1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 } 202 203 /* 204 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 205 */ 206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 207 u32 mbox_addr) 208 { 209 for ( ; nflit; nflit--, mbox_addr += 8) 210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 211 } 212 213 /* 214 * Handle a FW assertion reported in a mailbox. 215 */ 216 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 217 { 218 struct fw_debug_cmd asrt; 219 220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 221 dev_alert(adap->pdev_dev, 222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 225 } 226 227 /** 228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 229 * @adapter: the adapter 230 * @cmd: the Firmware Mailbox Command or Reply 231 * @size: command length in bytes 232 * @access: the time (ms) needed to access the Firmware Mailbox 233 * @execute: the time (ms) the command spent being executed 234 */ 235 static void t4_record_mbox(struct adapter *adapter, 236 const __be64 *cmd, unsigned int size, 237 int access, int execute) 238 { 239 struct mbox_cmd_log *log = adapter->mbox_log; 240 struct mbox_cmd *entry; 241 int i; 242 243 entry = mbox_cmd_log_entry(log, log->cursor++); 244 if (log->cursor == log->size) 245 log->cursor = 0; 246 247 for (i = 0; i < size / 8; i++) 248 entry->cmd[i] = be64_to_cpu(cmd[i]); 249 while (i < MBOX_LEN / 8) 250 entry->cmd[i++] = 0; 251 entry->timestamp = jiffies; 252 entry->seqno = log->seqno++; 253 entry->access = access; 254 entry->execute = execute; 255 } 256 257 /** 258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 259 * @adap: the adapter 260 * @mbox: index of the mailbox to use 261 * @cmd: the command to write 262 * @size: command length in bytes 263 * @rpl: where to optionally store the reply 264 * @sleep_ok: if true we may sleep while awaiting command completion 265 * @timeout: time to wait for command to finish before timing out 266 * 267 * Sends the given command to FW through the selected mailbox and waits 268 * for the FW to execute the command. If @rpl is not %NULL it is used to 269 * store the FW's reply to the command. The command and its optional 270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 271 * to respond. @sleep_ok determines whether we may sleep while awaiting 272 * the response. If sleeping is allowed we use progressive backoff 273 * otherwise we spin. 274 * 275 * The return value is 0 on success or a negative errno on failure. A 276 * failure can happen either because we are not able to execute the 277 * command or FW executes it but signals an error. In the latter case 278 * the return value is the error code indicated by FW (negated). 279 */ 280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 281 int size, void *rpl, bool sleep_ok, int timeout) 282 { 283 static const int delay[] = { 284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 285 }; 286 287 struct mbox_list entry; 288 u16 access = 0; 289 u16 execute = 0; 290 u32 v; 291 u64 res; 292 int i, ms, delay_idx, ret; 293 const __be64 *p = cmd; 294 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 295 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 296 __be64 cmd_rpl[MBOX_LEN / 8]; 297 u32 pcie_fw; 298 299 if ((size & 15) || size > MBOX_LEN) 300 return -EINVAL; 301 302 /* 303 * If the device is off-line, as in EEH, commands will time out. 304 * Fail them early so we don't waste time waiting. 305 */ 306 if (adap->pdev->error_state != pci_channel_io_normal) 307 return -EIO; 308 309 /* If we have a negative timeout, that implies that we can't sleep. */ 310 if (timeout < 0) { 311 sleep_ok = false; 312 timeout = -timeout; 313 } 314 315 /* Queue ourselves onto the mailbox access list. When our entry is at 316 * the front of the list, we have rights to access the mailbox. So we 317 * wait [for a while] till we're at the front [or bail out with an 318 * EBUSY] ... 319 */ 320 spin_lock(&adap->mbox_lock); 321 list_add_tail(&entry.list, &adap->mlist.list); 322 spin_unlock(&adap->mbox_lock); 323 324 delay_idx = 0; 325 ms = delay[0]; 326 327 for (i = 0; ; i += ms) { 328 /* If we've waited too long, return a busy indication. This 329 * really ought to be based on our initial position in the 330 * mailbox access list but this is a start. We very rearely 331 * contend on access to the mailbox ... 332 */ 333 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 334 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 335 spin_lock(&adap->mbox_lock); 336 list_del(&entry.list); 337 spin_unlock(&adap->mbox_lock); 338 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 339 t4_record_mbox(adap, cmd, size, access, ret); 340 return ret; 341 } 342 343 /* If we're at the head, break out and start the mailbox 344 * protocol. 345 */ 346 if (list_first_entry(&adap->mlist.list, struct mbox_list, 347 list) == &entry) 348 break; 349 350 /* Delay for a bit before checking again ... */ 351 if (sleep_ok) { 352 ms = delay[delay_idx]; /* last element may repeat */ 353 if (delay_idx < ARRAY_SIZE(delay) - 1) 354 delay_idx++; 355 msleep(ms); 356 } else { 357 mdelay(ms); 358 } 359 } 360 361 /* Loop trying to get ownership of the mailbox. Return an error 362 * if we can't gain ownership. 363 */ 364 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 365 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 if (v != MBOX_OWNER_DRV) { 368 spin_lock(&adap->mbox_lock); 369 list_del(&entry.list); 370 spin_unlock(&adap->mbox_lock); 371 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 372 t4_record_mbox(adap, cmd, size, access, ret); 373 return ret; 374 } 375 376 /* Copy in the new mailbox command and send it on its way ... */ 377 t4_record_mbox(adap, cmd, size, access, 0); 378 for (i = 0; i < size; i += 8) 379 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 380 381 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 382 t4_read_reg(adap, ctl_reg); /* flush write */ 383 384 delay_idx = 0; 385 ms = delay[0]; 386 387 for (i = 0; 388 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 389 i < timeout; 390 i += ms) { 391 if (sleep_ok) { 392 ms = delay[delay_idx]; /* last element may repeat */ 393 if (delay_idx < ARRAY_SIZE(delay) - 1) 394 delay_idx++; 395 msleep(ms); 396 } else 397 mdelay(ms); 398 399 v = t4_read_reg(adap, ctl_reg); 400 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 401 if (!(v & MBMSGVALID_F)) { 402 t4_write_reg(adap, ctl_reg, 0); 403 continue; 404 } 405 406 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 407 res = be64_to_cpu(cmd_rpl[0]); 408 409 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 410 fw_asrt(adap, data_reg); 411 res = FW_CMD_RETVAL_V(EIO); 412 } else if (rpl) { 413 memcpy(rpl, cmd_rpl, size); 414 } 415 416 t4_write_reg(adap, ctl_reg, 0); 417 418 execute = i + ms; 419 t4_record_mbox(adap, cmd_rpl, 420 MBOX_LEN, access, execute); 421 spin_lock(&adap->mbox_lock); 422 list_del(&entry.list); 423 spin_unlock(&adap->mbox_lock); 424 return -FW_CMD_RETVAL_G((int)res); 425 } 426 } 427 428 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 429 t4_record_mbox(adap, cmd, size, access, ret); 430 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 431 *(const u8 *)cmd, mbox); 432 t4_report_fw_error(adap); 433 spin_lock(&adap->mbox_lock); 434 list_del(&entry.list); 435 spin_unlock(&adap->mbox_lock); 436 t4_fatal_err(adap); 437 return ret; 438 } 439 440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 441 void *rpl, bool sleep_ok) 442 { 443 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 444 FW_CMD_MAX_TIMEOUT); 445 } 446 447 static int t4_edc_err_read(struct adapter *adap, int idx) 448 { 449 u32 edc_ecc_err_addr_reg; 450 u32 rdata_reg; 451 452 if (is_t4(adap->params.chip)) { 453 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 454 return 0; 455 } 456 if (idx != 0 && idx != 1) { 457 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 458 return 0; 459 } 460 461 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 462 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 463 464 CH_WARN(adap, 465 "edc%d err addr 0x%x: 0x%x.\n", 466 idx, edc_ecc_err_addr_reg, 467 t4_read_reg(adap, edc_ecc_err_addr_reg)); 468 CH_WARN(adap, 469 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 470 rdata_reg, 471 (unsigned long long)t4_read_reg64(adap, rdata_reg), 472 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 473 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 480 481 return 0; 482 } 483 484 /** 485 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 486 * @adap: the adapter 487 * @win: PCI-E Memory Window to use 488 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 489 * @addr: address within indicated memory type 490 * @len: amount of memory to transfer 491 * @hbuf: host memory buffer 492 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 493 * 494 * Reads/writes an [almost] arbitrary memory region in the firmware: the 495 * firmware memory address and host buffer must be aligned on 32-bit 496 * boudaries; the length may be arbitrary. The memory is transferred as 497 * a raw byte sequence from/to the firmware's memory. If this memory 498 * contains data structures which contain multi-byte integers, it's the 499 * caller's responsibility to perform appropriate byte order conversions. 500 */ 501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 502 u32 len, void *hbuf, int dir) 503 { 504 u32 pos, offset, resid, memoffset; 505 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 506 u32 *buf; 507 508 /* Argument sanity checks ... 509 */ 510 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 511 return -EINVAL; 512 buf = (u32 *)hbuf; 513 514 /* It's convenient to be able to handle lengths which aren't a 515 * multiple of 32-bits because we often end up transferring files to 516 * the firmware. So we'll handle that by normalizing the length here 517 * and then handling any residual transfer at the end. 518 */ 519 resid = len & 0x3; 520 len -= resid; 521 522 /* Offset into the region of memory which is being accessed 523 * MEM_EDC0 = 0 524 * MEM_EDC1 = 1 525 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 526 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 527 */ 528 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 529 if (mtype != MEM_MC1) 530 memoffset = (mtype * (edc_size * 1024 * 1024)); 531 else { 532 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 533 MA_EXT_MEMORY0_BAR_A)); 534 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 535 } 536 537 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 538 addr = addr + memoffset; 539 540 /* Each PCI-E Memory Window is programmed with a window size -- or 541 * "aperture" -- which controls the granularity of its mapping onto 542 * adapter memory. We need to grab that aperture in order to know 543 * how to use the specified window. The window is also programmed 544 * with the base address of the Memory Window in BAR0's address 545 * space. For T4 this is an absolute PCI-E Bus Address. For T5 546 * the address is relative to BAR0. 547 */ 548 mem_reg = t4_read_reg(adap, 549 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 550 win)); 551 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 552 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 553 if (is_t4(adap->params.chip)) 554 mem_base -= adap->t4_bar0; 555 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 556 557 /* Calculate our initial PCI-E Memory Window Position and Offset into 558 * that Window. 559 */ 560 pos = addr & ~(mem_aperture-1); 561 offset = addr - pos; 562 563 /* Set up initial PCI-E Memory Window to cover the start of our 564 * transfer. (Read it back to ensure that changes propagate before we 565 * attempt to use the new value.) 566 */ 567 t4_write_reg(adap, 568 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 569 pos | win_pf); 570 t4_read_reg(adap, 571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 572 573 /* Transfer data to/from the adapter as long as there's an integral 574 * number of 32-bit transfers to complete. 575 * 576 * A note on Endianness issues: 577 * 578 * The "register" reads and writes below from/to the PCI-E Memory 579 * Window invoke the standard adapter Big-Endian to PCI-E Link 580 * Little-Endian "swizzel." As a result, if we have the following 581 * data in adapter memory: 582 * 583 * Memory: ... | b0 | b1 | b2 | b3 | ... 584 * Address: i+0 i+1 i+2 i+3 585 * 586 * Then a read of the adapter memory via the PCI-E Memory Window 587 * will yield: 588 * 589 * x = readl(i) 590 * 31 0 591 * [ b3 | b2 | b1 | b0 ] 592 * 593 * If this value is stored into local memory on a Little-Endian system 594 * it will show up correctly in local memory as: 595 * 596 * ( ..., b0, b1, b2, b3, ... ) 597 * 598 * But on a Big-Endian system, the store will show up in memory 599 * incorrectly swizzled as: 600 * 601 * ( ..., b3, b2, b1, b0, ... ) 602 * 603 * So we need to account for this in the reads and writes to the 604 * PCI-E Memory Window below by undoing the register read/write 605 * swizzels. 606 */ 607 while (len > 0) { 608 if (dir == T4_MEMORY_READ) 609 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 610 mem_base + offset)); 611 else 612 t4_write_reg(adap, mem_base + offset, 613 (__force u32)cpu_to_le32(*buf++)); 614 offset += sizeof(__be32); 615 len -= sizeof(__be32); 616 617 /* If we've reached the end of our current window aperture, 618 * move the PCI-E Memory Window on to the next. Note that 619 * doing this here after "len" may be 0 allows us to set up 620 * the PCI-E Memory Window for a possible final residual 621 * transfer below ... 622 */ 623 if (offset == mem_aperture) { 624 pos += mem_aperture; 625 offset = 0; 626 t4_write_reg(adap, 627 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 628 win), pos | win_pf); 629 t4_read_reg(adap, 630 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 631 win)); 632 } 633 } 634 635 /* If the original transfer had a length which wasn't a multiple of 636 * 32-bits, now's where we need to finish off the transfer of the 637 * residual amount. The PCI-E Memory Window has already been moved 638 * above (if necessary) to cover this final transfer. 639 */ 640 if (resid) { 641 union { 642 u32 word; 643 char byte[4]; 644 } last; 645 unsigned char *bp; 646 int i; 647 648 if (dir == T4_MEMORY_READ) { 649 last.word = le32_to_cpu( 650 (__force __le32)t4_read_reg(adap, 651 mem_base + offset)); 652 for (bp = (unsigned char *)buf, i = resid; i < 4; i++) 653 bp[i] = last.byte[i]; 654 } else { 655 last.word = *buf; 656 for (i = resid; i < 4; i++) 657 last.byte[i] = 0; 658 t4_write_reg(adap, mem_base + offset, 659 (__force u32)cpu_to_le32(last.word)); 660 } 661 } 662 663 return 0; 664 } 665 666 /* Return the specified PCI-E Configuration Space register from our Physical 667 * Function. We try first via a Firmware LDST Command since we prefer to let 668 * the firmware own all of these registers, but if that fails we go for it 669 * directly ourselves. 670 */ 671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 672 { 673 u32 val, ldst_addrspace; 674 675 /* If fw_attach != 0, construct and send the Firmware LDST Command to 676 * retrieve the specified PCI-E Configuration Space register. 677 */ 678 struct fw_ldst_cmd ldst_cmd; 679 int ret; 680 681 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 682 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 683 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 684 FW_CMD_REQUEST_F | 685 FW_CMD_READ_F | 686 ldst_addrspace); 687 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 688 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 689 ldst_cmd.u.pcie.ctrl_to_fn = 690 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 691 ldst_cmd.u.pcie.r = reg; 692 693 /* If the LDST Command succeeds, return the result, otherwise 694 * fall through to reading it directly ourselves ... 695 */ 696 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 697 &ldst_cmd); 698 if (ret == 0) 699 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 700 else 701 /* Read the desired Configuration Space register via the PCI-E 702 * Backdoor mechanism. 703 */ 704 t4_hw_pci_read_cfg4(adap, reg, &val); 705 return val; 706 } 707 708 /* Get the window based on base passed to it. 709 * Window aperture is currently unhandled, but there is no use case for it 710 * right now 711 */ 712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 713 u32 memwin_base) 714 { 715 u32 ret; 716 717 if (is_t4(adap->params.chip)) { 718 u32 bar0; 719 720 /* Truncation intentional: we only read the bottom 32-bits of 721 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 722 * mechanism to read BAR0 instead of using 723 * pci_resource_start() because we could be operating from 724 * within a Virtual Machine which is trapping our accesses to 725 * our Configuration Space and we need to set up the PCI-E 726 * Memory Window decoders with the actual addresses which will 727 * be coming across the PCI-E link. 728 */ 729 bar0 = t4_read_pcie_cfg4(adap, pci_base); 730 bar0 &= pci_mask; 731 adap->t4_bar0 = bar0; 732 733 ret = bar0 + memwin_base; 734 } else { 735 /* For T5, only relative offset inside the PCIe BAR is passed */ 736 ret = memwin_base; 737 } 738 return ret; 739 } 740 741 /* Get the default utility window (win0) used by everyone */ 742 u32 t4_get_util_window(struct adapter *adap) 743 { 744 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 745 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 746 } 747 748 /* Set up memory window for accessing adapter memory ranges. (Read 749 * back MA register to ensure that changes propagate before we attempt 750 * to use the new values.) 751 */ 752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 753 { 754 t4_write_reg(adap, 755 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 756 memwin_base | BIR_V(0) | 757 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 758 t4_read_reg(adap, 759 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 760 } 761 762 /** 763 * t4_get_regs_len - return the size of the chips register set 764 * @adapter: the adapter 765 * 766 * Returns the size of the chip's BAR0 register space. 