1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rarely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boundaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9810, 0x9864, 1383 0x9c00, 0x9c6c, 1384 0x9c80, 0x9cec, 1385 0x9d00, 0x9d6c, 1386 0x9d80, 0x9dec, 1387 0x9e00, 0x9e6c, 1388 0x9e80, 0x9eec, 1389 0x9f00, 0x9f6c, 1390 0x9f80, 0xa020, 1391 0xd000, 0xd004, 1392 0xd010, 0xd03c, 1393 0xdfc0, 0xdfe0, 1394 0xe000, 0x1106c, 1395 0x11074, 0x11088, 1396 0x1109c, 0x1117c, 1397 0x11190, 0x11204, 1398 0x19040, 0x1906c, 1399 0x19078, 0x19080, 1400 0x1908c, 0x190e8, 1401 0x190f0, 0x190f8, 1402 0x19100, 0x19110, 1403 0x19120, 0x19124, 1404 0x19150, 0x19194, 1405 0x1919c, 0x191b0, 1406 0x191d0, 0x191e8, 1407 0x19238, 0x19290, 1408 0x193f8, 0x19428, 1409 0x19430, 0x19444, 1410 0x1944c, 0x1946c, 1411 0x19474, 0x19474, 1412 0x19490, 0x194cc, 1413 0x194f0, 0x194f8, 1414 0x19c00, 0x19c08, 1415 0x19c10, 0x19c60, 1416 0x19c94, 0x19ce4, 1417 0x19cf0, 0x19d40, 1418 0x19d50, 0x19d94, 1419 0x19da0, 0x19de8, 1420 0x19df0, 0x19e10, 1421 0x19e50, 0x19e90, 1422 0x19ea0, 0x19f24, 1423 0x19f34, 0x19f34, 1424 0x19f40, 0x19f50, 1425 0x19f90, 0x19fb4, 1426 0x19fc4, 0x19fe4, 1427 0x1a000, 0x1a004, 1428 0x1a010, 0x1a06c, 1429 0x1a0b0, 0x1a0e4, 1430 0x1a0ec, 0x1a0f8, 1431 0x1a100, 0x1a108, 1432 0x1a114, 0x1a130, 1433 0x1a138, 0x1a1c4, 1434 0x1a1fc, 0x1a1fc, 1435 0x1e008, 0x1e00c, 1436 0x1e040, 0x1e044, 1437 0x1e04c, 0x1e04c, 1438 0x1e284, 0x1e290, 1439 0x1e2c0, 0x1e2c0, 1440 0x1e2e0, 0x1e2e0, 1441 0x1e300, 0x1e384, 1442 0x1e3c0, 0x1e3c8, 1443 0x1e408, 0x1e40c, 1444 0x1e440, 0x1e444, 1445 0x1e44c, 0x1e44c, 1446 0x1e684, 0x1e690, 1447 0x1e6c0, 0x1e6c0, 1448 0x1e6e0, 0x1e6e0, 1449 0x1e700, 0x1e784, 1450 0x1e7c0, 0x1e7c8, 1451 0x1e808, 0x1e80c, 1452 0x1e840, 0x1e844, 1453 0x1e84c, 0x1e84c, 1454 0x1ea84, 0x1ea90, 1455 0x1eac0, 0x1eac0, 1456 0x1eae0, 0x1eae0, 1457 0x1eb00, 0x1eb84, 1458 0x1ebc0, 0x1ebc8, 1459 0x1ec08, 0x1ec0c, 1460 0x1ec40, 0x1ec44, 1461 0x1ec4c, 0x1ec4c, 1462 0x1ee84, 0x1ee90, 1463 0x1eec0, 0x1eec0, 1464 0x1eee0, 0x1eee0, 1465 0x1ef00, 0x1ef84, 1466 0x1efc0, 0x1efc8, 1467 0x1f008, 0x1f00c, 1468 0x1f040, 0x1f044, 1469 0x1f04c, 0x1f04c, 1470 0x1f284, 0x1f290, 1471 0x1f2c0, 0x1f2c0, 1472 0x1f2e0, 0x1f2e0, 1473 0x1f300, 0x1f384, 1474 0x1f3c0, 0x1f3c8, 1475 0x1f408, 0x1f40c, 1476 0x1f440, 0x1f444, 1477 0x1f44c, 0x1f44c, 1478 0x1f684, 0x1f690, 1479 0x1f6c0, 0x1f6c0, 1480 0x1f6e0, 0x1f6e0, 1481 0x1f700, 0x1f784, 1482 0x1f7c0, 0x1f7c8, 1483 0x1f808, 0x1f80c, 1484 0x1f840, 0x1f844, 1485 0x1f84c, 0x1f84c, 1486 0x1fa84, 0x1fa90, 1487 0x1fac0, 0x1fac0, 1488 0x1fae0, 0x1fae0, 1489 0x1fb00, 0x1fb84, 1490 0x1fbc0, 0x1fbc8, 1491 0x1fc08, 0x1fc0c, 1492 0x1fc40, 0x1fc44, 1493 0x1fc4c, 0x1fc4c, 1494 0x1fe84, 0x1fe90, 1495 0x1fec0, 0x1fec0, 1496 0x1fee0, 0x1fee0, 1497 0x1ff00, 0x1ff84, 1498 0x1ffc0, 0x1ffc8, 1499 0x30000, 0x30030, 1500 0x30100, 0x30144, 1501 0x30190, 0x301a0, 1502 0x301a8, 0x301b8, 1503 0x301c4, 0x301c8, 1504 0x301d0, 0x301d0, 1505 0x30200, 0x30318, 1506 0x30400, 0x304b4, 1507 0x304c0, 0x3052c, 1508 0x30540, 0x3061c, 1509 0x30800, 0x30828, 1510 0x30834, 0x30834, 1511 0x308c0, 0x30908, 1512 0x30910, 0x309ac, 1513 0x30a00, 0x30a14, 1514 0x30a1c, 0x30a2c, 1515 0x30a44, 0x30a50, 1516 0x30a74, 0x30a74, 1517 0x30a7c, 0x30afc, 1518 0x30b08, 0x30c24, 1519 0x30d00, 0x30d00, 1520 0x30d08, 0x30d14, 1521 0x30d1c, 0x30d20, 1522 0x30d3c, 0x30d3c, 1523 0x30d48, 0x30d50, 1524 0x31200, 0x3120c, 1525 0x31220, 0x31220, 1526 0x31240, 0x31240, 1527 0x31600, 0x3160c, 1528 0x31a00, 0x31a1c, 1529 0x31e00, 0x31e20, 1530 0x31e38, 0x31e3c, 1531 0x31e80, 0x31e80, 1532 0x31e88, 0x31ea8, 1533 0x31eb0, 0x31eb4, 1534 0x31ec8, 0x31ed4, 1535 0x31fb8, 0x32004, 1536 0x32200, 0x32200, 1537 0x32208, 0x32240, 1538 0x32248, 0x32280, 1539 0x32288, 0x322c0, 1540 0x322c8, 0x322fc, 1541 0x32600, 0x32630, 1542 0x32a00, 0x32abc, 1543 0x32b00, 0x32b10, 1544 0x32b20, 0x32b30, 1545 0x32b40, 0x32b50, 1546 0x32b60, 0x32b70, 1547 0x33000, 0x33028, 1548 0x33030, 0x33048, 1549 0x33060, 0x33068, 1550 0x33070, 0x3309c, 1551 0x330f0, 0x33128, 1552 0x33130, 0x33148, 1553 0x33160, 0x33168, 1554 0x33170, 0x3319c, 1555 0x331f0, 0x33238, 1556 0x33240, 0x33240, 1557 0x33248, 0x33250, 1558 0x3325c, 0x33264, 1559 0x33270, 0x332b8, 1560 0x332c0, 0x332e4, 1561 0x332f8, 0x33338, 1562 0x33340, 0x33340, 1563 0x33348, 0x33350, 1564 0x3335c, 0x33364, 1565 0x33370, 0x333b8, 1566 0x333c0, 0x333e4, 1567 0x333f8, 0x33428, 1568 0x33430, 0x33448, 1569 0x33460, 0x33468, 1570 0x33470, 0x3349c, 1571 0x334f0, 0x33528, 1572 0x33530, 0x33548, 1573 0x33560, 0x33568, 1574 0x33570, 0x3359c, 1575 0x335f0, 0x33638, 1576 0x33640, 0x33640, 1577 0x33648, 0x33650, 1578 0x3365c, 0x33664, 1579 0x33670, 0x336b8, 1580 0x336c0, 0x336e4, 1581 0x336f8, 0x33738, 1582 0x33740, 0x33740, 1583 0x33748, 0x33750, 1584 0x3375c, 0x33764, 1585 0x33770, 0x337b8, 1586 0x337c0, 0x337e4, 1587 0x337f8, 0x337fc, 1588 0x33814, 0x33814, 1589 0x3382c, 0x3382c, 1590 0x33880, 0x3388c, 1591 0x338e8, 0x338ec, 1592 0x33900, 0x33928, 1593 0x33930, 0x33948, 1594 0x33960, 0x33968, 1595 0x33970, 0x3399c, 1596 0x339f0, 0x33a38, 1597 0x33a40, 0x33a40, 1598 0x33a48, 0x33a50, 1599 0x33a5c, 0x33a64, 1600 0x33a70, 0x33ab8, 1601 0x33ac0, 0x33ae4, 1602 0x33af8, 0x33b10, 1603 0x33b28, 0x33b28, 1604 0x33b3c, 0x33b50, 1605 0x33bf0, 0x33c10, 1606 0x33c28, 0x33c28, 1607 0x33c3c, 0x33c50, 1608 0x33cf0, 0x33cfc, 1609 0x34000, 0x34030, 1610 0x34100, 0x34144, 1611 0x34190, 0x341a0, 1612 0x341a8, 0x341b8, 1613 0x341c4, 0x341c8, 1614 0x341d0, 0x341d0, 1615 0x34200, 0x34318, 1616 0x34400, 0x344b4, 1617 0x344c0, 0x3452c, 1618 0x34540, 0x3461c, 1619 0x34800, 0x34828, 1620 0x34834, 0x34834, 1621 0x348c0, 0x34908, 1622 0x34910, 0x349ac, 1623 0x34a00, 0x34a14, 1624 0x34a1c, 0x34a2c, 1625 0x34a44, 0x34a50, 1626 0x34a74, 0x34a74, 1627 0x34a7c, 0x34afc, 1628 0x34b08, 0x34c24, 1629 0x34d00, 0x34d00, 1630 0x34d08, 0x34d14, 1631 0x34d1c, 0x34d20, 1632 0x34d3c, 0x34d3c, 1633 0x34d48, 0x34d50, 1634 0x35200, 0x3520c, 1635 0x35220, 0x35220, 1636 0x35240, 0x35240, 1637 0x35600, 0x3560c, 1638 0x35a00, 0x35a1c, 1639 0x35e00, 0x35e20, 1640 0x35e38, 0x35e3c, 1641 0x35e80, 0x35e80, 1642 0x35e88, 0x35ea8, 1643 0x35eb0, 0x35eb4, 1644 0x35ec8, 0x35ed4, 1645 0x35fb8, 0x36004, 1646 0x36200, 0x36200, 1647 0x36208, 0x36240, 1648 0x36248, 0x36280, 1649 0x36288, 0x362c0, 1650 0x362c8, 0x362fc, 1651 0x36600, 0x36630, 1652 0x36a00, 0x36abc, 1653 0x36b00, 0x36b10, 1654 0x36b20, 0x36b30, 1655 0x36b40, 0x36b50, 1656 0x36b60, 0x36b70, 1657 0x37000, 0x37028, 1658 0x37030, 0x37048, 1659 0x37060, 0x37068, 1660 0x37070, 0x3709c, 1661 0x370f0, 0x37128, 1662 0x37130, 0x37148, 1663 0x37160, 0x37168, 1664 0x37170, 0x3719c, 1665 0x371f0, 0x37238, 1666 0x37240, 0x37240, 1667 0x37248, 0x37250, 1668 0x3725c, 0x37264, 1669 0x37270, 0x372b8, 1670 0x372c0, 0x372e4, 1671 0x372f8, 0x37338, 1672 0x37340, 0x37340, 1673 0x37348, 0x37350, 1674 0x3735c, 0x37364, 1675 0x37370, 0x373b8, 1676 0x373c0, 0x373e4, 1677 0x373f8, 0x37428, 1678 0x37430, 0x37448, 1679 0x37460, 0x37468, 1680 0x37470, 0x3749c, 1681 0x374f0, 0x37528, 1682 0x37530, 0x37548, 1683 0x37560, 0x37568, 1684 0x37570, 0x3759c, 1685 0x375f0, 0x37638, 1686 0x37640, 0x37640, 1687 0x37648, 0x37650, 1688 0x3765c, 0x37664, 1689 0x37670, 0x376b8, 1690 0x376c0, 0x376e4, 1691 0x376f8, 0x37738, 1692 0x37740, 0x37740, 1693 0x37748, 0x37750, 1694 0x3775c, 0x37764, 1695 0x37770, 0x377b8, 1696 0x377c0, 0x377e4, 1697 0x377f8, 0x377fc, 1698 0x37814, 0x37814, 1699 0x3782c, 0x3782c, 1700 0x37880, 0x3788c, 1701 0x378e8, 0x378ec, 1702 0x37900, 0x37928, 1703 0x37930, 0x37948, 1704 0x37960, 0x37968, 1705 0x37970, 0x3799c, 1706 0x379f0, 0x37a38, 1707 0x37a40, 0x37a40, 1708 0x37a48, 0x37a50, 1709 0x37a5c, 0x37a64, 1710 0x37a70, 0x37ab8, 1711 0x37ac0, 0x37ae4, 1712 0x37af8, 0x37b10, 1713 0x37b28, 0x37b28, 1714 0x37b3c, 0x37b50, 1715 0x37bf0, 0x37c10, 1716 0x37c28, 0x37c28, 1717 0x37c3c, 0x37c50, 1718 0x37cf0, 0x37cfc, 1719 0x38000, 0x38030, 1720 0x38100, 0x38144, 1721 0x38190, 0x381a0, 1722 0x381a8, 0x381b8, 1723 0x381c4, 0x381c8, 1724 0x381d0, 0x381d0, 1725 0x38200, 0x38318, 1726 0x38400, 0x384b4, 1727 0x384c0, 0x3852c, 1728 0x38540, 0x3861c, 1729 0x38800, 0x38828, 1730 0x38834, 0x38834, 1731 0x388c0, 0x38908, 1732 0x38910, 0x389ac, 1733 0x38a00, 0x38a14, 1734 0x38a1c, 0x38a2c, 1735 0x38a44, 0x38a50, 1736 0x38a74, 0x38a74, 1737 0x38a7c, 0x38afc, 1738 0x38b08, 0x38c24, 1739 0x38d00, 0x38d00, 1740 0x38d08, 0x38d14, 1741 0x38d1c, 0x38d20, 1742 0x38d3c, 0x38d3c, 1743 0x38d48, 0x38d50, 1744 0x39200, 0x3920c, 1745 0x39220, 0x39220, 1746 0x39240, 0x39240, 1747 0x39600, 0x3960c, 1748 0x39a00, 0x39a1c, 1749 0x39e00, 0x39e20, 1750 0x39e38, 0x39e3c, 1751 0x39e80, 0x39e80, 1752 0x39e88, 0x39ea8, 1753 0x39eb0, 0x39eb4, 1754 0x39ec8, 0x39ed4, 1755 0x39fb8, 0x3a004, 1756 0x3a200, 0x3a200, 1757 0x3a208, 0x3a240, 1758 0x3a248, 0x3a280, 1759 0x3a288, 0x3a2c0, 1760 0x3a2c8, 0x3a2fc, 1761 0x3a600, 0x3a630, 1762 0x3aa00, 0x3aabc, 1763 0x3ab00, 0x3ab10, 1764 0x3ab20, 0x3ab30, 1765 0x3ab40, 0x3ab50, 1766 0x3ab60, 0x3ab70, 1767 0x3b000, 0x3b028, 1768 0x3b030, 0x3b048, 1769 0x3b060, 0x3b068, 1770 0x3b070, 0x3b09c, 1771 0x3b0f0, 0x3b128, 1772 0x3b130, 0x3b148, 1773 0x3b160, 0x3b168, 1774 0x3b170, 0x3b19c, 1775 0x3b1f0, 0x3b238, 1776 0x3b240, 0x3b240, 1777 0x3b248, 0x3b250, 1778 0x3b25c, 0x3b264, 1779 0x3b270, 0x3b2b8, 1780 0x3b2c0, 0x3b2e4, 1781 0x3b2f8, 0x3b338, 1782 0x3b340, 0x3b340, 1783 0x3b348, 0x3b350, 1784 0x3b35c, 0x3b364, 1785 0x3b370, 0x3b3b8, 1786 0x3b3c0, 0x3b3e4, 1787 0x3b3f8, 0x3b428, 1788 0x3b430, 0x3b448, 1789 0x3b460, 0x3b468, 1790 0x3b470, 0x3b49c, 1791 0x3b4f0, 0x3b528, 1792 0x3b530, 0x3b548, 1793 0x3b560, 0x3b568, 1794 0x3b570, 0x3b59c, 1795 0x3b5f0, 0x3b638, 1796 0x3b640, 0x3b640, 1797 0x3b648, 0x3b650, 1798 0x3b65c, 0x3b664, 1799 0x3b670, 0x3b6b8, 1800 0x3b6c0, 0x3b6e4, 1801 0x3b6f8, 0x3b738, 1802 0x3b740, 0x3b740, 1803 0x3b748, 0x3b750, 1804 0x3b75c, 0x3b764, 1805 0x3b770, 0x3b7b8, 1806 0x3b7c0, 0x3b7e4, 1807 0x3b7f8, 0x3b7fc, 1808 0x3b814, 0x3b814, 1809 0x3b82c, 0x3b82c, 1810 0x3b880, 0x3b88c, 1811 0x3b8e8, 0x3b8ec, 1812 0x3b900, 0x3b928, 1813 0x3b930, 0x3b948, 1814 0x3b960, 0x3b968, 1815 0x3b970, 0x3b99c, 1816 0x3b9f0, 0x3ba38, 1817 0x3ba40, 0x3ba40, 1818 0x3ba48, 0x3ba50, 1819 0x3ba5c, 0x3ba64, 1820 0x3ba70, 0x3bab8, 1821 0x3bac0, 0x3bae4, 1822 0x3baf8, 0x3bb10, 1823 0x3bb28, 0x3bb28, 1824 0x3bb3c, 0x3bb50, 1825 0x3bbf0, 0x3bc10, 1826 0x3bc28, 0x3bc28, 1827 0x3bc3c, 0x3bc50, 1828 0x3bcf0, 0x3bcfc, 1829 0x3c000, 0x3c030, 1830 0x3c100, 0x3c144, 1831 0x3c190, 0x3c1a0, 1832 0x3c1a8, 0x3c1b8, 1833 0x3c1c4, 0x3c1c8, 1834 0x3c1d0, 0x3c1d0, 1835 0x3c200, 0x3c318, 1836 0x3c400, 0x3c4b4, 1837 0x3c4c0, 0x3c52c, 1838 0x3c540, 0x3c61c, 1839 0x3c800, 0x3c828, 1840 0x3c834, 0x3c834, 1841 0x3c8c0, 0x3c908, 1842 0x3c910, 0x3c9ac, 1843 0x3ca00, 0x3ca14, 1844 0x3ca1c, 0x3ca2c, 1845 0x3ca44, 0x3ca50, 1846 0x3ca74, 0x3ca74, 1847 0x3ca7c, 0x3cafc, 1848 0x3cb08, 0x3cc24, 1849 0x3cd00, 0x3cd00, 1850 0x3cd08, 0x3cd14, 1851 0x3cd1c, 0x3cd20, 1852 0x3cd3c, 0x3cd3c, 1853 0x3cd48, 0x3cd50, 1854 0x3d200, 0x3d20c, 1855 0x3d220, 0x3d220, 1856 0x3d240, 0x3d240, 1857 0x3d600, 0x3d60c, 1858 0x3da00, 0x3da1c, 1859 0x3de00, 0x3de20, 1860 0x3de38, 0x3de3c, 1861 0x3de80, 0x3de80, 1862 0x3de88, 0x3dea8, 1863 0x3deb0, 0x3deb4, 1864 0x3dec8, 0x3ded4, 1865 0x3dfb8, 0x3e004, 1866 0x3e200, 0x3e200, 1867 0x3e208, 0x3e240, 1868 0x3e248, 0x3e280, 1869 0x3e288, 0x3e2c0, 1870 0x3e2c8, 0x3e2fc, 1871 0x3e600, 0x3e630, 1872 0x3ea00, 0x3eabc, 1873 0x3eb00, 0x3eb10, 1874 0x3eb20, 0x3eb30, 1875 0x3eb40, 0x3eb50, 1876 0x3eb60, 0x3eb70, 1877 0x3f000, 0x3f028, 1878 0x3f030, 0x3f048, 1879 0x3f060, 0x3f068, 1880 0x3f070, 0x3f09c, 1881 0x3f0f0, 0x3f128, 1882 0x3f130, 0x3f148, 1883 0x3f160, 0x3f168, 1884 0x3f170, 0x3f19c, 1885 0x3f1f0, 0x3f238, 1886 0x3f240, 0x3f240, 1887 0x3f248, 0x3f250, 1888 0x3f25c, 0x3f264, 1889 0x3f270, 0x3f2b8, 1890 0x3f2c0, 0x3f2e4, 1891 0x3f2f8, 0x3f338, 1892 0x3f340, 0x3f340, 1893 0x3f348, 0x3f350, 1894 0x3f35c, 0x3f364, 1895 0x3f370, 0x3f3b8, 1896 0x3f3c0, 0x3f3e4, 1897 0x3f3f8, 0x3f428, 1898 0x3f430, 0x3f448, 1899 0x3f460, 0x3f468, 1900 0x3f470, 0x3f49c, 1901 0x3f4f0, 0x3f528, 1902 0x3f530, 0x3f548, 1903 0x3f560, 0x3f568, 1904 0x3f570, 0x3f59c, 1905 0x3f5f0, 0x3f638, 1906 0x3f640, 0x3f640, 1907 0x3f648, 0x3f650, 1908 0x3f65c, 0x3f664, 1909 0x3f670, 0x3f6b8, 1910 0x3f6c0, 0x3f6e4, 1911 0x3f6f8, 0x3f738, 1912 0x3f740, 0x3f740, 1913 0x3f748, 0x3f750, 1914 0x3f75c, 0x3f764, 1915 0x3f770, 0x3f7b8, 1916 0x3f7c0, 0x3f7e4, 1917 0x3f7f8, 0x3f7fc, 1918 0x3f814, 0x3f814, 1919 0x3f82c, 0x3f82c, 1920 0x3f880, 0x3f88c, 1921 0x3f8e8, 0x3f8ec, 1922 0x3f900, 0x3f928, 1923 0x3f930, 0x3f948, 1924 0x3f960, 0x3f968, 1925 0x3f970, 0x3f99c, 1926 0x3f9f0, 0x3fa38, 1927 0x3fa40, 0x3fa40, 1928 0x3fa48, 0x3fa50, 1929 0x3fa5c, 0x3fa64, 1930 0x3fa70, 0x3fab8, 1931 0x3fac0, 0x3fae4, 1932 0x3faf8, 0x3fb10, 1933 0x3fb28, 0x3fb28, 1934 0x3fb3c, 0x3fb50, 1935 0x3fbf0, 0x3fc10, 1936 0x3fc28, 0x3fc28, 1937 0x3fc3c, 0x3fc50, 1938 0x3fcf0, 0x3fcfc, 1939 0x40000, 0x4000c, 1940 0x40040, 0x40050, 1941 0x40060, 0x40068, 1942 0x4007c, 0x4008c, 1943 0x40094, 0x400b0, 1944 0x400c0, 0x40144, 1945 0x40180, 0x4018c, 1946 0x40200, 0x40254, 1947 0x40260, 0x40264, 1948 0x40270, 0x40288, 1949 0x40290, 0x40298, 1950 0x402ac, 0x402c8, 1951 0x402d0, 0x402e0, 1952 0x402f0, 0x402f0, 1953 0x40300, 0x4033c, 1954 0x403f8, 0x403fc, 1955 0x41304, 0x413c4, 1956 0x41400, 0x4140c, 1957 0x41414, 0x4141c, 1958 0x41480, 0x414d0, 1959 0x44000, 0x44054, 1960 0x4405c, 0x44078, 1961 0x440c0, 0x44174, 1962 0x44180, 0x441ac, 1963 0x441b4, 0x441b8, 1964 0x441c0, 0x44254, 1965 0x4425c, 0x44278, 1966 0x442c0, 0x44374, 1967 0x44380, 0x443ac, 1968 0x443b4, 0x443b8, 1969 0x443c0, 0x44454, 1970 0x4445c, 0x44478, 1971 0x444c0, 0x44574, 1972 0x44580, 0x445ac, 1973 0x445b4, 0x445b8, 1974 0x445c0, 0x44654, 1975 0x4465c, 0x44678, 1976 0x446c0, 0x44774, 1977 0x44780, 0x447ac, 1978 0x447b4, 0x447b8, 1979 0x447c0, 0x44854, 1980 0x4485c, 0x44878, 1981 0x448c0, 0x44974, 1982 0x44980, 0x449ac, 1983 0x449b4, 0x449b8, 1984 0x449c0, 0x449fc, 1985 0x45000, 0x45004, 1986 0x45010, 0x45030, 1987 0x45040, 0x45060, 1988 0x45068, 0x45068, 1989 0x45080, 0x45084, 1990 0x450a0, 0x450b0, 1991 0x45200, 0x45204, 1992 0x45210, 0x45230, 1993 0x45240, 0x45260, 1994 0x45268, 0x45268, 1995 0x45280, 0x45284, 1996 0x452a0, 0x452b0, 1997 0x460c0, 0x460e4, 1998 0x47000, 0x4703c, 1999 0x47044, 0x4708c, 2000 0x47200, 0x47250, 2001 0x47400, 0x47408, 2002 0x47414, 0x47420, 2003 0x47600, 0x47618, 2004 0x47800, 0x47814, 2005 0x48000, 0x4800c, 2006 0x48040, 0x48050, 2007 0x48060, 0x48068, 2008 0x4807c, 0x4808c, 2009 0x48094, 0x480b0, 2010 0x480c0, 0x48144, 2011 0x48180, 0x4818c, 2012 0x48200, 0x48254, 2013 0x48260, 0x48264, 2014 0x48270, 0x48288, 2015 0x48290, 0x48298, 2016 0x482ac, 0x482c8, 2017 0x482d0, 0x482e0, 2018 0x482f0, 0x482f0, 2019 0x48300, 0x4833c, 2020 0x483f8, 0x483fc, 2021 0x49304, 0x493c4, 2022 0x49400, 0x4940c, 2023 0x49414, 0x4941c, 2024 0x49480, 0x494d0, 2025 0x4c000, 0x4c054, 2026 0x4c05c, 0x4c078, 2027 0x4c0c0, 0x4c174, 2028 0x4c180, 0x4c1ac, 2029 0x4c1b4, 0x4c1b8, 2030 0x4c1c0, 0x4c254, 2031 0x4c25c, 0x4c278, 2032 0x4c2c0, 0x4c374, 2033 0x4c380, 0x4c3ac, 2034 0x4c3b4, 0x4c3b8, 2035 0x4c3c0, 0x4c454, 2036 0x4c45c, 0x4c478, 2037 0x4c4c0, 0x4c574, 2038 0x4c580, 0x4c5ac, 2039 0x4c5b4, 0x4c5b8, 2040 0x4c5c0, 0x4c654, 2041 0x4c65c, 0x4c678, 2042 0x4c6c0, 0x4c774, 2043 0x4c780, 0x4c7ac, 2044 0x4c7b4, 0x4c7b8, 2045 0x4c7c0, 0x4c854, 2046 0x4c85c, 0x4c878, 2047 0x4c8c0, 0x4c974, 2048 0x4c980, 0x4c9ac, 2049 0x4c9b4, 0x4c9b8, 2050 0x4c9c0, 0x4c9fc, 2051 0x4d000, 0x4d004, 2052 0x4d010, 0x4d030, 2053 0x4d040, 0x4d060, 2054 0x4d068, 0x4d068, 2055 0x4d080, 0x4d084, 2056 0x4d0a0, 0x4d0b0, 2057 0x4d200, 0x4d204, 2058 0x4d210, 0x4d230, 2059 0x4d240, 0x4d260, 2060 0x4d268, 0x4d268, 2061 0x4d280, 0x4d284, 2062 0x4d2a0, 0x4d2b0, 2063 0x4e0c0, 0x4e0e4, 2064 0x4f000, 0x4f03c, 2065 0x4f044, 0x4f08c, 2066 0x4f200, 0x4f250, 2067 0x4f400, 0x4f408, 2068 0x4f414, 0x4f420, 2069 0x4f600, 0x4f618, 2070 0x4f800, 0x4f814, 2071 0x50000, 0x50084, 2072 0x50090, 0x500cc, 2073 0x50400, 0x50400, 2074 0x50800, 0x50884, 2075 0x50890, 0x508cc, 2076 0x50c00, 0x50c00, 2077 0x51000, 0x5101c, 2078 0x51300, 0x51308, 2079 }; 2080 2081 static const unsigned int t6_reg_ranges[] = { 2082 0x1008, 0x101c, 2083 0x1024, 0x10a8, 2084 0x10b4, 0x10f8, 2085 0x1100, 0x1114, 2086 0x111c, 0x112c, 2087 0x1138, 0x113c, 2088 0x1144, 0x114c, 2089 0x1180, 0x1184, 2090 0x1190, 0x1194, 2091 0x11a0, 0x11a4, 2092 0x11b0, 0x11b4, 2093 0x11fc, 0x1274, 2094 0x1280, 0x133c, 2095 0x1800, 0x18fc, 2096 0x3000, 0x302c, 2097 0x3060, 0x30b0, 2098 0x30b8, 0x30d8, 2099 0x30e0, 0x30fc, 2100 0x3140, 0x357c, 2101 0x35a8, 0x35cc, 2102 0x35ec, 0x35ec, 2103 0x3600, 0x5624, 2104 0x56cc, 0x56ec, 2105 0x56f4, 0x5720, 2106 0x5728, 0x575c, 2107 0x580c, 0x5814, 2108 0x5890, 0x589c, 2109 0x58a4, 0x58ac, 2110 0x58b8, 0x58bc, 2111 0x5940, 0x595c, 2112 0x5980, 0x598c, 2113 0x59b0, 0x59c8, 2114 0x59d0, 0x59dc, 2115 0x59fc, 0x5a18, 2116 0x5a60, 0x5a6c, 2117 0x5a80, 0x5a8c, 2118 0x5a94, 0x5a9c, 2119 0x5b94, 0x5bfc, 2120 0x5c10, 0x5e48, 2121 0x5e50, 0x5e94, 2122 0x5ea0, 0x5eb0, 2123 0x5ec0, 0x5ec0, 2124 0x5ec8, 0x5ed0, 2125 0x5ee0, 0x5ee0, 2126 0x5ef0, 0x5ef0, 2127 0x5f00, 0x5f00, 2128 0x6000, 0x6020, 2129 0x6028, 0x6040, 2130 0x6058, 0x609c, 2131 0x60a8, 0x619c, 2132 0x7700, 0x7798, 2133 0x77c0, 0x7880, 2134 0x78cc, 0x78fc, 2135 0x7b00, 0x7b58, 2136 0x7b60, 0x7b84, 2137 0x7b8c, 0x7c54, 2138 0x7d00, 0x7d38, 2139 0x7d40, 0x7d84, 2140 0x7d8c, 0x7ddc, 2141 0x7de4, 0x7e04, 2142 0x7e10, 0x7e1c, 2143 0x7e24, 0x7e38, 2144 0x7e40, 0x7e44, 2145 0x7e4c, 0x7e78, 2146 0x7e80, 0x7edc, 2147 0x7ee8, 0x7efc, 2148 0x8dc0, 0x8de4, 2149 0x8df8, 0x8e04, 2150 0x8e10, 0x8e84, 2151 0x8ea0, 0x8f88, 2152 0x8fb8, 0x9058, 2153 0x9060, 0x9060, 2154 0x9068, 0x90f8, 2155 0x9100, 0x9124, 2156 0x9400, 0x9470, 2157 0x9600, 0x9600, 2158 0x9608, 0x9638, 2159 0x9640, 0x9704, 2160 0x9710, 0x971c, 2161 0x9800, 0x9808, 2162 0x9810, 0x9864, 2163 0x9c00, 0x9c6c, 2164 0x9c80, 0x9cec, 2165 0x9d00, 0x9d6c, 2166 0x9d80, 0x9dec, 2167 0x9e00, 0x9e6c, 2168 0x9e80, 0x9eec, 2169 0x9f00, 0x9f6c, 2170 0x9f80, 0xa020, 2171 0xd000, 0xd03c, 2172 0xd100, 0xd118, 2173 0xd200, 0xd214, 2174 0xd220, 0xd234, 2175 0xd240, 0xd254, 2176 0xd260, 0xd274, 2177 0xd280, 0xd294, 2178 0xd2a0, 0xd2b4, 2179 0xd2c0, 0xd2d4, 2180 0xd2e0, 0xd2f4, 2181 0xd300, 0xd31c, 2182 0xdfc0, 0xdfe0, 2183 0xe000, 0xf008, 2184 0xf010, 0xf018, 2185 0xf020, 0xf028, 2186 0x11000, 0x11014, 2187 0x11048, 0x1106c, 2188 0x11074, 0x11088, 2189 0x11098, 0x11120, 2190 0x1112c, 0x1117c, 2191 0x11190, 0x112e0, 2192 0x11300, 0x1130c, 2193 0x12000, 0x1206c, 2194 0x19040, 0x1906c, 2195 0x19078, 0x19080, 2196 0x1908c, 0x190e8, 2197 0x190f0, 0x190f8, 2198 0x19100, 0x19110, 2199 0x19120, 0x19124, 2200 0x19150, 0x19194, 2201 0x1919c, 0x191b0, 2202 0x191d0, 0x191e8, 2203 0x19238, 0x19290, 2204 0x192a4, 0x192b0, 2205 0x192bc, 0x192bc, 2206 0x19348, 0x1934c, 2207 0x193f8, 0x19418, 2208 0x19420, 0x19428, 2209 0x19430, 0x19444, 2210 0x1944c, 0x1946c, 2211 0x19474, 0x19474, 2212 0x19490, 0x194cc, 2213 0x194f0, 0x194f8, 2214 0x19c00, 0x19c48, 2215 0x19c50, 0x19c80, 2216 0x19c94, 0x19c98, 2217 0x19ca0, 0x19cbc, 2218 0x19ce4, 0x19ce4, 2219 0x19cf0, 0x19cf8, 2220 0x19d00, 0x19d28, 2221 0x19d50, 0x19d78, 2222 0x19d94, 0x19d98, 2223 0x19da0, 0x19dc8, 2224 0x19df0, 0x19e10, 2225 0x19e50, 0x19e6c, 2226 0x19ea0, 0x19ebc, 2227 0x19ec4, 0x19ef4, 2228 0x19f04, 0x19f2c, 2229 0x19f34, 0x19f34, 2230 0x19f40, 0x19f50, 2231 0x19f90, 0x19fac, 2232 0x19fc4, 0x19fc8, 2233 0x19fd0, 0x19fe4, 2234 0x1a000, 0x1a004, 2235 0x1a010, 0x1a06c, 2236 0x1a0b0, 0x1a0e4, 2237 0x1a0ec, 0x1a0f8, 2238 0x1a100, 0x1a108, 2239 0x1a114, 0x1a130, 2240 0x1a138, 0x1a1c4, 2241 0x1a1fc, 0x1a1fc, 2242 0x1e008, 0x1e00c, 2243 0x1e040, 0x1e044, 2244 0x1e04c, 0x1e04c, 2245 0x1e284, 0x1e290, 2246 0x1e2c0, 0x1e2c0, 2247 0x1e2e0, 0x1e2e0, 2248 0x1e300, 0x1e384, 2249 0x1e3c0, 0x1e3c8, 2250 0x1e408, 0x1e40c, 2251 0x1e440, 0x1e444, 2252 0x1e44c, 0x1e44c, 2253 0x1e684, 0x1e690, 2254 0x1e6c0, 0x1e6c0, 2255 0x1e6e0, 0x1e6e0, 2256 0x1e700, 0x1e784, 2257 0x1e7c0, 0x1e7c8, 2258 0x1e808, 0x1e80c, 2259 0x1e840, 0x1e844, 2260 0x1e84c, 0x1e84c, 2261 0x1ea84, 0x1ea90, 2262 0x1eac0, 0x1eac0, 2263 0x1eae0, 0x1eae0, 2264 0x1eb00, 0x1eb84, 2265 0x1ebc0, 0x1ebc8, 2266 0x1ec08, 0x1ec0c, 2267 0x1ec40, 0x1ec44, 2268 0x1ec4c, 0x1ec4c, 2269 0x1ee84, 0x1ee90, 2270 0x1eec0, 0x1eec0, 2271 0x1eee0, 0x1eee0, 2272 0x1ef00, 0x1ef84, 2273 0x1efc0, 0x1efc8, 2274 0x1f008, 0x1f00c, 2275 0x1f040, 0x1f044, 2276 0x1f04c, 0x1f04c, 2277 0x1f284, 0x1f290, 2278 0x1f2c0, 0x1f2c0, 2279 0x1f2e0, 0x1f2e0, 2280 0x1f300, 0x1f384, 2281 0x1f3c0, 0x1f3c8, 2282 0x1f408, 0x1f40c, 2283 0x1f440, 0x1f444, 2284 0x1f44c, 0x1f44c, 2285 0x1f684, 0x1f690, 2286 0x1f6c0, 0x1f6c0, 2287 0x1f6e0, 0x1f6e0, 2288 0x1f700, 0x1f784, 2289 0x1f7c0, 0x1f7c8, 2290 0x1f808, 0x1f80c, 2291 0x1f840, 0x1f844, 2292 0x1f84c, 0x1f84c, 2293 0x1fa84, 0x1fa90, 2294 0x1fac0, 0x1fac0, 2295 0x1fae0, 0x1fae0, 2296 0x1fb00, 0x1fb84, 2297 0x1fbc0, 0x1fbc8, 2298 0x1fc08, 0x1fc0c, 2299 0x1fc40, 0x1fc44, 2300 0x1fc4c, 0x1fc4c, 2301 0x1fe84, 0x1fe90, 2302 0x1fec0, 0x1fec0, 2303 0x1fee0, 0x1fee0, 2304 0x1ff00, 0x1ff84, 2305 0x1ffc0, 0x1ffc8, 2306 0x30000, 0x30030, 2307 0x30100, 0x30168, 2308 0x30190, 0x301a0, 2309 0x301a8, 0x301b8, 2310 0x301c4, 0x301c8, 2311 0x301d0, 0x301d0, 2312 0x30200, 0x30320, 2313 0x30400, 0x304b4, 2314 0x304c0, 0x3052c, 2315 0x30540, 0x3061c, 2316 0x30800, 0x308a0, 2317 0x308c0, 0x30908, 2318 0x30910, 0x309b8, 2319 0x30a00, 0x30a04, 2320 0x30a0c, 0x30a14, 2321 0x30a1c, 0x30a2c, 2322 0x30a44, 0x30a50, 2323 0x30a74, 0x30a74, 2324 0x30a7c, 0x30afc, 2325 0x30b08, 0x30c24, 2326 0x30d00, 0x30d14, 2327 0x30d1c, 0x30d3c, 2328 0x30d44, 0x30d4c, 2329 0x30d54, 0x30d74, 2330 0x30d7c, 0x30d7c, 2331 0x30de0, 0x30de0, 2332 0x30e00, 0x30ed4, 2333 0x30f00, 0x30fa4, 2334 0x30fc0, 0x30fc4, 2335 0x31000, 0x31004, 2336 0x31080, 0x310fc, 2337 0x31208, 0x31220, 2338 0x3123c, 0x31254, 2339 0x31300, 0x31300, 2340 0x31308, 0x3131c, 2341 0x31338, 0x3133c, 2342 0x31380, 0x31380, 2343 0x31388, 0x313a8, 2344 0x313b4, 0x313b4, 2345 0x31400, 0x31420, 2346 0x31438, 0x3143c, 2347 0x31480, 0x31480, 2348 0x314a8, 0x314a8, 2349 0x314b0, 0x314b4, 2350 0x314c8, 0x314d4, 2351 0x31a40, 0x31a4c, 2352 0x31af0, 0x31b20, 2353 0x31b38, 0x31b3c, 2354 0x31b80, 0x31b80, 2355 0x31ba8, 0x31ba8, 2356 0x31bb0, 0x31bb4, 2357 0x31bc8, 0x31bd4, 2358 0x32140, 0x3218c, 2359 0x321f0, 0x321f4, 2360 0x32200, 0x32200, 2361 0x32218, 0x32218, 2362 0x32400, 0x32400, 2363 0x32408, 0x3241c, 2364 0x32618, 0x32620, 2365 0x32664, 0x32664, 2366 0x326a8, 0x326a8, 2367 0x326ec, 0x326ec, 2368 0x32a00, 0x32abc, 2369 0x32b00, 0x32b18, 2370 0x32b20, 0x32b38, 2371 0x32b40, 0x32b58, 2372 0x32b60, 0x32b78, 2373 0x32c00, 0x32c00, 2374 0x32c08, 0x32c3c, 2375 0x33000, 0x3302c, 2376 0x33034, 0x33050, 2377 0x33058, 0x33058, 2378 0x33060, 0x3308c, 2379 0x3309c, 0x330ac, 2380 0x330c0, 0x330c0, 2381 0x330c8, 0x330d0, 2382 0x330d8, 0x330e0, 2383 0x330ec, 0x3312c, 2384 0x33134, 0x33150, 2385 0x33158, 0x33158, 2386 0x33160, 0x3318c, 2387 0x3319c, 0x331ac, 2388 0x331c0, 0x331c0, 2389 0x331c8, 0x331d0, 2390 0x331d8, 0x331e0, 2391 0x331ec, 0x33290, 2392 0x33298, 0x332c4, 2393 0x332e4, 0x33390, 2394 0x33398, 0x333c4, 2395 0x333e4, 0x3342c, 2396 0x33434, 0x33450, 2397 0x33458, 0x33458, 2398 0x33460, 0x3348c, 2399 0x3349c, 0x334ac, 2400 0x334c0, 0x334c0, 2401 0x334c8, 0x334d0, 2402 0x334d8, 0x334e0, 2403 0x334ec, 0x3352c, 2404 0x33534, 0x33550, 2405 0x33558, 0x33558, 2406 0x33560, 0x3358c, 2407 0x3359c, 0x335ac, 2408 0x335c0, 0x335c0, 2409 0x335c8, 0x335d0, 2410 0x335d8, 0x335e0, 2411 0x335ec, 0x33690, 2412 0x33698, 0x336c4, 2413 0x336e4, 0x33790, 2414 0x33798, 0x337c4, 2415 0x337e4, 0x337fc, 2416 0x33814, 0x33814, 2417 0x33854, 0x33868, 2418 0x33880, 0x3388c, 2419 0x338c0, 0x338d0, 2420 0x338e8, 0x338ec, 2421 0x33900, 0x3392c, 2422 0x33934, 0x33950, 2423 0x33958, 0x33958, 2424 0x33960, 0x3398c, 2425 0x3399c, 0x339ac, 2426 0x339c0, 0x339c0, 2427 0x339c8, 0x339d0, 2428 0x339d8, 0x339e0, 2429 0x339ec, 0x33a90, 2430 0x33a98, 0x33ac4, 2431 0x33ae4, 0x33b10, 2432 0x33b24, 0x33b28, 2433 0x33b38, 0x33b50, 2434 0x33bf0, 0x33c10, 2435 0x33c24, 0x33c28, 2436 0x33c38, 0x33c50, 2437 0x33cf0, 0x33cfc, 2438 0x34000, 0x34030, 2439 0x34100, 0x34168, 2440 0x34190, 0x341a0, 2441 0x341a8, 0x341b8, 2442 0x341c4, 0x341c8, 2443 0x341d0, 0x341d0, 2444 0x34200, 0x34320, 2445 0x34400, 0x344b4, 2446 0x344c0, 0x3452c, 2447 0x34540, 0x3461c, 2448 0x34800, 0x348a0, 2449 0x348c0, 0x34908, 2450 0x34910, 0x349b8, 2451 0x34a00, 0x34a04, 2452 0x34a0c, 0x34a14, 2453 0x34a1c, 0x34a2c, 2454 0x34a44, 0x34a50, 2455 0x34a74, 0x34a74, 2456 0x34a7c, 0x34afc, 2457 0x34b08, 0x34c24, 2458 0x34d00, 0x34d14, 2459 0x34d1c, 0x34d3c, 2460 0x34d44, 0x34d4c, 2461 0x34d54, 0x34d74, 2462 0x34d7c, 0x34d7c, 2463 0x34de0, 0x34de0, 2464 0x34e00, 0x34ed4, 2465 0x34f00, 0x34fa4, 2466 0x34fc0, 0x34fc4, 2467 0x35000, 0x35004, 2468 0x35080, 0x350fc, 2469 0x35208, 0x35220, 2470 0x3523c, 0x35254, 2471 0x35300, 0x35300, 2472 0x35308, 0x3531c, 2473 0x35338, 0x3533c, 2474 0x35380, 0x35380, 2475 0x35388, 0x353a8, 2476 0x353b4, 0x353b4, 2477 0x35400, 0x35420, 2478 0x35438, 0x3543c, 2479 0x35480, 0x35480, 2480 0x354a8, 0x354a8, 2481 0x354b0, 0x354b4, 2482 0x354c8, 0x354d4, 2483 0x35a40, 0x35a4c, 2484 0x35af0, 0x35b20, 2485 0x35b38, 0x35b3c, 2486 0x35b80, 0x35b80, 2487 0x35ba8, 0x35ba8, 2488 0x35bb0, 0x35bb4, 2489 0x35bc8, 0x35bd4, 2490 0x36140, 0x3618c, 2491 0x361f0, 0x361f4, 2492 0x36200, 0x36200, 2493 0x36218, 0x36218, 2494 0x36400, 0x36400, 2495 0x36408, 0x3641c, 2496 0x36618, 0x36620, 2497 0x36664, 0x36664, 2498 0x366a8, 0x366a8, 2499 0x366ec, 0x366ec, 2500 0x36a00, 0x36abc, 2501 0x36b00, 0x36b18, 2502 0x36b20, 0x36b38, 2503 0x36b40, 0x36b58, 2504 0x36b60, 0x36b78, 2505 0x36c00, 0x36c00, 2506 0x36c08, 0x36c3c, 2507 0x37000, 0x3702c, 2508 0x37034, 0x37050, 2509 0x37058, 0x37058, 2510 0x37060, 0x3708c, 2511 0x3709c, 0x370ac, 2512 0x370c0, 0x370c0, 2513 0x370c8, 0x370d0, 2514 0x370d8, 0x370e0, 2515 0x370ec, 0x3712c, 2516 0x37134, 0x37150, 2517 0x37158, 0x37158, 2518 0x37160, 0x3718c, 2519 0x3719c, 0x371ac, 2520 0x371c0, 0x371c0, 2521 0x371c8, 0x371d0, 2522 0x371d8, 0x371e0, 2523 0x371ec, 0x37290, 2524 0x37298, 0x372c4, 2525 0x372e4, 0x37390, 2526 0x37398, 0x373c4, 2527 0x373e4, 0x3742c, 2528 0x37434, 0x37450, 2529 0x37458, 0x37458, 2530 0x37460, 0x3748c, 2531 0x3749c, 0x374ac, 2532 0x374c0, 0x374c0, 2533 0x374c8, 0x374d0, 2534 0x374d8, 0x374e0, 2535 0x374ec, 0x3752c, 2536 0x37534, 0x37550, 2537 0x37558, 0x37558, 2538 0x37560, 0x3758c, 2539 0x3759c, 0x375ac, 2540 0x375c0, 0x375c0, 2541 0x375c8, 0x375d0, 2542 0x375d8, 0x375e0, 2543 0x375ec, 0x37690, 2544 0x37698, 0x376c4, 2545 0x376e4, 0x37790, 2546 0x37798, 0x377c4, 2547 0x377e4, 0x377fc, 2548 0x37814, 0x37814, 2549 0x37854, 0x37868, 2550 0x37880, 0x3788c, 2551 0x378c0, 0x378d0, 2552 0x378e8, 0x378ec, 2553 0x37900, 0x3792c, 2554 0x37934, 0x37950, 2555 0x37958, 0x37958, 2556 0x37960, 0x3798c, 2557 0x3799c, 0x379ac, 2558 0x379c0, 0x379c0, 2559 0x379c8, 0x379d0, 2560 0x379d8, 0x379e0, 2561 0x379ec, 0x37a90, 2562 0x37a98, 0x37ac4, 2563 0x37ae4, 0x37b10, 2564 0x37b24, 0x37b28, 2565 0x37b38, 0x37b50, 2566 0x37bf0, 0x37c10, 2567 0x37c24, 0x37c28, 2568 0x37c38, 0x37c50, 2569 0x37cf0, 0x37cfc, 2570 0x40040, 0x40040, 2571 0x40080, 0x40084, 2572 0x40100, 0x40100, 2573 0x40140, 0x401bc, 2574 0x40200, 0x40214, 2575 0x40228, 0x40228, 2576 0x40240, 0x40258, 2577 0x40280, 0x40280, 2578 0x40304, 0x40304, 2579 0x40330, 0x4033c, 2580 0x41304, 0x413c8, 2581 0x413d0, 0x413dc, 2582 0x413f0, 0x413f0, 2583 0x41400, 0x4140c, 2584 0x41414, 0x4141c, 2585 0x41480, 0x414d0, 2586 0x44000, 0x4407c, 2587 0x440c0, 0x441ac, 2588 0x441b4, 0x4427c, 2589 0x442c0, 0x443ac, 2590 0x443b4, 0x4447c, 2591 0x444c0, 0x445ac, 2592 0x445b4, 0x4467c, 2593 0x446c0, 0x447ac, 2594 0x447b4, 0x4487c, 2595 0x448c0, 0x449ac, 2596 0x449b4, 0x44a7c, 2597 0x44ac0, 0x44bac, 2598 0x44bb4, 0x44c7c, 2599 0x44cc0, 0x44dac, 2600 0x44db4, 0x44e7c, 2601 0x44ec0, 0x44fac, 2602 0x44fb4, 0x4507c, 2603 0x450c0, 0x451ac, 2604 0x451b4, 0x451fc, 2605 0x45800, 0x45804, 2606 0x45810, 0x45830, 2607 0x45840, 0x45860, 2608 0x45868, 0x45868, 2609 0x45880, 0x45884, 2610 0x458a0, 0x458b0, 2611 0x45a00, 0x45a04, 2612 0x45a10, 0x45a30, 2613 0x45a40, 0x45a60, 2614 0x45a68, 0x45a68, 2615 0x45a80, 0x45a84, 2616 0x45aa0, 0x45ab0, 2617 0x460c0, 0x460e4, 2618 0x47000, 0x4703c, 2619 0x47044, 0x4708c, 2620 0x47200, 0x47250, 2621 0x47400, 0x47408, 2622 0x47414, 0x47420, 2623 0x47600, 0x47618, 2624 0x47800, 0x47814, 2625 0x47820, 0x4782c, 2626 0x50000, 0x50084, 2627 0x50090, 0x500cc, 2628 0x50300, 0x50384, 2629 0x50400, 0x50400, 2630 0x50800, 0x50884, 2631 0x50890, 0x508cc, 2632 0x50b00, 0x50b84, 2633 0x50c00, 0x50c00, 2634 0x51000, 0x51020, 2635 0x51028, 0x510b0, 2636 0x51300, 0x51324, 2637 }; 2638 2639 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2640 const unsigned int *reg_ranges; 2641 int reg_ranges_size, range; 2642 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2643 2644 /* Select the right set of register ranges to dump depending on the 2645 * adapter chip type. 2646 */ 2647 switch (chip_version) { 2648 case CHELSIO_T4: 2649 reg_ranges = t4_reg_ranges; 2650 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2651 break; 2652 2653 case CHELSIO_T5: 2654 reg_ranges = t5_reg_ranges; 2655 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2656 break; 2657 2658 case CHELSIO_T6: 2659 reg_ranges = t6_reg_ranges; 2660 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2661 break; 2662 2663 default: 2664 dev_err(adap->pdev_dev, 2665 "Unsupported chip version %d\n", chip_version); 2666 return; 2667 } 2668 2669 /* Clear the register buffer and insert the appropriate register 2670 * values selected by the above register ranges. 2671 */ 2672 memset(buf, 0, buf_size); 2673 for (range = 0; range < reg_ranges_size; range += 2) { 2674 unsigned int reg = reg_ranges[range]; 2675 unsigned int last_reg = reg_ranges[range + 1]; 2676 u32 *bufp = (u32 *)((char *)buf + reg); 2677 2678 /* Iterate across the register range filling in the register 2679 * buffer but don't write past the end of the register buffer. 2680 */ 2681 while (reg <= last_reg && bufp < buf_end) { 2682 *bufp++ = t4_read_reg(adap, reg); 2683 reg += sizeof(u32); 2684 } 2685 } 2686 } 2687 2688 #define EEPROM_STAT_ADDR 0x7bfc 2689 #define VPD_BASE 0x400 2690 #define VPD_BASE_OLD 0 2691 #define VPD_LEN 1024 2692 #define CHELSIO_VPD_UNIQUE_ID 0x82 2693 2694 /** 2695 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2696 * @phys_addr: the physical EEPROM address 2697 * @fn: the PCI function number 2698 * @sz: size of function-specific area 2699 * 2700 * Translate a physical EEPROM address to virtual. The first 1K is 2701 * accessed through virtual addresses starting at 31K, the rest is 2702 * accessed through virtual addresses starting at 0. 2703 * 2704 * The mapping is as follows: 2705 * [0..1K) -> [31K..32K) 2706 * [1K..1K+A) -> [31K-A..31K) 2707 * [1K+A..ES) -> [0..ES-A-1K) 2708 * 2709 * where A = @fn * @sz, and ES = EEPROM size. 2710 */ 2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2712 { 2713 fn *= sz; 2714 if (phys_addr < 1024) 2715 return phys_addr + (31 << 10); 2716 if (phys_addr < 1024 + fn) 2717 return 31744 - fn + phys_addr - 1024; 2718 if (phys_addr < EEPROMSIZE) 2719 return phys_addr - 1024 - fn; 2720 return -EINVAL; 2721 } 2722 2723 /** 2724 * t4_seeprom_wp - enable/disable EEPROM write protection 2725 * @adapter: the adapter 2726 * @enable: whether to enable or disable write protection 2727 * 2728 * Enables or disables write protection on the serial EEPROM. 2729 */ 2730 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2731 { 2732 unsigned int v = enable ? 0xc : 0; 2733 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2734 return ret < 0 ? ret : 0; 2735 } 2736 2737 /** 2738 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2739 * @adapter: adapter to read 2740 * @p: where to store the parameters 2741 * 2742 * Reads card parameters stored in VPD EEPROM. 2743 */ 2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2745 { 2746 int i, ret = 0, addr; 2747 int ec, sn, pn, na; 2748 u8 *vpd, csum; 2749 unsigned int vpdr_len, kw_offset, id_len; 2750 2751 vpd = vmalloc(VPD_LEN); 2752 if (!vpd) 2753 return -ENOMEM; 2754 2755 /* Card information normally starts at VPD_BASE but early cards had 2756 * it at 0. 2757 */ 2758 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2759 if (ret < 0) 2760 goto out; 2761 2762 /* The VPD shall have a unique identifier specified by the PCI SIG. 2763 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2764 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2765 * is expected to automatically put this entry at the 2766 * beginning of the VPD. 2767 */ 2768 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2769 2770 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2771 if (ret < 0) 2772 goto out; 2773 2774 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2775 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2776 ret = -EINVAL; 2777 goto out; 2778 } 2779 2780 id_len = pci_vpd_lrdt_size(vpd); 2781 if (id_len > ID_LEN) 2782 id_len = ID_LEN; 2783 2784 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2785 if (i < 0) { 2786 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2787 ret = -EINVAL; 2788 goto out; 2789 } 2790 2791 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2792 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2793 if (vpdr_len + kw_offset > VPD_LEN) { 2794 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2795 ret = -EINVAL; 2796 goto out; 2797 } 2798 2799 #define FIND_VPD_KW(var, name) do { \ 2800 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2801 if (var < 0) { \ 2802 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2803 ret = -EINVAL; \ 2804 goto out; \ 2805 } \ 2806 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2807 } while (0) 2808 2809 FIND_VPD_KW(i, "RV"); 2810 for (csum = 0; i >= 0; i--) 2811 csum += vpd[i]; 2812 2813 if (csum) { 2814 dev_err(adapter->pdev_dev, 2815 "corrupted VPD EEPROM, actual csum %u\n", csum); 2816 ret = -EINVAL; 2817 goto out; 2818 } 2819 2820 FIND_VPD_KW(ec, "EC"); 2821 FIND_VPD_KW(sn, "SN"); 2822 FIND_VPD_KW(pn, "PN"); 2823 FIND_VPD_KW(na, "NA"); 2824 #undef FIND_VPD_KW 2825 2826 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2827 strim(p->id); 2828 memcpy(p->ec, vpd + ec, EC_LEN); 2829 strim(p->ec); 2830 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2831 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2832 strim(p->sn); 2833 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2834 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2835 strim(p->pn); 2836 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2837 strim((char *)p->na); 2838 2839 out: 2840 vfree(vpd); 2841 return ret < 0 ? ret : 0; 2842 } 2843 2844 /** 2845 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2846 * @adapter: adapter to read 2847 * @p: where to store the parameters 2848 * 2849 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2850 * Clock. This can only be called after a connection to the firmware 2851 * is established. 2852 */ 2853 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2854 { 2855 u32 cclk_param, cclk_val; 2856 int ret; 2857 2858 /* Grab the raw VPD parameters. 2859 */ 2860 ret = t4_get_raw_vpd_params(adapter, p); 2861 if (ret) 2862 return ret; 2863 2864 /* Ask firmware for the Core Clock since it knows how to translate the 2865 * Reference Clock ('V2') VPD field into a Core Clock value ... 2866 */ 2867 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2868 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2869 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2870 1, &cclk_param, &cclk_val); 2871 2872 if (ret) 2873 return ret; 2874 p->cclk = cclk_val; 2875 2876 return 0; 2877 } 2878 2879 /** 2880 * t4_get_pfres - retrieve VF resource limits 2881 * @adapter: the adapter 2882 * 2883 * Retrieves configured resource limits and capabilities for a physical 2884 * function. The results are stored in @adapter->pfres. 2885 */ 2886 int t4_get_pfres(struct adapter *adapter) 2887 { 2888 struct pf_resources *pfres = &adapter->params.pfres; 2889 struct fw_pfvf_cmd cmd, rpl; 2890 int v; 2891 u32 word; 2892 2893 /* Execute PFVF Read command to get VF resource limits; bail out early 2894 * with error on command failure. 2895 */ 2896 memset(&cmd, 0, sizeof(cmd)); 2897 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2898 FW_CMD_REQUEST_F | 2899 FW_CMD_READ_F | 2900 FW_PFVF_CMD_PFN_V(adapter->pf) | 2901 FW_PFVF_CMD_VFN_V(0)); 2902 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2903 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2904 if (v != FW_SUCCESS) 2905 return v; 2906 2907 /* Extract PF resource limits and return success. 