
1752 		0x39e00, 0x39e20,
1753 		0x39e38, 0x39e3c,
1754 		0x39e80, 0x39e80,
1755 		0x39e88, 0x39ea8,
1756 		0x39eb0, 0x39eb4,
1757 		0x39ec8, 0x39ed4,
1758 		0x39fb8, 0x3a004,
1759 		0x3a200, 0x3a200,
1760 		0x3a208, 0x3a240,
1761 		0x3a248, 0x3a280,
1762 		0x3a288, 0x3a2c0,
1763 		0x3a2c8, 0x3a2fc,
1764 		0x3a600, 0x3a630,
1765 		0x3aa00, 0x3aabc,
1766 		0x3ab00, 0x3ab10,
1767 		0x3ab20, 0x3ab30,
1768 		0x3ab40, 0x3ab50,
1769 		0x3ab60, 0x3ab70,
1770 		0x3b000, 0x3b028,
1771 		0x3b030, 0x3b048,
1772 		0x3b060, 0x3b068,
1773 		0x3b070, 0x3b09c,
1774 		0x3b0f0, 0x3b128,
1775 		0x3b130, 0x3b148,
1776 		0x3b160, 0x3b168,
1777 		0x3b170, 0x3b19c,
1778 		0x3b1f0, 0x3b238,
1779 		0x3b240, 0x3b240,
1780 		0x3b248, 0x3b250,
1781 		0x3b25c, 0x3b264,
1782 		0x3b270, 0x3b2b8,
1783 		0x3b2c0, 0x3b2e4,
1784 		0x3b2f8, 0x3b338,
1785 		0x3b340, 0x3b340,
1786 		0x3b348, 0x3b350,
1787 		0x3b35c, 0x3b364,
1788 		0x3b370, 0x3b3b8,
1789 		0x3b3c0, 0x3b3e4,
1790 		0x3b3f8, 0x3b428,
1791 		0x3b430, 0x3b448,
1792 		0x3b460, 0x3b468,
1793 		0x3b470, 0x3b49c,
1794 		0x3b4f0, 0x3b528,
1795 		0x3b530, 0x3b548,
1796 		0x3b560, 0x3b568,
1797 		0x3b570, 0x3b59c,
1798 		0x3b5f0, 0x3b638,
1799 		0x3b640, 0x3b640,
1800 		0x3b648, 0x3b650,
1801 		0x3b65c, 0x3b664,
1802 		0x3b670, 0x3b6b8,
1803 		0x3b6c0, 0x3b6e4,
1804 		0x3b6f8, 0x3b738,
1805 		0x3b740, 0x3b740,
1806 		0x3b748, 0x3b750,
1807 		0x3b75c, 0x3b764,
1808 		0x3b770, 0x3b7b8,
1809 		0x3b7c0, 0x3b7e4,
1810 		0x3b7f8, 0x3b7fc,
1811 		0x3b814, 0x3b814,
1812 		0x3b82c, 0x3b82c,
1813 		0x3b880, 0x3b88c,
1814 		0x3b8e8, 0x3b8ec,
1815 		0x3b900, 0x3b928,
1816 		0x3b930, 0x3b948,
1817 		0x3b960, 0x3b968,
1818 		0x3b970, 0x3b99c,
1819 		0x3b9f0, 0x3ba38,
1820 		0x3ba40, 0x3ba40,
1821 		0x3ba48, 0x3ba50,
1822 		0x3ba5c, 0x3ba64,
1823 		0x3ba70, 0x3bab8,
1824 		0x3bac0, 0x3bae4,
1825 		0x3baf8, 0x3bb10,
1826 		0x3bb28, 0x3bb28,
1827 		0x3bb3c, 0x3bb50,
1828 		0x3bbf0, 0x3bc10,
1829 		0x3bc28, 0x3bc28,
1830 		0x3bc3c, 0x3bc50,
1831 		0x3bcf0, 0x3bcfc,
1832 		0x3c000, 0x3c030,
1833 		0x3c100, 0x3c144,
1834 		0x3c190, 0x3c1a0,
1835 		0x3c1a8, 0x3c1b8,
1836 		0x3c1c4, 0x3c1c8,
1837 		0x3c1d0, 0x3c1d0,
1838 		0x3c200, 0x3c318,
1839 		0x3c400, 0x3c4b4,
1840 		0x3c4c0, 0x3c52c,
1841 		0x3c540, 0x3c61c,
1842 		0x3c800, 0x3c828,
1843 		0x3c834, 0x3c834,
1844 		0x3c8c0, 0x3c908,
1845 		0x3c910, 0x3c9ac,
1846 		0x3ca00, 0x3ca14,
1847 		0x3ca1c, 0x3ca2c,
1848 		0x3ca44, 0x3ca50,
1849 		0x3ca74, 0x3ca74,
1850 		0x3ca7c, 0x3cafc,
1851 		0x3cb08, 0x3cc24,
1852 		0x3cd00, 0x3cd00,
1853 		0x3cd08, 0x3cd14,
1854 		0x3cd1c, 0x3cd20,
1855 		0x3cd3c, 0x3cd3c,
1856 		0x3cd48, 0x3cd50,
1857 		0x3d200, 0x3d20c,
1858 		0x3d220, 0x3d220,
1859 		0x3d240, 0x3d240,
1860 		0x3d600, 0x3d60c,
1861 		0x3da00, 0x3da1c,
1862 		0x3de00, 0x3de20,
1863 		0x3de38, 0x3de3c,
1864 		0x3de80, 0x3de80,
1865 		0x3de88, 0x3dea8,
1866 		0x3deb0, 0x3deb4,
1867 		0x3dec8, 0x3ded4,
1868 		0x3dfb8, 0x3e004,
1869 		0x3e200, 0x3e200,
1870 		0x3e208, 0x3e240,
1871 		0x3e248, 0x3e280,
1872 		0x3e288, 0x3e2c0,
1873 		0x3e2c8, 0x3e2fc,
1874 		0x3e600, 0x3e630,
1875 		0x3ea00, 0x3eabc,
1876 		0x3eb00, 0x3eb10,
1877 		0x3eb20, 0x3eb30,
1878 		0x3eb40, 0x3eb50,
1879 		0x3eb60, 0x3eb70,
1880 		0x3f000, 0x3f028,
1881 		0x3f030, 0x3f048,
1882 		0x3f060, 0x3f068,
1883 		0x3f070, 0x3f09c,
1884 		0x3f0f0, 0x3f128,
1885 		0x3f130, 0x3f148,
1886 		0x3f160, 0x3f168,
1887 		0x3f170, 0x3f19c,
1888 		0x3f1f0, 0x3f238,
1889 		0x3f240, 0x3f240,
1890 		0x3f248, 0x3f250,
1891 		0x3f25c, 0x3f264,
1892 		0x3f270, 0x3f2b8,
1893 		0x3f2c0, 0x3f2e4,
1894 		0x3f2f8, 0x3f338,
1895 		0x3f340, 0x3f340,
1896 		0x3f348, 0x3f350,
1897 		0x3f35c, 0x3f364,
1898 		0x3f370, 0x3f3b8,
1899 		0x3f3c0, 0x3f3e4,
1900 		0x3f3f8, 0x3f428,
1901 		0x3f430, 0x3f448,
1902 		0x3f460, 0x3f468,
1903 		0x3f470, 0x3f49c,
1904 		0x3f4f0, 0x3f528,
1905 		0x3f530, 0x3f548,
1906 		0x3f560, 0x3f568,
1907 		0x3f570, 0x3f59c,
1908 		0x3f5f0, 0x3f638,
1909 		0x3f640, 0x3f640,
1910 		0x3f648, 0x3f650,
1911 		0x3f65c, 0x3f664,
1912 		0x3f670, 0x3f6b8,
1913 		0x3f6c0, 0x3f6e4,
1914 		0x3f6f8, 0x3f738,
1915 		0x3f740, 0x3f740,
1916 		0x3f748, 0x3f750,
1917 		0x3f75c, 0x3f764,
1918 		0x3f770, 0x3f7b8,
1919 		0x3f7c0, 0x3f7e4,
1920 		0x3f7f8, 0x3f7fc,
1921 		0x3f814, 0x3f814,
1922 		0x3f82c, 0x3f82c,
1923 		0x3f880, 0x3f88c,
1924 		0x3f8e8, 0x3f8ec,
1925 		0x3f900, 0x3f928,
1926 		0x3f930, 0x3f948,
1927 		0x3f960, 0x3f968,
1928 		0x3f970, 0x3f99c,
1929 		0x3f9f0, 0x3fa38,
1930 		0x3fa40, 0x3fa40,
1931 		0x3fa48, 0x3fa50,
1932 		0x3fa5c, 0x3fa64,
1933 		0x3fa70, 0x3fab8,
1934 		0x3fac0, 0x3fae4,
1935 		0x3faf8, 0x3fb10,
1936 		0x3fb28, 0x3fb28,
1937 		0x3fb3c, 0x3fb50,
1938 		0x3fbf0, 0x3fc10,
1939 		0x3fc28, 0x3fc28,
1940 		0x3fc3c, 0x3fc50,
1941 		0x3fcf0, 0x3fcfc,
1942 		0x40000, 0x4000c,
1943 		0x40040, 0x40050,
1944 		0x40060, 0x40068,
1945 		0x4007c, 0x4008c,
1946 		0x40094, 0x400b0,
1947 		0x400c0, 0x40144,
1948 		0x40180, 0x4018c,
1949 		0x40200, 0x40254,
1950 		0x40260, 0x40264,
1951 		0x40270, 0x40288,
1952 		0x40290, 0x40298,
1953 		0x402ac, 0x402c8,
1954 		0x402d0, 0x402e0,
1955 		0x402f0, 0x402f0,
1956 		0x40300, 0x4033c,
1957 		0x403f8, 0x403fc,
1958 		0x41304, 0x413c4,
1959 		0x41400, 0x4140c,
1960 		0x41414, 0x4141c,
1961 		0x41480, 0x414d0,
1962 		0x44000, 0x44054,
1963 		0x4405c, 0x44078,
1964 		0x440c0, 0x44174,
1965 		0x44180, 0x441ac,
1966 		0x441b4, 0x441b8,
1967 		0x441c0, 0x44254,
1968 		0x4425c, 0x44278,
1969 		0x442c0, 0x44374,
1970 		0x44380, 0x443ac,
1971 		0x443b4, 0x443b8,
1972 		0x443c0, 0x44454,
1973 		0x4445c, 0x44478,
1974 		0x444c0, 0x44574,
1975 		0x44580, 0x445ac,
1976 		0x445b4, 0x445b8,
1977 		0x445c0, 0x44654,
1978 		0x4465c, 0x44678,
1979 		0x446c0, 0x44774,
1980 		0x44780, 0x447ac,
1981 		0x447b4, 0x447b8,
1982 		0x447c0, 0x44854,
1983 		0x4485c, 0x44878,
1984 		0x448c0, 0x44974,
1985 		0x44980, 0x449ac,
1986 		0x449b4, 0x449b8,
1987 		0x449c0, 0x449fc,
1988 		0x45000, 0x45004,
1989 		0x45010, 0x45030,
1990 		0x45040, 0x45060,
1991 		0x45068, 0x45068,
1992 		0x45080, 0x45084,
1993 		0x450a0, 0x450b0,
1994 		0x45200, 0x45204,
1995 		0x45210, 0x45230,
1996 		0x45240, 0x45260,
1997 		0x45268, 0x45268,
1998 		0x45280, 0x45284,
1999 		0x452a0, 0x452b0,
2000 		0x460c0, 0x460e4,
2001 		0x47000, 0x4703c,
2002 		0x47044, 0x4708c,
2003 		0x47200, 0x47250,
2004 		0x47400, 0x47408,
2005 		0x47414, 0x47420,
2006 		0x47600, 0x47618,
2007 		0x47800, 0x47814,
2008 		0x48000, 0x4800c,
2009 		0x48040, 0x48050,
2010 		0x48060, 0x48068,
2011 		0x4807c, 0x4808c,
2012 		0x48094, 0x480b0,
2013 		0x480c0, 0x48144,
2014 		0x48180, 0x4818c,
2015 		0x48200, 0x48254,
2016 		0x48260, 0x48264,
2017 		0x48270, 0x48288,
2018 		0x48290, 0x48298,
2019 		0x482ac, 0x482c8,
2020 		0x482d0, 0x482e0,
2021 		0x482f0, 0x482f0,
2022 		0x48300, 0x4833c,
2023 		0x483f8, 0x483fc,
2024 		0x49304, 0x493c4,
2025 		0x49400, 0x4940c,
2026 		0x49414, 0x4941c,
2027 		0x49480, 0x494d0,
2028 		0x4c000, 0x4c054,
2029 		0x4c05c, 0x4c078,
2030 		0x4c0c0, 0x4c174,
2031 		0x4c180, 0x4c1ac,
2032 		0x4c1b4, 0x4c1b8,
2033 		0x4c1c0, 0x4c254,
2034 		0x4c25c, 0x4c278,
2035 		0x4c2c0, 0x4c374,
2036 		0x4c380, 0x4c3ac,
2037 		0x4c3b4, 0x4c3b8,
2038 		0x4c3c0, 0x4c454,
2039 		0x4c45c, 0x4c478,
2040 		0x4c4c0, 0x4c574,
2041 		0x4c580, 0x4c5ac,
2042 		0x4c5b4, 0x4c5b8,
2043 		0x4c5c0, 0x4c654,
2044 		0x4c65c, 0x4c678,
2045 		0x4c6c0, 0x4c774,
2046 		0x4c780, 0x4c7ac,
2047 		0x4c7b4, 0x4c7b8,
2048 		0x4c7c0, 0x4c854,
2049 		0x4c85c, 0x4c878,
2050 		0x4c8c0, 0x4c974,
2051 		0x4c980, 0x4c9ac,
2052 		0x4c9b4, 0x4c9b8,
2053 		0x4c9c0, 0x4c9fc,
2054 		0x4d000, 0x4d004,
2055 		0x4d010, 0x4d030,
2056 		0x4d040, 0x4d060,
2057 		0x4d068, 0x4d068,
2058 		0x4d080, 0x4d084,
2059 		0x4d0a0, 0x4d0b0,
2060 		0x4d200, 0x4d204,
2061 		0x4d210, 0x4d230,
2062 		0x4d240, 0x4d260,
2063 		0x4d268, 0x4d268,
2064 		0x4d280, 0x4d284,
2065 		0x4d2a0, 0x4d2b0,
2066 		0x4e0c0, 0x4e0e4,
2067 		0x4f000, 0x4f03c,
2068 		0x4f044, 0x4f08c,
2069 		0x4f200, 0x4f250,
2070 		0x4f400, 0x4f408,
2071 		0x4f414, 0x4f420,
2072 		0x4f600, 0x4f618,
2073 		0x4f800, 0x4f814,
2074 		0x50000, 0x50084,
2075 		0x50090, 0x500cc,
2076 		0x50400, 0x50400,
2077 		0x50800, 0x50884,
2078 		0x50890, 0x508cc,
2079 		0x50c00, 0x50c00,
2080 		0x51000, 0x5101c,
2081 		0x51300, 0x51308,
2082 	};
2083 
2084 	static const unsigned int t6_reg_ranges[] = {
2085 		0x1008, 0x101c,
2086 		0x1024, 0x10a8,
2087 		0x10b4, 0x10f8,
2088 		0x1100, 0x1114,
2089 		0x111c, 0x112c,
2090 		0x1138, 0x113c,
2091 		0x1144, 0x114c,
2092 		0x1180, 0x1184,
2093 		0x1190, 0x1194,
2094 		0x11a0, 0x11a4,
2095 		0x11b0, 0x11b4,
2096 		0x11fc, 0x1274,
2097 		0x1280, 0x133c,
2098 		0x1800, 0x18fc,
2099 		0x3000, 0x302c,
2100 		0x3060, 0x30b0,
2101 		0x30b8, 0x30d8,
2102 		0x30e0, 0x30fc,
2103 		0x3140, 0x357c,
2104 		0x35a8, 0x35cc,
2105 		0x35ec, 0x35ec,
2106 		0x3600, 0x5624,
2107 		0x56cc, 0x56ec,
2108 		0x56f4, 0x5720,
2109 		0x5728, 0x575c,
2110 		0x580c, 0x5814,
2111 		0x5890, 0x589c,
2112 		0x58a4, 0x58ac,
2113 		0x58b8, 0x58bc,
2114 		0x5940, 0x595c,
2115 		0x5980, 0x598c,
2116 		0x59b0, 0x59c8,
2117 		0x59d0, 0x59dc,
2118 		0x59fc, 0x5a18,
2119 		0x5a60, 0x5a6c,
2120 		0x5a80, 0x5a8c,
2121 		0x5a94, 0x5a9c,
2122 		0x5b94, 0x5bfc,
2123 		0x5c10, 0x5e48,
2124 		0x5e50, 0x5e94,
2125 		0x5ea0, 0x5eb0,
2126 		0x5ec0, 0x5ec0,
2127 		0x5ec8, 0x5ed0,
2128 		0x5ee0, 0x5ee0,
2129 		0x5ef0, 0x5ef0,
2130 		0x5f00, 0x5f00,
2131 		0x6000, 0x6020,
2132 		0x6028, 0x6040,
2133 		0x6058, 0x609c,
2134 		0x60a8, 0x619c,
2135 		0x7700, 0x7798,
2136 		0x77c0, 0x7880,
2137 		0x78cc, 0x78fc,
2138 		0x7b00, 0x7b58,
2139 		0x7b60, 0x7b84,
2140 		0x7b8c, 0x7c54,
2141 		0x7d00, 0x7d38,
2142 		0x7d40, 0x7d84,
2143 		0x7d8c, 0x7ddc,
2144 		0x7de4, 0x7e04,
2145 		0x7e10, 0x7e1c,
2146 		0x7e24, 0x7e38,
2147 		0x7e40, 0x7e44,
2148 		0x7e4c, 0x7e78,
2149 		0x7e80, 0x7edc,
2150 		0x7ee8, 0x7efc,
2151 		0x8dc0, 0x8de4,
2152 		0x8df8, 0x8e04,
2153 		0x8e10, 0x8e84,
2154 		0x8ea0, 0x8f88,
2155 		0x8fb8, 0x9058,
2156 		0x9060, 0x9060,
2157 		0x9068, 0x90f8,
2158 		0x9100, 0x9124,
2159 		0x9400, 0x9470,
2160 		0x9600, 0x9600,
2161 		0x9608, 0x9638,
2162 		0x9640, 0x9704,
2163 		0x9710, 0x971c,
2164 		0x9800, 0x9808,
2165 		0x9820, 0x983c,
2166 		0x9850, 0x9864,
2167 		0x9c00, 0x9c6c,
2168 		0x9c80, 0x9cec,
2169 		0x9d00, 0x9d6c,
2170 		0x9d80, 0x9dec,
2171 		0x9e00, 0x9e6c,
2172 		0x9e80, 0x9eec,
2173 		0x9f00, 0x9f6c,
2174 		0x9f80, 0xa020,
2175 		0xd004, 0xd03c,
2176 		0xd100, 0xd118,
2177 		0xd200, 0xd214,
2178 		0xd220, 0xd234,
2179 		0xd240, 0xd254,
2180 		0xd260, 0xd274,
2181 		0xd280, 0xd294,
2182 		0xd2a0, 0xd2b4,
2183 		0xd2c0, 0xd2d4,
2184 		0xd2e0, 0xd2f4,
2185 		0xd300, 0xd31c,
2186 		0xdfc0, 0xdfe0,
2187 		0xe000, 0xf008,
2188 		0xf010, 0xf018,
2189 		0xf020, 0xf028,
2190 		0x11000, 0x11014,
2191 		0x11048, 0x1106c,
2192 		0x11074, 0x11088,
2193 		0x11098, 0x11120,
2194 		0x1112c, 0x1117c,
2195 		0x11190, 0x112e0,
2196 		0x11300, 0x1130c,
2197 		0x12000, 0x1206c,
2198 		0x19040, 0x1906c,
2199 		0x19078, 0x19080,
2200 		0x1908c, 0x190e8,
2201 		0x190f0, 0x190f8,
2202 		0x19100, 0x19110,
2203 		0x19120, 0x19124,
2204 		0x19150, 0x19194,
2205 		0x1919c, 0x191b0,
2206 		0x191d0, 0x191e8,
2207 		0x19238, 0x19290,
2208 		0x192a4, 0x192b0,
2209 		0x192bc, 0x192bc,
2210 		0x19348, 0x1934c,
2211 		0x193f8, 0x19418,
2212 		0x19420, 0x19428,
2213 		0x19430, 0x19444,
2214 		0x1944c, 0x1946c,
2215 		0x19474, 0x19474,
2216 		0x19490, 0x194cc,
2217 		0x194f0, 0x194f8,
2218 		0x19c00, 0x19c48,
2219 		0x19c50, 0x19c80,
2220 		0x19c94, 0x19c98,
2221 		0x19ca0, 0x19cbc,
2222 		0x19ce4, 0x19ce4,
2223 		0x19cf0, 0x19cf8,
2224 		0x19d00, 0x19d28,
2225 		0x19d50, 0x19d78,
2226 		0x19d94, 0x19d98,
2227 		0x19da0, 0x19dc8,
2228 		0x19df0, 0x19e10,
2229 		0x19e50, 0x19e6c,
2230 		0x19ea0, 0x19ebc,
2231 		0x19ec4, 0x19ef4,
2232 		0x19f04, 0x19f2c,
2233 		0x19f34, 0x19f34,
2234 		0x19f40, 0x19f50,
2235 		0x19f90, 0x19fac,
2236 		0x19fc4, 0x19fc8,
2237 		0x19fd0, 0x19fe4,
2238 		0x1a000, 0x1a004,
2239 		0x1a010, 0x1a06c,
2240 		0x1a0b0, 0x1a0e4,
2241 		0x1a0ec, 0x1a0f8,
2242 		0x1a100, 0x1a108,
2243 		0x1a114, 0x1a120,
2244 		0x1a128, 0x1a130,
2245 		0x1a138, 0x1a138,
2246 		0x1a190, 0x1a1c4,
2247 		0x1a1fc, 0x1a1fc,
2248 		0x1e008, 0x1e00c,
2249 		0x1e040, 0x1e044,
2250 		0x1e04c, 0x1e04c,
2251 		0x1e284, 0x1e290,
2252 		0x1e2c0, 0x1e2c0,
2253 		0x1e2e0, 0x1e2e0,
2254 		0x1e300, 0x1e384,
2255 		0x1e3c0, 0x1e3c8,
2256 		0x1e408, 0x1e40c,
2257 		0x1e440, 0x1e444,
2258 		0x1e44c, 0x1e44c,
2259 		0x1e684, 0x1e690,
2260 		0x1e6c0, 0x1e6c0,
2261 		0x1e6e0, 0x1e6e0,
2262 		0x1e700, 0x1e784,
2263 		0x1e7c0, 0x1e7c8,
2264 		0x1e808, 0x1e80c,
2265 		0x1e840, 0x1e844,
2266 		0x1e84c, 0x1e84c,
2267 		0x1ea84, 0x1ea90,
2268 		0x1eac0, 0x1eac0,
2269 		0x1eae0, 0x1eae0,
2270 		0x1eb00, 0x1eb84,
2271 		0x1ebc0, 0x1ebc8,
2272 		0x1ec08, 0x1ec0c,
2273 		0x1ec40, 0x1ec44,
2274 		0x1ec4c, 0x1ec4c,
2275 		0x1ee84, 0x1ee90,
2276 		0x1eec0, 0x1eec0,
2277 		0x1eee0, 0x1eee0,
2278 		0x1ef00, 0x1ef84,
2279 		0x1efc0, 0x1efc8,
2280 		0x1f008, 0x1f00c,
2281 		0x1f040, 0x1f044,
2282 		0x1f04c, 0x1f04c,
2283 		0x1f284, 0x1f290,
2284 		0x1f2c0, 0x1f2c0,
2285 		0x1f2e0, 0x1f2e0,
2286 		0x1f300, 0x1f384,
2287 		0x1f3c0, 0x1f3c8,
2288 		0x1f408, 0x1f40c,
2289 		0x1f440, 0x1f444,
2290 		0x1f44c, 0x1f44c,
2291 		0x1f684, 0x1f690,
2292 		0x1f6c0, 0x1f6c0,
2293 		0x1f6e0, 0x1f6e0,
2294 		0x1f700, 0x1f784,
2295 		0x1f7c0, 0x1f7c8,
2296 		0x1f808, 0x1f80c,
2297 		0x1f840, 0x1f844,
2298 		0x1f84c, 0x1f84c,
2299 		0x1fa84, 0x1fa90,
2300 		0x1fac0, 0x1fac0,
2301 		0x1fae0, 0x1fae0,
2302 		0x1fb00, 0x1fb84,
2303 		0x1fbc0, 0x1fbc8,
2304 		0x1fc08, 0x1fc0c,
2305 		0x1fc40, 0x1fc44,
2306 		0x1fc4c, 0x1fc4c,
2307 		0x1fe84, 0x1fe90,
2308 		0x1fec0, 0x1fec0,
2309 		0x1fee0, 0x1fee0,
2310 		0x1ff00, 0x1ff84,
2311 		0x1ffc0, 0x1ffc8,
2312 		0x30000, 0x30030,
2313 		0x30100, 0x30168,
2314 		0x30190, 0x301a0,
2315 		0x301a8, 0x301b8,
2316 		0x301c4, 0x301c8,
2317 		0x301d0, 0x301d0,
2318 		0x30200, 0x30320,
2319 		0x30400, 0x304b4,
2320 		0x304c0, 0x3052c,
2321 		0x30540, 0x3061c,
2322 		0x30800, 0x308a0,
2323 		0x308c0, 0x30908,
2324 		0x30910, 0x309b8,
2325 		0x30a00, 0x30a04,
2326 		0x30a0c, 0x30a14,
2327 		0x30a1c, 0x30a2c,
2328 		0x30a44, 0x30a50,
2329 		0x30a74, 0x30a74,
2330 		0x30a7c, 0x30afc,
2331 		0x30b08, 0x30c24,
2332 		0x30d00, 0x30d14,
2333 		0x30d1c, 0x30d3c,
2334 		0x30d44, 0x30d4c,
2335 		0x30d54, 0x30d74,
2336 		0x30d7c, 0x30d7c,
2337 		0x30de0, 0x30de0,
2338 		0x30e00, 0x30ed4,
2339 		0x30f00, 0x30fa4,
2340 		0x30fc0, 0x30fc4,
2341 		0x31000, 0x31004,
2342 		0x31080, 0x310fc,
2343 		0x31208, 0x31220,
2344 		0x3123c, 0x31254,
2345 		0x31300, 0x31300,
2346 		0x31308, 0x3131c,
2347 		0x31338, 0x3133c,
2348 		0x31380, 0x31380,
2349 		0x31388, 0x313a8,
2350 		0x313b4, 0x313b4,
2351 		0x31400, 0x31420,
2352 		0x31438, 0x3143c,
2353 		0x31480, 0x31480,
2354 		0x314a8, 0x314a8,
2355 		0x314b0, 0x314b4,
2356 		0x314c8, 0x314d4,
2357 		0x31a40, 0x31a4c,
2358 		0x31af0, 0x31b20,
2359 		0x31b38, 0x31b3c,
2360 		0x31b80, 0x31b80,
2361 		0x31ba8, 0x31ba8,
2362 		0x31bb0, 0x31bb4,
2363 		0x31bc8, 0x31bd4,
2364 		0x32140, 0x3218c,
2365 		0x321f0, 0x321f4,
2366 		0x32200, 0x32200,
2367 		0x32218, 0x32218,
2368 		0x32400, 0x32400,
2369 		0x32408, 0x3241c,
2370 		0x32618, 0x32620,
2371 		0x32664, 0x32664,
2372 		0x326a8, 0x326a8,
2373 		0x326ec, 0x326ec,
2374 		0x32a00, 0x32abc,
2375 		0x32b00, 0x32b18,
2376 		0x32b20, 0x32b38,
2377 		0x32b40, 0x32b58,
2378 		0x32b60, 0x32b78,
2379 		0x32c00, 0x32c00,
2380 		0x32c08, 0x32c3c,
2381 		0x33000, 0x3302c,
2382 		0x33034, 0x33050,
2383 		0x33058, 0x33058,
2384 		0x33060, 0x3308c,
2385 		0x3309c, 0x330ac,
2386 		0x330c0, 0x330c0,
2387 		0x330c8, 0x330d0,
2388 		0x330d8, 0x330e0,
2389 		0x330ec, 0x3312c,
2390 		0x33134, 0x33150,
2391 		0x33158, 0x33158,
2392 		0x33160, 0x3318c,
2393 		0x3319c, 0x331ac,
2394 		0x331c0, 0x331c0,
2395 		0x331c8, 0x331d0,
2396 		0x331d8, 0x331e0,
2397 		0x331ec, 0x33290,
2398 		0x33298, 0x332c4,
2399 		0x332e4, 0x33390,
2400 		0x33398, 0x333c4,
2401 		0x333e4, 0x3342c,
2402 		0x33434, 0x33450,
2403 		0x33458, 0x33458,
2404 		0x33460, 0x3348c,
2405 		0x3349c, 0x334ac,
2406 		0x334c0, 0x334c0,
2407 		0x334c8, 0x334d0,
2408 		0x334d8, 0x334e0,
2409 		0x334ec, 0x3352c,
2410 		0x33534, 0x33550,
2411 		0x33558, 0x33558,
2412 		0x33560, 0x3358c,
2413 		0x3359c, 0x335ac,
2414 		0x335c0, 0x335c0,
2415 		0x335c8, 0x335d0,
2416 		0x335d8, 0x335e0,
2417 		0x335ec, 0x33690,
2418 		0x33698, 0x336c4,
2419 		0x336e4, 0x33790,
2420 		0x33798, 0x337c4,
2421 		0x337e4, 0x337fc,
2422 		0x33814, 0x33814,
2423 		0x33854, 0x33868,
2424 		0x33880, 0x3388c,
2425 		0x338c0, 0x338d0,
2426 		0x338e8, 0x338ec,
2427 		0x33900, 0x3392c,
2428 		0x33934, 0x33950,
2429 		0x33958, 0x33958,
2430 		0x33960, 0x3398c,
2431 		0x3399c, 0x339ac,
2432 		0x339c0, 0x339c0,
2433 		0x339c8, 0x339d0,
2434 		0x339d8, 0x339e0,
2435 		0x339ec, 0x33a90,
2436 		0x33a98, 0x33ac4,
2437 		0x33ae4, 0x33b10,
2438 		0x33b24, 0x33b28,
2439 		0x33b38, 0x33b50,
2440 		0x33bf0, 0x33c10,
2441 		0x33c24, 0x33c28,
2442 		0x33c38, 0x33c50,
2443 		0x33cf0, 0x33cfc,
2444 		0x34000, 0x34030,
2445 		0x34100, 0x34168,
2446 		0x34190, 0x341a0,
2447 		0x341a8, 0x341b8,
2448 		0x341c4, 0x341c8,
2449 		0x341d0, 0x341d0,
2450 		0x34200, 0x34320,
2451 		0x34400, 0x344b4,
2452 		0x344c0, 0x3452c,
2453 		0x34540, 0x3461c,
2454 		0x34800, 0x348a0,
2455 		0x348c0, 0x34908,
2456 		0x34910, 0x349b8,
2457 		0x34a00, 0x34a04,
2458 		0x34a0c, 0x34a14,
2459 		0x34a1c, 0x34a2c,
2460 		0x34a44, 0x34a50,
2461 		0x34a74, 0x34a74,
2462 		0x34a7c, 0x34afc,
2463 		0x34b08, 0x34c24,
2464 		0x34d00, 0x34d14,
2465 		0x34d1c, 0x34d3c,
2466 		0x34d44, 0x34d4c,
2467 		0x34d54, 0x34d74,
2468 		0x34d7c, 0x34d7c,
2469 		0x34de0, 0x34de0,
2470 		0x34e00, 0x34ed4,
2471 		0x34f00, 0x34fa4,
2472 		0x34fc0, 0x34fc4,
2473 		0x35000, 0x35004,
2474 		0x35080, 0x350fc,
2475 		0x35208, 0x35220,
2476 		0x3523c, 0x35254,
2477 		0x35300, 0x35300,
2478 		0x35308, 0x3531c,
2479 		0x35338, 0x3533c,
2480 		0x35380, 0x35380,
2481 		0x35388, 0x353a8,
2482 		0x353b4, 0x353b4,
2483 		0x35400, 0x35420,
2484 		0x35438, 0x3543c,
2485 		0x35480, 0x35480,
2486 		0x354a8, 0x354a8,
2487 		0x354b0, 0x354b4,
2488 		0x354c8, 0x354d4,
2489 		0x35a40, 0x35a4c,
2490 		0x35af0, 0x35b20,
2491 		0x35b38, 0x35b3c,
2492 		0x35b80, 0x35b80,
2493 		0x35ba8, 0x35ba8,
2494 		0x35bb0, 0x35bb4,
2495 		0x35bc8, 0x35bd4,
2496 		0x36140, 0x3618c,
2497 		0x361f0, 0x361f4,
2498 		0x36200, 0x36200,
2499 		0x36218, 0x36218,
2500 		0x36400, 0x36400,
2501 		0x36408, 0x3641c,
2502 		0x36618, 0x36620,
2503 		0x36664, 0x36664,
2504 		0x366a8, 0x366a8,
2505 		0x366ec, 0x366ec,
2506 		0x36a00, 0x36abc,
2507 		0x36b00, 0x36b18,
2508 		0x36b20, 0x36b38,
2509 		0x36b40, 0x36b58,
2510 		0x36b60, 0x36b78,
2511 		0x36c00, 0x36c00,
2512 		0x36c08, 0x36c3c,
2513 		0x37000, 0x3702c,
2514 		0x37034, 0x37050,
2515 		0x37058, 0x37058,
2516 		0x37060, 0x3708c,
2517 		0x3709c, 0x370ac,
2518 		0x370c0, 0x370c0,
2519 		0x370c8, 0x370d0,
2520 		0x370d8, 0x370e0,
2521 		0x370ec, 0x3712c,
2522 		0x37134, 0x37150,
2523 		0x37158, 0x37158,
2524 		0x37160, 0x3718c,
2525 		0x3719c, 0x371ac,
2526 		0x371c0, 0x371c0,
2527 		0x371c8, 0x371d0,
2528 		0x371d8, 0x371e0,
2529 		0x371ec, 0x37290,
2530 		0x37298, 0x372c4,
2531 		0x372e4, 0x37390,
2532 		0x37398, 0x373c4,
2533 		0x373e4, 0x3742c,
2534 		0x37434, 0x37450,
2535 		0x37458, 0x37458,
2536 		0x37460, 0x3748c,
2537 		0x3749c, 0x374ac,
2538 		0x374c0, 0x374c0,
2539 		0x374c8, 0x374d0,
2540 		0x374d8, 0x374e0,
2541 		0x374ec, 0x3752c,
2542 		0x37534, 0x37550,
2543 		0x37558, 0x37558,
2544 		0x37560, 0x3758c,
2545 		0x3759c, 0x375ac,
2546 		0x375c0, 0x375c0,
2547 		0x375c8, 0x375d0,
2548 		0x375d8, 0x375e0,
2549 		0x375ec, 0x37690,
2550 		0x37698, 0x376c4,
2551 		0x376e4, 0x37790,
2552 		0x37798, 0x377c4,
2553 		0x377e4, 0x377fc,
2554 		0x37814, 0x37814,
2555 		0x37854, 0x37868,
2556 		0x37880, 0x3788c,
2557 		0x378c0, 0x378d0,
2558 		0x378e8, 0x378ec,
2559 		0x37900, 0x3792c,
2560 		0x37934, 0x37950,
2561 		0x37958, 0x37958,
2562 		0x37960, 0x3798c,
2563 		0x3799c, 0x379ac,
2564 		0x379c0, 0x379c0,
2565 		0x379c8, 0x379d0,
2566 		0x379d8, 0x379e0,
2567 		0x379ec, 0x37a90,
2568 		0x37a98, 0x37ac4,
2569 		0x37ae4, 0x37b10,
2570 		0x37b24, 0x37b28,
2571 		0x37b38, 0x37b50,
2572 		0x37bf0, 0x37c10,
2573 		0x37c24, 0x37c28,
2574 		0x37c38, 0x37c50,
2575 		0x37cf0, 0x37cfc,
2576 		0x40040, 0x40040,
2577 		0x40080, 0x40084,
2578 		0x40100, 0x40100,
2579 		0x40140, 0x401bc,
2580 		0x40200, 0x40214,
2581 		0x40228, 0x40228,
2582 		0x40240, 0x40258,
2583 		0x40280, 0x40280,
2584 		0x40304, 0x40304,
2585 		0x40330, 0x4033c,
2586 		0x41304, 0x413c8,
2587 		0x413d0, 0x413dc,
2588 		0x413f0, 0x413f0,
2589 		0x41400, 0x4140c,
2590 		0x41414, 0x4141c,
2591 		0x41480, 0x414d0,
2592 		0x44000, 0x4407c,
2593 		0x440c0, 0x441ac,
2594 		0x441b4, 0x4427c,
2595 		0x442c0, 0x443ac,
2596 		0x443b4, 0x4447c,
2597 		0x444c0, 0x445ac,
2598 		0x445b4, 0x4467c,
2599 		0x446c0, 0x447ac,
2600 		0x447b4, 0x4487c,
2601 		0x448c0, 0x449ac,
2602 		0x449b4, 0x44a7c,
2603 		0x44ac0, 0x44bac,
2604 		0x44bb4, 0x44c7c,
2605 		0x44cc0, 0x44dac,
2606 		0x44db4, 0x44e7c,
2607 		0x44ec0, 0x44fac,
2608 		0x44fb4, 0x4507c,
2609 		0x450c0, 0x451ac,
2610 		0x451b4, 0x451fc,
2611 		0x45800, 0x45804,
2612 		0x45810, 0x45830,
2613 		0x45840, 0x45860,
2614 		0x45868, 0x45868,
2615 		0x45880, 0x45884,
2616 		0x458a0, 0x458b0,
2617 		0x45a00, 0x45a04,
2618 		0x45a10, 0x45a30,
2619 		0x45a40, 0x45a60,
2620 		0x45a68, 0x45a68,
2621 		0x45a80, 0x45a84,
2622 		0x45aa0, 0x45ab0,
2623 		0x460c0, 0x460e4,
2624 		0x47000, 0x4703c,
2625 		0x47044, 0x4708c,
2626 		0x47200, 0x47250,
2627 		0x47400, 0x47408,
2628 		0x47414, 0x47420,
2629 		0x47600, 0x47618,
2630 		0x47800, 0x47814,
2631 		0x47820, 0x4782c,
2632 		0x50000, 0x50084,
2633 		0x50090, 0x500cc,
2634 		0x50300, 0x50384,
2635 		0x50400, 0x50400,
2636 		0x50800, 0x50884,
2637 		0x50890, 0x508cc,
2638 		0x50b00, 0x50b84,
2639 		0x50c00, 0x50c00,
2640 		0x51000, 0x51020,
2641 		0x51028, 0x510b0,
2642 		0x51300, 0x51324,
2643 	};
2644 
2645 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646 	const unsigned int *reg_ranges;
2647 	int reg_ranges_size, range;
2648 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649 
2650 	/* Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		reg_ranges = t4_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T5:
2660 		reg_ranges = t5_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662 		break;
2663 
2664 	case CHELSIO_T6:
2665 		reg_ranges = t6_reg_ranges;
2666 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667 		break;
2668 
2669 	default:
2670 		dev_err(adap->pdev_dev,
2671 			"Unsupported chip version %d\n", chip_version);
2672 		return;
2673 	}
2674 
2675 	/* Clear the register buffer and insert the appropriate register
2676 	 * values selected by the above register ranges.
