1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 } 202 203 /* 204 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 205 */ 206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 207 u32 mbox_addr) 208 { 209 for ( ; nflit; nflit--, mbox_addr += 8) 210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 211 } 212 213 /* 214 * Handle a FW assertion reported in a mailbox. 215 */ 216 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 217 { 218 struct fw_debug_cmd asrt; 219 220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 221 dev_alert(adap->pdev_dev, 222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 225 } 226 227 /** 228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 229 * @adapter: the adapter 230 * @cmd: the Firmware Mailbox Command or Reply 231 * @size: command length in bytes 232 * @access: the time (ms) needed to access the Firmware Mailbox 233 * @execute: the time (ms) the command spent being executed 234 */ 235 static void t4_record_mbox(struct adapter *adapter, 236 const __be64 *cmd, unsigned int size, 237 int access, int execute) 238 { 239 struct mbox_cmd_log *log = adapter->mbox_log; 240 struct mbox_cmd *entry; 241 int i; 242 243 entry = mbox_cmd_log_entry(log, log->cursor++); 244 if (log->cursor == log->size) 245 log->cursor = 0; 246 247 for (i = 0; i < size / 8; i++) 248 entry->cmd[i] = be64_to_cpu(cmd[i]); 249 while (i < MBOX_LEN / 8) 250 entry->cmd[i++] = 0; 251 entry->timestamp = jiffies; 252 entry->seqno = log->seqno++; 253 entry->access = access; 254 entry->execute = execute; 255 } 256 257 /** 258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 259 * @adap: the adapter 260 * @mbox: index of the mailbox to use 261 * @cmd: the command to write 262 * @size: command length in bytes 263 * @rpl: where to optionally store the reply 264 * @sleep_ok: if true we may sleep while awaiting command completion 265 * @timeout: time to wait for command to finish before timing out 266 * 267 * Sends the given command to FW through the selected mailbox and waits 268 * for the FW to execute the command. If @rpl is not %NULL it is used to 269 * store the FW's reply to the command. The command and its optional 270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 271 * to respond. @sleep_ok determines whether we may sleep while awaiting 272 * the response. If sleeping is allowed we use progressive backoff 273 * otherwise we spin. 274 * 275 * The return value is 0 on success or a negative errno on failure. A 276 * failure can happen either because we are not able to execute the 277 * command or FW executes it but signals an error. In the latter case 278 * the return value is the error code indicated by FW (negated). 279 */ 280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 281 int size, void *rpl, bool sleep_ok, int timeout) 282 { 283 static const int delay[] = { 284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 285 }; 286 287 struct mbox_list entry; 288 u16 access = 0; 289 u16 execute = 0; 290 u32 v; 291 u64 res; 292 int i, ms, delay_idx, ret; 293 const __be64 *p = cmd; 294 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 295 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 296 __be64 cmd_rpl[MBOX_LEN / 8]; 297 u32 pcie_fw; 298 299 if ((size & 15) || size > MBOX_LEN) 300 return -EINVAL; 301 302 /* 303 * If the device is off-line, as in EEH, commands will time out. 304 * Fail them early so we don't waste time waiting. 305 */ 306 if (adap->pdev->error_state != pci_channel_io_normal) 307 return -EIO; 308 309 /* If we have a negative timeout, that implies that we can't sleep. */ 310 if (timeout < 0) { 311 sleep_ok = false; 312 timeout = -timeout; 313 } 314 315 /* Queue ourselves onto the mailbox access list. When our entry is at 316 * the front of the list, we have rights to access the mailbox. So we 317 * wait [for a while] till we're at the front [or bail out with an 318 * EBUSY] ... 319 */ 320 spin_lock(&adap->mbox_lock); 321 list_add_tail(&entry.list, &adap->mlist.list); 322 spin_unlock(&adap->mbox_lock); 323 324 delay_idx = 0; 325 ms = delay[0]; 326 327 for (i = 0; ; i += ms) { 328 /* If we've waited too long, return a busy indication. This 329 * really ought to be based on our initial position in the 330 * mailbox access list but this is a start. We very rearely 331 * contend on access to the mailbox ... 332 */ 333 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 334 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 335 spin_lock(&adap->mbox_lock); 336 list_del(&entry.list); 337 spin_unlock(&adap->mbox_lock); 338 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 339 t4_record_mbox(adap, cmd, size, access, ret); 340 return ret; 341 } 342 343 /* If we're at the head, break out and start the mailbox 344 * protocol. 345 */ 346 if (list_first_entry(&adap->mlist.list, struct mbox_list, 347 list) == &entry) 348 break; 349 350 /* Delay for a bit before checking again ... */ 351 if (sleep_ok) { 352 ms = delay[delay_idx]; /* last element may repeat */ 353 if (delay_idx < ARRAY_SIZE(delay) - 1) 354 delay_idx++; 355 msleep(ms); 356 } else { 357 mdelay(ms); 358 } 359 } 360 361 /* Loop trying to get ownership of the mailbox. Return an error 362 * if we can't gain ownership. 363 */ 364 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 365 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 if (v != MBOX_OWNER_DRV) { 368 spin_lock(&adap->mbox_lock); 369 list_del(&entry.list); 370 spin_unlock(&adap->mbox_lock); 371 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 372 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret); 373 return ret; 374 } 375 376 /* Copy in the new mailbox command and send it on its way ... */ 377 t4_record_mbox(adap, cmd, MBOX_LEN, access, 0); 378 for (i = 0; i < size; i += 8) 379 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 380 381 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 382 t4_read_reg(adap, ctl_reg); /* flush write */ 383 384 delay_idx = 0; 385 ms = delay[0]; 386 387 for (i = 0; 388 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 389 i < timeout; 390 i += ms) { 391 if (sleep_ok) { 392 ms = delay[delay_idx]; /* last element may repeat */ 393 if (delay_idx < ARRAY_SIZE(delay) - 1) 394 delay_idx++; 395 msleep(ms); 396 } else 397 mdelay(ms); 398 399 v = t4_read_reg(adap, ctl_reg); 400 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 401 if (!(v & MBMSGVALID_F)) { 402 t4_write_reg(adap, ctl_reg, 0); 403 continue; 404 } 405 406 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 407 res = be64_to_cpu(cmd_rpl[0]); 408 409 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 410 fw_asrt(adap, data_reg); 411 res = FW_CMD_RETVAL_V(EIO); 412 } else if (rpl) { 413 memcpy(rpl, cmd_rpl, size); 414 } 415 416 t4_write_reg(adap, ctl_reg, 0); 417 418 execute = i + ms; 419 t4_record_mbox(adap, cmd_rpl, 420 MBOX_LEN, access, execute); 421 spin_lock(&adap->mbox_lock); 422 list_del(&entry.list); 423 spin_unlock(&adap->mbox_lock); 424 return -FW_CMD_RETVAL_G((int)res); 425 } 426 } 427 428 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 429 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret); 430 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 431 *(const u8 *)cmd, mbox); 432 t4_report_fw_error(adap); 433 spin_lock(&adap->mbox_lock); 434 list_del(&entry.list); 435 spin_unlock(&adap->mbox_lock); 436 t4_fatal_err(adap); 437 return ret; 438 } 439 440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 441 void *rpl, bool sleep_ok) 442 { 443 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 444 FW_CMD_MAX_TIMEOUT); 445 } 446 447 static int t4_edc_err_read(struct adapter *adap, int idx) 448 { 449 u32 edc_ecc_err_addr_reg; 450 u32 rdata_reg; 451 452 if (is_t4(adap->params.chip)) { 453 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 454 return 0; 455 } 456 if (idx != 0 && idx != 1) { 457 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 458 return 0; 459 } 460 461 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 462 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 463 464 CH_WARN(adap, 465 "edc%d err addr 0x%x: 0x%x.\n", 466 idx, edc_ecc_err_addr_reg, 467 t4_read_reg(adap, edc_ecc_err_addr_reg)); 468 CH_WARN(adap, 469 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 470 rdata_reg, 471 (unsigned long long)t4_read_reg64(adap, rdata_reg), 472 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 473 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 480 481 return 0; 482 } 483 484 /** 485 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 486 * @adap: the adapter 487 * @win: PCI-E Memory Window to use 488 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 489 * @addr: address within indicated memory type 490 * @len: amount of memory to transfer 491 * @hbuf: host memory buffer 492 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 493 * 494 * Reads/writes an [almost] arbitrary memory region in the firmware: the 495 * firmware memory address and host buffer must be aligned on 32-bit 496 * boudaries; the length may be arbitrary. The memory is transferred as 497 * a raw byte sequence from/to the firmware's memory. If this memory 498 * contains data structures which contain multi-byte integers, it's the 499 * caller's responsibility to perform appropriate byte order conversions. 500 */ 501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 502 u32 len, void *hbuf, int dir) 503 { 504 u32 pos, offset, resid, memoffset; 505 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 506 u32 *buf; 507 508 /* Argument sanity checks ... 509 */ 510 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 511 return -EINVAL; 512 buf = (u32 *)hbuf; 513 514 /* It's convenient to be able to handle lengths which aren't a 515 * multiple of 32-bits because we often end up transferring files to 516 * the firmware. So we'll handle that by normalizing the length here 517 * and then handling any residual transfer at the end. 518 */ 519 resid = len & 0x3; 520 len -= resid; 521 522 /* Offset into the region of memory which is being accessed 523 * MEM_EDC0 = 0 524 * MEM_EDC1 = 1 525 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 526 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 527 */ 528 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 529 if (mtype != MEM_MC1) 530 memoffset = (mtype * (edc_size * 1024 * 1024)); 531 else { 532 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 533 MA_EXT_MEMORY0_BAR_A)); 534 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 535 } 536 537 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 538 addr = addr + memoffset; 539 540 /* Each PCI-E Memory Window is programmed with a window size -- or 541 * "aperture" -- which controls the granularity of its mapping onto 542 * adapter memory. We need to grab that aperture in order to know 543 * how to use the specified window. The window is also programmed 544 * with the base address of the Memory Window in BAR0's address 545 * space. For T4 this is an absolute PCI-E Bus Address. For T5 546 * the address is relative to BAR0. 547 */ 548 mem_reg = t4_read_reg(adap, 549 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 550 win)); 551 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 552 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 553 if (is_t4(adap->params.chip)) 554 mem_base -= adap->t4_bar0; 555 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 556 557 /* Calculate our initial PCI-E Memory Window Position and Offset into 558 * that Window. 559 */ 560 pos = addr & ~(mem_aperture-1); 561 offset = addr - pos; 562 563 /* Set up initial PCI-E Memory Window to cover the start of our 564 * transfer. (Read it back to ensure that changes propagate before we 565 * attempt to use the new value.) 566 */ 567 t4_write_reg(adap, 568 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 569 pos | win_pf); 570 t4_read_reg(adap, 571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 572 573 /* Transfer data to/from the adapter as long as there's an integral 574 * number of 32-bit transfers to complete. 575 * 576 * A note on Endianness issues: 577 * 578 * The "register" reads and writes below from/to the PCI-E Memory 579 * Window invoke the standard adapter Big-Endian to PCI-E Link 580 * Little-Endian "swizzel." As a result, if we have the following 581 * data in adapter memory: 582 * 583 * Memory: ... | b0 | b1 | b2 | b3 | ... 584 * Address: i+0 i+1 i+2 i+3 585 * 586 * Then a read of the adapter memory via the PCI-E Memory Window 587 * will yield: 588 * 589 * x = readl(i) 590 * 31 0 591 * [ b3 | b2 | b1 | b0 ] 592 * 593 * If this value is stored into local memory on a Little-Endian system 594 * it will show up correctly in local memory as: 595 * 596 * ( ..., b0, b1, b2, b3, ... ) 597 * 598 * But on a Big-Endian system, the store will show up in memory 599 * incorrectly swizzled as: 600 * 601 * ( ..., b3, b2, b1, b0, ... ) 602 * 603 * So we need to account for this in the reads and writes to the 604 * PCI-E Memory Window below by undoing the register read/write 605 * swizzels. 606 */ 607 while (len > 0) { 608 if (dir == T4_MEMORY_READ) 609 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 610 mem_base + offset)); 611 else 612 t4_write_reg(adap, mem_base + offset, 613 (__force u32)cpu_to_le32(*buf++)); 614 offset += sizeof(__be32); 615 len -= sizeof(__be32); 616 617 /* If we've reached the end of our current window aperture, 618 * move the PCI-E Memory Window on to the next. Note that 619 * doing this here after "len" may be 0 allows us to set up 620 * the PCI-E Memory Window for a possible final residual 621 * transfer below ... 622 */ 623 if (offset == mem_aperture) { 624 pos += mem_aperture; 625 offset = 0; 626 t4_write_reg(adap, 627 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 628 win), pos | win_pf); 629 t4_read_reg(adap, 630 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 631 win)); 632 } 633 } 634 635 /* If the original transfer had a length which wasn't a multiple of 636 * 32-bits, now's where we need to finish off the transfer of the 637 * residual amount. The PCI-E Memory Window has already been moved 638 * above (if necessary) to cover this final transfer. 639 */ 640 if (resid) { 641 union { 642 u32 word; 643 char byte[4]; 644 } last; 645 unsigned char *bp; 646 int i; 647 648 if (dir == T4_MEMORY_READ) { 649 last.word = le32_to_cpu( 650 (__force __le32)t4_read_reg(adap, 651 mem_base + offset)); 652 for (bp = (unsigned char *)buf, i = resid; i < 4; i++) 653 bp[i] = last.byte[i]; 654 } else { 655 last.word = *buf; 656 for (i = resid; i < 4; i++) 657 last.byte[i] = 0; 658 t4_write_reg(adap, mem_base + offset, 659 (__force u32)cpu_to_le32(last.word)); 660 } 661 } 662 663 return 0; 664 } 665 666 /* Return the specified PCI-E Configuration Space register from our Physical 667 * Function. We try first via a Firmware LDST Command since we prefer to let 668 * the firmware own all of these registers, but if that fails we go for it 669 * directly ourselves. 670 */ 671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 672 { 673 u32 val, ldst_addrspace; 674 675 /* If fw_attach != 0, construct and send the Firmware LDST Command to 676 * retrieve the specified PCI-E Configuration Space register. 677 */ 678 struct fw_ldst_cmd ldst_cmd; 679 int ret; 680 681 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 682 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 683 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 684 FW_CMD_REQUEST_F | 685 FW_CMD_READ_F | 686 ldst_addrspace); 687 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 688 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 689 ldst_cmd.u.pcie.ctrl_to_fn = 690 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 691 ldst_cmd.u.pcie.r = reg; 692 693 /* If the LDST Command succeeds, return the result, otherwise 694 * fall through to reading it directly ourselves ... 695 */ 696 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 697 &ldst_cmd); 698 if (ret == 0) 699 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 700 else 701 /* Read the desired Configuration Space register via the PCI-E 702 * Backdoor mechanism. 703 */ 704 t4_hw_pci_read_cfg4(adap, reg, &val); 705 return val; 706 } 707 708 /* Get the window based on base passed to it. 709 * Window aperture is currently unhandled, but there is no use case for it 710 * right now 711 */ 712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 713 u32 memwin_base) 714 { 715 u32 ret; 716 717 if (is_t4(adap->params.chip)) { 718 u32 bar0; 719 720 /* Truncation intentional: we only read the bottom 32-bits of 721 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 722 * mechanism to read BAR0 instead of using 723 * pci_resource_start() because we could be operating from 724 * within a Virtual Machine which is trapping our accesses to 725 * our Configuration Space and we need to set up the PCI-E 726 * Memory Window decoders with the actual addresses which will 727 * be coming across the PCI-E link. 728 */ 729 bar0 = t4_read_pcie_cfg4(adap, pci_base); 730 bar0 &= pci_mask; 731 adap->t4_bar0 = bar0; 732 733 ret = bar0 + memwin_base; 734 } else { 735 /* For T5, only relative offset inside the PCIe BAR is passed */ 736 ret = memwin_base; 737 } 738 return ret; 739 } 740 741 /* Get the default utility window (win0) used by everyone */ 742 u32 t4_get_util_window(struct adapter *adap) 743 { 744 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 745 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 746 } 747 748 /* Set up memory window for accessing adapter memory ranges. (Read 749 * back MA register to ensure that changes propagate before we attempt 750 * to use the new values.) 751 */ 752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 753 { 754 t4_write_reg(adap, 755 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 756 memwin_base | BIR_V(0) | 757 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 758 t4_read_reg(adap, 759 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 760 } 761 762 /** 763 * t4_get_regs_len - return the size of the chips register set 764 * @adapter: the adapter 765 * 766 * Returns the size of the chip's BAR0 register space. 767 */ 768 unsigned int t4_get_regs_len(struct adapter *adapter) 769 { 770 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 771 772 switch (chip_version) { 773 case CHELSIO_T4: 774 return T4_REGMAP_SIZE; 775 776 case CHELSIO_T5: 777 case CHELSIO_T6: 778 return T5_REGMAP_SIZE; 779 } 780 781 dev_err(adapter->pdev_dev, 782 "Unsupported chip version %d\n", chip_version); 783 return 0; 784 } 785 786 /** 787 * t4_get_regs - read chip registers into provided buffer 788 * @adap: the adapter 789 * @buf: register buffer 790 * @buf_size: size (in bytes) of register buffer 791 * 792 * If the provided register buffer isn't large enough for the chip's 793 * full register range, the register dump will be truncated to the 794 * register buffer's size. 795 */ 796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 797 { 798 static const unsigned int t4_reg_ranges[] = { 799 0x1008, 0x1108, 800 0x1180, 0x1184, 801 0x1190, 0x1194, 802 0x11a0, 0x11a4, 803 0x11b0, 0x11b4, 804 0x11fc, 0x123c, 805 0x1300, 0x173c, 806 0x1800, 0x18fc, 807 0x3000, 0x30d8, 808 0x30e0, 0x30e4, 809 0x30ec, 0x5910, 810 0x5920, 0x5924, 811 0x5960, 0x5960, 812 0x5968, 0x5968, 813 0x5970, 0x5970, 814 0x5978, 0x5978, 815 0x5980, 0x5980, 816 0x5988, 0x5988, 817 0x5990, 0x5990, 818 0x5998, 0x5998, 819 0x59a0, 0x59d4, 820 0x5a00, 0x5ae0, 821 0x5ae8, 0x5ae8, 822 0x5af0, 0x5af0, 823 0x5af8, 0x5af8, 824 0x6000, 0x6098, 825 0x6100, 0x6150, 826 0x6200, 0x6208, 827 0x6240, 0x6248, 828 0x6280, 0x62b0, 829 0x62c0, 0x6338, 830 0x6370, 0x638c, 831 0x6400, 0x643c, 832 0x6500, 0x6524, 833 0x6a00, 0x6a04, 834 0x6a14, 0x6a38, 835 0x6a60, 0x6a70, 836 0x6a78, 0x6a78, 837 0x6b00, 0x6b0c, 838 0x6b1c, 0x6b84, 839 0x6bf0, 0x6bf8, 840 0x6c00, 0x6c0c, 841 0x6c1c, 0x6c84, 842 0x6cf0, 0x6cf8, 843 0x6d00, 0x6d0c, 844 0x6d1c, 0x6d84, 845 0x6df0, 0x6df8, 846 0x6e00, 0x6e0c, 847 0x6e1c, 0x6e84, 848 0x6ef0, 0x6ef8, 849 0x6f00, 0x6f0c, 850 0x6f1c, 0x6f84, 851 0x6ff0, 0x6ff8, 852 0x7000, 0x700c, 853 0x701c, 0x7084, 854 0x70f0, 0x70f8, 855 0x7100, 0x710c, 856 0x711c, 0x7184, 857 0x71f0, 0x71f8, 858 0x7200, 0x720c, 859 0x721c, 0x7284, 860 0x72f0, 0x72f8, 861 0x7300, 0x730c, 862 0x731c, 0x7384, 863 0x73f0, 0x73f8, 864 0x7400, 0x7450, 865 0x7500, 0x7530, 866 0x7600, 0x760c, 867 0x7614, 0x761c, 868 0x7680, 0x76cc, 869 0x7700, 0x7798, 870 0x77c0, 0x77fc, 871 0x7900, 0x79fc, 872 0x7b00, 0x7b58, 873 0x7b60, 0x7b84, 874 0x7b8c, 0x7c38, 875 0x7d00, 0x7d38, 876 0x7d40, 0x7d80, 877 0x7d8c, 0x7ddc, 878 0x7de4, 0x7e04, 879 0x7e10, 0x7e1c, 880 0x7e24, 0x7e38, 881 0x7e40, 0x7e44, 882 0x7e4c, 0x7e78, 883 0x7e80, 0x7ea4, 884 0x7eac, 0x7edc, 885 0x7ee8, 0x7efc, 886 0x8dc0, 0x8e04, 887 0x8e10, 0x8e1c, 888 0x8e30, 0x8e78, 889 0x8ea0, 0x8eb8, 890 0x8ec0, 0x8f6c, 891 0x8fc0, 0x9008, 892 0x9010, 0x9058, 893 0x9060, 0x9060, 894 0x9068, 0x9074, 895 0x90fc, 0x90fc, 896 0x9400, 0x9408, 897 0x9410, 0x9458, 898 0x9600, 0x9600, 899 0x9608, 0x9638, 900 0x9640, 0x96bc, 901 0x9800, 0x9808, 902 0x9820, 0x983c, 903 0x9850, 0x9864, 904 0x9c00, 0x9c6c, 905 0x9c80, 0x9cec, 906 0x9d00, 0x9d6c, 907 0x9d80, 0x9dec, 908 0x9e00, 0x9e6c, 909 0x9e80, 0x9eec, 910 0x9f00, 0x9f6c, 911 0x9f80, 0x9fec, 912 0xd004, 0xd004, 913 0xd010, 0xd03c, 914 0xdfc0, 0xdfe0, 915 0xe000, 0xea7c, 916 0xf000, 0x11190, 917 0x19040, 0x1906c, 918 0x19078, 0x19080, 919 0x1908c, 0x190e4, 920 0x190f0, 0x190f8, 921 0x19100, 0x19110, 922 0x19120, 0x19124, 923 0x19150, 0x19194, 924 0x1919c, 0x191b0, 925 0x191d0, 0x191e8, 926 0x19238, 0x1924c, 927 0x193f8, 0x1943c, 928 0x1944c, 0x19474, 929 0x19490, 0x194e0, 930 0x194f0, 0x194f8, 931 0x19800, 0x19c08, 932 0x19c10, 0x19c90, 933 0x19ca0, 0x19ce4, 934 0x19cf0, 0x19d40, 935 0x19d50, 0x19d94, 936 0x19da0, 0x19de8, 937 0x19df0, 0x19e40, 938 0x19e50, 0x19e90, 939 0x19ea0, 0x19f4c, 940 0x1a000, 0x1a004, 941 0x1a010, 0x1a06c, 942 0x1a0b0, 0x1a0e4, 943 0x1a0ec, 0x1a0f4, 944 0x1a100, 0x1a108, 945 0x1a114, 0x1a120, 946 0x1a128, 0x1a130, 947 0x1a138, 0x1a138, 948 0x1a190, 0x1a1c4, 949 0x1a1fc, 0x1a1fc, 950 0x1e040, 0x1e04c, 951 0x1e284, 0x1e28c, 952 0x1e2c0, 0x1e2c0, 953 0x1e2e0, 0x1e2e0, 954 0x1e300, 0x1e384, 955 0x1e3c0, 0x1e3c8, 956 0x1e440, 0x1e44c, 957 0x1e684, 0x1e68c, 958 0x1e6c0, 0x1e6c0, 959 0x1e6e0, 0x1e6e0, 960 0x1e700, 0x1e784, 961 0x1e7c0, 0x1e7c8, 962 0x1e840, 0x1e84c, 963 0x1ea84, 0x1ea8c, 964 0x1eac0, 0x1eac0, 965 0x1eae0, 0x1eae0, 966 0x1eb00, 0x1eb84, 967 0x1ebc0, 0x1ebc8, 968 0x1ec40, 0x1ec4c, 969 0x1ee84, 0x1ee8c, 970 0x1eec0, 0x1eec0, 971 0x1eee0, 0x1eee0, 972 0x1ef00, 0x1ef84, 973 0x1efc0, 0x1efc8, 974 0x1f040, 0x1f04c, 975 0x1f284, 0x1f28c, 976 0x1f2c0, 0x1f2c0, 977 0x1f2e0, 0x1f2e0, 978 0x1f300, 0x1f384, 979 0x1f3c0, 0x1f3c8, 980 0x1f440, 0x1f44c, 981 0x1f684, 0x1f68c, 982 0x1f6c0, 0x1f6c0, 983 0x1f6e0, 0x1f6e0, 984 0x1f700, 0x1f784, 985 0x1f7c0, 0x1f7c8, 986 0x1f840, 0x1f84c, 987 0x1fa84, 0x1fa8c, 988 0x1fac0, 0x1fac0, 989 0x1fae0, 0x1fae0, 990 0x1fb00, 0x1fb84, 991 0x1fbc0, 0x1fbc8, 992 0x1fc40, 0x1fc4c, 993 0x1fe84, 0x1fe8c, 994 0x1fec0, 0x1fec0, 995 0x1fee0, 0x1fee0, 996 0x1ff00, 0x1ff84, 997 0x1ffc0, 0x1ffc8, 998 0x20000, 0x2002c, 999 0x20100, 0x2013c, 1000 0x20190, 0x201a0, 1001 0x201a8, 0x201b8, 1002 0x201c4, 0x201c8, 1003 0x20200, 0x20318, 1004 0x20400, 0x204b4, 1005 0x204c0, 0x20528, 1006 0x20540, 0x20614, 1007 0x21000, 0x21040, 1008 0x2104c, 0x21060, 1009 0x210c0, 0x210ec, 1010 0x21200, 0x21268, 1011 0x21270, 0x21284, 1012 0x212fc, 0x21388, 1013 0x21400, 0x21404, 1014 0x21500, 0x21500, 1015 0x21510, 0x21518, 1016 0x2152c, 0x21530, 1017 0x2153c, 0x2153c, 1018 0x21550, 0x21554, 1019 0x21600, 0x21600, 1020 0x21608, 0x2161c, 1021 0x21624, 0x21628, 1022 0x21630, 0x21634, 1023 0x2163c, 0x2163c, 1024 0x21700, 0x2171c, 1025 0x21780, 0x2178c, 1026 0x21800, 0x21818, 1027 0x21820, 0x21828, 1028 0x21830, 0x21848, 1029 0x21850, 0x21854, 1030 0x21860, 0x21868, 1031 0x21870, 0x21870, 1032 0x21878, 0x21898, 1033 0x218a0, 0x218a8, 1034 0x218b0, 0x218c8, 1035 0x218d0, 0x218d4, 1036 0x218e0, 0x218e8, 1037 0x218f0, 0x218f0, 1038 0x218f8, 0x21a18, 1039 0x21a20, 0x21a28, 1040 0x21a30, 0x21a48, 1041 0x21a50, 0x21a54, 1042 0x21a60, 0x21a68, 1043 0x21a70, 0x21a70, 1044 0x21a78, 0x21a98, 1045 0x21aa0, 0x21aa8, 1046 0x21ab0, 0x21ac8, 1047 0x21ad0, 0x21ad4, 1048 0x21ae0, 0x21ae8, 1049 0x21af0, 0x21af0, 1050 0x21af8, 0x21c18, 1051 0x21c20, 0x21c20, 1052 0x21c28, 0x21c30, 1053 0x21c38, 0x21c38, 1054 0x21c80, 0x21c98, 1055 0x21ca0, 0x21ca8, 1056 0x21cb0, 0x21cc8, 1057 0x21cd0, 0x21cd4, 1058 0x21ce0, 0x21ce8, 1059 0x21cf0, 0x21cf0, 1060 0x21cf8, 0x21d7c, 1061 0x21e00, 0x21e04, 1062 0x22000, 0x2202c, 1063 0x22100, 0x2213c, 1064 0x22190, 0x221a0, 1065 0x221a8, 0x221b8, 1066 0x221c4, 0x221c8, 1067 0x22200, 0x22318, 1068 0x22400, 0x224b4, 1069 0x224c0, 0x22528, 1070 0x22540, 0x22614, 1071 0x23000, 0x23040, 1072 0x2304c, 0x23060, 1073 0x230c0, 0x230ec, 1074 0x23200, 0x23268, 1075 0x23270, 0x23284, 1076 0x232fc, 0x23388, 1077 0x23400, 0x23404, 1078 0x23500, 0x23500, 1079 0x23510, 0x23518, 1080 0x2352c, 0x23530, 1081 0x2353c, 0x2353c, 1082 0x23550, 0x23554, 1083 0x23600, 0x23600, 1084 0x23608, 0x2361c, 1085 0x23624, 0x23628, 1086 0x23630, 0x23634, 1087 0x2363c, 0x2363c, 1088 0x23700, 0x2371c, 1089 0x23780, 0x2378c, 1090 0x23800, 0x23818, 1091 0x23820, 0x23828, 1092 0x23830, 0x23848, 1093 0x23850, 0x23854, 1094 0x23860, 0x23868, 1095 0x23870, 0x23870, 1096 0x23878, 0x23898, 1097 0x238a0, 0x238a8, 1098 0x238b0, 0x238c8, 1099 0x238d0, 0x238d4, 1100 0x238e0, 0x238e8, 1101 0x238f0, 0x238f0, 1102 0x238f8, 0x23a18, 1103 0x23a20, 0x23a28, 1104 0x23a30, 0x23a48, 1105 0x23a50, 0x23a54, 1106 0x23a60, 0x23a68, 1107 0x23a70, 0x23a70, 1108 0x23a78, 0x23a98, 1109 0x23aa0, 0x23aa8, 1110 0x23ab0, 0x23ac8, 1111 0x23ad0, 0x23ad4, 1112 0x23ae0, 0x23ae8, 1113 0x23af0, 0x23af0, 1114 0x23af8, 0x23c18, 1115 0x23c20, 0x23c20, 1116 0x23c28, 0x23c30, 1117 0x23c38, 0x23c38, 1118 0x23c80, 0x23c98, 1119 0x23ca0, 0x23ca8, 1120 0x23cb0, 0x23cc8, 1121 0x23cd0, 0x23cd4, 1122 0x23ce0, 0x23ce8, 1123 0x23cf0, 0x23cf0, 1124 0x23cf8, 0x23d7c, 1125 0x23e00, 0x23e04, 1126 0x24000, 0x2402c, 1127 0x24100, 0x2413c, 1128 0x24190, 0x241a0, 1129 0x241a8, 0x241b8, 1130 0x241c4, 0x241c8, 1131 0x24200, 0x24318, 1132 0x24400, 0x244b4, 1133 0x244c0, 0x24528, 1134 0x24540, 0x24614, 1135 0x25000, 0x25040, 1136 0x2504c, 0x25060, 1137 0x250c0, 0x250ec, 1138 0x25200, 0x25268, 1139 0x25270, 0x25284, 1140 0x252fc, 0x25388, 1141 0x25400, 0x25404, 1142 0x25500, 0x25500, 1143 0x25510, 0x25518, 1144 0x2552c, 0x25530, 1145 0x2553c, 0x2553c, 1146 0x25550, 0x25554, 1147 0x25600, 0x25600, 1148 0x25608, 0x2561c, 1149 0x25624, 0x25628, 1150 0x25630, 0x25634, 1151 0x2563c, 0x2563c, 1152 0x25700, 0x2571c, 1153 0x25780, 0x2578c, 1154 0x25800, 0x25818, 1155 0x25820, 0x25828, 1156 0x25830, 0x25848, 1157 0x25850, 0x25854, 1158 0x25860, 0x25868, 1159 0x25870, 0x25870, 1160 0x25878, 0x25898, 1161 0x258a0, 0x258a8, 1162 0x258b0, 0x258c8, 1163 0x258d0, 0x258d4, 1164 0x258e0, 0x258e8, 1165 0x258f0, 0x258f0, 1166 0x258f8, 0x25a18, 1167 0x25a20, 0x25a28, 1168 0x25a30, 0x25a48, 1169 0x25a50, 0x25a54, 1170 0x25a60, 0x25a68, 1171 0x25a70, 0x25a70, 1172 0x25a78, 0x25a98, 1173 0x25aa0, 0x25aa8, 1174 0x25ab0, 0x25ac8, 1175 0x25ad0, 0x25ad4, 1176 0x25ae0, 0x25ae8, 1177 0x25af0, 0x25af0, 1178 0x25af8, 0x25c18, 1179 0x25c20, 0x25c20, 1180 0x25c28, 0x25c30, 1181 0x25c38, 0x25c38, 1182 0x25c80, 0x25c98, 1183 0x25ca0, 0x25ca8, 1184 0x25cb0, 0x25cc8, 1185 0x25cd0, 0x25cd4, 1186 0x25ce0, 0x25ce8, 1187 0x25cf0, 0x25cf0, 1188 0x25cf8, 0x25d7c, 1189 0x25e00, 0x25e04, 1190 0x26000, 0x2602c, 1191 0x26100, 0x2613c, 1192 0x26190, 0x261a0, 1193 0x261a8, 0x261b8, 1194 0x261c4, 0x261c8, 1195 0x26200, 0x26318, 1196 0x26400, 0x264b4, 1197 0x264c0, 0x26528, 1198 0x26540, 0x26614, 1199 0x27000, 0x27040, 1200 0x2704c, 0x27060, 1201 0x270c0, 0x270ec, 1202 0x27200, 0x27268, 1203 0x27270, 0x27284, 1204 0x272fc, 0x27388, 1205 0x27400, 0x27404, 1206 0x27500, 0x27500, 1207 0x27510, 0x27518, 1208 0x2752c, 0x27530, 1209 0x2753c, 0x2753c, 1210 0x27550, 0x27554, 1211 0x27600, 0x27600, 1212 0x27608, 0x2761c, 1213 0x27624, 0x27628, 1214 0x27630, 0x27634, 1215 0x2763c, 0x2763c, 1216 0x27700, 0x2771c, 1217 0x27780, 0x2778c, 1218 0x27800, 0x27818, 1219 0x27820, 0x27828, 1220 0x27830, 0x27848, 1221 0x27850, 0x27854, 1222 0x27860, 0x27868, 1223 0x27870, 0x27870, 1224 0x27878, 0x27898, 1225 0x278a0, 0x278a8, 1226 0x278b0, 0x278c8, 1227 0x278d0, 0x278d4, 1228 0x278e0, 0x278e8, 1229 0x278f0, 0x278f0, 1230 0x278f8, 0x27a18, 1231 0x27a20, 0x27a28, 1232 0x27a30, 0x27a48, 1233 0x27a50, 0x27a54, 1234 0x27a60, 0x27a68, 1235 0x27a70, 0x27a70, 1236 0x27a78, 0x27a98, 1237 0x27aa0, 0x27aa8, 1238 0x27ab0, 0x27ac8, 1239 0x27ad0, 0x27ad4, 1240 0x27ae0, 0x27ae8, 1241 0x27af0, 0x27af0, 1242 0x27af8, 0x27c18, 1243 0x27c20, 0x27c20, 1244 0x27c28, 0x27c30, 1245 0x27c38, 0x27c38, 1246 0x27c80, 0x27c98, 1247 0x27ca0, 0x27ca8, 1248 0x27cb0, 0x27cc8, 1249 0x27cd0, 0x27cd4, 1250 0x27ce0, 0x27ce8, 1251 0x27cf0, 0x27cf0, 1252 0x27cf8, 0x27d7c, 1253 0x27e00, 0x27e04, 1254 }; 1255 1256 static const unsigned int t5_reg_ranges[] = { 1257 0x1008, 0x10c0, 1258 0x10cc, 0x10f8, 1259 0x1100, 0x1100, 1260 0x110c, 0x1148, 1261 0x1180, 0x1184, 1262 0x1190, 0x1194, 1263 0x11a0, 0x11a4, 1264 0x11b0, 0x11b4, 1265 0x11fc, 0x123c, 1266 0x1280, 0x173c, 1267 0x1800, 0x18fc, 1268 0x3000, 0x3028, 1269 0x3060, 0x30b0, 1270 0x30b8, 0x30d8, 1271 0x30e0, 0x30fc, 1272 0x3140, 0x357c, 1273 0x35a8, 0x35cc, 1274 0x35ec, 0x35ec, 1275 0x3600, 0x5624, 1276 0x56cc, 0x56ec, 1277 0x56f4, 0x5720, 1278 0x5728, 0x575c, 1279 0x580c, 0x5814, 1280 0x5890, 0x589c, 1281 0x58a4, 0x58ac, 1282 0x58b8, 0x58bc, 1283 0x5940, 0x59c8, 1284 0x59d0, 0x59dc, 1285 0x59fc, 0x5a18, 1286 0x5a60, 0x5a70, 1287 0x5a80, 0x5a9c, 1288 0x5b94, 0x5bfc, 1289 0x6000, 0x6020, 1290 0x6028, 0x6040, 1291 0x6058, 0x609c, 1292 0x60a8, 0x614c, 1293 0x7700, 0x7798, 1294 0x77c0, 0x78fc, 1295 0x7b00, 0x7b58, 1296 0x7b60, 0x7b84, 1297 0x7b8c, 0x7c54, 1298 0x7d00, 0x7d38, 1299 0x7d40, 0x7d80, 1300 0x7d8c, 0x7ddc, 1301 0x7de4, 0x7e04, 1302 0x7e10, 0x7e1c, 1303 0x7e24, 0x7e38, 1304 0x7e40, 0x7e44, 1305 0x7e4c, 0x7e78, 1306 0x7e80, 0x7edc, 1307 0x7ee8, 0x7efc, 1308 0x8dc0, 0x8de0, 1309 0x8df8, 0x8e04, 1310 0x8e10, 0x8e84, 1311 0x8ea0, 0x8f84, 1312 0x8fc0, 0x9058, 1313 0x9060, 0x9060, 1314 0x9068, 0x90f8, 1315 0x9400, 0x9408, 1316 0x9410, 0x9470, 1317 0x9600, 0x9600, 1318 0x9608, 0x9638, 1319 0x9640, 0x96f4, 1320 0x9800, 0x9808, 1321 0x9820, 0x983c, 1322 0x9850, 0x9864, 1323 0x9c00, 0x9c6c, 1324 0x9c80, 0x9cec, 1325 0x9d00, 0x9d6c, 1326 0x9d80, 0x9dec, 1327 0x9e00, 0x9e6c, 1328 0x9e80, 0x9eec, 1329 0x9f00, 0x9f6c, 1330 0x9f80, 0xa020, 1331 0xd004, 0xd004, 1332 0xd010, 0xd03c, 1333 0xdfc0, 0xdfe0, 1334 0xe000, 0x1106c, 1335 0x11074, 0x11088, 1336 0x1109c, 0x1117c, 1337 0x11190, 0x11204, 1338 0x19040, 0x1906c, 1339 0x19078, 0x19080, 1340 0x1908c, 0x190e8, 1341 0x190f0, 0x190f8, 1342 0x19100, 0x19110, 1343 0x19120, 0x19124, 1344 0x19150, 0x19194, 1345 0x1919c, 0x191b0, 1346 0x191d0, 0x191e8, 1347 0x19238, 0x19290, 1348 0x193f8, 0x19428, 1349 0x19430, 0x19444, 1350 0x1944c, 0x1946c, 1351 0x19474, 0x19474, 1352 0x19490, 0x194cc, 1353 0x194f0, 0x194f8, 1354 0x19c00, 0x19c08, 1355 0x19c10, 0x19c60, 1356 0x19c94, 0x19ce4, 1357 0x19cf0, 0x19d40, 1358 0x19d50, 0x19d94, 1359 0x19da0, 0x19de8, 1360 0x19df0, 0x19e10, 1361 0x19e50, 0x19e90, 1362 0x19ea0, 0x19f24, 1363 0x19f34, 0x19f34, 1364 0x19f40, 0x19f50, 1365 0x19f90, 0x19fb4, 1366 0x19fc4, 0x19fe4, 1367 0x1a000, 0x1a004, 1368 0x1a010, 0x1a06c, 1369 0x1a0b0, 0x1a0e4, 1370 0x1a0ec, 0x1a0f8, 1371 0x1a100, 0x1a108, 1372 0x1a114, 0x1a120, 1373 0x1a128, 0x1a130, 1374 0x1a138, 0x1a138, 1375 0x1a190, 0x1a1c4, 1376 0x1a1fc, 0x1a1fc, 1377 0x1e008, 0x1e00c, 1378 0x1e040, 0x1e044, 1379 0x1e04c, 0x1e04c, 1380 0x1e284, 0x1e290, 1381 0x1e2c0, 0x1e2c0, 1382 0x1e2e0, 0x1e2e0, 1383 0x1e300, 0x1e384, 1384 0x1e3c0, 0x1e3c8, 1385 0x1e408, 0x1e40c, 1386 0x1e440, 0x1e444, 1387 0x1e44c, 0x1e44c, 1388 0x1e684, 0x1e690, 1389 0x1e6c0, 0x1e6c0, 1390 0x1e6e0, 0x1e6e0, 1391 0x1e700, 0x1e784, 1392 0x1e7c0, 0x1e7c8, 1393 0x1e808, 0x1e80c, 1394 0x1e840, 0x1e844, 1395 0x1e84c, 0x1e84c, 1396 0x1ea84, 0x1ea90, 1397 0x1eac0, 0x1eac0, 1398 0x1eae0, 0x1eae0, 1399 0x1eb00, 0x1eb84, 