1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 /**
228  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *	@adapter: the adapter
230  *	@cmd: the Firmware Mailbox Command or Reply
231  *	@size: command length in bytes
232  *	@access: the time (ms) needed to access the Firmware Mailbox
233  *	@execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236 			   const __be64 *cmd, unsigned int size,
237 			   int access, int execute)
238 {
239 	struct mbox_cmd_log *log = adapter->mbox_log;
240 	struct mbox_cmd *entry;
241 	int i;
242 
243 	entry = mbox_cmd_log_entry(log, log->cursor++);
244 	if (log->cursor == log->size)
245 		log->cursor = 0;
246 
247 	for (i = 0; i < size / 8; i++)
248 		entry->cmd[i] = be64_to_cpu(cmd[i]);
249 	while (i < MBOX_LEN / 8)
250 		entry->cmd[i++] = 0;
251 	entry->timestamp = jiffies;
252 	entry->seqno = log->seqno++;
253 	entry->access = access;
254 	entry->execute = execute;
255 }
256 
257 /**
258  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *	@adap: the adapter
260  *	@mbox: index of the mailbox to use
261  *	@cmd: the command to write
262  *	@size: command length in bytes
263  *	@rpl: where to optionally store the reply
264  *	@sleep_ok: if true we may sleep while awaiting command completion
265  *	@timeout: time to wait for command to finish before timing out
266  *
267  *	Sends the given command to FW through the selected mailbox and waits
268  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *	store the FW's reply to the command.  The command and its optional
270  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *	the response.  If sleeping is allowed we use progressive backoff
273  *	otherwise we spin.
274  *
275  *	The return value is 0 on success or a negative errno on failure.  A
276  *	failure can happen either because we are not able to execute the
277  *	command or FW executes it but signals an error.  In the latter case
278  *	the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 			    int size, void *rpl, bool sleep_ok, int timeout)
282 {
283 	static const int delay[] = {
284 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 	};
286 
287 	struct mbox_list entry;
288 	u16 access = 0;
289 	u16 execute = 0;
290 	u32 v;
291 	u64 res;
292 	int i, ms, delay_idx, ret;
293 	const __be64 *p = cmd;
294 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
296 	__be64 cmd_rpl[MBOX_LEN / 8];
297 	u32 pcie_fw;
298 
299 	if ((size & 15) || size > MBOX_LEN)
300 		return -EINVAL;
301 
302 	/*
303 	 * If the device is off-line, as in EEH, commands will time out.
304 	 * Fail them early so we don't waste time waiting.
305 	 */
306 	if (adap->pdev->error_state != pci_channel_io_normal)
307 		return -EIO;
308 
309 	/* If we have a negative timeout, that implies that we can't sleep. */
310 	if (timeout < 0) {
311 		sleep_ok = false;
312 		timeout = -timeout;
313 	}
314 
315 	/* Queue ourselves onto the mailbox access list.  When our entry is at
316 	 * the front of the list, we have rights to access the mailbox.  So we
317 	 * wait [for a while] till we're at the front [or bail out with an
318 	 * EBUSY] ...
319 	 */
320 	spin_lock(&adap->mbox_lock);
321 	list_add_tail(&entry.list, &adap->mlist.list);
322 	spin_unlock(&adap->mbox_lock);
323 
324 	delay_idx = 0;
325 	ms = delay[0];
326 
327 	for (i = 0; ; i += ms) {
328 		/* If we've waited too long, return a busy indication.  This
329 		 * really ought to be based on our initial position in the
330 		 * mailbox access list but this is a start.  We very rearely
331 		 * contend on access to the mailbox ...
332 		 */
333 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
335 			spin_lock(&adap->mbox_lock);
336 			list_del(&entry.list);
337 			spin_unlock(&adap->mbox_lock);
338 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
339 			t4_record_mbox(adap, cmd, size, access, ret);
340 			return ret;
341 		}
342 
343 		/* If we're at the head, break out and start the mailbox
344 		 * protocol.
345 		 */
346 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
347 				     list) == &entry)
348 			break;
349 
350 		/* Delay for a bit before checking again ... */
351 		if (sleep_ok) {
352 			ms = delay[delay_idx];  /* last element may repeat */
353 			if (delay_idx < ARRAY_SIZE(delay) - 1)
354 				delay_idx++;
355 			msleep(ms);
356 		} else {
357 			mdelay(ms);
358 		}
359 	}
360 
361 	/* Loop trying to get ownership of the mailbox.  Return an error
362 	 * if we can't gain ownership.
363 	 */
364 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
365 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
366 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	if (v != MBOX_OWNER_DRV) {
368 		spin_lock(&adap->mbox_lock);
369 		list_del(&entry.list);
370 		spin_unlock(&adap->mbox_lock);
371 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372 		t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
373 		return ret;
374 	}
375 
376 	/* Copy in the new mailbox command and send it on its way ... */
377 	t4_record_mbox(adap, cmd, MBOX_LEN, access, 0);
378 	for (i = 0; i < size; i += 8)
379 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380 
381 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
382 	t4_read_reg(adap, ctl_reg);          /* flush write */
383 
384 	delay_idx = 0;
385 	ms = delay[0];
386 
387 	for (i = 0;
388 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389 	     i < timeout;
390 	     i += ms) {
391 		if (sleep_ok) {
392 			ms = delay[delay_idx];  /* last element may repeat */
393 			if (delay_idx < ARRAY_SIZE(delay) - 1)
394 				delay_idx++;
395 			msleep(ms);
396 		} else
397 			mdelay(ms);
398 
399 		v = t4_read_reg(adap, ctl_reg);
400 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401 			if (!(v & MBMSGVALID_F)) {
402 				t4_write_reg(adap, ctl_reg, 0);
403 				continue;
404 			}
405 
406 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407 			res = be64_to_cpu(cmd_rpl[0]);
408 
409 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
410 				fw_asrt(adap, data_reg);
411 				res = FW_CMD_RETVAL_V(EIO);
412 			} else if (rpl) {
413 				memcpy(rpl, cmd_rpl, size);
414 			}
415 
416 			t4_write_reg(adap, ctl_reg, 0);
417 
418 			execute = i + ms;
419 			t4_record_mbox(adap, cmd_rpl,
420 				       MBOX_LEN, access, execute);
421 			spin_lock(&adap->mbox_lock);
422 			list_del(&entry.list);
423 			spin_unlock(&adap->mbox_lock);
424 			return -FW_CMD_RETVAL_G((int)res);
425 		}
426 	}
427 
428 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
429 	t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
430 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431 		*(const u8 *)cmd, mbox);
432 	t4_report_fw_error(adap);
433 	spin_lock(&adap->mbox_lock);
434 	list_del(&entry.list);
435 	spin_unlock(&adap->mbox_lock);
436 	t4_fatal_err(adap);
437 	return ret;
438 }
439 
440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 		    void *rpl, bool sleep_ok)
442 {
443 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444 				       FW_CMD_MAX_TIMEOUT);
445 }
446 
447 static int t4_edc_err_read(struct adapter *adap, int idx)
448 {
449 	u32 edc_ecc_err_addr_reg;
450 	u32 rdata_reg;
451 
452 	if (is_t4(adap->params.chip)) {
453 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454 		return 0;
455 	}
456 	if (idx != 0 && idx != 1) {
457 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458 		return 0;
459 	}
460 
461 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463 
464 	CH_WARN(adap,
465 		"edc%d err addr 0x%x: 0x%x.\n",
466 		idx, edc_ecc_err_addr_reg,
467 		t4_read_reg(adap, edc_ecc_err_addr_reg));
468 	CH_WARN(adap,
469 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470 		rdata_reg,
471 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
472 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480 
481 	return 0;
482 }
483 
484 /**
485  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486  *	@adap: the adapter
487  *	@win: PCI-E Memory Window to use
488  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489  *	@addr: address within indicated memory type
490  *	@len: amount of memory to transfer
491  *	@hbuf: host memory buffer
492  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
493  *
494  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
495  *	firmware memory address and host buffer must be aligned on 32-bit
496  *	boudaries; the length may be arbitrary.  The memory is transferred as
497  *	a raw byte sequence from/to the firmware's memory.  If this memory
498  *	contains data structures which contain multi-byte integers, it's the
499  *	caller's responsibility to perform appropriate byte order conversions.
500  */
501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
502 		 u32 len, void *hbuf, int dir)
503 {
504 	u32 pos, offset, resid, memoffset;
505 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
506 	u32 *buf;
507 
508 	/* Argument sanity checks ...
509 	 */
510 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
511 		return -EINVAL;
512 	buf = (u32 *)hbuf;
513 
514 	/* It's convenient to be able to handle lengths which aren't a
515 	 * multiple of 32-bits because we often end up transferring files to
516 	 * the firmware.  So we'll handle that by normalizing the length here
517 	 * and then handling any residual transfer at the end.
518 	 */
519 	resid = len & 0x3;
520 	len -= resid;
521 
522 	/* Offset into the region of memory which is being accessed
523 	 * MEM_EDC0 = 0
524 	 * MEM_EDC1 = 1
525 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
526 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
527 	 */
528 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
529 	if (mtype != MEM_MC1)
530 		memoffset = (mtype * (edc_size * 1024 * 1024));
531 	else {
532 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
533 						      MA_EXT_MEMORY0_BAR_A));
534 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
535 	}
536 
537 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
538 	addr = addr + memoffset;
539 
540 	/* Each PCI-E Memory Window is programmed with a window size -- or
541 	 * "aperture" -- which controls the granularity of its mapping onto
542 	 * adapter memory.  We need to grab that aperture in order to know
543 	 * how to use the specified window.  The window is also programmed
544 	 * with the base address of the Memory Window in BAR0's address
545 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
546 	 * the address is relative to BAR0.
547 	 */
548 	mem_reg = t4_read_reg(adap,
549 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
550 						  win));
551 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
552 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
553 	if (is_t4(adap->params.chip))
554 		mem_base -= adap->t4_bar0;
555 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
556 
557 	/* Calculate our initial PCI-E Memory Window Position and Offset into
558 	 * that Window.
559 	 */
560 	pos = addr & ~(mem_aperture-1);
561 	offset = addr - pos;
562 
563 	/* Set up initial PCI-E Memory Window to cover the start of our
564 	 * transfer.  (Read it back to ensure that changes propagate before we
565 	 * attempt to use the new value.)
566 	 */
567 	t4_write_reg(adap,
568 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
569 		     pos | win_pf);
570 	t4_read_reg(adap,
571 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
572 
573 	/* Transfer data to/from the adapter as long as there's an integral
574 	 * number of 32-bit transfers to complete.
575 	 *
576 	 * A note on Endianness issues:
577 	 *
578 	 * The "register" reads and writes below from/to the PCI-E Memory
579 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
580 	 * Little-Endian "swizzel."  As a result, if we have the following
581 	 * data in adapter memory:
582 	 *
583 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
584 	 *     Address:      i+0  i+1  i+2  i+3
585 	 *
586 	 * Then a read of the adapter memory via the PCI-E Memory Window
587 	 * will yield:
588 	 *
589 	 *     x = readl(i)
590 	 *         31                  0
591 	 *         [ b3 | b2 | b1 | b0 ]
592 	 *
593 	 * If this value is stored into local memory on a Little-Endian system
594 	 * it will show up correctly in local memory as:
595 	 *
596 	 *     ( ..., b0, b1, b2, b3, ... )
597 	 *
598 	 * But on a Big-Endian system, the store will show up in memory
599 	 * incorrectly swizzled as:
600 	 *
601 	 *     ( ..., b3, b2, b1, b0, ... )
602 	 *
603 	 * So we need to account for this in the reads and writes to the
604 	 * PCI-E Memory Window below by undoing the register read/write
605 	 * swizzels.
606 	 */
607 	while (len > 0) {
608 		if (dir == T4_MEMORY_READ)
609 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
610 						mem_base + offset));
611 		else
612 			t4_write_reg(adap, mem_base + offset,
613 				     (__force u32)cpu_to_le32(*buf++));
614 		offset += sizeof(__be32);
615 		len -= sizeof(__be32);
616 
617 		/* If we've reached the end of our current window aperture,
618 		 * move the PCI-E Memory Window on to the next.  Note that
619 		 * doing this here after "len" may be 0 allows us to set up
620 		 * the PCI-E Memory Window for a possible final residual
621 		 * transfer below ...
622 		 */
623 		if (offset == mem_aperture) {
624 			pos += mem_aperture;
625 			offset = 0;
626 			t4_write_reg(adap,
627 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
628 						    win), pos | win_pf);
629 			t4_read_reg(adap,
630 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631 						    win));
632 		}
633 	}
634 
635 	/* If the original transfer had a length which wasn't a multiple of
636 	 * 32-bits, now's where we need to finish off the transfer of the
637 	 * residual amount.  The PCI-E Memory Window has already been moved
638 	 * above (if necessary) to cover this final transfer.
639 	 */
640 	if (resid) {
641 		union {
642 			u32 word;
643 			char byte[4];
644 		} last;
645 		unsigned char *bp;
646 		int i;
647 
648 		if (dir == T4_MEMORY_READ) {
649 			last.word = le32_to_cpu(
650 					(__force __le32)t4_read_reg(adap,
651 						mem_base + offset));
652 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
653 				bp[i] = last.byte[i];
654 		} else {
655 			last.word = *buf;
656 			for (i = resid; i < 4; i++)
657 				last.byte[i] = 0;
658 			t4_write_reg(adap, mem_base + offset,
659 				     (__force u32)cpu_to_le32(last.word));
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 /* Return the specified PCI-E Configuration Space register from our Physical
667  * Function.  We try first via a Firmware LDST Command since we prefer to let
668  * the firmware own all of these registers, but if that fails we go for it
669  * directly ourselves.
670  */
671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
672 {
673 	u32 val, ldst_addrspace;
674 
675 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
676 	 * retrieve the specified PCI-E Configuration Space register.
677 	 */
678 	struct fw_ldst_cmd ldst_cmd;
679 	int ret;
680 
681 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
682 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
683 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
684 					       FW_CMD_REQUEST_F |
685 					       FW_CMD_READ_F |
686 					       ldst_addrspace);
687 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
688 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
689 	ldst_cmd.u.pcie.ctrl_to_fn =
690 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
691 	ldst_cmd.u.pcie.r = reg;
692 
693 	/* If the LDST Command succeeds, return the result, otherwise
694 	 * fall through to reading it directly ourselves ...
695 	 */
696 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697 			 &ldst_cmd);
698 	if (ret == 0)
699 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700 	else
701 		/* Read the desired Configuration Space register via the PCI-E
702 		 * Backdoor mechanism.
703 		 */
704 		t4_hw_pci_read_cfg4(adap, reg, &val);
705 	return val;
706 }
707 
708 /* Get the window based on base passed to it.
709  * Window aperture is currently unhandled, but there is no use case for it
710  * right now
711  */
712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
713 			 u32 memwin_base)
714 {
715 	u32 ret;
716 
717 	if (is_t4(adap->params.chip)) {
718 		u32 bar0;
719 
720 		/* Truncation intentional: we only read the bottom 32-bits of
721 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
722 		 * mechanism to read BAR0 instead of using
723 		 * pci_resource_start() because we could be operating from
724 		 * within a Virtual Machine which is trapping our accesses to
725 		 * our Configuration Space and we need to set up the PCI-E
726 		 * Memory Window decoders with the actual addresses which will
727 		 * be coming across the PCI-E link.
728 		 */
729 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
730 		bar0 &= pci_mask;
731 		adap->t4_bar0 = bar0;
732 
733 		ret = bar0 + memwin_base;
734 	} else {
735 		/* For T5, only relative offset inside the PCIe BAR is passed */
736 		ret = memwin_base;
737 	}
738 	return ret;
739 }
740 
741 /* Get the default utility window (win0) used by everyone */
742 u32 t4_get_util_window(struct adapter *adap)
743 {
744 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
745 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
746 }
747 
748 /* Set up memory window for accessing adapter memory ranges.  (Read
749  * back MA register to ensure that changes propagate before we attempt
750  * to use the new values.)
751  */
752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
753 {
754 	t4_write_reg(adap,
755 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
756 		     memwin_base | BIR_V(0) |
757 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
758 	t4_read_reg(adap,
759 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
760 }
761 
762 /**
763  *	t4_get_regs_len - return the size of the chips register set
764  *	@adapter: the adapter
765  *
766  *	Returns the size of the chip's BAR0 register space.
767  */
768 unsigned int t4_get_regs_len(struct adapter *adapter)
769 {
770 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
771 
772 	switch (chip_version) {
773 	case CHELSIO_T4:
774 		return T4_REGMAP_SIZE;
775 
776 	case CHELSIO_T5:
777 	case CHELSIO_T6:
778 		return T5_REGMAP_SIZE;
779 	}
780 
781 	dev_err(adapter->pdev_dev,
782 		"Unsupported chip version %d\n", chip_version);
783 	return 0;
784 }
785 
786 /**
787  *	t4_get_regs - read chip registers into provided buffer
788  *	@adap: the adapter
789  *	@buf: register buffer
790  *	@buf_size: size (in bytes) of register buffer
791  *
792  *	If the provided register buffer isn't large enough for the chip's
793  *	full register range, the register dump will be truncated to the
794  *	register buffer's size.
795  */
796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
797 {
798 	static const unsigned int t4_reg_ranges[] = {
799 		0x1008, 0x1108,
800 		0x1180, 0x1184,
801 		0x1190, 0x1194,
802 		0x11a0, 0x11a4,
803 		0x11b0, 0x11b4,
804 		0x11fc, 0x123c,
805 		0x1300, 0x173c,
806 		0x1800, 0x18fc,
807 		0x3000, 0x30d8,
808 		0x30e0, 0x30e4,
809 		0x30ec, 0x5910,
810 		0x5920, 0x5924,
811 		0x5960, 0x5960,
812 		0x5968, 0x5968,
813 		0x5970, 0x5970,
814 		0x5978, 0x5978,
815 		0x5980, 0x5980,
816 		0x5988, 0x5988,
817 		0x5990, 0x5990,
818 		0x5998, 0x5998,
819 		0x59a0, 0x59d4,
820 		0x5a00, 0x5ae0,
821 		0x5ae8, 0x5ae8,
822 		0x5af0, 0x5af0,
823 		0x5af8, 0x5af8,
824 		0x6000, 0x6098,
825 		0x6100, 0x6150,
826 		0x6200, 0x6208,
827 		0x6240, 0x6248,
828 		0x6280, 0x62b0,
829 		0x62c0, 0x6338,
830 		0x6370, 0x638c,
831 		0x6400, 0x643c,
832 		0x6500, 0x6524,
833 		0x6a00, 0x6a04,
834 		0x6a14, 0x6a38,
835 		0x6a60, 0x6a70,
836 		0x6a78, 0x6a78,
837 		0x6b00, 0x6b0c,
838 		0x6b1c, 0x6b84,
839 		0x6bf0, 0x6bf8,
840 		0x6c00, 0x6c0c,
841 		0x6c1c, 0x6c84,
842 		0x6cf0, 0x6cf8,
843 		0x6d00, 0x6d0c,
844 		0x6d1c, 0x6d84,
845 		0x6df0, 0x6df8,
846 		0x6e00, 0x6e0c,
847 		0x6e1c, 0x6e84,
848 		0x6ef0, 0x6ef8,
849 		0x6f00, 0x6f0c,
850 		0x6f1c, 0x6f84,
851 		0x6ff0, 0x6ff8,
852 		0x7000, 0x700c,
853 		0x701c, 0x7084,
854 		0x70f0, 0x70f8,
855 		0x7100, 0x710c,
856 		0x711c, 0x7184,
857 		0x71f0, 0x71f8,
858 		0x7200, 0x720c,
859 		0x721c, 0x7284,
860 		0x72f0, 0x72f8,
861 		0x7300, 0x730c,
862 		0x731c, 0x7384,
863 		0x73f0, 0x73f8,
864 		0x7400, 0x7450,
865 		0x7500, 0x7530,
866 		0x7600, 0x760c,
867 		0x7614, 0x761c,
868 		0x7680, 0x76cc,
869 		0x7700, 0x7798,
870 		0x77c0, 0x77fc,
871 		0x7900, 0x79fc,
872 		0x7b00, 0x7b58,
873 		0x7b60, 0x7b84,
874 		0x7b8c, 0x7c38,
875 		0x7d00, 0x7d38,
876 		0x7d40, 0x7d80,
877 		0x7d8c, 0x7ddc,
878 		0x7de4, 0x7e04,
879 		0x7e10, 0x7e1c,
880 		0x7e24, 0x7e38,
881 		0x7e40, 0x7e44,
882 		0x7e4c, 0x7e78,
883 		0x7e80, 0x7ea4,
884 		0x7eac, 0x7edc,
885 		0x7ee8, 0x7efc,
886 		0x8dc0, 0x8e04,
887 		0x8e10, 0x8e1c,
888 		0x8e30, 0x8e78,
889 		0x8ea0, 0x8eb8,
890 		0x8ec0, 0x8f6c,
891 		0x8fc0, 0x9008,
892 		0x9010, 0x9058,
893 		0x9060, 0x9060,
894 		0x9068, 0x9074,
895 		0x90fc, 0x90fc,
896 		0x9400, 0x9408,
897 		0x9410, 0x9458,
898 		0x9600, 0x9600,
899 		0x9608, 0x9638,
900 		0x9640, 0x96bc,
901 		0x9800, 0x9808,
902 		0x9820, 0x983c,
903 		0x9850, 0x9864,
904 		0x9c00, 0x9c6c,
905 		0x9c80, 0x9cec,
906 		0x9d00, 0x9d6c,
907 		0x9d80, 0x9dec,
908 		0x9e00, 0x9e6c,
909 		0x9e80, 0x9eec,
910 		0x9f00, 0x9f6c,
911 		0x9f80, 0x9fec,
912 		0xd004, 0xd004,
913 		0xd010, 0xd03c,
914 		0xdfc0, 0xdfe0,
915 		0xe000, 0xea7c,
916 		0xf000, 0x11190,
917 		0x19040, 0x1906c,
918 		0x19078, 0x19080,
919 		0x1908c, 0x190e4,
920 		0x190f0, 0x190f8,
921 		0x19100, 0x19110,
922 		0x19120, 0x19124,
923 		0x19150, 0x19194,
924 		0x1919c, 0x191b0,
925 		0x191d0, 0x191e8,
926 		0x19238, 0x1924c,
927 		0x193f8, 0x1943c,
928 		0x1944c, 0x19474,
929 		0x19490, 0x194e0,
930 		0x194f0, 0x194f8,
931 		0x19800, 0x19c08,
932 		0x19c10, 0x19c90,
933 		0x19ca0, 0x19ce4,
934 		0x19cf0, 0x19d40,
935 		0x19d50, 0x19d94,
936 		0x19da0, 0x19de8,
937 		0x19df0, 0x19e40,
938 		0x19e50, 0x19e90,
939 		0x19ea0, 0x19f4c,
940 		0x1a000, 0x1a004,
941 		0x1a010, 0x1a06c,
942 		0x1a0b0, 0x1a0e4,
943 		0x1a0ec, 0x1a0f4,
944 		0x1a100, 0x1a108,
945 		0x1a114, 0x1a120,
946 		0x1a128, 0x1a130,
947 		0x1a138, 0x1a138,