767 */ 768 unsigned int t4_get_regs_len(struct adapter *adapter) 769 { 770 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 771 772 switch (chip_version) { 773 case CHELSIO_T4: 774 return T4_REGMAP_SIZE; 775 776 case CHELSIO_T5: 777 case CHELSIO_T6: 778 return T5_REGMAP_SIZE; 779 } 780 781 dev_err(adapter->pdev_dev, 782 "Unsupported chip version %d\n", chip_version); 783 return 0; 784 } 785 786 /** 787 * t4_get_regs - read chip registers into provided buffer 788 * @adap: the adapter 789 * @buf: register buffer 790 * @buf_size: size (in bytes) of register buffer 791 * 792 * If the provided register buffer isn't large enough for the chip's 793 * full register range, the register dump will be truncated to the 794 * register buffer's size. 795 */ 796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 797 { 798 static const unsigned int t4_reg_ranges[] = { 799 0x1008, 0x1108, 800 0x1180, 0x1184, 801 0x1190, 0x1194, 802 0x11a0, 0x11a4, 803 0x11b0, 0x11b4, 804 0x11fc, 0x123c, 805 0x1300, 0x173c, 806 0x1800, 0x18fc, 807 0x3000, 0x30d8, 808 0x30e0, 0x30e4, 809 0x30ec, 0x5910, 810 0x5920, 0x5924, 811 0x5960, 0x5960, 812 0x5968, 0x5968, 813 0x5970, 0x5970, 814 0x5978, 0x5978, 815 0x5980, 0x5980, 816 0x5988, 0x5988, 817 0x5990, 0x5990, 818 0x5998, 0x5998, 819 0x59a0, 0x59d4, 820 0x5a00, 0x5ae0, 821 0x5ae8, 0x5ae8, 822 0x5af0, 0x5af0, 823 0x5af8, 0x5af8, 824 0x6000, 0x6098, 825 0x6100, 0x6150, 826 0x6200, 0x6208, 827 0x6240, 0x6248, 828 0x6280, 0x62b0, 829 0x62c0, 0x6338, 830 0x6370, 0x638c, 831 0x6400, 0x643c, 832 0x6500, 0x6524, 833 0x6a00, 0x6a04, 834 0x6a14, 0x6a38, 835 0x6a60, 0x6a70, 836 0x6a78, 0x6a78, 837 0x6b00, 0x6b0c, 838 0x6b1c, 0x6b84, 839 0x6bf0, 0x6bf8, 840 0x6c00, 0x6c0c, 841 0x6c1c, 0x6c84, 842 0x6cf0, 0x6cf8, 843 0x6d00, 0x6d0c, 844 0x6d1c, 0x6d84, 845 0x6df0, 0x6df8, 846 0x6e00, 0x6e0c, 847 0x6e1c, 0x6e84, 848 0x6ef0, 0x6ef8, 849 0x6f00, 0x6f0c, 850 0x6f1c, 0x6f84, 851 0x6ff0, 0x6ff8, 852 0x7000, 0x700c, 853 0x701c, 0x7084, 854 0x70f0, 0x70f8, 855 0x7100, 0x710c, 856 0x711c, 0x7184, 857 0x71f0, 0x71f8, 858 0x7200, 0x720c, 859 0x721c, 0x7284, 860 0x72f0, 0x72f8, 861 0x7300, 0x730c, 862 0x731c, 0x7384, 863 0x73f0, 0x73f8, 864 0x7400, 0x7450, 865 0x7500, 0x7530, 866 0x7600, 0x760c, 867 0x7614, 0x761c, 868 0x7680, 0x76cc, 869 0x7700, 0x7798, 870 0x77c0, 0x77fc, 871 0x7900, 0x79fc, 872 0x7b00, 0x7b58, 873 0x7b60, 0x7b84, 874 0x7b8c, 0x7c38, 875 0x7d00, 0x7d38, 876 0x7d40, 0x7d80, 877 0x7d8c, 0x7ddc, 878 0x7de4, 0x7e04, 879 0x7e10, 0x7e1c, 880 0x7e24, 0x7e38, 881 0x7e40, 0x7e44, 882 0x7e4c, 0x7e78, 883 0x7e80, 0x7ea4, 884 0x7eac, 0x7edc, 885 0x7ee8, 0x7efc, 886 0x8dc0, 0x8e04, 887 0x8e10, 0x8e1c, 888 0x8e30, 0x8e78, 889 0x8ea0, 0x8eb8, 890 0x8ec0, 0x8f6c, 891 0x8fc0, 0x9008, 892 0x9010, 0x9058, 893 0x9060, 0x9060, 894 0x9068, 0x9074, 895 0x90fc, 0x90fc, 896 0x9400, 0x9408, 897 0x9410, 0x9458, 898 0x9600, 0x9600, 899 0x9608, 0x9638, 900 0x9640, 0x96bc, 901 0x9800, 0x9808, 902 0x9820, 0x983c, 903 0x9850, 0x9864, 904 0x9c00, 0x9c6c, 905 0x9c80, 0x9cec, 906 0x9d00, 0x9d6c, 907 0x9d80, 0x9dec, 908 0x9e00, 0x9e6c, 909 0x9e80, 0x9eec, 910 0x9f00, 0x9f6c, 911 0x9f80, 0x9fec, 912 0xd004, 0xd004, 913 0xd010, 0xd03c, 914 0xdfc0, 0xdfe0, 915 0xe000, 0xea7c, 916 0xf000, 0x11110, 917 0x11118, 0x11190, 918 0x19040, 0x1906c, 919 0x19078, 0x19080, 920 0x1908c, 0x190e4, 921 0x190f0, 0x190f8, 922 0x19100, 0x19110, 923 0x19120, 0x19124, 924 0x19150, 0x19194, 925 0x1919c, 0x191b0, 926 0x191d0, 0x191e8, 927 0x19238, 0x1924c, 928 0x193f8, 0x1943c, 929 0x1944c, 0x19474, 930 0x19490, 0x194e0, 931 0x194f0, 0x194f8, 932 0x19800, 0x19c08, 933 0x19c10, 0x19c90, 934 0x19ca0, 0x19ce4, 935 0x19cf0, 0x19d40, 936 0x19d50, 0x19d94, 937 0x19da0, 0x19de8, 938 0x19df0, 0x19e40, 939 0x19e50, 0x19e90, 940 0x19ea0, 0x19f4c, 941 0x1a000, 0x1a004, 942 0x1a010, 0x1a06c, 943 0x1a0b0, 0x1a0e4, 944 0x1a0ec, 0x1a0f4, 945 0x1a100, 0x1a108, 946 0x1a114, 0x1a120, 947 0x1a128, 0x1a130, 948 0x1a138, 0x1a138, 949 0x1a190, 0x1a1c4, 950 0x1a1fc, 0x1a1fc, 951 0x1e040, 0x1e04c, 952 0x1e284, 0x1e28c, 953 0x1e2c0, 0x1e2c0, 954 0x1e2e0, 0x1e2e0, 955 0x1e300, 0x1e384, 956 0x1e3c0, 0x1e3c8, 957 0x1e440, 0x1e44c, 958 0x1e684, 0x1e68c, 959 0x1e6c0, 0x1e6c0, 960 0x1e6e0, 0x1e6e0, 961 0x1e700, 0x1e784, 962 0x1e7c0, 0x1e7c8, 963 0x1e840, 0x1e84c, 964 0x1ea84, 0x1ea8c, 965 0x1eac0, 0x1eac0, 966 0x1eae0, 0x1eae0, 967 0x1eb00, 0x1eb84, 968 0x1ebc0, 0x1ebc8, 969 0x1ec40, 0x1ec4c, 970 0x1ee84, 0x1ee8c, 971 0x1eec0, 0x1eec0, 972 0x1eee0, 0x1eee0, 973 0x1ef00, 0x1ef84, 974 0x1efc0, 0x1efc8, 975 0x1f040, 0x1f04c, 976 0x1f284, 0x1f28c, 977 0x1f2c0, 0x1f2c0, 978 0x1f2e0, 0x1f2e0, 979 0x1f300, 0x1f384, 980 0x1f3c0, 0x1f3c8, 981 0x1f440, 0x1f44c, 982 0x1f684, 0x1f68c, 983 0x1f6c0, 0x1f6c0, 984 0x1f6e0, 0x1f6e0, 985 0x1f700, 0x1f784, 986 0x1f7c0, 0x1f7c8, 987 0x1f840, 0x1f84c, 988 0x1fa84, 0x1fa8c, 989 0x1fac0, 0x1fac0, 990 0x1fae0, 0x1fae0, 991 0x1fb00, 0x1fb84, 992 0x1fbc0, 0x1fbc8, 993 0x1fc40, 0x1fc4c, 994 0x1fe84, 0x1fe8c, 995 0x1fec0, 0x1fec0, 996 0x1fee0, 0x1fee0, 997 0x1ff00, 0x1ff84, 998 0x1ffc0, 0x1ffc8, 999 0x20000, 0x2002c, 1000 0x20100, 0x2013c, 1001 0x20190, 0x201a0, 1002 0x201a8, 0x201b8, 1003 0x201c4, 0x201c8, 1004 0x20200, 0x20318, 1005 0x20400, 0x204b4, 1006 0x204c0, 0x20528, 1007 0x20540, 0x20614, 1008 0x21000, 0x21040, 1009 0x2104c, 0x21060, 1010 0x210c0, 0x210ec, 1011 0x21200, 0x21268, 1012 0x21270, 0x21284, 1013 0x212fc, 0x21388, 1014 0x21400, 0x21404, 1015 0x21500, 0x21500, 1016 0x21510, 0x21518, 1017 0x2152c, 0x21530, 1018 0x2153c, 0x2153c, 1019 0x21550, 0x21554, 1020 0x21600, 0x21600, 1021 0x21608, 0x2161c, 1022 0x21624, 0x21628, 1023 0x21630, 0x21634, 1024 0x2163c, 0x2163c, 1025 0x21700, 0x2171c, 1026 0x21780, 0x2178c, 1027 0x21800, 0x21818, 1028 0x21820, 0x21828, 1029 0x21830, 0x21848, 1030 0x21850, 0x21854, 1031 0x21860, 0x21868, 1032 0x21870, 0x21870, 1033 0x21878, 0x21898, 1034 0x218a0, 0x218a8, 1035 0x218b0, 0x218c8, 1036 0x218d0, 0x218d4, 1037 0x218e0, 0x218e8, 1038 0x218f0, 0x218f0, 1039 0x218f8, 0x21a18, 1040 0x21a20, 0x21a28, 1041 0x21a30, 0x21a48, 1042 0x21a50, 0x21a54, 1043 0x21a60, 0x21a68, 1044 0x21a70, 0x21a70, 1045 0x21a78, 0x21a98, 1046 0x21aa0, 0x21aa8, 1047 0x21ab0, 0x21ac8, 1048 0x21ad0, 0x21ad4, 1049 0x21ae0, 0x21ae8, 1050 0x21af0, 0x21af0, 1051 0x21af8, 0x21c18, 1052 0x21c20, 0x21c20, 1053 0x21c28, 0x21c30, 1054 0x21c38, 0x21c38, 1055 0x21c80, 0x21c98, 1056 0x21ca0, 0x21ca8, 1057 0x21cb0, 0x21cc8, 1058 0x21cd0, 0x21cd4, 1059 0x21ce0, 0x21ce8, 1060 0x21cf0, 0x21cf0, 1061 0x21cf8, 0x21d7c, 1062 0x21e00, 0x21e04, 1063 0x22000, 0x2202c, 1064 0x22100, 0x2213c, 1065 0x22190, 0x221a0, 1066 0x221a8, 0x221b8, 1067 0x221c4, 0x221c8, 1068 0x22200, 0x22318, 1069 0x22400, 0x224b4, 1070 0x224c0, 0x22528, 1071 0x22540, 0x22614, 1072 0x23000, 0x23040, 1073 0x2304c, 0x23060, 1074 0x230c0, 0x230ec, 1075 0x23200, 0x23268, 1076 0x23270, 0x23284, 1077 0x232fc, 0x23388, 1078 0x23400, 0x23404, 1079 0x23500, 0x23500, 1080 0x23510, 0x23518, 1081 0x2352c, 0x23530, 1082 0x2353c, 0x2353c, 1083 0x23550, 0x23554, 1084 0x23600, 0x23600, 1085 0x23608, 0x2361c, 1086 0x23624, 0x23628, 1087 0x23630, 0x23634, 1088 0x2363c, 0x2363c, 1089 0x23700, 0x2371c, 1090 0x23780, 0x2378c, 1091 0x23800, 0x23818, 1092 0x23820, 0x23828, 1093 0x23830, 0x23848, 1094 0x23850, 0x23854, 1095 0x23860, 0x23868, 1096 0x23870, 0x23870, 1097 0x23878, 0x23898, 1098 0x238a0, 0x238a8, 1099 0x238b0, 0x238c8, 1100 0x238d0, 0x238d4, 1101 0x238e0, 0x238e8, 1102 0x238f0, 0x238f0, 1103 0x238f8, 0x23a18, 1104 0x23a20, 0x23a28, 1105 0x23a30, 0x23a48, 1106 0x23a50, 0x23a54, 1107 0x23a60, 0x23a68, 1108 0x23a70, 0x23a70, 1109 0x23a78, 0x23a98, 1110 0x23aa0, 0x23aa8, 1111 0x23ab0, 0x23ac8, 1112 0x23ad0, 0x23ad4, 1113 0x23ae0, 0x23ae8, 1114 0x23af0, 0x23af0, 1115 0x23af8, 0x23c18, 1116 0x23c20, 0x23c20, 1117 0x23c28, 0x23c30, 1118 0x23c38, 0x23c38, 1119 0x23c80, 0x23c98, 1120 0x23ca0, 0x23ca8, 1121 0x23cb0, 0x23cc8, 1122 0x23cd0, 0x23cd4, 1123 0x23ce0, 0x23ce8, 1124 0x23cf0, 0x23cf0, 1125 0x23cf8, 0x23d7c, 1126 0x23e00, 0x23e04, 1127 0x24000, 0x2402c, 1128 0x24100, 0x2413c, 1129 0x24190, 0x241a0, 1130 0x241a8, 0x241b8, 1131 0x241c4, 0x241c8, 1132 0x24200, 0x24318, 1133 0x24400, 0x244b4, 1134 0x244c0, 0x24528, 1135 0x24540, 0x24614, 1136 0x25000, 0x25040, 1137 0x2504c, 0x25060, 1138 0x250c0, 0x250ec, 1139 0x25200, 0x25268, 1140 0x25270, 0x25284, 1141 0x252fc, 0x25388, 1142 0x25400, 0x25404, 1143 0x25500, 0x25500, 1144 0x25510, 0x25518, 1145 0x2552c, 0x25530, 1146 0x2553c, 0x2553c, 1147 0x25550, 0x25554, 1148 0x25600, 0x25600, 1149 0x25608, 0x2561c, 1150 0x25624, 0x25628, 1151 0x25630, 0x25634, 1152 0x2563c, 0x2563c, 1153 0x25700, 0x2571c, 1154 0x25780, 0x2578c, 1155 0x25800, 0x25818, 1156 0x25820, 0x25828, 1157 0x25830, 0x25848, 1158 0x25850, 0x25854, 1159 0x25860, 0x25868, 1160 0x25870, 0x25870, 1161 0x25878, 0x25898, 1162 0x258a0, 0x258a8, 1163 0x258b0, 0x258c8, 1164 0x258d0, 0x258d4, 1165 0x258e0, 0x258e8, 1166 0x258f0, 0x258f0, 1167 0x258f8, 0x25a18, 1168 0x25a20, 0x25a28, 1169 0x25a30, 0x25a48, 1170 0x25a50, 0x25a54, 1171 0x25a60, 0x25a68, 1172 0x25a70, 0x25a70, 1173 0x25a78, 0x25a98, 1174 0x25aa0, 0x25aa8, 1175 0x25ab0, 0x25ac8, 1176 0x25ad0, 0x25ad4, 1177 0x25ae0, 0x25ae8, 1178 0x25af0, 0x25af0, 1179 0x25af8, 0x25c18, 1180 0x25c20, 0x25c20, 1181 0x25c28, 0x25c30, 1182 0x25c38, 0x25c38, 1183 0x25c80, 0x25c98, 1184 0x25ca0, 0x25ca8, 1185 0x25cb0, 0x25cc8, 1186 0x25cd0, 0x25cd4, 1187 0x25ce0, 0x25ce8, 1188 0x25cf0, 0x25cf0, 1189 0x25cf8, 0x25d7c, 1190 0x25e00, 0x25e04, 1191 0x26000, 0x2602c, 1192 0x26100, 0x2613c, 1193 0x26190, 0x261a0, 1194 0x261a8, 0x261b8, 1195 0x261c4, 0x261c8, 1196 0x26200, 0x26318, 1197 0x26400, 0x264b4, 1198 0x264c0, 0x26528, 1199 0x26540, 0x26614, 1200 0x27000, 0x27040, 1201 0x2704c, 0x27060, 1202 0x270c0, 0x270ec, 1203 0x27200, 0x27268, 1204 0x27270, 0x27284, 1205 0x272fc, 0x27388, 1206 0x27400, 0x27404, 1207 0x27500, 0x27500, 1208 0x27510, 0x27518, 1209 0x2752c, 0x27530, 1210 0x2753c, 0x2753c, 1211 0x27550, 0x27554, 1212 0x27600, 0x27600, 1213 0x27608, 0x2761c, 1214 0x27624, 0x27628, 1215 0x27630, 0x27634, 1216 0x2763c, 0x2763c, 1217 0x27700, 0x2771c, 1218 0x27780, 0x2778c, 1219 0x27800, 0x27818, 1220 0x27820, 0x27828, 1221 0x27830, 0x27848, 1222 0x27850, 0x27854, 1223 0x27860, 0x27868, 1224 0x27870, 0x27870, 1225 0x27878, 0x27898, 1226 0x278a0, 0x278a8, 1227 0x278b0, 0x278c8, 1228 0x278d0, 0x278d4, 1229 0x278e0, 0x278e8, 1230 0x278f0, 0x278f0, 1231 0x278f8, 0x27a18, 1232 0x27a20, 0x27a28, 1233 0x27a30, 0x27a48, 1234 0x27a50, 0x27a54, 1235 0x27a60, 0x27a68, 1236 0x27a70, 0x27a70, 1237 0x27a78, 0x27a98, 1238 0x27aa0, 0x27aa8, 1239 0x27ab0, 0x27ac8, 1240 0x27ad0, 0x27ad4, 1241 0x27ae0, 0x27ae8, 1242 0x27af0, 0x27af0, 1243 0x27af8, 0x27c18, 1244 0x27c20, 0x27c20, 1245 0x27c28, 0x27c30, 1246 0x27c38, 0x27c38, 1247 0x27c80, 0x27c98, 1248 0x27ca0, 0x27ca8, 1249 0x27cb0, 0x27cc8, 1250 0x27cd0, 0x27cd4, 1251 0x27ce0, 0x27ce8, 1252 0x27cf0, 0x27cf0, 1253 0x27cf8, 0x27d7c, 1254 0x27e00, 0x27e04, 1255 }; 1256 1257 static const unsigned int t5_reg_ranges[] = { 1258 0x1008, 0x10c0, 1259 0x10cc, 0x10f8, 1260 0x1100, 0x1100, 1261 0x110c, 0x1148, 1262 0x1180, 0x1184, 1263 0x1190, 0x1194, 1264 0x11a0, 0x11a4, 1265 0x11b0, 0x11b4, 1266 0x11fc, 0x123c, 1267 0x1280, 0x173c, 1268 0x1800, 0x18fc, 1269 0x3000, 0x3028, 1270 0x3060, 0x30b0, 1271 0x30b8, 0x30d8, 1272 0x30e0, 0x30fc, 1273 0x3140, 0x357c, 1274 0x35a8, 0x35cc, 1275 0x35ec, 0x35ec, 1276 0x3600, 0x5624, 1277 0x56cc, 0x56ec, 1278 0x56f4, 0x5720, 1279 0x5728, 0x575c, 1280 0x580c, 0x5814, 1281 0x5890, 0x589c, 1282 0x58a4, 0x58ac, 1283 0x58b8, 0x58bc, 1284 0x5940, 0x59c8, 1285 0x59d0, 0x59dc, 1286 0x59fc, 0x5a18, 1287 0x5a60, 0x5a70, 1288 0x5a80, 0x5a9c, 1289 0x5b94, 0x5bfc, 1290 0x6000, 0x6020, 1291 0x6028, 0x6040, 1292 0x6058, 0x609c, 1293 0x60a8, 0x614c, 1294 0x7700, 0x7798, 1295 0x77c0, 0x78fc, 1296 0x7b00, 0x7b58, 1297 0x7b60, 0x7b84, 1298 0x7b8c, 0x7c54, 1299 0x7d00, 0x7d38, 1300 0x7d40, 0x7d80, 1301 0x7d8c, 0x7ddc, 1302 0x7de4, 0x7e04, 1303 0x7e10, 0x7e1c, 1304 0x7e24, 0x7e38, 1305 0x7e40, 0x7e44, 1306 0x7e4c, 0x7e78, 1307 0x7e80, 0x7edc, 1308 0x7ee8, 0x7efc, 1309 0x8dc0, 0x8de0, 1310 0x8df8, 0x8e04, 1311 0x8e10, 0x8e84, 1312 0x8ea0, 0x8f84, 1313 0x8fc0, 0x9058, 1314 0x9060, 0x9060, 1315 0x9068, 0x90f8, 1316 0x9400, 0x9408, 1317 0x9410, 0x9470, 1318 0x9600, 0x9600, 1319 0x9608, 0x9638, 1320 0x9640, 0x96f4, 1321 0x9800, 0x9808, 1322 0x9820, 0x983c, 1323 0x9850, 0x9864, 1324 0x9c00, 0x9c6c, 1325 0x9c80, 0x9cec, 1326 0x9d00, 0x9d6c, 1327 0x9d80, 0x9dec, 1328 0x9e00, 0x9e6c, 1329 0x9e80, 0x9eec, 1330 0x9f00, 0x9f6c, 1331 0x9f80, 0xa020, 1332 0xd004, 0xd004, 1333 0xd010, 0xd03c, 1334 0xdfc0, 0xdfe0, 1335 0xe000, 0x1106c, 1336 0x11074, 0x11088, 1337 0x1109c, 0x1117c, 1338 0x11190, 0x11204, 1339 0x19040, 0x1906c, 1340 0x19078, 0x19080, 1341 0x1908c, 0x190e8, 1342 0x190f0, 0x190f8, 1343 0x19100, 0x19110, 1344 0x19120, 0x19124, 1345 0x19150, 0x19194, 1346 0x1919c, 0x191b0, 1347 0x191d0, 0x191e8, 1348 0x19238, 0x19290, 1349 0x193f8, 0x19428, 1350 0x19430, 0x19444, 1351 0x1944c, 0x1946c, 1352 0x19474, 0x19474, 1353 0x19490, 0x194cc, 1354 0x194f0, 0x194f8, 1355 0x19c00, 0x19c08, 1356 0x19c10, 0x19c60, 1357 0x19c94, 0x19ce4, 1358 0x19cf0, 0x19d40, 1359 0x19d50, 0x19d94, 1360 0x19da0, 0x19de8, 1361 0x19df0, 0x19e10, 1362 0x19e50, 0x19e90, 1363 0x19ea0, 0x19f24, 1364 0x19f34, 0x19f34, 1365 0x19f40, 0x19f50, 1366 0x19f90, 0x19fb4, 1367 0x19fc4, 0x19fe4, 1368 0x1a000, 0x1a004, 1369 0x1a010, 0x1a06c, 1370 0x1a0b0, 0x1a0e4, 1371 0x1a0ec, 0x1a0f8, 1372 0x1a100, 0x1a108, 1373 0x1a114, 0x1a120, 1374 0x1a128, 0x1a130, 1375 0x1a138, 0x1a138, 1376 0x1a190, 0x1a1c4, 1377 0x1a1fc, 0x1a1fc, 1378 0x1e008, 0x1e00c, 1379 0x1e040, 0x1e044, 1380 0x1e04c, 0x1e04c, 1381 0x1e284, 0x1e290, 1382 0x1e2c0, 0x1e2c0, 1383 0x1e2e0, 0x1e2e0, 1384 0x1e300, 0x1e384, 1385 0x1e3c0, 0x1e3c8, 1386 0x1e408, 0x1e40c, 1387 0x1e440, 0x1e444, 1388 0x1e44c, 0x1e44c, 1389 0x1e684, 0x1e690, 1390 0x1e6c0, 0x1e6c0, 1391 0x1e6e0, 0x1e6e0, 1392 0x1e700, 0x1e784, 1393 0x1e7c0, 0x1e7c8, 1394 0x1e808, 0x1e80c, 1395 0x1e840, 0x1e844, 1396 0x1e84c, 0x1e84c, 1397 0x1ea84, 0x1ea90, 1398 0x1eac0, 0x1eac0, 1399 0x1eae0, 0x1eae0, 1400 0x1eb00, 0x1eb84, 1401 0x1ebc0, 0x1ebc8, 1402 0x1ec08, 0x1ec0c, 1403 0x1ec40, 0x1ec44, 1404 0x1ec4c, 0x1ec4c, 1405 0x1ee84, 0x1ee90, 1406 0x1eec0, 0x1eec0, 1407 0x1eee0, 0x1eee0, 1408 0x1ef00, 0x1ef84, 1409 0x1efc0, 0x1efc8, 1410 0x1f008, 0x1f00c, 1411 0x1f040, 0x1f044, 1412 0x1f04c, 0x1f04c, 1413 0x1f284, 0x1f290, 1414 0x1f2c0, 0x1f2c0, 1415 0x1f2e0, 0x1f2e0, 1416 0x1f300, 0x1f384, 1417 0x1f3c0, 0x1f3c8, 1418 0x1f408, 0x1f40c, 1419 0x1f440, 0x1f444, 1420 0x1f44c, 0x1f44c, 1421 0x1f684, 0x1f690, 1422 0x1f6c0, 0x1f6c0, 1423 0x1f6e0, 0x1f6e0, 1424 0x1f700, 0x1f784, 1425 0x1f7c0, 0x1f7c8, 1426 0x1f808, 0x1f80c, 1427 0x1f840, 0x1f844, 1428 0x1f84c, 0x1f84c, 1429 0x1fa84, 0x1fa90, 1430 0x1fac0, 0x1fac0, 1431 0x1fae0, 0x1fae0, 1432 0x1fb00, 0x1fb84, 1433 0x1fbc0, 0x1fbc8, 1434 0x1fc08, 0x1fc0c, 1435 0x1fc40, 0x1fc44, 1436 0x1fc4c, 0x1fc4c, 1437 0x1fe84, 0x1fe90, 1438 0x1fec0, 0x1fec0, 1439 0x1fee0, 0x1fee0, 1440 0x1ff00, 0x1ff84, 1441 0x1ffc0, 0x1ffc8, 1442 0x30000, 0x30030, 1443 0x30100, 0x30144, 1444 0x30190, 0x301a0, 1445 0x301a8, 0x301b8, 1446 0x301c4, 0x301c8, 1447 0x301d0, 0x301d0, 1448 0x30200, 0x30318, 1449 0x30400, 0x304b4, 1450 0x304c0, 0x3052c, 1451 0x30540, 0x3061c, 1452 0x30800, 0x30828, 1453 0x30834, 0x30834, 1454 0x308c0, 0x30908, 1455 0x30910, 0x309ac, 1456 0x30a00, 0x30a14, 1457 0x30a1c, 0x30a2c, 1458 0x30a44, 0x30a50, 1459 0x30a74, 0x30a74, 1460 0x30a7c, 0x30afc, 1461 0x30b08, 0x30c24, 1462 0x30d00, 0x30d00, 1463 0x30d08, 0x30d14, 1464 0x30d1c, 0x30d20, 1465 0x30d3c, 0x30d3c, 1466 0x30d48, 0x30d50, 1467 0x31200, 0x3120c, 1468 0x31220, 0x31220, 1469 0x31240, 0x31240, 1470 0x31600, 0x3160c, 1471 0x31a00, 0x31a1c, 1472 0x31e00, 0x31e20, 1473 0x31e38, 0x31e3c, 1474 0x31e80, 0x31e80, 1475 0x31e88, 0x31ea8, 1476 0x31eb0, 0x31eb4, 1477 0x31ec8, 0x31ed4, 1478 0x31fb8, 0x32004, 1479 0x32200, 0x32200, 1480 0x32208, 0x32240, 1481 0x32248, 0x32280, 1482 0x32288, 0x322c0, 1483 0x322c8, 0x322fc, 1484 0x32600, 0x32630, 1485 0x32a00, 0x32abc, 1486 0x32b00, 0x32b10, 1487 0x32b20, 0x32b30, 1488 0x32b40, 0x32b50, 1489 0x32b60, 0x32b70, 1490 0x33000, 0x33028, 1491 0x33030, 0x33048, 1492 0x33060, 0x33068, 1493 0x33070, 0x3309c, 1494 0x330f0, 0x33128, 1495 0x33130, 0x33148, 1496 0x33160, 0x33168, 1497 0x33170, 0x3319c, 1498 0x331f0, 0x33238, 1499 0x33240, 0x33240, 1500 0x33248, 0x33250, 1501 0x3325c, 0x33264, 1502 0x33270, 0x332b8, 1503 0x332c0, 0x332e4, 1504 0x332f8, 0x33338, 1505 0x33340, 0x33340, 1506 0x33348, 0x33350, 1507 0x3335c, 0x33364, 1508 0x33370, 0x333b8, 1509 0x333c0, 0x333e4, 1510 0x333f8, 0x33428, 1511 0x33430, 0x33448, 1512 0x33460, 0x33468, 1513 0x33470, 0x3349c, 1514 0x334f0, 0x33528, 1515 0x33530, 0x33548, 1516 0x33560, 0x33568, 1517 0x33570, 0x3359c, 1518 0x335f0, 0x33638, 1519 0x33640, 0x33640, 1520 0x33648, 0x33650, 1521 0x3365c, 0x33664, 1522 0x33670, 0x336b8, 1523 0x336c0, 0x336e4, 1524 0x336f8, 0x33738, 1525 0x33740, 0x33740, 1526 0x33748, 0x33750, 1527 0x3375c, 0x33764, 1528 0x33770, 0x337b8, 1529 0x337c0, 0x337e4, 1530 0x337f8, 0x337fc, 1531 0x33814, 0x33814, 1532 0x3382c, 0x3382c, 1533 0x33880, 0x3388c, 1534 0x338e8, 0x338ec, 1535 0x33900, 0x33928, 1536 0x33930, 0x33948, 1537 0x33960, 0x33968, 1538 0x33970, 0x3399c, 1539 0x339f0, 0x33a38, 1540 0x33a40, 0x33a40, 1541 0x33a48, 0x33a50, 1542 0x33a5c, 0x33a64, 1543 0x33a70, 0x33ab8, 1544 0x33ac0, 0x33ae4, 1545 0x33af8, 0x33b10, 1546 0x33b28, 0x33b28, 1547 0x33b3c, 0x33b50, 1548 0x33bf0, 0x33c10, 1549 0x33c28, 0x33c28, 1550 0x33c3c, 0x33c50, 1551 0x33cf0, 0x33cfc, 1552 0x34000, 0x34030, 1553 0x34100, 0x34144, 1554 0x34190, 0x341a0, 1555 0x341a8, 0x341b8, 1556 0x341c4, 0x341c8, 1557 0x341d0, 0x341d0, 1558 0x34200, 0x34318, 1559 0x34400, 0x344b4, 1560 0x344c0, 0x3452c, 1561 0x34540, 0x3461c, 1562 0x34800, 0x34828, 1563 0x34834, 0x34834, 1564 0x348c0, 0x34908, 1565 0x34910, 0x349ac, 1566 0x34a00, 0x34a14, 1567 0x34a1c, 0x34a2c, 1568 0x34a44, 0x34a50, 1569 0x34a74, 0x34a74, 1570 0x34a7c, 0x34afc, 1571 0x34b08, 0x34c24, 1572 0x34d00, 0x34d00, 1573 0x34d08, 0x34d14, 1574 0x34d1c, 0x34d20, 1575 0x34d3c, 0x34d3c, 1576 0x34d48, 0x34d50, 1577 0x35200, 0x3520c, 1578 0x35220, 0x35220, 1579 0x35240, 0x35240, 1580 0x35600, 0x3560c, 1581 0x35a00, 0x35a1c, 1582 0x35e00, 0x35e20, 1583 0x35e38, 0x35e3c, 1584 0x35e80, 0x35e80, 1585 0x35e88, 0x35ea8, 1586 0x35eb0, 0x35eb4, 1587 0x35ec8, 0x35ed4, 1588 0x35fb8, 0x36004, 1589 0x36200, 0x36200, 1590 0x36208, 0x36240, 1591 0x36248, 0x36280, 1592 0x36288, 0x362c0, 1593 0x362c8, 0x362fc, 1594 0x36600, 0x36630, 1595 0x36a00, 0x36abc, 1596 0x36b00, 0x36b10, 1597 0x36b20, 0x36b30, 1598 0x36b40, 0x36b50, 1599 0x36b60, 0x36b70, 1600 0x37000, 0x37028, 1601 0x37030, 0x37048, 1602 0x37060, 0x37068, 1603 0x37070, 0x3709c, 1604 0x370f0, 0x37128, 1605 0x37130, 0x37148, 1606 0x37160, 0x37168, 1607 0x37170, 0x3719c, 1608 0x371f0, 0x37238, 1609 0x37240, 0x37240, 1610 0x37248, 0x37250, 1611 0x3725c, 0x37264, 1612 0x37270, 0x372b8, 1613 0x372c0, 0x372e4, 1614 0x372f8, 0x37338, 1615 0x37340, 0x37340, 1616 0x37348, 0x37350, 1617 0x3735c, 0x37364, 1618 0x37370, 0x373b8, 1619 0x373c0, 0x373e4, 1620 0x373f8, 0x37428, 1621 0x37430, 0x37448, 1622 0x37460, 0x37468, 1623 0x37470, 0x3749c, 1624 0x374f0, 0x37528, 1625 0x37530, 0x37548, 1626 0x37560, 0x37568, 1627 0x37570, 0x3759c, 1628 0x375f0, 0x37638, 1629 0x37640, 0x37640, 1630 0x37648, 0x37650, 1631 0x3765c, 0x37664, 1632 0x37670, 0x376b8, 1633 0x376c0, 0x376e4, 1634 0x376f8, 0x37738, 1635 0x37740, 0x37740, 1636 0x37748, 0x37750, 1637 0x3775c, 0x37764, 1638 0x37770, 0x377b8, 1639 0x377c0, 0x377e4, 1640 0x377f8, 0x377fc, 1641 0x37814, 0x37814, 1642 0x3782c, 0x3782c, 1643 0x37880, 0x3788c, 1644 0x378e8, 0x378ec, 1645 0x37900, 0x37928, 1646 0x37930, 0x37948, 1647 0x37960, 0x37968, 1648 0x37970, 0x3799c, 1649 0x379f0, 0x37a38, 1650 0x37a40, 0x37a40, 1651 0x37a48, 0x37a50, 1652 0x37a5c, 0x37a64, 1653 0x37a70, 0x37ab8, 1654 0x37ac0, 0x37ae4, 1655 0x37af8, 0x37b10, 1656 0x37b28, 0x37b28, 1657 0x37b3c, 0x37b50, 1658 0x37bf0, 0x37c10, 1659 0x37c28, 0x37c28, 1660 0x37c3c, 0x37c50, 1661 0x37cf0, 0x37cfc, 1662 0x38000, 0x38030, 1663 0x38100, 0x38144, 1664 0x38190, 0x381a0, 1665 0x381a8, 0x381b8, 1666 0x381c4, 0x381c8, 1667 0x381d0, 0x381d0, 1668 0x38200, 0x38318, 1669 0x38400, 0x384b4, 1670 0x384c0, 0x3852c, 1671 0x38540, 0x3861c, 1672 0x38800, 0x38828, 1673 0x38834, 0x38834, 1674 0x388c0, 0x38908, 1675 0x38910, 0x389ac, 1676 0x38a00, 0x38a14, 1677 0x38a1c, 0x38a2c, 1678 0x38a44, 0x38a50, 1679 0x38a74, 0x38a74, 1680 0x38a7c, 0x38afc, 1681 0x38b08, 0x38c24, 1682 0x38d00, 0x38d00, 1683 0x38d08, 0x38d14, 1684 0x38d1c, 0x38d20, 1685 0x38d3c, 0x38d3c, 1686 0x38d48, 0x38d50, 1687 0x39200, 0x3920c, 1688 0x39220, 0x39220, 1689 0x39240, 0x39240, 1690 0x39600, 0x3960c, 1691 0x39a00, 