1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 /**
228  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *	@adapter: the adapter
230  *	@cmd: the Firmware Mailbox Command or Reply
231  *	@size: command length in bytes
232  *	@access: the time (ms) needed to access the Firmware Mailbox
233  *	@execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236 			   const __be64 *cmd, unsigned int size,
237 			   int access, int execute)
238 {
239 	struct mbox_cmd_log *log = adapter->mbox_log;
240 	struct mbox_cmd *entry;
241 	int i;
242 
243 	entry = mbox_cmd_log_entry(log, log->cursor++);
244 	if (log->cursor == log->size)
245 		log->cursor = 0;
246 
247 	for (i = 0; i < size / 8; i++)
248 		entry->cmd[i] = be64_to_cpu(cmd[i]);
249 	while (i < MBOX_LEN / 8)
250 		entry->cmd[i++] = 0;
251 	entry->timestamp = jiffies;
252 	entry->seqno = log->seqno++;
253 	entry->access = access;
254 	entry->execute = execute;
255 }
256 
257 /**
258  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *	@adap: the adapter
260  *	@mbox: index of the mailbox to use
261  *	@cmd: the command to write
262  *	@size: command length in bytes
263  *	@rpl: where to optionally store the reply
264  *	@sleep_ok: if true we may sleep while awaiting command completion
265  *	@timeout: time to wait for command to finish before timing out
266  *
267  *	Sends the given command to FW through the selected mailbox and waits
268  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *	store the FW's reply to the command.  The command and its optional
270  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *	the response.  If sleeping is allowed we use progressive backoff
273  *	otherwise we spin.
274  *
275  *	The return value is 0 on success or a negative errno on failure.  A
276  *	failure can happen either because we are not able to execute the
277  *	command or FW executes it but signals an error.  In the latter case
278  *	the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 			    int size, void *rpl, bool sleep_ok, int timeout)
282 {
283 	static const int delay[] = {
284 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 	};
286 
287 	struct mbox_list entry;
288 	u16 access = 0;
289 	u16 execute = 0;
290 	u32 v;
291 	u64 res;
292 	int i, ms, delay_idx, ret;
293 	const __be64 *p = cmd;
294 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
296 	__be64 cmd_rpl[MBOX_LEN / 8];
297 	u32 pcie_fw;
298 
299 	if ((size & 15) || size > MBOX_LEN)
300 		return -EINVAL;
301 
302 	/*
303 	 * If the device is off-line, as in EEH, commands will time out.
304 	 * Fail them early so we don't waste time waiting.
305 	 */
306 	if (adap->pdev->error_state != pci_channel_io_normal)
307 		return -EIO;
308 
309 	/* If we have a negative timeout, that implies that we can't sleep. */
310 	if (timeout < 0) {
311 		sleep_ok = false;
312 		timeout = -timeout;
313 	}
314 
315 	/* Queue ourselves onto the mailbox access list.  When our entry is at
316 	 * the front of the list, we have rights to access the mailbox.  So we
317 	 * wait [for a while] till we're at the front [or bail out with an
318 	 * EBUSY] ...
319 	 */
320 	spin_lock(&adap->mbox_lock);
321 	list_add_tail(&entry.list, &adap->mlist.list);
322 	spin_unlock(&adap->mbox_lock);
323 
324 	delay_idx = 0;
325 	ms = delay[0];
326 
327 	for (i = 0; ; i += ms) {
328 		/* If we've waited too long, return a busy indication.  This
329 		 * really ought to be based on our initial position in the
330 		 * mailbox access list but this is a start.  We very rearely
331 		 * contend on access to the mailbox ...
332 		 */
333 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
335 			spin_lock(&adap->mbox_lock);
336 			list_del(&entry.list);
337 			spin_unlock(&adap->mbox_lock);
338 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
339 			t4_record_mbox(adap, cmd, size, access, ret);
340 			return ret;
341 		}
342 
343 		/* If we're at the head, break out and start the mailbox
344 		 * protocol.
345 		 */
346 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
347 				     list) == &entry)
348 			break;
349 
350 		/* Delay for a bit before checking again ... */
351 		if (sleep_ok) {
352 			ms = delay[delay_idx];  /* last element may repeat */
353 			if (delay_idx < ARRAY_SIZE(delay) - 1)
354 				delay_idx++;
355 			msleep(ms);
356 		} else {
357 			mdelay(ms);
358 		}
359 	}
360 
361 	/* Loop trying to get ownership of the mailbox.  Return an error
362 	 * if we can't gain ownership.
363 	 */
364 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
365 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
366 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	if (v != MBOX_OWNER_DRV) {
368 		spin_lock(&adap->mbox_lock);
369 		list_del(&entry.list);
370 		spin_unlock(&adap->mbox_lock);
371 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372 		t4_record_mbox(adap, cmd, size, access, ret);
373 		return ret;
374 	}
375 
376 	/* Copy in the new mailbox command and send it on its way ... */
377 	t4_record_mbox(adap, cmd, size, access, 0);
378 	for (i = 0; i < size; i += 8)
379 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380 
381 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
382 	t4_read_reg(adap, ctl_reg);          /* flush write */
383 
384 	delay_idx = 0;
385 	ms = delay[0];
386 
387 	for (i = 0;
388 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389 	     i < timeout;
390 	     i += ms) {
391 		if (sleep_ok) {
392 			ms = delay[delay_idx];  /* last element may repeat */
393 			if (delay_idx < ARRAY_SIZE(delay) - 1)
394 				delay_idx++;
395 			msleep(ms);
396 		} else
397 			mdelay(ms);
398 
399 		v = t4_read_reg(adap, ctl_reg);
400 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401 			if (!(v & MBMSGVALID_F)) {
402 				t4_write_reg(adap, ctl_reg, 0);
403 				continue;
404 			}
405 
406 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407 			res = be64_to_cpu(cmd_rpl[0]);
408 
409 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
410 				fw_asrt(adap, data_reg);
411 				res = FW_CMD_RETVAL_V(EIO);
412 			} else if (rpl) {
413 				memcpy(rpl, cmd_rpl, size);
414 			}
415 
416 			t4_write_reg(adap, ctl_reg, 0);
417 
418 			execute = i + ms;
419 			t4_record_mbox(adap, cmd_rpl,
420 				       MBOX_LEN, access, execute);
421 			spin_lock(&adap->mbox_lock);
422 			list_del(&entry.list);
423 			spin_unlock(&adap->mbox_lock);
424 			return -FW_CMD_RETVAL_G((int)res);
425 		}
426 	}
427 
428 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
429 	t4_record_mbox(adap, cmd, size, access, ret);
430 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431 		*(const u8 *)cmd, mbox);
432 	t4_report_fw_error(adap);
433 	spin_lock(&adap->mbox_lock);
434 	list_del(&entry.list);
435 	spin_unlock(&adap->mbox_lock);
436 	t4_fatal_err(adap);
437 	return ret;
438 }
439 
440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 		    void *rpl, bool sleep_ok)
442 {
443 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444 				       FW_CMD_MAX_TIMEOUT);
445 }
446 
447 static int t4_edc_err_read(struct adapter *adap, int idx)
448 {
449 	u32 edc_ecc_err_addr_reg;
450 	u32 rdata_reg;
451 
452 	if (is_t4(adap->params.chip)) {
453 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454 		return 0;
455 	}
456 	if (idx != 0 && idx != 1) {
457 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458 		return 0;
459 	}
460 
461 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463 
464 	CH_WARN(adap,
465 		"edc%d err addr 0x%x: 0x%x.\n",
466 		idx, edc_ecc_err_addr_reg,
467 		t4_read_reg(adap, edc_ecc_err_addr_reg));
468 	CH_WARN(adap,
469 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470 		rdata_reg,
471 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
472 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480 
481 	return 0;
482 }
483 
484 /**
485  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486  *	@adap: the adapter
487  *	@win: PCI-E Memory Window to use
488  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489  *	@addr: address within indicated memory type
490  *	@len: amount of memory to transfer
491  *	@hbuf: host memory buffer
492  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
493  *
494  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
495  *	firmware memory address and host buffer must be aligned on 32-bit
496  *	boudaries; the length may be arbitrary.  The memory is transferred as
497  *	a raw byte sequence from/to the firmware's memory.  If this memory
498  *	contains data structures which contain multi-byte integers, it's the
499  *	caller's responsibility to perform appropriate byte order conversions.
500  */
501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
502 		 u32 len, void *hbuf, int dir)
503 {
504 	u32 pos, offset, resid, memoffset;
505 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
506 	u32 *buf;
507 
508 	/* Argument sanity checks ...
509 	 */
510 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
511 		return -EINVAL;
512 	buf = (u32 *)hbuf;
513 
514 	/* It's convenient to be able to handle lengths which aren't a
515 	 * multiple of 32-bits because we often end up transferring files to
516 	 * the firmware.  So we'll handle that by normalizing the length here
517 	 * and then handling any residual transfer at the end.
518 	 */
519 	resid = len & 0x3;
520 	len -= resid;
521 
522 	/* Offset into the region of memory which is being accessed
523 	 * MEM_EDC0 = 0
524 	 * MEM_EDC1 = 1
525 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
526 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
527 	 */
528 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
529 	if (mtype != MEM_MC1)
530 		memoffset = (mtype * (edc_size * 1024 * 1024));
531 	else {
532 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
533 						      MA_EXT_MEMORY0_BAR_A));
534 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
535 	}
536 
537 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
538 	addr = addr + memoffset;
539 
540 	/* Each PCI-E Memory Window is programmed with a window size -- or
541 	 * "aperture" -- which controls the granularity of its mapping onto
542 	 * adapter memory.  We need to grab that aperture in order to know
543 	 * how to use the specified window.  The window is also programmed
544 	 * with the base address of the Memory Window in BAR0's address
545 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
546 	 * the address is relative to BAR0.
547 	 */
548 	mem_reg = t4_read_reg(adap,
549 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
550 						  win));
551 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
552 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
553 	if (is_t4(adap->params.chip))
554 		mem_base -= adap->t4_bar0;
555 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
556 
557 	/* Calculate our initial PCI-E Memory Window Position and Offset into
558 	 * that Window.
559 	 */
560 	pos = addr & ~(mem_aperture-1);
561 	offset = addr - pos;
562 
563 	/* Set up initial PCI-E Memory Window to cover the start of our
564 	 * transfer.  (Read it back to ensure that changes propagate before we
565 	 * attempt to use the new value.)
566 	 */
567 	t4_write_reg(adap,
568 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
569 		     pos | win_pf);
570 	t4_read_reg(adap,
571 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
572 
573 	/* Transfer data to/from the adapter as long as there's an integral
574 	 * number of 32-bit transfers to complete.
575 	 *
576 	 * A note on Endianness issues:
577 	 *
578 	 * The "register" reads and writes below from/to the PCI-E Memory
579 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
580 	 * Little-Endian "swizzel."  As a result, if we have the following
581 	 * data in adapter memory:
582 	 *
583 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
584 	 *     Address:      i+0  i+1  i+2  i+3
585 	 *
586 	 * Then a read of the adapter memory via the PCI-E Memory Window
587 	 * will yield:
588 	 *
589 	 *     x = readl(i)
590 	 *         31                  0
591 	 *         [ b3 | b2 | b1 | b0 ]
592 	 *
593 	 * If this value is stored into local memory on a Little-Endian system
594 	 * it will show up correctly in local memory as:
595 	 *
596 	 *     ( ..., b0, b1, b2, b3, ... )
597 	 *
598 	 * But on a Big-Endian system, the store will show up in memory
599 	 * incorrectly swizzled as:
600 	 *
601 	 *     ( ..., b3, b2, b1, b0, ... )
602 	 *
603 	 * So we need to account for this in the reads and writes to the
604 	 * PCI-E Memory Window below by undoing the register read/write
605 	 * swizzels.
606 	 */
607 	while (len > 0) {
608 		if (dir == T4_MEMORY_READ)
609 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
610 						mem_base + offset));
611 		else
612 			t4_write_reg(adap, mem_base + offset,
613 				     (__force u32)cpu_to_le32(*buf++));
614 		offset += sizeof(__be32);
615 		len -= sizeof(__be32);
616 
617 		/* If we've reached the end of our current window aperture,
618 		 * move the PCI-E Memory Window on to the next.  Note that
619 		 * doing this here after "len" may be 0 allows us to set up
620 		 * the PCI-E Memory Window for a possible final residual
621 		 * transfer below ...
622 		 */
623 		if (offset == mem_aperture) {
624 			pos += mem_aperture;
625 			offset = 0;
626 			t4_write_reg(adap,
627 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
628 						    win), pos | win_pf);
629 			t4_read_reg(adap,
630 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631 						    win));
632 		}
633 	}
634 
635 	/* If the original transfer had a length which wasn't a multiple of
636 	 * 32-bits, now's where we need to finish off the transfer of the
637 	 * residual amount.  The PCI-E Memory Window has already been moved
638 	 * above (if necessary) to cover this final transfer.
639 	 */
640 	if (resid) {
641 		union {
642 			u32 word;
643 			char byte[4];
644 		} last;
645 		unsigned char *bp;
646 		int i;
647 
648 		if (dir == T4_MEMORY_READ) {
649 			last.word = le32_to_cpu(
650 					(__force __le32)t4_read_reg(adap,
651 						mem_base + offset));
652 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
653 				bp[i] = last.byte[i];
654 		} else {
655 			last.word = *buf;
656 			for (i = resid; i < 4; i++)
657 				last.byte[i] = 0;
658 			t4_write_reg(adap, mem_base + offset,
659 				     (__force u32)cpu_to_le32(last.word));
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 /* Return the specified PCI-E Configuration Space register from our Physical
667  * Function.  We try first via a Firmware LDST Command since we prefer to let
668  * the firmware own all of these registers, but if that fails we go for it
669  * directly ourselves.
670  */
671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
672 {
673 	u32 val, ldst_addrspace;
674 
675 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
676 	 * retrieve the specified PCI-E Configuration Space register.
677 	 */
678 	struct fw_ldst_cmd ldst_cmd;
679 	int ret;
680 
681 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
682 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
683 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
684 					       FW_CMD_REQUEST_F |
685 					       FW_CMD_READ_F |
686 					       ldst_addrspace);
687 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
688 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
689 	ldst_cmd.u.pcie.ctrl_to_fn =
690 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
691 	ldst_cmd.u.pcie.r = reg;
692 
693 	/* If the LDST Command succeeds, return the result, otherwise
694 	 * fall through to reading it directly ourselves ...
695 	 */
696 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697 			 &ldst_cmd);
698 	if (ret == 0)
699 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700 	else
701 		/* Read the desired Configuration Space register via the PCI-E
702 		 * Backdoor mechanism.
703 		 */
704 		t4_hw_pci_read_cfg4(adap, reg, &val);
705 	return val;
706 }
707 
708 /* Get the window based on base passed to it.
709  * Window aperture is currently unhandled, but there is no use case for it
710  * right now
711  */
712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
713 			 u32 memwin_base)
714 {
715 	u32 ret;
716 
717 	if (is_t4(adap->params.chip)) {
718 		u32 bar0;
719 
720 		/* Truncation intentional: we only read the bottom 32-bits of
721 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
722 		 * mechanism to read BAR0 instead of using
723 		 * pci_resource_start() because we could be operating from
724 		 * within a Virtual Machine which is trapping our accesses to
725 		 * our Configuration Space and we need to set up the PCI-E
726 		 * Memory Window decoders with the actual addresses which will
727 		 * be coming across the PCI-E link.
728 		 */
729 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
730 		bar0 &= pci_mask;
731 		adap->t4_bar0 = bar0;
732 
733 		ret = bar0 + memwin_base;
734 	} else {
735 		/* For T5, only relative offset inside the PCIe BAR is passed */
736 		ret = memwin_base;
737 	}
738 	return ret;
739 }
740 
741 /* Get the default utility window (win0) used by everyone */
742 u32 t4_get_util_window(struct adapter *adap)
743 {
744 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
745 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
746 }
747 
748 /* Set up memory window for accessing adapter memory ranges.  (Read
749  * back MA register to ensure that changes propagate before we attempt
750  * to use the new values.)
751  */
752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
753 {
754 	t4_write_reg(adap,
755 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
756 		     memwin_base | BIR_V(0) |
757 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
758 	t4_read_reg(adap,
759 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
760 }
761 
762 /**
763  *	t4_get_regs_len - return the size of the chips register set
764  *	@adapter: the adapter
765  *
766  *	Returns the size of the chip's BAR0 register space.
767  */
768 unsigned int t4_get_regs_len(struct adapter *adapter)
769 {
770 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
771 
772 	switch (chip_version) {
773 	case CHELSIO_T4:
774 		return T4_REGMAP_SIZE;
775 
776 	case CHELSIO_T5:
777 	case CHELSIO_T6:
778 		return T5_REGMAP_SIZE;
779 	}
780 
781 	dev_err(adapter->pdev_dev,
782 		"Unsupported chip version %d\n", chip_version);
783 	return 0;
784 }
785 
786 /**
787  *	t4_get_regs - read chip registers into provided buffer
788  *	@adap: the adapter
789  *	@buf: register buffer
790  *	@buf_size: size (in bytes) of register buffer
791  *
792  *	If the provided register buffer isn't large enough for the chip's
793  *	full register range, the register dump will be truncated to the
794  *	register buffer's size.
795  */
796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
797 {
798 	static const unsigned int t4_reg_ranges[] = {
799 		0x1008, 0x1108,
800 		0x1180, 0x1184,
801 		0x1190, 0x1194,
802 		0x11a0, 0x11a4,
803 		0x11b0, 0x11b4,
804 		0x11fc, 0x123c,
805 		0x1300, 0x173c,
806 		0x1800, 0x18fc,
807 		0x3000, 0x30d8,
808 		0x30e0, 0x30e4,
809 		0x30ec, 0x5910,
810 		0x5920, 0x5924,
811 		0x5960, 0x5960,
812 		0x5968, 0x5968,
813 		0x5970, 0x5970,
814 		0x5978, 0x5978,
815 		0x5980, 0x5980,
816 		0x5988, 0x5988,
817 		0x5990, 0x5990,
818 		0x5998, 0x5998,
819 		0x59a0, 0x59d4,
820 		0x5a00, 0x5ae0,
821 		0x5ae8, 0x5ae8,
822 		0x5af0, 0x5af0,
823 		0x5af8, 0x5af8,
824 		0x6000, 0x6098,
825 		0x6100, 0x6150,
826 		0x6200, 0x6208,
827 		0x6240, 0x6248,
828 		0x6280, 0x62b0,
829 		0x62c0, 0x6338,
830 		0x6370, 0x638c,
831 		0x6400, 0x643c,
832 		0x6500, 0x6524,
833 		0x6a00, 0x6a04,
834 		0x6a14, 0x6a38,
835 		0x6a60, 0x6a70,
836 		0x6a78, 0x6a78,
837 		0x6b00, 0x6b0c,
838 		0x6b1c, 0x6b84,
839 		0x6bf0, 0x6bf8,
840 		0x6c00, 0x6c0c,
841 		0x6c1c, 0x6c84,
842 		0x6cf0, 0x6cf8,
843 		0x6d00, 0x6d0c,
844 		0x6d1c, 0x6d84,
845 		0x6df0, 0x6df8,
846 		0x6e00, 0x6e0c,
847 		0x6e1c, 0x6e84,
848 		0x6ef0, 0x6ef8,
849 		0x6f00, 0x6f0c,
850 		0x6f1c, 0x6f84,
851 		0x6ff0, 0x6ff8,
852 		0x7000, 0x700c,
853 		0x701c, 0x7084,
854 		0x70f0, 0x70f8,
855 		0x7100, 0x710c,
856 		0x711c, 0x7184,
857 		0x71f0, 0x71f8,
858 		0x7200, 0x720c,
859 		0x721c, 0x7284,
860 		0x72f0, 0x72f8,
861 		0x7300, 0x730c,
862 		0x731c, 0x7384,
863 		0x73f0, 0x73f8,
864 		0x7400, 0x7450,
865 		0x7500, 0x7530,
866 		0x7600, 0x760c,
867 		0x7614, 0x761c,
868 		0x7680, 0x76cc,
869 		0x7700, 0x7798,
870 		0x77c0, 0x77fc,
871 		0x7900, 0x79fc,
872 		0x7b00, 0x7b58,
873 		0x7b60, 0x7b84,
874 		0x7b8c, 0x7c38,
875 		0x7d00, 0x7d38,
876 		0x7d40, 0x7d80,
877 		0x7d8c, 0x7ddc,
878 		0x7de4, 0x7e04,
879 		0x7e10, 0x7e1c,
880 		0x7e24, 0x7e38,
881 		0x7e40, 0x7e44,
882 		0x7e4c, 0x7e78,
883 		0x7e80, 0x7ea4,
884 		0x7eac, 0x7edc,
885 		0x7ee8, 0x7efc,
886 		0x8dc0, 0x8e04,
887 		0x8e10, 0x8e1c,
888 		0x8e30, 0x8e78,
889 		0x8ea0, 0x8eb8,
890 		0x8ec0, 0x8f6c,
891 		0x8fc0, 0x9008,
892 		0x9010, 0x9058,
893 		0x9060, 0x9060,
894 		0x9068, 0x9074,
895 		0x90fc, 0x90fc,
896 		0x9400, 0x9408,
897 		0x9410, 0x9458,
898 		0x9600, 0x9600,
899 		0x9608, 0x9638,
900 		0x9640, 0x96bc,
901 		0x9800, 0x9808,
902 		0x9820, 0x983c,
903 		0x9850, 0x9864,
904 		0x9c00, 0x9c6c,
905 		0x9c80, 0x9cec,
906 		0x9d00, 0x9d6c,
907 		0x9d80, 0x9dec,
908 		0x9e00, 0x9e6c,
909 		0x9e80, 0x9eec,
910 		0x9f00, 0x9f6c,
911 		0x9f80, 0x9fec,
912 		0xd004, 0xd004,
913 		0xd010, 0xd03c,
914 		0xdfc0, 0xdfe0,
915 		0xe000, 0xea7c,
916 		0xf000, 0x11110,
917 		0x11118, 0x11190,
918 		0x19040, 0x1906c,
919 		0x19078, 0x19080,
920 		0x1908c, 0x190e4,
921 		0x190f0, 0x190f8,
922 		0x19100, 0x19110,
923 		0x19120, 0x19124,
924 		0x19150, 0x19194,
925 		0x1919c, 0x191b0,
926 		0x191d0, 0x191e8,
927 		0x19238, 0x1924c,
928 		0x193f8, 0x1943c,
929 		0x1944c, 0x19474,
930 		0x19490, 0x194e0,
931 		0x194f0, 0x194f8,
932 		0x19800, 0x19c08,
933 		0x19c10, 0x19c90,
934 		0x19ca0, 0x19ce4,
935 		0x19cf0, 0x19d40,
936 		0x19d50, 0x19d94,
937 		0x19da0, 0x19de8,
938 		0x19df0, 0x19e40,
939 		0x19e50, 0x19e90,
940 		0x19ea0, 0x19f4c,
941 		0x1a000, 0x1a004,
942 		0x1a010, 0x1a06c,
943 		0x1a0b0, 0x1a0e4,
944 		0x1a0ec, 0x1a0f4,
945 		0x1a100, 0x1a108,
946 		0x1a114, 0x1a120,
947 		0x1a128, 0x1a130,
948 		0x1a138, 0x1a138,
949 		0x1a190, 0x1a1c4,
950 		0x1a1fc, 0x1a1fc,
951 		0x1e040, 0x1e04c,
952 		0x1e284, 0x1e28c,
953 		0x1e2c0, 0x1e2c0,
954 		0x1e2e0, 0x1e2e0,
955 		0x1e300, 0x1e384,
956 		0x1e3c0, 0x1e3c8,
957 		0x1e440, 0x1e44c,
958 		0x1e684, 0x1e68c,
959 		0x1e6c0, 0x1e6c0,
960 		0x1e6e0, 0x1e6e0,
961 		0x1e700, 0x1e784,
962 		0x1e7c0, 0x1e7c8,
963 		0x1e840, 0x1e84c,
964 		0x1ea84, 0x1ea8c,
965 		0x1eac0, 0x1eac0,
966 		0x1eae0, 0x1eae0,
967 		0x1eb00, 0x1eb84,
968 		0x1ebc0, 0x1ebc8,
969 		0x1ec40, 0x1ec4c,
970 		0x1ee84, 0x1ee8c,
971 		0x1eec0, 0x1eec0,
972 		0x1eee0, 0x1eee0,
973 		0x1ef00, 0x1ef84,
974 		0x1efc0, 0x1efc8,
975 		0x1f040, 0x1f04c,
976 		0x1f284, 0x1f28c,
977 		0x1f2c0, 0x1f2c0,
978 		0x1f2e0, 0x1f2e0,
979 		0x1f300, 0x1f384,
980 		0x1f3c0, 0x1f3c8,
981 		0x1f440, 0x1f44c,
982 		0x1f684, 0x1f68c,
983 		0x1f6c0, 0x1f6c0,
984 		0x1f6e0, 0x1f6e0,
985 		0x1f700, 0x1f784,
986 		0x1f7c0, 0x1f7c8,
987 		0x1f840, 0x1f84c,
988 		0x1fa84, 0x1fa8c,
989 		0x1fac0, 0x1fac0,
990 		0x1fae0, 0x1fae0,
991 		0x1fb00, 0x1fb84,
992 		0x1fbc0, 0x1fbc8,
993 		0x1fc40, 0x1fc4c,
994 		0x1fe84, 0x1fe8c,
995 		0x1fec0, 0x1fec0,
996 		0x1fee0, 0x1fee0,
997 		0x1ff00, 0x1ff84,
998 		0x1ffc0, 0x1ffc8,
999 		0x20000, 0x2002c,
1000 		0x20100, 0x2013c,
1001 		0x20190, 0x201a0,
1002 		0x201a8, 0x201b8,
1003 		0x201c4, 0x201c8,
1004 		0x20200, 0x20318,
1005 		0x20400, 0x204b4,
1006 		0x204c0, 0x20528,
1007 		0x20540, 0x20614,
1008 		0x21000, 0x21040,
1009 		0x2104c, 0x21060,
1010 		0x210c0, 0x210ec,
1011 		0x21200, 0x21268,
1012 		0x21270, 0x21284,
1013 		0x212fc, 0x21388,
1014 		0x21400, 0x21404,
1015 		0x21500, 0x21500,
1016 		0x21510, 0x21518,
1017 		0x2152c, 0x21530,
1018 		0x2153c, 0x2153c,
1019 		0x21550, 0x21554,
1020 		0x21600, 0x21600,
1021 		0x21608, 0x2161c,
1022 		0x21624, 0x21628,
1023 		0x21630, 0x21634,
1024 		0x2163c, 0x2163c,
1025 		0x21700, 0x2171c,
1026 		0x21780, 0x2178c,
1027 		0x21800, 0x21818,
1028 		0x21820, 0x21828,
1029 		0x21830, 0x21848,
1030 		0x21850, 0x21854,
1031 		0x21860, 0x21868,
1032 		0x21870, 0x21870,
1033 		0x21878, 0x21898,
1034 		0x218a0, 0x218a8,
1035 		0x218b0, 0x218c8,
1036 		0x218d0, 0x218d4,
1037 		0x218e0, 0x218e8,
1038 		0x218f0, 0x218f0,
1039 		0x218f8, 0x21a18,
1040 		0x21a20, 0x21a28,
1041 		0x21a30, 0x21a48,
1042 		0x21a50, 0x21a54,
1043 		0x21a60, 0x21a68,
1044 		0x21a70, 0x21a70,
1045 		0x21a78, 0x21a98,
1046 		0x21aa0, 0x21aa8,
1047 		0x21ab0, 0x21ac8,
1048 		0x21ad0, 0x21ad4,
1049 		0x21ae0, 0x21ae8,
1050 		0x21af0, 0x21af0,
1051 		0x21af8, 0x21c18,
1052 		0x21c20, 0x21c20,
1053 		0x21c28, 0x21c30,
1054 		0x21c38, 0x21c38,
1055 		0x21c80, 0x21c98,
1056 		0x21ca0, 0x21ca8,
1057 		0x21cb0, 0x21cc8,
1058 		0x21cd0, 0x21cd4,
1059 		0x21ce0, 0x21ce8,
1060 		0x21cf0, 0x21cf0,
1061 		0x21cf8, 0x21d7c,
1062 		0x21e00, 0x21e04,
1063 		0x22000, 0x2202c,
1064 		0x22100, 0x2213c,
1065 		0x22190, 0x221a0,
1066 		0x221a8, 0x221b8,
1067 		0x221c4, 0x221c8,
1068 		0x22200, 0x22318,
1069 		0x22400, 0x224b4,
1070 		0x224c0, 0x22528,
1071 		0x22540, 0x22614,
1072 		0x23000, 0x23040,
1073 		0x2304c, 0x23060,
1074 		0x230c0, 0x230ec,
1075 		0x23200, 0x23268,
1076 		0x23270, 0x23284,
1077 		0x232fc, 0x23388,
1078 		0x23400, 0x23404,
1079 		0x23500, 0x23500,
1080 		0x23510, 0x23518,
1081 		0x2352c, 0x23530,
1082 		0x2353c, 0x2353c,
1083 		0x23550, 0x23554,
1084 		0x23600, 0x23600,
1085 		0x23608, 0x2361c,
1086 		0x23624, 0x23628,
1087 		0x23630, 0x23634,
1088 		0x2363c, 0x2363c,
1089 		0x23700, 0x2371c,
1090 		0x23780, 0x2378c,
1091 		0x23800, 0x23818,
1092 		0x23820, 0x23828,
1093 		0x23830, 0x23848,
1094 		0x23850, 0x23854,
1095 		0x23860, 0x23868,
1096 		0x23870, 0x23870,
1097 		0x23878, 0x23898,
1098 		0x238a0, 0x238a8,
1099 		0x238b0, 0x238c8,
1100 		0x238d0, 0x238d4,
1101 		0x238e0, 0x238e8,
1102 		0x238f0, 0x238f0,
1103 		0x238f8, 0x23a18,
1104 		0x23a20, 0x23a28,
1105 		0x23a30, 0x23a48,
1106 		0x23a50, 0x23a54,
1107 		0x23a60, 0x23a68,
1108 		0x23a70, 0x23a70,
1109 		0x23a78, 0x23a98,
1110 		0x23aa0, 0x23aa8,
1111 		0x23ab0, 0x23ac8,
1112 		0x23ad0, 0x23ad4,
1113 		0x23ae0, 0x23ae8,
1114 		0x23af0, 0x23af0,
1115 		0x23af8, 0x23c18,
1116 		0x23c20, 0x23c20,
1117 		0x23c28, 0x23c30,
1118 		0x23c38, 0x23c38,
1119 		0x23c80, 0x23c98,