948 		0x1a190, 0x1a1c4,
949 		0x1a1fc, 0x1a1fc,
950 		0x1e040, 0x1e04c,
951 		0x1e284, 0x1e28c,
952 		0x1e2c0, 0x1e2c0,
953 		0x1e2e0, 0x1e2e0,
954 		0x1e300, 0x1e384,
955 		0x1e3c0, 0x1e3c8,
956 		0x1e440, 0x1e44c,
957 		0x1e684, 0x1e68c,
958 		0x1e6c0, 0x1e6c0,
959 		0x1e6e0, 0x1e6e0,
960 		0x1e700, 0x1e784,
961 		0x1e7c0, 0x1e7c8,
962 		0x1e840, 0x1e84c,
963 		0x1ea84, 0x1ea8c,
964 		0x1eac0, 0x1eac0,
965 		0x1eae0, 0x1eae0,
966 		0x1eb00, 0x1eb84,
967 		0x1ebc0, 0x1ebc8,
968 		0x1ec40, 0x1ec4c,
969 		0x1ee84, 0x1ee8c,
970 		0x1eec0, 0x1eec0,
971 		0x1eee0, 0x1eee0,
972 		0x1ef00, 0x1ef84,
973 		0x1efc0, 0x1efc8,
974 		0x1f040, 0x1f04c,
975 		0x1f284, 0x1f28c,
976 		0x1f2c0, 0x1f2c0,
977 		0x1f2e0, 0x1f2e0,
978 		0x1f300, 0x1f384,
979 		0x1f3c0, 0x1f3c8,
980 		0x1f440, 0x1f44c,
981 		0x1f684, 0x1f68c,
982 		0x1f6c0, 0x1f6c0,
983 		0x1f6e0, 0x1f6e0,
984 		0x1f700, 0x1f784,
985 		0x1f7c0, 0x1f7c8,
986 		0x1f840, 0x1f84c,
987 		0x1fa84, 0x1fa8c,
988 		0x1fac0, 0x1fac0,
989 		0x1fae0, 0x1fae0,
990 		0x1fb00, 0x1fb84,
991 		0x1fbc0, 0x1fbc8,
992 		0x1fc40, 0x1fc4c,
993 		0x1fe84, 0x1fe8c,
994 		0x1fec0, 0x1fec0,
995 		0x1fee0, 0x1fee0,
996 		0x1ff00, 0x1ff84,
997 		0x1ffc0, 0x1ffc8,
998 		0x20000, 0x2002c,
999 		0x20100, 0x2013c,
1000 		0x20190, 0x201a0,
1001 		0x201a8, 0x201b8,
1002 		0x201c4, 0x201c8,
1003 		0x20200, 0x20318,
1004 		0x20400, 0x204b4,
1005 		0x204c0, 0x20528,
1006 		0x20540, 0x20614,
1007 		0x21000, 0x21040,
1008 		0x2104c, 0x21060,
1009 		0x210c0, 0x210ec,
1010 		0x21200, 0x21268,
1011 		0x21270, 0x21284,
1012 		0x212fc, 0x21388,
1013 		0x21400, 0x21404,
1014 		0x21500, 0x21500,
1015 		0x21510, 0x21518,
1016 		0x2152c, 0x21530,
1017 		0x2153c, 0x2153c,
1018 		0x21550, 0x21554,
1019 		0x21600, 0x21600,
1020 		0x21608, 0x2161c,
1021 		0x21624, 0x21628,
1022 		0x21630, 0x21634,
1023 		0x2163c, 0x2163c,
1024 		0x21700, 0x2171c,
1025 		0x21780, 0x2178c,
1026 		0x21800, 0x21818,
1027 		0x21820, 0x21828,
1028 		0x21830, 0x21848,
1029 		0x21850, 0x21854,
1030 		0x21860, 0x21868,
1031 		0x21870, 0x21870,
1032 		0x21878, 0x21898,
1033 		0x218a0, 0x218a8,
1034 		0x218b0, 0x218c8,
1035 		0x218d0, 0x218d4,
1036 		0x218e0, 0x218e8,
1037 		0x218f0, 0x218f0,
1038 		0x218f8, 0x21a18,
1039 		0x21a20, 0x21a28,
1040 		0x21a30, 0x21a48,
1041 		0x21a50, 0x21a54,
1042 		0x21a60, 0x21a68,
1043 		0x21a70, 0x21a70,
1044 		0x21a78, 0x21a98,
1045 		0x21aa0, 0x21aa8,
1046 		0x21ab0, 0x21ac8,
1047 		0x21ad0, 0x21ad4,
1048 		0x21ae0, 0x21ae8,
1049 		0x21af0, 0x21af0,
1050 		0x21af8, 0x21c18,
1051 		0x21c20, 0x21c20,
1052 		0x21c28, 0x21c30,
1053 		0x21c38, 0x21c38,
1054 		0x21c80, 0x21c98,
1055 		0x21ca0, 0x21ca8,
1056 		0x21cb0, 0x21cc8,
1057 		0x21cd0, 0x21cd4,
1058 		0x21ce0, 0x21ce8,
1059 		0x21cf0, 0x21cf0,
1060 		0x21cf8, 0x21d7c,
1061 		0x21e00, 0x21e04,
1062 		0x22000, 0x2202c,
1063 		0x22100, 0x2213c,
1064 		0x22190, 0x221a0,
1065 		0x221a8, 0x221b8,
1066 		0x221c4, 0x221c8,
1067 		0x22200, 0x22318,
1068 		0x22400, 0x224b4,
1069 		0x224c0, 0x22528,
1070 		0x22540, 0x22614,
1071 		0x23000, 0x23040,
1072 		0x2304c, 0x23060,
1073 		0x230c0, 0x230ec,
1074 		0x23200, 0x23268,
1075 		0x23270, 0x23284,
1076 		0x232fc, 0x23388,
1077 		0x23400, 0x23404,
1078 		0x23500, 0x23500,
1079 		0x23510, 0x23518,
1080 		0x2352c, 0x23530,
1081 		0x2353c, 0x2353c,
1082 		0x23550, 0x23554,
1083 		0x23600, 0x23600,
1084 		0x23608, 0x2361c,
1085 		0x23624, 0x23628,
1086 		0x23630, 0x23634,
1087 		0x2363c, 0x2363c,
1088 		0x23700, 0x2371c,
1089 		0x23780, 0x2378c,
1090 		0x23800, 0x23818,
1091 		0x23820, 0x23828,
1092 		0x23830, 0x23848,
1093 		0x23850, 0x23854,
1094 		0x23860, 0x23868,
1095 		0x23870, 0x23870,
1096 		0x23878, 0x23898,
1097 		0x238a0, 0x238a8,
1098 		0x238b0, 0x238c8,
1099 		0x238d0, 0x238d4,
1100 		0x238e0, 0x238e8,
1101 		0x238f0, 0x238f0,
1102 		0x238f8, 0x23a18,
1103 		0x23a20, 0x23a28,
1104 		0x23a30, 0x23a48,
1105 		0x23a50, 0x23a54,
1106 		0x23a60, 0x23a68,
1107 		0x23a70, 0x23a70,
1108 		0x23a78, 0x23a98,
1109 		0x23aa0, 0x23aa8,
1110 		0x23ab0, 0x23ac8,
1111 		0x23ad0, 0x23ad4,
1112 		0x23ae0, 0x23ae8,
1113 		0x23af0, 0x23af0,
1114 		0x23af8, 0x23c18,
1115 		0x23c20, 0x23c20,
1116 		0x23c28, 0x23c30,
1117 		0x23c38, 0x23c38,
1118 		0x23c80, 0x23c98,
1119 		0x23ca0, 0x23ca8,
1120 		0x23cb0, 0x23cc8,
1121 		0x23cd0, 0x23cd4,
1122 		0x23ce0, 0x23ce8,
1123 		0x23cf0, 0x23cf0,
1124 		0x23cf8, 0x23d7c,
1125 		0x23e00, 0x23e04,
1126 		0x24000, 0x2402c,
1127 		0x24100, 0x2413c,
1128 		0x24190, 0x241a0,
1129 		0x241a8, 0x241b8,
1130 		0x241c4, 0x241c8,
1131 		0x24200, 0x24318,
1132 		0x24400, 0x244b4,
1133 		0x244c0, 0x24528,
1134 		0x24540, 0x24614,
1135 		0x25000, 0x25040,
1136 		0x2504c, 0x25060,
1137 		0x250c0, 0x250ec,
1138 		0x25200, 0x25268,
1139 		0x25270, 0x25284,
1140 		0x252fc, 0x25388,
1141 		0x25400, 0x25404,
1142 		0x25500, 0x25500,
1143 		0x25510, 0x25518,
1144 		0x2552c, 0x25530,
1145 		0x2553c, 0x2553c,
1146 		0x25550, 0x25554,
1147 		0x25600, 0x25600,
1148 		0x25608, 0x2561c,
1149 		0x25624, 0x25628,
1150 		0x25630, 0x25634,
1151 		0x2563c, 0x2563c,
1152 		0x25700, 0x2571c,
1153 		0x25780, 0x2578c,
1154 		0x25800, 0x25818,
1155 		0x25820, 0x25828,
1156 		0x25830, 0x25848,
1157 		0x25850, 0x25854,
1158 		0x25860, 0x25868,
1159 		0x25870, 0x25870,
1160 		0x25878, 0x25898,
1161 		0x258a0, 0x258a8,
1162 		0x258b0, 0x258c8,
1163 		0x258d0, 0x258d4,
1164 		0x258e0, 0x258e8,
1165 		0x258f0, 0x258f0,
1166 		0x258f8, 0x25a18,
1167 		0x25a20, 0x25a28,
1168 		0x25a30, 0x25a48,
1169 		0x25a50, 0x25a54,
1170 		0x25a60, 0x25a68,
1171 		0x25a70, 0x25a70,
1172 		0x25a78, 0x25a98,
1173 		0x25aa0, 0x25aa8,
1174 		0x25ab0, 0x25ac8,
1175 		0x25ad0, 0x25ad4,
1176 		0x25ae0, 0x25ae8,
1177 		0x25af0, 0x25af0,
1178 		0x25af8, 0x25c18,
1179 		0x25c20, 0x25c20,
1180 		0x25c28, 0x25c30,
1181 		0x25c38, 0x25c38,
1182 		0x25c80, 0x25c98,
1183 		0x25ca0, 0x25ca8,
1184 		0x25cb0, 0x25cc8,
1185 		0x25cd0, 0x25cd4,
1186 		0x25ce0, 0x25ce8,
1187 		0x25cf0, 0x25cf0,
1188 		0x25cf8, 0x25d7c,
1189 		0x25e00, 0x25e04,
1190 		0x26000, 0x2602c,
1191 		0x26100, 0x2613c,
1192 		0x26190, 0x261a0,
1193 		0x261a8, 0x261b8,
1194 		0x261c4, 0x261c8,
1195 		0x26200, 0x26318,
1196 		0x26400, 0x264b4,
1197 		0x264c0, 0x26528,
1198 		0x26540, 0x26614,
1199 		0x27000, 0x27040,
1200 		0x2704c, 0x27060,
1201 		0x270c0, 0x270ec,
1202 		0x27200, 0x27268,
1203 		0x27270, 0x27284,
1204 		0x272fc, 0x27388,
1205 		0x27400, 0x27404,
1206 		0x27500, 0x27500,
1207 		0x27510, 0x27518,
1208 		0x2752c, 0x27530,
1209 		0x2753c, 0x2753c,
1210 		0x27550, 0x27554,
1211 		0x27600, 0x27600,
1212 		0x27608, 0x2761c,
1213 		0x27624, 0x27628,
1214 		0x27630, 0x27634,
1215 		0x2763c, 0x2763c,
1216 		0x27700, 0x2771c,
1217 		0x27780, 0x2778c,
1218 		0x27800, 0x27818,
1219 		0x27820, 0x27828,
1220 		0x27830, 0x27848,
1221 		0x27850, 0x27854,
1222 		0x27860, 0x27868,
1223 		0x27870, 0x27870,
1224 		0x27878, 0x27898,
1225 		0x278a0, 0x278a8,
1226 		0x278b0, 0x278c8,
1227 		0x278d0, 0x278d4,
1228 		0x278e0, 0x278e8,
1229 		0x278f0, 0x278f0,
1230 		0x278f8, 0x27a18,
1231 		0x27a20, 0x27a28,
1232 		0x27a30, 0x27a48,
1233 		0x27a50, 0x27a54,
1234 		0x27a60, 0x27a68,
1235 		0x27a70, 0x27a70,
1236 		0x27a78, 0x27a98,
1237 		0x27aa0, 0x27aa8,
1238 		0x27ab0, 0x27ac8,
1239 		0x27ad0, 0x27ad4,
1240 		0x27ae0, 0x27ae8,
1241 		0x27af0, 0x27af0,
1242 		0x27af8, 0x27c18,
1243 		0x27c20, 0x27c20,
1244 		0x27c28, 0x27c30,
1245 		0x27c38, 0x27c38,
1246 		0x27c80, 0x27c98,
1247 		0x27ca0, 0x27ca8,
1248 		0x27cb0, 0x27cc8,
1249 		0x27cd0, 0x27cd4,
1250 		0x27ce0, 0x27ce8,
1251 		0x27cf0, 0x27cf0,
1252 		0x27cf8, 0x27d7c,
1253 		0x27e00, 0x27e04,
1254 	};
1255 
1256 	static const unsigned int t5_reg_ranges[] = {
1257 		0x1008, 0x10c0,
1258 		0x10cc, 0x10f8,
1259 		0x1100, 0x1100,
1260 		0x110c, 0x1148,
1261 		0x1180, 0x1184,
1262 		0x1190, 0x1194,
1263 		0x11a0, 0x11a4,
1264 		0x11b0, 0x11b4,
1265 		0x11fc, 0x123c,
1266 		0x1280, 0x173c,
1267 		0x1800, 0x18fc,
1268 		0x3000, 0x3028,
1269 		0x3060, 0x30b0,
1270 		0x30b8, 0x30d8,
1271 		0x30e0, 0x30fc,
1272 		0x3140, 0x357c,
1273 		0x35a8, 0x35cc,
1274 		0x35ec, 0x35ec,
1275 		0x3600, 0x5624,
1276 		0x56cc, 0x56ec,
1277 		0x56f4, 0x5720,
1278 		0x5728, 0x575c,
1279 		0x580c, 0x5814,
1280 		0x5890, 0x589c,
1281 		0x58a4, 0x58ac,
1282 		0x58b8, 0x58bc,
1283 		0x5940, 0x59c8,
1284 		0x59d0, 0x59dc,
1285 		0x59fc, 0x5a18,
1286 		0x5a60, 0x5a70,
1287 		0x5a80, 0x5a9c,
1288 		0x5b94, 0x5bfc,
1289 		0x6000, 0x6020,
1290 		0x6028, 0x6040,
1291 		0x6058, 0x609c,
1292 		0x60a8, 0x614c,
1293 		0x7700, 0x7798,
1294 		0x77c0, 0x78fc,
1295 		0x7b00, 0x7b58,
1296 		0x7b60, 0x7b84,
1297 		0x7b8c, 0x7c54,
1298 		0x7d00, 0x7d38,
1299 		0x7d40, 0x7d80,
1300 		0x7d8c, 0x7ddc,
1301 		0x7de4, 0x7e04,
1302 		0x7e10, 0x7e1c,
1303 		0x7e24, 0x7e38,
1304 		0x7e40, 0x7e44,
1305 		0x7e4c, 0x7e78,
1306 		0x7e80, 0x7edc,
1307 		0x7ee8, 0x7efc,
1308 		0x8dc0, 0x8de0,
1309 		0x8df8, 0x8e04,
1310 		0x8e10, 0x8e84,
1311 		0x8ea0, 0x8f84,
1312 		0x8fc0, 0x9058,
1313 		0x9060, 0x9060,
1314 		0x9068, 0x90f8,
1315 		0x9400, 0x9408,
1316 		0x9410, 0x9470,
1317 		0x9600, 0x9600,
1318 		0x9608, 0x9638,
1319 		0x9640, 0x96f4,
1320 		0x9800, 0x9808,
1321 		0x9820, 0x983c,
1322 		0x9850, 0x9864,
1323 		0x9c00, 0x9c6c,
1324 		0x9c80, 0x9cec,
1325 		0x9d00, 0x9d6c,
1326 		0x9d80, 0x9dec,
1327 		0x9e00, 0x9e6c,
1328 		0x9e80, 0x9eec,
1329 		0x9f00, 0x9f6c,
1330 		0x9f80, 0xa020,
1331 		0xd004, 0xd004,
1332 		0xd010, 0xd03c,
1333 		0xdfc0, 0xdfe0,
1334 		0xe000, 0x1106c,
1335 		0x11074, 0x11088,
1336 		0x1109c, 0x1117c,
1337 		0x11190, 0x11204,
1338 		0x19040, 0x1906c,
1339 		0x19078, 0x19080,
1340 		0x1908c, 0x190e8,
1341 		0x190f0, 0x190f8,
1342 		0x19100, 0x19110,
1343 		0x19120, 0x19124,
1344 		0x19150, 0x19194,
1345 		0x1919c, 0x191b0,
1346 		0x191d0, 0x191e8,
1347 		0x19238, 0x19290,
1348 		0x193f8, 0x19428,
1349 		0x19430, 0x19444,
1350 		0x1944c, 0x1946c,
1351 		0x19474, 0x19474,
1352 		0x19490, 0x194cc,
1353 		0x194f0, 0x194f8,
1354 		0x19c00, 0x19c08,
1355 		0x19c10, 0x19c60,
1356 		0x19c94, 0x19ce4,
1357 		0x19cf0, 0x19d40,
1358 		0x19d50, 0x19d94,
1359 		0x19da0, 0x19de8,
1360 		0x19df0, 0x19e10,
1361 		0x19e50, 0x19e90,
1362 		0x19ea0, 0x19f24,
1363 		0x19f34, 0x19f34,
1364 		0x19f40, 0x19f50,
1365 		0x19f90, 0x19fb4,
1366 		0x19fc4, 0x19fe4,
1367 		0x1a000, 0x1a004,
1368 		0x1a010, 0x1a06c,
1369 		0x1a0b0, 0x1a0e4,
1370 		0x1a0ec, 0x1a0f8,
1371 		0x1a100, 0x1a108,
1372 		0x1a114, 0x1a120,
1373 		0x1a128, 0x1a130,
1374 		0x1a138, 0x1a138,
1375 		0x1a190, 0x1a1c4,
1376 		0x1a1fc, 0x1a1fc,
1377 		0x1e008, 0x1e00c,
1378 		0x1e040, 0x1e044,
1379 		0x1e04c, 0x1e04c,
1380 		0x1e284, 0x1e290,
1381 		0x1e2c0, 0x1e2c0,
1382 		0x1e2e0, 0x1e2e0,
1383 		0x1e300, 0x1e384,
1384 		0x1e3c0, 0x1e3c8,
1385 		0x1e408, 0x1e40c,
1386 		0x1e440, 0x1e444,
1387 		0x1e44c, 0x1e44c,
1388 		0x1e684, 0x1e690,
1389 		0x1e6c0, 0x1e6c0,
1390 		0x1e6e0, 0x1e6e0,
1391 		0x1e700, 0x1e784,
1392 		0x1e7c0, 0x1e7c8,
1393 		0x1e808, 0x1e80c,
1394 		0x1e840, 0x1e844,
1395 		0x1e84c, 0x1e84c,
1396 		0x1ea84, 0x1ea90,
1397 		0x1eac0, 0x1eac0,
1398 		0x1eae0, 0x1eae0,
1399 		0x1eb00, 0x1eb84,
1400 		0x1ebc0, 0x1ebc8,
1401 		0x1ec08, 0x1ec0c,
1402 		0x1ec40, 0x1ec44,
1403 		0x1ec4c, 0x1ec4c,
1404 		0x1ee84, 0x1ee90,
1405 		0x1eec0, 0x1eec0,
1406 		0x1eee0, 0x1eee0,
1407 		0x1ef00, 0x1ef84,
1408 		0x1efc0, 0x1efc8,
1409 		0x1f008, 0x1f00c,
1410 		0x1f040, 0x1f044,
1411 		0x1f04c, 0x1f04c,
1412 		0x1f284, 0x1f290,
1413 		0x1f2c0, 0x1f2c0,
1414 		0x1f2e0, 0x1f2e0,
1415 		0x1f300, 0x1f384,
1416 		0x1f3c0, 0x1f3c8,
1417 		0x1f408, 0x1f40c,
1418 		0x1f440, 0x1f444,
1419 		0x1f44c, 0x1f44c,
1420 		0x1f684, 0x1f690,
1421 		0x1f6c0, 0x1f6c0,
1422 		0x1f6e0, 0x1f6e0,
1423 		0x1f700, 0x1f784,
1424 		0x1f7c0, 0x1f7c8,
1425 		0x1f808, 0x1f80c,
1426 		0x1f840, 0x1f844,
1427 		0x1f84c, 0x1f84c,
1428 		0x1fa84, 0x1fa90,
1429 		0x1fac0, 0x1fac0,
1430 		0x1fae0, 0x1fae0,
1431 		0x1fb00, 0x1fb84,
1432 		0x1fbc0, 0x1fbc8,
1433 		0x1fc08, 0x1fc0c,
1434 		0x1fc40, 0x1fc44,
1435 		0x1fc4c, 0x1fc4c,
1436 		0x1fe84, 0x1fe90,
1437 		0x1fec0, 0x1fec0,
1438 		0x1fee0, 0x1fee0,
1439 		0x1ff00, 0x1ff84,
1440 		0x1ffc0, 0x1ffc8,
1441 		0x30000, 0x30030,
1442 		0x30038, 0x30038,
1443 		0x30040, 0x30040,
1444 		0x30100, 0x30144,
1445 		0x30190, 0x301a0,
1446 		0x301a8, 0x301b8,
1447 		0x301c4, 0x301c8,
1448 		0x301d0, 0x301d0,
1449 		0x30200, 0x30318,
1450 		0x30400, 0x304b4,
1451 		0x304c0, 0x3052c,
1452 		0x30540, 0x3061c,
1453 		0x30800, 0x30828,
1454 		0x30834, 0x30834,
1455 		0x308c0, 0x30908,
1456 		0x30910, 0x309ac,
1457 		0x30a00, 0x30a14,
1458 		0x30a1c, 0x30a2c,
1459 		0x30a44, 0x30a50,
1460 		0x30a74, 0x30a74,
1461 		0x30a7c, 0x30afc,
1462 		0x30b08, 0x30c24,
1463 		0x30d00, 0x30d00,
1464 		0x30d08, 0x30d14,
1465 		0x30d1c, 0x30d20,
1466 		0x30d3c, 0x30d3c,
1467 		0x30d48, 0x30d50,
1468 		0x31200, 0x3120c,
1469 		0x31220, 0x31220,
1470 		0x31240, 0x31240,
1471 		0x31600, 0x3160c,
1472 		0x31a00, 0x31a1c,
1473 		0x31e00, 0x31e20,
1474 		0x31e38, 0x31e3c,
1475 		0x31e80, 0x31e80,
1476 		0x31e88, 0x31ea8,
1477 		0x31eb0, 0x31eb4,
1478 		0x31ec8, 0x31ed4,
1479 		0x31fb8, 0x32004,
1480 		0x32200, 0x32200,
1481 		0x32208, 0x32240,
1482 		0x32248, 0x32280,
1483 		0x32288, 0x322c0,
1484 		0x322c8, 0x322fc,
1485 		0x32600, 0x32630,
1486 		0x32a00, 0x32abc,
1487 		0x32b00, 0x32b10,
1488 		0x32b20, 0x32b30,
1489 		0x32b40, 0x32b50,
1490 		0x32b60, 0x32b70,
1491 		0x33000, 0x33028,
1492 		0x33030, 0x33048,
1493 		0x33060, 0x33068,
1494 		0x33070, 0x3309c,
1495 		0x330f0, 0x33128,
1496 		0x33130, 0x33148,
1497 		0x33160, 0x33168,
1498 		0x33170, 0x3319c,
1499 		0x331f0, 0x33238,
1500 		0x33240, 0x33240,
1501 		0x33248, 0x33250,
1502 		0x3325c, 0x33264,
1503 		0x33270, 0x332b8,
1504 		0x332c0, 0x332e4,
1505 		0x332f8, 0x33338,
1506 		0x33340, 0x33340,
1507 		0x33348, 0x33350,
1508 		0x3335c, 0x33364,
1509 		0x33370, 0x333b8,
1510 		0x333c0, 0x333e4,
1511 		0x333f8, 0x33428,
1512 		0x33430, 0x33448,
1513 		0x33460, 0x33468,
1514 		0x33470, 0x3349c,
1515 		0x334f0, 0x33528,
1516 		0x33530, 0x33548,
1517 		0x33560, 0x33568,
1518 		0x33570, 0x3359c,
1519 		0x335f0, 0x33638,
1520 		0x33640, 0x33640,
1521 		0x33648, 0x33650,
1522 		0x3365c, 0x33664,
1523 		0x33670, 0x336b8,
1524 		0x336c0, 0x336e4,
1525 		0x336f8, 0x33738,
1526 		0x33740, 0x33740,
1527 		0x33748, 0x33750,
1528 		0x3375c, 0x33764,
1529 		0x33770, 0x337b8,
1530 		0x337c0, 0x337e4,
1531 		0x337f8, 0x337fc,
1532 		0x33814, 0x33814,
1533 		0x3382c, 0x3382c,
1534 		0x33880, 0x3388c,
1535 		0x338e8, 0x338ec,
1536 		0x33900, 0x33928,
1537 		0x33930, 0x33948,
1538 		0x33960, 0x33968,
1539 		0x33970, 0x3399c,
1540 		0x339f0, 0x33a38,
1541 		0x33a40, 0x33a40,
1542 		0x33a48, 0x33a50,
1543 		0x33a5c, 0x33a64,
1544 		0x33a70, 0x33ab8,
1545 		0x33ac0, 0x33ae4,
1546 		0x33af8, 0x33b10,
1547 		0x33b28, 0x33b28,
1548 		0x33b3c, 0x33b50,
1549 		0x33bf0, 0x33c10,
1550 		0x33c28, 0x33c28,
1551 		0x33c3c, 0x33c50,
1552 		0x33cf0, 0x33cfc,
1553 		0x34000, 0x34030,
1554 		0x34038, 0x34038,
1555 		0x34040, 0x34040,
1556 		0x34100, 0x34144,
1557 		0x34190, 0x341a0,
1558 		0x341a8, 0x341b8,
1559 		0x341c4, 0x341c8,
1560 		0x341d0, 0x341d0,
1561 		0x34200, 0x34318,
1562 		0x34400, 0x344b4,
1563 		0x344c0, 0x3452c,
1564 		0x34540, 0x3461c,
1565 		0x34800, 0x34828,
1566 		0x34834, 0x34834,
1567 		0x348c0, 0x34908,
1568 		0x34910, 0x349ac,
1569 		0x34a00, 0x34a14,
1570 		0x34a1c, 0x34a2c,
1571 		0x34a44, 0x34a50,
1572 		0x34a74, 0x34a74,
1573 		0x34a7c, 0x34afc,
1574 		0x34b08, 0x34c24,
1575 		0x34d00, 0x34d00,
1576 		0x34d08, 0x34d14,
1577 		0x34d1c, 0x34d20,
1578 		0x34d3c, 0x34d3c,
1579 		0x34d48, 0x34d50,
1580 		0x35200, 0x3520c,
1581 		0x35220, 0x35220,
1582 		0x35240, 0x35240,
1583 		0x35600, 0x3560c,
1584 		0x35a00, 0x35a1c,
1585 		0x35e00, 0x35e20,
1586 		0x35e38, 0x35e3c,
1587 		0x35e80, 0x35e80,
1588 		0x35e88, 0x35ea8,
1589 		0x35eb0, 0x35eb4,
1590 		0x35ec8, 0x35ed4,
1591 		0x35fb8, 0x36004,
1592 		0x36200, 0x36200,
1593 		0x36208, 0x36240,
1594 		0x36248, 0x36280,
1595 		0x36288, 0x362c0,
1596 		0x362c8, 0x362fc,
1597 		0x36600, 0x36630,
1598 		0x36a00, 0x36abc,
1599 		0x36b00, 0x36b10,
1600 		0x36b20, 0x36b30,
1601 		0x36b40, 0x36b50,
1602 		0x36b60, 0x36b70,
1603 		0x37000, 0x37028,
1604 		0x37030, 0x37048,
1605 		0x37060, 0x37068,
1606 		0x37070, 0x3709c,
1607 		0x370f0, 0x37128,
1608 		0x37130, 0x37148,
1609 		0x37160, 0x37168,
1610 		0x37170, 0x3719c,
1611 		0x371f0, 0x37238,
1612 		0x37240, 0x37240,
1613 		0x37248, 0x37250,
1614 		0x3725c, 0x37264,
1615 		0x37270, 0x372b8,
1616 		0x372c0, 0x372e4,
1617 		0x372f8, 0x37338,
1618 		0x37340, 0x37340,
1619 		0x37348, 0x37350,
1620 		0x3735c, 0x37364,
1621 		0x37370, 0x373b8,
1622 		0x373c0, 0x373e4,
1623 		0x373f8, 0x37428,
1624 		0x37430, 0x37448,
1625 		0x37460, 0x37468,
1626 		0x37470, 0x3749c,
1627 		0x374f0, 0x37528,
1628 		0x37530, 0x37548,
1629 		0x37560, 0x37568,
1630 		0x37570, 0x3759c,
1631 		0x375f0, 0x37638,
1632 		0x37640, 0x37640,
1633 		0x37648, 0x37650,
1634 		0x3765c, 0x37664,
1635 		0x37670, 0x376b8,
1636 		0x376c0, 0x376e4,
1637 		0x376f8, 0x37738,
1638 		0x37740, 0x37740,
1639 		0x37748, 0x37750,
1640 		0x3775c, 0x37764,
1641 		0x37770, 0x377b8,
1642 		0x377c0, 0x377e4,
1643 		0x377f8, 0x377fc,
1644 		0x37814, 0x37814,
1645 		0x3782c, 0x3782c,
1646 		0x37880, 0x3788c,
1647 		0x378e8, 0x378ec,
1648 		0x37900, 0x37928,
1649 		0x37930, 0x37948,
1650 		0x37960, 0x37968,
1651 		0x37970, 0x3799c,
1652 		0x379f0, 0x37a38,
1653 		0x37a40, 0x37a40,
1654 		0x37a48, 0x37a50,
1655 		0x37a5c, 0x37a64,
1656 		0x37a70, 0x37ab8,
1657 		0x37ac0, 0x37ae4,
1658 		0x37af8, 0x37b10,
1659 		0x37b28, 0x37b28,
1660 		0x37b3c, 0x37b50,
1661 		0x37bf0, 0x37c10,
1662 		0x37c28, 0x37c28,
1663 		0x37c3c, 0x37c50,
1664 		0x37cf0, 0x37cfc,
1665 		0x38000, 0x38030,
1666 		0x38038, 0x38038,
1667 		0x38040, 0x38040,
1668 		0x38100, 0x38144,
1669 		0x38190, 0x381a0,
1670 		0x381a8, 0x381b8,
1671 		0x381c4, 0x381c8,
1672 		0x381d0, 0x381d0,
1673 		0x38200, 0x38318,
1674 		0x38400, 0x384b4,
1675 		0x384c0, 0x3852c,
1676 		0x38540, 0x3861c,
1677 		0x38800, 0x38828,
1678 		0x38834, 0x38834,
1679 		0x388c0, 0x38908,
1680 		0x38910, 0x389ac,
1681 		0x38a00, 0x38a14,
1682 		0x38a1c, 0x38a2c,
1683 		0x38a44, 0x38a50,
1684 		0x38a74, 0x38a74,
1685 		0x38a7c, 0x38afc,
1686 		0x38b08, 0x38c24,
1687 		0x38d00, 0x38d00,
1688 		0x38d08, 0x38d14,
1689 		0x38d1c, 0x38d20,
1690 		0x38d3c, 0x38d3c,
1691 		0x38d48, 0x38d50,
1692 		0x39200, 0x3920c,
1693 		0x39220, 0x39220,
1694 		0x39240, 0x39240,
1695 		0x39600, 0x3960c,
1696 		0x39a00, 0x39a1c,
1697 		0x39e00, 0x39e20,
1698 		0x39e38, 0x39e3c,
1699 		0x39e80, 0x39e80,
1700 		0x39e88, 0x39ea8,
1701 		0x39eb0, 0x39eb4,
1702 		0x39ec8, 0x39ed4,
1703 		0x39fb8, 0x3a004,
1704 		0x3a200, 0x3a200,
1705 		0x3a208, 0x3a240,
1706 		0x3a248, 0x3a280,
1707 		0x3a288, 0x3a2c0,
1708 		0x3a2c8, 0x3a2fc,
1709 		0x3a600, 0x3a630,
1710 		0x3aa00, 0x3aabc,
1711 		0x3ab00, 0x3ab10,
1712 		0x3ab20, 0x3ab30,
1713 		0x3ab40, 0x3ab50,
1714 		0x3ab60, 0x3ab70,
1715 		0x3b000, 0x3b028,
1716 		0x3b030, 0x3b048,
1717 		0x3b060, 0x3b068,
1718 		0x3b070, 0x3b09c,
1719 		0x3b0f0, 0x3b128,
1720 		0x3b130, 0x3b148,
1721 		0x3b160, 0x3b168,
1722 		0x3b170, 0x3b19c,
1723 		0x3b1f0, 0x3b238,
1724 		0x3b240, 0x3b240,
1725 		0x3b248, 0x3b250,
1726 		0x3b25c, 0x3b264,
1727 		0x3b270, 0x3b2b8,
1728 		0x3b2c0, 0x3b2e4,
1729 		0x3b2f8, 0x3b338,
1730 		0x3b340, 0x3b340,
1731 		0x3b348, 0x3b350,
1732 		0x3b35c, 0x3b364,
1733 		0x3b370, 0x3b3b8,
1734 		0x3b3c0, 0x3b3e4,
1735 		0x3b3f8, 0x3b428,
1736 		0x3b430, 0x3b448,
1737 		0x3b460, 0x3b468,
1738 		0x3b470, 0x3b49c,
1739 		0x3b4f0, 0x3b528,
1740 		0x3b530, 0x3b548,
1741 		0x3b560, 0x3b568,
1742 		0x3b570, 0x3b59c,
1743 		0x3b5f0, 0x3b638,
1744 		0x3b640, 0x3b640,
1745 		0x3b648, 0x3b650,
1746 		0x3b65c, 0x3b664,
1747 		0x3b670, 0x3b6b8,
1748 		0x3b6c0, 0x3b6e4,
1749 		0x3b6f8, 0x3b738,
1750 		0x3b740, 0x3b740,
1751 		0x3b748, 0x3b750,
1752 		0x3b75c, 0x3b764,
1753 		0x3b770, 0x3b7b8,
1754 		0x3b7c0, 0x3b7e4,
1755 		0x3b7f8, 0x3b7fc,
1756 		0x3b814, 0x3b814,
1757 		0x3b82c, 0x3b82c,
1758 		0x3b880, 0x3b88c,
1759 		0x3b8e8, 0x3b8ec,
1760 		0x3b900, 0x3b928,
1761 		0x3b930, 0x3b948,
1762 		0x3b960, 0x3b968,
1763 		0x3b970, 0x3b99c,
1764 		0x3b9f0, 0x3ba38,
1765 		0x3ba40, 0x3ba40,
1766 		0x3ba48, 0x3ba50,
1767 		0x3ba5c, 0x3ba64,
1768 		0x3ba70, 0x3bab8,
1769 		0x3bac0, 0x3bae4,
1770 		0x3baf8, 0x3bb10,
1771 		0x3bb28, 0x3bb28,
1772 		0x3bb3c, 0x3bb50,
1773 		0x3bbf0, 0x3bc10,
1774 		0x3bc28, 0x3bc28,
1775 		0x3bc3c, 0x3bc50,
1776 		0x3bcf0, 0x3bcfc,
1777 		0x3c000, 0x3c030,
1778 		0x3c038, 0x3c038,
1779 		0x3c040, 0x3c040,
1780 		0x3c100, 0x3c144,
1781 		0x3c190, 0x3c1a0,
1782 		0x3c1a8, 0x3c1b8,
1783 		0x3c1c4, 0x3c1c8,
1784 		0x3c1d0, 0x3c1d0,
1785 		0x3c200, 0x3c318,
1786 		0x3c400, 0x3c4b4,
1787 		0x3c4c0, 0x3c52c,
1788 		0x3c540, 0x3c61c,
1789 		0x3c800, 0x3c828,
1790 		0x3c834, 0x3c834,
1791 		0x3c8c0, 0x3c908,
1792 		0x3c910, 0x3c9ac,
1793 		0x3ca00, 0x3ca14,
1794 		0x3ca1c, 0x3ca2c,
1795 		0x3ca44, 0x3ca50,
1796 		0x3ca74, 0x3ca74,
1797 		0x3ca7c, 0x3cafc,
1798 		0x3cb08, 0x3cc24,
1799 		0x3cd00, 0x3cd00,
1800 		0x3cd08, 0x3cd14,
1801 		0x3cd1c, 0x3cd20,
1802 		0x3cd3c, 0x3cd3c,
1803 		0x3cd48, 0x3cd50,
1804 		0x3d200, 0x3d20c,
1805 		0x3d220, 0x3d220,
1806 		0x3d240, 0x3d240,
1807 		0x3d600, 0x3d60c,
1808 		0x3da00, 0x3da1c,
1809 		0x3de00, 0x3de20,
1810 		0x3de38, 0x3de3c,
1811 		0x3de80, 0x3de80,
1812 		0x3de88, 0x3dea8,
1813 		0x3deb0, 0x3deb4,
1814 		0x3dec8, 0x3ded4,
1815 		0x3dfb8, 0x3e004,
1816 		0x3e200, 0x3e200,
1817 		0x3e208, 0x3e240,
1818 		0x3e248, 0x3e280,
1819 		0x3e288, 0x3e2c0,
1820 		0x3e2c8, 0x3e2fc,
1821 		0x3e600, 0x3e630,
1822 		0x3ea00, 0x3eabc,
1823 		0x3eb00, 0x3eb10,
1824 		0x3eb20, 0x3eb30,
1825 		0x3eb40, 0x3eb50,
1826 		0x3eb60, 0x3eb70,
1827 		0x3f000, 0x3f028,
1828 		0x3f030, 0x3f048,
1829 		0x3f060, 0x3f068,
1830 		0x3f070, 0x3f09c,
1831 		0x3f0f0, 0x3f128,
1832 		0x3f130, 0x3f148,
1833 		0x3f160, 0x3f168,
1834 		0x3f170, 0x3f19c,
1835 		0x3f1f0, 0x3f238,
1836 		0x3f240, 0x3f240,
1837 		0x3f248, 0x3f250,
1838 		0x3f25c, 0x3f264,
1839 		0x3f270, 0x3f2b8,
1840 		0x3f2c0, 0x3f2e4,
1841 		0x3f2f8, 0x3f338,
1842 		0x3f340, 0x3f340,
1843 		0x3f348, 0x3f350,
1844 		0x3f35c, 0x3f364,
1845 		0x3f370, 0x3f3b8,
1846 		0x3f3c0, 0x3f3e4,
1847 		0x3f3f8, 0x3f428,