2908 */ 2909 word = be32_to_cpu(rpl.niqflint_niq); 2910 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2911 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2912 2913 word = be32_to_cpu(rpl.type_to_neq); 2914 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2915 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2916 2917 word = be32_to_cpu(rpl.tc_to_nexactf); 2918 pfres->tc = FW_PFVF_CMD_TC_G(word); 2919 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2920 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2921 2922 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2923 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2924 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2925 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2926 2927 return 0; 2928 } 2929 2930 /* serial flash and firmware constants */ 2931 enum { 2932 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2933 2934 /* flash command opcodes */ 2935 SF_PROG_PAGE = 2, /* program page */ 2936 SF_WR_DISABLE = 4, /* disable writes */ 2937 SF_RD_STATUS = 5, /* read status register */ 2938 SF_WR_ENABLE = 6, /* enable writes */ 2939 SF_RD_DATA_FAST = 0xb, /* read flash */ 2940 SF_RD_ID = 0x9f, /* read ID */ 2941 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2942 }; 2943 2944 /** 2945 * sf1_read - read data from the serial flash 2946 * @adapter: the adapter 2947 * @byte_cnt: number of bytes to read 2948 * @cont: whether another operation will be chained 2949 * @lock: whether to lock SF for PL access only 2950 * @valp: where to store the read data 2951 * 2952 * Reads up to 4 bytes of data from the serial flash. The location of 2953 * the read needs to be specified prior to calling this by issuing the 2954 * appropriate commands to the serial flash. 2955 */ 2956 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2957 int lock, u32 *valp) 2958 { 2959 int ret; 2960 2961 if (!byte_cnt || byte_cnt > 4) 2962 return -EINVAL; 2963 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2964 return -EBUSY; 2965 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2966 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2967 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2968 if (!ret) 2969 *valp = t4_read_reg(adapter, SF_DATA_A); 2970 return ret; 2971 } 2972 2973 /** 2974 * sf1_write - write data to the serial flash 2975 * @adapter: the adapter 2976 * @byte_cnt: number of bytes to write 2977 * @cont: whether another operation will be chained 2978 * @lock: whether to lock SF for PL access only 2979 * @val: value to write 2980 * 2981 * Writes up to 4 bytes of data to the serial flash. The location of 2982 * the write needs to be specified prior to calling this by issuing the 2983 * appropriate commands to the serial flash. 2984 */ 2985 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2986 int lock, u32 val) 2987 { 2988 if (!byte_cnt || byte_cnt > 4) 2989 return -EINVAL; 2990 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2991 return -EBUSY; 2992 t4_write_reg(adapter, SF_DATA_A, val); 2993 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2994 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2995 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2996 } 2997 2998 /** 2999 * flash_wait_op - wait for a flash operation to complete 3000 * @adapter: the adapter 3001 * @attempts: max number of polls of the status register 3002 * @delay: delay between polls in ms 3003 * 3004 * Wait for a flash operation to complete by polling the status register. 3005 */ 3006 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3007 { 3008 int ret; 3009 u32 status; 3010 3011 while (1) { 3012 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3013 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3014 return ret; 3015 if (!(status & 1)) 3016 return 0; 3017 if (--attempts == 0) 3018 return -EAGAIN; 3019 if (delay) 3020 msleep(delay); 3021 } 3022 } 3023 3024 /** 3025 * t4_read_flash - read words from serial flash 3026 * @adapter: the adapter 3027 * @addr: the start address for the read 3028 * @nwords: how many 32-bit words to read 3029 * @data: where to store the read data 3030 * @byte_oriented: whether to store data as bytes or as words 3031 * 3032 * Read the specified number of 32-bit words from the serial flash. 3033 * If @byte_oriented is set the read data is stored as a byte array 3034 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3035 * natural endianness. 3036 */ 3037 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3038 unsigned int nwords, u32 *data, int byte_oriented) 3039 { 3040 int ret; 3041 3042 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3043 return -EINVAL; 3044 3045 addr = swab32(addr) | SF_RD_DATA_FAST; 3046 3047 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3048 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3049 return ret; 3050 3051 for ( ; nwords; nwords--, data++) { 3052 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3053 if (nwords == 1) 3054 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3055 if (ret) 3056 return ret; 3057 if (byte_oriented) 3058 *data = (__force __u32)(cpu_to_be32(*data)); 3059 } 3060 return 0; 3061 } 3062 3063 /** 3064 * t4_write_flash - write up to a page of data to the serial flash 3065 * @adapter: the adapter 3066 * @addr: the start address to write 3067 * @n: length of data to write in bytes 3068 * @data: the data to write 3069 * 3070 * Writes up to a page of data (256 bytes) to the serial flash starting 3071 * at the given address. All the data must be written to the same page. 3072 */ 3073 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3074 unsigned int n, const u8 *data) 3075 { 3076 int ret; 3077 u32 buf[64]; 3078 unsigned int i, c, left, val, offset = addr & 0xff; 3079 3080 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3081 return -EINVAL; 3082 3083 val = swab32(addr) | SF_PROG_PAGE; 3084 3085 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3086 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3087 goto unlock; 3088 3089 for (left = n; left; left -= c) { 3090 c = min(left, 4U); 3091 for (val = 0, i = 0; i < c; ++i) 3092 val = (val << 8) + *data++; 3093 3094 ret = sf1_write(adapter, c, c != left, 1, val); 3095 if (ret) 3096 goto unlock; 3097 } 3098 ret = flash_wait_op(adapter, 8, 1); 3099 if (ret) 3100 goto unlock; 3101 3102 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3103 3104 /* Read the page to verify the write succeeded */ 3105 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3106 if (ret) 3107 return ret; 3108 3109 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3110 dev_err(adapter->pdev_dev, 3111 "failed to correctly write the flash page at %#x\n", 3112 addr); 3113 return -EIO; 3114 } 3115 return 0; 3116 3117 unlock: 3118 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3119 return ret; 3120 } 3121 3122 /** 3123 * t4_get_fw_version - read the firmware version 3124 * @adapter: the adapter 3125 * @vers: where to place the version 3126 * 3127 * Reads the FW version from flash. 3128 */ 3129 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3130 { 3131 return t4_read_flash(adapter, FLASH_FW_START + 3132 offsetof(struct fw_hdr, fw_ver), 1, 3133 vers, 0); 3134 } 3135 3136 /** 3137 * t4_get_bs_version - read the firmware bootstrap version 3138 * @adapter: the adapter 3139 * @vers: where to place the version 3140 * 3141 * Reads the FW Bootstrap version from flash. 3142 */ 3143 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3144 { 3145 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3146 offsetof(struct fw_hdr, fw_ver), 1, 3147 vers, 0); 3148 } 3149 3150 /** 3151 * t4_get_tp_version - read the TP microcode version 3152 * @adapter: the adapter 3153 * @vers: where to place the version 3154 * 3155 * Reads the TP microcode version from flash. 3156 */ 3157 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3158 { 3159 return t4_read_flash(adapter, FLASH_FW_START + 3160 offsetof(struct fw_hdr, tp_microcode_ver), 3161 1, vers, 0); 3162 } 3163 3164 /** 3165 * t4_get_exprom_version - return the Expansion ROM version (if any) 3166 * @adap: the adapter 3167 * @vers: where to place the version 3168 * 3169 * Reads the Expansion ROM header from FLASH and returns the version 3170 * number (if present) through the @vers return value pointer. We return 3171 * this in the Firmware Version Format since it's convenient. Return 3172 * 0 on success, -ENOENT if no Expansion ROM is present. 3173 */ 3174 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3175 { 3176 struct exprom_header { 3177 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3178 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3179 } *hdr; 3180 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3181 sizeof(u32))]; 3182 int ret; 3183 3184 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3185 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3186 0); 3187 if (ret) 3188 return ret; 3189 3190 hdr = (struct exprom_header *)exprom_header_buf; 3191 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3192 return -ENOENT; 3193 3194 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3195 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3196 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3197 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3198 return 0; 3199 } 3200 3201 /** 3202 * t4_get_vpd_version - return the VPD version 3203 * @adapter: the adapter 3204 * @vers: where to place the version 3205 * 3206 * Reads the VPD via the Firmware interface (thus this can only be called 3207 * once we're ready to issue Firmware commands). The format of the 3208 * VPD version is adapter specific. Returns 0 on success, an error on 3209 * failure. 3210 * 3211 * Note that early versions of the Firmware didn't include the ability 3212 * to retrieve the VPD version, so we zero-out the return-value parameter 3213 * in that case to avoid leaving it with garbage in it. 3214 * 3215 * Also note that the Firmware will return its cached copy of the VPD 3216 * Revision ID, not the actual Revision ID as written in the Serial 3217 * EEPROM. This is only an issue if a new VPD has been written and the 3218 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3219 * to defer calling this routine till after a FW_RESET_CMD has been issued 3220 * if the Host Driver will be performing a full adapter initialization. 3221 */ 3222 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3223 { 3224 u32 vpdrev_param; 3225 int ret; 3226 3227 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3228 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3229 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3230 1, &vpdrev_param, vers); 3231 if (ret) 3232 *vers = 0; 3233 return ret; 3234 } 3235 3236 /** 3237 * t4_get_scfg_version - return the Serial Configuration version 3238 * @adapter: the adapter 3239 * @vers: where to place the version 3240 * 3241 * Reads the Serial Configuration Version via the Firmware interface 3242 * (thus this can only be called once we're ready to issue Firmware 3243 * commands). The format of the Serial Configuration version is 3244 * adapter specific. Returns 0 on success, an error on failure. 3245 * 3246 * Note that early versions of the Firmware didn't include the ability 3247 * to retrieve the Serial Configuration version, so we zero-out the 3248 * return-value parameter in that case to avoid leaving it with 3249 * garbage in it. 3250 * 3251 * Also note that the Firmware will return its cached copy of the Serial 3252 * Initialization Revision ID, not the actual Revision ID as written in 3253 * the Serial EEPROM. This is only an issue if a new VPD has been written 3254 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3255 * it's best to defer calling this routine till after a FW_RESET_CMD has 3256 * been issued if the Host Driver will be performing a full adapter 3257 * initialization. 3258 */ 3259 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3260 { 3261 u32 scfgrev_param; 3262 int ret; 3263 3264 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3265 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3266 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3267 1, &scfgrev_param, vers); 3268 if (ret) 3269 *vers = 0; 3270 return ret; 3271 } 3272 3273 /** 3274 * t4_get_version_info - extract various chip/firmware version information 3275 * @adapter: the adapter 3276 * 3277 * Reads various chip/firmware version numbers and stores them into the 3278 * adapter Adapter Parameters structure. If any of the efforts fails 3279 * the first failure will be returned, but all of the version numbers 3280 * will be read. 3281 */ 3282 int t4_get_version_info(struct adapter *adapter) 3283 { 3284 int ret = 0; 3285 3286 #define FIRST_RET(__getvinfo) \ 3287 do { \ 3288 int __ret = __getvinfo; \ 3289 if (__ret && !ret) \ 3290 ret = __ret; \ 3291 } while (0) 3292 3293 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3294 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3295 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3296 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3297 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3298 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3299 3300 #undef FIRST_RET 3301 return ret; 3302 } 3303 3304 /** 3305 * t4_dump_version_info - dump all of the adapter configuration IDs 3306 * @adapter: the adapter 3307 * 3308 * Dumps all of the various bits of adapter configuration version/revision 3309 * IDs information. This is typically called at some point after 3310 * t4_get_version_info() has been called. 3311 */ 3312 void t4_dump_version_info(struct adapter *adapter) 3313 { 3314 /* Device information */ 3315 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3316 adapter->params.vpd.id, 3317 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3318 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3319 adapter->params.vpd.sn, adapter->params.vpd.pn); 3320 3321 /* Firmware Version */ 3322 if (!adapter->params.fw_vers) 3323 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3324 else 3325 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3326 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3327 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3328 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3329 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3330 3331 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3332 * Firmware, so dev_info() is more appropriate here.) 3333 */ 3334 if (!adapter->params.bs_vers) 3335 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3336 else 3337 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3338 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3339 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3340 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3341 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3342 3343 /* TP Microcode Version */ 3344 if (!adapter->params.tp_vers) 3345 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3346 else 3347 dev_info(adapter->pdev_dev, 3348 "TP Microcode version: %u.%u.%u.%u\n", 3349 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3350 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3351 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3352 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3353 3354 /* Expansion ROM version */ 3355 if (!adapter->params.er_vers) 3356 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3357 else 3358 dev_info(adapter->pdev_dev, 3359 "Expansion ROM version: %u.%u.%u.%u\n", 3360 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3361 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3362 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3363 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3364 3365 /* Serial Configuration version */ 3366 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3367 adapter->params.scfg_vers); 3368 3369 /* VPD Version */ 3370 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3371 adapter->params.vpd_vers); 3372 } 3373 3374 /** 3375 * t4_check_fw_version - check if the FW is supported with this driver 3376 * @adap: the adapter 3377 * 3378 * Checks if an adapter's FW is compatible with the driver. Returns 0 3379 * if there's exact match, a negative error if the version could not be 3380 * read or there's a major version mismatch 3381 */ 3382 int t4_check_fw_version(struct adapter *adap) 3383 { 3384 int i, ret, major, minor, micro; 3385 int exp_major, exp_minor, exp_micro; 3386 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3387 3388 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3389 /* Try multiple times before returning error */ 3390 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3391 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3392 3393 if (ret) 3394 return ret; 3395 3396 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3397 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3398 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3399 3400 switch (chip_version) { 3401 case CHELSIO_T4: 3402 exp_major = T4FW_MIN_VERSION_MAJOR; 3403 exp_minor = T4FW_MIN_VERSION_MINOR; 3404 exp_micro = T4FW_MIN_VERSION_MICRO; 3405 break; 3406 case CHELSIO_T5: 3407 exp_major = T5FW_MIN_VERSION_MAJOR; 3408 exp_minor = T5FW_MIN_VERSION_MINOR; 3409 exp_micro = T5FW_MIN_VERSION_MICRO; 3410 break; 3411 case CHELSIO_T6: 3412 exp_major = T6FW_MIN_VERSION_MAJOR; 3413 exp_minor = T6FW_MIN_VERSION_MINOR; 3414 exp_micro = T6FW_MIN_VERSION_MICRO; 3415 break; 3416 default: 3417 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3418 adap->chip); 3419 return -EINVAL; 3420 } 3421 3422 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3423 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3424 dev_err(adap->pdev_dev, 3425 "Card has firmware version %u.%u.%u, minimum " 3426 "supported firmware is %u.%u.%u.\n", major, minor, 3427 micro, exp_major, exp_minor, exp_micro); 3428 return -EFAULT; 3429 } 3430 return 0; 3431 } 3432 3433 /* Is the given firmware API compatible with the one the driver was compiled 3434 * with? 3435 */ 3436 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3437 { 3438 3439 /* short circuit if it's the exact same firmware version */ 3440 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3441 return 1; 3442 3443 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3444 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3445 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3446 return 1; 3447 #undef SAME_INTF 3448 3449 return 0; 3450 } 3451 3452 /* The firmware in the filesystem is usable, but should it be installed? 3453 * This routine explains itself in detail if it indicates the filesystem 3454 * firmware should be installed. 3455 */ 3456 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3457 int k, int c) 3458 { 3459 const char *reason; 3460 3461 if (!card_fw_usable) { 3462 reason = "incompatible or unusable"; 3463 goto install; 3464 } 3465 3466 if (k > c) { 3467 reason = "older than the version supported with this driver"; 3468 goto install; 3469 } 3470 3471 return 0; 3472 3473 install: 3474 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3475 "installing firmware %u.%u.%u.%u on card.\n", 3476 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3477 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3478 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3479 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3480 3481 return 1; 3482 } 3483 3484 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3485 const u8 *fw_data, unsigned int fw_size, 3486 struct fw_hdr *card_fw, enum dev_state state, 3487 int *reset) 3488 { 3489 int ret, card_fw_usable, fs_fw_usable; 3490 const struct fw_hdr *fs_fw; 3491 const struct fw_hdr *drv_fw; 3492 3493 drv_fw = &fw_info->fw_hdr; 3494 3495 /* Read the header of the firmware on the card */ 3496 ret = -t4_read_flash(adap, FLASH_FW_START, 3497 sizeof(*card_fw) / sizeof(uint32_t), 3498 (uint32_t *)card_fw, 1); 3499 if (ret == 0) { 3500 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3501 } else { 3502 dev_err(adap->pdev_dev, 3503 "Unable to read card's firmware header: %d\n", ret); 3504 card_fw_usable = 0; 3505 } 3506 3507 if (fw_data != NULL) { 3508 fs_fw = (const void *)fw_data; 3509 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3510 } else { 3511 fs_fw = NULL; 3512 fs_fw_usable = 0; 3513 } 3514 3515 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3516 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3517 /* Common case: the firmware on the card is an exact match and 3518 * the filesystem one is an exact match too, or the filesystem 3519 * one is absent/incompatible. 3520 */ 3521 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3522 should_install_fs_fw(adap, card_fw_usable, 3523 be32_to_cpu(fs_fw->fw_ver), 3524 be32_to_cpu(card_fw->fw_ver))) { 3525 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3526 fw_size, 0); 3527 if (ret != 0) { 3528 dev_err(adap->pdev_dev, 3529 "failed to install firmware: %d\n", ret); 3530 goto bye; 3531 } 3532 3533 /* Installed successfully, update the cached header too. */ 3534 *card_fw = *fs_fw; 3535 card_fw_usable = 1; 3536 *reset = 0; /* already reset as part of load_fw */ 3537 } 3538 3539 if (!card_fw_usable) { 3540 uint32_t d, c, k; 3541 3542 d = be32_to_cpu(drv_fw->fw_ver); 3543 c = be32_to_cpu(card_fw->fw_ver); 3544 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3545 3546 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3547 "chip state %d, " 3548 "driver compiled with %d.%d.%d.%d, " 3549 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3550 state, 3551 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3552 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3553 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3554 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3555 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3556 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3557 ret = EINVAL; 3558 goto bye; 3559 } 3560 3561 /* We're using whatever's on the card and it's known to be good. */ 3562 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3563 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3564 3565 bye: 3566 return ret; 3567 } 3568 3569 /** 3570 * t4_flash_erase_sectors - erase a range of flash sectors 3571 * @adapter: the adapter 3572 * @start: the first sector to erase 3573 * @end: the last sector to erase 3574 * 3575 * Erases the sectors in the given inclusive range. 3576 */ 3577 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3578 { 3579 int ret = 0; 3580 3581 if (end >= adapter->params.sf_nsec) 3582 return -EINVAL; 3583 3584 while (start <= end) { 3585 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3586 (ret = sf1_write(adapter, 4, 0, 1, 3587 SF_ERASE_SECTOR | (start << 8))) != 0 || 3588 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3589 dev_err(adapter->pdev_dev, 3590 "erase of flash sector %d failed, error %d\n", 3591 start, ret); 3592 break; 3593 } 3594 start++; 3595 } 3596 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3597 return ret; 3598 } 3599 3600 /** 3601 * t4_flash_cfg_addr - return the address of the flash configuration file 3602 * @adapter: the adapter 3603 * 3604 * Return the address within the flash where the Firmware Configuration 3605 * File is stored. 3606 */ 3607 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3608 { 3609 if (adapter->params.sf_size == 0x100000) 3610 return FLASH_FPGA_CFG_START; 3611 else 3612 return FLASH_CFG_START; 3613 } 3614 3615 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3616 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3617 * and emit an error message for mismatched firmware to save our caller the 3618 * effort ... 3619 */ 3620 static bool t4_fw_matches_chip(const struct adapter *adap, 3621 const struct fw_hdr *hdr) 3622 { 3623 /* The expression below will return FALSE for any unsupported adapter 3624 * which will keep us "honest" in the future ... 3625 */ 3626 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3627 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3628 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3629 return true; 3630 3631 dev_err(adap->pdev_dev, 3632 "FW image (%d) is not suitable for this adapter (%d)\n", 3633 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3634 return false; 3635 } 3636 3637 /** 3638 * t4_load_fw - download firmware 3639 * @adap: the adapter 3640 * @fw_data: the firmware image to write 3641 * @size: image size 3642 * 3643 * Write the supplied firmware image to the card's serial flash. 3644 */ 3645 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3646 { 3647 u32 csum; 3648 int ret, addr; 3649 unsigned int i; 3650 u8 first_page[SF_PAGE_SIZE]; 3651 const __be32 *p = (const __be32 *)fw_data; 3652 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3653 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3654 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3655 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3656 unsigned int fw_start = FLASH_FW_START; 3657 3658 if (!size) { 3659 dev_err(adap->pdev_dev, "FW image has no data\n"); 3660 return -EINVAL; 3661 } 3662 if (size & 511) { 3663 dev_err(adap->pdev_dev, 3664 "FW image size not multiple of 512 bytes\n"); 3665 return -EINVAL; 3666 } 3667 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3668 dev_err(adap->pdev_dev, 3669 "FW image size differs from size in FW header\n"); 3670 return -EINVAL; 3671 } 3672 if (size > fw_size) { 3673 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3674 fw_size); 3675 return -EFBIG; 3676 } 3677 if (!t4_fw_matches_chip(adap, hdr)) 3678 return -EINVAL; 3679 3680 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3681 csum += be32_to_cpu(p[i]); 3682 3683 if (csum != 0xffffffff) { 3684 dev_err(adap->pdev_dev, 3685 "corrupted firmware image, checksum %#x\n", csum); 3686 return -EINVAL; 3687 } 3688 3689 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3690 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3691 if (ret) 3692 goto out; 3693 3694 /* 3695 * We write the correct version at the end so the driver can see a bad 3696 * version if the FW write fails. Start by writing a copy of the 3697 * first page with a bad version. 3698 */ 3699 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3700 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3701 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3702 if (ret) 3703 goto out; 3704 3705 addr = fw_start; 3706 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3707 addr += SF_PAGE_SIZE; 3708 fw_data += SF_PAGE_SIZE; 3709 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3710 if (ret) 3711 goto out; 3712 } 3713 3714 ret = t4_write_flash(adap, 3715 fw_start + offsetof(struct fw_hdr, fw_ver), 3716 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3717 out: 3718 if (ret) 3719 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3720 ret); 3721 else 3722 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3723 return ret; 3724 } 3725 3726 /** 3727 * t4_phy_fw_ver - return current PHY firmware version 3728 * @adap: the adapter 3729 * @phy_fw_ver: return value buffer for PHY firmware version 3730 * 3731 * Returns the current version of external PHY firmware on the 3732 * adapter. 3733 */ 3734 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3735 { 3736 u32 param, val; 3737 int ret; 3738 3739 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3740 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3741 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3742 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3743 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3744 ¶m, &val); 3745 if (ret) 3746 return ret; 3747 *phy_fw_ver = val; 3748 return 0; 3749 } 3750 3751 /** 3752 * t4_load_phy_fw - download port PHY firmware 3753 * @adap: the adapter 3754 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3755 * @win_lock: the lock to use to guard the memory copy 3756 * @phy_fw_version: function to check PHY firmware versions 3757 * @phy_fw_data: the PHY firmware image to write 3758 * @phy_fw_size: image size 3759 * 3760 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3761 * @phy_fw_version is supplied, then it will be used to determine if 3762 * it's necessary to perform the transfer by comparing the version 3763 * of any existing adapter PHY firmware with that of the passed in 3764 * PHY firmware image. If @win_lock is non-NULL then it will be used 3765 * around the call to t4_memory_rw() which transfers the PHY firmware 3766 * to the adapter. 3767 * 3768 * A negative error number will be returned if an error occurs. If 3769 * version number support is available and there's no need to upgrade 3770 * the firmware, 0 will be returned. If firmware is successfully 3771 * transferred to the adapter, 1 will be returned. 3772 * 3773 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3774 * a result, a RESET of the adapter would cause that RAM to lose its 3775 * contents. Thus, loading PHY firmware on such adapters must happen 3776 * after any FW_RESET_CMDs ... 3777 */ 3778 int t4_load_phy_fw(struct adapter *adap, 3779 int win, spinlock_t *win_lock, 3780 int (*phy_fw_version)(const u8 *, size_t), 3781 const u8 *phy_fw_data, size_t phy_fw_size) 3782 { 3783 unsigned long mtype = 0, maddr = 0; 3784 u32 param, val; 3785 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3786 int ret; 3787 3788 /* If we have version number support, then check to see if the adapter 3789 * already has up-to-date PHY firmware loaded. 3790 */ 3791 if (phy_fw_version) { 3792 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3793 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3794 if (ret < 0) 3795 return ret; 3796 3797 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3798 CH_WARN(adap, "PHY Firmware already up-to-date, " 3799 "version %#x\n", cur_phy_fw_ver); 3800 return 0; 3801 } 3802 } 3803 3804 /* Ask the firmware where it wants us to copy the PHY firmware image. 3805 * The size of the file requires a special version of the READ command 3806 * which will pass the file size via the values field in PARAMS_CMD and 3807 * retrieve the return value from firmware and place it in the same 3808 * buffer values 3809 */ 3810 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3811 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3812 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3813 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3814 val = phy_fw_size; 3815 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3816 ¶m, &val, 1, true); 3817 if (ret < 0) 3818 return ret; 3819 mtype = val >> 8; 3820 maddr = (val & 0xff) << 16; 3821 3822 /* Copy the supplied PHY Firmware image to the adapter memory location 3823 * allocated by the adapter firmware. 3824 */ 3825 if (win_lock) 3826 spin_lock_bh(win_lock); 3827 ret = t4_memory_rw(adap, win, mtype, maddr, 3828 phy_fw_size, (__be32 *)phy_fw_data, 3829 T4_MEMORY_WRITE); 3830 if (win_lock) 3831 spin_unlock_bh(win_lock); 3832 if (ret) 3833 return ret; 3834 3835 /* Tell the firmware that the PHY firmware image has been written to 3836 * RAM and it can now start copying it over to the PHYs. The chip 3837 * firmware will RESET the affected PHYs as part of this operation 3838 * leaving them running the new PHY firmware image. 3839 */ 3840 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3841 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3842 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3843 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3844 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3845 ¶m, &val, 30000); 3846 3847 /* If we have version number support, then check to see that the new 3848 * firmware got loaded properly. 3849 */ 3850 if (phy_fw_version) { 3851 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3852 if (ret < 0) 3853 return ret; 3854 3855 if (cur_phy_fw_ver != new_phy_fw_vers) { 3856 CH_WARN(adap, "PHY Firmware did not update: " 3857 "version on adapter %#x, " 3858 "version flashed %#x\n", 3859 cur_phy_fw_ver, new_phy_fw_vers); 3860 return -ENXIO; 3861 } 3862 } 3863 3864 return 1; 3865 } 3866 3867 /** 3868 * t4_fwcache - firmware cache operation 3869 * @adap: the adapter 3870 * @op : the operation (flush or flush and invalidate) 3871 */ 3872 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3873 { 3874 struct fw_params_cmd c; 3875 3876 memset(&c, 0, sizeof(c)); 3877 c.op_to_vfn = 3878 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3879 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3880 FW_PARAMS_CMD_PFN_V(adap->pf) | 3881 FW_PARAMS_CMD_VFN_V(0)); 3882 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3883 c.param[0].mnem = 3884 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3885 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3886 c.param[0].val = cpu_to_be32(op); 3887 3888 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3889 } 3890 3891 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3892 unsigned int *pif_req_wrptr, 3893 unsigned int *pif_rsp_wrptr) 3894 { 3895 int i, j; 3896 u32 cfg, val, req, rsp; 3897 3898 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3899 if (cfg & LADBGEN_F) 3900 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3901 3902 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3903 req = POLADBGWRPTR_G(val); 3904 rsp = PILADBGWRPTR_G(val); 3905 if (pif_req_wrptr) 3906 *pif_req_wrptr = req; 3907 if (pif_rsp_wrptr) 3908 *pif_rsp_wrptr = rsp; 3909 3910 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3911 for (j = 0; j < 6; j++) { 3912 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3913 PILADBGRDPTR_V(rsp)); 3914 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3915 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3916 req++; 3917 rsp++; 3918 } 3919 req = (req + 2) & POLADBGRDPTR_M; 3920 rsp = (rsp + 2) & PILADBGRDPTR_M; 3921 } 3922 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3923 } 3924 3925 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3926 { 3927 u32 cfg; 3928 int i, j, idx; 3929 3930 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3931 if (cfg & LADBGEN_F) 3932 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3933 3934 for (i = 0; i < CIM_MALA_SIZE; i++) { 3935 for (j = 0; j < 5; j++) { 3936 idx = 8 * i + j; 3937 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3938 PILADBGRDPTR_V(idx)); 3939 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3940 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3941 } 3942 } 3943 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3944 } 3945 3946 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3947 { 3948 unsigned int i, j; 3949 3950 for (i = 0; i < 8; i++) { 3951 u32 *p = la_buf + i; 3952 3953 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3954 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3955 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3956 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3957 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3958 } 3959 } 3960 3961 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port 3962 * Capabilities which we control with separate controls -- see, for instance, 3963 * Pause Frames and Forward Error Correction. In order to determine what the 3964 * full set of Advertised Port Capabilities are, the base Advertised Port 3965 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised 3966 * Port Capabilities associated with those other controls. See 3967 * t4_link_acaps() for how this is done. 3968 */ 3969 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3970 FW_PORT_CAP32_ANEG) 3971 3972 /** 3973 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3974 * @caps16: a 16-bit Port Capabilities value 3975 * 3976 * Returns the equivalent 32-bit Port Capabilities value. 