1120 		0x23ca0, 0x23ca8,
1121 		0x23cb0, 0x23cc8,
1122 		0x23cd0, 0x23cd4,
1123 		0x23ce0, 0x23ce8,
1124 		0x23cf0, 0x23cf0,
1125 		0x23cf8, 0x23d7c,
1126 		0x23e00, 0x23e04,
1127 		0x24000, 0x2402c,
1128 		0x24100, 0x2413c,
1129 		0x24190, 0x241a0,
1130 		0x241a8, 0x241b8,
1131 		0x241c4, 0x241c8,
1132 		0x24200, 0x24318,
1133 		0x24400, 0x244b4,
1134 		0x244c0, 0x24528,
1135 		0x24540, 0x24614,
1136 		0x25000, 0x25040,
1137 		0x2504c, 0x25060,
1138 		0x250c0, 0x250ec,
1139 		0x25200, 0x25268,
1140 		0x25270, 0x25284,
1141 		0x252fc, 0x25388,
1142 		0x25400, 0x25404,
1143 		0x25500, 0x25500,
1144 		0x25510, 0x25518,
1145 		0x2552c, 0x25530,
1146 		0x2553c, 0x2553c,
1147 		0x25550, 0x25554,
1148 		0x25600, 0x25600,
1149 		0x25608, 0x2561c,
1150 		0x25624, 0x25628,
1151 		0x25630, 0x25634,
1152 		0x2563c, 0x2563c,
1153 		0x25700, 0x2571c,
1154 		0x25780, 0x2578c,
1155 		0x25800, 0x25818,
1156 		0x25820, 0x25828,
1157 		0x25830, 0x25848,
1158 		0x25850, 0x25854,
1159 		0x25860, 0x25868,
1160 		0x25870, 0x25870,
1161 		0x25878, 0x25898,
1162 		0x258a0, 0x258a8,
1163 		0x258b0, 0x258c8,
1164 		0x258d0, 0x258d4,
1165 		0x258e0, 0x258e8,
1166 		0x258f0, 0x258f0,
1167 		0x258f8, 0x25a18,
1168 		0x25a20, 0x25a28,
1169 		0x25a30, 0x25a48,
1170 		0x25a50, 0x25a54,
1171 		0x25a60, 0x25a68,
1172 		0x25a70, 0x25a70,
1173 		0x25a78, 0x25a98,
1174 		0x25aa0, 0x25aa8,
1175 		0x25ab0, 0x25ac8,
1176 		0x25ad0, 0x25ad4,
1177 		0x25ae0, 0x25ae8,
1178 		0x25af0, 0x25af0,
1179 		0x25af8, 0x25c18,
1180 		0x25c20, 0x25c20,
1181 		0x25c28, 0x25c30,
1182 		0x25c38, 0x25c38,
1183 		0x25c80, 0x25c98,
1184 		0x25ca0, 0x25ca8,
1185 		0x25cb0, 0x25cc8,
1186 		0x25cd0, 0x25cd4,
1187 		0x25ce0, 0x25ce8,
1188 		0x25cf0, 0x25cf0,
1189 		0x25cf8, 0x25d7c,
1190 		0x25e00, 0x25e04,
1191 		0x26000, 0x2602c,
1192 		0x26100, 0x2613c,
1193 		0x26190, 0x261a0,
1194 		0x261a8, 0x261b8,
1195 		0x261c4, 0x261c8,
1196 		0x26200, 0x26318,
1197 		0x26400, 0x264b4,
1198 		0x264c0, 0x26528,
1199 		0x26540, 0x26614,
1200 		0x27000, 0x27040,
1201 		0x2704c, 0x27060,
1202 		0x270c0, 0x270ec,
1203 		0x27200, 0x27268,
1204 		0x27270, 0x27284,
1205 		0x272fc, 0x27388,
1206 		0x27400, 0x27404,
1207 		0x27500, 0x27500,
1208 		0x27510, 0x27518,
1209 		0x2752c, 0x27530,
1210 		0x2753c, 0x2753c,
1211 		0x27550, 0x27554,
1212 		0x27600, 0x27600,
1213 		0x27608, 0x2761c,
1214 		0x27624, 0x27628,
1215 		0x27630, 0x27634,
1216 		0x2763c, 0x2763c,
1217 		0x27700, 0x2771c,
1218 		0x27780, 0x2778c,
1219 		0x27800, 0x27818,
1220 		0x27820, 0x27828,
1221 		0x27830, 0x27848,
1222 		0x27850, 0x27854,
1223 		0x27860, 0x27868,
1224 		0x27870, 0x27870,
1225 		0x27878, 0x27898,
1226 		0x278a0, 0x278a8,
1227 		0x278b0, 0x278c8,
1228 		0x278d0, 0x278d4,
1229 		0x278e0, 0x278e8,
1230 		0x278f0, 0x278f0,
1231 		0x278f8, 0x27a18,
1232 		0x27a20, 0x27a28,
1233 		0x27a30, 0x27a48,
1234 		0x27a50, 0x27a54,
1235 		0x27a60, 0x27a68,
1236 		0x27a70, 0x27a70,
1237 		0x27a78, 0x27a98,
1238 		0x27aa0, 0x27aa8,
1239 		0x27ab0, 0x27ac8,
1240 		0x27ad0, 0x27ad4,
1241 		0x27ae0, 0x27ae8,
1242 		0x27af0, 0x27af0,
1243 		0x27af8, 0x27c18,
1244 		0x27c20, 0x27c20,
1245 		0x27c28, 0x27c30,
1246 		0x27c38, 0x27c38,
1247 		0x27c80, 0x27c98,
1248 		0x27ca0, 0x27ca8,
1249 		0x27cb0, 0x27cc8,
1250 		0x27cd0, 0x27cd4,
1251 		0x27ce0, 0x27ce8,
1252 		0x27cf0, 0x27cf0,
1253 		0x27cf8, 0x27d7c,
1254 		0x27e00, 0x27e04,
1255 	};
1256 
1257 	static const unsigned int t5_reg_ranges[] = {
1258 		0x1008, 0x10c0,
1259 		0x10cc, 0x10f8,
1260 		0x1100, 0x1100,
1261 		0x110c, 0x1148,
1262 		0x1180, 0x1184,
1263 		0x1190, 0x1194,
1264 		0x11a0, 0x11a4,
1265 		0x11b0, 0x11b4,
1266 		0x11fc, 0x123c,
1267 		0x1280, 0x173c,
1268 		0x1800, 0x18fc,
1269 		0x3000, 0x3028,
1270 		0x3060, 0x30b0,
1271 		0x30b8, 0x30d8,
1272 		0x30e0, 0x30fc,
1273 		0x3140, 0x357c,
1274 		0x35a8, 0x35cc,
1275 		0x35ec, 0x35ec,
1276 		0x3600, 0x5624,
1277 		0x56cc, 0x56ec,
1278 		0x56f4, 0x5720,
1279 		0x5728, 0x575c,
1280 		0x580c, 0x5814,
1281 		0x5890, 0x589c,
1282 		0x58a4, 0x58ac,
1283 		0x58b8, 0x58bc,
1284 		0x5940, 0x59c8,
1285 		0x59d0, 0x59dc,
1286 		0x59fc, 0x5a18,
1287 		0x5a60, 0x5a70,
1288 		0x5a80, 0x5a9c,
1289 		0x5b94, 0x5bfc,
1290 		0x6000, 0x6020,
1291 		0x6028, 0x6040,
1292 		0x6058, 0x609c,
1293 		0x60a8, 0x614c,
1294 		0x7700, 0x7798,
1295 		0x77c0, 0x78fc,
1296 		0x7b00, 0x7b58,
1297 		0x7b60, 0x7b84,
1298 		0x7b8c, 0x7c54,
1299 		0x7d00, 0x7d38,
1300 		0x7d40, 0x7d80,
1301 		0x7d8c, 0x7ddc,
1302 		0x7de4, 0x7e04,
1303 		0x7e10, 0x7e1c,
1304 		0x7e24, 0x7e38,
1305 		0x7e40, 0x7e44,
1306 		0x7e4c, 0x7e78,
1307 		0x7e80, 0x7edc,
1308 		0x7ee8, 0x7efc,
1309 		0x8dc0, 0x8de0,
1310 		0x8df8, 0x8e04,
1311 		0x8e10, 0x8e84,
1312 		0x8ea0, 0x8f84,
1313 		0x8fc0, 0x9058,
1314 		0x9060, 0x9060,
1315 		0x9068, 0x90f8,
1316 		0x9400, 0x9408,
1317 		0x9410, 0x9470,
1318 		0x9600, 0x9600,
1319 		0x9608, 0x9638,
1320 		0x9640, 0x96f4,
1321 		0x9800, 0x9808,
1322 		0x9820, 0x983c,
1323 		0x9850, 0x9864,
1324 		0x9c00, 0x9c6c,
1325 		0x9c80, 0x9cec,
1326 		0x9d00, 0x9d6c,
1327 		0x9d80, 0x9dec,
1328 		0x9e00, 0x9e6c,
1329 		0x9e80, 0x9eec,
1330 		0x9f00, 0x9f6c,
1331 		0x9f80, 0xa020,
1332 		0xd004, 0xd004,
1333 		0xd010, 0xd03c,
1334 		0xdfc0, 0xdfe0,
1335 		0xe000, 0x1106c,
1336 		0x11074, 0x11088,
1337 		0x1109c, 0x1117c,
1338 		0x11190, 0x11204,
1339 		0x19040, 0x1906c,
1340 		0x19078, 0x19080,
1341 		0x1908c, 0x190e8,
1342 		0x190f0, 0x190f8,
1343 		0x19100, 0x19110,
1344 		0x19120, 0x19124,
1345 		0x19150, 0x19194,
1346 		0x1919c, 0x191b0,
1347 		0x191d0, 0x191e8,
1348 		0x19238, 0x19290,
1349 		0x193f8, 0x19428,
1350 		0x19430, 0x19444,
1351 		0x1944c, 0x1946c,
1352 		0x19474, 0x19474,
1353 		0x19490, 0x194cc,
1354 		0x194f0, 0x194f8,
1355 		0x19c00, 0x19c08,
1356 		0x19c10, 0x19c60,
1357 		0x19c94, 0x19ce4,
1358 		0x19cf0, 0x19d40,
1359 		0x19d50, 0x19d94,
1360 		0x19da0, 0x19de8,
1361 		0x19df0, 0x19e10,
1362 		0x19e50, 0x19e90,
1363 		0x19ea0, 0x19f24,
1364 		0x19f34, 0x19f34,
1365 		0x19f40, 0x19f50,
1366 		0x19f90, 0x19fb4,
1367 		0x19fc4, 0x19fe4,
1368 		0x1a000, 0x1a004,
1369 		0x1a010, 0x1a06c,
1370 		0x1a0b0, 0x1a0e4,
1371 		0x1a0ec, 0x1a0f8,
1372 		0x1a100, 0x1a108,
1373 		0x1a114, 0x1a120,
1374 		0x1a128, 0x1a130,
1375 		0x1a138, 0x1a138,
1376 		0x1a190, 0x1a1c4,
1377 		0x1a1fc, 0x1a1fc,
1378 		0x1e008, 0x1e00c,
1379 		0x1e040, 0x1e044,
1380 		0x1e04c, 0x1e04c,
1381 		0x1e284, 0x1e290,
1382 		0x1e2c0, 0x1e2c0,
1383 		0x1e2e0, 0x1e2e0,
1384 		0x1e300, 0x1e384,
1385 		0x1e3c0, 0x1e3c8,
1386 		0x1e408, 0x1e40c,
1387 		0x1e440, 0x1e444,
1388 		0x1e44c, 0x1e44c,
1389 		0x1e684, 0x1e690,
1390 		0x1e6c0, 0x1e6c0,
1391 		0x1e6e0, 0x1e6e0,
1392 		0x1e700, 0x1e784,
1393 		0x1e7c0, 0x1e7c8,
1394 		0x1e808, 0x1e80c,
1395 		0x1e840, 0x1e844,
1396 		0x1e84c, 0x1e84c,
1397 		0x1ea84, 0x1ea90,
1398 		0x1eac0, 0x1eac0,
1399 		0x1eae0, 0x1eae0,
1400 		0x1eb00, 0x1eb84,
1401 		0x1ebc0, 0x1ebc8,
1402 		0x1ec08, 0x1ec0c,
1403 		0x1ec40, 0x1ec44,
1404 		0x1ec4c, 0x1ec4c,
1405 		0x1ee84, 0x1ee90,
1406 		0x1eec0, 0x1eec0,
1407 		0x1eee0, 0x1eee0,
1408 		0x1ef00, 0x1ef84,
1409 		0x1efc0, 0x1efc8,
1410 		0x1f008, 0x1f00c,
1411 		0x1f040, 0x1f044,
1412 		0x1f04c, 0x1f04c,
1413 		0x1f284, 0x1f290,
1414 		0x1f2c0, 0x1f2c0,
1415 		0x1f2e0, 0x1f2e0,
1416 		0x1f300, 0x1f384,
1417 		0x1f3c0, 0x1f3c8,
1418 		0x1f408, 0x1f40c,
1419 		0x1f440, 0x1f444,
1420 		0x1f44c, 0x1f44c,
1421 		0x1f684, 0x1f690,
1422 		0x1f6c0, 0x1f6c0,
1423 		0x1f6e0, 0x1f6e0,
1424 		0x1f700, 0x1f784,
1425 		0x1f7c0, 0x1f7c8,
1426 		0x1f808, 0x1f80c,
1427 		0x1f840, 0x1f844,
1428 		0x1f84c, 0x1f84c,
1429 		0x1fa84, 0x1fa90,
1430 		0x1fac0, 0x1fac0,
1431 		0x1fae0, 0x1fae0,
1432 		0x1fb00, 0x1fb84,
1433 		0x1fbc0, 0x1fbc8,
1434 		0x1fc08, 0x1fc0c,
1435 		0x1fc40, 0x1fc44,
1436 		0x1fc4c, 0x1fc4c,
1437 		0x1fe84, 0x1fe90,
1438 		0x1fec0, 0x1fec0,
1439 		0x1fee0, 0x1fee0,
1440 		0x1ff00, 0x1ff84,
1441 		0x1ffc0, 0x1ffc8,
1442 		0x30000, 0x30030,
1443 		0x30100, 0x30144,
1444 		0x30190, 0x301a0,
1445 		0x301a8, 0x301b8,
1446 		0x301c4, 0x301c8,
1447 		0x301d0, 0x301d0,
1448 		0x30200, 0x30318,
1449 		0x30400, 0x304b4,
1450 		0x304c0, 0x3052c,
1451 		0x30540, 0x3061c,
1452 		0x30800, 0x30828,
1453 		0x30834, 0x30834,
1454 		0x308c0, 0x30908,
1455 		0x30910, 0x309ac,
1456 		0x30a00, 0x30a14,
1457 		0x30a1c, 0x30a2c,
1458 		0x30a44, 0x30a50,
1459 		0x30a74, 0x30a74,
1460 		0x30a7c, 0x30afc,
1461 		0x30b08, 0x30c24,
1462 		0x30d00, 0x30d00,
1463 		0x30d08, 0x30d14,
1464 		0x30d1c, 0x30d20,
1465 		0x30d3c, 0x30d3c,
1466 		0x30d48, 0x30d50,
1467 		0x31200, 0x3120c,
1468 		0x31220, 0x31220,
1469 		0x31240, 0x31240,
1470 		0x31600, 0x3160c,
1471 		0x31a00, 0x31a1c,
1472 		0x31e00, 0x31e20,
1473 		0x31e38, 0x31e3c,
1474 		0x31e80, 0x31e80,
1475 		0x31e88, 0x31ea8,
1476 		0x31eb0, 0x31eb4,
1477 		0x31ec8, 0x31ed4,
1478 		0x31fb8, 0x32004,
1479 		0x32200, 0x32200,
1480 		0x32208, 0x32240,
1481 		0x32248, 0x32280,
1482 		0x32288, 0x322c0,
1483 		0x322c8, 0x322fc,
1484 		0x32600, 0x32630,
1485 		0x32a00, 0x32abc,
1486 		0x32b00, 0x32b10,
1487 		0x32b20, 0x32b30,
1488 		0x32b40, 0x32b50,
1489 		0x32b60, 0x32b70,
1490 		0x33000, 0x33028,
1491 		0x33030, 0x33048,
1492 		0x33060, 0x33068,
1493 		0x33070, 0x3309c,
1494 		0x330f0, 0x33128,
1495 		0x33130, 0x33148,
1496 		0x33160, 0x33168,
1497 		0x33170, 0x3319c,
1498 		0x331f0, 0x33238,
1499 		0x33240, 0x33240,
1500 		0x33248, 0x33250,
1501 		0x3325c, 0x33264,
1502 		0x33270, 0x332b8,
1503 		0x332c0, 0x332e4,
1504 		0x332f8, 0x33338,
1505 		0x33340, 0x33340,
1506 		0x33348, 0x33350,
1507 		0x3335c, 0x33364,
1508 		0x33370, 0x333b8,
1509 		0x333c0, 0x333e4,
1510 		0x333f8, 0x33428,
1511 		0x33430, 0x33448,
1512 		0x33460, 0x33468,
1513 		0x33470, 0x3349c,
1514 		0x334f0, 0x33528,
1515 		0x33530, 0x33548,
1516 		0x33560, 0x33568,
1517 		0x33570, 0x3359c,
1518 		0x335f0, 0x33638,
1519 		0x33640, 0x33640,
1520 		0x33648, 0x33650,
1521 		0x3365c, 0x33664,
1522 		0x33670, 0x336b8,
1523 		0x336c0, 0x336e4,
1524 		0x336f8, 0x33738,
1525 		0x33740, 0x33740,
1526 		0x33748, 0x33750,
1527 		0x3375c, 0x33764,
1528 		0x33770, 0x337b8,
1529 		0x337c0, 0x337e4,
1530 		0x337f8, 0x337fc,
1531 		0x33814, 0x33814,
1532 		0x3382c, 0x3382c,
1533 		0x33880, 0x3388c,
1534 		0x338e8, 0x338ec,
1535 		0x33900, 0x33928,
1536 		0x33930, 0x33948,
1537 		0x33960, 0x33968,
1538 		0x33970, 0x3399c,
1539 		0x339f0, 0x33a38,
1540 		0x33a40, 0x33a40,
1541 		0x33a48, 0x33a50,
1542 		0x33a5c, 0x33a64,
1543 		0x33a70, 0x33ab8,
1544 		0x33ac0, 0x33ae4,
1545 		0x33af8, 0x33b10,
1546 		0x33b28, 0x33b28,
1547 		0x33b3c, 0x33b50,
1548 		0x33bf0, 0x33c10,
1549 		0x33c28, 0x33c28,
1550 		0x33c3c, 0x33c50,
1551 		0x33cf0, 0x33cfc,
1552 		0x34000, 0x34030,
1553 		0x34100, 0x34144,
1554 		0x34190, 0x341a0,
1555 		0x341a8, 0x341b8,
1556 		0x341c4, 0x341c8,
1557 		0x341d0, 0x341d0,
1558 		0x34200, 0x34318,
1559 		0x34400, 0x344b4,
1560 		0x344c0, 0x3452c,
1561 		0x34540, 0x3461c,
1562 		0x34800, 0x34828,
1563 		0x34834, 0x34834,
1564 		0x348c0, 0x34908,
1565 		0x34910, 0x349ac,
1566 		0x34a00, 0x34a14,
1567 		0x34a1c, 0x34a2c,
1568 		0x34a44, 0x34a50,
1569 		0x34a74, 0x34a74,
1570 		0x34a7c, 0x34afc,
1571 		0x34b08, 0x34c24,
1572 		0x34d00, 0x34d00,
1573 		0x34d08, 0x34d14,
1574 		0x34d1c, 0x34d20,
1575 		0x34d3c, 0x34d3c,
1576 		0x34d48, 0x34d50,
1577 		0x35200, 0x3520c,
1578 		0x35220, 0x35220,
1579 		0x35240, 0x35240,
1580 		0x35600, 0x3560c,
1581 		0x35a00, 0x35a1c,
1582 		0x35e00, 0x35e20,
1583 		0x35e38, 0x35e3c,
1584 		0x35e80, 0x35e80,
1585 		0x35e88, 0x35ea8,
1586 		0x35eb0, 0x35eb4,
1587 		0x35ec8, 0x35ed4,
1588 		0x35fb8, 0x36004,
1589 		0x36200, 0x36200,
1590 		0x36208, 0x36240,
1591 		0x36248, 0x36280,
1592 		0x36288, 0x362c0,
1593 		0x362c8, 0x362fc,
1594 		0x36600, 0x36630,
1595 		0x36a00, 0x36abc,
1596 		0x36b00, 0x36b10,
1597 		0x36b20, 0x36b30,
1598 		0x36b40, 0x36b50,
1599 		0x36b60, 0x36b70,
1600 		0x37000, 0x37028,
1601 		0x37030, 0x37048,
1602 		0x37060, 0x37068,
1603 		0x37070, 0x3709c,
1604 		0x370f0, 0x37128,
1605 		0x37130, 0x37148,
1606 		0x37160, 0x37168,
1607 		0x37170, 0x3719c,
1608 		0x371f0, 0x37238,
1609 		0x37240, 0x37240,
1610 		0x37248, 0x37250,
1611 		0x3725c, 0x37264,
1612 		0x37270, 0x372b8,
1613 		0x372c0, 0x372e4,
1614 		0x372f8, 0x37338,
1615 		0x37340, 0x37340,
1616 		0x37348, 0x37350,
1617 		0x3735c, 0x37364,
1618 		0x37370, 0x373b8,
1619 		0x373c0, 0x373e4,
1620 		0x373f8, 0x37428,
1621 		0x37430, 0x37448,
1622 		0x37460, 0x37468,
1623 		0x37470, 0x3749c,
1624 		0x374f0, 0x37528,
1625 		0x37530, 0x37548,
1626 		0x37560, 0x37568,
1627 		0x37570, 0x3759c,
1628 		0x375f0, 0x37638,
1629 		0x37640, 0x37640,
1630 		0x37648, 0x37650,
1631 		0x3765c, 0x37664,
1632 		0x37670, 0x376b8,
1633 		0x376c0, 0x376e4,
1634 		0x376f8, 0x37738,
1635 		0x37740, 0x37740,
1636 		0x37748, 0x37750,
1637 		0x3775c, 0x37764,
1638 		0x37770, 0x377b8,
1639 		0x377c0, 0x377e4,
1640 		0x377f8, 0x377fc,
1641 		0x37814, 0x37814,
1642 		0x3782c, 0x3782c,
1643 		0x37880, 0x3788c,
1644 		0x378e8, 0x378ec,
1645 		0x37900, 0x37928,
1646 		0x37930, 0x37948,
1647 		0x37960, 0x37968,
1648 		0x37970, 0x3799c,
1649 		0x379f0, 0x37a38,
1650 		0x37a40, 0x37a40,
1651 		0x37a48, 0x37a50,
1652 		0x37a5c, 0x37a64,
1653 		0x37a70, 0x37ab8,
1654 		0x37ac0, 0x37ae4,
1655 		0x37af8, 0x37b10,
1656 		0x37b28, 0x37b28,
1657 		0x37b3c, 0x37b50,
1658 		0x37bf0, 0x37c10,
1659 		0x37c28, 0x37c28,
1660 		0x37c3c, 0x37c50,
1661 		0x37cf0, 0x37cfc,
1662 		0x38000, 0x38030,
1663 		0x38100, 0x38144,
1664 		0x38190, 0x381a0,
1665 		0x381a8, 0x381b8,
1666 		0x381c4, 0x381c8,
1667 		0x381d0, 0x381d0,
1668 		0x38200, 0x38318,
1669 		0x38400, 0x384b4,
1670 		0x384c0, 0x3852c,
1671 		0x38540, 0x3861c,
1672 		0x38800, 0x38828,
1673 		0x38834, 0x38834,
1674 		0x388c0, 0x38908,
1675 		0x38910, 0x389ac,
1676 		0x38a00, 0x38a14,
1677 		0x38a1c, 0x38a2c,
1678 		0x38a44, 0x38a50,
1679 		0x38a74, 0x38a74,
1680 		0x38a7c, 0x38afc,
1681 		0x38b08, 0x38c24,
1682 		0x38d00, 0x38d00,
1683 		0x38d08, 0x38d14,
1684 		0x38d1c, 0x38d20,
1685 		0x38d3c, 0x38d3c,
1686 		0x38d48, 0x38d50,
1687 		0x39200, 0x3920c,
1688 		0x39220, 0x39220,
1689 		0x39240, 0x39240,
1690 		0x39600, 0x3960c,
1691 		0x39a00, 0x39a1c,
1692 		0x39e00, 0x39e20,
1693 		0x39e38, 0x39e3c,
1694 		0x39e80, 0x39e80,
1695 		0x39e88, 0x39ea8,
1696 		0x39eb0, 0x39eb4,
1697 		0x39ec8, 0x39ed4,
1698 		0x39fb8, 0x3a004,
1699 		0x3a200, 0x3a200,
1700 		0x3a208, 0x3a240,
1701 		0x3a248, 0x3a280,
1702 		0x3a288, 0x3a2c0,
1703 		0x3a2c8, 0x3a2fc,
1704 		0x3a600, 0x3a630,
1705 		0x3aa00, 0x3aabc,
1706 		0x3ab00, 0x3ab10,
1707 		0x3ab20, 0x3ab30,
1708 		0x3ab40, 0x3ab50,
1709 		0x3ab60, 0x3ab70,
1710 		0x3b000, 0x3b028,
1711 		0x3b030, 0x3b048,
1712 		0x3b060, 0x3b068,
1713 		0x3b070, 0x3b09c,
1714 		0x3b0f0, 0x3b128,
1715 		0x3b130, 0x3b148,
1716 		0x3b160, 0x3b168,
1717 		0x3b170, 0x3b19c,
1718 		0x3b1f0, 0x3b238,
1719 		0x3b240, 0x3b240,
1720 		0x3b248, 0x3b250,
1721 		0x3b25c, 0x3b264,
1722 		0x3b270, 0x3b2b8,
1723 		0x3b2c0, 0x3b2e4,
1724 		0x3b2f8, 0x3b338,
1725 		0x3b340, 0x3b340,
1726 		0x3b348, 0x3b350,
1727 		0x3b35c, 0x3b364,
1728 		0x3b370, 0x3b3b8,
1729 		0x3b3c0, 0x3b3e4,
1730 		0x3b3f8, 0x3b428,
1731 		0x3b430, 0x3b448,
1732 		0x3b460, 0x3b468,
1733 		0x3b470, 0x3b49c,
1734 		0x3b4f0, 0x3b528,
1735 		0x3b530, 0x3b548,
1736 		0x3b560, 0x3b568,
1737 		0x3b570, 0x3b59c,
1738 		0x3b5f0, 0x3b638,
1739 		0x3b640, 0x3b640,
1740 		0x3b648, 0x3b650,
1741 		0x3b65c, 0x3b664,
1742 		0x3b670, 0x3b6b8,
1743 		0x3b6c0, 0x3b6e4,
1744 		0x3b6f8, 0x3b738,
1745 		0x3b740, 0x3b740,
1746 		0x3b748, 0x3b750,
1747 		0x3b75c, 0x3b764,
1748 		0x3b770, 0x3b7b8,
1749 		0x3b7c0, 0x3b7e4,
1750 		0x3b7f8, 0x3b7fc,
1751 		0x3b814, 0x3b814,
1752 		0x3b82c, 0x3b82c,
1753 		0x3b880, 0x3b88c,
1754 		0x3b8e8, 0x3b8ec,
1755 		0x3b900, 0x3b928,
1756 		0x3b930, 0x3b948,
1757 		0x3b960, 0x3b968,
1758 		0x3b970, 0x3b99c,
1759 		0x3b9f0, 0x3ba38,
1760 		0x3ba40, 0x3ba40,
1761 		0x3ba48, 0x3ba50,
1762 		0x3ba5c, 0x3ba64,
1763 		0x3ba70, 0x3bab8,
1764 		0x3bac0, 0x3bae4,
1765 		0x3baf8, 0x3bb10,
1766 		0x3bb28, 0x3bb28,
1767 		0x3bb3c, 0x3bb50,
1768 		0x3bbf0, 0x3bc10,
1769 		0x3bc28, 0x3bc28,
1770 		0x3bc3c, 0x3bc50,
1771 		0x3bcf0, 0x3bcfc,
1772 		0x3c000, 0x3c030,
1773 		0x3c100, 0x3c144,
1774 		0x3c190, 0x3c1a0,
1775 		0x3c1a8, 0x3c1b8,
1776 		0x3c1c4, 0x3c1c8,
1777 		0x3c1d0, 0x3c1d0,
1778 		0x3c200, 0x3c318,
1779 		0x3c400, 0x3c4b4,
1780 		0x3c4c0, 0x3c52c,
1781 		0x3c540, 0x3c61c,
1782 		0x3c800, 0x3c828,
1783 		0x3c834, 0x3c834,
1784 		0x3c8c0, 0x3c908,
1785 		0x3c910, 0x3c9ac,
1786 		0x3ca00, 0x3ca14,
1787 		0x3ca1c, 0x3ca2c,
1788 		0x3ca44, 0x3ca50,
1789 		0x3ca74, 0x3ca74,
1790 		0x3ca7c, 0x3cafc,
1791 		0x3cb08, 0x3cc24,
1792 		0x3cd00, 0x3cd00,
1793 		0x3cd08, 0x3cd14,
1794 		0x3cd1c, 0x3cd20,
1795 		0x3cd3c, 0x3cd3c,
1796 		0x3cd48, 0x3cd50,
1797 		0x3d200, 0x3d20c,
1798 		0x3d220, 0x3d220,
1799 		0x3d240, 0x3d240,
1800 		0x3d600, 0x3d60c,
1801 		0x3da00, 0x3da1c,
1802 		0x3de00, 0x3de20,
1803 		0x3de38, 0x3de3c,
1804 		0x3de80, 0x3de80,
1805 		0x3de88, 0x3dea8,
1806 		0x3deb0, 0x3deb4,
1807 		0x3dec8, 0x3ded4,
1808 		0x3dfb8, 0x3e004,
1809 		0x3e200, 0x3e200,
1810 		0x3e208, 0x3e240,
1811 		0x3e248, 0x3e280,
1812 		0x3e288, 0x3e2c0,
1813 		0x3e2c8, 0x3e2fc,
1814 		0x3e600, 0x3e630,
1815 		0x3ea00, 0x3eabc,
1816 		0x3eb00, 0x3eb10,
1817 		0x3eb20, 0x3eb30,
1818 		0x3eb40, 0x3eb50,
1819 		0x3eb60, 0x3eb70,
1820 		0x3f000, 0x3f028,
1821 		0x3f030, 0x3f048,
1822 		0x3f060, 0x3f068,
1823 		0x3f070, 0x3f09c,
1824 		0x3f0f0, 0x3f128,
1825 		0x3f130, 0x3f148,
1826 		0x3f160, 0x3f168,
1827 		0x3f170, 0x3f19c,
1828 		0x3f1f0, 0x3f238,
1829 		0x3f240, 0x3f240,
1830 		0x3f248, 0x3f250,
1831 		0x3f25c, 0x3f264,
1832 		0x3f270, 0x3f2b8,
1833 		0x3f2c0, 0x3f2e4,
1834 		0x3f2f8, 0x3f338,
1835 		0x3f340, 0x3f340,
1836 		0x3f348, 0x3f350,
1837 		0x3f35c, 0x3f364,
1838 		0x3f370, 0x3f3b8,
1839 		0x3f3c0, 0x3f3e4,
1840 		0x3f3f8, 0x3f428,
1841 		0x3f430, 0x3f448,
1842 		0x3f460, 0x3f468,
1843 		0x3f470, 0x3f49c,
1844 		0x3f4f0, 0x3f528,
1845 		0x3f530, 0x3f548,
1846 		0x3f560, 0x3f568,
1847 		0x3f570, 0x3f59c,
1848 		0x3f5f0, 0x3f638,
1849 		0x3f640, 0x3f640,
1850 		0x3f648, 0x3f650,
1851 		0x3f65c, 0x3f664,
1852 		0x3f670, 0x3f6b8,
1853 		0x3f6c0, 0x3f6e4,
1854 		0x3f6f8, 0x3f738,
1855 		0x3f740, 0x3f740,
1856 		0x3f748, 0x3f750,
1857 		0x3f75c, 0x3f764,
1858 		0x3f770, 0x3f7b8,
1859 		0x3f7c0, 0x3f7e4,
1860 		0x3f7f8, 0x3f7fc,
1861 		0x3f814, 0x3f814,
1862 		0x3f82c, 0x3f82c,
1863 		0x3f880, 0x3f88c,
1864 		0x3f8e8, 0x3f8ec,
1865 		0x3f900, 0x3f928,
1866 		0x3f930, 0x3f948,
1867 		0x3f960, 0x3f968,
1868 		0x3f970, 0x3f99c,
1869 		0x3f9f0, 0x3fa38,
1870 		0x3fa40, 0x3fa40,
1871 		0x3fa48, 0x3fa50,
1872 		0x3fa5c, 0x3fa64,
1873 		0x3fa70, 0x3fab8,
1874 		0x3fac0, 0x3fae4,
1875 		0x3faf8, 0x3fb10,
1876 		0x3fb28, 0x3fb28,
1877 		0x3fb3c, 0x3fb50,
1878 		0x3fbf0, 0x3fc10,
1879 		0x3fc28, 0x3fc28,
1880 		0x3fc3c, 0x3fc50,
1881 		0x3fcf0, 0x3fcfc,
1882 		0x40000, 0x4000c,
1883 		0x40040, 0x40050,
1884 		0x40060, 0x40068,
1885 		0x4007c, 0x4008c,
1886 		0x40094, 0x400b0,
1887 		0x400c0, 0x40144,
1888 		0x40180, 0x4018c,
1889 		0x40200, 0x40254,
1890 		0x40260, 0x40264,
1891 		0x40270, 0x40288,
1892 		0x40290, 0x40298,
1893 		0x402ac, 0x402c8,
1894 		0x402d0, 0x402e0,
1895 		0x402f0, 0x402f0,
1896 		0x40300, 0x4033c,
1897 		0x403f8, 0x403fc,
1898 		0x41304, 0x413c4,
1899 		0x41400, 0x4140c,
1900 		0x41414, 0x4141c,
1901 		0x41480, 0x414d0,
1902 		0x44000, 0x44054,
1903 		0x4405c, 0x44078,
1904 		0x440c0, 0x44174,
1905 		0x44180, 0x441ac,
1906 		0x441b4, 0x441b8,
1907 		0x441c0, 0x44254,
1908 		0x4425c, 0x44278,
1909 		0x442c0, 0x44374,
1910 		0x44380, 0x443ac,
1911 		0x443b4, 0x443b8,
1912 		0x443c0, 0x44454,
1913 		0x4445c, 0x44478,
1914 		0x444c0, 0x44574,
1915 		0x44580, 0x445ac,
1916 		0x445b4, 0x445b8,
1917 		0x445c0, 0x44654,
1918 		0x4465c, 0x44678,
1919 		0x446c0, 0x44774,
1920 		0x44780, 0x447ac,
1921 		0x447b4, 0x447b8,
1922 		0x447c0, 0x44854,
1923 		0x4485c, 0x44878,
1924 		0x448c0, 0x44974,
1925 		0x44980, 0x449ac,
1926 		0x449b4, 0x449b8,
1927 		0x449c0, 0x449fc,
1928 		0x45000, 0x45004,
1929 		0x45010, 0x45030,
1930 		0x45040, 0x45060,
1931 		0x45068, 0x45068,
1932 		0x45080, 0x45084,
1933 		0x450a0, 0x450b0,
1934 		0x45200, 0x45204,
1935 		0x45210, 0x45230,
1936 		0x45240, 0x45260,
1937 		0x45268, 0x45268,
1938 		0x45280, 0x45284,
1939 		0x452a0, 0x452b0,
1940 		0x460c0, 0x460e4,
1941 		0x47000, 0x4703c,
1942 		0x47044, 0x4708c,
1943 		0x47200, 0x47250,
1944 		0x47400, 0x47408,
1945 		0x47414, 0x47420,
1946 		0x47600, 0x47618,
1947 		0x47800, 0x47814,
1948 		0x48000, 0x4800c,
1949 		0x48040, 0x48050,
1950 		0x48060, 0x48068,
1951 		0x4807c, 0x4808c,
1952 		0x48094, 0x480b0,
1953 		0x480c0, 0x48144,
1954 		0x48180, 0x4818c,
1955 		0x48200, 0x48254,
1956 		0x48260, 0x48264,
1957 		0x48270, 0x48288,
1958 		0x48290, 0x48298,
1959 		0x482ac, 0x482c8,
1960 		0x482d0, 0x482e0,
1961 		0x482f0, 0x482f0,
1962 		0x48300, 0x4833c,
1963 		0x483f8, 0x483fc,
1964 		0x49304, 0x493c4,
1965 		0x49400, 0x4940c,
1966 		0x49414, 0x4941c,
1967 		0x49480, 0x494d0,
1968 		0x4c000, 0x4c054,
1969 		0x4c05c, 0x4c078,
1970 		0x4c0c0, 0x4c174,
1971 		0x4c180, 0x4c1ac,
1972 		0x4c1b4, 0x4c1b8,
1973 		0x4c1c0, 0x4c254,
1974 		0x4c25c, 0x4c278,
1975 		0x4c2c0, 0x4c374,
1976 		0x4c380, 0x4c3ac,
1977 		0x4c3b4, 0x4c3b8,
1978 		0x4c3c0, 0x4c454,
1979 		0x4c45c, 0x4c478,
1980 		0x4c4c0, 0x4c574,
1981 		0x4c580, 0x4c5ac,
1982 		0x4c5b4, 0x4c5b8,
1983 		0x4c5c0, 0x4c654,
1984 		0x4c65c, 0x4c678,
1985 		0x4c6c0, 0x4c774,
1986 		0x4c780, 0x4c7ac,
1987 		0x4c7b4, 0x4c7b8,
1988 		0x4c7c0, 0x4c854,
1989 		0x4c85c, 0x4c878,
1990 		0x4c8c0, 0x4c974,
1991 		0x4c980, 0x4c9ac,
1992 		0x4c9b4, 0x4c9b8,
1993 		0x4c9c0, 0x4c9fc,
1994 		0x4d000, 0x4d004,
1995 		0x4d010, 0x4d030,
1996 		0x4d040, 0x4d060,
1997 		0x4d068, 0x4d068,
1998 		0x4d080, 0x4d084,
1999 		0x4d0a0, 0x4d0b0,
2000 		0x4d200, 0x4d204,
2001 		0x4d210, 0x4d230,
2002 		0x4d240, 0x4d260,
2003 		0x4d268, 0x4d268,
2004 		0x4d280, 0x4d284,
2005 		0x4d2a0, 0x4d2b0,
2006 		0x4e0c0, 0x4e0e4,
2007 		0x4f000, 0x4f03c,
2008 		0x4f044, 0x4f08c,
2009 		0x4f200, 0x4f250,
2010 		0x4f400, 0x4f408,
2011 		0x4f414, 0x4f420,
2012 		0x4f600, 0x4f618,
2013 		0x4f800, 0x4f814,
2014 		0x50000, 0x50084,
2015 		0x50090, 0x500cc,
2016 		0x50400, 0x50400,
2017 		0x50800, 0x50884,
2018 		0x50890, 0x508cc,
2019 		0x50c00, 0x50c00,
2020 		0x51000, 0x5101c,
2021 		0x51300, 0x51308,
2022 	};
2023 
2024 	static const unsigned int t6_reg_ranges[] = {
2025 		0x1008, 0x101c,
2026 		0x1024, 0x10a8,
2027 		0x10b4, 0x10f8,
2028 		0x1100, 0x1114,
2029 		0x111c, 0x112c,
2030 		0x1138, 0x113c,
2031 		0x1144, 0x114c,
2032 		0x1180, 0x1184,
2033 		0x1190, 0x1194,
2034 		0x11a0, 0x11a4,
2035 		0x11b0, 0x11b4,
2036 		0x11fc, 0x1274,
2037 		0x1280, 0x133c,
2038 		0x1800, 0x18fc,
2039 		0x3000, 0x302c,
2040 		0x3060, 0x30b0,
2041 		0x30b8, 0x30d8,
2042 		0x30e0, 0x30fc,
2043 		0x3140, 0x357c,
2044 		0x35a8, 0x35cc,
2045 		0x35ec, 0x35ec,
2046 		0x3600, 0x5624,
2047 		0x56cc, 0x56ec,
2048 		0x56f4, 0x5720,
2049 		0x5728, 0x575c,
2050 		0x580c, 0x5814,
2051 		0x5890, 0x589c,
2052 		0x58a4, 0x58ac,
2053 		0x58b8, 0x58bc,
2054 		0x5940, 0x595c,
2055 		0x5980, 0x598c,
2056 		0x59b0, 0x59c8,
2057 		0x59d0, 0x59dc,
2058 		0x59fc, 0x5a18,
2059 		0x5a60, 0x5a6c,
2060 		0x5a80, 0x5a8c,
2061 		0x5a94, 0x5a9c,
2062 		0x5b94, 0x5bfc,
2063 		0x5c10, 0x5e48,
2064 		0x5e50, 0x5e94,
2065 		0x5ea0, 0x5eb0,
2066 		0x5ec0, 0x5ec0,
2067 		0x5ec8, 0x5ed0,
2068 		0x5ee0, 0x5ee0,
2069 		0x5ef0, 0x5ef0,
2070 		0x5f00, 0x5f00,
2071 		0x6000, 0x6020,
2072 		0x6028, 0x6040,
2073 		0x6058, 0x609c,
2074 		0x60a8, 0x619c,
2075 		0x7700, 0x7798,
2076 		0x77c0, 0x7880,
2077 		0x78cc, 0x78fc,
2078 		0x7b00, 0x7b58,
2079 		0x7b60, 0x7b84,
2080 		0x7b8c, 0x7c54,
2081 		0x7d00, 0x7d38,
2082 		0x7d40, 0x7d84,
2083 		0x7d8c, 0x7ddc,
2084 		0x7de4, 0x7e04,
2085 		0x7e10, 0x7e1c,
2086 		0x7e24, 0x7e38,
2087 		0x7e40, 0x7e44,
2088 		0x7e4c, 0x7e78,
2089 		0x7e80, 0x7edc,
2090 		0x7ee8, 0x7efc,
2091 		0x8dc0, 0x8de4,
2092 		0x8df8, 0x8e04,
2093 		0x8e10, 0x8e84,
2094 		0x8ea0, 0x8f88,
2095 		0x8fb8, 0x9058,
2096 		0x9060, 0x9060,
2097 		0x9068, 0x90f8,
2098 		0x9100, 0x9124,
2099 		0x9400, 0x9470,
2100 		0x9600, 0x9600,
2101 		0x9608, 0x9638,
2102 		0x9640, 0x9704,
2103 		0x9710, 0x971c,
2104 		0x9800, 0x9808,
2105 		0x9820, 0x983c,
2106 		0x9850, 0x9864,
2107 		0x9c00, 0x9c6c,
2108 		0x9c80, 0x9cec,
2109 		0x9d00, 0x9d6c,
2110 		0x9d80, 0x9dec,
2111 		0x9e00, 0x9e6c,
2112 		0x9e80, 0x9eec,
2113 		0x9f00, 0x9f6c,
2114 		0x9f80, 0xa020,
2115 		0xd004, 0xd03c,
2116 		0xd100, 0xd118,
2117 		0xd200, 0xd214,
2118 		0xd220, 0xd234,
2119 		0xd240, 0xd254,
2120 		0xd260, 0xd274,
2121 		0xd280, 0xd294,
2122 		0xd2a0, 0xd2b4,
2123 		0xd2c0, 0xd2d4,
2124 		0xd2e0, 0xd2f4,
2125 		0xd300, 0xd31c,
2126 		0xdfc0, 0xdfe0,
2127 		0xe000, 0xf008,
2128 		0xf010, 0xf018,
2129 		0xf020, 0xf028,
2130 		0x11000, 0x11014,
2131 		0x11048, 0x1106c,
2132 		0x11074, 0x11088,
2133 		0x11098, 0x11120,
2134 		0x1112c, 0x1117c,
2135 		0x11190, 0x112e0,
2136 		0x11300, 0x1130c,
2137 		0x12000, 0x1206c,
2138 		0x19040, 0x1906c,
2139 		0x19078, 0x19080,
2140 		0x1908c, 0x190e8,
2141 		0x190f0, 0x190f8,
2142 		0x19100, 0x19110,
2143 		0x19120, 0x19124,
2144 		0x19150, 0x19194,
2145 		0x1919c, 0x191b0,
2146 		0x191d0, 0x191e8,
2147 		0x19238, 0x19290,
2148 		0x192a4, 0x192b0,
2149 		0x192bc, 0x192bc,
2150 		0x19348, 0x1934c,
2151 		0x193f8, 0x19418,
2152 		0x19420, 0x19428,
2153 		0x19430, 0x19444,
2154 		0x1944c, 0x1946c,
2155 		0x19474, 0x19474,
2156 		0x19490, 0x194cc,
2157 		0x194f0, 0x194f8,
2158 		0x19c00, 0x19c48,
2159 		0x19c50, 0x19c80,
2160 		0x19c94, 0x19c98,
2161 		0x19ca0, 0x19cbc,
2162 		0x19ce4, 0x19ce4,
2163 		0x19cf0, 0x19cf8,
2164 		0x19d00, 0x19d28,
2165 		0x19d50, 0x19d78,
2166 		0x19d94, 0x19d98,
2167 		0x19da0, 0x19dc8,
2168 		0x19df0, 0x19e10,
2169 		0x19e50, 0x19e6c,
2170 		0x19ea0, 0x19ebc,
2171 		0x19ec4, 0x19ef4,
2172 		0x19f04, 0x19f2c,
2173 		0x19f34, 0x19f34,
2174 		0x19f40, 0x19f50,
2175 		0x19f90, 0x19fac,
2176 		0x19fc4, 0x19fc8,
2177 		0x19fd0, 0x19fe4,
2178 		0x1a000, 0x1a004,
2179 		0x1a010, 0x1a06c,
2180 		0x1a0b0, 0x1a0e4,
2181 		0x1a0ec, 0x1a0f8,
2182 		0x1a100, 0x1a108,
2183 		0x1a114, 0x1a120,
2184 		0x1a128, 0x1a130,
2185 		0x1a138, 0x1a138,
2186 		0x1a190, 0x1a1c4,
2187 		0x1a1fc, 0x1a1fc,
2188 		0x1e008, 0x1e00c,
2189 		0x1e040, 0x1e044,
2190 		0x1e04c, 0x1e04c,
2191 		0x1e284, 0x1e290,
2192 		0x1e2c0, 0x1e2c0,
2193 		0x1e2e0, 0x1e2e0,
2194 		0x1e300, 0x1e384,
2195 		0x1e3c0, 0x1e3c8,
2196 		0x1e408, 0x1e40c,