1848 		0x3f430, 0x3f448,
1849 		0x3f460, 0x3f468,
1850 		0x3f470, 0x3f49c,
1851 		0x3f4f0, 0x3f528,
1852 		0x3f530, 0x3f548,
1853 		0x3f560, 0x3f568,
1854 		0x3f570, 0x3f59c,
1855 		0x3f5f0, 0x3f638,
1856 		0x3f640, 0x3f640,
1857 		0x3f648, 0x3f650,
1858 		0x3f65c, 0x3f664,
1859 		0x3f670, 0x3f6b8,
1860 		0x3f6c0, 0x3f6e4,
1861 		0x3f6f8, 0x3f738,
1862 		0x3f740, 0x3f740,
1863 		0x3f748, 0x3f750,
1864 		0x3f75c, 0x3f764,
1865 		0x3f770, 0x3f7b8,
1866 		0x3f7c0, 0x3f7e4,
1867 		0x3f7f8, 0x3f7fc,
1868 		0x3f814, 0x3f814,
1869 		0x3f82c, 0x3f82c,
1870 		0x3f880, 0x3f88c,
1871 		0x3f8e8, 0x3f8ec,
1872 		0x3f900, 0x3f928,
1873 		0x3f930, 0x3f948,
1874 		0x3f960, 0x3f968,
1875 		0x3f970, 0x3f99c,
1876 		0x3f9f0, 0x3fa38,
1877 		0x3fa40, 0x3fa40,
1878 		0x3fa48, 0x3fa50,
1879 		0x3fa5c, 0x3fa64,
1880 		0x3fa70, 0x3fab8,
1881 		0x3fac0, 0x3fae4,
1882 		0x3faf8, 0x3fb10,
1883 		0x3fb28, 0x3fb28,
1884 		0x3fb3c, 0x3fb50,
1885 		0x3fbf0, 0x3fc10,
1886 		0x3fc28, 0x3fc28,
1887 		0x3fc3c, 0x3fc50,
1888 		0x3fcf0, 0x3fcfc,
1889 		0x40000, 0x4000c,
1890 		0x40040, 0x40050,
1891 		0x40060, 0x40068,
1892 		0x4007c, 0x4008c,
1893 		0x40094, 0x400b0,
1894 		0x400c0, 0x40144,
1895 		0x40180, 0x4018c,
1896 		0x40200, 0x40254,
1897 		0x40260, 0x40264,
1898 		0x40270, 0x40288,
1899 		0x40290, 0x40298,
1900 		0x402ac, 0x402c8,
1901 		0x402d0, 0x402e0,
1902 		0x402f0, 0x402f0,
1903 		0x40300, 0x4033c,
1904 		0x403f8, 0x403fc,
1905 		0x41304, 0x413c4,
1906 		0x41400, 0x4140c,
1907 		0x41414, 0x4141c,
1908 		0x41480, 0x414d0,
1909 		0x44000, 0x44054,
1910 		0x4405c, 0x44078,
1911 		0x440c0, 0x44174,
1912 		0x44180, 0x441ac,
1913 		0x441b4, 0x441b8,
1914 		0x441c0, 0x44254,
1915 		0x4425c, 0x44278,
1916 		0x442c0, 0x44374,
1917 		0x44380, 0x443ac,
1918 		0x443b4, 0x443b8,
1919 		0x443c0, 0x44454,
1920 		0x4445c, 0x44478,
1921 		0x444c0, 0x44574,
1922 		0x44580, 0x445ac,
1923 		0x445b4, 0x445b8,
1924 		0x445c0, 0x44654,
1925 		0x4465c, 0x44678,
1926 		0x446c0, 0x44774,
1927 		0x44780, 0x447ac,
1928 		0x447b4, 0x447b8,
1929 		0x447c0, 0x44854,
1930 		0x4485c, 0x44878,
1931 		0x448c0, 0x44974,
1932 		0x44980, 0x449ac,
1933 		0x449b4, 0x449b8,
1934 		0x449c0, 0x449fc,
1935 		0x45000, 0x45004,
1936 		0x45010, 0x45030,
1937 		0x45040, 0x45060,
1938 		0x45068, 0x45068,
1939 		0x45080, 0x45084,
1940 		0x450a0, 0x450b0,
1941 		0x45200, 0x45204,
1942 		0x45210, 0x45230,
1943 		0x45240, 0x45260,
1944 		0x45268, 0x45268,
1945 		0x45280, 0x45284,
1946 		0x452a0, 0x452b0,
1947 		0x460c0, 0x460e4,
1948 		0x47000, 0x4703c,
1949 		0x47044, 0x4708c,
1950 		0x47200, 0x47250,
1951 		0x47400, 0x47408,
1952 		0x47414, 0x47420,
1953 		0x47600, 0x47618,
1954 		0x47800, 0x47814,
1955 		0x48000, 0x4800c,
1956 		0x48040, 0x48050,
1957 		0x48060, 0x48068,
1958 		0x4807c, 0x4808c,
1959 		0x48094, 0x480b0,
1960 		0x480c0, 0x48144,
1961 		0x48180, 0x4818c,
1962 		0x48200, 0x48254,
1963 		0x48260, 0x48264,
1964 		0x48270, 0x48288,
1965 		0x48290, 0x48298,
1966 		0x482ac, 0x482c8,
1967 		0x482d0, 0x482e0,
1968 		0x482f0, 0x482f0,
1969 		0x48300, 0x4833c,
1970 		0x483f8, 0x483fc,
1971 		0x49304, 0x493c4,
1972 		0x49400, 0x4940c,
1973 		0x49414, 0x4941c,
1974 		0x49480, 0x494d0,
1975 		0x4c000, 0x4c054,
1976 		0x4c05c, 0x4c078,
1977 		0x4c0c0, 0x4c174,
1978 		0x4c180, 0x4c1ac,
1979 		0x4c1b4, 0x4c1b8,
1980 		0x4c1c0, 0x4c254,
1981 		0x4c25c, 0x4c278,
1982 		0x4c2c0, 0x4c374,
1983 		0x4c380, 0x4c3ac,
1984 		0x4c3b4, 0x4c3b8,
1985 		0x4c3c0, 0x4c454,
1986 		0x4c45c, 0x4c478,
1987 		0x4c4c0, 0x4c574,
1988 		0x4c580, 0x4c5ac,
1989 		0x4c5b4, 0x4c5b8,
1990 		0x4c5c0, 0x4c654,
1991 		0x4c65c, 0x4c678,
1992 		0x4c6c0, 0x4c774,
1993 		0x4c780, 0x4c7ac,
1994 		0x4c7b4, 0x4c7b8,
1995 		0x4c7c0, 0x4c854,
1996 		0x4c85c, 0x4c878,
1997 		0x4c8c0, 0x4c974,
1998 		0x4c980, 0x4c9ac,
1999 		0x4c9b4, 0x4c9b8,
2000 		0x4c9c0, 0x4c9fc,
2001 		0x4d000, 0x4d004,
2002 		0x4d010, 0x4d030,
2003 		0x4d040, 0x4d060,
2004 		0x4d068, 0x4d068,
2005 		0x4d080, 0x4d084,
2006 		0x4d0a0, 0x4d0b0,
2007 		0x4d200, 0x4d204,
2008 		0x4d210, 0x4d230,
2009 		0x4d240, 0x4d260,
2010 		0x4d268, 0x4d268,
2011 		0x4d280, 0x4d284,
2012 		0x4d2a0, 0x4d2b0,
2013 		0x4e0c0, 0x4e0e4,
2014 		0x4f000, 0x4f03c,
2015 		0x4f044, 0x4f08c,
2016 		0x4f200, 0x4f250,
2017 		0x4f400, 0x4f408,
2018 		0x4f414, 0x4f420,
2019 		0x4f600, 0x4f618,
2020 		0x4f800, 0x4f814,
2021 		0x50000, 0x50084,
2022 		0x50090, 0x500cc,
2023 		0x50400, 0x50400,
2024 		0x50800, 0x50884,
2025 		0x50890, 0x508cc,
2026 		0x50c00, 0x50c00,
2027 		0x51000, 0x5101c,
2028 		0x51300, 0x51308,
2029 	};
2030 
2031 	static const unsigned int t6_reg_ranges[] = {
2032 		0x1008, 0x101c,
2033 		0x1024, 0x10a8,
2034 		0x10b4, 0x10f8,
2035 		0x1100, 0x1114,
2036 		0x111c, 0x112c,
2037 		0x1138, 0x113c,
2038 		0x1144, 0x114c,
2039 		0x1180, 0x1184,
2040 		0x1190, 0x1194,
2041 		0x11a0, 0x11a4,
2042 		0x11b0, 0x11b4,
2043 		0x11fc, 0x1258,
2044 		0x1280, 0x12d4,
2045 		0x12d9, 0x12d9,
2046 		0x12de, 0x12de,
2047 		0x12e3, 0x12e3,
2048 		0x12e8, 0x133c,
2049 		0x1800, 0x18fc,
2050 		0x3000, 0x302c,
2051 		0x3060, 0x30b0,
2052 		0x30b8, 0x30d8,
2053 		0x30e0, 0x30fc,
2054 		0x3140, 0x357c,
2055 		0x35a8, 0x35cc,
2056 		0x35ec, 0x35ec,
2057 		0x3600, 0x5624,
2058 		0x56cc, 0x56ec,
2059 		0x56f4, 0x5720,
2060 		0x5728, 0x575c,
2061 		0x580c, 0x5814,
2062 		0x5890, 0x589c,
2063 		0x58a4, 0x58ac,
2064 		0x58b8, 0x58bc,
2065 		0x5940, 0x595c,
2066 		0x5980, 0x598c,
2067 		0x59b0, 0x59c8,
2068 		0x59d0, 0x59dc,
2069 		0x59fc, 0x5a18,
2070 		0x5a60, 0x5a6c,
2071 		0x5a80, 0x5a8c,
2072 		0x5a94, 0x5a9c,
2073 		0x5b94, 0x5bfc,
2074 		0x5c10, 0x5e48,
2075 		0x5e50, 0x5e94,
2076 		0x5ea0, 0x5eb0,
2077 		0x5ec0, 0x5ec0,
2078 		0x5ec8, 0x5ed0,
2079 		0x6000, 0x6020,
2080 		0x6028, 0x6040,
2081 		0x6058, 0x609c,
2082 		0x60a8, 0x619c,
2083 		0x7700, 0x7798,
2084 		0x77c0, 0x7880,
2085 		0x78cc, 0x78fc,
2086 		0x7b00, 0x7b58,
2087 		0x7b60, 0x7b84,
2088 		0x7b8c, 0x7c54,
2089 		0x7d00, 0x7d38,
2090 		0x7d40, 0x7d84,
2091 		0x7d8c, 0x7ddc,
2092 		0x7de4, 0x7e04,
2093 		0x7e10, 0x7e1c,
2094 		0x7e24, 0x7e38,
2095 		0x7e40, 0x7e44,
2096 		0x7e4c, 0x7e78,
2097 		0x7e80, 0x7edc,
2098 		0x7ee8, 0x7efc,
2099 		0x8dc0, 0x8de4,
2100 		0x8df8, 0x8e04,
2101 		0x8e10, 0x8e84,
2102 		0x8ea0, 0x8f88,
2103 		0x8fb8, 0x9058,
2104 		0x9060, 0x9060,
2105 		0x9068, 0x90f8,
2106 		0x9100, 0x9124,
2107 		0x9400, 0x9470,
2108 		0x9600, 0x9600,
2109 		0x9608, 0x9638,
2110 		0x9640, 0x9704,
2111 		0x9710, 0x971c,
2112 		0x9800, 0x9808,
2113 		0x9820, 0x983c,
2114 		0x9850, 0x9864,
2115 		0x9c00, 0x9c6c,
2116 		0x9c80, 0x9cec,
2117 		0x9d00, 0x9d6c,
2118 		0x9d80, 0x9dec,
2119 		0x9e00, 0x9e6c,
2120 		0x9e80, 0x9eec,
2121 		0x9f00, 0x9f6c,
2122 		0x9f80, 0xa020,
2123 		0xd004, 0xd03c,
2124 		0xd100, 0xd118,
2125 		0xd200, 0xd214,
2126 		0xd220, 0xd234,
2127 		0xd240, 0xd254,
2128 		0xd260, 0xd274,
2129 		0xd280, 0xd294,
2130 		0xd2a0, 0xd2b4,
2131 		0xd2c0, 0xd2d4,
2132 		0xd2e0, 0xd2f4,
2133 		0xd300, 0xd31c,
2134 		0xdfc0, 0xdfe0,
2135 		0xe000, 0xf008,
2136 		0x11000, 0x11014,
2137 		0x11048, 0x1106c,
2138 		0x11074, 0x11088,
2139 		0x11098, 0x11120,
2140 		0x1112c, 0x1117c,
2141 		0x11190, 0x112e0,
2142 		0x11300, 0x1130c,
2143 		0x12000, 0x1206c,
2144 		0x19040, 0x1906c,
2145 		0x19078, 0x19080,
2146 		0x1908c, 0x190e8,
2147 		0x190f0, 0x190f8,
2148 		0x19100, 0x19110,
2149 		0x19120, 0x19124,
2150 		0x19150, 0x19194,
2151 		0x1919c, 0x191b0,
2152 		0x191d0, 0x191e8,
2153 		0x19238, 0x19290,
2154 		0x192a4, 0x192b0,
2155 		0x192bc, 0x192bc,
2156 		0x19348, 0x1934c,
2157 		0x193f8, 0x19418,
2158 		0x19420, 0x19428,
2159 		0x19430, 0x19444,
2160 		0x1944c, 0x1946c,
2161 		0x19474, 0x19474,
2162 		0x19490, 0x194cc,
2163 		0x194f0, 0x194f8,
2164 		0x19c00, 0x19c48,
2165 		0x19c50, 0x19c80,
2166 		0x19c94, 0x19c98,
2167 		0x19ca0, 0x19cbc,
2168 		0x19ce4, 0x19ce4,
2169 		0x19cf0, 0x19cf8,
2170 		0x19d00, 0x19d28,
2171 		0x19d50, 0x19d78,
2172 		0x19d94, 0x19d98,
2173 		0x19da0, 0x19dc8,
2174 		0x19df0, 0x19e10,
2175 		0x19e50, 0x19e6c,
2176 		0x19ea0, 0x19ebc,
2177 		0x19ec4, 0x19ef4,
2178 		0x19f04, 0x19f2c,
2179 		0x19f34, 0x19f34,
2180 		0x19f40, 0x19f50,
2181 		0x19f90, 0x19fac,
2182 		0x19fc4, 0x19fc8,
2183 		0x19fd0, 0x19fe4,
2184 		0x1a000, 0x1a004,
2185 		0x1a010, 0x1a06c,
2186 		0x1a0b0, 0x1a0e4,
2187 		0x1a0ec, 0x1a0f8,
2188 		0x1a100, 0x1a108,
2189 		0x1a114, 0x1a120,
2190 		0x1a128, 0x1a130,
2191 		0x1a138, 0x1a138,
2192 		0x1a190, 0x1a1c4,
2193 		0x1a1fc, 0x1a1fc,
2194 		0x1e008, 0x1e00c,
2195 		0x1e040, 0x1e044,
2196 		0x1e04c, 0x1e04c,
2197 		0x1e284, 0x1e290,
2198 		0x1e2c0, 0x1e2c0,
2199 		0x1e2e0, 0x1e2e0,
2200 		0x1e300, 0x1e384,
2201 		0x1e3c0, 0x1e3c8,
2202 		0x1e408, 0x1e40c,
2203 		0x1e440, 0x1e444,
2204 		0x1e44c, 0x1e44c,
2205 		0x1e684, 0x1e690,
2206 		0x1e6c0, 0x1e6c0,
2207 		0x1e6e0, 0x1e6e0,
2208 		0x1e700, 0x1e784,
2209 		0x1e7c0, 0x1e7c8,
2210 		0x1e808, 0x1e80c,
2211 		0x1e840, 0x1e844,
2212 		0x1e84c, 0x1e84c,
2213 		0x1ea84, 0x1ea90,
2214 		0x1eac0, 0x1eac0,
2215 		0x1eae0, 0x1eae0,
2216 		0x1eb00, 0x1eb84,
2217 		0x1ebc0, 0x1ebc8,
2218 		0x1ec08, 0x1ec0c,
2219 		0x1ec40, 0x1ec44,
2220 		0x1ec4c, 0x1ec4c,
2221 		0x1ee84, 0x1ee90,
2222 		0x1eec0, 0x1eec0,
2223 		0x1eee0, 0x1eee0,
2224 		0x1ef00, 0x1ef84,
2225 		0x1efc0, 0x1efc8,
2226 		0x1f008, 0x1f00c,
2227 		0x1f040, 0x1f044,
2228 		0x1f04c, 0x1f04c,
2229 		0x1f284, 0x1f290,
2230 		0x1f2c0, 0x1f2c0,
2231 		0x1f2e0, 0x1f2e0,
2232 		0x1f300, 0x1f384,
2233 		0x1f3c0, 0x1f3c8,
2234 		0x1f408, 0x1f40c,
2235 		0x1f440, 0x1f444,
2236 		0x1f44c, 0x1f44c,
2237 		0x1f684, 0x1f690,
2238 		0x1f6c0, 0x1f6c0,
2239 		0x1f6e0, 0x1f6e0,
2240 		0x1f700, 0x1f784,
2241 		0x1f7c0, 0x1f7c8,
2242 		0x1f808, 0x1f80c,
2243 		0x1f840, 0x1f844,
2244 		0x1f84c, 0x1f84c,
2245 		0x1fa84, 0x1fa90,
2246 		0x1fac0, 0x1fac0,
2247 		0x1fae0, 0x1fae0,
2248 		0x1fb00, 0x1fb84,
2249 		0x1fbc0, 0x1fbc8,
2250 		0x1fc08, 0x1fc0c,
2251 		0x1fc40, 0x1fc44,
2252 		0x1fc4c, 0x1fc4c,
2253 		0x1fe84, 0x1fe90,
2254 		0x1fec0, 0x1fec0,
2255 		0x1fee0, 0x1fee0,
2256 		0x1ff00, 0x1ff84,
2257 		0x1ffc0, 0x1ffc8,
2258 		0x30000, 0x30030,
2259 		0x30038, 0x30038,
2260 		0x30040, 0x30040,
2261 		0x30048, 0x30048,
2262 		0x30050, 0x30050,
2263 		0x3005c, 0x30060,
2264 		0x30068, 0x30068,
2265 		0x30070, 0x30070,
2266 		0x30100, 0x30168,
2267 		0x30190, 0x301a0,
2268 		0x301a8, 0x301b8,
2269 		0x301c4, 0x301c8,
2270 		0x301d0, 0x301d0,
2271 		0x30200, 0x30320,
2272 		0x30400, 0x304b4,
2273 		0x304c0, 0x3052c,
2274 		0x30540, 0x3061c,
2275 		0x30800, 0x308a0,
2276 		0x308c0, 0x30908,
2277 		0x30910, 0x309b8,
2278 		0x30a00, 0x30a04,
2279 		0x30a0c, 0x30a14,
2280 		0x30a1c, 0x30a2c,
2281 		0x30a44, 0x30a50,
2282 		0x30a74, 0x30a74,
2283 		0x30a7c, 0x30afc,
2284 		0x30b08, 0x30c24,
2285 		0x30d00, 0x30d14,
2286 		0x30d1c, 0x30d3c,
2287 		0x30d44, 0x30d4c,
2288 		0x30d54, 0x30d74,
2289 		0x30d7c, 0x30d7c,
2290 		0x30de0, 0x30de0,
2291 		0x30e00, 0x30ed4,
2292 		0x30f00, 0x30fa4,
2293 		0x30fc0, 0x30fc4,
2294 		0x31000, 0x31004,
2295 		0x31080, 0x310fc,
2296 		0x31208, 0x31220,
2297 		0x3123c, 0x31254,
2298 		0x31300, 0x31300,
2299 		0x31308, 0x3131c,
2300 		0x31338, 0x3133c,
2301 		0x31380, 0x31380,
2302 		0x31388, 0x313a8,
2303 		0x313b4, 0x313b4,
2304 		0x31400, 0x31420,
2305 		0x31438, 0x3143c,
2306 		0x31480, 0x31480,
2307 		0x314a8, 0x314a8,
2308 		0x314b0, 0x314b4,
2309 		0x314c8, 0x314d4,
2310 		0x31a40, 0x31a4c,
2311 		0x31af0, 0x31b20,
2312 		0x31b38, 0x31b3c,
2313 		0x31b80, 0x31b80,
2314 		0x31ba8, 0x31ba8,
2315 		0x31bb0, 0x31bb4,
2316 		0x31bc8, 0x31bd4,
2317 		0x32140, 0x3218c,
2318 		0x321f0, 0x321f4,
2319 		0x32200, 0x32200,
2320 		0x32218, 0x32218,
2321 		0x32400, 0x32400,
2322 		0x32408, 0x3241c,
2323 		0x32618, 0x32620,
2324 		0x32664, 0x32664,
2325 		0x326a8, 0x326a8,
2326 		0x326ec, 0x326ec,
2327 		0x32a00, 0x32abc,
2328 		0x32b00, 0x32b38,
2329 		0x32b40, 0x32b58,
2330 		0x32b60, 0x32b78,
2331 		0x32c00, 0x32c00,
2332 		0x32c08, 0x32c3c,
2333 		0x32e00, 0x32e2c,
2334 		0x32f00, 0x32f2c,
2335 		0x33000, 0x3302c,
2336 		0x33034, 0x33050,
2337 		0x33058, 0x33058,
2338 		0x33060, 0x3308c,
2339 		0x3309c, 0x330ac,
2340 		0x330c0, 0x330c0,
2341 		0x330c8, 0x330d0,
2342 		0x330d8, 0x330e0,
2343 		0x330ec, 0x3312c,
2344 		0x33134, 0x33150,
2345 		0x33158, 0x33158,
2346 		0x33160, 0x3318c,
2347 		0x3319c, 0x331ac,
2348 		0x331c0, 0x331c0,
2349 		0x331c8, 0x331d0,
2350 		0x331d8, 0x331e0,
2351 		0x331ec, 0x33290,
2352 		0x33298, 0x332c4,
2353 		0x332e4, 0x33390,
2354 		0x33398, 0x333c4,
2355 		0x333e4, 0x3342c,
2356 		0x33434, 0x33450,
2357 		0x33458, 0x33458,
2358 		0x33460, 0x3348c,
2359 		0x3349c, 0x334ac,
2360 		0x334c0, 0x334c0,
2361 		0x334c8, 0x334d0,
2362 		0x334d8, 0x334e0,
2363 		0x334ec, 0x3352c,
2364 		0x33534, 0x33550,
2365 		0x33558, 0x33558,
2366 		0x33560, 0x3358c,
2367 		0x3359c, 0x335ac,
2368 		0x335c0, 0x335c0,
2369 		0x335c8, 0x335d0,
2370 		0x335d8, 0x335e0,
2371 		0x335ec, 0x33690,
2372 		0x33698, 0x336c4,
2373 		0x336e4, 0x33790,
2374 		0x33798, 0x337c4,
2375 		0x337e4, 0x337fc,
2376 		0x33814, 0x33814,
2377 		0x33854, 0x33868,
2378 		0x33880, 0x3388c,
2379 		0x338c0, 0x338d0,
2380 		0x338e8, 0x338ec,
2381 		0x33900, 0x3392c,
2382 		0x33934, 0x33950,
2383 		0x33958, 0x33958,
2384 		0x33960, 0x3398c,
2385 		0x3399c, 0x339ac,
2386 		0x339c0, 0x339c0,
2387 		0x339c8, 0x339d0,
2388 		0x339d8, 0x339e0,
2389 		0x339ec, 0x33a90,
2390 		0x33a98, 0x33ac4,
2391 		0x33ae4, 0x33b10,
2392 		0x33b24, 0x33b28,
2393 		0x33b38, 0x33b50,
2394 		0x33bf0, 0x33c10,
2395 		0x33c24, 0x33c28,
2396 		0x33c38, 0x33c50,
2397 		0x33cf0, 0x33cfc,
2398 		0x34000, 0x34030,
2399 		0x34038, 0x34038,
2400 		0x34040, 0x34040,
2401 		0x34048, 0x34048,
2402 		0x34050, 0x34050,
2403 		0x3405c, 0x34060,
2404 		0x34068, 0x34068,
2405 		0x34070, 0x34070,
2406 		0x34100, 0x34168,
2407 		0x34190, 0x341a0,
2408 		0x341a8, 0x341b8,
2409 		0x341c4, 0x341c8,
2410 		0x341d0, 0x341d0,
2411 		0x34200, 0x34320,
2412 		0x34400, 0x344b4,
2413 		0x344c0, 0x3452c,
2414 		0x34540, 0x3461c,
2415 		0x34800, 0x348a0,
2416 		0x348c0, 0x34908,
2417 		0x34910, 0x349b8,
2418 		0x34a00, 0x34a04,
2419 		0x34a0c, 0x34a14,
2420 		0x34a1c, 0x34a2c,
2421 		0x34a44, 0x34a50,
2422 		0x34a74, 0x34a74,
2423 		0x34a7c, 0x34afc,
2424 		0x34b08, 0x34c24,
2425 		0x34d00, 0x34d14,
2426 		0x34d1c, 0x34d3c,
2427 		0x34d44, 0x34d4c,
2428 		0x34d54, 0x34d74,
2429 		0x34d7c, 0x34d7c,
2430 		0x34de0, 0x34de0,
2431 		0x34e00, 0x34ed4,
2432 		0x34f00, 0x34fa4,
2433 		0x34fc0, 0x34fc4,
2434 		0x35000, 0x35004,
2435 		0x35080, 0x350fc,
2436 		0x35208, 0x35220,
2437 		0x3523c, 0x35254,
2438 		0x35300, 0x35300,
2439 		0x35308, 0x3531c,
2440 		0x35338, 0x3533c,
2441 		0x35380, 0x35380,
2442 		0x35388, 0x353a8,
2443 		0x353b4, 0x353b4,
2444 		0x35400, 0x35420,
2445 		0x35438, 0x3543c,
2446 		0x35480, 0x35480,
2447 		0x354a8, 0x354a8,
2448 		0x354b0, 0x354b4,
2449 		0x354c8, 0x354d4,
2450 		0x35a40, 0x35a4c,
2451 		0x35af0, 0x35b20,
2452 		0x35b38, 0x35b3c,
2453 		0x35b80, 0x35b80,
2454 		0x35ba8, 0x35ba8,
2455 		0x35bb0, 0x35bb4,
2456 		0x35bc8, 0x35bd4,
2457 		0x36140, 0x3618c,
2458 		0x361f0, 0x361f4,
2459 		0x36200, 0x36200,
2460 		0x36218, 0x36218,
2461 		0x36400, 0x36400,
2462 		0x36408, 0x3641c,
2463 		0x36618, 0x36620,
2464 		0x36664, 0x36664,
2465 		0x366a8, 0x366a8,
2466 		0x366ec, 0x366ec,
2467 		0x36a00, 0x36abc,
2468 		0x36b00, 0x36b38,
2469 		0x36b40, 0x36b58,
2470 		0x36b60, 0x36b78,
2471 		0x36c00, 0x36c00,
2472 		0x36c08, 0x36c3c,
2473 		0x36e00, 0x36e2c,
2474 		0x36f00, 0x36f2c,
2475 		0x37000, 0x3702c,
2476 		0x37034, 0x37050,
2477 		0x37058, 0x37058,
2478 		0x37060, 0x3708c,
2479 		0x3709c, 0x370ac,
2480 		0x370c0, 0x370c0,
2481 		0x370c8, 0x370d0,
2482 		0x370d8, 0x370e0,
2483 		0x370ec, 0x3712c,
2484 		0x37134, 0x37150,
2485 		0x37158, 0x37158,
2486 		0x37160, 0x3718c,
2487 		0x3719c, 0x371ac,
2488 		0x371c0, 0x371c0,
2489 		0x371c8, 0x371d0,
2490 		0x371d8, 0x371e0,
2491 		0x371ec, 0x37290,
2492 		0x37298, 0x372c4,
2493 		0x372e4, 0x37390,
2494 		0x37398, 0x373c4,
2495 		0x373e4, 0x3742c,
2496 		0x37434, 0x37450,
2497 		0x37458, 0x37458,
2498 		0x37460, 0x3748c,
2499 		0x3749c, 0x374ac,
2500 		0x374c0, 0x374c0,
2501 		0x374c8, 0x374d0,
2502 		0x374d8, 0x374e0,
2503 		0x374ec, 0x3752c,
2504 		0x37534, 0x37550,
2505 		0x37558, 0x37558,
2506 		0x37560, 0x3758c,
2507 		0x3759c, 0x375ac,
2508 		0x375c0, 0x375c0,
2509 		0x375c8, 0x375d0,
2510 		0x375d8, 0x375e0,
2511 		0x375ec, 0x37690,
2512 		0x37698, 0x376c4,
2513 		0x376e4, 0x37790,
2514 		0x37798, 0x377c4,
2515 		0x377e4, 0x377fc,
2516 		0x37814, 0x37814,
2517 		0x37854, 0x37868,
2518 		0x37880, 0x3788c,
2519 		0x378c0, 0x378d0,
2520 		0x378e8, 0x378ec,
2521 		0x37900, 0x3792c,
2522 		0x37934, 0x37950,
2523 		0x37958, 0x37958,
2524 		0x37960, 0x3798c,
2525 		0x3799c, 0x379ac,
2526 		0x379c0, 0x379c0,
2527 		0x379c8, 0x379d0,
2528 		0x379d8, 0x379e0,
2529 		0x379ec, 0x37a90,
2530 		0x37a98, 0x37ac4,
2531 		0x37ae4, 0x37b10,
2532 		0x37b24, 0x37b28,
2533 		0x37b38, 0x37b50,
2534 		0x37bf0, 0x37c10,
2535 		0x37c24, 0x37c28,
2536 		0x37c38, 0x37c50,
2537 		0x37cf0, 0x37cfc,
2538 		0x40040, 0x40040,
2539 		0x40080, 0x40084,
2540 		0x40100, 0x40100,
2541 		0x40140, 0x401bc,
2542 		0x40200, 0x40214,
2543 		0x40228, 0x40228,
2544 		0x40240, 0x40258,
2545 		0x40280, 0x40280,
2546 		0x40304, 0x40304,
2547 		0x40330, 0x4033c,
2548 		0x41304, 0x413b8,
2549 		0x413c0, 0x413c8,
2550 		0x413d0, 0x413dc,
2551 		0x413f0, 0x413f0,
2552 		0x41400, 0x4140c,
2553 		0x41414, 0x4141c,
2554 		0x41480, 0x414d0,
2555 		0x44000, 0x4407c,
2556 		0x440c0, 0x441ac,
2557 		0x441b4, 0x4427c,
2558 		0x442c0, 0x443ac,
2559 		0x443b4, 0x4447c,
2560 		0x444c0, 0x445ac,
2561 		0x445b4, 0x4467c,
2562 		0x446c0, 0x447ac,
2563 		0x447b4, 0x4487c,
2564 		0x448c0, 0x449ac,
2565 		0x449b4, 0x44a7c,
2566 		0x44ac0, 0x44bac,
2567 		0x44bb4, 0x44c7c,
2568 		0x44cc0, 0x44dac,
2569 		0x44db4, 0x44e7c,
2570 		0x44ec0, 0x44fac,
2571 		0x44fb4, 0x4507c,
2572 		0x450c0, 0x451ac,
2573 		0x451b4, 0x451fc,
2574 		0x45800, 0x45804,
2575 		0x45810, 0x45830,
2576 		0x45840, 0x45860,
2577 		0x45868, 0x45868,
2578 		0x45880, 0x45884,
2579 		0x458a0, 0x458b0,
2580 		0x45a00, 0x45a04,
2581 		0x45a10, 0x45a30,
2582 		0x45a40, 0x45a60,
2583 		0x45a68, 0x45a68,
2584 		0x45a80, 0x45a84,
2585 		0x45aa0, 0x45ab0,
2586 		0x460c0, 0x460e4,
2587 		0x47000, 0x4703c,
2588 		0x47044, 0x4708c,
2589 		0x47200, 0x47250,
2590 		0x47400, 0x47408,
2591 		0x47414, 0x47420,
2592 		0x47600, 0x47618,
2593 		0x47800, 0x47814,
2594 		0x47820, 0x4782c,
2595 		0x50000, 0x50084,
2596 		0x50090, 0x500cc,
2597 		0x50300, 0x50384,
2598 		0x50400, 0x50400,
2599 		0x50800, 0x50884,
2600 		0x50890, 0x508cc,
2601 		0x50b00, 0x50b84,
2602 		0x50c00, 0x50c00,
2603 		0x51000, 0x51020,
2604 		0x51028, 0x510b0,
2605 		0x51300, 0x51324,
2606 	};
2607 
2608 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2609 	const unsigned int *reg_ranges;
2610 	int reg_ranges_size, range;
2611 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2612 
2613 	/* Select the right set of register ranges to dump depending on the
2614 	 * adapter chip type.
2615 	 */
2616 	switch (chip_version) {
2617 	case CHELSIO_T4:
2618 		reg_ranges = t4_reg_ranges;
2619 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2620 		break;
2621 
2622 	case CHELSIO_T5:
2623 		reg_ranges = t5_reg_ranges;
2624 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2625 		break;
2626 
2627 	case CHELSIO_T6:
2628 		reg_ranges = t6_reg_ranges;
2629 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2630 		break;
2631 
2632 	default:
2633 		dev_err(adap->pdev_dev,
2634 			"Unsupported chip version %d\n", chip_version);
2635 		return;
2636 	}
2637 
2638 	/* Clear the register buffer and insert the appropriate register
2639 	 * values selected by the above register ranges.
2640 	 */
2641 	memset(buf, 0, buf_size);
2642 	for (range = 0; range < reg_ranges_size; range += 2) {
2643 		unsigned int reg = reg_ranges[range];
2644 		unsigned int last_reg = reg_ranges[range + 1];
2645 		u32 *bufp = (u32 *)((char *)buf + reg);
2646 
2647 		/* Iterate across the register range filling in the register
2648 		 * buffer but don't write past the end of the register buffer.
2649 		 */
2650 		while (reg <= last_reg && bufp < buf_end) {
2651 			*bufp++ = t4_read_reg(adap, reg);
2652 			reg += sizeof(u32);
2653 		}
2654 	}
2655 }
2656 
2657 #define EEPROM_STAT_ADDR   0x7bfc
2658 #define VPD_SIZE           0x800
2659 #define VPD_BASE           0x400
2660 #define VPD_BASE_OLD       0
2661 #define VPD_LEN            1024
2662 #define CHELSIO_VPD_UNIQUE_ID 0x82
2663 
2664 /**
2665  *	t4_seeprom_wp - enable/disable EEPROM write protection
2666  *	@adapter: the adapter
2667  *	@enable: whether to enable or disable write protection
2668  *
2669  *	Enables or disables write protection on the serial EEPROM.
2670  */
2671 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2672 {
2673 	unsigned int v = enable ? 0xc : 0;
2674 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2675 	return ret < 0 ? ret : 0;
2676 }
2677 
2678 /**
2679  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2680  *	@adapter: adapter to read
2681  *	@p: where to store the parameters
2682  *
2683  *	Reads card parameters stored in VPD EEPROM.
2684  */
2685 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2686 {
2687 	int i, ret = 0, addr;
2688 	int ec, sn, pn, na;
2689 	u8 *vpd, csum;
2690 	unsigned int vpdr_len, kw_offset, id_len;
2691 
2692 	vpd = vmalloc(VPD_LEN);
2693 	if (!vpd)
2694 		return -ENOMEM;
2695 
2696 	/* We have two VPD data structures stored in the adapter VPD area.
2697 	 * By default, Linux calculates the size of the VPD area by traversing
2698 	 * the first VPD area at offset 0x0, so we need to tell the OS what
2699 	 * our real VPD size is.
2700 	 */
2701 	ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2702 	if (ret < 0)
2703 		goto out;
2704 
2705 	/* Card information normally starts at VPD_BASE but early cards had
2706 	 * it at 0.
2707 	 */
2708 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2709 	if (ret < 0)
2710 		goto out;
2711 
2712 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2713 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2714 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2715 	 * is expected to automatically put this entry at the
2716 	 * beginning of the VPD.