2677 	 */
2678 	memset(buf, 0, buf_size);
2679 	for (range = 0; range < reg_ranges_size; range += 2) {
2680 		unsigned int reg = reg_ranges[range];
2681 		unsigned int last_reg = reg_ranges[range + 1];
2682 		u32 *bufp = (u32 *)((char *)buf + reg);
2683 
2684 		/* Iterate across the register range filling in the register
2685 		 * buffer but don't write past the end of the register buffer.
2686 		 */
2687 		while (reg <= last_reg && bufp < buf_end) {
2688 			*bufp++ = t4_read_reg(adap, reg);
2689 			reg += sizeof(u32);
2690 		}
2691 	}
2692 }
2693 
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699 
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719 	fn *= sz;
2720 	if (phys_addr < 1024)
2721 		return phys_addr + (31 << 10);
2722 	if (phys_addr < 1024 + fn)
2723 		return 31744 - fn + phys_addr - 1024;
2724 	if (phys_addr < EEPROMSIZE)
2725 		return phys_addr - 1024 - fn;
2726 	return -EINVAL;
2727 }
2728 
2729 /**
2730  *	t4_seeprom_wp - enable/disable EEPROM write protection
2731  *	@adapter: the adapter
2732  *	@enable: whether to enable or disable write protection
2733  *
2734  *	Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738 	unsigned int v = enable ? 0xc : 0;
2739 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740 	return ret < 0 ? ret : 0;
2741 }
2742 
2743 /**
2744  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *	@adapter: adapter to read
2746  *	@p: where to store the parameters
2747  *
2748  *	Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752 	int i, ret = 0, addr;
2753 	int ec, sn, pn, na;
2754 	u8 *vpd, csum;
2755 	unsigned int vpdr_len, kw_offset, id_len;
2756 
2757 	vpd = vmalloc(VPD_LEN);
2758 	if (!vpd)
2759 		return -ENOMEM;
2760 
2761 	/* Card information normally starts at VPD_BASE but early cards had
2762 	 * it at 0.
2763 	 */
2764 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765 	if (ret < 0)
2766 		goto out;
2767 
2768 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2769 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 	 * is expected to automatically put this entry at the
2772 	 * beginning of the VPD.
2773 	 */
2774 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775 
2776 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777 	if (ret < 0)
2778 		goto out;
2779 
2780 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782 		ret = -EINVAL;
2783 		goto out;
2784 	}
2785 
2786 	id_len = pci_vpd_lrdt_size(vpd);
2787 	if (id_len > ID_LEN)
2788 		id_len = ID_LEN;
2789 
2790 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791 	if (i < 0) {
2792 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793 		ret = -EINVAL;
2794 		goto out;
2795 	}
2796 
2797 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799 	if (vpdr_len + kw_offset > VPD_LEN) {
2800 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801 		ret = -EINVAL;
2802 		goto out;
2803 	}
2804 
2805 #define FIND_VPD_KW(var, name) do { \
2806 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807 	if (var < 0) { \
2808 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809 		ret = -EINVAL; \
2810 		goto out; \
2811 	} \
2812 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814 
2815 	FIND_VPD_KW(i, "RV");
2816 	for (csum = 0; i >= 0; i--)
2817 		csum += vpd[i];
2818 
2819 	if (csum) {
2820 		dev_err(adapter->pdev_dev,
2821 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2822 		ret = -EINVAL;
2823 		goto out;
2824 	}
2825 
2826 	FIND_VPD_KW(ec, "EC");
2827 	FIND_VPD_KW(sn, "SN");
2828 	FIND_VPD_KW(pn, "PN");
2829 	FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831 
2832 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833 	strim(p->id);
2834 	memcpy(p->ec, vpd + ec, EC_LEN);
2835 	strim(p->ec);
2836 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838 	strim(p->sn);
2839 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841 	strim(p->pn);
2842 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843 	strim((char *)p->na);
2844 
2845 out:
2846 	vfree(vpd);
2847 	return ret < 0 ? ret : 0;
2848 }
2849 
2850 /**
2851  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *	@adapter: adapter to read
2853  *	@p: where to store the parameters
2854  *
2855  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *	Clock.  This can only be called after a connection to the firmware
2857  *	is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861 	u32 cclk_param, cclk_val;
2862 	int ret;
2863 
2864 	/* Grab the raw VPD parameters.
2865 	 */
2866 	ret = t4_get_raw_vpd_params(adapter, p);
2867 	if (ret)
2868 		return ret;
2869 
2870 	/* Ask firmware for the Core Clock since it knows how to translate the
2871 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2872 	 */
2873 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876 			      1, &cclk_param, &cclk_val);
2877 
2878 	if (ret)
2879 		return ret;
2880 	p->cclk = cclk_val;
2881 
2882 	return 0;
2883 }
2884 
2885 /* serial flash and firmware constants */
2886 enum {
2887 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2888 
2889 	/* flash command opcodes */
2890 	SF_PROG_PAGE    = 2,          /* program page */
2891 	SF_WR_DISABLE   = 4,          /* disable writes */
2892 	SF_RD_STATUS    = 5,          /* read status register */
2893 	SF_WR_ENABLE    = 6,          /* enable writes */
2894 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2895 	SF_RD_ID        = 0x9f,       /* read ID */
2896 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2897 };
2898 
2899 /**
2900  *	sf1_read - read data from the serial flash
2901  *	@adapter: the adapter
2902  *	@byte_cnt: number of bytes to read
2903  *	@cont: whether another operation will be chained
2904  *	@lock: whether to lock SF for PL access only
2905  *	@valp: where to store the read data
2906  *
2907  *	Reads up to 4 bytes of data from the serial flash.  The location of
2908  *	the read needs to be specified prior to calling this by issuing the
2909  *	appropriate commands to the serial flash.
2910  */
2911 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2912 		    int lock, u32 *valp)
2913 {
2914 	int ret;
2915 
2916 	if (!byte_cnt || byte_cnt > 4)
2917 		return -EINVAL;
2918 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2919 		return -EBUSY;
2920 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2921 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2922 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2923 	if (!ret)
2924 		*valp = t4_read_reg(adapter, SF_DATA_A);
2925 	return ret;
2926 }
2927 
2928 /**
2929  *	sf1_write - write data to the serial flash
2930  *	@adapter: the adapter
2931  *	@byte_cnt: number of bytes to write
2932  *	@cont: whether another operation will be chained
2933  *	@lock: whether to lock SF for PL access only
2934  *	@val: value to write
2935  *
2936  *	Writes up to 4 bytes of data to the serial flash.  The location of
2937  *	the write needs to be specified prior to calling this by issuing the
2938  *	appropriate commands to the serial flash.
2939  */
2940 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2941 		     int lock, u32 val)
2942 {
2943 	if (!byte_cnt || byte_cnt > 4)
2944 		return -EINVAL;
2945 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2946 		return -EBUSY;
2947 	t4_write_reg(adapter, SF_DATA_A, val);
2948 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2949 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2950 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2951 }
2952 
2953 /**
2954  *	flash_wait_op - wait for a flash operation to complete
2955  *	@adapter: the adapter
2956  *	@attempts: max number of polls of the status register
2957  *	@delay: delay between polls in ms
2958  *
2959  *	Wait for a flash operation to complete by polling the status register.
2960  */
2961 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2962 {
2963 	int ret;
2964 	u32 status;
2965 
2966 	while (1) {
2967 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2968 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2969 			return ret;
2970 		if (!(status & 1))
2971 			return 0;
2972 		if (--attempts == 0)
2973 			return -EAGAIN;
2974 		if (delay)
2975 			msleep(delay);
2976 	}
2977 }
2978 
2979 /**
2980  *	t4_read_flash - read words from serial flash
2981  *	@adapter: the adapter
2982  *	@addr: the start address for the read
2983  *	@nwords: how many 32-bit words to read
2984  *	@data: where to store the read data
2985  *	@byte_oriented: whether to store data as bytes or as words
2986  *
2987  *	Read the specified number of 32-bit words from the serial flash.
2988  *	If @byte_oriented is set the read data is stored as a byte array
2989  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2990  *	natural endianness.
2991  */
2992 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2993 		  unsigned int nwords, u32 *data, int byte_oriented)
2994 {
2995 	int ret;
2996 
2997 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2998 		return -EINVAL;
2999 
3000 	addr = swab32(addr) | SF_RD_DATA_FAST;
3001 
3002 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3003 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3004 		return ret;
3005 
3006 	for ( ; nwords; nwords--, data++) {
3007 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3008 		if (nwords == 1)
3009 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3010 		if (ret)
3011 			return ret;
3012 		if (byte_oriented)
3013 			*data = (__force __u32)(cpu_to_be32(*data));
3014 	}
3015 	return 0;
3016 }
3017 
3018 /**
3019  *	t4_write_flash - write up to a page of data to the serial flash
3020  *	@adapter: the adapter
3021  *	@addr: the start address to write
3022  *	@n: length of data to write in bytes
3023  *	@data: the data to write
3024  *
3025  *	Writes up to a page of data (256 bytes) to the serial flash starting
3026  *	at the given address.  All the data must be written to the same page.
3027  */
3028 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3029 			  unsigned int n, const u8 *data)
3030 {
3031 	int ret;
3032 	u32 buf[64];
3033 	unsigned int i, c, left, val, offset = addr & 0xff;
3034 
3035 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3036 		return -EINVAL;
3037 
3038 	val = swab32(addr) | SF_PROG_PAGE;
3039 
3040 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3041 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3042 		goto unlock;
3043 
3044 	for (left = n; left; left -= c) {
3045 		c = min(left, 4U);
3046 		for (val = 0, i = 0; i < c; ++i)
3047 			val = (val << 8) + *data++;
3048 
3049 		ret = sf1_write(adapter, c, c != left, 1, val);
3050 		if (ret)
3051 			goto unlock;
3052 	}
3053 	ret = flash_wait_op(adapter, 8, 1);
3054 	if (ret)
3055 		goto unlock;
3056 
3057 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3058 
3059 	/* Read the page to verify the write succeeded */
3060 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3061 	if (ret)
3062 		return ret;
3063 
3064 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3065 		dev_err(adapter->pdev_dev,
3066 			"failed to correctly write the flash page at %#x\n",
3067 			addr);
3068 		return -EIO;
3069 	}
3070 	return 0;
3071 
3072 unlock:
3073 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3074 	return ret;
3075 }
3076 
3077 /**
3078  *	t4_get_fw_version - read the firmware version
3079  *	@adapter: the adapter
3080  *	@vers: where to place the version
3081  *
3082  *	Reads the FW version from flash.
3083  */
3084 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3085 {
3086 	return t4_read_flash(adapter, FLASH_FW_START +
3087 			     offsetof(struct fw_hdr, fw_ver), 1,
3088 			     vers, 0);
3089 }
3090 
3091 /**
3092  *	t4_get_bs_version - read the firmware bootstrap version
3093  *	@adapter: the adapter
3094  *	@vers: where to place the version
3095  *
3096  *	Reads the FW Bootstrap version from flash.
3097  */
3098 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3099 {
3100 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3101 			     offsetof(struct fw_hdr, fw_ver), 1,
3102 			     vers, 0);
3103 }
3104 
3105 /**
3106  *	t4_get_tp_version - read the TP microcode version
3107  *	@adapter: the adapter
3108  *	@vers: where to place the version
3109  *
3110  *	Reads the TP microcode version from flash.
3111  */
3112 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3113 {
3114 	return t4_read_flash(adapter, FLASH_FW_START +
3115 			     offsetof(struct fw_hdr, tp_microcode_ver),
3116 			     1, vers, 0);
3117 }
3118 
3119 /**
3120  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3121  *	@adapter: the adapter
3122  *	@vers: where to place the version
3123  *
3124  *	Reads the Expansion ROM header from FLASH and returns the version
3125  *	number (if present) through the @vers return value pointer.  We return
3126  *	this in the Firmware Version Format since it's convenient.  Return
3127  *	0 on success, -ENOENT if no Expansion ROM is present.
3128  */
3129 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3130 {
3131 	struct exprom_header {
3132 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3133 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3134 	} *hdr;
3135 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3136 					   sizeof(u32))];
3137 	int ret;
3138 
3139 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3140 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3141 			    0);
3142 	if (ret)
3143 		return ret;
3144 
3145 	hdr = (struct exprom_header *)exprom_header_buf;
3146 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3147 		return -ENOENT;
3148 
3149 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3150 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3151 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3152 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3153 	return 0;
3154 }
3155 
3156 /**
3157  *      t4_get_vpd_version - return the VPD version
3158  *      @adapter: the adapter
3159  *      @vers: where to place the version
3160  *
3161  *      Reads the VPD via the Firmware interface (thus this can only be called
3162  *      once we're ready to issue Firmware commands).  The format of the
3163  *      VPD version is adapter specific.  Returns 0 on success, an error on
3164  *      failure.
3165  *
3166  *      Note that early versions of the Firmware didn't include the ability
3167  *      to retrieve the VPD version, so we zero-out the return-value parameter
3168  *      in that case to avoid leaving it with garbage in it.
3169  *
3170  *      Also note that the Firmware will return its cached copy of the VPD
3171  *      Revision ID, not the actual Revision ID as written in the Serial
3172  *      EEPROM.  This is only an issue if a new VPD has been written and the
3173  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3174  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3175  *      if the Host Driver will be performing a full adapter initialization.
3176  */
3177 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3178 {
3179 	u32 vpdrev_param;
3180 	int ret;
3181 
3182 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3183 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3184 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3185 			      1, &vpdrev_param, vers);
3186 	if (ret)
3187 		*vers = 0;
3188 	return ret;
3189 }
3190 
3191 /**
3192  *      t4_get_scfg_version - return the Serial Configuration version
3193  *      @adapter: the adapter
3194  *      @vers: where to place the version
3195  *
3196  *      Reads the Serial Configuration Version via the Firmware interface
3197  *      (thus this can only be called once we're ready to issue Firmware
3198  *      commands).  The format of the Serial Configuration version is
3199  *      adapter specific.  Returns 0 on success, an error on failure.
3200  *
3201  *      Note that early versions of the Firmware didn't include the ability
3202  *      to retrieve the Serial Configuration version, so we zero-out the
3203  *      return-value parameter in that case to avoid leaving it with
3204  *      garbage in it.
3205  *
3206  *      Also note that the Firmware will return its cached copy of the Serial
3207  *      Initialization Revision ID, not the actual Revision ID as written in
3208  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3209  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3210  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3211  *      been issued if the Host Driver will be performing a full adapter
3212  *      initialization.
3213  */
3214 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3215 {
3216 	u32 scfgrev_param;
3217 	int ret;
3218 
3219 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3220 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3221 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3222 			      1, &scfgrev_param, vers);
3223 	if (ret)
3224 		*vers = 0;
3225 	return ret;
3226 }
3227 
3228 /**
3229  *      t4_get_version_info - extract various chip/firmware version information
3230  *      @adapter: the adapter
3231  *
3232  *      Reads various chip/firmware version numbers and stores them into the
3233  *      adapter Adapter Parameters structure.  If any of the efforts fails
3234  *      the first failure will be returned, but all of the version numbers
3235  *      will be read.
3236  */
3237 int t4_get_version_info(struct adapter *adapter)
3238 {
3239 	int ret = 0;
3240 
3241 	#define FIRST_RET(__getvinfo) \
3242 	do { \
3243 		int __ret = __getvinfo; \
3244 		if (__ret && !ret) \
3245 			ret = __ret; \
3246 	} while (0)
3247 
3248 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3249 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3250 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3251 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3252 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3253 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3254 
3255 	#undef FIRST_RET
3256 	return ret;
3257 }
3258 
3259 /**
3260  *      t4_dump_version_info - dump all of the adapter configuration IDs
3261  *      @adapter: the adapter
3262  *
3263  *      Dumps all of the various bits of adapter configuration version/revision
3264  *      IDs information.  This is typically called at some point after
3265  *      t4_get_version_info() has been called.
3266  */
3267 void t4_dump_version_info(struct adapter *adapter)
3268 {
3269 	/* Device information */
3270 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3271 		 adapter->params.vpd.id,
3272 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3273 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3274 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3275 
3276 	/* Firmware Version */
3277 	if (!adapter->params.fw_vers)
3278 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3279 	else
3280 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3281 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3282 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3283 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3284 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3285 
3286 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3287 	 * Firmware, so dev_info() is more appropriate here.)
3288 	 */
3289 	if (!adapter->params.bs_vers)
3290 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3291 	else
3292 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3293 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3294 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3295 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3296 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3297 
3298 	/* TP Microcode Version */
3299 	if (!adapter->params.tp_vers)
3300 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3301 	else
3302 		dev_info(adapter->pdev_dev,
3303 			 "TP Microcode version: %u.%u.%u.%u\n",
3304 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3305 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3306 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3307 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3308 
3309 	/* Expansion ROM version */
3310 	if (!adapter->params.er_vers)
3311 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3312 	else
3313 		dev_info(adapter->pdev_dev,
3314 			 "Expansion ROM version: %u.%u.%u.%u\n",
3315 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3316 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3317 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3318 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3319 
3320 	/* Serial Configuration version */
3321 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3322 		 adapter->params.scfg_vers);
3323 
3324 	/* VPD Version */
3325 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3326 		 adapter->params.vpd_vers);
3327 }
3328 
3329 /**
3330  *	t4_check_fw_version - check if the FW is supported with this driver
3331  *	@adap: the adapter
3332  *
3333  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3334  *	if there's exact match, a negative error if the version could not be
3335  *	read or there's a major version mismatch
3336  */
3337 int t4_check_fw_version(struct adapter *adap)
3338 {
3339 	int i, ret, major, minor, micro;
3340 	int exp_major, exp_minor, exp_micro;
3341 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3342 
3343 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3344 	/* Try multiple times before returning error */
3345 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3346 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3347 
3348 	if (ret)
3349 		return ret;
3350 
3351 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3352 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3353 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3354 
3355 	switch (chip_version) {
3356 	case CHELSIO_T4:
3357 		exp_major = T4FW_MIN_VERSION_MAJOR;
3358 		exp_minor = T4FW_MIN_VERSION_MINOR;
3359 		exp_micro = T4FW_MIN_VERSION_MICRO;
3360 		break;
3361 	case CHELSIO_T5:
3362 		exp_major = T5FW_MIN_VERSION_MAJOR;
3363 		exp_minor = T5FW_MIN_VERSION_MINOR;
3364 		exp_micro = T5FW_MIN_VERSION_MICRO;
3365 		break;
3366 	case CHELSIO_T6:
3367 		exp_major = T6FW_MIN_VERSION_MAJOR;
3368 		exp_minor = T6FW_MIN_VERSION_MINOR;
3369 		exp_micro = T6FW_MIN_VERSION_MICRO;
3370 		break;
3371 	default:
3372 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3373 			adap->chip);
3374 		return -EINVAL;
3375 	}
3376 
3377 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3378 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3379 		dev_err(adap->pdev_dev,
3380 			"Card has firmware version %u.%u.%u, minimum "
3381 			"supported firmware is %u.%u.%u.\n", major, minor,
3382 			micro, exp_major, exp_minor, exp_micro);
3383 		return -EFAULT;
3384 	}
3385 	return 0;
3386 }
3387 
3388 /* Is the given firmware API compatible with the one the driver was compiled
3389  * with?
3390  */
3391 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3392 {
3393 
3394 	/* short circuit if it's the exact same firmware version */
3395 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3396 		return 1;
3397 
3398 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3399 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3400 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3401 		return 1;
3402 #undef SAME_INTF
3403 
3404 	return 0;
3405 }
3406 
3407 /* The firmware in the filesystem is usable, but should it be installed?
3408  * This routine explains itself in detail if it indicates the filesystem
3409  * firmware should be installed.
3410  */
3411 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3412 				int k, int c)
3413 {
3414 	const char *reason;
3415 
3416 	if (!card_fw_usable) {
3417 		reason = "incompatible or unusable";
3418 		goto install;
3419 	}
3420 
3421 	if (k > c) {
3422 		reason = "older than the version supported with this driver";
3423 		goto install;
3424 	}
3425 
3426 	return 0;
3427 
3428 install:
3429 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3430 		"installing firmware %u.%u.%u.%u on card.\n",
3431 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3432 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3433 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3434 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3435 
3436 	return 1;
3437 }
3438 
3439 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3440 	       const u8 *fw_data, unsigned int fw_size,
3441 	       struct fw_hdr *card_fw, enum dev_state state,
3442 	       int *reset)
3443 {
3444 	int ret, card_fw_usable, fs_fw_usable;
3445 	const struct fw_hdr *fs_fw;
3446 	const struct fw_hdr *drv_fw;
3447 
3448 	drv_fw = &fw_info->fw_hdr;
3449 
3450 	/* Read the header of the firmware on the card */
3451 	ret = -t4_read_flash(adap, FLASH_FW_START,
3452 			    sizeof(*card_fw) / sizeof(uint32_t),
3453 			    (uint32_t *)card_fw, 1);
3454 	if (ret == 0) {
3455 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3456 	} else {
3457 		dev_err(adap->pdev_dev,
3458 			"Unable to read card's firmware header: %d\n", ret);
3459 		card_fw_usable = 0;
3460 	}
3461 
3462 	if (fw_data != NULL) {
3463 		fs_fw = (const void *)fw_data;
3464 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3465 	} else {
3466 		fs_fw = NULL;
3467 		fs_fw_usable = 0;
3468 	}
3469 
3470 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3471 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3472 		/* Common case: the firmware on the card is an exact match and
3473 		 * the filesystem one is an exact match too, or the filesystem
3474 		 * one is absent/incompatible.
3475 		 */
3476 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3477 		   should_install_fs_fw(adap, card_fw_usable,
3478 					be32_to_cpu(fs_fw->fw_ver),
3479 					be32_to_cpu(card_fw->fw_ver))) {
3480 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3481 				     fw_size, 0);
3482 		if (ret != 0) {
3483 			dev_err(adap->pdev_dev,
3484 				"failed to install firmware: %d\n", ret);
3485 			goto bye;
3486 		}
3487 
3488 		/* Installed successfully, update the cached header too. */
3489 		*card_fw = *fs_fw;
3490 		card_fw_usable = 1;
3491 		*reset = 0;	/* already reset as part of load_fw */
3492 	}
3493 
3494 	if (!card_fw_usable) {
3495 		uint32_t d, c, k;
3496 
3497 		d = be32_to_cpu(drv_fw->fw_ver);
3498 		c = be32_to_cpu(card_fw->fw_ver);
3499 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3500 
3501 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3502 			"chip state %d, "
3503 			"driver compiled with %d.%d.%d.%d, "
3504 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3505 			state,
3506 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3507 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3508 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3509 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3510 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3511 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3512 		ret = EINVAL;
3513 		goto bye;
3514 	}
3515 
3516 	/* We're using whatever's on the card and it's known to be good. */
3517 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3518 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3519 
3520 bye:
3521 	return ret;
3522 }
3523 
3524 /**
3525  *	t4_flash_erase_sectors - erase a range of flash sectors
3526  *	@adapter: the adapter
3527  *	@start: the first sector to erase
3528  *	@end: the last sector to erase
3529  *
3530  *	Erases the sectors in the given inclusive range.