2197 		0x1e440, 0x1e444,
2198 		0x1e44c, 0x1e44c,
2199 		0x1e684, 0x1e690,
2200 		0x1e6c0, 0x1e6c0,
2201 		0x1e6e0, 0x1e6e0,
2202 		0x1e700, 0x1e784,
2203 		0x1e7c0, 0x1e7c8,
2204 		0x1e808, 0x1e80c,
2205 		0x1e840, 0x1e844,
2206 		0x1e84c, 0x1e84c,
2207 		0x1ea84, 0x1ea90,
2208 		0x1eac0, 0x1eac0,
2209 		0x1eae0, 0x1eae0,
2210 		0x1eb00, 0x1eb84,
2211 		0x1ebc0, 0x1ebc8,
2212 		0x1ec08, 0x1ec0c,
2213 		0x1ec40, 0x1ec44,
2214 		0x1ec4c, 0x1ec4c,
2215 		0x1ee84, 0x1ee90,
2216 		0x1eec0, 0x1eec0,
2217 		0x1eee0, 0x1eee0,
2218 		0x1ef00, 0x1ef84,
2219 		0x1efc0, 0x1efc8,
2220 		0x1f008, 0x1f00c,
2221 		0x1f040, 0x1f044,
2222 		0x1f04c, 0x1f04c,
2223 		0x1f284, 0x1f290,
2224 		0x1f2c0, 0x1f2c0,
2225 		0x1f2e0, 0x1f2e0,
2226 		0x1f300, 0x1f384,
2227 		0x1f3c0, 0x1f3c8,
2228 		0x1f408, 0x1f40c,
2229 		0x1f440, 0x1f444,
2230 		0x1f44c, 0x1f44c,
2231 		0x1f684, 0x1f690,
2232 		0x1f6c0, 0x1f6c0,
2233 		0x1f6e0, 0x1f6e0,
2234 		0x1f700, 0x1f784,
2235 		0x1f7c0, 0x1f7c8,
2236 		0x1f808, 0x1f80c,
2237 		0x1f840, 0x1f844,
2238 		0x1f84c, 0x1f84c,
2239 		0x1fa84, 0x1fa90,
2240 		0x1fac0, 0x1fac0,
2241 		0x1fae0, 0x1fae0,
2242 		0x1fb00, 0x1fb84,
2243 		0x1fbc0, 0x1fbc8,
2244 		0x1fc08, 0x1fc0c,
2245 		0x1fc40, 0x1fc44,
2246 		0x1fc4c, 0x1fc4c,
2247 		0x1fe84, 0x1fe90,
2248 		0x1fec0, 0x1fec0,
2249 		0x1fee0, 0x1fee0,
2250 		0x1ff00, 0x1ff84,
2251 		0x1ffc0, 0x1ffc8,
2252 		0x30000, 0x30030,
2253 		0x30100, 0x30168,
2254 		0x30190, 0x301a0,
2255 		0x301a8, 0x301b8,
2256 		0x301c4, 0x301c8,
2257 		0x301d0, 0x301d0,
2258 		0x30200, 0x30320,
2259 		0x30400, 0x304b4,
2260 		0x304c0, 0x3052c,
2261 		0x30540, 0x3061c,
2262 		0x30800, 0x308a0,
2263 		0x308c0, 0x30908,
2264 		0x30910, 0x309b8,
2265 		0x30a00, 0x30a04,
2266 		0x30a0c, 0x30a14,
2267 		0x30a1c, 0x30a2c,
2268 		0x30a44, 0x30a50,
2269 		0x30a74, 0x30a74,
2270 		0x30a7c, 0x30afc,
2271 		0x30b08, 0x30c24,
2272 		0x30d00, 0x30d14,
2273 		0x30d1c, 0x30d3c,
2274 		0x30d44, 0x30d4c,
2275 		0x30d54, 0x30d74,
2276 		0x30d7c, 0x30d7c,
2277 		0x30de0, 0x30de0,
2278 		0x30e00, 0x30ed4,
2279 		0x30f00, 0x30fa4,
2280 		0x30fc0, 0x30fc4,
2281 		0x31000, 0x31004,
2282 		0x31080, 0x310fc,
2283 		0x31208, 0x31220,
2284 		0x3123c, 0x31254,
2285 		0x31300, 0x31300,
2286 		0x31308, 0x3131c,
2287 		0x31338, 0x3133c,
2288 		0x31380, 0x31380,
2289 		0x31388, 0x313a8,
2290 		0x313b4, 0x313b4,
2291 		0x31400, 0x31420,
2292 		0x31438, 0x3143c,
2293 		0x31480, 0x31480,
2294 		0x314a8, 0x314a8,
2295 		0x314b0, 0x314b4,
2296 		0x314c8, 0x314d4,
2297 		0x31a40, 0x31a4c,
2298 		0x31af0, 0x31b20,
2299 		0x31b38, 0x31b3c,
2300 		0x31b80, 0x31b80,
2301 		0x31ba8, 0x31ba8,
2302 		0x31bb0, 0x31bb4,
2303 		0x31bc8, 0x31bd4,
2304 		0x32140, 0x3218c,
2305 		0x321f0, 0x321f4,
2306 		0x32200, 0x32200,
2307 		0x32218, 0x32218,
2308 		0x32400, 0x32400,
2309 		0x32408, 0x3241c,
2310 		0x32618, 0x32620,
2311 		0x32664, 0x32664,
2312 		0x326a8, 0x326a8,
2313 		0x326ec, 0x326ec,
2314 		0x32a00, 0x32abc,
2315 		0x32b00, 0x32b18,
2316 		0x32b20, 0x32b38,
2317 		0x32b40, 0x32b58,
2318 		0x32b60, 0x32b78,
2319 		0x32c00, 0x32c00,
2320 		0x32c08, 0x32c3c,
2321 		0x33000, 0x3302c,
2322 		0x33034, 0x33050,
2323 		0x33058, 0x33058,
2324 		0x33060, 0x3308c,
2325 		0x3309c, 0x330ac,
2326 		0x330c0, 0x330c0,
2327 		0x330c8, 0x330d0,
2328 		0x330d8, 0x330e0,
2329 		0x330ec, 0x3312c,
2330 		0x33134, 0x33150,
2331 		0x33158, 0x33158,
2332 		0x33160, 0x3318c,
2333 		0x3319c, 0x331ac,
2334 		0x331c0, 0x331c0,
2335 		0x331c8, 0x331d0,
2336 		0x331d8, 0x331e0,
2337 		0x331ec, 0x33290,
2338 		0x33298, 0x332c4,
2339 		0x332e4, 0x33390,
2340 		0x33398, 0x333c4,
2341 		0x333e4, 0x3342c,
2342 		0x33434, 0x33450,
2343 		0x33458, 0x33458,
2344 		0x33460, 0x3348c,
2345 		0x3349c, 0x334ac,
2346 		0x334c0, 0x334c0,
2347 		0x334c8, 0x334d0,
2348 		0x334d8, 0x334e0,
2349 		0x334ec, 0x3352c,
2350 		0x33534, 0x33550,
2351 		0x33558, 0x33558,
2352 		0x33560, 0x3358c,
2353 		0x3359c, 0x335ac,
2354 		0x335c0, 0x335c0,
2355 		0x335c8, 0x335d0,
2356 		0x335d8, 0x335e0,
2357 		0x335ec, 0x33690,
2358 		0x33698, 0x336c4,
2359 		0x336e4, 0x33790,
2360 		0x33798, 0x337c4,
2361 		0x337e4, 0x337fc,
2362 		0x33814, 0x33814,
2363 		0x33854, 0x33868,
2364 		0x33880, 0x3388c,
2365 		0x338c0, 0x338d0,
2366 		0x338e8, 0x338ec,
2367 		0x33900, 0x3392c,
2368 		0x33934, 0x33950,
2369 		0x33958, 0x33958,
2370 		0x33960, 0x3398c,
2371 		0x3399c, 0x339ac,
2372 		0x339c0, 0x339c0,
2373 		0x339c8, 0x339d0,
2374 		0x339d8, 0x339e0,
2375 		0x339ec, 0x33a90,
2376 		0x33a98, 0x33ac4,
2377 		0x33ae4, 0x33b10,
2378 		0x33b24, 0x33b28,
2379 		0x33b38, 0x33b50,
2380 		0x33bf0, 0x33c10,
2381 		0x33c24, 0x33c28,
2382 		0x33c38, 0x33c50,
2383 		0x33cf0, 0x33cfc,
2384 		0x34000, 0x34030,
2385 		0x34100, 0x34168,
2386 		0x34190, 0x341a0,
2387 		0x341a8, 0x341b8,
2388 		0x341c4, 0x341c8,
2389 		0x341d0, 0x341d0,
2390 		0x34200, 0x34320,
2391 		0x34400, 0x344b4,
2392 		0x344c0, 0x3452c,
2393 		0x34540, 0x3461c,
2394 		0x34800, 0x348a0,
2395 		0x348c0, 0x34908,
2396 		0x34910, 0x349b8,
2397 		0x34a00, 0x34a04,
2398 		0x34a0c, 0x34a14,
2399 		0x34a1c, 0x34a2c,
2400 		0x34a44, 0x34a50,
2401 		0x34a74, 0x34a74,
2402 		0x34a7c, 0x34afc,
2403 		0x34b08, 0x34c24,
2404 		0x34d00, 0x34d14,
2405 		0x34d1c, 0x34d3c,
2406 		0x34d44, 0x34d4c,
2407 		0x34d54, 0x34d74,
2408 		0x34d7c, 0x34d7c,
2409 		0x34de0, 0x34de0,
2410 		0x34e00, 0x34ed4,
2411 		0x34f00, 0x34fa4,
2412 		0x34fc0, 0x34fc4,
2413 		0x35000, 0x35004,
2414 		0x35080, 0x350fc,
2415 		0x35208, 0x35220,
2416 		0x3523c, 0x35254,
2417 		0x35300, 0x35300,
2418 		0x35308, 0x3531c,
2419 		0x35338, 0x3533c,
2420 		0x35380, 0x35380,
2421 		0x35388, 0x353a8,
2422 		0x353b4, 0x353b4,
2423 		0x35400, 0x35420,
2424 		0x35438, 0x3543c,
2425 		0x35480, 0x35480,
2426 		0x354a8, 0x354a8,
2427 		0x354b0, 0x354b4,
2428 		0x354c8, 0x354d4,
2429 		0x35a40, 0x35a4c,
2430 		0x35af0, 0x35b20,
2431 		0x35b38, 0x35b3c,
2432 		0x35b80, 0x35b80,
2433 		0x35ba8, 0x35ba8,
2434 		0x35bb0, 0x35bb4,
2435 		0x35bc8, 0x35bd4,
2436 		0x36140, 0x3618c,
2437 		0x361f0, 0x361f4,
2438 		0x36200, 0x36200,
2439 		0x36218, 0x36218,
2440 		0x36400, 0x36400,
2441 		0x36408, 0x3641c,
2442 		0x36618, 0x36620,
2443 		0x36664, 0x36664,
2444 		0x366a8, 0x366a8,
2445 		0x366ec, 0x366ec,
2446 		0x36a00, 0x36abc,
2447 		0x36b00, 0x36b18,
2448 		0x36b20, 0x36b38,
2449 		0x36b40, 0x36b58,
2450 		0x36b60, 0x36b78,
2451 		0x36c00, 0x36c00,
2452 		0x36c08, 0x36c3c,
2453 		0x37000, 0x3702c,
2454 		0x37034, 0x37050,
2455 		0x37058, 0x37058,
2456 		0x37060, 0x3708c,
2457 		0x3709c, 0x370ac,
2458 		0x370c0, 0x370c0,
2459 		0x370c8, 0x370d0,
2460 		0x370d8, 0x370e0,
2461 		0x370ec, 0x3712c,
2462 		0x37134, 0x37150,
2463 		0x37158, 0x37158,
2464 		0x37160, 0x3718c,
2465 		0x3719c, 0x371ac,
2466 		0x371c0, 0x371c0,
2467 		0x371c8, 0x371d0,
2468 		0x371d8, 0x371e0,
2469 		0x371ec, 0x37290,
2470 		0x37298, 0x372c4,
2471 		0x372e4, 0x37390,
2472 		0x37398, 0x373c4,
2473 		0x373e4, 0x3742c,
2474 		0x37434, 0x37450,
2475 		0x37458, 0x37458,
2476 		0x37460, 0x3748c,
2477 		0x3749c, 0x374ac,
2478 		0x374c0, 0x374c0,
2479 		0x374c8, 0x374d0,
2480 		0x374d8, 0x374e0,
2481 		0x374ec, 0x3752c,
2482 		0x37534, 0x37550,
2483 		0x37558, 0x37558,
2484 		0x37560, 0x3758c,
2485 		0x3759c, 0x375ac,
2486 		0x375c0, 0x375c0,
2487 		0x375c8, 0x375d0,
2488 		0x375d8, 0x375e0,
2489 		0x375ec, 0x37690,
2490 		0x37698, 0x376c4,
2491 		0x376e4, 0x37790,
2492 		0x37798, 0x377c4,
2493 		0x377e4, 0x377fc,
2494 		0x37814, 0x37814,
2495 		0x37854, 0x37868,
2496 		0x37880, 0x3788c,
2497 		0x378c0, 0x378d0,
2498 		0x378e8, 0x378ec,
2499 		0x37900, 0x3792c,
2500 		0x37934, 0x37950,
2501 		0x37958, 0x37958,
2502 		0x37960, 0x3798c,
2503 		0x3799c, 0x379ac,
2504 		0x379c0, 0x379c0,
2505 		0x379c8, 0x379d0,
2506 		0x379d8, 0x379e0,
2507 		0x379ec, 0x37a90,
2508 		0x37a98, 0x37ac4,
2509 		0x37ae4, 0x37b10,
2510 		0x37b24, 0x37b28,
2511 		0x37b38, 0x37b50,
2512 		0x37bf0, 0x37c10,
2513 		0x37c24, 0x37c28,
2514 		0x37c38, 0x37c50,
2515 		0x37cf0, 0x37cfc,
2516 		0x40040, 0x40040,
2517 		0x40080, 0x40084,
2518 		0x40100, 0x40100,
2519 		0x40140, 0x401bc,
2520 		0x40200, 0x40214,
2521 		0x40228, 0x40228,
2522 		0x40240, 0x40258,
2523 		0x40280, 0x40280,
2524 		0x40304, 0x40304,
2525 		0x40330, 0x4033c,
2526 		0x41304, 0x413c8,
2527 		0x413d0, 0x413dc,
2528 		0x413f0, 0x413f0,
2529 		0x41400, 0x4140c,
2530 		0x41414, 0x4141c,
2531 		0x41480, 0x414d0,
2532 		0x44000, 0x4407c,
2533 		0x440c0, 0x441ac,
2534 		0x441b4, 0x4427c,
2535 		0x442c0, 0x443ac,
2536 		0x443b4, 0x4447c,
2537 		0x444c0, 0x445ac,
2538 		0x445b4, 0x4467c,
2539 		0x446c0, 0x447ac,
2540 		0x447b4, 0x4487c,
2541 		0x448c0, 0x449ac,
2542 		0x449b4, 0x44a7c,
2543 		0x44ac0, 0x44bac,
2544 		0x44bb4, 0x44c7c,
2545 		0x44cc0, 0x44dac,
2546 		0x44db4, 0x44e7c,
2547 		0x44ec0, 0x44fac,
2548 		0x44fb4, 0x4507c,
2549 		0x450c0, 0x451ac,
2550 		0x451b4, 0x451fc,
2551 		0x45800, 0x45804,
2552 		0x45810, 0x45830,
2553 		0x45840, 0x45860,
2554 		0x45868, 0x45868,
2555 		0x45880, 0x45884,
2556 		0x458a0, 0x458b0,
2557 		0x45a00, 0x45a04,
2558 		0x45a10, 0x45a30,
2559 		0x45a40, 0x45a60,
2560 		0x45a68, 0x45a68,
2561 		0x45a80, 0x45a84,
2562 		0x45aa0, 0x45ab0,
2563 		0x460c0, 0x460e4,
2564 		0x47000, 0x4703c,
2565 		0x47044, 0x4708c,
2566 		0x47200, 0x47250,
2567 		0x47400, 0x47408,
2568 		0x47414, 0x47420,
2569 		0x47600, 0x47618,
2570 		0x47800, 0x47814,
2571 		0x47820, 0x4782c,
2572 		0x50000, 0x50084,
2573 		0x50090, 0x500cc,
2574 		0x50300, 0x50384,
2575 		0x50400, 0x50400,
2576 		0x50800, 0x50884,
2577 		0x50890, 0x508cc,
2578 		0x50b00, 0x50b84,
2579 		0x50c00, 0x50c00,
2580 		0x51000, 0x51020,
2581 		0x51028, 0x510b0,
2582 		0x51300, 0x51324,
2583 	};
2584 
2585 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2586 	const unsigned int *reg_ranges;
2587 	int reg_ranges_size, range;
2588 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2589 
2590 	/* Select the right set of register ranges to dump depending on the
2591 	 * adapter chip type.
2592 	 */
2593 	switch (chip_version) {
2594 	case CHELSIO_T4:
2595 		reg_ranges = t4_reg_ranges;
2596 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2597 		break;
2598 
2599 	case CHELSIO_T5:
2600 		reg_ranges = t5_reg_ranges;
2601 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2602 		break;
2603 
2604 	case CHELSIO_T6:
2605 		reg_ranges = t6_reg_ranges;
2606 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2607 		break;
2608 
2609 	default:
2610 		dev_err(adap->pdev_dev,
2611 			"Unsupported chip version %d\n", chip_version);
2612 		return;
2613 	}
2614 
2615 	/* Clear the register buffer and insert the appropriate register
2616 	 * values selected by the above register ranges.
2617 	 */
2618 	memset(buf, 0, buf_size);
2619 	for (range = 0; range < reg_ranges_size; range += 2) {
2620 		unsigned int reg = reg_ranges[range];
2621 		unsigned int last_reg = reg_ranges[range + 1];
2622 		u32 *bufp = (u32 *)((char *)buf + reg);
2623 
2624 		/* Iterate across the register range filling in the register
2625 		 * buffer but don't write past the end of the register buffer.
2626 		 */
2627 		while (reg <= last_reg && bufp < buf_end) {
2628 			*bufp++ = t4_read_reg(adap, reg);
2629 			reg += sizeof(u32);
2630 		}
2631 	}
2632 }
2633 
2634 #define EEPROM_STAT_ADDR   0x7bfc
2635 #define VPD_SIZE           0x800
2636 #define VPD_BASE           0x400
2637 #define VPD_BASE_OLD       0
2638 #define VPD_LEN            1024
2639 #define CHELSIO_VPD_UNIQUE_ID 0x82
2640 
2641 /**
2642  *	t4_seeprom_wp - enable/disable EEPROM write protection
2643  *	@adapter: the adapter
2644  *	@enable: whether to enable or disable write protection
2645  *
2646  *	Enables or disables write protection on the serial EEPROM.
2647  */
2648 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2649 {
2650 	unsigned int v = enable ? 0xc : 0;
2651 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2652 	return ret < 0 ? ret : 0;
2653 }
2654 
2655 /**
2656  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2657  *	@adapter: adapter to read
2658  *	@p: where to store the parameters
2659  *
2660  *	Reads card parameters stored in VPD EEPROM.
2661  */
2662 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2663 {
2664 	int i, ret = 0, addr;
2665 	int ec, sn, pn, na;
2666 	u8 *vpd, csum;
2667 	unsigned int vpdr_len, kw_offset, id_len;
2668 
2669 	vpd = vmalloc(VPD_LEN);
2670 	if (!vpd)
2671 		return -ENOMEM;
2672 
2673 	/* We have two VPD data structures stored in the adapter VPD area.
2674 	 * By default, Linux calculates the size of the VPD area by traversing
2675 	 * the first VPD area at offset 0x0, so we need to tell the OS what
2676 	 * our real VPD size is.
2677 	 */
2678 	ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2679 	if (ret < 0)
2680 		goto out;
2681 
2682 	/* Card information normally starts at VPD_BASE but early cards had
2683 	 * it at 0.
2684 	 */
2685 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2686 	if (ret < 0)
2687 		goto out;
2688 
2689 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2690 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2691 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2692 	 * is expected to automatically put this entry at the
2693 	 * beginning of the VPD.
2694 	 */
2695 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2696 
2697 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2698 	if (ret < 0)
2699 		goto out;
2700 
2701 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2702 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2703 		ret = -EINVAL;
2704 		goto out;
2705 	}
2706 
2707 	id_len = pci_vpd_lrdt_size(vpd);
2708 	if (id_len > ID_LEN)
2709 		id_len = ID_LEN;
2710 
2711 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2712 	if (i < 0) {
2713 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2714 		ret = -EINVAL;
2715 		goto out;
2716 	}
2717 
2718 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2719 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2720 	if (vpdr_len + kw_offset > VPD_LEN) {
2721 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2722 		ret = -EINVAL;
2723 		goto out;
2724 	}
2725 
2726 #define FIND_VPD_KW(var, name) do { \
2727 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2728 	if (var < 0) { \
2729 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2730 		ret = -EINVAL; \
2731 		goto out; \
2732 	} \
2733 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2734 } while (0)
2735 
2736 	FIND_VPD_KW(i, "RV");
2737 	for (csum = 0; i >= 0; i--)
2738 		csum += vpd[i];
2739 
2740 	if (csum) {
2741 		dev_err(adapter->pdev_dev,
2742 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2743 		ret = -EINVAL;
2744 		goto out;
2745 	}
2746 
2747 	FIND_VPD_KW(ec, "EC");
2748 	FIND_VPD_KW(sn, "SN");
2749 	FIND_VPD_KW(pn, "PN");
2750 	FIND_VPD_KW(na, "NA");
2751 #undef FIND_VPD_KW
2752 
2753 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2754 	strim(p->id);
2755 	memcpy(p->ec, vpd + ec, EC_LEN);
2756 	strim(p->ec);
2757 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2758 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2759 	strim(p->sn);
2760 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2761 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2762 	strim(p->pn);
2763 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2764 	strim((char *)p->na);
2765 
2766 out:
2767 	vfree(vpd);
2768 	return ret < 0 ? ret : 0;
2769 }
2770 
2771 /**
2772  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2773  *	@adapter: adapter to read
2774  *	@p: where to store the parameters
2775  *
2776  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2777  *	Clock.  This can only be called after a connection to the firmware
2778  *	is established.
2779  */
2780 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2781 {
2782 	u32 cclk_param, cclk_val;
2783 	int ret;
2784 
2785 	/* Grab the raw VPD parameters.
2786 	 */
2787 	ret = t4_get_raw_vpd_params(adapter, p);
2788 	if (ret)
2789 		return ret;
2790 
2791 	/* Ask firmware for the Core Clock since it knows how to translate the
2792 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2793 	 */
2794 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2795 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2796 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2797 			      1, &cclk_param, &cclk_val);
2798 
2799 	if (ret)
2800 		return ret;
2801 	p->cclk = cclk_val;
2802 
2803 	return 0;
2804 }
2805 
2806 /* serial flash and firmware constants */
2807 enum {
2808 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2809 
2810 	/* flash command opcodes */
2811 	SF_PROG_PAGE    = 2,          /* program page */
2812 	SF_WR_DISABLE   = 4,          /* disable writes */
2813 	SF_RD_STATUS    = 5,          /* read status register */
2814 	SF_WR_ENABLE    = 6,          /* enable writes */
2815 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2816 	SF_RD_ID        = 0x9f,       /* read ID */
2817 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2818 
2819 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2820 };
2821 
2822 /**
2823  *	sf1_read - read data from the serial flash
2824  *	@adapter: the adapter
2825  *	@byte_cnt: number of bytes to read
2826  *	@cont: whether another operation will be chained
2827  *	@lock: whether to lock SF for PL access only
2828  *	@valp: where to store the read data
2829  *
2830  *	Reads up to 4 bytes of data from the serial flash.  The location of
2831  *	the read needs to be specified prior to calling this by issuing the
2832  *	appropriate commands to the serial flash.
2833  */
2834 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2835 		    int lock, u32 *valp)
2836 {
2837 	int ret;
2838 
2839 	if (!byte_cnt || byte_cnt > 4)
2840 		return -EINVAL;
2841 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2842 		return -EBUSY;
2843 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2844 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2845 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2846 	if (!ret)
2847 		*valp = t4_read_reg(adapter, SF_DATA_A);
2848 	return ret;
2849 }
2850 
2851 /**
2852  *	sf1_write - write data to the serial flash
2853  *	@adapter: the adapter
2854  *	@byte_cnt: number of bytes to write
2855  *	@cont: whether another operation will be chained
2856  *	@lock: whether to lock SF for PL access only
2857  *	@val: value to write
2858  *
2859  *	Writes up to 4 bytes of data to the serial flash.  The location of
2860  *	the write needs to be specified prior to calling this by issuing the
2861  *	appropriate commands to the serial flash.
2862  */
2863 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2864 		     int lock, u32 val)
2865 {
2866 	if (!byte_cnt || byte_cnt > 4)
2867 		return -EINVAL;
2868 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2869 		return -EBUSY;
2870 	t4_write_reg(adapter, SF_DATA_A, val);
2871 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2872 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2873 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2874 }
2875 
2876 /**
2877  *	flash_wait_op - wait for a flash operation to complete
2878  *	@adapter: the adapter
2879  *	@attempts: max number of polls of the status register
2880  *	@delay: delay between polls in ms
2881  *
2882  *	Wait for a flash operation to complete by polling the status register.
2883  */
2884 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2885 {
2886 	int ret;
2887 	u32 status;
2888 
2889 	while (1) {
2890 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2891 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2892 			return ret;
2893 		if (!(status & 1))
2894 			return 0;
2895 		if (--attempts == 0)
2896 			return -EAGAIN;
2897 		if (delay)
2898 			msleep(delay);
2899 	}
2900 }
2901 
2902 /**
2903  *	t4_read_flash - read words from serial flash
2904  *	@adapter: the adapter
2905  *	@addr: the start address for the read
2906  *	@nwords: how many 32-bit words to read
2907  *	@data: where to store the read data
2908  *	@byte_oriented: whether to store data as bytes or as words
2909  *
2910  *	Read the specified number of 32-bit words from the serial flash.
2911  *	If @byte_oriented is set the read data is stored as a byte array
2912  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2913  *	natural endianness.
2914  */
2915 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2916 		  unsigned int nwords, u32 *data, int byte_oriented)
2917 {
2918 	int ret;
2919 
2920 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2921 		return -EINVAL;
2922 
2923 	addr = swab32(addr) | SF_RD_DATA_FAST;
2924 
2925 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2926 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2927 		return ret;
2928 
2929 	for ( ; nwords; nwords--, data++) {
2930 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2931 		if (nwords == 1)
2932 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2933 		if (ret)
2934 			return ret;
2935 		if (byte_oriented)
2936 			*data = (__force __u32)(cpu_to_be32(*data));
2937 	}
2938 	return 0;
2939 }
2940 
2941 /**
2942  *	t4_write_flash - write up to a page of data to the serial flash
2943  *	@adapter: the adapter
2944  *	@addr: the start address to write
2945  *	@n: length of data to write in bytes
2946  *	@data: the data to write
2947  *
2948  *	Writes up to a page of data (256 bytes) to the serial flash starting
2949  *	at the given address.  All the data must be written to the same page.
2950  */
2951 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2952 			  unsigned int n, const u8 *data)
2953 {
2954 	int ret;
2955 	u32 buf[64];
2956 	unsigned int i, c, left, val, offset = addr & 0xff;
2957 
2958 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2959 		return -EINVAL;
2960 
2961 	val = swab32(addr) | SF_PROG_PAGE;
2962 
2963 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2964 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2965 		goto unlock;
2966 
2967 	for (left = n; left; left -= c) {
2968 		c = min(left, 4U);
2969 		for (val = 0, i = 0; i < c; ++i)
2970 			val = (val << 8) + *data++;
2971 
2972 		ret = sf1_write(adapter, c, c != left, 1, val);
2973 		if (ret)
2974 			goto unlock;
2975 	}
2976 	ret = flash_wait_op(adapter, 8, 1);
2977 	if (ret)
2978 		goto unlock;
2979 
2980 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2981 
2982 	/* Read the page to verify the write succeeded */
2983 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2984 	if (ret)
2985 		return ret;
2986 
2987 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
2988 		dev_err(adapter->pdev_dev,
2989 			"failed to correctly write the flash page at %#x\n",
2990 			addr);
2991 		return -EIO;
2992 	}
2993 	return 0;
2994 
2995 unlock:
2996 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2997 	return ret;
2998 }
2999 
3000 /**
3001  *	t4_get_fw_version - read the firmware version
3002  *	@adapter: the adapter
3003  *	@vers: where to place the version
3004  *
3005  *	Reads the FW version from flash.
3006  */
3007 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3008 {
3009 	return t4_read_flash(adapter, FLASH_FW_START +
3010 			     offsetof(struct fw_hdr, fw_ver), 1,
3011 			     vers, 0);
3012 }
3013 
3014 /**
3015  *	t4_get_bs_version - read the firmware bootstrap version
3016  *	@adapter: the adapter
3017  *	@vers: where to place the version
3018  *
3019  *	Reads the FW Bootstrap version from flash.
3020  */
3021 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3022 {
3023 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3024 			     offsetof(struct fw_hdr, fw_ver), 1,
3025 			     vers, 0);
3026 }
3027 
3028 /**
3029  *	t4_get_tp_version - read the TP microcode version
3030  *	@adapter: the adapter
3031  *	@vers: where to place the version
3032  *
3033  *	Reads the TP microcode version from flash.
3034  */
3035 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3036 {
3037 	return t4_read_flash(adapter, FLASH_FW_START +
3038 			     offsetof(struct fw_hdr, tp_microcode_ver),
3039 			     1, vers, 0);
3040 }
3041 
3042 /**
3043  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3044  *	@adapter: the adapter
3045  *	@vers: where to place the version
3046  *
3047  *	Reads the Expansion ROM header from FLASH and returns the version
3048  *	number (if present) through the @vers return value pointer.  We return
3049  *	this in the Firmware Version Format since it's convenient.  Return
3050  *	0 on success, -ENOENT if no Expansion ROM is present.
3051  */
3052 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3053 {
3054 	struct exprom_header {
3055 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3056 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3057 	} *hdr;
3058 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3059 					   sizeof(u32))];
3060 	int ret;
3061 
3062 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3063 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3064 			    0);
3065 	if (ret)
3066 		return ret;
3067 
3068 	hdr = (struct exprom_header *)exprom_header_buf;
3069 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3070 		return -ENOENT;
3071 
3072 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3073 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3074 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3075 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3076 	return 0;
3077 }
3078 
3079 /**
3080  *      t4_get_vpd_version - return the VPD version
3081  *      @adapter: the adapter
3082  *      @vers: where to place the version
3083  *
3084  *      Reads the VPD via the Firmware interface (thus this can only be called
3085  *      once we're ready to issue Firmware commands).  The format of the
3086  *      VPD version is adapter specific.  Returns 0 on success, an error on
3087  *      failure.
3088  *
3089  *      Note that early versions of the Firmware didn't include the ability
3090  *      to retrieve the VPD version, so we zero-out the return-value parameter
3091  *      in that case to avoid leaving it with garbage in it.
3092  *
3093  *      Also note that the Firmware will return its cached copy of the VPD
3094  *      Revision ID, not the actual Revision ID as written in the Serial
3095  *      EEPROM.  This is only an issue if a new VPD has been written and the
3096  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3097  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3098  *      if the Host Driver will be performing a full adapter initialization.