2717 	 */
2718 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2719 
2720 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2721 	if (ret < 0)
2722 		goto out;
2723 
2724 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2725 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2726 		ret = -EINVAL;
2727 		goto out;
2728 	}
2729 
2730 	id_len = pci_vpd_lrdt_size(vpd);
2731 	if (id_len > ID_LEN)
2732 		id_len = ID_LEN;
2733 
2734 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2735 	if (i < 0) {
2736 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2737 		ret = -EINVAL;
2738 		goto out;
2739 	}
2740 
2741 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2742 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2743 	if (vpdr_len + kw_offset > VPD_LEN) {
2744 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2745 		ret = -EINVAL;
2746 		goto out;
2747 	}
2748 
2749 #define FIND_VPD_KW(var, name) do { \
2750 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2751 	if (var < 0) { \
2752 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2753 		ret = -EINVAL; \
2754 		goto out; \
2755 	} \
2756 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2757 } while (0)
2758 
2759 	FIND_VPD_KW(i, "RV");
2760 	for (csum = 0; i >= 0; i--)
2761 		csum += vpd[i];
2762 
2763 	if (csum) {
2764 		dev_err(adapter->pdev_dev,
2765 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2766 		ret = -EINVAL;
2767 		goto out;
2768 	}
2769 
2770 	FIND_VPD_KW(ec, "EC");
2771 	FIND_VPD_KW(sn, "SN");
2772 	FIND_VPD_KW(pn, "PN");
2773 	FIND_VPD_KW(na, "NA");
2774 #undef FIND_VPD_KW
2775 
2776 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2777 	strim(p->id);
2778 	memcpy(p->ec, vpd + ec, EC_LEN);
2779 	strim(p->ec);
2780 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2781 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2782 	strim(p->sn);
2783 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2784 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2785 	strim(p->pn);
2786 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2787 	strim((char *)p->na);
2788 
2789 out:
2790 	vfree(vpd);
2791 	return ret < 0 ? ret : 0;
2792 }
2793 
2794 /**
2795  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2796  *	@adapter: adapter to read
2797  *	@p: where to store the parameters
2798  *
2799  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2800  *	Clock.  This can only be called after a connection to the firmware
2801  *	is established.
2802  */
2803 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2804 {
2805 	u32 cclk_param, cclk_val;
2806 	int ret;
2807 
2808 	/* Grab the raw VPD parameters.
2809 	 */
2810 	ret = t4_get_raw_vpd_params(adapter, p);
2811 	if (ret)
2812 		return ret;
2813 
2814 	/* Ask firmware for the Core Clock since it knows how to translate the
2815 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2816 	 */
2817 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2818 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2819 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2820 			      1, &cclk_param, &cclk_val);
2821 
2822 	if (ret)
2823 		return ret;
2824 	p->cclk = cclk_val;
2825 
2826 	return 0;
2827 }
2828 
2829 /* serial flash and firmware constants */
2830 enum {
2831 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2832 
2833 	/* flash command opcodes */
2834 	SF_PROG_PAGE    = 2,          /* program page */
2835 	SF_WR_DISABLE   = 4,          /* disable writes */
2836 	SF_RD_STATUS    = 5,          /* read status register */
2837 	SF_WR_ENABLE    = 6,          /* enable writes */
2838 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2839 	SF_RD_ID        = 0x9f,       /* read ID */
2840 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2841 
2842 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2843 };
2844 
2845 /**
2846  *	sf1_read - read data from the serial flash
2847  *	@adapter: the adapter
2848  *	@byte_cnt: number of bytes to read
2849  *	@cont: whether another operation will be chained
2850  *	@lock: whether to lock SF for PL access only
2851  *	@valp: where to store the read data
2852  *
2853  *	Reads up to 4 bytes of data from the serial flash.  The location of
2854  *	the read needs to be specified prior to calling this by issuing the
2855  *	appropriate commands to the serial flash.
2856  */
2857 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2858 		    int lock, u32 *valp)
2859 {
2860 	int ret;
2861 
2862 	if (!byte_cnt || byte_cnt > 4)
2863 		return -EINVAL;
2864 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2865 		return -EBUSY;
2866 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2867 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2868 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2869 	if (!ret)
2870 		*valp = t4_read_reg(adapter, SF_DATA_A);
2871 	return ret;
2872 }
2873 
2874 /**
2875  *	sf1_write - write data to the serial flash
2876  *	@adapter: the adapter
2877  *	@byte_cnt: number of bytes to write
2878  *	@cont: whether another operation will be chained
2879  *	@lock: whether to lock SF for PL access only
2880  *	@val: value to write
2881  *
2882  *	Writes up to 4 bytes of data to the serial flash.  The location of
2883  *	the write needs to be specified prior to calling this by issuing the
2884  *	appropriate commands to the serial flash.
2885  */
2886 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2887 		     int lock, u32 val)
2888 {
2889 	if (!byte_cnt || byte_cnt > 4)
2890 		return -EINVAL;
2891 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2892 		return -EBUSY;
2893 	t4_write_reg(adapter, SF_DATA_A, val);
2894 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2895 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2896 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2897 }
2898 
2899 /**
2900  *	flash_wait_op - wait for a flash operation to complete
2901  *	@adapter: the adapter
2902  *	@attempts: max number of polls of the status register
2903  *	@delay: delay between polls in ms
2904  *
2905  *	Wait for a flash operation to complete by polling the status register.
2906  */
2907 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2908 {
2909 	int ret;
2910 	u32 status;
2911 
2912 	while (1) {
2913 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2914 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2915 			return ret;
2916 		if (!(status & 1))
2917 			return 0;
2918 		if (--attempts == 0)
2919 			return -EAGAIN;
2920 		if (delay)
2921 			msleep(delay);
2922 	}
2923 }
2924 
2925 /**
2926  *	t4_read_flash - read words from serial flash
2927  *	@adapter: the adapter
2928  *	@addr: the start address for the read
2929  *	@nwords: how many 32-bit words to read
2930  *	@data: where to store the read data
2931  *	@byte_oriented: whether to store data as bytes or as words
2932  *
2933  *	Read the specified number of 32-bit words from the serial flash.
2934  *	If @byte_oriented is set the read data is stored as a byte array
2935  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2936  *	natural endianness.
2937  */
2938 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2939 		  unsigned int nwords, u32 *data, int byte_oriented)
2940 {
2941 	int ret;
2942 
2943 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2944 		return -EINVAL;
2945 
2946 	addr = swab32(addr) | SF_RD_DATA_FAST;
2947 
2948 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2949 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2950 		return ret;
2951 
2952 	for ( ; nwords; nwords--, data++) {
2953 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2954 		if (nwords == 1)
2955 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2956 		if (ret)
2957 			return ret;
2958 		if (byte_oriented)
2959 			*data = (__force __u32)(cpu_to_be32(*data));
2960 	}
2961 	return 0;
2962 }
2963 
2964 /**
2965  *	t4_write_flash - write up to a page of data to the serial flash
2966  *	@adapter: the adapter
2967  *	@addr: the start address to write
2968  *	@n: length of data to write in bytes
2969  *	@data: the data to write
2970  *
2971  *	Writes up to a page of data (256 bytes) to the serial flash starting
2972  *	at the given address.  All the data must be written to the same page.
2973  */
2974 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2975 			  unsigned int n, const u8 *data)
2976 {
2977 	int ret;
2978 	u32 buf[64];
2979 	unsigned int i, c, left, val, offset = addr & 0xff;
2980 
2981 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2982 		return -EINVAL;
2983 
2984 	val = swab32(addr) | SF_PROG_PAGE;
2985 
2986 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2987 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2988 		goto unlock;
2989 
2990 	for (left = n; left; left -= c) {
2991 		c = min(left, 4U);
2992 		for (val = 0, i = 0; i < c; ++i)
2993 			val = (val << 8) + *data++;
2994 
2995 		ret = sf1_write(adapter, c, c != left, 1, val);
2996 		if (ret)
2997 			goto unlock;
2998 	}
2999 	ret = flash_wait_op(adapter, 8, 1);
3000 	if (ret)
3001 		goto unlock;
3002 
3003 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3004 
3005 	/* Read the page to verify the write succeeded */
3006 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3007 	if (ret)
3008 		return ret;
3009 
3010 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3011 		dev_err(adapter->pdev_dev,
3012 			"failed to correctly write the flash page at %#x\n",
3013 			addr);
3014 		return -EIO;
3015 	}
3016 	return 0;
3017 
3018 unlock:
3019 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3020 	return ret;
3021 }
3022 
3023 /**
3024  *	t4_get_fw_version - read the firmware version
3025  *	@adapter: the adapter
3026  *	@vers: where to place the version
3027  *
3028  *	Reads the FW version from flash.
3029  */
3030 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3031 {
3032 	return t4_read_flash(adapter, FLASH_FW_START +
3033 			     offsetof(struct fw_hdr, fw_ver), 1,
3034 			     vers, 0);
3035 }
3036 
3037 /**
3038  *	t4_get_bs_version - read the firmware bootstrap version
3039  *	@adapter: the adapter
3040  *	@vers: where to place the version
3041  *
3042  *	Reads the FW Bootstrap version from flash.
3043  */
3044 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3045 {
3046 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3047 			     offsetof(struct fw_hdr, fw_ver), 1,
3048 			     vers, 0);
3049 }
3050 
3051 /**
3052  *	t4_get_tp_version - read the TP microcode version
3053  *	@adapter: the adapter
3054  *	@vers: where to place the version
3055  *
3056  *	Reads the TP microcode version from flash.
3057  */
3058 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3059 {
3060 	return t4_read_flash(adapter, FLASH_FW_START +
3061 			     offsetof(struct fw_hdr, tp_microcode_ver),
3062 			     1, vers, 0);
3063 }
3064 
3065 /**
3066  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3067  *	@adapter: the adapter
3068  *	@vers: where to place the version
3069  *
3070  *	Reads the Expansion ROM header from FLASH and returns the version
3071  *	number (if present) through the @vers return value pointer.  We return
3072  *	this in the Firmware Version Format since it's convenient.  Return
3073  *	0 on success, -ENOENT if no Expansion ROM is present.
3074  */
3075 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3076 {
3077 	struct exprom_header {
3078 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3079 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3080 	} *hdr;
3081 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3082 					   sizeof(u32))];
3083 	int ret;
3084 
3085 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3086 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3087 			    0);
3088 	if (ret)
3089 		return ret;
3090 
3091 	hdr = (struct exprom_header *)exprom_header_buf;
3092 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3093 		return -ENOENT;
3094 
3095 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3096 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3097 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3098 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3099 	return 0;
3100 }
3101 
3102 /**
3103  *	t4_check_fw_version - check if the FW is supported with this driver
3104  *	@adap: the adapter
3105  *
3106  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3107  *	if there's exact match, a negative error if the version could not be
3108  *	read or there's a major version mismatch
3109  */
3110 int t4_check_fw_version(struct adapter *adap)
3111 {
3112 	int i, ret, major, minor, micro;
3113 	int exp_major, exp_minor, exp_micro;
3114 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3115 
3116 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3117 	/* Try multiple times before returning error */
3118 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3119 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3120 
3121 	if (ret)
3122 		return ret;
3123 
3124 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3125 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3126 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3127 
3128 	switch (chip_version) {
3129 	case CHELSIO_T4:
3130 		exp_major = T4FW_MIN_VERSION_MAJOR;
3131 		exp_minor = T4FW_MIN_VERSION_MINOR;
3132 		exp_micro = T4FW_MIN_VERSION_MICRO;
3133 		break;
3134 	case CHELSIO_T5:
3135 		exp_major = T5FW_MIN_VERSION_MAJOR;
3136 		exp_minor = T5FW_MIN_VERSION_MINOR;
3137 		exp_micro = T5FW_MIN_VERSION_MICRO;
3138 		break;
3139 	case CHELSIO_T6:
3140 		exp_major = T6FW_MIN_VERSION_MAJOR;
3141 		exp_minor = T6FW_MIN_VERSION_MINOR;
3142 		exp_micro = T6FW_MIN_VERSION_MICRO;
3143 		break;
3144 	default:
3145 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3146 			adap->chip);
3147 		return -EINVAL;
3148 	}
3149 
3150 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3151 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3152 		dev_err(adap->pdev_dev,
3153 			"Card has firmware version %u.%u.%u, minimum "
3154 			"supported firmware is %u.%u.%u.\n", major, minor,
3155 			micro, exp_major, exp_minor, exp_micro);
3156 		return -EFAULT;
3157 	}
3158 	return 0;
3159 }
3160 
3161 /* Is the given firmware API compatible with the one the driver was compiled
3162  * with?
3163  */
3164 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3165 {
3166 
3167 	/* short circuit if it's the exact same firmware version */
3168 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3169 		return 1;
3170 
3171 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3172 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3173 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3174 		return 1;
3175 #undef SAME_INTF
3176 
3177 	return 0;
3178 }
3179 
3180 /* The firmware in the filesystem is usable, but should it be installed?
3181  * This routine explains itself in detail if it indicates the filesystem
3182  * firmware should be installed.
3183  */
3184 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3185 				int k, int c)
3186 {
3187 	const char *reason;
3188 
3189 	if (!card_fw_usable) {
3190 		reason = "incompatible or unusable";
3191 		goto install;
3192 	}
3193 
3194 	if (k > c) {
3195 		reason = "older than the version supported with this driver";
3196 		goto install;
3197 	}
3198 
3199 	return 0;
3200 
3201 install:
3202 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3203 		"installing firmware %u.%u.%u.%u on card.\n",
3204 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3205 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3206 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3207 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3208 
3209 	return 1;
3210 }
3211 
3212 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3213 	       const u8 *fw_data, unsigned int fw_size,
3214 	       struct fw_hdr *card_fw, enum dev_state state,
3215 	       int *reset)
3216 {
3217 	int ret, card_fw_usable, fs_fw_usable;
3218 	const struct fw_hdr *fs_fw;
3219 	const struct fw_hdr *drv_fw;
3220 
3221 	drv_fw = &fw_info->fw_hdr;
3222 
3223 	/* Read the header of the firmware on the card */
3224 	ret = -t4_read_flash(adap, FLASH_FW_START,
3225 			    sizeof(*card_fw) / sizeof(uint32_t),
3226 			    (uint32_t *)card_fw, 1);
3227 	if (ret == 0) {
3228 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3229 	} else {
3230 		dev_err(adap->pdev_dev,
3231 			"Unable to read card's firmware header: %d\n", ret);
3232 		card_fw_usable = 0;
3233 	}
3234 
3235 	if (fw_data != NULL) {
3236 		fs_fw = (const void *)fw_data;
3237 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3238 	} else {
3239 		fs_fw = NULL;
3240 		fs_fw_usable = 0;
3241 	}
3242 
3243 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3244 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3245 		/* Common case: the firmware on the card is an exact match and
3246 		 * the filesystem one is an exact match too, or the filesystem
3247 		 * one is absent/incompatible.
3248 		 */
3249 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3250 		   should_install_fs_fw(adap, card_fw_usable,
3251 					be32_to_cpu(fs_fw->fw_ver),
3252 					be32_to_cpu(card_fw->fw_ver))) {
3253 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3254 				     fw_size, 0);
3255 		if (ret != 0) {
3256 			dev_err(adap->pdev_dev,
3257 				"failed to install firmware: %d\n", ret);
3258 			goto bye;
3259 		}
3260 
3261 		/* Installed successfully, update the cached header too. */
3262 		*card_fw = *fs_fw;
3263 		card_fw_usable = 1;
3264 		*reset = 0;	/* already reset as part of load_fw */
3265 	}
3266 
3267 	if (!card_fw_usable) {
3268 		uint32_t d, c, k;
3269 
3270 		d = be32_to_cpu(drv_fw->fw_ver);
3271 		c = be32_to_cpu(card_fw->fw_ver);
3272 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3273 
3274 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3275 			"chip state %d, "
3276 			"driver compiled with %d.%d.%d.%d, "
3277 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3278 			state,
3279 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3280 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3281 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3282 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3283 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3284 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3285 		ret = EINVAL;
3286 		goto bye;
3287 	}
3288 
3289 	/* We're using whatever's on the card and it's known to be good. */
3290 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3291 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3292 
3293 bye:
3294 	return ret;
3295 }
3296 
3297 /**
3298  *	t4_flash_erase_sectors - erase a range of flash sectors
3299  *	@adapter: the adapter
3300  *	@start: the first sector to erase
3301  *	@end: the last sector to erase
3302  *
3303  *	Erases the sectors in the given inclusive range.
3304  */
3305 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3306 {
3307 	int ret = 0;
3308 
3309 	if (end >= adapter->params.sf_nsec)
3310 		return -EINVAL;
3311 
3312 	while (start <= end) {
3313 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3314 		    (ret = sf1_write(adapter, 4, 0, 1,
3315 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3316 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3317 			dev_err(adapter->pdev_dev,
3318 				"erase of flash sector %d failed, error %d\n",
3319 				start, ret);
3320 			break;
3321 		}
3322 		start++;
3323 	}
3324 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3325 	return ret;
3326 }
3327 
3328 /**
3329  *	t4_flash_cfg_addr - return the address of the flash configuration file
3330  *	@adapter: the adapter
3331  *
3332  *	Return the address within the flash where the Firmware Configuration
3333  *	File is stored.
3334  */
3335 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3336 {
3337 	if (adapter->params.sf_size == 0x100000)
3338 		return FLASH_FPGA_CFG_START;
3339 	else
3340 		return FLASH_CFG_START;
3341 }
3342 
3343 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3344  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3345  * and emit an error message for mismatched firmware to save our caller the
3346  * effort ...
3347  */
3348 static bool t4_fw_matches_chip(const struct adapter *adap,
3349 			       const struct fw_hdr *hdr)
3350 {
3351 	/* The expression below will return FALSE for any unsupported adapter
3352 	 * which will keep us "honest" in the future ...
3353 	 */
3354 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3355 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3356 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3357 		return true;
3358 
3359 	dev_err(adap->pdev_dev,
3360 		"FW image (%d) is not suitable for this adapter (%d)\n",
3361 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3362 	return false;
3363 }
3364 
3365 /**
3366  *	t4_load_fw - download firmware
3367  *	@adap: the adapter
3368  *	@fw_data: the firmware image to write
3369  *	@size: image size
3370  *
3371  *	Write the supplied firmware image to the card's serial flash.
3372  */
3373 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3374 {
3375 	u32 csum;
3376 	int ret, addr;
3377 	unsigned int i;
3378 	u8 first_page[SF_PAGE_SIZE];
3379 	const __be32 *p = (const __be32 *)fw_data;
3380 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3381 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3382 	unsigned int fw_img_start = adap->params.sf_fw_start;
3383 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3384 
3385 	if (!size) {
3386 		dev_err(adap->pdev_dev, "FW image has no data\n");
3387 		return -EINVAL;
3388 	}
3389 	if (size & 511) {
3390 		dev_err(adap->pdev_dev,
3391 			"FW image size not multiple of 512 bytes\n");
3392 		return -EINVAL;
3393 	}
3394 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3395 		dev_err(adap->pdev_dev,
3396 			"FW image size differs from size in FW header\n");
3397 		return -EINVAL;
3398 	}
3399 	if (size > FW_MAX_SIZE) {
3400 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3401 			FW_MAX_SIZE);
3402 		return -EFBIG;
3403 	}
3404 	if (!t4_fw_matches_chip(adap, hdr))
3405 		return -EINVAL;
3406 
3407 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3408 		csum += be32_to_cpu(p[i]);
3409 
3410 	if (csum != 0xffffffff) {
3411 		dev_err(adap->pdev_dev,
3412 			"corrupted firmware image, checksum %#x\n", csum);
3413 		return -EINVAL;
3414 	}
3415 
3416 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3417 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3418 	if (ret)
3419 		goto out;
3420 
3421 	/*
3422 	 * We write the correct version at the end so the driver can see a bad
3423 	 * version if the FW write fails.  Start by writing a copy of the
3424 	 * first page with a bad version.
3425 	 */
3426 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3427 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3428 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3429 	if (ret)
3430 		goto out;
3431 
3432 	addr = fw_img_start;
3433 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3434 		addr += SF_PAGE_SIZE;
3435 		fw_data += SF_PAGE_SIZE;
3436 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3437 		if (ret)
3438 			goto out;
3439 	}
3440 
3441 	ret = t4_write_flash(adap,
3442 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3443 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3444 out:
3445 	if (ret)
3446 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3447 			ret);
3448 	else
3449 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3450 	return ret;
3451 }
3452 
3453 /**
3454  *	t4_phy_fw_ver - return current PHY firmware version
3455  *	@adap: the adapter
3456  *	@phy_fw_ver: return value buffer for PHY firmware version
3457  *
3458  *	Returns the current version of external PHY firmware on the
3459  *	adapter.
3460  */
3461 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3462 {
3463 	u32 param, val;
3464 	int ret;
3465 
3466 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3467 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3468 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3469 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3470 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3471 			      &param, &val);
3472 	if (ret < 0)
3473 		return ret;
3474 	*phy_fw_ver = val;
3475 	return 0;
3476 }
3477 
3478 /**
3479  *	t4_load_phy_fw - download port PHY firmware
3480  *	@adap: the adapter
3481  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3482  *	@win_lock: the lock to use to guard the memory copy
3483  *	@phy_fw_version: function to check PHY firmware versions
3484  *	@phy_fw_data: the PHY firmware image to write
3485  *	@phy_fw_size: image size
3486  *
3487  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3488  *	@phy_fw_version is supplied, then it will be used to determine if
3489  *	it's necessary to perform the transfer by comparing the version
3490  *	of any existing adapter PHY firmware with that of the passed in
3491  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3492  *	around the call to t4_memory_rw() which transfers the PHY firmware
3493  *	to the adapter.
3494  *
3495  *	A negative error number will be returned if an error occurs.  If
3496  *	version number support is available and there's no need to upgrade
3497  *	the firmware, 0 will be returned.  If firmware is successfully
3498  *	transferred to the adapter, 1 will be retured.
3499  *
3500  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3501  *	a result, a RESET of the adapter would cause that RAM to lose its
3502  *	contents.  Thus, loading PHY firmware on such adapters must happen
3503  *	after any FW_RESET_CMDs ...
3504  */
3505 int t4_load_phy_fw(struct adapter *adap,
3506 		   int win, spinlock_t *win_lock,
3507 		   int (*phy_fw_version)(const u8 *, size_t),
3508 		   const u8 *phy_fw_data, size_t phy_fw_size)
3509 {
3510 	unsigned long mtype = 0, maddr = 0;
3511 	u32 param, val;
3512 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3513 	int ret;
3514 
3515 	/* If we have version number support, then check to see if the adapter
3516 	 * already has up-to-date PHY firmware loaded.
3517 	 */
3518 	 if (phy_fw_version) {
3519 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3520 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3521 		if (ret < 0)
3522 			return ret;
3523 
3524 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3525 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3526 				"version %#x\n", cur_phy_fw_ver);
3527 			return 0;
3528 		}
3529 	}
3530 
3531 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3532 	 * The size of the file requires a special version of the READ coommand
3533 	 * which will pass the file size via the values field in PARAMS_CMD and
3534 	 * retrieve the return value from firmware and place it in the same
3535 	 * buffer values
3536 	 */
3537 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3538 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3539 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3540 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3541 	val = phy_fw_size;
3542 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3543 				 &param, &val, 1);
3544 	if (ret < 0)
3545 		return ret;
3546 	mtype = val >> 8;
3547 	maddr = (val & 0xff) << 16;
3548 
3549 	/* Copy the supplied PHY Firmware image to the adapter memory location
3550 	 * allocated by the adapter firmware.
3551 	 */
3552 	if (win_lock)
3553 		spin_lock_bh(win_lock);
3554 	ret = t4_memory_rw(adap, win, mtype, maddr,
3555 			   phy_fw_size, (__be32 *)phy_fw_data,
3556 			   T4_MEMORY_WRITE);
3557 	if (win_lock)
3558 		spin_unlock_bh(win_lock);
3559 	if (ret)
3560 		return ret;
3561 
3562 	/* Tell the firmware that the PHY firmware image has been written to
3563 	 * RAM and it can now start copying it over to the PHYs.  The chip
3564 	 * firmware will RESET the affected PHYs as part of this operation
3565 	 * leaving them running the new PHY firmware image.
3566 	 */
3567 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3568 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3569 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3570 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3571 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3572 				    &param, &val, 30000);
3573 
3574 	/* If we have version number support, then check to see that the new
3575 	 * firmware got loaded properly.
3576 	 */
3577 	if (phy_fw_version) {
3578 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3579 		if (ret < 0)
3580 			return ret;
3581 
3582 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3583 			CH_WARN(adap, "PHY Firmware did not update: "
3584 				"version on adapter %#x, "
3585 				"version flashed %#x\n",
3586 				cur_phy_fw_ver, new_phy_fw_vers);
3587 			return -ENXIO;
3588 		}
3589 	}
3590 
3591 	return 1;
3592 }
3593 
3594 /**
3595  *	t4_fwcache - firmware cache operation
3596  *	@adap: the adapter
3597  *	@op  : the operation (flush or flush and invalidate)
3598  */
3599 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3600 {
3601 	struct fw_params_cmd c;
3602 
3603 	memset(&c, 0, sizeof(c));
3604 	c.op_to_vfn =
3605 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3606 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3607 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3608 			    FW_PARAMS_CMD_VFN_V(0));
3609 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3610 	c.param[0].mnem =
3611 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3612 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3613 	c.param[0].val = (__force __be32)op;
3614 
3615 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3616 }
3617 
3618 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3619 			unsigned int *pif_req_wrptr,
3620 			unsigned int *pif_rsp_wrptr)
3621 {
3622 	int i, j;
3623 	u32 cfg, val, req, rsp;
3624 
3625 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3626 	if (cfg & LADBGEN_F)
3627 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3628 
3629 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3630 	req = POLADBGWRPTR_G(val);
3631 	rsp = PILADBGWRPTR_G(val);
3632 	if (pif_req_wrptr)
3633 		*pif_req_wrptr = req;
3634 	if (pif_rsp_wrptr)
3635 		*pif_rsp_wrptr = rsp;
3636 
3637 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3638 		for (j = 0; j < 6; j++) {
3639 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3640 				     PILADBGRDPTR_V(rsp));
3641 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3642 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3643 			req++;
3644 			rsp++;
3645 		}
3646 		req = (req + 2) & POLADBGRDPTR_M;
3647 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3648 	}
3649 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3650 }
3651 
3652 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3653 {
3654 	u32 cfg;
3655 	int i, j, idx;
3656 
3657 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3658 	if (cfg & LADBGEN_F)
3659 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3660 
3661 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3662 		for (j = 0; j < 5; j++) {
3663 			idx = 8 * i + j;
3664 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3665 				     PILADBGRDPTR_V(idx));
3666 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3667 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3668 		}
3669 	}
3670 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3671 }
3672 
3673 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3674 {
3675 	unsigned int i, j;
3676 
3677 	for (i = 0; i < 8; i++) {
3678 		u32 *p = la_buf + i;
3679 
3680 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3681 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3682 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3683 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3684 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3685 	}
3686 }
3687 
3688 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3689 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3690 		     FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
3691 		     FW_PORT_CAP_ANEG)
3692 
3693 /**
3694  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3695  *	@phy: the PHY to setup
3696  *	@mac: the MAC to setup
3697  *	@lc: the requested link configuration
3698  *
3699  *	Set up a port's MAC and PHY according to a desired link configuration.
3700  *	- If the PHY can auto-negotiate first decide what to advertise, then
3701  *	  enable/disable auto-negotiation as desired, and reset.
3702  *	- If the PHY does not auto-negotiate just reset it.
3703  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3704  *	  otherwise do it later based on the outcome of auto-negotiation.
3705  */
3706 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3707 		  struct link_config *lc)
3708 {
3709 	struct fw_port_cmd c;
3710 	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3711 
3712 	lc->link_ok = 0;
3713 	if (lc->requested_fc & PAUSE_RX)
3714 		fc |= FW_PORT_CAP_FC_RX;
3715 	if (lc->requested_fc & PAUSE_TX)
3716 		fc |= FW_PORT_CAP_FC_TX;
3717 
3718 	memset(&c, 0, sizeof(c));
3719 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3720 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3721 				     FW_PORT_CMD_PORTID_V(port));
3722 	c.action_to_len16 =
3723 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3724 			    FW_LEN16(c));
3725 
3726 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3727 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3728 					     fc);
3729 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3730 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3731 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3732 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3733 	} else
3734 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3735 
3736 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3737 }
3738 
3739 /**
3740  *	t4_restart_aneg - restart autonegotiation
3741  *	@adap: the adapter
3742  *	@mbox: mbox to use for the FW command
3743  *	@port: the port id
3744  *
3745  *	Restarts autonegotiation for the selected port.
3746  */
3747 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3748 {
3749 	struct fw_port_cmd c;
3750 
3751 	memset(&c, 0, sizeof(c));
3752 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3753 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3754 				     FW_PORT_CMD_PORTID_V(port));
3755 	c.action_to_len16 =
3756 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3757 			    FW_LEN16(c));
3758 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3759 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3760 }
3761 
3762 typedef void (*int_handler_t)(struct adapter *adap);
3763 
3764 struct intr_info {
3765 	unsigned int mask;       /* bits to check in interrupt status */
3766 	const char *msg;         /* message to print or NULL */
3767 	short stat_idx;          /* stat counter to increment or -1 */
3768 	unsigned short fatal;    /* whether the condition reported is fatal */
3769 	int_handler_t int_handler; /* platform-specific int handler */
3770 };
3771 
3772 /**
3773  *	t4_handle_intr_status - table driven interrupt handler
3774  *	@adapter: the adapter that generated the interrupt
3775  *	@reg: the interrupt status register to process
3776  *	@acts: table of interrupt actions
3777  *
3778  *	A table driven interrupt handler that applies a set of masks to an
3779  *	interrupt status word and performs the corresponding actions if the
3780  *	interrupts described by the mask have occurred.  The actions include
3781  *	optionally emitting a warning or alert message.  The table is terminated
3782  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3783  *	conditions.
3784  */
3785 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3786 				 const struct intr_info *acts)
3787 {
3788 	int fatal = 0;
3789 	unsigned int mask = 0;
3790 	unsigned int status = t4_read_reg(adapter, reg);
3791 
3792 	for ( ; acts->mask; ++acts) {
3793 		if (!(status & acts->mask))
3794 			continue;
3795 		if (acts->fatal) {
3796 			fatal++;
3797 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3798 				  status & acts->mask);
3799 		} else if (acts->msg && printk_ratelimit())
3800 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3801 				 status & acts->mask);
3802 		if (acts->int_handler)
3803 			acts->int_handler(adapter);
3804 		mask |= acts->mask;
3805 	}
3806 	status &= mask;
3807 	if (status)                           /* clear processed interrupts */
3808 		t4_write_reg(adapter, reg, status);
3809 	return fatal;
3810 }
3811 
3812 /*
3813  * Interrupt handler for the PCIE module.
3814  */
3815 static void pcie_intr_handler(struct adapter *adapter)
3816 {
3817 	static const struct intr_info sysbus_intr_info[] = {
3818 		{ RNPP_F, "RXNP array parity error", -1, 1 },
3819 		{ RPCP_F, "RXPC array parity error", -1, 1 },
3820 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
3821 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
3822 		{ RFTP_F, "RXFT array parity error", -1, 1 },
3823 		{ 0 }
3824 	};
3825 	static const struct intr_info pcie_port_intr_info[] = {
3826 		{ TPCP_F, "TXPC array parity error", -1, 1 },
3827 		{ TNPP_F, "TXNP array parity error", -1, 1 },
3828 		{ TFTP_F, "TXFT array parity error", -1, 1 },
3829 		{ TCAP_F, "TXCA array parity error", -1, 1 },
3830 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
3831 		{ RCAP_F, "RXCA array parity error", -1, 1 },
3832 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
3833 		{ RDPE_F, "Rx data parity error", -1, 1 },
3834 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
3835 		{ 0 }
3836 	};
3837 	static const struct intr_info pcie_intr_info[] = {
3838 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3839 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3840 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3841 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3842 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3843 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3844 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3845 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3846 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3847 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3848 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3849 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3850 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3851 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3852 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3853 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3854 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3855 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3856 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3857 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3858 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3859 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3860 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3861 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3862 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3863 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3864 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3865 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
3866 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
3867 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
3868 		  -1, 0 },
3869 		{ 0 }
3870 	};
3871 
3872 	static struct intr_info t5_pcie_intr_info[] = {
3873 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
3874 		  -1, 1 },
3875 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3876 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3877 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3878 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3879 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3880 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3881 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3882 		  -1, 1 },
3883 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3884 		  -1, 1 },
3885 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3886 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3887 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3888 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3889 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
3890 		  -1, 1 },
3891 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3892 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3893 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3894 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3895 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3896 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3897 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3898 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3899 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3900 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3901 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3902 		  -1, 1 },
3903 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3904 		  -1, 1 },
3905 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3906 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3907 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3908 		{ READRSPERR_F, "Outbound read error", -1, 0 },
3909 		{ 0 }
3910 	};
3911 
3912 	int fat;
3913 
3914 	if (is_t4(adapter->params.chip))
3915 		fat = t4_handle_intr_status(adapter,
3916 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3917 				sysbus_intr_info) +
3918 			t4_handle_intr_status(adapter,
3919 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3920 					pcie_port_intr_info) +
3921 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3922 					      pcie_intr_info);
3923 	else
3924 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3925 					    t5_pcie_intr_info);
3926 
3927 	if (fat)
3928 		t4_fatal_err(adapter);
3929 }
3930 
3931 /*
3932  * TP interrupt handler.
3933  */
3934 static void tp_intr_handler(struct adapter *adapter)
3935 {
3936 	static const struct intr_info tp_intr_info[] = {
3937 		{ 0x3fffffff, "TP parity error", -1, 1 },
3938 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3939 		{ 0 }
3940 	};
3941 
3942 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3943 		t4_fatal_err(adapter);
3944 }
3945 
3946 /*
3947  * SGE interrupt handler.