3531  */
3532 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3533 {
3534 	int ret = 0;
3535 
3536 	if (end >= adapter->params.sf_nsec)
3537 		return -EINVAL;
3538 
3539 	while (start <= end) {
3540 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3541 		    (ret = sf1_write(adapter, 4, 0, 1,
3542 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3543 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3544 			dev_err(adapter->pdev_dev,
3545 				"erase of flash sector %d failed, error %d\n",
3546 				start, ret);
3547 			break;
3548 		}
3549 		start++;
3550 	}
3551 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3552 	return ret;
3553 }
3554 
3555 /**
3556  *	t4_flash_cfg_addr - return the address of the flash configuration file
3557  *	@adapter: the adapter
3558  *
3559  *	Return the address within the flash where the Firmware Configuration
3560  *	File is stored.
3561  */
3562 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3563 {
3564 	if (adapter->params.sf_size == 0x100000)
3565 		return FLASH_FPGA_CFG_START;
3566 	else
3567 		return FLASH_CFG_START;
3568 }
3569 
3570 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3571  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3572  * and emit an error message for mismatched firmware to save our caller the
3573  * effort ...
3574  */
3575 static bool t4_fw_matches_chip(const struct adapter *adap,
3576 			       const struct fw_hdr *hdr)
3577 {
3578 	/* The expression below will return FALSE for any unsupported adapter
3579 	 * which will keep us "honest" in the future ...
3580 	 */
3581 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3582 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3583 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3584 		return true;
3585 
3586 	dev_err(adap->pdev_dev,
3587 		"FW image (%d) is not suitable for this adapter (%d)\n",
3588 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3589 	return false;
3590 }
3591 
3592 /**
3593  *	t4_load_fw - download firmware
3594  *	@adap: the adapter
3595  *	@fw_data: the firmware image to write
3596  *	@size: image size
3597  *
3598  *	Write the supplied firmware image to the card's serial flash.
3599  */
3600 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3601 {
3602 	u32 csum;
3603 	int ret, addr;
3604 	unsigned int i;
3605 	u8 first_page[SF_PAGE_SIZE];
3606 	const __be32 *p = (const __be32 *)fw_data;
3607 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3608 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3609 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3610 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3611 	unsigned int fw_start = FLASH_FW_START;
3612 
3613 	if (!size) {
3614 		dev_err(adap->pdev_dev, "FW image has no data\n");
3615 		return -EINVAL;
3616 	}
3617 	if (size & 511) {
3618 		dev_err(adap->pdev_dev,
3619 			"FW image size not multiple of 512 bytes\n");
3620 		return -EINVAL;
3621 	}
3622 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3623 		dev_err(adap->pdev_dev,
3624 			"FW image size differs from size in FW header\n");
3625 		return -EINVAL;
3626 	}
3627 	if (size > fw_size) {
3628 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3629 			fw_size);
3630 		return -EFBIG;
3631 	}
3632 	if (!t4_fw_matches_chip(adap, hdr))
3633 		return -EINVAL;
3634 
3635 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3636 		csum += be32_to_cpu(p[i]);
3637 
3638 	if (csum != 0xffffffff) {
3639 		dev_err(adap->pdev_dev,
3640 			"corrupted firmware image, checksum %#x\n", csum);
3641 		return -EINVAL;
3642 	}
3643 
3644 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3645 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3646 	if (ret)
3647 		goto out;
3648 
3649 	/*
3650 	 * We write the correct version at the end so the driver can see a bad
3651 	 * version if the FW write fails.  Start by writing a copy of the
3652 	 * first page with a bad version.
3653 	 */
3654 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3655 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3656 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3657 	if (ret)
3658 		goto out;
3659 
3660 	addr = fw_start;
3661 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3662 		addr += SF_PAGE_SIZE;
3663 		fw_data += SF_PAGE_SIZE;
3664 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3665 		if (ret)
3666 			goto out;
3667 	}
3668 
3669 	ret = t4_write_flash(adap,
3670 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3671 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3672 out:
3673 	if (ret)
3674 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3675 			ret);
3676 	else
3677 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3678 	return ret;
3679 }
3680 
3681 /**
3682  *	t4_phy_fw_ver - return current PHY firmware version
3683  *	@adap: the adapter
3684  *	@phy_fw_ver: return value buffer for PHY firmware version
3685  *
3686  *	Returns the current version of external PHY firmware on the
3687  *	adapter.
3688  */
3689 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3690 {
3691 	u32 param, val;
3692 	int ret;
3693 
3694 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3695 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3696 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3697 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3698 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3699 			      &param, &val);
3700 	if (ret < 0)
3701 		return ret;
3702 	*phy_fw_ver = val;
3703 	return 0;
3704 }
3705 
3706 /**
3707  *	t4_load_phy_fw - download port PHY firmware
3708  *	@adap: the adapter
3709  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3710  *	@win_lock: the lock to use to guard the memory copy
3711  *	@phy_fw_version: function to check PHY firmware versions
3712  *	@phy_fw_data: the PHY firmware image to write
3713  *	@phy_fw_size: image size
3714  *
3715  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3716  *	@phy_fw_version is supplied, then it will be used to determine if
3717  *	it's necessary to perform the transfer by comparing the version
3718  *	of any existing adapter PHY firmware with that of the passed in
3719  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3720  *	around the call to t4_memory_rw() which transfers the PHY firmware
3721  *	to the adapter.
3722  *
3723  *	A negative error number will be returned if an error occurs.  If
3724  *	version number support is available and there's no need to upgrade
3725  *	the firmware, 0 will be returned.  If firmware is successfully
3726  *	transferred to the adapter, 1 will be retured.
3727  *
3728  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3729  *	a result, a RESET of the adapter would cause that RAM to lose its
3730  *	contents.  Thus, loading PHY firmware on such adapters must happen
3731  *	after any FW_RESET_CMDs ...
3732  */
3733 int t4_load_phy_fw(struct adapter *adap,
3734 		   int win, spinlock_t *win_lock,
3735 		   int (*phy_fw_version)(const u8 *, size_t),
3736 		   const u8 *phy_fw_data, size_t phy_fw_size)
3737 {
3738 	unsigned long mtype = 0, maddr = 0;
3739 	u32 param, val;
3740 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3741 	int ret;
3742 
3743 	/* If we have version number support, then check to see if the adapter
3744 	 * already has up-to-date PHY firmware loaded.
3745 	 */
3746 	 if (phy_fw_version) {
3747 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3748 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3749 		if (ret < 0)
3750 			return ret;
3751 
3752 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3753 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3754 				"version %#x\n", cur_phy_fw_ver);
3755 			return 0;
3756 		}
3757 	}
3758 
3759 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3760 	 * The size of the file requires a special version of the READ coommand
3761 	 * which will pass the file size via the values field in PARAMS_CMD and
3762 	 * retrieve the return value from firmware and place it in the same
3763 	 * buffer values
3764 	 */
3765 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3766 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3767 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3768 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3769 	val = phy_fw_size;
3770 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3771 				 &param, &val, 1, true);
3772 	if (ret < 0)
3773 		return ret;
3774 	mtype = val >> 8;
3775 	maddr = (val & 0xff) << 16;
3776 
3777 	/* Copy the supplied PHY Firmware image to the adapter memory location
3778 	 * allocated by the adapter firmware.
3779 	 */
3780 	if (win_lock)
3781 		spin_lock_bh(win_lock);
3782 	ret = t4_memory_rw(adap, win, mtype, maddr,
3783 			   phy_fw_size, (__be32 *)phy_fw_data,
3784 			   T4_MEMORY_WRITE);
3785 	if (win_lock)
3786 		spin_unlock_bh(win_lock);
3787 	if (ret)
3788 		return ret;
3789 
3790 	/* Tell the firmware that the PHY firmware image has been written to
3791 	 * RAM and it can now start copying it over to the PHYs.  The chip
3792 	 * firmware will RESET the affected PHYs as part of this operation
3793 	 * leaving them running the new PHY firmware image.
3794 	 */
3795 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3796 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3797 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3798 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3799 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3800 				    &param, &val, 30000);
3801 
3802 	/* If we have version number support, then check to see that the new
3803 	 * firmware got loaded properly.
3804 	 */
3805 	if (phy_fw_version) {
3806 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3807 		if (ret < 0)
3808 			return ret;
3809 
3810 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3811 			CH_WARN(adap, "PHY Firmware did not update: "
3812 				"version on adapter %#x, "
3813 				"version flashed %#x\n",
3814 				cur_phy_fw_ver, new_phy_fw_vers);
3815 			return -ENXIO;
3816 		}
3817 	}
3818 
3819 	return 1;
3820 }
3821 
3822 /**
3823  *	t4_fwcache - firmware cache operation
3824  *	@adap: the adapter
3825  *	@op  : the operation (flush or flush and invalidate)
3826  */
3827 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3828 {
3829 	struct fw_params_cmd c;
3830 
3831 	memset(&c, 0, sizeof(c));
3832 	c.op_to_vfn =
3833 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3834 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3835 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3836 			    FW_PARAMS_CMD_VFN_V(0));
3837 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3838 	c.param[0].mnem =
3839 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3840 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3841 	c.param[0].val = (__force __be32)op;
3842 
3843 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3844 }
3845 
3846 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3847 			unsigned int *pif_req_wrptr,
3848 			unsigned int *pif_rsp_wrptr)
3849 {
3850 	int i, j;
3851 	u32 cfg, val, req, rsp;
3852 
3853 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3854 	if (cfg & LADBGEN_F)
3855 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3856 
3857 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3858 	req = POLADBGWRPTR_G(val);
3859 	rsp = PILADBGWRPTR_G(val);
3860 	if (pif_req_wrptr)
3861 		*pif_req_wrptr = req;
3862 	if (pif_rsp_wrptr)
3863 		*pif_rsp_wrptr = rsp;
3864 
3865 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3866 		for (j = 0; j < 6; j++) {
3867 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3868 				     PILADBGRDPTR_V(rsp));
3869 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3870 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3871 			req++;
3872 			rsp++;
3873 		}
3874 		req = (req + 2) & POLADBGRDPTR_M;
3875 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3876 	}
3877 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3878 }
3879 
3880 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3881 {
3882 	u32 cfg;
3883 	int i, j, idx;
3884 
3885 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3886 	if (cfg & LADBGEN_F)
3887 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3888 
3889 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3890 		for (j = 0; j < 5; j++) {
3891 			idx = 8 * i + j;
3892 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3893 				     PILADBGRDPTR_V(idx));
3894 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3895 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3896 		}
3897 	}
3898 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3899 }
3900 
3901 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3902 {
3903 	unsigned int i, j;
3904 
3905 	for (i = 0; i < 8; i++) {
3906 		u32 *p = la_buf + i;
3907 
3908 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3909 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3910 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3911 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3912 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3913 	}
3914 }
3915 
3916 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3917 		     FW_PORT_CAP32_ANEG)
3918 
3919 /**
3920  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3921  *	@caps16: a 16-bit Port Capabilities value
3922  *
3923  *	Returns the equivalent 32-bit Port Capabilities value.
3924  */
3925 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3926 {
3927 	fw_port_cap32_t caps32 = 0;
3928 
3929 	#define CAP16_TO_CAP32(__cap) \
3930 		do { \
3931 			if (caps16 & FW_PORT_CAP_##__cap) \
3932 				caps32 |= FW_PORT_CAP32_##__cap; \
3933 		} while (0)
3934 
3935 	CAP16_TO_CAP32(SPEED_100M);
3936 	CAP16_TO_CAP32(SPEED_1G);
3937 	CAP16_TO_CAP32(SPEED_25G);
3938 	CAP16_TO_CAP32(SPEED_10G);
3939 	CAP16_TO_CAP32(SPEED_40G);
3940 	CAP16_TO_CAP32(SPEED_100G);
3941 	CAP16_TO_CAP32(FC_RX);
3942 	CAP16_TO_CAP32(FC_TX);
3943 	CAP16_TO_CAP32(ANEG);
3944 	CAP16_TO_CAP32(MDIX);
3945 	CAP16_TO_CAP32(MDIAUTO);
3946 	CAP16_TO_CAP32(FEC_RS);
3947 	CAP16_TO_CAP32(FEC_BASER_RS);
3948 	CAP16_TO_CAP32(802_3_PAUSE);
3949 	CAP16_TO_CAP32(802_3_ASM_DIR);
3950 
3951 	#undef CAP16_TO_CAP32
3952 
3953 	return caps32;
3954 }
3955 
3956 /**
3957  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3958  *	@caps32: a 32-bit Port Capabilities value
3959  *
3960  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3961  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3962  *	Port Capabilities and some fields/values may not make it.
3963  */
3964 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3965 {
3966 	fw_port_cap16_t caps16 = 0;
3967 
3968 	#define CAP32_TO_CAP16(__cap) \
3969 		do { \
3970 			if (caps32 & FW_PORT_CAP32_##__cap) \
3971 				caps16 |= FW_PORT_CAP_##__cap; \
3972 		} while (0)
3973 
3974 	CAP32_TO_CAP16(SPEED_100M);
3975 	CAP32_TO_CAP16(SPEED_1G);
3976 	CAP32_TO_CAP16(SPEED_10G);
3977 	CAP32_TO_CAP16(SPEED_25G);
3978 	CAP32_TO_CAP16(SPEED_40G);
3979 	CAP32_TO_CAP16(SPEED_100G);
3980 	CAP32_TO_CAP16(FC_RX);
3981 	CAP32_TO_CAP16(FC_TX);
3982 	CAP32_TO_CAP16(802_3_PAUSE);
3983 	CAP32_TO_CAP16(802_3_ASM_DIR);
3984 	CAP32_TO_CAP16(ANEG);
3985 	CAP32_TO_CAP16(MDIX);
3986 	CAP32_TO_CAP16(MDIAUTO);
3987 	CAP32_TO_CAP16(FEC_RS);
3988 	CAP32_TO_CAP16(FEC_BASER_RS);
3989 
3990 	#undef CAP32_TO_CAP16
3991 
3992 	return caps16;
3993 }
3994 
3995 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3996 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3997 {
3998 	enum cc_pause cc_pause = 0;
3999 
4000 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4001 		cc_pause |= PAUSE_RX;
4002 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4003 		cc_pause |= PAUSE_TX;
4004 
4005 	return cc_pause;
4006 }
4007 
4008 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4009 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4010 {
4011 	fw_port_cap32_t fw_pause = 0;
4012 
4013 	if (cc_pause & PAUSE_RX)
4014 		fw_pause |= FW_PORT_CAP32_FC_RX;
4015 	if (cc_pause & PAUSE_TX)
4016 		fw_pause |= FW_PORT_CAP32_FC_TX;
4017 
4018 	return fw_pause;
4019 }
4020 
4021 /* Translate Firmware Forward Error Correction specification to Common Code */
4022 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4023 {
4024 	enum cc_fec cc_fec = 0;
4025 
4026 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4027 		cc_fec |= FEC_RS;
4028 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4029 		cc_fec |= FEC_BASER_RS;
4030 
4031 	return cc_fec;
4032 }
4033 
4034 /* Translate Common Code Forward Error Correction specification to Firmware */
4035 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4036 {
4037 	fw_port_cap32_t fw_fec = 0;
4038 
4039 	if (cc_fec & FEC_RS)
4040 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4041 	if (cc_fec & FEC_BASER_RS)
4042 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4043 
4044 	return fw_fec;
4045 }
4046 
4047 /**
4048  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4049  *	@adapter: the adapter
4050  *	@mbox: the Firmware Mailbox to use
4051  *	@port: the Port ID
4052  *	@lc: the Port's Link Configuration
4053  *
4054  *	Set up a port's MAC and PHY according to a desired link configuration.
4055  *	- If the PHY can auto-negotiate first decide what to advertise, then
4056  *	  enable/disable auto-negotiation as desired, and reset.
4057  *	- If the PHY does not auto-negotiate just reset it.
4058  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4059  *	  otherwise do it later based on the outcome of auto-negotiation.
4060  */
4061 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox,
4062 		  unsigned int port, struct link_config *lc)
4063 {
4064 	unsigned int fw_caps = adapter->params.fw_caps_support;
4065 	struct fw_port_cmd cmd;
4066 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
4067 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4068 
4069 	/* Convert driver coding of Pause Frame Flow Control settings into the
4070 	 * Firmware's API.
4071 	 */
4072 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4073 
4074 	/* Convert Common Code Forward Error Control settings into the
4075 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4076 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4077 	 * sent us as part of it's IEEE 802.3-based interpratation of
4078 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4079 	 * use whatever is in the current Requested FEC settings.
4080 	 */
4081 	if (lc->requested_fec & FEC_AUTO)
4082 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4083 	else
4084 		cc_fec = lc->requested_fec;
4085 	fw_fec = cc_to_fwcap_fec(cc_fec);
4086 
4087 	/* Figure out what our Requested Port Capabilities are going to be.
4088 	 */
4089 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4090 		rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
4091 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4092 		lc->fec = cc_fec;
4093 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4094 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4095 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4096 		lc->fec = cc_fec;
4097 	} else {
4098 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4099 	}
4100 
4101 	/* And send that on to the Firmware ...
4102 	 */
4103 	memset(&cmd, 0, sizeof(cmd));
4104 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4105 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4106 				       FW_PORT_CMD_PORTID_V(port));
4107 	cmd.action_to_len16 =
4108 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4109 						 ? FW_PORT_ACTION_L1_CFG
4110 						 : FW_PORT_ACTION_L1_CFG32) |
4111 			    FW_LEN16(cmd));
4112 	if (fw_caps == FW_CAPS16)
4113 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4114 	else
4115 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4116 	return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4117 }
4118 
4119 /**
4120  *	t4_restart_aneg - restart autonegotiation
4121  *	@adap: the adapter
4122  *	@mbox: mbox to use for the FW command
4123  *	@port: the port id
4124  *
4125  *	Restarts autonegotiation for the selected port.
4126  */
4127 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4128 {
4129 	struct fw_port_cmd c;
4130 
4131 	memset(&c, 0, sizeof(c));
4132 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4133 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4134 				     FW_PORT_CMD_PORTID_V(port));
4135 	c.action_to_len16 =
4136 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4137 			    FW_LEN16(c));
4138 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4139 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4140 }
4141 
4142 typedef void (*int_handler_t)(struct adapter *adap);
4143 
4144 struct intr_info {
4145 	unsigned int mask;       /* bits to check in interrupt status */
4146 	const char *msg;         /* message to print or NULL */
4147 	short stat_idx;          /* stat counter to increment or -1 */
4148 	unsigned short fatal;    /* whether the condition reported is fatal */
4149 	int_handler_t int_handler; /* platform-specific int handler */
4150 };
4151 
4152 /**
4153  *	t4_handle_intr_status - table driven interrupt handler
4154  *	@adapter: the adapter that generated the interrupt
4155  *	@reg: the interrupt status register to process
4156  *	@acts: table of interrupt actions
4157  *
4158  *	A table driven interrupt handler that applies a set of masks to an
4159  *	interrupt status word and performs the corresponding actions if the
4160  *	interrupts described by the mask have occurred.  The actions include
4161  *	optionally emitting a warning or alert message.  The table is terminated
4162  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4163  *	conditions.
4164  */
4165 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4166 				 const struct intr_info *acts)
4167 {
4168 	int fatal = 0;
4169 	unsigned int mask = 0;
4170 	unsigned int status = t4_read_reg(adapter, reg);
4171 
4172 	for ( ; acts->mask; ++acts) {
4173 		if (!(status & acts->mask))
4174 			continue;
4175 		if (acts->fatal) {
4176 			fatal++;
4177 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4178 				  status & acts->mask);
4179 		} else if (acts->msg && printk_ratelimit())
4180 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4181 				 status & acts->mask);
4182 		if (acts->int_handler)
4183 			acts->int_handler(adapter);
4184 		mask |= acts->mask;
4185 	}
4186 	status &= mask;
4187 	if (status)                           /* clear processed interrupts */
4188 		t4_write_reg(adapter, reg, status);
4189 	return fatal;
4190 }
4191 
4192 /*
4193  * Interrupt handler for the PCIE module.
4194  */
4195 static void pcie_intr_handler(struct adapter *adapter)
4196 {
4197 	static const struct intr_info sysbus_intr_info[] = {
4198 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4199 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4200 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4201 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4202 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4203 		{ 0 }
4204 	};
4205 	static const struct intr_info pcie_port_intr_info[] = {
4206 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4207 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4208 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4209 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4210 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4211 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4212 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4213 		{ RDPE_F, "Rx data parity error", -1, 1 },
4214 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4215 		{ 0 }
4216 	};
4217 	static const struct intr_info pcie_intr_info[] = {
4218 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4219 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4220 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4221 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4222 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4223 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4224 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4225 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4226 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4227 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4228 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4229 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4230 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4231 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4232 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4233 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4234 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4235 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4236 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4237 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4238 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4239 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4240 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4241 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4242 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4243 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4244 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4245 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4246 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4247 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4248 		  -1, 0 },
4249 		{ 0 }
4250 	};
4251 
4252 	static struct intr_info t5_pcie_intr_info[] = {
4253 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4254 		  -1, 1 },
4255 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4256 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4257 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4258 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4259 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4260 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4261 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4262 		  -1, 1 },
4263 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4264 		  -1, 1 },
4265 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4266 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4267 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4268 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4269 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4270 		  -1, 1 },
4271 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4272 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4273 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4274 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4275 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4276 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4277 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4278 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4279 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4280 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4281 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4282 		  -1, 1 },
4283 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4284 		  -1, 1 },
4285 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4286 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4287 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4288 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4289 		{ 0 }
4290 	};
4291 
4292 	int fat;
4293 
4294 	if (is_t4(adapter->params.chip))
4295 		fat = t4_handle_intr_status(adapter,
4296 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4297 				sysbus_intr_info) +
4298 			t4_handle_intr_status(adapter,
4299 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4300 					pcie_port_intr_info) +
4301 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4302 					      pcie_intr_info);
4303 	else
4304 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4305 					    t5_pcie_intr_info);
4306 
4307 	if (fat)
4308 		t4_fatal_err(adapter);
4309 }
4310 
4311 /*
4312  * TP interrupt handler.
4313  */
4314 static void tp_intr_handler(struct adapter *adapter)
4315 {
4316 	static const struct intr_info tp_intr_info[] = {
4317 		{ 0x3fffffff, "TP parity error", -1, 1 },
4318 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4319 		{ 0 }
4320 	};
4321 
4322 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4323 		t4_fatal_err(adapter);
4324 }
4325 
4326 /*
4327  * SGE interrupt handler.
4328  */
4329 static void sge_intr_handler(struct adapter *adapter)
4330 {
4331 	u64 v;
4332 	u32 err;
4333 
4334 	static const struct intr_info sge_intr_info[] = {
4335 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4336 		  "SGE received CPL exceeding IQE size", -1, 1 },
4337 		{ ERR_INVALID_CIDX_INC_F,
4338 		  "SGE GTS CIDX increment too large", -1, 0 },
4339 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4340 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4341 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4342 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4343 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4344 		  0 },
4345 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4346 		  0 },
4347 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4348 		  0 },
4349 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4350 		  0 },
4351 		{ ERR_ING_CTXT_PRIO_F,
4352 		  "SGE too many priority ingress contexts", -1, 0 },
4353 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4354 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4355 		{ 0 }
4356 	};
4357 
4358 	static struct intr_info t4t5_sge_intr_info[] = {
4359 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4360 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4361 		{ ERR_EGR_CTXT_PRIO_F,
4362 		  "SGE too many priority egress contexts", -1, 0 },
4363 		{ 0 }
4364 	};
4365 
4366 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4367 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4368 	if (v) {
4369 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4370 				(unsigned long long)v);
4371 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4372 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4373 	}
4374 
4375 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4376 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4377 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4378 					   t4t5_sge_intr_info);
4379 
4380 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4381 	if (err & ERROR_QID_VALID_F) {
4382 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4383 			ERROR_QID_G(err));
4384 		if (err & UNCAPTURED_ERROR_F)
4385 			dev_err(adapter->pdev_dev,
4386 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4387 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4388 			     UNCAPTURED_ERROR_F);
4389 	}
4390 
4391 	if (v != 0)
4392 		t4_fatal_err(adapter);
4393 }
4394 
4395 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4396 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4397 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4398 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4399 
4400 /*
4401  * CIM interrupt handler.
4402  */
4403 static void cim_intr_handler(struct adapter *adapter)
4404 {
4405 	static const struct intr_info cim_intr_info[] = {
4406 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4407 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4408 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4409 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4410 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4411 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4412 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4413 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4414 		{ 0 }
4415 	};
4416 	static const struct intr_info cim_upintr_info[] = {
4417 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4418 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4419 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4420 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4421 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4422 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4423 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4424 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4425 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4426 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4427 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4428 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4429 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4430 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4431 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4432 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4433 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4434 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4435 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4436 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4437 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4438 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4439 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4440 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4441 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4442 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4443 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4444 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4445 		{ 0 }
4446 	};
4447 
4448 	u32 val, fw_err;
4449 	int fat;
4450 
4451 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4452 	if (fw_err & PCIE_FW_ERR_F)
4453 		t4_report_fw_error(adapter);
4454 
4455 	/* When the Firmware detects an internal error which normally
4456 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4457 	 * in order to make sure the Host sees the Firmware Crash.  So
4458 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4459 	 * ignore the Timer0 interrupt.
4460 	 */
4461 
4462 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4463 	if (val & TIMER0INT_F)
4464 		if (!(fw_err & PCIE_FW_ERR_F) ||
4465 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4466 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4467 				     TIMER0INT_F);
4468 
4469 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4470 				    cim_intr_info) +
4471 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4472 				    cim_upintr_info);
4473 	if (fat)
4474 		t4_fatal_err(adapter);
4475 }
4476 
4477 /*
4478  * ULP RX interrupt handler.
4479  */
4480 static void ulprx_intr_handler(struct adapter *adapter)
4481 {
4482 	static const struct intr_info ulprx_intr_info[] = {
4483 		{ 0x1800000, "ULPRX context error", -1, 1 },
4484 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4485 		{ 0 }
4486 	};
4487 
4488 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4489 		t4_fatal_err(adapter);
4490 }
4491 
4492 /*
4493  * ULP TX interrupt handler.
4494  */
4495 static void ulptx_intr_handler(struct adapter *adapter)
4496 {
4497 	static const struct intr_info ulptx_intr_info[] = {
4498 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4499 		  0 },
4500 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4501 		  0 },
4502 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4503 		  0 },
4504 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4505 		  0 },
4506 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4507 		{ 0 }
4508 	};
4509 
4510 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4511 		t4_fatal_err(adapter);
4512 }
4513 
4514 /*
4515  * PM TX interrupt handler.
4516  */
4517 static void pmtx_intr_handler(struct adapter *adapter)
4518 {
4519 	static const struct intr_info pmtx_intr_info[] = {
4520 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4521 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4522 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4523 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4524 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4525 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4526 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4527 		  -1, 1 },
4528 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4529 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4530 		{ 0 }
4531 	};
4532 
4533 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4534 		t4_fatal_err(adapter);
4535 }
4536 
4537 /*
4538  * PM RX interrupt handler.
4539  */
4540 static void pmrx_intr_handler(struct adapter *adapter)
4541 {
4542 	static const struct intr_info pmrx_intr_info[] = {
4543 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4544 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4545 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4546 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4547 		  -1, 1 },
4548 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4549 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4550 		{ 0 }
4551 	};
4552 
4553 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4554 		t4_fatal_err(adapter);
4555 }
4556 
4557 /*
4558  * CPL switch interrupt handler.
4559  */
4560 static void cplsw_intr_handler(struct adapter *adapter)
4561 {
4562 	static const struct intr_info cplsw_intr_info[] = {
4563 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4564 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4565 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4566 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4567 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4568 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4569 		{ 0 }
4570 	};
4571 
4572 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4573 		t4_fatal_err(adapter);
4574 }
4575 
4576 /*
4577  * LE interrupt handler.
4578  */
4579 static void le_intr_handler(struct adapter *adap)
4580 {
4581 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4582 	static const struct intr_info le_intr_info[] = {
4583 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4584 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4585 		{ PARITYERR_F, "LE parity error", -1, 1 },
4586 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4587 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4588 		{ 0 }
4589 	};
4590 
4591 	static struct intr_info t6_le_intr_info[] = {
4592 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4593 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4594 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4595 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4596 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4597 		{ 0 }
4598 	};
4599 
4600 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4601 				  (chip <= CHELSIO_T5) ?
4602 				  le_intr_info : t6_le_intr_info))
4603 		t4_fatal_err(adap);
4604 }
4605 
4606 /*
4607  * MPS interrupt handler.
4608  */
4609 static void mps_intr_handler(struct adapter *adapter)
4610 {
4611 	static const struct intr_info mps_rx_intr_info[] = {
4612 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4613 		{ 0 }
4614 	};
4615 	static const struct intr_info mps_tx_intr_info[] = {
4616 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4617 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4618 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4619 		  -1, 1 },
4620 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4621 		  -1, 1 },
4622 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4623 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4624 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4625 		{ 0 }
4626 	};
4627 	static const struct intr_info t6_mps_tx_intr_info[] = {
4628 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4629 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4630 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4631 		  -1, 1 },
4632 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4633 		  -1, 1 },
4634 		/* MPS Tx Bubble is normal for T6 */
4635 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4636 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4637 		{ 0 }
4638 	};
4639 	static const struct intr_info mps_trc_intr_info[] = {
4640 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4641 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4642 		  -1, 1 },
4643 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4644 		{ 0 }
4645 	};
4646 	static const struct intr_info mps_stat_sram_intr_info[] = {
4647 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4648 		{ 0 }
4649 	};
4650 	static const struct intr_info mps_stat_tx_intr_info[] = {
4651 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4652 		{ 0 }
4653 	};
4654 	static const struct intr_info mps_stat_rx_intr_info[] = {
4655 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4656 		{ 0 }
4657 	};
4658 	static const struct intr_info mps_cls_intr_info[] = {
4659 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4660 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4661 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4662 		{ 0 }
4663 	};
4664 
4665 	int fat;
4666 
4667 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4668 				    mps_rx_intr_info) +
4669 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4670 				    is_t6(adapter->params.chip)
4671 				    ? t6_mps_tx_intr_info
4672 				    : mps_tx_intr_info) +
4673 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4674 				    mps_trc_intr_info) +
4675 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4676 				    mps_stat_sram_intr_info) +
4677 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4678 				    mps_stat_tx_intr_info) +
4679 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4680 				    mps_stat_rx_intr_info) +
4681 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4682 				    mps_cls_intr_info);
4683 
4684 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4685 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4686 	if (fat)
4687 		t4_fatal_err(adapter);
4688 }
4689 
4690 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4691 		      ECC_UE_INT_CAUSE_F)
4692 
4693 /*
4694  * EDC/MC interrupt handler.