3099  */
3100 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3101 {
3102 	u32 vpdrev_param;
3103 	int ret;
3104 
3105 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3106 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3107 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3108 			      1, &vpdrev_param, vers);
3109 	if (ret)
3110 		*vers = 0;
3111 	return ret;
3112 }
3113 
3114 /**
3115  *      t4_get_scfg_version - return the Serial Configuration version
3116  *      @adapter: the adapter
3117  *      @vers: where to place the version
3118  *
3119  *      Reads the Serial Configuration Version via the Firmware interface
3120  *      (thus this can only be called once we're ready to issue Firmware
3121  *      commands).  The format of the Serial Configuration version is
3122  *      adapter specific.  Returns 0 on success, an error on failure.
3123  *
3124  *      Note that early versions of the Firmware didn't include the ability
3125  *      to retrieve the Serial Configuration version, so we zero-out the
3126  *      return-value parameter in that case to avoid leaving it with
3127  *      garbage in it.
3128  *
3129  *      Also note that the Firmware will return its cached copy of the Serial
3130  *      Initialization Revision ID, not the actual Revision ID as written in
3131  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3132  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3133  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3134  *      been issued if the Host Driver will be performing a full adapter
3135  *      initialization.
3136  */
3137 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3138 {
3139 	u32 scfgrev_param;
3140 	int ret;
3141 
3142 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3143 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3144 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3145 			      1, &scfgrev_param, vers);
3146 	if (ret)
3147 		*vers = 0;
3148 	return ret;
3149 }
3150 
3151 /**
3152  *      t4_get_version_info - extract various chip/firmware version information
3153  *      @adapter: the adapter
3154  *
3155  *      Reads various chip/firmware version numbers and stores them into the
3156  *      adapter Adapter Parameters structure.  If any of the efforts fails
3157  *      the first failure will be returned, but all of the version numbers
3158  *      will be read.
3159  */
3160 int t4_get_version_info(struct adapter *adapter)
3161 {
3162 	int ret = 0;
3163 
3164 	#define FIRST_RET(__getvinfo) \
3165 	do { \
3166 		int __ret = __getvinfo; \
3167 		if (__ret && !ret) \
3168 			ret = __ret; \
3169 	} while (0)
3170 
3171 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3172 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3173 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3174 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3175 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3176 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3177 
3178 	#undef FIRST_RET
3179 	return ret;
3180 }
3181 
3182 /**
3183  *      t4_dump_version_info - dump all of the adapter configuration IDs
3184  *      @adapter: the adapter
3185  *
3186  *      Dumps all of the various bits of adapter configuration version/revision
3187  *      IDs information.  This is typically called at some point after
3188  *      t4_get_version_info() has been called.
3189  */
3190 void t4_dump_version_info(struct adapter *adapter)
3191 {
3192 	/* Device information */
3193 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3194 		 adapter->params.vpd.id,
3195 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3196 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3197 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3198 
3199 	/* Firmware Version */
3200 	if (!adapter->params.fw_vers)
3201 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3202 	else
3203 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3204 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3205 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3206 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3207 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3208 
3209 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3210 	 * Firmware, so dev_info() is more appropriate here.)
3211 	 */
3212 	if (!adapter->params.bs_vers)
3213 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3214 	else
3215 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3216 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3217 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3218 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3219 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3220 
3221 	/* TP Microcode Version */
3222 	if (!adapter->params.tp_vers)
3223 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3224 	else
3225 		dev_info(adapter->pdev_dev,
3226 			 "TP Microcode version: %u.%u.%u.%u\n",
3227 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3228 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3229 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3230 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3231 
3232 	/* Expansion ROM version */
3233 	if (!adapter->params.er_vers)
3234 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3235 	else
3236 		dev_info(adapter->pdev_dev,
3237 			 "Expansion ROM version: %u.%u.%u.%u\n",
3238 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3239 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3240 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3241 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3242 
3243 	/* Serial Configuration version */
3244 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3245 		 adapter->params.scfg_vers);
3246 
3247 	/* VPD Version */
3248 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3249 		 adapter->params.vpd_vers);
3250 }
3251 
3252 /**
3253  *	t4_check_fw_version - check if the FW is supported with this driver
3254  *	@adap: the adapter
3255  *
3256  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3257  *	if there's exact match, a negative error if the version could not be
3258  *	read or there's a major version mismatch
3259  */
3260 int t4_check_fw_version(struct adapter *adap)
3261 {
3262 	int i, ret, major, minor, micro;
3263 	int exp_major, exp_minor, exp_micro;
3264 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3265 
3266 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3267 	/* Try multiple times before returning error */
3268 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3269 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3270 
3271 	if (ret)
3272 		return ret;
3273 
3274 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3275 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3276 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3277 
3278 	switch (chip_version) {
3279 	case CHELSIO_T4:
3280 		exp_major = T4FW_MIN_VERSION_MAJOR;
3281 		exp_minor = T4FW_MIN_VERSION_MINOR;
3282 		exp_micro = T4FW_MIN_VERSION_MICRO;
3283 		break;
3284 	case CHELSIO_T5:
3285 		exp_major = T5FW_MIN_VERSION_MAJOR;
3286 		exp_minor = T5FW_MIN_VERSION_MINOR;
3287 		exp_micro = T5FW_MIN_VERSION_MICRO;
3288 		break;
3289 	case CHELSIO_T6:
3290 		exp_major = T6FW_MIN_VERSION_MAJOR;
3291 		exp_minor = T6FW_MIN_VERSION_MINOR;
3292 		exp_micro = T6FW_MIN_VERSION_MICRO;
3293 		break;
3294 	default:
3295 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3296 			adap->chip);
3297 		return -EINVAL;
3298 	}
3299 
3300 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3301 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3302 		dev_err(adap->pdev_dev,
3303 			"Card has firmware version %u.%u.%u, minimum "
3304 			"supported firmware is %u.%u.%u.\n", major, minor,
3305 			micro, exp_major, exp_minor, exp_micro);
3306 		return -EFAULT;
3307 	}
3308 	return 0;
3309 }
3310 
3311 /* Is the given firmware API compatible with the one the driver was compiled
3312  * with?
3313  */
3314 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3315 {
3316 
3317 	/* short circuit if it's the exact same firmware version */
3318 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3319 		return 1;
3320 
3321 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3322 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3323 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3324 		return 1;
3325 #undef SAME_INTF
3326 
3327 	return 0;
3328 }
3329 
3330 /* The firmware in the filesystem is usable, but should it be installed?
3331  * This routine explains itself in detail if it indicates the filesystem
3332  * firmware should be installed.
3333  */
3334 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3335 				int k, int c)
3336 {
3337 	const char *reason;
3338 
3339 	if (!card_fw_usable) {
3340 		reason = "incompatible or unusable";
3341 		goto install;
3342 	}
3343 
3344 	if (k > c) {
3345 		reason = "older than the version supported with this driver";
3346 		goto install;
3347 	}
3348 
3349 	return 0;
3350 
3351 install:
3352 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3353 		"installing firmware %u.%u.%u.%u on card.\n",
3354 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3355 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3356 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3357 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3358 
3359 	return 1;
3360 }
3361 
3362 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3363 	       const u8 *fw_data, unsigned int fw_size,
3364 	       struct fw_hdr *card_fw, enum dev_state state,
3365 	       int *reset)
3366 {
3367 	int ret, card_fw_usable, fs_fw_usable;
3368 	const struct fw_hdr *fs_fw;
3369 	const struct fw_hdr *drv_fw;
3370 
3371 	drv_fw = &fw_info->fw_hdr;
3372 
3373 	/* Read the header of the firmware on the card */
3374 	ret = -t4_read_flash(adap, FLASH_FW_START,
3375 			    sizeof(*card_fw) / sizeof(uint32_t),
3376 			    (uint32_t *)card_fw, 1);
3377 	if (ret == 0) {
3378 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3379 	} else {
3380 		dev_err(adap->pdev_dev,
3381 			"Unable to read card's firmware header: %d\n", ret);
3382 		card_fw_usable = 0;
3383 	}
3384 
3385 	if (fw_data != NULL) {
3386 		fs_fw = (const void *)fw_data;
3387 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3388 	} else {
3389 		fs_fw = NULL;
3390 		fs_fw_usable = 0;
3391 	}
3392 
3393 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3394 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3395 		/* Common case: the firmware on the card is an exact match and
3396 		 * the filesystem one is an exact match too, or the filesystem
3397 		 * one is absent/incompatible.
3398 		 */
3399 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3400 		   should_install_fs_fw(adap, card_fw_usable,
3401 					be32_to_cpu(fs_fw->fw_ver),
3402 					be32_to_cpu(card_fw->fw_ver))) {
3403 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3404 				     fw_size, 0);
3405 		if (ret != 0) {
3406 			dev_err(adap->pdev_dev,
3407 				"failed to install firmware: %d\n", ret);
3408 			goto bye;
3409 		}
3410 
3411 		/* Installed successfully, update the cached header too. */
3412 		*card_fw = *fs_fw;
3413 		card_fw_usable = 1;
3414 		*reset = 0;	/* already reset as part of load_fw */
3415 	}
3416 
3417 	if (!card_fw_usable) {
3418 		uint32_t d, c, k;
3419 
3420 		d = be32_to_cpu(drv_fw->fw_ver);
3421 		c = be32_to_cpu(card_fw->fw_ver);
3422 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3423 
3424 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3425 			"chip state %d, "
3426 			"driver compiled with %d.%d.%d.%d, "
3427 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3428 			state,
3429 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3430 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3431 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3432 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3433 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3434 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3435 		ret = EINVAL;
3436 		goto bye;
3437 	}
3438 
3439 	/* We're using whatever's on the card and it's known to be good. */
3440 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3441 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3442 
3443 bye:
3444 	return ret;
3445 }
3446 
3447 /**
3448  *	t4_flash_erase_sectors - erase a range of flash sectors
3449  *	@adapter: the adapter
3450  *	@start: the first sector to erase
3451  *	@end: the last sector to erase
3452  *
3453  *	Erases the sectors in the given inclusive range.
3454  */
3455 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3456 {
3457 	int ret = 0;
3458 
3459 	if (end >= adapter->params.sf_nsec)
3460 		return -EINVAL;
3461 
3462 	while (start <= end) {
3463 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3464 		    (ret = sf1_write(adapter, 4, 0, 1,
3465 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3466 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3467 			dev_err(adapter->pdev_dev,
3468 				"erase of flash sector %d failed, error %d\n",
3469 				start, ret);
3470 			break;
3471 		}
3472 		start++;
3473 	}
3474 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3475 	return ret;
3476 }
3477 
3478 /**
3479  *	t4_flash_cfg_addr - return the address of the flash configuration file
3480  *	@adapter: the adapter
3481  *
3482  *	Return the address within the flash where the Firmware Configuration
3483  *	File is stored.
3484  */
3485 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3486 {
3487 	if (adapter->params.sf_size == 0x100000)
3488 		return FLASH_FPGA_CFG_START;
3489 	else
3490 		return FLASH_CFG_START;
3491 }
3492 
3493 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3494  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3495  * and emit an error message for mismatched firmware to save our caller the
3496  * effort ...
3497  */
3498 static bool t4_fw_matches_chip(const struct adapter *adap,
3499 			       const struct fw_hdr *hdr)
3500 {
3501 	/* The expression below will return FALSE for any unsupported adapter
3502 	 * which will keep us "honest" in the future ...
3503 	 */
3504 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3505 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3506 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3507 		return true;
3508 
3509 	dev_err(adap->pdev_dev,
3510 		"FW image (%d) is not suitable for this adapter (%d)\n",
3511 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3512 	return false;
3513 }
3514 
3515 /**
3516  *	t4_load_fw - download firmware
3517  *	@adap: the adapter
3518  *	@fw_data: the firmware image to write
3519  *	@size: image size
3520  *
3521  *	Write the supplied firmware image to the card's serial flash.
3522  */
3523 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3524 {
3525 	u32 csum;
3526 	int ret, addr;
3527 	unsigned int i;
3528 	u8 first_page[SF_PAGE_SIZE];
3529 	const __be32 *p = (const __be32 *)fw_data;
3530 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3531 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3532 	unsigned int fw_img_start = adap->params.sf_fw_start;
3533 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3534 
3535 	if (!size) {
3536 		dev_err(adap->pdev_dev, "FW image has no data\n");
3537 		return -EINVAL;
3538 	}
3539 	if (size & 511) {
3540 		dev_err(adap->pdev_dev,
3541 			"FW image size not multiple of 512 bytes\n");
3542 		return -EINVAL;
3543 	}
3544 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3545 		dev_err(adap->pdev_dev,
3546 			"FW image size differs from size in FW header\n");
3547 		return -EINVAL;
3548 	}
3549 	if (size > FW_MAX_SIZE) {
3550 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3551 			FW_MAX_SIZE);
3552 		return -EFBIG;
3553 	}
3554 	if (!t4_fw_matches_chip(adap, hdr))
3555 		return -EINVAL;
3556 
3557 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3558 		csum += be32_to_cpu(p[i]);
3559 
3560 	if (csum != 0xffffffff) {
3561 		dev_err(adap->pdev_dev,
3562 			"corrupted firmware image, checksum %#x\n", csum);
3563 		return -EINVAL;
3564 	}
3565 
3566 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3567 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3568 	if (ret)
3569 		goto out;
3570 
3571 	/*
3572 	 * We write the correct version at the end so the driver can see a bad
3573 	 * version if the FW write fails.  Start by writing a copy of the
3574 	 * first page with a bad version.
3575 	 */
3576 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3577 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3578 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3579 	if (ret)
3580 		goto out;
3581 
3582 	addr = fw_img_start;
3583 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3584 		addr += SF_PAGE_SIZE;
3585 		fw_data += SF_PAGE_SIZE;
3586 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3587 		if (ret)
3588 			goto out;
3589 	}
3590 
3591 	ret = t4_write_flash(adap,
3592 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3593 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3594 out:
3595 	if (ret)
3596 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3597 			ret);
3598 	else
3599 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3600 	return ret;
3601 }
3602 
3603 /**
3604  *	t4_phy_fw_ver - return current PHY firmware version
3605  *	@adap: the adapter
3606  *	@phy_fw_ver: return value buffer for PHY firmware version
3607  *
3608  *	Returns the current version of external PHY firmware on the
3609  *	adapter.
3610  */
3611 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3612 {
3613 	u32 param, val;
3614 	int ret;
3615 
3616 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3617 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3618 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3619 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3620 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3621 			      &param, &val);
3622 	if (ret < 0)
3623 		return ret;
3624 	*phy_fw_ver = val;
3625 	return 0;
3626 }
3627 
3628 /**
3629  *	t4_load_phy_fw - download port PHY firmware
3630  *	@adap: the adapter
3631  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3632  *	@win_lock: the lock to use to guard the memory copy
3633  *	@phy_fw_version: function to check PHY firmware versions
3634  *	@phy_fw_data: the PHY firmware image to write
3635  *	@phy_fw_size: image size
3636  *
3637  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3638  *	@phy_fw_version is supplied, then it will be used to determine if
3639  *	it's necessary to perform the transfer by comparing the version
3640  *	of any existing adapter PHY firmware with that of the passed in
3641  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3642  *	around the call to t4_memory_rw() which transfers the PHY firmware
3643  *	to the adapter.
3644  *
3645  *	A negative error number will be returned if an error occurs.  If
3646  *	version number support is available and there's no need to upgrade
3647  *	the firmware, 0 will be returned.  If firmware is successfully
3648  *	transferred to the adapter, 1 will be retured.
3649  *
3650  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3651  *	a result, a RESET of the adapter would cause that RAM to lose its
3652  *	contents.  Thus, loading PHY firmware on such adapters must happen
3653  *	after any FW_RESET_CMDs ...
3654  */
3655 int t4_load_phy_fw(struct adapter *adap,
3656 		   int win, spinlock_t *win_lock,
3657 		   int (*phy_fw_version)(const u8 *, size_t),
3658 		   const u8 *phy_fw_data, size_t phy_fw_size)
3659 {
3660 	unsigned long mtype = 0, maddr = 0;
3661 	u32 param, val;
3662 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3663 	int ret;
3664 
3665 	/* If we have version number support, then check to see if the adapter
3666 	 * already has up-to-date PHY firmware loaded.
3667 	 */
3668 	 if (phy_fw_version) {
3669 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3670 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3671 		if (ret < 0)
3672 			return ret;
3673 
3674 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3675 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3676 				"version %#x\n", cur_phy_fw_ver);
3677 			return 0;
3678 		}
3679 	}
3680 
3681 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3682 	 * The size of the file requires a special version of the READ coommand
3683 	 * which will pass the file size via the values field in PARAMS_CMD and
3684 	 * retrieve the return value from firmware and place it in the same
3685 	 * buffer values
3686 	 */
3687 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3688 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3689 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3690 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3691 	val = phy_fw_size;
3692 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3693 				 &param, &val, 1, true);
3694 	if (ret < 0)
3695 		return ret;
3696 	mtype = val >> 8;
3697 	maddr = (val & 0xff) << 16;
3698 
3699 	/* Copy the supplied PHY Firmware image to the adapter memory location
3700 	 * allocated by the adapter firmware.
3701 	 */
3702 	if (win_lock)
3703 		spin_lock_bh(win_lock);
3704 	ret = t4_memory_rw(adap, win, mtype, maddr,
3705 			   phy_fw_size, (__be32 *)phy_fw_data,
3706 			   T4_MEMORY_WRITE);
3707 	if (win_lock)
3708 		spin_unlock_bh(win_lock);
3709 	if (ret)
3710 		return ret;
3711 
3712 	/* Tell the firmware that the PHY firmware image has been written to
3713 	 * RAM and it can now start copying it over to the PHYs.  The chip
3714 	 * firmware will RESET the affected PHYs as part of this operation
3715 	 * leaving them running the new PHY firmware image.
3716 	 */
3717 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3718 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3719 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3720 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3721 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3722 				    &param, &val, 30000);
3723 
3724 	/* If we have version number support, then check to see that the new
3725 	 * firmware got loaded properly.
3726 	 */
3727 	if (phy_fw_version) {
3728 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3729 		if (ret < 0)
3730 			return ret;
3731 
3732 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3733 			CH_WARN(adap, "PHY Firmware did not update: "
3734 				"version on adapter %#x, "
3735 				"version flashed %#x\n",
3736 				cur_phy_fw_ver, new_phy_fw_vers);
3737 			return -ENXIO;
3738 		}
3739 	}
3740 
3741 	return 1;
3742 }
3743 
3744 /**
3745  *	t4_fwcache - firmware cache operation
3746  *	@adap: the adapter
3747  *	@op  : the operation (flush or flush and invalidate)
3748  */
3749 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3750 {
3751 	struct fw_params_cmd c;
3752 
3753 	memset(&c, 0, sizeof(c));
3754 	c.op_to_vfn =
3755 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3756 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3757 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3758 			    FW_PARAMS_CMD_VFN_V(0));
3759 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3760 	c.param[0].mnem =
3761 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3762 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3763 	c.param[0].val = (__force __be32)op;
3764 
3765 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3766 }
3767 
3768 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3769 			unsigned int *pif_req_wrptr,
3770 			unsigned int *pif_rsp_wrptr)
3771 {
3772 	int i, j;
3773 	u32 cfg, val, req, rsp;
3774 
3775 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3776 	if (cfg & LADBGEN_F)
3777 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3778 
3779 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3780 	req = POLADBGWRPTR_G(val);
3781 	rsp = PILADBGWRPTR_G(val);
3782 	if (pif_req_wrptr)
3783 		*pif_req_wrptr = req;
3784 	if (pif_rsp_wrptr)
3785 		*pif_rsp_wrptr = rsp;
3786 
3787 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3788 		for (j = 0; j < 6; j++) {
3789 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3790 				     PILADBGRDPTR_V(rsp));
3791 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3792 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3793 			req++;
3794 			rsp++;
3795 		}
3796 		req = (req + 2) & POLADBGRDPTR_M;
3797 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3798 	}
3799 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3800 }
3801 
3802 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3803 {
3804 	u32 cfg;
3805 	int i, j, idx;
3806 
3807 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3808 	if (cfg & LADBGEN_F)
3809 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3810 
3811 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3812 		for (j = 0; j < 5; j++) {
3813 			idx = 8 * i + j;
3814 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3815 				     PILADBGRDPTR_V(idx));
3816 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3817 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3818 		}
3819 	}
3820 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3821 }
3822 
3823 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3824 {
3825 	unsigned int i, j;
3826 
3827 	for (i = 0; i < 8; i++) {
3828 		u32 *p = la_buf + i;
3829 
3830 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3831 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3832 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3833 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3834 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3835 	}
3836 }
3837 
3838 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3839 		     FW_PORT_CAP32_ANEG)
3840 
3841 /**
3842  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3843  *	@caps16: a 16-bit Port Capabilities value
3844  *
3845  *	Returns the equivalent 32-bit Port Capabilities value.
3846  */
3847 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3848 {
3849 	fw_port_cap32_t caps32 = 0;
3850 
3851 	#define CAP16_TO_CAP32(__cap) \
3852 		do { \
3853 			if (caps16 & FW_PORT_CAP_##__cap) \
3854 				caps32 |= FW_PORT_CAP32_##__cap; \
3855 		} while (0)
3856 
3857 	CAP16_TO_CAP32(SPEED_100M);
3858 	CAP16_TO_CAP32(SPEED_1G);
3859 	CAP16_TO_CAP32(SPEED_25G);
3860 	CAP16_TO_CAP32(SPEED_10G);
3861 	CAP16_TO_CAP32(SPEED_40G);
3862 	CAP16_TO_CAP32(SPEED_100G);
3863 	CAP16_TO_CAP32(FC_RX);
3864 	CAP16_TO_CAP32(FC_TX);
3865 	CAP16_TO_CAP32(ANEG);
3866 	CAP16_TO_CAP32(MDIX);
3867 	CAP16_TO_CAP32(MDIAUTO);
3868 	CAP16_TO_CAP32(FEC_RS);
3869 	CAP16_TO_CAP32(FEC_BASER_RS);
3870 	CAP16_TO_CAP32(802_3_PAUSE);
3871 	CAP16_TO_CAP32(802_3_ASM_DIR);
3872 
3873 	#undef CAP16_TO_CAP32
3874 
3875 	return caps32;
3876 }
3877 
3878 /**
3879  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3880  *	@caps32: a 32-bit Port Capabilities value
3881  *
3882  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3883  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3884  *	Port Capabilities and some fields/values may not make it.
3885  */
3886 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3887 {
3888 	fw_port_cap16_t caps16 = 0;
3889 
3890 	#define CAP32_TO_CAP16(__cap) \
3891 		do { \
3892 			if (caps32 & FW_PORT_CAP32_##__cap) \
3893 				caps16 |= FW_PORT_CAP_##__cap; \
3894 		} while (0)
3895 
3896 	CAP32_TO_CAP16(SPEED_100M);
3897 	CAP32_TO_CAP16(SPEED_1G);
3898 	CAP32_TO_CAP16(SPEED_10G);
3899 	CAP32_TO_CAP16(SPEED_25G);
3900 	CAP32_TO_CAP16(SPEED_40G);
3901 	CAP32_TO_CAP16(SPEED_100G);
3902 	CAP32_TO_CAP16(FC_RX);
3903 	CAP32_TO_CAP16(FC_TX);
3904 	CAP32_TO_CAP16(802_3_PAUSE);
3905 	CAP32_TO_CAP16(802_3_ASM_DIR);
3906 	CAP32_TO_CAP16(ANEG);
3907 	CAP32_TO_CAP16(MDIX);
3908 	CAP32_TO_CAP16(MDIAUTO);
3909 	CAP32_TO_CAP16(FEC_RS);
3910 	CAP32_TO_CAP16(FEC_BASER_RS);
3911 
3912 	#undef CAP32_TO_CAP16
3913 
3914 	return caps16;
3915 }
3916 
3917 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3918 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3919 {
3920 	enum cc_pause cc_pause = 0;
3921 
3922 	if (fw_pause & FW_PORT_CAP32_FC_RX)
3923 		cc_pause |= PAUSE_RX;
3924 	if (fw_pause & FW_PORT_CAP32_FC_TX)
3925 		cc_pause |= PAUSE_TX;
3926 
3927 	return cc_pause;
3928 }
3929 
3930 /* Translate Common Code Pause specification into Firmware Port Capabilities */
3931 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
3932 {
3933 	fw_port_cap32_t fw_pause = 0;
3934 
3935 	if (cc_pause & PAUSE_RX)
3936 		fw_pause |= FW_PORT_CAP32_FC_RX;
3937 	if (cc_pause & PAUSE_TX)
3938 		fw_pause |= FW_PORT_CAP32_FC_TX;
3939 
3940 	return fw_pause;
3941 }
3942 
3943 /* Translate Firmware Forward Error Correction specification to Common Code */
3944 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
3945 {
3946 	enum cc_fec cc_fec = 0;
3947 
3948 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
3949 		cc_fec |= FEC_RS;
3950 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
3951 		cc_fec |= FEC_BASER_RS;
3952 
3953 	return cc_fec;
3954 }
3955 
3956 /* Translate Common Code Forward Error Correction specification to Firmware */
3957 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
3958 {
3959 	fw_port_cap32_t fw_fec = 0;
3960 
3961 	if (cc_fec & FEC_RS)
3962 		fw_fec |= FW_PORT_CAP32_FEC_RS;
3963 	if (cc_fec & FEC_BASER_RS)
3964 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
3965 
3966 	return fw_fec;
3967 }
3968 
3969 /**
3970  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3971  *	@adapter: the adapter
3972  *	@mbox: the Firmware Mailbox to use
3973  *	@port: the Port ID
3974  *	@lc: the Port's Link Configuration
3975  *
3976  *	Set up a port's MAC and PHY according to a desired link configuration.
3977  *	- If the PHY can auto-negotiate first decide what to advertise, then
3978  *	  enable/disable auto-negotiation as desired, and reset.
3979  *	- If the PHY does not auto-negotiate just reset it.
3980  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3981  *	  otherwise do it later based on the outcome of auto-negotiation.
3982  */
3983 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox,
3984 		  unsigned int port, struct link_config *lc)
3985 {
3986 	unsigned int fw_caps = adapter->params.fw_caps_support;
3987 	struct fw_port_cmd cmd;
3988 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
3989 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
3990 
3991 	lc->link_ok = 0;
3992 
3993 	/* Convert driver coding of Pause Frame Flow Control settings into the
3994 	 * Firmware's API.
3995 	 */
3996 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
3997 
3998 	/* Convert Common Code Forward Error Control settings into the
3999 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4000 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4001 	 * sent us as part of it's IEEE 802.3-based interpratation of
4002 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4003 	 * use whatever is in the current Requested FEC settings.
4004 	 */
4005 	if (lc->requested_fec & FEC_AUTO)
4006 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4007 	else
4008 		cc_fec = lc->requested_fec;
4009 	fw_fec = cc_to_fwcap_fec(cc_fec);
4010 
4011 	/* Figure out what our Requested Port Capabilities are going to be.
4012 	 */
4013 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4014 		rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
4015 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4016 		lc->fec = cc_fec;
4017 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4018 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4019 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4020 		lc->fec = cc_fec;
4021 	} else {
4022 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4023 	}
4024 
4025 	/* And send that on to the Firmware ...
4026 	 */
4027 	memset(&cmd, 0, sizeof(cmd));
4028 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4029 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4030 				       FW_PORT_CMD_PORTID_V(port));
4031 	cmd.action_to_len16 =
4032 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4033 						 ? FW_PORT_ACTION_L1_CFG
4034 						 : FW_PORT_ACTION_L1_CFG32) |
4035 			    FW_LEN16(cmd));
4036 	if (fw_caps == FW_CAPS16)
4037 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4038 	else
4039 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4040 	return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4041 }
4042 
4043 /**
4044  *	t4_restart_aneg - restart autonegotiation
4045  *	@adap: the adapter
4046  *	@mbox: mbox to use for the FW command
4047  *	@port: the port id
4048  *
4049  *	Restarts autonegotiation for the selected port.
4050  */
4051 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4052 {
4053 	struct fw_port_cmd c;
4054 
4055 	memset(&c, 0, sizeof(c));
4056 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4057 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4058 				     FW_PORT_CMD_PORTID_V(port));
4059 	c.action_to_len16 =
4060 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4061 			    FW_LEN16(c));
4062 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4063 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4064 }
4065 
4066 typedef void (*int_handler_t)(struct adapter *adap);
4067 
4068 struct intr_info {
4069 	unsigned int mask;       /* bits to check in interrupt status */
4070 	const char *msg;         /* message to print or NULL */
4071 	short stat_idx;          /* stat counter to increment or -1 */
4072 	unsigned short fatal;    /* whether the condition reported is fatal */
4073 	int_handler_t int_handler; /* platform-specific int handler */
4074 };
4075 
4076 /**
4077  *	t4_handle_intr_status - table driven interrupt handler
4078  *	@adapter: the adapter that generated the interrupt
4079  *	@reg: the interrupt status register to process
4080  *	@acts: table of interrupt actions
4081  *
4082  *	A table driven interrupt handler that applies a set of masks to an
4083  *	interrupt status word and performs the corresponding actions if the
4084  *	interrupts described by the mask have occurred.  The actions include
4085  *	optionally emitting a warning or alert message.  The table is terminated
4086  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4087  *	conditions.
4088  */
4089 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4090 				 const struct intr_info *acts)
4091 {
4092 	int fatal = 0;
4093 	unsigned int mask = 0;
4094 	unsigned int status = t4_read_reg(adapter, reg);
4095 
4096 	for ( ; acts->mask; ++acts) {
4097 		if (!(status & acts->mask))
4098 			continue;
4099 		if (acts->fatal) {
4100 			fatal++;
4101 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4102 				  status & acts->mask);
4103 		} else if (acts->msg && printk_ratelimit())
4104 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4105 				 status & acts->mask);
4106 		if (acts->int_handler)
4107 			acts->int_handler(adapter);
4108 		mask |= acts->mask;
4109 	}
4110 	status &= mask;
4111 	if (status)                           /* clear processed interrupts */
4112 		t4_write_reg(adapter, reg, status);
4113 	return fatal;
4114 }
4115 
4116 /*
4117  * Interrupt handler for the PCIE module.
4118  */
4119 static void pcie_intr_handler(struct adapter *adapter)
4120 {
4121 	static const struct intr_info sysbus_intr_info[] = {
4122 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4123 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4124 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4125 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4126 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4127 		{ 0 }
4128 	};
4129 	static const struct intr_info pcie_port_intr_info[] = {
4130 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4131 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4132 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4133 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4134 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4135 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4136 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4137 		{ RDPE_F, "Rx data parity error", -1, 1 },
4138 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4139 		{ 0 }
4140 	};
4141 	static const struct intr_info pcie_intr_info[] = {
4142 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4143 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4144 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4145 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4146 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4147 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4148 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4149 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4150 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4151 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4152 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4153 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4154 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4155 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4156 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4157 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4158 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4159 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4160 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4161 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4162 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4163 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4164 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4165 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4166 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4167 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4168 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4169 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4170 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4171 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4172 		  -1, 0 },
4173 		{ 0 }
4174 	};
4175 
4176 	static struct intr_info t5_pcie_intr_info[] = {
4177 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4178 		  -1, 1 },
4179 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4180 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4181 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4182 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4183 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4184 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4185 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4186 		  -1, 1 },
4187 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4188 		  -1, 1 },
4189 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4190 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4191 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4192 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4193 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4194 		  -1, 1 },
4195 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4196 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4197 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4198 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4199 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4200 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4201 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4202 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4203 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4204 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4205 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4206 		  -1, 1 },
4207 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4208 		  -1, 1 },
4209 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4210 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4211 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4212 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4213 		{ 0 }
4214 	};
4215 
4216 	int fat;
4217 
4218 	if (is_t4(adapter->params.chip))
4219 		fat = t4_handle_intr_status(adapter,
4220 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4221 				sysbus_intr_info) +
4222 			t4_handle_intr_status(adapter,
4223 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4224 					pcie_port_intr_info) +
4225 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4226 					      pcie_intr_info);
4227 	else
4228 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4229 					    t5_pcie_intr_info);
4230 
4231 	if (fat)
4232 		t4_fatal_err(adapter);
4233 }
4234 
4235 /*
4236  * TP interrupt handler.
4237  */
4238 static void tp_intr_handler(struct adapter *adapter)
4239 {
4240 	static const struct intr_info tp_intr_info[] = {
4241 		{ 0x3fffffff, "TP parity error", -1, 1 },
4242 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4243 		{ 0 }
4244 	};
4245 
4246 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4247 		t4_fatal_err(adapter);
4248 }
4249 
4250 /*
4251  * SGE interrupt handler.
4252  */
4253 static void sge_intr_handler(struct adapter *adapter)
4254 {
4255 	u64 v;
4256 	u32 err;
4257 
4258 	static const struct intr_info sge_intr_info[] = {
4259 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4260 		  "SGE received CPL exceeding IQE size", -1, 1 },
4261 		{ ERR_INVALID_CIDX_INC_F,
4262 		  "SGE GTS CIDX increment too large", -1, 0 },
4263 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4264 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4265 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4266 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4267 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4268 		  0 },
4269 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4270 		  0 },
4271 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4272 		  0 },
4273 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4274 		  0 },
4275 		{ ERR_ING_CTXT_PRIO_F,
4276 		  "SGE too many priority ingress contexts", -1, 0 },
4277 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4278 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4279 		{ 0 }
4280 	};
4281 
4282 	static struct intr_info t4t5_sge_intr_info[] = {
4283 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4284 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4285 		{ ERR_EGR_CTXT_PRIO_F,
4286 		  "SGE too many priority egress contexts", -1, 0 },
4287 		{ 0 }
4288 	};
4289 
4290 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4291 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4292 	if (v) {
4293 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4294 				(unsigned long long)v);
4295 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4296 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4297 	}
4298 
4299 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4300 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4301 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4302 					   t4t5_sge_intr_info);
4303 
4304 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4305 	if (err & ERROR_QID_VALID_F) {
4306 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4307 			ERROR_QID_G(err));
4308 		if (err & UNCAPTURED_ERROR_F)
4309 			dev_err(adapter->pdev_dev,
4310 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4311 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4312 			     UNCAPTURED_ERROR_F);
4313 	}
4314 
4315 	if (v != 0)
4316 		t4_fatal_err(adapter);
4317 }
4318 
4319 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4320 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4321 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4322 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4323 
4324 /*
4325  * CIM interrupt handler.
4326  */
4327 static void cim_intr_handler(struct adapter *adapter)
4328 {
4329 	static const struct intr_info cim_intr_info[] = {
4330 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4331 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4332 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4333 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4334 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4335 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4336 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4337 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4338 		{ 0 }
4339 	};
4340 	static const struct intr_info cim_upintr_info[] = {
4341 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4342 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4343 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4344 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4345 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4346 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4347 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4348 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4349 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4350 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4351 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4352 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4353 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4354 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4355 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4356 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4357 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4358 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4359 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4360 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4361 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4362 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4363 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4364 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4365 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4366 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4367 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4368 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4369 		{ 0 }
4370 	};
4371 
4372 	u32 val, fw_err;
4373 	int fat;
4374 
4375 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4376 	if (fw_err & PCIE_FW_ERR_F)
4377 		t4_report_fw_error(adapter);
4378 
4379 	/* When the Firmware detects an internal error which normally
4380 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4381 	 * in order to make sure the Host sees the Firmware Crash.  So
4382 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4383 	 * ignore the Timer0 interrupt.
4384 	 */
4385 
4386 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4387 	if (val & TIMER0INT_F)
4388 		if (!(fw_err & PCIE_FW_ERR_F) ||
4389 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4390 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4391 				     TIMER0INT_F);
4392 
4393 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4394 				    cim_intr_info) +
4395 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4396 				    cim_upintr_info);
4397 	if (fat)
4398 		t4_fatal_err(adapter);
4399 }
4400 
4401 /*
4402  * ULP RX interrupt handler.
4403  */
4404 static void ulprx_intr_handler(struct adapter *adapter)
4405 {
4406 	static const struct intr_info ulprx_intr_info[] = {
4407 		{ 0x1800000, "ULPRX context error", -1, 1 },
4408 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4409 		{ 0 }
4410 	};
4411 
4412 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4413 		t4_fatal_err(adapter);
4414 }
4415 
4416 /*
4417  * ULP TX interrupt handler.
4418  */
4419 static void ulptx_intr_handler(struct adapter *adapter)
4420 {
4421 	static const struct intr_info ulptx_intr_info[] = {
4422 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4423 		  0 },
4424 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4425 		  0 },
4426 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4427 		  0 },
4428 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4429 		  0 },
4430 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4431 		{ 0 }
4432 	};
4433 
4434 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4435 		t4_fatal_err(adapter);
4436 }
4437 
4438 /*
4439  * PM TX interrupt handler.