3948  */
3949 static void sge_intr_handler(struct adapter *adapter)
3950 {
3951 	u64 v;
3952 	u32 err;
3953 
3954 	static const struct intr_info sge_intr_info[] = {
3955 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3956 		  "SGE received CPL exceeding IQE size", -1, 1 },
3957 		{ ERR_INVALID_CIDX_INC_F,
3958 		  "SGE GTS CIDX increment too large", -1, 0 },
3959 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3960 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3961 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3962 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3963 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3964 		  0 },
3965 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3966 		  0 },
3967 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3968 		  0 },
3969 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3970 		  0 },
3971 		{ ERR_ING_CTXT_PRIO_F,
3972 		  "SGE too many priority ingress contexts", -1, 0 },
3973 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3974 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3975 		{ 0 }
3976 	};
3977 
3978 	static struct intr_info t4t5_sge_intr_info[] = {
3979 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3980 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3981 		{ ERR_EGR_CTXT_PRIO_F,
3982 		  "SGE too many priority egress contexts", -1, 0 },
3983 		{ 0 }
3984 	};
3985 
3986 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3987 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3988 	if (v) {
3989 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3990 				(unsigned long long)v);
3991 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3992 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3993 	}
3994 
3995 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3996 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3997 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3998 					   t4t5_sge_intr_info);
3999 
4000 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4001 	if (err & ERROR_QID_VALID_F) {
4002 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4003 			ERROR_QID_G(err));
4004 		if (err & UNCAPTURED_ERROR_F)
4005 			dev_err(adapter->pdev_dev,
4006 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4007 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4008 			     UNCAPTURED_ERROR_F);
4009 	}
4010 
4011 	if (v != 0)
4012 		t4_fatal_err(adapter);
4013 }
4014 
4015 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4016 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4017 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4018 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4019 
4020 /*
4021  * CIM interrupt handler.
4022  */
4023 static void cim_intr_handler(struct adapter *adapter)
4024 {
4025 	static const struct intr_info cim_intr_info[] = {
4026 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4027 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4028 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4029 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4030 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4031 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4032 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4033 		{ 0 }
4034 	};
4035 	static const struct intr_info cim_upintr_info[] = {
4036 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4037 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4038 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4039 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4040 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4041 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4042 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4043 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4044 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4045 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4046 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4047 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4048 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4049 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4050 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4051 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4052 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4053 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4054 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4055 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4056 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4057 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4058 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4059 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4060 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4061 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4062 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4063 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4064 		{ 0 }
4065 	};
4066 
4067 	int fat;
4068 
4069 	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
4070 		t4_report_fw_error(adapter);
4071 
4072 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4073 				    cim_intr_info) +
4074 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4075 				    cim_upintr_info);
4076 	if (fat)
4077 		t4_fatal_err(adapter);
4078 }
4079 
4080 /*
4081  * ULP RX interrupt handler.
4082  */
4083 static void ulprx_intr_handler(struct adapter *adapter)
4084 {
4085 	static const struct intr_info ulprx_intr_info[] = {
4086 		{ 0x1800000, "ULPRX context error", -1, 1 },
4087 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4088 		{ 0 }
4089 	};
4090 
4091 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4092 		t4_fatal_err(adapter);
4093 }
4094 
4095 /*
4096  * ULP TX interrupt handler.
4097  */
4098 static void ulptx_intr_handler(struct adapter *adapter)
4099 {
4100 	static const struct intr_info ulptx_intr_info[] = {
4101 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4102 		  0 },
4103 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4104 		  0 },
4105 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4106 		  0 },
4107 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4108 		  0 },
4109 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4110 		{ 0 }
4111 	};
4112 
4113 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4114 		t4_fatal_err(adapter);
4115 }
4116 
4117 /*
4118  * PM TX interrupt handler.
4119  */
4120 static void pmtx_intr_handler(struct adapter *adapter)
4121 {
4122 	static const struct intr_info pmtx_intr_info[] = {
4123 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4124 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4125 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4126 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4127 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4128 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4129 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4130 		  -1, 1 },
4131 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4132 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4133 		{ 0 }
4134 	};
4135 
4136 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4137 		t4_fatal_err(adapter);
4138 }
4139 
4140 /*
4141  * PM RX interrupt handler.
4142  */
4143 static void pmrx_intr_handler(struct adapter *adapter)
4144 {
4145 	static const struct intr_info pmrx_intr_info[] = {
4146 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4147 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4148 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4149 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4150 		  -1, 1 },
4151 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4152 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4153 		{ 0 }
4154 	};
4155 
4156 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4157 		t4_fatal_err(adapter);
4158 }
4159 
4160 /*
4161  * CPL switch interrupt handler.
4162  */
4163 static void cplsw_intr_handler(struct adapter *adapter)
4164 {
4165 	static const struct intr_info cplsw_intr_info[] = {
4166 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4167 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4168 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4169 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4170 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4171 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4172 		{ 0 }
4173 	};
4174 
4175 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4176 		t4_fatal_err(adapter);
4177 }
4178 
4179 /*
4180  * LE interrupt handler.
4181  */
4182 static void le_intr_handler(struct adapter *adap)
4183 {
4184 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4185 	static const struct intr_info le_intr_info[] = {
4186 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4187 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4188 		{ PARITYERR_F, "LE parity error", -1, 1 },
4189 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4190 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4191 		{ 0 }
4192 	};
4193 
4194 	static struct intr_info t6_le_intr_info[] = {
4195 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4196 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4197 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4198 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4199 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4200 		{ 0 }
4201 	};
4202 
4203 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4204 				  (chip <= CHELSIO_T5) ?
4205 				  le_intr_info : t6_le_intr_info))
4206 		t4_fatal_err(adap);
4207 }
4208 
4209 /*
4210  * MPS interrupt handler.
4211  */
4212 static void mps_intr_handler(struct adapter *adapter)
4213 {
4214 	static const struct intr_info mps_rx_intr_info[] = {
4215 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4216 		{ 0 }
4217 	};
4218 	static const struct intr_info mps_tx_intr_info[] = {
4219 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4220 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4221 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4222 		  -1, 1 },
4223 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4224 		  -1, 1 },
4225 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4226 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4227 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4228 		{ 0 }
4229 	};
4230 	static const struct intr_info mps_trc_intr_info[] = {
4231 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4232 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4233 		  -1, 1 },
4234 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4235 		{ 0 }
4236 	};
4237 	static const struct intr_info mps_stat_sram_intr_info[] = {
4238 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4239 		{ 0 }
4240 	};
4241 	static const struct intr_info mps_stat_tx_intr_info[] = {
4242 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4243 		{ 0 }
4244 	};
4245 	static const struct intr_info mps_stat_rx_intr_info[] = {
4246 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4247 		{ 0 }
4248 	};
4249 	static const struct intr_info mps_cls_intr_info[] = {
4250 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4251 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4252 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4253 		{ 0 }
4254 	};
4255 
4256 	int fat;
4257 
4258 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4259 				    mps_rx_intr_info) +
4260 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4261 				    mps_tx_intr_info) +
4262 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4263 				    mps_trc_intr_info) +
4264 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4265 				    mps_stat_sram_intr_info) +
4266 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4267 				    mps_stat_tx_intr_info) +
4268 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4269 				    mps_stat_rx_intr_info) +
4270 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4271 				    mps_cls_intr_info);
4272 
4273 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4274 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4275 	if (fat)
4276 		t4_fatal_err(adapter);
4277 }
4278 
4279 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4280 		      ECC_UE_INT_CAUSE_F)
4281 
4282 /*
4283  * EDC/MC interrupt handler.
4284  */
4285 static void mem_intr_handler(struct adapter *adapter, int idx)
4286 {
4287 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4288 
4289 	unsigned int addr, cnt_addr, v;
4290 
4291 	if (idx <= MEM_EDC1) {
4292 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4293 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4294 	} else if (idx == MEM_MC) {
4295 		if (is_t4(adapter->params.chip)) {
4296 			addr = MC_INT_CAUSE_A;
4297 			cnt_addr = MC_ECC_STATUS_A;
4298 		} else {
4299 			addr = MC_P_INT_CAUSE_A;
4300 			cnt_addr = MC_P_ECC_STATUS_A;
4301 		}
4302 	} else {
4303 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4304 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4305 	}
4306 
4307 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4308 	if (v & PERR_INT_CAUSE_F)
4309 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4310 			  name[idx]);
4311 	if (v & ECC_CE_INT_CAUSE_F) {
4312 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4313 
4314 		t4_edc_err_read(adapter, idx);
4315 
4316 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4317 		if (printk_ratelimit())
4318 			dev_warn(adapter->pdev_dev,
4319 				 "%u %s correctable ECC data error%s\n",
4320 				 cnt, name[idx], cnt > 1 ? "s" : "");
4321 	}
4322 	if (v & ECC_UE_INT_CAUSE_F)
4323 		dev_alert(adapter->pdev_dev,
4324 			  "%s uncorrectable ECC data error\n", name[idx]);
4325 
4326 	t4_write_reg(adapter, addr, v);
4327 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4328 		t4_fatal_err(adapter);
4329 }
4330 
4331 /*
4332  * MA interrupt handler.
4333  */
4334 static void ma_intr_handler(struct adapter *adap)
4335 {
4336 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4337 
4338 	if (status & MEM_PERR_INT_CAUSE_F) {
4339 		dev_alert(adap->pdev_dev,
4340 			  "MA parity error, parity status %#x\n",
4341 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4342 		if (is_t5(adap->params.chip))
4343 			dev_alert(adap->pdev_dev,
4344 				  "MA parity error, parity status %#x\n",
4345 				  t4_read_reg(adap,
4346 					      MA_PARITY_ERROR_STATUS2_A));
4347 	}
4348 	if (status & MEM_WRAP_INT_CAUSE_F) {
4349 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4350 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4351 			  "client %u to address %#x\n",
4352 			  MEM_WRAP_CLIENT_NUM_G(v),
4353 			  MEM_WRAP_ADDRESS_G(v) << 4);
4354 	}
4355 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4356 	t4_fatal_err(adap);
4357 }
4358 
4359 /*
4360  * SMB interrupt handler.
4361  */
4362 static void smb_intr_handler(struct adapter *adap)
4363 {
4364 	static const struct intr_info smb_intr_info[] = {
4365 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4366 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4367 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4368 		{ 0 }
4369 	};
4370 
4371 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4372 		t4_fatal_err(adap);
4373 }
4374 
4375 /*
4376  * NC-SI interrupt handler.
4377  */
4378 static void ncsi_intr_handler(struct adapter *adap)
4379 {
4380 	static const struct intr_info ncsi_intr_info[] = {
4381 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4382 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4383 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4384 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4385 		{ 0 }
4386 	};
4387 
4388 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4389 		t4_fatal_err(adap);
4390 }
4391 
4392 /*
4393  * XGMAC interrupt handler.
4394  */
4395 static void xgmac_intr_handler(struct adapter *adap, int port)
4396 {
4397 	u32 v, int_cause_reg;
4398 
4399 	if (is_t4(adap->params.chip))
4400 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4401 	else
4402 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4403 
4404 	v = t4_read_reg(adap, int_cause_reg);
4405 
4406 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4407 	if (!v)
4408 		return;
4409 
4410 	if (v & TXFIFO_PRTY_ERR_F)
4411 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4412 			  port);
4413 	if (v & RXFIFO_PRTY_ERR_F)
4414 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4415 			  port);
4416 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4417 	t4_fatal_err(adap);
4418 }
4419 
4420 /*
4421  * PL interrupt handler.
4422  */
4423 static void pl_intr_handler(struct adapter *adap)
4424 {
4425 	static const struct intr_info pl_intr_info[] = {
4426 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4427 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4428 		{ 0 }
4429 	};
4430 
4431 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4432 		t4_fatal_err(adap);
4433 }
4434 
4435 #define PF_INTR_MASK (PFSW_F)
4436 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4437 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4438 		CPL_SWITCH_F | SGE_F | ULP_TX_F)
4439 
4440 /**
4441  *	t4_slow_intr_handler - control path interrupt handler
4442  *	@adapter: the adapter
4443  *
4444  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4445  *	The designation 'slow' is because it involves register reads, while
4446  *	data interrupts typically don't involve any MMIOs.
4447  */
4448 int t4_slow_intr_handler(struct adapter *adapter)
4449 {
4450 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4451 
4452 	if (!(cause & GLBL_INTR_MASK))
4453 		return 0;
4454 	if (cause & CIM_F)
4455 		cim_intr_handler(adapter);
4456 	if (cause & MPS_F)
4457 		mps_intr_handler(adapter);
4458 	if (cause & NCSI_F)
4459 		ncsi_intr_handler(adapter);
4460 	if (cause & PL_F)
4461 		pl_intr_handler(adapter);
4462 	if (cause & SMB_F)
4463 		smb_intr_handler(adapter);
4464 	if (cause & XGMAC0_F)
4465 		xgmac_intr_handler(adapter, 0);
4466 	if (cause & XGMAC1_F)
4467 		xgmac_intr_handler(adapter, 1);
4468 	if (cause & XGMAC_KR0_F)
4469 		xgmac_intr_handler(adapter, 2);
4470 	if (cause & XGMAC_KR1_F)
4471 		xgmac_intr_handler(adapter, 3);
4472 	if (cause & PCIE_F)
4473 		pcie_intr_handler(adapter);
4474 	if (cause & MC_F)
4475 		mem_intr_handler(adapter, MEM_MC);
4476 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4477 		mem_intr_handler(adapter, MEM_MC1);
4478 	if (cause & EDC0_F)
4479 		mem_intr_handler(adapter, MEM_EDC0);
4480 	if (cause & EDC1_F)
4481 		mem_intr_handler(adapter, MEM_EDC1);
4482 	if (cause & LE_F)
4483 		le_intr_handler(adapter);
4484 	if (cause & TP_F)
4485 		tp_intr_handler(adapter);
4486 	if (cause & MA_F)
4487 		ma_intr_handler(adapter);
4488 	if (cause & PM_TX_F)
4489 		pmtx_intr_handler(adapter);
4490 	if (cause & PM_RX_F)
4491 		pmrx_intr_handler(adapter);
4492 	if (cause & ULP_RX_F)
4493 		ulprx_intr_handler(adapter);
4494 	if (cause & CPL_SWITCH_F)
4495 		cplsw_intr_handler(adapter);
4496 	if (cause & SGE_F)
4497 		sge_intr_handler(adapter);
4498 	if (cause & ULP_TX_F)
4499 		ulptx_intr_handler(adapter);
4500 
4501 	/* Clear the interrupts just processed for which we are the master. */
4502 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4503 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4504 	return 1;
4505 }
4506 
4507 /**
4508  *	t4_intr_enable - enable interrupts
4509  *	@adapter: the adapter whose interrupts should be enabled
4510  *
4511  *	Enable PF-specific interrupts for the calling function and the top-level
4512  *	interrupt concentrator for global interrupts.  Interrupts are already
4513  *	enabled at each module,	here we just enable the roots of the interrupt
4514  *	hierarchies.
4515  *
4516  *	Note: this function should be called only when the driver manages
4517  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4518  *	function at a time should be doing this.
4519  */
4520 void t4_intr_enable(struct adapter *adapter)
4521 {
4522 	u32 val = 0;
4523 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4524 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4525 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4526 
4527 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4528 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4529 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4530 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4531 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4532 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4533 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4534 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4535 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4536 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4537 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4538 }
4539 
4540 /**
4541  *	t4_intr_disable - disable interrupts
4542  *	@adapter: the adapter whose interrupts should be disabled
4543  *
4544  *	Disable interrupts.  We only disable the top-level interrupt
4545  *	concentrators.  The caller must be a PCI function managing global
4546  *	interrupts.
4547  */
4548 void t4_intr_disable(struct adapter *adapter)
4549 {
4550 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4551 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4552 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4553 
4554 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4555 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4556 }
4557 
4558 /**
4559  *	t4_config_rss_range - configure a portion of the RSS mapping table
4560  *	@adapter: the adapter
4561  *	@mbox: mbox to use for the FW command
4562  *	@viid: virtual interface whose RSS subtable is to be written
4563  *	@start: start entry in the table to write
4564  *	@n: how many table entries to write
4565  *	@rspq: values for the response queue lookup table
4566  *	@nrspq: number of values in @rspq
4567  *
4568  *	Programs the selected part of the VI's RSS mapping table with the
4569  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4570  *	until the full table range is populated.
4571  *
4572  *	The caller must ensure the values in @rspq are in the range allowed for
4573  *	@viid.
4574  */
4575 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4576 			int start, int n, const u16 *rspq, unsigned int nrspq)
4577 {
4578 	int ret;
4579 	const u16 *rsp = rspq;
4580 	const u16 *rsp_end = rspq + nrspq;
4581 	struct fw_rss_ind_tbl_cmd cmd;
4582 
4583 	memset(&cmd, 0, sizeof(cmd));
4584 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4585 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4586 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4587 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4588 
4589 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4590 	while (n > 0) {
4591 		int nq = min(n, 32);
4592 		__be32 *qp = &cmd.iq0_to_iq2;
4593 
4594 		cmd.niqid = cpu_to_be16(nq);
4595 		cmd.startidx = cpu_to_be16(start);
4596 
4597 		start += nq;
4598 		n -= nq;
4599 
4600 		while (nq > 0) {
4601 			unsigned int v;
4602 
4603 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4604 			if (++rsp >= rsp_end)
4605 				rsp = rspq;
4606 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4607 			if (++rsp >= rsp_end)
4608 				rsp = rspq;
4609 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4610 			if (++rsp >= rsp_end)
4611 				rsp = rspq;
4612 
4613 			*qp++ = cpu_to_be32(v);
4614 			nq -= 3;
4615 		}
4616 
4617 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4618 		if (ret)
4619 			return ret;
4620 	}
4621 	return 0;
4622 }
4623 
4624 /**
4625  *	t4_config_glbl_rss - configure the global RSS mode
4626  *	@adapter: the adapter
4627  *	@mbox: mbox to use for the FW command
4628  *	@mode: global RSS mode
4629  *	@flags: mode-specific flags
4630  *
4631  *	Sets the global RSS mode.
4632  */
4633 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4634 		       unsigned int flags)
4635 {
4636 	struct fw_rss_glb_config_cmd c;
4637 
4638 	memset(&c, 0, sizeof(c));
4639 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4640 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4641 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4642 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4643 		c.u.manual.mode_pkd =
4644 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4645 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4646 		c.u.basicvirtual.mode_pkd =
4647 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4648 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4649 	} else
4650 		return -EINVAL;
4651 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4652 }
4653 
4654 /**
4655  *	t4_config_vi_rss - configure per VI RSS settings
4656  *	@adapter: the adapter
4657  *	@mbox: mbox to use for the FW command
4658  *	@viid: the VI id
4659  *	@flags: RSS flags
4660  *	@defq: id of the default RSS queue for the VI.
4661  *
4662  *	Configures VI-specific RSS properties.
4663  */
4664 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4665 		     unsigned int flags, unsigned int defq)
4666 {
4667 	struct fw_rss_vi_config_cmd c;
4668 
4669 	memset(&c, 0, sizeof(c));
4670 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4671 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4672 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4674 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4675 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4676 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4677 }
4678 
4679 /* Read an RSS table row */
4680 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4681 {
4682 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4683 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4684 				   5, 0, val);
4685 }
4686 
4687 /**
4688  *	t4_read_rss - read the contents of the RSS mapping table
4689  *	@adapter: the adapter
4690  *	@map: holds the contents of the RSS mapping table
4691  *
4692  *	Reads the contents of the RSS hash->queue mapping table.
4693  */
4694 int t4_read_rss(struct adapter *adapter, u16 *map)
4695 {
4696 	u32 val;
4697 	int i, ret;
4698 
4699 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4700 		ret = rd_rss_row(adapter, i, &val);
4701 		if (ret)
4702 			return ret;
4703 		*map++ = LKPTBLQUEUE0_G(val);
4704 		*map++ = LKPTBLQUEUE1_G(val);
4705 	}
4706 	return 0;
4707 }
4708 
4709 static unsigned int t4_use_ldst(struct adapter *adap)
4710 {
4711 	return (adap->flags & FW_OK) || !adap->use_bd;
4712 }
4713 
4714 /**
4715  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4716  *	@adap: the adapter
4717  *	@vals: where the indirect register values are stored/written
4718  *	@nregs: how many indirect registers to read/write
4719  *	@start_idx: index of first indirect register to read/write
4720  *	@rw: Read (1) or Write (0)
4721  *
4722  *	Access TP PIO registers through LDST
4723  */
4724 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4725 			    unsigned int start_index, unsigned int rw)
4726 {
4727 	int ret, i;
4728 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4729 	struct fw_ldst_cmd c;
4730 
4731 	for (i = 0 ; i < nregs; i++) {
4732 		memset(&c, 0, sizeof(c));
4733 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4734 						FW_CMD_REQUEST_F |
4735 						(rw ? FW_CMD_READ_F :
4736 						      FW_CMD_WRITE_F) |
4737 						FW_LDST_CMD_ADDRSPACE_V(cmd));
4738 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4739 
4740 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4741 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4742 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4743 		if (!ret && rw)
4744 			vals[i] = be32_to_cpu(c.u.addrval.val);
4745 	}
4746 }
4747 
4748 /**
4749  *	t4_read_rss_key - read the global RSS key
4750  *	@adap: the adapter
4751  *	@key: 10-entry array holding the 320-bit RSS key
4752  *
4753  *	Reads the global 320-bit RSS key.
4754  */
4755 void t4_read_rss_key(struct adapter *adap, u32 *key)
4756 {
4757 	if (t4_use_ldst(adap))
4758 		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4759 	else
4760 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4761 				 TP_RSS_SECRET_KEY0_A);
4762 }
4763 
4764 /**
4765  *	t4_write_rss_key - program one of the RSS keys
4766  *	@adap: the adapter
4767  *	@key: 10-entry array holding the 320-bit RSS key
4768  *	@idx: which RSS key to write
4769  *
4770  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4771  *	0..15 the corresponding entry in the RSS key table is written,
4772  *	otherwise the global RSS key is written.
4773  */
4774 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4775 {
4776 	u8 rss_key_addr_cnt = 16;
4777 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4778 
4779 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4780 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4781 	 * as index[5:4](upper 2) into key table
4782 	 */
4783 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4784 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4785 		rss_key_addr_cnt = 32;
4786 
4787 	if (t4_use_ldst(adap))
4788 		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4789 	else
4790 		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4791 				  TP_RSS_SECRET_KEY0_A);
4792 
4793 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4794 		if (rss_key_addr_cnt > 16)
4795 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4796 				     KEYWRADDRX_V(idx >> 4) |
4797 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
4798 		else
4799 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4800 				     KEYWRADDR_V(idx) | KEYWREN_F);
4801 	}
4802 }
4803 
4804 /**
4805  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4806  *	@adapter: the adapter
4807  *	@index: the entry in the PF RSS table to read
4808  *	@valp: where to store the returned value
4809  *
4810  *	Reads the PF RSS Configuration Table at the specified index and returns
4811  *	the value found there.
4812  */
4813 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4814 			   u32 *valp)
4815 {
4816 	if (t4_use_ldst(adapter))
4817 		t4_fw_tp_pio_rw(adapter, valp, 1,
4818 				TP_RSS_PF0_CONFIG_A + index, 1);
4819 	else
4820 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4821 				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4822 }
4823 
4824 /**
4825  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4826  *	@adapter: the adapter
4827  *	@index: the entry in the VF RSS table to read
4828  *	@vfl: where to store the returned VFL
4829  *	@vfh: where to store the returned VFH
4830  *
4831  *	Reads the VF RSS Configuration Table at the specified index and returns
4832  *	the (VFL, VFH) values found there.
4833  */
4834 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4835 			   u32 *vfl, u32 *vfh)
4836 {
4837 	u32 vrt, mask, data;
4838 
4839 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4840 		mask = VFWRADDR_V(VFWRADDR_M);
4841 		data = VFWRADDR_V(index);
4842 	} else {
4843 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4844 		 data = T6_VFWRADDR_V(index);
4845 	}
4846 
4847 	/* Request that the index'th VF Table values be read into VFL/VFH.
4848 	 */
4849 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4850 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4851 	vrt |= data | VFRDEN_F;
4852 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4853 
4854 	/* Grab the VFL/VFH values ...
4855 	 */
4856 	if (t4_use_ldst(adapter)) {
4857 		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4858 		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4859 	} else {
4860 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4861 				 vfl, 1, TP_RSS_VFL_CONFIG_A);
4862 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4863 				 vfh, 1, TP_RSS_VFH_CONFIG_A);
4864 	}
4865 }
4866 
4867 /**
4868  *	t4_read_rss_pf_map - read PF RSS Map
4869  *	@adapter: the adapter
4870  *
4871  *	Reads the PF RSS Map register and returns its value.
4872  */
4873 u32 t4_read_rss_pf_map(struct adapter *adapter)
4874 {
4875 	u32 pfmap;
4876 
4877 	if (t4_use_ldst(adapter))
4878 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4879 	else
4880 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4881 				 &pfmap, 1, TP_RSS_PF_MAP_A);
4882 	return pfmap;
4883 }
4884 
4885 /**
4886  *	t4_read_rss_pf_mask - read PF RSS Mask
4887  *	@adapter: the adapter
4888  *
4889  *	Reads the PF RSS Mask register and returns its value.
4890  */
4891 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4892 {
4893 	u32 pfmask;
4894 
4895 	if (t4_use_ldst(adapter))
4896 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4897 	else
4898 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4899 				 &pfmask, 1, TP_RSS_PF_MSK_A);
4900 	return pfmask;
4901 }
4902 
4903 /**
4904  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
4905  *	@adap: the adapter
4906  *	@v4: holds the TCP/IP counter values
4907  *	@v6: holds the TCP/IPv6 counter values
4908  *
4909  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4910  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4911  */
4912 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4913 			 struct tp_tcp_stats *v6)
4914 {
4915 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4916 
4917 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4918 #define STAT(x)     val[STAT_IDX(x)]
4919 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4920 
4921 	if (v4) {
4922 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4923 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4924 		v4->tcp_out_rsts = STAT(OUT_RST);
4925 		v4->tcp_in_segs  = STAT64(IN_SEG);
4926 		v4->tcp_out_segs = STAT64(OUT_SEG);
4927 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4928 	}
4929 	if (v6) {
4930 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4931 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4932 		v6->tcp_out_rsts = STAT(OUT_RST);
4933 		v6->tcp_in_segs  = STAT64(IN_SEG);
4934 		v6->tcp_out_segs = STAT64(OUT_SEG);
4935 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
4936 	}
4937 #undef STAT64
4938 #undef STAT
4939 #undef STAT_IDX
4940 }
4941 
4942 /**
4943  *	t4_tp_get_err_stats - read TP's error MIB counters
4944  *	@adap: the adapter
4945  *	@st: holds the counter values
4946  *
4947  *	Returns the values of TP's error counters.
4948  */
4949 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4950 {
4951 	int nchan = adap->params.arch.nchan;
4952 
4953 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4954 			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4955 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4956 			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4957 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4958 			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4959 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4960 			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4961 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4962 			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4963 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4964 			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4965 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4966 			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4967 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4968 			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4969 
4970 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4971 			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4972 }
4973 
4974 /**
4975  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
4976  *	@adap: the adapter
4977  *	@st: holds the counter values
4978  *
4979  *	Returns the values of TP's CPL counters.
4980  */
4981 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4982 {
4983 	int nchan = adap->params.arch.nchan;
4984 
4985 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4986 			 nchan, TP_MIB_CPL_IN_REQ_0_A);
4987 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4988 			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4989 
4990 }
4991 
4992 /**
4993  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4994  *	@adap: the adapter
4995  *	@st: holds the counter values
4996  *
4997  *	Returns the values of TP's RDMA counters.
4998  */
4999 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5000 {
5001 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
5002 			 2, TP_MIB_RQE_DFR_PKT_A);
5003 }
5004 
5005 /**
5006  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5007  *	@adap: the adapter
5008  *	@idx: the port index
5009  *	@st: holds the counter values
5010  *
5011  *	Returns the values of TP's FCoE counters for the selected port.
5012  */
5013 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5014 		       struct tp_fcoe_stats *st)
5015 {
5016 	u32 val[2];
5017 
5018 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
5019 			 1, TP_MIB_FCOE_DDP_0_A + idx);
5020 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
5021 			 1, TP_MIB_FCOE_DROP_0_A + idx);
5022 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5023 			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
5024 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5025 }
5026 
5027 /**
5028  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5029  *	@adap: the adapter
5030  *	@st: holds the counter values
5031  *
5032  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5033  */
5034 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5035 {
5036 	u32 val[4];
5037 
5038 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
5039 			 TP_MIB_USM_PKTS_A);
5040 	st->frames = val[0];
5041 	st->drops = val[1];
5042 	st->octets = ((u64)val[2] << 32) | val[3];
5043 }
5044 
5045 /**
5046  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5047  *	@adap: the adapter
5048  *	@mtus: where to store the MTU values
5049  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5050  *
5051  *	Reads the HW path MTU table.
5052  */
5053 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5054 {
5055 	u32 v;
5056 	int i;
5057 
5058 	for (i = 0; i < NMTUS; ++i) {
5059 		t4_write_reg(adap, TP_MTU_TABLE_A,
5060 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5061 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5062 		mtus[i] = MTUVALUE_G(v);
5063 		if (mtu_log)
5064 			mtu_log[i] = MTUWIDTH_G(v);
5065 	}
5066 }
5067 
5068 /**
5069  *	t4_read_cong_tbl - reads the congestion control table
5070  *	@adap: the adapter
5071  *	@incr: where to store the alpha values
5072  *
5073  *	Reads the additive increments programmed into the HW congestion
5074  *	control table.
5075  */
5076 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5077 {
5078 	unsigned int mtu, w;
5079 
5080 	for (mtu = 0; mtu < NMTUS; ++mtu)
5081 		for (w = 0; w < NCCTRL_WIN; ++w) {
5082 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5083 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5084 			incr[mtu][w] = (u16)t4_read_reg(adap,
5085 						TP_CCTRL_TABLE_A) & 0x1fff;
5086 		}
5087 }
5088 
5089 /**
5090  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5091  *	@adap: the adapter
5092  *	@addr: the indirect TP register address
5093  *	@mask: specifies the field within the register to modify
5094  *	@val: new value for the field
5095  *
5096  *	Sets a field of an indirect TP register to the given value.
5097  */
5098 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5099 			    unsigned int mask, unsigned int val)
5100 {
5101 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5102 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5103 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5104 }
5105 
5106 /**
5107  *	init_cong_ctrl - initialize congestion control parameters
5108  *	@a: the alpha values for congestion control
5109  *	@b: the beta values for congestion control
5110  *
5111  *	Initialize the congestion control parameters.
5112  */
5113 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5114 {
5115 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5116 	a[9] = 2;
5117 	a[10] = 3;
5118 	a[11] = 4;
5119 	a[12] = 5;
5120 	a[13] = 6;
5121 	a[14] = 7;
5122 	a[15] = 8;
5123 	a[16] = 9;
5124 	a[17] = 10;
5125 	a[18] = 14;
5126 	a[19] = 17;
5127 	a[20] = 21;
5128 	a[21] = 25;
5129 	a[22] = 30;
5130 	a[23] = 35;
5131 	a[24] = 45;
5132 	a[25] = 60;
5133 	a[26] = 80;
5134 	a[27] = 100;
5135 	a[28] = 200;
5136 	a[29] = 300;
5137 	a[30] = 400;
5138 	a[31] = 500;
5139 
5140 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5141 	b[9] = b[10] = 1;
5142 	b[11] = b[12] = 2;
5143 	b[13] = b[14] = b[15] = b[16] = 3;
5144 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5145 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5146 	b[28] = b[29] = 6;
5147 	b[30] = b[31] = 7;
5148 }
5149 
5150 /* The minimum additive increment value for the congestion control table */
5151 #define CC_MIN_INCR 2U
5152 
5153 /**
5154  *	t4_load_mtus - write the MTU and congestion control HW tables
5155  *	@adap: the adapter
5156  *	@mtus: the values for the MTU table
5157  *	@alpha: the values for the congestion control alpha parameter
5158  *	@beta: the values for the congestion control beta parameter
5159  *
5160  *	Write the HW MTU table with the supplied MTUs and the high-speed
5161  *	congestion control table with the supplied alpha, beta, and MTUs.
5162  *	We write the two tables together because the additive increments
5163  *	depend on the MTUs.
5164  */
5165 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5166 		  const unsigned short *alpha, const unsigned short *beta)
5167 {
5168 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5169 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5170 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5171 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5172 	};
5173 
5174 	unsigned int i, w;
5175 
5176 	for (i = 0; i < NMTUS; ++i) {
5177 		unsigned int mtu = mtus[i];
5178 		unsigned int log2 = fls(mtu);
5179 
5180 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5181 			log2--;
5182 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5183 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5184 
5185 		for (w = 0; w < NCCTRL_WIN; ++w) {
5186 			unsigned int inc;
5187 
5188 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5189 				  CC_MIN_INCR);
5190 
5191 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5192 				     (w << 16) | (beta[w] << 13) | inc);
5193 		}
5194 	}
5195 }
5196 
5197 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5198  * clocks.  The formula is
5199  *
5200  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5201  *
5202  * which is equivalent to
5203  *
5204  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5205  */
5206 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5207 {
5208 	u64 v = bytes256 * adap->params.vpd.cclk;
5209 
5210 	return v * 62 + v / 2;
5211 }
5212 
5213 /**
5214  *	t4_get_chan_txrate - get the current per channel Tx rates
5215  *	@adap: the adapter
5216  *	@nic_rate: rates for NIC traffic
5217  *	@ofld_rate: rates for offloaded traffic
5218  *
5219  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5220  *	for each channel.