3977 */ 3978 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3979 { 3980 fw_port_cap32_t caps32 = 0; 3981 3982 #define CAP16_TO_CAP32(__cap) \ 3983 do { \ 3984 if (caps16 & FW_PORT_CAP_##__cap) \ 3985 caps32 |= FW_PORT_CAP32_##__cap; \ 3986 } while (0) 3987 3988 CAP16_TO_CAP32(SPEED_100M); 3989 CAP16_TO_CAP32(SPEED_1G); 3990 CAP16_TO_CAP32(SPEED_25G); 3991 CAP16_TO_CAP32(SPEED_10G); 3992 CAP16_TO_CAP32(SPEED_40G); 3993 CAP16_TO_CAP32(SPEED_100G); 3994 CAP16_TO_CAP32(FC_RX); 3995 CAP16_TO_CAP32(FC_TX); 3996 CAP16_TO_CAP32(ANEG); 3997 CAP16_TO_CAP32(FORCE_PAUSE); 3998 CAP16_TO_CAP32(MDIAUTO); 3999 CAP16_TO_CAP32(MDISTRAIGHT); 4000 CAP16_TO_CAP32(FEC_RS); 4001 CAP16_TO_CAP32(FEC_BASER_RS); 4002 CAP16_TO_CAP32(802_3_PAUSE); 4003 CAP16_TO_CAP32(802_3_ASM_DIR); 4004 4005 #undef CAP16_TO_CAP32 4006 4007 return caps32; 4008 } 4009 4010 /** 4011 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 4012 * @caps32: a 32-bit Port Capabilities value 4013 * 4014 * Returns the equivalent 16-bit Port Capabilities value. Note that 4015 * not all 32-bit Port Capabilities can be represented in the 16-bit 4016 * Port Capabilities and some fields/values may not make it. 4017 */ 4018 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4019 { 4020 fw_port_cap16_t caps16 = 0; 4021 4022 #define CAP32_TO_CAP16(__cap) \ 4023 do { \ 4024 if (caps32 & FW_PORT_CAP32_##__cap) \ 4025 caps16 |= FW_PORT_CAP_##__cap; \ 4026 } while (0) 4027 4028 CAP32_TO_CAP16(SPEED_100M); 4029 CAP32_TO_CAP16(SPEED_1G); 4030 CAP32_TO_CAP16(SPEED_10G); 4031 CAP32_TO_CAP16(SPEED_25G); 4032 CAP32_TO_CAP16(SPEED_40G); 4033 CAP32_TO_CAP16(SPEED_100G); 4034 CAP32_TO_CAP16(FC_RX); 4035 CAP32_TO_CAP16(FC_TX); 4036 CAP32_TO_CAP16(802_3_PAUSE); 4037 CAP32_TO_CAP16(802_3_ASM_DIR); 4038 CAP32_TO_CAP16(ANEG); 4039 CAP32_TO_CAP16(FORCE_PAUSE); 4040 CAP32_TO_CAP16(MDIAUTO); 4041 CAP32_TO_CAP16(MDISTRAIGHT); 4042 CAP32_TO_CAP16(FEC_RS); 4043 CAP32_TO_CAP16(FEC_BASER_RS); 4044 4045 #undef CAP32_TO_CAP16 4046 4047 return caps16; 4048 } 4049 4050 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4051 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4052 { 4053 enum cc_pause cc_pause = 0; 4054 4055 if (fw_pause & FW_PORT_CAP32_FC_RX) 4056 cc_pause |= PAUSE_RX; 4057 if (fw_pause & FW_PORT_CAP32_FC_TX) 4058 cc_pause |= PAUSE_TX; 4059 4060 return cc_pause; 4061 } 4062 4063 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4064 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4065 { 4066 /* Translate orthogonal RX/TX Pause Controls for L1 Configure 4067 * commands, etc. 4068 */ 4069 fw_port_cap32_t fw_pause = 0; 4070 4071 if (cc_pause & PAUSE_RX) 4072 fw_pause |= FW_PORT_CAP32_FC_RX; 4073 if (cc_pause & PAUSE_TX) 4074 fw_pause |= FW_PORT_CAP32_FC_TX; 4075 if (!(cc_pause & PAUSE_AUTONEG)) 4076 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4077 4078 /* Translate orthogonal Pause controls into IEEE 802.3 Pause, 4079 * Asymmetrical Pause for use in reporting to upper layer OS code, etc. 4080 * Note that these bits are ignored in L1 Configure commands. 4081 */ 4082 if (cc_pause & PAUSE_RX) { 4083 if (cc_pause & PAUSE_TX) 4084 fw_pause |= FW_PORT_CAP32_802_3_PAUSE; 4085 else 4086 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR | 4087 FW_PORT_CAP32_802_3_PAUSE; 4088 } else if (cc_pause & PAUSE_TX) { 4089 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4090 } 4091 4092 return fw_pause; 4093 } 4094 4095 /* Translate Firmware Forward Error Correction specification to Common Code */ 4096 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4097 { 4098 enum cc_fec cc_fec = 0; 4099 4100 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4101 cc_fec |= FEC_RS; 4102 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4103 cc_fec |= FEC_BASER_RS; 4104 4105 return cc_fec; 4106 } 4107 4108 /* Translate Common Code Forward Error Correction specification to Firmware */ 4109 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4110 { 4111 fw_port_cap32_t fw_fec = 0; 4112 4113 if (cc_fec & FEC_RS) 4114 fw_fec |= FW_PORT_CAP32_FEC_RS; 4115 if (cc_fec & FEC_BASER_RS) 4116 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4117 4118 return fw_fec; 4119 } 4120 4121 /** 4122 * t4_link_acaps - compute Link Advertised Port Capabilities 4123 * @adapter: the adapter 4124 * @port: the Port ID 4125 * @lc: the Port's Link Configuration 4126 * 4127 * Synthesize the Advertised Port Capabilities we'll be using based on 4128 * the base Advertised Port Capabilities (which have been filtered by 4129 * ADVERT_MASK) plus the individual controls for things like Pause 4130 * Frames, Forward Error Correction, MDI, etc. 4131 */ 4132 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, 4133 struct link_config *lc) 4134 { 4135 fw_port_cap32_t fw_fc, fw_fec, acaps; 4136 unsigned int fw_mdi; 4137 char cc_fec; 4138 4139 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4140 4141 /* Convert driver coding of Pause Frame Flow Control settings into the 4142 * Firmware's API. 4143 */ 4144 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4145 4146 /* Convert Common Code Forward Error Control settings into the 4147 * Firmware's API. If the current Requested FEC has "Automatic" 4148 * (IEEE 802.3) specified, then we use whatever the Firmware 4149 * sent us as part of its IEEE 802.3-based interpretation of 4150 * the Transceiver Module EPROM FEC parameters. Otherwise we 4151 * use whatever is in the current Requested FEC settings. 4152 */ 4153 if (lc->requested_fec & FEC_AUTO) 4154 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4155 else 4156 cc_fec = lc->requested_fec; 4157 fw_fec = cc_to_fwcap_fec(cc_fec); 4158 4159 /* Figure out what our Requested Port Capabilities are going to be. 4160 * Note parallel structure in t4_handle_get_port_info() and 4161 * init_link_config(). 4162 */ 4163 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4164 acaps = lc->acaps | fw_fc | fw_fec; 4165 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4166 lc->fec = cc_fec; 4167 } else if (lc->autoneg == AUTONEG_DISABLE) { 4168 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4169 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4170 lc->fec = cc_fec; 4171 } else { 4172 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; 4173 } 4174 4175 /* Some Requested Port Capabilities are trivially wrong if they exceed 4176 * the Physical Port Capabilities. We can check that here and provide 4177 * moderately useful feedback in the system log. 4178 * 4179 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4180 * we need to exclude this from this check in order to maintain 4181 * compatibility ... 4182 */ 4183 if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4184 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4185 acaps, lc->pcaps); 4186 return -EINVAL; 4187 } 4188 4189 return acaps; 4190 } 4191 4192 /** 4193 * t4_link_l1cfg_core - apply link configuration to MAC/PHY 4194 * @adapter: the adapter 4195 * @mbox: the Firmware Mailbox to use 4196 * @port: the Port ID 4197 * @lc: the Port's Link Configuration 4198 * @sleep_ok: if true we may sleep while awaiting command completion 4199 * @timeout: time to wait for command to finish before timing out 4200 * (negative implies @sleep_ok=false) 4201 * 4202 * Set up a port's MAC and PHY according to a desired link configuration. 4203 * - If the PHY can auto-negotiate first decide what to advertise, then 4204 * enable/disable auto-negotiation as desired, and reset. 4205 * - If the PHY does not auto-negotiate just reset it. 4206 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4207 * otherwise do it later based on the outcome of auto-negotiation. 4208 */ 4209 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4210 unsigned int port, struct link_config *lc, 4211 u8 sleep_ok, int timeout) 4212 { 4213 unsigned int fw_caps = adapter->params.fw_caps_support; 4214 struct fw_port_cmd cmd; 4215 fw_port_cap32_t rcap; 4216 int ret; 4217 4218 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && 4219 lc->autoneg == AUTONEG_ENABLE) { 4220 return -EINVAL; 4221 } 4222 4223 /* Compute our Requested Port Capabilities and send that on to the 4224 * Firmware. 4225 */ 4226 rcap = t4_link_acaps(adapter, port, lc); 4227 memset(&cmd, 0, sizeof(cmd)); 4228 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4229 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4230 FW_PORT_CMD_PORTID_V(port)); 4231 cmd.action_to_len16 = 4232 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4233 ? FW_PORT_ACTION_L1_CFG 4234 : FW_PORT_ACTION_L1_CFG32) | 4235 FW_LEN16(cmd)); 4236 if (fw_caps == FW_CAPS16) 4237 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4238 else 4239 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4240 4241 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4242 sleep_ok, timeout); 4243 4244 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4245 * the Physical Port Capabilities, some combinations of features may 4246 * still not be legal. For example, 40Gb/s and Reed-Solomon Forward 4247 * Error Correction. So if the Firmware rejects the L1 Configure 4248 * request, flag that here. 4249 */ 4250 if (ret) { 4251 dev_err(adapter->pdev_dev, 4252 "Requested Port Capabilities %#x rejected, error %d\n", 4253 rcap, -ret); 4254 return ret; 4255 } 4256 return 0; 4257 } 4258 4259 /** 4260 * t4_restart_aneg - restart autonegotiation 4261 * @adap: the adapter 4262 * @mbox: mbox to use for the FW command 4263 * @port: the port id 4264 * 4265 * Restarts autonegotiation for the selected port. 4266 */ 4267 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4268 { 4269 unsigned int fw_caps = adap->params.fw_caps_support; 4270 struct fw_port_cmd c; 4271 4272 memset(&c, 0, sizeof(c)); 4273 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4274 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4275 FW_PORT_CMD_PORTID_V(port)); 4276 c.action_to_len16 = 4277 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4278 ? FW_PORT_ACTION_L1_CFG 4279 : FW_PORT_ACTION_L1_CFG32) | 4280 FW_LEN16(c)); 4281 if (fw_caps == FW_CAPS16) 4282 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4283 else 4284 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4285 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4286 } 4287 4288 typedef void (*int_handler_t)(struct adapter *adap); 4289 4290 struct intr_info { 4291 unsigned int mask; /* bits to check in interrupt status */ 4292 const char *msg; /* message to print or NULL */ 4293 short stat_idx; /* stat counter to increment or -1 */ 4294 unsigned short fatal; /* whether the condition reported is fatal */ 4295 int_handler_t int_handler; /* platform-specific int handler */ 4296 }; 4297 4298 /** 4299 * t4_handle_intr_status - table driven interrupt handler 4300 * @adapter: the adapter that generated the interrupt 4301 * @reg: the interrupt status register to process 4302 * @acts: table of interrupt actions 4303 * 4304 * A table driven interrupt handler that applies a set of masks to an 4305 * interrupt status word and performs the corresponding actions if the 4306 * interrupts described by the mask have occurred. The actions include 4307 * optionally emitting a warning or alert message. The table is terminated 4308 * by an entry specifying mask 0. Returns the number of fatal interrupt 4309 * conditions. 4310 */ 4311 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4312 const struct intr_info *acts) 4313 { 4314 int fatal = 0; 4315 unsigned int mask = 0; 4316 unsigned int status = t4_read_reg(adapter, reg); 4317 4318 for ( ; acts->mask; ++acts) { 4319 if (!(status & acts->mask)) 4320 continue; 4321 if (acts->fatal) { 4322 fatal++; 4323 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4324 status & acts->mask); 4325 } else if (acts->msg && printk_ratelimit()) 4326 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4327 status & acts->mask); 4328 if (acts->int_handler) 4329 acts->int_handler(adapter); 4330 mask |= acts->mask; 4331 } 4332 status &= mask; 4333 if (status) /* clear processed interrupts */ 4334 t4_write_reg(adapter, reg, status); 4335 return fatal; 4336 } 4337 4338 /* 4339 * Interrupt handler for the PCIE module. 4340 */ 4341 static void pcie_intr_handler(struct adapter *adapter) 4342 { 4343 static const struct intr_info sysbus_intr_info[] = { 4344 { RNPP_F, "RXNP array parity error", -1, 1 }, 4345 { RPCP_F, "RXPC array parity error", -1, 1 }, 4346 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4347 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4348 { RFTP_F, "RXFT array parity error", -1, 1 }, 4349 { 0 } 4350 }; 4351 static const struct intr_info pcie_port_intr_info[] = { 4352 { TPCP_F, "TXPC array parity error", -1, 1 }, 4353 { TNPP_F, "TXNP array parity error", -1, 1 }, 4354 { TFTP_F, "TXFT array parity error", -1, 1 }, 4355 { TCAP_F, "TXCA array parity error", -1, 1 }, 4356 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4357 { RCAP_F, "RXCA array parity error", -1, 1 }, 4358 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4359 { RDPE_F, "Rx data parity error", -1, 1 }, 4360 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4361 { 0 } 4362 }; 4363 static const struct intr_info pcie_intr_info[] = { 4364 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4365 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4366 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4367 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4368 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4369 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4370 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4371 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4372 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4373 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4374 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4375 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4376 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4377 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4378 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4379 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4380 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4381 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4382 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4383 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4384 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4385 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4386 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4387 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4388 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4389 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4390 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4391 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4392 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4393 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4394 -1, 0 }, 4395 { 0 } 4396 }; 4397 4398 static struct intr_info t5_pcie_intr_info[] = { 4399 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4400 -1, 1 }, 4401 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4402 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4403 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4404 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4405 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4406 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4407 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4408 -1, 1 }, 4409 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4410 -1, 1 }, 4411 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4412 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4413 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4414 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4415 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4416 -1, 1 }, 4417 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4418 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4419 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4420 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4421 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4422 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4423 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4424 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4425 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4426 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4427 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4428 -1, 1 }, 4429 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4430 -1, 1 }, 4431 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4432 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4433 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4434 { READRSPERR_F, "Outbound read error", -1, 0 }, 4435 { 0 } 4436 }; 4437 4438 int fat; 4439 4440 if (is_t4(adapter->params.chip)) 4441 fat = t4_handle_intr_status(adapter, 4442 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4443 sysbus_intr_info) + 4444 t4_handle_intr_status(adapter, 4445 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4446 pcie_port_intr_info) + 4447 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4448 pcie_intr_info); 4449 else 4450 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4451 t5_pcie_intr_info); 4452 4453 if (fat) 4454 t4_fatal_err(adapter); 4455 } 4456 4457 /* 4458 * TP interrupt handler. 4459 */ 4460 static void tp_intr_handler(struct adapter *adapter) 4461 { 4462 static const struct intr_info tp_intr_info[] = { 4463 { 0x3fffffff, "TP parity error", -1, 1 }, 4464 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4465 { 0 } 4466 }; 4467 4468 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4469 t4_fatal_err(adapter); 4470 } 4471 4472 /* 4473 * SGE interrupt handler. 4474 */ 4475 static void sge_intr_handler(struct adapter *adapter) 4476 { 4477 u32 v = 0, perr; 4478 u32 err; 4479 4480 static const struct intr_info sge_intr_info[] = { 4481 { ERR_CPL_EXCEED_IQE_SIZE_F, 4482 "SGE received CPL exceeding IQE size", -1, 1 }, 4483 { ERR_INVALID_CIDX_INC_F, 4484 "SGE GTS CIDX increment too large", -1, 0 }, 4485 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4486 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4487 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4488 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4489 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4490 0 }, 4491 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4492 0 }, 4493 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4494 0 }, 4495 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4496 0 }, 4497 { ERR_ING_CTXT_PRIO_F, 4498 "SGE too many priority ingress contexts", -1, 0 }, 4499 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4500 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4501 { 0 } 4502 }; 4503 4504 static struct intr_info t4t5_sge_intr_info[] = { 4505 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4506 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4507 { ERR_EGR_CTXT_PRIO_F, 4508 "SGE too many priority egress contexts", -1, 0 }, 4509 { 0 } 4510 }; 4511 4512 perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A); 4513 if (perr) { 4514 v |= perr; 4515 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n", 4516 perr); 4517 } 4518 4519 perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A); 4520 if (perr) { 4521 v |= perr; 4522 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n", 4523 perr); 4524 } 4525 4526 if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) { 4527 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A); 4528 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */ 4529 perr &= ~ERR_T_RXCRC_F; 4530 if (perr) { 4531 v |= perr; 4532 dev_alert(adapter->pdev_dev, 4533 "SGE Cause5 Parity Error %#x\n", perr); 4534 } 4535 } 4536 4537 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4538 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4539 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4540 t4t5_sge_intr_info); 4541 4542 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4543 if (err & ERROR_QID_VALID_F) { 4544 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4545 ERROR_QID_G(err)); 4546 if (err & UNCAPTURED_ERROR_F) 4547 dev_err(adapter->pdev_dev, 4548 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4549 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4550 UNCAPTURED_ERROR_F); 4551 } 4552 4553 if (v != 0) 4554 t4_fatal_err(adapter); 4555 } 4556 4557 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4558 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4559 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4560 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4561 4562 /* 4563 * CIM interrupt handler. 4564 */ 4565 static void cim_intr_handler(struct adapter *adapter) 4566 { 4567 static const struct intr_info cim_intr_info[] = { 4568 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4569 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4570 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4571 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4572 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4573 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4574 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4575 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4576 { 0 } 4577 }; 4578 static const struct intr_info cim_upintr_info[] = { 4579 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4580 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4581 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4582 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4583 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4584 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4585 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4586 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4587 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4588 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4589 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4590 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4591 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4592 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4593 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4594 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4595 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4596 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4597 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4598 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4599 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4600 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4601 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4602 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4603 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4604 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4605 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4606 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4607 { 0 } 4608 }; 4609 4610 u32 val, fw_err; 4611 int fat; 4612 4613 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4614 if (fw_err & PCIE_FW_ERR_F) 4615 t4_report_fw_error(adapter); 4616 4617 /* When the Firmware detects an internal error which normally 4618 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4619 * in order to make sure the Host sees the Firmware Crash. So 4620 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4621 * ignore the Timer0 interrupt. 4622 */ 4623 4624 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4625 if (val & TIMER0INT_F) 4626 if (!(fw_err & PCIE_FW_ERR_F) || 4627 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4628 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4629 TIMER0INT_F); 4630 4631 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4632 cim_intr_info) + 4633 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4634 cim_upintr_info); 4635 if (fat) 4636 t4_fatal_err(adapter); 4637 } 4638 4639 /* 4640 * ULP RX interrupt handler. 4641 */ 4642 static void ulprx_intr_handler(struct adapter *adapter) 4643 { 4644 static const struct intr_info ulprx_intr_info[] = { 4645 { 0x1800000, "ULPRX context error", -1, 1 }, 4646 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4647 { 0 } 4648 }; 4649 4650 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4651 t4_fatal_err(adapter); 4652 } 4653 4654 /* 4655 * ULP TX interrupt handler. 4656 */ 4657 static void ulptx_intr_handler(struct adapter *adapter) 4658 { 4659 static const struct intr_info ulptx_intr_info[] = { 4660 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4661 0 }, 4662 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4663 0 }, 4664 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4665 0 }, 4666 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4667 0 }, 4668 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4669 { 0 } 4670 }; 4671 4672 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4673 t4_fatal_err(adapter); 4674 } 4675 4676 /* 4677 * PM TX interrupt handler. 4678 */ 4679 static void pmtx_intr_handler(struct adapter *adapter) 4680 { 4681 static const struct intr_info pmtx_intr_info[] = { 4682 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4683 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4684 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4685 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4686 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4687 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4688 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4689 -1, 1 }, 4690 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4691 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4692 { 0 } 4693 }; 4694 4695 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4696 t4_fatal_err(adapter); 4697 } 4698 4699 /* 4700 * PM RX interrupt handler. 4701 */ 4702 static void pmrx_intr_handler(struct adapter *adapter) 4703 { 4704 static const struct intr_info pmrx_intr_info[] = { 4705 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4706 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4707 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4708 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4709 -1, 1 }, 4710 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4711 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4712 { 0 } 4713 }; 4714 4715 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4716 t4_fatal_err(adapter); 4717 } 4718 4719 /* 4720 * CPL switch interrupt handler. 4721 */ 4722 static void cplsw_intr_handler(struct adapter *adapter) 4723 { 4724 static const struct intr_info cplsw_intr_info[] = { 4725 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4726 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4727 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4728 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4729 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4730 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4731 { 0 } 4732 }; 4733 4734 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4735 t4_fatal_err(adapter); 4736 } 4737 4738 /* 4739 * LE interrupt handler. 4740 */ 4741 static void le_intr_handler(struct adapter *adap) 4742 { 4743 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4744 static const struct intr_info le_intr_info[] = { 4745 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4746 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4747 { PARITYERR_F, "LE parity error", -1, 1 }, 4748 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4749 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4750 { 0 } 4751 }; 4752 4753 static struct intr_info t6_le_intr_info[] = { 4754 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4755 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4756 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4757 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4758 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4759 { 0 } 4760 }; 4761 4762 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4763 (chip <= CHELSIO_T5) ? 4764 le_intr_info : t6_le_intr_info)) 4765 t4_fatal_err(adap); 4766 } 4767 4768 /* 4769 * MPS interrupt handler. 4770 */ 4771 static void mps_intr_handler(struct adapter *adapter) 4772 { 4773 static const struct intr_info mps_rx_intr_info[] = { 4774 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4775 { 0 } 4776 }; 4777 static const struct intr_info mps_tx_intr_info[] = { 4778 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4779 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4780 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4781 -1, 1 }, 4782 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4783 -1, 1 }, 4784 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4785 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4786 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4787 { 0 } 4788 }; 4789 static const struct intr_info t6_mps_tx_intr_info[] = { 4790 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4791 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4792 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4793 -1, 1 }, 4794 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4795 -1, 1 }, 4796 /* MPS Tx Bubble is normal for T6 */ 4797 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4798 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4799 { 0 } 4800 }; 4801 static const struct intr_info mps_trc_intr_info[] = { 4802 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4803 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4804 -1, 1 }, 4805 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4806 { 0 } 4807 }; 4808 static const struct intr_info mps_stat_sram_intr_info[] = { 4809 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4810 { 0 } 4811 }; 4812 static const struct intr_info mps_stat_tx_intr_info[] = { 4813 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4814 { 0 } 4815 }; 4816 static const struct intr_info mps_stat_rx_intr_info[] = { 4817 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4818 { 0 } 4819 }; 4820 static const struct intr_info mps_cls_intr_info[] = { 4821 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4822 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4823 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4824 { 0 } 4825 }; 4826 4827 int fat; 4828 4829 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4830 mps_rx_intr_info) + 4831 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4832 is_t6(adapter->params.chip) 4833 ? t6_mps_tx_intr_info 4834 : mps_tx_intr_info) + 4835 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4836 mps_trc_intr_info) + 4837 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4838 mps_stat_sram_intr_info) + 4839 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4840 mps_stat_tx_intr_info) + 4841 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4842 mps_stat_rx_intr_info) + 4843 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4844 mps_cls_intr_info); 4845 4846 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4847 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4848 if (fat) 4849 t4_fatal_err(adapter); 4850 } 4851 4852 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4853 ECC_UE_INT_CAUSE_F) 4854 4855 /* 4856 * EDC/MC interrupt handler. 4857 */ 4858 static void mem_intr_handler(struct adapter *adapter, int idx) 4859 { 4860 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4861 4862 unsigned int addr, cnt_addr, v; 4863 4864 if (idx <= MEM_EDC1) { 4865 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4866 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4867 } else if (idx == MEM_MC) { 4868 if (is_t4(adapter->params.chip)) { 4869 addr = MC_INT_CAUSE_A; 4870 cnt_addr = MC_ECC_STATUS_A; 4871 } else { 4872 addr = MC_P_INT_CAUSE_A; 4873 cnt_addr = MC_P_ECC_STATUS_A; 4874 } 4875 } else { 4876 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4877 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4878 } 4879 4880 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4881 if (v & PERR_INT_CAUSE_F) 4882 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4883 name[idx]); 4884 if (v & ECC_CE_INT_CAUSE_F) { 4885 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4886 4887 t4_edc_err_read(adapter, idx); 4888 4889 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4890 if (printk_ratelimit()) 4891 dev_warn(adapter->pdev_dev, 4892 "%u %s correctable ECC data error%s\n", 4893 cnt, name[idx], cnt > 1 ? "s" : ""); 4894 } 4895 if (v & ECC_UE_INT_CAUSE_F) 4896 dev_alert(adapter->pdev_dev, 4897 "%s uncorrectable ECC data error\n", name[idx]); 4898 4899 t4_write_reg(adapter, addr, v); 4900 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4901 t4_fatal_err(adapter); 4902 } 4903 4904 /* 4905 * MA interrupt handler. 4906 */ 4907 static void ma_intr_handler(struct adapter *adap) 4908 { 4909 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4910 4911 if (status & MEM_PERR_INT_CAUSE_F) { 4912 dev_alert(adap->pdev_dev, 4913 "MA parity error, parity status %#x\n", 4914 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4915 if (is_t5(adap->params.chip)) 4916 dev_alert(adap->pdev_dev, 4917 "MA parity error, parity status %#x\n", 4918 t4_read_reg(adap, 4919 MA_PARITY_ERROR_STATUS2_A)); 4920 } 4921 if (status & MEM_WRAP_INT_CAUSE_F) { 4922 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4923 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4924 "client %u to address %#x\n", 4925 MEM_WRAP_CLIENT_NUM_G(v), 4926 MEM_WRAP_ADDRESS_G(v) << 4); 4927 } 4928 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4929 t4_fatal_err(adap); 4930 } 4931 4932 /* 4933 * SMB interrupt handler. 4934 */ 4935 static void smb_intr_handler(struct adapter *adap) 4936 { 4937 static const struct intr_info smb_intr_info[] = { 4938 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4939 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4940 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4941 { 0 } 4942 }; 4943 4944 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4945 t4_fatal_err(adap); 4946 } 4947 4948 /* 4949 * NC-SI interrupt handler. 4950 */ 4951 static void ncsi_intr_handler(struct adapter *adap) 4952 { 4953 static const struct intr_info ncsi_intr_info[] = { 4954 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4955 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4956 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4957 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4958 { 0 } 4959 }; 4960 4961 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4962 t4_fatal_err(adap); 4963 } 4964 4965 /* 4966 * XGMAC interrupt handler. 4967 */ 4968 static void xgmac_intr_handler(struct adapter *adap, int port) 4969 { 4970 u32 v, int_cause_reg; 4971 4972 if (is_t4(adap->params.chip)) 4973 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4974 else 4975 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4976 4977 v = t4_read_reg(adap, int_cause_reg); 4978 4979 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4980 if (!v) 4981 return; 4982 4983 if (v & TXFIFO_PRTY_ERR_F) 4984 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4985 port); 4986 if (v & RXFIFO_PRTY_ERR_F) 4987 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4988 port); 4989 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4990 t4_fatal_err(adap); 4991 } 4992 4993 /* 4994 * PL interrupt handler. 4995 */ 4996 static void pl_intr_handler(struct adapter *adap) 4997 { 4998 static const struct intr_info pl_intr_info[] = { 4999 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 5000 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 5001 { 0 } 5002 }; 5003 5004 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 5005 t4_fatal_err(adap); 5006 } 5007 5008 #define PF_INTR_MASK (PFSW_F) 5009 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 5010 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 5011 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 5012 5013 /** 5014 * t4_slow_intr_handler - control path interrupt handler 5015 * @adapter: the adapter 5016 * 5017 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5018 * The designation 'slow' is because it involves register reads, while 5019 * data interrupts typically don't involve any MMIOs. 5020 */ 5021 int t4_slow_intr_handler(struct adapter *adapter) 5022 { 5023 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 5024 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 5025 * easiest just to mask that case here. 5026 */ 5027 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 5028 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 5029 u32 cause = raw_cause & enable; 5030 5031 if (!