4440  */
4441 static void pmtx_intr_handler(struct adapter *adapter)
4442 {
4443 	static const struct intr_info pmtx_intr_info[] = {
4444 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4445 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4446 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4447 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4448 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4449 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4450 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4451 		  -1, 1 },
4452 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4453 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4454 		{ 0 }
4455 	};
4456 
4457 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4458 		t4_fatal_err(adapter);
4459 }
4460 
4461 /*
4462  * PM RX interrupt handler.
4463  */
4464 static void pmrx_intr_handler(struct adapter *adapter)
4465 {
4466 	static const struct intr_info pmrx_intr_info[] = {
4467 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4468 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4469 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4470 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4471 		  -1, 1 },
4472 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4473 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4474 		{ 0 }
4475 	};
4476 
4477 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4478 		t4_fatal_err(adapter);
4479 }
4480 
4481 /*
4482  * CPL switch interrupt handler.
4483  */
4484 static void cplsw_intr_handler(struct adapter *adapter)
4485 {
4486 	static const struct intr_info cplsw_intr_info[] = {
4487 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4488 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4489 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4490 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4491 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4492 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4493 		{ 0 }
4494 	};
4495 
4496 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4497 		t4_fatal_err(adapter);
4498 }
4499 
4500 /*
4501  * LE interrupt handler.
4502  */
4503 static void le_intr_handler(struct adapter *adap)
4504 {
4505 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4506 	static const struct intr_info le_intr_info[] = {
4507 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4508 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4509 		{ PARITYERR_F, "LE parity error", -1, 1 },
4510 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4511 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4512 		{ 0 }
4513 	};
4514 
4515 	static struct intr_info t6_le_intr_info[] = {
4516 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4517 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4518 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4519 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4520 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4521 		{ 0 }
4522 	};
4523 
4524 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4525 				  (chip <= CHELSIO_T5) ?
4526 				  le_intr_info : t6_le_intr_info))
4527 		t4_fatal_err(adap);
4528 }
4529 
4530 /*
4531  * MPS interrupt handler.
4532  */
4533 static void mps_intr_handler(struct adapter *adapter)
4534 {
4535 	static const struct intr_info mps_rx_intr_info[] = {
4536 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4537 		{ 0 }
4538 	};
4539 	static const struct intr_info mps_tx_intr_info[] = {
4540 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4541 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4542 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4543 		  -1, 1 },
4544 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4545 		  -1, 1 },
4546 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4547 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4548 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4549 		{ 0 }
4550 	};
4551 	static const struct intr_info t6_mps_tx_intr_info[] = {
4552 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4553 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4554 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4555 		  -1, 1 },
4556 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4557 		  -1, 1 },
4558 		/* MPS Tx Bubble is normal for T6 */
4559 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4560 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4561 		{ 0 }
4562 	};
4563 	static const struct intr_info mps_trc_intr_info[] = {
4564 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4565 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4566 		  -1, 1 },
4567 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4568 		{ 0 }
4569 	};
4570 	static const struct intr_info mps_stat_sram_intr_info[] = {
4571 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4572 		{ 0 }
4573 	};
4574 	static const struct intr_info mps_stat_tx_intr_info[] = {
4575 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4576 		{ 0 }
4577 	};
4578 	static const struct intr_info mps_stat_rx_intr_info[] = {
4579 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4580 		{ 0 }
4581 	};
4582 	static const struct intr_info mps_cls_intr_info[] = {
4583 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4584 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4585 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4586 		{ 0 }
4587 	};
4588 
4589 	int fat;
4590 
4591 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4592 				    mps_rx_intr_info) +
4593 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4594 				    is_t6(adapter->params.chip)
4595 				    ? t6_mps_tx_intr_info
4596 				    : mps_tx_intr_info) +
4597 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4598 				    mps_trc_intr_info) +
4599 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4600 				    mps_stat_sram_intr_info) +
4601 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4602 				    mps_stat_tx_intr_info) +
4603 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4604 				    mps_stat_rx_intr_info) +
4605 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4606 				    mps_cls_intr_info);
4607 
4608 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4609 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4610 	if (fat)
4611 		t4_fatal_err(adapter);
4612 }
4613 
4614 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4615 		      ECC_UE_INT_CAUSE_F)
4616 
4617 /*
4618  * EDC/MC interrupt handler.
4619  */
4620 static void mem_intr_handler(struct adapter *adapter, int idx)
4621 {
4622 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4623 
4624 	unsigned int addr, cnt_addr, v;
4625 
4626 	if (idx <= MEM_EDC1) {
4627 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4628 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4629 	} else if (idx == MEM_MC) {
4630 		if (is_t4(adapter->params.chip)) {
4631 			addr = MC_INT_CAUSE_A;
4632 			cnt_addr = MC_ECC_STATUS_A;
4633 		} else {
4634 			addr = MC_P_INT_CAUSE_A;
4635 			cnt_addr = MC_P_ECC_STATUS_A;
4636 		}
4637 	} else {
4638 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4639 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4640 	}
4641 
4642 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4643 	if (v & PERR_INT_CAUSE_F)
4644 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4645 			  name[idx]);
4646 	if (v & ECC_CE_INT_CAUSE_F) {
4647 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4648 
4649 		t4_edc_err_read(adapter, idx);
4650 
4651 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4652 		if (printk_ratelimit())
4653 			dev_warn(adapter->pdev_dev,
4654 				 "%u %s correctable ECC data error%s\n",
4655 				 cnt, name[idx], cnt > 1 ? "s" : "");
4656 	}
4657 	if (v & ECC_UE_INT_CAUSE_F)
4658 		dev_alert(adapter->pdev_dev,
4659 			  "%s uncorrectable ECC data error\n", name[idx]);
4660 
4661 	t4_write_reg(adapter, addr, v);
4662 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4663 		t4_fatal_err(adapter);
4664 }
4665 
4666 /*
4667  * MA interrupt handler.
4668  */
4669 static void ma_intr_handler(struct adapter *adap)
4670 {
4671 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4672 
4673 	if (status & MEM_PERR_INT_CAUSE_F) {
4674 		dev_alert(adap->pdev_dev,
4675 			  "MA parity error, parity status %#x\n",
4676 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4677 		if (is_t5(adap->params.chip))
4678 			dev_alert(adap->pdev_dev,
4679 				  "MA parity error, parity status %#x\n",
4680 				  t4_read_reg(adap,
4681 					      MA_PARITY_ERROR_STATUS2_A));
4682 	}
4683 	if (status & MEM_WRAP_INT_CAUSE_F) {
4684 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4685 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4686 			  "client %u to address %#x\n",
4687 			  MEM_WRAP_CLIENT_NUM_G(v),
4688 			  MEM_WRAP_ADDRESS_G(v) << 4);
4689 	}
4690 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4691 	t4_fatal_err(adap);
4692 }
4693 
4694 /*
4695  * SMB interrupt handler.
4696  */
4697 static void smb_intr_handler(struct adapter *adap)
4698 {
4699 	static const struct intr_info smb_intr_info[] = {
4700 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4701 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4702 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4703 		{ 0 }
4704 	};
4705 
4706 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4707 		t4_fatal_err(adap);
4708 }
4709 
4710 /*
4711  * NC-SI interrupt handler.
4712  */
4713 static void ncsi_intr_handler(struct adapter *adap)
4714 {
4715 	static const struct intr_info ncsi_intr_info[] = {
4716 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4717 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4718 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4719 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4720 		{ 0 }
4721 	};
4722 
4723 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4724 		t4_fatal_err(adap);
4725 }
4726 
4727 /*
4728  * XGMAC interrupt handler.
4729  */
4730 static void xgmac_intr_handler(struct adapter *adap, int port)
4731 {
4732 	u32 v, int_cause_reg;
4733 
4734 	if (is_t4(adap->params.chip))
4735 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4736 	else
4737 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4738 
4739 	v = t4_read_reg(adap, int_cause_reg);
4740 
4741 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4742 	if (!v)
4743 		return;
4744 
4745 	if (v & TXFIFO_PRTY_ERR_F)
4746 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4747 			  port);
4748 	if (v & RXFIFO_PRTY_ERR_F)
4749 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4750 			  port);
4751 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4752 	t4_fatal_err(adap);
4753 }
4754 
4755 /*
4756  * PL interrupt handler.
4757  */
4758 static void pl_intr_handler(struct adapter *adap)
4759 {
4760 	static const struct intr_info pl_intr_info[] = {
4761 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4762 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4763 		{ 0 }
4764 	};
4765 
4766 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4767 		t4_fatal_err(adap);
4768 }
4769 
4770 #define PF_INTR_MASK (PFSW_F)
4771 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4772 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4773 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4774 
4775 /**
4776  *	t4_slow_intr_handler - control path interrupt handler
4777  *	@adapter: the adapter
4778  *
4779  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4780  *	The designation 'slow' is because it involves register reads, while
4781  *	data interrupts typically don't involve any MMIOs.
4782  */
4783 int t4_slow_intr_handler(struct adapter *adapter)
4784 {
4785 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4786 
4787 	if (!(cause & GLBL_INTR_MASK))
4788 		return 0;
4789 	if (cause & CIM_F)
4790 		cim_intr_handler(adapter);
4791 	if (cause & MPS_F)
4792 		mps_intr_handler(adapter);
4793 	if (cause & NCSI_F)
4794 		ncsi_intr_handler(adapter);
4795 	if (cause & PL_F)
4796 		pl_intr_handler(adapter);
4797 	if (cause & SMB_F)
4798 		smb_intr_handler(adapter);
4799 	if (cause & XGMAC0_F)
4800 		xgmac_intr_handler(adapter, 0);
4801 	if (cause & XGMAC1_F)
4802 		xgmac_intr_handler(adapter, 1);
4803 	if (cause & XGMAC_KR0_F)
4804 		xgmac_intr_handler(adapter, 2);
4805 	if (cause & XGMAC_KR1_F)
4806 		xgmac_intr_handler(adapter, 3);
4807 	if (cause & PCIE_F)
4808 		pcie_intr_handler(adapter);
4809 	if (cause & MC_F)
4810 		mem_intr_handler(adapter, MEM_MC);
4811 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4812 		mem_intr_handler(adapter, MEM_MC1);
4813 	if (cause & EDC0_F)
4814 		mem_intr_handler(adapter, MEM_EDC0);
4815 	if (cause & EDC1_F)
4816 		mem_intr_handler(adapter, MEM_EDC1);
4817 	if (cause & LE_F)
4818 		le_intr_handler(adapter);
4819 	if (cause & TP_F)
4820 		tp_intr_handler(adapter);
4821 	if (cause & MA_F)
4822 		ma_intr_handler(adapter);
4823 	if (cause & PM_TX_F)
4824 		pmtx_intr_handler(adapter);
4825 	if (cause & PM_RX_F)
4826 		pmrx_intr_handler(adapter);
4827 	if (cause & ULP_RX_F)
4828 		ulprx_intr_handler(adapter);
4829 	if (cause & CPL_SWITCH_F)
4830 		cplsw_intr_handler(adapter);
4831 	if (cause & SGE_F)
4832 		sge_intr_handler(adapter);
4833 	if (cause & ULP_TX_F)
4834 		ulptx_intr_handler(adapter);
4835 
4836 	/* Clear the interrupts just processed for which we are the master. */
4837 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4838 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4839 	return 1;
4840 }
4841 
4842 /**
4843  *	t4_intr_enable - enable interrupts
4844  *	@adapter: the adapter whose interrupts should be enabled
4845  *
4846  *	Enable PF-specific interrupts for the calling function and the top-level
4847  *	interrupt concentrator for global interrupts.  Interrupts are already
4848  *	enabled at each module,	here we just enable the roots of the interrupt
4849  *	hierarchies.
4850  *
4851  *	Note: this function should be called only when the driver manages
4852  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4853  *	function at a time should be doing this.
4854  */
4855 void t4_intr_enable(struct adapter *adapter)
4856 {
4857 	u32 val = 0;
4858 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4859 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4860 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4861 
4862 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4863 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4864 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4865 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4866 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4867 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4868 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4869 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4870 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4871 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4872 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4873 }
4874 
4875 /**
4876  *	t4_intr_disable - disable interrupts
4877  *	@adapter: the adapter whose interrupts should be disabled
4878  *
4879  *	Disable interrupts.  We only disable the top-level interrupt
4880  *	concentrators.  The caller must be a PCI function managing global
4881  *	interrupts.
4882  */
4883 void t4_intr_disable(struct adapter *adapter)
4884 {
4885 	u32 whoami, pf;
4886 
4887 	if (pci_channel_offline(adapter->pdev))
4888 		return;
4889 
4890 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4891 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4892 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4893 
4894 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4895 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4896 }
4897 
4898 /**
4899  *	t4_config_rss_range - configure a portion of the RSS mapping table
4900  *	@adapter: the adapter
4901  *	@mbox: mbox to use for the FW command
4902  *	@viid: virtual interface whose RSS subtable is to be written
4903  *	@start: start entry in the table to write
4904  *	@n: how many table entries to write
4905  *	@rspq: values for the response queue lookup table
4906  *	@nrspq: number of values in @rspq
4907  *
4908  *	Programs the selected part of the VI's RSS mapping table with the
4909  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4910  *	until the full table range is populated.
4911  *
4912  *	The caller must ensure the values in @rspq are in the range allowed for
4913  *	@viid.
4914  */
4915 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4916 			int start, int n, const u16 *rspq, unsigned int nrspq)
4917 {
4918 	int ret;
4919 	const u16 *rsp = rspq;
4920 	const u16 *rsp_end = rspq + nrspq;
4921 	struct fw_rss_ind_tbl_cmd cmd;
4922 
4923 	memset(&cmd, 0, sizeof(cmd));
4924 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4925 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4926 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4927 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4928 
4929 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4930 	while (n > 0) {
4931 		int nq = min(n, 32);
4932 		__be32 *qp = &cmd.iq0_to_iq2;
4933 
4934 		cmd.niqid = cpu_to_be16(nq);
4935 		cmd.startidx = cpu_to_be16(start);
4936 
4937 		start += nq;
4938 		n -= nq;
4939 
4940 		while (nq > 0) {
4941 			unsigned int v;
4942 
4943 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4944 			if (++rsp >= rsp_end)
4945 				rsp = rspq;
4946 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4947 			if (++rsp >= rsp_end)
4948 				rsp = rspq;
4949 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4950 			if (++rsp >= rsp_end)
4951 				rsp = rspq;
4952 
4953 			*qp++ = cpu_to_be32(v);
4954 			nq -= 3;
4955 		}
4956 
4957 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4958 		if (ret)
4959 			return ret;
4960 	}
4961 	return 0;
4962 }
4963 
4964 /**
4965  *	t4_config_glbl_rss - configure the global RSS mode
4966  *	@adapter: the adapter
4967  *	@mbox: mbox to use for the FW command
4968  *	@mode: global RSS mode
4969  *	@flags: mode-specific flags
4970  *
4971  *	Sets the global RSS mode.
4972  */
4973 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4974 		       unsigned int flags)
4975 {
4976 	struct fw_rss_glb_config_cmd c;
4977 
4978 	memset(&c, 0, sizeof(c));
4979 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4980 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4981 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4982 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4983 		c.u.manual.mode_pkd =
4984 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4985 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4986 		c.u.basicvirtual.mode_pkd =
4987 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4988 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4989 	} else
4990 		return -EINVAL;
4991 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4992 }
4993 
4994 /**
4995  *	t4_config_vi_rss - configure per VI RSS settings
4996  *	@adapter: the adapter
4997  *	@mbox: mbox to use for the FW command
4998  *	@viid: the VI id
4999  *	@flags: RSS flags
5000  *	@defq: id of the default RSS queue for the VI.
5001  *
5002  *	Configures VI-specific RSS properties.
5003  */
5004 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5005 		     unsigned int flags, unsigned int defq)
5006 {
5007 	struct fw_rss_vi_config_cmd c;
5008 
5009 	memset(&c, 0, sizeof(c));
5010 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5011 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5012 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5013 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5014 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5015 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5016 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5017 }
5018 
5019 /* Read an RSS table row */
5020 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5021 {
5022 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5023 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5024 				   5, 0, val);
5025 }
5026 
5027 /**
5028  *	t4_read_rss - read the contents of the RSS mapping table
5029  *	@adapter: the adapter
5030  *	@map: holds the contents of the RSS mapping table
5031  *
5032  *	Reads the contents of the RSS hash->queue mapping table.
5033  */
5034 int t4_read_rss(struct adapter *adapter, u16 *map)
5035 {
5036 	u32 val;
5037 	int i, ret;
5038 
5039 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5040 		ret = rd_rss_row(adapter, i, &val);
5041 		if (ret)
5042 			return ret;
5043 		*map++ = LKPTBLQUEUE0_G(val);
5044 		*map++ = LKPTBLQUEUE1_G(val);
5045 	}
5046 	return 0;
5047 }
5048 
5049 static unsigned int t4_use_ldst(struct adapter *adap)
5050 {
5051 	return (adap->flags & FW_OK) || !adap->use_bd;
5052 }
5053 
5054 /**
5055  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
5056  *	@adap: the adapter
5057  *	@vals: where the indirect register values are stored/written
5058  *	@nregs: how many indirect registers to read/write
5059  *	@start_idx: index of first indirect register to read/write
5060  *	@rw: Read (1) or Write (0)
5061  *
5062  *	Access TP PIO registers through LDST
5063  */
5064 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
5065 			    unsigned int start_index, unsigned int rw)
5066 {
5067 	int ret, i;
5068 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
5069 	struct fw_ldst_cmd c;
5070 
5071 	for (i = 0 ; i < nregs; i++) {
5072 		memset(&c, 0, sizeof(c));
5073 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5074 						FW_CMD_REQUEST_F |
5075 						(rw ? FW_CMD_READ_F :
5076 						      FW_CMD_WRITE_F) |
5077 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5078 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5079 
5080 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5081 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5082 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
5083 		if (!ret && rw)
5084 			vals[i] = be32_to_cpu(c.u.addrval.val);
5085 	}
5086 }
5087 
5088 /**
5089  *	t4_read_rss_key - read the global RSS key
5090  *	@adap: the adapter
5091  *	@key: 10-entry array holding the 320-bit RSS key
5092  *
5093  *	Reads the global 320-bit RSS key.
5094  */
5095 void t4_read_rss_key(struct adapter *adap, u32 *key)
5096 {
5097 	if (t4_use_ldst(adap))
5098 		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
5099 	else
5100 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
5101 				 TP_RSS_SECRET_KEY0_A);
5102 }
5103 
5104 /**
5105  *	t4_write_rss_key - program one of the RSS keys
5106  *	@adap: the adapter
5107  *	@key: 10-entry array holding the 320-bit RSS key
5108  *	@idx: which RSS key to write
5109  *
5110  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5111  *	0..15 the corresponding entry in the RSS key table is written,
5112  *	otherwise the global RSS key is written.
5113  */
5114 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
5115 {
5116 	u8 rss_key_addr_cnt = 16;
5117 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5118 
5119 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5120 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5121 	 * as index[5:4](upper 2) into key table
5122 	 */
5123 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5124 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5125 		rss_key_addr_cnt = 32;
5126 
5127 	if (t4_use_ldst(adap))
5128 		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
5129 	else
5130 		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
5131 				  TP_RSS_SECRET_KEY0_A);
5132 
5133 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5134 		if (rss_key_addr_cnt > 16)
5135 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5136 				     KEYWRADDRX_V(idx >> 4) |
5137 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5138 		else
5139 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5140 				     KEYWRADDR_V(idx) | KEYWREN_F);
5141 	}
5142 }
5143 
5144 /**
5145  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5146  *	@adapter: the adapter
5147  *	@index: the entry in the PF RSS table to read
5148  *	@valp: where to store the returned value
5149  *
5150  *	Reads the PF RSS Configuration Table at the specified index and returns
5151  *	the value found there.
5152  */
5153 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5154 			   u32 *valp)
5155 {
5156 	if (t4_use_ldst(adapter))
5157 		t4_fw_tp_pio_rw(adapter, valp, 1,
5158 				TP_RSS_PF0_CONFIG_A + index, 1);
5159 	else
5160 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5161 				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
5162 }
5163 
5164 /**
5165  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5166  *	@adapter: the adapter
5167  *	@index: the entry in the VF RSS table to read
5168  *	@vfl: where to store the returned VFL
5169  *	@vfh: where to store the returned VFH
5170  *
5171  *	Reads the VF RSS Configuration Table at the specified index and returns
5172  *	the (VFL, VFH) values found there.
5173  */
5174 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5175 			   u32 *vfl, u32 *vfh)
5176 {
5177 	u32 vrt, mask, data;
5178 
5179 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5180 		mask = VFWRADDR_V(VFWRADDR_M);
5181 		data = VFWRADDR_V(index);
5182 	} else {
5183 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5184 		 data = T6_VFWRADDR_V(index);
5185 	}
5186 
5187 	/* Request that the index'th VF Table values be read into VFL/VFH.
5188 	 */
5189 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5190 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5191 	vrt |= data | VFRDEN_F;
5192 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5193 
5194 	/* Grab the VFL/VFH values ...
5195 	 */
5196 	if (t4_use_ldst(adapter)) {
5197 		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
5198 		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
5199 	} else {
5200 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5201 				 vfl, 1, TP_RSS_VFL_CONFIG_A);
5202 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5203 				 vfh, 1, TP_RSS_VFH_CONFIG_A);
5204 	}
5205 }
5206 
5207 /**
5208  *	t4_read_rss_pf_map - read PF RSS Map
5209  *	@adapter: the adapter
5210  *
5211  *	Reads the PF RSS Map register and returns its value.
5212  */
5213 u32 t4_read_rss_pf_map(struct adapter *adapter)
5214 {
5215 	u32 pfmap;
5216 
5217 	if (t4_use_ldst(adapter))
5218 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
5219 	else
5220 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5221 				 &pfmap, 1, TP_RSS_PF_MAP_A);
5222 	return pfmap;
5223 }
5224 
5225 /**
5226  *	t4_read_rss_pf_mask - read PF RSS Mask
5227  *	@adapter: the adapter
5228  *
5229  *	Reads the PF RSS Mask register and returns its value.
5230  */
5231 u32 t4_read_rss_pf_mask(struct adapter *adapter)
5232 {
5233 	u32 pfmask;
5234 
5235 	if (t4_use_ldst(adapter))
5236 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
5237 	else
5238 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5239 				 &pfmask, 1, TP_RSS_PF_MSK_A);
5240 	return pfmask;
5241 }
5242 
5243 /**
5244  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5245  *	@adap: the adapter
5246  *	@v4: holds the TCP/IP counter values
5247  *	@v6: holds the TCP/IPv6 counter values
5248  *
5249  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5250  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5251  */
5252 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5253 			 struct tp_tcp_stats *v6)
5254 {
5255 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5256 
5257 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5258 #define STAT(x)     val[STAT_IDX(x)]
5259 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5260 
5261 	if (v4) {
5262 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5263 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
5264 		v4->tcp_out_rsts = STAT(OUT_RST);
5265 		v4->tcp_in_segs  = STAT64(IN_SEG);
5266 		v4->tcp_out_segs = STAT64(OUT_SEG);
5267 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5268 	}
5269 	if (v6) {
5270 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5271 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
5272 		v6->tcp_out_rsts = STAT(OUT_RST);
5273 		v6->tcp_in_segs  = STAT64(IN_SEG);
5274 		v6->tcp_out_segs = STAT64(OUT_SEG);
5275 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5276 	}
5277 #undef STAT64
5278 #undef STAT
5279 #undef STAT_IDX
5280 }
5281 
5282 /**
5283  *	t4_tp_get_err_stats - read TP's error MIB counters
5284  *	@adap: the adapter
5285  *	@st: holds the counter values
5286  *
5287  *	Returns the values of TP's error counters.
5288  */
5289 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5290 {
5291 	int nchan = adap->params.arch.nchan;
5292 
5293 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5294 			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
5295 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5296 			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
5297 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5298 			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
5299 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5300 			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
5301 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5302 			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
5303 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5304 			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
5305 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5306 			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
5307 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5308 			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
5309 
5310 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5311 			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
5312 }
5313 
5314 /**
5315  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5316  *	@adap: the adapter
5317  *	@st: holds the counter values
5318  *
5319  *	Returns the values of TP's CPL counters.
5320  */
5321 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5322 {
5323 	int nchan = adap->params.arch.nchan;
5324 
5325 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
5326 			 nchan, TP_MIB_CPL_IN_REQ_0_A);
5327 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
5328 			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
5329 
5330 }
5331 
5332 /**
5333  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5334  *	@adap: the adapter
5335  *	@st: holds the counter values
5336  *
5337  *	Returns the values of TP's RDMA counters.
5338  */
5339 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5340 {
5341 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
5342 			 2, TP_MIB_RQE_DFR_PKT_A);
5343 }
5344 
5345 /**
5346  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5347  *	@adap: the adapter
5348  *	@idx: the port index
5349  *	@st: holds the counter values
5350  *
5351  *	Returns the values of TP's FCoE counters for the selected port.
5352  */
5353 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5354 		       struct tp_fcoe_stats *st)
5355 {
5356 	u32 val[2];
5357 
5358 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
5359 			 1, TP_MIB_FCOE_DDP_0_A + idx);
5360 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
5361 			 1, TP_MIB_FCOE_DROP_0_A + idx);
5362 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5363 			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
5364 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5365 }
5366 
5367 /**
5368  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5369  *	@adap: the adapter
5370  *	@st: holds the counter values
5371  *
5372  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5373  */
5374 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5375 {
5376 	u32 val[4];
5377 
5378 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
5379 			 TP_MIB_USM_PKTS_A);
5380 	st->frames = val[0];
5381 	st->drops = val[1];
5382 	st->octets = ((u64)val[2] << 32) | val[3];
5383 }
5384 
5385 /**
5386  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5387  *	@adap: the adapter
5388  *	@mtus: where to store the MTU values
5389  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5390  *
5391  *	Reads the HW path MTU table.
5392  */
5393 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5394 {
5395 	u32 v;
5396 	int i;
5397 
5398 	for (i = 0; i < NMTUS; ++i) {
5399 		t4_write_reg(adap, TP_MTU_TABLE_A,
5400 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5401 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5402 		mtus[i] = MTUVALUE_G(v);
5403 		if (mtu_log)
5404 			mtu_log[i] = MTUWIDTH_G(v);
5405 	}
5406 }
5407 
5408 /**
5409  *	t4_read_cong_tbl - reads the congestion control table
5410  *	@adap: the adapter
5411  *	@incr: where to store the alpha values
5412  *
5413  *	Reads the additive increments programmed into the HW congestion
5414  *	control table.
5415  */
5416 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5417 {
5418 	unsigned int mtu, w;
5419 
5420 	for (mtu = 0; mtu < NMTUS; ++mtu)
5421 		for (w = 0; w < NCCTRL_WIN; ++w) {
5422 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5423 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5424 			incr[mtu][w] = (u16)t4_read_reg(adap,
5425 						TP_CCTRL_TABLE_A) & 0x1fff;
5426 		}
5427 }
5428 
5429 /**
5430  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5431  *	@adap: the adapter
5432  *	@addr: the indirect TP register address
5433  *	@mask: specifies the field within the register to modify
5434  *	@val: new value for the field
5435  *
5436  *	Sets a field of an indirect TP register to the given value.
5437  */
5438 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5439 			    unsigned int mask, unsigned int val)
5440 {
5441 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5442 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5443 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5444 }
5445 
5446 /**
5447  *	init_cong_ctrl - initialize congestion control parameters
5448  *	@a: the alpha values for congestion control
5449  *	@b: the beta values for congestion control
5450  *
5451  *	Initialize the congestion control parameters.
5452  */
5453 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5454 {
5455 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5456 	a[9] = 2;
5457 	a[10] = 3;
5458 	a[11] = 4;
5459 	a[12] = 5;
5460 	a[13] = 6;
5461 	a[14] = 7;
5462 	a[15] = 8;
5463 	a[16] = 9;
5464 	a[17] = 10;
5465 	a[18] = 14;
5466 	a[19] = 17;
5467 	a[20] = 21;
5468 	a[21] = 25;
5469 	a[22] = 30;
5470 	a[23] = 35;
5471 	a[24] = 45;
5472 	a[25] = 60;
5473 	a[26] = 80;
5474 	a[27] = 100;
5475 	a[28] = 200;
5476 	a[29] = 300;
5477 	a[30] = 400;
5478 	a[31] = 500;
5479 
5480 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5481 	b[9] = b[10] = 1;
5482 	b[11] = b[12] = 2;
5483 	b[13] = b[14] = b[15] = b[16] = 3;
5484 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5485 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5486 	b[28] = b[29] = 6;
5487 	b[30] = b[31] = 7;
5488 }
5489 
5490 /* The minimum additive increment value for the congestion control table */
5491 #define CC_MIN_INCR 2U
5492 
5493 /**
5494  *	t4_load_mtus - write the MTU and congestion control HW tables
5495  *	@adap: the adapter
5496  *	@mtus: the values for the MTU table
5497  *	@alpha: the values for the congestion control alpha parameter
5498  *	@beta: the values for the congestion control beta parameter
5499  *
5500  *	Write the HW MTU table with the supplied MTUs and the high-speed
5501  *	congestion control table with the supplied alpha, beta, and MTUs.
5502  *	We write the two tables together because the additive increments
5503  *	depend on the MTUs.
5504  */
5505 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5506 		  const unsigned short *alpha, const unsigned short *beta)
5507 {
5508 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5509 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5510 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5511 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5512 	};
5513 
5514 	unsigned int i, w;
5515 
5516 	for (i = 0; i < NMTUS; ++i) {
5517 		unsigned int mtu = mtus[i];
5518 		unsigned int log2 = fls(mtu);
5519 
5520 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5521 			log2--;
5522 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5523 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5524 
5525 		for (w = 0; w < NCCTRL_WIN; ++w) {
5526 			unsigned int inc;
5527 
5528 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5529 				  CC_MIN_INCR);
5530 
5531 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5532 				     (w << 16) | (beta[w] << 13) | inc);
5533 		}
5534 	}
5535 }
5536 
5537 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5538  * clocks.  The formula is
5539  *
5540  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5541  *
5542  * which is equivalent to
5543  *
5544  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5545  */
5546 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5547 {
5548 	u64 v = bytes256 * adap->params.vpd.cclk;
5549 
5550 	return v * 62 + v / 2;
5551 }
5552 
5553 /**
5554  *	t4_get_chan_txrate - get the current per channel Tx rates
5555  *	@adap: the adapter
5556  *	@nic_rate: rates for NIC traffic
5557  *	@ofld_rate: rates for offloaded traffic
5558  *
5559  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5560  *	for each channel.
5561  */
5562 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5563 {
5564 	u32 v;
5565 
5566 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5567 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5568 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5569 	if (adap->params.arch.nchan == NCHAN) {
5570 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5571 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5572 	}
5573 
5574 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5575 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5576 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5577 	if (adap->params.arch.nchan == NCHAN) {
5578 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5579 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5580 	}
5581 }
5582 
5583 /**
5584  *	t4_set_trace_filter - configure one of the tracing filters
5585  *	@adap: the adapter
5586  *	@tp: the desired trace filter parameters
5587  *	@idx: which filter to configure
5588  *	@enable: whether to enable or disable the filter
5589  *
5590  *	Configures one of the tracing filters available in HW.  If @enable is
5591  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5592  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5593  */
5594 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5595 			int idx, int enable)
5596 {
5597 	int i, ofst = idx * 4;
5598 	u32 data_reg, mask_reg, cfg;
5599 	u32 multitrc = TRCMULTIFILTER_F;
5600 
5601 	if (!enable) {
5602 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5603 		return 0;
5604 	}
5605 
5606 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5607 	if (cfg & TRCMULTIFILTER_F) {
5608 		/* If multiple tracers are enabled, then maximum
5609 		 * capture size is 2.5KB (FIFO size of a single channel)
5610 		 * minus 2 flits for CPL_TRACE_PKT header.
5611 		 */
5612 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5613 			return -EINVAL;
5614 	} else {
5615 		/* If multiple tracers are disabled, to avoid deadlocks
5616 		 * maximum packet capture size of 9600 bytes is recommended.
5617 		 * Also in this mode, only trace0 can be enabled and running.
5618 		 */
5619 		multitrc = 0;
5620 		if (tp->snap_len > 9600 || idx)
5621 			return -EINVAL;
5622 	}
5623 
5624 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5625 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5626 	    tp->min_len > TFMINPKTSIZE_M)
5627 		return -EINVAL;
5628 
5629 	/* stop the tracer we'll be changing */
5630 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5631 
5632 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5633 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5634 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5635 
5636 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5637 		t4_write_reg(adap, data_reg, tp->data[i]);
5638 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5639 	}
5640 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5641 		     TFCAPTUREMAX_V(tp->snap_len) |
5642 		     TFMINPKTSIZE_V(tp->min_len));
5643 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5644 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5645 		     (is_t4(adap->params.chip) ?
5646 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5647 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5648 		     T5_TFINVERTMATCH_V(tp->invert)));
5649 
5650 	return 0;
5651 }
5652 
5653 /**
5654  *	t4_get_trace_filter - query one of the tracing filters
5655  *	@adap: the adapter
5656  *	@tp: the current trace filter parameters
5657  *	@idx: which trace filter to query
5658  *	@enabled: non-zero if the filter is enabled
5659  *
5660  *	Returns the current settings of one of the HW tracing filters.
5661  */
5662 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5663 			 int *enabled)
5664 {
5665 	u32 ctla, ctlb;
5666 	int i, ofst = idx * 4;
5667 	u32 data_reg, mask_reg;
5668 
5669 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5670 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5671 
5672 	if (is_t4(adap->params.chip)) {
5673 		*enabled = !!(ctla & TFEN_F);
5674 		tp->port =  TFPORT_G(ctla);
5675 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5676 	} else {
5677 		*enabled = !!(ctla & T5_TFEN_F);
5678 		tp->port = T5_TFPORT_G(ctla);
5679 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5680 	}
5681 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5682 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5683 	tp->skip_ofst = TFOFFSET_G(ctla);
5684 	tp->skip_len = TFLENGTH_G(ctla);
5685 
5686 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5687 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5688 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5689 
5690 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5691 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5692 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5693 	}
5694 }
5695 
5696 /**
5697  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5698  *	@adap: the adapter
5699  *	@cnt: where to store the count statistics
5700  *	@cycles: where to store the cycle statistics
5701  *
5702  *	Returns performance statistics from PMTX.
5703  */
5704 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5705 {
5706 	int i;
5707 	u32 data[2];
5708 
5709 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5710 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5711 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5712 		if (is_t4(adap->params.chip)) {
5713 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5714 		} else {
5715 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5716 					 PM_TX_DBG_DATA_A, data, 2,
5717 					 PM_TX_DBG_STAT_MSB_A);
5718 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5719 		}
5720 	}
5721 }
5722 
5723 /**
5724  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5725  *	@adap: the adapter
5726  *	@cnt: where to store the count statistics
5727  *	@cycles: where to store the cycle statistics
5728  *
5729  *	Returns performance statistics from PMRX.
5730  */
5731 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5732 {
5733 	int i;
5734 	u32 data[2];
5735 
5736 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5737 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5738 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5739 		if (is_t4(adap->params.chip)) {
5740 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5741 		} else {
5742 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5743 					 PM_RX_DBG_DATA_A, data, 2,
5744 					 PM_RX_DBG_STAT_MSB_A);
5745 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5746 		}
5747 	}
5748 }
5749 
5750 /**
5751  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5752  *	@adap: the adapter
5753  *	@pidx: the port index
5754  *
5755  *	Computes and returns a bitmap indicating which MPS buffer groups are
5756  *	associated with the given Port.  Bit i is set if buffer group i is
5757  *	used by the Port.
5758  */
5759 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5760 					      int pidx)
5761 {
5762 	unsigned int chip_version, nports;
5763 
5764 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5765 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5766 
5767 	switch (chip_version) {
5768 	case CHELSIO_T4:
5769 	case CHELSIO_T5:
5770 		switch (nports) {
5771 		case 1: return 0xf;
5772 		case 2: return 3 << (2 * pidx);
5773 		case 4: return 1 << pidx;
5774 		}
5775 		break;
5776 
5777 	case CHELSIO_T6:
5778 		switch (nports) {
5779 		case 2: return 1 << (2 * pidx);
5780 		}
5781 		break;
5782 	}
5783 
5784 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
5785 		chip_version, nports);
5786 
5787 	return 0;
5788 }
5789 
5790 /**
5791  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5792  *	@adapter: the adapter
5793  *	@pidx: the port index
5794  *
5795  *	Returns a bitmap indicating which MPS buffer groups are associated
5796  *	with the given Port.  Bit i is set if buffer group i is used by the
5797  *	Port.