0x39a1c, 1692 0x39e00, 0x39e20, 1693 0x39e38, 0x39e3c, 1694 0x39e80, 0x39e80, 1695 0x39e88, 0x39ea8, 1696 0x39eb0, 0x39eb4, 1697 0x39ec8, 0x39ed4, 1698 0x39fb8, 0x3a004, 1699 0x3a200, 0x3a200, 1700 0x3a208, 0x3a240, 1701 0x3a248, 0x3a280, 1702 0x3a288, 0x3a2c0, 1703 0x3a2c8, 0x3a2fc, 1704 0x3a600, 0x3a630, 1705 0x3aa00, 0x3aabc, 1706 0x3ab00, 0x3ab10, 1707 0x3ab20, 0x3ab30, 1708 0x3ab40, 0x3ab50, 1709 0x3ab60, 0x3ab70, 1710 0x3b000, 0x3b028, 1711 0x3b030, 0x3b048, 1712 0x3b060, 0x3b068, 1713 0x3b070, 0x3b09c, 1714 0x3b0f0, 0x3b128, 1715 0x3b130, 0x3b148, 1716 0x3b160, 0x3b168, 1717 0x3b170, 0x3b19c, 1718 0x3b1f0, 0x3b238, 1719 0x3b240, 0x3b240, 1720 0x3b248, 0x3b250, 1721 0x3b25c, 0x3b264, 1722 0x3b270, 0x3b2b8, 1723 0x3b2c0, 0x3b2e4, 1724 0x3b2f8, 0x3b338, 1725 0x3b340, 0x3b340, 1726 0x3b348, 0x3b350, 1727 0x3b35c, 0x3b364, 1728 0x3b370, 0x3b3b8, 1729 0x3b3c0, 0x3b3e4, 1730 0x3b3f8, 0x3b428, 1731 0x3b430, 0x3b448, 1732 0x3b460, 0x3b468, 1733 0x3b470, 0x3b49c, 1734 0x3b4f0, 0x3b528, 1735 0x3b530, 0x3b548, 1736 0x3b560, 0x3b568, 1737 0x3b570, 0x3b59c, 1738 0x3b5f0, 0x3b638, 1739 0x3b640, 0x3b640, 1740 0x3b648, 0x3b650, 1741 0x3b65c, 0x3b664, 1742 0x3b670, 0x3b6b8, 1743 0x3b6c0, 0x3b6e4, 1744 0x3b6f8, 0x3b738, 1745 0x3b740, 0x3b740, 1746 0x3b748, 0x3b750, 1747 0x3b75c, 0x3b764, 1748 0x3b770, 0x3b7b8, 1749 0x3b7c0, 0x3b7e4, 1750 0x3b7f8, 0x3b7fc, 1751 0x3b814, 0x3b814, 1752 0x3b82c, 0x3b82c, 1753 0x3b880, 0x3b88c, 1754 0x3b8e8, 0x3b8ec, 1755 0x3b900, 0x3b928, 1756 0x3b930, 0x3b948, 1757 0x3b960, 0x3b968, 1758 0x3b970, 0x3b99c, 1759 0x3b9f0, 0x3ba38, 1760 0x3ba40, 0x3ba40, 1761 0x3ba48, 0x3ba50, 1762 0x3ba5c, 0x3ba64, 1763 0x3ba70, 0x3bab8, 1764 0x3bac0, 0x3bae4, 1765 0x3baf8, 0x3bb10, 1766 0x3bb28, 0x3bb28, 1767 0x3bb3c, 0x3bb50, 1768 0x3bbf0, 0x3bc10, 1769 0x3bc28, 0x3bc28, 1770 0x3bc3c, 0x3bc50, 1771 0x3bcf0, 0x3bcfc, 1772 0x3c000, 0x3c030, 1773 0x3c100, 0x3c144, 1774 0x3c190, 0x3c1a0, 1775 0x3c1a8, 0x3c1b8, 1776 0x3c1c4, 0x3c1c8, 1777 0x3c1d0, 0x3c1d0, 1778 0x3c200, 0x3c318, 1779 0x3c400, 0x3c4b4, 1780 0x3c4c0, 0x3c52c, 1781 0x3c540, 0x3c61c, 1782 0x3c800, 0x3c828, 1783 0x3c834, 0x3c834, 1784 0x3c8c0, 0x3c908, 1785 0x3c910, 0x3c9ac, 1786 0x3ca00, 0x3ca14, 1787 0x3ca1c, 0x3ca2c, 1788 0x3ca44, 0x3ca50, 1789 0x3ca74, 0x3ca74, 1790 0x3ca7c, 0x3cafc, 1791 0x3cb08, 0x3cc24, 1792 0x3cd00, 0x3cd00, 1793 0x3cd08, 0x3cd14, 1794 0x3cd1c, 0x3cd20, 1795 0x3cd3c, 0x3cd3c, 1796 0x3cd48, 0x3cd50, 1797 0x3d200, 0x3d20c, 1798 0x3d220, 0x3d220, 1799 0x3d240, 0x3d240, 1800 0x3d600, 0x3d60c, 1801 0x3da00, 0x3da1c, 1802 0x3de00, 0x3de20, 1803 0x3de38, 0x3de3c, 1804 0x3de80, 0x3de80, 1805 0x3de88, 0x3dea8, 1806 0x3deb0, 0x3deb4, 1807 0x3dec8, 0x3ded4, 1808 0x3dfb8, 0x3e004, 1809 0x3e200, 0x3e200, 1810 0x3e208, 0x3e240, 1811 0x3e248, 0x3e280, 1812 0x3e288, 0x3e2c0, 1813 0x3e2c8, 0x3e2fc, 1814 0x3e600, 0x3e630, 1815 0x3ea00, 0x3eabc, 1816 0x3eb00, 0x3eb10, 1817 0x3eb20, 0x3eb30, 1818 0x3eb40, 0x3eb50, 1819 0x3eb60, 0x3eb70, 1820 0x3f000, 0x3f028, 1821 0x3f030, 0x3f048, 1822 0x3f060, 0x3f068, 1823 0x3f070, 0x3f09c, 1824 0x3f0f0, 0x3f128, 1825 0x3f130, 0x3f148, 1826 0x3f160, 0x3f168, 1827 0x3f170, 0x3f19c, 1828 0x3f1f0, 0x3f238, 1829 0x3f240, 0x3f240, 1830 0x3f248, 0x3f250, 1831 0x3f25c, 0x3f264, 1832 0x3f270, 0x3f2b8, 1833 0x3f2c0, 0x3f2e4, 1834 0x3f2f8, 0x3f338, 1835 0x3f340, 0x3f340, 1836 0x3f348, 0x3f350, 1837 0x3f35c, 0x3f364, 1838 0x3f370, 0x3f3b8, 1839 0x3f3c0, 0x3f3e4, 1840 0x3f3f8, 0x3f428, 1841 0x3f430, 0x3f448, 1842 0x3f460, 0x3f468, 1843 0x3f470, 0x3f49c, 1844 0x3f4f0, 0x3f528, 1845 0x3f530, 0x3f548, 1846 0x3f560, 0x3f568, 1847 0x3f570, 0x3f59c, 1848 0x3f5f0, 0x3f638, 1849 0x3f640, 0x3f640, 1850 0x3f648, 0x3f650, 1851 0x3f65c, 0x3f664, 1852 0x3f670, 0x3f6b8, 1853 0x3f6c0, 0x3f6e4, 1854 0x3f6f8, 0x3f738, 1855 0x3f740, 0x3f740, 1856 0x3f748, 0x3f750, 1857 0x3f75c, 0x3f764, 1858 0x3f770, 0x3f7b8, 1859 0x3f7c0, 0x3f7e4, 1860 0x3f7f8, 0x3f7fc, 1861 0x3f814, 0x3f814, 1862 0x3f82c, 0x3f82c, 1863 0x3f880, 0x3f88c, 1864 0x3f8e8, 0x3f8ec, 1865 0x3f900, 0x3f928, 1866 0x3f930, 0x3f948, 1867 0x3f960, 0x3f968, 1868 0x3f970, 0x3f99c, 1869 0x3f9f0, 0x3fa38, 1870 0x3fa40, 0x3fa40, 1871 0x3fa48, 0x3fa50, 1872 0x3fa5c, 0x3fa64, 1873 0x3fa70, 0x3fab8, 1874 0x3fac0, 0x3fae4, 1875 0x3faf8, 0x3fb10, 1876 0x3fb28, 0x3fb28, 1877 0x3fb3c, 0x3fb50, 1878 0x3fbf0, 0x3fc10, 1879 0x3fc28, 0x3fc28, 1880 0x3fc3c, 0x3fc50, 1881 0x3fcf0, 0x3fcfc, 1882 0x40000, 0x4000c, 1883 0x40040, 0x40050, 1884 0x40060, 0x40068, 1885 0x4007c, 0x4008c, 1886 0x40094, 0x400b0, 1887 0x400c0, 0x40144, 1888 0x40180, 0x4018c, 1889 0x40200, 0x40254, 1890 0x40260, 0x40264, 1891 0x40270, 0x40288, 1892 0x40290, 0x40298, 1893 0x402ac, 0x402c8, 1894 0x402d0, 0x402e0, 1895 0x402f0, 0x402f0, 1896 0x40300, 0x4033c, 1897 0x403f8, 0x403fc, 1898 0x41304, 0x413c4, 1899 0x41400, 0x4140c, 1900 0x41414, 0x4141c, 1901 0x41480, 0x414d0, 1902 0x44000, 0x44054, 1903 0x4405c, 0x44078, 1904 0x440c0, 0x44174, 1905 0x44180, 0x441ac, 1906 0x441b4, 0x441b8, 1907 0x441c0, 0x44254, 1908 0x4425c, 0x44278, 1909 0x442c0, 0x44374, 1910 0x44380, 0x443ac, 1911 0x443b4, 0x443b8, 1912 0x443c0, 0x44454, 1913 0x4445c, 0x44478, 1914 0x444c0, 0x44574, 1915 0x44580, 0x445ac, 1916 0x445b4, 0x445b8, 1917 0x445c0, 0x44654, 1918 0x4465c, 0x44678, 1919 0x446c0, 0x44774, 1920 0x44780, 0x447ac, 1921 0x447b4, 0x447b8, 1922 0x447c0, 0x44854, 1923 0x4485c, 0x44878, 1924 0x448c0, 0x44974, 1925 0x44980, 0x449ac, 1926 0x449b4, 0x449b8, 1927 0x449c0, 0x449fc, 1928 0x45000, 0x45004, 1929 0x45010, 0x45030, 1930 0x45040, 0x45060, 1931 0x45068, 0x45068, 1932 0x45080, 0x45084, 1933 0x450a0, 0x450b0, 1934 0x45200, 0x45204, 1935 0x45210, 0x45230, 1936 0x45240, 0x45260, 1937 0x45268, 0x45268, 1938 0x45280, 0x45284, 1939 0x452a0, 0x452b0, 1940 0x460c0, 0x460e4, 1941 0x47000, 0x4703c, 1942 0x47044, 0x4708c, 1943 0x47200, 0x47250, 1944 0x47400, 0x47408, 1945 0x47414, 0x47420, 1946 0x47600, 0x47618, 1947 0x47800, 0x47814, 1948 0x48000, 0x4800c, 1949 0x48040, 0x48050, 1950 0x48060, 0x48068, 1951 0x4807c, 0x4808c, 1952 0x48094, 0x480b0, 1953 0x480c0, 0x48144, 1954 0x48180, 0x4818c, 1955 0x48200, 0x48254, 1956 0x48260, 0x48264, 1957 0x48270, 0x48288, 1958 0x48290, 0x48298, 1959 0x482ac, 0x482c8, 1960 0x482d0, 0x482e0, 1961 0x482f0, 0x482f0, 1962 0x48300, 0x4833c, 1963 0x483f8, 0x483fc, 1964 0x49304, 0x493c4, 1965 0x49400, 0x4940c, 1966 0x49414, 0x4941c, 1967 0x49480, 0x494d0, 1968 0x4c000, 0x4c054, 1969 0x4c05c, 0x4c078, 1970 0x4c0c0, 0x4c174, 1971 0x4c180, 0x4c1ac, 1972 0x4c1b4, 0x4c1b8, 1973 0x4c1c0, 0x4c254, 1974 0x4c25c, 0x4c278, 1975 0x4c2c0, 0x4c374, 1976 0x4c380, 0x4c3ac, 1977 0x4c3b4, 0x4c3b8, 1978 0x4c3c0, 0x4c454, 1979 0x4c45c, 0x4c478, 1980 0x4c4c0, 0x4c574, 1981 0x4c580, 0x4c5ac, 1982 0x4c5b4, 0x4c5b8, 1983 0x4c5c0, 0x4c654, 1984 0x4c65c, 0x4c678, 1985 0x4c6c0, 0x4c774, 1986 0x4c780, 0x4c7ac, 1987 0x4c7b4, 0x4c7b8, 1988 0x4c7c0, 0x4c854, 1989 0x4c85c, 0x4c878, 1990 0x4c8c0, 0x4c974, 1991 0x4c980, 0x4c9ac, 1992 0x4c9b4, 0x4c9b8, 1993 0x4c9c0, 0x4c9fc, 1994 0x4d000, 0x4d004, 1995 0x4d010, 0x4d030, 1996 0x4d040, 0x4d060, 1997 0x4d068, 0x4d068, 1998 0x4d080, 0x4d084, 1999 0x4d0a0, 0x4d0b0, 2000 0x4d200, 0x4d204, 2001 0x4d210, 0x4d230, 2002 0x4d240, 0x4d260, 2003 0x4d268, 0x4d268, 2004 0x4d280, 0x4d284, 2005 0x4d2a0, 0x4d2b0, 2006 0x4e0c0, 0x4e0e4, 2007 0x4f000, 0x4f03c, 2008 0x4f044, 0x4f08c, 2009 0x4f200, 0x4f250, 2010 0x4f400, 0x4f408, 2011 0x4f414, 0x4f420, 2012 0x4f600, 0x4f618, 2013 0x4f800, 0x4f814, 2014 0x50000, 0x50084, 2015 0x50090, 0x500cc, 2016 0x50400, 0x50400, 2017 0x50800, 0x50884, 2018 0x50890, 0x508cc, 2019 0x50c00, 0x50c00, 2020 0x51000, 0x5101c, 2021 0x51300, 0x51308, 2022 }; 2023 2024 static const unsigned int t6_reg_ranges[] = { 2025 0x1008, 0x101c, 2026 0x1024, 0x10a8, 2027 0x10b4, 0x10f8, 2028 0x1100, 0x1114, 2029 0x111c, 0x112c, 2030 0x1138, 0x113c, 2031 0x1144, 0x114c, 2032 0x1180, 0x1184, 2033 0x1190, 0x1194, 2034 0x11a0, 0x11a4, 2035 0x11b0, 0x11b4, 2036 0x11fc, 0x1274, 2037 0x1280, 0x133c, 2038 0x1800, 0x18fc, 2039 0x3000, 0x302c, 2040 0x3060, 0x30b0, 2041 0x30b8, 0x30d8, 2042 0x30e0, 0x30fc, 2043 0x3140, 0x357c, 2044 0x35a8, 0x35cc, 2045 0x35ec, 0x35ec, 2046 0x3600, 0x5624, 2047 0x56cc, 0x56ec, 2048 0x56f4, 0x5720, 2049 0x5728, 0x575c, 2050 0x580c, 0x5814, 2051 0x5890, 0x589c, 2052 0x58a4, 0x58ac, 2053 0x58b8, 0x58bc, 2054 0x5940, 0x595c, 2055 0x5980, 0x598c, 2056 0x59b0, 0x59c8, 2057 0x59d0, 0x59dc, 2058 0x59fc, 0x5a18, 2059 0x5a60, 0x5a6c, 2060 0x5a80, 0x5a8c, 2061 0x5a94, 0x5a9c, 2062 0x5b94, 0x5bfc, 2063 0x5c10, 0x5e48, 2064 0x5e50, 0x5e94, 2065 0x5ea0, 0x5eb0, 2066 0x5ec0, 0x5ec0, 2067 0x5ec8, 0x5ed0, 2068 0x5ee0, 0x5ee0, 2069 0x5ef0, 0x5ef0, 2070 0x5f00, 0x5f00, 2071 0x6000, 0x6020, 2072 0x6028, 0x6040, 2073 0x6058, 0x609c, 2074 0x60a8, 0x619c, 2075 0x7700, 0x7798, 2076 0x77c0, 0x7880, 2077 0x78cc, 0x78fc, 2078 0x7b00, 0x7b58, 2079 0x7b60, 0x7b84, 2080 0x7b8c, 0x7c54, 2081 0x7d00, 0x7d38, 2082 0x7d40, 0x7d84, 2083 0x7d8c, 0x7ddc, 2084 0x7de4, 0x7e04, 2085 0x7e10, 0x7e1c, 2086 0x7e24, 0x7e38, 2087 0x7e40, 0x7e44, 2088 0x7e4c, 0x7e78, 2089 0x7e80, 0x7edc, 2090 0x7ee8, 0x7efc, 2091 0x8dc0, 0x8de4, 2092 0x8df8, 0x8e04, 2093 0x8e10, 0x8e84, 2094 0x8ea0, 0x8f88, 2095 0x8fb8, 0x9058, 2096 0x9060, 0x9060, 2097 0x9068, 0x90f8, 2098 0x9100, 0x9124, 2099 0x9400, 0x9470, 2100 0x9600, 0x9600, 2101 0x9608, 0x9638, 2102 0x9640, 0x9704, 2103 0x9710, 0x971c, 2104 0x9800, 0x9808, 2105 0x9820, 0x983c, 2106 0x9850, 0x9864, 2107 0x9c00, 0x9c6c, 2108 0x9c80, 0x9cec, 2109 0x9d00, 0x9d6c, 2110 0x9d80, 0x9dec, 2111 0x9e00, 0x9e6c, 2112 0x9e80, 0x9eec, 2113 0x9f00, 0x9f6c, 2114 0x9f80, 0xa020, 2115 0xd004, 0xd03c, 2116 0xd100, 0xd118, 2117 0xd200, 0xd214, 2118 0xd220, 0xd234, 2119 0xd240, 0xd254, 2120 0xd260, 0xd274, 2121 0xd280, 0xd294, 2122 0xd2a0, 0xd2b4, 2123 0xd2c0, 0xd2d4, 2124 0xd2e0, 0xd2f4, 2125 0xd300, 0xd31c, 2126 0xdfc0, 0xdfe0, 2127 0xe000, 0xf008, 2128 0xf010, 0xf018, 2129 0xf020, 0xf028, 2130 0x11000, 0x11014, 2131 0x11048, 0x1106c, 2132 0x11074, 0x11088, 2133 0x11098, 0x11120, 2134 0x1112c, 0x1117c, 2135 0x11190, 0x112e0, 2136 0x11300, 0x1130c, 2137 0x12000, 0x1206c, 2138 0x19040, 0x1906c, 2139 0x19078, 0x19080, 2140 0x1908c, 0x190e8, 2141 0x190f0, 0x190f8, 2142 0x19100, 0x19110, 2143 0x19120, 0x19124, 2144 0x19150, 0x19194, 2145 0x1919c, 0x191b0, 2146 0x191d0, 0x191e8, 2147 0x19238, 0x19290, 2148 0x192a4, 0x192b0, 2149 0x192bc, 0x192bc, 2150 0x19348, 0x1934c, 2151 0x193f8, 0x19418, 2152 0x19420, 0x19428, 2153 0x19430, 0x19444, 2154 0x1944c, 0x1946c, 2155 0x19474, 0x19474, 2156 0x19490, 0x194cc, 2157 0x194f0, 0x194f8, 2158 0x19c00, 0x19c48, 2159 0x19c50, 0x19c80, 2160 0x19c94, 0x19c98, 2161 0x19ca0, 0x19cbc, 2162 0x19ce4, 0x19ce4, 2163 0x19cf0, 0x19cf8, 2164 0x19d00, 0x19d28, 2165 0x19d50, 0x19d78, 2166 0x19d94, 0x19d98, 2167 0x19da0, 0x19dc8, 2168 0x19df0, 0x19e10, 2169 0x19e50, 0x19e6c, 2170 0x19ea0, 0x19ebc, 2171 0x19ec4, 0x19ef4, 2172 0x19f04, 0x19f2c, 2173 0x19f34, 0x19f34, 2174 0x19f40, 0x19f50, 2175 0x19f90, 0x19fac, 2176 0x19fc4, 0x19fc8, 2177 0x19fd0, 0x19fe4, 2178 0x1a000, 0x1a004, 2179 0x1a010, 0x1a06c, 2180 0x1a0b0, 0x1a0e4, 2181 0x1a0ec, 0x1a0f8, 2182 0x1a100, 0x1a108, 2183 0x1a114, 0x1a120, 2184 0x1a128, 0x1a130, 2185 0x1a138, 0x1a138, 2186 0x1a190, 0x1a1c4, 2187 0x1a1fc, 0x1a1fc, 2188 0x1e008, 0x1e00c, 2189 0x1e040, 0x1e044, 2190 0x1e04c, 0x1e04c, 2191 0x1e284, 0x1e290, 2192 0x1e2c0, 0x1e2c0, 2193 0x1e2e0, 0x1e2e0, 2194 0x1e300, 0x1e384, 2195 0x1e3c0, 0x1e3c8, 2196 0x1e408, 0x1e40c, 2197 0x1e440, 0x1e444, 2198 0x1e44c, 0x1e44c, 2199 0x1e684, 0x1e690, 2200 0x1e6c0, 0x1e6c0, 2201 0x1e6e0, 0x1e6e0, 2202 0x1e700, 0x1e784, 2203 0x1e7c0, 0x1e7c8, 2204 0x1e808, 0x1e80c, 2205 0x1e840, 0x1e844, 2206 0x1e84c, 0x1e84c, 2207 0x1ea84, 0x1ea90, 2208 0x1eac0, 0x1eac0, 2209 0x1eae0, 0x1eae0, 2210 0x1eb00, 0x1eb84, 2211 0x1ebc0, 0x1ebc8, 2212 0x1ec08, 0x1ec0c, 2213 0x1ec40, 0x1ec44, 2214 0x1ec4c, 0x1ec4c, 2215 0x1ee84, 0x1ee90, 2216 0x1eec0, 0x1eec0, 2217 0x1eee0, 0x1eee0, 2218 0x1ef00, 0x1ef84, 2219 0x1efc0, 0x1efc8, 2220 0x1f008, 0x1f00c, 2221 0x1f040, 0x1f044, 2222 0x1f04c, 0x1f04c, 2223 0x1f284, 0x1f290, 2224 0x1f2c0, 0x1f2c0, 2225 0x1f2e0, 0x1f2e0, 2226 0x1f300, 0x1f384, 2227 0x1f3c0, 0x1f3c8, 2228 0x1f408, 0x1f40c, 2229 0x1f440, 0x1f444, 2230 0x1f44c, 0x1f44c, 2231 0x1f684, 0x1f690, 2232 0x1f6c0, 0x1f6c0, 2233 0x1f6e0, 0x1f6e0, 2234 0x1f700, 0x1f784, 2235 0x1f7c0, 0x1f7c8, 2236 0x1f808, 0x1f80c, 2237 0x1f840, 0x1f844, 2238 0x1f84c, 0x1f84c, 2239 0x1fa84, 0x1fa90, 2240 0x1fac0, 0x1fac0, 2241 0x1fae0, 0x1fae0, 2242 0x1fb00, 0x1fb84, 2243 0x1fbc0, 0x1fbc8, 2244 0x1fc08, 0x1fc0c, 2245 0x1fc40, 0x1fc44, 2246 0x1fc4c, 0x1fc4c, 2247 0x1fe84, 0x1fe90, 2248 0x1fec0, 0x1fec0, 2249 0x1fee0, 0x1fee0, 2250 0x1ff00, 0x1ff84, 2251 0x1ffc0, 0x1ffc8, 2252 0x30000, 0x30030, 2253 0x30100, 0x30168, 2254 0x30190, 0x301a0, 2255 0x301a8, 0x301b8, 2256 0x301c4, 0x301c8, 2257 0x301d0, 0x301d0, 2258 0x30200, 0x30320, 2259 0x30400, 0x304b4, 2260 0x304c0, 0x3052c, 2261 0x30540, 0x3061c, 2262 0x30800, 0x308a0, 2263 0x308c0, 0x30908, 2264 0x30910, 0x309b8, 2265 0x30a00, 0x30a04, 2266 0x30a0c, 0x30a14, 2267 0x30a1c, 0x30a2c, 2268 0x30a44, 0x30a50, 2269 0x30a74, 0x30a74, 2270 0x30a7c, 0x30afc, 2271 0x30b08, 0x30c24, 2272 0x30d00, 0x30d14, 2273 0x30d1c, 0x30d3c, 2274 0x30d44, 0x30d4c, 2275 0x30d54, 0x30d74, 2276 0x30d7c, 0x30d7c, 2277 0x30de0, 0x30de0, 2278 0x30e00, 0x30ed4, 2279 0x30f00, 0x30fa4, 2280 0x30fc0, 0x30fc4, 2281 0x31000, 0x31004, 2282 0x31080, 0x310fc, 2283 0x31208, 0x31220, 2284 0x3123c, 0x31254, 2285 0x31300, 0x31300, 2286 0x31308, 0x3131c, 2287 0x31338, 0x3133c, 2288 0x31380, 0x31380, 2289 0x31388, 0x313a8, 2290 0x313b4, 0x313b4, 2291 0x31400, 0x31420, 2292 0x31438, 0x3143c, 2293 0x31480, 0x31480, 2294 0x314a8, 0x314a8, 2295 0x314b0, 0x314b4, 2296 0x314c8, 0x314d4, 2297 0x31a40, 0x31a4c, 2298 0x31af0, 0x31b20, 2299 0x31b38, 0x31b3c, 2300 0x31b80, 0x31b80, 2301 0x31ba8, 0x31ba8, 2302 0x31bb0, 0x31bb4, 2303 0x31bc8, 0x31bd4, 2304 0x32140, 0x3218c, 2305 0x321f0, 0x321f4, 2306 0x32200, 0x32200, 2307 0x32218, 0x32218, 2308 0x32400, 0x32400, 2309 0x32408, 0x3241c, 2310 0x32618, 0x32620, 2311 0x32664, 0x32664, 2312 0x326a8, 0x326a8, 2313 0x326ec, 0x326ec, 2314 0x32a00, 0x32abc, 2315 0x32b00, 0x32b18, 2316 0x32b20, 0x32b38, 2317 0x32b40, 0x32b58, 2318 0x32b60, 0x32b78, 2319 0x32c00, 0x32c00, 2320 0x32c08, 0x32c3c, 2321 0x33000, 0x3302c, 2322 0x33034, 0x33050, 2323 0x33058, 0x33058, 2324 0x33060, 0x3308c, 2325 0x3309c, 0x330ac, 2326 0x330c0, 0x330c0, 2327 0x330c8, 0x330d0, 2328 0x330d8, 0x330e0, 2329 0x330ec, 0x3312c, 2330 0x33134, 0x33150, 2331 0x33158, 0x33158, 2332 0x33160, 0x3318c, 2333 0x3319c, 0x331ac, 2334 0x331c0, 0x331c0, 2335 0x331c8, 0x331d0, 2336 0x331d8, 0x331e0, 2337 0x331ec, 0x33290, 2338 0x33298, 0x332c4, 2339 0x332e4, 0x33390, 2340 0x33398, 0x333c4, 2341 0x333e4, 0x3342c, 2342 0x33434, 0x33450, 2343 0x33458, 0x33458, 2344 0x33460, 0x3348c, 2345 0x3349c, 0x334ac, 2346 0x334c0, 0x334c0, 2347 0x334c8, 0x334d0, 2348 0x334d8, 0x334e0, 2349 0x334ec, 0x3352c, 2350 0x33534, 0x33550, 2351 0x33558, 0x33558, 2352 0x33560, 0x3358c, 2353 0x3359c, 0x335ac, 2354 0x335c0, 0x335c0, 2355 0x335c8, 0x335d0, 2356 0x335d8, 0x335e0, 2357 0x335ec, 0x33690, 2358 0x33698, 0x336c4, 2359 0x336e4, 0x33790, 2360 0x33798, 0x337c4, 2361 0x337e4, 0x337fc, 2362 0x33814, 0x33814, 2363 0x33854, 0x33868, 2364 0x33880, 0x3388c, 2365 0x338c0, 0x338d0, 2366 0x338e8, 0x338ec, 2367 0x33900, 0x3392c, 2368 0x33934, 0x33950, 2369 0x33958, 0x33958, 2370 0x33960, 0x3398c, 2371 0x3399c, 0x339ac, 2372 0x339c0, 0x339c0, 2373 0x339c8, 0x339d0, 2374 0x339d8, 0x339e0, 2375 0x339ec, 0x33a90, 2376 0x33a98, 0x33ac4, 2377 0x33ae4, 0x33b10, 2378 0x33b24, 0x33b28, 2379 0x33b38, 0x33b50, 2380 0x33bf0, 0x33c10, 2381 0x33c24, 0x33c28, 2382 0x33c38, 0x33c50, 2383 0x33cf0, 0x33cfc, 2384 0x34000, 0x34030, 2385 0x34100, 0x34168, 2386 0x34190, 0x341a0, 2387 0x341a8, 0x341b8, 2388 0x341c4, 0x341c8, 2389 0x341d0, 0x341d0, 2390 0x34200, 0x34320, 2391 0x34400, 0x344b4, 2392 0x344c0, 0x3452c, 2393 0x34540, 0x3461c, 2394 0x34800, 0x348a0, 2395 0x348c0, 0x34908, 2396 0x34910, 0x349b8, 2397 0x34a00, 0x34a04, 2398 0x34a0c, 0x34a14, 2399 0x34a1c, 0x34a2c, 2400 0x34a44, 0x34a50, 2401 0x34a74, 0x34a74, 2402 0x34a7c, 0x34afc, 2403 0x34b08, 0x34c24, 2404 0x34d00, 0x34d14, 2405 0x34d1c, 0x34d3c, 2406 0x34d44, 0x34d4c, 2407 0x34d54, 0x34d74, 2408 0x34d7c, 0x34d7c, 2409 0x34de0, 0x34de0, 2410 0x34e00, 0x34ed4, 2411 0x34f00, 0x34fa4, 2412 0x34fc0, 0x34fc4, 2413 0x35000, 0x35004, 2414 0x35080, 0x350fc, 2415 0x35208, 0x35220, 2416 0x3523c, 0x35254, 2417 0x35300, 0x35300, 2418 0x35308, 0x3531c, 2419 0x35338, 0x3533c, 2420 0x35380, 0x35380, 2421 0x35388, 0x353a8, 2422 0x353b4, 0x353b4, 2423 0x35400, 0x35420, 2424 0x35438, 0x3543c, 2425 0x35480, 0x35480, 2426 0x354a8, 0x354a8, 2427 0x354b0, 0x354b4, 2428 0x354c8, 0x354d4, 2429 0x35a40, 0x35a4c, 2430 0x35af0, 0x35b20, 2431 0x35b38, 0x35b3c, 2432 0x35b80, 0x35b80, 2433 0x35ba8, 0x35ba8, 2434 0x35bb0, 0x35bb4, 2435 0x35bc8, 0x35bd4, 2436 0x36140, 0x3618c, 2437 0x361f0, 0x361f4, 2438 0x36200, 0x36200, 2439 0x36218, 0x36218, 2440 0x36400, 0x36400, 2441 0x36408, 0x3641c, 2442 0x36618, 0x36620, 2443 0x36664, 0x36664, 2444 0x366a8, 0x366a8, 2445 0x366ec, 0x366ec, 2446 0x36a00, 0x36abc, 2447 0x36b00, 0x36b18, 2448 0x36b20, 0x36b38, 2449 0x36b40, 0x36b58, 2450 0x36b60, 0x36b78, 2451 0x36c00, 0x36c00, 2452 0x36c08, 0x36c3c, 2453 0x37000, 0x3702c, 2454 0x37034, 0x37050, 2455 0x37058, 0x37058, 2456 0x37060, 0x3708c, 2457 0x3709c, 0x370ac, 2458 0x370c0, 0x370c0, 2459 0x370c8, 0x370d0, 2460 0x370d8, 0x370e0, 2461 0x370ec, 0x3712c, 2462 0x37134, 0x37150, 2463 0x37158, 0x37158, 2464 0x37160, 0x3718c, 2465 0x3719c, 0x371ac, 2466 0x371c0, 0x371c0, 2467 0x371c8, 0x371d0, 2468 0x371d8, 0x371e0, 2469 0x371ec, 0x37290, 2470 0x37298, 0x372c4, 2471 0x372e4, 0x37390, 2472 0x37398, 0x373c4, 2473 0x373e4, 0x3742c, 2474 0x37434, 0x37450, 2475 0x37458, 0x37458, 2476 0x37460, 0x3748c, 2477 0x3749c, 0x374ac, 2478 0x374c0, 0x374c0, 2479 0x374c8, 0x374d0, 2480 0x374d8, 0x374e0, 2481 0x374ec, 0x3752c, 2482 0x37534, 0x37550, 2483 0x37558, 0x37558, 2484 0x37560, 0x3758c, 2485 0x3759c, 0x375ac, 2486 0x375c0, 0x375c0, 2487 0x375c8, 0x375d0, 2488 0x375d8, 0x375e0, 2489 0x375ec, 0x37690, 2490 0x37698, 0x376c4, 2491 0x376e4, 0x37790, 2492 0x37798, 0x377c4, 2493 0x377e4, 0x377fc, 2494 0x37814, 0x37814, 2495 0x37854, 0x37868, 2496 0x37880, 0x3788c, 2497 0x378c0, 0x378d0, 2498 0x378e8, 0x378ec, 2499 0x37900, 0x3792c, 2500 0x37934, 0x37950, 2501 0x37958, 0x37958, 2502 0x37960, 0x3798c, 2503 0x3799c, 0x379ac, 2504 0x379c0, 0x379c0, 2505 0x379c8, 0x379d0, 2506 0x379d8, 0x379e0, 2507 0x379ec, 0x37a90, 2508 0x37a98, 0x37ac4, 2509 0x37ae4, 0x37b10, 2510 0x37b24, 0x37b28, 2511 0x37b38, 0x37b50, 2512 0x37bf0, 0x37c10, 2513 0x37c24, 0x37c28, 2514 0x37c38, 0x37c50, 2515 0x37cf0, 0x37cfc, 2516 0x40040, 0x40040, 2517 0x40080, 0x40084, 2518 0x40100, 0x40100, 2519 0x40140, 0x401bc, 2520 0x40200, 0x40214, 2521 0x40228, 0x40228, 2522 0x40240, 0x40258, 2523 0x40280, 0x40280, 2524 0x40304, 0x40304, 2525 0x40330, 0x4033c, 2526 0x41304, 0x413c8, 2527 0x413d0, 0x413dc, 2528 0x413f0, 0x413f0, 2529 0x41400, 0x4140c, 2530 0x41414, 0x4141c, 2531 0x41480, 0x414d0, 2532 0x44000, 0x4407c, 2533 0x440c0, 0x441ac, 2534 0x441b4, 0x4427c, 2535 0x442c0, 0x443ac, 2536 0x443b4, 0x4447c, 2537 0x444c0, 0x445ac, 2538 0x445b4, 0x4467c, 2539 0x446c0, 0x447ac, 2540 0x447b4, 0x4487c, 2541 0x448c0, 0x449ac, 2542 0x449b4, 0x44a7c, 2543 0x44ac0, 0x44bac, 2544 0x44bb4, 0x44c7c, 2545 0x44cc0, 0x44dac, 2546 0x44db4, 0x44e7c, 2547 0x44ec0, 0x44fac, 2548 0x44fb4, 0x4507c, 2549 0x450c0, 0x451ac, 2550 0x451b4, 0x451fc, 2551 0x45800, 0x45804, 2552 0x45810, 0x45830, 2553 0x45840, 0x45860, 2554 0x45868, 0x45868, 2555 0x45880, 0x45884, 2556 0x458a0, 0x458b0, 2557 0x45a00, 0x45a04, 2558 0x45a10, 0x45a30, 2559 0x45a40, 0x45a60, 2560 0x45a68, 0x45a68, 2561 0x45a80, 0x45a84, 2562 0x45aa0, 0x45ab0, 2563 0x460c0, 0x460e4, 2564 0x47000, 0x4703c, 2565 0x47044, 0x4708c, 2566 0x47200, 0x47250, 2567 0x47400, 0x47408, 2568 0x47414, 0x47420, 2569 0x47600, 0x47618, 2570 0x47800, 0x47814, 2571 0x47820, 0x4782c, 2572 0x50000, 0x50084, 2573 0x50090, 0x500cc, 2574 0x50300, 0x50384, 2575 0x50400, 0x50400, 2576 0x50800, 0x50884, 2577 0x50890, 0x508cc, 2578 0x50b00, 0x50b84, 2579 0x50c00, 0x50c00, 2580 0x51000, 0x51020, 2581 0x51028, 0x510b0, 2582 0x51300, 0x51324, 2583 }; 2584 2585 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2586 const unsigned int *reg_ranges; 2587 int reg_ranges_size, range; 2588 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2589 2590 /* Select the right set of register ranges to dump depending on the 2591 * adapter chip type. 2592 */ 2593 switch (chip_version) { 2594 case CHELSIO_T4: 2595 reg_ranges = t4_reg_ranges; 2596 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2597 break; 2598 2599 case CHELSIO_T5: 2600 reg_ranges = t5_reg_ranges; 2601 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2602 break; 2603 2604 case CHELSIO_T6: 2605 reg_ranges = t6_reg_ranges; 2606 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2607 break; 2608 2609 default: 2610 dev_err(adap->pdev_dev, 2611 "Unsupported chip version %d\n", chip_version); 2612 return; 2613 } 2614 2615 /* Clear the register buffer and insert the appropriate register 2616 * values selected by the above register ranges. 