5221  */
5222 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5223 {
5224 	u32 v;
5225 
5226 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5227 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5228 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5229 	if (adap->params.arch.nchan == NCHAN) {
5230 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5231 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5232 	}
5233 
5234 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5235 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5236 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5237 	if (adap->params.arch.nchan == NCHAN) {
5238 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5239 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5240 	}
5241 }
5242 
5243 /**
5244  *	t4_set_trace_filter - configure one of the tracing filters
5245  *	@adap: the adapter
5246  *	@tp: the desired trace filter parameters
5247  *	@idx: which filter to configure
5248  *	@enable: whether to enable or disable the filter
5249  *
5250  *	Configures one of the tracing filters available in HW.  If @enable is
5251  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5252  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5253  */
5254 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5255 			int idx, int enable)
5256 {
5257 	int i, ofst = idx * 4;
5258 	u32 data_reg, mask_reg, cfg;
5259 	u32 multitrc = TRCMULTIFILTER_F;
5260 
5261 	if (!enable) {
5262 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5263 		return 0;
5264 	}
5265 
5266 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5267 	if (cfg & TRCMULTIFILTER_F) {
5268 		/* If multiple tracers are enabled, then maximum
5269 		 * capture size is 2.5KB (FIFO size of a single channel)
5270 		 * minus 2 flits for CPL_TRACE_PKT header.
5271 		 */
5272 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5273 			return -EINVAL;
5274 	} else {
5275 		/* If multiple tracers are disabled, to avoid deadlocks
5276 		 * maximum packet capture size of 9600 bytes is recommended.
5277 		 * Also in this mode, only trace0 can be enabled and running.
5278 		 */
5279 		multitrc = 0;
5280 		if (tp->snap_len > 9600 || idx)
5281 			return -EINVAL;
5282 	}
5283 
5284 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5285 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5286 	    tp->min_len > TFMINPKTSIZE_M)
5287 		return -EINVAL;
5288 
5289 	/* stop the tracer we'll be changing */
5290 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5291 
5292 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5293 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5294 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5295 
5296 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5297 		t4_write_reg(adap, data_reg, tp->data[i]);
5298 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5299 	}
5300 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5301 		     TFCAPTUREMAX_V(tp->snap_len) |
5302 		     TFMINPKTSIZE_V(tp->min_len));
5303 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5304 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5305 		     (is_t4(adap->params.chip) ?
5306 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5307 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5308 		     T5_TFINVERTMATCH_V(tp->invert)));
5309 
5310 	return 0;
5311 }
5312 
5313 /**
5314  *	t4_get_trace_filter - query one of the tracing filters
5315  *	@adap: the adapter
5316  *	@tp: the current trace filter parameters
5317  *	@idx: which trace filter to query
5318  *	@enabled: non-zero if the filter is enabled
5319  *
5320  *	Returns the current settings of one of the HW tracing filters.
5321  */
5322 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5323 			 int *enabled)
5324 {
5325 	u32 ctla, ctlb;
5326 	int i, ofst = idx * 4;
5327 	u32 data_reg, mask_reg;
5328 
5329 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5330 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5331 
5332 	if (is_t4(adap->params.chip)) {
5333 		*enabled = !!(ctla & TFEN_F);
5334 		tp->port =  TFPORT_G(ctla);
5335 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5336 	} else {
5337 		*enabled = !!(ctla & T5_TFEN_F);
5338 		tp->port = T5_TFPORT_G(ctla);
5339 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5340 	}
5341 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5342 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5343 	tp->skip_ofst = TFOFFSET_G(ctla);
5344 	tp->skip_len = TFLENGTH_G(ctla);
5345 
5346 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5347 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5348 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5349 
5350 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5351 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5352 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5353 	}
5354 }
5355 
5356 /**
5357  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5358  *	@adap: the adapter
5359  *	@cnt: where to store the count statistics
5360  *	@cycles: where to store the cycle statistics
5361  *
5362  *	Returns performance statistics from PMTX.
5363  */
5364 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5365 {
5366 	int i;
5367 	u32 data[2];
5368 
5369 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5370 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5371 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5372 		if (is_t4(adap->params.chip)) {
5373 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5374 		} else {
5375 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5376 					 PM_TX_DBG_DATA_A, data, 2,
5377 					 PM_TX_DBG_STAT_MSB_A);
5378 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5379 		}
5380 	}
5381 }
5382 
5383 /**
5384  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5385  *	@adap: the adapter
5386  *	@cnt: where to store the count statistics
5387  *	@cycles: where to store the cycle statistics
5388  *
5389  *	Returns performance statistics from PMRX.
5390  */
5391 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5392 {
5393 	int i;
5394 	u32 data[2];
5395 
5396 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5397 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5398 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5399 		if (is_t4(adap->params.chip)) {
5400 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5401 		} else {
5402 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5403 					 PM_RX_DBG_DATA_A, data, 2,
5404 					 PM_RX_DBG_STAT_MSB_A);
5405 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5406 		}
5407 	}
5408 }
5409 
5410 /**
5411  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5412  *	@adap: the adapter
5413  *	@idx: the port index
5414  *
5415  *	Returns a bitmap indicating which MPS buffer groups are associated
5416  *	with the given port.  Bit i is set if buffer group i is used by the
5417  *	port.
5418  */
5419 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5420 {
5421 	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5422 
5423 	if (n == 0)
5424 		return idx == 0 ? 0xf : 0;
5425 	/* In T6 (which is a 2 port card),
5426 	 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5427 	 * For 2 port T4/T5 adapter,
5428 	 * port 0 is mapped to channel 0 and 1,
5429 	 * port 1 is mapped to channel 2 and 3.
5430 	 */
5431 	if ((n == 1) &&
5432 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5433 		return idx < 2 ? (3 << (2 * idx)) : 0;
5434 	return 1 << idx;
5435 }
5436 
5437 /**
5438  *      t4_get_port_type_description - return Port Type string description
5439  *      @port_type: firmware Port Type enumeration
5440  */
5441 const char *t4_get_port_type_description(enum fw_port_type port_type)
5442 {
5443 	static const char *const port_type_description[] = {
5444 		"Fiber_XFI",
5445 		"Fiber_XAUI",
5446 		"BT_SGMII",
5447 		"BT_XFI",
5448 		"BT_XAUI",
5449 		"KX4",
5450 		"CX4",
5451 		"KX",
5452 		"KR",
5453 		"SFP",
5454 		"BP_AP",
5455 		"BP4_AP",
5456 		"QSFP_10G",
5457 		"QSA",
5458 		"QSFP",
5459 		"BP40_BA",
5460 		"KR4_100G",
5461 		"CR4_QSFP",
5462 		"CR_QSFP",
5463 		"CR2_QSFP",
5464 		"SFP28",
5465 		"KR_SFP28",
5466 	};
5467 
5468 	if (port_type < ARRAY_SIZE(port_type_description))
5469 		return port_type_description[port_type];
5470 	return "UNKNOWN";
5471 }
5472 
5473 /**
5474  *      t4_get_port_stats_offset - collect port stats relative to a previous
5475  *                                 snapshot
5476  *      @adap: The adapter
5477  *      @idx: The port
5478  *      @stats: Current stats to fill
5479  *      @offset: Previous stats snapshot
5480  */
5481 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5482 			      struct port_stats *stats,
5483 			      struct port_stats *offset)
5484 {
5485 	u64 *s, *o;
5486 	int i;
5487 
5488 	t4_get_port_stats(adap, idx, stats);
5489 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5490 			i < (sizeof(struct port_stats) / sizeof(u64));
5491 			i++, s++, o++)
5492 		*s -= *o;
5493 }
5494 
5495 /**
5496  *	t4_get_port_stats - collect port statistics
5497  *	@adap: the adapter
5498  *	@idx: the port index
5499  *	@p: the stats structure to fill
5500  *
5501  *	Collect statistics related to the given port from HW.
5502  */
5503 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5504 {
5505 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5506 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
5507 
5508 #define GET_STAT(name) \
5509 	t4_read_reg64(adap, \
5510 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5511 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5512 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5513 
5514 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5515 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5516 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5517 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5518 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5519 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5520 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5521 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5522 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5523 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5524 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5525 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5526 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5527 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
5528 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5529 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5530 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5531 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5532 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5533 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5534 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5535 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5536 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5537 
5538 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5539 		if (stat_ctl & COUNTPAUSESTATTX_F) {
5540 			p->tx_frames -= p->tx_pause;
5541 			p->tx_octets -= p->tx_pause * 64;
5542 		}
5543 		if (stat_ctl & COUNTPAUSEMCTX_F)
5544 			p->tx_mcast_frames -= p->tx_pause;
5545 	}
5546 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5547 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5548 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5549 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5550 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5551 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5552 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5553 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5554 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5555 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5556 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5557 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5558 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5559 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5560 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5561 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5562 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5563 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5564 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5565 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5566 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5567 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5568 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5569 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5570 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5571 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5572 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5573 
5574 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5575 		if (stat_ctl & COUNTPAUSESTATRX_F) {
5576 			p->rx_frames -= p->rx_pause;
5577 			p->rx_octets -= p->rx_pause * 64;
5578 		}
5579 		if (stat_ctl & COUNTPAUSEMCRX_F)
5580 			p->rx_mcast_frames -= p->rx_pause;
5581 	}
5582 
5583 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5584 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5585 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5586 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5587 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5588 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5589 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5590 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5591 
5592 #undef GET_STAT
5593 #undef GET_STAT_COM
5594 }
5595 
5596 /**
5597  *	t4_get_lb_stats - collect loopback port statistics
5598  *	@adap: the adapter
5599  *	@idx: the loopback port index
5600  *	@p: the stats structure to fill
5601  *
5602  *	Return HW statistics for the given loopback port.
5603  */
5604 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5605 {
5606 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5607 
5608 #define GET_STAT(name) \
5609 	t4_read_reg64(adap, \
5610 	(is_t4(adap->params.chip) ? \
5611 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5612 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5613 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5614 
5615 	p->octets           = GET_STAT(BYTES);
5616 	p->frames           = GET_STAT(FRAMES);
5617 	p->bcast_frames     = GET_STAT(BCAST);
5618 	p->mcast_frames     = GET_STAT(MCAST);
5619 	p->ucast_frames     = GET_STAT(UCAST);
5620 	p->error_frames     = GET_STAT(ERROR);
5621 
5622 	p->frames_64        = GET_STAT(64B);
5623 	p->frames_65_127    = GET_STAT(65B_127B);
5624 	p->frames_128_255   = GET_STAT(128B_255B);
5625 	p->frames_256_511   = GET_STAT(256B_511B);
5626 	p->frames_512_1023  = GET_STAT(512B_1023B);
5627 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
5628 	p->frames_1519_max  = GET_STAT(1519B_MAX);
5629 	p->drop             = GET_STAT(DROP_FRAMES);
5630 
5631 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5632 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5633 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5634 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5635 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5636 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5637 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5638 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5639 
5640 #undef GET_STAT
5641 #undef GET_STAT_COM
5642 }
5643 
5644 /*     t4_mk_filtdelwr - create a delete filter WR
5645  *     @ftid: the filter ID
5646  *     @wr: the filter work request to populate
5647  *     @qid: ingress queue to receive the delete notification
5648  *
5649  *     Creates a filter work request to delete the supplied filter.  If @qid is
5650  *     negative the delete notification is suppressed.
5651  */
5652 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5653 {
5654 	memset(wr, 0, sizeof(*wr));
5655 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5656 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5657 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5658 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
5659 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5660 	if (qid >= 0)
5661 		wr->rx_chan_rx_rpl_iq =
5662 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5663 }
5664 
5665 #define INIT_CMD(var, cmd, rd_wr) do { \
5666 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5667 					FW_CMD_REQUEST_F | \
5668 					FW_CMD_##rd_wr##_F); \
5669 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5670 } while (0)
5671 
5672 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5673 			  u32 addr, u32 val)
5674 {
5675 	u32 ldst_addrspace;
5676 	struct fw_ldst_cmd c;
5677 
5678 	memset(&c, 0, sizeof(c));
5679 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5680 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5681 					FW_CMD_REQUEST_F |
5682 					FW_CMD_WRITE_F |
5683 					ldst_addrspace);
5684 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5685 	c.u.addrval.addr = cpu_to_be32(addr);
5686 	c.u.addrval.val = cpu_to_be32(val);
5687 
5688 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5689 }
5690 
5691 /**
5692  *	t4_mdio_rd - read a PHY register through MDIO
5693  *	@adap: the adapter
5694  *	@mbox: mailbox to use for the FW command
5695  *	@phy_addr: the PHY address
5696  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5697  *	@reg: the register to read
5698  *	@valp: where to store the value
5699  *
5700  *	Issues a FW command through the given mailbox to read a PHY register.
5701  */
5702 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5703 	       unsigned int mmd, unsigned int reg, u16 *valp)
5704 {
5705 	int ret;
5706 	u32 ldst_addrspace;
5707 	struct fw_ldst_cmd c;
5708 
5709 	memset(&c, 0, sizeof(c));
5710 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5711 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5712 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5713 					ldst_addrspace);
5714 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5715 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5716 					 FW_LDST_CMD_MMD_V(mmd));
5717 	c.u.mdio.raddr = cpu_to_be16(reg);
5718 
5719 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5720 	if (ret == 0)
5721 		*valp = be16_to_cpu(c.u.mdio.rval);
5722 	return ret;
5723 }
5724 
5725 /**
5726  *	t4_mdio_wr - write a PHY register through MDIO
5727  *	@adap: the adapter
5728  *	@mbox: mailbox to use for the FW command
5729  *	@phy_addr: the PHY address
5730  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5731  *	@reg: the register to write
5732  *	@valp: value to write
5733  *
5734  *	Issues a FW command through the given mailbox to write a PHY register.
5735  */
5736 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5737 	       unsigned int mmd, unsigned int reg, u16 val)
5738 {
5739 	u32 ldst_addrspace;
5740 	struct fw_ldst_cmd c;
5741 
5742 	memset(&c, 0, sizeof(c));
5743 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5744 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5745 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5746 					ldst_addrspace);
5747 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5748 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5749 					 FW_LDST_CMD_MMD_V(mmd));
5750 	c.u.mdio.raddr = cpu_to_be16(reg);
5751 	c.u.mdio.rval = cpu_to_be16(val);
5752 
5753 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5754 }
5755 
5756 /**
5757  *	t4_sge_decode_idma_state - decode the idma state
5758  *	@adap: the adapter
5759  *	@state: the state idma is stuck in
5760  */
5761 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5762 {
5763 	static const char * const t4_decode[] = {
5764 		"IDMA_IDLE",
5765 		"IDMA_PUSH_MORE_CPL_FIFO",
5766 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5767 		"Not used",
5768 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5769 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5770 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5771 		"IDMA_SEND_FIFO_TO_IMSG",
5772 		"IDMA_FL_REQ_DATA_FL_PREP",
5773 		"IDMA_FL_REQ_DATA_FL",
5774 		"IDMA_FL_DROP",
5775 		"IDMA_FL_H_REQ_HEADER_FL",
5776 		"IDMA_FL_H_SEND_PCIEHDR",
5777 		"IDMA_FL_H_PUSH_CPL_FIFO",
5778 		"IDMA_FL_H_SEND_CPL",
5779 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5780 		"IDMA_FL_H_SEND_IP_HDR",
5781 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5782 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5783 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5784 		"IDMA_FL_D_SEND_PCIEHDR",
5785 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5786 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5787 		"IDMA_FL_SEND_PCIEHDR",
5788 		"IDMA_FL_PUSH_CPL_FIFO",
5789 		"IDMA_FL_SEND_CPL",
5790 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5791 		"IDMA_FL_SEND_PAYLOAD",
5792 		"IDMA_FL_REQ_NEXT_DATA_FL",
5793 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5794 		"IDMA_FL_SEND_PADDING",
5795 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5796 		"IDMA_FL_SEND_FIFO_TO_IMSG",
5797 		"IDMA_FL_REQ_DATAFL_DONE",
5798 		"IDMA_FL_REQ_HEADERFL_DONE",
5799 	};
5800 	static const char * const t5_decode[] = {
5801 		"IDMA_IDLE",
5802 		"IDMA_ALMOST_IDLE",
5803 		"IDMA_PUSH_MORE_CPL_FIFO",
5804 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5805 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5806 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5807 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5808 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5809 		"IDMA_SEND_FIFO_TO_IMSG",
5810 		"IDMA_FL_REQ_DATA_FL",
5811 		"IDMA_FL_DROP",
5812 		"IDMA_FL_DROP_SEND_INC",
5813 		"IDMA_FL_H_REQ_HEADER_FL",
5814 		"IDMA_FL_H_SEND_PCIEHDR",
5815 		"IDMA_FL_H_PUSH_CPL_FIFO",
5816 		"IDMA_FL_H_SEND_CPL",
5817 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5818 		"IDMA_FL_H_SEND_IP_HDR",
5819 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5820 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5821 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5822 		"IDMA_FL_D_SEND_PCIEHDR",
5823 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5824 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5825 		"IDMA_FL_SEND_PCIEHDR",
5826 		"IDMA_FL_PUSH_CPL_FIFO",
5827 		"IDMA_FL_SEND_CPL",
5828 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5829 		"IDMA_FL_SEND_PAYLOAD",
5830 		"IDMA_FL_REQ_NEXT_DATA_FL",
5831 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5832 		"IDMA_FL_SEND_PADDING",
5833 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5834 	};
5835 	static const char * const t6_decode[] = {
5836 		"IDMA_IDLE",
5837 		"IDMA_PUSH_MORE_CPL_FIFO",
5838 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5839 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5840 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5841 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5842 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5843 		"IDMA_FL_REQ_DATA_FL",
5844 		"IDMA_FL_DROP",
5845 		"IDMA_FL_DROP_SEND_INC",
5846 		"IDMA_FL_H_REQ_HEADER_FL",
5847 		"IDMA_FL_H_SEND_PCIEHDR",
5848 		"IDMA_FL_H_PUSH_CPL_FIFO",
5849 		"IDMA_FL_H_SEND_CPL",
5850 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5851 		"IDMA_FL_H_SEND_IP_HDR",
5852 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5853 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5854 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5855 		"IDMA_FL_D_SEND_PCIEHDR",
5856 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5857 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5858 		"IDMA_FL_SEND_PCIEHDR",
5859 		"IDMA_FL_PUSH_CPL_FIFO",
5860 		"IDMA_FL_SEND_CPL",
5861 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5862 		"IDMA_FL_SEND_PAYLOAD",
5863 		"IDMA_FL_REQ_NEXT_DATA_FL",
5864 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5865 		"IDMA_FL_SEND_PADDING",
5866 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5867 	};
5868 	static const u32 sge_regs[] = {
5869 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
5870 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
5871 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5872 	};
5873 	const char **sge_idma_decode;
5874 	int sge_idma_decode_nstates;
5875 	int i;
5876 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5877 
5878 	/* Select the right set of decode strings to dump depending on the
5879 	 * adapter chip type.
5880 	 */
5881 	switch (chip_version) {
5882 	case CHELSIO_T4:
5883 		sge_idma_decode = (const char **)t4_decode;
5884 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5885 		break;
5886 
5887 	case CHELSIO_T5:
5888 		sge_idma_decode = (const char **)t5_decode;
5889 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5890 		break;
5891 
5892 	case CHELSIO_T6:
5893 		sge_idma_decode = (const char **)t6_decode;
5894 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5895 		break;
5896 
5897 	default:
5898 		dev_err(adapter->pdev_dev,
5899 			"Unsupported chip version %d\n", chip_version);
5900 		return;
5901 	}
5902 
5903 	if (is_t4(adapter->params.chip)) {
5904 		sge_idma_decode = (const char **)t4_decode;
5905 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5906 	} else {
5907 		sge_idma_decode = (const char **)t5_decode;
5908 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5909 	}
5910 
5911 	if (state < sge_idma_decode_nstates)
5912 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5913 	else
5914 		CH_WARN(adapter, "idma state %d unknown\n", state);
5915 
5916 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5917 		CH_WARN(adapter, "SGE register %#x value %#x\n",
5918 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5919 }
5920 
5921 /**
5922  *      t4_sge_ctxt_flush - flush the SGE context cache
5923  *      @adap: the adapter
5924  *      @mbox: mailbox to use for the FW command
5925  *
5926  *      Issues a FW command through the given mailbox to flush the
5927  *      SGE context cache.
5928  */
5929 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5930 {
5931 	int ret;
5932 	u32 ldst_addrspace;
5933 	struct fw_ldst_cmd c;
5934 
5935 	memset(&c, 0, sizeof(c));
5936 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5937 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5938 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5939 					ldst_addrspace);
5940 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5941 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5942 
5943 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5944 	return ret;
5945 }
5946 
5947 /**
5948  *      t4_fw_hello - establish communication with FW
5949  *      @adap: the adapter
5950  *      @mbox: mailbox to use for the FW command
5951  *      @evt_mbox: mailbox to receive async FW events
5952  *      @master: specifies the caller's willingness to be the device master
5953  *	@state: returns the current device state (if non-NULL)
5954  *
5955  *	Issues a command to establish communication with FW.  Returns either
5956  *	an error (negative integer) or the mailbox of the Master PF.
5957  */
5958 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5959 		enum dev_master master, enum dev_state *state)
5960 {
5961 	int ret;
5962 	struct fw_hello_cmd c;
5963 	u32 v;
5964 	unsigned int master_mbox;
5965 	int retries = FW_CMD_HELLO_RETRIES;
5966 
5967 retry:
5968 	memset(&c, 0, sizeof(c));
5969 	INIT_CMD(c, HELLO, WRITE);
5970 	c.err_to_clearinit = cpu_to_be32(
5971 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5972 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5973 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5974 					mbox : FW_HELLO_CMD_MBMASTER_M) |
5975 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5976 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5977 		FW_HELLO_CMD_CLEARINIT_F);
5978 
5979 	/*
5980 	 * Issue the HELLO command to the firmware.  If it's not successful
5981 	 * but indicates that we got a "busy" or "timeout" condition, retry
5982 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
5983 	 * retry limit, check to see if the firmware left us any error
5984 	 * information and report that if so.
5985 	 */
5986 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5987 	if (ret < 0) {
5988 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5989 			goto retry;
5990 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5991 			t4_report_fw_error(adap);
5992 		return ret;
5993 	}
5994 
5995 	v = be32_to_cpu(c.err_to_clearinit);
5996 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5997 	if (state) {
5998 		if (v & FW_HELLO_CMD_ERR_F)
5999 			*state = DEV_STATE_ERR;
6000 		else if (v & FW_HELLO_CMD_INIT_F)
6001 			*state = DEV_STATE_INIT;
6002 		else
6003 			*state = DEV_STATE_UNINIT;
6004 	}
6005 
6006 	/*
6007 	 * If we're not the Master PF then we need to wait around for the
6008 	 * Master PF Driver to finish setting up the adapter.
6009 	 *
6010 	 * Note that we also do this wait if we're a non-Master-capable PF and
6011 	 * there is no current Master PF; a Master PF may show up momentarily
6012 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6013 	 * OS loads lots of different drivers rapidly at the same time).  In
6014 	 * this case, the Master PF returned by the firmware will be
6015 	 * PCIE_FW_MASTER_M so the test below will work ...
6016 	 */
6017 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6018 	    master_mbox != mbox) {
6019 		int waiting = FW_CMD_HELLO_TIMEOUT;
6020 
6021 		/*
6022 		 * Wait for the firmware to either indicate an error or
6023 		 * initialized state.  If we see either of these we bail out
6024 		 * and report the issue to the caller.  If we exhaust the
6025 		 * "hello timeout" and we haven't exhausted our retries, try
6026 		 * again.  Otherwise bail with a timeout error.
6027 		 */
6028 		for (;;) {
6029 			u32 pcie_fw;
6030 
6031 			msleep(50);
6032 			waiting -= 50;
6033 
6034 			/*
6035 			 * If neither Error nor Initialialized are indicated
6036 			 * by the firmware keep waiting till we exaust our
6037 			 * timeout ... and then retry if we haven't exhausted
6038 			 * our retries ...
6039 			 */
6040 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6041 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6042 				if (waiting <= 0) {
6043 					if (retries-- > 0)
6044 						goto retry;
6045 
6046 					return -ETIMEDOUT;
6047 				}
6048 				continue;
6049 			}
6050 
6051 			/*
6052 			 * We either have an Error or Initialized condition
6053 			 * report errors preferentially.
6054 			 */
6055 			if (state) {
6056 				if (pcie_fw & PCIE_FW_ERR_F)
6057 					*state = DEV_STATE_ERR;
6058 				else if (pcie_fw & PCIE_FW_INIT_F)
6059 					*state = DEV_STATE_INIT;
6060 			}
6061 
6062 			/*
6063 			 * If we arrived before a Master PF was selected and
6064 			 * there's not a valid Master PF, grab its identity
6065 			 * for our caller.
6066 			 */
6067 			if (master_mbox == PCIE_FW_MASTER_M &&
6068 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6069 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6070 			break;
6071 		}
6072 	}
6073 
6074 	return master_mbox;
6075 }
6076 
6077 /**
6078  *	t4_fw_bye - end communication with FW
6079  *	@adap: the adapter
6080  *	@mbox: mailbox to use for the FW command
6081  *
6082  *	Issues a command to terminate communication with FW.
6083  */
6084 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6085 {
6086 	struct fw_bye_cmd c;
6087 
6088 	memset(&c, 0, sizeof(c));
6089 	INIT_CMD(c, BYE, WRITE);
6090 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6091 }
6092 
6093 /**
6094  *	t4_init_cmd - ask FW to initialize the device
6095  *	@adap: the adapter
6096  *	@mbox: mailbox to use for the FW command
6097  *
6098  *	Issues a command to FW to partially initialize the device.  This
6099  *	performs initialization that generally doesn't depend on user input.
6100  */
6101 int t4_early_init(struct adapter *adap, unsigned int mbox)
6102 {
6103 	struct fw_initialize_cmd c;
6104 
6105 	memset(&c, 0, sizeof(c));
6106 	INIT_CMD(c, INITIALIZE, WRITE);
6107 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6108 }
6109 
6110 /**
6111  *	t4_fw_reset - issue a reset to FW
6112  *	@adap: the adapter
6113  *	@mbox: mailbox to use for the FW command
6114  *	@reset: specifies the type of reset to perform
6115  *
6116  *	Issues a reset command of the specified type to FW.
6117  */
6118 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6119 {
6120 	struct fw_reset_cmd c;
6121 
6122 	memset(&c, 0, sizeof(c));
6123 	INIT_CMD(c, RESET, WRITE);
6124 	c.val = cpu_to_be32(reset);
6125 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6126 }
6127 
6128 /**
6129  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6130  *	@adap: the adapter
6131  *	@mbox: mailbox to use for the FW RESET command (if desired)
6132  *	@force: force uP into RESET even if FW RESET command fails
6133  *
6134  *	Issues a RESET command to firmware (if desired) with a HALT indication
6135  *	and then puts the microprocessor into RESET state.  The RESET command
6136  *	will only be issued if a legitimate mailbox is provided (mbox <=
6137  *	PCIE_FW_MASTER_M).
6138  *
6139  *	This is generally used in order for the host to safely manipulate the
6140  *	adapter without fear of conflicting with whatever the firmware might
6141  *	be doing.  The only way out of this state is to RESTART the firmware
6142  *	...
6143  */
6144 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6145 {
6146 	int ret = 0;
6147 
6148 	/*
6149 	 * If a legitimate mailbox is provided, issue a RESET command
6150 	 * with a HALT indication.
6151 	 */
6152 	if (mbox <= PCIE_FW_MASTER_M) {
6153 		struct fw_reset_cmd c;
6154 
6155 		memset(&c, 0, sizeof(c));
6156 		INIT_CMD(c, RESET, WRITE);
6157 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6158 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6159 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6160 	}
6161 
6162 	/*
6163 	 * Normally we won't complete the operation if the firmware RESET
6164 	 * command fails but if our caller insists we'll go ahead and put the
6165 	 * uP into RESET.  This can be useful if the firmware is hung or even
6166 	 * missing ...  We'll have to take the risk of putting the uP into
6167 	 * RESET without the cooperation of firmware in that case.
6168 	 *
6169 	 * We also force the firmware's HALT flag to be on in case we bypassed
6170 	 * the firmware RESET command above or we're dealing with old firmware
6171 	 * which doesn't have the HALT capability.  This will serve as a flag
6172 	 * for the incoming firmware to know that it's coming out of a HALT
6173 	 * rather than a RESET ... if it's new enough to understand that ...
6174 	 */
6175 	if (ret == 0 || force) {
6176 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6177 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6178 				 PCIE_FW_HALT_F);
6179 	}
6180 
6181 	/*
6182 	 * And we always return the result of the firmware RESET command
6183 	 * even when we force the uP into RESET ...
6184 	 */
6185 	return ret;
6186 }
6187 
6188 /**
6189  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6190  *	@adap: the adapter
6191  *	@reset: if we want to do a RESET to restart things
6192  *
6193  *	Restart firmware previously halted by t4_fw_halt().  On successful
6194  *	return the previous PF Master remains as the new PF Master and there
6195  *	is no need to issue a new HELLO command, etc.
6196  *
6197  *	We do this in two ways:
6198  *
6199  *	 1. If we're dealing with newer firmware we'll simply want to take
6200  *	    the chip's microprocessor out of RESET.  This will cause the
6201  *	    firmware to start up from its start vector.  And then we'll loop
6202  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6203  *	    reset to 0) or we timeout.
6204  *
6205  *	 2. If we're dealing with older firmware then we'll need to RESET
6206  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6207  *	    flag and automatically RESET itself on startup.
6208  */
6209 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6210 {
6211 	if (reset) {
6212 		/*
6213 		 * Since we're directing the RESET instead of the firmware
6214 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6215 		 * bit.
6216 		 */
6217 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6218 
6219 		/*
6220 		 * If we've been given a valid mailbox, first try to get the
6221 		 * firmware to do the RESET.  If that works, great and we can
6222 		 * return success.  Otherwise, if we haven't been given a
6223 		 * valid mailbox or the RESET command failed, fall back to
6224 		 * hitting the chip with a hammer.
6225 		 */
6226 		if (mbox <= PCIE_FW_MASTER_M) {
6227 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6228 			msleep(100);
6229 			if (t4_fw_reset(adap, mbox,
6230 					PIORST_F | PIORSTMODE_F) == 0)
6231 				return 0;
6232 		}
6233 
6234 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6235 		msleep(2000);
6236 	} else {
6237 		int ms;
6238 
6239 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6240 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6241 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6242 				return 0;
6243 			msleep(100);
6244 			ms += 100;
6245 		}
6246 		return -ETIMEDOUT;
6247 	}
6248 	return 0;
6249 }
6250 
6251 /**
6252  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6253  *	@adap: the adapter
6254  *	@mbox: mailbox to use for the FW RESET command (if desired)
6255  *	@fw_data: the firmware image to write
6256  *	@size: image size
6257  *	@force: force upgrade even if firmware doesn't cooperate
6258  *
6259  *	Perform all of the steps necessary for upgrading an adapter's
6260  *	firmware image.  Normally this requires the cooperation of the
6261  *	existing firmware in order to halt all existing activities
6262  *	but if an invalid mailbox token is passed in we skip that step
6263  *	(though we'll still put the adapter microprocessor into RESET in
6264  *	that case).
6265  *
6266  *	On successful return the new firmware will have been loaded and
6267  *	the adapter will have been fully RESET losing all previous setup
6268  *	state.  On unsuccessful return the adapter may be completely hosed ...
6269  *	positive errno indicates that the adapter is ~probably~ intact, a
6270  *	negative errno indicates that things are looking bad ...
6271  */
6272 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6273 		  const u8 *fw_data, unsigned int size, int force)
6274 {
6275 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6276 	int reset, ret;
6277 
6278 	if (!t4_fw_matches_chip(adap, fw_hdr))
6279 		return -EINVAL;
6280 
6281 	ret = t4_fw_halt(adap, mbox, force);
6282 	if (ret < 0 && !force)
6283 		return ret;
6284 
6285 	ret = t4_load_fw(adap, fw_data, size);
6286 	if (ret < 0)
6287 		return ret;
6288 
6289 	/*
6290 	 * Older versions of the firmware don't understand the new
6291 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6292 	 * restart.  So for newly loaded older firmware we'll have to do the
6293 	 * RESET for it so it starts up on a clean slate.  We can tell if
6294 	 * the newly loaded firmware will handle this right by checking
6295 	 * its header flags to see if it advertises the capability.
6296 	 */
6297 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6298 	return t4_fw_restart(adap, mbox, reset);
6299 }
6300 
6301 /**
6302  *	t4_fl_pkt_align - return the fl packet alignment
6303  *	@adap: the adapter
6304  *
6305  *	T4 has a single field to specify the packing and padding boundary.
6306  *	T5 onwards has separate fields for this and hence the alignment for
6307  *	next packet offset is maximum of these two.