5798  */
5799 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
5800 {
5801 	u8 *mps_bg_map;
5802 	unsigned int nports;
5803 
5804 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5805 	if (pidx >= nports) {
5806 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
5807 			pidx, nports);
5808 		return 0;
5809 	}
5810 
5811 	/* If we've already retrieved/computed this, just return the result.
5812 	 */
5813 	mps_bg_map = adapter->params.mps_bg_map;
5814 	if (mps_bg_map[pidx])
5815 		return mps_bg_map[pidx];
5816 
5817 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
5818 	 * If we're talking to such Firmware, let it tell us.  If the new
5819 	 * API isn't supported, revert back to old hardcoded way.  The value
5820 	 * obtained from Firmware is encoded in below format:
5821 	 *
5822 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
5823 	 *        ( MPSBGMAP[Port 2] << 16 ) |
5824 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
5825 	 *        ( MPSBGMAP[Port 0] <<  0 ))
5826 	 */
5827 	if (adapter->flags & FW_OK) {
5828 		u32 param, val;
5829 		int ret;
5830 
5831 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5832 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
5833 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
5834 					 0, 1, &param, &val);
5835 		if (!ret) {
5836 			int p;
5837 
5838 			/* Store the BG Map for all of the Ports in order to
5839 			 * avoid more calls to the Firmware in the future.
5840 			 */
5841 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
5842 				mps_bg_map[p] = val & 0xff;
5843 
5844 			return mps_bg_map[pidx];
5845 		}
5846 	}
5847 
5848 	/* Either we're not talking to the Firmware or we're dealing with
5849 	 * older Firmware which doesn't support the new API to get the MPS
5850 	 * Buffer Group Map.  Fall back to computing it ourselves.
5851 	 */
5852 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
5853 	return mps_bg_map[pidx];
5854 }
5855 
5856 /**
5857  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
5858  *	@adapter: the adapter
5859  *	@pidx: the port index
5860  *
5861  *	Returns a bitmap indicating which TP Ingress Channels are associated
5862  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
5863  *	the Port.
5864  */
5865 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
5866 {
5867 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
5868 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5869 
5870 	if (pidx >= nports) {
5871 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
5872 			 pidx, nports);
5873 		return 0;
5874 	}
5875 
5876 	switch (chip_version) {
5877 	case CHELSIO_T4:
5878 	case CHELSIO_T5:
5879 		/* Note that this happens to be the same values as the MPS
5880 		 * Buffer Group Map for these Chips.  But we replicate the code
5881 		 * here because they're really separate concepts.
5882 		 */
5883 		switch (nports) {
5884 		case 1: return 0xf;
5885 		case 2: return 3 << (2 * pidx);
5886 		case 4: return 1 << pidx;
5887 		}
5888 		break;
5889 
5890 	case CHELSIO_T6:
5891 		switch (nports) {
5892 		case 2: return 1 << pidx;
5893 		}
5894 		break;
5895 	}
5896 
5897 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
5898 		chip_version, nports);
5899 	return 0;
5900 }
5901 
5902 /**
5903  *      t4_get_port_type_description - return Port Type string description
5904  *      @port_type: firmware Port Type enumeration
5905  */
5906 const char *t4_get_port_type_description(enum fw_port_type port_type)
5907 {
5908 	static const char *const port_type_description[] = {
5909 		"Fiber_XFI",
5910 		"Fiber_XAUI",
5911 		"BT_SGMII",
5912 		"BT_XFI",
5913 		"BT_XAUI",
5914 		"KX4",
5915 		"CX4",
5916 		"KX",
5917 		"KR",
5918 		"SFP",
5919 		"BP_AP",
5920 		"BP4_AP",
5921 		"QSFP_10G",
5922 		"QSA",
5923 		"QSFP",
5924 		"BP40_BA",
5925 		"KR4_100G",
5926 		"CR4_QSFP",
5927 		"CR_QSFP",
5928 		"CR2_QSFP",
5929 		"SFP28",
5930 		"KR_SFP28",
5931 	};
5932 
5933 	if (port_type < ARRAY_SIZE(port_type_description))
5934 		return port_type_description[port_type];
5935 	return "UNKNOWN";
5936 }
5937 
5938 /**
5939  *      t4_get_port_stats_offset - collect port stats relative to a previous
5940  *                                 snapshot
5941  *      @adap: The adapter
5942  *      @idx: The port
5943  *      @stats: Current stats to fill
5944  *      @offset: Previous stats snapshot
5945  */
5946 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5947 			      struct port_stats *stats,
5948 			      struct port_stats *offset)
5949 {
5950 	u64 *s, *o;
5951 	int i;
5952 
5953 	t4_get_port_stats(adap, idx, stats);
5954 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5955 			i < (sizeof(struct port_stats) / sizeof(u64));
5956 			i++, s++, o++)
5957 		*s -= *o;
5958 }
5959 
5960 /**
5961  *	t4_get_port_stats - collect port statistics
5962  *	@adap: the adapter
5963  *	@idx: the port index
5964  *	@p: the stats structure to fill
5965  *
5966  *	Collect statistics related to the given port from HW.
5967  */
5968 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5969 {
5970 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5971 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
5972 
5973 #define GET_STAT(name) \
5974 	t4_read_reg64(adap, \
5975 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5976 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5977 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5978 
5979 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5980 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5981 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5982 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5983 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5984 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5985 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5986 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5987 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5988 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5989 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5990 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5991 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5992 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
5993 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5994 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5995 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5996 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5997 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5998 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5999 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6000 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6001 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6002 
6003 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6004 		if (stat_ctl & COUNTPAUSESTATTX_F)
6005 			p->tx_frames_64 -= p->tx_pause;
6006 		if (stat_ctl & COUNTPAUSEMCTX_F)
6007 			p->tx_mcast_frames -= p->tx_pause;
6008 	}
6009 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6010 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6011 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6012 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6013 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6014 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6015 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6016 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6017 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6018 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6019 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6020 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6021 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6022 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6023 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6024 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6025 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6026 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6027 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6028 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6029 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6030 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6031 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6032 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6033 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6034 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6035 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6036 
6037 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6038 		if (stat_ctl & COUNTPAUSESTATRX_F)
6039 			p->rx_frames_64 -= p->rx_pause;
6040 		if (stat_ctl & COUNTPAUSEMCRX_F)
6041 			p->rx_mcast_frames -= p->rx_pause;
6042 	}
6043 
6044 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6045 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6046 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6047 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6048 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6049 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6050 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6051 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6052 
6053 #undef GET_STAT
6054 #undef GET_STAT_COM
6055 }
6056 
6057 /**
6058  *	t4_get_lb_stats - collect loopback port statistics
6059  *	@adap: the adapter
6060  *	@idx: the loopback port index
6061  *	@p: the stats structure to fill
6062  *
6063  *	Return HW statistics for the given loopback port.
6064  */
6065 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6066 {
6067 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6068 
6069 #define GET_STAT(name) \
6070 	t4_read_reg64(adap, \
6071 	(is_t4(adap->params.chip) ? \
6072 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6073 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6074 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6075 
6076 	p->octets           = GET_STAT(BYTES);
6077 	p->frames           = GET_STAT(FRAMES);
6078 	p->bcast_frames     = GET_STAT(BCAST);
6079 	p->mcast_frames     = GET_STAT(MCAST);
6080 	p->ucast_frames     = GET_STAT(UCAST);
6081 	p->error_frames     = GET_STAT(ERROR);
6082 
6083 	p->frames_64        = GET_STAT(64B);
6084 	p->frames_65_127    = GET_STAT(65B_127B);
6085 	p->frames_128_255   = GET_STAT(128B_255B);
6086 	p->frames_256_511   = GET_STAT(256B_511B);
6087 	p->frames_512_1023  = GET_STAT(512B_1023B);
6088 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6089 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6090 	p->drop             = GET_STAT(DROP_FRAMES);
6091 
6092 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6093 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6094 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6095 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6096 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6097 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6098 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6099 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6100 
6101 #undef GET_STAT
6102 #undef GET_STAT_COM
6103 }
6104 
6105 /*     t4_mk_filtdelwr - create a delete filter WR
6106  *     @ftid: the filter ID
6107  *     @wr: the filter work request to populate
6108  *     @qid: ingress queue to receive the delete notification
6109  *
6110  *     Creates a filter work request to delete the supplied filter.  If @qid is
6111  *     negative the delete notification is suppressed.
6112  */
6113 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6114 {
6115 	memset(wr, 0, sizeof(*wr));
6116 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6117 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6118 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6119 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6120 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6121 	if (qid >= 0)
6122 		wr->rx_chan_rx_rpl_iq =
6123 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6124 }
6125 
6126 #define INIT_CMD(var, cmd, rd_wr) do { \
6127 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6128 					FW_CMD_REQUEST_F | \
6129 					FW_CMD_##rd_wr##_F); \
6130 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6131 } while (0)
6132 
6133 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6134 			  u32 addr, u32 val)
6135 {
6136 	u32 ldst_addrspace;
6137 	struct fw_ldst_cmd c;
6138 
6139 	memset(&c, 0, sizeof(c));
6140 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6141 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6142 					FW_CMD_REQUEST_F |
6143 					FW_CMD_WRITE_F |
6144 					ldst_addrspace);
6145 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6146 	c.u.addrval.addr = cpu_to_be32(addr);
6147 	c.u.addrval.val = cpu_to_be32(val);
6148 
6149 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6150 }
6151 
6152 /**
6153  *	t4_mdio_rd - read a PHY register through MDIO
6154  *	@adap: the adapter
6155  *	@mbox: mailbox to use for the FW command
6156  *	@phy_addr: the PHY address
6157  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6158  *	@reg: the register to read
6159  *	@valp: where to store the value
6160  *
6161  *	Issues a FW command through the given mailbox to read a PHY register.
6162  */
6163 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6164 	       unsigned int mmd, unsigned int reg, u16 *valp)
6165 {
6166 	int ret;
6167 	u32 ldst_addrspace;
6168 	struct fw_ldst_cmd c;
6169 
6170 	memset(&c, 0, sizeof(c));
6171 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6172 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6173 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6174 					ldst_addrspace);
6175 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6176 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6177 					 FW_LDST_CMD_MMD_V(mmd));
6178 	c.u.mdio.raddr = cpu_to_be16(reg);
6179 
6180 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6181 	if (ret == 0)
6182 		*valp = be16_to_cpu(c.u.mdio.rval);
6183 	return ret;
6184 }
6185 
6186 /**
6187  *	t4_mdio_wr - write a PHY register through MDIO
6188  *	@adap: the adapter
6189  *	@mbox: mailbox to use for the FW command
6190  *	@phy_addr: the PHY address
6191  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6192  *	@reg: the register to write
6193  *	@valp: value to write
6194  *
6195  *	Issues a FW command through the given mailbox to write a PHY register.
6196  */
6197 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6198 	       unsigned int mmd, unsigned int reg, u16 val)
6199 {
6200 	u32 ldst_addrspace;
6201 	struct fw_ldst_cmd c;
6202 
6203 	memset(&c, 0, sizeof(c));
6204 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6205 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6206 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6207 					ldst_addrspace);
6208 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6209 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6210 					 FW_LDST_CMD_MMD_V(mmd));
6211 	c.u.mdio.raddr = cpu_to_be16(reg);
6212 	c.u.mdio.rval = cpu_to_be16(val);
6213 
6214 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6215 }
6216 
6217 /**
6218  *	t4_sge_decode_idma_state - decode the idma state
6219  *	@adap: the adapter
6220  *	@state: the state idma is stuck in
6221  */
6222 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6223 {
6224 	static const char * const t4_decode[] = {
6225 		"IDMA_IDLE",
6226 		"IDMA_PUSH_MORE_CPL_FIFO",
6227 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6228 		"Not used",
6229 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6230 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6231 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6232 		"IDMA_SEND_FIFO_TO_IMSG",
6233 		"IDMA_FL_REQ_DATA_FL_PREP",
6234 		"IDMA_FL_REQ_DATA_FL",
6235 		"IDMA_FL_DROP",
6236 		"IDMA_FL_H_REQ_HEADER_FL",
6237 		"IDMA_FL_H_SEND_PCIEHDR",
6238 		"IDMA_FL_H_PUSH_CPL_FIFO",
6239 		"IDMA_FL_H_SEND_CPL",
6240 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6241 		"IDMA_FL_H_SEND_IP_HDR",
6242 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6243 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6244 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6245 		"IDMA_FL_D_SEND_PCIEHDR",
6246 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6247 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6248 		"IDMA_FL_SEND_PCIEHDR",
6249 		"IDMA_FL_PUSH_CPL_FIFO",
6250 		"IDMA_FL_SEND_CPL",
6251 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6252 		"IDMA_FL_SEND_PAYLOAD",
6253 		"IDMA_FL_REQ_NEXT_DATA_FL",
6254 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6255 		"IDMA_FL_SEND_PADDING",
6256 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6257 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6258 		"IDMA_FL_REQ_DATAFL_DONE",
6259 		"IDMA_FL_REQ_HEADERFL_DONE",
6260 	};
6261 	static const char * const t5_decode[] = {
6262 		"IDMA_IDLE",
6263 		"IDMA_ALMOST_IDLE",
6264 		"IDMA_PUSH_MORE_CPL_FIFO",
6265 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6266 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6267 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6268 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6269 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6270 		"IDMA_SEND_FIFO_TO_IMSG",
6271 		"IDMA_FL_REQ_DATA_FL",
6272 		"IDMA_FL_DROP",
6273 		"IDMA_FL_DROP_SEND_INC",
6274 		"IDMA_FL_H_REQ_HEADER_FL",
6275 		"IDMA_FL_H_SEND_PCIEHDR",
6276 		"IDMA_FL_H_PUSH_CPL_FIFO",
6277 		"IDMA_FL_H_SEND_CPL",
6278 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6279 		"IDMA_FL_H_SEND_IP_HDR",
6280 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6281 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6282 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6283 		"IDMA_FL_D_SEND_PCIEHDR",
6284 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6285 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6286 		"IDMA_FL_SEND_PCIEHDR",
6287 		"IDMA_FL_PUSH_CPL_FIFO",
6288 		"IDMA_FL_SEND_CPL",
6289 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6290 		"IDMA_FL_SEND_PAYLOAD",
6291 		"IDMA_FL_REQ_NEXT_DATA_FL",
6292 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6293 		"IDMA_FL_SEND_PADDING",
6294 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6295 	};
6296 	static const char * const t6_decode[] = {
6297 		"IDMA_IDLE",
6298 		"IDMA_PUSH_MORE_CPL_FIFO",
6299 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6300 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6301 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6302 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6303 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6304 		"IDMA_FL_REQ_DATA_FL",
6305 		"IDMA_FL_DROP",
6306 		"IDMA_FL_DROP_SEND_INC",
6307 		"IDMA_FL_H_REQ_HEADER_FL",
6308 		"IDMA_FL_H_SEND_PCIEHDR",
6309 		"IDMA_FL_H_PUSH_CPL_FIFO",
6310 		"IDMA_FL_H_SEND_CPL",
6311 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6312 		"IDMA_FL_H_SEND_IP_HDR",
6313 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6314 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6315 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6316 		"IDMA_FL_D_SEND_PCIEHDR",
6317 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6318 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6319 		"IDMA_FL_SEND_PCIEHDR",
6320 		"IDMA_FL_PUSH_CPL_FIFO",
6321 		"IDMA_FL_SEND_CPL",
6322 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6323 		"IDMA_FL_SEND_PAYLOAD",
6324 		"IDMA_FL_REQ_NEXT_DATA_FL",
6325 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6326 		"IDMA_FL_SEND_PADDING",
6327 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6328 	};
6329 	static const u32 sge_regs[] = {
6330 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6331 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6332 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6333 	};
6334 	const char **sge_idma_decode;
6335 	int sge_idma_decode_nstates;
6336 	int i;
6337 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6338 
6339 	/* Select the right set of decode strings to dump depending on the
6340 	 * adapter chip type.
6341 	 */
6342 	switch (chip_version) {
6343 	case CHELSIO_T4:
6344 		sge_idma_decode = (const char **)t4_decode;
6345 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6346 		break;
6347 
6348 	case CHELSIO_T5:
6349 		sge_idma_decode = (const char **)t5_decode;
6350 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6351 		break;
6352 
6353 	case CHELSIO_T6:
6354 		sge_idma_decode = (const char **)t6_decode;
6355 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6356 		break;
6357 
6358 	default:
6359 		dev_err(adapter->pdev_dev,
6360 			"Unsupported chip version %d\n", chip_version);
6361 		return;
6362 	}
6363 
6364 	if (is_t4(adapter->params.chip)) {
6365 		sge_idma_decode = (const char **)t4_decode;
6366 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6367 	} else {
6368 		sge_idma_decode = (const char **)t5_decode;
6369 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6370 	}
6371 
6372 	if (state < sge_idma_decode_nstates)
6373 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6374 	else
6375 		CH_WARN(adapter, "idma state %d unknown\n", state);
6376 
6377 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6378 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6379 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6380 }
6381 
6382 /**
6383  *      t4_sge_ctxt_flush - flush the SGE context cache
6384  *      @adap: the adapter
6385  *      @mbox: mailbox to use for the FW command
6386  *
6387  *      Issues a FW command through the given mailbox to flush the
6388  *      SGE context cache.
6389  */
6390 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6391 {
6392 	int ret;
6393 	u32 ldst_addrspace;
6394 	struct fw_ldst_cmd c;
6395 
6396 	memset(&c, 0, sizeof(c));
6397 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
6398 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6399 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6400 					ldst_addrspace);
6401 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6402 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6403 
6404 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6405 	return ret;
6406 }
6407 
6408 /**
6409  *      t4_fw_hello - establish communication with FW
6410  *      @adap: the adapter
6411  *      @mbox: mailbox to use for the FW command
6412  *      @evt_mbox: mailbox to receive async FW events
6413  *      @master: specifies the caller's willingness to be the device master
6414  *	@state: returns the current device state (if non-NULL)
6415  *
6416  *	Issues a command to establish communication with FW.  Returns either
6417  *	an error (negative integer) or the mailbox of the Master PF.
6418  */
6419 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6420 		enum dev_master master, enum dev_state *state)
6421 {
6422 	int ret;
6423 	struct fw_hello_cmd c;
6424 	u32 v;
6425 	unsigned int master_mbox;
6426 	int retries = FW_CMD_HELLO_RETRIES;
6427 
6428 retry:
6429 	memset(&c, 0, sizeof(c));
6430 	INIT_CMD(c, HELLO, WRITE);
6431 	c.err_to_clearinit = cpu_to_be32(
6432 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6433 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6434 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6435 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6436 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6437 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6438 		FW_HELLO_CMD_CLEARINIT_F);
6439 
6440 	/*
6441 	 * Issue the HELLO command to the firmware.  If it's not successful
6442 	 * but indicates that we got a "busy" or "timeout" condition, retry
6443 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6444 	 * retry limit, check to see if the firmware left us any error
6445 	 * information and report that if so.
6446 	 */
6447 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6448 	if (ret < 0) {
6449 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6450 			goto retry;
6451 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6452 			t4_report_fw_error(adap);
6453 		return ret;
6454 	}
6455 
6456 	v = be32_to_cpu(c.err_to_clearinit);
6457 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6458 	if (state) {
6459 		if (v & FW_HELLO_CMD_ERR_F)
6460 			*state = DEV_STATE_ERR;
6461 		else if (v & FW_HELLO_CMD_INIT_F)
6462 			*state = DEV_STATE_INIT;
6463 		else
6464 			*state = DEV_STATE_UNINIT;
6465 	}
6466 
6467 	/*
6468 	 * If we're not the Master PF then we need to wait around for the
6469 	 * Master PF Driver to finish setting up the adapter.
6470 	 *
6471 	 * Note that we also do this wait if we're a non-Master-capable PF and
6472 	 * there is no current Master PF; a Master PF may show up momentarily
6473 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6474 	 * OS loads lots of different drivers rapidly at the same time).  In
6475 	 * this case, the Master PF returned by the firmware will be
6476 	 * PCIE_FW_MASTER_M so the test below will work ...
6477 	 */
6478 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6479 	    master_mbox != mbox) {
6480 		int waiting = FW_CMD_HELLO_TIMEOUT;
6481 
6482 		/*
6483 		 * Wait for the firmware to either indicate an error or
6484 		 * initialized state.  If we see either of these we bail out
6485 		 * and report the issue to the caller.  If we exhaust the
6486 		 * "hello timeout" and we haven't exhausted our retries, try
6487 		 * again.  Otherwise bail with a timeout error.
6488 		 */
6489 		for (;;) {
6490 			u32 pcie_fw;
6491 
6492 			msleep(50);
6493 			waiting -= 50;
6494 
6495 			/*
6496 			 * If neither Error nor Initialialized are indicated
6497 			 * by the firmware keep waiting till we exaust our
6498 			 * timeout ... and then retry if we haven't exhausted
6499 			 * our retries ...
6500 			 */
6501 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6502 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6503 				if (waiting <= 0) {
6504 					if (retries-- > 0)
6505 						goto retry;
6506 
6507 					return -ETIMEDOUT;
6508 				}
6509 				continue;
6510 			}
6511 
6512 			/*
6513 			 * We either have an Error or Initialized condition
6514 			 * report errors preferentially.
6515 			 */
6516 			if (state) {
6517 				if (pcie_fw & PCIE_FW_ERR_F)
6518 					*state = DEV_STATE_ERR;
6519 				else if (pcie_fw & PCIE_FW_INIT_F)
6520 					*state = DEV_STATE_INIT;
6521 			}
6522 
6523 			/*
6524 			 * If we arrived before a Master PF was selected and
6525 			 * there's not a valid Master PF, grab its identity
6526 			 * for our caller.
6527 			 */
6528 			if (master_mbox == PCIE_FW_MASTER_M &&
6529 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6530 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6531 			break;
6532 		}
6533 	}
6534 
6535 	return master_mbox;
6536 }
6537 
6538 /**
6539  *	t4_fw_bye - end communication with FW
6540  *	@adap: the adapter
6541  *	@mbox: mailbox to use for the FW command
6542  *
6543  *	Issues a command to terminate communication with FW.
6544  */
6545 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6546 {
6547 	struct fw_bye_cmd c;
6548 
6549 	memset(&c, 0, sizeof(c));
6550 	INIT_CMD(c, BYE, WRITE);
6551 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6552 }
6553 
6554 /**
6555  *	t4_init_cmd - ask FW to initialize the device
6556  *	@adap: the adapter
6557  *	@mbox: mailbox to use for the FW command
6558  *
6559  *	Issues a command to FW to partially initialize the device.  This
6560  *	performs initialization that generally doesn't depend on user input.
6561  */
6562 int t4_early_init(struct adapter *adap, unsigned int mbox)
6563 {
6564 	struct fw_initialize_cmd c;
6565 
6566 	memset(&c, 0, sizeof(c));
6567 	INIT_CMD(c, INITIALIZE, WRITE);
6568 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6569 }
6570 
6571 /**
6572  *	t4_fw_reset - issue a reset to FW
6573  *	@adap: the adapter
6574  *	@mbox: mailbox to use for the FW command
6575  *	@reset: specifies the type of reset to perform
6576  *
6577  *	Issues a reset command of the specified type to FW.
6578  */
6579 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6580 {
6581 	struct fw_reset_cmd c;
6582 
6583 	memset(&c, 0, sizeof(c));
6584 	INIT_CMD(c, RESET, WRITE);
6585 	c.val = cpu_to_be32(reset);
6586 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6587 }
6588 
6589 /**
6590  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6591  *	@adap: the adapter
6592  *	@mbox: mailbox to use for the FW RESET command (if desired)
6593  *	@force: force uP into RESET even if FW RESET command fails
6594  *
6595  *	Issues a RESET command to firmware (if desired) with a HALT indication
6596  *	and then puts the microprocessor into RESET state.  The RESET command
6597  *	will only be issued if a legitimate mailbox is provided (mbox <=
6598  *	PCIE_FW_MASTER_M).
6599  *
6600  *	This is generally used in order for the host to safely manipulate the
6601  *	adapter without fear of conflicting with whatever the firmware might
6602  *	be doing.  The only way out of this state is to RESTART the firmware
6603  *	...
6604  */
6605 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6606 {
6607 	int ret = 0;
6608 
6609 	/*
6610 	 * If a legitimate mailbox is provided, issue a RESET command
6611 	 * with a HALT indication.
6612 	 */
6613 	if (mbox <= PCIE_FW_MASTER_M) {
6614 		struct fw_reset_cmd c;
6615 
6616 		memset(&c, 0, sizeof(c));
6617 		INIT_CMD(c, RESET, WRITE);
6618 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6619 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6620 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6621 	}
6622 
6623 	/*
6624 	 * Normally we won't complete the operation if the firmware RESET
6625 	 * command fails but if our caller insists we'll go ahead and put the
6626 	 * uP into RESET.  This can be useful if the firmware is hung or even
6627 	 * missing ...  We'll have to take the risk of putting the uP into
6628 	 * RESET without the cooperation of firmware in that case.
6629 	 *
6630 	 * We also force the firmware's HALT flag to be on in case we bypassed
6631 	 * the firmware RESET command above or we're dealing with old firmware
6632 	 * which doesn't have the HALT capability.  This will serve as a flag
6633 	 * for the incoming firmware to know that it's coming out of a HALT
6634 	 * rather than a RESET ... if it's new enough to understand that ...
6635 	 */
6636 	if (ret == 0 || force) {
6637 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6638 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6639 				 PCIE_FW_HALT_F);
6640 	}
6641 
6642 	/*
6643 	 * And we always return the result of the firmware RESET command
6644 	 * even when we force the uP into RESET ...
6645 	 */
6646 	return ret;
6647 }
6648 
6649 /**
6650  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6651  *	@adap: the adapter
6652  *	@reset: if we want to do a RESET to restart things
6653  *
6654  *	Restart firmware previously halted by t4_fw_halt().  On successful
6655  *	return the previous PF Master remains as the new PF Master and there
6656  *	is no need to issue a new HELLO command, etc.
6657  *
6658  *	We do this in two ways:
6659  *
6660  *	 1. If we're dealing with newer firmware we'll simply want to take
6661  *	    the chip's microprocessor out of RESET.  This will cause the
6662  *	    firmware to start up from its start vector.  And then we'll loop
6663  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6664  *	    reset to 0) or we timeout.
6665  *
6666  *	 2. If we're dealing with older firmware then we'll need to RESET
6667  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6668  *	    flag and automatically RESET itself on startup.
6669  */
6670 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6671 {
6672 	if (reset) {
6673 		/*
6674 		 * Since we're directing the RESET instead of the firmware
6675 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6676 		 * bit.
6677 		 */
6678 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6679 
6680 		/*
6681 		 * If we've been given a valid mailbox, first try to get the
6682 		 * firmware to do the RESET.  If that works, great and we can
6683 		 * return success.  Otherwise, if we haven't been given a
6684 		 * valid mailbox or the RESET command failed, fall back to
6685 		 * hitting the chip with a hammer.
6686 		 */
6687 		if (mbox <= PCIE_FW_MASTER_M) {
6688 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6689 			msleep(100);
6690 			if (t4_fw_reset(adap, mbox,
6691 					PIORST_F | PIORSTMODE_F) == 0)
6692 				return 0;
6693 		}
6694 
6695 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6696 		msleep(2000);
6697 	} else {
6698 		int ms;
6699 
6700 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6701 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6702 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6703 				return 0;
6704 			msleep(100);
6705 			ms += 100;
6706 		}
6707 		return -ETIMEDOUT;
6708 	}
6709 	return 0;
6710 }
6711 
6712 /**
6713  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6714  *	@adap: the adapter
6715  *	@mbox: mailbox to use for the FW RESET command (if desired)
6716  *	@fw_data: the firmware image to write
6717  *	@size: image size
6718  *	@force: force upgrade even if firmware doesn't cooperate
6719  *
6720  *	Perform all of the steps necessary for upgrading an adapter's
6721  *	firmware image.  Normally this requires the cooperation of the
6722  *	existing firmware in order to halt all existing activities
6723  *	but if an invalid mailbox token is passed in we skip that step
6724  *	(though we'll still put the adapter microprocessor into RESET in
6725  *	that case).
6726  *
6727  *	On successful return the new firmware will have been loaded and
6728  *	the adapter will have been fully RESET losing all previous setup
6729  *	state.  On unsuccessful return the adapter may be completely hosed ...
6730  *	positive errno indicates that the adapter is ~probably~ intact, a
6731  *	negative errno indicates that things are looking bad ...
6732  */
6733 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6734 		  const u8 *fw_data, unsigned int size, int force)
6735 {
6736 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6737 	int reset, ret;
6738 
6739 	if (!t4_fw_matches_chip(adap, fw_hdr))
6740 		return -EINVAL;
6741 
6742 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6743 	 * wont be sent when we are flashing FW.
6744 	 */
6745 	adap->flags &= ~FW_OK;
6746 
6747 	ret = t4_fw_halt(adap, mbox, force);
6748 	if (ret < 0 && !force)
6749 		goto out;
6750 
6751 	ret = t4_load_fw(adap, fw_data, size);
6752 	if (ret < 0)
6753 		goto out;
6754 
6755 	/*
6756 	 * If there was a Firmware Configuration File stored in FLASH,
6757 	 * there's a good chance that it won't be compatible with the new
6758 	 * Firmware.  In order to prevent difficult to diagnose adapter
6759 	 * initialization issues, we clear out the Firmware Configuration File
6760 	 * portion of the FLASH .  The user will need to re-FLASH a new
6761 	 * Firmware Configuration File which is compatible with the new
6762 	 * Firmware if that's desired.
6763 	 */
6764 	(void)t4_load_cfg(adap, NULL, 0);
6765 
6766 	/*
6767 	 * Older versions of the firmware don't understand the new
6768 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6769 	 * restart.  So for newly loaded older firmware we'll have to do the
6770 	 * RESET for it so it starts up on a clean slate.  We can tell if
6771 	 * the newly loaded firmware will handle this right by checking
6772 	 * its header flags to see if it advertises the capability.
6773 	 */
6774 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6775 	ret = t4_fw_restart(adap, mbox, reset);
6776 
6777 	/* Grab potentially new Firmware Device Log parameters so we can see
6778 	 * how healthy the new Firmware is.  It's okay to contact the new
6779 	 * Firmware for these parameters even though, as far as it's
6780 	 * concerned, we've never said "HELLO" to it ...
6781 	 */
6782 	(void)t4_init_devlog_params(adap);
6783 out:
6784 	adap->flags |= FW_OK;
6785 	return ret;
6786 }
6787 
6788 /**
6789  *	t4_fl_pkt_align - return the fl packet alignment
6790  *	@adap: the adapter
6791  *
6792  *	T4 has a single field to specify the packing and padding boundary.
6793  *	T5 onwards has separate fields for this and hence the alignment for
6794  *	next packet offset is maximum of these two.
6795  *
6796  */
6797 int t4_fl_pkt_align(struct adapter *adap)
6798 {
6799 	u32 sge_control, sge_control2;
6800 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6801 
6802 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6803 
6804 	/* T4 uses a single control field to specify both the PCIe Padding and
6805 	 * Packing Boundary.  T5 introduced the ability to specify these
6806 	 * separately.  The actual Ingress Packet Data alignment boundary
6807 	 * within Packed Buffer Mode is the maximum of these two
6808 	 * specifications.  (Note that it makes no real practical sense to
6809 	 * have the Pading Boudary be larger than the Packing Boundary but you
6810 	 * could set the chip up that way and, in fact, legacy T4 code would
6811 	 * end doing this because it would initialize the Padding Boundary and
6812 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6813 	 * Padding Boundary values in T6 starts from 8B,
6814 	 * where as it is 32B for T4 and T5.
6815 	 */
6816 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6817 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6818 	else
6819 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6820 
6821 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6822 
6823 	fl_align = ingpadboundary;
6824 	if (!is_t4(adap->params.chip)) {
6825 		/* T5 has a weird interpretation of one of the PCIe Packing
6826 		 * Boundary values.  No idea why ...
6827 		 */
6828 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6829 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6830 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6831 			ingpackboundary = 16;
6832 		else
6833 			ingpackboundary = 1 << (ingpackboundary +
6834 						INGPACKBOUNDARY_SHIFT_X);
6835 
6836 		fl_align = max(ingpadboundary, ingpackboundary);
6837 	}
6838 	return fl_align;
6839 }
6840 
6841 /**
6842  *	t4_fixup_host_params - fix up host-dependent parameters
6843  *	@adap: the adapter
6844  *	@page_size: the host's Base Page Size
6845  *	@cache_line_size: the host's Cache Line Size
6846  *
6847  *	Various registers in T4 contain values which are dependent on the
6848  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6849  *	those registers with the appropriate values as passed in ...
6850  */
6851 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6852 			 unsigned int cache_line_size)
6853 {
6854 	unsigned int page_shift = fls(page_size) - 1;
6855 	unsigned int sge_hps = page_shift - 10;
6856 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6857 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6858 	unsigned int fl_align_log = fls(fl_align) - 1;
6859 
6860 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6861 		     HOSTPAGESIZEPF0_V(sge_hps) |
6862 		     HOSTPAGESIZEPF1_V(sge_hps) |
6863 		     HOSTPAGESIZEPF2_V(sge_hps) |
6864 		     HOSTPAGESIZEPF3_V(sge_hps) |
6865 		     HOSTPAGESIZEPF4_V(sge_hps) |
6866 		     HOSTPAGESIZEPF5_V(sge_hps) |
6867 		     HOSTPAGESIZEPF6_V(sge_hps) |
6868 		     HOSTPAGESIZEPF7_V(sge_hps));
6869 
6870 	if (is_t4(adap->params.chip)) {
6871 		t4_set_reg_field(adap, SGE_CONTROL_A,
6872 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6873 				 EGRSTATUSPAGESIZE_F,
6874 				 INGPADBOUNDARY_V(fl_align_log -
6875 						  INGPADBOUNDARY_SHIFT_X) |
6876 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6877 	} else {
6878 		unsigned int pack_align;
6879 		unsigned int ingpad, ingpack;
6880 		unsigned int pcie_cap;
6881 
6882 		/* T5 introduced the separation of the Free List Padding and
6883 		 * Packing Boundaries.  Thus, we can select a smaller Padding
6884 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6885 		 * Bandwidth, and use a Packing Boundary which is large enough
6886 		 * to avoid false sharing between CPUs, etc.
6887 		 *
6888 		 * For the PCI Link, the smaller the Padding Boundary the
6889 		 * better.  For the Memory Controller, a smaller Padding
6890 		 * Boundary is better until we cross under the Memory Line
6891 		 * Size (the minimum unit of transfer to/from Memory).  If we
6892 		 * have a Padding Boundary which is smaller than the Memory
6893 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
6894 		 * Memory Controller which is never good.
6895 		 */
6896 
6897 		/* We want the Packing Boundary to be based on the Cache Line
6898 		 * Size in order to help avoid False Sharing performance
6899 		 * issues between CPUs, etc.  We also want the Packing
6900 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
6901 		 * get best performance when the Packing Boundary is a
6902 		 * multiple of the Maximum Payload Size.
6903 		 */
6904 		pack_align = fl_align;
6905 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
6906 		if (pcie_cap) {
6907 			unsigned int mps, mps_log;
6908 			u16 devctl;
6909 
6910 			/* The PCIe Device Control Maximum Payload Size field
6911 			 * [bits 7:5] encodes sizes as powers of 2 starting at
6912 			 * 128 bytes.
6913 			 */
6914 			pci_read_config_word(adap->pdev,
6915 					     pcie_cap + PCI_EXP_DEVCTL,
6916 					     &devctl);
6917 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
6918 			mps = 1 << mps_log;
6919 			if (mps > pack_align)
6920 				pack_align = mps;
6921 		}
6922 
6923 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
6924 		 * value for the Packing Boundary.  This corresponds to 16
6925 		 * bytes instead of the expected 32 bytes.  So if we want 32
6926 		 * bytes, the best we can really do is 64 bytes ...