2617 */ 2618 memset(buf, 0, buf_size); 2619 for (range = 0; range < reg_ranges_size; range += 2) { 2620 unsigned int reg = reg_ranges[range]; 2621 unsigned int last_reg = reg_ranges[range + 1]; 2622 u32 *bufp = (u32 *)((char *)buf + reg); 2623 2624 /* Iterate across the register range filling in the register 2625 * buffer but don't write past the end of the register buffer. 2626 */ 2627 while (reg <= last_reg && bufp < buf_end) { 2628 *bufp++ = t4_read_reg(adap, reg); 2629 reg += sizeof(u32); 2630 } 2631 } 2632 } 2633 2634 #define EEPROM_STAT_ADDR 0x7bfc 2635 #define VPD_SIZE 0x800 2636 #define VPD_BASE 0x400 2637 #define VPD_BASE_OLD 0 2638 #define VPD_LEN 1024 2639 #define CHELSIO_VPD_UNIQUE_ID 0x82 2640 2641 /** 2642 * t4_seeprom_wp - enable/disable EEPROM write protection 2643 * @adapter: the adapter 2644 * @enable: whether to enable or disable write protection 2645 * 2646 * Enables or disables write protection on the serial EEPROM. 2647 */ 2648 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2649 { 2650 unsigned int v = enable ? 0xc : 0; 2651 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2652 return ret < 0 ? ret : 0; 2653 } 2654 2655 /** 2656 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2657 * @adapter: adapter to read 2658 * @p: where to store the parameters 2659 * 2660 * Reads card parameters stored in VPD EEPROM. 2661 */ 2662 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2663 { 2664 int i, ret = 0, addr; 2665 int ec, sn, pn, na; 2666 u8 *vpd, csum; 2667 unsigned int vpdr_len, kw_offset, id_len; 2668 2669 vpd = vmalloc(VPD_LEN); 2670 if (!vpd) 2671 return -ENOMEM; 2672 2673 /* We have two VPD data structures stored in the adapter VPD area. 2674 * By default, Linux calculates the size of the VPD area by traversing 2675 * the first VPD area at offset 0x0, so we need to tell the OS what 2676 * our real VPD size is. 2677 */ 2678 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE); 2679 if (ret < 0) 2680 goto out; 2681 2682 /* Card information normally starts at VPD_BASE but early cards had 2683 * it at 0. 2684 */ 2685 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2686 if (ret < 0) 2687 goto out; 2688 2689 /* The VPD shall have a unique identifier specified by the PCI SIG. 2690 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2691 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2692 * is expected to automatically put this entry at the 2693 * beginning of the VPD. 2694 */ 2695 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2696 2697 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2698 if (ret < 0) 2699 goto out; 2700 2701 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2702 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2703 ret = -EINVAL; 2704 goto out; 2705 } 2706 2707 id_len = pci_vpd_lrdt_size(vpd); 2708 if (id_len > ID_LEN) 2709 id_len = ID_LEN; 2710 2711 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2712 if (i < 0) { 2713 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2714 ret = -EINVAL; 2715 goto out; 2716 } 2717 2718 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2719 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2720 if (vpdr_len + kw_offset > VPD_LEN) { 2721 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2722 ret = -EINVAL; 2723 goto out; 2724 } 2725 2726 #define FIND_VPD_KW(var, name) do { \ 2727 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2728 if (var < 0) { \ 2729 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2730 ret = -EINVAL; \ 2731 goto out; \ 2732 } \ 2733 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2734 } while (0) 2735 2736 FIND_VPD_KW(i, "RV"); 2737 for (csum = 0; i >= 0; i--) 2738 csum += vpd[i]; 2739 2740 if (csum) { 2741 dev_err(adapter->pdev_dev, 2742 "corrupted VPD EEPROM, actual csum %u\n", csum); 2743 ret = -EINVAL; 2744 goto out; 2745 } 2746 2747 FIND_VPD_KW(ec, "EC"); 2748 FIND_VPD_KW(sn, "SN"); 2749 FIND_VPD_KW(pn, "PN"); 2750 FIND_VPD_KW(na, "NA"); 2751 #undef FIND_VPD_KW 2752 2753 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2754 strim(p->id); 2755 memcpy(p->ec, vpd + ec, EC_LEN); 2756 strim(p->ec); 2757 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2758 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2759 strim(p->sn); 2760 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2761 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2762 strim(p->pn); 2763 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2764 strim((char *)p->na); 2765 2766 out: 2767 vfree(vpd); 2768 return ret < 0 ? ret : 0; 2769 } 2770 2771 /** 2772 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2773 * @adapter: adapter to read 2774 * @p: where to store the parameters 2775 * 2776 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2777 * Clock. This can only be called after a connection to the firmware 2778 * is established. 2779 */ 2780 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2781 { 2782 u32 cclk_param, cclk_val; 2783 int ret; 2784 2785 /* Grab the raw VPD parameters. 2786 */ 2787 ret = t4_get_raw_vpd_params(adapter, p); 2788 if (ret) 2789 return ret; 2790 2791 /* Ask firmware for the Core Clock since it knows how to translate the 2792 * Reference Clock ('V2') VPD field into a Core Clock value ... 2793 */ 2794 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2795 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2796 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2797 1, &cclk_param, &cclk_val); 2798 2799 if (ret) 2800 return ret; 2801 p->cclk = cclk_val; 2802 2803 return 0; 2804 } 2805 2806 /* serial flash and firmware constants */ 2807 enum { 2808 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2809 2810 /* flash command opcodes */ 2811 SF_PROG_PAGE = 2, /* program page */ 2812 SF_WR_DISABLE = 4, /* disable writes */ 2813 SF_RD_STATUS = 5, /* read status register */ 2814 SF_WR_ENABLE = 6, /* enable writes */ 2815 SF_RD_DATA_FAST = 0xb, /* read flash */ 2816 SF_RD_ID = 0x9f, /* read ID */ 2817 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2818 2819 FW_MAX_SIZE = 16 * SF_SEC_SIZE, 2820 }; 2821 2822 /** 2823 * sf1_read - read data from the serial flash 2824 * @adapter: the adapter 2825 * @byte_cnt: number of bytes to read 2826 * @cont: whether another operation will be chained 2827 * @lock: whether to lock SF for PL access only 2828 * @valp: where to store the read data 2829 * 2830 * Reads up to 4 bytes of data from the serial flash. The location of 2831 * the read needs to be specified prior to calling this by issuing the 2832 * appropriate commands to the serial flash. 2833 */ 2834 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2835 int lock, u32 *valp) 2836 { 2837 int ret; 2838 2839 if (!byte_cnt || byte_cnt > 4) 2840 return -EINVAL; 2841 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2842 return -EBUSY; 2843 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2844 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2845 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2846 if (!ret) 2847 *valp = t4_read_reg(adapter, SF_DATA_A); 2848 return ret; 2849 } 2850 2851 /** 2852 * sf1_write - write data to the serial flash 2853 * @adapter: the adapter 2854 * @byte_cnt: number of bytes to write 2855 * @cont: whether another operation will be chained 2856 * @lock: whether to lock SF for PL access only 2857 * @val: value to write 2858 * 2859 * Writes up to 4 bytes of data to the serial flash. The location of 2860 * the write needs to be specified prior to calling this by issuing the 2861 * appropriate commands to the serial flash. 2862 */ 2863 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2864 int lock, u32 val) 2865 { 2866 if (!byte_cnt || byte_cnt > 4) 2867 return -EINVAL; 2868 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2869 return -EBUSY; 2870 t4_write_reg(adapter, SF_DATA_A, val); 2871 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2872 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2873 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2874 } 2875 2876 /** 2877 * flash_wait_op - wait for a flash operation to complete 2878 * @adapter: the adapter 2879 * @attempts: max number of polls of the status register 2880 * @delay: delay between polls in ms 2881 * 2882 * Wait for a flash operation to complete by polling the status register. 2883 */ 2884 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2885 { 2886 int ret; 2887 u32 status; 2888 2889 while (1) { 2890 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2891 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2892 return ret; 2893 if (!(status & 1)) 2894 return 0; 2895 if (--attempts == 0) 2896 return -EAGAIN; 2897 if (delay) 2898 msleep(delay); 2899 } 2900 } 2901 2902 /** 2903 * t4_read_flash - read words from serial flash 2904 * @adapter: the adapter 2905 * @addr: the start address for the read 2906 * @nwords: how many 32-bit words to read 2907 * @data: where to store the read data 2908 * @byte_oriented: whether to store data as bytes or as words 2909 * 2910 * Read the specified number of 32-bit words from the serial flash. 2911 * If @byte_oriented is set the read data is stored as a byte array 2912 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2913 * natural endianness. 2914 */ 2915 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2916 unsigned int nwords, u32 *data, int byte_oriented) 2917 { 2918 int ret; 2919 2920 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2921 return -EINVAL; 2922 2923 addr = swab32(addr) | SF_RD_DATA_FAST; 2924 2925 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 2926 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 2927 return ret; 2928 2929 for ( ; nwords; nwords--, data++) { 2930 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 2931 if (nwords == 1) 2932 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2933 if (ret) 2934 return ret; 2935 if (byte_oriented) 2936 *data = (__force __u32)(cpu_to_be32(*data)); 2937 } 2938 return 0; 2939 } 2940 2941 /** 2942 * t4_write_flash - write up to a page of data to the serial flash 2943 * @adapter: the adapter 2944 * @addr: the start address to write 2945 * @n: length of data to write in bytes 2946 * @data: the data to write 2947 * 2948 * Writes up to a page of data (256 bytes) to the serial flash starting 2949 * at the given address. All the data must be written to the same page. 2950 */ 2951 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 2952 unsigned int n, const u8 *data) 2953 { 2954 int ret; 2955 u32 buf[64]; 2956 unsigned int i, c, left, val, offset = addr & 0xff; 2957 2958 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 2959 return -EINVAL; 2960 2961 val = swab32(addr) | SF_PROG_PAGE; 2962 2963 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 2964 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 2965 goto unlock; 2966 2967 for (left = n; left; left -= c) { 2968 c = min(left, 4U); 2969 for (val = 0, i = 0; i < c; ++i) 2970 val = (val << 8) + *data++; 2971 2972 ret = sf1_write(adapter, c, c != left, 1, val); 2973 if (ret) 2974 goto unlock; 2975 } 2976 ret = flash_wait_op(adapter, 8, 1); 2977 if (ret) 2978 goto unlock; 2979 2980 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2981 2982 /* Read the page to verify the write succeeded */ 2983 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 2984 if (ret) 2985 return ret; 2986 2987 if (memcmp(data - n, (u8 *)buf + offset, n)) { 2988 dev_err(adapter->pdev_dev, 2989 "failed to correctly write the flash page at %#x\n", 2990 addr); 2991 return -EIO; 2992 } 2993 return 0; 2994 2995 unlock: 2996 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2997 return ret; 2998 } 2999 3000 /** 3001 * t4_get_fw_version - read the firmware version 3002 * @adapter: the adapter 3003 * @vers: where to place the version 3004 * 3005 * Reads the FW version from flash. 3006 */ 3007 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3008 { 3009 return t4_read_flash(adapter, FLASH_FW_START + 3010 offsetof(struct fw_hdr, fw_ver), 1, 3011 vers, 0); 3012 } 3013 3014 /** 3015 * t4_get_bs_version - read the firmware bootstrap version 3016 * @adapter: the adapter 3017 * @vers: where to place the version 3018 * 3019 * Reads the FW Bootstrap version from flash. 3020 */ 3021 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3022 { 3023 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3024 offsetof(struct fw_hdr, fw_ver), 1, 3025 vers, 0); 3026 } 3027 3028 /** 3029 * t4_get_tp_version - read the TP microcode version 3030 * @adapter: the adapter 3031 * @vers: where to place the version 3032 * 3033 * Reads the TP microcode version from flash. 3034 */ 3035 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3036 { 3037 return t4_read_flash(adapter, FLASH_FW_START + 3038 offsetof(struct fw_hdr, tp_microcode_ver), 3039 1, vers, 0); 3040 } 3041 3042 /** 3043 * t4_get_exprom_version - return the Expansion ROM version (if any) 3044 * @adapter: the adapter 3045 * @vers: where to place the version 3046 * 3047 * Reads the Expansion ROM header from FLASH and returns the version 3048 * number (if present) through the @vers return value pointer. We return 3049 * this in the Firmware Version Format since it's convenient. Return 3050 * 0 on success, -ENOENT if no Expansion ROM is present. 3051 */ 3052 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3053 { 3054 struct exprom_header { 3055 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3056 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3057 } *hdr; 3058 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3059 sizeof(u32))]; 3060 int ret; 3061 3062 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3063 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3064 0); 3065 if (ret) 3066 return ret; 3067 3068 hdr = (struct exprom_header *)exprom_header_buf; 3069 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3070 return -ENOENT; 3071 3072 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3073 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3074 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3075 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3076 return 0; 3077 } 3078 3079 /** 3080 * t4_get_vpd_version - return the VPD version 3081 * @adapter: the adapter 3082 * @vers: where to place the version 3083 * 3084 * Reads the VPD via the Firmware interface (thus this can only be called 3085 * once we're ready to issue Firmware commands). The format of the 3086 * VPD version is adapter specific. Returns 0 on success, an error on 3087 * failure. 3088 * 3089 * Note that early versions of the Firmware didn't include the ability 3090 * to retrieve the VPD version, so we zero-out the return-value parameter 3091 * in that case to avoid leaving it with garbage in it. 3092 * 3093 * Also note that the Firmware will return its cached copy of the VPD 3094 * Revision ID, not the actual Revision ID as written in the Serial 3095 * EEPROM. This is only an issue if a new VPD has been written and the 3096 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3097 * to defer calling this routine till after a FW_RESET_CMD has been issued 3098 * if the Host Driver will be performing a full adapter initialization. 3099 */ 3100 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3101 { 3102 u32 vpdrev_param; 3103 int ret; 3104 3105 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3106 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3107 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3108 1, &vpdrev_param, vers); 3109 if (ret) 3110 *vers = 0; 3111 return ret; 3112 } 3113 3114 /** 3115 * t4_get_scfg_version - return the Serial Configuration version 3116 * @adapter: the adapter 3117 * @vers: where to place the version 3118 * 3119 * Reads the Serial Configuration Version via the Firmware interface 3120 * (thus this can only be called once we're ready to issue Firmware 3121 * commands). The format of the Serial Configuration version is 3122 * adapter specific. Returns 0 on success, an error on failure. 3123 * 3124 * Note that early versions of the Firmware didn't include the ability 3125 * to retrieve the Serial Configuration version, so we zero-out the 3126 * return-value parameter in that case to avoid leaving it with 3127 * garbage in it. 3128 * 3129 * Also note that the Firmware will return its cached copy of the Serial 3130 * Initialization Revision ID, not the actual Revision ID as written in 3131 * the Serial EEPROM. This is only an issue if a new VPD has been written 3132 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3133 * it's best to defer calling this routine till after a FW_RESET_CMD has 3134 * been issued if the Host Driver will be performing a full adapter 3135 * initialization. 3136 */ 3137 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3138 { 3139 u32 scfgrev_param; 3140 int ret; 3141 3142 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3143 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3144 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3145 1, &scfgrev_param, vers); 3146 if (ret) 3147 *vers = 0; 3148 return ret; 3149 } 3150 3151 /** 3152 * t4_get_version_info - extract various chip/firmware version information 3153 * @adapter: the adapter 3154 * 3155 * Reads various chip/firmware version numbers and stores them into the 3156 * adapter Adapter Parameters structure. If any of the efforts fails 3157 * the first failure will be returned, but all of the version numbers 3158 * will be read. 3159 */ 3160 int t4_get_version_info(struct adapter *adapter) 3161 { 3162 int ret = 0; 3163 3164 #define FIRST_RET(__getvinfo) \ 3165 do { \ 3166 int __ret = __getvinfo; \ 3167 if (__ret && !ret) \ 3168 ret = __ret; \ 3169 } while (0) 3170 3171 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3172 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3173 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3174 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3175 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3176 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3177 3178 #undef FIRST_RET 3179 return ret; 3180 } 3181 3182 /** 3183 * t4_dump_version_info - dump all of the adapter configuration IDs 3184 * @adapter: the adapter 3185 * 3186 * Dumps all of the various bits of adapter configuration version/revision 3187 * IDs information. This is typically called at some point after 3188 * t4_get_version_info() has been called. 