4695  */
4696 static void mem_intr_handler(struct adapter *adapter, int idx)
4697 {
4698 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4699 
4700 	unsigned int addr, cnt_addr, v;
4701 
4702 	if (idx <= MEM_EDC1) {
4703 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4704 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4705 	} else if (idx == MEM_MC) {
4706 		if (is_t4(adapter->params.chip)) {
4707 			addr = MC_INT_CAUSE_A;
4708 			cnt_addr = MC_ECC_STATUS_A;
4709 		} else {
4710 			addr = MC_P_INT_CAUSE_A;
4711 			cnt_addr = MC_P_ECC_STATUS_A;
4712 		}
4713 	} else {
4714 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4715 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4716 	}
4717 
4718 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4719 	if (v & PERR_INT_CAUSE_F)
4720 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4721 			  name[idx]);
4722 	if (v & ECC_CE_INT_CAUSE_F) {
4723 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4724 
4725 		t4_edc_err_read(adapter, idx);
4726 
4727 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4728 		if (printk_ratelimit())
4729 			dev_warn(adapter->pdev_dev,
4730 				 "%u %s correctable ECC data error%s\n",
4731 				 cnt, name[idx], cnt > 1 ? "s" : "");
4732 	}
4733 	if (v & ECC_UE_INT_CAUSE_F)
4734 		dev_alert(adapter->pdev_dev,
4735 			  "%s uncorrectable ECC data error\n", name[idx]);
4736 
4737 	t4_write_reg(adapter, addr, v);
4738 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4739 		t4_fatal_err(adapter);
4740 }
4741 
4742 /*
4743  * MA interrupt handler.
4744  */
4745 static void ma_intr_handler(struct adapter *adap)
4746 {
4747 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4748 
4749 	if (status & MEM_PERR_INT_CAUSE_F) {
4750 		dev_alert(adap->pdev_dev,
4751 			  "MA parity error, parity status %#x\n",
4752 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4753 		if (is_t5(adap->params.chip))
4754 			dev_alert(adap->pdev_dev,
4755 				  "MA parity error, parity status %#x\n",
4756 				  t4_read_reg(adap,
4757 					      MA_PARITY_ERROR_STATUS2_A));
4758 	}
4759 	if (status & MEM_WRAP_INT_CAUSE_F) {
4760 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4761 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4762 			  "client %u to address %#x\n",
4763 			  MEM_WRAP_CLIENT_NUM_G(v),
4764 			  MEM_WRAP_ADDRESS_G(v) << 4);
4765 	}
4766 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4767 	t4_fatal_err(adap);
4768 }
4769 
4770 /*
4771  * SMB interrupt handler.
4772  */
4773 static void smb_intr_handler(struct adapter *adap)
4774 {
4775 	static const struct intr_info smb_intr_info[] = {
4776 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4777 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4778 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4779 		{ 0 }
4780 	};
4781 
4782 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4783 		t4_fatal_err(adap);
4784 }
4785 
4786 /*
4787  * NC-SI interrupt handler.
4788  */
4789 static void ncsi_intr_handler(struct adapter *adap)
4790 {
4791 	static const struct intr_info ncsi_intr_info[] = {
4792 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4793 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4794 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4795 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4796 		{ 0 }
4797 	};
4798 
4799 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4800 		t4_fatal_err(adap);
4801 }
4802 
4803 /*
4804  * XGMAC interrupt handler.
4805  */
4806 static void xgmac_intr_handler(struct adapter *adap, int port)
4807 {
4808 	u32 v, int_cause_reg;
4809 
4810 	if (is_t4(adap->params.chip))
4811 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4812 	else
4813 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4814 
4815 	v = t4_read_reg(adap, int_cause_reg);
4816 
4817 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4818 	if (!v)
4819 		return;
4820 
4821 	if (v & TXFIFO_PRTY_ERR_F)
4822 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4823 			  port);
4824 	if (v & RXFIFO_PRTY_ERR_F)
4825 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4826 			  port);
4827 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4828 	t4_fatal_err(adap);
4829 }
4830 
4831 /*
4832  * PL interrupt handler.
4833  */
4834 static void pl_intr_handler(struct adapter *adap)
4835 {
4836 	static const struct intr_info pl_intr_info[] = {
4837 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4838 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4839 		{ 0 }
4840 	};
4841 
4842 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4843 		t4_fatal_err(adap);
4844 }
4845 
4846 #define PF_INTR_MASK (PFSW_F)
4847 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4848 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4849 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4850 
4851 /**
4852  *	t4_slow_intr_handler - control path interrupt handler
4853  *	@adapter: the adapter
4854  *
4855  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4856  *	The designation 'slow' is because it involves register reads, while
4857  *	data interrupts typically don't involve any MMIOs.
4858  */
4859 int t4_slow_intr_handler(struct adapter *adapter)
4860 {
4861 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4862 
4863 	if (!(cause & GLBL_INTR_MASK))
4864 		return 0;
4865 	if (cause & CIM_F)
4866 		cim_intr_handler(adapter);
4867 	if (cause & MPS_F)
4868 		mps_intr_handler(adapter);
4869 	if (cause & NCSI_F)
4870 		ncsi_intr_handler(adapter);
4871 	if (cause & PL_F)
4872 		pl_intr_handler(adapter);
4873 	if (cause & SMB_F)
4874 		smb_intr_handler(adapter);
4875 	if (cause & XGMAC0_F)
4876 		xgmac_intr_handler(adapter, 0);
4877 	if (cause & XGMAC1_F)
4878 		xgmac_intr_handler(adapter, 1);
4879 	if (cause & XGMAC_KR0_F)
4880 		xgmac_intr_handler(adapter, 2);
4881 	if (cause & XGMAC_KR1_F)
4882 		xgmac_intr_handler(adapter, 3);
4883 	if (cause & PCIE_F)
4884 		pcie_intr_handler(adapter);
4885 	if (cause & MC_F)
4886 		mem_intr_handler(adapter, MEM_MC);
4887 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4888 		mem_intr_handler(adapter, MEM_MC1);
4889 	if (cause & EDC0_F)
4890 		mem_intr_handler(adapter, MEM_EDC0);
4891 	if (cause & EDC1_F)
4892 		mem_intr_handler(adapter, MEM_EDC1);
4893 	if (cause & LE_F)
4894 		le_intr_handler(adapter);
4895 	if (cause & TP_F)
4896 		tp_intr_handler(adapter);
4897 	if (cause & MA_F)
4898 		ma_intr_handler(adapter);
4899 	if (cause & PM_TX_F)
4900 		pmtx_intr_handler(adapter);
4901 	if (cause & PM_RX_F)
4902 		pmrx_intr_handler(adapter);
4903 	if (cause & ULP_RX_F)
4904 		ulprx_intr_handler(adapter);
4905 	if (cause & CPL_SWITCH_F)
4906 		cplsw_intr_handler(adapter);
4907 	if (cause & SGE_F)
4908 		sge_intr_handler(adapter);
4909 	if (cause & ULP_TX_F)
4910 		ulptx_intr_handler(adapter);
4911 
4912 	/* Clear the interrupts just processed for which we are the master. */
4913 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4914 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4915 	return 1;
4916 }
4917 
4918 /**
4919  *	t4_intr_enable - enable interrupts
4920  *	@adapter: the adapter whose interrupts should be enabled
4921  *
4922  *	Enable PF-specific interrupts for the calling function and the top-level
4923  *	interrupt concentrator for global interrupts.  Interrupts are already
4924  *	enabled at each module,	here we just enable the roots of the interrupt
4925  *	hierarchies.
4926  *
4927  *	Note: this function should be called only when the driver manages
4928  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4929  *	function at a time should be doing this.
4930  */
4931 void t4_intr_enable(struct adapter *adapter)
4932 {
4933 	u32 val = 0;
4934 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4935 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4936 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4937 
4938 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4939 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4940 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4941 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4942 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4943 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4944 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4945 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4946 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4947 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4948 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4949 }
4950 
4951 /**
4952  *	t4_intr_disable - disable interrupts
4953  *	@adapter: the adapter whose interrupts should be disabled
4954  *
4955  *	Disable interrupts.  We only disable the top-level interrupt
4956  *	concentrators.  The caller must be a PCI function managing global
4957  *	interrupts.
4958  */
4959 void t4_intr_disable(struct adapter *adapter)
4960 {
4961 	u32 whoami, pf;
4962 
4963 	if (pci_channel_offline(adapter->pdev))
4964 		return;
4965 
4966 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4967 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4968 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4969 
4970 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4971 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4972 }
4973 
4974 unsigned int t4_chip_rss_size(struct adapter *adap)
4975 {
4976 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
4977 		return RSS_NENTRIES;
4978 	else
4979 		return T6_RSS_NENTRIES;
4980 }
4981 
4982 /**
4983  *	t4_config_rss_range - configure a portion of the RSS mapping table
4984  *	@adapter: the adapter
4985  *	@mbox: mbox to use for the FW command
4986  *	@viid: virtual interface whose RSS subtable is to be written
4987  *	@start: start entry in the table to write
4988  *	@n: how many table entries to write
4989  *	@rspq: values for the response queue lookup table
4990  *	@nrspq: number of values in @rspq
4991  *
4992  *	Programs the selected part of the VI's RSS mapping table with the
4993  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4994  *	until the full table range is populated.
4995  *
4996  *	The caller must ensure the values in @rspq are in the range allowed for
4997  *	@viid.
4998  */
4999 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5000 			int start, int n, const u16 *rspq, unsigned int nrspq)
5001 {
5002 	int ret;
5003 	const u16 *rsp = rspq;
5004 	const u16 *rsp_end = rspq + nrspq;
5005 	struct fw_rss_ind_tbl_cmd cmd;
5006 
5007 	memset(&cmd, 0, sizeof(cmd));
5008 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5009 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5010 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5011 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5012 
5013 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5014 	while (n > 0) {
5015 		int nq = min(n, 32);
5016 		__be32 *qp = &cmd.iq0_to_iq2;
5017 
5018 		cmd.niqid = cpu_to_be16(nq);
5019 		cmd.startidx = cpu_to_be16(start);
5020 
5021 		start += nq;
5022 		n -= nq;
5023 
5024 		while (nq > 0) {
5025 			unsigned int v;
5026 
5027 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5028 			if (++rsp >= rsp_end)
5029 				rsp = rspq;
5030 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5031 			if (++rsp >= rsp_end)
5032 				rsp = rspq;
5033 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5034 			if (++rsp >= rsp_end)
5035 				rsp = rspq;
5036 
5037 			*qp++ = cpu_to_be32(v);
5038 			nq -= 3;
5039 		}
5040 
5041 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5042 		if (ret)
5043 			return ret;
5044 	}
5045 	return 0;
5046 }
5047 
5048 /**
5049  *	t4_config_glbl_rss - configure the global RSS mode
5050  *	@adapter: the adapter
5051  *	@mbox: mbox to use for the FW command
5052  *	@mode: global RSS mode
5053  *	@flags: mode-specific flags
5054  *
5055  *	Sets the global RSS mode.
5056  */
5057 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5058 		       unsigned int flags)
5059 {
5060 	struct fw_rss_glb_config_cmd c;
5061 
5062 	memset(&c, 0, sizeof(c));
5063 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5064 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5065 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5066 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5067 		c.u.manual.mode_pkd =
5068 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5069 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5070 		c.u.basicvirtual.mode_pkd =
5071 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5072 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5073 	} else
5074 		return -EINVAL;
5075 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5076 }
5077 
5078 /**
5079  *	t4_config_vi_rss - configure per VI RSS settings
5080  *	@adapter: the adapter
5081  *	@mbox: mbox to use for the FW command
5082  *	@viid: the VI id
5083  *	@flags: RSS flags
5084  *	@defq: id of the default RSS queue for the VI.
5085  *
5086  *	Configures VI-specific RSS properties.
5087  */
5088 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5089 		     unsigned int flags, unsigned int defq)
5090 {
5091 	struct fw_rss_vi_config_cmd c;
5092 
5093 	memset(&c, 0, sizeof(c));
5094 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5095 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5096 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5097 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5098 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5099 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5100 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5101 }
5102 
5103 /* Read an RSS table row */
5104 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5105 {
5106 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5107 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5108 				   5, 0, val);
5109 }
5110 
5111 /**
5112  *	t4_read_rss - read the contents of the RSS mapping table
5113  *	@adapter: the adapter
5114  *	@map: holds the contents of the RSS mapping table
5115  *
5116  *	Reads the contents of the RSS hash->queue mapping table.
5117  */
5118 int t4_read_rss(struct adapter *adapter, u16 *map)
5119 {
5120 	int i, ret, nentries;
5121 	u32 val;
5122 
5123 	nentries = t4_chip_rss_size(adapter);
5124 	for (i = 0; i < nentries / 2; ++i) {
5125 		ret = rd_rss_row(adapter, i, &val);
5126 		if (ret)
5127 			return ret;
5128 		*map++ = LKPTBLQUEUE0_G(val);
5129 		*map++ = LKPTBLQUEUE1_G(val);
5130 	}
5131 	return 0;
5132 }
5133 
5134 static unsigned int t4_use_ldst(struct adapter *adap)
5135 {
5136 	return (adap->flags & FW_OK) && !adap->use_bd;
5137 }
5138 
5139 /**
5140  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5141  * @adap: the adapter
5142  * @cmd: TP fw ldst address space type
5143  * @vals: where the indirect register values are stored/written
5144  * @nregs: how many indirect registers to read/write
5145  * @start_idx: index of first indirect register to read/write
5146  * @rw: Read (1) or Write (0)
5147  * @sleep_ok: if true we may sleep while awaiting command completion
5148  *
5149  * Access TP indirect registers through LDST
5150  */
5151 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5152 			    unsigned int nregs, unsigned int start_index,
5153 			    unsigned int rw, bool sleep_ok)
5154 {
5155 	int ret = 0;
5156 	unsigned int i;
5157 	struct fw_ldst_cmd c;
5158 
5159 	for (i = 0; i < nregs; i++) {
5160 		memset(&c, 0, sizeof(c));
5161 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5162 						FW_CMD_REQUEST_F |
5163 						(rw ? FW_CMD_READ_F :
5164 						      FW_CMD_WRITE_F) |
5165 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5166 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5167 
5168 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5169 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5170 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5171 				      sleep_ok);
5172 		if (ret)
5173 			return ret;
5174 
5175 		if (rw)
5176 			vals[i] = be32_to_cpu(c.u.addrval.val);
5177 	}
5178 	return 0;
5179 }
5180 
5181 /**
5182  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5183  * @adap: the adapter
5184  * @reg_addr: Address Register
5185  * @reg_data: Data register
5186  * @buff: where the indirect register values are stored/written
5187  * @nregs: how many indirect registers to read/write
5188  * @start_index: index of first indirect register to read/write
5189  * @rw: READ(1) or WRITE(0)
5190  * @sleep_ok: if true we may sleep while awaiting command completion
5191  *
5192  * Read/Write TP indirect registers through LDST if possible.
5193  * Else, use backdoor access
5194  **/
5195 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5196 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5197 			      bool sleep_ok)
5198 {
5199 	int rc = -EINVAL;
5200 	int cmd;
5201 
5202 	switch (reg_addr) {
5203 	case TP_PIO_ADDR_A:
5204 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5205 		break;
5206 	case TP_TM_PIO_ADDR_A:
5207 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5208 		break;
5209 	case TP_MIB_INDEX_A:
5210 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5211 		break;
5212 	default:
5213 		goto indirect_access;
5214 	}
5215 
5216 	if (t4_use_ldst(adap))
5217 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5218 				      sleep_ok);
5219 
5220 indirect_access:
5221 
5222 	if (rc) {
5223 		if (rw)
5224 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5225 					 start_index);
5226 		else
5227 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5228 					  start_index);
5229 	}
5230 }
5231 
5232 /**
5233  * t4_tp_pio_read - Read TP PIO registers
5234  * @adap: the adapter
5235  * @buff: where the indirect register values are written
5236  * @nregs: how many indirect registers to read
5237  * @start_index: index of first indirect register to read
5238  * @sleep_ok: if true we may sleep while awaiting command completion
5239  *
5240  * Read TP PIO Registers
5241  **/
5242 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5243 		    u32 start_index, bool sleep_ok)
5244 {
5245 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5246 			  start_index, 1, sleep_ok);
5247 }
5248 
5249 /**
5250  * t4_tp_pio_write - Write TP PIO registers
5251  * @adap: the adapter
5252  * @buff: where the indirect register values are stored
5253  * @nregs: how many indirect registers to write
5254  * @start_index: index of first indirect register to write
5255  * @sleep_ok: if true we may sleep while awaiting command completion
5256  *
5257  * Write TP PIO Registers
5258  **/
5259 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5260 			    u32 start_index, bool sleep_ok)
5261 {
5262 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5263 			  start_index, 0, sleep_ok);
5264 }
5265 
5266 /**
5267  * t4_tp_tm_pio_read - Read TP TM PIO registers
5268  * @adap: the adapter
5269  * @buff: where the indirect register values are written
5270  * @nregs: how many indirect registers to read
5271  * @start_index: index of first indirect register to read
5272  * @sleep_ok: if true we may sleep while awaiting command completion
5273  *
5274  * Read TP TM PIO Registers
5275  **/
5276 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5277 		       u32 start_index, bool sleep_ok)
5278 {
5279 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5280 			  nregs, start_index, 1, sleep_ok);
5281 }
5282 
5283 /**
5284  * t4_tp_mib_read - Read TP MIB registers
5285  * @adap: the adapter
5286  * @buff: where the indirect register values are written
5287  * @nregs: how many indirect registers to read
5288  * @start_index: index of first indirect register to read
5289  * @sleep_ok: if true we may sleep while awaiting command completion
5290  *
5291  * Read TP MIB Registers
5292  **/
5293 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5294 		    bool sleep_ok)
5295 {
5296 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5297 			  start_index, 1, sleep_ok);
5298 }
5299 
5300 /**
5301  *	t4_read_rss_key - read the global RSS key
5302  *	@adap: the adapter
5303  *	@key: 10-entry array holding the 320-bit RSS key
5304  *      @sleep_ok: if true we may sleep while awaiting command completion
5305  *
5306  *	Reads the global 320-bit RSS key.
5307  */
5308 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5309 {
5310 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5311 }
5312 
5313 /**
5314  *	t4_write_rss_key - program one of the RSS keys
5315  *	@adap: the adapter
5316  *	@key: 10-entry array holding the 320-bit RSS key
5317  *	@idx: which RSS key to write
5318  *      @sleep_ok: if true we may sleep while awaiting command completion
5319  *
5320  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5321  *	0..15 the corresponding entry in the RSS key table is written,
5322  *	otherwise the global RSS key is written.
5323  */
5324 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5325 		      bool sleep_ok)
5326 {
5327 	u8 rss_key_addr_cnt = 16;
5328 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5329 
5330 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5331 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5332 	 * as index[5:4](upper 2) into key table
5333 	 */
5334 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5335 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5336 		rss_key_addr_cnt = 32;
5337 
5338 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5339 
5340 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5341 		if (rss_key_addr_cnt > 16)
5342 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5343 				     KEYWRADDRX_V(idx >> 4) |
5344 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5345 		else
5346 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5347 				     KEYWRADDR_V(idx) | KEYWREN_F);
5348 	}
5349 }
5350 
5351 /**
5352  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5353  *	@adapter: the adapter
5354  *	@index: the entry in the PF RSS table to read
5355  *	@valp: where to store the returned value
5356  *      @sleep_ok: if true we may sleep while awaiting command completion
5357  *
5358  *	Reads the PF RSS Configuration Table at the specified index and returns
5359  *	the value found there.
5360  */
5361 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5362 			   u32 *valp, bool sleep_ok)
5363 {
5364 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5365 }
5366 
5367 /**
5368  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5369  *	@adapter: the adapter
5370  *	@index: the entry in the VF RSS table to read
5371  *	@vfl: where to store the returned VFL
5372  *	@vfh: where to store the returned VFH
5373  *      @sleep_ok: if true we may sleep while awaiting command completion
5374  *
5375  *	Reads the VF RSS Configuration Table at the specified index and returns
5376  *	the (VFL, VFH) values found there.
5377  */
5378 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5379 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5380 {
5381 	u32 vrt, mask, data;
5382 
5383 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5384 		mask = VFWRADDR_V(VFWRADDR_M);
5385 		data = VFWRADDR_V(index);
5386 	} else {
5387 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5388 		 data = T6_VFWRADDR_V(index);
5389 	}
5390 
5391 	/* Request that the index'th VF Table values be read into VFL/VFH.
5392 	 */
5393 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5394 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5395 	vrt |= data | VFRDEN_F;
5396 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5397 
5398 	/* Grab the VFL/VFH values ...
5399 	 */
5400 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5401 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5402 }
5403 
5404 /**
5405  *	t4_read_rss_pf_map - read PF RSS Map
5406  *	@adapter: the adapter
5407  *      @sleep_ok: if true we may sleep while awaiting command completion
5408  *
5409  *	Reads the PF RSS Map register and returns its value.
5410  */
5411 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5412 {
5413 	u32 pfmap;
5414 
5415 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5416 	return pfmap;
5417 }
5418 
5419 /**
5420  *	t4_read_rss_pf_mask - read PF RSS Mask
5421  *	@adapter: the adapter
5422  *      @sleep_ok: if true we may sleep while awaiting command completion
5423  *
5424  *	Reads the PF RSS Mask register and returns its value.
5425  */
5426 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5427 {
5428 	u32 pfmask;
5429 
5430 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5431 	return pfmask;
5432 }
5433 
5434 /**
5435  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5436  *	@adap: the adapter
5437  *	@v4: holds the TCP/IP counter values
5438  *	@v6: holds the TCP/IPv6 counter values
5439  *      @sleep_ok: if true we may sleep while awaiting command completion
5440  *
5441  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5442  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5443  */
5444 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5445 			 struct tp_tcp_stats *v6, bool sleep_ok)
5446 {
5447 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5448 
5449 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5450 #define STAT(x)     val[STAT_IDX(x)]
5451 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5452 
5453 	if (v4) {
5454 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5455 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5456 		v4->tcp_out_rsts = STAT(OUT_RST);
5457 		v4->tcp_in_segs  = STAT64(IN_SEG);
5458 		v4->tcp_out_segs = STAT64(OUT_SEG);
5459 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5460 	}
5461 	if (v6) {
5462 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5463 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5464 		v6->tcp_out_rsts = STAT(OUT_RST);
5465 		v6->tcp_in_segs  = STAT64(IN_SEG);
5466 		v6->tcp_out_segs = STAT64(OUT_SEG);
5467 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5468 	}
5469 #undef STAT64
5470 #undef STAT
5471 #undef STAT_IDX
5472 }
5473 
5474 /**
5475  *	t4_tp_get_err_stats - read TP's error MIB counters
5476  *	@adap: the adapter
5477  *	@st: holds the counter values
5478  *      @sleep_ok: if true we may sleep while awaiting command completion
5479  *
5480  *	Returns the values of TP's error counters.
5481  */
5482 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5483 			 bool sleep_ok)
5484 {
5485 	int nchan = adap->params.arch.nchan;
5486 
5487 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5488 		       sleep_ok);
5489 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5490 		       sleep_ok);
5491 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5492 		       sleep_ok);
5493 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5494 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5495 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5496 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5497 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5498 		       sleep_ok);
5499 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5500 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5501 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5502 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5503 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5504 		       sleep_ok);
5505 }
5506 
5507 /**
5508  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5509  *	@adap: the adapter
5510  *	@st: holds the counter values
5511  *      @sleep_ok: if true we may sleep while awaiting command completion
5512  *
5513  *	Returns the values of TP's CPL counters.
5514  */
5515 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5516 			 bool sleep_ok)
5517 {
5518 	int nchan = adap->params.arch.nchan;
5519 
5520 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5521 
5522 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5523 }
5524 
5525 /**
5526  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5527  *	@adap: the adapter
5528  *	@st: holds the counter values
5529  *      @sleep_ok: if true we may sleep while awaiting command completion
5530  *
5531  *	Returns the values of TP's RDMA counters.
5532  */
5533 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5534 			  bool sleep_ok)
5535 {
5536 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5537 		       sleep_ok);
5538 }
5539 
5540 /**
5541  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5542  *	@adap: the adapter
5543  *	@idx: the port index
5544  *	@st: holds the counter values
5545  *      @sleep_ok: if true we may sleep while awaiting command completion
5546  *
5547  *	Returns the values of TP's FCoE counters for the selected port.
5548  */
5549 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5550 		       struct tp_fcoe_stats *st, bool sleep_ok)
5551 {
5552 	u32 val[2];
5553 
5554 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5555 		       sleep_ok);
5556 
5557 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5558 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5559 
5560 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5561 		       sleep_ok);
5562 
5563 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5564 }
5565 
5566 /**
5567  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5568  *	@adap: the adapter
5569  *	@st: holds the counter values
5570  *      @sleep_ok: if true we may sleep while awaiting command completion
5571  *
5572  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5573  */
5574 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5575 		      bool sleep_ok)
5576 {
5577 	u32 val[4];
5578 
5579 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5580 	st->frames = val[0];
5581 	st->drops = val[1];
5582 	st->octets = ((u64)val[2] << 32) | val[3];
5583 }
5584 
5585 /**
5586  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5587  *	@adap: the adapter
5588  *	@mtus: where to store the MTU values
5589  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5590  *
5591  *	Reads the HW path MTU table.
5592  */
5593 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5594 {
5595 	u32 v;
5596 	int i;
5597 
5598 	for (i = 0; i < NMTUS; ++i) {
5599 		t4_write_reg(adap, TP_MTU_TABLE_A,
5600 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5601 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5602 		mtus[i] = MTUVALUE_G(v);
5603 		if (mtu_log)
5604 			mtu_log[i] = MTUWIDTH_G(v);
5605 	}
5606 }
5607 
5608 /**
5609  *	t4_read_cong_tbl - reads the congestion control table
5610  *	@adap: the adapter
5611  *	@incr: where to store the alpha values
5612  *
5613  *	Reads the additive increments programmed into the HW congestion
5614  *	control table.
5615  */
5616 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5617 {
5618 	unsigned int mtu, w;
5619 
5620 	for (mtu = 0; mtu < NMTUS; ++mtu)
5621 		for (w = 0; w < NCCTRL_WIN; ++w) {
5622 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5623 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5624 			incr[mtu][w] = (u16)t4_read_reg(adap,
5625 						TP_CCTRL_TABLE_A) & 0x1fff;
5626 		}
5627 }
5628 
5629 /**
5630  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5631  *	@adap: the adapter
5632  *	@addr: the indirect TP register address
5633  *	@mask: specifies the field within the register to modify
5634  *	@val: new value for the field
5635  *
5636  *	Sets a field of an indirect TP register to the given value.
5637  */
5638 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5639 			    unsigned int mask, unsigned int val)
5640 {
5641 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5642 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5643 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5644 }
5645 
5646 /**
5647  *	init_cong_ctrl - initialize congestion control parameters
5648  *	@a: the alpha values for congestion control
5649  *	@b: the beta values for congestion control
5650  *
5651  *	Initialize the congestion control parameters.
5652  */
5653 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5654 {
5655 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5656 	a[9] = 2;
5657 	a[10] = 3;
5658 	a[11] = 4;
5659 	a[12] = 5;
5660 	a[13] = 6;
5661 	a[14] = 7;
5662 	a[15] = 8;
5663 	a[16] = 9;
5664 	a[17] = 10;
5665 	a[18] = 14;
5666 	a[19] = 17;
5667 	a[20] = 21;
5668 	a[21] = 25;
5669 	a[22] = 30;
5670 	a[23] = 35;
5671 	a[24] = 45;
5672 	a[25] = 60;
5673 	a[26] = 80;
5674 	a[27] = 100;
5675 	a[28] = 200;
5676 	a[29] = 300;
5677 	a[30] = 400;
5678 	a[31] = 500;
5679 
5680 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5681 	b[9] = b[10] = 1;
5682 	b[11] = b[12] = 2;
5683 	b[13] = b[14] = b[15] = b[16] = 3;
5684 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5685 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5686 	b[28] = b[29] = 6;
5687 	b[30] = b[31] = 7;
5688 }
5689 
5690 /* The minimum additive increment value for the congestion control table */
5691 #define CC_MIN_INCR 2U
5692 
5693 /**
5694  *	t4_load_mtus - write the MTU and congestion control HW tables
5695  *	@adap: the adapter
5696  *	@mtus: the values for the MTU table
5697  *	@alpha: the values for the congestion control alpha parameter
5698  *	@beta: the values for the congestion control beta parameter
5699  *
5700  *	Write the HW MTU table with the supplied MTUs and the high-speed
5701  *	congestion control table with the supplied alpha, beta, and MTUs.
5702  *	We write the two tables together because the additive increments
5703  *	depend on the MTUs.
5704  */
5705 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5706 		  const unsigned short *alpha, const unsigned short *beta)
5707 {
5708 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5709 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5710 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5711 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5712 	};
5713 
5714 	unsigned int i, w;
5715 
5716 	for (i = 0; i < NMTUS; ++i) {
5717 		unsigned int mtu = mtus[i];
5718 		unsigned int log2 = fls(mtu);
5719 
5720 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5721 			log2--;
5722 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5723 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5724 
5725 		for (w = 0; w < NCCTRL_WIN; ++w) {
5726 			unsigned int inc;
5727 
5728 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5729 				  CC_MIN_INCR);
5730 
5731 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5732 				     (w << 16) | (beta[w] << 13) | inc);
5733 		}
5734 	}
5735 }
5736 
5737 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5738  * clocks.  The formula is
5739  *
5740  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5741  *
5742  * which is equivalent to
5743  *
5744  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5745  */
5746 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5747 {
5748 	u64 v = bytes256 * adap->params.vpd.cclk;
5749 
5750 	return v * 62 + v / 2;
5751 }
5752 
5753 /**
5754  *	t4_get_chan_txrate - get the current per channel Tx rates
5755  *	@adap: the adapter
5756  *	@nic_rate: rates for NIC traffic
5757  *	@ofld_rate: rates for offloaded traffic
5758  *
5759  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5760  *	for each channel.
5761  */
5762 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5763 {
5764 	u32 v;
5765 
5766 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5767 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5768 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5769 	if (adap->params.arch.nchan == NCHAN) {
5770 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5771 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5772 	}
5773 
5774 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5775 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5776 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5777 	if (adap->params.arch.nchan == NCHAN) {
5778 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5779 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5780 	}
5781 }
5782 
5783 /**
5784  *	t4_set_trace_filter - configure one of the tracing filters
5785  *	@adap: the adapter
5786  *	@tp: the desired trace filter parameters
5787  *	@idx: which filter to configure
5788  *	@enable: whether to enable or disable the filter
5789  *
5790  *	Configures one of the tracing filters available in HW.  If @enable is
5791  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5792  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5793  */
5794 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5795 			int idx, int enable)
5796 {
5797 	int i, ofst = idx * 4;
5798 	u32 data_reg, mask_reg, cfg;
5799 	u32 multitrc = TRCMULTIFILTER_F;
5800 
5801 	if (!enable) {
5802 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5803 		return 0;
5804 	}
5805 
5806 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5807 	if (cfg & TRCMULTIFILTER_F) {
5808 		/* If multiple tracers are enabled, then maximum
5809 		 * capture size is 2.5KB (FIFO size of a single channel)
5810 		 * minus 2 flits for CPL_TRACE_PKT header.