(cause & GLBL_INTR_MASK)) 5032 return 0; 5033 if (cause & CIM_F) 5034 cim_intr_handler(adapter); 5035 if (cause & MPS_F) 5036 mps_intr_handler(adapter); 5037 if (cause & NCSI_F) 5038 ncsi_intr_handler(adapter); 5039 if (cause & PL_F) 5040 pl_intr_handler(adapter); 5041 if (cause & SMB_F) 5042 smb_intr_handler(adapter); 5043 if (cause & XGMAC0_F) 5044 xgmac_intr_handler(adapter, 0); 5045 if (cause & XGMAC1_F) 5046 xgmac_intr_handler(adapter, 1); 5047 if (cause & XGMAC_KR0_F) 5048 xgmac_intr_handler(adapter, 2); 5049 if (cause & XGMAC_KR1_F) 5050 xgmac_intr_handler(adapter, 3); 5051 if (cause & PCIE_F) 5052 pcie_intr_handler(adapter); 5053 if (cause & MC_F) 5054 mem_intr_handler(adapter, MEM_MC); 5055 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 5056 mem_intr_handler(adapter, MEM_MC1); 5057 if (cause & EDC0_F) 5058 mem_intr_handler(adapter, MEM_EDC0); 5059 if (cause & EDC1_F) 5060 mem_intr_handler(adapter, MEM_EDC1); 5061 if (cause & LE_F) 5062 le_intr_handler(adapter); 5063 if (cause & TP_F) 5064 tp_intr_handler(adapter); 5065 if (cause & MA_F) 5066 ma_intr_handler(adapter); 5067 if (cause & PM_TX_F) 5068 pmtx_intr_handler(adapter); 5069 if (cause & PM_RX_F) 5070 pmrx_intr_handler(adapter); 5071 if (cause & ULP_RX_F) 5072 ulprx_intr_handler(adapter); 5073 if (cause & CPL_SWITCH_F) 5074 cplsw_intr_handler(adapter); 5075 if (cause & SGE_F) 5076 sge_intr_handler(adapter); 5077 if (cause & ULP_TX_F) 5078 ulptx_intr_handler(adapter); 5079 5080 /* Clear the interrupts just processed for which we are the master. */ 5081 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5082 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5083 return 1; 5084 } 5085 5086 /** 5087 * t4_intr_enable - enable interrupts 5088 * @adapter: the adapter whose interrupts should be enabled 5089 * 5090 * Enable PF-specific interrupts for the calling function and the top-level 5091 * interrupt concentrator for global interrupts. Interrupts are already 5092 * enabled at each module, here we just enable the roots of the interrupt 5093 * hierarchies. 5094 * 5095 * Note: this function should be called only when the driver manages 5096 * non PF-specific interrupts from the various HW modules. Only one PCI 5097 * function at a time should be doing this. 5098 */ 5099 void t4_intr_enable(struct adapter *adapter) 5100 { 5101 u32 val = 0; 5102 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5103 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5104 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5105 5106 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5107 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5108 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5109 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5110 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5111 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5112 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5113 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5114 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5115 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5116 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5117 } 5118 5119 /** 5120 * t4_intr_disable - disable interrupts 5121 * @adapter: the adapter whose interrupts should be disabled 5122 * 5123 * Disable interrupts. We only disable the top-level interrupt 5124 * concentrators. The caller must be a PCI function managing global 5125 * interrupts. 5126 */ 5127 void t4_intr_disable(struct adapter *adapter) 5128 { 5129 u32 whoami, pf; 5130 5131 if (pci_channel_offline(adapter->pdev)) 5132 return; 5133 5134 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5135 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5136 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5137 5138 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5139 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5140 } 5141 5142 unsigned int t4_chip_rss_size(struct adapter *adap) 5143 { 5144 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5145 return RSS_NENTRIES; 5146 else 5147 return T6_RSS_NENTRIES; 5148 } 5149 5150 /** 5151 * t4_config_rss_range - configure a portion of the RSS mapping table 5152 * @adapter: the adapter 5153 * @mbox: mbox to use for the FW command 5154 * @viid: virtual interface whose RSS subtable is to be written 5155 * @start: start entry in the table to write 5156 * @n: how many table entries to write 5157 * @rspq: values for the response queue lookup table 5158 * @nrspq: number of values in @rspq 5159 * 5160 * Programs the selected part of the VI's RSS mapping table with the 5161 * provided values. If @nrspq < @n the supplied values are used repeatedly 5162 * until the full table range is populated. 5163 * 5164 * The caller must ensure the values in @rspq are in the range allowed for 5165 * @viid. 5166 */ 5167 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5168 int start, int n, const u16 *rspq, unsigned int nrspq) 5169 { 5170 int ret; 5171 const u16 *rsp = rspq; 5172 const u16 *rsp_end = rspq + nrspq; 5173 struct fw_rss_ind_tbl_cmd cmd; 5174 5175 memset(&cmd, 0, sizeof(cmd)); 5176 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5177 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5178 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5179 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5180 5181 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5182 while (n > 0) { 5183 int nq = min(n, 32); 5184 __be32 *qp = &cmd.iq0_to_iq2; 5185 5186 cmd.niqid = cpu_to_be16(nq); 5187 cmd.startidx = cpu_to_be16(start); 5188 5189 start += nq; 5190 n -= nq; 5191 5192 while (nq > 0) { 5193 unsigned int v; 5194 5195 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5196 if (++rsp >= rsp_end) 5197 rsp = rspq; 5198 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5199 if (++rsp >= rsp_end) 5200 rsp = rspq; 5201 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5202 if (++rsp >= rsp_end) 5203 rsp = rspq; 5204 5205 *qp++ = cpu_to_be32(v); 5206 nq -= 3; 5207 } 5208 5209 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5210 if (ret) 5211 return ret; 5212 } 5213 return 0; 5214 } 5215 5216 /** 5217 * t4_config_glbl_rss - configure the global RSS mode 5218 * @adapter: the adapter 5219 * @mbox: mbox to use for the FW command 5220 * @mode: global RSS mode 5221 * @flags: mode-specific flags 5222 * 5223 * Sets the global RSS mode. 5224 */ 5225 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5226 unsigned int flags) 5227 { 5228 struct fw_rss_glb_config_cmd c; 5229 5230 memset(&c, 0, sizeof(c)); 5231 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5232 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5233 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5234 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5235 c.u.manual.mode_pkd = 5236 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5237 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5238 c.u.basicvirtual.mode_pkd = 5239 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5240 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5241 } else 5242 return -EINVAL; 5243 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5244 } 5245 5246 /** 5247 * t4_config_vi_rss - configure per VI RSS settings 5248 * @adapter: the adapter 5249 * @mbox: mbox to use for the FW command 5250 * @viid: the VI id 5251 * @flags: RSS flags 5252 * @defq: id of the default RSS queue for the VI. 5253 * 5254 * Configures VI-specific RSS properties. 5255 */ 5256 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5257 unsigned int flags, unsigned int defq) 5258 { 5259 struct fw_rss_vi_config_cmd c; 5260 5261 memset(&c, 0, sizeof(c)); 5262 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5263 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5264 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5265 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5266 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5267 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5268 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5269 } 5270 5271 /* Read an RSS table row */ 5272 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5273 { 5274 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5275 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5276 5, 0, val); 5277 } 5278 5279 /** 5280 * t4_read_rss - read the contents of the RSS mapping table 5281 * @adapter: the adapter 5282 * @map: holds the contents of the RSS mapping table 5283 * 5284 * Reads the contents of the RSS hash->queue mapping table. 5285 */ 5286 int t4_read_rss(struct adapter *adapter, u16 *map) 5287 { 5288 int i, ret, nentries; 5289 u32 val; 5290 5291 nentries = t4_chip_rss_size(adapter); 5292 for (i = 0; i < nentries / 2; ++i) { 5293 ret = rd_rss_row(adapter, i, &val); 5294 if (ret) 5295 return ret; 5296 *map++ = LKPTBLQUEUE0_G(val); 5297 *map++ = LKPTBLQUEUE1_G(val); 5298 } 5299 return 0; 5300 } 5301 5302 static unsigned int t4_use_ldst(struct adapter *adap) 5303 { 5304 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5305 } 5306 5307 /** 5308 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5309 * @adap: the adapter 5310 * @cmd: TP fw ldst address space type 5311 * @vals: where the indirect register values are stored/written 5312 * @nregs: how many indirect registers to read/write 5313 * @start_index: index of first indirect register to read/write 5314 * @rw: Read (1) or Write (0) 5315 * @sleep_ok: if true we may sleep while awaiting command completion 5316 * 5317 * Access TP indirect registers through LDST 5318 */ 5319 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5320 unsigned int nregs, unsigned int start_index, 5321 unsigned int rw, bool sleep_ok) 5322 { 5323 int ret = 0; 5324 unsigned int i; 5325 struct fw_ldst_cmd c; 5326 5327 for (i = 0; i < nregs; i++) { 5328 memset(&c, 0, sizeof(c)); 5329 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5330 FW_CMD_REQUEST_F | 5331 (rw ? FW_CMD_READ_F : 5332 FW_CMD_WRITE_F) | 5333 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5334 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5335 5336 c.u.addrval.addr = cpu_to_be32(start_index + i); 5337 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5338 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5339 sleep_ok); 5340 if (ret) 5341 return ret; 5342 5343 if (rw) 5344 vals[i] = be32_to_cpu(c.u.addrval.val); 5345 } 5346 return 0; 5347 } 5348 5349 /** 5350 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5351 * @adap: the adapter 5352 * @reg_addr: Address Register 5353 * @reg_data: Data register 5354 * @buff: where the indirect register values are stored/written 5355 * @nregs: how many indirect registers to read/write 5356 * @start_index: index of first indirect register to read/write 5357 * @rw: READ(1) or WRITE(0) 5358 * @sleep_ok: if true we may sleep while awaiting command completion 5359 * 5360 * Read/Write TP indirect registers through LDST if possible. 5361 * Else, use backdoor access 5362 **/ 5363 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5364 u32 *buff, u32 nregs, u32 start_index, int rw, 5365 bool sleep_ok) 5366 { 5367 int rc = -EINVAL; 5368 int cmd; 5369 5370 switch (reg_addr) { 5371 case TP_PIO_ADDR_A: 5372 cmd = FW_LDST_ADDRSPC_TP_PIO; 5373 break; 5374 case TP_TM_PIO_ADDR_A: 5375 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5376 break; 5377 case TP_MIB_INDEX_A: 5378 cmd = FW_LDST_ADDRSPC_TP_MIB; 5379 break; 5380 default: 5381 goto indirect_access; 5382 } 5383 5384 if (t4_use_ldst(adap)) 5385 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5386 sleep_ok); 5387 5388 indirect_access: 5389 5390 if (rc) { 5391 if (rw) 5392 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5393 start_index); 5394 else 5395 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5396 start_index); 5397 } 5398 } 5399 5400 /** 5401 * t4_tp_pio_read - Read TP PIO registers 5402 * @adap: the adapter 5403 * @buff: where the indirect register values are written 5404 * @nregs: how many indirect registers to read 5405 * @start_index: index of first indirect register to read 5406 * @sleep_ok: if true we may sleep while awaiting command completion 5407 * 5408 * Read TP PIO Registers 5409 **/ 5410 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5411 u32 start_index, bool sleep_ok) 5412 { 5413 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5414 start_index, 1, sleep_ok); 5415 } 5416 5417 /** 5418 * t4_tp_pio_write - Write TP PIO registers 5419 * @adap: the adapter 5420 * @buff: where the indirect register values are stored 5421 * @nregs: how many indirect registers to write 5422 * @start_index: index of first indirect register to write 5423 * @sleep_ok: if true we may sleep while awaiting command completion 5424 * 5425 * Write TP PIO Registers 5426 **/ 5427 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5428 u32 start_index, bool sleep_ok) 5429 { 5430 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5431 start_index, 0, sleep_ok); 5432 } 5433 5434 /** 5435 * t4_tp_tm_pio_read - Read TP TM PIO registers 5436 * @adap: the adapter 5437 * @buff: where the indirect register values are written 5438 * @nregs: how many indirect registers to read 5439 * @start_index: index of first indirect register to read 5440 * @sleep_ok: if true we may sleep while awaiting command completion 5441 * 5442 * Read TP TM PIO Registers 5443 **/ 5444 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5445 u32 start_index, bool sleep_ok) 5446 { 5447 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5448 nregs, start_index, 1, sleep_ok); 5449 } 5450 5451 /** 5452 * t4_tp_mib_read - Read TP MIB registers 5453 * @adap: the adapter 5454 * @buff: where the indirect register values are written 5455 * @nregs: how many indirect registers to read 5456 * @start_index: index of first indirect register to read 5457 * @sleep_ok: if true we may sleep while awaiting command completion 5458 * 5459 * Read TP MIB Registers 5460 **/ 5461 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5462 bool sleep_ok) 5463 { 5464 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5465 start_index, 1, sleep_ok); 5466 } 5467 5468 /** 5469 * t4_read_rss_key - read the global RSS key 5470 * @adap: the adapter 5471 * @key: 10-entry array holding the 320-bit RSS key 5472 * @sleep_ok: if true we may sleep while awaiting command completion 5473 * 5474 * Reads the global 320-bit RSS key. 5475 */ 5476 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5477 { 5478 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5479 } 5480 5481 /** 5482 * t4_write_rss_key - program one of the RSS keys 5483 * @adap: the adapter 5484 * @key: 10-entry array holding the 320-bit RSS key 5485 * @idx: which RSS key to write 5486 * @sleep_ok: if true we may sleep while awaiting command completion 5487 * 5488 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5489 * 0..15 the corresponding entry in the RSS key table is written, 5490 * otherwise the global RSS key is written. 5491 */ 5492 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5493 bool sleep_ok) 5494 { 5495 u8 rss_key_addr_cnt = 16; 5496 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5497 5498 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5499 * allows access to key addresses 16-63 by using KeyWrAddrX 5500 * as index[5:4](upper 2) into key table 5501 */ 5502 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5503 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5504 rss_key_addr_cnt = 32; 5505 5506 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5507 5508 if (idx >= 0 && idx < rss_key_addr_cnt) { 5509 if (rss_key_addr_cnt > 16) 5510 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5511 KEYWRADDRX_V(idx >> 4) | 5512 T6_VFWRADDR_V(idx) | KEYWREN_F); 5513 else 5514 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5515 KEYWRADDR_V(idx) | KEYWREN_F); 5516 } 5517 } 5518 5519 /** 5520 * t4_read_rss_pf_config - read PF RSS Configuration Table 5521 * @adapter: the adapter 5522 * @index: the entry in the PF RSS table to read 5523 * @valp: where to store the returned value 5524 * @sleep_ok: if true we may sleep while awaiting command completion 5525 * 5526 * Reads the PF RSS Configuration Table at the specified index and returns 5527 * the value found there. 5528 */ 5529 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5530 u32 *valp, bool sleep_ok) 5531 { 5532 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5533 } 5534 5535 /** 5536 * t4_read_rss_vf_config - read VF RSS Configuration Table 5537 * @adapter: the adapter 5538 * @index: the entry in the VF RSS table to read 5539 * @vfl: where to store the returned VFL 5540 * @vfh: where to store the returned VFH 5541 * @sleep_ok: if true we may sleep while awaiting command completion 5542 * 5543 * Reads the VF RSS Configuration Table at the specified index and returns 5544 * the (VFL, VFH) values found there. 5545 */ 5546 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5547 u32 *vfl, u32 *vfh, bool sleep_ok) 5548 { 5549 u32 vrt, mask, data; 5550 5551 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5552 mask = VFWRADDR_V(VFWRADDR_M); 5553 data = VFWRADDR_V(index); 5554 } else { 5555 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5556 data = T6_VFWRADDR_V(index); 5557 } 5558 5559 /* Request that the index'th VF Table values be read into VFL/VFH. 5560 */ 5561 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5562 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5563 vrt |= data | VFRDEN_F; 5564 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5565 5566 /* Grab the VFL/VFH values ... 5567 */ 5568 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5569 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5570 } 5571 5572 /** 5573 * t4_read_rss_pf_map - read PF RSS Map 5574 * @adapter: the adapter 5575 * @sleep_ok: if true we may sleep while awaiting command completion 5576 * 5577 * Reads the PF RSS Map register and returns its value. 5578 */ 5579 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5580 { 5581 u32 pfmap; 5582 5583 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5584 return pfmap; 5585 } 5586 5587 /** 5588 * t4_read_rss_pf_mask - read PF RSS Mask 5589 * @adapter: the adapter 5590 * @sleep_ok: if true we may sleep while awaiting command completion 5591 * 5592 * Reads the PF RSS Mask register and returns its value. 5593 */ 5594 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5595 { 5596 u32 pfmask; 5597 5598 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5599 return pfmask; 5600 } 5601 5602 /** 5603 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5604 * @adap: the adapter 5605 * @v4: holds the TCP/IP counter values 5606 * @v6: holds the TCP/IPv6 counter values 5607 * @sleep_ok: if true we may sleep while awaiting command completion 5608 * 5609 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5610 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5611 */ 5612 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5613 struct tp_tcp_stats *v6, bool sleep_ok) 5614 { 5615 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5616 5617 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5618 #define STAT(x) val[STAT_IDX(x)] 5619 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5620 5621 if (v4) { 5622 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5623 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5624 v4->tcp_out_rsts = STAT(OUT_RST); 5625 v4->tcp_in_segs = STAT64(IN_SEG); 5626 v4->tcp_out_segs = STAT64(OUT_SEG); 5627 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5628 } 5629 if (v6) { 5630 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5631 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5632 v6->tcp_out_rsts = STAT(OUT_RST); 5633 v6->tcp_in_segs = STAT64(IN_SEG); 5634 v6->tcp_out_segs = STAT64(OUT_SEG); 5635 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5636 } 5637 #undef STAT64 5638 #undef STAT 5639 #undef STAT_IDX 5640 } 5641 5642 /** 5643 * t4_tp_get_err_stats - read TP's error MIB counters 5644 * @adap: the adapter 5645 * @st: holds the counter values 5646 * @sleep_ok: if true we may sleep while awaiting command completion 5647 * 5648 * Returns the values of TP's error counters. 5649 */ 5650 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5651 bool sleep_ok) 5652 { 5653 int nchan = adap->params.arch.nchan; 5654 5655 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5656 sleep_ok); 5657 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5658 sleep_ok); 5659 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5660 sleep_ok); 5661 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5662 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5663 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5664 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5665 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5666 sleep_ok); 5667 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5668 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5669 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5670 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5671 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5672 sleep_ok); 5673 } 5674 5675 /** 5676 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5677 * @adap: the adapter 5678 * @st: holds the counter values 5679 * @sleep_ok: if true we may sleep while awaiting command completion 5680 * 5681 * Returns the values of TP's CPL counters. 5682 */ 5683 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5684 bool sleep_ok) 5685 { 5686 int nchan = adap->params.arch.nchan; 5687 5688 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5689 5690 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5691 } 5692 5693 /** 5694 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5695 * @adap: the adapter 5696 * @st: holds the counter values 5697 * @sleep_ok: if true we may sleep while awaiting command completion 5698 * 5699 * Returns the values of TP's RDMA counters. 5700 */ 5701 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5702 bool sleep_ok) 5703 { 5704 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5705 sleep_ok); 5706 } 5707 5708 /** 5709 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5710 * @adap: the adapter 5711 * @idx: the port index 5712 * @st: holds the counter values 5713 * @sleep_ok: if true we may sleep while awaiting command completion 5714 * 5715 * Returns the values of TP's FCoE counters for the selected port. 5716 */ 5717 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5718 struct tp_fcoe_stats *st, bool sleep_ok) 5719 { 5720 u32 val[2]; 5721 5722 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5723 sleep_ok); 5724 5725 t4_tp_mib_read(adap, &st->frames_drop, 1, 5726 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5727 5728 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5729 sleep_ok); 5730 5731 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5732 } 5733 5734 /** 5735 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5736 * @adap: the adapter 5737 * @st: holds the counter values 5738 * @sleep_ok: if true we may sleep while awaiting command completion 5739 * 5740 * Returns the values of TP's counters for non-TCP directly-placed packets. 5741 */ 5742 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5743 bool sleep_ok) 5744 { 5745 u32 val[4]; 5746 5747 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5748 st->frames = val[0]; 5749 st->drops = val[1]; 5750 st->octets = ((u64)val[2] << 32) | val[3]; 5751 } 5752 5753 /** 5754 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5755 * @adap: the adapter 5756 * @mtus: where to store the MTU values 5757 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5758 * 5759 * Reads the HW path MTU table. 5760 */ 5761 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5762 { 5763 u32 v; 5764 int i; 5765 5766 for (i = 0; i < NMTUS; ++i) { 5767 t4_write_reg(adap, TP_MTU_TABLE_A, 5768 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5769 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5770 mtus[i] = MTUVALUE_G(v); 5771 if (mtu_log) 5772 mtu_log[i] = MTUWIDTH_G(v); 5773 } 5774 } 5775 5776 /** 5777 * t4_read_cong_tbl - reads the congestion control table 5778 * @adap: the adapter 5779 * @incr: where to store the alpha values 5780 * 5781 * Reads the additive increments programmed into the HW congestion 5782 * control table. 5783 */ 5784 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5785 { 5786 unsigned int mtu, w; 5787 5788 for (mtu = 0; mtu < NMTUS; ++mtu) 5789 for (w = 0; w < NCCTRL_WIN; ++w) { 5790 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5791 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5792 incr[mtu][w] = (u16)t4_read_reg(adap, 5793 TP_CCTRL_TABLE_A) & 0x1fff; 5794 } 5795 } 5796 5797 /** 5798 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5799 * @adap: the adapter 5800 * @addr: the indirect TP register address 5801 * @mask: specifies the field within the register to modify 5802 * @val: new value for the field 5803 * 5804 * Sets a field of an indirect TP register to the given value. 5805 */ 5806 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5807 unsigned int mask, unsigned int val) 5808 { 5809 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5810 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5811 t4_write_reg(adap, TP_PIO_DATA_A, val); 5812 } 5813 5814 /** 5815 * init_cong_ctrl - initialize congestion control parameters 5816 * @a: the alpha values for congestion control 5817 * @b: the beta values for congestion control 5818 * 5819 * Initialize the congestion control parameters. 5820 */ 5821 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5822 { 5823 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5824 a[9] = 2; 5825 a[10] = 3; 5826 a[11] = 4; 5827 a[12] = 5; 5828 a[13] = 6; 5829 a[14] = 7; 5830 a[15] = 8; 5831 a[16] = 9; 5832 a[17] = 10; 5833 a[18] = 14; 5834 a[19] = 17; 5835 a[20] = 21; 5836 a[21] = 25; 5837 a[22] = 30; 5838 a[23] = 35; 5839 a[24] = 45; 5840 a[25] = 60; 5841 a[26] = 80; 5842 a[27] = 100; 5843 a[28] = 200; 5844 a[29] = 300; 5845 a[30] = 400; 5846 a[31] = 500; 5847 5848 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5849 b[9] = b[10] = 1; 5850 b[11] = b[12] = 2; 5851 b[13] = b[14] = b[15] = b[16] = 3; 5852 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5853 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5854 b[28] = b[29] = 6; 5855 b[30] = b[31] = 7; 5856 } 5857 5858 /* The minimum additive increment value for the congestion control table */ 5859 #define CC_MIN_INCR 2U 5860 5861 /** 5862 * t4_load_mtus - write the MTU and congestion control HW tables 5863 * @adap: the adapter 5864 * @mtus: the values for the MTU table 5865 * @alpha: the values for the congestion control alpha parameter 5866 * @beta: the values for the congestion control beta parameter 5867 * 5868 * Write the HW MTU table with the supplied MTUs and the high-speed 5869 * congestion control table with the supplied alpha, beta, and MTUs. 5870 * We write the two tables together because the additive increments 5871 * depend on the MTUs. 5872 */ 5873 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5874 const unsigned short *alpha, const unsigned short *beta) 5875 { 5876 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5877 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5878 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5879 28672, 40960, 57344, 81920, 114688, 163840, 229376 5880 }; 5881 5882 unsigned int i, w; 5883 5884 for (i = 0; i < NMTUS; ++i) { 5885 unsigned int mtu = mtus[i]; 5886 unsigned int log2 = fls(mtu); 5887 5888 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5889 log2--; 5890 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5891 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5892 5893 for (w = 0; w < NCCTRL_WIN; ++w) { 5894 unsigned int inc; 5895 5896 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5897 CC_MIN_INCR); 5898 5899 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5900 (w << 16) | (beta[w] << 13) | inc); 5901 } 5902 } 5903 } 5904 5905 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5906 * clocks. The formula is 5907 * 5908 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5909 * 5910 * which is equivalent to 5911 * 5912 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5913 */ 5914 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5915 { 5916 u64 v = bytes256 * adap->params.vpd.cclk; 5917 5918 return v * 62 + v / 2; 5919 } 5920 5921 /** 5922 * t4_get_chan_txrate - get the current per channel Tx rates 5923 * @adap: the adapter 5924 * @nic_rate: rates for NIC traffic 5925 * @ofld_rate: rates for offloaded traffic 5926 * 5927 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5928 * for each channel. 5929 */ 5930 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5931 { 5932 u32 v; 5933 5934 v = t4_read_reg(adap, TP_TX_TRATE_A); 5935 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5936 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5937 if (adap->params.arch.nchan == NCHAN) { 5938 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5939 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5940 } 5941 5942 v = t4_read_reg(adap, TP_TX_ORATE_A); 5943 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5944 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5945 if (adap->params.arch.nchan == NCHAN) { 5946 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5947 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5948 } 5949 } 5950 5951 /** 5952 * t4_set_trace_filter - configure one of the tracing filters 5953 * @adap: the adapter 5954 * @tp: the desired trace filter parameters 5955 * @idx: which filter to configure 5956 * @enable: whether to enable or disable the filter 5957 * 5958 * Configures one of the tracing filters available in HW. If @enable is 5959 * %0 @tp is not examined and may be %NULL. The user is responsible to 5960 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5961 */ 5962 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5963 int idx, int enable) 5964 { 5965 int i, ofst = idx * 4; 5966 u32 data_reg, mask_reg, cfg; 5967 5968 if (!enable) { 5969 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5970 return 0; 5971 } 5972 5973 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5974 if (cfg & TRCMULTIFILTER_F) { 5975 /* If multiple tracers are enabled, then maximum 5976 * capture size is 2.5KB (FIFO size of a single channel) 5977 * minus 2 flits for CPL_TRACE_PKT header. 5978 */ 5979 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5980 return -EINVAL; 5981 } else { 5982 /* If multiple tracers are disabled, to avoid deadlocks 5983 * maximum packet capture size of 9600 bytes is recommended. 5984 * Also in this mode, only trace0 can be enabled and running. 5985 */ 5986 if (tp->snap_len > 9600 || idx) 5987 return -EINVAL; 5988 } 5989 5990 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5991 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5992 tp->min_len > TFMINPKTSIZE_M) 5993 return -EINVAL; 5994 5995 /* stop the tracer we'll be changing */ 5996 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5997 5998 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5999 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 6000 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 6001 6002 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6003 t4_write_reg(adap, data_reg, tp->data[i]); 6004 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 6005 } 6006 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 6007 TFCAPTUREMAX_V(tp->snap_len) | 6008 TFMINPKTSIZE_V(tp->min_len)); 6009 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 6010 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 6011 (is_t4(adap->params.chip) ? 6012 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 6013 T5_TFPORT_V(tp->port) | T5_TFEN_F | 6014 T5_TFINVERTMATCH_V(tp->invert))); 6015 6016 return 0; 6017 } 6018 6019 /** 6020 * t4_get_trace_filter - query one of the tracing filters 6021 * @adap: the adapter 6022 * @tp: the current trace filter parameters 6023 * @idx: which trace filter to query 6024 * @enabled: non-zero if the filter is enabled 6025 * 6026 * Returns the current settings of one of the HW tracing filters. 6027 */ 6028 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6029 int *enabled) 6030 { 6031 u32 ctla, ctlb; 6032 int i, ofst = idx * 4; 6033 u32 data_reg, mask_reg; 6034 6035 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 6036 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 6037 6038 if (is_t4(adap->params.chip)) { 6039 *enabled = !!(ctla & TFEN_F); 6040 tp->port = TFPORT_G(ctla); 6041 tp->invert = !!(ctla & TFINVERTMATCH_F); 6042 } else { 6043 *enabled = !!(ctla & T5_TFEN_F); 6044 tp->port = T5_TFPORT_G(ctla); 6045 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 6046 } 6047 tp->snap_len = TFCAPTUREMAX_G(ctlb); 6048 tp->min_len = TFMINPKTSIZE_G(ctlb); 6049 tp->skip_ofst = TFOFFSET_G(ctla); 6050 tp->skip_len = TFLENGTH_G(ctla); 6051 6052 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 6053 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 6054 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 6055 6056 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6057 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6058 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6059 } 6060 } 6061 6062 /** 6063 * t4_pmtx_get_stats - returns the HW stats from PMTX 6064 * @adap: the adapter 6065 * @cnt: where to store the count statistics 6066 * @cycles: where to store the cycle statistics 6067 * 6068 * Returns performance statistics from PMTX. 6069 */ 6070 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6071 { 6072 int i; 6073 u32 data[2]; 6074 6075 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6076 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6077 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6078 if (is_t4(adap->params.chip)) { 6079 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6080 } else { 6081 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6082 PM_TX_DBG_DATA_A, data, 2, 6083 PM_TX_DBG_STAT_MSB_A); 6084 cycles[i] = (((u64)data[0] << 32) | data[1]); 6085 } 6086 } 6087 } 6088 6089 /** 6090 * t4_pmrx_get_stats - returns the HW stats from PMRX 6091 * @adap: the adapter 6092 * @cnt: where to store the count statistics 6093 * @cycles: where to store the cycle statistics 6094 * 6095 * Returns performance statistics from PMRX. 6096 */ 6097 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6098 { 6099 int i; 6100 u32 data[2]; 6101 6102 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6103 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6104 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6105 if (is_t4(adap->params.chip)) { 6106 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6107 } else { 6108 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6109 PM_RX_DBG_DATA_A, data, 2, 6110 PM_RX_DBG_STAT_MSB_A); 6111 cycles[i] = (((u64)data[0] << 32) | data[1]); 6112 } 6113 } 6114 } 6115 6116 /** 6117 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6118 * @adapter: the adapter 6119 * @pidx: the port index 6120 * 6121 * Computes and returns a bitmap indicating which MPS buffer groups are 6122 * associated with the given Port. Bit i is set if buffer group i is 6123 * used by the Port. 6124 */ 6125 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6126 int pidx) 6127 { 6128 unsigned int chip_version, nports; 6129 6130 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6131 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6132 6133 switch (chip_version) { 6134 case CHELSIO_T4: 6135 case CHELSIO_T5: 6136 switch (nports) { 6137 case 1: return 0xf; 6138 case 2: return 3 << (2 * pidx); 6139 case 4: return 1 << pidx; 6140 } 6141 break; 6142 6143 case CHELSIO_T6: 6144 switch (nports) { 6145 case 2: return 1 << (2 * pidx); 6146 } 6147 break; 6148 } 6149 6150 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6151 chip_version, nports); 6152 6153 return 0; 6154 } 6155 6156 /** 6157 * t4_get_mps_bg_map - return the buffer groups associated with a port 6158 * @adapter: the adapter 6159 * @pidx: the port index 6160 * 6161 * Returns a bitmap indicating which MPS buffer groups are associated 6162 * with the given Port. Bit i is set if buffer group i is used by the 6163 * Port. 6164 */ 6165 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6166 { 6167 u8 *mps_bg_map; 6168 unsigned int nports; 6169 6170 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6171 if (pidx >= nports) { 6172 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6173 pidx, nports); 6174 return 0; 6175 } 6176 6177 /* If we've already retrieved/computed this, just return the result. 