3189 */ 3190 void t4_dump_version_info(struct adapter *adapter) 3191 { 3192 /* Device information */ 3193 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3194 adapter->params.vpd.id, 3195 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3196 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3197 adapter->params.vpd.sn, adapter->params.vpd.pn); 3198 3199 /* Firmware Version */ 3200 if (!adapter->params.fw_vers) 3201 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3202 else 3203 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3204 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3205 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3206 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3207 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3208 3209 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3210 * Firmware, so dev_info() is more appropriate here.) 3211 */ 3212 if (!adapter->params.bs_vers) 3213 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3214 else 3215 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3216 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3217 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3218 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3219 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3220 3221 /* TP Microcode Version */ 3222 if (!adapter->params.tp_vers) 3223 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3224 else 3225 dev_info(adapter->pdev_dev, 3226 "TP Microcode version: %u.%u.%u.%u\n", 3227 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3228 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3229 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3230 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3231 3232 /* Expansion ROM version */ 3233 if (!adapter->params.er_vers) 3234 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3235 else 3236 dev_info(adapter->pdev_dev, 3237 "Expansion ROM version: %u.%u.%u.%u\n", 3238 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3239 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3240 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3241 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3242 3243 /* Serial Configuration version */ 3244 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3245 adapter->params.scfg_vers); 3246 3247 /* VPD Version */ 3248 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3249 adapter->params.vpd_vers); 3250 } 3251 3252 /** 3253 * t4_check_fw_version - check if the FW is supported with this driver 3254 * @adap: the adapter 3255 * 3256 * Checks if an adapter's FW is compatible with the driver. Returns 0 3257 * if there's exact match, a negative error if the version could not be 3258 * read or there's a major version mismatch 3259 */ 3260 int t4_check_fw_version(struct adapter *adap) 3261 { 3262 int i, ret, major, minor, micro; 3263 int exp_major, exp_minor, exp_micro; 3264 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3265 3266 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3267 /* Try multiple times before returning error */ 3268 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3269 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3270 3271 if (ret) 3272 return ret; 3273 3274 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3275 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3276 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3277 3278 switch (chip_version) { 3279 case CHELSIO_T4: 3280 exp_major = T4FW_MIN_VERSION_MAJOR; 3281 exp_minor = T4FW_MIN_VERSION_MINOR; 3282 exp_micro = T4FW_MIN_VERSION_MICRO; 3283 break; 3284 case CHELSIO_T5: 3285 exp_major = T5FW_MIN_VERSION_MAJOR; 3286 exp_minor = T5FW_MIN_VERSION_MINOR; 3287 exp_micro = T5FW_MIN_VERSION_MICRO; 3288 break; 3289 case CHELSIO_T6: 3290 exp_major = T6FW_MIN_VERSION_MAJOR; 3291 exp_minor = T6FW_MIN_VERSION_MINOR; 3292 exp_micro = T6FW_MIN_VERSION_MICRO; 3293 break; 3294 default: 3295 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3296 adap->chip); 3297 return -EINVAL; 3298 } 3299 3300 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3301 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3302 dev_err(adap->pdev_dev, 3303 "Card has firmware version %u.%u.%u, minimum " 3304 "supported firmware is %u.%u.%u.\n", major, minor, 3305 micro, exp_major, exp_minor, exp_micro); 3306 return -EFAULT; 3307 } 3308 return 0; 3309 } 3310 3311 /* Is the given firmware API compatible with the one the driver was compiled 3312 * with? 3313 */ 3314 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3315 { 3316 3317 /* short circuit if it's the exact same firmware version */ 3318 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3319 return 1; 3320 3321 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3322 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3323 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3324 return 1; 3325 #undef SAME_INTF 3326 3327 return 0; 3328 } 3329 3330 /* The firmware in the filesystem is usable, but should it be installed? 3331 * This routine explains itself in detail if it indicates the filesystem 3332 * firmware should be installed. 3333 */ 3334 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3335 int k, int c) 3336 { 3337 const char *reason; 3338 3339 if (!card_fw_usable) { 3340 reason = "incompatible or unusable"; 3341 goto install; 3342 } 3343 3344 if (k > c) { 3345 reason = "older than the version supported with this driver"; 3346 goto install; 3347 } 3348 3349 return 0; 3350 3351 install: 3352 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3353 "installing firmware %u.%u.%u.%u on card.\n", 3354 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3355 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3356 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3357 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3358 3359 return 1; 3360 } 3361 3362 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3363 const u8 *fw_data, unsigned int fw_size, 3364 struct fw_hdr *card_fw, enum dev_state state, 3365 int *reset) 3366 { 3367 int ret, card_fw_usable, fs_fw_usable; 3368 const struct fw_hdr *fs_fw; 3369 const struct fw_hdr *drv_fw; 3370 3371 drv_fw = &fw_info->fw_hdr; 3372 3373 /* Read the header of the firmware on the card */ 3374 ret = -t4_read_flash(adap, FLASH_FW_START, 3375 sizeof(*card_fw) / sizeof(uint32_t), 3376 (uint32_t *)card_fw, 1); 3377 if (ret == 0) { 3378 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3379 } else { 3380 dev_err(adap->pdev_dev, 3381 "Unable to read card's firmware header: %d\n", ret); 3382 card_fw_usable = 0; 3383 } 3384 3385 if (fw_data != NULL) { 3386 fs_fw = (const void *)fw_data; 3387 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3388 } else { 3389 fs_fw = NULL; 3390 fs_fw_usable = 0; 3391 } 3392 3393 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3394 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3395 /* Common case: the firmware on the card is an exact match and 3396 * the filesystem one is an exact match too, or the filesystem 3397 * one is absent/incompatible. 3398 */ 3399 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3400 should_install_fs_fw(adap, card_fw_usable, 3401 be32_to_cpu(fs_fw->fw_ver), 3402 be32_to_cpu(card_fw->fw_ver))) { 3403 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3404 fw_size, 0); 3405 if (ret != 0) { 3406 dev_err(adap->pdev_dev, 3407 "failed to install firmware: %d\n", ret); 3408 goto bye; 3409 } 3410 3411 /* Installed successfully, update the cached header too. */ 3412 *card_fw = *fs_fw; 3413 card_fw_usable = 1; 3414 *reset = 0; /* already reset as part of load_fw */ 3415 } 3416 3417 if (!card_fw_usable) { 3418 uint32_t d, c, k; 3419 3420 d = be32_to_cpu(drv_fw->fw_ver); 3421 c = be32_to_cpu(card_fw->fw_ver); 3422 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3423 3424 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3425 "chip state %d, " 3426 "driver compiled with %d.%d.%d.%d, " 3427 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3428 state, 3429 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3430 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3431 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3432 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3433 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3434 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3435 ret = EINVAL; 3436 goto bye; 3437 } 3438 3439 /* We're using whatever's on the card and it's known to be good. */ 3440 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3441 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3442 3443 bye: 3444 return ret; 3445 } 3446 3447 /** 3448 * t4_flash_erase_sectors - erase a range of flash sectors 3449 * @adapter: the adapter 3450 * @start: the first sector to erase 3451 * @end: the last sector to erase 3452 * 3453 * Erases the sectors in the given inclusive range. 3454 */ 3455 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3456 { 3457 int ret = 0; 3458 3459 if (end >= adapter->params.sf_nsec) 3460 return -EINVAL; 3461 3462 while (start <= end) { 3463 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3464 (ret = sf1_write(adapter, 4, 0, 1, 3465 SF_ERASE_SECTOR | (start << 8))) != 0 || 3466 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3467 dev_err(adapter->pdev_dev, 3468 "erase of flash sector %d failed, error %d\n", 3469 start, ret); 3470 break; 3471 } 3472 start++; 3473 } 3474 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3475 return ret; 3476 } 3477 3478 /** 3479 * t4_flash_cfg_addr - return the address of the flash configuration file 3480 * @adapter: the adapter 3481 * 3482 * Return the address within the flash where the Firmware Configuration 3483 * File is stored. 3484 */ 3485 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3486 { 3487 if (adapter->params.sf_size == 0x100000) 3488 return FLASH_FPGA_CFG_START; 3489 else 3490 return FLASH_CFG_START; 3491 } 3492 3493 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3494 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3495 * and emit an error message for mismatched firmware to save our caller the 3496 * effort ... 3497 */ 3498 static bool t4_fw_matches_chip(const struct adapter *adap, 3499 const struct fw_hdr *hdr) 3500 { 3501 /* The expression below will return FALSE for any unsupported adapter 3502 * which will keep us "honest" in the future ... 3503 */ 3504 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3505 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3506 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3507 return true; 3508 3509 dev_err(adap->pdev_dev, 3510 "FW image (%d) is not suitable for this adapter (%d)\n", 3511 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3512 return false; 3513 } 3514 3515 /** 3516 * t4_load_fw - download firmware 3517 * @adap: the adapter 3518 * @fw_data: the firmware image to write 3519 * @size: image size 3520 * 3521 * Write the supplied firmware image to the card's serial flash. 3522 */ 3523 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3524 { 3525 u32 csum; 3526 int ret, addr; 3527 unsigned int i; 3528 u8 first_page[SF_PAGE_SIZE]; 3529 const __be32 *p = (const __be32 *)fw_data; 3530 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3531 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3532 unsigned int fw_img_start = adap->params.sf_fw_start; 3533 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 3534 3535 if (!size) { 3536 dev_err(adap->pdev_dev, "FW image has no data\n"); 3537 return -EINVAL; 3538 } 3539 if (size & 511) { 3540 dev_err(adap->pdev_dev, 3541 "FW image size not multiple of 512 bytes\n"); 3542 return -EINVAL; 3543 } 3544 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3545 dev_err(adap->pdev_dev, 3546 "FW image size differs from size in FW header\n"); 3547 return -EINVAL; 3548 } 3549 if (size > FW_MAX_SIZE) { 3550 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3551 FW_MAX_SIZE); 3552 return -EFBIG; 3553 } 3554 if (!t4_fw_matches_chip(adap, hdr)) 3555 return -EINVAL; 3556 3557 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3558 csum += be32_to_cpu(p[i]); 3559 3560 if (csum != 0xffffffff) { 3561 dev_err(adap->pdev_dev, 3562 "corrupted firmware image, checksum %#x\n", csum); 3563 return -EINVAL; 3564 } 3565 3566 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3567 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3568 if (ret) 3569 goto out; 3570 3571 /* 3572 * We write the correct version at the end so the driver can see a bad 3573 * version if the FW write fails. Start by writing a copy of the 3574 * first page with a bad version. 3575 */ 3576 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3577 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3578 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 3579 if (ret) 3580 goto out; 3581 3582 addr = fw_img_start; 3583 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3584 addr += SF_PAGE_SIZE; 3585 fw_data += SF_PAGE_SIZE; 3586 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3587 if (ret) 3588 goto out; 3589 } 3590 3591 ret = t4_write_flash(adap, 3592 fw_img_start + offsetof(struct fw_hdr, fw_ver), 3593 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3594 out: 3595 if (ret) 3596 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3597 ret); 3598 else 3599 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3600 return ret; 3601 } 3602 3603 /** 3604 * t4_phy_fw_ver - return current PHY firmware version 3605 * @adap: the adapter 3606 * @phy_fw_ver: return value buffer for PHY firmware version 3607 * 3608 * Returns the current version of external PHY firmware on the 3609 * adapter. 3610 */ 3611 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3612 { 3613 u32 param, val; 3614 int ret; 3615 3616 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3617 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3618 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3619 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3620 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3621 ¶m, &val); 3622 if (ret < 0) 3623 return ret; 3624 *phy_fw_ver = val; 3625 return 0; 3626 } 3627 3628 /** 3629 * t4_load_phy_fw - download port PHY firmware 3630 * @adap: the adapter 3631 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3632 * @win_lock: the lock to use to guard the memory copy 3633 * @phy_fw_version: function to check PHY firmware versions 3634 * @phy_fw_data: the PHY firmware image to write 3635 * @phy_fw_size: image size 3636 * 3637 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3638 * @phy_fw_version is supplied, then it will be used to determine if 3639 * it's necessary to perform the transfer by comparing the version 3640 * of any existing adapter PHY firmware with that of the passed in 3641 * PHY firmware image. If @win_lock is non-NULL then it will be used 3642 * around the call to t4_memory_rw() which transfers the PHY firmware 3643 * to the adapter. 3644 * 3645 * A negative error number will be returned if an error occurs. If 3646 * version number support is available and there's no need to upgrade 3647 * the firmware, 0 will be returned. If firmware is successfully 3648 * transferred to the adapter, 1 will be retured. 3649 * 3650 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3651 * a result, a RESET of the adapter would cause that RAM to lose its 3652 * contents. Thus, loading PHY firmware on such adapters must happen 3653 * after any FW_RESET_CMDs ... 3654 */ 3655 int t4_load_phy_fw(struct adapter *adap, 3656 int win, spinlock_t *win_lock, 3657 int (*phy_fw_version)(const u8 *, size_t), 3658 const u8 *phy_fw_data, size_t phy_fw_size) 3659 { 3660 unsigned long mtype = 0, maddr = 0; 3661 u32 param, val; 3662 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3663 int ret; 3664 3665 /* If we have version number support, then check to see if the adapter 3666 * already has up-to-date PHY firmware loaded. 3667 */ 3668 if (phy_fw_version) { 3669 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3670 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3671 if (ret < 0) 3672 return ret; 3673 3674 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3675 CH_WARN(adap, "PHY Firmware already up-to-date, " 3676 "version %#x\n", cur_phy_fw_ver); 3677 return 0; 3678 } 3679 } 3680 3681 /* Ask the firmware where it wants us to copy the PHY firmware image. 3682 * The size of the file requires a special version of the READ coommand 3683 * which will pass the file size via the values field in PARAMS_CMD and 3684 * retrieve the return value from firmware and place it in the same 3685 * buffer values 3686 */ 3687 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3688 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3689 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3690 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3691 val = phy_fw_size; 3692 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3693 ¶m, &val, 1, true); 3694 if (ret < 0) 3695 return ret; 3696 mtype = val >> 8; 3697 maddr = (val & 0xff) << 16; 3698 3699 /* Copy the supplied PHY Firmware image to the adapter memory location 3700 * allocated by the adapter firmware. 3701 */ 3702 if (win_lock) 3703 spin_lock_bh(win_lock); 3704 ret = t4_memory_rw(adap, win, mtype, maddr, 3705 phy_fw_size, (__be32 *)phy_fw_data, 3706 T4_MEMORY_WRITE); 3707 if (win_lock) 3708 spin_unlock_bh(win_lock); 3709 if (ret) 3710 return ret; 3711 3712 /* Tell the firmware that the PHY firmware image has been written to 3713 * RAM and it can now start copying it over to the PHYs. The chip 3714 * firmware will RESET the affected PHYs as part of this operation 3715 * leaving them running the new PHY firmware image. 3716 */ 3717 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3718 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3719 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3720 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3721 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3722 ¶m, &val, 30000); 3723 3724 /* If we have version number support, then check to see that the new 3725 * firmware got loaded properly. 