1400 0x1ebc0, 0x1ebc8, 1401 0x1ec08, 0x1ec0c, 1402 0x1ec40, 0x1ec44, 1403 0x1ec4c, 0x1ec4c, 1404 0x1ee84, 0x1ee90, 1405 0x1eec0, 0x1eec0, 1406 0x1eee0, 0x1eee0, 1407 0x1ef00, 0x1ef84, 1408 0x1efc0, 0x1efc8, 1409 0x1f008, 0x1f00c, 1410 0x1f040, 0x1f044, 1411 0x1f04c, 0x1f04c, 1412 0x1f284, 0x1f290, 1413 0x1f2c0, 0x1f2c0, 1414 0x1f2e0, 0x1f2e0, 1415 0x1f300, 0x1f384, 1416 0x1f3c0, 0x1f3c8, 1417 0x1f408, 0x1f40c, 1418 0x1f440, 0x1f444, 1419 0x1f44c, 0x1f44c, 1420 0x1f684, 0x1f690, 1421 0x1f6c0, 0x1f6c0, 1422 0x1f6e0, 0x1f6e0, 1423 0x1f700, 0x1f784, 1424 0x1f7c0, 0x1f7c8, 1425 0x1f808, 0x1f80c, 1426 0x1f840, 0x1f844, 1427 0x1f84c, 0x1f84c, 1428 0x1fa84, 0x1fa90, 1429 0x1fac0, 0x1fac0, 1430 0x1fae0, 0x1fae0, 1431 0x1fb00, 0x1fb84, 1432 0x1fbc0, 0x1fbc8, 1433 0x1fc08, 0x1fc0c, 1434 0x1fc40, 0x1fc44, 1435 0x1fc4c, 0x1fc4c, 1436 0x1fe84, 0x1fe90, 1437 0x1fec0, 0x1fec0, 1438 0x1fee0, 0x1fee0, 1439 0x1ff00, 0x1ff84, 1440 0x1ffc0, 0x1ffc8, 1441 0x30000, 0x30030, 1442 0x30038, 0x30038, 1443 0x30040, 0x30040, 1444 0x30100, 0x30144, 1445 0x30190, 0x301a0, 1446 0x301a8, 0x301b8, 1447 0x301c4, 0x301c8, 1448 0x301d0, 0x301d0, 1449 0x30200, 0x30318, 1450 0x30400, 0x304b4, 1451 0x304c0, 0x3052c, 1452 0x30540, 0x3061c, 1453 0x30800, 0x30828, 1454 0x30834, 0x30834, 1455 0x308c0, 0x30908, 1456 0x30910, 0x309ac, 1457 0x30a00, 0x30a14, 1458 0x30a1c, 0x30a2c, 1459 0x30a44, 0x30a50, 1460 0x30a74, 0x30a74, 1461 0x30a7c, 0x30afc, 1462 0x30b08, 0x30c24, 1463 0x30d00, 0x30d00, 1464 0x30d08, 0x30d14, 1465 0x30d1c, 0x30d20, 1466 0x30d3c, 0x30d3c, 1467 0x30d48, 0x30d50, 1468 0x31200, 0x3120c, 1469 0x31220, 0x31220, 1470 0x31240, 0x31240, 1471 0x31600, 0x3160c, 1472 0x31a00, 0x31a1c, 1473 0x31e00, 0x31e20, 1474 0x31e38, 0x31e3c, 1475 0x31e80, 0x31e80, 1476 0x31e88, 0x31ea8, 1477 0x31eb0, 0x31eb4, 1478 0x31ec8, 0x31ed4, 1479 0x31fb8, 0x32004, 1480 0x32200, 0x32200, 1481 0x32208, 0x32240, 1482 0x32248, 0x32280, 1483 0x32288, 0x322c0, 1484 0x322c8, 0x322fc, 1485 0x32600, 0x32630, 1486 0x32a00, 0x32abc, 1487 0x32b00, 0x32b10, 1488 0x32b20, 0x32b30, 1489 0x32b40, 0x32b50, 1490 0x32b60, 0x32b70, 1491 0x33000, 0x33028, 1492 0x33030, 0x33048, 1493 0x33060, 0x33068, 1494 0x33070, 0x3309c, 1495 0x330f0, 0x33128, 1496 0x33130, 0x33148, 1497 0x33160, 0x33168, 1498 0x33170, 0x3319c, 1499 0x331f0, 0x33238, 1500 0x33240, 0x33240, 1501 0x33248, 0x33250, 1502 0x3325c, 0x33264, 1503 0x33270, 0x332b8, 1504 0x332c0, 0x332e4, 1505 0x332f8, 0x33338, 1506 0x33340, 0x33340, 1507 0x33348, 0x33350, 1508 0x3335c, 0x33364, 1509 0x33370, 0x333b8, 1510 0x333c0, 0x333e4, 1511 0x333f8, 0x33428, 1512 0x33430, 0x33448, 1513 0x33460, 0x33468, 1514 0x33470, 0x3349c, 1515 0x334f0, 0x33528, 1516 0x33530, 0x33548, 1517 0x33560, 0x33568, 1518 0x33570, 0x3359c, 1519 0x335f0, 0x33638, 1520 0x33640, 0x33640, 1521 0x33648, 0x33650, 1522 0x3365c, 0x33664, 1523 0x33670, 0x336b8, 1524 0x336c0, 0x336e4, 1525 0x336f8, 0x33738, 1526 0x33740, 0x33740, 1527 0x33748, 0x33750, 1528 0x3375c, 0x33764, 1529 0x33770, 0x337b8, 1530 0x337c0, 0x337e4, 1531 0x337f8, 0x337fc, 1532 0x33814, 0x33814, 1533 0x3382c, 0x3382c, 1534 0x33880, 0x3388c, 1535 0x338e8, 0x338ec, 1536 0x33900, 0x33928, 1537 0x33930, 0x33948, 1538 0x33960, 0x33968, 1539 0x33970, 0x3399c, 1540 0x339f0, 0x33a38, 1541 0x33a40, 0x33a40, 1542 0x33a48, 0x33a50, 1543 0x33a5c, 0x33a64, 1544 0x33a70, 0x33ab8, 1545 0x33ac0, 0x33ae4, 1546 0x33af8, 0x33b10, 1547 0x33b28, 0x33b28, 1548 0x33b3c, 0x33b50, 1549 0x33bf0, 0x33c10, 1550 0x33c28, 0x33c28, 1551 0x33c3c, 0x33c50, 1552 0x33cf0, 0x33cfc, 1553 0x34000, 0x34030, 1554 0x34038, 0x34038, 1555 0x34040, 0x34040, 1556 0x34100, 0x34144, 1557 0x34190, 0x341a0, 1558 0x341a8, 0x341b8, 1559 0x341c4, 0x341c8, 1560 0x341d0, 0x341d0, 1561 0x34200, 0x34318, 1562 0x34400, 0x344b4, 1563 0x344c0, 0x3452c, 1564 0x34540, 0x3461c, 1565 0x34800, 0x34828, 1566 0x34834, 0x34834, 1567 0x348c0, 0x34908, 1568 0x34910, 0x349ac, 1569 0x34a00, 0x34a14, 1570 0x34a1c, 0x34a2c, 1571 0x34a44, 0x34a50, 1572 0x34a74, 0x34a74, 1573 0x34a7c, 0x34afc, 1574 0x34b08, 0x34c24, 1575 0x34d00, 0x34d00, 1576 0x34d08, 0x34d14, 1577 0x34d1c, 0x34d20, 1578 0x34d3c, 0x34d3c, 1579 0x34d48, 0x34d50, 1580 0x35200, 0x3520c, 1581 0x35220, 0x35220, 1582 0x35240, 0x35240, 1583 0x35600, 0x3560c, 1584 0x35a00, 0x35a1c, 1585 0x35e00, 0x35e20, 1586 0x35e38, 0x35e3c, 1587 0x35e80, 0x35e80, 1588 0x35e88, 0x35ea8, 1589 0x35eb0, 0x35eb4, 1590 0x35ec8, 0x35ed4, 1591 0x35fb8, 0x36004, 1592 0x36200, 0x36200, 1593 0x36208, 0x36240, 1594 0x36248, 0x36280, 1595 0x36288, 0x362c0, 1596 0x362c8, 0x362fc, 1597 0x36600, 0x36630, 1598 0x36a00, 0x36abc, 1599 0x36b00, 0x36b10, 1600 0x36b20, 0x36b30, 1601 0x36b40, 0x36b50, 1602 0x36b60, 0x36b70, 1603 0x37000, 0x37028, 1604 0x37030, 0x37048, 1605 0x37060, 0x37068, 1606 0x37070, 0x3709c, 1607 0x370f0, 0x37128, 1608 0x37130, 0x37148, 1609 0x37160, 0x37168, 1610 0x37170, 0x3719c, 1611 0x371f0, 0x37238, 1612 0x37240, 0x37240, 1613 0x37248, 0x37250, 1614 0x3725c, 0x37264, 1615 0x37270, 0x372b8, 1616 0x372c0, 0x372e4, 1617 0x372f8, 0x37338, 1618 0x37340, 0x37340, 1619 0x37348, 0x37350, 1620 0x3735c, 0x37364, 1621 0x37370, 0x373b8, 1622 0x373c0, 0x373e4, 1623 0x373f8, 0x37428, 1624 0x37430, 0x37448, 1625 0x37460, 0x37468, 1626 0x37470, 0x3749c, 1627 0x374f0, 0x37528, 1628 0x37530, 0x37548, 1629 0x37560, 0x37568, 1630 0x37570, 0x3759c, 1631 0x375f0, 0x37638, 1632 0x37640, 0x37640, 1633 0x37648, 0x37650, 1634 0x3765c, 0x37664, 1635 0x37670, 0x376b8, 1636 0x376c0, 0x376e4, 1637 0x376f8, 0x37738, 1638 0x37740, 0x37740, 1639 0x37748, 0x37750, 1640 0x3775c, 0x37764, 1641 0x37770, 0x377b8, 1642 0x377c0, 0x377e4, 1643 0x377f8, 0x377fc, 1644 0x37814, 0x37814, 1645 0x3782c, 0x3782c, 1646 0x37880, 0x3788c, 1647 0x378e8, 0x378ec, 1648 0x37900, 0x37928, 1649 0x37930, 0x37948, 1650 0x37960, 0x37968, 1651 0x37970, 0x3799c, 1652 0x379f0, 0x37a38, 1653 0x37a40, 0x37a40, 1654 0x37a48, 0x37a50, 1655 0x37a5c, 0x37a64, 1656 0x37a70, 0x37ab8, 1657 0x37ac0, 0x37ae4, 1658 0x37af8, 0x37b10, 1659 0x37b28, 0x37b28, 1660 0x37b3c, 0x37b50, 1661 0x37bf0, 0x37c10, 1662 0x37c28, 0x37c28, 1663 0x37c3c, 0x37c50, 1664 0x37cf0, 0x37cfc, 1665 0x38000, 0x38030, 1666 0x38038, 0x38038, 1667 0x38040, 0x38040, 1668 0x38100, 0x38144, 1669 0x38190, 0x381a0, 1670 0x381a8, 0x381b8, 1671 0x381c4, 0x381c8, 1672 0x381d0, 0x381d0, 1673 0x38200, 0x38318, 1674 0x38400, 0x384b4, 1675 0x384c0, 0x3852c, 1676 0x38540, 0x3861c, 1677 0x38800, 0x38828, 1678 0x38834, 0x38834, 1679 0x388c0, 0x38908, 1680 0x38910, 0x389ac, 1681 0x38a00, 0x38a14, 1682 0x38a1c, 0x38a2c, 1683 0x38a44, 0x38a50, 1684 0x38a74, 0x38a74, 1685 0x38a7c, 0x38afc, 1686 0x38b08, 0x38c24, 1687 0x38d00, 0x38d00, 1688 0x38d08, 0x38d14, 1689 0x38d1c, 0x38d20, 1690 0x38d3c, 0x38d3c, 1691 0x38d48, 0x38d50, 1692 0x39200, 0x3920c, 1693 0x39220, 0x39220, 1694 0x39240, 0x39240, 1695 0x39600, 0x3960c, 1696 0x39a00, 0x39a1c, 1697 0x39e00, 0x39e20, 1698 0x39e38, 0x39e3c, 1699 0x39e80, 0x39e80, 1700 0x39e88, 0x39ea8, 1701 0x39eb0, 0x39eb4, 1702 0x39ec8, 0x39ed4, 1703 0x39fb8, 0x3a004, 1704 0x3a200, 0x3a200, 1705 0x3a208, 0x3a240, 1706 0x3a248, 0x3a280, 1707 0x3a288, 0x3a2c0, 1708 0x3a2c8, 0x3a2fc, 1709 0x3a600, 0x3a630, 1710 0x3aa00, 0x3aabc, 1711 0x3ab00, 0x3ab10, 1712 0x3ab20, 0x3ab30, 1713 0x3ab40, 0x3ab50, 1714 0x3ab60, 0x3ab70, 1715 0x3b000, 0x3b028, 1716 0x3b030, 0x3b048, 1717 0x3b060, 0x3b068, 1718 0x3b070, 0x3b09c, 1719 0x3b0f0, 0x3b128, 1720 0x3b130, 0x3b148, 1721 0x3b160, 0x3b168, 1722 0x3b170, 0x3b19c, 1723 0x3b1f0, 0x3b238, 1724 0x3b240, 0x3b240, 1725 0x3b248, 0x3b250, 1726 0x3b25c, 0x3b264, 1727 0x3b270, 0x3b2b8, 1728 0x3b2c0, 0x3b2e4, 1729 0x3b2f8, 0x3b338, 1730 0x3b340, 0x3b340, 1731 0x3b348, 0x3b350, 1732 0x3b35c, 0x3b364, 1733 0x3b370, 0x3b3b8, 1734 0x3b3c0, 0x3b3e4, 1735 0x3b3f8, 0x3b428, 1736 0x3b430, 0x3b448, 1737 0x3b460, 0x3b468, 1738 0x3b470, 0x3b49c, 1739 0x3b4f0, 0x3b528, 1740 0x3b530, 0x3b548, 1741 0x3b560, 0x3b568, 1742 0x3b570, 0x3b59c, 1743 0x3b5f0, 0x3b638, 1744 0x3b640, 0x3b640, 1745 0x3b648, 0x3b650, 1746 0x3b65c, 0x3b664, 1747 0x3b670, 0x3b6b8, 1748 0x3b6c0, 0x3b6e4, 1749 0x3b6f8, 0x3b738, 1750 0x3b740, 0x3b740, 1751 0x3b748, 0x3b750, 1752 0x3b75c, 0x3b764, 1753 0x3b770, 0x3b7b8, 1754 0x3b7c0, 0x3b7e4, 1755 0x3b7f8, 0x3b7fc, 1756 0x3b814, 0x3b814, 1757 0x3b82c, 0x3b82c, 1758 0x3b880, 0x3b88c, 1759 0x3b8e8, 0x3b8ec, 1760 0x3b900, 0x3b928, 1761 0x3b930, 0x3b948, 1762 0x3b960, 0x3b968, 1763 0x3b970, 0x3b99c, 1764 0x3b9f0, 0x3ba38, 1765 0x3ba40, 0x3ba40, 1766 0x3ba48, 0x3ba50, 1767 0x3ba5c, 0x3ba64, 1768 0x3ba70, 0x3bab8, 1769 0x3bac0, 0x3bae4, 1770 0x3baf8, 0x3bb10, 1771 0x3bb28, 0x3bb28, 1772 0x3bb3c, 0x3bb50, 1773 0x3bbf0, 0x3bc10, 1774 0x3bc28, 0x3bc28, 1775 0x3bc3c, 0x3bc50, 1776 0x3bcf0, 0x3bcfc, 1777 0x3c000, 0x3c030, 1778 0x3c038, 0x3c038, 1779 0x3c040, 0x3c040, 1780 0x3c100, 0x3c144, 1781 0x3c190, 0x3c1a0, 1782 0x3c1a8, 0x3c1b8, 1783 0x3c1c4, 0x3c1c8, 1784 0x3c1d0, 0x3c1d0, 1785 0x3c200, 0x3c318, 1786 0x3c400, 0x3c4b4, 1787 0x3c4c0, 0x3c52c, 1788 0x3c540, 0x3c61c, 1789 0x3c800, 0x3c828, 1790 0x3c834, 0x3c834, 1791 0x3c8c0, 0x3c908, 1792 0x3c910, 0x3c9ac, 1793 0x3ca00, 0x3ca14, 1794 0x3ca1c, 0x3ca2c, 1795 0x3ca44, 0x3ca50, 1796 0x3ca74, 0x3ca74, 1797 0x3ca7c, 0x3cafc, 1798 0x3cb08, 0x3cc24, 1799 0x3cd00, 0x3cd00, 1800 0x3cd08, 0x3cd14, 1801 0x3cd1c, 0x3cd20, 1802 0x3cd3c, 0x3cd3c, 1803 0x3cd48, 0x3cd50, 1804 0x3d200, 0x3d20c, 1805 0x3d220, 0x3d220, 1806 0x3d240, 0x3d240, 1807 0x3d600, 0x3d60c, 1808 0x3da00, 0x3da1c, 1809 0x3de00, 0x3de20, 1810 0x3de38, 0x3de3c, 1811 0x3de80, 0x3de80, 1812 0x3de88, 0x3dea8, 1813 0x3deb0, 0x3deb4, 1814 0x3dec8, 0x3ded4, 1815 0x3dfb8, 0x3e004, 1816 0x3e200, 0x3e200, 1817 0x3e208, 0x3e240, 1818 0x3e248, 0x3e280, 1819 0x3e288, 0x3e2c0, 1820 0x3e2c8, 0x3e2fc, 1821 0x3e600, 0x3e630, 1822 0x3ea00, 0x3eabc, 1823 0x3eb00, 0x3eb10, 1824 0x3eb20, 0x3eb30, 1825 0x3eb40, 0x3eb50, 1826 0x3eb60, 0x3eb70, 1827 0x3f000, 0x3f028, 1828 0x3f030, 0x3f048, 1829 0x3f060, 0x3f068, 1830 0x3f070, 0x3f09c, 1831 0x3f0f0, 0x3f128, 1832 0x3f130, 0x3f148, 1833 0x3f160, 0x3f168, 1834 0x3f170, 0x3f19c, 1835 0x3f1f0, 0x3f238, 1836 0x3f240, 0x3f240, 1837 0x3f248, 0x3f250, 1838 0x3f25c, 0x3f264, 1839 0x3f270, 0x3f2b8, 1840 0x3f2c0, 0x3f2e4, 1841 0x3f2f8, 0x3f338, 1842 0x3f340, 0x3f340, 1843 0x3f348, 0x3f350, 1844 0x3f35c, 0x3f364, 1845 0x3f370, 0x3f3b8, 1846 0x3f3c0, 0x3f3e4, 1847 0x3f3f8, 0x3f428, 1848 0x3f430, 0x3f448, 1849 0x3f460, 0x3f468, 1850 0x3f470, 0x3f49c, 1851 0x3f4f0, 0x3f528, 1852 0x3f530, 0x3f548, 1853 0x3f560, 0x3f568, 1854 0x3f570, 0x3f59c, 1855 0x3f5f0, 0x3f638, 1856 0x3f640, 0x3f640, 1857 0x3f648, 0x3f650, 1858 0x3f65c, 0x3f664, 1859 0x3f670, 0x3f6b8, 1860 0x3f6c0, 0x3f6e4, 1861 0x3f6f8, 0x3f738, 1862 0x3f740, 0x3f740, 1863 0x3f748, 0x3f750, 1864 0x3f75c, 0x3f764, 1865 0x3f770, 0x3f7b8, 1866 0x3f7c0, 0x3f7e4, 1867 0x3f7f8, 0x3f7fc, 1868 0x3f814, 0x3f814, 1869 0x3f82c, 0x3f82c, 1870 0x3f880, 0x3f88c, 1871 0x3f8e8, 0x3f8ec, 1872 0x3f900, 0x3f928, 1873 0x3f930, 0x3f948, 1874 0x3f960, 0x3f968, 1875 0x3f970, 0x3f99c, 1876 0x3f9f0, 0x3fa38, 1877 0x3fa40, 0x3fa40, 1878 0x3fa48, 0x3fa50, 1879 0x3fa5c, 0x3fa64, 1880 0x3fa70, 0x3fab8, 1881 0x3fac0, 0x3fae4, 1882 0x3faf8, 0x3fb10, 1883 0x3fb28, 0x3fb28, 1884 0x3fb3c, 0x3fb50, 1885 0x3fbf0, 0x3fc10, 1886 0x3fc28, 0x3fc28, 1887 0x3fc3c, 0x3fc50, 1888 0x3fcf0, 0x3fcfc, 1889 0x40000, 0x4000c, 1890 0x40040, 0x40050, 1891 0x40060, 0x40068, 1892 0x4007c, 0x4008c, 1893 0x40094, 0x400b0, 1894 0x400c0, 0x40144, 1895 0x40180, 0x4018c, 1896 0x40200, 0x40254, 1897 0x40260, 0x40264, 1898 0x40270, 0x40288, 1899 0x40290, 0x40298, 1900 0x402ac, 0x402c8, 1901 0x402d0, 0x402e0, 1902 0x402f0, 0x402f0, 1903 0x40300, 0x4033c, 1904 0x403f8, 0x403fc, 1905 0x41304, 0x413c4, 1906 0x41400, 0x4140c, 1907 0x41414, 0x4141c, 1908 0x41480, 0x414d0, 1909 0x44000, 0x44054, 1910 0x4405c, 0x44078, 1911 0x440c0, 0x44174, 1912 0x44180, 0x441ac, 1913 0x441b4, 0x441b8, 1914 0x441c0, 0x44254, 1915 0x4425c, 0x44278, 1916 0x442c0, 0x44374, 1917 0x44380, 0x443ac, 1918 0x443b4, 0x443b8, 1919 0x443c0, 0x44454, 1920 0x4445c, 0x44478, 1921 0x444c0, 0x44574, 1922 0x44580, 0x445ac, 1923 0x445b4, 0x445b8, 1924 0x445c0, 0x44654, 1925 0x4465c, 0x44678, 1926 0x446c0, 0x44774, 1927 0x44780, 0x447ac, 1928 0x447b4, 0x447b8, 1929 0x447c0, 0x44854, 1930 0x4485c, 0x44878, 1931 0x448c0, 0x44974, 1932 0x44980, 0x449ac, 1933 0x449b4, 0x449b8, 1934 0x449c0, 0x449fc, 1935 0x45000, 0x45004, 1936 0x45010, 0x45030, 1937 0x45040, 0x45060, 1938 0x45068, 0x45068, 1939 0x45080, 0x45084, 1940 0x450a0, 0x450b0, 1941 0x45200, 0x45204, 1942 0x45210, 0x45230, 1943 0x45240, 0x45260, 1944 0x45268, 0x45268, 1945 0x45280, 0x45284, 1946 0x452a0, 0x452b0, 1947 0x460c0, 0x460e4, 1948 0x47000, 0x4703c, 1949 0x47044, 0x4708c, 1950 0x47200, 0x47250, 1951 0x47400, 0x47408, 1952 0x47414, 0x47420, 1953 0x47600, 0x47618, 1954 0x47800, 0x47814, 1955 0x48000, 0x4800c, 1956 0x48040, 0x48050, 1957 0x48060, 0x48068, 1958 0x4807c, 0x4808c, 1959 0x48094, 0x480b0, 1960 0x480c0, 0x48144, 1961 0x48180, 0x4818c, 1962 0x48200, 0x48254, 1963 0x48260, 0x48264, 1964 0x48270, 0x48288, 1965 0x48290, 0x48298, 1966 0x482ac, 0x482c8, 1967 0x482d0, 0x482e0, 1968 0x482f0, 0x482f0, 1969 0x48300, 0x4833c, 1970 0x483f8, 0x483fc, 1971 0x49304, 0x493c4, 1972 0x49400, 0x4940c, 1973 0x49414, 0x4941c, 1974 0x49480, 0x494d0, 1975 0x4c000, 0x4c054, 1976 0x4c05c, 0x4c078, 1977 0x4c0c0, 0x4c174, 1978 0x4c180, 0x4c1ac, 1979 0x4c1b4, 0x4c1b8, 1980 0x4c1c0, 0x4c254, 1981 0x4c25c, 0x4c278, 1982 0x4c2c0, 0x4c374, 1983 0x4c380, 0x4c3ac, 1984 0x4c3b4, 0x4c3b8, 1985 0x4c3c0, 0x4c454, 1986 0x4c45c, 0x4c478, 1987 0x4c4c0, 0x4c574, 1988 0x4c580, 0x4c5ac, 1989 0x4c5b4, 0x4c5b8, 1990 0x4c5c0, 0x4c654, 1991 0x4c65c, 0x4c678, 1992 0x4c6c0, 0x4c774, 1993 0x4c780, 0x4c7ac, 1994 0x4c7b4, 0x4c7b8, 1995 0x4c7c0, 0x4c854, 1996 0x4c85c, 0x4c878, 1997 0x4c8c0, 0x4c974, 1998 0x4c980, 0x4c9ac, 1999 0x4c9b4, 0x4c9b8, 2000 0x4c9c0, 0x4c9fc, 2001 0x4d000, 0x4d004, 2002 0x4d010, 0x4d030, 2003 0x4d040, 0x4d060, 2004 0x4d068, 0x4d068, 2005 0x4d080, 0x4d084, 2006 0x4d0a0, 0x4d0b0, 2007 0x4d200, 0x4d204, 2008 0x4d210, 0x4d230, 2009 0x4d240, 0x4d260, 2010 0x4d268, 0x4d268, 2011 0x4d280, 0x4d284, 2012 0x4d2a0, 0x4d2b0, 2013 0x4e0c0, 0x4e0e4, 2014 0x4f000, 0x4f03c, 2015 0x4f044, 0x4f08c, 2016 0x4f200, 0x4f250, 2017 0x4f400, 0x4f408, 2018 0x4f414, 0x4f420, 2019 0x4f600, 0x4f618, 2020 0x4f800, 0x4f814, 2021 0x50000, 0x50084, 2022 0x50090, 0x500cc, 2023 0x50400, 0x50400, 2024 0x50800, 0x50884, 2025 0x50890, 0x508cc, 2026 0x50c00, 0x50c00, 2027 0x51000, 0x5101c, 2028 0x51300, 0x51308, 2029 }; 2030 2031 static const unsigned int t6_reg_ranges[] = { 2032 0x1008, 0x101c, 2033 0x1024, 0x10a8, 2034 0x10b4, 0x10f8, 2035 0x1100, 0x1114, 2036 0x111c, 0x112c, 2037 0x1138, 0x113c, 2038 0x1144, 0x114c, 2039 0x1180, 0x1184, 2040 0x1190, 0x1194, 2041 0x11a0, 0x11a4, 2042 0x11b0, 0x11b4, 2043 0x11fc, 0x1258, 2044 0x1280, 0x12d4, 2045 0x12d9, 0x12d9, 2046 0x12de, 0x12de, 2047 0x12e3, 0x12e3, 2048 0x12e8, 0x133c, 2049 0x1800, 0x18fc, 2050 0x3000, 0x302c, 2051 0x3060, 0x30b0, 2052 0x30b8, 0x30d8, 2053 0x30e0, 0x30fc, 2054 0x3140, 0x357c, 2055 0x35a8, 0x35cc, 2056 0x35ec, 0x35ec, 2057 0x3600, 0x5624, 2058 0x56cc, 0x56ec, 2059 0x56f4, 0x5720, 2060 0x5728, 0x575c, 2061 0x580c, 0x5814, 2062 0x5890, 0x589c, 2063 0x58a4, 0x58ac, 2064 0x58b8, 0x58bc, 2065 0x5940, 0x595c, 2066 0x5980, 0x598c, 2067 0x59b0, 0x59c8, 2068 0x59d0, 0x59dc, 2069 0x59fc, 0x5a18, 2070 0x5a60, 0x5a6c, 2071 0x5a80, 0x5a8c, 2072 0x5a94, 0x5a9c, 2073 0x5b94, 0x5bfc, 2074 0x5c10, 0x5e48, 2075 0x5e50, 0x5e94, 2076 0x5ea0, 0x5eb0, 2077 0x5ec0, 0x5ec0, 2078 0x5ec8, 0x5ed0, 2079 0x6000, 0x6020, 2080 0x6028, 0x6040, 2081 0x6058, 0x609c, 2082 0x60a8, 0x619c, 2083 0x7700, 0x7798, 2084 0x77c0, 0x7880, 2085 0x78cc, 0x78fc, 2086 0x7b00, 0x7b58, 2087 0x7b60, 0x7b84, 2088 0x7b8c, 0x7c54, 2089 0x7d00, 0x7d38, 2090 0x7d40, 0x7d84, 2091 0x7d8c, 0x7ddc, 2092 0x7de4, 0x7e04, 2093 0x7e10, 0x7e1c, 2094 0x7e24, 0x7e38, 2095 0x7e40, 0x7e44, 2096 0x7e4c, 0x7e78, 2097 0x7e80, 0x7edc, 2098 0x7ee8, 0x7efc, 2099 0x8dc0, 0x8de4, 2100 0x8df8, 0x8e04, 2101 0x8e10, 0x8e84, 2102 0x8ea0, 0x8f88, 2103 0x8fb8, 0x9058, 2104 0x9060, 0x9060, 2105 0x9068, 0x90f8, 2106 0x9100, 0x9124, 2107 0x9400, 0x9470, 2108 0x9600, 0x9600, 2109 0x9608, 0x9638, 2110 0x9640, 0x9704, 2111 0x9710, 0x971c, 2112 0x9800, 0x9808, 2113 0x9820, 0x983c, 2114 0x9850, 0x9864, 2115 0x9c00, 0x9c6c, 2116 0x9c80, 0x9cec, 2117 0x9d00, 0x9d6c, 2118 0x9d80, 0x9dec, 2119 0x9e00, 0x9e6c, 2120 0x9e80, 0x9eec, 2121 0x9f00, 0x9f6c, 2122 0x9f80, 0xa020, 2123 0xd004, 0xd03c, 2124 0xd100, 0xd118, 2125 0xd200, 0xd214, 2126 0xd220, 0xd234, 2127 0xd240, 0xd254, 2128 0xd260, 0xd274, 2129 0xd280, 0xd294, 2130 0xd2a0, 0xd2b4, 2131 0xd2c0, 0xd2d4, 2132 0xd2e0, 0xd2f4, 2133 0xd300, 0xd31c, 2134 0xdfc0, 0xdfe0, 2135 0xe000, 0xf008, 2136 0x11000, 0x11014, 2137 0x11048, 0x1106c, 2138 0x11074, 0x11088, 2139 0x11098, 0x11120, 2140 0x1112c, 0x1117c, 2141 0x11190, 0x112e0, 2142 0x11300, 0x1130c, 2143 0x12000, 0x1206c, 2144 0x19040, 0x1906c, 2145 0x19078, 0x19080, 2146 0x1908c, 0x190e8, 2147 0x190f0, 0x190f8, 2148 0x19100, 0x19110, 2149 0x19120, 0x19124, 2150 0x19150, 0x19194, 2151 0x1919c, 0x191b0, 2152 0x191d0, 0x191e8, 2153 0x19238, 0x19290, 2154 0x192a4, 0x192b0, 2155 0x192bc, 0x192bc, 2156 0x19348, 0x1934c, 2157 0x193f8, 0x19418, 2158 0x19420, 0x19428, 2159 0x19430, 0x19444, 2160 0x1944c, 0x1946c, 2161 0x19474, 0x19474, 2162 0x19490, 0x194cc, 2163 0x194f0, 0x194f8, 2164 0x19c00, 0x19c48, 2165 0x19c50, 0x19c80, 2166 0x19c94, 0x19c98, 2167 0x19ca0, 0x19cbc, 2168 0x19ce4, 0x19ce4, 2169 0x19cf0, 0x19cf8, 2170 0x19d00, 0x19d28, 2171 0x19d50, 0x19d78, 2172 0x19d94, 0x19d98, 2173 0x19da0, 0x19dc8, 2174 0x19df0, 0x19e10, 2175 0x19e50, 0x19e6c, 2176 0x19ea0, 0x19ebc, 2177 0x19ec4, 0x19ef4, 2178 0x19f04, 0x19f2c, 2179 0x19f34, 0x19f34, 2180 0x19f40, 0x19f50, 2181 0x19f90, 0x19fac, 2182 0x19fc4, 0x19fc8, 2183 0x19fd0, 0x19fe4, 2184 0x1a000, 0x1a004, 2185 0x1a010, 0x1a06c, 2186 0x1a0b0, 0x1a0e4, 2187 0x1a0ec, 0x1a0f8, 2188 0x1a100, 0x1a108, 2189 0x1a114, 0x1a120, 2190 0x1a128, 0x1a130, 2191 0x1a138, 0x1a138, 2192 0x1a190, 0x1a1c4, 2193 0x1a1fc, 0x1a1fc, 2194 0x1e008, 0x1e00c, 2195 0x1e040, 0x1e044, 2196 0x1e04c, 0x1e04c, 2197 0x1e284, 0x1e290, 2198 0x1e2c0, 0x1e2c0, 2199 0x1e2e0, 0x1e2e0, 2200 0x1e300, 0x1e384, 2201 0x1e3c0, 0x1e3c8, 2202 0x1e408, 0x1e40c, 2203 0x1e440, 0x1e444, 2204 0x1e44c, 0x1e44c, 2205 0x1e684, 0x1e690, 2206 0x1e6c0, 0x1e6c0, 2207 0x1e6e0, 0x1e6e0, 2208 0x1e700, 0x1e784, 2209 0x1e7c0, 0x1e7c8, 2210 0x1e808, 0x1e80c, 2211 0x1e840, 0x1e844, 2212 0x1e84c, 0x1e84c, 2213 0x1ea84, 0x1ea90, 2214 0x1eac0, 0x1eac0, 2215 0x1eae0, 0x1eae0, 2216 0x1eb00, 0x1eb84, 2217 0x1ebc0, 0x1ebc8, 2218 0x1ec08, 0x1ec0c, 2219 0x1ec40, 0x1ec44, 2220 0x1ec4c, 0x1ec4c, 2221 0x1ee84, 0x1ee90, 2222 0x1eec0, 0x1eec0, 2223 0x1eee0, 0x1eee0, 2224 0x1ef00, 0x1ef84, 2225 0x1efc0, 0x1efc8, 2226 0x1f008, 0x1f00c, 2227 0x1f040, 0x1f044, 2228 0x1f04c, 0x1f04c, 2229 0x1f284, 0x1f290, 2230 0x1f2c0, 0x1f2c0, 2231 0x1f2e0, 0x1f2e0, 2232 0x1f300, 0x1f384, 2233 0x1f3c0, 0x1f3c8, 2234 0x1f408, 0x1f40c, 2235 0x1f440, 0x1f444, 2236 0x1f44c, 0x1f44c, 2237 0x1f684, 0x1f690, 2238 0x1f6c0, 0x1f6c0, 2239 0x1f6e0, 0x1f6e0, 2240 0x1f700, 0x1f784, 2241 0x1f7c0, 0x1f7c8, 2242 0x1f808, 0x1f80c, 2243 0x1f840, 0x1f844, 2244 0x1f84c, 0x1f84c, 2245 0x1fa84, 0x1fa90, 2246 0x1fac0, 0x1fac0, 2247 0x1fae0, 0x1fae0, 2248 0x1fb00, 0x1fb84, 2249 0x1fbc0, 0x1fbc8, 2250 0x1fc08, 0x1fc0c, 2251 0x1fc40, 0x1fc44, 2252 0x1fc4c, 0x1fc4c, 2253 0x1fe84, 0x1fe90, 2254 0x1fec0, 0x1fec0, 2255 0x1fee0, 0x1fee0, 2256 0x1ff00, 0x1ff84, 2257 0x1ffc0, 0x1ffc8, 2258 0x30000, 0x30030, 2259 0x30038, 0x30038, 2260 0x30040, 0x30040, 2261 0x30048, 0x30048, 2262 0x30050, 0x30050, 2263 0x3005c, 0x30060, 2264 0x30068, 0x30068, 2265 0x30070, 0x30070, 2266 0x30100, 0x30168, 2267 0x30190, 0x301a0, 2268 0x301a8, 0x301b8, 2269 0x301c4, 0x301c8, 2270 0x301d0, 0x301d0, 2271 0x30200, 0x30320, 2272 0x30400, 0x304b4, 2273 0x304c0, 0x3052c, 2274 0x30540, 0x3061c, 2275 0x30800, 0x308a0, 2276 0x308c0, 0x30908, 2277 0x30910, 0x309b8, 2278 0x30a00, 0x30a04, 2279 0x30a0c, 0x30a14, 2280 0x30a1c, 0x30a2c, 2281 0x30a44, 0x30a50, 2282 0x30a74, 0x30a74, 2283 0x30a7c, 0x30afc, 2284 0x30b08, 0x30c24, 2285 0x30d00, 0x30d14, 2286 0x30d1c, 0x30d3c, 2287 0x30d44, 0x30d4c, 2288 0x30d54, 0x30d74, 2289 0x30d7c, 0x30d7c, 2290 0x30de0, 0x30de0, 2291 0x30e00, 0x30ed4, 2292 0x30f00, 0x30fa4, 2293 0x30fc0, 0x30fc4, 2294 0x31000, 0x31004, 2295 0x31080, 0x310fc, 2296 0x31208, 0x31220, 2297 0x3123c, 0x31254, 2298 0x31300, 0x31300, 2299 0x31308, 0x3131c, 2300 0x31338, 0x3133c, 2301 0x31380, 0x31380, 2302 0x31388, 0x313a8, 2303 0x313b4, 0x313b4, 2304 0x31400, 0x31420, 2305 0x31438, 0x3143c, 2306 0x31480, 0x31480, 2307 0x314a8, 0x314a8, 2308 0x314b0, 0x314b4, 2309 0x314c8, 0x314d4, 2310 0x31a40, 0x31a4c, 2311 0x31af0, 0x31b20, 2312 0x31b38, 0x31b3c, 2313 0x31b80, 0x31b80, 2314 0x31ba8, 0x31ba8, 2315 0x31bb0, 0x31bb4, 2316 0x31bc8, 0x31bd4, 2317 0x32140, 0x3218c, 2318 0x321f0, 0x321f4, 2319 0x32200, 0x32200, 2320 0x32218, 0x32218, 2321 0x32400, 0x32400, 2322 0x32408, 0x3241c, 2323 0x32618, 0x32620, 2324 0x32664, 0x32664, 2325 0x326a8, 0x326a8, 2326 0x326ec, 0x326ec, 2327 0x32a00, 0x32abc, 2328 0x32b00, 0x32b38, 2329 0x32b40, 0x32b58, 2330 0x32b60, 0x32b78, 2331 0x32c00, 0x32c00, 2332 0x32c08, 0x32c3c, 2333 0x32e00, 0x32e2c, 2334 0x32f00, 0x32f2c, 2335 0x33000, 0x3302c, 2336 0x33034, 0x33050, 2337 0x33058, 0x33058, 2338 0x33060, 0x3308c, 2339 0x3309c, 0x330ac, 2340 0x330c0, 0x330c0, 2341 0x330c8, 0x330d0, 2342 0x330d8, 0x330e0, 2343 0x330ec, 0x3312c, 2344 0x33134, 0x33150, 2345 0x33158, 0x33158, 2346 0x33160, 0x3318c, 2347 0x3319c, 0x331ac, 2348 0x331c0, 0x331c0, 2349 0x331c8, 0x331d0, 2350 0x331d8, 0x331e0, 2351 0x331ec, 0x33290, 2352 0x33298, 0x332c4, 2353 0x332e4, 0x33390, 2354 0x33398, 0x333c4, 2355 0x333e4, 0x3342c, 2356 0x33434, 0x33450, 2357 0x33458, 0x33458, 2358 0x33460, 0x3348c, 2359 0x3349c, 0x334ac, 2360 0x334c0, 0x334c0, 2361 0x334c8, 0x334d0, 2362 0x334d8, 0x334e0, 2363 0x334ec, 0x3352c, 2364 0x33534, 0x33550, 2365 0x33558, 0x33558, 2366 0x33560, 0x3358c, 2367 0x3359c, 0x335ac, 2368 0x335c0, 0x335c0, 2369 0x335c8, 0x335d0, 2370 0x335d8, 0x335e0, 2371 0x335ec, 0x33690, 2372 0x33698, 0x336c4, 2373 0x336e4, 0x33790, 2374 0x33798, 0x337c4, 2375 0x337e4, 0x337fc, 2376 0x33814, 0x33814, 2377 0x33854, 0x33868, 2378 0x33880, 0x3388c, 2379 0x338c0, 0x338d0, 2380 0x338e8, 0x338ec, 2381 0x33900, 0x3392c, 2382 0x33934, 0x33950, 2383 0x33958, 0x33958, 2384 0x33960, 0x3398c, 2385 0x3399c, 0x339ac, 2386 0x339c0, 0x339c0, 2387 0x339c8, 0x339d0, 2388 0x339d8, 0x339e0, 2389 0x339ec, 0x33a90, 2390 0x33a98, 0x33ac4, 2391 0x33ae4, 0x33b10, 2392 0x33b24, 0x33b28, 2393 0x33b38, 0x33b50, 2394 0x33bf0, 0x33c10, 2395 0x33c24, 0x33c28, 2396 0x33c38, 0x33c50, 2397 0x33cf0, 0x33cfc, 2398 0x34000, 0x34030, 2399 0x34038, 0x34038, 2400 0x34040, 0x34040, 2401 0x34048, 0x34048, 2402 0x34050, 0x34050, 2403 0x3405c, 0x34060, 2404 0x34068, 0x34068, 2405 0x34070, 0x34070, 2406 0x34100, 0x34168, 2407 0x34190, 0x341a0, 2408 0x341a8, 0x341b8, 2409 0x341c4, 0x341c8, 2410 0x341d0, 0x341d0, 2411 0x34200, 0x34320, 2412 0x34400, 0x344b4, 2413 0x344c0, 0x3452c, 2414 0x34540, 0x3461c, 2415 0x34800, 0x348a0, 2416 0x348c0, 0x34908, 2417 0x34910, 0x349b8, 2418 0x34a00, 0x34a04, 2419 0x34a0c, 0x34a14, 2420 0x34a1c, 0x34a2c, 2421 0x34a44, 0x34a50, 2422 0x34a74, 0x34a74, 2423 0x34a7c, 0x34afc, 2424 0x34b08, 0x34c24, 2425 0x34d00, 0x34d14, 2426 0x34d1c, 0x34d3c, 2427 0x34d44, 0x34d4c, 2428 0x34d54, 0x34d74, 2429 0x34d7c, 0x34d7c, 2430 0x34de0, 0x34de0, 2431 0x34e00, 0x34ed4, 2432 0x34f00, 0x34fa4, 2433 0x34fc0, 0x34fc4, 2434 0x35000, 0x35004, 2435 0x35080, 0x350fc, 2436 0x35208, 0x35220, 2437 0x3523c, 0x35254, 2438 0x35300, 0x35300, 2439 0x35308, 0x3531c, 2440 0x35338, 0x3533c, 2441 0x35380, 0x35380, 2442 0x35388, 0x353a8, 2443 0x353b4, 0x353b4, 2444 0x35400, 0x35420, 2445 0x35438, 0x3543c, 2446 0x35480, 0x35480, 2447 0x354a8, 0x354a8, 2448 0x354b0, 0x354b4, 2449 0x354c8, 0x354d4, 2450 0x35a40, 0x35a4c, 2451 0x35af0, 0x35b20, 2452 0x35b38, 0x35b3c, 2453 0x35b80, 0x35b80, 2454 0x35ba8, 0x35ba8, 2455 0x35bb0, 0x35bb4, 2456 0x35bc8, 0x35bd4, 2457 0x36140, 0x3618c, 2458 0x361f0, 0x361f4, 2459 0x36200, 0x36200, 2460 0x36218, 0x36218, 2461 0x36400, 0x36400, 2462 0x36408, 0x3641c, 2463 0x36618, 0x36620, 2464 0x36664, 0x36664, 2465 0x366a8, 0x366a8, 2466 0x366ec, 0x366ec, 2467 0x36a00, 0x36abc, 2468 0x36b00, 0x36b38, 2469 0x36b40, 0x36b58, 2470 0x36b60, 0x36b78, 2471 0x36c00, 0x36c00, 2472 0x36c08, 0x36c3c, 2473 0x36e00, 0x36e2c, 2474 0x36f00, 0x36f2c, 2475 0x37000, 0x3702c, 2476 0x37034, 0x37050, 2477 0x37058, 0x37058, 2478 0x37060, 0x3708c, 2479 0x3709c, 0x370ac, 2480 0x370c0, 0x370c0, 2481 0x370c8, 0x370d0, 2482 0x370d8, 0x370e0, 2483 0x370ec, 0x3712c, 2484 0x37134, 0x37150, 2485 0x37158, 0x37158, 2486 0x37160, 0x3718c, 2487 0x3719c, 0x371ac, 2488 0x371c0, 0x371c0, 2489 0x371c8, 0x371d0, 2490 0x371d8, 0x371e0, 2491 0x371ec, 0x37290, 2492 0x37298, 0x372c4, 2493 0x372e4, 0x37390, 2494 0x37398, 0x373c4, 2495 0x373e4, 0x3742c, 2496 0x37434, 0x37450, 2497 0x37458, 0x37458, 2498 0x37460, 0x3748c, 2499 0x3749c, 0x374ac, 2500 0x374c0, 0x374c0, 2501 0x374c8, 0x374d0, 2502 0x374d8, 0x374e0, 2503 0x374ec, 0x3752c, 2504 0x37534, 0x37550, 2505 0x37558, 0x37558, 2506 0x37560, 0x3758c, 2507 0x3759c, 0x375ac, 2508 0x375c0, 0x375c0, 2509 0x375c8, 0x375d0, 2510 0x375d8, 0x375e0, 2511 0x375ec, 0x37690, 2512 0x37698, 0x376c4, 2513 0x376e4, 0x37790, 2514 0x37798, 0x377c4, 2515 0x377e4, 0x377fc, 2516 0x37814, 0x37814, 2517 0x37854, 0x37868, 2518 0x37880, 0x3788c, 2519 0x378c0, 0x378d0, 2520 0x378e8, 0x378ec, 2521 0x37900, 0x3792c, 2522 0x37934, 0x37950, 2523 0x37958, 0x37958, 2524 0x37960, 0x3798c, 2525 0x3799c, 0x379ac, 2526 0x379c0, 0x379c0, 2527 0x379c8, 0x379d0, 2528 0x379d8, 0x379e0, 2529 0x379ec, 0x37a90, 2530 0x37a98, 0x37ac4, 2531 0x37ae4, 0x37b10, 2532 0x37b24, 0x37b28, 2533 0x37b38, 0x37b50, 2534 0x37bf0, 0x37c10, 2535 0x37c24, 0x37c28, 2536 0x37c38, 0x37c50, 2537 0x37cf0, 0x37cfc, 2538 0x40040, 0x40040, 2539 0x40080, 0x40084, 2540 0x40100, 0x40100, 2541 0x40140, 0x401bc, 2542 0x40200, 0x40214, 2543 0x40228, 0x40228, 2544 0x40240, 0x40258, 2545 0x40280, 0x40280, 2546 0x40304, 0x40304, 2547 0x40330, 0x4033c, 2548 0x41304, 0x413b8, 2549 0x413c0, 0x413c8, 2550 0x413d0, 0x413dc, 2551 0x413f0, 0x413f0, 2552 0x41400, 0x4140c, 2553 0x41414, 0x4141c, 2554 0x41480, 0x414d0, 2555 0x44000, 0x4407c, 2556 0x440c0, 0x441ac, 2557 0x441b4, 0x4427c, 2558 0x442c0, 0x443ac, 2559 0x443b4, 0x4447c, 2560 0x444c0, 0x445ac, 2561 0x445b4, 0x4467c, 2562 0x446c0, 0x447ac, 2563 0x447b4, 0x4487c, 2564 0x448c0, 0x449ac, 2565 0x449b4, 0x44a7c, 2566 0x44ac0, 0x44bac, 2567 0x44bb4, 0x44c7c, 2568 0x44cc0, 0x44dac, 2569 0x44db4, 0x44e7c, 2570 0x44ec0, 0x44fac, 2571 0x44fb4, 0x4507c, 2572 0x450c0, 0x451ac, 2573 0x451b4, 0x451fc, 2574 0x45800, 0x45804, 2575 0x45810, 0x45830, 2576 0x45840, 0x45860, 2577 0x45868, 0x45868, 2578 0x45880, 0x45884, 2579 0x458a0, 0x458b0, 2580 0x45a00, 0x45a04, 2581 0x45a10, 0x45a30, 2582 0x45a40, 0x45a60, 2583 0x45a68, 0x45a68, 2584 0x45a80, 0x45a84, 2585 0x45aa0, 0x45ab0, 2586 0x460c0, 0x460e4, 2587 0x47000, 0x4703c, 2588 0x47044, 0x4708c, 2589 0x47200, 0x47250, 2590 0x47400, 0x47408, 2591 0x47414, 0x47420, 2592 0x47600, 0x47618, 2593 0x47800, 0x47814, 2594 0x47820, 0x4782c, 2595 0x50000, 0x50084, 2596 0x50090, 0x500cc, 2597 0x50300, 0x50384, 2598 0x50400, 0x50400, 2599 0x50800, 0x50884, 2600 0x50890, 0x508cc, 2601 0x50b00, 0x50b84, 2602 0x50c00, 0x50c00, 2603 0x51000, 0x51020, 2604 0x51028, 0x510b0, 2605 0x51300, 0x51324, 2606 }; 2607 2608 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2609 const unsigned int *reg_ranges; 2610 int reg_ranges_size, range; 2611 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2612 2613 /* Select the right set of register ranges to dump depending on the 2614 * adapter chip type. 2615 */ 2616 switch (chip_version) { 2617 case CHELSIO_T4: 2618 reg_ranges = t4_reg_ranges; 2619 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2620 break; 2621 2622 case CHELSIO_T5: 2623 reg_ranges = t5_reg_ranges; 2624 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2625 break; 2626 2627 case CHELSIO_T6: 2628 reg_ranges = t6_reg_ranges; 2629 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2630 break; 2631 2632 default: 2633 dev_err(adap->pdev_dev, 2634 "Unsupported chip version %d\n", chip_version); 2635 return; 2636 } 2637 2638 /* Clear the register buffer and insert the appropriate register 2639 * values selected by the above register ranges. 2640 */ 2641 memset(buf, 0, buf_size); 2642 for (range = 0; range < reg_ranges_size; range += 2) { 2643 unsigned int reg = reg_ranges[range]; 2644 unsigned int last_reg = reg_ranges[range + 1]; 2645 u32 *bufp = (u32 *)((char *)buf + reg); 2646 2647 /* Iterate across the register range filling in the register 2648 * buffer but don't write past the end of the register buffer. 2649 */ 2650 while (reg <= last_reg && bufp < buf_end) { 2651 *bufp++ = t4_read_reg(adap, reg); 2652 reg += sizeof(u32); 2653 } 2654 } 2655 } 2656 2657 #define EEPROM_STAT_ADDR 0x7bfc 2658 #define VPD_SIZE 0x800 2659 #define VPD_BASE 0x400 2660 #define VPD_BASE_OLD 0 2661 #define VPD_LEN 1024 2662 #define CHELSIO_VPD_UNIQUE_ID 0x82 2663 2664 /** 2665 * t4_seeprom_wp - enable/disable EEPROM write protection 2666 * @adapter: the adapter 2667 * @enable: whether to enable or disable write protection 2668 * 2669 * Enables or disables write protection on the serial EEPROM. 2670 */ 2671 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2672 { 2673 unsigned int v = enable ? 0xc : 0; 2674 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2675 return ret < 0 ? ret : 0; 2676 } 2677 2678 /** 2679 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2680 * @adapter: adapter to read 2681 * @p: where to store the parameters 2682 * 2683 * Reads card parameters stored in VPD EEPROM. 2684 */ 2685 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2686 { 2687 int i, ret = 0, addr; 2688 int ec, sn, pn, na; 2689 u8 *vpd, csum; 2690 unsigned int vpdr_len, kw_offset, id_len; 2691 2692 vpd = vmalloc(VPD_LEN); 2693 if (!vpd) 2694 return -ENOMEM; 2695 2696 /* We have two VPD data structures stored in the adapter VPD area. 2697 * By default, Linux calculates the size of the VPD area by traversing 2698 * the first VPD area at offset 0x0, so we need to tell the OS what 2699 * our real VPD size is. 2700 */ 2701 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE); 2702 if (ret < 0) 2703 goto out; 2704 2705 /* Card information normally starts at VPD_BASE but early cards had 2706 * it at 0. 2707 */ 2708 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2709 if (ret < 0) 2710 goto out; 2711 2712 /* The VPD shall have a unique identifier specified by the PCI SIG. 2713 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2714 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2715 * is expected to automatically put this entry at the 2716 * beginning of the VPD. 2717 */ 2718 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2719 2720 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2721 if (ret < 0) 2722 goto out; 2723 2724 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2725 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2726 ret = -EINVAL; 2727 goto out; 2728 } 2729 2730 id_len = pci_vpd_lrdt_size(vpd); 2731 if (id_len > ID_LEN) 2732 id_len = ID_LEN; 2733 2734 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2735 if (i < 0) { 2736 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2737 ret = -EINVAL; 2738 goto out; 2739 } 2740 2741 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2742 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2743 if (vpdr_len + kw_offset > VPD_LEN) { 2744 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2745 ret = -EINVAL; 2746 goto out; 2747 } 2748 2749 #define FIND_VPD_KW(var, name) do { \ 2750 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2751 if (var < 0) { \ 2752 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2753 ret = -EINVAL; \ 2754 goto out; \ 2755 } \ 2756 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2757 } while (0) 2758 2759 FIND_VPD_KW(i, "RV"); 2760 for (csum = 0; i >= 0; i--) 2761 csum += vpd[i]; 2762 2763 if (csum) { 2764 dev_err(adapter->pdev_dev, 2765 "corrupted VPD EEPROM, actual csum %u\n", csum); 2766 ret = -EINVAL; 2767 goto out; 2768 } 2769 2770 FIND_VPD_KW(ec, "EC"); 2771 FIND_VPD_KW(sn, "SN"); 2772 FIND_VPD_KW(pn, "PN"); 2773 FIND_VPD_KW(na, "NA"); 2774 #undef FIND_VPD_KW 2775 2776 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2777 strim(p->id); 2778 memcpy(p->ec, vpd + ec, EC_LEN); 2779 strim(p->ec); 2780 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2781 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2782 strim(p->sn); 2783 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2784 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2785 strim(p->pn); 2786 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2787 strim((char *)p->na); 2788 2789 out: 2790 vfree(vpd); 2791 return ret < 0 ? ret : 0; 2792 } 2793 2794 /** 2795 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2796 * @adapter: adapter to read 2797 * @p: where to store the parameters 2798 * 2799 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2800 * Clock. This can only be called after a connection to the firmware 2801 * is established. 