6178 */ 6179 mps_bg_map = adapter->params.mps_bg_map; 6180 if (mps_bg_map[pidx]) 6181 return mps_bg_map[pidx]; 6182 6183 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6184 * If we're talking to such Firmware, let it tell us. If the new 6185 * API isn't supported, revert back to old hardcoded way. The value 6186 * obtained from Firmware is encoded in below format: 6187 * 6188 * val = (( MPSBGMAP[Port 3] << 24 ) | 6189 * ( MPSBGMAP[Port 2] << 16 ) | 6190 * ( MPSBGMAP[Port 1] << 8 ) | 6191 * ( MPSBGMAP[Port 0] << 0 )) 6192 */ 6193 if (adapter->flags & CXGB4_FW_OK) { 6194 u32 param, val; 6195 int ret; 6196 6197 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6198 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6199 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6200 0, 1, ¶m, &val); 6201 if (!ret) { 6202 int p; 6203 6204 /* Store the BG Map for all of the Ports in order to 6205 * avoid more calls to the Firmware in the future. 6206 */ 6207 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6208 mps_bg_map[p] = val & 0xff; 6209 6210 return mps_bg_map[pidx]; 6211 } 6212 } 6213 6214 /* Either we're not talking to the Firmware or we're dealing with 6215 * older Firmware which doesn't support the new API to get the MPS 6216 * Buffer Group Map. Fall back to computing it ourselves. 6217 */ 6218 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6219 return mps_bg_map[pidx]; 6220 } 6221 6222 /** 6223 * t4_get_tp_e2c_map - return the E2C channel map associated with a port 6224 * @adapter: the adapter 6225 * @pidx: the port index 6226 */ 6227 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx) 6228 { 6229 unsigned int nports; 6230 u32 param, val = 0; 6231 int ret; 6232 6233 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6234 if (pidx >= nports) { 6235 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n", 6236 pidx, nports); 6237 return 0; 6238 } 6239 6240 /* FW version >= 1.16.44.0 can determine E2C channel map using 6241 * FW_PARAMS_PARAM_DEV_TPCHMAP API. 6242 */ 6243 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6244 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP)); 6245 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6246 0, 1, ¶m, &val); 6247 if (!ret) 6248 return (val >> (8 * pidx)) & 0xff; 6249 6250 return 0; 6251 } 6252 6253 /** 6254 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6255 * @adap: the adapter 6256 * @pidx: the port index 6257 * 6258 * Returns a bitmap indicating which TP Ingress Channels are associated 6259 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6260 * the Port. 6261 */ 6262 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6263 { 6264 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6265 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6266 6267 if (pidx >= nports) { 6268 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6269 pidx, nports); 6270 return 0; 6271 } 6272 6273 switch (chip_version) { 6274 case CHELSIO_T4: 6275 case CHELSIO_T5: 6276 /* Note that this happens to be the same values as the MPS 6277 * Buffer Group Map for these Chips. But we replicate the code 6278 * here because they're really separate concepts. 6279 */ 6280 switch (nports) { 6281 case 1: return 0xf; 6282 case 2: return 3 << (2 * pidx); 6283 case 4: return 1 << pidx; 6284 } 6285 break; 6286 6287 case CHELSIO_T6: 6288 switch (nports) { 6289 case 1: 6290 case 2: return 1 << pidx; 6291 } 6292 break; 6293 } 6294 6295 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6296 chip_version, nports); 6297 return 0; 6298 } 6299 6300 /** 6301 * t4_get_port_type_description - return Port Type string description 6302 * @port_type: firmware Port Type enumeration 6303 */ 6304 const char *t4_get_port_type_description(enum fw_port_type port_type) 6305 { 6306 static const char *const port_type_description[] = { 6307 "Fiber_XFI", 6308 "Fiber_XAUI", 6309 "BT_SGMII", 6310 "BT_XFI", 6311 "BT_XAUI", 6312 "KX4", 6313 "CX4", 6314 "KX", 6315 "KR", 6316 "SFP", 6317 "BP_AP", 6318 "BP4_AP", 6319 "QSFP_10G", 6320 "QSA", 6321 "QSFP", 6322 "BP40_BA", 6323 "KR4_100G", 6324 "CR4_QSFP", 6325 "CR_QSFP", 6326 "CR2_QSFP", 6327 "SFP28", 6328 "KR_SFP28", 6329 "KR_XLAUI" 6330 }; 6331 6332 if (port_type < ARRAY_SIZE(port_type_description)) 6333 return port_type_description[port_type]; 6334 return "UNKNOWN"; 6335 } 6336 6337 /** 6338 * t4_get_port_stats_offset - collect port stats relative to a previous 6339 * snapshot 6340 * @adap: The adapter 6341 * @idx: The port 6342 * @stats: Current stats to fill 6343 * @offset: Previous stats snapshot 6344 */ 6345 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6346 struct port_stats *stats, 6347 struct port_stats *offset) 6348 { 6349 u64 *s, *o; 6350 int i; 6351 6352 t4_get_port_stats(adap, idx, stats); 6353 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6354 i < (sizeof(struct port_stats) / sizeof(u64)); 6355 i++, s++, o++) 6356 *s -= *o; 6357 } 6358 6359 /** 6360 * t4_get_port_stats - collect port statistics 6361 * @adap: the adapter 6362 * @idx: the port index 6363 * @p: the stats structure to fill 6364 * 6365 * Collect statistics related to the given port from HW. 6366 */ 6367 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6368 { 6369 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6370 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6371 6372 #define GET_STAT(name) \ 6373 t4_read_reg64(adap, \ 6374 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6375 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6376 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6377 6378 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6379 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6380 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6381 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6382 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6383 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6384 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6385 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6386 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6387 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6388 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6389 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6390 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6391 p->tx_drop = GET_STAT(TX_PORT_DROP); 6392 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6393 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6394 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6395 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6396 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6397 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6398 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6399 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6400 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6401 6402 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6403 if (stat_ctl & COUNTPAUSESTATTX_F) 6404 p->tx_frames_64 -= p->tx_pause; 6405 if (stat_ctl & COUNTPAUSEMCTX_F) 6406 p->tx_mcast_frames -= p->tx_pause; 6407 } 6408 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6409 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6410 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6411 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6412 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6413 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6414 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6415 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6416 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6417 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6418 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6419 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6420 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6421 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6422 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6423 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6424 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6425 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6426 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6427 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6428 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6429 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6430 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6431 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6432 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6433 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6434 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6435 6436 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6437 if (stat_ctl & COUNTPAUSESTATRX_F) 6438 p->rx_frames_64 -= p->rx_pause; 6439 if (stat_ctl & COUNTPAUSEMCRX_F) 6440 p->rx_mcast_frames -= p->rx_pause; 6441 } 6442 6443 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6444 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6445 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6446 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6447 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6448 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6449 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6450 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6451 6452 #undef GET_STAT 6453 #undef GET_STAT_COM 6454 } 6455 6456 /** 6457 * t4_get_lb_stats - collect loopback port statistics 6458 * @adap: the adapter 6459 * @idx: the loopback port index 6460 * @p: the stats structure to fill 6461 * 6462 * Return HW statistics for the given loopback port. 6463 */ 6464 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6465 { 6466 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6467 6468 #define GET_STAT(name) \ 6469 t4_read_reg64(adap, \ 6470 (is_t4(adap->params.chip) ? \ 6471 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6472 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6473 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6474 6475 p->octets = GET_STAT(BYTES); 6476 p->frames = GET_STAT(FRAMES); 6477 p->bcast_frames = GET_STAT(BCAST); 6478 p->mcast_frames = GET_STAT(MCAST); 6479 p->ucast_frames = GET_STAT(UCAST); 6480 p->error_frames = GET_STAT(ERROR); 6481 6482 p->frames_64 = GET_STAT(64B); 6483 p->frames_65_127 = GET_STAT(65B_127B); 6484 p->frames_128_255 = GET_STAT(128B_255B); 6485 p->frames_256_511 = GET_STAT(256B_511B); 6486 p->frames_512_1023 = GET_STAT(512B_1023B); 6487 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6488 p->frames_1519_max = GET_STAT(1519B_MAX); 6489 p->drop = GET_STAT(DROP_FRAMES); 6490 6491 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6492 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6493 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6494 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6495 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6496 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6497 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6498 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6499 6500 #undef GET_STAT 6501 #undef GET_STAT_COM 6502 } 6503 6504 /* t4_mk_filtdelwr - create a delete filter WR 6505 * @ftid: the filter ID 6506 * @wr: the filter work request to populate 6507 * @qid: ingress queue to receive the delete notification 6508 * 6509 * Creates a filter work request to delete the supplied filter. If @qid is 6510 * negative the delete notification is suppressed. 6511 */ 6512 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6513 { 6514 memset(wr, 0, sizeof(*wr)); 6515 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6516 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6517 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6518 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6519 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6520 if (qid >= 0) 6521 wr->rx_chan_rx_rpl_iq = 6522 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6523 } 6524 6525 #define INIT_CMD(var, cmd, rd_wr) do { \ 6526 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6527 FW_CMD_REQUEST_F | \ 6528 FW_CMD_##rd_wr##_F); \ 6529 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6530 } while (0) 6531 6532 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6533 u32 addr, u32 val) 6534 { 6535 u32 ldst_addrspace; 6536 struct fw_ldst_cmd c; 6537 6538 memset(&c, 0, sizeof(c)); 6539 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6540 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6541 FW_CMD_REQUEST_F | 6542 FW_CMD_WRITE_F | 6543 ldst_addrspace); 6544 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6545 c.u.addrval.addr = cpu_to_be32(addr); 6546 c.u.addrval.val = cpu_to_be32(val); 6547 6548 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6549 } 6550 6551 /** 6552 * t4_mdio_rd - read a PHY register through MDIO 6553 * @adap: the adapter 6554 * @mbox: mailbox to use for the FW command 6555 * @phy_addr: the PHY address 6556 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6557 * @reg: the register to read 6558 * @valp: where to store the value 6559 * 6560 * Issues a FW command through the given mailbox to read a PHY register. 6561 */ 6562 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6563 unsigned int mmd, unsigned int reg, u16 *valp) 6564 { 6565 int ret; 6566 u32 ldst_addrspace; 6567 struct fw_ldst_cmd c; 6568 6569 memset(&c, 0, sizeof(c)); 6570 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6571 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6572 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6573 ldst_addrspace); 6574 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6575 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6576 FW_LDST_CMD_MMD_V(mmd)); 6577 c.u.mdio.raddr = cpu_to_be16(reg); 6578 6579 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6580 if (ret == 0) 6581 *valp = be16_to_cpu(c.u.mdio.rval); 6582 return ret; 6583 } 6584 6585 /** 6586 * t4_mdio_wr - write a PHY register through MDIO 6587 * @adap: the adapter 6588 * @mbox: mailbox to use for the FW command 6589 * @phy_addr: the PHY address 6590 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6591 * @reg: the register to write 6592 * @val: value to write 6593 * 6594 * Issues a FW command through the given mailbox to write a PHY register. 6595 */ 6596 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6597 unsigned int mmd, unsigned int reg, u16 val) 6598 { 6599 u32 ldst_addrspace; 6600 struct fw_ldst_cmd c; 6601 6602 memset(&c, 0, sizeof(c)); 6603 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6604 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6605 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6606 ldst_addrspace); 6607 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6608 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6609 FW_LDST_CMD_MMD_V(mmd)); 6610 c.u.mdio.raddr = cpu_to_be16(reg); 6611 c.u.mdio.rval = cpu_to_be16(val); 6612 6613 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6614 } 6615 6616 /** 6617 * t4_sge_decode_idma_state - decode the idma state 6618 * @adapter: the adapter 6619 * @state: the state idma is stuck in 6620 */ 6621 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6622 { 6623 static const char * const t4_decode[] = { 6624 "IDMA_IDLE", 6625 "IDMA_PUSH_MORE_CPL_FIFO", 6626 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6627 "Not used", 6628 "IDMA_PHYSADDR_SEND_PCIEHDR", 6629 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6630 "IDMA_PHYSADDR_SEND_PAYLOAD", 6631 "IDMA_SEND_FIFO_TO_IMSG", 6632 "IDMA_FL_REQ_DATA_FL_PREP", 6633 "IDMA_FL_REQ_DATA_FL", 6634 "IDMA_FL_DROP", 6635 "IDMA_FL_H_REQ_HEADER_FL", 6636 "IDMA_FL_H_SEND_PCIEHDR", 6637 "IDMA_FL_H_PUSH_CPL_FIFO", 6638 "IDMA_FL_H_SEND_CPL", 6639 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6640 "IDMA_FL_H_SEND_IP_HDR", 6641 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6642 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6643 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6644 "IDMA_FL_D_SEND_PCIEHDR", 6645 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6646 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6647 "IDMA_FL_SEND_PCIEHDR", 6648 "IDMA_FL_PUSH_CPL_FIFO", 6649 "IDMA_FL_SEND_CPL", 6650 "IDMA_FL_SEND_PAYLOAD_FIRST", 6651 "IDMA_FL_SEND_PAYLOAD", 6652 "IDMA_FL_REQ_NEXT_DATA_FL", 6653 "IDMA_FL_SEND_NEXT_PCIEHDR", 6654 "IDMA_FL_SEND_PADDING", 6655 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6656 "IDMA_FL_SEND_FIFO_TO_IMSG", 6657 "IDMA_FL_REQ_DATAFL_DONE", 6658 "IDMA_FL_REQ_HEADERFL_DONE", 6659 }; 6660 static const char * const t5_decode[] = { 6661 "IDMA_IDLE", 6662 "IDMA_ALMOST_IDLE", 6663 "IDMA_PUSH_MORE_CPL_FIFO", 6664 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6665 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6666 "IDMA_PHYSADDR_SEND_PCIEHDR", 6667 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6668 "IDMA_PHYSADDR_SEND_PAYLOAD", 6669 "IDMA_SEND_FIFO_TO_IMSG", 6670 "IDMA_FL_REQ_DATA_FL", 6671 "IDMA_FL_DROP", 6672 "IDMA_FL_DROP_SEND_INC", 6673 "IDMA_FL_H_REQ_HEADER_FL", 6674 "IDMA_FL_H_SEND_PCIEHDR", 6675 "IDMA_FL_H_PUSH_CPL_FIFO", 6676 "IDMA_FL_H_SEND_CPL", 6677 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6678 "IDMA_FL_H_SEND_IP_HDR", 6679 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6680 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6681 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6682 "IDMA_FL_D_SEND_PCIEHDR", 6683 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6684 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6685 "IDMA_FL_SEND_PCIEHDR", 6686 "IDMA_FL_PUSH_CPL_FIFO", 6687 "IDMA_FL_SEND_CPL", 6688 "IDMA_FL_SEND_PAYLOAD_FIRST", 6689 "IDMA_FL_SEND_PAYLOAD", 6690 "IDMA_FL_REQ_NEXT_DATA_FL", 6691 "IDMA_FL_SEND_NEXT_PCIEHDR", 6692 "IDMA_FL_SEND_PADDING", 6693 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6694 }; 6695 static const char * const t6_decode[] = { 6696 "IDMA_IDLE", 6697 "IDMA_PUSH_MORE_CPL_FIFO", 6698 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6699 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6700 "IDMA_PHYSADDR_SEND_PCIEHDR", 6701 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6702 "IDMA_PHYSADDR_SEND_PAYLOAD", 6703 "IDMA_FL_REQ_DATA_FL", 6704 "IDMA_FL_DROP", 6705 "IDMA_FL_DROP_SEND_INC", 6706 "IDMA_FL_H_REQ_HEADER_FL", 6707 "IDMA_FL_H_SEND_PCIEHDR", 6708 "IDMA_FL_H_PUSH_CPL_FIFO", 6709 "IDMA_FL_H_SEND_CPL", 6710 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6711 "IDMA_FL_H_SEND_IP_HDR", 6712 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6713 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6714 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6715 "IDMA_FL_D_SEND_PCIEHDR", 6716 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6717 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6718 "IDMA_FL_SEND_PCIEHDR", 6719 "IDMA_FL_PUSH_CPL_FIFO", 6720 "IDMA_FL_SEND_CPL", 6721 "IDMA_FL_SEND_PAYLOAD_FIRST", 6722 "IDMA_FL_SEND_PAYLOAD", 6723 "IDMA_FL_REQ_NEXT_DATA_FL", 6724 "IDMA_FL_SEND_NEXT_PCIEHDR", 6725 "IDMA_FL_SEND_PADDING", 6726 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6727 }; 6728 static const u32 sge_regs[] = { 6729 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6730 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6731 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6732 }; 6733 const char **sge_idma_decode; 6734 int sge_idma_decode_nstates; 6735 int i; 6736 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6737 6738 /* Select the right set of decode strings to dump depending on the 6739 * adapter chip type. 6740 */ 6741 switch (chip_version) { 6742 case CHELSIO_T4: 6743 sge_idma_decode = (const char **)t4_decode; 6744 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6745 break; 6746 6747 case CHELSIO_T5: 6748 sge_idma_decode = (const char **)t5_decode; 6749 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6750 break; 6751 6752 case CHELSIO_T6: 6753 sge_idma_decode = (const char **)t6_decode; 6754 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6755 break; 6756 6757 default: 6758 dev_err(adapter->pdev_dev, 6759 "Unsupported chip version %d\n", chip_version); 6760 return; 6761 } 6762 6763 if (is_t4(adapter->params.chip)) { 6764 sge_idma_decode = (const char **)t4_decode; 6765 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6766 } else { 6767 sge_idma_decode = (const char **)t5_decode; 6768 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6769 } 6770 6771 if (state < sge_idma_decode_nstates) 6772 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6773 else 6774 CH_WARN(adapter, "idma state %d unknown\n", state); 6775 6776 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6777 CH_WARN(adapter, "SGE register %#x value %#x\n", 6778 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6779 } 6780 6781 /** 6782 * t4_sge_ctxt_flush - flush the SGE context cache 6783 * @adap: the adapter 6784 * @mbox: mailbox to use for the FW command 6785 * @ctxt_type: Egress or Ingress 6786 * 6787 * Issues a FW command through the given mailbox to flush the 6788 * SGE context cache. 6789 */ 6790 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6791 { 6792 int ret; 6793 u32 ldst_addrspace; 6794 struct fw_ldst_cmd c; 6795 6796 memset(&c, 0, sizeof(c)); 6797 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6798 FW_LDST_ADDRSPC_SGE_EGRC : 6799 FW_LDST_ADDRSPC_SGE_INGC); 6800 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6801 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6802 ldst_addrspace); 6803 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6804 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6805 6806 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6807 return ret; 6808 } 6809 6810 /** 6811 * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values 6812 * @adap: the adapter 6813 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6814 * @dbqtimers: SGE Doorbell Queue Timer table 6815 * 6816 * Reads the SGE Doorbell Queue Timer values into the provided table. 6817 * Returns 0 on success (Firmware and Hardware support this feature), 6818 * an error on failure. 6819 */ 6820 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6821 u16 *dbqtimers) 6822 { 6823 int ret, dbqtimerix; 6824 6825 ret = 0; 6826 dbqtimerix = 0; 6827 while (dbqtimerix < ndbqtimers) { 6828 int nparams, param; 6829 u32 params[7], vals[7]; 6830 6831 nparams = ndbqtimers - dbqtimerix; 6832 if (nparams > ARRAY_SIZE(params)) 6833 nparams = ARRAY_SIZE(params); 6834 6835 for (param = 0; param < nparams; param++) 6836 params[param] = 6837 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6838 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6839 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6840 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6841 nparams, params, vals); 6842 if (ret) 6843 break; 6844 6845 for (param = 0; param < nparams; param++) 6846 dbqtimers[dbqtimerix++] = vals[param]; 6847 } 6848 return ret; 6849 } 6850 6851 /** 6852 * t4_fw_hello - establish communication with FW 6853 * @adap: the adapter 6854 * @mbox: mailbox to use for the FW command 6855 * @evt_mbox: mailbox to receive async FW events 6856 * @master: specifies the caller's willingness to be the device master 6857 * @state: returns the current device state (if non-NULL) 6858 * 6859 * Issues a command to establish communication with FW. Returns either 6860 * an error (negative integer) or the mailbox of the Master PF. 6861 */ 6862 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6863 enum dev_master master, enum dev_state *state) 6864 { 6865 int ret; 6866 struct fw_hello_cmd c; 6867 u32 v; 6868 unsigned int master_mbox; 6869 int retries = FW_CMD_HELLO_RETRIES; 6870 6871 retry: 6872 memset(&c, 0, sizeof(c)); 6873 INIT_CMD(c, HELLO, WRITE); 6874 c.err_to_clearinit = cpu_to_be32( 6875 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6876 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6877 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6878 mbox : FW_HELLO_CMD_MBMASTER_M) | 6879 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6880 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6881 FW_HELLO_CMD_CLEARINIT_F); 6882 6883 /* 6884 * Issue the HELLO command to the firmware. If it's not successful 6885 * but indicates that we got a "busy" or "timeout" condition, retry 6886 * the HELLO until we exhaust our retry limit. If we do exceed our 6887 * retry limit, check to see if the firmware left us any error 6888 * information and report that if so. 6889 */ 6890 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6891 if (ret < 0) { 6892 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6893 goto retry; 6894 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6895 t4_report_fw_error(adap); 6896 return ret; 6897 } 6898 6899 v = be32_to_cpu(c.err_to_clearinit); 6900 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6901 if (state) { 6902 if (v & FW_HELLO_CMD_ERR_F) 6903 *state = DEV_STATE_ERR; 6904 else if (v & FW_HELLO_CMD_INIT_F) 6905 *state = DEV_STATE_INIT; 6906 else 6907 *state = DEV_STATE_UNINIT; 6908 } 6909 6910 /* 6911 * If we're not the Master PF then we need to wait around for the 6912 * Master PF Driver to finish setting up the adapter. 6913 * 6914 * Note that we also do this wait if we're a non-Master-capable PF and 6915 * there is no current Master PF; a Master PF may show up momentarily 6916 * and we wouldn't want to fail pointlessly. (This can happen when an 6917 * OS loads lots of different drivers rapidly at the same time). In 6918 * this case, the Master PF returned by the firmware will be 6919 * PCIE_FW_MASTER_M so the test below will work ... 6920 */ 6921 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6922 master_mbox != mbox) { 6923 int waiting = FW_CMD_HELLO_TIMEOUT; 6924 6925 /* 6926 * Wait for the firmware to either indicate an error or 6927 * initialized state. If we see either of these we bail out 6928 * and report the issue to the caller. If we exhaust the 6929 * "hello timeout" and we haven't exhausted our retries, try 6930 * again. Otherwise bail with a timeout error. 6931 */ 6932 for (;;) { 6933 u32 pcie_fw; 6934 6935 msleep(50); 6936 waiting -= 50; 6937 6938 /* 6939 * If neither Error nor Initialized are indicated 6940 * by the firmware keep waiting till we exhaust our 6941 * timeout ... and then retry if we haven't exhausted 6942 * our retries ... 6943 */ 6944 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6945 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6946 if (waiting <= 0) { 6947 if (retries-- > 0) 6948 goto retry; 6949 6950 return -ETIMEDOUT; 6951 } 6952 continue; 6953 } 6954 6955 /* 6956 * We either have an Error or Initialized condition 6957 * report errors preferentially. 6958 */ 6959 if (state) { 6960 if (pcie_fw & PCIE_FW_ERR_F) 6961 *state = DEV_STATE_ERR; 6962 else if (pcie_fw & PCIE_FW_INIT_F) 6963 *state = DEV_STATE_INIT; 6964 } 6965 6966 /* 6967 * If we arrived before a Master PF was selected and 6968 * there's not a valid Master PF, grab its identity 6969 * for our caller. 6970 */ 6971 if (master_mbox == PCIE_FW_MASTER_M && 6972 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6973 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6974 break; 6975 } 6976 } 6977 6978 return master_mbox; 6979 } 6980 6981 /** 6982 * t4_fw_bye - end communication with FW 6983 * @adap: the adapter 6984 * @mbox: mailbox to use for the FW command 6985 * 6986 * Issues a command to terminate communication with FW. 6987 */ 6988 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6989 { 6990 struct fw_bye_cmd c; 6991 6992 memset(&c, 0, sizeof(c)); 6993 INIT_CMD(c, BYE, WRITE); 6994 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6995 } 6996 6997 /** 6998 * t4_init_cmd - ask FW to initialize the device 6999 * @adap: the adapter 7000 * @mbox: mailbox to use for the FW command 7001 * 7002 * Issues a command to FW to partially initialize the device. This 7003 * performs initialization that generally doesn't depend on user input. 7004 */ 7005 int t4_early_init(struct adapter *adap, unsigned int mbox) 7006 { 7007 struct fw_initialize_cmd c; 7008 7009 memset(&c, 0, sizeof(c)); 7010 INIT_CMD(c, INITIALIZE, WRITE); 7011 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7012 } 7013 7014 /** 7015 * t4_fw_reset - issue a reset to FW 7016 * @adap: the adapter 7017 * @mbox: mailbox to use for the FW command 7018 * @reset: specifies the type of reset to perform 7019 * 7020 * Issues a reset command of the specified type to FW. 7021 */ 7022 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7023 { 7024 struct fw_reset_cmd c; 7025 7026 memset(&c, 0, sizeof(c)); 7027 INIT_CMD(c, RESET, WRITE); 7028 c.val = cpu_to_be32(reset); 7029 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7030 } 7031 7032 /** 7033 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7034 * @adap: the adapter 7035 * @mbox: mailbox to use for the FW RESET command (if desired) 7036 * @force: force uP into RESET even if FW RESET command fails 7037 * 7038 * Issues a RESET command to firmware (if desired) with a HALT indication 7039 * and then puts the microprocessor into RESET state. The RESET command 7040 * will only be issued if a legitimate mailbox is provided (mbox <= 7041 * PCIE_FW_MASTER_M). 7042 * 7043 * This is generally used in order for the host to safely manipulate the 7044 * adapter without fear of conflicting with whatever the firmware might 7045 * be doing. The only way out of this state is to RESTART the firmware 7046 * ... 7047 */ 7048 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7049 { 7050 int ret = 0; 7051 7052 /* 7053 * If a legitimate mailbox is provided, issue a RESET command 7054 * with a HALT indication. 7055 */ 7056 if (mbox <= PCIE_FW_MASTER_M) { 7057 struct fw_reset_cmd c; 7058 7059 memset(&c, 0, sizeof(c)); 7060 INIT_CMD(c, RESET, WRITE); 7061 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 7062 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 7063 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7064 } 7065 7066 /* 7067 * Normally we won't complete the operation if the firmware RESET 7068 * command fails but if our caller insists we'll go ahead and put the 7069 * uP into RESET. This can be useful if the firmware is hung or even 7070 * missing ... We'll have to take the risk of putting the uP into 7071 * RESET without the cooperation of firmware in that case. 7072 * 7073 * We also force the firmware's HALT flag to be on in case we bypassed 7074 * the firmware RESET command above or we're dealing with old firmware 7075 * which doesn't have the HALT capability. This will serve as a flag 7076 * for the incoming firmware to know that it's coming out of a HALT 7077 * rather than a RESET ... if it's new enough to understand that ... 7078 */ 7079 if (ret == 0 || force) { 7080 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 7081 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 7082 PCIE_FW_HALT_F); 7083 } 7084 7085 /* 7086 * And we always return the result of the firmware RESET command 7087 * even when we force the uP into RESET ... 7088 */ 7089 return ret; 7090 } 7091 7092 /** 7093 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7094 * @adap: the adapter 7095 * @mbox: mailbox to use for the FW command 7096 * @reset: if we want to do a RESET to restart things 7097 * 7098 * Restart firmware previously halted by t4_fw_halt(). On successful 7099 * return the previous PF Master remains as the new PF Master and there 7100 * is no need to issue a new HELLO command, etc. 7101 * 7102 * We do this in two ways: 7103 * 7104 * 1. If we're dealing with newer firmware we'll simply want to take 7105 * the chip's microprocessor out of RESET. This will cause the 7106 * firmware to start up from its start vector. And then we'll loop 7107 * until the firmware indicates it's started again (PCIE_FW.HALT 7108 * reset to 0) or we timeout. 7109 * 7110 * 2. If we're dealing with older firmware then we'll need to RESET 7111 * the chip since older firmware won't recognize the PCIE_FW.HALT 7112 * flag and automatically RESET itself on startup. 7113 */ 7114 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7115 { 7116 if (reset) { 7117 /* 7118 * Since we're directing the RESET instead of the firmware 7119 * doing it automatically, we need to clear the PCIE_FW.HALT 7120 * bit. 7121 */ 7122 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7123 7124 /* 7125 * If we've been given a valid mailbox, first try to get the 7126 * firmware to do the RESET. If that works, great and we can 7127 * return success. Otherwise, if we haven't been given a 7128 * valid mailbox or the RESET command failed, fall back to 7129 * hitting the chip with a hammer. 7130 */ 7131 if (mbox <= PCIE_FW_MASTER_M) { 7132 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7133 msleep(100); 7134 if (t4_fw_reset(adap, mbox, 7135 PIORST_F | PIORSTMODE_F) == 0) 7136 return 0; 7137 } 7138 7139 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7140 msleep(2000); 7141 } else { 7142 int ms; 7143 7144 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7145 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7146 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7147 return 0; 7148 msleep(100); 7149 ms += 100; 7150 } 7151 return -ETIMEDOUT; 7152 } 7153 return 0; 7154 } 7155 7156 /** 7157 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7158 * @adap: the adapter 7159 * @mbox: mailbox to use for the FW RESET command (if desired) 7160 * @fw_data: the firmware image to write 7161 * @size: image size 7162 * @force: force upgrade even if firmware doesn't cooperate 7163 * 7164 * Perform all of the steps necessary for upgrading an adapter's 7165 * firmware image. Normally this requires the cooperation of the 7166 * existing firmware in order to halt all existing activities 7167 * but if an invalid mailbox token is passed in we skip that step 7168 * (though we'll still put the adapter microprocessor into RESET in 7169 * that case). 7170 * 7171 * On successful return the new firmware will have been loaded and 7172 * the adapter will have been fully RESET losing all previous setup 7173 * state. On unsuccessful return the adapter may be completely hosed ... 7174 * positive errno indicates that the adapter is ~probably~ intact, a 7175 * negative errno indicates that things are looking bad ... 7176 */ 7177 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7178 const u8 *fw_data, unsigned int size, int force) 7179 { 7180 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7181 int reset, ret; 7182 7183 if (!t4_fw_matches_chip(adap, fw_hdr)) 7184 return -EINVAL; 7185 7186 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7187 * set wont be sent when we are flashing FW. 7188 */ 7189 adap->flags &= ~CXGB4_FW_OK; 7190 7191 ret = t4_fw_halt(adap, mbox, force); 7192 if (ret < 0 && !force) 7193 goto out; 7194 7195 ret = t4_load_fw(adap, fw_data, size); 7196 if (ret < 0) 7197 goto out; 7198 7199 /* 7200 * If there was a Firmware Configuration File stored in FLASH, 7201 * there's a good chance that it won't be compatible with the new 7202 * Firmware. In order to prevent difficult to diagnose adapter 7203 * initialization issues, we clear out the Firmware Configuration File 7204 * portion of the FLASH . The user will need to re-FLASH a new 7205 * Firmware Configuration File which is compatible with the new 7206 * Firmware if that's desired. 7207 */ 7208 (void)t4_load_cfg(adap, NULL, 0); 7209 7210 /* 7211 * Older versions of the firmware don't understand the new 7212 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7213 * restart. So for newly loaded older firmware we'll have to do the 7214 * RESET for it so it starts up on a clean slate. We can tell if 7215 * the newly loaded firmware will handle this right by checking 7216 * its header flags to see if it advertises the capability. 7217 */ 7218 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7219 ret = t4_fw_restart(adap, mbox, reset); 7220 7221 /* Grab potentially new Firmware Device Log parameters so we can see 7222 * how healthy the new Firmware is. It's okay to contact the new 7223 * Firmware for these parameters even though, as far as it's 7224 * concerned, we've never said "HELLO" to it ... 7225 */ 7226 (void)t4_init_devlog_params(adap); 7227 out: 7228 adap->flags |= CXGB4_FW_OK; 7229 return ret; 7230 } 7231 7232 /** 7233 * t4_fl_pkt_align - return the fl packet alignment 7234 * @adap: the adapter 7235 * 7236 * T4 has a single field to specify the packing and padding boundary. 7237 * T5 onwards has separate fields for this and hence the alignment for 7238 * next packet offset is maximum of these two. 7239 * 7240 */ 7241 int t4_fl_pkt_align(struct adapter *adap) 7242 { 7243 u32 sge_control, sge_control2; 7244 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7245 7246 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7247 7248 /* T4 uses a single control field to specify both the PCIe Padding and 7249 * Packing Boundary. T5 introduced the ability to specify these 7250 * separately. The actual Ingress Packet Data alignment boundary 7251 * within Packed Buffer Mode is the maximum of these two 7252 * specifications. (Note that it makes no real practical sense to 7253 * have the Padding Boundary be larger than the Packing Boundary but you 7254 * could set the chip up that way and, in fact, legacy T4 code would 7255 * end doing this because it would initialize the Padding Boundary and 7256 * leave the Packing Boundary initialized to 0 (16 bytes).) 