6927 		 */
6928 		if (pack_align <= 16) {
6929 			ingpack = INGPACKBOUNDARY_16B_X;
6930 			fl_align = 16;
6931 		} else if (pack_align == 32) {
6932 			ingpack = INGPACKBOUNDARY_64B_X;
6933 			fl_align = 64;
6934 		} else {
6935 			unsigned int pack_align_log = fls(pack_align) - 1;
6936 
6937 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
6938 			fl_align = pack_align;
6939 		}
6940 
6941 		/* Use the smallest Ingress Padding which isn't smaller than
6942 		 * the Memory Controller Read/Write Size.  We'll take that as
6943 		 * being 8 bytes since we don't know of any system with a
6944 		 * wider Memory Controller Bus Width.
6945 		 */
6946 		if (is_t5(adap->params.chip))
6947 			ingpad = INGPADBOUNDARY_32B_X;
6948 		else
6949 			ingpad = T6_INGPADBOUNDARY_8B_X;
6950 
6951 		t4_set_reg_field(adap, SGE_CONTROL_A,
6952 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6953 				 EGRSTATUSPAGESIZE_F,
6954 				 INGPADBOUNDARY_V(ingpad) |
6955 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6956 		t4_set_reg_field(adap, SGE_CONTROL2_A,
6957 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6958 				 INGPACKBOUNDARY_V(ingpack));
6959 	}
6960 	/*
6961 	 * Adjust various SGE Free List Host Buffer Sizes.
6962 	 *
6963 	 * This is something of a crock since we're using fixed indices into
6964 	 * the array which are also known by the sge.c code and the T4
6965 	 * Firmware Configuration File.  We need to come up with a much better
6966 	 * approach to managing this array.  For now, the first four entries
6967 	 * are:
6968 	 *
6969 	 *   0: Host Page Size
6970 	 *   1: 64KB
6971 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6972 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6973 	 *
6974 	 * For the single-MTU buffers in unpacked mode we need to include
6975 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6976 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6977 	 * Padding boundary.  All of these are accommodated in the Factory
6978 	 * Default Firmware Configuration File but we need to adjust it for
6979 	 * this host's cache line size.
6980 	 */
6981 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6982 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6983 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6984 		     & ~(fl_align-1));
6985 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6986 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6987 		     & ~(fl_align-1));
6988 
6989 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6990 
6991 	return 0;
6992 }
6993 
6994 /**
6995  *	t4_fw_initialize - ask FW to initialize the device
6996  *	@adap: the adapter
6997  *	@mbox: mailbox to use for the FW command
6998  *
6999  *	Issues a command to FW to partially initialize the device.  This
7000  *	performs initialization that generally doesn't depend on user input.
7001  */
7002 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7003 {
7004 	struct fw_initialize_cmd c;
7005 
7006 	memset(&c, 0, sizeof(c));
7007 	INIT_CMD(c, INITIALIZE, WRITE);
7008 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7009 }
7010 
7011 /**
7012  *	t4_query_params_rw - query FW or device parameters
7013  *	@adap: the adapter
7014  *	@mbox: mailbox to use for the FW command
7015  *	@pf: the PF
7016  *	@vf: the VF
7017  *	@nparams: the number of parameters
7018  *	@params: the parameter names
7019  *	@val: the parameter values
7020  *	@rw: Write and read flag
7021  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7022  *
7023  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7024  *	queried at once.
7025  */
7026 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7027 		       unsigned int vf, unsigned int nparams, const u32 *params,
7028 		       u32 *val, int rw, bool sleep_ok)
7029 {
7030 	int i, ret;
7031 	struct fw_params_cmd c;
7032 	__be32 *p = &c.param[0].mnem;
7033 
7034 	if (nparams > 7)
7035 		return -EINVAL;
7036 
7037 	memset(&c, 0, sizeof(c));
7038 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7039 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7040 				  FW_PARAMS_CMD_PFN_V(pf) |
7041 				  FW_PARAMS_CMD_VFN_V(vf));
7042 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7043 
7044 	for (i = 0; i < nparams; i++) {
7045 		*p++ = cpu_to_be32(*params++);
7046 		if (rw)
7047 			*p = cpu_to_be32(*(val + i));
7048 		p++;
7049 	}
7050 
7051 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7052 	if (ret == 0)
7053 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7054 			*val++ = be32_to_cpu(*p);
7055 	return ret;
7056 }
7057 
7058 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7059 		    unsigned int vf, unsigned int nparams, const u32 *params,
7060 		    u32 *val)
7061 {
7062 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7063 				  true);
7064 }
7065 
7066 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7067 		       unsigned int vf, unsigned int nparams, const u32 *params,
7068 		       u32 *val)
7069 {
7070 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7071 				  false);
7072 }
7073 
7074 /**
7075  *      t4_set_params_timeout - sets FW or device parameters
7076  *      @adap: the adapter
7077  *      @mbox: mailbox to use for the FW command
7078  *      @pf: the PF
7079  *      @vf: the VF
7080  *      @nparams: the number of parameters
7081  *      @params: the parameter names
7082  *      @val: the parameter values
7083  *      @timeout: the timeout time
7084  *
7085  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7086  *      specified at once.
7087  */
7088 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7089 			  unsigned int pf, unsigned int vf,
7090 			  unsigned int nparams, const u32 *params,
7091 			  const u32 *val, int timeout)
7092 {
7093 	struct fw_params_cmd c;
7094 	__be32 *p = &c.param[0].mnem;
7095 
7096 	if (nparams > 7)
7097 		return -EINVAL;
7098 
7099 	memset(&c, 0, sizeof(c));
7100 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7101 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7102 				  FW_PARAMS_CMD_PFN_V(pf) |
7103 				  FW_PARAMS_CMD_VFN_V(vf));
7104 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7105 
7106 	while (nparams--) {
7107 		*p++ = cpu_to_be32(*params++);
7108 		*p++ = cpu_to_be32(*val++);
7109 	}
7110 
7111 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7112 }
7113 
7114 /**
7115  *	t4_set_params - sets FW or device parameters
7116  *	@adap: the adapter
7117  *	@mbox: mailbox to use for the FW command
7118  *	@pf: the PF
7119  *	@vf: the VF
7120  *	@nparams: the number of parameters
7121  *	@params: the parameter names
7122  *	@val: the parameter values
7123  *
7124  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7125  *	specified at once.
7126  */
7127 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7128 		  unsigned int vf, unsigned int nparams, const u32 *params,
7129 		  const u32 *val)
7130 {
7131 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7132 				     FW_CMD_MAX_TIMEOUT);
7133 }
7134 
7135 /**
7136  *	t4_cfg_pfvf - configure PF/VF resource limits
7137  *	@adap: the adapter
7138  *	@mbox: mailbox to use for the FW command
7139  *	@pf: the PF being configured
7140  *	@vf: the VF being configured
7141  *	@txq: the max number of egress queues
7142  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7143  *	@rxqi: the max number of interrupt-capable ingress queues
7144  *	@rxq: the max number of interruptless ingress queues
7145  *	@tc: the PCI traffic class
7146  *	@vi: the max number of virtual interfaces
7147  *	@cmask: the channel access rights mask for the PF/VF
7148  *	@pmask: the port access rights mask for the PF/VF
7149  *	@nexact: the maximum number of exact MPS filters
7150  *	@rcaps: read capabilities
7151  *	@wxcaps: write/execute capabilities
7152  *
7153  *	Configures resource limits and capabilities for a physical or virtual
7154  *	function.
7155  */
7156 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7157 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7158 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7159 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7160 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7161 {
7162 	struct fw_pfvf_cmd c;
7163 
7164 	memset(&c, 0, sizeof(c));
7165 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7166 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7167 				  FW_PFVF_CMD_VFN_V(vf));
7168 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7169 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7170 				     FW_PFVF_CMD_NIQ_V(rxq));
7171 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7172 				    FW_PFVF_CMD_PMASK_V(pmask) |
7173 				    FW_PFVF_CMD_NEQ_V(txq));
7174 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7175 				      FW_PFVF_CMD_NVI_V(vi) |
7176 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7177 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7178 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7179 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7180 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7181 }
7182 
7183 /**
7184  *	t4_alloc_vi - allocate a virtual interface
7185  *	@adap: the adapter
7186  *	@mbox: mailbox to use for the FW command
7187  *	@port: physical port associated with the VI
7188  *	@pf: the PF owning the VI
7189  *	@vf: the VF owning the VI
7190  *	@nmac: number of MAC addresses needed (1 to 5)
7191  *	@mac: the MAC addresses of the VI
7192  *	@rss_size: size of RSS table slice associated with this VI
7193  *
7194  *	Allocates a virtual interface for the given physical port.  If @mac is
7195  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7196  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7197  *	stored consecutively so the space needed is @nmac * 6 bytes.
7198  *	Returns a negative error number or the non-negative VI id.
7199  */
7200 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7201 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7202 		unsigned int *rss_size)
7203 {
7204 	int ret;
7205 	struct fw_vi_cmd c;
7206 
7207 	memset(&c, 0, sizeof(c));
7208 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7209 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7210 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7211 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7212 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7213 	c.nmac = nmac - 1;
7214 
7215 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7216 	if (ret)
7217 		return ret;
7218 
7219 	if (mac) {
7220 		memcpy(mac, c.mac, sizeof(c.mac));
7221 		switch (nmac) {
7222 		case 5:
7223 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7224 		case 4:
7225 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7226 		case 3:
7227 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7228 		case 2:
7229 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7230 		}
7231 	}
7232 	if (rss_size)
7233 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7234 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7235 }
7236 
7237 /**
7238  *	t4_free_vi - free a virtual interface
7239  *	@adap: the adapter
7240  *	@mbox: mailbox to use for the FW command
7241  *	@pf: the PF owning the VI
7242  *	@vf: the VF owning the VI
7243  *	@viid: virtual interface identifiler
7244  *
7245  *	Free a previously allocated virtual interface.
7246  */
7247 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7248 	       unsigned int vf, unsigned int viid)
7249 {
7250 	struct fw_vi_cmd c;
7251 
7252 	memset(&c, 0, sizeof(c));
7253 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7254 				  FW_CMD_REQUEST_F |
7255 				  FW_CMD_EXEC_F |
7256 				  FW_VI_CMD_PFN_V(pf) |
7257 				  FW_VI_CMD_VFN_V(vf));
7258 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7259 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7260 
7261 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7262 }
7263 
7264 /**
7265  *	t4_set_rxmode - set Rx properties of a virtual interface
7266  *	@adap: the adapter
7267  *	@mbox: mailbox to use for the FW command
7268  *	@viid: the VI id
7269  *	@mtu: the new MTU or -1
7270  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7271  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7272  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7273  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7274  *	@sleep_ok: if true we may sleep while awaiting command completion
7275  *
7276  *	Sets Rx properties of a virtual interface.
7277  */
7278 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7279 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7280 		  bool sleep_ok)
7281 {
7282 	struct fw_vi_rxmode_cmd c;
7283 
7284 	/* convert to FW values */
7285 	if (mtu < 0)
7286 		mtu = FW_RXMODE_MTU_NO_CHG;
7287 	if (promisc < 0)
7288 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7289 	if (all_multi < 0)
7290 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7291 	if (bcast < 0)
7292 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7293 	if (vlanex < 0)
7294 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7295 
7296 	memset(&c, 0, sizeof(c));
7297 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7298 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7299 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7300 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7301 	c.mtu_to_vlanexen =
7302 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7303 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7304 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7305 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7306 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7307 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7308 }
7309 
7310 /**
7311  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7312  *	@adap: the adapter
7313  *	@mbox: mailbox to use for the FW command
7314  *	@viid: the VI id
7315  *	@free: if true any existing filters for this VI id are first removed
7316  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7317  *	@addr: the MAC address(es)
7318  *	@idx: where to store the index of each allocated filter
7319  *	@hash: pointer to hash address filter bitmap
7320  *	@sleep_ok: call is allowed to sleep
7321  *
7322  *	Allocates an exact-match filter for each of the supplied addresses and
7323  *	sets it to the corresponding address.  If @idx is not %NULL it should
7324  *	have at least @naddr entries, each of which will be set to the index of
7325  *	the filter allocated for the corresponding MAC address.  If a filter
7326  *	could not be allocated for an address its index is set to 0xffff.
7327  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7328  *	are hashed and update the hash filter bitmap pointed at by @hash.
7329  *
7330  *	Returns a negative error number or the number of filters allocated.
7331  */
7332 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7333 		      unsigned int viid, bool free, unsigned int naddr,
7334 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7335 {
7336 	int offset, ret = 0;
7337 	struct fw_vi_mac_cmd c;
7338 	unsigned int nfilters = 0;
7339 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7340 	unsigned int rem = naddr;
7341 
7342 	if (naddr > max_naddr)
7343 		return -EINVAL;
7344 
7345 	for (offset = 0; offset < naddr ; /**/) {
7346 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7347 					 rem : ARRAY_SIZE(c.u.exact));
7348 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7349 						     u.exact[fw_naddr]), 16);
7350 		struct fw_vi_mac_exact *p;
7351 		int i;
7352 
7353 		memset(&c, 0, sizeof(c));
7354 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7355 					   FW_CMD_REQUEST_F |
7356 					   FW_CMD_WRITE_F |
7357 					   FW_CMD_EXEC_V(free) |
7358 					   FW_VI_MAC_CMD_VIID_V(viid));
7359 		c.freemacs_to_len16 =
7360 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7361 				    FW_CMD_LEN16_V(len16));
7362 
7363 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7364 			p->valid_to_idx =
7365 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7366 					    FW_VI_MAC_CMD_IDX_V(
7367 						    FW_VI_MAC_ADD_MAC));
7368 			memcpy(p->macaddr, addr[offset + i],
7369 			       sizeof(p->macaddr));
7370 		}
7371 
7372 		/* It's okay if we run out of space in our MAC address arena.
7373 		 * Some of the addresses we submit may get stored so we need
7374 		 * to run through the reply to see what the results were ...
7375 		 */
7376 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7377 		if (ret && ret != -FW_ENOMEM)
7378 			break;
7379 
7380 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7381 			u16 index = FW_VI_MAC_CMD_IDX_G(
7382 					be16_to_cpu(p->valid_to_idx));
7383 
7384 			if (idx)
7385 				idx[offset + i] = (index >= max_naddr ?
7386 						   0xffff : index);
7387 			if (index < max_naddr)
7388 				nfilters++;
7389 			else if (hash)
7390 				*hash |= (1ULL <<
7391 					  hash_mac_addr(addr[offset + i]));
7392 		}
7393 
7394 		free = false;
7395 		offset += fw_naddr;
7396 		rem -= fw_naddr;
7397 	}
7398 
7399 	if (ret == 0 || ret == -FW_ENOMEM)
7400 		ret = nfilters;
7401 	return ret;
7402 }
7403 
7404 /**
7405  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7406  *	@adap: the adapter
7407  *	@mbox: mailbox to use for the FW command
7408  *	@viid: the VI id
7409  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7410  *	@addr: the MAC address(es)
7411  *	@sleep_ok: call is allowed to sleep
7412  *
7413  *	Frees the exact-match filter for each of the supplied addresses
7414  *
7415  *	Returns a negative error number or the number of filters freed.
7416  */
7417 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7418 		     unsigned int viid, unsigned int naddr,
7419 		     const u8 **addr, bool sleep_ok)
7420 {
7421 	int offset, ret = 0;
7422 	struct fw_vi_mac_cmd c;
7423 	unsigned int nfilters = 0;
7424 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7425 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7426 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7427 	unsigned int rem = naddr;
7428 
7429 	if (naddr > max_naddr)
7430 		return -EINVAL;
7431 
7432 	for (offset = 0; offset < (int)naddr ; /**/) {
7433 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7434 					 ? rem
7435 					 : ARRAY_SIZE(c.u.exact));
7436 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7437 						     u.exact[fw_naddr]), 16);
7438 		struct fw_vi_mac_exact *p;
7439 		int i;
7440 
7441 		memset(&c, 0, sizeof(c));
7442 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7443 				     FW_CMD_REQUEST_F |
7444 				     FW_CMD_WRITE_F |
7445 				     FW_CMD_EXEC_V(0) |
7446 				     FW_VI_MAC_CMD_VIID_V(viid));
7447 		c.freemacs_to_len16 =
7448 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7449 					    FW_CMD_LEN16_V(len16));
7450 
7451 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7452 			p->valid_to_idx = cpu_to_be16(
7453 				FW_VI_MAC_CMD_VALID_F |
7454 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7455 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7456 		}
7457 
7458 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7459 		if (ret)
7460 			break;
7461 
7462 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7463 			u16 index = FW_VI_MAC_CMD_IDX_G(
7464 						be16_to_cpu(p->valid_to_idx));
7465 
7466 			if (index < max_naddr)
7467 				nfilters++;
7468 		}
7469 
7470 		offset += fw_naddr;
7471 		rem -= fw_naddr;
7472 	}
7473 
7474 	if (ret == 0)
7475 		ret = nfilters;
7476 	return ret;
7477 }
7478 
7479 /**
7480  *	t4_change_mac - modifies the exact-match filter for a MAC address
7481  *	@adap: the adapter
7482  *	@mbox: mailbox to use for the FW command
7483  *	@viid: the VI id
7484  *	@idx: index of existing filter for old value of MAC address, or -1
7485  *	@addr: the new MAC address value
7486  *	@persist: whether a new MAC allocation should be persistent
7487  *	@add_smt: if true also add the address to the HW SMT
7488  *
7489  *	Modifies an exact-match filter and sets it to the new MAC address.
7490  *	Note that in general it is not possible to modify the value of a given
7491  *	filter so the generic way to modify an address filter is to free the one
7492  *	being used by the old address value and allocate a new filter for the
7493  *	new address value.  @idx can be -1 if the address is a new addition.
7494  *
7495  *	Returns a negative error number or the index of the filter with the new
7496  *	MAC value.
7497  */
7498 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7499 		  int idx, const u8 *addr, bool persist, bool add_smt)
7500 {
7501 	int ret, mode;
7502 	struct fw_vi_mac_cmd c;
7503 	struct fw_vi_mac_exact *p = c.u.exact;
7504 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7505 
7506 	if (idx < 0)                             /* new allocation */
7507 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7508 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7509 
7510 	memset(&c, 0, sizeof(c));
7511 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7512 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7513 				   FW_VI_MAC_CMD_VIID_V(viid));
7514 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7515 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7516 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7517 				      FW_VI_MAC_CMD_IDX_V(idx));
7518 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7519 
7520 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7521 	if (ret == 0) {
7522 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7523 		if (ret >= max_mac_addr)
7524 			ret = -ENOMEM;
7525 	}
7526 	return ret;
7527 }
7528 
7529 /**
7530  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7531  *	@adap: the adapter
7532  *	@mbox: mailbox to use for the FW command
7533  *	@viid: the VI id
7534  *	@ucast: whether the hash filter should also match unicast addresses
7535  *	@vec: the value to be written to the hash filter
7536  *	@sleep_ok: call is allowed to sleep
7537  *
7538  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7539  */
7540 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7541 		     bool ucast, u64 vec, bool sleep_ok)
7542 {
7543 	struct fw_vi_mac_cmd c;
7544 
7545 	memset(&c, 0, sizeof(c));
7546 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7547 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7548 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7549 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7550 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7551 					  FW_CMD_LEN16_V(1));
7552 	c.u.hash.hashvec = cpu_to_be64(vec);
7553 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7554 }
7555 
7556 /**
7557  *      t4_enable_vi_params - enable/disable a virtual interface
7558  *      @adap: the adapter
7559  *      @mbox: mailbox to use for the FW command
7560  *      @viid: the VI id
7561  *      @rx_en: 1=enable Rx, 0=disable Rx
7562  *      @tx_en: 1=enable Tx, 0=disable Tx
7563  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7564  *
7565  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7566  *      only makes sense when enabling a Virtual Interface ...
7567  */
7568 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7569 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7570 {
7571 	struct fw_vi_enable_cmd c;
7572 
7573 	memset(&c, 0, sizeof(c));
7574 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7575 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7576 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7577 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7578 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7579 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7580 				     FW_LEN16(c));
7581 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7582 }
7583 
7584 /**
7585  *	t4_enable_vi - enable/disable a virtual interface
7586  *	@adap: the adapter
7587  *	@mbox: mailbox to use for the FW command
7588  *	@viid: the VI id
7589  *	@rx_en: 1=enable Rx, 0=disable Rx
7590  *	@tx_en: 1=enable Tx, 0=disable Tx
7591  *
7592  *	Enables/disables a virtual interface.
7593  */
7594 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7595 		 bool rx_en, bool tx_en)
7596 {
7597 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7598 }
7599 
7600 /**
7601  *	t4_identify_port - identify a VI's port by blinking its LED
7602  *	@adap: the adapter
7603  *	@mbox: mailbox to use for the FW command
7604  *	@viid: the VI id
7605  *	@nblinks: how many times to blink LED at 2.5 Hz
7606  *
7607  *	Identifies a VI's port by blinking its LED.
7608  */
7609 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7610 		     unsigned int nblinks)
7611 {
7612 	struct fw_vi_enable_cmd c;
7613 
7614 	memset(&c, 0, sizeof(c));
7615 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7616 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7617 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7618 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7619 	c.blinkdur = cpu_to_be16(nblinks);
7620 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7621 }
7622 
7623 /**
7624  *	t4_iq_stop - stop an ingress queue and its FLs
7625  *	@adap: the adapter
7626  *	@mbox: mailbox to use for the FW command
7627  *	@pf: the PF owning the queues
7628  *	@vf: the VF owning the queues
7629  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7630  *	@iqid: ingress queue id
7631  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7632  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7633  *
7634  *	Stops an ingress queue and its associated FLs, if any.  This causes
7635  *	any current or future data/messages destined for these queues to be
7636  *	tossed.
7637  */
7638 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7639 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7640 	       unsigned int fl0id, unsigned int fl1id)
7641 {
7642 	struct fw_iq_cmd c;
7643 
7644 	memset(&c, 0, sizeof(c));
7645 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7646 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7647 				  FW_IQ_CMD_VFN_V(vf));
7648 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7649 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7650 	c.iqid = cpu_to_be16(iqid);
7651 	c.fl0id = cpu_to_be16(fl0id);
7652 	c.fl1id = cpu_to_be16(fl1id);
7653 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7654 }
7655 
7656 /**
7657  *	t4_iq_free - free an ingress queue and its FLs
7658  *	@adap: the adapter
7659  *	@mbox: mailbox to use for the FW command
7660  *	@pf: the PF owning the queues
7661  *	@vf: the VF owning the queues
7662  *	@iqtype: the ingress queue type
7663  *	@iqid: ingress queue id
7664  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7665  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7666  *
7667  *	Frees an ingress queue and its associated FLs, if any.
7668  */
7669 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7670 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7671 	       unsigned int fl0id, unsigned int fl1id)
7672 {
7673 	struct fw_iq_cmd c;
7674 
7675 	memset(&c, 0, sizeof(c));
7676 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7677 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7678 				  FW_IQ_CMD_VFN_V(vf));
7679 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7680 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7681 	c.iqid = cpu_to_be16(iqid);
7682 	c.fl0id = cpu_to_be16(fl0id);
7683 	c.fl1id = cpu_to_be16(fl1id);
7684 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7685 }
7686 
7687 /**
7688  *	t4_eth_eq_free - free an Ethernet egress queue
7689  *	@adap: the adapter
7690  *	@mbox: mailbox to use for the FW command
7691  *	@pf: the PF owning the queue
7692  *	@vf: the VF owning the queue
7693  *	@eqid: egress queue id
7694  *
7695  *	Frees an Ethernet egress queue.
7696  */
7697 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7698 		   unsigned int vf, unsigned int eqid)
7699 {
7700 	struct fw_eq_eth_cmd c;
7701 
7702 	memset(&c, 0, sizeof(c));
7703 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7704 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7705 				  FW_EQ_ETH_CMD_PFN_V(pf) |
7706 				  FW_EQ_ETH_CMD_VFN_V(vf));
7707 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7708 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7709 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7710 }
7711 
7712 /**
7713  *	t4_ctrl_eq_free - free a control egress queue
7714  *	@adap: the adapter
7715  *	@mbox: mailbox to use for the FW command
7716  *	@pf: the PF owning the queue
7717  *	@vf: the VF owning the queue
7718  *	@eqid: egress queue id
7719  *
7720  *	Frees a control egress queue.
7721  */
7722 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7723 		    unsigned int vf, unsigned int eqid)
7724 {
7725 	struct fw_eq_ctrl_cmd c;
7726 
7727 	memset(&c, 0, sizeof(c));
7728 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7729 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7730 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7731 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7732 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7733 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7734 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7735 }
7736 
7737 /**
7738  *	t4_ofld_eq_free - free an offload egress queue
7739  *	@adap: the adapter
7740  *	@mbox: mailbox to use for the FW command
7741  *	@pf: the PF owning the queue
7742  *	@vf: the VF owning the queue
7743  *	@eqid: egress queue id
7744  *
7745  *	Frees a control egress queue.
7746  */
7747 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7748 		    unsigned int vf, unsigned int eqid)
7749 {
7750 	struct fw_eq_ofld_cmd c;
7751 
7752 	memset(&c, 0, sizeof(c));
7753 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7754 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7755 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7756 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7757 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7758 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7759 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7760 }
7761 
7762 /**
7763  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7764  *	@adap: the adapter
7765  *	@link_down_rc: Link Down Reason Code
7766  *
7767  *	Returns a string representation of the Link Down Reason Code.
7768  */
7769 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7770 {
7771 	static const char * const reason[] = {
7772 		"Link Down",
7773 		"Remote Fault",
7774 		"Auto-negotiation Failure",
7775 		"Reserved",
7776 		"Insufficient Airflow",
7777 		"Unable To Determine Reason",
7778 		"No RX Signal Detected",
7779 		"Reserved",
7780 	};
7781 
7782 	if (link_down_rc >= ARRAY_SIZE(reason))
7783 		return "Bad Reason Code";
7784 
7785 	return reason[link_down_rc];
7786 }
7787 
7788 /**
7789  * Return the highest speed set in the port capabilities, in Mb/s.
7790  */
7791 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
7792 {
7793 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
7794 		do { \
7795 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7796 				return __speed; \
7797 		} while (0)
7798 
7799 	TEST_SPEED_RETURN(400G, 400000);
7800 	TEST_SPEED_RETURN(200G, 200000);
7801 	TEST_SPEED_RETURN(100G, 100000);
7802 	TEST_SPEED_RETURN(50G,   50000);
7803 	TEST_SPEED_RETURN(40G,   40000);
7804 	TEST_SPEED_RETURN(25G,   25000);
7805 	TEST_SPEED_RETURN(10G,   10000);
7806 	TEST_SPEED_RETURN(1G,     1000);
7807 	TEST_SPEED_RETURN(100M,    100);
7808 
7809 	#undef TEST_SPEED_RETURN
7810 
7811 	return 0;
7812 }
7813 
7814 /**
7815  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
7816  *	@acaps: advertised Port Capabilities
7817  *
7818  *	Get the highest speed for the port from the advertised Port
7819  *	Capabilities.  It will be either the highest speed from the list of
7820  *	speeds or whatever user has set using ethtool.
7821  */
7822 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
7823 {
7824 	#define TEST_SPEED_RETURN(__caps_speed) \
7825 		do { \
7826 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7827 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
7828 		} while (0)
7829 
7830 	TEST_SPEED_RETURN(400G);
7831 	TEST_SPEED_RETURN(200G);
7832 	TEST_SPEED_RETURN(100G);
7833 	TEST_SPEED_RETURN(50G);
7834 	TEST_SPEED_RETURN(40G);
7835 	TEST_SPEED_RETURN(25G);
7836 	TEST_SPEED_RETURN(10G);
7837 	TEST_SPEED_RETURN(1G);
7838 	TEST_SPEED_RETURN(100M);
7839 
7840 	#undef TEST_SPEED_RETURN
7841 
7842 	return 0;
7843 }
7844 
7845 /**
7846  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
7847  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
7848  *
7849  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
7850  *	32-bit Port Capabilities value.
7851  */
7852 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
7853 {
7854 	fw_port_cap32_t linkattr = 0;
7855 
7856 	/* Unfortunately the format of the Link Status in the old
7857 	 * 16-bit Port Information message isn't the same as the
7858 	 * 16-bit Port Capabilities bitfield used everywhere else ...
7859 	 */
7860 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
7861 		linkattr |= FW_PORT_CAP32_FC_RX;
7862 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
7863 		linkattr |= FW_PORT_CAP32_FC_TX;
7864 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7865 		linkattr |= FW_PORT_CAP32_SPEED_100M;
7866 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7867 		linkattr |= FW_PORT_CAP32_SPEED_1G;
7868 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7869 		linkattr |= FW_PORT_CAP32_SPEED_10G;
7870 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7871 		linkattr |= FW_PORT_CAP32_SPEED_25G;
7872 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7873 		linkattr |= FW_PORT_CAP32_SPEED_40G;
7874 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7875 		linkattr |= FW_PORT_CAP32_SPEED_100G;
7876 
7877 	return linkattr;
7878 }
7879 
7880 /**
7881  *	t4_handle_get_port_info - process a FW reply message
7882  *	@pi: the port info
7883  *	@rpl: start of the FW message
7884  *
7885  *	Processes a GET_PORT_INFO FW reply message.
7886  */
7887 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7888 {
7889 	const struct fw_port_cmd *cmd = (const void *)rpl;
7890 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
7891 	struct adapter *adapter = pi->adapter;
7892 	struct link_config *lc = &pi->link_cfg;
7893 	int link_ok, linkdnrc;
7894 	enum fw_port_type port_type;
7895 	enum fw_port_module_type mod_type;
7896 	unsigned int speed, fc, fec;
7897 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
7898 
7899 	/* Extract the various fields from the Port Information message.
7900 	 */
7901 	switch (action) {
7902 	case FW_PORT_ACTION_GET_PORT_INFO: {
7903 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
7904 
7905 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
7906 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
7907 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
7908 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
7909 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
7910 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
7911 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
7912 		linkattr = lstatus_to_fwcap(lstatus);
7913 		break;
7914 	}
7915 
7916 	case FW_PORT_ACTION_GET_PORT_INFO32: {
7917 		u32 lstatus32;
7918 
7919 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
7920 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
7921 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
7922 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
7923 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
7924 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
7925 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
7926 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
7927 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
7928 		break;
7929 	}
7930 
7931 	default:
7932 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
7933 			be32_to_cpu(cmd->action_to_len16));
7934 		return;
7935 	}
7936 
7937 	fec = fwcap_to_cc_fec(acaps);
7938 	fc = fwcap_to_cc_pause(linkattr);
7939 	speed = fwcap_to_speed(linkattr);
7940 
7941 	if (mod_type != pi->mod_type) {
7942 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
7943 		 * various fundamental Port Capabilities which used to be
7944 		 * immutable can now change radically.  We can now have
7945 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
7946 		 * all change based on what Transceiver Module is inserted.
7947 		 * So we need to record the Physical "Port" Capabilities on
7948 		 * every Transceiver Module change.
7949 		 */
7950 		lc->pcaps = pcaps;
7951 
7952 		/* When a new Transceiver Module is inserted, the Firmware
7953 		 * will examine its i2c EPROM to determine its type and
7954 		 * general operating parameters including things like Forward
7955 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
7956 		 * how to interpret these i2c values to determine default
7957 		 * "sutomatic" settings.  We record these for future use when
7958 		 * the user explicitly requests these standards-based values.
7959 		 */
7960 		lc->def_acaps = acaps;
7961 
7962 		/* Some versions of the early T6 Firmware "cheated" when
7963 		 * handling different Transceiver Modules by changing the
7964 		 * underlaying Port Type reported to the Host Drivers.  As
7965 		 * such we need to capture whatever Port Type the Firmware
7966 		 * sends us and record it in case it's different from what we
7967 		 * were told earlier.  Unfortunately, since Firmware is
7968 		 * forever, we'll need to keep this code here forever, but in
7969 		 * later T6 Firmware it should just be an assignment of the
7970 		 * same value already recorded.
7971 		 */
7972 		pi->port_type = port_type;
7973 
7974 		pi->mod_type = mod_type;
7975 		t4_os_portmod_changed(adapter, pi->port_id);
7976 	}
7977 
7978 	if (link_ok != lc->link_ok || speed != lc->speed ||
7979 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
7980 		if (!link_ok && lc->link_ok) {
7981 			lc->link_down_rc = linkdnrc;
7982 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
7983 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
7984 		}
7985 		lc->link_ok = link_ok;
7986 		lc->speed = speed;
7987 		lc->fc = fc;
7988 		lc->fec = fec;
7989 
7990 		lc->lpacaps = lpacaps;
7991 		lc->acaps = acaps & ADVERT_MASK;
7992 
7993 		if (lc->acaps & FW_PORT_CAP32_ANEG) {
7994 			lc->autoneg = AUTONEG_ENABLE;
7995 		} else {
7996 			/* When Autoneg is disabled, user needs to set
7997 			 * single speed.
7998 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
7999 			 */
8000 			lc->acaps = 0;
8001 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8002 			lc->autoneg = AUTONEG_DISABLE;
8003 		}
8004 
8005 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8006 	}
8007 }
8008 
8009 /**
8010  *	t4_update_port_info - retrieve and update port information if changed
8011  *	@pi: the port_info
8012  *
8013  *	We issue a Get Port Information Command to the Firmware and, if
8014  *	successful, we check to see if anything is different from what we
8015  *	last recorded and update things accordingly.
8016  */
8017 int t4_update_port_info(struct port_info *pi)
8018 {
8019 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8020 	struct fw_port_cmd port_cmd;
8021 	int ret;
8022 
8023 	memset(&port_cmd, 0, sizeof(port_cmd));
8024 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8025 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8026 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8027 	port_cmd.action_to_len16 = cpu_to_be32(
8028 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8029 				     ? FW_PORT_ACTION_GET_PORT_INFO
8030 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8031 		FW_LEN16(port_cmd));
8032 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8033 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8034 	if (ret)
8035 		return ret;
8036 
8037 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8038 	return 0;
8039 }
8040 
8041 /**
8042  *	t4_get_link_params - retrieve basic link parameters for given port
8043  *	@pi: the port
8044  *	@link_okp: value return pointer for link up/down
8045  *	@speedp: value return pointer for speed (Mb/s)
8046  *	@mtup: value return pointer for mtu
8047  *
8048  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8049  *	and MTU for a specified port.  A negative error is returned on
8050  *	failure; 0 on success.
8051  */
8052 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8053 		       unsigned int *speedp, unsigned int *mtup)
8054 {
8055 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8056 	struct fw_port_cmd port_cmd;
8057 	unsigned int action, link_ok, speed, mtu;
8058 	fw_port_cap32_t linkattr;
8059 	int ret;
8060 
8061 	memset(&port_cmd, 0, sizeof(port_cmd));
8062 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8063 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8064 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8065 	action = (fw_caps == FW_CAPS16
8066 		  ? FW_PORT_ACTION_GET_PORT_INFO
8067 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8068 	port_cmd.action_to_len16 = cpu_to_be32(
8069 		FW_PORT_CMD_ACTION_V(action) |
8070 		FW_LEN16(port_cmd));
8071 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8072 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8073 	if (ret)
8074 		return ret;
8075 
8076 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8077 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8078 
8079 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8080 		linkattr = lstatus_to_fwcap(lstatus);
8081 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8082 	} else {
8083 		u32 lstatus32 =
8084 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8085 
8086 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8087 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8088 		mtu = FW_PORT_CMD_MTU32_G(
8089 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8090 	}
8091 	speed = fwcap_to_speed(linkattr);
8092 
8093 	*link_okp = link_ok;
8094 	*speedp = fwcap_to_speed(linkattr);
8095 	*mtup = mtu;
8096 
8097 	return 0;
8098 }
8099 
8100 /**
8101  *      t4_handle_fw_rpl - process a FW reply message
8102  *      @adap: the adapter
8103  *      @rpl: start of the FW message
8104  *
8105  *      Processes a FW message, such as link state change messages.
8106  */
8107 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8108 {
8109 	u8 opcode = *(const u8 *)rpl;
8110 
8111 	/* This might be a port command ... this simplifies the following
8112 	 * conditionals ...  We can get away with pre-dereferencing
8113 	 * action_to_len16 because it's in the first 16 bytes and all messages
8114 	 * will be at least that long.