2802 */ 2803 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2804 { 2805 u32 cclk_param, cclk_val; 2806 int ret; 2807 2808 /* Grab the raw VPD parameters. 2809 */ 2810 ret = t4_get_raw_vpd_params(adapter, p); 2811 if (ret) 2812 return ret; 2813 2814 /* Ask firmware for the Core Clock since it knows how to translate the 2815 * Reference Clock ('V2') VPD field into a Core Clock value ... 2816 */ 2817 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2818 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2819 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2820 1, &cclk_param, &cclk_val); 2821 2822 if (ret) 2823 return ret; 2824 p->cclk = cclk_val; 2825 2826 return 0; 2827 } 2828 2829 /* serial flash and firmware constants */ 2830 enum { 2831 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2832 2833 /* flash command opcodes */ 2834 SF_PROG_PAGE = 2, /* program page */ 2835 SF_WR_DISABLE = 4, /* disable writes */ 2836 SF_RD_STATUS = 5, /* read status register */ 2837 SF_WR_ENABLE = 6, /* enable writes */ 2838 SF_RD_DATA_FAST = 0xb, /* read flash */ 2839 SF_RD_ID = 0x9f, /* read ID */ 2840 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2841 2842 FW_MAX_SIZE = 16 * SF_SEC_SIZE, 2843 }; 2844 2845 /** 2846 * sf1_read - read data from the serial flash 2847 * @adapter: the adapter 2848 * @byte_cnt: number of bytes to read 2849 * @cont: whether another operation will be chained 2850 * @lock: whether to lock SF for PL access only 2851 * @valp: where to store the read data 2852 * 2853 * Reads up to 4 bytes of data from the serial flash. The location of 2854 * the read needs to be specified prior to calling this by issuing the 2855 * appropriate commands to the serial flash. 2856 */ 2857 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2858 int lock, u32 *valp) 2859 { 2860 int ret; 2861 2862 if (!byte_cnt || byte_cnt > 4) 2863 return -EINVAL; 2864 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2865 return -EBUSY; 2866 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2867 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2868 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2869 if (!ret) 2870 *valp = t4_read_reg(adapter, SF_DATA_A); 2871 return ret; 2872 } 2873 2874 /** 2875 * sf1_write - write data to the serial flash 2876 * @adapter: the adapter 2877 * @byte_cnt: number of bytes to write 2878 * @cont: whether another operation will be chained 2879 * @lock: whether to lock SF for PL access only 2880 * @val: value to write 2881 * 2882 * Writes up to 4 bytes of data to the serial flash. The location of 2883 * the write needs to be specified prior to calling this by issuing the 2884 * appropriate commands to the serial flash. 2885 */ 2886 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2887 int lock, u32 val) 2888 { 2889 if (!byte_cnt || byte_cnt > 4) 2890 return -EINVAL; 2891 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2892 return -EBUSY; 2893 t4_write_reg(adapter, SF_DATA_A, val); 2894 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2895 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2896 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2897 } 2898 2899 /** 2900 * flash_wait_op - wait for a flash operation to complete 2901 * @adapter: the adapter 2902 * @attempts: max number of polls of the status register 2903 * @delay: delay between polls in ms 2904 * 2905 * Wait for a flash operation to complete by polling the status register. 2906 */ 2907 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2908 { 2909 int ret; 2910 u32 status; 2911 2912 while (1) { 2913 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2914 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2915 return ret; 2916 if (!(status & 1)) 2917 return 0; 2918 if (--attempts == 0) 2919 return -EAGAIN; 2920 if (delay) 2921 msleep(delay); 2922 } 2923 } 2924 2925 /** 2926 * t4_read_flash - read words from serial flash 2927 * @adapter: the adapter 2928 * @addr: the start address for the read 2929 * @nwords: how many 32-bit words to read 2930 * @data: where to store the read data 2931 * @byte_oriented: whether to store data as bytes or as words 2932 * 2933 * Read the specified number of 32-bit words from the serial flash. 2934 * If @byte_oriented is set the read data is stored as a byte array 2935 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2936 * natural endianness. 2937 */ 2938 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2939 unsigned int nwords, u32 *data, int byte_oriented) 2940 { 2941 int ret; 2942 2943 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2944 return -EINVAL; 2945 2946 addr = swab32(addr) | SF_RD_DATA_FAST; 2947 2948 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 2949 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 2950 return ret; 2951 2952 for ( ; nwords; nwords--, data++) { 2953 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 2954 if (nwords == 1) 2955 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2956 if (ret) 2957 return ret; 2958 if (byte_oriented) 2959 *data = (__force __u32)(cpu_to_be32(*data)); 2960 } 2961 return 0; 2962 } 2963 2964 /** 2965 * t4_write_flash - write up to a page of data to the serial flash 2966 * @adapter: the adapter 2967 * @addr: the start address to write 2968 * @n: length of data to write in bytes 2969 * @data: the data to write 2970 * 2971 * Writes up to a page of data (256 bytes) to the serial flash starting 2972 * at the given address. All the data must be written to the same page. 2973 */ 2974 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 2975 unsigned int n, const u8 *data) 2976 { 2977 int ret; 2978 u32 buf[64]; 2979 unsigned int i, c, left, val, offset = addr & 0xff; 2980 2981 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 2982 return -EINVAL; 2983 2984 val = swab32(addr) | SF_PROG_PAGE; 2985 2986 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 2987 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 2988 goto unlock; 2989 2990 for (left = n; left; left -= c) { 2991 c = min(left, 4U); 2992 for (val = 0, i = 0; i < c; ++i) 2993 val = (val << 8) + *data++; 2994 2995 ret = sf1_write(adapter, c, c != left, 1, val); 2996 if (ret) 2997 goto unlock; 2998 } 2999 ret = flash_wait_op(adapter, 8, 1); 3000 if (ret) 3001 goto unlock; 3002 3003 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3004 3005 /* Read the page to verify the write succeeded */ 3006 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3007 if (ret) 3008 return ret; 3009 3010 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3011 dev_err(adapter->pdev_dev, 3012 "failed to correctly write the flash page at %#x\n", 3013 addr); 3014 return -EIO; 3015 } 3016 return 0; 3017 3018 unlock: 3019 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3020 return ret; 3021 } 3022 3023 /** 3024 * t4_get_fw_version - read the firmware version 3025 * @adapter: the adapter 3026 * @vers: where to place the version 3027 * 3028 * Reads the FW version from flash. 3029 */ 3030 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3031 { 3032 return t4_read_flash(adapter, FLASH_FW_START + 3033 offsetof(struct fw_hdr, fw_ver), 1, 3034 vers, 0); 3035 } 3036 3037 /** 3038 * t4_get_bs_version - read the firmware bootstrap version 3039 * @adapter: the adapter 3040 * @vers: where to place the version 3041 * 3042 * Reads the FW Bootstrap version from flash. 3043 */ 3044 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3045 { 3046 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3047 offsetof(struct fw_hdr, fw_ver), 1, 3048 vers, 0); 3049 } 3050 3051 /** 3052 * t4_get_tp_version - read the TP microcode version 3053 * @adapter: the adapter 3054 * @vers: where to place the version 3055 * 3056 * Reads the TP microcode version from flash. 3057 */ 3058 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3059 { 3060 return t4_read_flash(adapter, FLASH_FW_START + 3061 offsetof(struct fw_hdr, tp_microcode_ver), 3062 1, vers, 0); 3063 } 3064 3065 /** 3066 * t4_get_exprom_version - return the Expansion ROM version (if any) 3067 * @adapter: the adapter 3068 * @vers: where to place the version 3069 * 3070 * Reads the Expansion ROM header from FLASH and returns the version 3071 * number (if present) through the @vers return value pointer. We return 3072 * this in the Firmware Version Format since it's convenient. Return 3073 * 0 on success, -ENOENT if no Expansion ROM is present. 3074 */ 3075 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3076 { 3077 struct exprom_header { 3078 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3079 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3080 } *hdr; 3081 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3082 sizeof(u32))]; 3083 int ret; 3084 3085 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3086 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3087 0); 3088 if (ret) 3089 return ret; 3090 3091 hdr = (struct exprom_header *)exprom_header_buf; 3092 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3093 return -ENOENT; 3094 3095 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3096 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3097 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3098 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3099 return 0; 3100 } 3101 3102 /** 3103 * t4_check_fw_version - check if the FW is supported with this driver 3104 * @adap: the adapter 3105 * 3106 * Checks if an adapter's FW is compatible with the driver. Returns 0 3107 * if there's exact match, a negative error if the version could not be 3108 * read or there's a major version mismatch 3109 */ 3110 int t4_check_fw_version(struct adapter *adap) 3111 { 3112 int i, ret, major, minor, micro; 3113 int exp_major, exp_minor, exp_micro; 3114 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3115 3116 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3117 /* Try multiple times before returning error */ 3118 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3119 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3120 3121 if (ret) 3122 return ret; 3123 3124 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3125 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3126 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3127 3128 switch (chip_version) { 3129 case CHELSIO_T4: 3130 exp_major = T4FW_MIN_VERSION_MAJOR; 3131 exp_minor = T4FW_MIN_VERSION_MINOR; 3132 exp_micro = T4FW_MIN_VERSION_MICRO; 3133 break; 3134 case CHELSIO_T5: 3135 exp_major = T5FW_MIN_VERSION_MAJOR; 3136 exp_minor = T5FW_MIN_VERSION_MINOR; 3137 exp_micro = T5FW_MIN_VERSION_MICRO; 3138 break; 3139 case CHELSIO_T6: 3140 exp_major = T6FW_MIN_VERSION_MAJOR; 3141 exp_minor = T6FW_MIN_VERSION_MINOR; 3142 exp_micro = T6FW_MIN_VERSION_MICRO; 3143 break; 3144 default: 3145 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3146 adap->chip); 3147 return -EINVAL; 3148 } 3149 3150 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3151 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3152 dev_err(adap->pdev_dev, 3153 "Card has firmware version %u.%u.%u, minimum " 3154 "supported firmware is %u.%u.%u.\n", major, minor, 3155 micro, exp_major, exp_minor, exp_micro); 3156 return -EFAULT; 3157 } 3158 return 0; 3159 } 3160 3161 /* Is the given firmware API compatible with the one the driver was compiled 3162 * with? 3163 */ 3164 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3165 { 3166 3167 /* short circuit if it's the exact same firmware version */ 3168 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3169 return 1; 3170 3171 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3172 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3173 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3174 return 1; 3175 #undef SAME_INTF 3176 3177 return 0; 3178 } 3179 3180 /* The firmware in the filesystem is usable, but should it be installed? 3181 * This routine explains itself in detail if it indicates the filesystem 3182 * firmware should be installed. 3183 */ 3184 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3185 int k, int c) 3186 { 3187 const char *reason; 3188 3189 if (!card_fw_usable) { 3190 reason = "incompatible or unusable"; 3191 goto install; 3192 } 3193 3194 if (k > c) { 3195 reason = "older than the version supported with this driver"; 3196 goto install; 3197 } 3198 3199 return 0; 3200 3201 install: 3202 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3203 "installing firmware %u.%u.%u.%u on card.\n", 3204 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3205 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3206 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3207 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3208 3209 return 1; 3210 } 3211 3212 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3213 const u8 *fw_data, unsigned int fw_size, 3214 struct fw_hdr *card_fw, enum dev_state state, 3215 int *reset) 3216 { 3217 int ret, card_fw_usable, fs_fw_usable; 3218 const struct fw_hdr *fs_fw; 3219 const struct fw_hdr *drv_fw; 3220 3221 drv_fw = &fw_info->fw_hdr; 3222 3223 /* Read the header of the firmware on the card */ 3224 ret = -t4_read_flash(adap, FLASH_FW_START, 3225 sizeof(*card_fw) / sizeof(uint32_t), 3226 (uint32_t *)card_fw, 1); 3227 if (ret == 0) { 3228 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3229 } else { 3230 dev_err(adap->pdev_dev, 3231 "Unable to read card's firmware header: %d\n", ret); 3232 card_fw_usable = 0; 3233 } 3234 3235 if (fw_data != NULL) { 3236 fs_fw = (const void *)fw_data; 3237 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3238 } else { 3239 fs_fw = NULL; 3240 fs_fw_usable = 0; 3241 } 3242 3243 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3244 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3245 /* Common case: the firmware on the card is an exact match and 3246 * the filesystem one is an exact match too, or the filesystem 3247 * one is absent/incompatible. 3248 */ 3249 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3250 should_install_fs_fw(adap, card_fw_usable, 3251 be32_to_cpu(fs_fw->fw_ver), 3252 be32_to_cpu(card_fw->fw_ver))) { 3253 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3254 fw_size, 0); 3255 if (ret != 0) { 3256 dev_err(adap->pdev_dev, 3257 "failed to install firmware: %d\n", ret); 3258 goto bye; 3259 } 3260 3261 /* Installed successfully, update the cached header too. */ 3262 *card_fw = *fs_fw; 3263 card_fw_usable = 1; 3264 *reset = 0; /* already reset as part of load_fw */ 3265 } 3266 3267 if (!card_fw_usable) { 3268 uint32_t d, c, k; 3269 3270 d = be32_to_cpu(drv_fw->fw_ver); 3271 c = be32_to_cpu(card_fw->fw_ver); 3272 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3273 3274 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3275 "chip state %d, " 3276 "driver compiled with %d.%d.%d.%d, " 3277 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3278 state, 3279 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3280 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3281 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3282 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3283 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3284 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3285 ret = EINVAL; 3286 goto bye; 3287 } 3288 3289 /* We're using whatever's on the card and it's known to be good. */ 3290 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3291 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3292 3293 bye: 3294 return ret; 3295 } 3296 3297 /** 3298 * t4_flash_erase_sectors - erase a range of flash sectors 3299 * @adapter: the adapter 3300 * @start: the first sector to erase 3301 * @end: the last sector to erase 3302 * 3303 * Erases the sectors in the given inclusive range. 3304 */ 3305 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3306 { 3307 int ret = 0; 3308 3309 if (end >= adapter->params.sf_nsec) 3310 return -EINVAL; 3311 3312 while (start <= end) { 3313 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3314 (ret = sf1_write(adapter, 4, 0, 1, 3315 SF_ERASE_SECTOR | (start << 8))) != 0 || 3316 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3317 dev_err(adapter->pdev_dev, 3318 "erase of flash sector %d failed, error %d\n", 3319 start, ret); 3320 break; 3321 } 3322 start++; 3323 } 3324 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3325 return ret; 3326 } 3327 3328 /** 3329 * t4_flash_cfg_addr - return the address of the flash configuration file 3330 * @adapter: the adapter 3331 * 3332 * Return the address within the flash where the Firmware Configuration 3333 * File is stored. 3334 */ 3335 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3336 { 3337 if (adapter->params.sf_size == 0x100000) 3338 return FLASH_FPGA_CFG_START; 3339 else 3340 return FLASH_CFG_START; 3341 } 3342 3343 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3344 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3345 * and emit an error message for mismatched firmware to save our caller the 3346 * effort ... 3347 */ 3348 static bool t4_fw_matches_chip(const struct adapter *adap, 3349 const struct fw_hdr *hdr) 3350 { 3351 /* The expression below will return FALSE for any unsupported adapter 3352 * which will keep us "honest" in the future ... 3353 */ 3354 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3355 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3356 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3357 return true; 3358 3359 dev_err(adap->pdev_dev, 3360 "FW image (%d) is not suitable for this adapter (%d)\n", 3361 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3362 return false; 3363 } 3364 3365 /** 3366 * t4_load_fw - download firmware 3367 * @adap: the adapter 3368 * @fw_data: the firmware image to write 3369 * @size: image size 3370 * 3371 * Write the supplied firmware image to the card's serial flash. 3372 */ 3373 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3374 { 3375 u32 csum; 3376 int ret, addr; 3377 unsigned int i; 3378 u8 first_page[SF_PAGE_SIZE]; 3379 const __be32 *p = (const __be32 *)fw_data; 3380 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3381 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3382 unsigned int fw_img_start = adap->params.sf_fw_start; 3383 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 3384 3385 if (!size) { 3386 dev_err(adap->pdev_dev, "FW image has no data\n"); 3387 return -EINVAL; 3388 } 3389 if (size & 511) { 3390 dev_err(adap->pdev_dev, 3391 "FW image size not multiple of 512 bytes\n"); 3392 return -EINVAL; 3393 } 3394 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3395 dev_err(adap->pdev_dev, 3396 "FW image size differs from size in FW header\n"); 3397 return -EINVAL; 3398 } 3399 if (size > FW_MAX_SIZE) { 3400 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3401 FW_MAX_SIZE); 3402 return -EFBIG; 3403 } 3404 if (!t4_fw_matches_chip(adap, hdr)) 3405 return -EINVAL; 3406 3407 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3408 csum += be32_to_cpu(p[i]); 3409 3410 if (csum != 0xffffffff) { 3411 dev_err(adap->pdev_dev, 3412 "corrupted firmware image, checksum %#x\n", csum); 3413 return -EINVAL; 3414 } 3415 3416 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3417 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3418 if (ret) 3419 goto out; 3420 3421 /* 3422 * We write the correct version at the end so the driver can see a bad 3423 * version if the FW write fails. Start by writing a copy of the 3424 * first page with a bad version. 3425 */ 3426 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3427 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3428 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 3429 if (ret) 3430 goto out; 3431 3432 addr = fw_img_start; 3433 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3434 addr += SF_PAGE_SIZE; 3435 fw_data += SF_PAGE_SIZE; 3436 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3437 if (ret) 3438 goto out; 3439 } 3440 3441 ret = t4_write_flash(adap, 3442 fw_img_start + offsetof(struct fw_hdr, fw_ver), 3443 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3444 out: 3445 if (ret) 3446 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3447 ret); 3448 else 3449 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3450 return ret; 3451 } 3452 3453 /** 3454 * t4_phy_fw_ver - return current PHY firmware version 3455 * @adap: the adapter 3456 * @phy_fw_ver: return value buffer for PHY firmware version 3457 * 3458 * Returns the current version of external PHY firmware on the 3459 * adapter. 3460 */ 3461 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3462 { 3463 u32 param, val; 3464 int ret; 3465 3466 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3467 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3468 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3469 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3470 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3471 ¶m, &val); 3472 if (ret < 0) 3473 return ret; 3474 *phy_fw_ver = val; 3475 return 0; 3476 } 3477 3478 /** 3479 * t4_load_phy_fw - download port PHY firmware 3480 * @adap: the adapter 3481 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3482 * @win_lock: the lock to use to guard the memory copy 3483 * @phy_fw_version: function to check PHY firmware versions 3484 * @phy_fw_data: the PHY firmware image to write 3485 * @phy_fw_size: image size 3486 * 3487 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3488 * @phy_fw_version is supplied, then it will be used to determine if 3489 * it's necessary to perform the transfer by comparing the version 3490 * of any existing adapter PHY firmware with that of the passed in 3491 * PHY firmware image. If @win_lock is non-NULL then it will be used 3492 * around the call to t4_memory_rw() which transfers the PHY firmware 3493 * to the adapter. 3494 * 3495 * A negative error number will be returned if an error occurs. If 3496 * version number support is available and there's no need to upgrade 3497 * the firmware, 0 will be returned. If firmware is successfully 3498 * transferred to the adapter, 1 will be retured. 3499 * 3500 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3501 * a result, a RESET of the adapter would cause that RAM to lose its 3502 * contents. Thus, loading PHY firmware on such adapters must happen 3503 * after any FW_RESET_CMDs ... 3504 */ 3505 int t4_load_phy_fw(struct adapter *adap, 3506 int win, spinlock_t *win_lock, 3507 int (*phy_fw_version)(const u8 *, size_t), 3508 const u8 *phy_fw_data, size_t phy_fw_size) 3509 { 3510 unsigned long mtype = 0, maddr = 0; 3511 u32 param, val; 3512 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3513 int ret; 3514 3515 /* If we have version number support, then check to see if the adapter 3516 * already has up-to-date PHY firmware loaded. 3517 */ 3518 if (phy_fw_version) { 3519 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3520 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3521 if (ret < 0) 3522 return ret; 3523 3524 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3525 CH_WARN(adap, "PHY Firmware already up-to-date, " 3526 "version %#x\n", cur_phy_fw_ver); 3527 return 0; 3528 } 3529 } 3530 3531 /* Ask the firmware where it wants us to copy the PHY firmware image. 3532 * The size of the file requires a special version of the READ coommand 3533 * which will pass the file size via the values field in PARAMS_CMD and 3534 * retrieve the return value from firmware and place it in the same 3535 * buffer values 3536 */ 3537 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3538 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3539 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3540 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3541 val = phy_fw_size; 3542 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3543 ¶m, &val, 1); 3544 if (ret < 0) 3545 return ret; 3546 mtype = val >> 8; 3547 maddr = (val & 0xff) << 16; 3548 3549 /* Copy the supplied PHY Firmware image to the adapter memory location 3550 * allocated by the adapter firmware. 3551 */ 3552 if (win_lock) 3553 spin_lock_bh(win_lock); 3554 ret = t4_memory_rw(adap, win, mtype, maddr, 3555 phy_fw_size, (__be32 *)phy_fw_data, 3556 T4_MEMORY_WRITE); 3557 if (win_lock) 3558 spin_unlock_bh(win_lock); 3559 if (ret) 3560 return ret; 3561 3562 /* Tell the firmware that the PHY firmware image has been written to 3563 * RAM and it can now start copying it over to the PHYs. The chip 3564 * firmware will RESET the affected PHYs as part of this operation 3565 * leaving them running the new PHY firmware image. 3566 */ 3567 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3568 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3569 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3570 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3571 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3572 ¶m, &val, 30000); 3573 3574 /* If we have version number support, then check to see that the new 3575 * firmware got loaded properly. 3576 */ 3577 if (phy_fw_version) { 3578 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3579 if (ret < 0) 3580 return ret; 3581 3582 if (cur_phy_fw_ver != new_phy_fw_vers) { 3583 CH_WARN(adap, "PHY Firmware did not update: " 3584 "version on adapter %#x, " 3585 "version flashed %#x\n", 3586 cur_phy_fw_ver, new_phy_fw_vers); 3587 return -ENXIO; 3588 } 3589 } 3590 3591 return 1; 3592 } 3593 3594 /** 3595 * t4_fwcache - firmware cache operation 3596 * @adap: the adapter 3597 * @op : the operation (flush or flush and invalidate) 3598 */ 3599 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3600 { 3601 struct fw_params_cmd c; 3602 3603 memset(&c, 0, sizeof(c)); 3604 c.op_to_vfn = 3605 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3606 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3607 FW_PARAMS_CMD_PFN_V(adap->pf) | 3608 FW_PARAMS_CMD_VFN_V(0)); 3609 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3610 c.param[0].mnem = 3611 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3612 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3613 c.param[0].val = (__force __be32)op; 3614 3615 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3616 } 3617 3618 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3619 unsigned int *pif_req_wrptr, 3620 unsigned int *pif_rsp_wrptr) 3621 { 3622 int i, j; 3623 u32 cfg, val, req, rsp; 3624 3625 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3626 if (cfg & LADBGEN_F) 3627 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3628 3629 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3630 req = POLADBGWRPTR_G(val); 3631 rsp = PILADBGWRPTR_G(val); 3632 if (pif_req_wrptr) 3633 *pif_req_wrptr = req; 3634 if (pif_rsp_wrptr) 3635 *pif_rsp_wrptr = rsp; 3636 3637 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3638 for (j = 0; j < 6; j++) { 3639 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3640 PILADBGRDPTR_V(rsp)); 3641 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3642 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3643 req++; 3644 rsp++; 3645 } 3646 req = (req + 2) & POLADBGRDPTR_M; 3647 rsp = (rsp + 2) & PILADBGRDPTR_M; 3648 } 3649 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3650 } 3651 3652 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3653 { 3654 u32 cfg; 3655 int i, j, idx; 3656 3657 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3658 if (cfg & LADBGEN_F) 3659 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3660 3661 for (i = 0; i < CIM_MALA_SIZE; i++) { 3662 for (j = 0; j < 5; j++) { 3663 idx = 8 * i + j; 3664 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3665 PILADBGRDPTR_V(idx)); 3666 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3667 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3668 } 3669 } 3670 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3671 } 3672 3673 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3674 { 3675 unsigned int i, j; 3676 3677 for (i = 0; i < 8; i++) { 3678 u32 *p = la_buf + i; 3679 3680 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3681 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3682 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3683 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3684 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3685 } 3686 } 3687 3688 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 3689 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \ 3690 FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \ 3691 FW_PORT_CAP_ANEG) 3692 3693 /** 3694 * t4_link_l1cfg - apply link configuration to MAC/PHY 3695 * @phy: the PHY to setup 3696 * @mac: the MAC to setup 3697 * @lc: the requested link configuration 3698 * 3699 * Set up a port's MAC and PHY according to a desired link configuration. 3700 * - If the PHY can auto-negotiate first decide what to advertise, then 3701 * enable/disable auto-negotiation as desired, and reset. 3702 * - If the PHY does not auto-negotiate just reset it. 3703 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3704 * otherwise do it later based on the outcome of auto-negotiation. 3705 */ 3706 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3707 struct link_config *lc) 3708 { 3709 struct fw_port_cmd c; 3710 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO); 3711 3712 lc->link_ok = 0; 3713 if (lc->requested_fc & PAUSE_RX) 3714 fc |= FW_PORT_CAP_FC_RX; 3715 if (lc->requested_fc & PAUSE_TX) 3716 fc |= FW_PORT_CAP_FC_TX; 3717 3718 memset(&c, 0, sizeof(c)); 3719 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 3720 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 3721 FW_PORT_CMD_PORTID_V(port)); 3722 c.action_to_len16 = 3723 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 3724 FW_LEN16(c)); 3725 3726 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 3727 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) | 3728 fc); 3729 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 3730 } else if (lc->autoneg == AUTONEG_DISABLE) { 3731 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi); 3732 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 3733 } else 3734 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi); 3735 3736 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3737 } 3738 3739 /** 3740 * t4_restart_aneg - restart autonegotiation 3741 * @adap: the adapter 3742 * @mbox: mbox to use for the FW command 3743 * @port: the port id 3744 * 3745 * Restarts autonegotiation for the selected port. 3746 */ 3747 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 3748 { 3749 struct fw_port_cmd c; 3750 3751 memset(&c, 0, sizeof(c)); 3752 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 3753 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 3754 FW_PORT_CMD_PORTID_V(port)); 3755 c.action_to_len16 = 3756 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 3757 FW_LEN16(c)); 3758 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 3759 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3760 } 3761 3762 typedef void (*int_handler_t)(struct adapter *adap); 3763 3764 struct intr_info { 3765 unsigned int mask; /* bits to check in interrupt status */ 3766 const char *msg; /* message to print or NULL */ 3767 short stat_idx; /* stat counter to increment or -1 */ 3768 unsigned short fatal; /* whether the condition reported is fatal */ 3769 int_handler_t int_handler; /* platform-specific int handler */ 3770 }; 3771 3772 /** 3773 * t4_handle_intr_status - table driven interrupt handler 3774 * @adapter: the adapter that generated the interrupt 3775 * @reg: the interrupt status register to process 3776 * @acts: table of interrupt actions 3777 * 3778 * A table driven interrupt handler that applies a set of masks to an 3779 * interrupt status word and performs the corresponding actions if the 3780 * interrupts described by the mask have occurred. The actions include 3781 * optionally emitting a warning or alert message. The table is terminated 3782 * by an entry specifying mask 0. Returns the number of fatal interrupt 3783 * conditions. 