7257 * Padding Boundary values in T6 starts from 8B, 7258 * where as it is 32B for T4 and T5. 7259 */ 7260 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7261 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7262 else 7263 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7264 7265 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7266 7267 fl_align = ingpadboundary; 7268 if (!is_t4(adap->params.chip)) { 7269 /* T5 has a weird interpretation of one of the PCIe Packing 7270 * Boundary values. No idea why ... 7271 */ 7272 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7273 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7274 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7275 ingpackboundary = 16; 7276 else 7277 ingpackboundary = 1 << (ingpackboundary + 7278 INGPACKBOUNDARY_SHIFT_X); 7279 7280 fl_align = max(ingpadboundary, ingpackboundary); 7281 } 7282 return fl_align; 7283 } 7284 7285 /** 7286 * t4_fixup_host_params - fix up host-dependent parameters 7287 * @adap: the adapter 7288 * @page_size: the host's Base Page Size 7289 * @cache_line_size: the host's Cache Line Size 7290 * 7291 * Various registers in T4 contain values which are dependent on the 7292 * host's Base Page and Cache Line Sizes. This function will fix all of 7293 * those registers with the appropriate values as passed in ... 7294 */ 7295 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7296 unsigned int cache_line_size) 7297 { 7298 unsigned int page_shift = fls(page_size) - 1; 7299 unsigned int sge_hps = page_shift - 10; 7300 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7301 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7302 unsigned int fl_align_log = fls(fl_align) - 1; 7303 7304 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7305 HOSTPAGESIZEPF0_V(sge_hps) | 7306 HOSTPAGESIZEPF1_V(sge_hps) | 7307 HOSTPAGESIZEPF2_V(sge_hps) | 7308 HOSTPAGESIZEPF3_V(sge_hps) | 7309 HOSTPAGESIZEPF4_V(sge_hps) | 7310 HOSTPAGESIZEPF5_V(sge_hps) | 7311 HOSTPAGESIZEPF6_V(sge_hps) | 7312 HOSTPAGESIZEPF7_V(sge_hps)); 7313 7314 if (is_t4(adap->params.chip)) { 7315 t4_set_reg_field(adap, SGE_CONTROL_A, 7316 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7317 EGRSTATUSPAGESIZE_F, 7318 INGPADBOUNDARY_V(fl_align_log - 7319 INGPADBOUNDARY_SHIFT_X) | 7320 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7321 } else { 7322 unsigned int pack_align; 7323 unsigned int ingpad, ingpack; 7324 7325 /* T5 introduced the separation of the Free List Padding and 7326 * Packing Boundaries. Thus, we can select a smaller Padding 7327 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7328 * Bandwidth, and use a Packing Boundary which is large enough 7329 * to avoid false sharing between CPUs, etc. 7330 * 7331 * For the PCI Link, the smaller the Padding Boundary the 7332 * better. For the Memory Controller, a smaller Padding 7333 * Boundary is better until we cross under the Memory Line 7334 * Size (the minimum unit of transfer to/from Memory). If we 7335 * have a Padding Boundary which is smaller than the Memory 7336 * Line Size, that'll involve a Read-Modify-Write cycle on the 7337 * Memory Controller which is never good. 7338 */ 7339 7340 /* We want the Packing Boundary to be based on the Cache Line 7341 * Size in order to help avoid False Sharing performance 7342 * issues between CPUs, etc. We also want the Packing 7343 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7344 * get best performance when the Packing Boundary is a 7345 * multiple of the Maximum Payload Size. 7346 */ 7347 pack_align = fl_align; 7348 if (pci_is_pcie(adap->pdev)) { 7349 unsigned int mps, mps_log; 7350 u16 devctl; 7351 7352 /* The PCIe Device Control Maximum Payload Size field 7353 * [bits 7:5] encodes sizes as powers of 2 starting at 7354 * 128 bytes. 7355 */ 7356 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, 7357 &devctl); 7358 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7359 mps = 1 << mps_log; 7360 if (mps > pack_align) 7361 pack_align = mps; 7362 } 7363 7364 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7365 * value for the Packing Boundary. This corresponds to 16 7366 * bytes instead of the expected 32 bytes. So if we want 32 7367 * bytes, the best we can really do is 64 bytes ... 7368 */ 7369 if (pack_align <= 16) { 7370 ingpack = INGPACKBOUNDARY_16B_X; 7371 fl_align = 16; 7372 } else if (pack_align == 32) { 7373 ingpack = INGPACKBOUNDARY_64B_X; 7374 fl_align = 64; 7375 } else { 7376 unsigned int pack_align_log = fls(pack_align) - 1; 7377 7378 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7379 fl_align = pack_align; 7380 } 7381 7382 /* Use the smallest Ingress Padding which isn't smaller than 7383 * the Memory Controller Read/Write Size. We'll take that as 7384 * being 8 bytes since we don't know of any system with a 7385 * wider Memory Controller Bus Width. 7386 */ 7387 if (is_t5(adap->params.chip)) 7388 ingpad = INGPADBOUNDARY_32B_X; 7389 else 7390 ingpad = T6_INGPADBOUNDARY_8B_X; 7391 7392 t4_set_reg_field(adap, SGE_CONTROL_A, 7393 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7394 EGRSTATUSPAGESIZE_F, 7395 INGPADBOUNDARY_V(ingpad) | 7396 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7397 t4_set_reg_field(adap, SGE_CONTROL2_A, 7398 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7399 INGPACKBOUNDARY_V(ingpack)); 7400 } 7401 /* 7402 * Adjust various SGE Free List Host Buffer Sizes. 7403 * 7404 * This is something of a crock since we're using fixed indices into 7405 * the array which are also known by the sge.c code and the T4 7406 * Firmware Configuration File. We need to come up with a much better 7407 * approach to managing this array. For now, the first four entries 7408 * are: 7409 * 7410 * 0: Host Page Size 7411 * 1: 64KB 7412 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7413 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7414 * 7415 * For the single-MTU buffers in unpacked mode we need to include 7416 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7417 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7418 * Padding boundary. All of these are accommodated in the Factory 7419 * Default Firmware Configuration File but we need to adjust it for 7420 * this host's cache line size. 7421 */ 7422 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7423 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7424 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7425 & ~(fl_align-1)); 7426 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7427 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7428 & ~(fl_align-1)); 7429 7430 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7431 7432 return 0; 7433 } 7434 7435 /** 7436 * t4_fw_initialize - ask FW to initialize the device 7437 * @adap: the adapter 7438 * @mbox: mailbox to use for the FW command 7439 * 7440 * Issues a command to FW to partially initialize the device. This 7441 * performs initialization that generally doesn't depend on user input. 7442 */ 7443 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7444 { 7445 struct fw_initialize_cmd c; 7446 7447 memset(&c, 0, sizeof(c)); 7448 INIT_CMD(c, INITIALIZE, WRITE); 7449 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7450 } 7451 7452 /** 7453 * t4_query_params_rw - query FW or device parameters 7454 * @adap: the adapter 7455 * @mbox: mailbox to use for the FW command 7456 * @pf: the PF 7457 * @vf: the VF 7458 * @nparams: the number of parameters 7459 * @params: the parameter names 7460 * @val: the parameter values 7461 * @rw: Write and read flag 7462 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7463 * 7464 * Reads the value of FW or device parameters. Up to 7 parameters can be 7465 * queried at once. 7466 */ 7467 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7468 unsigned int vf, unsigned int nparams, const u32 *params, 7469 u32 *val, int rw, bool sleep_ok) 7470 { 7471 int i, ret; 7472 struct fw_params_cmd c; 7473 __be32 *p = &c.param[0].mnem; 7474 7475 if (nparams > 7) 7476 return -EINVAL; 7477 7478 memset(&c, 0, sizeof(c)); 7479 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7480 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7481 FW_PARAMS_CMD_PFN_V(pf) | 7482 FW_PARAMS_CMD_VFN_V(vf)); 7483 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7484 7485 for (i = 0; i < nparams; i++) { 7486 *p++ = cpu_to_be32(*params++); 7487 if (rw) 7488 *p = cpu_to_be32(*(val + i)); 7489 p++; 7490 } 7491 7492 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7493 if (ret == 0) 7494 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7495 *val++ = be32_to_cpu(*p); 7496 return ret; 7497 } 7498 7499 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7500 unsigned int vf, unsigned int nparams, const u32 *params, 7501 u32 *val) 7502 { 7503 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7504 true); 7505 } 7506 7507 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7508 unsigned int vf, unsigned int nparams, const u32 *params, 7509 u32 *val) 7510 { 7511 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7512 false); 7513 } 7514 7515 /** 7516 * t4_set_params_timeout - sets FW or device parameters 7517 * @adap: the adapter 7518 * @mbox: mailbox to use for the FW command 7519 * @pf: the PF 7520 * @vf: the VF 7521 * @nparams: the number of parameters 7522 * @params: the parameter names 7523 * @val: the parameter values 7524 * @timeout: the timeout time 7525 * 7526 * Sets the value of FW or device parameters. Up to 7 parameters can be 7527 * specified at once. 7528 */ 7529 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7530 unsigned int pf, unsigned int vf, 7531 unsigned int nparams, const u32 *params, 7532 const u32 *val, int timeout) 7533 { 7534 struct fw_params_cmd c; 7535 __be32 *p = &c.param[0].mnem; 7536 7537 if (nparams > 7) 7538 return -EINVAL; 7539 7540 memset(&c, 0, sizeof(c)); 7541 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7542 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7543 FW_PARAMS_CMD_PFN_V(pf) | 7544 FW_PARAMS_CMD_VFN_V(vf)); 7545 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7546 7547 while (nparams--) { 7548 *p++ = cpu_to_be32(*params++); 7549 *p++ = cpu_to_be32(*val++); 7550 } 7551 7552 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7553 } 7554 7555 /** 7556 * t4_set_params - sets FW or device parameters 7557 * @adap: the adapter 7558 * @mbox: mailbox to use for the FW command 7559 * @pf: the PF 7560 * @vf: the VF 7561 * @nparams: the number of parameters 7562 * @params: the parameter names 7563 * @val: the parameter values 7564 * 7565 * Sets the value of FW or device parameters. Up to 7 parameters can be 7566 * specified at once. 7567 */ 7568 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7569 unsigned int vf, unsigned int nparams, const u32 *params, 7570 const u32 *val) 7571 { 7572 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7573 FW_CMD_MAX_TIMEOUT); 7574 } 7575 7576 /** 7577 * t4_cfg_pfvf - configure PF/VF resource limits 7578 * @adap: the adapter 7579 * @mbox: mailbox to use for the FW command 7580 * @pf: the PF being configured 7581 * @vf: the VF being configured 7582 * @txq: the max number of egress queues 7583 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7584 * @rxqi: the max number of interrupt-capable ingress queues 7585 * @rxq: the max number of interruptless ingress queues 7586 * @tc: the PCI traffic class 7587 * @vi: the max number of virtual interfaces 7588 * @cmask: the channel access rights mask for the PF/VF 7589 * @pmask: the port access rights mask for the PF/VF 7590 * @nexact: the maximum number of exact MPS filters 7591 * @rcaps: read capabilities 7592 * @wxcaps: write/execute capabilities 7593 * 7594 * Configures resource limits and capabilities for a physical or virtual 7595 * function. 7596 */ 7597 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7598 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7599 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7600 unsigned int vi, unsigned int cmask, unsigned int pmask, 7601 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7602 { 7603 struct fw_pfvf_cmd c; 7604 7605 memset(&c, 0, sizeof(c)); 7606 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7607 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7608 FW_PFVF_CMD_VFN_V(vf)); 7609 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7610 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7611 FW_PFVF_CMD_NIQ_V(rxq)); 7612 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7613 FW_PFVF_CMD_PMASK_V(pmask) | 7614 FW_PFVF_CMD_NEQ_V(txq)); 7615 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7616 FW_PFVF_CMD_NVI_V(vi) | 7617 FW_PFVF_CMD_NEXACTF_V(nexact)); 7618 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7619 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7620 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7621 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7622 } 7623 7624 /** 7625 * t4_alloc_vi - allocate a virtual interface 7626 * @adap: the adapter 7627 * @mbox: mailbox to use for the FW command 7628 * @port: physical port associated with the VI 7629 * @pf: the PF owning the VI 7630 * @vf: the VF owning the VI 7631 * @nmac: number of MAC addresses needed (1 to 5) 7632 * @mac: the MAC addresses of the VI 7633 * @rss_size: size of RSS table slice associated with this VI 7634 * @vivld: the destination to store the VI Valid value. 7635 * @vin: the destination to store the VIN value. 7636 * 7637 * Allocates a virtual interface for the given physical port. If @mac is 7638 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7639 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7640 * stored consecutively so the space needed is @nmac * 6 bytes. 7641 * Returns a negative error number or the non-negative VI id. 7642 */ 7643 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7644 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7645 unsigned int *rss_size, u8 *vivld, u8 *vin) 7646 { 7647 int ret; 7648 struct fw_vi_cmd c; 7649 7650 memset(&c, 0, sizeof(c)); 7651 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7652 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7653 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7654 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7655 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7656 c.nmac = nmac - 1; 7657 7658 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7659 if (ret) 7660 return ret; 7661 7662 if (mac) { 7663 memcpy(mac, c.mac, sizeof(c.mac)); 7664 switch (nmac) { 7665 case 5: 7666 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7667 /* Fall through */ 7668 case 4: 7669 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7670 /* Fall through */ 7671 case 3: 7672 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7673 /* Fall through */ 7674 case 2: 7675 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7676 } 7677 } 7678 if (rss_size) 7679 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7680 7681 if (vivld) 7682 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7683 7684 if (vin) 7685 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7686 7687 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7688 } 7689 7690 /** 7691 * t4_free_vi - free a virtual interface 7692 * @adap: the adapter 7693 * @mbox: mailbox to use for the FW command 7694 * @pf: the PF owning the VI 7695 * @vf: the VF owning the VI 7696 * @viid: virtual interface identifiler 7697 * 7698 * Free a previously allocated virtual interface. 7699 */ 7700 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7701 unsigned int vf, unsigned int viid) 7702 { 7703 struct fw_vi_cmd c; 7704 7705 memset(&c, 0, sizeof(c)); 7706 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7707 FW_CMD_REQUEST_F | 7708 FW_CMD_EXEC_F | 7709 FW_VI_CMD_PFN_V(pf) | 7710 FW_VI_CMD_VFN_V(vf)); 7711 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7712 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7713 7714 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7715 } 7716 7717 /** 7718 * t4_set_rxmode - set Rx properties of a virtual interface 7719 * @adap: the adapter 7720 * @mbox: mailbox to use for the FW command 7721 * @viid: the VI id 7722 * @mtu: the new MTU or -1 7723 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7724 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7725 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7726 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7727 * @sleep_ok: if true we may sleep while awaiting command completion 7728 * 7729 * Sets Rx properties of a virtual interface. 7730 */ 7731 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7732 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7733 bool sleep_ok) 7734 { 7735 struct fw_vi_rxmode_cmd c; 7736 7737 /* convert to FW values */ 7738 if (mtu < 0) 7739 mtu = FW_RXMODE_MTU_NO_CHG; 7740 if (promisc < 0) 7741 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7742 if (all_multi < 0) 7743 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7744 if (bcast < 0) 7745 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7746 if (vlanex < 0) 7747 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7748 7749 memset(&c, 0, sizeof(c)); 7750 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7751 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7752 FW_VI_RXMODE_CMD_VIID_V(viid)); 7753 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7754 c.mtu_to_vlanexen = 7755 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7756 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7757 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7758 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7759 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7760 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7761 } 7762 7763 /** 7764 * t4_free_encap_mac_filt - frees MPS entry at given index 7765 * @adap: the adapter 7766 * @viid: the VI id 7767 * @idx: index of MPS entry to be freed 7768 * @sleep_ok: call is allowed to sleep 7769 * 7770 * Frees the MPS entry at supplied index 7771 * 7772 * Returns a negative error number or zero on success 7773 */ 7774 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7775 int idx, bool sleep_ok) 7776 { 7777 struct fw_vi_mac_exact *p; 7778 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7779 struct fw_vi_mac_cmd c; 7780 int ret = 0; 7781 u32 exact; 7782 7783 memset(&c, 0, sizeof(c)); 7784 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7785 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7786 FW_CMD_EXEC_V(0) | 7787 FW_VI_MAC_CMD_VIID_V(viid)); 7788 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7789 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7790 exact | 7791 FW_CMD_LEN16_V(1)); 7792 p = c.u.exact; 7793 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7794 FW_VI_MAC_CMD_IDX_V(idx)); 7795 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7796 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7797 return ret; 7798 } 7799 7800 /** 7801 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7802 * @adap: the adapter 7803 * @viid: the VI id 7804 * @addr: the MAC address 7805 * @mask: the mask 7806 * @idx: index of the entry in mps tcam 7807 * @lookup_type: MAC address for inner (1) or outer (0) header 7808 * @port_id: the port index 7809 * @sleep_ok: call is allowed to sleep 7810 * 7811 * Removes the mac entry at the specified index using raw mac interface. 7812 * 7813 * Returns a negative error number on failure. 7814 */ 7815 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7816 const u8 *addr, const u8 *mask, unsigned int idx, 7817 u8 lookup_type, u8 port_id, bool sleep_ok) 7818 { 7819 struct fw_vi_mac_cmd c; 7820 struct fw_vi_mac_raw *p = &c.u.raw; 7821 u32 val; 7822 7823 memset(&c, 0, sizeof(c)); 7824 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7825 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7826 FW_CMD_EXEC_V(0) | 7827 FW_VI_MAC_CMD_VIID_V(viid)); 7828 val = FW_CMD_LEN16_V(1) | 7829 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7830 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7831 FW_CMD_LEN16_V(val)); 7832 7833 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7834 FW_VI_MAC_ID_BASED_FREE); 7835 7836 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7837 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7838 DATAPORTNUM_V(port_id)); 7839 /* Lookup mask and port mask */ 7840 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7841 DATAPORTNUM_V(DATAPORTNUM_M)); 7842 7843 /* Copy the address and the mask */ 7844 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7845 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7846 7847 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7848 } 7849 7850 /** 7851 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7852 * @adap: the adapter 7853 * @viid: the VI id 7854 * @addr: the MAC address 7855 * @mask: the mask 7856 * @vni: the VNI id for the tunnel protocol 7857 * @vni_mask: mask for the VNI id 7858 * @dip_hit: to enable DIP match for the MPS entry 7859 * @lookup_type: MAC address for inner (1) or outer (0) header 7860 * @sleep_ok: call is allowed to sleep 7861 * 7862 * Allocates an MPS entry with specified MAC address and VNI value. 7863 * 7864 * Returns a negative error number or the allocated index for this mac. 7865 */ 7866 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7867 const u8 *addr, const u8 *mask, unsigned int vni, 7868 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7869 bool sleep_ok) 7870 { 7871 struct fw_vi_mac_cmd c; 7872 struct fw_vi_mac_vni *p = c.u.exact_vni; 7873 int ret = 0; 7874 u32 val; 7875 7876 memset(&c, 0, sizeof(c)); 7877 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7878 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7879 FW_VI_MAC_CMD_VIID_V(viid)); 7880 val = FW_CMD_LEN16_V(1) | 7881 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7882 c.freemacs_to_len16 = cpu_to_be32(val); 7883 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7884 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7885 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7886 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7887 7888 p->lookup_type_to_vni = 7889 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7890 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7891 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7892 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7893 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7894 if (ret == 0) 7895 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7896 return ret; 7897 } 7898 7899 /** 7900 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7901 * @adap: the adapter 7902 * @viid: the VI id 7903 * @addr: the MAC address 7904 * @mask: the mask 7905 * @idx: index at which to add this entry 7906 * @lookup_type: MAC address for inner (1) or outer (0) header 7907 * @port_id: the port index 7908 * @sleep_ok: call is allowed to sleep 7909 * 7910 * Adds the mac entry at the specified index using raw mac interface. 7911 * 7912 * Returns a negative error number or the allocated index for this mac. 7913 */ 7914 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7915 const u8 *addr, const u8 *mask, unsigned int idx, 7916 u8 lookup_type, u8 port_id, bool sleep_ok) 7917 { 7918 int ret = 0; 7919 struct fw_vi_mac_cmd c; 7920 struct fw_vi_mac_raw *p = &c.u.raw; 7921 u32 val; 7922 7923 memset(&c, 0, sizeof(c)); 7924 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7925 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7926 FW_VI_MAC_CMD_VIID_V(viid)); 7927 val = FW_CMD_LEN16_V(1) | 7928 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7929 c.freemacs_to_len16 = cpu_to_be32(val); 7930 7931 /* Specify that this is an inner mac address */ 7932 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7933 7934 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7935 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7936 DATAPORTNUM_V(port_id)); 7937 /* Lookup mask and port mask */ 7938 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7939 DATAPORTNUM_V(DATAPORTNUM_M)); 7940 7941 /* Copy the address and the mask */ 7942 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7943 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7944 7945 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7946 if (ret == 0) { 7947 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7948 if (ret != idx) 7949 ret = -ENOMEM; 7950 } 7951 7952 return ret; 7953 } 7954 7955 /** 7956 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7957 * @adap: the adapter 7958 * @mbox: mailbox to use for the FW command 7959 * @viid: the VI id 7960 * @free: if true any existing filters for this VI id are first removed 7961 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7962 * @addr: the MAC address(es) 7963 * @idx: where to store the index of each allocated filter 7964 * @hash: pointer to hash address filter bitmap 7965 * @sleep_ok: call is allowed to sleep 7966 * 7967 * Allocates an exact-match filter for each of the supplied addresses and 7968 * sets it to the corresponding address. If @idx is not %NULL it should 7969 * have at least @naddr entries, each of which will be set to the index of 7970 * the filter allocated for the corresponding MAC address. If a filter 7971 * could not be allocated for an address its index is set to 0xffff. 7972 * If @hash is not %NULL addresses that fail to allocate an exact filter 7973 * are hashed and update the hash filter bitmap pointed at by @hash. 7974 * 7975 * Returns a negative error number or the number of filters allocated. 7976 */ 7977 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7978 unsigned int viid, bool free, unsigned int naddr, 7979 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7980 { 7981 int offset, ret = 0; 7982 struct fw_vi_mac_cmd c; 7983 unsigned int nfilters = 0; 7984 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7985 unsigned int rem = naddr; 7986 7987 if (naddr > max_naddr) 7988 return -EINVAL; 7989 7990 for (offset = 0; offset < naddr ; /**/) { 7991 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7992 rem : ARRAY_SIZE(c.u.exact)); 7993 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7994 u.exact[fw_naddr]), 16); 7995 struct fw_vi_mac_exact *p; 7996 int i; 7997 7998 memset(&c, 0, sizeof(c)); 7999 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8000 FW_CMD_REQUEST_F | 8001 FW_CMD_WRITE_F | 8002 FW_CMD_EXEC_V(free) | 8003 FW_VI_MAC_CMD_VIID_V(viid)); 8004 c.freemacs_to_len16 = 8005 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 8006 FW_CMD_LEN16_V(len16)); 8007 8008 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8009 p->valid_to_idx = 8010 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8011 FW_VI_MAC_CMD_IDX_V( 8012 FW_VI_MAC_ADD_MAC)); 8013 memcpy(p->macaddr, addr[offset + i], 8014 sizeof(p->macaddr)); 8015 } 8016 8017 /* It's okay if we run out of space in our MAC address arena. 8018 * Some of the addresses we submit may get stored so we need 8019 * to run through the reply to see what the results were ... 8020 */ 8021 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8022 if (ret && ret != -FW_ENOMEM) 8023 break; 8024 8025 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8026 u16 index = FW_VI_MAC_CMD_IDX_G( 8027 be16_to_cpu(p->valid_to_idx)); 8028 8029 if (idx) 8030 idx[offset + i] = (index >= max_naddr ? 8031 0xffff : index); 8032 if (index < max_naddr) 8033 nfilters++; 8034 else if (hash) 8035 *hash |= (1ULL << 8036 hash_mac_addr(addr[offset + i])); 8037 } 8038 8039 free = false; 8040 offset += fw_naddr; 8041 rem -= fw_naddr; 8042 } 8043 8044 if (ret == 0 || ret == -FW_ENOMEM) 8045 ret = nfilters; 8046 return ret; 8047 } 8048 8049 /** 8050 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8051 * @adap: the adapter 8052 * @mbox: mailbox to use for the FW command 8053 * @viid: the VI id 8054 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8055 * @addr: the MAC address(es) 8056 * @sleep_ok: call is allowed to sleep 8057 * 8058 * Frees the exact-match filter for each of the supplied addresses 8059 * 8060 * Returns a negative error number or the number of filters freed. 8061 */ 8062 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8063 unsigned int viid, unsigned int naddr, 8064 const u8 **addr, bool sleep_ok) 8065 { 8066 int offset, ret = 0; 8067 struct fw_vi_mac_cmd c; 8068 unsigned int nfilters = 0; 8069 unsigned int max_naddr = is_t4(adap->params.chip) ? 8070 NUM_MPS_CLS_SRAM_L_INSTANCES : 8071 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8072 unsigned int rem = naddr; 8073 8074 if (naddr > max_naddr) 8075 return -EINVAL; 8076 8077 for (offset = 0; offset < (int)naddr ; /**/) { 8078 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8079 ? rem 8080 : ARRAY_SIZE(c.u.exact)); 8081 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8082 u.exact[fw_naddr]), 16); 8083 struct fw_vi_mac_exact *p; 8084 int i; 8085 8086 memset(&c, 0, sizeof(c)); 8087 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8088 FW_CMD_REQUEST_F | 8089 FW_CMD_WRITE_F | 8090 FW_CMD_EXEC_V(0) | 8091 FW_VI_MAC_CMD_VIID_V(viid)); 8092 c.freemacs_to_len16 = 8093 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 8094 FW_CMD_LEN16_V(len16)); 8095 8096 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8097 p->valid_to_idx = cpu_to_be16( 8098 FW_VI_MAC_CMD_VALID_F | 8099 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8100 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8101 } 8102 8103 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8104 if (ret) 8105 break; 8106 8107 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8108 u16 index = FW_VI_MAC_CMD_IDX_G( 8109 be16_to_cpu(p->valid_to_idx)); 8110 8111 if (index < max_naddr) 8112 nfilters++; 8113 } 8114 8115 offset += fw_naddr; 8116 rem -= fw_naddr; 8117 } 8118 8119 if (ret == 0) 8120 ret = nfilters; 8121 return ret; 8122 } 8123 8124 /** 8125 * t4_change_mac - modifies the exact-match filter for a MAC address 8126 * @adap: the adapter 8127 * @mbox: mailbox to use for the FW command 8128 * @viid: the VI id 8129 * @idx: index of existing filter for old value of MAC address, or -1 8130 * @addr: the new MAC address value 8131 * @persist: whether a new MAC allocation should be persistent 8132 * @smt_idx: the destination to store the new SMT index. 8133 * 8134 * Modifies an exact-match filter and sets it to the new MAC address. 8135 * Note that in general it is not possible to modify the value of a given 8136 * filter so the generic way to modify an address filter is to free the one 8137 * being used by the old address value and allocate a new filter for the 8138 * new address value. @idx can be -1 if the address is a new addition. 8139 * 8140 * Returns a negative error number or the index of the filter with the new 8141 * MAC value. 8142 */ 8143 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8144 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8145 { 8146 int ret, mode; 8147 struct fw_vi_mac_cmd c; 8148 struct fw_vi_mac_exact *p = c.u.exact; 8149 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8150 8151 if (idx < 0) /* new allocation */ 8152 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8153 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8154 8155 memset(&c, 0, sizeof(c)); 8156 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8157 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8158 FW_VI_MAC_CMD_VIID_V(viid)); 8159 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8160 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8161 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8162 FW_VI_MAC_CMD_IDX_V(idx)); 8163 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8164 8165 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8166 if (ret == 0) { 8167 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8168 if (ret >= max_mac_addr) 8169 ret = -ENOMEM; 8170 if (smt_idx) { 8171 if (adap->params.viid_smt_extn_support) { 8172 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8173 (be32_to_cpu(c.op_to_viid)); 8174 } else { 8175 /* In T4/T5, SMT contains 256 SMAC entries 8176 * organized in 128 rows of 2 entries each. 8177 * In T6, SMT contains 256 SMAC entries in 8178 * 256 rows. 8179 */ 8180 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8181 CHELSIO_T5) 8182 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8183 else 8184 *smt_idx = (viid & FW_VIID_VIN_M); 8185 } 8186 } 8187 } 8188 return ret; 8189 } 8190 8191 /** 8192 * t4_set_addr_hash - program the MAC inexact-match hash filter 8193 * @adap: the adapter 8194 * @mbox: mailbox to use for the FW command 8195 * @viid: the VI id 8196 * @ucast: whether the hash filter should also match unicast addresses 8197 * @vec: the value to be written to the hash filter 8198 * @sleep_ok: call is allowed to sleep 8199 * 8200 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8201 */ 8202 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8203 bool ucast, u64 vec, bool sleep_ok) 8204 { 8205 struct fw_vi_mac_cmd c; 8206 8207 memset(&c, 0, sizeof(c)); 8208 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8209 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8210 FW_VI_ENABLE_CMD_VIID_V(viid)); 8211 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8212 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8213 FW_CMD_LEN16_V(1)); 8214 c.u.hash.hashvec = cpu_to_be64(vec); 8215 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8216 } 8217 8218 /** 8219 * t4_enable_vi_params - enable/disable a virtual interface 8220 * @adap: the adapter 8221 * @mbox: mailbox to use for the FW command 8222 * @viid: the VI id 8223 * @rx_en: 1=enable Rx, 0=disable Rx 8224 * @tx_en: 1=enable Tx, 0=disable Tx 8225 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8226 * 8227 * Enables/disables a virtual interface. Note that setting DCB Enable 8228 * only makes sense when enabling a Virtual Interface ... 8229 */ 8230 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8231 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8232 { 8233 struct fw_vi_enable_cmd c; 8234 8235 memset(&c, 0, sizeof(c)); 8236 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8237 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8238 FW_VI_ENABLE_CMD_VIID_V(viid)); 8239 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8240 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8241 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8242 FW_LEN16(c)); 8243 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8244 } 8245 8246 /** 8247 * t4_enable_vi - enable/disable a virtual interface 8248 * @adap: the adapter 8249 * @mbox: mailbox to use for the FW command 8250 * @viid: the VI id 8251 * @rx_en: 1=enable Rx, 0=disable Rx 8252 * @tx_en: 1=enable Tx, 0=disable Tx 8253 * 8254 * Enables/disables a virtual interface. 8255 */ 8256 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8257 bool rx_en, bool tx_en) 8258 { 8259 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8260 } 8261 8262 /** 8263 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8264 * @adap: the adapter 8265 * @mbox: mailbox to use for the FW command 8266 * @pi: the Port Information structure 8267 * @rx_en: 1=enable Rx, 0=disable Rx 8268 * @tx_en: 1=enable Tx, 0=disable Tx 8269 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8270 * 8271 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8272 * Enable only makes sense when enabling a Virtual Interface ... 8273 * If the Virtual Interface enable/disable operation is successful, 8274 * we notify the OS-specific code of a potential Link Status change 8275 * via the OS Contract API t4_os_link_changed(). 