3726 */ 3727 if (phy_fw_version) { 3728 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3729 if (ret < 0) 3730 return ret; 3731 3732 if (cur_phy_fw_ver != new_phy_fw_vers) { 3733 CH_WARN(adap, "PHY Firmware did not update: " 3734 "version on adapter %#x, " 3735 "version flashed %#x\n", 3736 cur_phy_fw_ver, new_phy_fw_vers); 3737 return -ENXIO; 3738 } 3739 } 3740 3741 return 1; 3742 } 3743 3744 /** 3745 * t4_fwcache - firmware cache operation 3746 * @adap: the adapter 3747 * @op : the operation (flush or flush and invalidate) 3748 */ 3749 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3750 { 3751 struct fw_params_cmd c; 3752 3753 memset(&c, 0, sizeof(c)); 3754 c.op_to_vfn = 3755 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3756 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3757 FW_PARAMS_CMD_PFN_V(adap->pf) | 3758 FW_PARAMS_CMD_VFN_V(0)); 3759 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3760 c.param[0].mnem = 3761 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3762 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3763 c.param[0].val = (__force __be32)op; 3764 3765 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3766 } 3767 3768 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3769 unsigned int *pif_req_wrptr, 3770 unsigned int *pif_rsp_wrptr) 3771 { 3772 int i, j; 3773 u32 cfg, val, req, rsp; 3774 3775 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3776 if (cfg & LADBGEN_F) 3777 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3778 3779 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3780 req = POLADBGWRPTR_G(val); 3781 rsp = PILADBGWRPTR_G(val); 3782 if (pif_req_wrptr) 3783 *pif_req_wrptr = req; 3784 if (pif_rsp_wrptr) 3785 *pif_rsp_wrptr = rsp; 3786 3787 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3788 for (j = 0; j < 6; j++) { 3789 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3790 PILADBGRDPTR_V(rsp)); 3791 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3792 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3793 req++; 3794 rsp++; 3795 } 3796 req = (req + 2) & POLADBGRDPTR_M; 3797 rsp = (rsp + 2) & PILADBGRDPTR_M; 3798 } 3799 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3800 } 3801 3802 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3803 { 3804 u32 cfg; 3805 int i, j, idx; 3806 3807 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3808 if (cfg & LADBGEN_F) 3809 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3810 3811 for (i = 0; i < CIM_MALA_SIZE; i++) { 3812 for (j = 0; j < 5; j++) { 3813 idx = 8 * i + j; 3814 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3815 PILADBGRDPTR_V(idx)); 3816 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3817 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3818 } 3819 } 3820 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3821 } 3822 3823 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3824 { 3825 unsigned int i, j; 3826 3827 for (i = 0; i < 8; i++) { 3828 u32 *p = la_buf + i; 3829 3830 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3831 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3832 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3833 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3834 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3835 } 3836 } 3837 3838 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3839 FW_PORT_CAP32_ANEG) 3840 3841 /** 3842 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3843 * @caps16: a 16-bit Port Capabilities value 3844 * 3845 * Returns the equivalent 32-bit Port Capabilities value. 3846 */ 3847 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3848 { 3849 fw_port_cap32_t caps32 = 0; 3850 3851 #define CAP16_TO_CAP32(__cap) \ 3852 do { \ 3853 if (caps16 & FW_PORT_CAP_##__cap) \ 3854 caps32 |= FW_PORT_CAP32_##__cap; \ 3855 } while (0) 3856 3857 CAP16_TO_CAP32(SPEED_100M); 3858 CAP16_TO_CAP32(SPEED_1G); 3859 CAP16_TO_CAP32(SPEED_25G); 3860 CAP16_TO_CAP32(SPEED_10G); 3861 CAP16_TO_CAP32(SPEED_40G); 3862 CAP16_TO_CAP32(SPEED_100G); 3863 CAP16_TO_CAP32(FC_RX); 3864 CAP16_TO_CAP32(FC_TX); 3865 CAP16_TO_CAP32(ANEG); 3866 CAP16_TO_CAP32(MDIX); 3867 CAP16_TO_CAP32(MDIAUTO); 3868 CAP16_TO_CAP32(FEC_RS); 3869 CAP16_TO_CAP32(FEC_BASER_RS); 3870 CAP16_TO_CAP32(802_3_PAUSE); 3871 CAP16_TO_CAP32(802_3_ASM_DIR); 3872 3873 #undef CAP16_TO_CAP32 3874 3875 return caps32; 3876 } 3877 3878 /** 3879 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3880 * @caps32: a 32-bit Port Capabilities value 3881 * 3882 * Returns the equivalent 16-bit Port Capabilities value. Note that 3883 * not all 32-bit Port Capabilities can be represented in the 16-bit 3884 * Port Capabilities and some fields/values may not make it. 3885 */ 3886 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 3887 { 3888 fw_port_cap16_t caps16 = 0; 3889 3890 #define CAP32_TO_CAP16(__cap) \ 3891 do { \ 3892 if (caps32 & FW_PORT_CAP32_##__cap) \ 3893 caps16 |= FW_PORT_CAP_##__cap; \ 3894 } while (0) 3895 3896 CAP32_TO_CAP16(SPEED_100M); 3897 CAP32_TO_CAP16(SPEED_1G); 3898 CAP32_TO_CAP16(SPEED_10G); 3899 CAP32_TO_CAP16(SPEED_25G); 3900 CAP32_TO_CAP16(SPEED_40G); 3901 CAP32_TO_CAP16(SPEED_100G); 3902 CAP32_TO_CAP16(FC_RX); 3903 CAP32_TO_CAP16(FC_TX); 3904 CAP32_TO_CAP16(802_3_PAUSE); 3905 CAP32_TO_CAP16(802_3_ASM_DIR); 3906 CAP32_TO_CAP16(ANEG); 3907 CAP32_TO_CAP16(MDIX); 3908 CAP32_TO_CAP16(MDIAUTO); 3909 CAP32_TO_CAP16(FEC_RS); 3910 CAP32_TO_CAP16(FEC_BASER_RS); 3911 3912 #undef CAP32_TO_CAP16 3913 3914 return caps16; 3915 } 3916 3917 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 3918 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 3919 { 3920 enum cc_pause cc_pause = 0; 3921 3922 if (fw_pause & FW_PORT_CAP32_FC_RX) 3923 cc_pause |= PAUSE_RX; 3924 if (fw_pause & FW_PORT_CAP32_FC_TX) 3925 cc_pause |= PAUSE_TX; 3926 3927 return cc_pause; 3928 } 3929 3930 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 3931 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 3932 { 3933 fw_port_cap32_t fw_pause = 0; 3934 3935 if (cc_pause & PAUSE_RX) 3936 fw_pause |= FW_PORT_CAP32_FC_RX; 3937 if (cc_pause & PAUSE_TX) 3938 fw_pause |= FW_PORT_CAP32_FC_TX; 3939 3940 return fw_pause; 3941 } 3942 3943 /* Translate Firmware Forward Error Correction specification to Common Code */ 3944 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 3945 { 3946 enum cc_fec cc_fec = 0; 3947 3948 if (fw_fec & FW_PORT_CAP32_FEC_RS) 3949 cc_fec |= FEC_RS; 3950 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 3951 cc_fec |= FEC_BASER_RS; 3952 3953 return cc_fec; 3954 } 3955 3956 /* Translate Common Code Forward Error Correction specification to Firmware */ 3957 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 3958 { 3959 fw_port_cap32_t fw_fec = 0; 3960 3961 if (cc_fec & FEC_RS) 3962 fw_fec |= FW_PORT_CAP32_FEC_RS; 3963 if (cc_fec & FEC_BASER_RS) 3964 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 3965 3966 return fw_fec; 3967 } 3968 3969 /** 3970 * t4_link_l1cfg - apply link configuration to MAC/PHY 3971 * @adapter: the adapter 3972 * @mbox: the Firmware Mailbox to use 3973 * @port: the Port ID 3974 * @lc: the Port's Link Configuration 3975 * 3976 * Set up a port's MAC and PHY according to a desired link configuration. 3977 * - If the PHY can auto-negotiate first decide what to advertise, then 3978 * enable/disable auto-negotiation as desired, and reset. 3979 * - If the PHY does not auto-negotiate just reset it. 3980 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3981 * otherwise do it later based on the outcome of auto-negotiation. 3982 */ 3983 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox, 3984 unsigned int port, struct link_config *lc) 3985 { 3986 unsigned int fw_caps = adapter->params.fw_caps_support; 3987 struct fw_port_cmd cmd; 3988 unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO); 3989 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 3990 3991 lc->link_ok = 0; 3992 3993 /* Convert driver coding of Pause Frame Flow Control settings into the 3994 * Firmware's API. 3995 */ 3996 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 3997 3998 /* Convert Common Code Forward Error Control settings into the 3999 * Firmware's API. If the current Requested FEC has "Automatic" 4000 * (IEEE 802.3) specified, then we use whatever the Firmware 4001 * sent us as part of it's IEEE 802.3-based interpratation of 4002 * the Transceiver Module EPROM FEC parameters. Otherwise we 4003 * use whatever is in the current Requested FEC settings. 4004 */ 4005 if (lc->requested_fec & FEC_AUTO) 4006 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4007 else 4008 cc_fec = lc->requested_fec; 4009 fw_fec = cc_to_fwcap_fec(cc_fec); 4010 4011 /* Figure out what our Requested Port Capabilities are going to be. 4012 */ 4013 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4014 rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec; 4015 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4016 lc->fec = cc_fec; 4017 } else if (lc->autoneg == AUTONEG_DISABLE) { 4018 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4019 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4020 lc->fec = cc_fec; 4021 } else { 4022 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4023 } 4024 4025 /* And send that on to the Firmware ... 4026 */ 4027 memset(&cmd, 0, sizeof(cmd)); 4028 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4029 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4030 FW_PORT_CMD_PORTID_V(port)); 4031 cmd.action_to_len16 = 4032 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4033 ? FW_PORT_ACTION_L1_CFG 4034 : FW_PORT_ACTION_L1_CFG32) | 4035 FW_LEN16(cmd)); 4036 if (fw_caps == FW_CAPS16) 4037 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4038 else 4039 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4040 return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4041 } 4042 4043 /** 4044 * t4_restart_aneg - restart autonegotiation 4045 * @adap: the adapter 4046 * @mbox: mbox to use for the FW command 4047 * @port: the port id 4048 * 4049 * Restarts autonegotiation for the selected port. 4050 */ 4051 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4052 { 4053 struct fw_port_cmd c; 4054 4055 memset(&c, 0, sizeof(c)); 4056 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4057 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4058 FW_PORT_CMD_PORTID_V(port)); 4059 c.action_to_len16 = 4060 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 4061 FW_LEN16(c)); 4062 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG); 4063 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4064 } 4065 4066 typedef void (*int_handler_t)(struct adapter *adap); 4067 4068 struct intr_info { 4069 unsigned int mask; /* bits to check in interrupt status */ 4070 const char *msg; /* message to print or NULL */ 4071 short stat_idx; /* stat counter to increment or -1 */ 4072 unsigned short fatal; /* whether the condition reported is fatal */ 4073 int_handler_t int_handler; /* platform-specific int handler */ 4074 }; 4075 4076 /** 4077 * t4_handle_intr_status - table driven interrupt handler 4078 * @adapter: the adapter that generated the interrupt 4079 * @reg: the interrupt status register to process 4080 * @acts: table of interrupt actions 4081 * 4082 * A table driven interrupt handler that applies a set of masks to an 4083 * interrupt status word and performs the corresponding actions if the 4084 * interrupts described by the mask have occurred. The actions include 4085 * optionally emitting a warning or alert message. The table is terminated 4086 * by an entry specifying mask 0. Returns the number of fatal interrupt 4087 * conditions. 4088 */ 4089 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4090 const struct intr_info *acts) 4091 { 4092 int fatal = 0; 4093 unsigned int mask = 0; 4094 unsigned int status = t4_read_reg(adapter, reg); 4095 4096 for ( ; acts->mask; ++acts) { 4097 if (!(status & acts->mask)) 4098 continue; 4099 if (acts->fatal) { 4100 fatal++; 4101 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4102 status & acts->mask); 4103 } else if (acts->msg && printk_ratelimit()) 4104 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4105 status & acts->mask); 4106 if (acts->int_handler) 4107 acts->int_handler(adapter); 4108 mask |= acts->mask; 4109 } 4110 status &= mask; 4111 if (status) /* clear processed interrupts */ 4112 t4_write_reg(adapter, reg, status); 4113 return fatal; 4114 } 4115 4116 /* 4117 * Interrupt handler for the PCIE module. 4118 */ 4119 static void pcie_intr_handler(struct adapter *adapter) 4120 { 4121 static const struct intr_info sysbus_intr_info[] = { 4122 { RNPP_F, "RXNP array parity error", -1, 1 }, 4123 { RPCP_F, "RXPC array parity error", -1, 1 }, 4124 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4125 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4126 { RFTP_F, "RXFT array parity error", -1, 1 }, 4127 { 0 } 4128 }; 4129 static const struct intr_info pcie_port_intr_info[] = { 4130 { TPCP_F, "TXPC array parity error", -1, 1 }, 4131 { TNPP_F, "TXNP array parity error", -1, 1 }, 4132 { TFTP_F, "TXFT array parity error", -1, 1 }, 4133 { TCAP_F, "TXCA array parity error", -1, 1 }, 4134 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4135 { RCAP_F, "RXCA array parity error", -1, 1 }, 4136 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4137 { RDPE_F, "Rx data parity error", -1, 1 }, 4138 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4139 { 0 } 4140 }; 4141 static const struct intr_info pcie_intr_info[] = { 4142 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4143 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4144 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4145 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4146 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4147 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4148 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4149 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4150 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4151 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4152 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4153 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4154 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4155 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4156 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4157 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4158 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4159 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4160 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4161 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4162 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4163 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4164 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4165 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4166 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4167 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4168 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4169 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4170 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4171 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4172 -1, 0 }, 4173 { 0 } 4174 }; 4175 4176 static struct intr_info t5_pcie_intr_info[] = { 4177 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4178 -1, 1 }, 4179 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4180 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4181 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4182 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4183 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4184 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4185 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4186 -1, 1 }, 4187 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4188 -1, 1 }, 4189 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4190 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4191 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4192 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4193 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4194 -1, 1 }, 4195 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4196 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4197 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4198 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4199 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4200 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4201 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4202 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4203 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4204 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4205 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4206 -1, 1 }, 4207 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4208 -1, 1 }, 4209 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4210 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4211 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4212 { READRSPERR_F, "Outbound read error", -1, 0 }, 4213 { 0 } 4214 }; 4215 4216 int fat; 4217 4218 if (is_t4(adapter->params.chip)) 4219 fat = t4_handle_intr_status(adapter, 4220 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4221 sysbus_intr_info) + 4222 t4_handle_intr_status(adapter, 4223 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4224 pcie_port_intr_info) + 4225 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4226 pcie_intr_info); 4227 else 4228 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4229 t5_pcie_intr_info); 4230 4231 if (fat) 4232 t4_fatal_err(adapter); 4233 } 4234 4235 /* 4236 * TP interrupt handler. 4237 */ 4238 static void tp_intr_handler(struct adapter *adapter) 4239 { 4240 static const struct intr_info tp_intr_info[] = { 4241 { 0x3fffffff, "TP parity error", -1, 1 }, 4242 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4243 { 0 } 4244 }; 4245 4246 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4247 t4_fatal_err(adapter); 4248 } 4249 4250 /* 4251 * SGE interrupt handler. 4252 */ 4253 static void sge_intr_handler(struct adapter *adapter) 4254 { 4255 u64 v; 4256 u32 err; 4257 4258 static const struct intr_info sge_intr_info[] = { 4259 { ERR_CPL_EXCEED_IQE_SIZE_F, 4260 "SGE received CPL exceeding IQE size", -1, 1 }, 4261 { ERR_INVALID_CIDX_INC_F, 4262 "SGE GTS CIDX increment too large", -1, 0 }, 4263 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4264 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4265 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4266 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4267 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4268 0 }, 4269 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4270 0 }, 4271 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4272 0 }, 4273 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4274 0 }, 4275 { ERR_ING_CTXT_PRIO_F, 4276 "SGE too many priority ingress contexts", -1, 0 }, 4277 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4278 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4279 { 0 } 4280 }; 4281 4282 static struct intr_info t4t5_sge_intr_info[] = { 4283 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4284 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4285 { ERR_EGR_CTXT_PRIO_F, 4286 "SGE too many priority egress contexts", -1, 0 }, 4287 { 0 } 4288 }; 4289 4290 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4291 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4292 if (v) { 4293 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4294 (unsigned long long)v); 4295 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4296 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4297 } 4298 4299 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4300 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4301 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4302 t4t5_sge_intr_info); 4303 4304 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4305 if (err & ERROR_QID_VALID_F) { 4306 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4307 ERROR_QID_G(err)); 4308 if (err & UNCAPTURED_ERROR_F) 4309 dev_err(adapter->pdev_dev, 4310 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4311 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4312 UNCAPTURED_ERROR_F); 4313 } 4314 4315 if (v != 0) 4316 t4_fatal_err(adapter); 4317 } 4318 4319 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4320 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4321 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4322 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4323 4324 /* 4325 * CIM interrupt handler. 