3784 */ 3785 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 3786 const struct intr_info *acts) 3787 { 3788 int fatal = 0; 3789 unsigned int mask = 0; 3790 unsigned int status = t4_read_reg(adapter, reg); 3791 3792 for ( ; acts->mask; ++acts) { 3793 if (!(status & acts->mask)) 3794 continue; 3795 if (acts->fatal) { 3796 fatal++; 3797 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 3798 status & acts->mask); 3799 } else if (acts->msg && printk_ratelimit()) 3800 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 3801 status & acts->mask); 3802 if (acts->int_handler) 3803 acts->int_handler(adapter); 3804 mask |= acts->mask; 3805 } 3806 status &= mask; 3807 if (status) /* clear processed interrupts */ 3808 t4_write_reg(adapter, reg, status); 3809 return fatal; 3810 } 3811 3812 /* 3813 * Interrupt handler for the PCIE module. 3814 */ 3815 static void pcie_intr_handler(struct adapter *adapter) 3816 { 3817 static const struct intr_info sysbus_intr_info[] = { 3818 { RNPP_F, "RXNP array parity error", -1, 1 }, 3819 { RPCP_F, "RXPC array parity error", -1, 1 }, 3820 { RCIP_F, "RXCIF array parity error", -1, 1 }, 3821 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 3822 { RFTP_F, "RXFT array parity error", -1, 1 }, 3823 { 0 } 3824 }; 3825 static const struct intr_info pcie_port_intr_info[] = { 3826 { TPCP_F, "TXPC array parity error", -1, 1 }, 3827 { TNPP_F, "TXNP array parity error", -1, 1 }, 3828 { TFTP_F, "TXFT array parity error", -1, 1 }, 3829 { TCAP_F, "TXCA array parity error", -1, 1 }, 3830 { TCIP_F, "TXCIF array parity error", -1, 1 }, 3831 { RCAP_F, "RXCA array parity error", -1, 1 }, 3832 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 3833 { RDPE_F, "Rx data parity error", -1, 1 }, 3834 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 3835 { 0 } 3836 }; 3837 static const struct intr_info pcie_intr_info[] = { 3838 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 3839 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 3840 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 3841 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 3842 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 3843 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 3844 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 3845 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 3846 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 3847 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 3848 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 3849 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 3850 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 3851 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 3852 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 3853 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 3854 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 3855 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 3856 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 3857 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 3858 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 3859 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 3860 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 3861 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 3862 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 3863 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 3864 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 3865 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 3866 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 3867 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 3868 -1, 0 }, 3869 { 0 } 3870 }; 3871 3872 static struct intr_info t5_pcie_intr_info[] = { 3873 { MSTGRPPERR_F, "Master Response Read Queue parity error", 3874 -1, 1 }, 3875 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 3876 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 3877 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 3878 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 3879 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 3880 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 3881 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 3882 -1, 1 }, 3883 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 3884 -1, 1 }, 3885 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 3886 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 3887 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 3888 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 3889 { DREQWRPERR_F, "PCI DMA channel write request parity error", 3890 -1, 1 }, 3891 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 3892 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 3893 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 3894 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 3895 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 3896 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 3897 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 3898 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 3899 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 3900 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 3901 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 3902 -1, 1 }, 3903 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 3904 -1, 1 }, 3905 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 3906 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 3907 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 3908 { READRSPERR_F, "Outbound read error", -1, 0 }, 3909 { 0 } 3910 }; 3911 3912 int fat; 3913 3914 if (is_t4(adapter->params.chip)) 3915 fat = t4_handle_intr_status(adapter, 3916 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 3917 sysbus_intr_info) + 3918 t4_handle_intr_status(adapter, 3919 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 3920 pcie_port_intr_info) + 3921 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 3922 pcie_intr_info); 3923 else 3924 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 3925 t5_pcie_intr_info); 3926 3927 if (fat) 3928 t4_fatal_err(adapter); 3929 } 3930 3931 /* 3932 * TP interrupt handler. 3933 */ 3934 static void tp_intr_handler(struct adapter *adapter) 3935 { 3936 static const struct intr_info tp_intr_info[] = { 3937 { 0x3fffffff, "TP parity error", -1, 1 }, 3938 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 3939 { 0 } 3940 }; 3941 3942 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 3943 t4_fatal_err(adapter); 3944 } 3945 3946 /* 3947 * SGE interrupt handler. 3948 */ 3949 static void sge_intr_handler(struct adapter *adapter) 3950 { 3951 u64 v; 3952 u32 err; 3953 3954 static const struct intr_info sge_intr_info[] = { 3955 { ERR_CPL_EXCEED_IQE_SIZE_F, 3956 "SGE received CPL exceeding IQE size", -1, 1 }, 3957 { ERR_INVALID_CIDX_INC_F, 3958 "SGE GTS CIDX increment too large", -1, 0 }, 3959 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 3960 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 3961 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 3962 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 3963 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 3964 0 }, 3965 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 3966 0 }, 3967 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 3968 0 }, 3969 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 3970 0 }, 3971 { ERR_ING_CTXT_PRIO_F, 3972 "SGE too many priority ingress contexts", -1, 0 }, 3973 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 3974 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 3975 { 0 } 3976 }; 3977 3978 static struct intr_info t4t5_sge_intr_info[] = { 3979 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 3980 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 3981 { ERR_EGR_CTXT_PRIO_F, 3982 "SGE too many priority egress contexts", -1, 0 }, 3983 { 0 } 3984 }; 3985 3986 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 3987 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 3988 if (v) { 3989 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 3990 (unsigned long long)v); 3991 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 3992 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 3993 } 3994 3995 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 3996 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 3997 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 3998 t4t5_sge_intr_info); 3999 4000 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4001 if (err & ERROR_QID_VALID_F) { 4002 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4003 ERROR_QID_G(err)); 4004 if (err & UNCAPTURED_ERROR_F) 4005 dev_err(adapter->pdev_dev, 4006 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4007 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4008 UNCAPTURED_ERROR_F); 4009 } 4010 4011 if (v != 0) 4012 t4_fatal_err(adapter); 4013 } 4014 4015 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4016 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4017 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4018 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4019 4020 /* 4021 * CIM interrupt handler. 4022 */ 4023 static void cim_intr_handler(struct adapter *adapter) 4024 { 4025 static const struct intr_info cim_intr_info[] = { 4026 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4027 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4028 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4029 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4030 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4031 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4032 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4033 { 0 } 4034 }; 4035 static const struct intr_info cim_upintr_info[] = { 4036 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4037 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4038 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4039 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4040 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4041 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4042 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4043 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4044 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4045 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4046 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4047 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4048 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4049 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4050 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4051 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4052 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4053 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4054 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4055 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4056 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4057 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4058 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4059 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4060 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4061 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4062 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4063 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4064 { 0 } 4065 }; 4066 4067 int fat; 4068 4069 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F) 4070 t4_report_fw_error(adapter); 4071 4072 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4073 cim_intr_info) + 4074 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4075 cim_upintr_info); 4076 if (fat) 4077 t4_fatal_err(adapter); 4078 } 4079 4080 /* 4081 * ULP RX interrupt handler. 4082 */ 4083 static void ulprx_intr_handler(struct adapter *adapter) 4084 { 4085 static const struct intr_info ulprx_intr_info[] = { 4086 { 0x1800000, "ULPRX context error", -1, 1 }, 4087 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4088 { 0 } 4089 }; 4090 4091 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4092 t4_fatal_err(adapter); 4093 } 4094 4095 /* 4096 * ULP TX interrupt handler. 4097 */ 4098 static void ulptx_intr_handler(struct adapter *adapter) 4099 { 4100 static const struct intr_info ulptx_intr_info[] = { 4101 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4102 0 }, 4103 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4104 0 }, 4105 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4106 0 }, 4107 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4108 0 }, 4109 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4110 { 0 } 4111 }; 4112 4113 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4114 t4_fatal_err(adapter); 4115 } 4116 4117 /* 4118 * PM TX interrupt handler. 4119 */ 4120 static void pmtx_intr_handler(struct adapter *adapter) 4121 { 4122 static const struct intr_info pmtx_intr_info[] = { 4123 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4124 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4125 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4126 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4127 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4128 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4129 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4130 -1, 1 }, 4131 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4132 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4133 { 0 } 4134 }; 4135 4136 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4137 t4_fatal_err(adapter); 4138 } 4139 4140 /* 4141 * PM RX interrupt handler. 4142 */ 4143 static void pmrx_intr_handler(struct adapter *adapter) 4144 { 4145 static const struct intr_info pmrx_intr_info[] = { 4146 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4147 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4148 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4149 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4150 -1, 1 }, 4151 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4152 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4153 { 0 } 4154 }; 4155 4156 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4157 t4_fatal_err(adapter); 4158 } 4159 4160 /* 4161 * CPL switch interrupt handler. 4162 */ 4163 static void cplsw_intr_handler(struct adapter *adapter) 4164 { 4165 static const struct intr_info cplsw_intr_info[] = { 4166 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4167 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4168 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4169 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4170 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4171 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4172 { 0 } 4173 }; 4174 4175 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4176 t4_fatal_err(adapter); 4177 } 4178 4179 /* 4180 * LE interrupt handler. 4181 */ 4182 static void le_intr_handler(struct adapter *adap) 4183 { 4184 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4185 static const struct intr_info le_intr_info[] = { 4186 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4187 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4188 { PARITYERR_F, "LE parity error", -1, 1 }, 4189 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4190 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4191 { 0 } 4192 }; 4193 4194 static struct intr_info t6_le_intr_info[] = { 4195 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4196 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4197 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4198 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4199 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4200 { 0 } 4201 }; 4202 4203 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4204 (chip <= CHELSIO_T5) ? 4205 le_intr_info : t6_le_intr_info)) 4206 t4_fatal_err(adap); 4207 } 4208 4209 /* 4210 * MPS interrupt handler. 4211 */ 4212 static void mps_intr_handler(struct adapter *adapter) 4213 { 4214 static const struct intr_info mps_rx_intr_info[] = { 4215 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4216 { 0 } 4217 }; 4218 static const struct intr_info mps_tx_intr_info[] = { 4219 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4220 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4221 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4222 -1, 1 }, 4223 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4224 -1, 1 }, 4225 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4226 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4227 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4228 { 0 } 4229 }; 4230 static const struct intr_info mps_trc_intr_info[] = { 4231 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4232 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4233 -1, 1 }, 4234 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4235 { 0 } 4236 }; 4237 static const struct intr_info mps_stat_sram_intr_info[] = { 4238 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4239 { 0 } 4240 }; 4241 static const struct intr_info mps_stat_tx_intr_info[] = { 4242 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4243 { 0 } 4244 }; 4245 static const struct intr_info mps_stat_rx_intr_info[] = { 4246 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4247 { 0 } 4248 }; 4249 static const struct intr_info mps_cls_intr_info[] = { 4250 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4251 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4252 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4253 { 0 } 4254 }; 4255 4256 int fat; 4257 4258 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4259 mps_rx_intr_info) + 4260 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4261 mps_tx_intr_info) + 4262 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4263 mps_trc_intr_info) + 4264 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4265 mps_stat_sram_intr_info) + 4266 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4267 mps_stat_tx_intr_info) + 4268 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4269 mps_stat_rx_intr_info) + 4270 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4271 mps_cls_intr_info); 4272 4273 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4274 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4275 if (fat) 4276 t4_fatal_err(adapter); 4277 } 4278 4279 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4280 ECC_UE_INT_CAUSE_F) 4281 4282 /* 4283 * EDC/MC interrupt handler. 4284 */ 4285 static void mem_intr_handler(struct adapter *adapter, int idx) 4286 { 4287 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4288 4289 unsigned int addr, cnt_addr, v; 4290 4291 if (idx <= MEM_EDC1) { 4292 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4293 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4294 } else if (idx == MEM_MC) { 4295 if (is_t4(adapter->params.chip)) { 4296 addr = MC_INT_CAUSE_A; 4297 cnt_addr = MC_ECC_STATUS_A; 4298 } else { 4299 addr = MC_P_INT_CAUSE_A; 4300 cnt_addr = MC_P_ECC_STATUS_A; 4301 } 4302 } else { 4303 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4304 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4305 } 4306 4307 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4308 if (v & PERR_INT_CAUSE_F) 4309 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4310 name[idx]); 4311 if (v & ECC_CE_INT_CAUSE_F) { 4312 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4313 4314 t4_edc_err_read(adapter, idx); 4315 4316 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4317 if (printk_ratelimit()) 4318 dev_warn(adapter->pdev_dev, 4319 "%u %s correctable ECC data error%s\n", 4320 cnt, name[idx], cnt > 1 ? "s" : ""); 4321 } 4322 if (v & ECC_UE_INT_CAUSE_F) 4323 dev_alert(adapter->pdev_dev, 4324 "%s uncorrectable ECC data error\n", name[idx]); 4325 4326 t4_write_reg(adapter, addr, v); 4327 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4328 t4_fatal_err(adapter); 4329 } 4330 4331 /* 4332 * MA interrupt handler. 4333 */ 4334 static void ma_intr_handler(struct adapter *adap) 4335 { 4336 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4337 4338 if (status & MEM_PERR_INT_CAUSE_F) { 4339 dev_alert(adap->pdev_dev, 4340 "MA parity error, parity status %#x\n", 4341 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4342 if (is_t5(adap->params.chip)) 4343 dev_alert(adap->pdev_dev, 4344 "MA parity error, parity status %#x\n", 4345 t4_read_reg(adap, 4346 MA_PARITY_ERROR_STATUS2_A)); 4347 } 4348 if (status & MEM_WRAP_INT_CAUSE_F) { 4349 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4350 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4351 "client %u to address %#x\n", 4352 MEM_WRAP_CLIENT_NUM_G(v), 4353 MEM_WRAP_ADDRESS_G(v) << 4); 4354 } 4355 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4356 t4_fatal_err(adap); 4357 } 4358 4359 /* 4360 * SMB interrupt handler. 4361 */ 4362 static void smb_intr_handler(struct adapter *adap) 4363 { 4364 static const struct intr_info smb_intr_info[] = { 4365 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4366 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4367 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4368 { 0 } 4369 }; 4370 4371 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4372 t4_fatal_err(adap); 4373 } 4374 4375 /* 4376 * NC-SI interrupt handler. 4377 */ 4378 static void ncsi_intr_handler(struct adapter *adap) 4379 { 4380 static const struct intr_info ncsi_intr_info[] = { 4381 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4382 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4383 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4384 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4385 { 0 } 4386 }; 4387 4388 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4389 t4_fatal_err(adap); 4390 } 4391 4392 /* 4393 * XGMAC interrupt handler. 4394 */ 4395 static void xgmac_intr_handler(struct adapter *adap, int port) 4396 { 4397 u32 v, int_cause_reg; 4398 4399 if (is_t4(adap->params.chip)) 4400 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4401 else 4402 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4403 4404 v = t4_read_reg(adap, int_cause_reg); 4405 4406 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4407 if (!v) 4408 return; 4409 4410 if (v & TXFIFO_PRTY_ERR_F) 4411 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4412 port); 4413 if (v & RXFIFO_PRTY_ERR_F) 4414 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4415 port); 4416 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4417 t4_fatal_err(adap); 4418 } 4419 4420 /* 4421 * PL interrupt handler. 4422 */ 4423 static void pl_intr_handler(struct adapter *adap) 4424 { 4425 static const struct intr_info pl_intr_info[] = { 4426 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4427 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4428 { 0 } 4429 }; 4430 4431 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4432 t4_fatal_err(adap); 4433 } 4434 4435 #define PF_INTR_MASK (PFSW_F) 4436 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4437 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4438 CPL_SWITCH_F | SGE_F | ULP_TX_F) 4439 4440 /** 4441 * t4_slow_intr_handler - control path interrupt handler 4442 * @adapter: the adapter 4443 * 4444 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4445 * The designation 'slow' is because it involves register reads, while 4446 * data interrupts typically don't involve any MMIOs. 4447 */ 4448 int t4_slow_intr_handler(struct adapter *adapter) 4449 { 4450 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4451 4452 if (!(cause & GLBL_INTR_MASK)) 4453 return 0; 4454 if (cause & CIM_F) 4455 cim_intr_handler(adapter); 4456 if (cause & MPS_F) 4457 mps_intr_handler(adapter); 4458 if (cause & NCSI_F) 4459 ncsi_intr_handler(adapter); 4460 if (cause & PL_F) 4461 pl_intr_handler(adapter); 4462 if (cause & SMB_F) 4463 smb_intr_handler(adapter); 4464 if (cause & XGMAC0_F) 4465 xgmac_intr_handler(adapter, 0); 4466 if (cause & XGMAC1_F) 4467 xgmac_intr_handler(adapter, 1); 4468 if (cause & XGMAC_KR0_F) 4469 xgmac_intr_handler(adapter, 2); 4470 if (cause & XGMAC_KR1_F) 4471 xgmac_intr_handler(adapter, 3); 4472 if (cause & PCIE_F) 4473 pcie_intr_handler(adapter); 4474 if (cause & MC_F) 4475 mem_intr_handler(adapter, MEM_MC); 4476 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4477 mem_intr_handler(adapter, MEM_MC1); 4478 if (cause & EDC0_F) 4479 mem_intr_handler(adapter, MEM_EDC0); 4480 if (cause & EDC1_F) 4481 mem_intr_handler(adapter, MEM_EDC1); 4482 if (cause & LE_F) 4483 le_intr_handler(adapter); 4484 if (cause & TP_F) 4485 tp_intr_handler(adapter); 4486 if (cause & MA_F) 4487 ma_intr_handler(adapter); 4488 if (cause & PM_TX_F) 4489 pmtx_intr_handler(adapter); 4490 if (cause & PM_RX_F) 4491 pmrx_intr_handler(adapter); 4492 if (cause & ULP_RX_F) 4493 ulprx_intr_handler(adapter); 4494 if (cause & CPL_SWITCH_F) 4495 cplsw_intr_handler(adapter); 4496 if (cause & SGE_F) 4497 sge_intr_handler(adapter); 4498 if (cause & ULP_TX_F) 4499 ulptx_intr_handler(adapter); 4500 4501 /* Clear the interrupts just processed for which we are the master. */ 4502 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4503 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4504 return 1; 4505 } 4506 4507 /** 4508 * t4_intr_enable - enable interrupts 4509 * @adapter: the adapter whose interrupts should be enabled 4510 * 4511 * Enable PF-specific interrupts for the calling function and the top-level 4512 * interrupt concentrator for global interrupts. Interrupts are already 4513 * enabled at each module, here we just enable the roots of the interrupt 4514 * hierarchies. 4515 * 4516 * Note: this function should be called only when the driver manages 4517 * non PF-specific interrupts from the various HW modules. Only one PCI 4518 * function at a time should be doing this. 4519 */ 4520 void t4_intr_enable(struct adapter *adapter) 4521 { 4522 u32 val = 0; 4523 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4524 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4525 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4526 4527 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4528 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4529 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4530 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4531 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4532 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4533 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4534 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4535 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4536 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4537 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4538 } 4539 4540 /** 4541 * t4_intr_disable - disable interrupts 4542 * @adapter: the adapter whose interrupts should be disabled 4543 * 4544 * Disable interrupts. We only disable the top-level interrupt 4545 * concentrators. The caller must be a PCI function managing global 4546 * interrupts. 4547 */ 4548 void t4_intr_disable(struct adapter *adapter) 4549 { 4550 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4551 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4552 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4553 4554 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4555 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4556 } 4557 4558 /** 4559 * t4_config_rss_range - configure a portion of the RSS mapping table 4560 * @adapter: the adapter 4561 * @mbox: mbox to use for the FW command 4562 * @viid: virtual interface whose RSS subtable is to be written 4563 * @start: start entry in the table to write 4564 * @n: how many table entries to write 4565 * @rspq: values for the response queue lookup table 4566 * @nrspq: number of values in @rspq 4567 * 4568 * Programs the selected part of the VI's RSS mapping table with the 4569 * provided values. If @nrspq < @n the supplied values are used repeatedly 4570 * until the full table range is populated. 4571 * 4572 * The caller must ensure the values in @rspq are in the range allowed for 4573 * @viid. 4574 */ 4575 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 4576 int start, int n, const u16 *rspq, unsigned int nrspq) 4577 { 4578 int ret; 4579 const u16 *rsp = rspq; 4580 const u16 *rsp_end = rspq + nrspq; 4581 struct fw_rss_ind_tbl_cmd cmd; 4582 4583 memset(&cmd, 0, sizeof(cmd)); 4584 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 4585 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4586 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 4587 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 4588 4589 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 4590 while (n > 0) { 4591 int nq = min(n, 32); 4592 __be32 *qp = &cmd.iq0_to_iq2; 4593 4594 cmd.niqid = cpu_to_be16(nq); 4595 cmd.startidx = cpu_to_be16(start); 4596 4597 start += nq; 4598 n -= nq; 4599 4600 while (nq > 0) { 4601 unsigned int v; 4602 4603 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 4604 if (++rsp >= rsp_end) 4605 rsp = rspq; 4606 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 4607 if (++rsp >= rsp_end) 4608 rsp = rspq; 4609 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 4610 if (++rsp >= rsp_end) 4611 rsp = rspq; 4612 4613 *qp++ = cpu_to_be32(v); 4614 nq -= 3; 4615 } 4616 4617 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4618 if (ret) 4619 return ret; 4620 } 4621 return 0; 4622 } 4623 4624 /** 4625 * t4_config_glbl_rss - configure the global RSS mode 4626 * @adapter: the adapter 4627 * @mbox: mbox to use for the FW command 4628 * @mode: global RSS mode 4629 * @flags: mode-specific flags 4630 * 4631 * Sets the global RSS mode. 4632 */ 4633 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 4634 unsigned int flags) 4635 { 4636 struct fw_rss_glb_config_cmd c; 4637 4638 memset(&c, 0, sizeof(c)); 4639 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 4640 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4641 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4642 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 4643 c.u.manual.mode_pkd = 4644 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4645 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 4646 c.u.basicvirtual.mode_pkd = 4647 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4648 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 4649 } else 4650 return -EINVAL; 4651 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4652 } 4653 4654 /** 4655 * t4_config_vi_rss - configure per VI RSS settings 4656 * @adapter: the adapter 4657 * @mbox: mbox to use for the FW command 4658 * @viid: the VI id 4659 * @flags: RSS flags 4660 * @defq: id of the default RSS queue for the VI. 4661 * 4662 * Configures VI-specific RSS properties. 