8276 */ 8277 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8278 struct port_info *pi, 8279 bool rx_en, bool tx_en, bool dcb_en) 8280 { 8281 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8282 rx_en, tx_en, dcb_en); 8283 if (ret) 8284 return ret; 8285 t4_os_link_changed(adap, pi->port_id, 8286 rx_en && tx_en && pi->link_cfg.link_ok); 8287 return 0; 8288 } 8289 8290 /** 8291 * t4_identify_port - identify a VI's port by blinking its LED 8292 * @adap: the adapter 8293 * @mbox: mailbox to use for the FW command 8294 * @viid: the VI id 8295 * @nblinks: how many times to blink LED at 2.5 Hz 8296 * 8297 * Identifies a VI's port by blinking its LED. 8298 */ 8299 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8300 unsigned int nblinks) 8301 { 8302 struct fw_vi_enable_cmd c; 8303 8304 memset(&c, 0, sizeof(c)); 8305 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8306 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8307 FW_VI_ENABLE_CMD_VIID_V(viid)); 8308 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8309 c.blinkdur = cpu_to_be16(nblinks); 8310 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8311 } 8312 8313 /** 8314 * t4_iq_stop - stop an ingress queue and its FLs 8315 * @adap: the adapter 8316 * @mbox: mailbox to use for the FW command 8317 * @pf: the PF owning the queues 8318 * @vf: the VF owning the queues 8319 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8320 * @iqid: ingress queue id 8321 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8322 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8323 * 8324 * Stops an ingress queue and its associated FLs, if any. This causes 8325 * any current or future data/messages destined for these queues to be 8326 * tossed. 8327 */ 8328 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8329 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8330 unsigned int fl0id, unsigned int fl1id) 8331 { 8332 struct fw_iq_cmd c; 8333 8334 memset(&c, 0, sizeof(c)); 8335 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8336 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8337 FW_IQ_CMD_VFN_V(vf)); 8338 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8339 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8340 c.iqid = cpu_to_be16(iqid); 8341 c.fl0id = cpu_to_be16(fl0id); 8342 c.fl1id = cpu_to_be16(fl1id); 8343 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8344 } 8345 8346 /** 8347 * t4_iq_free - free an ingress queue and its FLs 8348 * @adap: the adapter 8349 * @mbox: mailbox to use for the FW command 8350 * @pf: the PF owning the queues 8351 * @vf: the VF owning the queues 8352 * @iqtype: the ingress queue type 8353 * @iqid: ingress queue id 8354 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8355 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8356 * 8357 * Frees an ingress queue and its associated FLs, if any. 8358 */ 8359 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8360 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8361 unsigned int fl0id, unsigned int fl1id) 8362 { 8363 struct fw_iq_cmd c; 8364 8365 memset(&c, 0, sizeof(c)); 8366 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8367 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8368 FW_IQ_CMD_VFN_V(vf)); 8369 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8370 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8371 c.iqid = cpu_to_be16(iqid); 8372 c.fl0id = cpu_to_be16(fl0id); 8373 c.fl1id = cpu_to_be16(fl1id); 8374 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8375 } 8376 8377 /** 8378 * t4_eth_eq_free - free an Ethernet egress queue 8379 * @adap: the adapter 8380 * @mbox: mailbox to use for the FW command 8381 * @pf: the PF owning the queue 8382 * @vf: the VF owning the queue 8383 * @eqid: egress queue id 8384 * 8385 * Frees an Ethernet egress queue. 8386 */ 8387 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8388 unsigned int vf, unsigned int eqid) 8389 { 8390 struct fw_eq_eth_cmd c; 8391 8392 memset(&c, 0, sizeof(c)); 8393 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8394 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8395 FW_EQ_ETH_CMD_PFN_V(pf) | 8396 FW_EQ_ETH_CMD_VFN_V(vf)); 8397 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8398 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8399 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8400 } 8401 8402 /** 8403 * t4_ctrl_eq_free - free a control egress queue 8404 * @adap: the adapter 8405 * @mbox: mailbox to use for the FW command 8406 * @pf: the PF owning the queue 8407 * @vf: the VF owning the queue 8408 * @eqid: egress queue id 8409 * 8410 * Frees a control egress queue. 8411 */ 8412 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8413 unsigned int vf, unsigned int eqid) 8414 { 8415 struct fw_eq_ctrl_cmd c; 8416 8417 memset(&c, 0, sizeof(c)); 8418 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8419 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8420 FW_EQ_CTRL_CMD_PFN_V(pf) | 8421 FW_EQ_CTRL_CMD_VFN_V(vf)); 8422 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8423 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8424 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8425 } 8426 8427 /** 8428 * t4_ofld_eq_free - free an offload egress queue 8429 * @adap: the adapter 8430 * @mbox: mailbox to use for the FW command 8431 * @pf: the PF owning the queue 8432 * @vf: the VF owning the queue 8433 * @eqid: egress queue id 8434 * 8435 * Frees a control egress queue. 8436 */ 8437 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8438 unsigned int vf, unsigned int eqid) 8439 { 8440 struct fw_eq_ofld_cmd c; 8441 8442 memset(&c, 0, sizeof(c)); 8443 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8444 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8445 FW_EQ_OFLD_CMD_PFN_V(pf) | 8446 FW_EQ_OFLD_CMD_VFN_V(vf)); 8447 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8448 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8449 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8450 } 8451 8452 /** 8453 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8454 * @link_down_rc: Link Down Reason Code 8455 * 8456 * Returns a string representation of the Link Down Reason Code. 8457 */ 8458 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8459 { 8460 static const char * const reason[] = { 8461 "Link Down", 8462 "Remote Fault", 8463 "Auto-negotiation Failure", 8464 "Reserved", 8465 "Insufficient Airflow", 8466 "Unable To Determine Reason", 8467 "No RX Signal Detected", 8468 "Reserved", 8469 }; 8470 8471 if (link_down_rc >= ARRAY_SIZE(reason)) 8472 return "Bad Reason Code"; 8473 8474 return reason[link_down_rc]; 8475 } 8476 8477 /* Return the highest speed set in the port capabilities, in Mb/s. */ 8478 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8479 { 8480 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8481 do { \ 8482 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8483 return __speed; \ 8484 } while (0) 8485 8486 TEST_SPEED_RETURN(400G, 400000); 8487 TEST_SPEED_RETURN(200G, 200000); 8488 TEST_SPEED_RETURN(100G, 100000); 8489 TEST_SPEED_RETURN(50G, 50000); 8490 TEST_SPEED_RETURN(40G, 40000); 8491 TEST_SPEED_RETURN(25G, 25000); 8492 TEST_SPEED_RETURN(10G, 10000); 8493 TEST_SPEED_RETURN(1G, 1000); 8494 TEST_SPEED_RETURN(100M, 100); 8495 8496 #undef TEST_SPEED_RETURN 8497 8498 return 0; 8499 } 8500 8501 /** 8502 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8503 * @acaps: advertised Port Capabilities 8504 * 8505 * Get the highest speed for the port from the advertised Port 8506 * Capabilities. It will be either the highest speed from the list of 8507 * speeds or whatever user has set using ethtool. 8508 */ 8509 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8510 { 8511 #define TEST_SPEED_RETURN(__caps_speed) \ 8512 do { \ 8513 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8514 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8515 } while (0) 8516 8517 TEST_SPEED_RETURN(400G); 8518 TEST_SPEED_RETURN(200G); 8519 TEST_SPEED_RETURN(100G); 8520 TEST_SPEED_RETURN(50G); 8521 TEST_SPEED_RETURN(40G); 8522 TEST_SPEED_RETURN(25G); 8523 TEST_SPEED_RETURN(10G); 8524 TEST_SPEED_RETURN(1G); 8525 TEST_SPEED_RETURN(100M); 8526 8527 #undef TEST_SPEED_RETURN 8528 8529 return 0; 8530 } 8531 8532 /** 8533 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8534 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8535 * 8536 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8537 * 32-bit Port Capabilities value. 8538 */ 8539 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8540 { 8541 fw_port_cap32_t linkattr = 0; 8542 8543 /* Unfortunately the format of the Link Status in the old 8544 * 16-bit Port Information message isn't the same as the 8545 * 16-bit Port Capabilities bitfield used everywhere else ... 8546 */ 8547 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8548 linkattr |= FW_PORT_CAP32_FC_RX; 8549 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8550 linkattr |= FW_PORT_CAP32_FC_TX; 8551 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8552 linkattr |= FW_PORT_CAP32_SPEED_100M; 8553 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8554 linkattr |= FW_PORT_CAP32_SPEED_1G; 8555 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8556 linkattr |= FW_PORT_CAP32_SPEED_10G; 8557 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8558 linkattr |= FW_PORT_CAP32_SPEED_25G; 8559 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8560 linkattr |= FW_PORT_CAP32_SPEED_40G; 8561 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8562 linkattr |= FW_PORT_CAP32_SPEED_100G; 8563 8564 return linkattr; 8565 } 8566 8567 /** 8568 * t4_handle_get_port_info - process a FW reply message 8569 * @pi: the port info 8570 * @rpl: start of the FW message 8571 * 8572 * Processes a GET_PORT_INFO FW reply message. 8573 */ 8574 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8575 { 8576 const struct fw_port_cmd *cmd = (const void *)rpl; 8577 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8578 struct link_config *lc = &pi->link_cfg; 8579 struct adapter *adapter = pi->adapter; 8580 unsigned int speed, fc, fec, adv_fc; 8581 enum fw_port_module_type mod_type; 8582 int action, link_ok, linkdnrc; 8583 enum fw_port_type port_type; 8584 8585 /* Extract the various fields from the Port Information message. 8586 */ 8587 action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8588 switch (action) { 8589 case FW_PORT_ACTION_GET_PORT_INFO: { 8590 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8591 8592 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8593 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8594 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8595 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8596 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8597 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8598 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8599 linkattr = lstatus_to_fwcap(lstatus); 8600 break; 8601 } 8602 8603 case FW_PORT_ACTION_GET_PORT_INFO32: { 8604 u32 lstatus32; 8605 8606 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8607 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8608 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8609 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8610 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8611 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8612 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8613 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8614 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8615 break; 8616 } 8617 8618 default: 8619 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8620 be32_to_cpu(cmd->action_to_len16)); 8621 return; 8622 } 8623 8624 fec = fwcap_to_cc_fec(acaps); 8625 adv_fc = fwcap_to_cc_pause(acaps); 8626 fc = fwcap_to_cc_pause(linkattr); 8627 speed = fwcap_to_speed(linkattr); 8628 8629 /* Reset state for communicating new Transceiver Module status and 8630 * whether the OS-dependent layer wants us to redo the current 8631 * "sticky" L1 Configure Link Parameters. 8632 */ 8633 lc->new_module = false; 8634 lc->redo_l1cfg = false; 8635 8636 if (mod_type != pi->mod_type) { 8637 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8638 * various fundamental Port Capabilities which used to be 8639 * immutable can now change radically. We can now have 8640 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8641 * all change based on what Transceiver Module is inserted. 8642 * So we need to record the Physical "Port" Capabilities on 8643 * every Transceiver Module change. 8644 */ 8645 lc->pcaps = pcaps; 8646 8647 /* When a new Transceiver Module is inserted, the Firmware 8648 * will examine its i2c EPROM to determine its type and 8649 * general operating parameters including things like Forward 8650 * Error Control, etc. Various IEEE 802.3 standards dictate 8651 * how to interpret these i2c values to determine default 8652 * "sutomatic" settings. We record these for future use when 8653 * the user explicitly requests these standards-based values. 8654 */ 8655 lc->def_acaps = acaps; 8656 8657 /* Some versions of the early T6 Firmware "cheated" when 8658 * handling different Transceiver Modules by changing the 8659 * underlaying Port Type reported to the Host Drivers. As 8660 * such we need to capture whatever Port Type the Firmware 8661 * sends us and record it in case it's different from what we 8662 * were told earlier. Unfortunately, since Firmware is 8663 * forever, we'll need to keep this code here forever, but in 8664 * later T6 Firmware it should just be an assignment of the 8665 * same value already recorded. 8666 */ 8667 pi->port_type = port_type; 8668 8669 /* Record new Module Type information. 8670 */ 8671 pi->mod_type = mod_type; 8672 8673 /* Let the OS-dependent layer know if we have a new 8674 * Transceiver Module inserted. 8675 */ 8676 lc->new_module = t4_is_inserted_mod_type(mod_type); 8677 8678 t4_os_portmod_changed(adapter, pi->port_id); 8679 } 8680 8681 if (link_ok != lc->link_ok || speed != lc->speed || 8682 fc != lc->fc || adv_fc != lc->advertised_fc || 8683 fec != lc->fec) { 8684 /* something changed */ 8685 if (!link_ok && lc->link_ok) { 8686 lc->link_down_rc = linkdnrc; 8687 dev_warn_ratelimited(adapter->pdev_dev, 8688 "Port %d link down, reason: %s\n", 8689 pi->tx_chan, 8690 t4_link_down_rc_str(linkdnrc)); 8691 } 8692 lc->link_ok = link_ok; 8693 lc->speed = speed; 8694 lc->advertised_fc = adv_fc; 8695 lc->fc = fc; 8696 lc->fec = fec; 8697 8698 lc->lpacaps = lpacaps; 8699 lc->acaps = acaps & ADVERT_MASK; 8700 8701 /* If we're not physically capable of Auto-Negotiation, note 8702 * this as Auto-Negotiation disabled. Otherwise, we track 8703 * what Auto-Negotiation settings we have. Note parallel 8704 * structure in t4_link_l1cfg_core() and init_link_config(). 8705 */ 8706 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8707 lc->autoneg = AUTONEG_DISABLE; 8708 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8709 lc->autoneg = AUTONEG_ENABLE; 8710 } else { 8711 /* When Autoneg is disabled, user needs to set 8712 * single speed. 8713 * Similar to cxgb4_ethtool.c: set_link_ksettings 8714 */ 8715 lc->acaps = 0; 8716 lc->speed_caps = fwcap_to_fwspeed(acaps); 8717 lc->autoneg = AUTONEG_DISABLE; 8718 } 8719 8720 t4_os_link_changed(adapter, pi->port_id, link_ok); 8721 } 8722 8723 /* If we have a new Transceiver Module and the OS-dependent code has 8724 * told us that it wants us to redo whatever "sticky" L1 Configuration 8725 * Link Parameters are set, do that now. 8726 */ 8727 if (lc->new_module && lc->redo_l1cfg) { 8728 struct link_config old_lc; 8729 int ret; 8730 8731 /* Save the current L1 Configuration and restore it if an 8732 * error occurs. We probably should fix the l1_cfg*() 8733 * routines not to change the link_config when an error 8734 * occurs ... 8735 */ 8736 old_lc = *lc; 8737 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8738 if (ret) { 8739 *lc = old_lc; 8740 dev_warn(adapter->pdev_dev, 8741 "Attempt to update new Transceiver Module settings failed\n"); 8742 } 8743 } 8744 lc->new_module = false; 8745 lc->redo_l1cfg = false; 8746 } 8747 8748 /** 8749 * t4_update_port_info - retrieve and update port information if changed 8750 * @pi: the port_info 8751 * 8752 * We issue a Get Port Information Command to the Firmware and, if 8753 * successful, we check to see if anything is different from what we 8754 * last recorded and update things accordingly. 8755 */ 8756 int t4_update_port_info(struct port_info *pi) 8757 { 8758 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8759 struct fw_port_cmd port_cmd; 8760 int ret; 8761 8762 memset(&port_cmd, 0, sizeof(port_cmd)); 8763 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8764 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8765 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8766 port_cmd.action_to_len16 = cpu_to_be32( 8767 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8768 ? FW_PORT_ACTION_GET_PORT_INFO 8769 : FW_PORT_ACTION_GET_PORT_INFO32) | 8770 FW_LEN16(port_cmd)); 8771 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8772 &port_cmd, sizeof(port_cmd), &port_cmd); 8773 if (ret) 8774 return ret; 8775 8776 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8777 return 0; 8778 } 8779 8780 /** 8781 * t4_get_link_params - retrieve basic link parameters for given port 8782 * @pi: the port 8783 * @link_okp: value return pointer for link up/down 8784 * @speedp: value return pointer for speed (Mb/s) 8785 * @mtup: value return pointer for mtu 8786 * 8787 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8788 * and MTU for a specified port. A negative error is returned on 8789 * failure; 0 on success. 8790 */ 8791 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8792 unsigned int *speedp, unsigned int *mtup) 8793 { 8794 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8795 unsigned int action, link_ok, mtu; 8796 struct fw_port_cmd port_cmd; 8797 fw_port_cap32_t linkattr; 8798 int ret; 8799 8800 memset(&port_cmd, 0, sizeof(port_cmd)); 8801 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8802 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8803 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8804 action = (fw_caps == FW_CAPS16 8805 ? FW_PORT_ACTION_GET_PORT_INFO 8806 : FW_PORT_ACTION_GET_PORT_INFO32); 8807 port_cmd.action_to_len16 = cpu_to_be32( 8808 FW_PORT_CMD_ACTION_V(action) | 8809 FW_LEN16(port_cmd)); 8810 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8811 &port_cmd, sizeof(port_cmd), &port_cmd); 8812 if (ret) 8813 return ret; 8814 8815 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8816 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8817 8818 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8819 linkattr = lstatus_to_fwcap(lstatus); 8820 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8821 } else { 8822 u32 lstatus32 = 8823 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8824 8825 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8826 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8827 mtu = FW_PORT_CMD_MTU32_G( 8828 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8829 } 8830 8831 if (link_okp) 8832 *link_okp = link_ok; 8833 if (speedp) 8834 *speedp = fwcap_to_speed(linkattr); 8835 if (mtup) 8836 *mtup = mtu; 8837 8838 return 0; 8839 } 8840 8841 /** 8842 * t4_handle_fw_rpl - process a FW reply message 8843 * @adap: the adapter 8844 * @rpl: start of the FW message 8845 * 8846 * Processes a FW message, such as link state change messages. 8847 */ 8848 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8849 { 8850 u8 opcode = *(const u8 *)rpl; 8851 8852 /* This might be a port command ... this simplifies the following 8853 * conditionals ... We can get away with pre-dereferencing 8854 * action_to_len16 because it's in the first 16 bytes and all messages 8855 * will be at least that long. 8856 */ 8857 const struct fw_port_cmd *p = (const void *)rpl; 8858 unsigned int action = 8859 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8860 8861 if (opcode == FW_PORT_CMD && 8862 (action == FW_PORT_ACTION_GET_PORT_INFO || 8863 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8864 int i; 8865 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8866 struct port_info *pi = NULL; 8867 8868 for_each_port(adap, i) { 8869 pi = adap2pinfo(adap, i); 8870 if (pi->tx_chan == chan) 8871 break; 8872 } 8873 8874 t4_handle_get_port_info(pi, rpl); 8875 } else { 8876 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8877 opcode); 8878 return -EINVAL; 8879 } 8880 return 0; 8881 } 8882 8883 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8884 { 8885 u16 val; 8886 8887 if (pci_is_pcie(adapter->pdev)) { 8888 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8889 p->speed = val & PCI_EXP_LNKSTA_CLS; 8890 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8891 } 8892 } 8893 8894 /** 8895 * init_link_config - initialize a link's SW state 8896 * @lc: pointer to structure holding the link state 8897 * @pcaps: link Port Capabilities 8898 * @acaps: link current Advertised Port Capabilities 8899 * 8900 * Initializes the SW state maintained for each link, including the link's 8901 * capabilities and default speed/flow-control/autonegotiation settings. 8902 */ 8903 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8904 fw_port_cap32_t acaps) 8905 { 8906 lc->pcaps = pcaps; 8907 lc->def_acaps = acaps; 8908 lc->lpacaps = 0; 8909 lc->speed_caps = 0; 8910 lc->speed = 0; 8911 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8912 8913 /* For Forward Error Control, we default to whatever the Firmware 8914 * tells us the Link is currently advertising. 8915 */ 8916 lc->requested_fec = FEC_AUTO; 8917 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8918 8919 /* If the Port is capable of Auto-Negtotiation, initialize it as 8920 * "enabled" and copy over all of the Physical Port Capabilities 8921 * to the Advertised Port Capabilities. Otherwise mark it as 8922 * Auto-Negotiate disabled and select the highest supported speed 8923 * for the link. Note parallel structure in t4_link_l1cfg_core() 8924 * and t4_handle_get_port_info(). 8925 */ 8926 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8927 lc->acaps = lc->pcaps & ADVERT_MASK; 8928 lc->autoneg = AUTONEG_ENABLE; 8929 lc->requested_fc |= PAUSE_AUTONEG; 8930 } else { 8931 lc->acaps = 0; 8932 lc->autoneg = AUTONEG_DISABLE; 8933 lc->speed_caps = fwcap_to_fwspeed(acaps); 8934 } 8935 } 8936 8937 #define CIM_PF_NOACCESS 0xeeeeeeee 8938 8939 int t4_wait_dev_ready(void __iomem *regs) 8940 { 8941 u32 whoami; 8942 8943 whoami = readl(regs + PL_WHOAMI_A); 8944 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8945 return 0; 8946 8947 msleep(500); 8948 whoami = readl(regs + PL_WHOAMI_A); 8949 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8950 } 8951 8952 struct flash_desc { 8953 u32 vendor_and_model_id; 8954 u32 size_mb; 8955 }; 8956 8957 static int t4_get_flash_params(struct adapter *adap) 8958 { 8959 /* Table for non-Numonix supported flash parts. Numonix parts are left 8960 * to the preexisting code. All flash parts have 64KB sectors. 8961 */ 8962 static struct flash_desc supported_flash[] = { 8963 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8964 }; 8965 8966 unsigned int part, manufacturer; 8967 unsigned int density, size = 0; 8968 u32 flashid = 0; 8969 int ret; 8970 8971 /* Issue a Read ID Command to the Flash part. We decode supported 8972 * Flash parts and their sizes from this. There's a newer Query 8973 * Command which can retrieve detailed geometry information but many 8974 * Flash parts don't support it. 8975 */ 8976 8977 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8978 if (!ret) 8979 ret = sf1_read(adap, 3, 0, 1, &flashid); 8980 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8981 if (ret) 8982 return ret; 8983 8984 /* Check to see if it's one of our non-standard supported Flash parts. 8985 */ 8986 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8987 if (supported_flash[part].vendor_and_model_id == flashid) { 8988 adap->params.sf_size = supported_flash[part].size_mb; 8989 adap->params.sf_nsec = 8990 adap->params.sf_size / SF_SEC_SIZE; 8991 goto found; 8992 } 8993 8994 /* Decode Flash part size. The code below looks repetitive with 8995 * common encodings, but that's not guaranteed in the JEDEC 8996 * specification for the Read JEDEC ID command. The only thing that 8997 * we're guaranteed by the JEDEC specification is where the 8998 * Manufacturer ID is in the returned result. After that each 8999 * Manufacturer ~could~ encode things completely differently. 9000 * Note, all Flash parts must have 64KB sectors. 9001 */ 9002 manufacturer = flashid & 0xff; 9003 switch (manufacturer) { 9004 case 0x20: { /* Micron/Numonix */ 9005 /* This Density -> Size decoding table is taken from Micron 9006 * Data Sheets. 9007 */ 9008 density = (flashid >> 16) & 0xff; 9009 switch (density) { 9010 case 0x14: /* 1MB */ 9011 size = 1 << 20; 9012 break; 9013 case 0x15: /* 2MB */ 9014 size = 1 << 21; 9015 break; 9016 case 0x16: /* 4MB */ 9017 size = 1 << 22; 9018 break; 9019 case 0x17: /* 8MB */ 9020 size = 1 << 23; 9021 break; 9022 case 0x18: /* 16MB */ 9023 size = 1 << 24; 9024 break; 9025 case 0x19: /* 32MB */ 9026 size = 1 << 25; 9027 break; 9028 case 0x20: /* 64MB */ 9029 size = 1 << 26; 9030 break; 9031 case 0x21: /* 128MB */ 9032 size = 1 << 27; 9033 break; 9034 case 0x22: /* 256MB */ 9035 size = 1 << 28; 9036 break; 9037 } 9038 break; 9039 } 9040 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 9041 /* This Density -> Size decoding table is taken from ISSI 9042 * Data Sheets. 9043 */ 9044 density = (flashid >> 16) & 0xff; 9045 switch (density) { 9046 case 0x16: /* 32 MB */ 9047 size = 1 << 25; 9048 break; 9049 case 0x17: /* 64MB */ 9050 size = 1 << 26; 9051 break; 9052 } 9053 break; 9054 } 9055 case 0xc2: { /* Macronix */ 9056 /* This Density -> Size decoding table is taken from Macronix 9057 * Data Sheets. 9058 */ 9059 density = (flashid >> 16) & 0xff; 9060 switch (density) { 9061 case 0x17: /* 8MB */ 9062 size = 1 << 23; 9063 break; 9064 case 0x18: /* 16MB */ 9065 size = 1 << 24; 9066 break; 9067 } 9068 break; 9069 } 9070 case 0xef: { /* Winbond */ 9071 /* This Density -> Size decoding table is taken from Winbond 9072 * Data Sheets. 9073 */ 9074 density = (flashid >> 16) & 0xff; 9075 switch (density) { 9076 case 0x17: /* 8MB */ 9077 size = 1 << 23; 9078 break; 9079 case 0x18: /* 16MB */ 9080 size = 1 << 24; 9081 break; 9082 } 9083 break; 9084 } 9085 } 9086 9087 /* If we didn't recognize the FLASH part, that's no real issue: the 9088 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9089 * use a FLASH part which is at least 4MB in size and has 64KB 9090 * sectors. The unrecognized FLASH part is likely to be much larger 9091 * than 4MB, but that's all we really need. 9092 */ 9093 if (size == 0) { 9094 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 9095 flashid); 9096 size = 1 << 22; 9097 } 9098 9099 /* Store decoded Flash size and fall through into vetting code. */ 9100 adap->params.sf_size = size; 9101 adap->params.sf_nsec = size / SF_SEC_SIZE; 9102 9103 found: 9104 if (adap->params.sf_size < FLASH_MIN_SIZE) 9105 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9106 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9107 return 0; 9108 } 9109 9110 /** 9111 * t4_prep_adapter - prepare SW and HW for operation 9112 * @adapter: the adapter 9113 * 9114 * Initialize adapter SW state for the various HW modules, set initial 9115 * values for some adapter tunables, take PHYs out of reset, and 9116 * initialize the MDIO interface. 9117 */ 9118 int t4_prep_adapter(struct adapter *adapter) 9119 { 9120 int ret, ver; 9121 uint16_t device_id; 9122 u32 pl_rev; 9123 9124 get_pci_mode(adapter, &adapter->params.pci); 9125 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9126 9127 ret = t4_get_flash_params(adapter); 9128 if (ret < 0) { 9129 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9130 return ret; 9131 } 9132 9133 /* Retrieve adapter's device ID 9134 */ 9135 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9136 ver = device_id >> 12; 9137 adapter->params.chip = 0; 9138 switch (ver) { 9139 case CHELSIO_T4: 9140 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9141 adapter->params.arch.sge_fl_db = DBPRIO_F; 9142 adapter->params.arch.mps_tcam_size = 9143 NUM_MPS_CLS_SRAM_L_INSTANCES; 9144 adapter->params.arch.mps_rplc_size = 128; 9145 adapter->params.arch.nchan = NCHAN; 9146 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9147 adapter->params.arch.vfcount = 128; 9148 /* Congestion map is for 4 channels so that 9149 * MPS can have 4 priority per port. 9150 */ 9151 adapter->params.arch.cng_ch_bits_log = 2; 9152 break; 9153 case CHELSIO_T5: 9154 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9155 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9156 adapter->params.arch.mps_tcam_size = 9157 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9158 adapter->params.arch.mps_rplc_size = 128; 9159 adapter->params.arch.nchan = NCHAN; 9160 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9161 adapter->params.arch.vfcount = 128; 9162 adapter->params.arch.cng_ch_bits_log = 2; 9163 break; 9164 case CHELSIO_T6: 9165 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9166 adapter->params.arch.sge_fl_db = 0; 9167 adapter->params.arch.mps_tcam_size = 9168 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9169 adapter->params.arch.mps_rplc_size = 256; 9170 adapter->params.arch.nchan = 2; 9171 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9172 adapter->params.arch.vfcount = 256; 9173 /* Congestion map will be for 2 channels so that 9174 * MPS can have 8 priority per port. 9175 */ 9176 adapter->params.arch.cng_ch_bits_log = 3; 9177 break; 9178 default: 9179 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9180 device_id); 9181 return -EINVAL; 9182 } 9183 9184 adapter->params.cim_la_size = CIMLA_SIZE; 9185 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9186 9187 /* 9188 * Default port for debugging in case we can't reach FW. 9189 */ 9190 adapter->params.nports = 1; 9191 adapter->params.portvec = 1; 9192 adapter->params.vpd.cclk = 50000; 9193 9194 /* Set PCIe completion timeout to 4 seconds. */ 9195 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9196 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9197 return 0; 9198 } 9199 9200 /** 9201 * t4_shutdown_adapter - shut down adapter, host & wire 9202 * @adapter: the adapter 9203 * 9204 * Perform an emergency shutdown of the adapter and stop it from 9205 * continuing any further communication on the ports or DMA to the 9206 * host. This is typically used when the adapter and/or firmware 9207 * have crashed and we want to prevent any further accidental 9208 * communication with the rest of the world. This will also force 9209 * the port Link Status to go down -- if register writes work -- 9210 * which should help our peers figure out that we're down. 9211 */ 9212 int t4_shutdown_adapter(struct adapter *adapter) 9213 { 9214 int port; 9215 9216 t4_intr_disable(adapter); 9217 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9218 for_each_port(adapter, port) { 9219 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9220 PORT_REG(port, XGMAC_PORT_CFG_A) : 9221 T5_PORT_REG(port, MAC_PORT_CFG_A); 9222 9223 t4_write_reg(adapter, a_port_cfg, 9224 t4_read_reg(adapter, a_port_cfg) 9225 & ~SIGNAL_DET_V(1)); 9226 } 9227 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9228 9229 return 0; 9230 } 9231 9232 /** 9233 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9234 * @adapter: the adapter 9235 * @qid: the Queue ID 9236 * @qtype: the Ingress or Egress type for @qid 9237 * @user: true if this request is for a user mode queue 9238 * @pbar2_qoffset: BAR2 Queue Offset 9239 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9240 * 9241 * Returns the BAR2 SGE Queue Registers information associated with the 9242 * indicated Absolute Queue ID. These are passed back in return value 9243 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9244 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9245 * 9246 * This may return an error which indicates that BAR2 SGE Queue 9247 * registers aren't available. If an error is not returned, then the 9248 * following values are returned: 9249 * 9250 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9251 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9252 * 9253 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9254 * require the "Inferred Queue ID" ability may be used. E.g. the 9255 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9256 * then these "Inferred Queue ID" register may not be used. 9257 */ 9258 int t4_bar2_sge_qregs(struct adapter *adapter, 9259 unsigned int qid, 9260 enum t4_bar2_qtype qtype, 9261 int user, 9262 u64 *pbar2_qoffset, 9263 unsigned int *pbar2_qid) 9264 { 9265 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9266 u64 bar2_page_offset, bar2_qoffset; 9267 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9268 9269 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9270 if (!user && is_t4(adapter->params.chip)) 9271 return -EINVAL; 9272 9273 /* Get our SGE Page Size parameters. 9274 */ 9275 page_shift = adapter->params.sge.hps + 10; 9276 page_size = 1 << page_shift; 9277 9278 /* Get the right Queues per Page parameters for our Queue. 9279 */ 9280 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9281 ? adapter->params.sge.eq_qpp 9282 : adapter->params.sge.iq_qpp); 9283 qpp_mask = (1 << qpp_shift) - 1; 9284 9285 /* Calculate the basics of the BAR2 SGE Queue register area: 9286 * o The BAR2 page the Queue registers will be in. 9287 * o The BAR2 Queue ID. 9288 * o The BAR2 Queue ID Offset into the BAR2 page. 9289 */ 9290 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9291 bar2_qid = qid & qpp_mask; 9292 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9293 9294 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9295 * hardware will infer the Absolute Queue ID simply from the writes to 9296 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9297 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9298 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9299 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9300 * from the BAR2 Page and BAR2 Queue ID. 9301 * 9302 * One important censequence of this is that some BAR2 SGE registers 9303 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9304 * there. But other registers synthesize the SGE Queue ID purely 9305 * from the writes to the registers -- the Write Combined Doorbell 9306 * Buffer is a good example. These BAR2 SGE Registers are only 9307 * available for those BAR2 SGE Register areas where the SGE Absolute 9308 * Queue ID can be inferred from simple writes. 9309 */ 9310 bar2_qoffset = bar2_page_offset; 9311 bar2_qinferred = (bar2_qid_offset < page_size); 9312 if (bar2_qinferred) { 9313 bar2_qoffset += bar2_qid_offset; 9314 bar2_qid = 0; 9315 } 9316 9317 *pbar2_qoffset = bar2_qoffset; 9318 *pbar2_qid = bar2_qid; 9319 return 0; 9320 } 9321 9322 /** 9323 * t4_init_devlog_params - initialize adapter->params.devlog 9324 * @adap: the adapter 9325 * 9326 * Initialize various fields of the adapter's Firmware Device Log 9327 * Parameters structure. 9328 */ 9329 int t4_init_devlog_params(struct adapter *adap) 9330 { 9331 struct devlog_params *dparams = &adap->params.devlog; 9332 u32 pf_dparams; 9333 unsigned int devlog_meminfo; 9334 struct fw_devlog_cmd devlog_cmd; 9335 int ret; 9336 9337 /* If we're dealing with newer firmware, the Device Log Parameters 9338 * are stored in a designated register which allows us to access the 9339 * Device Log even if we can't talk to the firmware. 9340 */ 9341 pf_dparams = 9342 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9343 if (pf_dparams) { 9344 unsigned int nentries, nentries128; 9345 9346 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9347 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9348 9349 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9350 nentries = (nentries128 + 1) * 128; 9351 dparams->size = nentries * sizeof(struct fw_devlog_e); 9352 9353 return 0; 9354 } 9355 9356 /* Otherwise, ask the firmware for it's Device Log Parameters. 9357 */ 9358 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9359 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9360 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9361 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9362 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9363 &devlog_cmd); 9364 if (ret) 9365 return ret; 9366 9367 devlog_meminfo = 9368 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9369 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9370 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9371 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9372 9373 return 0; 9374 } 9375 9376 /** 9377 * t4_init_sge_params - initialize adap->params.sge 9378 * @adapter: the adapter 9379 * 9380 * Initialize various fields of the adapter's SGE Parameters structure. 