5811 		 */
5812 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5813 			return -EINVAL;
5814 	} else {
5815 		/* If multiple tracers are disabled, to avoid deadlocks
5816 		 * maximum packet capture size of 9600 bytes is recommended.
5817 		 * Also in this mode, only trace0 can be enabled and running.
5818 		 */
5819 		multitrc = 0;
5820 		if (tp->snap_len > 9600 || idx)
5821 			return -EINVAL;
5822 	}
5823 
5824 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5825 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5826 	    tp->min_len > TFMINPKTSIZE_M)
5827 		return -EINVAL;
5828 
5829 	/* stop the tracer we'll be changing */
5830 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5831 
5832 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5833 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5834 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5835 
5836 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5837 		t4_write_reg(adap, data_reg, tp->data[i]);
5838 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5839 	}
5840 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5841 		     TFCAPTUREMAX_V(tp->snap_len) |
5842 		     TFMINPKTSIZE_V(tp->min_len));
5843 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5844 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5845 		     (is_t4(adap->params.chip) ?
5846 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5847 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5848 		     T5_TFINVERTMATCH_V(tp->invert)));
5849 
5850 	return 0;
5851 }
5852 
5853 /**
5854  *	t4_get_trace_filter - query one of the tracing filters
5855  *	@adap: the adapter
5856  *	@tp: the current trace filter parameters
5857  *	@idx: which trace filter to query
5858  *	@enabled: non-zero if the filter is enabled
5859  *
5860  *	Returns the current settings of one of the HW tracing filters.
5861  */
5862 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5863 			 int *enabled)
5864 {
5865 	u32 ctla, ctlb;
5866 	int i, ofst = idx * 4;
5867 	u32 data_reg, mask_reg;
5868 
5869 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5870 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5871 
5872 	if (is_t4(adap->params.chip)) {
5873 		*enabled = !!(ctla & TFEN_F);
5874 		tp->port =  TFPORT_G(ctla);
5875 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5876 	} else {
5877 		*enabled = !!(ctla & T5_TFEN_F);
5878 		tp->port = T5_TFPORT_G(ctla);
5879 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5880 	}
5881 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5882 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5883 	tp->skip_ofst = TFOFFSET_G(ctla);
5884 	tp->skip_len = TFLENGTH_G(ctla);
5885 
5886 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5887 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5888 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5889 
5890 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5891 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5892 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5893 	}
5894 }
5895 
5896 /**
5897  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5898  *	@adap: the adapter
5899  *	@cnt: where to store the count statistics
5900  *	@cycles: where to store the cycle statistics
5901  *
5902  *	Returns performance statistics from PMTX.
5903  */
5904 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5905 {
5906 	int i;
5907 	u32 data[2];
5908 
5909 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5910 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5911 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5912 		if (is_t4(adap->params.chip)) {
5913 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5914 		} else {
5915 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5916 					 PM_TX_DBG_DATA_A, data, 2,
5917 					 PM_TX_DBG_STAT_MSB_A);
5918 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5919 		}
5920 	}
5921 }
5922 
5923 /**
5924  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5925  *	@adap: the adapter
5926  *	@cnt: where to store the count statistics
5927  *	@cycles: where to store the cycle statistics
5928  *
5929  *	Returns performance statistics from PMRX.
5930  */
5931 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5932 {
5933 	int i;
5934 	u32 data[2];
5935 
5936 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5937 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5938 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5939 		if (is_t4(adap->params.chip)) {
5940 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5941 		} else {
5942 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5943 					 PM_RX_DBG_DATA_A, data, 2,
5944 					 PM_RX_DBG_STAT_MSB_A);
5945 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5946 		}
5947 	}
5948 }
5949 
5950 /**
5951  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5952  *	@adap: the adapter
5953  *	@pidx: the port index
5954  *
5955  *	Computes and returns a bitmap indicating which MPS buffer groups are
5956  *	associated with the given Port.  Bit i is set if buffer group i is
5957  *	used by the Port.
5958  */
5959 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5960 					      int pidx)
5961 {
5962 	unsigned int chip_version, nports;
5963 
5964 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5965 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5966 
5967 	switch (chip_version) {
5968 	case CHELSIO_T4:
5969 	case CHELSIO_T5:
5970 		switch (nports) {
5971 		case 1: return 0xf;
5972 		case 2: return 3 << (2 * pidx);
5973 		case 4: return 1 << pidx;
5974 		}
5975 		break;
5976 
5977 	case CHELSIO_T6:
5978 		switch (nports) {
5979 		case 2: return 1 << (2 * pidx);
5980 		}
5981 		break;
5982 	}
5983 
5984 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
5985 		chip_version, nports);
5986 
5987 	return 0;
5988 }
5989 
5990 /**
5991  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5992  *	@adapter: the adapter
5993  *	@pidx: the port index
5994  *
5995  *	Returns a bitmap indicating which MPS buffer groups are associated
5996  *	with the given Port.  Bit i is set if buffer group i is used by the
5997  *	Port.
5998  */
5999 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6000 {
6001 	u8 *mps_bg_map;
6002 	unsigned int nports;
6003 
6004 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6005 	if (pidx >= nports) {
6006 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6007 			pidx, nports);
6008 		return 0;
6009 	}
6010 
6011 	/* If we've already retrieved/computed this, just return the result.
6012 	 */
6013 	mps_bg_map = adapter->params.mps_bg_map;
6014 	if (mps_bg_map[pidx])
6015 		return mps_bg_map[pidx];
6016 
6017 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6018 	 * If we're talking to such Firmware, let it tell us.  If the new
6019 	 * API isn't supported, revert back to old hardcoded way.  The value
6020 	 * obtained from Firmware is encoded in below format:
6021 	 *
6022 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6023 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6024 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6025 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6026 	 */
6027 	if (adapter->flags & FW_OK) {
6028 		u32 param, val;
6029 		int ret;
6030 
6031 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6032 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6033 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6034 					 0, 1, &param, &val);
6035 		if (!ret) {
6036 			int p;
6037 
6038 			/* Store the BG Map for all of the Ports in order to
6039 			 * avoid more calls to the Firmware in the future.
6040 			 */
6041 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6042 				mps_bg_map[p] = val & 0xff;
6043 
6044 			return mps_bg_map[pidx];
6045 		}
6046 	}
6047 
6048 	/* Either we're not talking to the Firmware or we're dealing with
6049 	 * older Firmware which doesn't support the new API to get the MPS
6050 	 * Buffer Group Map.  Fall back to computing it ourselves.
6051 	 */
6052 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6053 	return mps_bg_map[pidx];
6054 }
6055 
6056 /**
6057  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6058  *	@adapter: the adapter
6059  *	@pidx: the port index
6060  *
6061  *	Returns a bitmap indicating which TP Ingress Channels are associated
6062  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6063  *	the Port.
6064  */
6065 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6066 {
6067 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6068 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6069 
6070 	if (pidx >= nports) {
6071 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6072 			 pidx, nports);
6073 		return 0;
6074 	}
6075 
6076 	switch (chip_version) {
6077 	case CHELSIO_T4:
6078 	case CHELSIO_T5:
6079 		/* Note that this happens to be the same values as the MPS
6080 		 * Buffer Group Map for these Chips.  But we replicate the code
6081 		 * here because they're really separate concepts.
6082 		 */
6083 		switch (nports) {
6084 		case 1: return 0xf;
6085 		case 2: return 3 << (2 * pidx);
6086 		case 4: return 1 << pidx;
6087 		}
6088 		break;
6089 
6090 	case CHELSIO_T6:
6091 		switch (nports) {
6092 		case 1:
6093 		case 2: return 1 << pidx;
6094 		}
6095 		break;
6096 	}
6097 
6098 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6099 		chip_version, nports);
6100 	return 0;
6101 }
6102 
6103 /**
6104  *      t4_get_port_type_description - return Port Type string description
6105  *      @port_type: firmware Port Type enumeration
6106  */
6107 const char *t4_get_port_type_description(enum fw_port_type port_type)
6108 {
6109 	static const char *const port_type_description[] = {
6110 		"Fiber_XFI",
6111 		"Fiber_XAUI",
6112 		"BT_SGMII",
6113 		"BT_XFI",
6114 		"BT_XAUI",
6115 		"KX4",
6116 		"CX4",
6117 		"KX",
6118 		"KR",
6119 		"SFP",
6120 		"BP_AP",
6121 		"BP4_AP",
6122 		"QSFP_10G",
6123 		"QSA",
6124 		"QSFP",
6125 		"BP40_BA",
6126 		"KR4_100G",
6127 		"CR4_QSFP",
6128 		"CR_QSFP",
6129 		"CR2_QSFP",
6130 		"SFP28",
6131 		"KR_SFP28",
6132 		"KR_XLAUI"
6133 	};
6134 
6135 	if (port_type < ARRAY_SIZE(port_type_description))
6136 		return port_type_description[port_type];
6137 	return "UNKNOWN";
6138 }
6139 
6140 /**
6141  *      t4_get_port_stats_offset - collect port stats relative to a previous
6142  *                                 snapshot
6143  *      @adap: The adapter
6144  *      @idx: The port
6145  *      @stats: Current stats to fill
6146  *      @offset: Previous stats snapshot
6147  */
6148 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6149 			      struct port_stats *stats,
6150 			      struct port_stats *offset)
6151 {
6152 	u64 *s, *o;
6153 	int i;
6154 
6155 	t4_get_port_stats(adap, idx, stats);
6156 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6157 			i < (sizeof(struct port_stats) / sizeof(u64));
6158 			i++, s++, o++)
6159 		*s -= *o;
6160 }
6161 
6162 /**
6163  *	t4_get_port_stats - collect port statistics
6164  *	@adap: the adapter
6165  *	@idx: the port index
6166  *	@p: the stats structure to fill
6167  *
6168  *	Collect statistics related to the given port from HW.
6169  */
6170 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6171 {
6172 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6173 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6174 
6175 #define GET_STAT(name) \
6176 	t4_read_reg64(adap, \
6177 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6178 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6179 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6180 
6181 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6182 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6183 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6184 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6185 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6186 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6187 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6188 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6189 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6190 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6191 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6192 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6193 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6194 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6195 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6196 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6197 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6198 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6199 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6200 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6201 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6202 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6203 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6204 
6205 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6206 		if (stat_ctl & COUNTPAUSESTATTX_F)
6207 			p->tx_frames_64 -= p->tx_pause;
6208 		if (stat_ctl & COUNTPAUSEMCTX_F)
6209 			p->tx_mcast_frames -= p->tx_pause;
6210 	}
6211 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6212 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6213 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6214 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6215 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6216 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6217 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6218 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6219 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6220 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6221 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6222 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6223 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6224 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6225 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6226 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6227 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6228 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6229 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6230 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6231 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6232 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6233 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6234 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6235 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6236 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6237 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6238 
6239 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6240 		if (stat_ctl & COUNTPAUSESTATRX_F)
6241 			p->rx_frames_64 -= p->rx_pause;
6242 		if (stat_ctl & COUNTPAUSEMCRX_F)
6243 			p->rx_mcast_frames -= p->rx_pause;
6244 	}
6245 
6246 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6247 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6248 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6249 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6250 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6251 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6252 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6253 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6254 
6255 #undef GET_STAT
6256 #undef GET_STAT_COM
6257 }
6258 
6259 /**
6260  *	t4_get_lb_stats - collect loopback port statistics
6261  *	@adap: the adapter
6262  *	@idx: the loopback port index
6263  *	@p: the stats structure to fill
6264  *
6265  *	Return HW statistics for the given loopback port.
6266  */
6267 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6268 {
6269 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6270 
6271 #define GET_STAT(name) \
6272 	t4_read_reg64(adap, \
6273 	(is_t4(adap->params.chip) ? \
6274 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6275 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6276 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6277 
6278 	p->octets           = GET_STAT(BYTES);
6279 	p->frames           = GET_STAT(FRAMES);
6280 	p->bcast_frames     = GET_STAT(BCAST);
6281 	p->mcast_frames     = GET_STAT(MCAST);
6282 	p->ucast_frames     = GET_STAT(UCAST);
6283 	p->error_frames     = GET_STAT(ERROR);
6284 
6285 	p->frames_64        = GET_STAT(64B);
6286 	p->frames_65_127    = GET_STAT(65B_127B);
6287 	p->frames_128_255   = GET_STAT(128B_255B);
6288 	p->frames_256_511   = GET_STAT(256B_511B);
6289 	p->frames_512_1023  = GET_STAT(512B_1023B);
6290 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6291 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6292 	p->drop             = GET_STAT(DROP_FRAMES);
6293 
6294 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6295 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6296 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6297 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6298 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6299 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6300 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6301 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6302 
6303 #undef GET_STAT
6304 #undef GET_STAT_COM
6305 }
6306 
6307 /*     t4_mk_filtdelwr - create a delete filter WR
6308  *     @ftid: the filter ID
6309  *     @wr: the filter work request to populate
6310  *     @qid: ingress queue to receive the delete notification
6311  *
6312  *     Creates a filter work request to delete the supplied filter.  If @qid is
6313  *     negative the delete notification is suppressed.
6314  */
6315 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6316 {
6317 	memset(wr, 0, sizeof(*wr));
6318 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6319 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6320 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6321 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6322 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6323 	if (qid >= 0)
6324 		wr->rx_chan_rx_rpl_iq =
6325 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6326 }
6327 
6328 #define INIT_CMD(var, cmd, rd_wr) do { \
6329 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6330 					FW_CMD_REQUEST_F | \
6331 					FW_CMD_##rd_wr##_F); \
6332 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6333 } while (0)
6334 
6335 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6336 			  u32 addr, u32 val)
6337 {
6338 	u32 ldst_addrspace;
6339 	struct fw_ldst_cmd c;
6340 
6341 	memset(&c, 0, sizeof(c));
6342 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6343 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6344 					FW_CMD_REQUEST_F |
6345 					FW_CMD_WRITE_F |
6346 					ldst_addrspace);
6347 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6348 	c.u.addrval.addr = cpu_to_be32(addr);
6349 	c.u.addrval.val = cpu_to_be32(val);
6350 
6351 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6352 }
6353 
6354 /**
6355  *	t4_mdio_rd - read a PHY register through MDIO
6356  *	@adap: the adapter
6357  *	@mbox: mailbox to use for the FW command
6358  *	@phy_addr: the PHY address
6359  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6360  *	@reg: the register to read
6361  *	@valp: where to store the value
6362  *
6363  *	Issues a FW command through the given mailbox to read a PHY register.
6364  */
6365 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6366 	       unsigned int mmd, unsigned int reg, u16 *valp)
6367 {
6368 	int ret;
6369 	u32 ldst_addrspace;
6370 	struct fw_ldst_cmd c;
6371 
6372 	memset(&c, 0, sizeof(c));
6373 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6374 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6375 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6376 					ldst_addrspace);
6377 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6378 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6379 					 FW_LDST_CMD_MMD_V(mmd));
6380 	c.u.mdio.raddr = cpu_to_be16(reg);
6381 
6382 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6383 	if (ret == 0)
6384 		*valp = be16_to_cpu(c.u.mdio.rval);
6385 	return ret;
6386 }
6387 
6388 /**
6389  *	t4_mdio_wr - write a PHY register through MDIO
6390  *	@adap: the adapter
6391  *	@mbox: mailbox to use for the FW command
6392  *	@phy_addr: the PHY address
6393  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6394  *	@reg: the register to write
6395  *	@valp: value to write
6396  *
6397  *	Issues a FW command through the given mailbox to write a PHY register.
6398  */
6399 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6400 	       unsigned int mmd, unsigned int reg, u16 val)
6401 {
6402 	u32 ldst_addrspace;
6403 	struct fw_ldst_cmd c;
6404 
6405 	memset(&c, 0, sizeof(c));
6406 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6407 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6408 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6409 					ldst_addrspace);
6410 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6411 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6412 					 FW_LDST_CMD_MMD_V(mmd));
6413 	c.u.mdio.raddr = cpu_to_be16(reg);
6414 	c.u.mdio.rval = cpu_to_be16(val);
6415 
6416 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6417 }
6418 
6419 /**
6420  *	t4_sge_decode_idma_state - decode the idma state
6421  *	@adap: the adapter
6422  *	@state: the state idma is stuck in
6423  */
6424 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6425 {
6426 	static const char * const t4_decode[] = {
6427 		"IDMA_IDLE",
6428 		"IDMA_PUSH_MORE_CPL_FIFO",
6429 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6430 		"Not used",
6431 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6432 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6433 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6434 		"IDMA_SEND_FIFO_TO_IMSG",
6435 		"IDMA_FL_REQ_DATA_FL_PREP",
6436 		"IDMA_FL_REQ_DATA_FL",
6437 		"IDMA_FL_DROP",
6438 		"IDMA_FL_H_REQ_HEADER_FL",
6439 		"IDMA_FL_H_SEND_PCIEHDR",
6440 		"IDMA_FL_H_PUSH_CPL_FIFO",
6441 		"IDMA_FL_H_SEND_CPL",
6442 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6443 		"IDMA_FL_H_SEND_IP_HDR",
6444 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6445 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6446 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6447 		"IDMA_FL_D_SEND_PCIEHDR",
6448 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6449 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6450 		"IDMA_FL_SEND_PCIEHDR",
6451 		"IDMA_FL_PUSH_CPL_FIFO",
6452 		"IDMA_FL_SEND_CPL",
6453 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6454 		"IDMA_FL_SEND_PAYLOAD",
6455 		"IDMA_FL_REQ_NEXT_DATA_FL",
6456 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6457 		"IDMA_FL_SEND_PADDING",
6458 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6459 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6460 		"IDMA_FL_REQ_DATAFL_DONE",
6461 		"IDMA_FL_REQ_HEADERFL_DONE",
6462 	};
6463 	static const char * const t5_decode[] = {
6464 		"IDMA_IDLE",
6465 		"IDMA_ALMOST_IDLE",
6466 		"IDMA_PUSH_MORE_CPL_FIFO",
6467 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6468 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6469 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6470 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6471 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6472 		"IDMA_SEND_FIFO_TO_IMSG",
6473 		"IDMA_FL_REQ_DATA_FL",
6474 		"IDMA_FL_DROP",
6475 		"IDMA_FL_DROP_SEND_INC",
6476 		"IDMA_FL_H_REQ_HEADER_FL",
6477 		"IDMA_FL_H_SEND_PCIEHDR",
6478 		"IDMA_FL_H_PUSH_CPL_FIFO",
6479 		"IDMA_FL_H_SEND_CPL",
6480 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6481 		"IDMA_FL_H_SEND_IP_HDR",
6482 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6483 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6484 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6485 		"IDMA_FL_D_SEND_PCIEHDR",
6486 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6487 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6488 		"IDMA_FL_SEND_PCIEHDR",
6489 		"IDMA_FL_PUSH_CPL_FIFO",
6490 		"IDMA_FL_SEND_CPL",
6491 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6492 		"IDMA_FL_SEND_PAYLOAD",
6493 		"IDMA_FL_REQ_NEXT_DATA_FL",
6494 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6495 		"IDMA_FL_SEND_PADDING",
6496 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6497 	};
6498 	static const char * const t6_decode[] = {
6499 		"IDMA_IDLE",
6500 		"IDMA_PUSH_MORE_CPL_FIFO",
6501 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6502 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6503 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6504 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6505 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6506 		"IDMA_FL_REQ_DATA_FL",
6507 		"IDMA_FL_DROP",
6508 		"IDMA_FL_DROP_SEND_INC",
6509 		"IDMA_FL_H_REQ_HEADER_FL",
6510 		"IDMA_FL_H_SEND_PCIEHDR",
6511 		"IDMA_FL_H_PUSH_CPL_FIFO",
6512 		"IDMA_FL_H_SEND_CPL",
6513 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6514 		"IDMA_FL_H_SEND_IP_HDR",
6515 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6516 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6517 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6518 		"IDMA_FL_D_SEND_PCIEHDR",
6519 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6520 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6521 		"IDMA_FL_SEND_PCIEHDR",
6522 		"IDMA_FL_PUSH_CPL_FIFO",
6523 		"IDMA_FL_SEND_CPL",
6524 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6525 		"IDMA_FL_SEND_PAYLOAD",
6526 		"IDMA_FL_REQ_NEXT_DATA_FL",
6527 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6528 		"IDMA_FL_SEND_PADDING",
6529 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6530 	};
6531 	static const u32 sge_regs[] = {
6532 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6533 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6534 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6535 	};
6536 	const char **sge_idma_decode;
6537 	int sge_idma_decode_nstates;
6538 	int i;
6539 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6540 
6541 	/* Select the right set of decode strings to dump depending on the
6542 	 * adapter chip type.
6543 	 */
6544 	switch (chip_version) {
6545 	case CHELSIO_T4:
6546 		sge_idma_decode = (const char **)t4_decode;
6547 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6548 		break;
6549 
6550 	case CHELSIO_T5:
6551 		sge_idma_decode = (const char **)t5_decode;
6552 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6553 		break;
6554 
6555 	case CHELSIO_T6:
6556 		sge_idma_decode = (const char **)t6_decode;
6557 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6558 		break;
6559 
6560 	default:
6561 		dev_err(adapter->pdev_dev,
6562 			"Unsupported chip version %d\n", chip_version);
6563 		return;
6564 	}
6565 
6566 	if (is_t4(adapter->params.chip)) {
6567 		sge_idma_decode = (const char **)t4_decode;
6568 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6569 	} else {
6570 		sge_idma_decode = (const char **)t5_decode;
6571 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6572 	}
6573 
6574 	if (state < sge_idma_decode_nstates)
6575 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6576 	else
6577 		CH_WARN(adapter, "idma state %d unknown\n", state);
6578 
6579 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6580 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6581 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6582 }
6583 
6584 /**
6585  *      t4_sge_ctxt_flush - flush the SGE context cache
6586  *      @adap: the adapter
6587  *      @mbox: mailbox to use for the FW command
6588  *      @ctx_type: Egress or Ingress
6589  *
6590  *      Issues a FW command through the given mailbox to flush the
6591  *      SGE context cache.
6592  */
6593 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6594 {
6595 	int ret;
6596 	u32 ldst_addrspace;
6597 	struct fw_ldst_cmd c;
6598 
6599 	memset(&c, 0, sizeof(c));
6600 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6601 						 FW_LDST_ADDRSPC_SGE_EGRC :
6602 						 FW_LDST_ADDRSPC_SGE_INGC);
6603 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6604 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6605 					ldst_addrspace);
6606 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6607 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6608 
6609 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6610 	return ret;
6611 }
6612 
6613 /**
6614  *      t4_fw_hello - establish communication with FW
6615  *      @adap: the adapter
6616  *      @mbox: mailbox to use for the FW command
6617  *      @evt_mbox: mailbox to receive async FW events
6618  *      @master: specifies the caller's willingness to be the device master
6619  *	@state: returns the current device state (if non-NULL)
6620  *
6621  *	Issues a command to establish communication with FW.  Returns either
6622  *	an error (negative integer) or the mailbox of the Master PF.
6623  */
6624 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6625 		enum dev_master master, enum dev_state *state)
6626 {
6627 	int ret;
6628 	struct fw_hello_cmd c;
6629 	u32 v;
6630 	unsigned int master_mbox;
6631 	int retries = FW_CMD_HELLO_RETRIES;
6632 
6633 retry:
6634 	memset(&c, 0, sizeof(c));
6635 	INIT_CMD(c, HELLO, WRITE);
6636 	c.err_to_clearinit = cpu_to_be32(
6637 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6638 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6639 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6640 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6641 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6642 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6643 		FW_HELLO_CMD_CLEARINIT_F);
6644 
6645 	/*
6646 	 * Issue the HELLO command to the firmware.  If it's not successful
6647 	 * but indicates that we got a "busy" or "timeout" condition, retry
6648 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6649 	 * retry limit, check to see if the firmware left us any error
6650 	 * information and report that if so.
6651 	 */
6652 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6653 	if (ret < 0) {
6654 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6655 			goto retry;
6656 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6657 			t4_report_fw_error(adap);
6658 		return ret;
6659 	}
6660 
6661 	v = be32_to_cpu(c.err_to_clearinit);
6662 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6663 	if (state) {
6664 		if (v & FW_HELLO_CMD_ERR_F)
6665 			*state = DEV_STATE_ERR;
6666 		else if (v & FW_HELLO_CMD_INIT_F)
6667 			*state = DEV_STATE_INIT;
6668 		else
6669 			*state = DEV_STATE_UNINIT;
6670 	}
6671 
6672 	/*
6673 	 * If we're not the Master PF then we need to wait around for the
6674 	 * Master PF Driver to finish setting up the adapter.
6675 	 *
6676 	 * Note that we also do this wait if we're a non-Master-capable PF and
6677 	 * there is no current Master PF; a Master PF may show up momentarily
6678 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6679 	 * OS loads lots of different drivers rapidly at the same time).  In
6680 	 * this case, the Master PF returned by the firmware will be
6681 	 * PCIE_FW_MASTER_M so the test below will work ...
6682 	 */
6683 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6684 	    master_mbox != mbox) {
6685 		int waiting = FW_CMD_HELLO_TIMEOUT;
6686 
6687 		/*
6688 		 * Wait for the firmware to either indicate an error or
6689 		 * initialized state.  If we see either of these we bail out
6690 		 * and report the issue to the caller.  If we exhaust the
6691 		 * "hello timeout" and we haven't exhausted our retries, try
6692 		 * again.  Otherwise bail with a timeout error.
6693 		 */
6694 		for (;;) {
6695 			u32 pcie_fw;
6696 
6697 			msleep(50);
6698 			waiting -= 50;
6699 
6700 			/*
6701 			 * If neither Error nor Initialialized are indicated
6702 			 * by the firmware keep waiting till we exaust our
6703 			 * timeout ... and then retry if we haven't exhausted
6704 			 * our retries ...
6705 			 */
6706 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6707 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6708 				if (waiting <= 0) {
6709 					if (retries-- > 0)
6710 						goto retry;
6711 
6712 					return -ETIMEDOUT;
6713 				}
6714 				continue;
6715 			}
6716 
6717 			/*
6718 			 * We either have an Error or Initialized condition
6719 			 * report errors preferentially.
6720 			 */
6721 			if (state) {
6722 				if (pcie_fw & PCIE_FW_ERR_F)
6723 					*state = DEV_STATE_ERR;
6724 				else if (pcie_fw & PCIE_FW_INIT_F)
6725 					*state = DEV_STATE_INIT;
6726 			}
6727 
6728 			/*
6729 			 * If we arrived before a Master PF was selected and
6730 			 * there's not a valid Master PF, grab its identity
6731 			 * for our caller.
6732 			 */
6733 			if (master_mbox == PCIE_FW_MASTER_M &&
6734 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6735 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6736 			break;
6737 		}
6738 	}
6739 
6740 	return master_mbox;
6741 }
6742 
6743 /**
6744  *	t4_fw_bye - end communication with FW
6745  *	@adap: the adapter
6746  *	@mbox: mailbox to use for the FW command
6747  *
6748  *	Issues a command to terminate communication with FW.
6749  */
6750 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6751 {
6752 	struct fw_bye_cmd c;
6753 
6754 	memset(&c, 0, sizeof(c));
6755 	INIT_CMD(c, BYE, WRITE);
6756 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6757 }
6758 
6759 /**
6760  *	t4_init_cmd - ask FW to initialize the device
6761  *	@adap: the adapter
6762  *	@mbox: mailbox to use for the FW command
6763  *
6764  *	Issues a command to FW to partially initialize the device.  This
6765  *	performs initialization that generally doesn't depend on user input.
6766  */
6767 int t4_early_init(struct adapter *adap, unsigned int mbox)
6768 {
6769 	struct fw_initialize_cmd c;
6770 
6771 	memset(&c, 0, sizeof(c));
6772 	INIT_CMD(c, INITIALIZE, WRITE);
6773 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6774 }
6775 
6776 /**
6777  *	t4_fw_reset - issue a reset to FW
6778  *	@adap: the adapter
6779  *	@mbox: mailbox to use for the FW command
6780  *	@reset: specifies the type of reset to perform
6781  *
6782  *	Issues a reset command of the specified type to FW.
6783  */
6784 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6785 {
6786 	struct fw_reset_cmd c;
6787 
6788 	memset(&c, 0, sizeof(c));
6789 	INIT_CMD(c, RESET, WRITE);
6790 	c.val = cpu_to_be32(reset);
6791 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6792 }
6793 
6794 /**
6795  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6796  *	@adap: the adapter
6797  *	@mbox: mailbox to use for the FW RESET command (if desired)
6798  *	@force: force uP into RESET even if FW RESET command fails
6799  *
6800  *	Issues a RESET command to firmware (if desired) with a HALT indication
6801  *	and then puts the microprocessor into RESET state.  The RESET command
6802  *	will only be issued if a legitimate mailbox is provided (mbox <=
6803  *	PCIE_FW_MASTER_M).
6804  *
6805  *	This is generally used in order for the host to safely manipulate the
6806  *	adapter without fear of conflicting with whatever the firmware might
6807  *	be doing.  The only way out of this state is to RESTART the firmware
6808  *	...
6809  */
6810 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6811 {
6812 	int ret = 0;
6813 
6814 	/*
6815 	 * If a legitimate mailbox is provided, issue a RESET command
6816 	 * with a HALT indication.
6817 	 */
6818 	if (mbox <= PCIE_FW_MASTER_M) {
6819 		struct fw_reset_cmd c;
6820 
6821 		memset(&c, 0, sizeof(c));
6822 		INIT_CMD(c, RESET, WRITE);
6823 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6824 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6825 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6826 	}
6827 
6828 	/*
6829 	 * Normally we won't complete the operation if the firmware RESET
6830 	 * command fails but if our caller insists we'll go ahead and put the
6831 	 * uP into RESET.  This can be useful if the firmware is hung or even
6832 	 * missing ...  We'll have to take the risk of putting the uP into
6833 	 * RESET without the cooperation of firmware in that case.
6834 	 *
6835 	 * We also force the firmware's HALT flag to be on in case we bypassed
6836 	 * the firmware RESET command above or we're dealing with old firmware
6837 	 * which doesn't have the HALT capability.  This will serve as a flag
6838 	 * for the incoming firmware to know that it's coming out of a HALT
6839 	 * rather than a RESET ... if it's new enough to understand that ...
6840 	 */
6841 	if (ret == 0 || force) {
6842 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6843 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6844 				 PCIE_FW_HALT_F);
6845 	}
6846 
6847 	/*
6848 	 * And we always return the result of the firmware RESET command
6849 	 * even when we force the uP into RESET ...
6850 	 */
6851 	return ret;
6852 }
6853 
6854 /**
6855  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6856  *	@adap: the adapter
6857  *	@reset: if we want to do a RESET to restart things
6858  *
6859  *	Restart firmware previously halted by t4_fw_halt().  On successful
6860  *	return the previous PF Master remains as the new PF Master and there
6861  *	is no need to issue a new HELLO command, etc.
6862  *
6863  *	We do this in two ways:
6864  *
6865  *	 1. If we're dealing with newer firmware we'll simply want to take
6866  *	    the chip's microprocessor out of RESET.  This will cause the
6867  *	    firmware to start up from its start vector.  And then we'll loop
6868  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6869  *	    reset to 0) or we timeout.
6870  *
6871  *	 2. If we're dealing with older firmware then we'll need to RESET
6872  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6873  *	    flag and automatically RESET itself on startup.