4326 */ 4327 static void cim_intr_handler(struct adapter *adapter) 4328 { 4329 static const struct intr_info cim_intr_info[] = { 4330 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4331 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4332 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4333 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4334 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4335 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4336 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4337 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4338 { 0 } 4339 }; 4340 static const struct intr_info cim_upintr_info[] = { 4341 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4342 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4343 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4344 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4345 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4346 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4347 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4348 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4349 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4350 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4351 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4352 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4353 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4354 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4355 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4356 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4357 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4358 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4359 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4360 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4361 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4362 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4363 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4364 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4365 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4366 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4367 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4368 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4369 { 0 } 4370 }; 4371 4372 u32 val, fw_err; 4373 int fat; 4374 4375 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4376 if (fw_err & PCIE_FW_ERR_F) 4377 t4_report_fw_error(adapter); 4378 4379 /* When the Firmware detects an internal error which normally 4380 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4381 * in order to make sure the Host sees the Firmware Crash. So 4382 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4383 * ignore the Timer0 interrupt. 4384 */ 4385 4386 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4387 if (val & TIMER0INT_F) 4388 if (!(fw_err & PCIE_FW_ERR_F) || 4389 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4390 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4391 TIMER0INT_F); 4392 4393 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4394 cim_intr_info) + 4395 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4396 cim_upintr_info); 4397 if (fat) 4398 t4_fatal_err(adapter); 4399 } 4400 4401 /* 4402 * ULP RX interrupt handler. 4403 */ 4404 static void ulprx_intr_handler(struct adapter *adapter) 4405 { 4406 static const struct intr_info ulprx_intr_info[] = { 4407 { 0x1800000, "ULPRX context error", -1, 1 }, 4408 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4409 { 0 } 4410 }; 4411 4412 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4413 t4_fatal_err(adapter); 4414 } 4415 4416 /* 4417 * ULP TX interrupt handler. 4418 */ 4419 static void ulptx_intr_handler(struct adapter *adapter) 4420 { 4421 static const struct intr_info ulptx_intr_info[] = { 4422 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4423 0 }, 4424 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4425 0 }, 4426 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4427 0 }, 4428 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4429 0 }, 4430 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4431 { 0 } 4432 }; 4433 4434 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4435 t4_fatal_err(adapter); 4436 } 4437 4438 /* 4439 * PM TX interrupt handler. 4440 */ 4441 static void pmtx_intr_handler(struct adapter *adapter) 4442 { 4443 static const struct intr_info pmtx_intr_info[] = { 4444 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4445 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4446 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4447 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4448 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4449 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4450 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4451 -1, 1 }, 4452 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4453 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4454 { 0 } 4455 }; 4456 4457 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4458 t4_fatal_err(adapter); 4459 } 4460 4461 /* 4462 * PM RX interrupt handler. 4463 */ 4464 static void pmrx_intr_handler(struct adapter *adapter) 4465 { 4466 static const struct intr_info pmrx_intr_info[] = { 4467 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4468 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4469 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4470 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4471 -1, 1 }, 4472 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4473 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4474 { 0 } 4475 }; 4476 4477 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4478 t4_fatal_err(adapter); 4479 } 4480 4481 /* 4482 * CPL switch interrupt handler. 4483 */ 4484 static void cplsw_intr_handler(struct adapter *adapter) 4485 { 4486 static const struct intr_info cplsw_intr_info[] = { 4487 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4488 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4489 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4490 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4491 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4492 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4493 { 0 } 4494 }; 4495 4496 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4497 t4_fatal_err(adapter); 4498 } 4499 4500 /* 4501 * LE interrupt handler. 4502 */ 4503 static void le_intr_handler(struct adapter *adap) 4504 { 4505 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4506 static const struct intr_info le_intr_info[] = { 4507 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4508 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4509 { PARITYERR_F, "LE parity error", -1, 1 }, 4510 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4511 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4512 { 0 } 4513 }; 4514 4515 static struct intr_info t6_le_intr_info[] = { 4516 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4517 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4518 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4519 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4520 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4521 { 0 } 4522 }; 4523 4524 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4525 (chip <= CHELSIO_T5) ? 4526 le_intr_info : t6_le_intr_info)) 4527 t4_fatal_err(adap); 4528 } 4529 4530 /* 4531 * MPS interrupt handler. 4532 */ 4533 static void mps_intr_handler(struct adapter *adapter) 4534 { 4535 static const struct intr_info mps_rx_intr_info[] = { 4536 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4537 { 0 } 4538 }; 4539 static const struct intr_info mps_tx_intr_info[] = { 4540 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4541 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4542 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4543 -1, 1 }, 4544 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4545 -1, 1 }, 4546 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4547 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4548 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4549 { 0 } 4550 }; 4551 static const struct intr_info t6_mps_tx_intr_info[] = { 4552 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4553 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4554 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4555 -1, 1 }, 4556 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4557 -1, 1 }, 4558 /* MPS Tx Bubble is normal for T6 */ 4559 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4560 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4561 { 0 } 4562 }; 4563 static const struct intr_info mps_trc_intr_info[] = { 4564 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4565 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4566 -1, 1 }, 4567 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4568 { 0 } 4569 }; 4570 static const struct intr_info mps_stat_sram_intr_info[] = { 4571 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4572 { 0 } 4573 }; 4574 static const struct intr_info mps_stat_tx_intr_info[] = { 4575 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4576 { 0 } 4577 }; 4578 static const struct intr_info mps_stat_rx_intr_info[] = { 4579 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4580 { 0 } 4581 }; 4582 static const struct intr_info mps_cls_intr_info[] = { 4583 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4584 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4585 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4586 { 0 } 4587 }; 4588 4589 int fat; 4590 4591 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4592 mps_rx_intr_info) + 4593 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4594 is_t6(adapter->params.chip) 4595 ? t6_mps_tx_intr_info 4596 : mps_tx_intr_info) + 4597 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4598 mps_trc_intr_info) + 4599 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4600 mps_stat_sram_intr_info) + 4601 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4602 mps_stat_tx_intr_info) + 4603 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4604 mps_stat_rx_intr_info) + 4605 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4606 mps_cls_intr_info); 4607 4608 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4609 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4610 if (fat) 4611 t4_fatal_err(adapter); 4612 } 4613 4614 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4615 ECC_UE_INT_CAUSE_F) 4616 4617 /* 4618 * EDC/MC interrupt handler. 4619 */ 4620 static void mem_intr_handler(struct adapter *adapter, int idx) 4621 { 4622 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4623 4624 unsigned int addr, cnt_addr, v; 4625 4626 if (idx <= MEM_EDC1) { 4627 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4628 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4629 } else if (idx == MEM_MC) { 4630 if (is_t4(adapter->params.chip)) { 4631 addr = MC_INT_CAUSE_A; 4632 cnt_addr = MC_ECC_STATUS_A; 4633 } else { 4634 addr = MC_P_INT_CAUSE_A; 4635 cnt_addr = MC_P_ECC_STATUS_A; 4636 } 4637 } else { 4638 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4639 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4640 } 4641 4642 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4643 if (v & PERR_INT_CAUSE_F) 4644 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4645 name[idx]); 4646 if (v & ECC_CE_INT_CAUSE_F) { 4647 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4648 4649 t4_edc_err_read(adapter, idx); 4650 4651 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4652 if (printk_ratelimit()) 4653 dev_warn(adapter->pdev_dev, 4654 "%u %s correctable ECC data error%s\n", 4655 cnt, name[idx], cnt > 1 ? "s" : ""); 4656 } 4657 if (v & ECC_UE_INT_CAUSE_F) 4658 dev_alert(adapter->pdev_dev, 4659 "%s uncorrectable ECC data error\n", name[idx]); 4660 4661 t4_write_reg(adapter, addr, v); 4662 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4663 t4_fatal_err(adapter); 4664 } 4665 4666 /* 4667 * MA interrupt handler. 4668 */ 4669 static void ma_intr_handler(struct adapter *adap) 4670 { 4671 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4672 4673 if (status & MEM_PERR_INT_CAUSE_F) { 4674 dev_alert(adap->pdev_dev, 4675 "MA parity error, parity status %#x\n", 4676 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4677 if (is_t5(adap->params.chip)) 4678 dev_alert(adap->pdev_dev, 4679 "MA parity error, parity status %#x\n", 4680 t4_read_reg(adap, 4681 MA_PARITY_ERROR_STATUS2_A)); 4682 } 4683 if (status & MEM_WRAP_INT_CAUSE_F) { 4684 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4685 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4686 "client %u to address %#x\n", 4687 MEM_WRAP_CLIENT_NUM_G(v), 4688 MEM_WRAP_ADDRESS_G(v) << 4); 4689 } 4690 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4691 t4_fatal_err(adap); 4692 } 4693 4694 /* 4695 * SMB interrupt handler. 4696 */ 4697 static void smb_intr_handler(struct adapter *adap) 4698 { 4699 static const struct intr_info smb_intr_info[] = { 4700 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4701 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4702 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4703 { 0 } 4704 }; 4705 4706 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4707 t4_fatal_err(adap); 4708 } 4709 4710 /* 4711 * NC-SI interrupt handler. 4712 */ 4713 static void ncsi_intr_handler(struct adapter *adap) 4714 { 4715 static const struct intr_info ncsi_intr_info[] = { 4716 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4717 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4718 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4719 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4720 { 0 } 4721 }; 4722 4723 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4724 t4_fatal_err(adap); 4725 } 4726 4727 /* 4728 * XGMAC interrupt handler. 4729 */ 4730 static void xgmac_intr_handler(struct adapter *adap, int port) 4731 { 4732 u32 v, int_cause_reg; 4733 4734 if (is_t4(adap->params.chip)) 4735 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4736 else 4737 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4738 4739 v = t4_read_reg(adap, int_cause_reg); 4740 4741 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4742 if (!v) 4743 return; 4744 4745 if (v & TXFIFO_PRTY_ERR_F) 4746 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4747 port); 4748 if (v & RXFIFO_PRTY_ERR_F) 4749 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4750 port); 4751 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4752 t4_fatal_err(adap); 4753 } 4754 4755 /* 4756 * PL interrupt handler. 4757 */ 4758 static void pl_intr_handler(struct adapter *adap) 4759 { 4760 static const struct intr_info pl_intr_info[] = { 4761 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4762 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4763 { 0 } 4764 }; 4765 4766 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4767 t4_fatal_err(adap); 4768 } 4769 4770 #define PF_INTR_MASK (PFSW_F) 4771 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4772 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4773 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4774 4775 /** 4776 * t4_slow_intr_handler - control path interrupt handler 4777 * @adapter: the adapter 4778 * 4779 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4780 * The designation 'slow' is because it involves register reads, while 4781 * data interrupts typically don't involve any MMIOs. 4782 */ 4783 int t4_slow_intr_handler(struct adapter *adapter) 4784 { 4785 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4786 4787 if (!(cause & GLBL_INTR_MASK)) 4788 return 0; 4789 if (cause & CIM_F) 4790 cim_intr_handler(adapter); 4791 if (cause & MPS_F) 4792 mps_intr_handler(adapter); 4793 if (cause & NCSI_F) 4794 ncsi_intr_handler(adapter); 4795 if (cause & PL_F) 4796 pl_intr_handler(adapter); 4797 if (cause & SMB_F) 4798 smb_intr_handler(adapter); 4799 if (cause & XGMAC0_F) 4800 xgmac_intr_handler(adapter, 0); 4801 if (cause & XGMAC1_F) 4802 xgmac_intr_handler(adapter, 1); 4803 if (cause & XGMAC_KR0_F) 4804 xgmac_intr_handler(adapter, 2); 4805 if (cause & XGMAC_KR1_F) 4806 xgmac_intr_handler(adapter, 3); 4807 if (cause & PCIE_F) 4808 pcie_intr_handler(adapter); 4809 if (cause & MC_F) 4810 mem_intr_handler(adapter, MEM_MC); 4811 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4812 mem_intr_handler(adapter, MEM_MC1); 4813 if (cause & EDC0_F) 4814 mem_intr_handler(adapter, MEM_EDC0); 4815 if (cause & EDC1_F) 4816 mem_intr_handler(adapter, MEM_EDC1); 4817 if (cause & LE_F) 4818 le_intr_handler(adapter); 4819 if (cause & TP_F) 4820 tp_intr_handler(adapter); 4821 if (cause & MA_F) 4822 ma_intr_handler(adapter); 4823 if (cause & PM_TX_F) 4824 pmtx_intr_handler(adapter); 4825 if (cause & PM_RX_F) 4826 pmrx_intr_handler(adapter); 4827 if (cause & ULP_RX_F) 4828 ulprx_intr_handler(adapter); 4829 if (cause & CPL_SWITCH_F) 4830 cplsw_intr_handler(adapter); 4831 if (cause & SGE_F) 4832 sge_intr_handler(adapter); 4833 if (cause & ULP_TX_F) 4834 ulptx_intr_handler(adapter); 4835 4836 /* Clear the interrupts just processed for which we are the master. */ 4837 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4838 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4839 return 1; 4840 } 4841 4842 /** 4843 * t4_intr_enable - enable interrupts 4844 * @adapter: the adapter whose interrupts should be enabled 4845 * 4846 * Enable PF-specific interrupts for the calling function and the top-level 4847 * interrupt concentrator for global interrupts. Interrupts are already 4848 * enabled at each module, here we just enable the roots of the interrupt 4849 * hierarchies. 4850 * 4851 * Note: this function should be called only when the driver manages 4852 * non PF-specific interrupts from the various HW modules. Only one PCI 4853 * function at a time should be doing this. 4854 */ 4855 void t4_intr_enable(struct adapter *adapter) 4856 { 4857 u32 val = 0; 4858 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4859 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4860 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4861 4862 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4863 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4864 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4865 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4866 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4867 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4868 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4869 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4870 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4871 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4872 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4873 } 4874 4875 /** 4876 * t4_intr_disable - disable interrupts 4877 * @adapter: the adapter whose interrupts should be disabled 4878 * 4879 * Disable interrupts. We only disable the top-level interrupt 4880 * concentrators. The caller must be a PCI function managing global 4881 * interrupts. 