4663 */ 4664 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 4665 unsigned int flags, unsigned int defq) 4666 { 4667 struct fw_rss_vi_config_cmd c; 4668 4669 memset(&c, 0, sizeof(c)); 4670 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 4671 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4672 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 4673 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4674 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 4675 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 4676 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4677 } 4678 4679 /* Read an RSS table row */ 4680 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 4681 { 4682 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 4683 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 4684 5, 0, val); 4685 } 4686 4687 /** 4688 * t4_read_rss - read the contents of the RSS mapping table 4689 * @adapter: the adapter 4690 * @map: holds the contents of the RSS mapping table 4691 * 4692 * Reads the contents of the RSS hash->queue mapping table. 4693 */ 4694 int t4_read_rss(struct adapter *adapter, u16 *map) 4695 { 4696 u32 val; 4697 int i, ret; 4698 4699 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 4700 ret = rd_rss_row(adapter, i, &val); 4701 if (ret) 4702 return ret; 4703 *map++ = LKPTBLQUEUE0_G(val); 4704 *map++ = LKPTBLQUEUE1_G(val); 4705 } 4706 return 0; 4707 } 4708 4709 static unsigned int t4_use_ldst(struct adapter *adap) 4710 { 4711 return (adap->flags & FW_OK) || !adap->use_bd; 4712 } 4713 4714 /** 4715 * t4_fw_tp_pio_rw - Access TP PIO through LDST 4716 * @adap: the adapter 4717 * @vals: where the indirect register values are stored/written 4718 * @nregs: how many indirect registers to read/write 4719 * @start_idx: index of first indirect register to read/write 4720 * @rw: Read (1) or Write (0) 4721 * 4722 * Access TP PIO registers through LDST 4723 */ 4724 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs, 4725 unsigned int start_index, unsigned int rw) 4726 { 4727 int ret, i; 4728 int cmd = FW_LDST_ADDRSPC_TP_PIO; 4729 struct fw_ldst_cmd c; 4730 4731 for (i = 0 ; i < nregs; i++) { 4732 memset(&c, 0, sizeof(c)); 4733 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 4734 FW_CMD_REQUEST_F | 4735 (rw ? FW_CMD_READ_F : 4736 FW_CMD_WRITE_F) | 4737 FW_LDST_CMD_ADDRSPACE_V(cmd)); 4738 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 4739 4740 c.u.addrval.addr = cpu_to_be32(start_index + i); 4741 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 4742 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4743 if (!ret && rw) 4744 vals[i] = be32_to_cpu(c.u.addrval.val); 4745 } 4746 } 4747 4748 /** 4749 * t4_read_rss_key - read the global RSS key 4750 * @adap: the adapter 4751 * @key: 10-entry array holding the 320-bit RSS key 4752 * 4753 * Reads the global 320-bit RSS key. 4754 */ 4755 void t4_read_rss_key(struct adapter *adap, u32 *key) 4756 { 4757 if (t4_use_ldst(adap)) 4758 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1); 4759 else 4760 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 4761 TP_RSS_SECRET_KEY0_A); 4762 } 4763 4764 /** 4765 * t4_write_rss_key - program one of the RSS keys 4766 * @adap: the adapter 4767 * @key: 10-entry array holding the 320-bit RSS key 4768 * @idx: which RSS key to write 4769 * 4770 * Writes one of the RSS keys with the given 320-bit value. If @idx is 4771 * 0..15 the corresponding entry in the RSS key table is written, 4772 * otherwise the global RSS key is written. 4773 */ 4774 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx) 4775 { 4776 u8 rss_key_addr_cnt = 16; 4777 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 4778 4779 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 4780 * allows access to key addresses 16-63 by using KeyWrAddrX 4781 * as index[5:4](upper 2) into key table 4782 */ 4783 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 4784 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 4785 rss_key_addr_cnt = 32; 4786 4787 if (t4_use_ldst(adap)) 4788 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0); 4789 else 4790 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 4791 TP_RSS_SECRET_KEY0_A); 4792 4793 if (idx >= 0 && idx < rss_key_addr_cnt) { 4794 if (rss_key_addr_cnt > 16) 4795 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 4796 KEYWRADDRX_V(idx >> 4) | 4797 T6_VFWRADDR_V(idx) | KEYWREN_F); 4798 else 4799 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 4800 KEYWRADDR_V(idx) | KEYWREN_F); 4801 } 4802 } 4803 4804 /** 4805 * t4_read_rss_pf_config - read PF RSS Configuration Table 4806 * @adapter: the adapter 4807 * @index: the entry in the PF RSS table to read 4808 * @valp: where to store the returned value 4809 * 4810 * Reads the PF RSS Configuration Table at the specified index and returns 4811 * the value found there. 4812 */ 4813 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 4814 u32 *valp) 4815 { 4816 if (t4_use_ldst(adapter)) 4817 t4_fw_tp_pio_rw(adapter, valp, 1, 4818 TP_RSS_PF0_CONFIG_A + index, 1); 4819 else 4820 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4821 valp, 1, TP_RSS_PF0_CONFIG_A + index); 4822 } 4823 4824 /** 4825 * t4_read_rss_vf_config - read VF RSS Configuration Table 4826 * @adapter: the adapter 4827 * @index: the entry in the VF RSS table to read 4828 * @vfl: where to store the returned VFL 4829 * @vfh: where to store the returned VFH 4830 * 4831 * Reads the VF RSS Configuration Table at the specified index and returns 4832 * the (VFL, VFH) values found there. 4833 */ 4834 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 4835 u32 *vfl, u32 *vfh) 4836 { 4837 u32 vrt, mask, data; 4838 4839 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 4840 mask = VFWRADDR_V(VFWRADDR_M); 4841 data = VFWRADDR_V(index); 4842 } else { 4843 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 4844 data = T6_VFWRADDR_V(index); 4845 } 4846 4847 /* Request that the index'th VF Table values be read into VFL/VFH. 4848 */ 4849 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 4850 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 4851 vrt |= data | VFRDEN_F; 4852 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 4853 4854 /* Grab the VFL/VFH values ... 4855 */ 4856 if (t4_use_ldst(adapter)) { 4857 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1); 4858 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1); 4859 } else { 4860 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4861 vfl, 1, TP_RSS_VFL_CONFIG_A); 4862 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4863 vfh, 1, TP_RSS_VFH_CONFIG_A); 4864 } 4865 } 4866 4867 /** 4868 * t4_read_rss_pf_map - read PF RSS Map 4869 * @adapter: the adapter 4870 * 4871 * Reads the PF RSS Map register and returns its value. 4872 */ 4873 u32 t4_read_rss_pf_map(struct adapter *adapter) 4874 { 4875 u32 pfmap; 4876 4877 if (t4_use_ldst(adapter)) 4878 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1); 4879 else 4880 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4881 &pfmap, 1, TP_RSS_PF_MAP_A); 4882 return pfmap; 4883 } 4884 4885 /** 4886 * t4_read_rss_pf_mask - read PF RSS Mask 4887 * @adapter: the adapter 4888 * 4889 * Reads the PF RSS Mask register and returns its value. 4890 */ 4891 u32 t4_read_rss_pf_mask(struct adapter *adapter) 4892 { 4893 u32 pfmask; 4894 4895 if (t4_use_ldst(adapter)) 4896 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1); 4897 else 4898 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4899 &pfmask, 1, TP_RSS_PF_MSK_A); 4900 return pfmask; 4901 } 4902 4903 /** 4904 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 4905 * @adap: the adapter 4906 * @v4: holds the TCP/IP counter values 4907 * @v6: holds the TCP/IPv6 counter values 4908 * 4909 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 4910 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 4911 */ 4912 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 4913 struct tp_tcp_stats *v6) 4914 { 4915 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 4916 4917 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 4918 #define STAT(x) val[STAT_IDX(x)] 4919 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 4920 4921 if (v4) { 4922 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4923 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A); 4924 v4->tcp_out_rsts = STAT(OUT_RST); 4925 v4->tcp_in_segs = STAT64(IN_SEG); 4926 v4->tcp_out_segs = STAT64(OUT_SEG); 4927 v4->tcp_retrans_segs = STAT64(RXT_SEG); 4928 } 4929 if (v6) { 4930 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4931 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A); 4932 v6->tcp_out_rsts = STAT(OUT_RST); 4933 v6->tcp_in_segs = STAT64(IN_SEG); 4934 v6->tcp_out_segs = STAT64(OUT_SEG); 4935 v6->tcp_retrans_segs = STAT64(RXT_SEG); 4936 } 4937 #undef STAT64 4938 #undef STAT 4939 #undef STAT_IDX 4940 } 4941 4942 /** 4943 * t4_tp_get_err_stats - read TP's error MIB counters 4944 * @adap: the adapter 4945 * @st: holds the counter values 4946 * 4947 * Returns the values of TP's error counters. 4948 */ 4949 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st) 4950 { 4951 int nchan = adap->params.arch.nchan; 4952 4953 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4954 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A); 4955 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4956 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A); 4957 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4958 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A); 4959 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4960 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A); 4961 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4962 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A); 4963 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4964 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A); 4965 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4966 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A); 4967 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4968 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A); 4969 4970 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4971 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A); 4972 } 4973 4974 /** 4975 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 4976 * @adap: the adapter 4977 * @st: holds the counter values 4978 * 4979 * Returns the values of TP's CPL counters. 4980 */ 4981 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st) 4982 { 4983 int nchan = adap->params.arch.nchan; 4984 4985 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req, 4986 nchan, TP_MIB_CPL_IN_REQ_0_A); 4987 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp, 4988 nchan, TP_MIB_CPL_OUT_RSP_0_A); 4989 4990 } 4991 4992 /** 4993 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 4994 * @adap: the adapter 4995 * @st: holds the counter values 4996 * 4997 * Returns the values of TP's RDMA counters. 4998 */ 4999 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st) 5000 { 5001 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt, 5002 2, TP_MIB_RQE_DFR_PKT_A); 5003 } 5004 5005 /** 5006 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5007 * @adap: the adapter 5008 * @idx: the port index 5009 * @st: holds the counter values 5010 * 5011 * Returns the values of TP's FCoE counters for the selected port. 5012 */ 5013 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5014 struct tp_fcoe_stats *st) 5015 { 5016 u32 val[2]; 5017 5018 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp, 5019 1, TP_MIB_FCOE_DDP_0_A + idx); 5020 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop, 5021 1, TP_MIB_FCOE_DROP_0_A + idx); 5022 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 5023 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx); 5024 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5025 } 5026 5027 /** 5028 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5029 * @adap: the adapter 5030 * @st: holds the counter values 5031 * 5032 * Returns the values of TP's counters for non-TCP directly-placed packets. 5033 */ 5034 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st) 5035 { 5036 u32 val[4]; 5037 5038 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4, 5039 TP_MIB_USM_PKTS_A); 5040 st->frames = val[0]; 5041 st->drops = val[1]; 5042 st->octets = ((u64)val[2] << 32) | val[3]; 5043 } 5044 5045 /** 5046 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5047 * @adap: the adapter 5048 * @mtus: where to store the MTU values 5049 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5050 * 5051 * Reads the HW path MTU table. 5052 */ 5053 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5054 { 5055 u32 v; 5056 int i; 5057 5058 for (i = 0; i < NMTUS; ++i) { 5059 t4_write_reg(adap, TP_MTU_TABLE_A, 5060 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5061 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5062 mtus[i] = MTUVALUE_G(v); 5063 if (mtu_log) 5064 mtu_log[i] = MTUWIDTH_G(v); 5065 } 5066 } 5067 5068 /** 5069 * t4_read_cong_tbl - reads the congestion control table 5070 * @adap: the adapter 5071 * @incr: where to store the alpha values 5072 * 5073 * Reads the additive increments programmed into the HW congestion 5074 * control table. 5075 */ 5076 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5077 { 5078 unsigned int mtu, w; 5079 5080 for (mtu = 0; mtu < NMTUS; ++mtu) 5081 for (w = 0; w < NCCTRL_WIN; ++w) { 5082 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5083 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5084 incr[mtu][w] = (u16)t4_read_reg(adap, 5085 TP_CCTRL_TABLE_A) & 0x1fff; 5086 } 5087 } 5088 5089 /** 5090 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5091 * @adap: the adapter 5092 * @addr: the indirect TP register address 5093 * @mask: specifies the field within the register to modify 5094 * @val: new value for the field 5095 * 5096 * Sets a field of an indirect TP register to the given value. 5097 */ 5098 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5099 unsigned int mask, unsigned int val) 5100 { 5101 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5102 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5103 t4_write_reg(adap, TP_PIO_DATA_A, val); 5104 } 5105 5106 /** 5107 * init_cong_ctrl - initialize congestion control parameters 5108 * @a: the alpha values for congestion control 5109 * @b: the beta values for congestion control 5110 * 5111 * Initialize the congestion control parameters. 5112 */ 5113 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5114 { 5115 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5116 a[9] = 2; 5117 a[10] = 3; 5118 a[11] = 4; 5119 a[12] = 5; 5120 a[13] = 6; 5121 a[14] = 7; 5122 a[15] = 8; 5123 a[16] = 9; 5124 a[17] = 10; 5125 a[18] = 14; 5126 a[19] = 17; 5127 a[20] = 21; 5128 a[21] = 25; 5129 a[22] = 30; 5130 a[23] = 35; 5131 a[24] = 45; 5132 a[25] = 60; 5133 a[26] = 80; 5134 a[27] = 100; 5135 a[28] = 200; 5136 a[29] = 300; 5137 a[30] = 400; 5138 a[31] = 500; 5139 5140 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5141 b[9] = b[10] = 1; 5142 b[11] = b[12] = 2; 5143 b[13] = b[14] = b[15] = b[16] = 3; 5144 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5145 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5146 b[28] = b[29] = 6; 5147 b[30] = b[31] = 7; 5148 } 5149 5150 /* The minimum additive increment value for the congestion control table */ 5151 #define CC_MIN_INCR 2U 5152 5153 /** 5154 * t4_load_mtus - write the MTU and congestion control HW tables 5155 * @adap: the adapter 5156 * @mtus: the values for the MTU table 5157 * @alpha: the values for the congestion control alpha parameter 5158 * @beta: the values for the congestion control beta parameter 5159 * 5160 * Write the HW MTU table with the supplied MTUs and the high-speed 5161 * congestion control table with the supplied alpha, beta, and MTUs. 5162 * We write the two tables together because the additive increments 5163 * depend on the MTUs. 5164 */ 5165 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5166 const unsigned short *alpha, const unsigned short *beta) 5167 { 5168 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5169 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5170 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5171 28672, 40960, 57344, 81920, 114688, 163840, 229376 5172 }; 5173 5174 unsigned int i, w; 5175 5176 for (i = 0; i < NMTUS; ++i) { 5177 unsigned int mtu = mtus[i]; 5178 unsigned int log2 = fls(mtu); 5179 5180 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5181 log2--; 5182 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5183 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5184 5185 for (w = 0; w < NCCTRL_WIN; ++w) { 5186 unsigned int inc; 5187 5188 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5189 CC_MIN_INCR); 5190 5191 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5192 (w << 16) | (beta[w] << 13) | inc); 5193 } 5194 } 5195 } 5196 5197 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5198 * clocks. The formula is 5199 * 5200 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5201 * 5202 * which is equivalent to 5203 * 5204 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5205 */ 5206 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5207 { 5208 u64 v = bytes256 * adap->params.vpd.cclk; 5209 5210 return v * 62 + v / 2; 5211 } 5212 5213 /** 5214 * t4_get_chan_txrate - get the current per channel Tx rates 5215 * @adap: the adapter 5216 * @nic_rate: rates for NIC traffic 5217 * @ofld_rate: rates for offloaded traffic 5218 * 5219 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5220 * for each channel. 5221 */ 5222 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5223 { 5224 u32 v; 5225 5226 v = t4_read_reg(adap, TP_TX_TRATE_A); 5227 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5228 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5229 if (adap->params.arch.nchan == NCHAN) { 5230 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5231 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5232 } 5233 5234 v = t4_read_reg(adap, TP_TX_ORATE_A); 5235 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5236 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5237 if (adap->params.arch.nchan == NCHAN) { 5238 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5239 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5240 } 5241 } 5242 5243 /** 5244 * t4_set_trace_filter - configure one of the tracing filters 5245 * @adap: the adapter 5246 * @tp: the desired trace filter parameters 5247 * @idx: which filter to configure 5248 * @enable: whether to enable or disable the filter 5249 * 5250 * Configures one of the tracing filters available in HW. If @enable is 5251 * %0 @tp is not examined and may be %NULL. The user is responsible to 5252 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5253 */ 5254 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5255 int idx, int enable) 5256 { 5257 int i, ofst = idx * 4; 5258 u32 data_reg, mask_reg, cfg; 5259 u32 multitrc = TRCMULTIFILTER_F; 5260 5261 if (!enable) { 5262 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5263 return 0; 5264 } 5265 5266 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5267 if (cfg & TRCMULTIFILTER_F) { 5268 /* If multiple tracers are enabled, then maximum 5269 * capture size is 2.5KB (FIFO size of a single channel) 5270 * minus 2 flits for CPL_TRACE_PKT header. 5271 */ 5272 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5273 return -EINVAL; 5274 } else { 5275 /* If multiple tracers are disabled, to avoid deadlocks 5276 * maximum packet capture size of 9600 bytes is recommended. 5277 * Also in this mode, only trace0 can be enabled and running. 5278 */ 5279 multitrc = 0; 5280 if (tp->snap_len > 9600 || idx) 5281 return -EINVAL; 5282 } 5283 5284 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5285 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5286 tp->min_len > TFMINPKTSIZE_M) 5287 return -EINVAL; 5288 5289 /* stop the tracer we'll be changing */ 5290 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5291 5292 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5293 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5294 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5295 5296 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5297 t4_write_reg(adap, data_reg, tp->data[i]); 5298 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5299 } 5300 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5301 TFCAPTUREMAX_V(tp->snap_len) | 5302 TFMINPKTSIZE_V(tp->min_len)); 5303 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5304 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5305 (is_t4(adap->params.chip) ? 5306 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5307 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5308 T5_TFINVERTMATCH_V(tp->invert))); 5309 5310 return 0; 5311 } 5312 5313 /** 5314 * t4_get_trace_filter - query one of the tracing filters 5315 * @adap: the adapter 5316 * @tp: the current trace filter parameters 5317 * @idx: which trace filter to query 5318 * @enabled: non-zero if the filter is enabled 5319 * 5320 * Returns the current settings of one of the HW tracing filters. 5321 */ 5322 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5323 int *enabled) 5324 { 5325 u32 ctla, ctlb; 5326 int i, ofst = idx * 4; 5327 u32 data_reg, mask_reg; 5328 5329 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5330 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5331 5332 if (is_t4(adap->params.chip)) { 5333 *enabled = !!(ctla & TFEN_F); 5334 tp->port = TFPORT_G(ctla); 5335 tp->invert = !!(ctla & TFINVERTMATCH_F); 5336 } else { 5337 *enabled = !!(ctla & T5_TFEN_F); 5338 tp->port = T5_TFPORT_G(ctla); 5339 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5340 } 5341 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5342 tp->min_len = TFMINPKTSIZE_G(ctlb); 5343 tp->skip_ofst = TFOFFSET_G(ctla); 5344 tp->skip_len = TFLENGTH_G(ctla); 5345 5346 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5347 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5348 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5349 5350 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5351 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5352 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5353 } 5354 } 5355 5356 /** 5357 * t4_pmtx_get_stats - returns the HW stats from PMTX 5358 * @adap: the adapter 5359 * @cnt: where to store the count statistics 5360 * @cycles: where to store the cycle statistics 5361 * 5362 * Returns performance statistics from PMTX. 5363 */ 5364 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5365 { 5366 int i; 5367 u32 data[2]; 5368 5369 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5370 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5371 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5372 if (is_t4(adap->params.chip)) { 5373 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5374 } else { 5375 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5376 PM_TX_DBG_DATA_A, data, 2, 5377 PM_TX_DBG_STAT_MSB_A); 5378 cycles[i] = (((u64)data[0] << 32) | data[1]); 5379 } 5380 } 5381 } 5382 5383 /** 5384 * t4_pmrx_get_stats - returns the HW stats from PMRX 5385 * @adap: the adapter 5386 * @cnt: where to store the count statistics 5387 * @cycles: where to store the cycle statistics 5388 * 5389 * Returns performance statistics from PMRX. 5390 */ 5391 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5392 { 5393 int i; 5394 u32 data[2]; 5395 5396 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5397 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5398 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5399 if (is_t4(adap->params.chip)) { 5400 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5401 } else { 5402 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5403 PM_RX_DBG_DATA_A, data, 2, 5404 PM_RX_DBG_STAT_MSB_A); 5405 cycles[i] = (((u64)data[0] << 32) | data[1]); 5406 } 5407 } 5408 } 5409 5410 /** 5411 * t4_get_mps_bg_map - return the buffer groups associated with a port 5412 * @adap: the adapter 5413 * @idx: the port index 5414 * 5415 * Returns a bitmap indicating which MPS buffer groups are associated 5416 * with the given port. Bit i is set if buffer group i is used by the 5417 * port. 5418 */ 5419 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 5420 { 5421 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 5422 5423 if (n == 0) 5424 return idx == 0 ? 0xf : 0; 5425 /* In T6 (which is a 2 port card), 5426 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1. 5427 * For 2 port T4/T5 adapter, 5428 * port 0 is mapped to channel 0 and 1, 5429 * port 1 is mapped to channel 2 and 3. 5430 */ 5431 if ((n == 1) && 5432 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)) 5433 return idx < 2 ? (3 << (2 * idx)) : 0; 5434 return 1 << idx; 5435 } 5436 5437 /** 5438 * t4_get_port_type_description - return Port Type string description 5439 * @port_type: firmware Port Type enumeration 5440 */ 5441 const char *t4_get_port_type_description(enum fw_port_type port_type) 5442 { 5443 static const char *const port_type_description[] = { 5444 "Fiber_XFI", 5445 "Fiber_XAUI", 5446 "BT_SGMII", 5447 "BT_XFI", 5448 "BT_XAUI", 5449 "KX4", 5450 "CX4", 5451 "KX", 5452 "KR", 5453 "SFP", 5454 "BP_AP", 5455 "BP4_AP", 5456 "QSFP_10G", 5457 "QSA", 5458 "QSFP", 5459 "BP40_BA", 5460 "KR4_100G", 5461 "CR4_QSFP", 5462 "CR_QSFP", 5463 "CR2_QSFP", 5464 "SFP28", 5465 "KR_SFP28", 5466 }; 5467 5468 if (port_type < ARRAY_SIZE(port_type_description)) 5469 return port_type_description[port_type]; 5470 return "UNKNOWN"; 5471 } 5472 5473 /** 5474 * t4_get_port_stats_offset - collect port stats relative to a previous 5475 * snapshot 5476 * @adap: The adapter 5477 * @idx: The port 5478 * @stats: Current stats to fill 5479 * @offset: Previous stats snapshot 5480 */ 5481 void t4_get_port_stats_offset(struct adapter *adap, int idx, 5482 struct port_stats *stats, 5483 struct port_stats *offset) 5484 { 5485 u64 *s, *o; 5486 int i; 5487 5488 t4_get_port_stats(adap, idx, stats); 5489 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 5490 i < (sizeof(struct port_stats) / sizeof(u64)); 5491 i++, s++, o++) 5492 *s -= *o; 5493 } 5494 5495 /** 5496 * t4_get_port_stats - collect port statistics 5497 * @adap: the adapter 5498 * @idx: the port index 5499 * @p: the stats structure to fill 5500 * 5501 * Collect statistics related to the given port from HW. 5502 */ 5503 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 5504 { 5505 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5506 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 5507 5508 #define GET_STAT(name) \ 5509 t4_read_reg64(adap, \ 5510 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 5511 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 5512 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5513 5514 p->tx_octets = GET_STAT(TX_PORT_BYTES); 5515 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 5516 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 5517 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 5518 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 5519 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 5520 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 5521 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 5522 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 5523 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 5524 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 5525 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 5526 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 5527 p->tx_drop = GET_STAT(TX_PORT_DROP); 5528 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 5529 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 5530 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 5531 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 5532 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 5533 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 5534 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 5535 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 5536 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 5537 5538 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 5539 if (stat_ctl & COUNTPAUSESTATTX_F) { 5540 p->tx_frames -= p->tx_pause; 5541 p->tx_octets -= p->tx_pause * 64; 5542 } 5543 if (stat_ctl & COUNTPAUSEMCTX_F) 5544 p->tx_mcast_frames -= p->tx_pause; 5545 } 5546 p->rx_octets = GET_STAT(RX_PORT_BYTES); 5547 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 5548 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 5549 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 5550 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 5551 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 5552 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 5553 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 5554 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 5555 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 5556 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 5557 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 5558 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 5559 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 5560 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 5561 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 5562 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 5563 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 5564 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 5565 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 5566 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 5567 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 5568 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 5569 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 5570 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 5571 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 5572 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 5573 5574 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 5575 if (stat_ctl & COUNTPAUSESTATRX_F) { 5576 p->rx_frames -= p->rx_pause; 5577 p->rx_octets -= p->rx_pause * 64; 5578 } 5579 if (stat_ctl & COUNTPAUSEMCRX_F) 5580 p->rx_mcast_frames -= p->rx_pause; 5581 } 5582 5583 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 5584 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 5585 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 5586 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 5587 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 5588 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 5589 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 5590 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 5591 5592 #undef GET_STAT 5593 #undef GET_STAT_COM 5594 } 5595 5596 /** 5597 * t4_get_lb_stats - collect loopback port statistics 5598 * @adap: the adapter 5599 * @idx: the loopback port index 5600 * @p: the stats structure to fill 5601 * 5602 * Return HW statistics for the given loopback port. 5603 */ 5604 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 5605 { 5606 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5607 5608 #define GET_STAT(name) \ 5609 t4_read_reg64(adap, \ 5610 (is_t4(adap->params.chip) ? \ 5611 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 5612 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 5613 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5614 5615 p->octets = GET_STAT(BYTES); 5616 p->frames = GET_STAT(FRAMES); 5617 p->bcast_frames = GET_STAT(BCAST); 5618 p->mcast_frames = GET_STAT(MCAST); 5619 p->ucast_frames = GET_STAT(UCAST); 5620 p->error_frames = GET_STAT(ERROR); 5621 5622 p->frames_64 = GET_STAT(64B); 5623 p->frames_65_127 = GET_STAT(65B_127B); 5624 p->frames_128_255 = GET_STAT(128B_255B); 5625 p->frames_256_511 = GET_STAT(256B_511B); 5626 p->frames_512_1023 = GET_STAT(512B_1023B); 5627 p->frames_1024_1518 = GET_STAT(1024B_1518B); 5628 p->frames_1519_max = GET_STAT(1519B_MAX); 5629 p->drop = GET_STAT(DROP_FRAMES); 5630 5631 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 5632 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 5633 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 5634 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 5635 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 5636 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 5637 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 5638 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 5639 5640 #undef GET_STAT 5641 #undef GET_STAT_COM 5642 } 5643 5644 /* t4_mk_filtdelwr - create a delete filter WR 5645 * @ftid: the filter ID 5646 * @wr: the filter work request to populate 5647 * @qid: ingress queue to receive the delete notification 5648 * 5649 * Creates a filter work request to delete the supplied filter. If @qid is 5650 * negative the delete notification is suppressed. 