6874  */
6875 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6876 {
6877 	if (reset) {
6878 		/*
6879 		 * Since we're directing the RESET instead of the firmware
6880 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6881 		 * bit.
6882 		 */
6883 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6884 
6885 		/*
6886 		 * If we've been given a valid mailbox, first try to get the
6887 		 * firmware to do the RESET.  If that works, great and we can
6888 		 * return success.  Otherwise, if we haven't been given a
6889 		 * valid mailbox or the RESET command failed, fall back to
6890 		 * hitting the chip with a hammer.
6891 		 */
6892 		if (mbox <= PCIE_FW_MASTER_M) {
6893 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6894 			msleep(100);
6895 			if (t4_fw_reset(adap, mbox,
6896 					PIORST_F | PIORSTMODE_F) == 0)
6897 				return 0;
6898 		}
6899 
6900 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6901 		msleep(2000);
6902 	} else {
6903 		int ms;
6904 
6905 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6906 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6907 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6908 				return 0;
6909 			msleep(100);
6910 			ms += 100;
6911 		}
6912 		return -ETIMEDOUT;
6913 	}
6914 	return 0;
6915 }
6916 
6917 /**
6918  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6919  *	@adap: the adapter
6920  *	@mbox: mailbox to use for the FW RESET command (if desired)
6921  *	@fw_data: the firmware image to write
6922  *	@size: image size
6923  *	@force: force upgrade even if firmware doesn't cooperate
6924  *
6925  *	Perform all of the steps necessary for upgrading an adapter's
6926  *	firmware image.  Normally this requires the cooperation of the
6927  *	existing firmware in order to halt all existing activities
6928  *	but if an invalid mailbox token is passed in we skip that step
6929  *	(though we'll still put the adapter microprocessor into RESET in
6930  *	that case).
6931  *
6932  *	On successful return the new firmware will have been loaded and
6933  *	the adapter will have been fully RESET losing all previous setup
6934  *	state.  On unsuccessful return the adapter may be completely hosed ...
6935  *	positive errno indicates that the adapter is ~probably~ intact, a
6936  *	negative errno indicates that things are looking bad ...
6937  */
6938 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6939 		  const u8 *fw_data, unsigned int size, int force)
6940 {
6941 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6942 	int reset, ret;
6943 
6944 	if (!t4_fw_matches_chip(adap, fw_hdr))
6945 		return -EINVAL;
6946 
6947 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6948 	 * wont be sent when we are flashing FW.
6949 	 */
6950 	adap->flags &= ~FW_OK;
6951 
6952 	ret = t4_fw_halt(adap, mbox, force);
6953 	if (ret < 0 && !force)
6954 		goto out;
6955 
6956 	ret = t4_load_fw(adap, fw_data, size);
6957 	if (ret < 0)
6958 		goto out;
6959 
6960 	/*
6961 	 * If there was a Firmware Configuration File stored in FLASH,
6962 	 * there's a good chance that it won't be compatible with the new
6963 	 * Firmware.  In order to prevent difficult to diagnose adapter
6964 	 * initialization issues, we clear out the Firmware Configuration File
6965 	 * portion of the FLASH .  The user will need to re-FLASH a new
6966 	 * Firmware Configuration File which is compatible with the new
6967 	 * Firmware if that's desired.
6968 	 */
6969 	(void)t4_load_cfg(adap, NULL, 0);
6970 
6971 	/*
6972 	 * Older versions of the firmware don't understand the new
6973 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6974 	 * restart.  So for newly loaded older firmware we'll have to do the
6975 	 * RESET for it so it starts up on a clean slate.  We can tell if
6976 	 * the newly loaded firmware will handle this right by checking
6977 	 * its header flags to see if it advertises the capability.
6978 	 */
6979 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6980 	ret = t4_fw_restart(adap, mbox, reset);
6981 
6982 	/* Grab potentially new Firmware Device Log parameters so we can see
6983 	 * how healthy the new Firmware is.  It's okay to contact the new
6984 	 * Firmware for these parameters even though, as far as it's
6985 	 * concerned, we've never said "HELLO" to it ...
6986 	 */
6987 	(void)t4_init_devlog_params(adap);
6988 out:
6989 	adap->flags |= FW_OK;
6990 	return ret;
6991 }
6992 
6993 /**
6994  *	t4_fl_pkt_align - return the fl packet alignment
6995  *	@adap: the adapter
6996  *
6997  *	T4 has a single field to specify the packing and padding boundary.
6998  *	T5 onwards has separate fields for this and hence the alignment for
6999  *	next packet offset is maximum of these two.
7000  *
7001  */
7002 int t4_fl_pkt_align(struct adapter *adap)
7003 {
7004 	u32 sge_control, sge_control2;
7005 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7006 
7007 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7008 
7009 	/* T4 uses a single control field to specify both the PCIe Padding and
7010 	 * Packing Boundary.  T5 introduced the ability to specify these
7011 	 * separately.  The actual Ingress Packet Data alignment boundary
7012 	 * within Packed Buffer Mode is the maximum of these two
7013 	 * specifications.  (Note that it makes no real practical sense to
7014 	 * have the Pading Boudary be larger than the Packing Boundary but you
7015 	 * could set the chip up that way and, in fact, legacy T4 code would
7016 	 * end doing this because it would initialize the Padding Boundary and
7017 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7018 	 * Padding Boundary values in T6 starts from 8B,
7019 	 * where as it is 32B for T4 and T5.
7020 	 */
7021 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7022 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7023 	else
7024 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7025 
7026 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7027 
7028 	fl_align = ingpadboundary;
7029 	if (!is_t4(adap->params.chip)) {
7030 		/* T5 has a weird interpretation of one of the PCIe Packing
7031 		 * Boundary values.  No idea why ...
7032 		 */
7033 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7034 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7035 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7036 			ingpackboundary = 16;
7037 		else
7038 			ingpackboundary = 1 << (ingpackboundary +
7039 						INGPACKBOUNDARY_SHIFT_X);
7040 
7041 		fl_align = max(ingpadboundary, ingpackboundary);
7042 	}
7043 	return fl_align;
7044 }
7045 
7046 /**
7047  *	t4_fixup_host_params - fix up host-dependent parameters
7048  *	@adap: the adapter
7049  *	@page_size: the host's Base Page Size
7050  *	@cache_line_size: the host's Cache Line Size
7051  *
7052  *	Various registers in T4 contain values which are dependent on the
7053  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7054  *	those registers with the appropriate values as passed in ...
7055  */
7056 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7057 			 unsigned int cache_line_size)
7058 {
7059 	unsigned int page_shift = fls(page_size) - 1;
7060 	unsigned int sge_hps = page_shift - 10;
7061 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7062 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7063 	unsigned int fl_align_log = fls(fl_align) - 1;
7064 
7065 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7066 		     HOSTPAGESIZEPF0_V(sge_hps) |
7067 		     HOSTPAGESIZEPF1_V(sge_hps) |
7068 		     HOSTPAGESIZEPF2_V(sge_hps) |
7069 		     HOSTPAGESIZEPF3_V(sge_hps) |
7070 		     HOSTPAGESIZEPF4_V(sge_hps) |
7071 		     HOSTPAGESIZEPF5_V(sge_hps) |
7072 		     HOSTPAGESIZEPF6_V(sge_hps) |
7073 		     HOSTPAGESIZEPF7_V(sge_hps));
7074 
7075 	if (is_t4(adap->params.chip)) {
7076 		t4_set_reg_field(adap, SGE_CONTROL_A,
7077 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7078 				 EGRSTATUSPAGESIZE_F,
7079 				 INGPADBOUNDARY_V(fl_align_log -
7080 						  INGPADBOUNDARY_SHIFT_X) |
7081 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7082 	} else {
7083 		unsigned int pack_align;
7084 		unsigned int ingpad, ingpack;
7085 		unsigned int pcie_cap;
7086 
7087 		/* T5 introduced the separation of the Free List Padding and
7088 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7089 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7090 		 * Bandwidth, and use a Packing Boundary which is large enough
7091 		 * to avoid false sharing between CPUs, etc.
7092 		 *
7093 		 * For the PCI Link, the smaller the Padding Boundary the
7094 		 * better.  For the Memory Controller, a smaller Padding
7095 		 * Boundary is better until we cross under the Memory Line
7096 		 * Size (the minimum unit of transfer to/from Memory).  If we
7097 		 * have a Padding Boundary which is smaller than the Memory
7098 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7099 		 * Memory Controller which is never good.
7100 		 */
7101 
7102 		/* We want the Packing Boundary to be based on the Cache Line
7103 		 * Size in order to help avoid False Sharing performance
7104 		 * issues between CPUs, etc.  We also want the Packing
7105 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7106 		 * get best performance when the Packing Boundary is a
7107 		 * multiple of the Maximum Payload Size.
7108 		 */
7109 		pack_align = fl_align;
7110 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7111 		if (pcie_cap) {
7112 			unsigned int mps, mps_log;
7113 			u16 devctl;
7114 
7115 			/* The PCIe Device Control Maximum Payload Size field
7116 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7117 			 * 128 bytes.
7118 			 */
7119 			pci_read_config_word(adap->pdev,
7120 					     pcie_cap + PCI_EXP_DEVCTL,
7121 					     &devctl);
7122 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7123 			mps = 1 << mps_log;
7124 			if (mps > pack_align)
7125 				pack_align = mps;
7126 		}
7127 
7128 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7129 		 * value for the Packing Boundary.  This corresponds to 16
7130 		 * bytes instead of the expected 32 bytes.  So if we want 32
7131 		 * bytes, the best we can really do is 64 bytes ...
7132 		 */
7133 		if (pack_align <= 16) {
7134 			ingpack = INGPACKBOUNDARY_16B_X;
7135 			fl_align = 16;
7136 		} else if (pack_align == 32) {
7137 			ingpack = INGPACKBOUNDARY_64B_X;
7138 			fl_align = 64;
7139 		} else {
7140 			unsigned int pack_align_log = fls(pack_align) - 1;
7141 
7142 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7143 			fl_align = pack_align;
7144 		}
7145 
7146 		/* Use the smallest Ingress Padding which isn't smaller than
7147 		 * the Memory Controller Read/Write Size.  We'll take that as
7148 		 * being 8 bytes since we don't know of any system with a
7149 		 * wider Memory Controller Bus Width.
7150 		 */
7151 		if (is_t5(adap->params.chip))
7152 			ingpad = INGPADBOUNDARY_32B_X;
7153 		else
7154 			ingpad = T6_INGPADBOUNDARY_8B_X;
7155 
7156 		t4_set_reg_field(adap, SGE_CONTROL_A,
7157 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7158 				 EGRSTATUSPAGESIZE_F,
7159 				 INGPADBOUNDARY_V(ingpad) |
7160 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7161 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7162 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7163 				 INGPACKBOUNDARY_V(ingpack));
7164 	}
7165 	/*
7166 	 * Adjust various SGE Free List Host Buffer Sizes.
7167 	 *
7168 	 * This is something of a crock since we're using fixed indices into
7169 	 * the array which are also known by the sge.c code and the T4
7170 	 * Firmware Configuration File.  We need to come up with a much better
7171 	 * approach to managing this array.  For now, the first four entries
7172 	 * are:
7173 	 *
7174 	 *   0: Host Page Size
7175 	 *   1: 64KB
7176 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7177 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7178 	 *
7179 	 * For the single-MTU buffers in unpacked mode we need to include
7180 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7181 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7182 	 * Padding boundary.  All of these are accommodated in the Factory
7183 	 * Default Firmware Configuration File but we need to adjust it for
7184 	 * this host's cache line size.
7185 	 */
7186 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7187 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7188 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7189 		     & ~(fl_align-1));
7190 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7191 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7192 		     & ~(fl_align-1));
7193 
7194 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7195 
7196 	return 0;
7197 }
7198 
7199 /**
7200  *	t4_fw_initialize - ask FW to initialize the device
7201  *	@adap: the adapter
7202  *	@mbox: mailbox to use for the FW command
7203  *
7204  *	Issues a command to FW to partially initialize the device.  This
7205  *	performs initialization that generally doesn't depend on user input.
7206  */
7207 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7208 {
7209 	struct fw_initialize_cmd c;
7210 
7211 	memset(&c, 0, sizeof(c));
7212 	INIT_CMD(c, INITIALIZE, WRITE);
7213 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7214 }
7215 
7216 /**
7217  *	t4_query_params_rw - query FW or device parameters
7218  *	@adap: the adapter
7219  *	@mbox: mailbox to use for the FW command
7220  *	@pf: the PF
7221  *	@vf: the VF
7222  *	@nparams: the number of parameters
7223  *	@params: the parameter names
7224  *	@val: the parameter values
7225  *	@rw: Write and read flag
7226  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7227  *
7228  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7229  *	queried at once.
7230  */
7231 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7232 		       unsigned int vf, unsigned int nparams, const u32 *params,
7233 		       u32 *val, int rw, bool sleep_ok)
7234 {
7235 	int i, ret;
7236 	struct fw_params_cmd c;
7237 	__be32 *p = &c.param[0].mnem;
7238 
7239 	if (nparams > 7)
7240 		return -EINVAL;
7241 
7242 	memset(&c, 0, sizeof(c));
7243 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7244 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7245 				  FW_PARAMS_CMD_PFN_V(pf) |
7246 				  FW_PARAMS_CMD_VFN_V(vf));
7247 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7248 
7249 	for (i = 0; i < nparams; i++) {
7250 		*p++ = cpu_to_be32(*params++);
7251 		if (rw)
7252 			*p = cpu_to_be32(*(val + i));
7253 		p++;
7254 	}
7255 
7256 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7257 	if (ret == 0)
7258 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7259 			*val++ = be32_to_cpu(*p);
7260 	return ret;
7261 }
7262 
7263 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7264 		    unsigned int vf, unsigned int nparams, const u32 *params,
7265 		    u32 *val)
7266 {
7267 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7268 				  true);
7269 }
7270 
7271 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7272 		       unsigned int vf, unsigned int nparams, const u32 *params,
7273 		       u32 *val)
7274 {
7275 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7276 				  false);
7277 }
7278 
7279 /**
7280  *      t4_set_params_timeout - sets FW or device parameters
7281  *      @adap: the adapter
7282  *      @mbox: mailbox to use for the FW command
7283  *      @pf: the PF
7284  *      @vf: the VF
7285  *      @nparams: the number of parameters
7286  *      @params: the parameter names
7287  *      @val: the parameter values
7288  *      @timeout: the timeout time
7289  *
7290  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7291  *      specified at once.
7292  */
7293 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7294 			  unsigned int pf, unsigned int vf,
7295 			  unsigned int nparams, const u32 *params,
7296 			  const u32 *val, int timeout)
7297 {
7298 	struct fw_params_cmd c;
7299 	__be32 *p = &c.param[0].mnem;
7300 
7301 	if (nparams > 7)
7302 		return -EINVAL;
7303 
7304 	memset(&c, 0, sizeof(c));
7305 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7306 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7307 				  FW_PARAMS_CMD_PFN_V(pf) |
7308 				  FW_PARAMS_CMD_VFN_V(vf));
7309 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7310 
7311 	while (nparams--) {
7312 		*p++ = cpu_to_be32(*params++);
7313 		*p++ = cpu_to_be32(*val++);
7314 	}
7315 
7316 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7317 }
7318 
7319 /**
7320  *	t4_set_params - sets FW or device parameters
7321  *	@adap: the adapter
7322  *	@mbox: mailbox to use for the FW command
7323  *	@pf: the PF
7324  *	@vf: the VF
7325  *	@nparams: the number of parameters
7326  *	@params: the parameter names
7327  *	@val: the parameter values
7328  *
7329  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7330  *	specified at once.
7331  */
7332 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7333 		  unsigned int vf, unsigned int nparams, const u32 *params,
7334 		  const u32 *val)
7335 {
7336 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7337 				     FW_CMD_MAX_TIMEOUT);
7338 }
7339 
7340 /**
7341  *	t4_cfg_pfvf - configure PF/VF resource limits
7342  *	@adap: the adapter
7343  *	@mbox: mailbox to use for the FW command
7344  *	@pf: the PF being configured
7345  *	@vf: the VF being configured
7346  *	@txq: the max number of egress queues
7347  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7348  *	@rxqi: the max number of interrupt-capable ingress queues
7349  *	@rxq: the max number of interruptless ingress queues
7350  *	@tc: the PCI traffic class
7351  *	@vi: the max number of virtual interfaces
7352  *	@cmask: the channel access rights mask for the PF/VF
7353  *	@pmask: the port access rights mask for the PF/VF
7354  *	@nexact: the maximum number of exact MPS filters
7355  *	@rcaps: read capabilities
7356  *	@wxcaps: write/execute capabilities
7357  *
7358  *	Configures resource limits and capabilities for a physical or virtual
7359  *	function.
7360  */
7361 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7362 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7363 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7364 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7365 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7366 {
7367 	struct fw_pfvf_cmd c;
7368 
7369 	memset(&c, 0, sizeof(c));
7370 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7371 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7372 				  FW_PFVF_CMD_VFN_V(vf));
7373 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7374 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7375 				     FW_PFVF_CMD_NIQ_V(rxq));
7376 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7377 				    FW_PFVF_CMD_PMASK_V(pmask) |
7378 				    FW_PFVF_CMD_NEQ_V(txq));
7379 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7380 				      FW_PFVF_CMD_NVI_V(vi) |
7381 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7382 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7383 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7384 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7385 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7386 }
7387 
7388 /**
7389  *	t4_alloc_vi - allocate a virtual interface
7390  *	@adap: the adapter
7391  *	@mbox: mailbox to use for the FW command
7392  *	@port: physical port associated with the VI
7393  *	@pf: the PF owning the VI
7394  *	@vf: the VF owning the VI
7395  *	@nmac: number of MAC addresses needed (1 to 5)
7396  *	@mac: the MAC addresses of the VI
7397  *	@rss_size: size of RSS table slice associated with this VI
7398  *
7399  *	Allocates a virtual interface for the given physical port.  If @mac is
7400  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7401  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7402  *	stored consecutively so the space needed is @nmac * 6 bytes.
7403  *	Returns a negative error number or the non-negative VI id.
7404  */
7405 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7406 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7407 		unsigned int *rss_size)
7408 {
7409 	int ret;
7410 	struct fw_vi_cmd c;
7411 
7412 	memset(&c, 0, sizeof(c));
7413 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7414 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7415 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7416 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7417 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7418 	c.nmac = nmac - 1;
7419 
7420 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7421 	if (ret)
7422 		return ret;
7423 
7424 	if (mac) {
7425 		memcpy(mac, c.mac, sizeof(c.mac));
7426 		switch (nmac) {
7427 		case 5:
7428 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7429 		case 4:
7430 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7431 		case 3:
7432 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7433 		case 2:
7434 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7435 		}
7436 	}
7437 	if (rss_size)
7438 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7439 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7440 }
7441 
7442 /**
7443  *	t4_free_vi - free a virtual interface
7444  *	@adap: the adapter
7445  *	@mbox: mailbox to use for the FW command
7446  *	@pf: the PF owning the VI
7447  *	@vf: the VF owning the VI
7448  *	@viid: virtual interface identifiler
7449  *
7450  *	Free a previously allocated virtual interface.
7451  */
7452 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7453 	       unsigned int vf, unsigned int viid)
7454 {
7455 	struct fw_vi_cmd c;
7456 
7457 	memset(&c, 0, sizeof(c));
7458 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7459 				  FW_CMD_REQUEST_F |
7460 				  FW_CMD_EXEC_F |
7461 				  FW_VI_CMD_PFN_V(pf) |
7462 				  FW_VI_CMD_VFN_V(vf));
7463 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7464 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7465 
7466 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7467 }
7468 
7469 /**
7470  *	t4_set_rxmode - set Rx properties of a virtual interface
7471  *	@adap: the adapter
7472  *	@mbox: mailbox to use for the FW command
7473  *	@viid: the VI id
7474  *	@mtu: the new MTU or -1
7475  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7476  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7477  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7478  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7479  *	@sleep_ok: if true we may sleep while awaiting command completion
7480  *
7481  *	Sets Rx properties of a virtual interface.
7482  */
7483 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7484 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7485 		  bool sleep_ok)
7486 {
7487 	struct fw_vi_rxmode_cmd c;
7488 
7489 	/* convert to FW values */
7490 	if (mtu < 0)
7491 		mtu = FW_RXMODE_MTU_NO_CHG;
7492 	if (promisc < 0)
7493 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7494 	if (all_multi < 0)
7495 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7496 	if (bcast < 0)
7497 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7498 	if (vlanex < 0)
7499 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7500 
7501 	memset(&c, 0, sizeof(c));
7502 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7503 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7504 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7505 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7506 	c.mtu_to_vlanexen =
7507 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7508 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7509 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7510 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7511 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7512 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7513 }
7514 
7515 /**
7516  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7517  *	@adap: the adapter
7518  *	@viid: the VI id
7519  *	@addr: the MAC address
7520  *	@mask: the mask
7521  *	@idx: index of the entry in mps tcam
7522  *	@lookup_type: MAC address for inner (1) or outer (0) header
7523  *	@port_id: the port index
7524  *	@sleep_ok: call is allowed to sleep
7525  *
7526  *	Removes the mac entry at the specified index using raw mac interface.
7527  *
7528  *	Returns a negative error number on failure.
7529  */
7530 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7531 			 const u8 *addr, const u8 *mask, unsigned int idx,
7532 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7533 {
7534 	struct fw_vi_mac_cmd c;
7535 	struct fw_vi_mac_raw *p = &c.u.raw;
7536 	u32 val;
7537 
7538 	memset(&c, 0, sizeof(c));
7539 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7540 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7541 				   FW_CMD_EXEC_V(0) |
7542 				   FW_VI_MAC_CMD_VIID_V(viid));
7543 	val = FW_CMD_LEN16_V(1) |
7544 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7545 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7546 					  FW_CMD_LEN16_V(val));
7547 
7548 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7549 				     FW_VI_MAC_ID_BASED_FREE);
7550 
7551 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7552 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7553 				   DATAPORTNUM_V(port_id));
7554 	/* Lookup mask and port mask */
7555 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7556 				    DATAPORTNUM_V(DATAPORTNUM_M));
7557 
7558 	/* Copy the address and the mask */
7559 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7560 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7561 
7562 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7563 }
7564 
7565 /**
7566  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7567  *	@adap: the adapter
7568  *	@viid: the VI id
7569  *	@mac: the MAC address
7570  *	@mask: the mask
7571  *	@idx: index at which to add this entry
7572  *	@port_id: the port index
7573  *	@lookup_type: MAC address for inner (1) or outer (0) header
7574  *	@sleep_ok: call is allowed to sleep
7575  *
7576  *	Adds the mac entry at the specified index using raw mac interface.
7577  *
7578  *	Returns a negative error number or the allocated index for this mac.
7579  */
7580 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7581 			  const u8 *addr, const u8 *mask, unsigned int idx,
7582 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7583 {
7584 	int ret = 0;
7585 	struct fw_vi_mac_cmd c;
7586 	struct fw_vi_mac_raw *p = &c.u.raw;
7587 	u32 val;
7588 
7589 	memset(&c, 0, sizeof(c));
7590 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7591 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7592 				   FW_VI_MAC_CMD_VIID_V(viid));
7593 	val = FW_CMD_LEN16_V(1) |
7594 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7595 	c.freemacs_to_len16 = cpu_to_be32(val);
7596 
7597 	/* Specify that this is an inner mac address */
7598 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7599 
7600 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7601 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7602 				   DATAPORTNUM_V(port_id));
7603 	/* Lookup mask and port mask */
7604 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7605 				    DATAPORTNUM_V(DATAPORTNUM_M));
7606 
7607 	/* Copy the address and the mask */
7608 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7609 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7610 
7611 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7612 	if (ret == 0) {
7613 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7614 		if (ret != idx)
7615 			ret = -ENOMEM;
7616 	}
7617 
7618 	return ret;
7619 }
7620 
7621 /**
7622  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7623  *	@adap: the adapter
7624  *	@mbox: mailbox to use for the FW command
7625  *	@viid: the VI id
7626  *	@free: if true any existing filters for this VI id are first removed
7627  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7628  *	@addr: the MAC address(es)
7629  *	@idx: where to store the index of each allocated filter
7630  *	@hash: pointer to hash address filter bitmap
7631  *	@sleep_ok: call is allowed to sleep
7632  *
7633  *	Allocates an exact-match filter for each of the supplied addresses and
7634  *	sets it to the corresponding address.  If @idx is not %NULL it should
7635  *	have at least @naddr entries, each of which will be set to the index of
7636  *	the filter allocated for the corresponding MAC address.  If a filter
7637  *	could not be allocated for an address its index is set to 0xffff.
7638  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7639  *	are hashed and update the hash filter bitmap pointed at by @hash.
7640  *
7641  *	Returns a negative error number or the number of filters allocated.
7642  */
7643 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7644 		      unsigned int viid, bool free, unsigned int naddr,
7645 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7646 {
7647 	int offset, ret = 0;
7648 	struct fw_vi_mac_cmd c;
7649 	unsigned int nfilters = 0;
7650 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7651 	unsigned int rem = naddr;
7652 
7653 	if (naddr > max_naddr)
7654 		return -EINVAL;
7655 
7656 	for (offset = 0; offset < naddr ; /**/) {
7657 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7658 					 rem : ARRAY_SIZE(c.u.exact));
7659 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7660 						     u.exact[fw_naddr]), 16);
7661 		struct fw_vi_mac_exact *p;
7662 		int i;
7663 
7664 		memset(&c, 0, sizeof(c));
7665 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7666 					   FW_CMD_REQUEST_F |
7667 					   FW_CMD_WRITE_F |
7668 					   FW_CMD_EXEC_V(free) |
7669 					   FW_VI_MAC_CMD_VIID_V(viid));
7670 		c.freemacs_to_len16 =
7671 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7672 				    FW_CMD_LEN16_V(len16));
7673 
7674 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7675 			p->valid_to_idx =
7676 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7677 					    FW_VI_MAC_CMD_IDX_V(
7678 						    FW_VI_MAC_ADD_MAC));
7679 			memcpy(p->macaddr, addr[offset + i],
7680 			       sizeof(p->macaddr));
7681 		}
7682 
7683 		/* It's okay if we run out of space in our MAC address arena.
7684 		 * Some of the addresses we submit may get stored so we need
7685 		 * to run through the reply to see what the results were ...
7686 		 */
7687 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7688 		if (ret && ret != -FW_ENOMEM)
7689 			break;
7690 
7691 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7692 			u16 index = FW_VI_MAC_CMD_IDX_G(
7693 					be16_to_cpu(p->valid_to_idx));
7694 
7695 			if (idx)
7696 				idx[offset + i] = (index >= max_naddr ?
7697 						   0xffff : index);
7698 			if (index < max_naddr)
7699 				nfilters++;
7700 			else if (hash)
7701 				*hash |= (1ULL <<
7702 					  hash_mac_addr(addr[offset + i]));
7703 		}
7704 
7705 		free = false;
7706 		offset += fw_naddr;
7707 		rem -= fw_naddr;
7708 	}
7709 
7710 	if (ret == 0 || ret == -FW_ENOMEM)
7711 		ret = nfilters;
7712 	return ret;
7713 }
7714 
7715 /**
7716  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7717  *	@adap: the adapter
7718  *	@mbox: mailbox to use for the FW command
7719  *	@viid: the VI id
7720  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7721  *	@addr: the MAC address(es)
7722  *	@sleep_ok: call is allowed to sleep
7723  *
7724  *	Frees the exact-match filter for each of the supplied addresses
7725  *
7726  *	Returns a negative error number or the number of filters freed.
7727  */
7728 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7729 		     unsigned int viid, unsigned int naddr,
7730 		     const u8 **addr, bool sleep_ok)
7731 {
7732 	int offset, ret = 0;
7733 	struct fw_vi_mac_cmd c;
7734 	unsigned int nfilters = 0;
7735 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7736 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7737 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7738 	unsigned int rem = naddr;
7739 
7740 	if (naddr > max_naddr)
7741 		return -EINVAL;
7742 
7743 	for (offset = 0; offset < (int)naddr ; /**/) {
7744 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7745 					 ? rem
7746 					 : ARRAY_SIZE(c.u.exact));
7747 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7748 						     u.exact[fw_naddr]), 16);
7749 		struct fw_vi_mac_exact *p;
7750 		int i;
7751 
7752 		memset(&c, 0, sizeof(c));
7753 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7754 				     FW_CMD_REQUEST_F |
7755 				     FW_CMD_WRITE_F |
7756 				     FW_CMD_EXEC_V(0) |
7757 				     FW_VI_MAC_CMD_VIID_V(viid));
7758 		c.freemacs_to_len16 =
7759 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7760 					    FW_CMD_LEN16_V(len16));
7761 
7762 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7763 			p->valid_to_idx = cpu_to_be16(
7764 				FW_VI_MAC_CMD_VALID_F |
7765 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7766 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7767 		}
7768 
7769 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7770 		if (ret)
7771 			break;
7772 
7773 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7774 			u16 index = FW_VI_MAC_CMD_IDX_G(
7775 						be16_to_cpu(p->valid_to_idx));
7776 
7777 			if (index < max_naddr)
7778 				nfilters++;
7779 		}
7780 
7781 		offset += fw_naddr;
7782 		rem -= fw_naddr;
7783 	}
7784 
7785 	if (ret == 0)
7786 		ret = nfilters;
7787 	return ret;
7788 }
7789 
7790 /**
7791  *	t4_change_mac - modifies the exact-match filter for a MAC address
7792  *	@adap: the adapter
7793  *	@mbox: mailbox to use for the FW command
7794  *	@viid: the VI id
7795  *	@idx: index of existing filter for old value of MAC address, or -1
7796  *	@addr: the new MAC address value
7797  *	@persist: whether a new MAC allocation should be persistent
7798  *	@add_smt: if true also add the address to the HW SMT
7799  *
7800  *	Modifies an exact-match filter and sets it to the new MAC address.
7801  *	Note that in general it is not possible to modify the value of a given
7802  *	filter so the generic way to modify an address filter is to free the one
7803  *	being used by the old address value and allocate a new filter for the
7804  *	new address value.  @idx can be -1 if the address is a new addition.
7805  *
7806  *	Returns a negative error number or the index of the filter with the new
7807  *	MAC value.
7808  */
7809 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7810 		  int idx, const u8 *addr, bool persist, bool add_smt)
7811 {
7812 	int ret, mode;
7813 	struct fw_vi_mac_cmd c;
7814 	struct fw_vi_mac_exact *p = c.u.exact;
7815 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7816 
7817 	if (idx < 0)                             /* new allocation */
7818 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7819 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7820 
7821 	memset(&c, 0, sizeof(c));
7822 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7823 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7824 				   FW_VI_MAC_CMD_VIID_V(viid));
7825 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7826 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7827 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7828 				      FW_VI_MAC_CMD_IDX_V(idx));
7829 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7830 
7831 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7832 	if (ret == 0) {
7833 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7834 		if (ret >= max_mac_addr)
7835 			ret = -ENOMEM;
7836 	}
7837 	return ret;
7838 }
7839 
7840 /**
7841  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7842  *	@adap: the adapter
7843  *	@mbox: mailbox to use for the FW command
7844  *	@viid: the VI id
7845  *	@ucast: whether the hash filter should also match unicast addresses
7846  *	@vec: the value to be written to the hash filter
7847  *	@sleep_ok: call is allowed to sleep
7848  *
7849  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7850  */
7851 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7852 		     bool ucast, u64 vec, bool sleep_ok)
7853 {
7854 	struct fw_vi_mac_cmd c;
7855 
7856 	memset(&c, 0, sizeof(c));
7857 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7858 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7859 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7860 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7861 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7862 					  FW_CMD_LEN16_V(1));
7863 	c.u.hash.hashvec = cpu_to_be64(vec);
7864 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7865 }
7866 
7867 /**
7868  *      t4_enable_vi_params - enable/disable a virtual interface
7869  *      @adap: the adapter
7870  *      @mbox: mailbox to use for the FW command
7871  *      @viid: the VI id
7872  *      @rx_en: 1=enable Rx, 0=disable Rx
7873  *      @tx_en: 1=enable Tx, 0=disable Tx
7874  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7875  *
7876  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7877  *      only makes sense when enabling a Virtual Interface ...