8115 	 */
8116 	const struct fw_port_cmd *p = (const void *)rpl;
8117 	unsigned int action =
8118 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8119 
8120 	if (opcode == FW_PORT_CMD &&
8121 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8122 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8123 		int i;
8124 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8125 		struct port_info *pi = NULL;
8126 
8127 		for_each_port(adap, i) {
8128 			pi = adap2pinfo(adap, i);
8129 			if (pi->tx_chan == chan)
8130 				break;
8131 		}
8132 
8133 		t4_handle_get_port_info(pi, rpl);
8134 	} else {
8135 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8136 			 opcode);
8137 		return -EINVAL;
8138 	}
8139 	return 0;
8140 }
8141 
8142 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8143 {
8144 	u16 val;
8145 
8146 	if (pci_is_pcie(adapter->pdev)) {
8147 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8148 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8149 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8150 	}
8151 }
8152 
8153 /**
8154  *	init_link_config - initialize a link's SW state
8155  *	@lc: pointer to structure holding the link state
8156  *	@pcaps: link Port Capabilities
8157  *	@acaps: link current Advertised Port Capabilities
8158  *
8159  *	Initializes the SW state maintained for each link, including the link's
8160  *	capabilities and default speed/flow-control/autonegotiation settings.
8161  */
8162 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8163 			     fw_port_cap32_t acaps)
8164 {
8165 	lc->pcaps = pcaps;
8166 	lc->def_acaps = acaps;
8167 	lc->lpacaps = 0;
8168 	lc->speed_caps = 0;
8169 	lc->speed = 0;
8170 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8171 
8172 	/* For Forward Error Control, we default to whatever the Firmware
8173 	 * tells us the Link is currently advertising.
8174 	 */
8175 	lc->requested_fec = FEC_AUTO;
8176 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8177 
8178 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8179 		lc->acaps = lc->pcaps & ADVERT_MASK;
8180 		lc->autoneg = AUTONEG_ENABLE;
8181 		lc->requested_fc |= PAUSE_AUTONEG;
8182 	} else {
8183 		lc->acaps = 0;
8184 		lc->autoneg = AUTONEG_DISABLE;
8185 	}
8186 }
8187 
8188 #define CIM_PF_NOACCESS 0xeeeeeeee
8189 
8190 int t4_wait_dev_ready(void __iomem *regs)
8191 {
8192 	u32 whoami;
8193 
8194 	whoami = readl(regs + PL_WHOAMI_A);
8195 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8196 		return 0;
8197 
8198 	msleep(500);
8199 	whoami = readl(regs + PL_WHOAMI_A);
8200 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8201 }
8202 
8203 struct flash_desc {
8204 	u32 vendor_and_model_id;
8205 	u32 size_mb;
8206 };
8207 
8208 static int get_flash_params(struct adapter *adap)
8209 {
8210 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8211 	 * to the preexisting code.  All flash parts have 64KB sectors.
8212 	 */
8213 	static struct flash_desc supported_flash[] = {
8214 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8215 	};
8216 
8217 	int ret;
8218 	u32 info;
8219 
8220 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8221 	if (!ret)
8222 		ret = sf1_read(adap, 3, 0, 1, &info);
8223 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8224 	if (ret)
8225 		return ret;
8226 
8227 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
8228 		if (supported_flash[ret].vendor_and_model_id == info) {
8229 			adap->params.sf_size = supported_flash[ret].size_mb;
8230 			adap->params.sf_nsec =
8231 				adap->params.sf_size / SF_SEC_SIZE;
8232 			return 0;
8233 		}
8234 
8235 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
8236 		return -EINVAL;
8237 	info >>= 16;                           /* log2 of size */
8238 	if (info >= 0x14 && info < 0x18)
8239 		adap->params.sf_nsec = 1 << (info - 16);
8240 	else if (info == 0x18)
8241 		adap->params.sf_nsec = 64;
8242 	else
8243 		return -EINVAL;
8244 	adap->params.sf_size = 1 << info;
8245 	adap->params.sf_fw_start =
8246 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
8247 
8248 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8249 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
8250 			 adap->params.sf_size, FLASH_MIN_SIZE);
8251 	return 0;
8252 }
8253 
8254 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
8255 {
8256 	u16 val;
8257 	u32 pcie_cap;
8258 
8259 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
8260 	if (pcie_cap) {
8261 		pci_read_config_word(adapter->pdev,
8262 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
8263 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
8264 		val |= range;
8265 		pci_write_config_word(adapter->pdev,
8266 				      pcie_cap + PCI_EXP_DEVCTL2, val);
8267 	}
8268 }
8269 
8270 /**
8271  *	t4_prep_adapter - prepare SW and HW for operation
8272  *	@adapter: the adapter
8273  *	@reset: if true perform a HW reset
8274  *
8275  *	Initialize adapter SW state for the various HW modules, set initial
8276  *	values for some adapter tunables, take PHYs out of reset, and
8277  *	initialize the MDIO interface.
8278  */
8279 int t4_prep_adapter(struct adapter *adapter)
8280 {
8281 	int ret, ver;
8282 	uint16_t device_id;
8283 	u32 pl_rev;
8284 
8285 	get_pci_mode(adapter, &adapter->params.pci);
8286 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8287 
8288 	ret = get_flash_params(adapter);
8289 	if (ret < 0) {
8290 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8291 		return ret;
8292 	}
8293 
8294 	/* Retrieve adapter's device ID
8295 	 */
8296 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8297 	ver = device_id >> 12;
8298 	adapter->params.chip = 0;
8299 	switch (ver) {
8300 	case CHELSIO_T4:
8301 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8302 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8303 		adapter->params.arch.mps_tcam_size =
8304 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8305 		adapter->params.arch.mps_rplc_size = 128;
8306 		adapter->params.arch.nchan = NCHAN;
8307 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8308 		adapter->params.arch.vfcount = 128;
8309 		/* Congestion map is for 4 channels so that
8310 		 * MPS can have 4 priority per port.
8311 		 */
8312 		adapter->params.arch.cng_ch_bits_log = 2;
8313 		break;
8314 	case CHELSIO_T5:
8315 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8316 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8317 		adapter->params.arch.mps_tcam_size =
8318 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8319 		adapter->params.arch.mps_rplc_size = 128;
8320 		adapter->params.arch.nchan = NCHAN;
8321 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8322 		adapter->params.arch.vfcount = 128;
8323 		adapter->params.arch.cng_ch_bits_log = 2;
8324 		break;
8325 	case CHELSIO_T6:
8326 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8327 		adapter->params.arch.sge_fl_db = 0;
8328 		adapter->params.arch.mps_tcam_size =
8329 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8330 		adapter->params.arch.mps_rplc_size = 256;
8331 		adapter->params.arch.nchan = 2;
8332 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8333 		adapter->params.arch.vfcount = 256;
8334 		/* Congestion map will be for 2 channels so that
8335 		 * MPS can have 8 priority per port.
8336 		 */
8337 		adapter->params.arch.cng_ch_bits_log = 3;
8338 		break;
8339 	default:
8340 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8341 			device_id);
8342 		return -EINVAL;
8343 	}
8344 
8345 	adapter->params.cim_la_size = CIMLA_SIZE;
8346 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8347 
8348 	/*
8349 	 * Default port for debugging in case we can't reach FW.
8350 	 */
8351 	adapter->params.nports = 1;
8352 	adapter->params.portvec = 1;
8353 	adapter->params.vpd.cclk = 50000;
8354 
8355 	/* Set pci completion timeout value to 4 seconds. */
8356 	set_pcie_completion_timeout(adapter, 0xd);
8357 	return 0;
8358 }
8359 
8360 /**
8361  *	t4_shutdown_adapter - shut down adapter, host & wire
8362  *	@adapter: the adapter
8363  *
8364  *	Perform an emergency shutdown of the adapter and stop it from
8365  *	continuing any further communication on the ports or DMA to the
8366  *	host.  This is typically used when the adapter and/or firmware
8367  *	have crashed and we want to prevent any further accidental
8368  *	communication with the rest of the world.  This will also force
8369  *	the port Link Status to go down -- if register writes work --
8370  *	which should help our peers figure out that we're down.
8371  */
8372 int t4_shutdown_adapter(struct adapter *adapter)
8373 {
8374 	int port;
8375 
8376 	t4_intr_disable(adapter);
8377 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8378 	for_each_port(adapter, port) {
8379 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
8380 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
8381 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
8382 
8383 		t4_write_reg(adapter, a_port_cfg,
8384 			     t4_read_reg(adapter, a_port_cfg)
8385 			     & ~SIGNAL_DET_V(1));
8386 	}
8387 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8388 
8389 	return 0;
8390 }
8391 
8392 /**
8393  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8394  *	@adapter: the adapter
8395  *	@qid: the Queue ID
8396  *	@qtype: the Ingress or Egress type for @qid
8397  *	@user: true if this request is for a user mode queue
8398  *	@pbar2_qoffset: BAR2 Queue Offset
8399  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8400  *
8401  *	Returns the BAR2 SGE Queue Registers information associated with the
8402  *	indicated Absolute Queue ID.  These are passed back in return value
8403  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8404  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8405  *
8406  *	This may return an error which indicates that BAR2 SGE Queue
8407  *	registers aren't available.  If an error is not returned, then the
8408  *	following values are returned:
8409  *
8410  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8411  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8412  *
8413  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8414  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8415  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8416  *	then these "Inferred Queue ID" register may not be used.
8417  */
8418 int t4_bar2_sge_qregs(struct adapter *adapter,
8419 		      unsigned int qid,
8420 		      enum t4_bar2_qtype qtype,
8421 		      int user,
8422 		      u64 *pbar2_qoffset,
8423 		      unsigned int *pbar2_qid)
8424 {
8425 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8426 	u64 bar2_page_offset, bar2_qoffset;
8427 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8428 
8429 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
8430 	if (!user && is_t4(adapter->params.chip))
8431 		return -EINVAL;
8432 
8433 	/* Get our SGE Page Size parameters.
8434 	 */
8435 	page_shift = adapter->params.sge.hps + 10;
8436 	page_size = 1 << page_shift;
8437 
8438 	/* Get the right Queues per Page parameters for our Queue.
8439 	 */
8440 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8441 		     ? adapter->params.sge.eq_qpp
8442 		     : adapter->params.sge.iq_qpp);
8443 	qpp_mask = (1 << qpp_shift) - 1;
8444 
8445 	/*  Calculate the basics of the BAR2 SGE Queue register area:
8446 	 *  o The BAR2 page the Queue registers will be in.
8447 	 *  o The BAR2 Queue ID.
8448 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8449 	 */
8450 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8451 	bar2_qid = qid & qpp_mask;
8452 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8453 
8454 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8455 	 * hardware will infer the Absolute Queue ID simply from the writes to
8456 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8457 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8458 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8459 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8460 	 * from the BAR2 Page and BAR2 Queue ID.
8461 	 *
8462 	 * One important censequence of this is that some BAR2 SGE registers
8463 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8464 	 * there.  But other registers synthesize the SGE Queue ID purely
8465 	 * from the writes to the registers -- the Write Combined Doorbell
8466 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8467 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8468 	 * Queue ID can be inferred from simple writes.
8469 	 */
8470 	bar2_qoffset = bar2_page_offset;
8471 	bar2_qinferred = (bar2_qid_offset < page_size);
8472 	if (bar2_qinferred) {
8473 		bar2_qoffset += bar2_qid_offset;
8474 		bar2_qid = 0;
8475 	}
8476 
8477 	*pbar2_qoffset = bar2_qoffset;
8478 	*pbar2_qid = bar2_qid;
8479 	return 0;
8480 }
8481 
8482 /**
8483  *	t4_init_devlog_params - initialize adapter->params.devlog
8484  *	@adap: the adapter
8485  *
8486  *	Initialize various fields of the adapter's Firmware Device Log
8487  *	Parameters structure.
8488  */
8489 int t4_init_devlog_params(struct adapter *adap)
8490 {
8491 	struct devlog_params *dparams = &adap->params.devlog;
8492 	u32 pf_dparams;
8493 	unsigned int devlog_meminfo;
8494 	struct fw_devlog_cmd devlog_cmd;
8495 	int ret;
8496 
8497 	/* If we're dealing with newer firmware, the Device Log Paramerters
8498 	 * are stored in a designated register which allows us to access the
8499 	 * Device Log even if we can't talk to the firmware.
8500 	 */
8501 	pf_dparams =
8502 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
8503 	if (pf_dparams) {
8504 		unsigned int nentries, nentries128;
8505 
8506 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
8507 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
8508 
8509 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
8510 		nentries = (nentries128 + 1) * 128;
8511 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8512 
8513 		return 0;
8514 	}
8515 
8516 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8517 	 */
8518 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
8519 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
8520 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
8521 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8522 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8523 			 &devlog_cmd);
8524 	if (ret)
8525 		return ret;
8526 
8527 	devlog_meminfo =
8528 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8529 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
8530 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
8531 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8532 
8533 	return 0;
8534 }
8535 
8536 /**
8537  *	t4_init_sge_params - initialize adap->params.sge
8538  *	@adapter: the adapter
8539  *
8540  *	Initialize various fields of the adapter's SGE Parameters structure.
8541  */
8542 int t4_init_sge_params(struct adapter *adapter)
8543 {
8544 	struct sge_params *sge_params = &adapter->params.sge;
8545 	u32 hps, qpp;
8546 	unsigned int s_hps, s_qpp;
8547 
8548 	/* Extract the SGE Page Size for our PF.
8549 	 */
8550 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
8551 	s_hps = (HOSTPAGESIZEPF0_S +
8552 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
8553 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8554 
8555 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8556 	 */
8557 	s_qpp = (QUEUESPERPAGEPF0_S +
8558 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
8559 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8560 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8561 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
8562 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8563 
8564 	return 0;
8565 }
8566 
8567 /**
8568  *      t4_init_tp_params - initialize adap->params.tp
8569  *      @adap: the adapter
8570  *
8571  *      Initialize various fields of the adapter's TP Parameters structure.
8572  */
8573 int t4_init_tp_params(struct adapter *adap)
8574 {
8575 	int chan;
8576 	u32 v;
8577 
8578 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8579 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
8580 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
8581 
8582 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8583 	for (chan = 0; chan < NCHAN; chan++)
8584 		adap->params.tp.tx_modq[chan] = chan;
8585 
8586 	/* Cache the adapter's Compressed Filter Mode and global Incress
8587 	 * Configuration.
8588 	 */
8589 	if (t4_use_ldst(adap)) {
8590 		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
8591 				TP_VLAN_PRI_MAP_A, 1);
8592 		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
8593 				TP_INGRESS_CONFIG_A, 1);
8594 	} else {
8595 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
8596 				 &adap->params.tp.vlan_pri_map, 1,
8597 				 TP_VLAN_PRI_MAP_A);
8598 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
8599 				 &adap->params.tp.ingress_config, 1,
8600 				 TP_INGRESS_CONFIG_A);
8601 	}
8602 	/* For T6, cache the adapter's compressed error vector
8603 	 * and passing outer header info for encapsulated packets.
8604 	 */
8605 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
8606 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
8607 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
8608 	}
8609 
8610 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8611 	 * shift positions of several elements of the Compressed Filter Tuple
8612 	 * for this adapter which we need frequently ...
8613 	 */
8614 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
8615 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
8616 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
8617 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
8618 							       PROTOCOL_F);
8619 
8620 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8621 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8622 	 */
8623 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
8624 		adap->params.tp.vnic_shift = -1;
8625 
8626 	return 0;
8627 }
8628 
8629 /**
8630  *      t4_filter_field_shift - calculate filter field shift
8631  *      @adap: the adapter
8632  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8633  *
8634  *      Return the shift position of a filter field within the Compressed
8635  *      Filter Tuple.  The filter field is specified via its selection bit
8636  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8637  */
8638 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8639 {
8640 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8641 	unsigned int sel;
8642 	int field_shift;
8643 
8644 	if ((filter_mode & filter_sel) == 0)
8645 		return -1;
8646 
8647 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8648 		switch (filter_mode & sel) {
8649 		case FCOE_F:
8650 			field_shift += FT_FCOE_W;
8651 			break;
8652 		case PORT_F:
8653 			field_shift += FT_PORT_W;
8654 			break;
8655 		case VNIC_ID_F:
8656 			field_shift += FT_VNIC_ID_W;
8657 			break;
8658 		case VLAN_F:
8659 			field_shift += FT_VLAN_W;
8660 			break;
8661 		case TOS_F:
8662 			field_shift += FT_TOS_W;
8663 			break;
8664 		case PROTOCOL_F:
8665 			field_shift += FT_PROTOCOL_W;
8666 			break;
8667 		case ETHERTYPE_F:
8668 			field_shift += FT_ETHERTYPE_W;
8669 			break;
8670 		case MACMATCH_F:
8671 			field_shift += FT_MACMATCH_W;
8672 			break;
8673 		case MPSHITTYPE_F:
8674 			field_shift += FT_MPSHITTYPE_W;
8675 			break;
8676 		case FRAGMENTATION_F:
8677 			field_shift += FT_FRAGMENTATION_W;
8678 			break;
8679 		}
8680 	}
8681 	return field_shift;
8682 }
8683 
8684 int t4_init_rss_mode(struct adapter *adap, int mbox)
8685 {
8686 	int i, ret;
8687 	struct fw_rss_vi_config_cmd rvc;
8688 
8689 	memset(&rvc, 0, sizeof(rvc));
8690 
8691 	for_each_port(adap, i) {
8692 		struct port_info *p = adap2pinfo(adap, i);
8693 
8694 		rvc.op_to_viid =
8695 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
8696 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8697 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
8698 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
8699 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
8700 		if (ret)
8701 			return ret;
8702 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
8703 	}
8704 	return 0;
8705 }
8706 
8707 /**
8708  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
8709  *	@pi: the port_info
8710  *	@mbox: mailbox to use for the FW command
8711  *	@port: physical port associated with the VI
8712  *	@pf: the PF owning the VI
8713  *	@vf: the VF owning the VI
8714  *	@mac: the MAC address of the VI
8715  *
8716  *	Allocates a virtual interface for the given physical port.  If @mac is
8717  *	not %NULL it contains the MAC address of the VI as assigned by FW.
8718  *	@mac should be large enough to hold an Ethernet address.
8719  *	Returns < 0 on error.
8720  */
8721 int t4_init_portinfo(struct port_info *pi, int mbox,
8722 		     int port, int pf, int vf, u8 mac[])
8723 {
8724 	struct adapter *adapter = pi->adapter;
8725 	unsigned int fw_caps = adapter->params.fw_caps_support;
8726 	struct fw_port_cmd cmd;
8727 	unsigned int rss_size;
8728 	enum fw_port_type port_type;
8729 	int mdio_addr;
8730 	fw_port_cap32_t pcaps, acaps;
8731 	int ret;
8732 
8733 	/* If we haven't yet determined whether we're talking to Firmware
8734 	 * which knows the new 32-bit Port Capabilities, it's time to find
8735 	 * out now.  This will also tell new Firmware to send us Port Status
8736 	 * Updates using the new 32-bit Port Capabilities version of the
8737 	 * Port Information message.
8738 	 */
8739 	if (fw_caps == FW_CAPS_UNKNOWN) {
8740 		u32 param, val;
8741 
8742 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
8743 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
8744 		val = 1;
8745 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
8746 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
8747 		adapter->params.fw_caps_support = fw_caps;
8748 	}
8749 
8750 	memset(&cmd, 0, sizeof(cmd));
8751 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8752 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
8753 				       FW_PORT_CMD_PORTID_V(port));
8754 	cmd.action_to_len16 = cpu_to_be32(
8755 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8756 				     ? FW_PORT_ACTION_GET_PORT_INFO
8757 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8758 		FW_LEN16(cmd));
8759 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
8760 	if (ret)
8761 		return ret;
8762 
8763 	/* Extract the various fields from the Port Information message.
8764 	 */
8765 	if (fw_caps == FW_CAPS16) {
8766 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
8767 
8768 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8769 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
8770 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
8771 			     : -1);
8772 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
8773 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
8774 	} else {
8775 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
8776 
8777 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8778 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
8779 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
8780 			     : -1);
8781 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
8782 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
8783 	}
8784 
8785 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
8786 	if (ret < 0)
8787 		return ret;
8788 
8789 	pi->viid = ret;
8790 	pi->tx_chan = port;
8791 	pi->lport = port;
8792 	pi->rss_size = rss_size;
8793 
8794 	pi->port_type = port_type;
8795 	pi->mdio_addr = mdio_addr;
8796 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
8797 
8798 	init_link_config(&pi->link_cfg, pcaps, acaps);
8799 	return 0;
8800 }
8801 
8802 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
8803 {
8804 	u8 addr[6];
8805 	int ret, i, j = 0;
8806 
8807 	for_each_port(adap, i) {
8808 		struct port_info *pi = adap2pinfo(adap, i);
8809 
8810 		while ((adap->params.portvec & (1 << j)) == 0)
8811 			j++;
8812 
8813 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
8814 		if (ret)
8815 			return ret;
8816 
8817 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
8818 		j++;
8819 	}
8820 	return 0;
8821 }
8822 
8823 /**
8824  *	t4_read_cimq_cfg - read CIM queue configuration
8825  *	@adap: the adapter
8826  *	@base: holds the queue base addresses in bytes
8827  *	@size: holds the queue sizes in bytes
8828  *	@thres: holds the queue full thresholds in bytes
8829  *
8830  *	Returns the current configuration of the CIM queues, starting with
8831  *	the IBQs, then the OBQs.
8832  */
8833 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8834 {
8835 	unsigned int i, v;
8836 	int cim_num_obq = is_t4(adap->params.chip) ?
8837 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8838 
8839 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8840 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
8841 			     QUENUMSELECT_V(i));
8842 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8843 		/* value is in 256-byte units */
8844 		*base++ = CIMQBASE_G(v) * 256;
8845 		*size++ = CIMQSIZE_G(v) * 256;
8846 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
8847 	}
8848 	for (i = 0; i < cim_num_obq; i++) {
8849 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8850 			     QUENUMSELECT_V(i));
8851 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8852 		/* value is in 256-byte units */
8853 		*base++ = CIMQBASE_G(v) * 256;
8854 		*size++ = CIMQSIZE_G(v) * 256;
8855 	}
8856 }
8857 
8858 /**
8859  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8860  *	@adap: the adapter
8861  *	@qid: the queue index
8862  *	@data: where to store the queue contents
8863  *	@n: capacity of @data in 32-bit words
8864  *
8865  *	Reads the contents of the selected CIM queue starting at address 0 up
8866  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8867  *	error and the number of 32-bit words actually read on success.
8868  */
8869 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8870 {
8871 	int i, err, attempts;
8872 	unsigned int addr;
8873 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8874 
8875 	if (qid > 5 || (n & 3))
8876 		return -EINVAL;
8877 
8878 	addr = qid * nwords;
8879 	if (n > nwords)
8880 		n = nwords;
8881 
8882 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8883 	 * Wait for 1 Sec with a delay of 1 usec.
8884 	 */
8885 	attempts = 1000000;
8886 
8887 	for (i = 0; i < n; i++, addr++) {
8888 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
8889 			     IBQDBGEN_F);
8890 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
8891 				      attempts, 1);
8892 		if (err)
8893 			return err;
8894 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
8895 	}
8896 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
8897 	return i;
8898 }
8899 
8900 /**
8901  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8902  *	@adap: the adapter
8903  *	@qid: the queue index
8904  *	@data: where to store the queue contents
8905  *	@n: capacity of @data in 32-bit words
8906  *
8907  *	Reads the contents of the selected CIM queue starting at address 0 up
8908  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8909  *	error and the number of 32-bit words actually read on success.
8910  */
8911 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8912 {
8913 	int i, err;
8914 	unsigned int addr, v, nwords;
8915 	int cim_num_obq = is_t4(adap->params.chip) ?
8916 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8917 
8918 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8919 		return -EINVAL;
8920 
8921 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8922 		     QUENUMSELECT_V(qid));
8923 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8924 
8925 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
8926 	nwords = CIMQSIZE_G(v) * 64;  /* same */
8927 	if (n > nwords)
8928 		n = nwords;
8929 
8930 	for (i = 0; i < n; i++, addr++) {
8931 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
8932 			     OBQDBGEN_F);
8933 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
8934 				      2, 1);
8935 		if (err)
8936 			return err;
8937 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
8938 	}
8939 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
8940 	return i;
8941 }
8942 
8943 /**
8944  *	t4_cim_read - read a block from CIM internal address space
8945  *	@adap: the adapter
8946  *	@addr: the start address within the CIM address space
8947  *	@n: number of words to read
8948  *	@valp: where to store the result
8949  *
8950  *	Reads a block of 4-byte words from the CIM intenal address space.
8951  */
8952 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8953 		unsigned int *valp)
8954 {
8955 	int ret = 0;
8956 
8957 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8958 		return -EBUSY;
8959 
8960 	for ( ; !ret && n--; addr += 4) {
8961 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
8962 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8963 				      0, 5, 2);
8964 		if (!ret)
8965 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8966 	}
8967 	return ret;
8968 }
8969 
8970 /**
8971  *	t4_cim_write - write a block into CIM internal address space
8972  *	@adap: the adapter
8973  *	@addr: the start address within the CIM address space
8974  *	@n: number of words to write
8975  *	@valp: set of values to write
8976  *
8977  *	Writes a block of 4-byte words into the CIM intenal address space.
8978  */
8979 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8980 		 const unsigned int *valp)
8981 {
8982 	int ret = 0;
8983 
8984 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8985 		return -EBUSY;
8986 
8987 	for ( ; !ret && n--; addr += 4) {
8988 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8989 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8990 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8991 				      0, 5, 2);
8992 	}
8993 	return ret;
8994 }
8995 
8996 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8997 			 unsigned int val)
8998 {
8999 	return t4_cim_write(adap, addr, 1, &val);
9000 }
9001 
9002 /**
9003  *	t4_cim_read_la - read CIM LA capture buffer
9004  *	@adap: the adapter
9005  *	@la_buf: where to store the LA data
9006  *	@wrptr: the HW write pointer within the capture buffer
9007  *
9008  *	Reads the contents of the CIM LA buffer with the most recent entry at
9009  *	the end	of the returned data and with the entry at @wrptr first.
9010  *	We try to leave the LA in the running state we find it in.
9011  */
9012 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9013 {
9014 	int i, ret;
9015 	unsigned int cfg, val, idx;
9016 
9017 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9018 	if (ret)
9019 		return ret;
9020 
9021 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9022 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9023 		if (ret)
9024 			return ret;
9025 	}
9026 
9027 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9028 	if (ret)
9029 		goto restart;
9030 
9031 	idx = UPDBGLAWRPTR_G(val);
9032 	if (wrptr)
9033 		*wrptr = idx;
9034 
9035 	for (i = 0; i < adap->params.cim_la_size; i++) {
9036 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9037 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9038 		if (ret)
9039 			break;
9040 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9041 		if (ret)
9042 			break;
9043 		if (val & UPDBGLARDEN_F) {
9044 			ret = -ETIMEDOUT;
9045 			break;
9046 		}
9047 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9048 		if (ret)
9049 			break;
9050 
9051 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9052 		 * identify the 32-bit portion of the full 312-bit data
9053 		 */
9054 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9055 			idx = (idx & 0xff0) + 0x10;
9056 		else
9057 			idx++;
9058 		/* address can't exceed 0xfff */
9059 		idx &= UPDBGLARDPTR_M;
9060 	}
9061 restart:
9062 	if (cfg & UPDBGLAEN_F) {
9063 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9064 				      cfg & ~UPDBGLARDEN_F);
9065 		if (!ret)
9066 			ret = r;
9067 	}
9068 	return ret;
9069 }
9070 
9071 /**
9072  *	t4_tp_read_la - read TP LA capture buffer
9073  *	@adap: the adapter
9074  *	@la_buf: where to store the LA data
9075  *	@wrptr: the HW write pointer within the capture buffer
9076  *
9077  *	Reads the contents of the TP LA buffer with the most recent entry at
9078  *	the end	of the returned data and with the entry at @wrptr first.
9079  *	We leave the LA in the running state we find it in.
9080  */
9081 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9082 {
9083 	bool last_incomplete;
9084 	unsigned int i, cfg, val, idx;
9085 
9086 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9087 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9088 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9089 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9090 
9091 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9092 	idx = DBGLAWPTR_G(val);
9093 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9094 	if (last_incomplete)
9095 		idx = (idx + 1) & DBGLARPTR_M;
9096 	if (wrptr)
9097 		*wrptr = idx;
9098 
9099 	val &= 0xffff;
9100 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9101 	val |= adap->params.tp.la_mask;
9102 
9103 	for (i = 0; i < TPLA_SIZE; i++) {
9104 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9105 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9106 		idx = (idx + 1) & DBGLARPTR_M;
9107 	}
9108 
9109 	/* Wipe out last entry if it isn't valid */
9110 	if (last_incomplete)
9111 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9112 
9113 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9114 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9115 			     cfg | adap->params.tp.la_mask);
9116 }
9117 
9118 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9119  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9120  * state for more than the Warning Threshold then we'll issue a warning about
9121  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9122  * appears to be hung every Warning Repeat second till the situation clears.
9123  * If the situation clears, we'll note that as well.
9124  */
9125 #define SGE_IDMA_WARN_THRESH 1
9126 #define SGE_IDMA_WARN_REPEAT 300
9127 
9128 /**
9129  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9130  *	@adapter: the adapter
9131  *	@idma: the adapter IDMA Monitor state
9132  *
9133  *	Initialize the state of an SGE Ingress DMA Monitor.
9134  */
9135 void t4_idma_monitor_init(struct adapter *adapter,
9136 			  struct sge_idma_monitor_state *idma)
9137 {
9138 	/* Initialize the state variables for detecting an SGE Ingress DMA
9139 	 * hang.  The SGE has internal counters which count up on each clock
9140 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9141 	 * same state they were on the previous clock tick.  The clock used is
9142 	 * the Core Clock so we have a limit on the maximum "time" they can
9143 	 * record; typically a very small number of seconds.  For instance,
9144 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9145 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9146 	 * risk of having the "timers" overflow and give us the flexibility to
9147 	 * maintain a Hung SGE State Machine of our own which operates across
9148 	 * a longer time frame.
9149 	 */
9150 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9151 	idma->idma_stalled[0] = 0;
9152 	idma->idma_stalled[1] = 0;
9153 }
9154 
9155 /**
9156  *	t4_idma_monitor - monitor SGE Ingress DMA state
9157  *	@adapter: the adapter
9158  *	@idma: the adapter IDMA Monitor state
9159  *	@hz: number of ticks/second
9160  *	@ticks: number of ticks since the last IDMA Monitor call
9161  */
9162 void t4_idma_monitor(struct adapter *adapter,
9163 		     struct sge_idma_monitor_state *idma,
9164 		     int hz, int ticks)
9165 {
9166 	int i, idma_same_state_cnt[2];
9167 
9168 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9169 	  * are counters inside the SGE which count up on each clock when the
9170 	  * SGE finds its Ingress DMA State Engines in the same states they
9171 	  * were in the previous clock.  The counters will peg out at
9172 	  * 0xffffffff without wrapping around so once they pass the 1s
9173 	  * threshold they'll stay above that till the IDMA state changes.
9174 	  */
9175 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9176 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9177 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9178 
9179 	for (i = 0; i < 2; i++) {
9180 		u32 debug0, debug11;
9181 
9182 		/* If the Ingress DMA Same State Counter ("timer") is less
9183 		 * than 1s, then we can reset our synthesized Stall Timer and
9184 		 * continue.  If we have previously emitted warnings about a
9185 		 * potential stalled Ingress Queue, issue a note indicating
9186 		 * that the Ingress Queue has resumed forward progress.
9187 		 */
9188 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9189 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9190 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9191 					 "resumed after %d seconds\n",
9192 					 i, idma->idma_qid[i],
9193 					 idma->idma_stalled[i] / hz);
9194 			idma->idma_stalled[i] = 0;
9195 			continue;
9196 		}
9197 
9198 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9199 		 * domain.  The first time we get here it'll be because we
9200 		 * passed the 1s Threshold; each additional time it'll be
9201 		 * because the RX Timer Callback is being fired on its regular
9202 		 * schedule.
9203 		 *
9204 		 * If the stall is below our Potential Hung Ingress Queue
9205 		 * Warning Threshold, continue.
9206 		 */
9207 		if (idma->idma_stalled[i] == 0) {
9208 			idma->idma_stalled[i] = hz;
9209 			idma->idma_warn[i] = 0;
9210 		} else {
9211 			idma->idma_stalled[i] += ticks;
9212 			idma->idma_warn[i] -= ticks;
9213 		}
9214 
9215 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9216 			continue;
9217 
9218 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9219 		 */
9220 		if (idma->idma_warn[i] > 0)
9221 			continue;
9222 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9223 
9224 		/* Read and save the SGE IDMA State and Queue ID information.
9225 		 * We do this every time in case it changes across time ...
9226 		 * can't be too careful ...
9227 		 */
9228 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9229 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9230 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9231 
9232 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9233 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9234 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9235 
9236 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9237 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9238 			 i, idma->idma_qid[i], idma->idma_state[i],
9239 			 idma->idma_stalled[i] / hz,
9240 			 debug0, debug11);
9241 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9242 	}
9243 }
9244 
9245 /**
9246  *	t4_load_cfg - download config file
9247  *	@adap: the adapter
9248  *	@cfg_data: the cfg text file to write
9249  *	@size: text file size
9250  *
9251  *	Write the supplied config text file to the card's serial flash.
9252  */
9253 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9254 {
9255 	int ret, i, n, cfg_addr;
9256 	unsigned int addr;
9257 	unsigned int flash_cfg_start_sec;
9258 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9259 
9260 	cfg_addr = t4_flash_cfg_addr(adap);
9261 	if (cfg_addr < 0)
9262 		return cfg_addr;
9263 
9264 	addr = cfg_addr;
9265 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9266 
9267 	if (size > FLASH_CFG_MAX_SIZE) {
9268 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9269 			FLASH_CFG_MAX_SIZE);
9270 		return -EFBIG;
9271 	}
9272 
9273 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9274 			 sf_sec_size);
9275 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9276 				     flash_cfg_start_sec + i - 1);
9277 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9278 	 * with the on-adapter Firmware Configuration File.
9279 	 */
9280 	if (ret || size == 0)
9281 		goto out;
9282 
9283 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9284 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9285 		if ((size - i) <  SF_PAGE_SIZE)
9286 			n = size - i;
9287 		else
9288 			n = SF_PAGE_SIZE;
9289 		ret = t4_write_flash(adap, addr, n, cfg_data);
9290 		if (ret)
9291 			goto out;
9292 
9293 		addr += SF_PAGE_SIZE;
9294 		cfg_data += SF_PAGE_SIZE;
9295 	}
9296 
9297 out:
9298 	if (ret)
9299 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9300 			(size == 0 ? "clear" : "download"), ret);
9301 	return ret;
9302 }
9303 
9304 /**
9305  *	t4_set_vf_mac - Set MAC address for the specified VF
9306  *	@adapter: The adapter
9307  *	@vf: one of the VFs instantiated by the specified PF
9308  *	@naddr: the number of MAC addresses
9309  *	@addr: the MAC address(es) to be set to the specified VF
9310  */
9311 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9312 		      unsigned int naddr, u8 *addr)
9313 {
9314 	struct fw_acl_mac_cmd cmd;
9315 
9316 	memset(&cmd, 0, sizeof(cmd));
9317 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9318 				    FW_CMD_REQUEST_F |
9319 				    FW_CMD_WRITE_F |
9320 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9321 				    FW_ACL_MAC_CMD_VFN_V(vf));
9322 
9323 	/* Note: Do not enable the ACL */
9324 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9325 	cmd.nmac = naddr;
9326 
9327 	switch (adapter->pf) {
9328 	case 3:
9329 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9330 		break;
9331 	case 2:
9332 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9333 		break;
9334 	case 1:
9335 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9336 		break;
9337 	case 0:
9338 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9339 		break;
9340 	}
9341 
9342 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9343 }
9344 
9345 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9346 		    int rateunit, int ratemode, int channel, int class,
9347 		    int minrate, int maxrate, int weight, int pktsize)
9348 {
9349 	struct fw_sched_cmd cmd;
9350 
9351 	memset(&cmd, 0, sizeof(cmd));
9352 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
9353 				      FW_CMD_REQUEST_F |
9354 				      FW_CMD_WRITE_F);
9355 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9356 
9357 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9358 	cmd.u.params.type = type;
9359 	cmd.u.params.level = level;
9360 	cmd.u.params.mode = mode;
9361 	cmd.u.params.ch = channel;
9362 	cmd.u.params.cl = class;
9363 	cmd.u.params.unit = rateunit;
9364 	cmd.u.params.rate = ratemode;
9365 	cmd.u.params.min = cpu_to_be32(minrate);
9366 	cmd.u.params.max = cpu_to_be32(maxrate);
9367 	cmd.u.params.weight = cpu_to_be16(weight);
9368 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9369 
9370 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
9371 			       NULL, 1);
9372 }
9373