5651 */ 5652 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 5653 { 5654 memset(wr, 0, sizeof(*wr)); 5655 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 5656 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 5657 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 5658 FW_FILTER_WR_NOREPLY_V(qid < 0)); 5659 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 5660 if (qid >= 0) 5661 wr->rx_chan_rx_rpl_iq = 5662 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 5663 } 5664 5665 #define INIT_CMD(var, cmd, rd_wr) do { \ 5666 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 5667 FW_CMD_REQUEST_F | \ 5668 FW_CMD_##rd_wr##_F); \ 5669 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 5670 } while (0) 5671 5672 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 5673 u32 addr, u32 val) 5674 { 5675 u32 ldst_addrspace; 5676 struct fw_ldst_cmd c; 5677 5678 memset(&c, 0, sizeof(c)); 5679 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 5680 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5681 FW_CMD_REQUEST_F | 5682 FW_CMD_WRITE_F | 5683 ldst_addrspace); 5684 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5685 c.u.addrval.addr = cpu_to_be32(addr); 5686 c.u.addrval.val = cpu_to_be32(val); 5687 5688 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5689 } 5690 5691 /** 5692 * t4_mdio_rd - read a PHY register through MDIO 5693 * @adap: the adapter 5694 * @mbox: mailbox to use for the FW command 5695 * @phy_addr: the PHY address 5696 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 5697 * @reg: the register to read 5698 * @valp: where to store the value 5699 * 5700 * Issues a FW command through the given mailbox to read a PHY register. 5701 */ 5702 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 5703 unsigned int mmd, unsigned int reg, u16 *valp) 5704 { 5705 int ret; 5706 u32 ldst_addrspace; 5707 struct fw_ldst_cmd c; 5708 5709 memset(&c, 0, sizeof(c)); 5710 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 5711 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5712 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5713 ldst_addrspace); 5714 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5715 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 5716 FW_LDST_CMD_MMD_V(mmd)); 5717 c.u.mdio.raddr = cpu_to_be16(reg); 5718 5719 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5720 if (ret == 0) 5721 *valp = be16_to_cpu(c.u.mdio.rval); 5722 return ret; 5723 } 5724 5725 /** 5726 * t4_mdio_wr - write a PHY register through MDIO 5727 * @adap: the adapter 5728 * @mbox: mailbox to use for the FW command 5729 * @phy_addr: the PHY address 5730 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 5731 * @reg: the register to write 5732 * @valp: value to write 5733 * 5734 * Issues a FW command through the given mailbox to write a PHY register. 5735 */ 5736 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 5737 unsigned int mmd, unsigned int reg, u16 val) 5738 { 5739 u32 ldst_addrspace; 5740 struct fw_ldst_cmd c; 5741 5742 memset(&c, 0, sizeof(c)); 5743 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 5744 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5745 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5746 ldst_addrspace); 5747 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5748 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 5749 FW_LDST_CMD_MMD_V(mmd)); 5750 c.u.mdio.raddr = cpu_to_be16(reg); 5751 c.u.mdio.rval = cpu_to_be16(val); 5752 5753 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5754 } 5755 5756 /** 5757 * t4_sge_decode_idma_state - decode the idma state 5758 * @adap: the adapter 5759 * @state: the state idma is stuck in 5760 */ 5761 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 5762 { 5763 static const char * const t4_decode[] = { 5764 "IDMA_IDLE", 5765 "IDMA_PUSH_MORE_CPL_FIFO", 5766 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5767 "Not used", 5768 "IDMA_PHYSADDR_SEND_PCIEHDR", 5769 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5770 "IDMA_PHYSADDR_SEND_PAYLOAD", 5771 "IDMA_SEND_FIFO_TO_IMSG", 5772 "IDMA_FL_REQ_DATA_FL_PREP", 5773 "IDMA_FL_REQ_DATA_FL", 5774 "IDMA_FL_DROP", 5775 "IDMA_FL_H_REQ_HEADER_FL", 5776 "IDMA_FL_H_SEND_PCIEHDR", 5777 "IDMA_FL_H_PUSH_CPL_FIFO", 5778 "IDMA_FL_H_SEND_CPL", 5779 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5780 "IDMA_FL_H_SEND_IP_HDR", 5781 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5782 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5783 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5784 "IDMA_FL_D_SEND_PCIEHDR", 5785 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5786 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5787 "IDMA_FL_SEND_PCIEHDR", 5788 "IDMA_FL_PUSH_CPL_FIFO", 5789 "IDMA_FL_SEND_CPL", 5790 "IDMA_FL_SEND_PAYLOAD_FIRST", 5791 "IDMA_FL_SEND_PAYLOAD", 5792 "IDMA_FL_REQ_NEXT_DATA_FL", 5793 "IDMA_FL_SEND_NEXT_PCIEHDR", 5794 "IDMA_FL_SEND_PADDING", 5795 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5796 "IDMA_FL_SEND_FIFO_TO_IMSG", 5797 "IDMA_FL_REQ_DATAFL_DONE", 5798 "IDMA_FL_REQ_HEADERFL_DONE", 5799 }; 5800 static const char * const t5_decode[] = { 5801 "IDMA_IDLE", 5802 "IDMA_ALMOST_IDLE", 5803 "IDMA_PUSH_MORE_CPL_FIFO", 5804 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5805 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 5806 "IDMA_PHYSADDR_SEND_PCIEHDR", 5807 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5808 "IDMA_PHYSADDR_SEND_PAYLOAD", 5809 "IDMA_SEND_FIFO_TO_IMSG", 5810 "IDMA_FL_REQ_DATA_FL", 5811 "IDMA_FL_DROP", 5812 "IDMA_FL_DROP_SEND_INC", 5813 "IDMA_FL_H_REQ_HEADER_FL", 5814 "IDMA_FL_H_SEND_PCIEHDR", 5815 "IDMA_FL_H_PUSH_CPL_FIFO", 5816 "IDMA_FL_H_SEND_CPL", 5817 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5818 "IDMA_FL_H_SEND_IP_HDR", 5819 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5820 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5821 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5822 "IDMA_FL_D_SEND_PCIEHDR", 5823 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5824 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5825 "IDMA_FL_SEND_PCIEHDR", 5826 "IDMA_FL_PUSH_CPL_FIFO", 5827 "IDMA_FL_SEND_CPL", 5828 "IDMA_FL_SEND_PAYLOAD_FIRST", 5829 "IDMA_FL_SEND_PAYLOAD", 5830 "IDMA_FL_REQ_NEXT_DATA_FL", 5831 "IDMA_FL_SEND_NEXT_PCIEHDR", 5832 "IDMA_FL_SEND_PADDING", 5833 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5834 }; 5835 static const char * const t6_decode[] = { 5836 "IDMA_IDLE", 5837 "IDMA_PUSH_MORE_CPL_FIFO", 5838 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5839 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 5840 "IDMA_PHYSADDR_SEND_PCIEHDR", 5841 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5842 "IDMA_PHYSADDR_SEND_PAYLOAD", 5843 "IDMA_FL_REQ_DATA_FL", 5844 "IDMA_FL_DROP", 5845 "IDMA_FL_DROP_SEND_INC", 5846 "IDMA_FL_H_REQ_HEADER_FL", 5847 "IDMA_FL_H_SEND_PCIEHDR", 5848 "IDMA_FL_H_PUSH_CPL_FIFO", 5849 "IDMA_FL_H_SEND_CPL", 5850 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5851 "IDMA_FL_H_SEND_IP_HDR", 5852 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5853 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5854 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5855 "IDMA_FL_D_SEND_PCIEHDR", 5856 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5857 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5858 "IDMA_FL_SEND_PCIEHDR", 5859 "IDMA_FL_PUSH_CPL_FIFO", 5860 "IDMA_FL_SEND_CPL", 5861 "IDMA_FL_SEND_PAYLOAD_FIRST", 5862 "IDMA_FL_SEND_PAYLOAD", 5863 "IDMA_FL_REQ_NEXT_DATA_FL", 5864 "IDMA_FL_SEND_NEXT_PCIEHDR", 5865 "IDMA_FL_SEND_PADDING", 5866 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5867 }; 5868 static const u32 sge_regs[] = { 5869 SGE_DEBUG_DATA_LOW_INDEX_2_A, 5870 SGE_DEBUG_DATA_LOW_INDEX_3_A, 5871 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 5872 }; 5873 const char **sge_idma_decode; 5874 int sge_idma_decode_nstates; 5875 int i; 5876 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5877 5878 /* Select the right set of decode strings to dump depending on the 5879 * adapter chip type. 5880 */ 5881 switch (chip_version) { 5882 case CHELSIO_T4: 5883 sge_idma_decode = (const char **)t4_decode; 5884 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 5885 break; 5886 5887 case CHELSIO_T5: 5888 sge_idma_decode = (const char **)t5_decode; 5889 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 5890 break; 5891 5892 case CHELSIO_T6: 5893 sge_idma_decode = (const char **)t6_decode; 5894 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 5895 break; 5896 5897 default: 5898 dev_err(adapter->pdev_dev, 5899 "Unsupported chip version %d\n", chip_version); 5900 return; 5901 } 5902 5903 if (is_t4(adapter->params.chip)) { 5904 sge_idma_decode = (const char **)t4_decode; 5905 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 5906 } else { 5907 sge_idma_decode = (const char **)t5_decode; 5908 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 5909 } 5910 5911 if (state < sge_idma_decode_nstates) 5912 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 5913 else 5914 CH_WARN(adapter, "idma state %d unknown\n", state); 5915 5916 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 5917 CH_WARN(adapter, "SGE register %#x value %#x\n", 5918 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 5919 } 5920 5921 /** 5922 * t4_sge_ctxt_flush - flush the SGE context cache 5923 * @adap: the adapter 5924 * @mbox: mailbox to use for the FW command 5925 * 5926 * Issues a FW command through the given mailbox to flush the 5927 * SGE context cache. 5928 */ 5929 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 5930 { 5931 int ret; 5932 u32 ldst_addrspace; 5933 struct fw_ldst_cmd c; 5934 5935 memset(&c, 0, sizeof(c)); 5936 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC); 5937 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5938 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5939 ldst_addrspace); 5940 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5941 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 5942 5943 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5944 return ret; 5945 } 5946 5947 /** 5948 * t4_fw_hello - establish communication with FW 5949 * @adap: the adapter 5950 * @mbox: mailbox to use for the FW command 5951 * @evt_mbox: mailbox to receive async FW events 5952 * @master: specifies the caller's willingness to be the device master 5953 * @state: returns the current device state (if non-NULL) 5954 * 5955 * Issues a command to establish communication with FW. Returns either 5956 * an error (negative integer) or the mailbox of the Master PF. 5957 */ 5958 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 5959 enum dev_master master, enum dev_state *state) 5960 { 5961 int ret; 5962 struct fw_hello_cmd c; 5963 u32 v; 5964 unsigned int master_mbox; 5965 int retries = FW_CMD_HELLO_RETRIES; 5966 5967 retry: 5968 memset(&c, 0, sizeof(c)); 5969 INIT_CMD(c, HELLO, WRITE); 5970 c.err_to_clearinit = cpu_to_be32( 5971 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 5972 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 5973 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 5974 mbox : FW_HELLO_CMD_MBMASTER_M) | 5975 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 5976 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 5977 FW_HELLO_CMD_CLEARINIT_F); 5978 5979 /* 5980 * Issue the HELLO command to the firmware. If it's not successful 5981 * but indicates that we got a "busy" or "timeout" condition, retry 5982 * the HELLO until we exhaust our retry limit. If we do exceed our 5983 * retry limit, check to see if the firmware left us any error 5984 * information and report that if so. 5985 */ 5986 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5987 if (ret < 0) { 5988 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 5989 goto retry; 5990 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 5991 t4_report_fw_error(adap); 5992 return ret; 5993 } 5994 5995 v = be32_to_cpu(c.err_to_clearinit); 5996 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 5997 if (state) { 5998 if (v & FW_HELLO_CMD_ERR_F) 5999 *state = DEV_STATE_ERR; 6000 else if (v & FW_HELLO_CMD_INIT_F) 6001 *state = DEV_STATE_INIT; 6002 else 6003 *state = DEV_STATE_UNINIT; 6004 } 6005 6006 /* 6007 * If we're not the Master PF then we need to wait around for the 6008 * Master PF Driver to finish setting up the adapter. 6009 * 6010 * Note that we also do this wait if we're a non-Master-capable PF and 6011 * there is no current Master PF; a Master PF may show up momentarily 6012 * and we wouldn't want to fail pointlessly. (This can happen when an 6013 * OS loads lots of different drivers rapidly at the same time). In 6014 * this case, the Master PF returned by the firmware will be 6015 * PCIE_FW_MASTER_M so the test below will work ... 6016 */ 6017 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6018 master_mbox != mbox) { 6019 int waiting = FW_CMD_HELLO_TIMEOUT; 6020 6021 /* 6022 * Wait for the firmware to either indicate an error or 6023 * initialized state. If we see either of these we bail out 6024 * and report the issue to the caller. If we exhaust the 6025 * "hello timeout" and we haven't exhausted our retries, try 6026 * again. Otherwise bail with a timeout error. 6027 */ 6028 for (;;) { 6029 u32 pcie_fw; 6030 6031 msleep(50); 6032 waiting -= 50; 6033 6034 /* 6035 * If neither Error nor Initialialized are indicated 6036 * by the firmware keep waiting till we exaust our 6037 * timeout ... and then retry if we haven't exhausted 6038 * our retries ... 6039 */ 6040 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6041 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6042 if (waiting <= 0) { 6043 if (retries-- > 0) 6044 goto retry; 6045 6046 return -ETIMEDOUT; 6047 } 6048 continue; 6049 } 6050 6051 /* 6052 * We either have an Error or Initialized condition 6053 * report errors preferentially. 6054 */ 6055 if (state) { 6056 if (pcie_fw & PCIE_FW_ERR_F) 6057 *state = DEV_STATE_ERR; 6058 else if (pcie_fw & PCIE_FW_INIT_F) 6059 *state = DEV_STATE_INIT; 6060 } 6061 6062 /* 6063 * If we arrived before a Master PF was selected and 6064 * there's not a valid Master PF, grab its identity 6065 * for our caller. 6066 */ 6067 if (master_mbox == PCIE_FW_MASTER_M && 6068 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6069 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6070 break; 6071 } 6072 } 6073 6074 return master_mbox; 6075 } 6076 6077 /** 6078 * t4_fw_bye - end communication with FW 6079 * @adap: the adapter 6080 * @mbox: mailbox to use for the FW command 6081 * 6082 * Issues a command to terminate communication with FW. 6083 */ 6084 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6085 { 6086 struct fw_bye_cmd c; 6087 6088 memset(&c, 0, sizeof(c)); 6089 INIT_CMD(c, BYE, WRITE); 6090 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6091 } 6092 6093 /** 6094 * t4_init_cmd - ask FW to initialize the device 6095 * @adap: the adapter 6096 * @mbox: mailbox to use for the FW command 6097 * 6098 * Issues a command to FW to partially initialize the device. This 6099 * performs initialization that generally doesn't depend on user input. 6100 */ 6101 int t4_early_init(struct adapter *adap, unsigned int mbox) 6102 { 6103 struct fw_initialize_cmd c; 6104 6105 memset(&c, 0, sizeof(c)); 6106 INIT_CMD(c, INITIALIZE, WRITE); 6107 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6108 } 6109 6110 /** 6111 * t4_fw_reset - issue a reset to FW 6112 * @adap: the adapter 6113 * @mbox: mailbox to use for the FW command 6114 * @reset: specifies the type of reset to perform 6115 * 6116 * Issues a reset command of the specified type to FW. 6117 */ 6118 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6119 { 6120 struct fw_reset_cmd c; 6121 6122 memset(&c, 0, sizeof(c)); 6123 INIT_CMD(c, RESET, WRITE); 6124 c.val = cpu_to_be32(reset); 6125 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6126 } 6127 6128 /** 6129 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6130 * @adap: the adapter 6131 * @mbox: mailbox to use for the FW RESET command (if desired) 6132 * @force: force uP into RESET even if FW RESET command fails 6133 * 6134 * Issues a RESET command to firmware (if desired) with a HALT indication 6135 * and then puts the microprocessor into RESET state. The RESET command 6136 * will only be issued if a legitimate mailbox is provided (mbox <= 6137 * PCIE_FW_MASTER_M). 6138 * 6139 * This is generally used in order for the host to safely manipulate the 6140 * adapter without fear of conflicting with whatever the firmware might 6141 * be doing. The only way out of this state is to RESTART the firmware 6142 * ... 6143 */ 6144 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6145 { 6146 int ret = 0; 6147 6148 /* 6149 * If a legitimate mailbox is provided, issue a RESET command 6150 * with a HALT indication. 6151 */ 6152 if (mbox <= PCIE_FW_MASTER_M) { 6153 struct fw_reset_cmd c; 6154 6155 memset(&c, 0, sizeof(c)); 6156 INIT_CMD(c, RESET, WRITE); 6157 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6158 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6159 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6160 } 6161 6162 /* 6163 * Normally we won't complete the operation if the firmware RESET 6164 * command fails but if our caller insists we'll go ahead and put the 6165 * uP into RESET. This can be useful if the firmware is hung or even 6166 * missing ... We'll have to take the risk of putting the uP into 6167 * RESET without the cooperation of firmware in that case. 6168 * 6169 * We also force the firmware's HALT flag to be on in case we bypassed 6170 * the firmware RESET command above or we're dealing with old firmware 6171 * which doesn't have the HALT capability. This will serve as a flag 6172 * for the incoming firmware to know that it's coming out of a HALT 6173 * rather than a RESET ... if it's new enough to understand that ... 6174 */ 6175 if (ret == 0 || force) { 6176 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6177 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6178 PCIE_FW_HALT_F); 6179 } 6180 6181 /* 6182 * And we always return the result of the firmware RESET command 6183 * even when we force the uP into RESET ... 6184 */ 6185 return ret; 6186 } 6187 6188 /** 6189 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6190 * @adap: the adapter 6191 * @reset: if we want to do a RESET to restart things 6192 * 6193 * Restart firmware previously halted by t4_fw_halt(). On successful 6194 * return the previous PF Master remains as the new PF Master and there 6195 * is no need to issue a new HELLO command, etc. 6196 * 6197 * We do this in two ways: 6198 * 6199 * 1. If we're dealing with newer firmware we'll simply want to take 6200 * the chip's microprocessor out of RESET. This will cause the 6201 * firmware to start up from its start vector. And then we'll loop 6202 * until the firmware indicates it's started again (PCIE_FW.HALT 6203 * reset to 0) or we timeout. 6204 * 6205 * 2. If we're dealing with older firmware then we'll need to RESET 6206 * the chip since older firmware won't recognize the PCIE_FW.HALT 6207 * flag and automatically RESET itself on startup. 6208 */ 6209 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6210 { 6211 if (reset) { 6212 /* 6213 * Since we're directing the RESET instead of the firmware 6214 * doing it automatically, we need to clear the PCIE_FW.HALT 6215 * bit. 6216 */ 6217 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6218 6219 /* 6220 * If we've been given a valid mailbox, first try to get the 6221 * firmware to do the RESET. If that works, great and we can 6222 * return success. Otherwise, if we haven't been given a 6223 * valid mailbox or the RESET command failed, fall back to 6224 * hitting the chip with a hammer. 6225 */ 6226 if (mbox <= PCIE_FW_MASTER_M) { 6227 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6228 msleep(100); 6229 if (t4_fw_reset(adap, mbox, 6230 PIORST_F | PIORSTMODE_F) == 0) 6231 return 0; 6232 } 6233 6234 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6235 msleep(2000); 6236 } else { 6237 int ms; 6238 6239 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6240 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6241 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6242 return 0; 6243 msleep(100); 6244 ms += 100; 6245 } 6246 return -ETIMEDOUT; 6247 } 6248 return 0; 6249 } 6250 6251 /** 6252 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6253 * @adap: the adapter 6254 * @mbox: mailbox to use for the FW RESET command (if desired) 6255 * @fw_data: the firmware image to write 6256 * @size: image size 6257 * @force: force upgrade even if firmware doesn't cooperate 6258 * 6259 * Perform all of the steps necessary for upgrading an adapter's 6260 * firmware image. Normally this requires the cooperation of the 6261 * existing firmware in order to halt all existing activities 6262 * but if an invalid mailbox token is passed in we skip that step 6263 * (though we'll still put the adapter microprocessor into RESET in 6264 * that case). 6265 * 6266 * On successful return the new firmware will have been loaded and 6267 * the adapter will have been fully RESET losing all previous setup 6268 * state. On unsuccessful return the adapter may be completely hosed ... 6269 * positive errno indicates that the adapter is ~probably~ intact, a 6270 * negative errno indicates that things are looking bad ... 6271 */ 6272 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6273 const u8 *fw_data, unsigned int size, int force) 6274 { 6275 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6276 int reset, ret; 6277 6278 if (!t4_fw_matches_chip(adap, fw_hdr)) 6279 return -EINVAL; 6280 6281 ret = t4_fw_halt(adap, mbox, force); 6282 if (ret < 0 && !force) 6283 return ret; 6284 6285 ret = t4_load_fw(adap, fw_data, size); 6286 if (ret < 0) 6287 return ret; 6288 6289 /* 6290 * Older versions of the firmware don't understand the new 6291 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6292 * restart. So for newly loaded older firmware we'll have to do the 6293 * RESET for it so it starts up on a clean slate. We can tell if 6294 * the newly loaded firmware will handle this right by checking 6295 * its header flags to see if it advertises the capability. 6296 */ 6297 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6298 return t4_fw_restart(adap, mbox, reset); 6299 } 6300 6301 /** 6302 * t4_fl_pkt_align - return the fl packet alignment 6303 * @adap: the adapter 6304 * 6305 * T4 has a single field to specify the packing and padding boundary. 6306 * T5 onwards has separate fields for this and hence the alignment for 6307 * next packet offset is maximum of these two. 6308 * 6309 */ 6310 int t4_fl_pkt_align(struct adapter *adap) 6311 { 6312 u32 sge_control, sge_control2; 6313 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 6314 6315 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 6316 6317 /* T4 uses a single control field to specify both the PCIe Padding and 6318 * Packing Boundary. T5 introduced the ability to specify these 6319 * separately. The actual Ingress Packet Data alignment boundary 6320 * within Packed Buffer Mode is the maximum of these two 6321 * specifications. (Note that it makes no real practical sense to 6322 * have the Pading Boudary be larger than the Packing Boundary but you 6323 * could set the chip up that way and, in fact, legacy T4 code would 6324 * end doing this because it would initialize the Padding Boundary and 6325 * leave the Packing Boundary initialized to 0 (16 bytes).) 6326 * Padding Boundary values in T6 starts from 8B, 6327 * where as it is 32B for T4 and T5. 6328 */ 6329 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 6330 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 6331 else 6332 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 6333 6334 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 6335 6336 fl_align = ingpadboundary; 6337 if (!is_t4(adap->params.chip)) { 6338 /* T5 has a weird interpretation of one of the PCIe Packing 6339 * Boundary values. No idea why ... 6340 */ 6341 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 6342 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 6343 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 6344 ingpackboundary = 16; 6345 else 6346 ingpackboundary = 1 << (ingpackboundary + 6347 INGPACKBOUNDARY_SHIFT_X); 6348 6349 fl_align = max(ingpadboundary, ingpackboundary); 6350 } 6351 return fl_align; 6352 } 6353 6354 /** 6355 * t4_fixup_host_params - fix up host-dependent parameters 6356 * @adap: the adapter 6357 * @page_size: the host's Base Page Size 6358 * @cache_line_size: the host's Cache Line Size 6359 * 6360 * Various registers in T4 contain values which are dependent on the 6361 * host's Base Page and Cache Line Sizes. This function will fix all of 6362 * those registers with the appropriate values as passed in ... 6363 */ 6364 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 6365 unsigned int cache_line_size) 6366 { 6367 unsigned int page_shift = fls(page_size) - 1; 6368 unsigned int sge_hps = page_shift - 10; 6369 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 6370 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 6371 unsigned int fl_align_log = fls(fl_align) - 1; 6372 unsigned int ingpad; 6373 6374 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 6375 HOSTPAGESIZEPF0_V(sge_hps) | 6376 HOSTPAGESIZEPF1_V(sge_hps) | 6377 HOSTPAGESIZEPF2_V(sge_hps) | 6378 HOSTPAGESIZEPF3_V(sge_hps) | 6379 HOSTPAGESIZEPF4_V(sge_hps) | 6380 HOSTPAGESIZEPF5_V(sge_hps) | 6381 HOSTPAGESIZEPF6_V(sge_hps) | 6382 HOSTPAGESIZEPF7_V(sge_hps)); 6383 6384 if (is_t4(adap->params.chip)) { 6385 t4_set_reg_field(adap, SGE_CONTROL_A, 6386 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6387 EGRSTATUSPAGESIZE_F, 6388 INGPADBOUNDARY_V(fl_align_log - 6389 INGPADBOUNDARY_SHIFT_X) | 6390 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6391 } else { 6392 /* T5 introduced the separation of the Free List Padding and 6393 * Packing Boundaries. Thus, we can select a smaller Padding 6394 * Boundary to avoid uselessly chewing up PCIe Link and Memory 6395 * Bandwidth, and use a Packing Boundary which is large enough 6396 * to avoid false sharing between CPUs, etc. 6397 * 6398 * For the PCI Link, the smaller the Padding Boundary the 6399 * better. For the Memory Controller, a smaller Padding 6400 * Boundary is better until we cross under the Memory Line 6401 * Size (the minimum unit of transfer to/from Memory). If we 6402 * have a Padding Boundary which is smaller than the Memory 6403 * Line Size, that'll involve a Read-Modify-Write cycle on the 6404 * Memory Controller which is never good. For T5 the smallest 6405 * Padding Boundary which we can select is 32 bytes which is 6406 * larger than any known Memory Controller Line Size so we'll 6407 * use that. 6408 * 6409 * T5 has a different interpretation of the "0" value for the 6410 * Packing Boundary. This corresponds to 16 bytes instead of 6411 * the expected 32 bytes. We never have a Packing Boundary 6412 * less than 32 bytes so we can't use that special value but 6413 * on the other hand, if we wanted 32 bytes, the best we can 6414 * really do is 64 bytes. 6415 */ 6416 if (fl_align <= 32) { 6417 fl_align = 64; 6418 fl_align_log = 6; 6419 } 6420 6421 if (is_t5(adap->params.chip)) 6422 ingpad = INGPCIEBOUNDARY_32B_X; 6423 else 6424 ingpad = T6_INGPADBOUNDARY_32B_X; 6425 6426 t4_set_reg_field(adap, SGE_CONTROL_A, 6427 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6428 EGRSTATUSPAGESIZE_F, 6429 INGPADBOUNDARY_V(ingpad) | 6430 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6431 t4_set_reg_field(adap, SGE_CONTROL2_A, 6432 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 6433 INGPACKBOUNDARY_V(fl_align_log - 6434 INGPACKBOUNDARY_SHIFT_X)); 6435 } 6436 /* 6437 * Adjust various SGE Free List Host Buffer Sizes. 6438 * 6439 * This is something of a crock since we're using fixed indices into 6440 * the array which are also known by the sge.c code and the T4 6441 * Firmware Configuration File. We need to come up with a much better 6442 * approach to managing this array. For now, the first four entries 6443 * are: 6444 * 6445 * 0: Host Page Size 6446 * 1: 64KB 6447 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 6448 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 6449 * 6450 * For the single-MTU buffers in unpacked mode we need to include 6451 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 6452 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 6453 * Padding boundary. All of these are accommodated in the Factory 6454 * Default Firmware Configuration File but we need to adjust it for 6455 * this host's cache line size. 6456 */ 6457 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 6458 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 6459 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 6460 & ~(fl_align-1)); 6461 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 6462 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 6463 & ~(fl_align-1)); 6464 6465 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 6466 6467 return 0; 6468 } 6469 6470 /** 6471 * t4_fw_initialize - ask FW to initialize the device 6472 * @adap: the adapter 6473 * @mbox: mailbox to use for the FW command 6474 * 6475 * Issues a command to FW to partially initialize the device. This 6476 * performs initialization that generally doesn't depend on user input. 