9381 */ 9382 int t4_init_sge_params(struct adapter *adapter) 9383 { 9384 struct sge_params *sge_params = &adapter->params.sge; 9385 u32 hps, qpp; 9386 unsigned int s_hps, s_qpp; 9387 9388 /* Extract the SGE Page Size for our PF. 9389 */ 9390 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9391 s_hps = (HOSTPAGESIZEPF0_S + 9392 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9393 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9394 9395 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9396 */ 9397 s_qpp = (QUEUESPERPAGEPF0_S + 9398 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9399 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9400 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9401 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9402 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9403 9404 return 0; 9405 } 9406 9407 /** 9408 * t4_init_tp_params - initialize adap->params.tp 9409 * @adap: the adapter 9410 * @sleep_ok: if true we may sleep while awaiting command completion 9411 * 9412 * Initialize various fields of the adapter's TP Parameters structure. 9413 */ 9414 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9415 { 9416 u32 param, val, v; 9417 int chan, ret; 9418 9419 9420 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9421 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9422 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9423 9424 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9425 for (chan = 0; chan < NCHAN; chan++) 9426 adap->params.tp.tx_modq[chan] = chan; 9427 9428 /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress 9429 * Configuration. 9430 */ 9431 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 9432 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) | 9433 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK)); 9434 9435 /* Read current value */ 9436 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 9437 ¶m, &val); 9438 if (ret == 0) { 9439 dev_info(adap->pdev_dev, 9440 "Current filter mode/mask 0x%x:0x%x\n", 9441 FW_PARAMS_PARAM_FILTER_MODE_G(val), 9442 FW_PARAMS_PARAM_FILTER_MASK_G(val)); 9443 adap->params.tp.vlan_pri_map = 9444 FW_PARAMS_PARAM_FILTER_MODE_G(val); 9445 adap->params.tp.filter_mask = 9446 FW_PARAMS_PARAM_FILTER_MASK_G(val); 9447 } else { 9448 dev_info(adap->pdev_dev, 9449 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n"); 9450 9451 /* Incase of older-fw (which doesn't expose the api 9452 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses 9453 * the fw api) combination, fall-back to older method of reading 9454 * the filter mode from indirect-register 9455 */ 9456 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9457 TP_VLAN_PRI_MAP_A, sleep_ok); 9458 9459 /* With the older-fw and newer-driver combination we might run 9460 * into an issue when user wants to use hash filter region but 9461 * the filter_mask is zero, in this case filter_mask validation 9462 * is tough. To avoid that we set the filter_mask same as filter 9463 * mode, which will behave exactly as the older way of ignoring 9464 * the filter mask validation. 9465 */ 9466 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map; 9467 } 9468 9469 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9470 TP_INGRESS_CONFIG_A, sleep_ok); 9471 9472 /* For T6, cache the adapter's compressed error vector 9473 * and passing outer header info for encapsulated packets. 9474 */ 9475 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9476 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9477 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9478 } 9479 9480 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9481 * shift positions of several elements of the Compressed Filter Tuple 9482 * for this adapter which we need frequently ... 9483 */ 9484 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9485 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9486 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9487 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9488 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9489 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9490 PROTOCOL_F); 9491 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9492 ETHERTYPE_F); 9493 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9494 MACMATCH_F); 9495 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9496 MPSHITTYPE_F); 9497 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9498 FRAGMENTATION_F); 9499 9500 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9501 * represents the presence of an Outer VLAN instead of a VNIC ID. 9502 */ 9503 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9504 adap->params.tp.vnic_shift = -1; 9505 9506 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9507 adap->params.tp.hash_filter_mask = v; 9508 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9509 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9510 return 0; 9511 } 9512 9513 /** 9514 * t4_filter_field_shift - calculate filter field shift 9515 * @adap: the adapter 9516 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9517 * 9518 * Return the shift position of a filter field within the Compressed 9519 * Filter Tuple. The filter field is specified via its selection bit 9520 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9521 */ 9522 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9523 { 9524 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9525 unsigned int sel; 9526 int field_shift; 9527 9528 if ((filter_mode & filter_sel) == 0) 9529 return -1; 9530 9531 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9532 switch (filter_mode & sel) { 9533 case FCOE_F: 9534 field_shift += FT_FCOE_W; 9535 break; 9536 case PORT_F: 9537 field_shift += FT_PORT_W; 9538 break; 9539 case VNIC_ID_F: 9540 field_shift += FT_VNIC_ID_W; 9541 break; 9542 case VLAN_F: 9543 field_shift += FT_VLAN_W; 9544 break; 9545 case TOS_F: 9546 field_shift += FT_TOS_W; 9547 break; 9548 case PROTOCOL_F: 9549 field_shift += FT_PROTOCOL_W; 9550 break; 9551 case ETHERTYPE_F: 9552 field_shift += FT_ETHERTYPE_W; 9553 break; 9554 case MACMATCH_F: 9555 field_shift += FT_MACMATCH_W; 9556 break; 9557 case MPSHITTYPE_F: 9558 field_shift += FT_MPSHITTYPE_W; 9559 break; 9560 case FRAGMENTATION_F: 9561 field_shift += FT_FRAGMENTATION_W; 9562 break; 9563 } 9564 } 9565 return field_shift; 9566 } 9567 9568 int t4_init_rss_mode(struct adapter *adap, int mbox) 9569 { 9570 int i, ret; 9571 struct fw_rss_vi_config_cmd rvc; 9572 9573 memset(&rvc, 0, sizeof(rvc)); 9574 9575 for_each_port(adap, i) { 9576 struct port_info *p = adap2pinfo(adap, i); 9577 9578 rvc.op_to_viid = 9579 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9580 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9581 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9582 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9583 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9584 if (ret) 9585 return ret; 9586 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9587 } 9588 return 0; 9589 } 9590 9591 /** 9592 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9593 * @pi: the port_info 9594 * @mbox: mailbox to use for the FW command 9595 * @port: physical port associated with the VI 9596 * @pf: the PF owning the VI 9597 * @vf: the VF owning the VI 9598 * @mac: the MAC address of the VI 9599 * 9600 * Allocates a virtual interface for the given physical port. If @mac is 9601 * not %NULL it contains the MAC address of the VI as assigned by FW. 9602 * @mac should be large enough to hold an Ethernet address. 9603 * Returns < 0 on error. 9604 */ 9605 int t4_init_portinfo(struct port_info *pi, int mbox, 9606 int port, int pf, int vf, u8 mac[]) 9607 { 9608 struct adapter *adapter = pi->adapter; 9609 unsigned int fw_caps = adapter->params.fw_caps_support; 9610 struct fw_port_cmd cmd; 9611 unsigned int rss_size; 9612 enum fw_port_type port_type; 9613 int mdio_addr; 9614 fw_port_cap32_t pcaps, acaps; 9615 u8 vivld = 0, vin = 0; 9616 int ret; 9617 9618 /* If we haven't yet determined whether we're talking to Firmware 9619 * which knows the new 32-bit Port Capabilities, it's time to find 9620 * out now. This will also tell new Firmware to send us Port Status 9621 * Updates using the new 32-bit Port Capabilities version of the 9622 * Port Information message. 9623 */ 9624 if (fw_caps == FW_CAPS_UNKNOWN) { 9625 u32 param, val; 9626 9627 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9628 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9629 val = 1; 9630 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9631 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9632 adapter->params.fw_caps_support = fw_caps; 9633 } 9634 9635 memset(&cmd, 0, sizeof(cmd)); 9636 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9637 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9638 FW_PORT_CMD_PORTID_V(port)); 9639 cmd.action_to_len16 = cpu_to_be32( 9640 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9641 ? FW_PORT_ACTION_GET_PORT_INFO 9642 : FW_PORT_ACTION_GET_PORT_INFO32) | 9643 FW_LEN16(cmd)); 9644 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9645 if (ret) 9646 return ret; 9647 9648 /* Extract the various fields from the Port Information message. 9649 */ 9650 if (fw_caps == FW_CAPS16) { 9651 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9652 9653 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9654 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9655 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9656 : -1); 9657 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9658 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9659 } else { 9660 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9661 9662 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9663 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9664 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9665 : -1); 9666 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9667 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9668 } 9669 9670 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9671 &vivld, &vin); 9672 if (ret < 0) 9673 return ret; 9674 9675 pi->viid = ret; 9676 pi->tx_chan = port; 9677 pi->lport = port; 9678 pi->rss_size = rss_size; 9679 pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port); 9680 9681 /* If fw supports returning the VIN as part of FW_VI_CMD, 9682 * save the returned values. 9683 */ 9684 if (adapter->params.viid_smt_extn_support) { 9685 pi->vivld = vivld; 9686 pi->vin = vin; 9687 } else { 9688 /* Retrieve the values from VIID */ 9689 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9690 pi->vin = FW_VIID_VIN_G(pi->viid); 9691 } 9692 9693 pi->port_type = port_type; 9694 pi->mdio_addr = mdio_addr; 9695 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9696 9697 init_link_config(&pi->link_cfg, pcaps, acaps); 9698 return 0; 9699 } 9700 9701 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9702 { 9703 u8 addr[6]; 9704 int ret, i, j = 0; 9705 9706 for_each_port(adap, i) { 9707 struct port_info *pi = adap2pinfo(adap, i); 9708 9709 while ((adap->params.portvec & (1 << j)) == 0) 9710 j++; 9711 9712 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9713 if (ret) 9714 return ret; 9715 9716 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9717 j++; 9718 } 9719 return 0; 9720 } 9721 9722 /** 9723 * t4_read_cimq_cfg - read CIM queue configuration 9724 * @adap: the adapter 9725 * @base: holds the queue base addresses in bytes 9726 * @size: holds the queue sizes in bytes 9727 * @thres: holds the queue full thresholds in bytes 9728 * 9729 * Returns the current configuration of the CIM queues, starting with 9730 * the IBQs, then the OBQs. 9731 */ 9732 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9733 { 9734 unsigned int i, v; 9735 int cim_num_obq = is_t4(adap->params.chip) ? 9736 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9737 9738 for (i = 0; i < CIM_NUM_IBQ; i++) { 9739 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9740 QUENUMSELECT_V(i)); 9741 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9742 /* value is in 256-byte units */ 9743 *base++ = CIMQBASE_G(v) * 256; 9744 *size++ = CIMQSIZE_G(v) * 256; 9745 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9746 } 9747 for (i = 0; i < cim_num_obq; i++) { 9748 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9749 QUENUMSELECT_V(i)); 9750 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9751 /* value is in 256-byte units */ 9752 *base++ = CIMQBASE_G(v) * 256; 9753 *size++ = CIMQSIZE_G(v) * 256; 9754 } 9755 } 9756 9757 /** 9758 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9759 * @adap: the adapter 9760 * @qid: the queue index 9761 * @data: where to store the queue contents 9762 * @n: capacity of @data in 32-bit words 9763 * 9764 * Reads the contents of the selected CIM queue starting at address 0 up 9765 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9766 * error and the number of 32-bit words actually read on success. 9767 */ 9768 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9769 { 9770 int i, err, attempts; 9771 unsigned int addr; 9772 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9773 9774 if (qid > 5 || (n & 3)) 9775 return -EINVAL; 9776 9777 addr = qid * nwords; 9778 if (n > nwords) 9779 n = nwords; 9780 9781 /* It might take 3-10ms before the IBQ debug read access is allowed. 9782 * Wait for 1 Sec with a delay of 1 usec. 9783 */ 9784 attempts = 1000000; 9785 9786 for (i = 0; i < n; i++, addr++) { 9787 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9788 IBQDBGEN_F); 9789 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9790 attempts, 1); 9791 if (err) 9792 return err; 9793 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9794 } 9795 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9796 return i; 9797 } 9798 9799 /** 9800 * t4_read_cim_obq - read the contents of a CIM outbound queue 9801 * @adap: the adapter 9802 * @qid: the queue index 9803 * @data: where to store the queue contents 9804 * @n: capacity of @data in 32-bit words 9805 * 9806 * Reads the contents of the selected CIM queue starting at address 0 up 9807 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9808 * error and the number of 32-bit words actually read on success. 9809 */ 9810 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9811 { 9812 int i, err; 9813 unsigned int addr, v, nwords; 9814 int cim_num_obq = is_t4(adap->params.chip) ? 9815 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9816 9817 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9818 return -EINVAL; 9819 9820 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9821 QUENUMSELECT_V(qid)); 9822 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9823 9824 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9825 nwords = CIMQSIZE_G(v) * 64; /* same */ 9826 if (n > nwords) 9827 n = nwords; 9828 9829 for (i = 0; i < n; i++, addr++) { 9830 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9831 OBQDBGEN_F); 9832 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9833 2, 1); 9834 if (err) 9835 return err; 9836 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9837 } 9838 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9839 return i; 9840 } 9841 9842 /** 9843 * t4_cim_read - read a block from CIM internal address space 9844 * @adap: the adapter 9845 * @addr: the start address within the CIM address space 9846 * @n: number of words to read 9847 * @valp: where to store the result 9848 * 9849 * Reads a block of 4-byte words from the CIM intenal address space. 9850 */ 9851 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9852 unsigned int *valp) 9853 { 9854 int ret = 0; 9855 9856 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9857 return -EBUSY; 9858 9859 for ( ; !ret && n--; addr += 4) { 9860 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9861 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9862 0, 5, 2); 9863 if (!ret) 9864 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9865 } 9866 return ret; 9867 } 9868 9869 /** 9870 * t4_cim_write - write a block into CIM internal address space 9871 * @adap: the adapter 9872 * @addr: the start address within the CIM address space 9873 * @n: number of words to write 9874 * @valp: set of values to write 9875 * 9876 * Writes a block of 4-byte words into the CIM intenal address space. 9877 */ 9878 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9879 const unsigned int *valp) 9880 { 9881 int ret = 0; 9882 9883 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9884 return -EBUSY; 9885 9886 for ( ; !ret && n--; addr += 4) { 9887 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9888 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9889 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9890 0, 5, 2); 9891 } 9892 return ret; 9893 } 9894 9895 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9896 unsigned int val) 9897 { 9898 return t4_cim_write(adap, addr, 1, &val); 9899 } 9900 9901 /** 9902 * t4_cim_read_la - read CIM LA capture buffer 9903 * @adap: the adapter 9904 * @la_buf: where to store the LA data 9905 * @wrptr: the HW write pointer within the capture buffer 9906 * 9907 * Reads the contents of the CIM LA buffer with the most recent entry at 9908 * the end of the returned data and with the entry at @wrptr first. 9909 * We try to leave the LA in the running state we find it in. 9910 */ 9911 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9912 { 9913 int i, ret; 9914 unsigned int cfg, val, idx; 9915 9916 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9917 if (ret) 9918 return ret; 9919 9920 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9921 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9922 if (ret) 9923 return ret; 9924 } 9925 9926 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9927 if (ret) 9928 goto restart; 9929 9930 idx = UPDBGLAWRPTR_G(val); 9931 if (wrptr) 9932 *wrptr = idx; 9933 9934 for (i = 0; i < adap->params.cim_la_size; i++) { 9935 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9936 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9937 if (ret) 9938 break; 9939 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9940 if (ret) 9941 break; 9942 if (val & UPDBGLARDEN_F) { 9943 ret = -ETIMEDOUT; 9944 break; 9945 } 9946 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9947 if (ret) 9948 break; 9949 9950 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9951 * identify the 32-bit portion of the full 312-bit data 9952 */ 9953 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9954 idx = (idx & 0xff0) + 0x10; 9955 else 9956 idx++; 9957 /* address can't exceed 0xfff */ 9958 idx &= UPDBGLARDPTR_M; 9959 } 9960 restart: 9961 if (cfg & UPDBGLAEN_F) { 9962 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9963 cfg & ~UPDBGLARDEN_F); 9964 if (!ret) 9965 ret = r; 9966 } 9967 return ret; 9968 } 9969 9970 /** 9971 * t4_tp_read_la - read TP LA capture buffer 9972 * @adap: the adapter 9973 * @la_buf: where to store the LA data 9974 * @wrptr: the HW write pointer within the capture buffer 9975 * 9976 * Reads the contents of the TP LA buffer with the most recent entry at 9977 * the end of the returned data and with the entry at @wrptr first. 9978 * We leave the LA in the running state we find it in. 9979 */ 9980 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9981 { 9982 bool last_incomplete; 9983 unsigned int i, cfg, val, idx; 9984 9985 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9986 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9987 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9988 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9989 9990 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9991 idx = DBGLAWPTR_G(val); 9992 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9993 if (last_incomplete) 9994 idx = (idx + 1) & DBGLARPTR_M; 9995 if (wrptr) 9996 *wrptr = idx; 9997 9998 val &= 0xffff; 9999 val &= ~DBGLARPTR_V(DBGLARPTR_M); 10000 val |= adap->params.tp.la_mask; 10001 10002 for (i = 0; i < TPLA_SIZE; i++) { 10003 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 10004 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 10005 idx = (idx + 1) & DBGLARPTR_M; 10006 } 10007 10008 /* Wipe out last entry if it isn't valid */ 10009 if (last_incomplete) 10010 la_buf[TPLA_SIZE - 1] = ~0ULL; 10011 10012 if (cfg & DBGLAENABLE_F) /* restore running state */ 10013 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10014 cfg | adap->params.tp.la_mask); 10015 } 10016 10017 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10018 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10019 * state for more than the Warning Threshold then we'll issue a warning about 10020 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10021 * appears to be hung every Warning Repeat second till the situation clears. 10022 * If the situation clears, we'll note that as well. 10023 */ 10024 #define SGE_IDMA_WARN_THRESH 1 10025 #define SGE_IDMA_WARN_REPEAT 300 10026 10027 /** 10028 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10029 * @adapter: the adapter 10030 * @idma: the adapter IDMA Monitor state 10031 * 10032 * Initialize the state of an SGE Ingress DMA Monitor. 10033 */ 10034 void t4_idma_monitor_init(struct adapter *adapter, 10035 struct sge_idma_monitor_state *idma) 10036 { 10037 /* Initialize the state variables for detecting an SGE Ingress DMA 10038 * hang. The SGE has internal counters which count up on each clock 10039 * tick whenever the SGE finds its Ingress DMA State Engines in the 10040 * same state they were on the previous clock tick. The clock used is 10041 * the Core Clock so we have a limit on the maximum "time" they can 10042 * record; typically a very small number of seconds. For instance, 10043 * with a 600MHz Core Clock, we can only count up to a bit more than 10044 * 7s. So we'll synthesize a larger counter in order to not run the 10045 * risk of having the "timers" overflow and give us the flexibility to 10046 * maintain a Hung SGE State Machine of our own which operates across 10047 * a longer time frame. 10048 */ 10049 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10050 idma->idma_stalled[0] = 0; 10051 idma->idma_stalled[1] = 0; 10052 } 10053 10054 /** 10055 * t4_idma_monitor - monitor SGE Ingress DMA state 10056 * @adapter: the adapter 10057 * @idma: the adapter IDMA Monitor state 10058 * @hz: number of ticks/second 10059 * @ticks: number of ticks since the last IDMA Monitor call 10060 */ 10061 void t4_idma_monitor(struct adapter *adapter, 10062 struct sge_idma_monitor_state *idma, 10063 int hz, int ticks) 10064 { 10065 int i, idma_same_state_cnt[2]; 10066 10067 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10068 * are counters inside the SGE which count up on each clock when the 10069 * SGE finds its Ingress DMA State Engines in the same states they 10070 * were in the previous clock. The counters will peg out at 10071 * 0xffffffff without wrapping around so once they pass the 1s 10072 * threshold they'll stay above that till the IDMA state changes. 10073 */ 10074 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 10075 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 10076 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10077 10078 for (i = 0; i < 2; i++) { 10079 u32 debug0, debug11; 10080 10081 /* If the Ingress DMA Same State Counter ("timer") is less 10082 * than 1s, then we can reset our synthesized Stall Timer and 10083 * continue. If we have previously emitted warnings about a 10084 * potential stalled Ingress Queue, issue a note indicating 10085 * that the Ingress Queue has resumed forward progress. 10086 */ 10087 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10088 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 10089 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 10090 "resumed after %d seconds\n", 10091 i, idma->idma_qid[i], 10092 idma->idma_stalled[i] / hz); 10093 idma->idma_stalled[i] = 0; 10094 continue; 10095 } 10096 10097 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10098 * domain. The first time we get here it'll be because we 10099 * passed the 1s Threshold; each additional time it'll be 10100 * because the RX Timer Callback is being fired on its regular 10101 * schedule. 10102 * 10103 * If the stall is below our Potential Hung Ingress Queue 10104 * Warning Threshold, continue. 10105 */ 10106 if (idma->idma_stalled[i] == 0) { 10107 idma->idma_stalled[i] = hz; 10108 idma->idma_warn[i] = 0; 10109 } else { 10110 idma->idma_stalled[i] += ticks; 10111 idma->idma_warn[i] -= ticks; 10112 } 10113 10114 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 10115 continue; 10116 10117 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10118 */ 10119 if (idma->idma_warn[i] > 0) 10120 continue; 10121 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 10122 10123 /* Read and save the SGE IDMA State and Queue ID information. 10124 * We do this every time in case it changes across time ... 10125 * can't be too careful ... 10126 */ 10127 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 10128 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10129 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10130 10131 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 10132 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10133 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10134 10135 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 10136 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10137 i, idma->idma_qid[i], idma->idma_state[i], 10138 idma->idma_stalled[i] / hz, 10139 debug0, debug11); 10140 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10141 } 10142 } 10143 10144 /** 10145 * t4_load_cfg - download config file 10146 * @adap: the adapter 10147 * @cfg_data: the cfg text file to write 10148 * @size: text file size 10149 * 10150 * Write the supplied config text file to the card's serial flash. 10151 */ 10152 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10153 { 10154 int ret, i, n, cfg_addr; 10155 unsigned int addr; 10156 unsigned int flash_cfg_start_sec; 10157 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10158 10159 cfg_addr = t4_flash_cfg_addr(adap); 10160 if (cfg_addr < 0) 10161 return cfg_addr; 10162 10163 addr = cfg_addr; 10164 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10165 10166 if (size > FLASH_CFG_MAX_SIZE) { 10167 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10168 FLASH_CFG_MAX_SIZE); 10169 return -EFBIG; 10170 } 10171 10172 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10173 sf_sec_size); 10174 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10175 flash_cfg_start_sec + i - 1); 10176 /* If size == 0 then we're simply erasing the FLASH sectors associated 10177 * with the on-adapter Firmware Configuration File. 10178 */ 10179 if (ret || size == 0) 10180 goto out; 10181 10182 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10183 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10184 if ((size - i) < SF_PAGE_SIZE) 10185 n = size - i; 10186 else 10187 n = SF_PAGE_SIZE; 10188 ret = t4_write_flash(adap, addr, n, cfg_data); 10189 if (ret) 10190 goto out; 10191 10192 addr += SF_PAGE_SIZE; 10193 cfg_data += SF_PAGE_SIZE; 10194 } 10195 10196 out: 10197 if (ret) 10198 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10199 (size == 0 ? "clear" : "download"), ret); 10200 return ret; 10201 } 10202 10203 /** 10204 * t4_set_vf_mac - Set MAC address for the specified VF 10205 * @adapter: The adapter 10206 * @vf: one of the VFs instantiated by the specified PF 10207 * @naddr: the number of MAC addresses 10208 * @addr: the MAC address(es) to be set to the specified VF 10209 */ 10210 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10211 unsigned int naddr, u8 *addr) 10212 { 10213 struct fw_acl_mac_cmd cmd; 10214 10215 memset(&cmd, 0, sizeof(cmd)); 10216 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10217 FW_CMD_REQUEST_F | 10218 FW_CMD_WRITE_F | 10219 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10220 FW_ACL_MAC_CMD_VFN_V(vf)); 10221 10222 /* Note: Do not enable the ACL */ 10223 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10224 cmd.nmac = naddr; 10225 10226 switch (adapter->pf) { 10227 case 3: 10228 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10229 break; 10230 case 2: 10231 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10232 break; 10233 case 1: 10234 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10235 break; 10236 case 0: 10237 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10238 break; 10239 } 10240 10241 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10242 } 10243 10244 /** 10245 * t4_read_pace_tbl - read the pace table 10246 * @adap: the adapter 10247 * @pace_vals: holds the returned values 10248 * 10249 * Returns the values of TP's pace table in microseconds. 10250 */ 10251 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10252 { 10253 unsigned int i, v; 10254 10255 for (i = 0; i < NTX_SCHED; i++) { 10256 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10257 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10258 pace_vals[i] = dack_ticks_to_usec(adap, v); 10259 } 10260 } 10261 10262 /** 10263 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10264 * @adap: the adapter 10265 * @sched: the scheduler index 10266 * @kbps: the byte rate in Kbps 10267 * @ipg: the interpacket delay in tenths of nanoseconds 10268 * @sleep_ok: if true we may sleep while awaiting command completion 10269 * 10270 * Return the current configuration of a HW Tx scheduler. 10271 */ 10272 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10273 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10274 { 10275 unsigned int v, addr, bpt, cpt; 10276 10277 if (kbps) { 10278 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10279 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10280 if (sched & 1) 10281 v >>= 16; 10282 bpt = (v >> 8) & 0xff; 10283 cpt = v & 0xff; 10284 if (!cpt) { 10285 *kbps = 0; /* scheduler disabled */ 10286 } else { 10287 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10288 *kbps = (v * bpt) / 125; 10289 } 10290 } 10291 if (ipg) { 10292 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10293 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10294 if (sched & 1) 10295 v >>= 16; 10296 v &= 0xffff; 10297 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10298 } 10299 } 10300 10301 /* t4_sge_ctxt_rd - read an SGE context through FW 10302 * @adap: the adapter 10303 * @mbox: mailbox to use for the FW command 10304 * @cid: the context id 10305 * @ctype: the context type 10306 * @data: where to store the context data 10307 * 10308 * Issues a FW command through the given mailbox to read an SGE context. 10309 */ 10310 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10311 enum ctxt_type ctype, u32 *data) 10312 { 10313 struct fw_ldst_cmd c; 10314 int ret; 10315 10316 if (ctype == CTXT_FLM) 10317 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10318 else 10319 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10320 10321 memset(&c, 0, sizeof(c)); 10322 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10323 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10324 FW_LDST_CMD_ADDRSPACE_V(ret)); 10325 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10326 c.u.idctxt.physid = cpu_to_be32(cid); 10327 10328 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10329 if (ret == 0) { 10330 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10331 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10332 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10333 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10334 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10335 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10336 } 10337 return ret; 10338 } 10339 10340 /** 10341 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10342 * @adap: the adapter 10343 * @cid: the context id 10344 * @ctype: the context type 10345 * @data: where to store the context data 10346 * 10347 * Reads an SGE context directly, bypassing FW. This is only for 10348 * debugging when FW is unavailable. 10349 */ 10350 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10351 enum ctxt_type ctype, u32 *data) 10352 { 10353 int i, ret; 10354 10355 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10356 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10357 if (!ret) 10358 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10359 *data++ = t4_read_reg(adap, i); 10360 return ret; 10361 } 10362 10363 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode, 10364 u8 rateunit, u8 ratemode, u8 channel, u8 class, 10365 u32 minrate, u32 maxrate, u16 weight, u16 pktsize, 10366 u16 burstsize) 10367 { 10368 struct fw_sched_cmd cmd; 10369 10370 memset(&cmd, 0, sizeof(cmd)); 10371 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10372 FW_CMD_REQUEST_F | 10373 FW_CMD_WRITE_F); 10374 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10375 10376 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10377 cmd.u.params.type = type; 10378 cmd.u.params.level = level; 10379 cmd.u.params.mode = mode; 10380 cmd.u.params.ch = channel; 10381 cmd.u.params.cl = class; 10382 cmd.u.params.unit = rateunit; 10383 cmd.u.params.rate = ratemode; 10384 cmd.u.params.min = cpu_to_be32(minrate); 10385 cmd.u.params.max = cpu_to_be32(maxrate); 10386 cmd.u.params.weight = cpu_to_be16(weight); 10387 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10388 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10389 10390 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10391 NULL, 1); 10392 } 10393 10394 /** 10395 * t4_i2c_rd - read I2C data from adapter 10396 * @adap: the adapter 10397 * @mbox: mailbox to use for the FW command 10398 * @port: Port number if per-port device; <0 if not 10399 * @devid: per-port device ID or absolute device ID 10400 * @offset: byte offset into device I2C space 10401 * @len: byte length of I2C space data 10402 * @buf: buffer in which to return I2C data 10403 * 10404 * Reads the I2C data from the indicated device and location. 10405 */ 10406 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10407 unsigned int devid, unsigned int offset, 10408 unsigned int len, u8 *buf) 10409 { 10410 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10411 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10412 int ret = 0; 10413 10414 if (len > I2C_PAGE_SIZE) 10415 return -EINVAL; 10416 10417 /* Dont allow reads that spans multiple pages */ 10418 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10419 return -EINVAL; 10420 10421 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10422 ldst_cmd.op_to_addrspace = 10423 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10424 FW_CMD_REQUEST_F | 10425 FW_CMD_READ_F | 10426 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10427 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10428 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10429 ldst_cmd.u.i2c.did = devid; 10430 10431 while (len > 0) { 10432 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10433 10434 ldst_cmd.u.i2c.boffset = offset; 10435 ldst_cmd.u.i2c.blen = i2c_len; 10436 10437 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10438 &ldst_rpl); 10439 if (ret) 10440 break; 10441 10442 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10443 offset += i2c_len; 10444 buf += i2c_len; 10445 len -= i2c_len; 10446 } 10447 10448 return ret; 10449 } 10450 10451 /** 10452 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10453 * @adap: the adapter 10454 * @mbox: mailbox to use for the FW command 10455 * @vf: one of the VFs instantiated by the specified PF 10456 * @vlan: The vlanid to be set 10457 */ 10458 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10459 u16 vlan) 10460 { 10461 struct fw_acl_vlan_cmd vlan_cmd; 10462 unsigned int enable; 10463 10464 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10465 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10466 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10467 FW_CMD_REQUEST_F | 10468 FW_CMD_WRITE_F | 10469 FW_CMD_EXEC_F | 10470 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10471 FW_ACL_VLAN_CMD_VFN_V(vf)); 10472 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10473 /* Drop all packets that donot match vlan id */ 10474 vlan_cmd.dropnovlan_fm = (enable 10475 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10476 FW_ACL_VLAN_CMD_FM_F) : 0); 10477 if (enable != 0) { 10478 vlan_cmd.nvlan = 1; 10479 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10480 } 10481 10482 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10483 } 10484