6308  *
6309  */
6310 int t4_fl_pkt_align(struct adapter *adap)
6311 {
6312 	u32 sge_control, sge_control2;
6313 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6314 
6315 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6316 
6317 	/* T4 uses a single control field to specify both the PCIe Padding and
6318 	 * Packing Boundary.  T5 introduced the ability to specify these
6319 	 * separately.  The actual Ingress Packet Data alignment boundary
6320 	 * within Packed Buffer Mode is the maximum of these two
6321 	 * specifications.  (Note that it makes no real practical sense to
6322 	 * have the Pading Boudary be larger than the Packing Boundary but you
6323 	 * could set the chip up that way and, in fact, legacy T4 code would
6324 	 * end doing this because it would initialize the Padding Boundary and
6325 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6326 	 * Padding Boundary values in T6 starts from 8B,
6327 	 * where as it is 32B for T4 and T5.
6328 	 */
6329 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6330 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6331 	else
6332 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6333 
6334 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6335 
6336 	fl_align = ingpadboundary;
6337 	if (!is_t4(adap->params.chip)) {
6338 		/* T5 has a weird interpretation of one of the PCIe Packing
6339 		 * Boundary values.  No idea why ...
6340 		 */
6341 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6342 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6343 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6344 			ingpackboundary = 16;
6345 		else
6346 			ingpackboundary = 1 << (ingpackboundary +
6347 						INGPACKBOUNDARY_SHIFT_X);
6348 
6349 		fl_align = max(ingpadboundary, ingpackboundary);
6350 	}
6351 	return fl_align;
6352 }
6353 
6354 /**
6355  *	t4_fixup_host_params - fix up host-dependent parameters
6356  *	@adap: the adapter
6357  *	@page_size: the host's Base Page Size
6358  *	@cache_line_size: the host's Cache Line Size
6359  *
6360  *	Various registers in T4 contain values which are dependent on the
6361  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6362  *	those registers with the appropriate values as passed in ...
6363  */
6364 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6365 			 unsigned int cache_line_size)
6366 {
6367 	unsigned int page_shift = fls(page_size) - 1;
6368 	unsigned int sge_hps = page_shift - 10;
6369 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6370 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6371 	unsigned int fl_align_log = fls(fl_align) - 1;
6372 	unsigned int ingpad;
6373 
6374 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6375 		     HOSTPAGESIZEPF0_V(sge_hps) |
6376 		     HOSTPAGESIZEPF1_V(sge_hps) |
6377 		     HOSTPAGESIZEPF2_V(sge_hps) |
6378 		     HOSTPAGESIZEPF3_V(sge_hps) |
6379 		     HOSTPAGESIZEPF4_V(sge_hps) |
6380 		     HOSTPAGESIZEPF5_V(sge_hps) |
6381 		     HOSTPAGESIZEPF6_V(sge_hps) |
6382 		     HOSTPAGESIZEPF7_V(sge_hps));
6383 
6384 	if (is_t4(adap->params.chip)) {
6385 		t4_set_reg_field(adap, SGE_CONTROL_A,
6386 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6387 				 EGRSTATUSPAGESIZE_F,
6388 				 INGPADBOUNDARY_V(fl_align_log -
6389 						  INGPADBOUNDARY_SHIFT_X) |
6390 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6391 	} else {
6392 		/* T5 introduced the separation of the Free List Padding and
6393 		 * Packing Boundaries.  Thus, we can select a smaller Padding
6394 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6395 		 * Bandwidth, and use a Packing Boundary which is large enough
6396 		 * to avoid false sharing between CPUs, etc.
6397 		 *
6398 		 * For the PCI Link, the smaller the Padding Boundary the
6399 		 * better.  For the Memory Controller, a smaller Padding
6400 		 * Boundary is better until we cross under the Memory Line
6401 		 * Size (the minimum unit of transfer to/from Memory).  If we
6402 		 * have a Padding Boundary which is smaller than the Memory
6403 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
6404 		 * Memory Controller which is never good.  For T5 the smallest
6405 		 * Padding Boundary which we can select is 32 bytes which is
6406 		 * larger than any known Memory Controller Line Size so we'll
6407 		 * use that.
6408 		 *
6409 		 * T5 has a different interpretation of the "0" value for the
6410 		 * Packing Boundary.  This corresponds to 16 bytes instead of
6411 		 * the expected 32 bytes.  We never have a Packing Boundary
6412 		 * less than 32 bytes so we can't use that special value but
6413 		 * on the other hand, if we wanted 32 bytes, the best we can
6414 		 * really do is 64 bytes.
6415 		*/
6416 		if (fl_align <= 32) {
6417 			fl_align = 64;
6418 			fl_align_log = 6;
6419 		}
6420 
6421 		if (is_t5(adap->params.chip))
6422 			ingpad = INGPCIEBOUNDARY_32B_X;
6423 		else
6424 			ingpad = T6_INGPADBOUNDARY_32B_X;
6425 
6426 		t4_set_reg_field(adap, SGE_CONTROL_A,
6427 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6428 				 EGRSTATUSPAGESIZE_F,
6429 				 INGPADBOUNDARY_V(ingpad) |
6430 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6431 		t4_set_reg_field(adap, SGE_CONTROL2_A,
6432 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6433 				 INGPACKBOUNDARY_V(fl_align_log -
6434 						   INGPACKBOUNDARY_SHIFT_X));
6435 	}
6436 	/*
6437 	 * Adjust various SGE Free List Host Buffer Sizes.
6438 	 *
6439 	 * This is something of a crock since we're using fixed indices into
6440 	 * the array which are also known by the sge.c code and the T4
6441 	 * Firmware Configuration File.  We need to come up with a much better
6442 	 * approach to managing this array.  For now, the first four entries
6443 	 * are:
6444 	 *
6445 	 *   0: Host Page Size
6446 	 *   1: 64KB
6447 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6448 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6449 	 *
6450 	 * For the single-MTU buffers in unpacked mode we need to include
6451 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6452 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6453 	 * Padding boundary.  All of these are accommodated in the Factory
6454 	 * Default Firmware Configuration File but we need to adjust it for
6455 	 * this host's cache line size.
6456 	 */
6457 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6458 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6459 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6460 		     & ~(fl_align-1));
6461 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6462 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6463 		     & ~(fl_align-1));
6464 
6465 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6466 
6467 	return 0;
6468 }
6469 
6470 /**
6471  *	t4_fw_initialize - ask FW to initialize the device
6472  *	@adap: the adapter
6473  *	@mbox: mailbox to use for the FW command
6474  *
6475  *	Issues a command to FW to partially initialize the device.  This
6476  *	performs initialization that generally doesn't depend on user input.
6477  */
6478 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6479 {
6480 	struct fw_initialize_cmd c;
6481 
6482 	memset(&c, 0, sizeof(c));
6483 	INIT_CMD(c, INITIALIZE, WRITE);
6484 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6485 }
6486 
6487 /**
6488  *	t4_query_params_rw - query FW or device parameters
6489  *	@adap: the adapter
6490  *	@mbox: mailbox to use for the FW command
6491  *	@pf: the PF
6492  *	@vf: the VF
6493  *	@nparams: the number of parameters
6494  *	@params: the parameter names
6495  *	@val: the parameter values
6496  *	@rw: Write and read flag
6497  *
6498  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6499  *	queried at once.
6500  */
6501 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6502 		       unsigned int vf, unsigned int nparams, const u32 *params,
6503 		       u32 *val, int rw)
6504 {
6505 	int i, ret;
6506 	struct fw_params_cmd c;
6507 	__be32 *p = &c.param[0].mnem;
6508 
6509 	if (nparams > 7)
6510 		return -EINVAL;
6511 
6512 	memset(&c, 0, sizeof(c));
6513 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6514 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
6515 				  FW_PARAMS_CMD_PFN_V(pf) |
6516 				  FW_PARAMS_CMD_VFN_V(vf));
6517 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6518 
6519 	for (i = 0; i < nparams; i++) {
6520 		*p++ = cpu_to_be32(*params++);
6521 		if (rw)
6522 			*p = cpu_to_be32(*(val + i));
6523 		p++;
6524 	}
6525 
6526 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6527 	if (ret == 0)
6528 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6529 			*val++ = be32_to_cpu(*p);
6530 	return ret;
6531 }
6532 
6533 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6534 		    unsigned int vf, unsigned int nparams, const u32 *params,
6535 		    u32 *val)
6536 {
6537 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6538 }
6539 
6540 /**
6541  *      t4_set_params_timeout - sets FW or device parameters
6542  *      @adap: the adapter
6543  *      @mbox: mailbox to use for the FW command
6544  *      @pf: the PF
6545  *      @vf: the VF
6546  *      @nparams: the number of parameters
6547  *      @params: the parameter names
6548  *      @val: the parameter values
6549  *      @timeout: the timeout time
6550  *
6551  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6552  *      specified at once.
6553  */
6554 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6555 			  unsigned int pf, unsigned int vf,
6556 			  unsigned int nparams, const u32 *params,
6557 			  const u32 *val, int timeout)
6558 {
6559 	struct fw_params_cmd c;
6560 	__be32 *p = &c.param[0].mnem;
6561 
6562 	if (nparams > 7)
6563 		return -EINVAL;
6564 
6565 	memset(&c, 0, sizeof(c));
6566 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6567 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6568 				  FW_PARAMS_CMD_PFN_V(pf) |
6569 				  FW_PARAMS_CMD_VFN_V(vf));
6570 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6571 
6572 	while (nparams--) {
6573 		*p++ = cpu_to_be32(*params++);
6574 		*p++ = cpu_to_be32(*val++);
6575 	}
6576 
6577 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6578 }
6579 
6580 /**
6581  *	t4_set_params - sets FW or device parameters
6582  *	@adap: the adapter
6583  *	@mbox: mailbox to use for the FW command
6584  *	@pf: the PF
6585  *	@vf: the VF
6586  *	@nparams: the number of parameters
6587  *	@params: the parameter names
6588  *	@val: the parameter values
6589  *
6590  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6591  *	specified at once.
6592  */
6593 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6594 		  unsigned int vf, unsigned int nparams, const u32 *params,
6595 		  const u32 *val)
6596 {
6597 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6598 				     FW_CMD_MAX_TIMEOUT);
6599 }
6600 
6601 /**
6602  *	t4_cfg_pfvf - configure PF/VF resource limits
6603  *	@adap: the adapter
6604  *	@mbox: mailbox to use for the FW command
6605  *	@pf: the PF being configured
6606  *	@vf: the VF being configured
6607  *	@txq: the max number of egress queues
6608  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6609  *	@rxqi: the max number of interrupt-capable ingress queues
6610  *	@rxq: the max number of interruptless ingress queues
6611  *	@tc: the PCI traffic class
6612  *	@vi: the max number of virtual interfaces
6613  *	@cmask: the channel access rights mask for the PF/VF
6614  *	@pmask: the port access rights mask for the PF/VF
6615  *	@nexact: the maximum number of exact MPS filters
6616  *	@rcaps: read capabilities
6617  *	@wxcaps: write/execute capabilities
6618  *
6619  *	Configures resource limits and capabilities for a physical or virtual
6620  *	function.
6621  */
6622 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6623 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6624 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6625 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6626 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6627 {
6628 	struct fw_pfvf_cmd c;
6629 
6630 	memset(&c, 0, sizeof(c));
6631 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6632 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6633 				  FW_PFVF_CMD_VFN_V(vf));
6634 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6635 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6636 				     FW_PFVF_CMD_NIQ_V(rxq));
6637 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6638 				    FW_PFVF_CMD_PMASK_V(pmask) |
6639 				    FW_PFVF_CMD_NEQ_V(txq));
6640 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6641 				      FW_PFVF_CMD_NVI_V(vi) |
6642 				      FW_PFVF_CMD_NEXACTF_V(nexact));
6643 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6644 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6645 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6646 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6647 }
6648 
6649 /**
6650  *	t4_alloc_vi - allocate a virtual interface
6651  *	@adap: the adapter
6652  *	@mbox: mailbox to use for the FW command
6653  *	@port: physical port associated with the VI
6654  *	@pf: the PF owning the VI
6655  *	@vf: the VF owning the VI
6656  *	@nmac: number of MAC addresses needed (1 to 5)
6657  *	@mac: the MAC addresses of the VI
6658  *	@rss_size: size of RSS table slice associated with this VI
6659  *
6660  *	Allocates a virtual interface for the given physical port.  If @mac is
6661  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6662  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6663  *	stored consecutively so the space needed is @nmac * 6 bytes.
6664  *	Returns a negative error number or the non-negative VI id.
6665  */
6666 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6667 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6668 		unsigned int *rss_size)
6669 {
6670 	int ret;
6671 	struct fw_vi_cmd c;
6672 
6673 	memset(&c, 0, sizeof(c));
6674 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6675 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6676 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6677 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6678 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6679 	c.nmac = nmac - 1;
6680 
6681 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6682 	if (ret)
6683 		return ret;
6684 
6685 	if (mac) {
6686 		memcpy(mac, c.mac, sizeof(c.mac));
6687 		switch (nmac) {
6688 		case 5:
6689 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6690 		case 4:
6691 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6692 		case 3:
6693 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6694 		case 2:
6695 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6696 		}
6697 	}
6698 	if (rss_size)
6699 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6700 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6701 }
6702 
6703 /**
6704  *	t4_free_vi - free a virtual interface
6705  *	@adap: the adapter
6706  *	@mbox: mailbox to use for the FW command
6707  *	@pf: the PF owning the VI
6708  *	@vf: the VF owning the VI
6709  *	@viid: virtual interface identifiler
6710  *
6711  *	Free a previously allocated virtual interface.
6712  */
6713 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6714 	       unsigned int vf, unsigned int viid)
6715 {
6716 	struct fw_vi_cmd c;
6717 
6718 	memset(&c, 0, sizeof(c));
6719 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6720 				  FW_CMD_REQUEST_F |
6721 				  FW_CMD_EXEC_F |
6722 				  FW_VI_CMD_PFN_V(pf) |
6723 				  FW_VI_CMD_VFN_V(vf));
6724 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6725 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6726 
6727 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6728 }
6729 
6730 /**
6731  *	t4_set_rxmode - set Rx properties of a virtual interface
6732  *	@adap: the adapter
6733  *	@mbox: mailbox to use for the FW command
6734  *	@viid: the VI id
6735  *	@mtu: the new MTU or -1
6736  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6737  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6738  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6739  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6740  *	@sleep_ok: if true we may sleep while awaiting command completion
6741  *
6742  *	Sets Rx properties of a virtual interface.
6743  */
6744 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6745 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6746 		  bool sleep_ok)
6747 {
6748 	struct fw_vi_rxmode_cmd c;
6749 
6750 	/* convert to FW values */
6751 	if (mtu < 0)
6752 		mtu = FW_RXMODE_MTU_NO_CHG;
6753 	if (promisc < 0)
6754 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6755 	if (all_multi < 0)
6756 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6757 	if (bcast < 0)
6758 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6759 	if (vlanex < 0)
6760 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6761 
6762 	memset(&c, 0, sizeof(c));
6763 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6764 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6765 				   FW_VI_RXMODE_CMD_VIID_V(viid));
6766 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6767 	c.mtu_to_vlanexen =
6768 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6769 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6770 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6771 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6772 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6773 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6774 }
6775 
6776 /**
6777  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6778  *	@adap: the adapter
6779  *	@mbox: mailbox to use for the FW command
6780  *	@viid: the VI id
6781  *	@free: if true any existing filters for this VI id are first removed
6782  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6783  *	@addr: the MAC address(es)
6784  *	@idx: where to store the index of each allocated filter
6785  *	@hash: pointer to hash address filter bitmap
6786  *	@sleep_ok: call is allowed to sleep
6787  *
6788  *	Allocates an exact-match filter for each of the supplied addresses and
6789  *	sets it to the corresponding address.  If @idx is not %NULL it should
6790  *	have at least @naddr entries, each of which will be set to the index of
6791  *	the filter allocated for the corresponding MAC address.  If a filter
6792  *	could not be allocated for an address its index is set to 0xffff.
6793  *	If @hash is not %NULL addresses that fail to allocate an exact filter
6794  *	are hashed and update the hash filter bitmap pointed at by @hash.
6795  *
6796  *	Returns a negative error number or the number of filters allocated.
6797  */
6798 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6799 		      unsigned int viid, bool free, unsigned int naddr,
6800 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6801 {
6802 	int offset, ret = 0;
6803 	struct fw_vi_mac_cmd c;
6804 	unsigned int nfilters = 0;
6805 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6806 	unsigned int rem = naddr;
6807 
6808 	if (naddr > max_naddr)
6809 		return -EINVAL;
6810 
6811 	for (offset = 0; offset < naddr ; /**/) {
6812 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6813 					 rem : ARRAY_SIZE(c.u.exact));
6814 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6815 						     u.exact[fw_naddr]), 16);
6816 		struct fw_vi_mac_exact *p;
6817 		int i;
6818 
6819 		memset(&c, 0, sizeof(c));
6820 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6821 					   FW_CMD_REQUEST_F |
6822 					   FW_CMD_WRITE_F |
6823 					   FW_CMD_EXEC_V(free) |
6824 					   FW_VI_MAC_CMD_VIID_V(viid));
6825 		c.freemacs_to_len16 =
6826 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6827 				    FW_CMD_LEN16_V(len16));
6828 
6829 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6830 			p->valid_to_idx =
6831 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6832 					    FW_VI_MAC_CMD_IDX_V(
6833 						    FW_VI_MAC_ADD_MAC));
6834 			memcpy(p->macaddr, addr[offset + i],
6835 			       sizeof(p->macaddr));
6836 		}
6837 
6838 		/* It's okay if we run out of space in our MAC address arena.
6839 		 * Some of the addresses we submit may get stored so we need
6840 		 * to run through the reply to see what the results were ...
6841 		 */
6842 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6843 		if (ret && ret != -FW_ENOMEM)
6844 			break;
6845 
6846 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6847 			u16 index = FW_VI_MAC_CMD_IDX_G(
6848 					be16_to_cpu(p->valid_to_idx));
6849 
6850 			if (idx)
6851 				idx[offset + i] = (index >= max_naddr ?
6852 						   0xffff : index);
6853 			if (index < max_naddr)
6854 				nfilters++;
6855 			else if (hash)
6856 				*hash |= (1ULL <<
6857 					  hash_mac_addr(addr[offset + i]));
6858 		}
6859 
6860 		free = false;
6861 		offset += fw_naddr;
6862 		rem -= fw_naddr;
6863 	}
6864 
6865 	if (ret == 0 || ret == -FW_ENOMEM)
6866 		ret = nfilters;
6867 	return ret;
6868 }
6869 
6870 /**
6871  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
6872  *	@adap: the adapter
6873  *	@mbox: mailbox to use for the FW command
6874  *	@viid: the VI id
6875  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6876  *	@addr: the MAC address(es)
6877  *	@sleep_ok: call is allowed to sleep
6878  *
6879  *	Frees the exact-match filter for each of the supplied addresses
6880  *
6881  *	Returns a negative error number or the number of filters freed.
6882  */
6883 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6884 		     unsigned int viid, unsigned int naddr,
6885 		     const u8 **addr, bool sleep_ok)
6886 {
6887 	int offset, ret = 0;
6888 	struct fw_vi_mac_cmd c;
6889 	unsigned int nfilters = 0;
6890 	unsigned int max_naddr = is_t4(adap->params.chip) ?
6891 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
6892 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6893 	unsigned int rem = naddr;
6894 
6895 	if (naddr > max_naddr)
6896 		return -EINVAL;
6897 
6898 	for (offset = 0; offset < (int)naddr ; /**/) {
6899 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6900 					 ? rem
6901 					 : ARRAY_SIZE(c.u.exact));
6902 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6903 						     u.exact[fw_naddr]), 16);
6904 		struct fw_vi_mac_exact *p;
6905 		int i;
6906 
6907 		memset(&c, 0, sizeof(c));
6908 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6909 				     FW_CMD_REQUEST_F |
6910 				     FW_CMD_WRITE_F |
6911 				     FW_CMD_EXEC_V(0) |
6912 				     FW_VI_MAC_CMD_VIID_V(viid));
6913 		c.freemacs_to_len16 =
6914 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6915 					    FW_CMD_LEN16_V(len16));
6916 
6917 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6918 			p->valid_to_idx = cpu_to_be16(
6919 				FW_VI_MAC_CMD_VALID_F |
6920 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6921 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6922 		}
6923 
6924 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6925 		if (ret)
6926 			break;
6927 
6928 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6929 			u16 index = FW_VI_MAC_CMD_IDX_G(
6930 						be16_to_cpu(p->valid_to_idx));
6931 
6932 			if (index < max_naddr)
6933 				nfilters++;
6934 		}
6935 
6936 		offset += fw_naddr;
6937 		rem -= fw_naddr;
6938 	}
6939 
6940 	if (ret == 0)
6941 		ret = nfilters;
6942 	return ret;
6943 }
6944 
6945 /**
6946  *	t4_change_mac - modifies the exact-match filter for a MAC address
6947  *	@adap: the adapter
6948  *	@mbox: mailbox to use for the FW command
6949  *	@viid: the VI id
6950  *	@idx: index of existing filter for old value of MAC address, or -1
6951  *	@addr: the new MAC address value
6952  *	@persist: whether a new MAC allocation should be persistent
6953  *	@add_smt: if true also add the address to the HW SMT
6954  *
6955  *	Modifies an exact-match filter and sets it to the new MAC address.
6956  *	Note that in general it is not possible to modify the value of a given
6957  *	filter so the generic way to modify an address filter is to free the one
6958  *	being used by the old address value and allocate a new filter for the
6959  *	new address value.  @idx can be -1 if the address is a new addition.
6960  *
6961  *	Returns a negative error number or the index of the filter with the new
6962  *	MAC value.
6963  */
6964 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6965 		  int idx, const u8 *addr, bool persist, bool add_smt)
6966 {
6967 	int ret, mode;
6968 	struct fw_vi_mac_cmd c;
6969 	struct fw_vi_mac_exact *p = c.u.exact;
6970 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6971 
6972 	if (idx < 0)                             /* new allocation */
6973 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6974 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6975 
6976 	memset(&c, 0, sizeof(c));
6977 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6978 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6979 				   FW_VI_MAC_CMD_VIID_V(viid));
6980 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6981 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6982 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6983 				      FW_VI_MAC_CMD_IDX_V(idx));
6984 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
6985 
6986 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6987 	if (ret == 0) {
6988 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6989 		if (ret >= max_mac_addr)
6990 			ret = -ENOMEM;
6991 	}
6992 	return ret;
6993 }
6994 
6995 /**
6996  *	t4_set_addr_hash - program the MAC inexact-match hash filter
6997  *	@adap: the adapter
6998  *	@mbox: mailbox to use for the FW command
6999  *	@viid: the VI id
7000  *	@ucast: whether the hash filter should also match unicast addresses
7001  *	@vec: the value to be written to the hash filter
7002  *	@sleep_ok: call is allowed to sleep
7003  *
7004  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7005  */
7006 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7007 		     bool ucast, u64 vec, bool sleep_ok)
7008 {
7009 	struct fw_vi_mac_cmd c;
7010 
7011 	memset(&c, 0, sizeof(c));
7012 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7013 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7014 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7015 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7016 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7017 					  FW_CMD_LEN16_V(1));
7018 	c.u.hash.hashvec = cpu_to_be64(vec);
7019 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7020 }
7021 
7022 /**
7023  *      t4_enable_vi_params - enable/disable a virtual interface
7024  *      @adap: the adapter
7025  *      @mbox: mailbox to use for the FW command
7026  *      @viid: the VI id
7027  *      @rx_en: 1=enable Rx, 0=disable Rx
7028  *      @tx_en: 1=enable Tx, 0=disable Tx
7029  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7030  *
7031  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7032  *      only makes sense when enabling a Virtual Interface ...
7033  */
7034 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7035 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7036 {
7037 	struct fw_vi_enable_cmd c;
7038 
7039 	memset(&c, 0, sizeof(c));
7040 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7041 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7042 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7043 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7044 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7045 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7046 				     FW_LEN16(c));
7047 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7048 }
7049 
7050 /**
7051  *	t4_enable_vi - enable/disable a virtual interface
7052  *	@adap: the adapter
7053  *	@mbox: mailbox to use for the FW command
7054  *	@viid: the VI id
7055  *	@rx_en: 1=enable Rx, 0=disable Rx
7056  *	@tx_en: 1=enable Tx, 0=disable Tx
7057  *
7058  *	Enables/disables a virtual interface.
7059  */
7060 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7061 		 bool rx_en, bool tx_en)
7062 {
7063 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7064 }
7065 
7066 /**
7067  *	t4_identify_port - identify a VI's port by blinking its LED
7068  *	@adap: the adapter
7069  *	@mbox: mailbox to use for the FW command
7070  *	@viid: the VI id
7071  *	@nblinks: how many times to blink LED at 2.5 Hz
7072  *
7073  *	Identifies a VI's port by blinking its LED.
7074  */
7075 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7076 		     unsigned int nblinks)
7077 {
7078 	struct fw_vi_enable_cmd c;
7079 
7080 	memset(&c, 0, sizeof(c));
7081 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7082 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7083 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7084 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7085 	c.blinkdur = cpu_to_be16(nblinks);
7086 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7087 }
7088 
7089 /**
7090  *	t4_iq_stop - stop an ingress queue and its FLs
7091  *	@adap: the adapter
7092  *	@mbox: mailbox to use for the FW command
7093  *	@pf: the PF owning the queues
7094  *	@vf: the VF owning the queues
7095  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7096  *	@iqid: ingress queue id
7097  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7098  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7099  *
7100  *	Stops an ingress queue and its associated FLs, if any.  This causes
7101  *	any current or future data/messages destined for these queues to be
7102  *	tossed.
7103  */
7104 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7105 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7106 	       unsigned int fl0id, unsigned int fl1id)
7107 {
7108 	struct fw_iq_cmd c;
7109 
7110 	memset(&c, 0, sizeof(c));
7111 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7112 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7113 				  FW_IQ_CMD_VFN_V(vf));
7114 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7115 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7116 	c.iqid = cpu_to_be16(iqid);
7117 	c.fl0id = cpu_to_be16(fl0id);
7118 	c.fl1id = cpu_to_be16(fl1id);
7119 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7120 }
7121 
7122 /**
7123  *	t4_iq_free - free an ingress queue and its FLs
7124  *	@adap: the adapter
7125  *	@mbox: mailbox to use for the FW command
7126  *	@pf: the PF owning the queues
7127  *	@vf: the VF owning the queues
7128  *	@iqtype: the ingress queue type
7129  *	@iqid: ingress queue id
7130  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7131  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7132  *
7133  *	Frees an ingress queue and its associated FLs, if any.
7134  */
7135 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7136 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7137 	       unsigned int fl0id, unsigned int fl1id)
7138 {
7139 	struct fw_iq_cmd c;
7140 
7141 	memset(&c, 0, sizeof(c));
7142 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7143 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7144 				  FW_IQ_CMD_VFN_V(vf));
7145 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7146 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7147 	c.iqid = cpu_to_be16(iqid);
7148 	c.fl0id = cpu_to_be16(fl0id);
7149 	c.fl1id = cpu_to_be16(fl1id);
7150 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7151 }
7152 
7153 /**
7154  *	t4_eth_eq_free - free an Ethernet egress queue
7155  *	@adap: the adapter
7156  *	@mbox: mailbox to use for the FW command
7157  *	@pf: the PF owning the queue
7158  *	@vf: the VF owning the queue
7159  *	@eqid: egress queue id
7160  *
7161  *	Frees an Ethernet egress queue.
7162  */
7163 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7164 		   unsigned int vf, unsigned int eqid)
7165 {
7166 	struct fw_eq_eth_cmd c;
7167 
7168 	memset(&c, 0, sizeof(c));
7169 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7170 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7171 				  FW_EQ_ETH_CMD_PFN_V(pf) |
7172 				  FW_EQ_ETH_CMD_VFN_V(vf));
7173 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7174 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7175 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7176 }
7177 
7178 /**
7179  *	t4_ctrl_eq_free - free a control egress queue
7180  *	@adap: the adapter
7181  *	@mbox: mailbox to use for the FW command
7182  *	@pf: the PF owning the queue
7183  *	@vf: the VF owning the queue
7184  *	@eqid: egress queue id
7185  *
7186  *	Frees a control egress queue.
7187  */
7188 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7189 		    unsigned int vf, unsigned int eqid)
7190 {
7191 	struct fw_eq_ctrl_cmd c;
7192 
7193 	memset(&c, 0, sizeof(c));
7194 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7195 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7196 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7197 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7198 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7199 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7200 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7201 }
7202 
7203 /**
7204  *	t4_ofld_eq_free - free an offload egress queue
7205  *	@adap: the adapter
7206  *	@mbox: mailbox to use for the FW command
7207  *	@pf: the PF owning the queue
7208  *	@vf: the VF owning the queue
7209  *	@eqid: egress queue id
7210  *
7211  *	Frees a control egress queue.
7212  */
7213 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7214 		    unsigned int vf, unsigned int eqid)
7215 {
7216 	struct fw_eq_ofld_cmd c;
7217 
7218 	memset(&c, 0, sizeof(c));
7219 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7220 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7221 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7222 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7223 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7224 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7225 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7226 }
7227 
7228 /**
7229  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7230  *	@adap: the adapter
7231  *	@link_down_rc: Link Down Reason Code
7232  *
7233  *	Returns a string representation of the Link Down Reason Code.
7234  */
7235 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7236 {
7237 	static const char * const reason[] = {
7238 		"Link Down",
7239 		"Remote Fault",
7240 		"Auto-negotiation Failure",
7241 		"Reserved",
7242 		"Insufficient Airflow",
7243 		"Unable To Determine Reason",
7244 		"No RX Signal Detected",
7245 		"Reserved",
7246 	};
7247 
7248 	if (link_down_rc >= ARRAY_SIZE(reason))
7249 		return "Bad Reason Code";
7250 
7251 	return reason[link_down_rc];
7252 }
7253 
7254 /**
7255  *	t4_handle_get_port_info - process a FW reply message
7256  *	@pi: the port info
7257  *	@rpl: start of the FW message
7258  *
7259  *	Processes a GET_PORT_INFO FW reply message.
7260  */
7261 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7262 {
7263 	const struct fw_port_cmd *p = (const void *)rpl;
7264 	struct adapter *adap = pi->adapter;
7265 
7266 	/* link/module state change message */
7267 	int speed = 0, fc = 0;
7268 	struct link_config *lc;
7269 	u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7270 	int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7271 	u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7272 
7273 	if (stat & FW_PORT_CMD_RXPAUSE_F)
7274 		fc |= PAUSE_RX;
7275 	if (stat & FW_PORT_CMD_TXPAUSE_F)
7276 		fc |= PAUSE_TX;
7277 	if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7278 		speed = 100;
7279 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7280 		speed = 1000;
7281 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7282 		speed = 10000;
7283 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7284 		speed = 25000;
7285 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7286 		speed = 40000;
7287 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7288 		speed = 100000;
7289 
7290 	lc = &pi->link_cfg;
7291 
7292 	if (mod != pi->mod_type) {
7293 		pi->mod_type = mod;
7294 		t4_os_portmod_changed(adap, pi->port_id);
7295 	}
7296 	if (link_ok != lc->link_ok || speed != lc->speed ||
7297 	    fc != lc->fc) {	/* something changed */
7298 		if (!link_ok && lc->link_ok) {
7299 			unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7300 
7301 			lc->link_down_rc = rc;
7302 			dev_warn(adap->pdev_dev,
7303 				 "Port %d link down, reason: %s\n",
7304 				 pi->port_id, t4_link_down_rc_str(rc));
7305 		}
7306 		lc->link_ok = link_ok;
7307 		lc->speed = speed;
7308 		lc->fc = fc;
7309 		lc->supported = be16_to_cpu(p->u.info.pcap);
7310 		lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
7311 		t4_os_link_changed(adap, pi->port_id, link_ok);
7312 	}
7313 }
7314 
7315 /**
7316  *      t4_handle_fw_rpl - process a FW reply message
7317  *      @adap: the adapter
7318  *      @rpl: start of the FW message
7319  *
7320  *      Processes a FW message, such as link state change messages.
7321  */
7322 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7323 {
7324 	u8 opcode = *(const u8 *)rpl;
7325 
7326 	/* This might be a port command ... this simplifies the following
7327 	 * conditionals ...  We can get away with pre-dereferencing
7328 	 * action_to_len16 because it's in the first 16 bytes and all messages
7329 	 * will be at least that long.
7330 	 */
7331 	const struct fw_port_cmd *p = (const void *)rpl;
7332 	unsigned int action =
7333 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7334 
7335 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7336 		int i;
7337 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7338 		struct port_info *pi = NULL;
7339 
7340 		for_each_port(adap, i) {
7341 			pi = adap2pinfo(adap, i);
7342 			if (pi->tx_chan == chan)
7343 				break;
7344 		}
7345 
7346 		t4_handle_get_port_info(pi, rpl);
7347 	} else {
7348 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7349 		return -EINVAL;
7350 	}
7351 	return 0;
7352 }
7353 
7354 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7355 {
7356 	u16 val;
7357 
7358 	if (pci_is_pcie(adapter->pdev)) {
7359 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7360 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7361 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7362 	}
7363 }
7364 
7365 /**
7366  *	init_link_config - initialize a link's SW state
7367  *	@lc: structure holding the link state
7368  *	@caps: link capabilities
7369  *
7370  *	Initializes the SW state maintained for each link, including the link's
7371  *	capabilities and default speed/flow-control/autonegotiation settings.