6477 */ 6478 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 6479 { 6480 struct fw_initialize_cmd c; 6481 6482 memset(&c, 0, sizeof(c)); 6483 INIT_CMD(c, INITIALIZE, WRITE); 6484 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6485 } 6486 6487 /** 6488 * t4_query_params_rw - query FW or device parameters 6489 * @adap: the adapter 6490 * @mbox: mailbox to use for the FW command 6491 * @pf: the PF 6492 * @vf: the VF 6493 * @nparams: the number of parameters 6494 * @params: the parameter names 6495 * @val: the parameter values 6496 * @rw: Write and read flag 6497 * 6498 * Reads the value of FW or device parameters. Up to 7 parameters can be 6499 * queried at once. 6500 */ 6501 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 6502 unsigned int vf, unsigned int nparams, const u32 *params, 6503 u32 *val, int rw) 6504 { 6505 int i, ret; 6506 struct fw_params_cmd c; 6507 __be32 *p = &c.param[0].mnem; 6508 6509 if (nparams > 7) 6510 return -EINVAL; 6511 6512 memset(&c, 0, sizeof(c)); 6513 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 6514 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6515 FW_PARAMS_CMD_PFN_V(pf) | 6516 FW_PARAMS_CMD_VFN_V(vf)); 6517 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6518 6519 for (i = 0; i < nparams; i++) { 6520 *p++ = cpu_to_be32(*params++); 6521 if (rw) 6522 *p = cpu_to_be32(*(val + i)); 6523 p++; 6524 } 6525 6526 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6527 if (ret == 0) 6528 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 6529 *val++ = be32_to_cpu(*p); 6530 return ret; 6531 } 6532 6533 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 6534 unsigned int vf, unsigned int nparams, const u32 *params, 6535 u32 *val) 6536 { 6537 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 6538 } 6539 6540 /** 6541 * t4_set_params_timeout - sets FW or device parameters 6542 * @adap: the adapter 6543 * @mbox: mailbox to use for the FW command 6544 * @pf: the PF 6545 * @vf: the VF 6546 * @nparams: the number of parameters 6547 * @params: the parameter names 6548 * @val: the parameter values 6549 * @timeout: the timeout time 6550 * 6551 * Sets the value of FW or device parameters. Up to 7 parameters can be 6552 * specified at once. 6553 */ 6554 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 6555 unsigned int pf, unsigned int vf, 6556 unsigned int nparams, const u32 *params, 6557 const u32 *val, int timeout) 6558 { 6559 struct fw_params_cmd c; 6560 __be32 *p = &c.param[0].mnem; 6561 6562 if (nparams > 7) 6563 return -EINVAL; 6564 6565 memset(&c, 0, sizeof(c)); 6566 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 6567 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6568 FW_PARAMS_CMD_PFN_V(pf) | 6569 FW_PARAMS_CMD_VFN_V(vf)); 6570 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6571 6572 while (nparams--) { 6573 *p++ = cpu_to_be32(*params++); 6574 *p++ = cpu_to_be32(*val++); 6575 } 6576 6577 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 6578 } 6579 6580 /** 6581 * t4_set_params - sets FW or device parameters 6582 * @adap: the adapter 6583 * @mbox: mailbox to use for the FW command 6584 * @pf: the PF 6585 * @vf: the VF 6586 * @nparams: the number of parameters 6587 * @params: the parameter names 6588 * @val: the parameter values 6589 * 6590 * Sets the value of FW or device parameters. Up to 7 parameters can be 6591 * specified at once. 6592 */ 6593 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 6594 unsigned int vf, unsigned int nparams, const u32 *params, 6595 const u32 *val) 6596 { 6597 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 6598 FW_CMD_MAX_TIMEOUT); 6599 } 6600 6601 /** 6602 * t4_cfg_pfvf - configure PF/VF resource limits 6603 * @adap: the adapter 6604 * @mbox: mailbox to use for the FW command 6605 * @pf: the PF being configured 6606 * @vf: the VF being configured 6607 * @txq: the max number of egress queues 6608 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 6609 * @rxqi: the max number of interrupt-capable ingress queues 6610 * @rxq: the max number of interruptless ingress queues 6611 * @tc: the PCI traffic class 6612 * @vi: the max number of virtual interfaces 6613 * @cmask: the channel access rights mask for the PF/VF 6614 * @pmask: the port access rights mask for the PF/VF 6615 * @nexact: the maximum number of exact MPS filters 6616 * @rcaps: read capabilities 6617 * @wxcaps: write/execute capabilities 6618 * 6619 * Configures resource limits and capabilities for a physical or virtual 6620 * function. 6621 */ 6622 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 6623 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 6624 unsigned int rxqi, unsigned int rxq, unsigned int tc, 6625 unsigned int vi, unsigned int cmask, unsigned int pmask, 6626 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 6627 { 6628 struct fw_pfvf_cmd c; 6629 6630 memset(&c, 0, sizeof(c)); 6631 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 6632 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 6633 FW_PFVF_CMD_VFN_V(vf)); 6634 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6635 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 6636 FW_PFVF_CMD_NIQ_V(rxq)); 6637 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 6638 FW_PFVF_CMD_PMASK_V(pmask) | 6639 FW_PFVF_CMD_NEQ_V(txq)); 6640 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 6641 FW_PFVF_CMD_NVI_V(vi) | 6642 FW_PFVF_CMD_NEXACTF_V(nexact)); 6643 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 6644 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 6645 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 6646 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6647 } 6648 6649 /** 6650 * t4_alloc_vi - allocate a virtual interface 6651 * @adap: the adapter 6652 * @mbox: mailbox to use for the FW command 6653 * @port: physical port associated with the VI 6654 * @pf: the PF owning the VI 6655 * @vf: the VF owning the VI 6656 * @nmac: number of MAC addresses needed (1 to 5) 6657 * @mac: the MAC addresses of the VI 6658 * @rss_size: size of RSS table slice associated with this VI 6659 * 6660 * Allocates a virtual interface for the given physical port. If @mac is 6661 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 6662 * @mac should be large enough to hold @nmac Ethernet addresses, they are 6663 * stored consecutively so the space needed is @nmac * 6 bytes. 6664 * Returns a negative error number or the non-negative VI id. 6665 */ 6666 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 6667 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 6668 unsigned int *rss_size) 6669 { 6670 int ret; 6671 struct fw_vi_cmd c; 6672 6673 memset(&c, 0, sizeof(c)); 6674 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 6675 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 6676 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 6677 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 6678 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 6679 c.nmac = nmac - 1; 6680 6681 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6682 if (ret) 6683 return ret; 6684 6685 if (mac) { 6686 memcpy(mac, c.mac, sizeof(c.mac)); 6687 switch (nmac) { 6688 case 5: 6689 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 6690 case 4: 6691 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 6692 case 3: 6693 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 6694 case 2: 6695 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 6696 } 6697 } 6698 if (rss_size) 6699 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 6700 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 6701 } 6702 6703 /** 6704 * t4_free_vi - free a virtual interface 6705 * @adap: the adapter 6706 * @mbox: mailbox to use for the FW command 6707 * @pf: the PF owning the VI 6708 * @vf: the VF owning the VI 6709 * @viid: virtual interface identifiler 6710 * 6711 * Free a previously allocated virtual interface. 6712 */ 6713 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 6714 unsigned int vf, unsigned int viid) 6715 { 6716 struct fw_vi_cmd c; 6717 6718 memset(&c, 0, sizeof(c)); 6719 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 6720 FW_CMD_REQUEST_F | 6721 FW_CMD_EXEC_F | 6722 FW_VI_CMD_PFN_V(pf) | 6723 FW_VI_CMD_VFN_V(vf)); 6724 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 6725 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 6726 6727 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6728 } 6729 6730 /** 6731 * t4_set_rxmode - set Rx properties of a virtual interface 6732 * @adap: the adapter 6733 * @mbox: mailbox to use for the FW command 6734 * @viid: the VI id 6735 * @mtu: the new MTU or -1 6736 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 6737 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 6738 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 6739 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 6740 * @sleep_ok: if true we may sleep while awaiting command completion 6741 * 6742 * Sets Rx properties of a virtual interface. 6743 */ 6744 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 6745 int mtu, int promisc, int all_multi, int bcast, int vlanex, 6746 bool sleep_ok) 6747 { 6748 struct fw_vi_rxmode_cmd c; 6749 6750 /* convert to FW values */ 6751 if (mtu < 0) 6752 mtu = FW_RXMODE_MTU_NO_CHG; 6753 if (promisc < 0) 6754 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 6755 if (all_multi < 0) 6756 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 6757 if (bcast < 0) 6758 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 6759 if (vlanex < 0) 6760 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 6761 6762 memset(&c, 0, sizeof(c)); 6763 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 6764 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6765 FW_VI_RXMODE_CMD_VIID_V(viid)); 6766 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6767 c.mtu_to_vlanexen = 6768 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 6769 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 6770 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 6771 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 6772 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 6773 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 6774 } 6775 6776 /** 6777 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 6778 * @adap: the adapter 6779 * @mbox: mailbox to use for the FW command 6780 * @viid: the VI id 6781 * @free: if true any existing filters for this VI id are first removed 6782 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 6783 * @addr: the MAC address(es) 6784 * @idx: where to store the index of each allocated filter 6785 * @hash: pointer to hash address filter bitmap 6786 * @sleep_ok: call is allowed to sleep 6787 * 6788 * Allocates an exact-match filter for each of the supplied addresses and 6789 * sets it to the corresponding address. If @idx is not %NULL it should 6790 * have at least @naddr entries, each of which will be set to the index of 6791 * the filter allocated for the corresponding MAC address. If a filter 6792 * could not be allocated for an address its index is set to 0xffff. 6793 * If @hash is not %NULL addresses that fail to allocate an exact filter 6794 * are hashed and update the hash filter bitmap pointed at by @hash. 6795 * 6796 * Returns a negative error number or the number of filters allocated. 6797 */ 6798 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 6799 unsigned int viid, bool free, unsigned int naddr, 6800 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 6801 { 6802 int offset, ret = 0; 6803 struct fw_vi_mac_cmd c; 6804 unsigned int nfilters = 0; 6805 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 6806 unsigned int rem = naddr; 6807 6808 if (naddr > max_naddr) 6809 return -EINVAL; 6810 6811 for (offset = 0; offset < naddr ; /**/) { 6812 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 6813 rem : ARRAY_SIZE(c.u.exact)); 6814 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 6815 u.exact[fw_naddr]), 16); 6816 struct fw_vi_mac_exact *p; 6817 int i; 6818 6819 memset(&c, 0, sizeof(c)); 6820 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6821 FW_CMD_REQUEST_F | 6822 FW_CMD_WRITE_F | 6823 FW_CMD_EXEC_V(free) | 6824 FW_VI_MAC_CMD_VIID_V(viid)); 6825 c.freemacs_to_len16 = 6826 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 6827 FW_CMD_LEN16_V(len16)); 6828 6829 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6830 p->valid_to_idx = 6831 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 6832 FW_VI_MAC_CMD_IDX_V( 6833 FW_VI_MAC_ADD_MAC)); 6834 memcpy(p->macaddr, addr[offset + i], 6835 sizeof(p->macaddr)); 6836 } 6837 6838 /* It's okay if we run out of space in our MAC address arena. 6839 * Some of the addresses we submit may get stored so we need 6840 * to run through the reply to see what the results were ... 6841 */ 6842 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 6843 if (ret && ret != -FW_ENOMEM) 6844 break; 6845 6846 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6847 u16 index = FW_VI_MAC_CMD_IDX_G( 6848 be16_to_cpu(p->valid_to_idx)); 6849 6850 if (idx) 6851 idx[offset + i] = (index >= max_naddr ? 6852 0xffff : index); 6853 if (index < max_naddr) 6854 nfilters++; 6855 else if (hash) 6856 *hash |= (1ULL << 6857 hash_mac_addr(addr[offset + i])); 6858 } 6859 6860 free = false; 6861 offset += fw_naddr; 6862 rem -= fw_naddr; 6863 } 6864 6865 if (ret == 0 || ret == -FW_ENOMEM) 6866 ret = nfilters; 6867 return ret; 6868 } 6869 6870 /** 6871 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 6872 * @adap: the adapter 6873 * @mbox: mailbox to use for the FW command 6874 * @viid: the VI id 6875 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 6876 * @addr: the MAC address(es) 6877 * @sleep_ok: call is allowed to sleep 6878 * 6879 * Frees the exact-match filter for each of the supplied addresses 6880 * 6881 * Returns a negative error number or the number of filters freed. 6882 */ 6883 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 6884 unsigned int viid, unsigned int naddr, 6885 const u8 **addr, bool sleep_ok) 6886 { 6887 int offset, ret = 0; 6888 struct fw_vi_mac_cmd c; 6889 unsigned int nfilters = 0; 6890 unsigned int max_naddr = is_t4(adap->params.chip) ? 6891 NUM_MPS_CLS_SRAM_L_INSTANCES : 6892 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 6893 unsigned int rem = naddr; 6894 6895 if (naddr > max_naddr) 6896 return -EINVAL; 6897 6898 for (offset = 0; offset < (int)naddr ; /**/) { 6899 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 6900 ? rem 6901 : ARRAY_SIZE(c.u.exact)); 6902 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 6903 u.exact[fw_naddr]), 16); 6904 struct fw_vi_mac_exact *p; 6905 int i; 6906 6907 memset(&c, 0, sizeof(c)); 6908 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6909 FW_CMD_REQUEST_F | 6910 FW_CMD_WRITE_F | 6911 FW_CMD_EXEC_V(0) | 6912 FW_VI_MAC_CMD_VIID_V(viid)); 6913 c.freemacs_to_len16 = 6914 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 6915 FW_CMD_LEN16_V(len16)); 6916 6917 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 6918 p->valid_to_idx = cpu_to_be16( 6919 FW_VI_MAC_CMD_VALID_F | 6920 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 6921 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 6922 } 6923 6924 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 6925 if (ret) 6926 break; 6927 6928 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6929 u16 index = FW_VI_MAC_CMD_IDX_G( 6930 be16_to_cpu(p->valid_to_idx)); 6931 6932 if (index < max_naddr) 6933 nfilters++; 6934 } 6935 6936 offset += fw_naddr; 6937 rem -= fw_naddr; 6938 } 6939 6940 if (ret == 0) 6941 ret = nfilters; 6942 return ret; 6943 } 6944 6945 /** 6946 * t4_change_mac - modifies the exact-match filter for a MAC address 6947 * @adap: the adapter 6948 * @mbox: mailbox to use for the FW command 6949 * @viid: the VI id 6950 * @idx: index of existing filter for old value of MAC address, or -1 6951 * @addr: the new MAC address value 6952 * @persist: whether a new MAC allocation should be persistent 6953 * @add_smt: if true also add the address to the HW SMT 6954 * 6955 * Modifies an exact-match filter and sets it to the new MAC address. 6956 * Note that in general it is not possible to modify the value of a given 6957 * filter so the generic way to modify an address filter is to free the one 6958 * being used by the old address value and allocate a new filter for the 6959 * new address value. @idx can be -1 if the address is a new addition. 6960 * 6961 * Returns a negative error number or the index of the filter with the new 6962 * MAC value. 6963 */ 6964 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 6965 int idx, const u8 *addr, bool persist, bool add_smt) 6966 { 6967 int ret, mode; 6968 struct fw_vi_mac_cmd c; 6969 struct fw_vi_mac_exact *p = c.u.exact; 6970 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 6971 6972 if (idx < 0) /* new allocation */ 6973 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 6974 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 6975 6976 memset(&c, 0, sizeof(c)); 6977 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6978 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6979 FW_VI_MAC_CMD_VIID_V(viid)); 6980 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 6981 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 6982 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 6983 FW_VI_MAC_CMD_IDX_V(idx)); 6984 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 6985 6986 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6987 if (ret == 0) { 6988 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 6989 if (ret >= max_mac_addr) 6990 ret = -ENOMEM; 6991 } 6992 return ret; 6993 } 6994 6995 /** 6996 * t4_set_addr_hash - program the MAC inexact-match hash filter 6997 * @adap: the adapter 6998 * @mbox: mailbox to use for the FW command 6999 * @viid: the VI id 7000 * @ucast: whether the hash filter should also match unicast addresses 7001 * @vec: the value to be written to the hash filter 7002 * @sleep_ok: call is allowed to sleep 7003 * 7004 * Sets the 64-bit inexact-match hash filter for a virtual interface. 7005 */ 7006 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 7007 bool ucast, u64 vec, bool sleep_ok) 7008 { 7009 struct fw_vi_mac_cmd c; 7010 7011 memset(&c, 0, sizeof(c)); 7012 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7013 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7014 FW_VI_ENABLE_CMD_VIID_V(viid)); 7015 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 7016 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 7017 FW_CMD_LEN16_V(1)); 7018 c.u.hash.hashvec = cpu_to_be64(vec); 7019 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7020 } 7021 7022 /** 7023 * t4_enable_vi_params - enable/disable a virtual interface 7024 * @adap: the adapter 7025 * @mbox: mailbox to use for the FW command 7026 * @viid: the VI id 7027 * @rx_en: 1=enable Rx, 0=disable Rx 7028 * @tx_en: 1=enable Tx, 0=disable Tx 7029 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 7030 * 7031 * Enables/disables a virtual interface. Note that setting DCB Enable 7032 * only makes sense when enabling a Virtual Interface ... 7033 */ 7034 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 7035 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 7036 { 7037 struct fw_vi_enable_cmd c; 7038 7039 memset(&c, 0, sizeof(c)); 7040 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7041 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7042 FW_VI_ENABLE_CMD_VIID_V(viid)); 7043 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 7044 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 7045 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 7046 FW_LEN16(c)); 7047 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 7048 } 7049 7050 /** 7051 * t4_enable_vi - enable/disable a virtual interface 7052 * @adap: the adapter 7053 * @mbox: mailbox to use for the FW command 7054 * @viid: the VI id 7055 * @rx_en: 1=enable Rx, 0=disable Rx 7056 * @tx_en: 1=enable Tx, 0=disable Tx 7057 * 7058 * Enables/disables a virtual interface. 7059 */ 7060 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 7061 bool rx_en, bool tx_en) 7062 { 7063 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 7064 } 7065 7066 /** 7067 * t4_identify_port - identify a VI's port by blinking its LED 7068 * @adap: the adapter 7069 * @mbox: mailbox to use for the FW command 7070 * @viid: the VI id 7071 * @nblinks: how many times to blink LED at 2.5 Hz 7072 * 7073 * Identifies a VI's port by blinking its LED. 7074 */ 7075 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 7076 unsigned int nblinks) 7077 { 7078 struct fw_vi_enable_cmd c; 7079 7080 memset(&c, 0, sizeof(c)); 7081 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7082 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7083 FW_VI_ENABLE_CMD_VIID_V(viid)); 7084 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 7085 c.blinkdur = cpu_to_be16(nblinks); 7086 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7087 } 7088 7089 /** 7090 * t4_iq_stop - stop an ingress queue and its FLs 7091 * @adap: the adapter 7092 * @mbox: mailbox to use for the FW command 7093 * @pf: the PF owning the queues 7094 * @vf: the VF owning the queues 7095 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 7096 * @iqid: ingress queue id 7097 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7098 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7099 * 7100 * Stops an ingress queue and its associated FLs, if any. This causes 7101 * any current or future data/messages destined for these queues to be 7102 * tossed. 7103 */ 7104 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 7105 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7106 unsigned int fl0id, unsigned int fl1id) 7107 { 7108 struct fw_iq_cmd c; 7109 7110 memset(&c, 0, sizeof(c)); 7111 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7112 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7113 FW_IQ_CMD_VFN_V(vf)); 7114 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 7115 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7116 c.iqid = cpu_to_be16(iqid); 7117 c.fl0id = cpu_to_be16(fl0id); 7118 c.fl1id = cpu_to_be16(fl1id); 7119 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7120 } 7121 7122 /** 7123 * t4_iq_free - free an ingress queue and its FLs 7124 * @adap: the adapter 7125 * @mbox: mailbox to use for the FW command 7126 * @pf: the PF owning the queues 7127 * @vf: the VF owning the queues 7128 * @iqtype: the ingress queue type 7129 * @iqid: ingress queue id 7130 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7131 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7132 * 7133 * Frees an ingress queue and its associated FLs, if any. 7134 */ 7135 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7136 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7137 unsigned int fl0id, unsigned int fl1id) 7138 { 7139 struct fw_iq_cmd c; 7140 7141 memset(&c, 0, sizeof(c)); 7142 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7143 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7144 FW_IQ_CMD_VFN_V(vf)); 7145 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 7146 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7147 c.iqid = cpu_to_be16(iqid); 7148 c.fl0id = cpu_to_be16(fl0id); 7149 c.fl1id = cpu_to_be16(fl1id); 7150 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7151 } 7152 7153 /** 7154 * t4_eth_eq_free - free an Ethernet egress queue 7155 * @adap: the adapter 7156 * @mbox: mailbox to use for the FW command 7157 * @pf: the PF owning the queue 7158 * @vf: the VF owning the queue 7159 * @eqid: egress queue id 7160 * 7161 * Frees an Ethernet egress queue. 7162 */ 7163 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7164 unsigned int vf, unsigned int eqid) 7165 { 7166 struct fw_eq_eth_cmd c; 7167 7168 memset(&c, 0, sizeof(c)); 7169 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 7170 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7171 FW_EQ_ETH_CMD_PFN_V(pf) | 7172 FW_EQ_ETH_CMD_VFN_V(vf)); 7173 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 7174 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 7175 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7176 } 7177 7178 /** 7179 * t4_ctrl_eq_free - free a control egress queue 7180 * @adap: the adapter 7181 * @mbox: mailbox to use for the FW command 7182 * @pf: the PF owning the queue 7183 * @vf: the VF owning the queue 7184 * @eqid: egress queue id 7185 * 7186 * Frees a control egress queue. 7187 */ 7188 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7189 unsigned int vf, unsigned int eqid) 7190 { 7191 struct fw_eq_ctrl_cmd c; 7192 7193 memset(&c, 0, sizeof(c)); 7194 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 7195 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7196 FW_EQ_CTRL_CMD_PFN_V(pf) | 7197 FW_EQ_CTRL_CMD_VFN_V(vf)); 7198 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 7199 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 7200 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7201 } 7202 7203 /** 7204 * t4_ofld_eq_free - free an offload egress queue 7205 * @adap: the adapter 7206 * @mbox: mailbox to use for the FW command 7207 * @pf: the PF owning the queue 7208 * @vf: the VF owning the queue 7209 * @eqid: egress queue id 7210 * 7211 * Frees a control egress queue. 7212 */ 7213 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7214 unsigned int vf, unsigned int eqid) 7215 { 7216 struct fw_eq_ofld_cmd c; 7217 7218 memset(&c, 0, sizeof(c)); 7219 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 7220 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7221 FW_EQ_OFLD_CMD_PFN_V(pf) | 7222 FW_EQ_OFLD_CMD_VFN_V(vf)); 7223 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 7224 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 7225 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7226 } 7227 7228 /** 7229 * t4_link_down_rc_str - return a string for a Link Down Reason Code 7230 * @adap: the adapter 7231 * @link_down_rc: Link Down Reason Code 7232 * 7233 * Returns a string representation of the Link Down Reason Code. 7234 */ 7235 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 7236 { 7237 static const char * const reason[] = { 7238 "Link Down", 7239 "Remote Fault", 7240 "Auto-negotiation Failure", 7241 "Reserved", 7242 "Insufficient Airflow", 7243 "Unable To Determine Reason", 7244 "No RX Signal Detected", 7245 "Reserved", 7246 }; 7247 7248 if (link_down_rc >= ARRAY_SIZE(reason)) 7249 return "Bad Reason Code"; 7250 7251 return reason[link_down_rc]; 7252 } 7253 7254 /** 7255 * t4_handle_get_port_info - process a FW reply message 7256 * @pi: the port info 7257 * @rpl: start of the FW message 7258 * 7259 * Processes a GET_PORT_INFO FW reply message. 7260 */ 7261 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 7262 { 7263 const struct fw_port_cmd *p = (const void *)rpl; 7264 struct adapter *adap = pi->adapter; 7265 7266 /* link/module state change message */ 7267 int speed = 0, fc = 0; 7268 struct link_config *lc; 7269 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 7270 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; 7271 u32 mod = FW_PORT_CMD_MODTYPE_G(stat); 7272 7273 if (stat & FW_PORT_CMD_RXPAUSE_F) 7274 fc |= PAUSE_RX; 7275 if (stat & FW_PORT_CMD_TXPAUSE_F) 7276 fc |= PAUSE_TX; 7277 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 7278 speed = 100; 7279 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 7280 speed = 1000; 7281 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 7282 speed = 10000; 7283 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 7284 speed = 25000; 7285 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 7286 speed = 40000; 7287 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 7288 speed = 100000; 7289 7290 lc = &pi->link_cfg; 7291 7292 if (mod != pi->mod_type) { 7293 pi->mod_type = mod; 7294 t4_os_portmod_changed(adap, pi->port_id); 7295 } 7296 if (link_ok != lc->link_ok || speed != lc->speed || 7297 fc != lc->fc) { /* something changed */ 7298 if (!link_ok && lc->link_ok) { 7299 unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat); 7300 7301 lc->link_down_rc = rc; 7302 dev_warn(adap->pdev_dev, 7303 "Port %d link down, reason: %s\n", 7304 pi->port_id, t4_link_down_rc_str(rc)); 7305 } 7306 lc->link_ok = link_ok; 7307 lc->speed = speed; 7308 lc->fc = fc; 7309 lc->supported = be16_to_cpu(p->u.info.pcap); 7310 lc->lp_advertising = be16_to_cpu(p->u.info.lpacap); 7311 t4_os_link_changed(adap, pi->port_id, link_ok); 7312 } 7313 } 7314 7315 /** 7316 * t4_handle_fw_rpl - process a FW reply message 7317 * @adap: the adapter 7318 * @rpl: start of the FW message 7319 * 7320 * Processes a FW message, such as link state change messages. 7321 */ 7322 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 7323 { 7324 u8 opcode = *(const u8 *)rpl; 7325 7326 /* This might be a port command ... this simplifies the following 7327 * conditionals ... We can get away with pre-dereferencing 7328 * action_to_len16 because it's in the first 16 bytes and all messages 7329 * will be at least that long. 7330 */ 7331 const struct fw_port_cmd *p = (const void *)rpl; 7332 unsigned int action = 7333 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 7334 7335 if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) { 7336 int i; 7337 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 7338 struct port_info *pi = NULL; 7339 7340 for_each_port(adap, i) { 7341 pi = adap2pinfo(adap, i); 7342 if (pi->tx_chan == chan) 7343 break; 7344 } 7345 7346 t4_handle_get_port_info(pi, rpl); 7347 } else { 7348 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode); 7349 return -EINVAL; 7350 } 7351 return 0; 7352 } 7353 7354 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 7355 { 7356 u16 val; 7357 7358 if (pci_is_pcie(adapter->pdev)) { 7359 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 7360 p->speed = val & PCI_EXP_LNKSTA_CLS; 7361 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 7362 } 7363 } 7364 7365 /** 7366 * init_link_config - initialize a link's SW state 7367 * @lc: structure holding the link state 7368 * @caps: link capabilities 7369 * 7370 * Initializes the SW state maintained for each link, including the link's 7371 * capabilities and default speed/flow-control/autonegotiation settings. 7372 */ 7373 static void init_link_config(struct link_config *lc, unsigned int caps) 7374 { 7375 lc->supported = caps; 7376 lc->lp_advertising = 0; 7377 lc->requested_speed = 0; 7378 lc->speed = 0; 7379 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 7380 if (lc->supported & FW_PORT_CAP_ANEG) { 7381 lc->advertising = lc->supported & ADVERT_MASK; 7382 lc->autoneg = AUTONEG_ENABLE; 7383 lc->requested_fc |= PAUSE_AUTONEG; 7384 } else { 7385 lc->advertising = 0; 7386 lc->autoneg = AUTONEG_DISABLE; 7387 } 7388 } 7389 7390 #define CIM_PF_NOACCESS 0xeeeeeeee 7391 7392 int t4_wait_dev_ready(void __iomem *regs) 7393 { 7394 u32 whoami; 7395 7396 whoami = readl(regs + PL_WHOAMI_A); 7397 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 7398 return 0; 7399 7400 msleep(500); 7401 whoami = readl(regs + PL_WHOAMI_A); 7402 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 7403 } 7404 7405 struct flash_desc { 7406 u32 vendor_and_model_id; 7407 u32 size_mb; 7408 }; 7409 7410 static int get_flash_params(struct adapter *adap) 7411 { 7412 /* Table for non-Numonix supported flash parts. Numonix parts are left 7413 * to the preexisting code. All flash parts have 64KB sectors. 7414 */ 7415 static struct flash_desc supported_flash[] = { 7416 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 7417 }; 7418 7419 int ret; 7420 u32 info; 7421 7422 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 7423 if (!ret) 7424 ret = sf1_read(adap, 3, 0, 1, &info); 7425 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 7426 if (ret) 7427 return ret; 7428 7429 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret) 7430 if (supported_flash[ret].vendor_and_model_id == info) { 7431 adap->params.sf_size = supported_flash[ret].size_mb; 7432 adap->params.sf_nsec = 7433 adap->params.sf_size / SF_SEC_SIZE; 7434 return 0; 7435 } 7436 7437 if ((info & 0xff) != 0x20) /* not a Numonix flash */ 7438 return -EINVAL; 7439 info >>= 16; /* log2 of size */ 7440 if (info >= 0x14 && info < 0x18) 7441 adap->params.sf_nsec = 1 << (info - 16); 7442 else if (info == 0x18) 7443 adap->params.sf_nsec = 64; 7444 else 7445 return -EINVAL; 7446 adap->params.sf_size = 1 << info; 7447 adap->params.sf_fw_start = 7448 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M; 7449 7450 if (adap->params.sf_size < FLASH_MIN_SIZE) 7451 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n", 7452 adap->params.sf_size, FLASH_MIN_SIZE); 7453 return 0; 7454 } 7455 7456 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range) 7457 { 7458 u16 val; 7459 u32 pcie_cap; 7460 7461 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 7462 if (pcie_cap) { 7463 pci_read_config_word(adapter->pdev, 7464 pcie_cap + PCI_EXP_DEVCTL2, &val); 7465 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT; 7466 val |= range; 7467 pci_write_config_word(adapter->pdev, 7468 pcie_cap + PCI_EXP_DEVCTL2, val); 7469 } 7470 } 7471 7472 /** 7473 * t4_prep_adapter - prepare SW and HW for operation 7474 * @adapter: the adapter 7475 * @reset: if true perform a HW reset 7476 * 7477 * Initialize adapter SW state for the various HW modules, set initial 7478 * values for some adapter tunables, take PHYs out of reset, and 7479 * initialize the MDIO interface. 