7878  */
7879 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7880 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7881 {
7882 	struct fw_vi_enable_cmd c;
7883 
7884 	memset(&c, 0, sizeof(c));
7885 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7886 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7887 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7888 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7889 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7890 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7891 				     FW_LEN16(c));
7892 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7893 }
7894 
7895 /**
7896  *	t4_enable_vi - enable/disable a virtual interface
7897  *	@adap: the adapter
7898  *	@mbox: mailbox to use for the FW command
7899  *	@viid: the VI id
7900  *	@rx_en: 1=enable Rx, 0=disable Rx
7901  *	@tx_en: 1=enable Tx, 0=disable Tx
7902  *
7903  *	Enables/disables a virtual interface.
7904  */
7905 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7906 		 bool rx_en, bool tx_en)
7907 {
7908 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7909 }
7910 
7911 /**
7912  *	t4_identify_port - identify a VI's port by blinking its LED
7913  *	@adap: the adapter
7914  *	@mbox: mailbox to use for the FW command
7915  *	@viid: the VI id
7916  *	@nblinks: how many times to blink LED at 2.5 Hz
7917  *
7918  *	Identifies a VI's port by blinking its LED.
7919  */
7920 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7921 		     unsigned int nblinks)
7922 {
7923 	struct fw_vi_enable_cmd c;
7924 
7925 	memset(&c, 0, sizeof(c));
7926 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7927 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7928 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7929 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7930 	c.blinkdur = cpu_to_be16(nblinks);
7931 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7932 }
7933 
7934 /**
7935  *	t4_iq_stop - stop an ingress queue and its FLs
7936  *	@adap: the adapter
7937  *	@mbox: mailbox to use for the FW command
7938  *	@pf: the PF owning the queues
7939  *	@vf: the VF owning the queues
7940  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7941  *	@iqid: ingress queue id
7942  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7943  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7944  *
7945  *	Stops an ingress queue and its associated FLs, if any.  This causes
7946  *	any current or future data/messages destined for these queues to be
7947  *	tossed.
7948  */
7949 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7950 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7951 	       unsigned int fl0id, unsigned int fl1id)
7952 {
7953 	struct fw_iq_cmd c;
7954 
7955 	memset(&c, 0, sizeof(c));
7956 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7957 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7958 				  FW_IQ_CMD_VFN_V(vf));
7959 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7960 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7961 	c.iqid = cpu_to_be16(iqid);
7962 	c.fl0id = cpu_to_be16(fl0id);
7963 	c.fl1id = cpu_to_be16(fl1id);
7964 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7965 }
7966 
7967 /**
7968  *	t4_iq_free - free an ingress queue and its FLs
7969  *	@adap: the adapter
7970  *	@mbox: mailbox to use for the FW command
7971  *	@pf: the PF owning the queues
7972  *	@vf: the VF owning the queues
7973  *	@iqtype: the ingress queue type
7974  *	@iqid: ingress queue id
7975  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7976  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7977  *
7978  *	Frees an ingress queue and its associated FLs, if any.
7979  */
7980 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7981 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7982 	       unsigned int fl0id, unsigned int fl1id)
7983 {
7984 	struct fw_iq_cmd c;
7985 
7986 	memset(&c, 0, sizeof(c));
7987 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7988 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7989 				  FW_IQ_CMD_VFN_V(vf));
7990 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7991 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7992 	c.iqid = cpu_to_be16(iqid);
7993 	c.fl0id = cpu_to_be16(fl0id);
7994 	c.fl1id = cpu_to_be16(fl1id);
7995 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7996 }
7997 
7998 /**
7999  *	t4_eth_eq_free - free an Ethernet egress queue
8000  *	@adap: the adapter
8001  *	@mbox: mailbox to use for the FW command
8002  *	@pf: the PF owning the queue
8003  *	@vf: the VF owning the queue
8004  *	@eqid: egress queue id
8005  *
8006  *	Frees an Ethernet egress queue.
8007  */
8008 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8009 		   unsigned int vf, unsigned int eqid)
8010 {
8011 	struct fw_eq_eth_cmd c;
8012 
8013 	memset(&c, 0, sizeof(c));
8014 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8015 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8016 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8017 				  FW_EQ_ETH_CMD_VFN_V(vf));
8018 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8019 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8020 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8021 }
8022 
8023 /**
8024  *	t4_ctrl_eq_free - free a control egress queue
8025  *	@adap: the adapter
8026  *	@mbox: mailbox to use for the FW command
8027  *	@pf: the PF owning the queue
8028  *	@vf: the VF owning the queue
8029  *	@eqid: egress queue id
8030  *
8031  *	Frees a control egress queue.
8032  */
8033 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8034 		    unsigned int vf, unsigned int eqid)
8035 {
8036 	struct fw_eq_ctrl_cmd c;
8037 
8038 	memset(&c, 0, sizeof(c));
8039 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8040 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8041 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8042 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8043 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8044 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8045 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8046 }
8047 
8048 /**
8049  *	t4_ofld_eq_free - free an offload egress queue
8050  *	@adap: the adapter
8051  *	@mbox: mailbox to use for the FW command
8052  *	@pf: the PF owning the queue
8053  *	@vf: the VF owning the queue
8054  *	@eqid: egress queue id
8055  *
8056  *	Frees a control egress queue.
8057  */
8058 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8059 		    unsigned int vf, unsigned int eqid)
8060 {
8061 	struct fw_eq_ofld_cmd c;
8062 
8063 	memset(&c, 0, sizeof(c));
8064 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8065 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8066 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8067 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8068 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8069 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8070 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8071 }
8072 
8073 /**
8074  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8075  *	@adap: the adapter
8076  *	@link_down_rc: Link Down Reason Code
8077  *
8078  *	Returns a string representation of the Link Down Reason Code.
8079  */
8080 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8081 {
8082 	static const char * const reason[] = {
8083 		"Link Down",
8084 		"Remote Fault",
8085 		"Auto-negotiation Failure",
8086 		"Reserved",
8087 		"Insufficient Airflow",
8088 		"Unable To Determine Reason",
8089 		"No RX Signal Detected",
8090 		"Reserved",
8091 	};
8092 
8093 	if (link_down_rc >= ARRAY_SIZE(reason))
8094 		return "Bad Reason Code";
8095 
8096 	return reason[link_down_rc];
8097 }
8098 
8099 /**
8100  * Return the highest speed set in the port capabilities, in Mb/s.
8101  */
8102 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8103 {
8104 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8105 		do { \
8106 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8107 				return __speed; \
8108 		} while (0)
8109 
8110 	TEST_SPEED_RETURN(400G, 400000);
8111 	TEST_SPEED_RETURN(200G, 200000);
8112 	TEST_SPEED_RETURN(100G, 100000);
8113 	TEST_SPEED_RETURN(50G,   50000);
8114 	TEST_SPEED_RETURN(40G,   40000);
8115 	TEST_SPEED_RETURN(25G,   25000);
8116 	TEST_SPEED_RETURN(10G,   10000);
8117 	TEST_SPEED_RETURN(1G,     1000);
8118 	TEST_SPEED_RETURN(100M,    100);
8119 
8120 	#undef TEST_SPEED_RETURN
8121 
8122 	return 0;
8123 }
8124 
8125 /**
8126  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8127  *	@acaps: advertised Port Capabilities
8128  *
8129  *	Get the highest speed for the port from the advertised Port
8130  *	Capabilities.  It will be either the highest speed from the list of
8131  *	speeds or whatever user has set using ethtool.
8132  */
8133 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8134 {
8135 	#define TEST_SPEED_RETURN(__caps_speed) \
8136 		do { \
8137 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8138 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8139 		} while (0)
8140 
8141 	TEST_SPEED_RETURN(400G);
8142 	TEST_SPEED_RETURN(200G);
8143 	TEST_SPEED_RETURN(100G);
8144 	TEST_SPEED_RETURN(50G);
8145 	TEST_SPEED_RETURN(40G);
8146 	TEST_SPEED_RETURN(25G);
8147 	TEST_SPEED_RETURN(10G);
8148 	TEST_SPEED_RETURN(1G);
8149 	TEST_SPEED_RETURN(100M);
8150 
8151 	#undef TEST_SPEED_RETURN
8152 
8153 	return 0;
8154 }
8155 
8156 /**
8157  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8158  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8159  *
8160  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8161  *	32-bit Port Capabilities value.
8162  */
8163 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8164 {
8165 	fw_port_cap32_t linkattr = 0;
8166 
8167 	/* Unfortunately the format of the Link Status in the old
8168 	 * 16-bit Port Information message isn't the same as the
8169 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8170 	 */
8171 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8172 		linkattr |= FW_PORT_CAP32_FC_RX;
8173 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8174 		linkattr |= FW_PORT_CAP32_FC_TX;
8175 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8176 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8177 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8178 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8179 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8180 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8181 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8182 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8183 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8184 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8185 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8186 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8187 
8188 	return linkattr;
8189 }
8190 
8191 /**
8192  *	t4_handle_get_port_info - process a FW reply message
8193  *	@pi: the port info
8194  *	@rpl: start of the FW message
8195  *
8196  *	Processes a GET_PORT_INFO FW reply message.
8197  */
8198 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8199 {
8200 	const struct fw_port_cmd *cmd = (const void *)rpl;
8201 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8202 	struct adapter *adapter = pi->adapter;
8203 	struct link_config *lc = &pi->link_cfg;
8204 	int link_ok, linkdnrc;
8205 	enum fw_port_type port_type;
8206 	enum fw_port_module_type mod_type;
8207 	unsigned int speed, fc, fec;
8208 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8209 
8210 	/* Extract the various fields from the Port Information message.
8211 	 */
8212 	switch (action) {
8213 	case FW_PORT_ACTION_GET_PORT_INFO: {
8214 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8215 
8216 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8217 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8218 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8219 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8220 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8221 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8222 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8223 		linkattr = lstatus_to_fwcap(lstatus);
8224 		break;
8225 	}
8226 
8227 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8228 		u32 lstatus32;
8229 
8230 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8231 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8232 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8233 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8234 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8235 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8236 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8237 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8238 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8239 		break;
8240 	}
8241 
8242 	default:
8243 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8244 			be32_to_cpu(cmd->action_to_len16));
8245 		return;
8246 	}
8247 
8248 	fec = fwcap_to_cc_fec(acaps);
8249 	fc = fwcap_to_cc_pause(linkattr);
8250 	speed = fwcap_to_speed(linkattr);
8251 
8252 	if (mod_type != pi->mod_type) {
8253 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8254 		 * various fundamental Port Capabilities which used to be
8255 		 * immutable can now change radically.  We can now have
8256 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8257 		 * all change based on what Transceiver Module is inserted.
8258 		 * So we need to record the Physical "Port" Capabilities on
8259 		 * every Transceiver Module change.
8260 		 */
8261 		lc->pcaps = pcaps;
8262 
8263 		/* When a new Transceiver Module is inserted, the Firmware
8264 		 * will examine its i2c EPROM to determine its type and
8265 		 * general operating parameters including things like Forward
8266 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8267 		 * how to interpret these i2c values to determine default
8268 		 * "sutomatic" settings.  We record these for future use when
8269 		 * the user explicitly requests these standards-based values.
8270 		 */
8271 		lc->def_acaps = acaps;
8272 
8273 		/* Some versions of the early T6 Firmware "cheated" when
8274 		 * handling different Transceiver Modules by changing the
8275 		 * underlaying Port Type reported to the Host Drivers.  As
8276 		 * such we need to capture whatever Port Type the Firmware
8277 		 * sends us and record it in case it's different from what we
8278 		 * were told earlier.  Unfortunately, since Firmware is
8279 		 * forever, we'll need to keep this code here forever, but in
8280 		 * later T6 Firmware it should just be an assignment of the
8281 		 * same value already recorded.
8282 		 */
8283 		pi->port_type = port_type;
8284 
8285 		pi->mod_type = mod_type;
8286 		t4_os_portmod_changed(adapter, pi->port_id);
8287 	}
8288 
8289 	if (link_ok != lc->link_ok || speed != lc->speed ||
8290 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8291 		if (!link_ok && lc->link_ok) {
8292 			lc->link_down_rc = linkdnrc;
8293 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8294 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8295 		}
8296 		lc->link_ok = link_ok;
8297 		lc->speed = speed;
8298 		lc->fc = fc;
8299 		lc->fec = fec;
8300 
8301 		lc->lpacaps = lpacaps;
8302 		lc->acaps = acaps & ADVERT_MASK;
8303 
8304 		if (lc->acaps & FW_PORT_CAP32_ANEG) {
8305 			lc->autoneg = AUTONEG_ENABLE;
8306 		} else {
8307 			/* When Autoneg is disabled, user needs to set
8308 			 * single speed.
8309 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8310 			 */
8311 			lc->acaps = 0;
8312 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8313 			lc->autoneg = AUTONEG_DISABLE;
8314 		}
8315 
8316 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8317 	}
8318 }
8319 
8320 /**
8321  *	t4_update_port_info - retrieve and update port information if changed
8322  *	@pi: the port_info
8323  *
8324  *	We issue a Get Port Information Command to the Firmware and, if
8325  *	successful, we check to see if anything is different from what we
8326  *	last recorded and update things accordingly.
8327  */
8328 int t4_update_port_info(struct port_info *pi)
8329 {
8330 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8331 	struct fw_port_cmd port_cmd;
8332 	int ret;
8333 
8334 	memset(&port_cmd, 0, sizeof(port_cmd));
8335 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8336 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8337 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8338 	port_cmd.action_to_len16 = cpu_to_be32(
8339 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8340 				     ? FW_PORT_ACTION_GET_PORT_INFO
8341 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8342 		FW_LEN16(port_cmd));
8343 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8344 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8345 	if (ret)
8346 		return ret;
8347 
8348 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8349 	return 0;
8350 }
8351 
8352 /**
8353  *	t4_get_link_params - retrieve basic link parameters for given port
8354  *	@pi: the port
8355  *	@link_okp: value return pointer for link up/down
8356  *	@speedp: value return pointer for speed (Mb/s)
8357  *	@mtup: value return pointer for mtu
8358  *
8359  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8360  *	and MTU for a specified port.  A negative error is returned on
8361  *	failure; 0 on success.
8362  */
8363 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8364 		       unsigned int *speedp, unsigned int *mtup)
8365 {
8366 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8367 	struct fw_port_cmd port_cmd;
8368 	unsigned int action, link_ok, speed, mtu;
8369 	fw_port_cap32_t linkattr;
8370 	int ret;
8371 
8372 	memset(&port_cmd, 0, sizeof(port_cmd));
8373 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8374 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8375 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8376 	action = (fw_caps == FW_CAPS16
8377 		  ? FW_PORT_ACTION_GET_PORT_INFO
8378 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8379 	port_cmd.action_to_len16 = cpu_to_be32(
8380 		FW_PORT_CMD_ACTION_V(action) |
8381 		FW_LEN16(port_cmd));
8382 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8383 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8384 	if (ret)
8385 		return ret;
8386 
8387 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8388 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8389 
8390 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8391 		linkattr = lstatus_to_fwcap(lstatus);
8392 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8393 	} else {
8394 		u32 lstatus32 =
8395 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8396 
8397 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8398 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8399 		mtu = FW_PORT_CMD_MTU32_G(
8400 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8401 	}
8402 	speed = fwcap_to_speed(linkattr);
8403 
8404 	*link_okp = link_ok;
8405 	*speedp = fwcap_to_speed(linkattr);
8406 	*mtup = mtu;
8407 
8408 	return 0;
8409 }
8410 
8411 /**
8412  *      t4_handle_fw_rpl - process a FW reply message
8413  *      @adap: the adapter
8414  *      @rpl: start of the FW message
8415  *
8416  *      Processes a FW message, such as link state change messages.
8417  */
8418 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8419 {
8420 	u8 opcode = *(const u8 *)rpl;
8421 
8422 	/* This might be a port command ... this simplifies the following
8423 	 * conditionals ...  We can get away with pre-dereferencing
8424 	 * action_to_len16 because it's in the first 16 bytes and all messages
8425 	 * will be at least that long.
8426 	 */
8427 	const struct fw_port_cmd *p = (const void *)rpl;
8428 	unsigned int action =
8429 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8430 
8431 	if (opcode == FW_PORT_CMD &&
8432 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8433 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8434 		int i;
8435 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8436 		struct port_info *pi = NULL;
8437 
8438 		for_each_port(adap, i) {
8439 			pi = adap2pinfo(adap, i);
8440 			if (pi->tx_chan == chan)
8441 				break;
8442 		}
8443 
8444 		t4_handle_get_port_info(pi, rpl);
8445 	} else {
8446 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8447 			 opcode);
8448 		return -EINVAL;
8449 	}
8450 	return 0;
8451 }
8452 
8453 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8454 {
8455 	u16 val;
8456 
8457 	if (pci_is_pcie(adapter->pdev)) {
8458 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8459 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8460 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8461 	}
8462 }
8463 
8464 /**
8465  *	init_link_config - initialize a link's SW state
8466  *	@lc: pointer to structure holding the link state
8467  *	@pcaps: link Port Capabilities
8468  *	@acaps: link current Advertised Port Capabilities
8469  *
8470  *	Initializes the SW state maintained for each link, including the link's
8471  *	capabilities and default speed/flow-control/autonegotiation settings.
8472  */
8473 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8474 			     fw_port_cap32_t acaps)
8475 {
8476 	lc->pcaps = pcaps;
8477 	lc->def_acaps = acaps;
8478 	lc->lpacaps = 0;
8479 	lc->speed_caps = 0;
8480 	lc->speed = 0;
8481 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8482 
8483 	/* For Forward Error Control, we default to whatever the Firmware
8484 	 * tells us the Link is currently advertising.
8485 	 */
8486 	lc->requested_fec = FEC_AUTO;
8487 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8488 
8489 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8490 		lc->acaps = lc->pcaps & ADVERT_MASK;
8491 		lc->autoneg = AUTONEG_ENABLE;
8492 		lc->requested_fc |= PAUSE_AUTONEG;
8493 	} else {
8494 		lc->acaps = 0;
8495 		lc->autoneg = AUTONEG_DISABLE;
8496 	}
8497 }
8498 
8499 #define CIM_PF_NOACCESS 0xeeeeeeee
8500 
8501 int t4_wait_dev_ready(void __iomem *regs)
8502 {
8503 	u32 whoami;
8504 
8505 	whoami = readl(regs + PL_WHOAMI_A);
8506 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8507 		return 0;
8508 
8509 	msleep(500);
8510 	whoami = readl(regs + PL_WHOAMI_A);
8511 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8512 }
8513 
8514 struct flash_desc {
8515 	u32 vendor_and_model_id;
8516 	u32 size_mb;
8517 };
8518 
8519 static int t4_get_flash_params(struct adapter *adap)
8520 {
8521 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8522 	 * to the preexisting code.  All flash parts have 64KB sectors.
8523 	 */
8524 	static struct flash_desc supported_flash[] = {
8525 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8526 	};
8527 
8528 	unsigned int part, manufacturer;
8529 	unsigned int density, size;
8530 	u32 flashid = 0;
8531 	int ret;
8532 
8533 	/* Issue a Read ID Command to the Flash part.  We decode supported
8534 	 * Flash parts and their sizes from this.  There's a newer Query
8535 	 * Command which can retrieve detailed geometry information but many
8536 	 * Flash parts don't support it.
8537 	 */
8538 
8539 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8540 	if (!ret)
8541 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8542 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8543 	if (ret)
8544 		return ret;
8545 
8546 	/* Check to see if it's one of our non-standard supported Flash parts.
8547 	 */
8548 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8549 		if (supported_flash[part].vendor_and_model_id == flashid) {
8550 			adap->params.sf_size = supported_flash[part].size_mb;
8551 			adap->params.sf_nsec =
8552 				adap->params.sf_size / SF_SEC_SIZE;
8553 			goto found;
8554 		}
8555 
8556 	/* Decode Flash part size.  The code below looks repetative with
8557 	 * common encodings, but that's not guaranteed in the JEDEC
8558 	 * specification for the Read JADEC ID command.  The only thing that
8559 	 * we're guaranteed by the JADEC specification is where the
8560 	 * Manufacturer ID is in the returned result.  After that each
8561 	 * Manufacturer ~could~ encode things completely differently.
8562 	 * Note, all Flash parts must have 64KB sectors.
8563 	 */
8564 	manufacturer = flashid & 0xff;
8565 	switch (manufacturer) {
8566 	case 0x20: { /* Micron/Numonix */
8567 		/* This Density -> Size decoding table is taken from Micron
8568 		 * Data Sheets.
8569 		 */
8570 		density = (flashid >> 16) & 0xff;
8571 		switch (density) {
8572 		case 0x14: /* 1MB */
8573 			size = 1 << 20;
8574 			break;
8575 		case 0x15: /* 2MB */
8576 			size = 1 << 21;
8577 			break;
8578 		case 0x16: /* 4MB */
8579 			size = 1 << 22;
8580 			break;
8581 		case 0x17: /* 8MB */
8582 			size = 1 << 23;
8583 			break;
8584 		case 0x18: /* 16MB */
8585 			size = 1 << 24;
8586 			break;
8587 		case 0x19: /* 32MB */
8588 			size = 1 << 25;
8589 			break;
8590 		case 0x20: /* 64MB */
8591 			size = 1 << 26;
8592 			break;
8593 		case 0x21: /* 128MB */
8594 			size = 1 << 27;
8595 			break;
8596 		case 0x22: /* 256MB */
8597 			size = 1 << 28;
8598 			break;
8599 
8600 		default:
8601 			dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n",
8602 				flashid, density);
8603 			return -EINVAL;
8604 		}
8605 		break;
8606 	}
8607 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
8608 		/* This Density -> Size decoding table is taken from ISSI
8609 		 * Data Sheets.
8610 		 */
8611 		density = (flashid >> 16) & 0xff;
8612 		switch (density) {
8613 		case 0x16: /* 32 MB */
8614 			size = 1 << 25;
8615 			break;
8616 		case 0x17: /* 64MB */
8617 			size = 1 << 26;
8618 			break;
8619 		default:
8620 			dev_err(adap->pdev_dev, "ISSI Flash Part has bad size, ID = %#x, Density code = %#x\n",
8621 				flashid, density);
8622 			return -EINVAL;
8623 		}
8624 		break;
8625 	}
8626 	case 0xc2: { /* Macronix */
8627 		/* This Density -> Size decoding table is taken from Macronix
8628 		 * Data Sheets.
8629 		 */
8630 		density = (flashid >> 16) & 0xff;
8631 		switch (density) {
8632 		case 0x17: /* 8MB */
8633 			size = 1 << 23;
8634 			break;
8635 		case 0x18: /* 16MB */
8636 			size = 1 << 24;
8637 			break;
8638 		default:
8639 			dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n",
8640 				flashid, density);
8641 			return -EINVAL;
8642 		}
8643 		break;
8644 	}
8645 	case 0xef: { /* Winbond */
8646 		/* This Density -> Size decoding table is taken from Winbond
8647 		 * Data Sheets.
8648 		 */
8649 		density = (flashid >> 16) & 0xff;
8650 		switch (density) {
8651 		case 0x17: /* 8MB */
8652 			size = 1 << 23;
8653 			break;
8654 		case 0x18: /* 16MB */
8655 			size = 1 << 24;
8656 			break;
8657 		default:
8658 			dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n",
8659 				flashid, density);
8660 			return -EINVAL;
8661 		}
8662 		break;
8663 	}
8664 	default:
8665 		dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n",
8666 			flashid);
8667 		return -EINVAL;
8668 	}
8669 
8670 	/* Store decoded Flash size and fall through into vetting code. */
8671 	adap->params.sf_size = size;
8672 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8673 
8674 found:
8675 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8676 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8677 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8678 	return 0;
8679 }
8680 
8681 /**
8682  *	t4_prep_adapter - prepare SW and HW for operation
8683  *	@adapter: the adapter
8684  *	@reset: if true perform a HW reset
8685  *
8686  *	Initialize adapter SW state for the various HW modules, set initial
8687  *	values for some adapter tunables, take PHYs out of reset, and
8688  *	initialize the MDIO interface.
8689  */
8690 int t4_prep_adapter(struct adapter *adapter)
8691 {
8692 	int ret, ver;
8693 	uint16_t device_id;
8694 	u32 pl_rev;
8695 
8696 	get_pci_mode(adapter, &adapter->params.pci);
8697 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8698 
8699 	ret = t4_get_flash_params(adapter);
8700 	if (ret < 0) {
8701 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8702 		return ret;
8703 	}
8704 
8705 	/* Retrieve adapter's device ID
8706 	 */
8707 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8708 	ver = device_id >> 12;
8709 	adapter->params.chip = 0;
8710 	switch (ver) {
8711 	case CHELSIO_T4:
8712 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8713 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8714 		adapter->params.arch.mps_tcam_size =
8715 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8716 		adapter->params.arch.mps_rplc_size = 128;
8717 		adapter->params.arch.nchan = NCHAN;
8718 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8719 		adapter->params.arch.vfcount = 128;
8720 		/* Congestion map is for 4 channels so that
8721 		 * MPS can have 4 priority per port.
8722 		 */
8723 		adapter->params.arch.cng_ch_bits_log = 2;
8724 		break;
8725 	case CHELSIO_T5:
8726 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8727 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8728 		adapter->params.arch.mps_tcam_size =
8729 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8730 		adapter->params.arch.mps_rplc_size = 128;
8731 		adapter->params.arch.nchan = NCHAN;
8732 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8733 		adapter->params.arch.vfcount = 128;
8734 		adapter->params.arch.cng_ch_bits_log = 2;
8735 		break;
8736 	case CHELSIO_T6:
8737 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8738 		adapter->params.arch.sge_fl_db = 0;
8739 		adapter->params.arch.mps_tcam_size =
8740 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8741 		adapter->params.arch.mps_rplc_size = 256;
8742 		adapter->params.arch.nchan = 2;
8743 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8744 		adapter->params.arch.vfcount = 256;
8745 		/* Congestion map will be for 2 channels so that
8746 		 * MPS can have 8 priority per port.
8747 		 */
8748 		adapter->params.arch.cng_ch_bits_log = 3;
8749 		break;
8750 	default:
8751 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8752 			device_id);
8753 		return -EINVAL;
8754 	}
8755 
8756 	adapter->params.cim_la_size = CIMLA_SIZE;
8757 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8758 
8759 	/*
8760 	 * Default port for debugging in case we can't reach FW.
8761 	 */
8762 	adapter->params.nports = 1;
8763 	adapter->params.portvec = 1;
8764 	adapter->params.vpd.cclk = 50000;
8765 
8766 	/* Set PCIe completion timeout to 4 seconds. */
8767 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
8768 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
8769 	return 0;
8770 }
8771 
8772 /**
8773  *	t4_shutdown_adapter - shut down adapter, host & wire
8774  *	@adapter: the adapter
8775  *
8776  *	Perform an emergency shutdown of the adapter and stop it from
8777  *	continuing any further communication on the ports or DMA to the
8778  *	host.  This is typically used when the adapter and/or firmware
8779  *	have crashed and we want to prevent any further accidental
8780  *	communication with the rest of the world.  This will also force
8781  *	the port Link Status to go down -- if register writes work --
8782  *	which should help our peers figure out that we're down.
8783  */
8784 int t4_shutdown_adapter(struct adapter *adapter)
8785 {
8786 	int port;
8787 
8788 	t4_intr_disable(adapter);
8789 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8790 	for_each_port(adapter, port) {
8791 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
8792 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
8793 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
8794 
8795 		t4_write_reg(adapter, a_port_cfg,
8796 			     t4_read_reg(adapter, a_port_cfg)
8797 			     & ~SIGNAL_DET_V(1));
8798 	}
8799 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8800 
8801 	return 0;
8802 }
8803 
8804 /**
8805  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8806  *	@adapter: the adapter
8807  *	@qid: the Queue ID
8808  *	@qtype: the Ingress or Egress type for @qid
8809  *	@user: true if this request is for a user mode queue
8810  *	@pbar2_qoffset: BAR2 Queue Offset
8811  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8812  *
8813  *	Returns the BAR2 SGE Queue Registers information associated with the
8814  *	indicated Absolute Queue ID.  These are passed back in return value
8815  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8816  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8817  *
8818  *	This may return an error which indicates that BAR2 SGE Queue
8819  *	registers aren't available.  If an error is not returned, then the
8820  *	following values are returned:
8821  *
8822  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8823  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8824  *
8825  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8826  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8827  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8828  *	then these "Inferred Queue ID" register may not be used.
8829  */
8830 int t4_bar2_sge_qregs(struct adapter *adapter,
8831 		      unsigned int qid,
8832 		      enum t4_bar2_qtype qtype,
8833 		      int user,
8834 		      u64 *pbar2_qoffset,
8835 		      unsigned int *pbar2_qid)
8836 {
8837 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8838 	u64 bar2_page_offset, bar2_qoffset;
8839 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8840 
8841 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
8842 	if (!user && is_t4(adapter->params.chip))
8843 		return -EINVAL;
8844 
8845 	/* Get our SGE Page Size parameters.
8846 	 */
8847 	page_shift = adapter->params.sge.hps + 10;
8848 	page_size = 1 << page_shift;
8849 
8850 	/* Get the right Queues per Page parameters for our Queue.
8851 	 */
8852 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8853 		     ? adapter->params.sge.eq_qpp
8854 		     : adapter->params.sge.iq_qpp);
8855 	qpp_mask = (1 << qpp_shift) - 1;
8856 
8857 	/*  Calculate the basics of the BAR2 SGE Queue register area:
8858 	 *  o The BAR2 page the Queue registers will be in.
8859 	 *  o The BAR2 Queue ID.
8860 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8861 	 */
8862 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8863 	bar2_qid = qid & qpp_mask;
8864 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8865 
8866 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8867 	 * hardware will infer the Absolute Queue ID simply from the writes to
8868 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8869 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8870 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8871 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8872 	 * from the BAR2 Page and BAR2 Queue ID.
8873 	 *
8874 	 * One important censequence of this is that some BAR2 SGE registers
8875 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8876 	 * there.  But other registers synthesize the SGE Queue ID purely
8877 	 * from the writes to the registers -- the Write Combined Doorbell
8878 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8879 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8880 	 * Queue ID can be inferred from simple writes.