7372  */
7373 static void init_link_config(struct link_config *lc, unsigned int caps)
7374 {
7375 	lc->supported = caps;
7376 	lc->lp_advertising = 0;
7377 	lc->requested_speed = 0;
7378 	lc->speed = 0;
7379 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7380 	if (lc->supported & FW_PORT_CAP_ANEG) {
7381 		lc->advertising = lc->supported & ADVERT_MASK;
7382 		lc->autoneg = AUTONEG_ENABLE;
7383 		lc->requested_fc |= PAUSE_AUTONEG;
7384 	} else {
7385 		lc->advertising = 0;
7386 		lc->autoneg = AUTONEG_DISABLE;
7387 	}
7388 }
7389 
7390 #define CIM_PF_NOACCESS 0xeeeeeeee
7391 
7392 int t4_wait_dev_ready(void __iomem *regs)
7393 {
7394 	u32 whoami;
7395 
7396 	whoami = readl(regs + PL_WHOAMI_A);
7397 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7398 		return 0;
7399 
7400 	msleep(500);
7401 	whoami = readl(regs + PL_WHOAMI_A);
7402 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7403 }
7404 
7405 struct flash_desc {
7406 	u32 vendor_and_model_id;
7407 	u32 size_mb;
7408 };
7409 
7410 static int get_flash_params(struct adapter *adap)
7411 {
7412 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
7413 	 * to the preexisting code.  All flash parts have 64KB sectors.
7414 	 */
7415 	static struct flash_desc supported_flash[] = {
7416 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7417 	};
7418 
7419 	int ret;
7420 	u32 info;
7421 
7422 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7423 	if (!ret)
7424 		ret = sf1_read(adap, 3, 0, 1, &info);
7425 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7426 	if (ret)
7427 		return ret;
7428 
7429 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7430 		if (supported_flash[ret].vendor_and_model_id == info) {
7431 			adap->params.sf_size = supported_flash[ret].size_mb;
7432 			adap->params.sf_nsec =
7433 				adap->params.sf_size / SF_SEC_SIZE;
7434 			return 0;
7435 		}
7436 
7437 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7438 		return -EINVAL;
7439 	info >>= 16;                           /* log2 of size */
7440 	if (info >= 0x14 && info < 0x18)
7441 		adap->params.sf_nsec = 1 << (info - 16);
7442 	else if (info == 0x18)
7443 		adap->params.sf_nsec = 64;
7444 	else
7445 		return -EINVAL;
7446 	adap->params.sf_size = 1 << info;
7447 	adap->params.sf_fw_start =
7448 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7449 
7450 	if (adap->params.sf_size < FLASH_MIN_SIZE)
7451 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7452 			 adap->params.sf_size, FLASH_MIN_SIZE);
7453 	return 0;
7454 }
7455 
7456 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7457 {
7458 	u16 val;
7459 	u32 pcie_cap;
7460 
7461 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7462 	if (pcie_cap) {
7463 		pci_read_config_word(adapter->pdev,
7464 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
7465 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7466 		val |= range;
7467 		pci_write_config_word(adapter->pdev,
7468 				      pcie_cap + PCI_EXP_DEVCTL2, val);
7469 	}
7470 }
7471 
7472 /**
7473  *	t4_prep_adapter - prepare SW and HW for operation
7474  *	@adapter: the adapter
7475  *	@reset: if true perform a HW reset
7476  *
7477  *	Initialize adapter SW state for the various HW modules, set initial
7478  *	values for some adapter tunables, take PHYs out of reset, and
7479  *	initialize the MDIO interface.
7480  */
7481 int t4_prep_adapter(struct adapter *adapter)
7482 {
7483 	int ret, ver;
7484 	uint16_t device_id;
7485 	u32 pl_rev;
7486 
7487 	get_pci_mode(adapter, &adapter->params.pci);
7488 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7489 
7490 	ret = get_flash_params(adapter);
7491 	if (ret < 0) {
7492 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7493 		return ret;
7494 	}
7495 
7496 	/* Retrieve adapter's device ID
7497 	 */
7498 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7499 	ver = device_id >> 12;
7500 	adapter->params.chip = 0;
7501 	switch (ver) {
7502 	case CHELSIO_T4:
7503 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7504 		adapter->params.arch.sge_fl_db = DBPRIO_F;
7505 		adapter->params.arch.mps_tcam_size =
7506 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
7507 		adapter->params.arch.mps_rplc_size = 128;
7508 		adapter->params.arch.nchan = NCHAN;
7509 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7510 		adapter->params.arch.vfcount = 128;
7511 		/* Congestion map is for 4 channels so that
7512 		 * MPS can have 4 priority per port.
7513 		 */
7514 		adapter->params.arch.cng_ch_bits_log = 2;
7515 		break;
7516 	case CHELSIO_T5:
7517 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7518 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7519 		adapter->params.arch.mps_tcam_size =
7520 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7521 		adapter->params.arch.mps_rplc_size = 128;
7522 		adapter->params.arch.nchan = NCHAN;
7523 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7524 		adapter->params.arch.vfcount = 128;
7525 		adapter->params.arch.cng_ch_bits_log = 2;
7526 		break;
7527 	case CHELSIO_T6:
7528 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7529 		adapter->params.arch.sge_fl_db = 0;
7530 		adapter->params.arch.mps_tcam_size =
7531 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7532 		adapter->params.arch.mps_rplc_size = 256;
7533 		adapter->params.arch.nchan = 2;
7534 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7535 		adapter->params.arch.vfcount = 256;
7536 		/* Congestion map will be for 2 channels so that
7537 		 * MPS can have 8 priority per port.
7538 		 */
7539 		adapter->params.arch.cng_ch_bits_log = 3;
7540 		break;
7541 	default:
7542 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7543 			device_id);
7544 		return -EINVAL;
7545 	}
7546 
7547 	adapter->params.cim_la_size = CIMLA_SIZE;
7548 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7549 
7550 	/*
7551 	 * Default port for debugging in case we can't reach FW.
7552 	 */
7553 	adapter->params.nports = 1;
7554 	adapter->params.portvec = 1;
7555 	adapter->params.vpd.cclk = 50000;
7556 
7557 	/* Set pci completion timeout value to 4 seconds. */
7558 	set_pcie_completion_timeout(adapter, 0xd);
7559 	return 0;
7560 }
7561 
7562 /**
7563  *	t4_shutdown_adapter - shut down adapter, host & wire
7564  *	@adapter: the adapter
7565  *
7566  *	Perform an emergency shutdown of the adapter and stop it from
7567  *	continuing any further communication on the ports or DMA to the
7568  *	host.  This is typically used when the adapter and/or firmware
7569  *	have crashed and we want to prevent any further accidental
7570  *	communication with the rest of the world.  This will also force
7571  *	the port Link Status to go down -- if register writes work --
7572  *	which should help our peers figure out that we're down.
7573  */
7574 int t4_shutdown_adapter(struct adapter *adapter)
7575 {
7576 	int port;
7577 
7578 	t4_intr_disable(adapter);
7579 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
7580 	for_each_port(adapter, port) {
7581 		u32 a_port_cfg = PORT_REG(port,
7582 					  is_t4(adapter->params.chip)
7583 					  ? XGMAC_PORT_CFG_A
7584 					  : MAC_PORT_CFG_A);
7585 
7586 		t4_write_reg(adapter, a_port_cfg,
7587 			     t4_read_reg(adapter, a_port_cfg)
7588 			     & ~SIGNAL_DET_V(1));
7589 	}
7590 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
7591 
7592 	return 0;
7593 }
7594 
7595 /**
7596  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7597  *	@adapter: the adapter
7598  *	@qid: the Queue ID
7599  *	@qtype: the Ingress or Egress type for @qid
7600  *	@user: true if this request is for a user mode queue
7601  *	@pbar2_qoffset: BAR2 Queue Offset
7602  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7603  *
7604  *	Returns the BAR2 SGE Queue Registers information associated with the
7605  *	indicated Absolute Queue ID.  These are passed back in return value
7606  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7607  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7608  *
7609  *	This may return an error which indicates that BAR2 SGE Queue
7610  *	registers aren't available.  If an error is not returned, then the
7611  *	following values are returned:
7612  *
7613  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7614  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7615  *
7616  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7617  *	require the "Inferred Queue ID" ability may be used.  E.g. the
7618  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7619  *	then these "Inferred Queue ID" register may not be used.
7620  */
7621 int t4_bar2_sge_qregs(struct adapter *adapter,
7622 		      unsigned int qid,
7623 		      enum t4_bar2_qtype qtype,
7624 		      int user,
7625 		      u64 *pbar2_qoffset,
7626 		      unsigned int *pbar2_qid)
7627 {
7628 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7629 	u64 bar2_page_offset, bar2_qoffset;
7630 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7631 
7632 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7633 	if (!user && is_t4(adapter->params.chip))
7634 		return -EINVAL;
7635 
7636 	/* Get our SGE Page Size parameters.
7637 	 */
7638 	page_shift = adapter->params.sge.hps + 10;
7639 	page_size = 1 << page_shift;
7640 
7641 	/* Get the right Queues per Page parameters for our Queue.
7642 	 */
7643 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7644 		     ? adapter->params.sge.eq_qpp
7645 		     : adapter->params.sge.iq_qpp);
7646 	qpp_mask = (1 << qpp_shift) - 1;
7647 
7648 	/*  Calculate the basics of the BAR2 SGE Queue register area:
7649 	 *  o The BAR2 page the Queue registers will be in.
7650 	 *  o The BAR2 Queue ID.
7651 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
7652 	 */
7653 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7654 	bar2_qid = qid & qpp_mask;
7655 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7656 
7657 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
7658 	 * hardware will infer the Absolute Queue ID simply from the writes to
7659 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7660 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7661 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7662 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7663 	 * from the BAR2 Page and BAR2 Queue ID.
7664 	 *
7665 	 * One important censequence of this is that some BAR2 SGE registers
7666 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7667 	 * there.  But other registers synthesize the SGE Queue ID purely
7668 	 * from the writes to the registers -- the Write Combined Doorbell
7669 	 * Buffer is a good example.  These BAR2 SGE Registers are only
7670 	 * available for those BAR2 SGE Register areas where the SGE Absolute
7671 	 * Queue ID can be inferred from simple writes.
7672 	 */
7673 	bar2_qoffset = bar2_page_offset;
7674 	bar2_qinferred = (bar2_qid_offset < page_size);
7675 	if (bar2_qinferred) {
7676 		bar2_qoffset += bar2_qid_offset;
7677 		bar2_qid = 0;
7678 	}
7679 
7680 	*pbar2_qoffset = bar2_qoffset;
7681 	*pbar2_qid = bar2_qid;
7682 	return 0;
7683 }
7684 
7685 /**
7686  *	t4_init_devlog_params - initialize adapter->params.devlog
7687  *	@adap: the adapter
7688  *
7689  *	Initialize various fields of the adapter's Firmware Device Log
7690  *	Parameters structure.
7691  */
7692 int t4_init_devlog_params(struct adapter *adap)
7693 {
7694 	struct devlog_params *dparams = &adap->params.devlog;
7695 	u32 pf_dparams;
7696 	unsigned int devlog_meminfo;
7697 	struct fw_devlog_cmd devlog_cmd;
7698 	int ret;
7699 
7700 	/* If we're dealing with newer firmware, the Device Log Paramerters
7701 	 * are stored in a designated register which allows us to access the
7702 	 * Device Log even if we can't talk to the firmware.
7703 	 */
7704 	pf_dparams =
7705 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7706 	if (pf_dparams) {
7707 		unsigned int nentries, nentries128;
7708 
7709 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7710 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7711 
7712 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7713 		nentries = (nentries128 + 1) * 128;
7714 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7715 
7716 		return 0;
7717 	}
7718 
7719 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7720 	 */
7721 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7722 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7723 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
7724 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7725 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7726 			 &devlog_cmd);
7727 	if (ret)
7728 		return ret;
7729 
7730 	devlog_meminfo =
7731 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7732 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7733 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7734 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7735 
7736 	return 0;
7737 }
7738 
7739 /**
7740  *	t4_init_sge_params - initialize adap->params.sge
7741  *	@adapter: the adapter
7742  *
7743  *	Initialize various fields of the adapter's SGE Parameters structure.
7744  */
7745 int t4_init_sge_params(struct adapter *adapter)
7746 {
7747 	struct sge_params *sge_params = &adapter->params.sge;
7748 	u32 hps, qpp;
7749 	unsigned int s_hps, s_qpp;
7750 
7751 	/* Extract the SGE Page Size for our PF.
7752 	 */
7753 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7754 	s_hps = (HOSTPAGESIZEPF0_S +
7755 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7756 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7757 
7758 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7759 	 */
7760 	s_qpp = (QUEUESPERPAGEPF0_S +
7761 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7762 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7763 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7764 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7765 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7766 
7767 	return 0;
7768 }
7769 
7770 /**
7771  *      t4_init_tp_params - initialize adap->params.tp
7772  *      @adap: the adapter
7773  *
7774  *      Initialize various fields of the adapter's TP Parameters structure.
7775  */
7776 int t4_init_tp_params(struct adapter *adap)
7777 {
7778 	int chan;
7779 	u32 v;
7780 
7781 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7782 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
7783 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7784 
7785 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7786 	for (chan = 0; chan < NCHAN; chan++)
7787 		adap->params.tp.tx_modq[chan] = chan;
7788 
7789 	/* Cache the adapter's Compressed Filter Mode and global Incress
7790 	 * Configuration.
7791 	 */
7792 	if (t4_use_ldst(adap)) {
7793 		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7794 				TP_VLAN_PRI_MAP_A, 1);
7795 		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7796 				TP_INGRESS_CONFIG_A, 1);
7797 	} else {
7798 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7799 				 &adap->params.tp.vlan_pri_map, 1,
7800 				 TP_VLAN_PRI_MAP_A);
7801 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7802 				 &adap->params.tp.ingress_config, 1,
7803 				 TP_INGRESS_CONFIG_A);
7804 	}
7805 	/* For T6, cache the adapter's compressed error vector
7806 	 * and passing outer header info for encapsulated packets.
7807 	 */
7808 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
7809 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
7810 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
7811 	}
7812 
7813 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7814 	 * shift positions of several elements of the Compressed Filter Tuple
7815 	 * for this adapter which we need frequently ...
7816 	 */
7817 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7818 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7819 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7820 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7821 							       PROTOCOL_F);
7822 
7823 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7824 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7825 	 */
7826 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7827 		adap->params.tp.vnic_shift = -1;
7828 
7829 	return 0;
7830 }
7831 
7832 /**
7833  *      t4_filter_field_shift - calculate filter field shift
7834  *      @adap: the adapter
7835  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7836  *
7837  *      Return the shift position of a filter field within the Compressed
7838  *      Filter Tuple.  The filter field is specified via its selection bit
7839  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7840  */
7841 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7842 {
7843 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7844 	unsigned int sel;
7845 	int field_shift;
7846 
7847 	if ((filter_mode & filter_sel) == 0)
7848 		return -1;
7849 
7850 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7851 		switch (filter_mode & sel) {
7852 		case FCOE_F:
7853 			field_shift += FT_FCOE_W;
7854 			break;
7855 		case PORT_F:
7856 			field_shift += FT_PORT_W;
7857 			break;
7858 		case VNIC_ID_F:
7859 			field_shift += FT_VNIC_ID_W;
7860 			break;
7861 		case VLAN_F:
7862 			field_shift += FT_VLAN_W;
7863 			break;
7864 		case TOS_F:
7865 			field_shift += FT_TOS_W;
7866 			break;
7867 		case PROTOCOL_F:
7868 			field_shift += FT_PROTOCOL_W;
7869 			break;
7870 		case ETHERTYPE_F:
7871 			field_shift += FT_ETHERTYPE_W;
7872 			break;
7873 		case MACMATCH_F:
7874 			field_shift += FT_MACMATCH_W;
7875 			break;
7876 		case MPSHITTYPE_F:
7877 			field_shift += FT_MPSHITTYPE_W;
7878 			break;
7879 		case FRAGMENTATION_F:
7880 			field_shift += FT_FRAGMENTATION_W;
7881 			break;
7882 		}
7883 	}
7884 	return field_shift;
7885 }
7886 
7887 int t4_init_rss_mode(struct adapter *adap, int mbox)
7888 {
7889 	int i, ret;
7890 	struct fw_rss_vi_config_cmd rvc;
7891 
7892 	memset(&rvc, 0, sizeof(rvc));
7893 
7894 	for_each_port(adap, i) {
7895 		struct port_info *p = adap2pinfo(adap, i);
7896 
7897 		rvc.op_to_viid =
7898 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7899 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7900 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7901 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7902 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7903 		if (ret)
7904 			return ret;
7905 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7906 	}
7907 	return 0;
7908 }
7909 
7910 /**
7911  *	t4_init_portinfo - allocate a virtual interface amd initialize port_info
7912  *	@pi: the port_info
7913  *	@mbox: mailbox to use for the FW command
7914  *	@port: physical port associated with the VI
7915  *	@pf: the PF owning the VI
7916  *	@vf: the VF owning the VI
7917  *	@mac: the MAC address of the VI
7918  *
7919  *	Allocates a virtual interface for the given physical port.  If @mac is
7920  *	not %NULL it contains the MAC address of the VI as assigned by FW.
7921  *	@mac should be large enough to hold an Ethernet address.
7922  *	Returns < 0 on error.
7923  */
7924 int t4_init_portinfo(struct port_info *pi, int mbox,
7925 		     int port, int pf, int vf, u8 mac[])
7926 {
7927 	int ret;
7928 	struct fw_port_cmd c;
7929 	unsigned int rss_size;
7930 
7931 	memset(&c, 0, sizeof(c));
7932 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7933 				     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7934 				     FW_PORT_CMD_PORTID_V(port));
7935 	c.action_to_len16 = cpu_to_be32(
7936 		FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7937 		FW_LEN16(c));
7938 	ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
7939 	if (ret)
7940 		return ret;
7941 
7942 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
7943 	if (ret < 0)
7944 		return ret;
7945 
7946 	pi->viid = ret;
7947 	pi->tx_chan = port;
7948 	pi->lport = port;
7949 	pi->rss_size = rss_size;
7950 
7951 	ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7952 	pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7953 		FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7954 	pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
7955 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
7956 
7957 	init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap));
7958 	return 0;
7959 }
7960 
7961 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7962 {
7963 	u8 addr[6];
7964 	int ret, i, j = 0;
7965 
7966 	for_each_port(adap, i) {
7967 		struct port_info *pi = adap2pinfo(adap, i);
7968 
7969 		while ((adap->params.portvec & (1 << j)) == 0)
7970 			j++;
7971 
7972 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
7973 		if (ret)
7974 			return ret;
7975 
7976 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7977 		j++;
7978 	}
7979 	return 0;
7980 }
7981 
7982 /**
7983  *	t4_read_cimq_cfg - read CIM queue configuration
7984  *	@adap: the adapter
7985  *	@base: holds the queue base addresses in bytes
7986  *	@size: holds the queue sizes in bytes
7987  *	@thres: holds the queue full thresholds in bytes
7988  *
7989  *	Returns the current configuration of the CIM queues, starting with
7990  *	the IBQs, then the OBQs.
7991  */
7992 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7993 {
7994 	unsigned int i, v;
7995 	int cim_num_obq = is_t4(adap->params.chip) ?
7996 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7997 
7998 	for (i = 0; i < CIM_NUM_IBQ; i++) {
7999 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
8000 			     QUENUMSELECT_V(i));
8001 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8002 		/* value is in 256-byte units */
8003 		*base++ = CIMQBASE_G(v) * 256;
8004 		*size++ = CIMQSIZE_G(v) * 256;
8005 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
8006 	}
8007 	for (i = 0; i < cim_num_obq; i++) {
8008 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8009 			     QUENUMSELECT_V(i));
8010 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8011 		/* value is in 256-byte units */
8012 		*base++ = CIMQBASE_G(v) * 256;
8013 		*size++ = CIMQSIZE_G(v) * 256;
8014 	}
8015 }
8016 
8017 /**
8018  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8019  *	@adap: the adapter
8020  *	@qid: the queue index
8021  *	@data: where to store the queue contents
8022  *	@n: capacity of @data in 32-bit words
8023  *
8024  *	Reads the contents of the selected CIM queue starting at address 0 up
8025  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8026  *	error and the number of 32-bit words actually read on success.
8027  */
8028 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8029 {
8030 	int i, err, attempts;
8031 	unsigned int addr;
8032 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8033 
8034 	if (qid > 5 || (n & 3))
8035 		return -EINVAL;
8036 
8037 	addr = qid * nwords;
8038 	if (n > nwords)
8039 		n = nwords;
8040 
8041 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8042 	 * Wait for 1 Sec with a delay of 1 usec.
8043 	 */
8044 	attempts = 1000000;
8045 
8046 	for (i = 0; i < n; i++, addr++) {
8047 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
8048 			     IBQDBGEN_F);
8049 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
8050 				      attempts, 1);
8051 		if (err)
8052 			return err;
8053 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
8054 	}
8055 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
8056 	return i;
8057 }
8058 
8059 /**
8060  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8061  *	@adap: the adapter
8062  *	@qid: the queue index
8063  *	@data: where to store the queue contents
8064  *	@n: capacity of @data in 32-bit words
8065  *
8066  *	Reads the contents of the selected CIM queue starting at address 0 up
8067  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8068  *	error and the number of 32-bit words actually read on success.
8069  */
8070 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8071 {
8072 	int i, err;
8073 	unsigned int addr, v, nwords;
8074 	int cim_num_obq = is_t4(adap->params.chip) ?
8075 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8076 
8077 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8078 		return -EINVAL;
8079 
8080 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8081 		     QUENUMSELECT_V(qid));
8082 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8083 
8084 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
8085 	nwords = CIMQSIZE_G(v) * 64;  /* same */
8086 	if (n > nwords)
8087 		n = nwords;
8088 
8089 	for (i = 0; i < n; i++, addr++) {
8090 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
8091 			     OBQDBGEN_F);
8092 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
8093 				      2, 1);
8094 		if (err)
8095 			return err;
8096 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
8097 	}
8098 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
8099 	return i;
8100 }
8101 
8102 /**
8103  *	t4_cim_read - read a block from CIM internal address space
8104  *	@adap: the adapter
8105  *	@addr: the start address within the CIM address space
8106  *	@n: number of words to read
8107  *	@valp: where to store the result
8108  *
8109  *	Reads a block of 4-byte words from the CIM intenal address space.
8110  */
8111 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8112 		unsigned int *valp)
8113 {
8114 	int ret = 0;
8115 
8116 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8117 		return -EBUSY;
8118 
8119 	for ( ; !ret && n--; addr += 4) {
8120 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
8121 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8122 				      0, 5, 2);
8123 		if (!ret)
8124 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8125 	}
8126 	return ret;
8127 }
8128 
8129 /**
8130  *	t4_cim_write - write a block into CIM internal address space
8131  *	@adap: the adapter
8132  *	@addr: the start address within the CIM address space
8133  *	@n: number of words to write
8134  *	@valp: set of values to write
8135  *
8136  *	Writes a block of 4-byte words into the CIM intenal address space.
8137  */
8138 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8139 		 const unsigned int *valp)
8140 {
8141 	int ret = 0;
8142 
8143 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8144 		return -EBUSY;
8145 
8146 	for ( ; !ret && n--; addr += 4) {
8147 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8148 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8149 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8150 				      0, 5, 2);
8151 	}
8152 	return ret;
8153 }
8154 
8155 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8156 			 unsigned int val)
8157 {
8158 	return t4_cim_write(adap, addr, 1, &val);
8159 }
8160 
8161 /**
8162  *	t4_cim_read_la - read CIM LA capture buffer
8163  *	@adap: the adapter
8164  *	@la_buf: where to store the LA data
8165  *	@wrptr: the HW write pointer within the capture buffer
8166  *
8167  *	Reads the contents of the CIM LA buffer with the most recent entry at
8168  *	the end	of the returned data and with the entry at @wrptr first.
8169  *	We try to leave the LA in the running state we find it in.
8170  */
8171 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8172 {
8173 	int i, ret;
8174 	unsigned int cfg, val, idx;
8175 
8176 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8177 	if (ret)
8178 		return ret;
8179 
8180 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
8181 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8182 		if (ret)
8183 			return ret;
8184 	}
8185 
8186 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8187 	if (ret)
8188 		goto restart;
8189 
8190 	idx = UPDBGLAWRPTR_G(val);
8191 	if (wrptr)
8192 		*wrptr = idx;
8193 
8194 	for (i = 0; i < adap->params.cim_la_size; i++) {
8195 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8196 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8197 		if (ret)
8198 			break;
8199 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8200 		if (ret)
8201 			break;
8202 		if (val & UPDBGLARDEN_F) {
8203 			ret = -ETIMEDOUT;
8204 			break;
8205 		}
8206 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8207 		if (ret)
8208 			break;
8209 		idx = (idx + 1) & UPDBGLARDPTR_M;
8210 	}
8211 restart:
8212 	if (cfg & UPDBGLAEN_F) {
8213 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8214 				      cfg & ~UPDBGLARDEN_F);
8215 		if (!ret)
8216 			ret = r;
8217 	}
8218 	return ret;
8219 }
8220 
8221 /**
8222  *	t4_tp_read_la - read TP LA capture buffer
8223  *	@adap: the adapter
8224  *	@la_buf: where to store the LA data
8225  *	@wrptr: the HW write pointer within the capture buffer
8226  *
8227  *	Reads the contents of the TP LA buffer with the most recent entry at
8228  *	the end	of the returned data and with the entry at @wrptr first.
8229  *	We leave the LA in the running state we find it in.
8230  */
8231 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8232 {
8233 	bool last_incomplete;
8234 	unsigned int i, cfg, val, idx;
8235 
8236 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8237 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
8238 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8239 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8240 
8241 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8242 	idx = DBGLAWPTR_G(val);
8243 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8244 	if (last_incomplete)
8245 		idx = (idx + 1) & DBGLARPTR_M;
8246 	if (wrptr)
8247 		*wrptr = idx;
8248 
8249 	val &= 0xffff;
8250 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
8251 	val |= adap->params.tp.la_mask;
8252 
8253 	for (i = 0; i < TPLA_SIZE; i++) {
8254 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8255 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8256 		idx = (idx + 1) & DBGLARPTR_M;
8257 	}
8258 
8259 	/* Wipe out last entry if it isn't valid */
8260 	if (last_incomplete)
8261 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8262 
8263 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
8264 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8265 			     cfg | adap->params.tp.la_mask);
8266 }
8267 
8268 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8269  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8270  * state for more than the Warning Threshold then we'll issue a warning about
8271  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8272  * appears to be hung every Warning Repeat second till the situation clears.
8273  * If the situation clears, we'll note that as well.
8274  */
8275 #define SGE_IDMA_WARN_THRESH 1
8276 #define SGE_IDMA_WARN_REPEAT 300
8277 
8278 /**
8279  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8280  *	@adapter: the adapter
8281  *	@idma: the adapter IDMA Monitor state
8282  *
8283  *	Initialize the state of an SGE Ingress DMA Monitor.
8284  */
8285 void t4_idma_monitor_init(struct adapter *adapter,
8286 			  struct sge_idma_monitor_state *idma)
8287 {
8288 	/* Initialize the state variables for detecting an SGE Ingress DMA
8289 	 * hang.  The SGE has internal counters which count up on each clock
8290 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8291 	 * same state they were on the previous clock tick.  The clock used is
8292 	 * the Core Clock so we have a limit on the maximum "time" they can
8293 	 * record; typically a very small number of seconds.  For instance,
8294 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8295 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8296 	 * risk of having the "timers" overflow and give us the flexibility to
8297 	 * maintain a Hung SGE State Machine of our own which operates across
8298 	 * a longer time frame.
8299 	 */
8300 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8301 	idma->idma_stalled[0] = 0;
8302 	idma->idma_stalled[1] = 0;
8303 }
8304 
8305 /**
8306  *	t4_idma_monitor - monitor SGE Ingress DMA state
8307  *	@adapter: the adapter
8308  *	@idma: the adapter IDMA Monitor state
8309  *	@hz: number of ticks/second
8310  *	@ticks: number of ticks since the last IDMA Monitor call
8311  */
8312 void t4_idma_monitor(struct adapter *adapter,
8313 		     struct sge_idma_monitor_state *idma,
8314 		     int hz, int ticks)
8315 {
8316 	int i, idma_same_state_cnt[2];
8317 
8318 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8319 	  * are counters inside the SGE which count up on each clock when the
8320 	  * SGE finds its Ingress DMA State Engines in the same states they
8321 	  * were in the previous clock.  The counters will peg out at
8322 	  * 0xffffffff without wrapping around so once they pass the 1s
8323 	  * threshold they'll stay above that till the IDMA state changes.
8324 	  */
8325 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8326 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8327 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8328 
8329 	for (i = 0; i < 2; i++) {
8330 		u32 debug0, debug11;
8331 
8332 		/* If the Ingress DMA Same State Counter ("timer") is less
8333 		 * than 1s, then we can reset our synthesized Stall Timer and
8334 		 * continue.  If we have previously emitted warnings about a
8335 		 * potential stalled Ingress Queue, issue a note indicating
8336 		 * that the Ingress Queue has resumed forward progress.
8337 		 */
8338 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8339 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8340 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8341 					 "resumed after %d seconds\n",
8342 					 i, idma->idma_qid[i],
8343 					 idma->idma_stalled[i] / hz);
8344 			idma->idma_stalled[i] = 0;
8345 			continue;
8346 		}
8347 
8348 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8349 		 * domain.  The first time we get here it'll be because we
8350 		 * passed the 1s Threshold; each additional time it'll be
8351 		 * because the RX Timer Callback is being fired on its regular
8352 		 * schedule.
8353 		 *
8354 		 * If the stall is below our Potential Hung Ingress Queue
8355 		 * Warning Threshold, continue.
8356 		 */
8357 		if (idma->idma_stalled[i] == 0) {
8358 			idma->idma_stalled[i] = hz;
8359 			idma->idma_warn[i] = 0;
8360 		} else {
8361 			idma->idma_stalled[i] += ticks;
8362 			idma->idma_warn[i] -= ticks;
8363 		}
8364 
8365 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8366 			continue;
8367 
8368 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8369 		 */
8370 		if (idma->idma_warn[i] > 0)
8371 			continue;
8372 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8373 
8374 		/* Read and save the SGE IDMA State and Queue ID information.
8375 		 * We do this every time in case it changes across time ...
8376 		 * can't be too careful ...
8377 		 */
8378 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8379 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8380 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8381 
8382 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8383 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8384 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8385 
8386 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8387 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8388 			 i, idma->idma_qid[i], idma->idma_state[i],
8389 			 idma->idma_stalled[i] / hz,
8390 			 debug0, debug11);
8391 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8392 	}
8393 }
8394 
8395 /**
8396  *	t4_set_vf_mac - Set MAC address for the specified VF
8397  *	@adapter: The adapter
8398  *	@vf: one of the VFs instantiated by the specified PF
8399  *	@naddr: the number of MAC addresses
8400  *	@addr: the MAC address(es) to be set to the specified VF
8401  */
8402 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
8403 		      unsigned int naddr, u8 *addr)
8404 {
8405 	struct fw_acl_mac_cmd cmd;
8406 
8407 	memset(&cmd, 0, sizeof(cmd));
8408 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
8409 				    FW_CMD_REQUEST_F |
8410 				    FW_CMD_WRITE_F |
8411 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
8412 				    FW_ACL_MAC_CMD_VFN_V(vf));
8413 
8414 	/* Note: Do not enable the ACL */
8415 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
8416 	cmd.nmac = naddr;
8417 
8418 	switch (adapter->pf) {
8419 	case 3:
8420 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
8421 		break;
8422 	case 2:
8423 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
8424 		break;
8425 	case 1:
8426 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
8427 		break;
8428 	case 0:
8429 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
8430 		break;
8431 	}
8432 
8433 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
8434 }
8435 
8436 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
8437 		    int rateunit, int ratemode, int channel, int class,
8438 		    int minrate, int maxrate, int weight, int pktsize)
8439 {
8440 	struct fw_sched_cmd cmd;
8441 
8442 	memset(&cmd, 0, sizeof(cmd));
8443 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
8444 				      FW_CMD_REQUEST_F |
8445 				      FW_CMD_WRITE_F);
8446 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
8447 
8448 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
8449 	cmd.u.params.type = type;
8450 	cmd.u.params.level = level;
8451 	cmd.u.params.mode = mode;
8452 	cmd.u.params.ch = channel;
8453 	cmd.u.params.cl = class;
8454 	cmd.u.params.unit = rateunit;
8455 	cmd.u.params.rate = ratemode;
8456 	cmd.u.params.min = cpu_to_be32(minrate);
8457 	cmd.u.params.max = cpu_to_be32(maxrate);
8458 	cmd.u.params.weight = cpu_to_be16(weight);
8459 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
8460 
8461 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
8462 			       NULL, 1);
8463 }
8464