7480 */ 7481 int t4_prep_adapter(struct adapter *adapter) 7482 { 7483 int ret, ver; 7484 uint16_t device_id; 7485 u32 pl_rev; 7486 7487 get_pci_mode(adapter, &adapter->params.pci); 7488 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 7489 7490 ret = get_flash_params(adapter); 7491 if (ret < 0) { 7492 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 7493 return ret; 7494 } 7495 7496 /* Retrieve adapter's device ID 7497 */ 7498 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 7499 ver = device_id >> 12; 7500 adapter->params.chip = 0; 7501 switch (ver) { 7502 case CHELSIO_T4: 7503 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 7504 adapter->params.arch.sge_fl_db = DBPRIO_F; 7505 adapter->params.arch.mps_tcam_size = 7506 NUM_MPS_CLS_SRAM_L_INSTANCES; 7507 adapter->params.arch.mps_rplc_size = 128; 7508 adapter->params.arch.nchan = NCHAN; 7509 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 7510 adapter->params.arch.vfcount = 128; 7511 /* Congestion map is for 4 channels so that 7512 * MPS can have 4 priority per port. 7513 */ 7514 adapter->params.arch.cng_ch_bits_log = 2; 7515 break; 7516 case CHELSIO_T5: 7517 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 7518 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 7519 adapter->params.arch.mps_tcam_size = 7520 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7521 adapter->params.arch.mps_rplc_size = 128; 7522 adapter->params.arch.nchan = NCHAN; 7523 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 7524 adapter->params.arch.vfcount = 128; 7525 adapter->params.arch.cng_ch_bits_log = 2; 7526 break; 7527 case CHELSIO_T6: 7528 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 7529 adapter->params.arch.sge_fl_db = 0; 7530 adapter->params.arch.mps_tcam_size = 7531 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7532 adapter->params.arch.mps_rplc_size = 256; 7533 adapter->params.arch.nchan = 2; 7534 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 7535 adapter->params.arch.vfcount = 256; 7536 /* Congestion map will be for 2 channels so that 7537 * MPS can have 8 priority per port. 7538 */ 7539 adapter->params.arch.cng_ch_bits_log = 3; 7540 break; 7541 default: 7542 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 7543 device_id); 7544 return -EINVAL; 7545 } 7546 7547 adapter->params.cim_la_size = CIMLA_SIZE; 7548 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 7549 7550 /* 7551 * Default port for debugging in case we can't reach FW. 7552 */ 7553 adapter->params.nports = 1; 7554 adapter->params.portvec = 1; 7555 adapter->params.vpd.cclk = 50000; 7556 7557 /* Set pci completion timeout value to 4 seconds. */ 7558 set_pcie_completion_timeout(adapter, 0xd); 7559 return 0; 7560 } 7561 7562 /** 7563 * t4_shutdown_adapter - shut down adapter, host & wire 7564 * @adapter: the adapter 7565 * 7566 * Perform an emergency shutdown of the adapter and stop it from 7567 * continuing any further communication on the ports or DMA to the 7568 * host. This is typically used when the adapter and/or firmware 7569 * have crashed and we want to prevent any further accidental 7570 * communication with the rest of the world. This will also force 7571 * the port Link Status to go down -- if register writes work -- 7572 * which should help our peers figure out that we're down. 7573 */ 7574 int t4_shutdown_adapter(struct adapter *adapter) 7575 { 7576 int port; 7577 7578 t4_intr_disable(adapter); 7579 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 7580 for_each_port(adapter, port) { 7581 u32 a_port_cfg = PORT_REG(port, 7582 is_t4(adapter->params.chip) 7583 ? XGMAC_PORT_CFG_A 7584 : MAC_PORT_CFG_A); 7585 7586 t4_write_reg(adapter, a_port_cfg, 7587 t4_read_reg(adapter, a_port_cfg) 7588 & ~SIGNAL_DET_V(1)); 7589 } 7590 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 7591 7592 return 0; 7593 } 7594 7595 /** 7596 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 7597 * @adapter: the adapter 7598 * @qid: the Queue ID 7599 * @qtype: the Ingress or Egress type for @qid 7600 * @user: true if this request is for a user mode queue 7601 * @pbar2_qoffset: BAR2 Queue Offset 7602 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 7603 * 7604 * Returns the BAR2 SGE Queue Registers information associated with the 7605 * indicated Absolute Queue ID. These are passed back in return value 7606 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 7607 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 7608 * 7609 * This may return an error which indicates that BAR2 SGE Queue 7610 * registers aren't available. If an error is not returned, then the 7611 * following values are returned: 7612 * 7613 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 7614 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 7615 * 7616 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 7617 * require the "Inferred Queue ID" ability may be used. E.g. the 7618 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 7619 * then these "Inferred Queue ID" register may not be used. 7620 */ 7621 int t4_bar2_sge_qregs(struct adapter *adapter, 7622 unsigned int qid, 7623 enum t4_bar2_qtype qtype, 7624 int user, 7625 u64 *pbar2_qoffset, 7626 unsigned int *pbar2_qid) 7627 { 7628 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 7629 u64 bar2_page_offset, bar2_qoffset; 7630 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 7631 7632 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 7633 if (!user && is_t4(adapter->params.chip)) 7634 return -EINVAL; 7635 7636 /* Get our SGE Page Size parameters. 7637 */ 7638 page_shift = adapter->params.sge.hps + 10; 7639 page_size = 1 << page_shift; 7640 7641 /* Get the right Queues per Page parameters for our Queue. 7642 */ 7643 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 7644 ? adapter->params.sge.eq_qpp 7645 : adapter->params.sge.iq_qpp); 7646 qpp_mask = (1 << qpp_shift) - 1; 7647 7648 /* Calculate the basics of the BAR2 SGE Queue register area: 7649 * o The BAR2 page the Queue registers will be in. 7650 * o The BAR2 Queue ID. 7651 * o The BAR2 Queue ID Offset into the BAR2 page. 7652 */ 7653 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 7654 bar2_qid = qid & qpp_mask; 7655 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 7656 7657 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 7658 * hardware will infer the Absolute Queue ID simply from the writes to 7659 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 7660 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 7661 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 7662 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 7663 * from the BAR2 Page and BAR2 Queue ID. 7664 * 7665 * One important censequence of this is that some BAR2 SGE registers 7666 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 7667 * there. But other registers synthesize the SGE Queue ID purely 7668 * from the writes to the registers -- the Write Combined Doorbell 7669 * Buffer is a good example. These BAR2 SGE Registers are only 7670 * available for those BAR2 SGE Register areas where the SGE Absolute 7671 * Queue ID can be inferred from simple writes. 7672 */ 7673 bar2_qoffset = bar2_page_offset; 7674 bar2_qinferred = (bar2_qid_offset < page_size); 7675 if (bar2_qinferred) { 7676 bar2_qoffset += bar2_qid_offset; 7677 bar2_qid = 0; 7678 } 7679 7680 *pbar2_qoffset = bar2_qoffset; 7681 *pbar2_qid = bar2_qid; 7682 return 0; 7683 } 7684 7685 /** 7686 * t4_init_devlog_params - initialize adapter->params.devlog 7687 * @adap: the adapter 7688 * 7689 * Initialize various fields of the adapter's Firmware Device Log 7690 * Parameters structure. 7691 */ 7692 int t4_init_devlog_params(struct adapter *adap) 7693 { 7694 struct devlog_params *dparams = &adap->params.devlog; 7695 u32 pf_dparams; 7696 unsigned int devlog_meminfo; 7697 struct fw_devlog_cmd devlog_cmd; 7698 int ret; 7699 7700 /* If we're dealing with newer firmware, the Device Log Paramerters 7701 * are stored in a designated register which allows us to access the 7702 * Device Log even if we can't talk to the firmware. 7703 */ 7704 pf_dparams = 7705 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 7706 if (pf_dparams) { 7707 unsigned int nentries, nentries128; 7708 7709 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 7710 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 7711 7712 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 7713 nentries = (nentries128 + 1) * 128; 7714 dparams->size = nentries * sizeof(struct fw_devlog_e); 7715 7716 return 0; 7717 } 7718 7719 /* Otherwise, ask the firmware for it's Device Log Parameters. 7720 */ 7721 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 7722 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 7723 FW_CMD_REQUEST_F | FW_CMD_READ_F); 7724 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 7725 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 7726 &devlog_cmd); 7727 if (ret) 7728 return ret; 7729 7730 devlog_meminfo = 7731 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 7732 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 7733 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 7734 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 7735 7736 return 0; 7737 } 7738 7739 /** 7740 * t4_init_sge_params - initialize adap->params.sge 7741 * @adapter: the adapter 7742 * 7743 * Initialize various fields of the adapter's SGE Parameters structure. 7744 */ 7745 int t4_init_sge_params(struct adapter *adapter) 7746 { 7747 struct sge_params *sge_params = &adapter->params.sge; 7748 u32 hps, qpp; 7749 unsigned int s_hps, s_qpp; 7750 7751 /* Extract the SGE Page Size for our PF. 7752 */ 7753 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 7754 s_hps = (HOSTPAGESIZEPF0_S + 7755 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 7756 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 7757 7758 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 7759 */ 7760 s_qpp = (QUEUESPERPAGEPF0_S + 7761 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 7762 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 7763 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 7764 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 7765 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 7766 7767 return 0; 7768 } 7769 7770 /** 7771 * t4_init_tp_params - initialize adap->params.tp 7772 * @adap: the adapter 7773 * 7774 * Initialize various fields of the adapter's TP Parameters structure. 7775 */ 7776 int t4_init_tp_params(struct adapter *adap) 7777 { 7778 int chan; 7779 u32 v; 7780 7781 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 7782 adap->params.tp.tre = TIMERRESOLUTION_G(v); 7783 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 7784 7785 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 7786 for (chan = 0; chan < NCHAN; chan++) 7787 adap->params.tp.tx_modq[chan] = chan; 7788 7789 /* Cache the adapter's Compressed Filter Mode and global Incress 7790 * Configuration. 7791 */ 7792 if (t4_use_ldst(adap)) { 7793 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1, 7794 TP_VLAN_PRI_MAP_A, 1); 7795 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1, 7796 TP_INGRESS_CONFIG_A, 1); 7797 } else { 7798 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 7799 &adap->params.tp.vlan_pri_map, 1, 7800 TP_VLAN_PRI_MAP_A); 7801 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 7802 &adap->params.tp.ingress_config, 1, 7803 TP_INGRESS_CONFIG_A); 7804 } 7805 /* For T6, cache the adapter's compressed error vector 7806 * and passing outer header info for encapsulated packets. 7807 */ 7808 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 7809 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 7810 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 7811 } 7812 7813 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 7814 * shift positions of several elements of the Compressed Filter Tuple 7815 * for this adapter which we need frequently ... 7816 */ 7817 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 7818 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 7819 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 7820 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 7821 PROTOCOL_F); 7822 7823 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 7824 * represents the presence of an Outer VLAN instead of a VNIC ID. 7825 */ 7826 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 7827 adap->params.tp.vnic_shift = -1; 7828 7829 return 0; 7830 } 7831 7832 /** 7833 * t4_filter_field_shift - calculate filter field shift 7834 * @adap: the adapter 7835 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 7836 * 7837 * Return the shift position of a filter field within the Compressed 7838 * Filter Tuple. The filter field is specified via its selection bit 7839 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 7840 */ 7841 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 7842 { 7843 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 7844 unsigned int sel; 7845 int field_shift; 7846 7847 if ((filter_mode & filter_sel) == 0) 7848 return -1; 7849 7850 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 7851 switch (filter_mode & sel) { 7852 case FCOE_F: 7853 field_shift += FT_FCOE_W; 7854 break; 7855 case PORT_F: 7856 field_shift += FT_PORT_W; 7857 break; 7858 case VNIC_ID_F: 7859 field_shift += FT_VNIC_ID_W; 7860 break; 7861 case VLAN_F: 7862 field_shift += FT_VLAN_W; 7863 break; 7864 case TOS_F: 7865 field_shift += FT_TOS_W; 7866 break; 7867 case PROTOCOL_F: 7868 field_shift += FT_PROTOCOL_W; 7869 break; 7870 case ETHERTYPE_F: 7871 field_shift += FT_ETHERTYPE_W; 7872 break; 7873 case MACMATCH_F: 7874 field_shift += FT_MACMATCH_W; 7875 break; 7876 case MPSHITTYPE_F: 7877 field_shift += FT_MPSHITTYPE_W; 7878 break; 7879 case FRAGMENTATION_F: 7880 field_shift += FT_FRAGMENTATION_W; 7881 break; 7882 } 7883 } 7884 return field_shift; 7885 } 7886 7887 int t4_init_rss_mode(struct adapter *adap, int mbox) 7888 { 7889 int i, ret; 7890 struct fw_rss_vi_config_cmd rvc; 7891 7892 memset(&rvc, 0, sizeof(rvc)); 7893 7894 for_each_port(adap, i) { 7895 struct port_info *p = adap2pinfo(adap, i); 7896 7897 rvc.op_to_viid = 7898 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 7899 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7900 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 7901 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 7902 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 7903 if (ret) 7904 return ret; 7905 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 7906 } 7907 return 0; 7908 } 7909 7910 /** 7911 * t4_init_portinfo - allocate a virtual interface amd initialize port_info 7912 * @pi: the port_info 7913 * @mbox: mailbox to use for the FW command 7914 * @port: physical port associated with the VI 7915 * @pf: the PF owning the VI 7916 * @vf: the VF owning the VI 7917 * @mac: the MAC address of the VI 7918 * 7919 * Allocates a virtual interface for the given physical port. If @mac is 7920 * not %NULL it contains the MAC address of the VI as assigned by FW. 7921 * @mac should be large enough to hold an Ethernet address. 7922 * Returns < 0 on error. 7923 */ 7924 int t4_init_portinfo(struct port_info *pi, int mbox, 7925 int port, int pf, int vf, u8 mac[]) 7926 { 7927 int ret; 7928 struct fw_port_cmd c; 7929 unsigned int rss_size; 7930 7931 memset(&c, 0, sizeof(c)); 7932 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 7933 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7934 FW_PORT_CMD_PORTID_V(port)); 7935 c.action_to_len16 = cpu_to_be32( 7936 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 7937 FW_LEN16(c)); 7938 ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c); 7939 if (ret) 7940 return ret; 7941 7942 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 7943 if (ret < 0) 7944 return ret; 7945 7946 pi->viid = ret; 7947 pi->tx_chan = port; 7948 pi->lport = port; 7949 pi->rss_size = rss_size; 7950 7951 ret = be32_to_cpu(c.u.info.lstatus_to_modtype); 7952 pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ? 7953 FW_PORT_CMD_MDIOADDR_G(ret) : -1; 7954 pi->port_type = FW_PORT_CMD_PTYPE_G(ret); 7955 pi->mod_type = FW_PORT_MOD_TYPE_NA; 7956 7957 init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap)); 7958 return 0; 7959 } 7960 7961 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 7962 { 7963 u8 addr[6]; 7964 int ret, i, j = 0; 7965 7966 for_each_port(adap, i) { 7967 struct port_info *pi = adap2pinfo(adap, i); 7968 7969 while ((adap->params.portvec & (1 << j)) == 0) 7970 j++; 7971 7972 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 7973 if (ret) 7974 return ret; 7975 7976 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 7977 j++; 7978 } 7979 return 0; 7980 } 7981 7982 /** 7983 * t4_read_cimq_cfg - read CIM queue configuration 7984 * @adap: the adapter 7985 * @base: holds the queue base addresses in bytes 7986 * @size: holds the queue sizes in bytes 7987 * @thres: holds the queue full thresholds in bytes 7988 * 7989 * Returns the current configuration of the CIM queues, starting with 7990 * the IBQs, then the OBQs. 7991 */ 7992 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 7993 { 7994 unsigned int i, v; 7995 int cim_num_obq = is_t4(adap->params.chip) ? 7996 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 7997 7998 for (i = 0; i < CIM_NUM_IBQ; i++) { 7999 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 8000 QUENUMSELECT_V(i)); 8001 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 8002 /* value is in 256-byte units */ 8003 *base++ = CIMQBASE_G(v) * 256; 8004 *size++ = CIMQSIZE_G(v) * 256; 8005 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 8006 } 8007 for (i = 0; i < cim_num_obq; i++) { 8008 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 8009 QUENUMSELECT_V(i)); 8010 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 8011 /* value is in 256-byte units */ 8012 *base++ = CIMQBASE_G(v) * 256; 8013 *size++ = CIMQSIZE_G(v) * 256; 8014 } 8015 } 8016 8017 /** 8018 * t4_read_cim_ibq - read the contents of a CIM inbound queue 8019 * @adap: the adapter 8020 * @qid: the queue index 8021 * @data: where to store the queue contents 8022 * @n: capacity of @data in 32-bit words 8023 * 8024 * Reads the contents of the selected CIM queue starting at address 0 up 8025 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 8026 * error and the number of 32-bit words actually read on success. 8027 */ 8028 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 8029 { 8030 int i, err, attempts; 8031 unsigned int addr; 8032 const unsigned int nwords = CIM_IBQ_SIZE * 4; 8033 8034 if (qid > 5 || (n & 3)) 8035 return -EINVAL; 8036 8037 addr = qid * nwords; 8038 if (n > nwords) 8039 n = nwords; 8040 8041 /* It might take 3-10ms before the IBQ debug read access is allowed. 8042 * Wait for 1 Sec with a delay of 1 usec. 8043 */ 8044 attempts = 1000000; 8045 8046 for (i = 0; i < n; i++, addr++) { 8047 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 8048 IBQDBGEN_F); 8049 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 8050 attempts, 1); 8051 if (err) 8052 return err; 8053 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 8054 } 8055 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 8056 return i; 8057 } 8058 8059 /** 8060 * t4_read_cim_obq - read the contents of a CIM outbound queue 8061 * @adap: the adapter 8062 * @qid: the queue index 8063 * @data: where to store the queue contents 8064 * @n: capacity of @data in 32-bit words 8065 * 8066 * Reads the contents of the selected CIM queue starting at address 0 up 8067 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 8068 * error and the number of 32-bit words actually read on success. 8069 */ 8070 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 8071 { 8072 int i, err; 8073 unsigned int addr, v, nwords; 8074 int cim_num_obq = is_t4(adap->params.chip) ? 8075 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 8076 8077 if ((qid > (cim_num_obq - 1)) || (n & 3)) 8078 return -EINVAL; 8079 8080 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 8081 QUENUMSELECT_V(qid)); 8082 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 8083 8084 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 8085 nwords = CIMQSIZE_G(v) * 64; /* same */ 8086 if (n > nwords) 8087 n = nwords; 8088 8089 for (i = 0; i < n; i++, addr++) { 8090 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 8091 OBQDBGEN_F); 8092 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 8093 2, 1); 8094 if (err) 8095 return err; 8096 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 8097 } 8098 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 8099 return i; 8100 } 8101 8102 /** 8103 * t4_cim_read - read a block from CIM internal address space 8104 * @adap: the adapter 8105 * @addr: the start address within the CIM address space 8106 * @n: number of words to read 8107 * @valp: where to store the result 8108 * 8109 * Reads a block of 4-byte words from the CIM intenal address space. 8110 */ 8111 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 8112 unsigned int *valp) 8113 { 8114 int ret = 0; 8115 8116 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 8117 return -EBUSY; 8118 8119 for ( ; !ret && n--; addr += 4) { 8120 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 8121 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 8122 0, 5, 2); 8123 if (!ret) 8124 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 8125 } 8126 return ret; 8127 } 8128 8129 /** 8130 * t4_cim_write - write a block into CIM internal address space 8131 * @adap: the adapter 8132 * @addr: the start address within the CIM address space 8133 * @n: number of words to write 8134 * @valp: set of values to write 8135 * 8136 * Writes a block of 4-byte words into the CIM intenal address space. 8137 */ 8138 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 8139 const unsigned int *valp) 8140 { 8141 int ret = 0; 8142 8143 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 8144 return -EBUSY; 8145 8146 for ( ; !ret && n--; addr += 4) { 8147 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 8148 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 8149 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 8150 0, 5, 2); 8151 } 8152 return ret; 8153 } 8154 8155 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 8156 unsigned int val) 8157 { 8158 return t4_cim_write(adap, addr, 1, &val); 8159 } 8160 8161 /** 8162 * t4_cim_read_la - read CIM LA capture buffer 8163 * @adap: the adapter 8164 * @la_buf: where to store the LA data 8165 * @wrptr: the HW write pointer within the capture buffer 8166 * 8167 * Reads the contents of the CIM LA buffer with the most recent entry at 8168 * the end of the returned data and with the entry at @wrptr first. 8169 * We try to leave the LA in the running state we find it in. 8170 */ 8171 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 8172 { 8173 int i, ret; 8174 unsigned int cfg, val, idx; 8175 8176 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 8177 if (ret) 8178 return ret; 8179 8180 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 8181 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 8182 if (ret) 8183 return ret; 8184 } 8185 8186 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 8187 if (ret) 8188 goto restart; 8189 8190 idx = UPDBGLAWRPTR_G(val); 8191 if (wrptr) 8192 *wrptr = idx; 8193 8194 for (i = 0; i < adap->params.cim_la_size; i++) { 8195 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 8196 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 8197 if (ret) 8198 break; 8199 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 8200 if (ret) 8201 break; 8202 if (val & UPDBGLARDEN_F) { 8203 ret = -ETIMEDOUT; 8204 break; 8205 } 8206 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 8207 if (ret) 8208 break; 8209 idx = (idx + 1) & UPDBGLARDPTR_M; 8210 } 8211 restart: 8212 if (cfg & UPDBGLAEN_F) { 8213 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 8214 cfg & ~UPDBGLARDEN_F); 8215 if (!ret) 8216 ret = r; 8217 } 8218 return ret; 8219 } 8220 8221 /** 8222 * t4_tp_read_la - read TP LA capture buffer 8223 * @adap: the adapter 8224 * @la_buf: where to store the LA data 8225 * @wrptr: the HW write pointer within the capture buffer 8226 * 8227 * Reads the contents of the TP LA buffer with the most recent entry at 8228 * the end of the returned data and with the entry at @wrptr first. 8229 * We leave the LA in the running state we find it in. 8230 */ 8231 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 8232 { 8233 bool last_incomplete; 8234 unsigned int i, cfg, val, idx; 8235 8236 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 8237 if (cfg & DBGLAENABLE_F) /* freeze LA */ 8238 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 8239 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 8240 8241 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 8242 idx = DBGLAWPTR_G(val); 8243 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 8244 if (last_incomplete) 8245 idx = (idx + 1) & DBGLARPTR_M; 8246 if (wrptr) 8247 *wrptr = idx; 8248 8249 val &= 0xffff; 8250 val &= ~DBGLARPTR_V(DBGLARPTR_M); 8251 val |= adap->params.tp.la_mask; 8252 8253 for (i = 0; i < TPLA_SIZE; i++) { 8254 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 8255 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 8256 idx = (idx + 1) & DBGLARPTR_M; 8257 } 8258 8259 /* Wipe out last entry if it isn't valid */ 8260 if (last_incomplete) 8261 la_buf[TPLA_SIZE - 1] = ~0ULL; 8262 8263 if (cfg & DBGLAENABLE_F) /* restore running state */ 8264 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 8265 cfg | adap->params.tp.la_mask); 8266 } 8267 8268 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 8269 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 8270 * state for more than the Warning Threshold then we'll issue a warning about 8271 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 8272 * appears to be hung every Warning Repeat second till the situation clears. 8273 * If the situation clears, we'll note that as well. 8274 */ 8275 #define SGE_IDMA_WARN_THRESH 1 8276 #define SGE_IDMA_WARN_REPEAT 300 8277 8278 /** 8279 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 8280 * @adapter: the adapter 8281 * @idma: the adapter IDMA Monitor state 8282 * 8283 * Initialize the state of an SGE Ingress DMA Monitor. 8284 */ 8285 void t4_idma_monitor_init(struct adapter *adapter, 8286 struct sge_idma_monitor_state *idma) 8287 { 8288 /* Initialize the state variables for detecting an SGE Ingress DMA 8289 * hang. The SGE has internal counters which count up on each clock 8290 * tick whenever the SGE finds its Ingress DMA State Engines in the 8291 * same state they were on the previous clock tick. The clock used is 8292 * the Core Clock so we have a limit on the maximum "time" they can 8293 * record; typically a very small number of seconds. For instance, 8294 * with a 600MHz Core Clock, we can only count up to a bit more than 8295 * 7s. So we'll synthesize a larger counter in order to not run the 8296 * risk of having the "timers" overflow and give us the flexibility to 8297 * maintain a Hung SGE State Machine of our own which operates across 8298 * a longer time frame. 8299 */ 8300 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 8301 idma->idma_stalled[0] = 0; 8302 idma->idma_stalled[1] = 0; 8303 } 8304 8305 /** 8306 * t4_idma_monitor - monitor SGE Ingress DMA state 8307 * @adapter: the adapter 8308 * @idma: the adapter IDMA Monitor state 8309 * @hz: number of ticks/second 8310 * @ticks: number of ticks since the last IDMA Monitor call 8311 */ 8312 void t4_idma_monitor(struct adapter *adapter, 8313 struct sge_idma_monitor_state *idma, 8314 int hz, int ticks) 8315 { 8316 int i, idma_same_state_cnt[2]; 8317 8318 /* Read the SGE Debug Ingress DMA Same State Count registers. These 8319 * are counters inside the SGE which count up on each clock when the 8320 * SGE finds its Ingress DMA State Engines in the same states they 8321 * were in the previous clock. The counters will peg out at 8322 * 0xffffffff without wrapping around so once they pass the 1s 8323 * threshold they'll stay above that till the IDMA state changes. 8324 */ 8325 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 8326 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 8327 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8328 8329 for (i = 0; i < 2; i++) { 8330 u32 debug0, debug11; 8331 8332 /* If the Ingress DMA Same State Counter ("timer") is less 8333 * than 1s, then we can reset our synthesized Stall Timer and 8334 * continue. If we have previously emitted warnings about a 8335 * potential stalled Ingress Queue, issue a note indicating 8336 * that the Ingress Queue has resumed forward progress. 8337 */ 8338 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 8339 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 8340 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 8341 "resumed after %d seconds\n", 8342 i, idma->idma_qid[i], 8343 idma->idma_stalled[i] / hz); 8344 idma->idma_stalled[i] = 0; 8345 continue; 8346 } 8347 8348 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 8349 * domain. The first time we get here it'll be because we 8350 * passed the 1s Threshold; each additional time it'll be 8351 * because the RX Timer Callback is being fired on its regular 8352 * schedule. 8353 * 8354 * If the stall is below our Potential Hung Ingress Queue 8355 * Warning Threshold, continue. 8356 */ 8357 if (idma->idma_stalled[i] == 0) { 8358 idma->idma_stalled[i] = hz; 8359 idma->idma_warn[i] = 0; 8360 } else { 8361 idma->idma_stalled[i] += ticks; 8362 idma->idma_warn[i] -= ticks; 8363 } 8364 8365 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 8366 continue; 8367 8368 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 8369 */ 8370 if (idma->idma_warn[i] > 0) 8371 continue; 8372 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 8373 8374 /* Read and save the SGE IDMA State and Queue ID information. 8375 * We do this every time in case it changes across time ... 8376 * can't be too careful ... 8377 */ 8378 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 8379 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8380 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 8381 8382 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 8383 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8384 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 8385 8386 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 8387 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 8388 i, idma->idma_qid[i], idma->idma_state[i], 8389 idma->idma_stalled[i] / hz, 8390 debug0, debug11); 8391 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 8392 } 8393 } 8394 8395 /** 8396 * t4_set_vf_mac - Set MAC address for the specified VF 8397 * @adapter: The adapter 8398 * @vf: one of the VFs instantiated by the specified PF 8399 * @naddr: the number of MAC addresses 8400 * @addr: the MAC address(es) to be set to the specified VF 8401 */ 8402 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 8403 unsigned int naddr, u8 *addr) 8404 { 8405 struct fw_acl_mac_cmd cmd; 8406 8407 memset(&cmd, 0, sizeof(cmd)); 8408 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 8409 FW_CMD_REQUEST_F | 8410 FW_CMD_WRITE_F | 8411 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 8412 FW_ACL_MAC_CMD_VFN_V(vf)); 8413 8414 /* Note: Do not enable the ACL */ 8415 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 8416 cmd.nmac = naddr; 8417 8418 switch (adapter->pf) { 8419 case 3: 8420 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 8421 break; 8422 case 2: 8423 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 8424 break; 8425 case 1: 8426 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 8427 break; 8428 case 0: 8429 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 8430 break; 8431 } 8432 8433 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 8434 } 8435 8436 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 8437 int rateunit, int ratemode, int channel, int class, 8438 int minrate, int maxrate, int weight, int pktsize) 8439 { 8440 struct fw_sched_cmd cmd; 8441 8442 memset(&cmd, 0, sizeof(cmd)); 8443 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 8444 FW_CMD_REQUEST_F | 8445 FW_CMD_WRITE_F); 8446 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 8447 8448 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 8449 cmd.u.params.type = type; 8450 cmd.u.params.level = level; 8451 cmd.u.params.mode = mode; 8452 cmd.u.params.ch = channel; 8453 cmd.u.params.cl = class; 8454 cmd.u.params.unit = rateunit; 8455 cmd.u.params.rate = ratemode; 8456 cmd.u.params.min = cpu_to_be32(minrate); 8457 cmd.u.params.max = cpu_to_be32(maxrate); 8458 cmd.u.params.weight = cpu_to_be16(weight); 8459 cmd.u.params.pktsize = cpu_to_be16(pktsize); 8460 8461 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 8462 NULL, 1); 8463 } 8464