8881 	 */
8882 	bar2_qoffset = bar2_page_offset;
8883 	bar2_qinferred = (bar2_qid_offset < page_size);
8884 	if (bar2_qinferred) {
8885 		bar2_qoffset += bar2_qid_offset;
8886 		bar2_qid = 0;
8887 	}
8888 
8889 	*pbar2_qoffset = bar2_qoffset;
8890 	*pbar2_qid = bar2_qid;
8891 	return 0;
8892 }
8893 
8894 /**
8895  *	t4_init_devlog_params - initialize adapter->params.devlog
8896  *	@adap: the adapter
8897  *
8898  *	Initialize various fields of the adapter's Firmware Device Log
8899  *	Parameters structure.
8900  */
8901 int t4_init_devlog_params(struct adapter *adap)
8902 {
8903 	struct devlog_params *dparams = &adap->params.devlog;
8904 	u32 pf_dparams;
8905 	unsigned int devlog_meminfo;
8906 	struct fw_devlog_cmd devlog_cmd;
8907 	int ret;
8908 
8909 	/* If we're dealing with newer firmware, the Device Log Paramerters
8910 	 * are stored in a designated register which allows us to access the
8911 	 * Device Log even if we can't talk to the firmware.
8912 	 */
8913 	pf_dparams =
8914 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
8915 	if (pf_dparams) {
8916 		unsigned int nentries, nentries128;
8917 
8918 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
8919 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
8920 
8921 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
8922 		nentries = (nentries128 + 1) * 128;
8923 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8924 
8925 		return 0;
8926 	}
8927 
8928 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8929 	 */
8930 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
8931 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
8932 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
8933 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8934 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8935 			 &devlog_cmd);
8936 	if (ret)
8937 		return ret;
8938 
8939 	devlog_meminfo =
8940 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8941 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
8942 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
8943 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8944 
8945 	return 0;
8946 }
8947 
8948 /**
8949  *	t4_init_sge_params - initialize adap->params.sge
8950  *	@adapter: the adapter
8951  *
8952  *	Initialize various fields of the adapter's SGE Parameters structure.
8953  */
8954 int t4_init_sge_params(struct adapter *adapter)
8955 {
8956 	struct sge_params *sge_params = &adapter->params.sge;
8957 	u32 hps, qpp;
8958 	unsigned int s_hps, s_qpp;
8959 
8960 	/* Extract the SGE Page Size for our PF.
8961 	 */
8962 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
8963 	s_hps = (HOSTPAGESIZEPF0_S +
8964 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
8965 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8966 
8967 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8968 	 */
8969 	s_qpp = (QUEUESPERPAGEPF0_S +
8970 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
8971 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8972 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8973 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
8974 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8975 
8976 	return 0;
8977 }
8978 
8979 /**
8980  *      t4_init_tp_params - initialize adap->params.tp
8981  *      @adap: the adapter
8982  *      @sleep_ok: if true we may sleep while awaiting command completion
8983  *
8984  *      Initialize various fields of the adapter's TP Parameters structure.
8985  */
8986 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8987 {
8988 	int chan;
8989 	u32 v;
8990 
8991 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8992 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
8993 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
8994 
8995 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8996 	for (chan = 0; chan < NCHAN; chan++)
8997 		adap->params.tp.tx_modq[chan] = chan;
8998 
8999 	/* Cache the adapter's Compressed Filter Mode and global Incress
9000 	 * Configuration.
9001 	 */
9002 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9003 		       TP_VLAN_PRI_MAP_A, sleep_ok);
9004 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9005 		       TP_INGRESS_CONFIG_A, sleep_ok);
9006 
9007 	/* For T6, cache the adapter's compressed error vector
9008 	 * and passing outer header info for encapsulated packets.
9009 	 */
9010 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9011 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9012 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9013 	}
9014 
9015 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9016 	 * shift positions of several elements of the Compressed Filter Tuple
9017 	 * for this adapter which we need frequently ...
9018 	 */
9019 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9020 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9021 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9022 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9023 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9024 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9025 							       PROTOCOL_F);
9026 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9027 								ETHERTYPE_F);
9028 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9029 							       MACMATCH_F);
9030 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9031 								MPSHITTYPE_F);
9032 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9033 							   FRAGMENTATION_F);
9034 
9035 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9036 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9037 	 */
9038 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9039 		adap->params.tp.vnic_shift = -1;
9040 
9041 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9042 	adap->params.tp.hash_filter_mask = v;
9043 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9044 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9045 	return 0;
9046 }
9047 
9048 /**
9049  *      t4_filter_field_shift - calculate filter field shift
9050  *      @adap: the adapter
9051  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9052  *
9053  *      Return the shift position of a filter field within the Compressed
9054  *      Filter Tuple.  The filter field is specified via its selection bit
9055  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9056  */
9057 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9058 {
9059 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9060 	unsigned int sel;
9061 	int field_shift;
9062 
9063 	if ((filter_mode & filter_sel) == 0)
9064 		return -1;
9065 
9066 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9067 		switch (filter_mode & sel) {
9068 		case FCOE_F:
9069 			field_shift += FT_FCOE_W;
9070 			break;
9071 		case PORT_F:
9072 			field_shift += FT_PORT_W;
9073 			break;
9074 		case VNIC_ID_F:
9075 			field_shift += FT_VNIC_ID_W;
9076 			break;
9077 		case VLAN_F:
9078 			field_shift += FT_VLAN_W;
9079 			break;
9080 		case TOS_F:
9081 			field_shift += FT_TOS_W;
9082 			break;
9083 		case PROTOCOL_F:
9084 			field_shift += FT_PROTOCOL_W;
9085 			break;
9086 		case ETHERTYPE_F:
9087 			field_shift += FT_ETHERTYPE_W;
9088 			break;
9089 		case MACMATCH_F:
9090 			field_shift += FT_MACMATCH_W;
9091 			break;
9092 		case MPSHITTYPE_F:
9093 			field_shift += FT_MPSHITTYPE_W;
9094 			break;
9095 		case FRAGMENTATION_F:
9096 			field_shift += FT_FRAGMENTATION_W;
9097 			break;
9098 		}
9099 	}
9100 	return field_shift;
9101 }
9102 
9103 int t4_init_rss_mode(struct adapter *adap, int mbox)
9104 {
9105 	int i, ret;
9106 	struct fw_rss_vi_config_cmd rvc;
9107 
9108 	memset(&rvc, 0, sizeof(rvc));
9109 
9110 	for_each_port(adap, i) {
9111 		struct port_info *p = adap2pinfo(adap, i);
9112 
9113 		rvc.op_to_viid =
9114 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9115 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9116 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9117 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9118 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9119 		if (ret)
9120 			return ret;
9121 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9122 	}
9123 	return 0;
9124 }
9125 
9126 /**
9127  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9128  *	@pi: the port_info
9129  *	@mbox: mailbox to use for the FW command
9130  *	@port: physical port associated with the VI
9131  *	@pf: the PF owning the VI
9132  *	@vf: the VF owning the VI
9133  *	@mac: the MAC address of the VI
9134  *
9135  *	Allocates a virtual interface for the given physical port.  If @mac is
9136  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9137  *	@mac should be large enough to hold an Ethernet address.
9138  *	Returns < 0 on error.
9139  */
9140 int t4_init_portinfo(struct port_info *pi, int mbox,
9141 		     int port, int pf, int vf, u8 mac[])
9142 {
9143 	struct adapter *adapter = pi->adapter;
9144 	unsigned int fw_caps = adapter->params.fw_caps_support;
9145 	struct fw_port_cmd cmd;
9146 	unsigned int rss_size;
9147 	enum fw_port_type port_type;
9148 	int mdio_addr;
9149 	fw_port_cap32_t pcaps, acaps;
9150 	int ret;
9151 
9152 	/* If we haven't yet determined whether we're talking to Firmware
9153 	 * which knows the new 32-bit Port Capabilities, it's time to find
9154 	 * out now.  This will also tell new Firmware to send us Port Status
9155 	 * Updates using the new 32-bit Port Capabilities version of the
9156 	 * Port Information message.
9157 	 */
9158 	if (fw_caps == FW_CAPS_UNKNOWN) {
9159 		u32 param, val;
9160 
9161 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9162 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9163 		val = 1;
9164 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9165 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9166 		adapter->params.fw_caps_support = fw_caps;
9167 	}
9168 
9169 	memset(&cmd, 0, sizeof(cmd));
9170 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9171 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9172 				       FW_PORT_CMD_PORTID_V(port));
9173 	cmd.action_to_len16 = cpu_to_be32(
9174 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9175 				     ? FW_PORT_ACTION_GET_PORT_INFO
9176 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9177 		FW_LEN16(cmd));
9178 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9179 	if (ret)
9180 		return ret;
9181 
9182 	/* Extract the various fields from the Port Information message.
9183 	 */
9184 	if (fw_caps == FW_CAPS16) {
9185 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9186 
9187 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9188 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9189 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9190 			     : -1);
9191 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9192 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9193 	} else {
9194 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9195 
9196 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9197 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9198 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9199 			     : -1);
9200 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9201 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9202 	}
9203 
9204 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9205 	if (ret < 0)
9206 		return ret;
9207 
9208 	pi->viid = ret;
9209 	pi->tx_chan = port;
9210 	pi->lport = port;
9211 	pi->rss_size = rss_size;
9212 
9213 	pi->port_type = port_type;
9214 	pi->mdio_addr = mdio_addr;
9215 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9216 
9217 	init_link_config(&pi->link_cfg, pcaps, acaps);
9218 	return 0;
9219 }
9220 
9221 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9222 {
9223 	u8 addr[6];
9224 	int ret, i, j = 0;
9225 
9226 	for_each_port(adap, i) {
9227 		struct port_info *pi = adap2pinfo(adap, i);
9228 
9229 		while ((adap->params.portvec & (1 << j)) == 0)
9230 			j++;
9231 
9232 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9233 		if (ret)
9234 			return ret;
9235 
9236 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9237 		j++;
9238 	}
9239 	return 0;
9240 }
9241 
9242 /**
9243  *	t4_read_cimq_cfg - read CIM queue configuration
9244  *	@adap: the adapter
9245  *	@base: holds the queue base addresses in bytes
9246  *	@size: holds the queue sizes in bytes
9247  *	@thres: holds the queue full thresholds in bytes
9248  *
9249  *	Returns the current configuration of the CIM queues, starting with
9250  *	the IBQs, then the OBQs.
9251  */
9252 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9253 {
9254 	unsigned int i, v;
9255 	int cim_num_obq = is_t4(adap->params.chip) ?
9256 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9257 
9258 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9259 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9260 			     QUENUMSELECT_V(i));
9261 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9262 		/* value is in 256-byte units */
9263 		*base++ = CIMQBASE_G(v) * 256;
9264 		*size++ = CIMQSIZE_G(v) * 256;
9265 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9266 	}
9267 	for (i = 0; i < cim_num_obq; i++) {
9268 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9269 			     QUENUMSELECT_V(i));
9270 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9271 		/* value is in 256-byte units */
9272 		*base++ = CIMQBASE_G(v) * 256;
9273 		*size++ = CIMQSIZE_G(v) * 256;
9274 	}
9275 }
9276 
9277 /**
9278  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9279  *	@adap: the adapter
9280  *	@qid: the queue index
9281  *	@data: where to store the queue contents
9282  *	@n: capacity of @data in 32-bit words
9283  *
9284  *	Reads the contents of the selected CIM queue starting at address 0 up
9285  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9286  *	error and the number of 32-bit words actually read on success.
9287  */
9288 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9289 {
9290 	int i, err, attempts;
9291 	unsigned int addr;
9292 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9293 
9294 	if (qid > 5 || (n & 3))
9295 		return -EINVAL;
9296 
9297 	addr = qid * nwords;
9298 	if (n > nwords)
9299 		n = nwords;
9300 
9301 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9302 	 * Wait for 1 Sec with a delay of 1 usec.
9303 	 */
9304 	attempts = 1000000;
9305 
9306 	for (i = 0; i < n; i++, addr++) {
9307 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9308 			     IBQDBGEN_F);
9309 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9310 				      attempts, 1);
9311 		if (err)
9312 			return err;
9313 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9314 	}
9315 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9316 	return i;
9317 }
9318 
9319 /**
9320  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9321  *	@adap: the adapter
9322  *	@qid: the queue index
9323  *	@data: where to store the queue contents
9324  *	@n: capacity of @data in 32-bit words
9325  *
9326  *	Reads the contents of the selected CIM queue starting at address 0 up
9327  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9328  *	error and the number of 32-bit words actually read on success.
9329  */
9330 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9331 {
9332 	int i, err;
9333 	unsigned int addr, v, nwords;
9334 	int cim_num_obq = is_t4(adap->params.chip) ?
9335 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9336 
9337 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9338 		return -EINVAL;
9339 
9340 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9341 		     QUENUMSELECT_V(qid));
9342 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9343 
9344 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9345 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9346 	if (n > nwords)
9347 		n = nwords;
9348 
9349 	for (i = 0; i < n; i++, addr++) {
9350 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9351 			     OBQDBGEN_F);
9352 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9353 				      2, 1);
9354 		if (err)
9355 			return err;
9356 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9357 	}
9358 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9359 	return i;
9360 }
9361 
9362 /**
9363  *	t4_cim_read - read a block from CIM internal address space
9364  *	@adap: the adapter
9365  *	@addr: the start address within the CIM address space
9366  *	@n: number of words to read
9367  *	@valp: where to store the result
9368  *
9369  *	Reads a block of 4-byte words from the CIM intenal address space.
9370  */
9371 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9372 		unsigned int *valp)
9373 {
9374 	int ret = 0;
9375 
9376 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9377 		return -EBUSY;
9378 
9379 	for ( ; !ret && n--; addr += 4) {
9380 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9381 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9382 				      0, 5, 2);
9383 		if (!ret)
9384 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9385 	}
9386 	return ret;
9387 }
9388 
9389 /**
9390  *	t4_cim_write - write a block into CIM internal address space
9391  *	@adap: the adapter
9392  *	@addr: the start address within the CIM address space
9393  *	@n: number of words to write
9394  *	@valp: set of values to write
9395  *
9396  *	Writes a block of 4-byte words into the CIM intenal address space.
9397  */
9398 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9399 		 const unsigned int *valp)
9400 {
9401 	int ret = 0;
9402 
9403 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9404 		return -EBUSY;
9405 
9406 	for ( ; !ret && n--; addr += 4) {
9407 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9408 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9409 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9410 				      0, 5, 2);
9411 	}
9412 	return ret;
9413 }
9414 
9415 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9416 			 unsigned int val)
9417 {
9418 	return t4_cim_write(adap, addr, 1, &val);
9419 }
9420 
9421 /**
9422  *	t4_cim_read_la - read CIM LA capture buffer
9423  *	@adap: the adapter
9424  *	@la_buf: where to store the LA data
9425  *	@wrptr: the HW write pointer within the capture buffer
9426  *
9427  *	Reads the contents of the CIM LA buffer with the most recent entry at
9428  *	the end	of the returned data and with the entry at @wrptr first.
9429  *	We try to leave the LA in the running state we find it in.
9430  */
9431 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9432 {
9433 	int i, ret;
9434 	unsigned int cfg, val, idx;
9435 
9436 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9437 	if (ret)
9438 		return ret;
9439 
9440 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9441 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9442 		if (ret)
9443 			return ret;
9444 	}
9445 
9446 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9447 	if (ret)
9448 		goto restart;
9449 
9450 	idx = UPDBGLAWRPTR_G(val);
9451 	if (wrptr)
9452 		*wrptr = idx;
9453 
9454 	for (i = 0; i < adap->params.cim_la_size; i++) {
9455 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9456 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9457 		if (ret)
9458 			break;
9459 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9460 		if (ret)
9461 			break;
9462 		if (val & UPDBGLARDEN_F) {
9463 			ret = -ETIMEDOUT;
9464 			break;
9465 		}
9466 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9467 		if (ret)
9468 			break;
9469 
9470 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9471 		 * identify the 32-bit portion of the full 312-bit data
9472 		 */
9473 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9474 			idx = (idx & 0xff0) + 0x10;
9475 		else
9476 			idx++;
9477 		/* address can't exceed 0xfff */
9478 		idx &= UPDBGLARDPTR_M;
9479 	}
9480 restart:
9481 	if (cfg & UPDBGLAEN_F) {
9482 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9483 				      cfg & ~UPDBGLARDEN_F);
9484 		if (!ret)
9485 			ret = r;
9486 	}
9487 	return ret;
9488 }
9489 
9490 /**
9491  *	t4_tp_read_la - read TP LA capture buffer
9492  *	@adap: the adapter
9493  *	@la_buf: where to store the LA data
9494  *	@wrptr: the HW write pointer within the capture buffer
9495  *
9496  *	Reads the contents of the TP LA buffer with the most recent entry at
9497  *	the end	of the returned data and with the entry at @wrptr first.
9498  *	We leave the LA in the running state we find it in.
9499  */
9500 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9501 {
9502 	bool last_incomplete;
9503 	unsigned int i, cfg, val, idx;
9504 
9505 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9506 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9507 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9508 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9509 
9510 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9511 	idx = DBGLAWPTR_G(val);
9512 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9513 	if (last_incomplete)
9514 		idx = (idx + 1) & DBGLARPTR_M;
9515 	if (wrptr)
9516 		*wrptr = idx;
9517 
9518 	val &= 0xffff;
9519 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9520 	val |= adap->params.tp.la_mask;
9521 
9522 	for (i = 0; i < TPLA_SIZE; i++) {
9523 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9524 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9525 		idx = (idx + 1) & DBGLARPTR_M;
9526 	}
9527 
9528 	/* Wipe out last entry if it isn't valid */
9529 	if (last_incomplete)
9530 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9531 
9532 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9533 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9534 			     cfg | adap->params.tp.la_mask);
9535 }
9536 
9537 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9538  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9539  * state for more than the Warning Threshold then we'll issue a warning about
9540  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9541  * appears to be hung every Warning Repeat second till the situation clears.
9542  * If the situation clears, we'll note that as well.
9543  */
9544 #define SGE_IDMA_WARN_THRESH 1
9545 #define SGE_IDMA_WARN_REPEAT 300
9546 
9547 /**
9548  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9549  *	@adapter: the adapter
9550  *	@idma: the adapter IDMA Monitor state
9551  *
9552  *	Initialize the state of an SGE Ingress DMA Monitor.
9553  */
9554 void t4_idma_monitor_init(struct adapter *adapter,
9555 			  struct sge_idma_monitor_state *idma)
9556 {
9557 	/* Initialize the state variables for detecting an SGE Ingress DMA
9558 	 * hang.  The SGE has internal counters which count up on each clock
9559 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9560 	 * same state they were on the previous clock tick.  The clock used is
9561 	 * the Core Clock so we have a limit on the maximum "time" they can
9562 	 * record; typically a very small number of seconds.  For instance,
9563 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9564 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9565 	 * risk of having the "timers" overflow and give us the flexibility to
9566 	 * maintain a Hung SGE State Machine of our own which operates across
9567 	 * a longer time frame.
9568 	 */
9569 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9570 	idma->idma_stalled[0] = 0;
9571 	idma->idma_stalled[1] = 0;
9572 }
9573 
9574 /**
9575  *	t4_idma_monitor - monitor SGE Ingress DMA state
9576  *	@adapter: the adapter
9577  *	@idma: the adapter IDMA Monitor state
9578  *	@hz: number of ticks/second
9579  *	@ticks: number of ticks since the last IDMA Monitor call
9580  */
9581 void t4_idma_monitor(struct adapter *adapter,
9582 		     struct sge_idma_monitor_state *idma,
9583 		     int hz, int ticks)
9584 {
9585 	int i, idma_same_state_cnt[2];
9586 
9587 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9588 	  * are counters inside the SGE which count up on each clock when the
9589 	  * SGE finds its Ingress DMA State Engines in the same states they
9590 	  * were in the previous clock.  The counters will peg out at
9591 	  * 0xffffffff without wrapping around so once they pass the 1s
9592 	  * threshold they'll stay above that till the IDMA state changes.
9593 	  */
9594 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9595 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9596 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9597 
9598 	for (i = 0; i < 2; i++) {
9599 		u32 debug0, debug11;
9600 
9601 		/* If the Ingress DMA Same State Counter ("timer") is less
9602 		 * than 1s, then we can reset our synthesized Stall Timer and
9603 		 * continue.  If we have previously emitted warnings about a
9604 		 * potential stalled Ingress Queue, issue a note indicating
9605 		 * that the Ingress Queue has resumed forward progress.
9606 		 */
9607 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9608 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9609 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9610 					 "resumed after %d seconds\n",
9611 					 i, idma->idma_qid[i],
9612 					 idma->idma_stalled[i] / hz);
9613 			idma->idma_stalled[i] = 0;
9614 			continue;
9615 		}
9616 
9617 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9618 		 * domain.  The first time we get here it'll be because we
9619 		 * passed the 1s Threshold; each additional time it'll be
9620 		 * because the RX Timer Callback is being fired on its regular
9621 		 * schedule.
9622 		 *
9623 		 * If the stall is below our Potential Hung Ingress Queue
9624 		 * Warning Threshold, continue.
9625 		 */
9626 		if (idma->idma_stalled[i] == 0) {
9627 			idma->idma_stalled[i] = hz;
9628 			idma->idma_warn[i] = 0;
9629 		} else {
9630 			idma->idma_stalled[i] += ticks;
9631 			idma->idma_warn[i] -= ticks;
9632 		}
9633 
9634 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9635 			continue;
9636 
9637 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9638 		 */
9639 		if (idma->idma_warn[i] > 0)
9640 			continue;
9641 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9642 
9643 		/* Read and save the SGE IDMA State and Queue ID information.
9644 		 * We do this every time in case it changes across time ...
9645 		 * can't be too careful ...
9646 		 */
9647 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9648 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9649 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9650 
9651 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9652 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9653 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9654 
9655 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9656 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9657 			 i, idma->idma_qid[i], idma->idma_state[i],
9658 			 idma->idma_stalled[i] / hz,
9659 			 debug0, debug11);
9660 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9661 	}
9662 }
9663 
9664 /**
9665  *	t4_load_cfg - download config file
9666  *	@adap: the adapter
9667  *	@cfg_data: the cfg text file to write
9668  *	@size: text file size
9669  *
9670  *	Write the supplied config text file to the card's serial flash.
9671  */
9672 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9673 {
9674 	int ret, i, n, cfg_addr;
9675 	unsigned int addr;
9676 	unsigned int flash_cfg_start_sec;
9677 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9678 
9679 	cfg_addr = t4_flash_cfg_addr(adap);
9680 	if (cfg_addr < 0)
9681 		return cfg_addr;
9682 
9683 	addr = cfg_addr;
9684 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9685 
9686 	if (size > FLASH_CFG_MAX_SIZE) {
9687 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9688 			FLASH_CFG_MAX_SIZE);
9689 		return -EFBIG;
9690 	}
9691 
9692 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9693 			 sf_sec_size);
9694 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9695 				     flash_cfg_start_sec + i - 1);
9696 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9697 	 * with the on-adapter Firmware Configuration File.
9698 	 */
9699 	if (ret || size == 0)
9700 		goto out;
9701 
9702 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9703 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9704 		if ((size - i) <  SF_PAGE_SIZE)
9705 			n = size - i;
9706 		else
9707 			n = SF_PAGE_SIZE;
9708 		ret = t4_write_flash(adap, addr, n, cfg_data);
9709 		if (ret)
9710 			goto out;
9711 
9712 		addr += SF_PAGE_SIZE;
9713 		cfg_data += SF_PAGE_SIZE;
9714 	}
9715 
9716 out:
9717 	if (ret)
9718 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9719 			(size == 0 ? "clear" : "download"), ret);
9720 	return ret;
9721 }
9722 
9723 /**
9724  *	t4_set_vf_mac - Set MAC address for the specified VF
9725  *	@adapter: The adapter
9726  *	@vf: one of the VFs instantiated by the specified PF
9727  *	@naddr: the number of MAC addresses
9728  *	@addr: the MAC address(es) to be set to the specified VF
9729  */
9730 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9731 		      unsigned int naddr, u8 *addr)
9732 {
9733 	struct fw_acl_mac_cmd cmd;
9734 
9735 	memset(&cmd, 0, sizeof(cmd));
9736 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9737 				    FW_CMD_REQUEST_F |
9738 				    FW_CMD_WRITE_F |
9739 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9740 				    FW_ACL_MAC_CMD_VFN_V(vf));
9741 
9742 	/* Note: Do not enable the ACL */
9743 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9744 	cmd.nmac = naddr;
9745 
9746 	switch (adapter->pf) {
9747 	case 3:
9748 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9749 		break;
9750 	case 2:
9751 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9752 		break;
9753 	case 1:
9754 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9755 		break;
9756 	case 0:
9757 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9758 		break;
9759 	}
9760 
9761 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9762 }
9763 
9764 /**
9765  * t4_read_pace_tbl - read the pace table
9766  * @adap: the adapter
9767  * @pace_vals: holds the returned values
9768  *
9769  * Returns the values of TP's pace table in microseconds.
9770  */
9771 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9772 {
9773 	unsigned int i, v;
9774 
9775 	for (i = 0; i < NTX_SCHED; i++) {
9776 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
9777 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
9778 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9779 	}
9780 }
9781 
9782 /**
9783  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9784  * @adap: the adapter
9785  * @sched: the scheduler index
9786  * @kbps: the byte rate in Kbps
9787  * @ipg: the interpacket delay in tenths of nanoseconds
9788  * @sleep_ok: if true we may sleep while awaiting command completion
9789  *
9790  * Return the current configuration of a HW Tx scheduler.
9791  */
9792 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
9793 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
9794 {
9795 	unsigned int v, addr, bpt, cpt;
9796 
9797 	if (kbps) {
9798 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
9799 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9800 		if (sched & 1)
9801 			v >>= 16;
9802 		bpt = (v >> 8) & 0xff;
9803 		cpt = v & 0xff;
9804 		if (!cpt) {
9805 			*kbps = 0;	/* scheduler disabled */
9806 		} else {
9807 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9808 			*kbps = (v * bpt) / 125;
9809 		}
9810 	}
9811 	if (ipg) {
9812 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
9813 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9814 		if (sched & 1)
9815 			v >>= 16;
9816 		v &= 0xffff;
9817 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9818 	}
9819 }
9820 
9821 /* t4_sge_ctxt_rd - read an SGE context through FW
9822  * @adap: the adapter
9823  * @mbox: mailbox to use for the FW command
9824  * @cid: the context id
9825  * @ctype: the context type
9826  * @data: where to store the context data
9827  *
9828  * Issues a FW command through the given mailbox to read an SGE context.
9829  */
9830 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9831 		   enum ctxt_type ctype, u32 *data)
9832 {
9833 	struct fw_ldst_cmd c;
9834 	int ret;
9835 
9836 	if (ctype == CTXT_FLM)
9837 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9838 	else
9839 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9840 
9841 	memset(&c, 0, sizeof(c));
9842 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
9843 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
9844 					FW_LDST_CMD_ADDRSPACE_V(ret));
9845 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9846 	c.u.idctxt.physid = cpu_to_be32(cid);
9847 
9848 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9849 	if (ret == 0) {
9850 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9851 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9852 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9853 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9854 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9855 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9856 	}
9857 	return ret;
9858 }
9859 
9860 /**
9861  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9862  * @adap: the adapter
9863  * @cid: the context id
9864  * @ctype: the context type
9865  * @data: where to store the context data
9866  *
9867  * Reads an SGE context directly, bypassing FW.  This is only for
9868  * debugging when FW is unavailable.
9869  */
9870 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
9871 		      enum ctxt_type ctype, u32 *data)
9872 {
9873 	int i, ret;
9874 
9875 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
9876 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
9877 	if (!ret)
9878 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
9879 			*data++ = t4_read_reg(adap, i);
9880 	return ret;
9881 }
9882 
9883 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9884 		    int rateunit, int ratemode, int channel, int class,
9885 		    int minrate, int maxrate, int weight, int pktsize)
9886 {
9887 	struct fw_sched_cmd cmd;
9888 
9889 	memset(&cmd, 0, sizeof(cmd));
9890 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
9891 				      FW_CMD_REQUEST_F |
9892 				      FW_CMD_WRITE_F);
9893 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9894 
9895 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9896 	cmd.u.params.type = type;
9897 	cmd.u.params.level = level;
9898 	cmd.u.params.mode = mode;
9899 	cmd.u.params.ch = channel;
9900 	cmd.u.params.cl = class;
9901 	cmd.u.params.unit = rateunit;
9902 	cmd.u.params.rate = ratemode;
9903 	cmd.u.params.min = cpu_to_be32(minrate);
9904 	cmd.u.params.max = cpu_to_be32(maxrate);
9905 	cmd.u.params.weight = cpu_to_be16(weight);
9906 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9907 
9908 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
9909 			       NULL, 1);
9910 }
9911 
9912 /**
9913  *	t4_i2c_rd - read I2C data from adapter
9914  *	@adap: the adapter
9915  *	@port: Port number if per-port device; <0 if not
9916  *	@devid: per-port device ID or absolute device ID
9917  *	@offset: byte offset into device I2C space
9918  *	@len: byte length of I2C space data
9919  *	@buf: buffer in which to return I2C data
9920  *
9921  *	Reads the I2C data from the indicated device and location.
9922  */
9923 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
9924 	      unsigned int devid, unsigned int offset,
9925 	      unsigned int len, u8 *buf)
9926 {
9927 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
9928 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
9929 	int ret = 0;
9930 
9931 	if (len > I2C_PAGE_SIZE)
9932 		return -EINVAL;
9933 
9934 	/* Dont allow reads that spans multiple pages */
9935 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
9936 		return -EINVAL;
9937 
9938 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
9939 	ldst_cmd.op_to_addrspace =
9940 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
9941 			    FW_CMD_REQUEST_F |
9942 			    FW_CMD_READ_F |
9943 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
9944 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
9945 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
9946 	ldst_cmd.u.i2c.did = devid;
9947 
9948 	while (len > 0) {
9949 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
9950 
9951 		ldst_cmd.u.i2c.boffset = offset;
9952 		ldst_cmd.u.i2c.blen = i2c_len;
9953 
9954 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
9955 				 &ldst_rpl);
9956 		if (ret)
9957 			break;
9958 
9959 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
9960 		offset += i2c_len;
9961 		buf += i2c_len;
9962 		len -= i2c_len;
9963 	}
9964 
9965 	return ret;
9966 }
9967 
9968 /**
9969  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
9970  *      @adapter: the adapter
9971  *      @mbox: mailbox to use for the FW command
9972  *      @vf: one of the VFs instantiated by the specified PF
9973  *      @vlan: The vlanid to be set
9974  */
9975 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
9976 		    u16 vlan)
9977 {
9978 	struct fw_acl_vlan_cmd vlan_cmd;
9979 	unsigned int enable;
9980 
9981 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
9982 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
9983 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
9984 					 FW_CMD_REQUEST_F |
9985 					 FW_CMD_WRITE_F |
9986 					 FW_CMD_EXEC_F |
9987 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
9988 					 FW_ACL_VLAN_CMD_VFN_V(vf));
9989 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
9990 	/* Drop all packets that donot match vlan id */
9991 	vlan_cmd.dropnovlan_fm = FW_ACL_VLAN_CMD_FM_F;
9992 	if (enable != 0) {
9993 		vlan_cmd.nvlan = 1;
9994 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
9995 	}
9996 
9997 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
9998 }
9999