4882 */ 4883 void t4_intr_disable(struct adapter *adapter) 4884 { 4885 u32 whoami, pf; 4886 4887 if (pci_channel_offline(adapter->pdev)) 4888 return; 4889 4890 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4891 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4892 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4893 4894 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4895 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4896 } 4897 4898 /** 4899 * t4_config_rss_range - configure a portion of the RSS mapping table 4900 * @adapter: the adapter 4901 * @mbox: mbox to use for the FW command 4902 * @viid: virtual interface whose RSS subtable is to be written 4903 * @start: start entry in the table to write 4904 * @n: how many table entries to write 4905 * @rspq: values for the response queue lookup table 4906 * @nrspq: number of values in @rspq 4907 * 4908 * Programs the selected part of the VI's RSS mapping table with the 4909 * provided values. If @nrspq < @n the supplied values are used repeatedly 4910 * until the full table range is populated. 4911 * 4912 * The caller must ensure the values in @rspq are in the range allowed for 4913 * @viid. 4914 */ 4915 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 4916 int start, int n, const u16 *rspq, unsigned int nrspq) 4917 { 4918 int ret; 4919 const u16 *rsp = rspq; 4920 const u16 *rsp_end = rspq + nrspq; 4921 struct fw_rss_ind_tbl_cmd cmd; 4922 4923 memset(&cmd, 0, sizeof(cmd)); 4924 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 4925 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4926 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 4927 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 4928 4929 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 4930 while (n > 0) { 4931 int nq = min(n, 32); 4932 __be32 *qp = &cmd.iq0_to_iq2; 4933 4934 cmd.niqid = cpu_to_be16(nq); 4935 cmd.startidx = cpu_to_be16(start); 4936 4937 start += nq; 4938 n -= nq; 4939 4940 while (nq > 0) { 4941 unsigned int v; 4942 4943 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 4944 if (++rsp >= rsp_end) 4945 rsp = rspq; 4946 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 4947 if (++rsp >= rsp_end) 4948 rsp = rspq; 4949 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 4950 if (++rsp >= rsp_end) 4951 rsp = rspq; 4952 4953 *qp++ = cpu_to_be32(v); 4954 nq -= 3; 4955 } 4956 4957 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4958 if (ret) 4959 return ret; 4960 } 4961 return 0; 4962 } 4963 4964 /** 4965 * t4_config_glbl_rss - configure the global RSS mode 4966 * @adapter: the adapter 4967 * @mbox: mbox to use for the FW command 4968 * @mode: global RSS mode 4969 * @flags: mode-specific flags 4970 * 4971 * Sets the global RSS mode. 4972 */ 4973 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 4974 unsigned int flags) 4975 { 4976 struct fw_rss_glb_config_cmd c; 4977 4978 memset(&c, 0, sizeof(c)); 4979 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 4980 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4981 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4982 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 4983 c.u.manual.mode_pkd = 4984 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4985 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 4986 c.u.basicvirtual.mode_pkd = 4987 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4988 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 4989 } else 4990 return -EINVAL; 4991 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4992 } 4993 4994 /** 4995 * t4_config_vi_rss - configure per VI RSS settings 4996 * @adapter: the adapter 4997 * @mbox: mbox to use for the FW command 4998 * @viid: the VI id 4999 * @flags: RSS flags 5000 * @defq: id of the default RSS queue for the VI. 5001 * 5002 * Configures VI-specific RSS properties. 5003 */ 5004 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5005 unsigned int flags, unsigned int defq) 5006 { 5007 struct fw_rss_vi_config_cmd c; 5008 5009 memset(&c, 0, sizeof(c)); 5010 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5011 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5012 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5013 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5014 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5015 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5016 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5017 } 5018 5019 /* Read an RSS table row */ 5020 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5021 { 5022 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5023 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5024 5, 0, val); 5025 } 5026 5027 /** 5028 * t4_read_rss - read the contents of the RSS mapping table 5029 * @adapter: the adapter 5030 * @map: holds the contents of the RSS mapping table 5031 * 5032 * Reads the contents of the RSS hash->queue mapping table. 5033 */ 5034 int t4_read_rss(struct adapter *adapter, u16 *map) 5035 { 5036 u32 val; 5037 int i, ret; 5038 5039 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 5040 ret = rd_rss_row(adapter, i, &val); 5041 if (ret) 5042 return ret; 5043 *map++ = LKPTBLQUEUE0_G(val); 5044 *map++ = LKPTBLQUEUE1_G(val); 5045 } 5046 return 0; 5047 } 5048 5049 static unsigned int t4_use_ldst(struct adapter *adap) 5050 { 5051 return (adap->flags & FW_OK) || !adap->use_bd; 5052 } 5053 5054 /** 5055 * t4_fw_tp_pio_rw - Access TP PIO through LDST 5056 * @adap: the adapter 5057 * @vals: where the indirect register values are stored/written 5058 * @nregs: how many indirect registers to read/write 5059 * @start_idx: index of first indirect register to read/write 5060 * @rw: Read (1) or Write (0) 5061 * 5062 * Access TP PIO registers through LDST 5063 */ 5064 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs, 5065 unsigned int start_index, unsigned int rw) 5066 { 5067 int ret, i; 5068 int cmd = FW_LDST_ADDRSPC_TP_PIO; 5069 struct fw_ldst_cmd c; 5070 5071 for (i = 0 ; i < nregs; i++) { 5072 memset(&c, 0, sizeof(c)); 5073 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5074 FW_CMD_REQUEST_F | 5075 (rw ? FW_CMD_READ_F : 5076 FW_CMD_WRITE_F) | 5077 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5078 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5079 5080 c.u.addrval.addr = cpu_to_be32(start_index + i); 5081 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5082 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 5083 if (!ret && rw) 5084 vals[i] = be32_to_cpu(c.u.addrval.val); 5085 } 5086 } 5087 5088 /** 5089 * t4_read_rss_key - read the global RSS key 5090 * @adap: the adapter 5091 * @key: 10-entry array holding the 320-bit RSS key 5092 * 5093 * Reads the global 320-bit RSS key. 5094 */ 5095 void t4_read_rss_key(struct adapter *adap, u32 *key) 5096 { 5097 if (t4_use_ldst(adap)) 5098 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1); 5099 else 5100 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 5101 TP_RSS_SECRET_KEY0_A); 5102 } 5103 5104 /** 5105 * t4_write_rss_key - program one of the RSS keys 5106 * @adap: the adapter 5107 * @key: 10-entry array holding the 320-bit RSS key 5108 * @idx: which RSS key to write 5109 * 5110 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5111 * 0..15 the corresponding entry in the RSS key table is written, 5112 * otherwise the global RSS key is written. 5113 */ 5114 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx) 5115 { 5116 u8 rss_key_addr_cnt = 16; 5117 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5118 5119 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5120 * allows access to key addresses 16-63 by using KeyWrAddrX 5121 * as index[5:4](upper 2) into key table 5122 */ 5123 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5124 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5125 rss_key_addr_cnt = 32; 5126 5127 if (t4_use_ldst(adap)) 5128 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0); 5129 else 5130 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 5131 TP_RSS_SECRET_KEY0_A); 5132 5133 if (idx >= 0 && idx < rss_key_addr_cnt) { 5134 if (rss_key_addr_cnt > 16) 5135 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5136 KEYWRADDRX_V(idx >> 4) | 5137 T6_VFWRADDR_V(idx) | KEYWREN_F); 5138 else 5139 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5140 KEYWRADDR_V(idx) | KEYWREN_F); 5141 } 5142 } 5143 5144 /** 5145 * t4_read_rss_pf_config - read PF RSS Configuration Table 5146 * @adapter: the adapter 5147 * @index: the entry in the PF RSS table to read 5148 * @valp: where to store the returned value 5149 * 5150 * Reads the PF RSS Configuration Table at the specified index and returns 5151 * the value found there. 5152 */ 5153 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5154 u32 *valp) 5155 { 5156 if (t4_use_ldst(adapter)) 5157 t4_fw_tp_pio_rw(adapter, valp, 1, 5158 TP_RSS_PF0_CONFIG_A + index, 1); 5159 else 5160 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 5161 valp, 1, TP_RSS_PF0_CONFIG_A + index); 5162 } 5163 5164 /** 5165 * t4_read_rss_vf_config - read VF RSS Configuration Table 5166 * @adapter: the adapter 5167 * @index: the entry in the VF RSS table to read 5168 * @vfl: where to store the returned VFL 5169 * @vfh: where to store the returned VFH 5170 * 5171 * Reads the VF RSS Configuration Table at the specified index and returns 5172 * the (VFL, VFH) values found there. 5173 */ 5174 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5175 u32 *vfl, u32 *vfh) 5176 { 5177 u32 vrt, mask, data; 5178 5179 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5180 mask = VFWRADDR_V(VFWRADDR_M); 5181 data = VFWRADDR_V(index); 5182 } else { 5183 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5184 data = T6_VFWRADDR_V(index); 5185 } 5186 5187 /* Request that the index'th VF Table values be read into VFL/VFH. 5188 */ 5189 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5190 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5191 vrt |= data | VFRDEN_F; 5192 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5193 5194 /* Grab the VFL/VFH values ... 5195 */ 5196 if (t4_use_ldst(adapter)) { 5197 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1); 5198 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1); 5199 } else { 5200 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 5201 vfl, 1, TP_RSS_VFL_CONFIG_A); 5202 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 5203 vfh, 1, TP_RSS_VFH_CONFIG_A); 5204 } 5205 } 5206 5207 /** 5208 * t4_read_rss_pf_map - read PF RSS Map 5209 * @adapter: the adapter 5210 * 5211 * Reads the PF RSS Map register and returns its value. 5212 */ 5213 u32 t4_read_rss_pf_map(struct adapter *adapter) 5214 { 5215 u32 pfmap; 5216 5217 if (t4_use_ldst(adapter)) 5218 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1); 5219 else 5220 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 5221 &pfmap, 1, TP_RSS_PF_MAP_A); 5222 return pfmap; 5223 } 5224 5225 /** 5226 * t4_read_rss_pf_mask - read PF RSS Mask 5227 * @adapter: the adapter 5228 * 5229 * Reads the PF RSS Mask register and returns its value. 5230 */ 5231 u32 t4_read_rss_pf_mask(struct adapter *adapter) 5232 { 5233 u32 pfmask; 5234 5235 if (t4_use_ldst(adapter)) 5236 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1); 5237 else 5238 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 5239 &pfmask, 1, TP_RSS_PF_MSK_A); 5240 return pfmask; 5241 } 5242 5243 /** 5244 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5245 * @adap: the adapter 5246 * @v4: holds the TCP/IP counter values 5247 * @v6: holds the TCP/IPv6 counter values 5248 * 5249 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5250 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5251 */ 5252 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5253 struct tp_tcp_stats *v6) 5254 { 5255 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5256 5257 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5258 #define STAT(x) val[STAT_IDX(x)] 5259 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5260 5261 if (v4) { 5262 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 5263 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A); 5264 v4->tcp_out_rsts = STAT(OUT_RST); 5265 v4->tcp_in_segs = STAT64(IN_SEG); 5266 v4->tcp_out_segs = STAT64(OUT_SEG); 5267 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5268 } 5269 if (v6) { 5270 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 5271 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A); 5272 v6->tcp_out_rsts = STAT(OUT_RST); 5273 v6->tcp_in_segs = STAT64(IN_SEG); 5274 v6->tcp_out_segs = STAT64(OUT_SEG); 5275 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5276 } 5277 #undef STAT64 5278 #undef STAT 5279 #undef STAT_IDX 5280 } 5281 5282 /** 5283 * t4_tp_get_err_stats - read TP's error MIB counters 5284 * @adap: the adapter 5285 * @st: holds the counter values 5286 * 5287 * Returns the values of TP's error counters. 5288 */ 5289 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st) 5290 { 5291 int nchan = adap->params.arch.nchan; 5292 5293 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 5294 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A); 5295 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 5296 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A); 5297 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 5298 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A); 5299 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 5300 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A); 5301 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 5302 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A); 5303 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 5304 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A); 5305 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 5306 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A); 5307 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 5308 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A); 5309 5310 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 5311 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A); 5312 } 5313 5314 /** 5315 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5316 * @adap: the adapter 5317 * @st: holds the counter values 5318 * 5319 * Returns the values of TP's CPL counters. 5320 */ 5321 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st) 5322 { 5323 int nchan = adap->params.arch.nchan; 5324 5325 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req, 5326 nchan, TP_MIB_CPL_IN_REQ_0_A); 5327 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp, 5328 nchan, TP_MIB_CPL_OUT_RSP_0_A); 5329 5330 } 5331 5332 /** 5333 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5334 * @adap: the adapter 5335 * @st: holds the counter values 5336 * 5337 * Returns the values of TP's RDMA counters. 5338 */ 5339 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st) 5340 { 5341 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt, 5342 2, TP_MIB_RQE_DFR_PKT_A); 5343 } 5344 5345 /** 5346 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5347 * @adap: the adapter 5348 * @idx: the port index 5349 * @st: holds the counter values 5350 * 5351 * Returns the values of TP's FCoE counters for the selected port. 5352 */ 5353 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5354 struct tp_fcoe_stats *st) 5355 { 5356 u32 val[2]; 5357 5358 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp, 5359 1, TP_MIB_FCOE_DDP_0_A + idx); 5360 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop, 5361 1, TP_MIB_FCOE_DROP_0_A + idx); 5362 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 5363 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx); 5364 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5365 } 5366 5367 /** 5368 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5369 * @adap: the adapter 5370 * @st: holds the counter values 5371 * 5372 * Returns the values of TP's counters for non-TCP directly-placed packets. 5373 */ 5374 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st) 5375 { 5376 u32 val[4]; 5377 5378 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4, 5379 TP_MIB_USM_PKTS_A); 5380 st->frames = val[0]; 5381 st->drops = val[1]; 5382 st->octets = ((u64)val[2] << 32) | val[3]; 5383 } 5384 5385 /** 5386 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5387 * @adap: the adapter 5388 * @mtus: where to store the MTU values 5389 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5390 * 5391 * Reads the HW path MTU table. 5392 */ 5393 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5394 { 5395 u32 v; 5396 int i; 5397 5398 for (i = 0; i < NMTUS; ++i) { 5399 t4_write_reg(adap, TP_MTU_TABLE_A, 5400 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5401 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5402 mtus[i] = MTUVALUE_G(v); 5403 if (mtu_log) 5404 mtu_log[i] = MTUWIDTH_G(v); 5405 } 5406 } 5407 5408 /** 5409 * t4_read_cong_tbl - reads the congestion control table 5410 * @adap: the adapter 5411 * @incr: where to store the alpha values 5412 * 5413 * Reads the additive increments programmed into the HW congestion 5414 * control table. 5415 */ 5416 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5417 { 5418 unsigned int mtu, w; 5419 5420 for (mtu = 0; mtu < NMTUS; ++mtu) 5421 for (w = 0; w < NCCTRL_WIN; ++w) { 5422 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5423 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5424 incr[mtu][w] = (u16)t4_read_reg(adap, 5425 TP_CCTRL_TABLE_A) & 0x1fff; 5426 } 5427 } 5428 5429 /** 5430 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5431 * @adap: the adapter 5432 * @addr: the indirect TP register address 5433 * @mask: specifies the field within the register to modify 5434 * @val: new value for the field 5435 * 5436 * Sets a field of an indirect TP register to the given value. 5437 */ 5438 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5439 unsigned int mask, unsigned int val) 5440 { 5441 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5442 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5443 t4_write_reg(adap, TP_PIO_DATA_A, val); 5444 } 5445 5446 /** 5447 * init_cong_ctrl - initialize congestion control parameters 5448 * @a: the alpha values for congestion control 5449 * @b: the beta values for congestion control 5450 * 5451 * Initialize the congestion control parameters. 5452 */ 5453 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5454 { 5455 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5456 a[9] = 2; 5457 a[10] = 3; 5458 a[11] = 4; 5459 a[12] = 5; 5460 a[13] = 6; 5461 a[14] = 7; 5462 a[15] = 8; 5463 a[16] = 9; 5464 a[17] = 10; 5465 a[18] = 14; 5466 a[19] = 17; 5467 a[20] = 21; 5468 a[21] = 25; 5469 a[22] = 30; 5470 a[23] = 35; 5471 a[24] = 45; 5472 a[25] = 60; 5473 a[26] = 80; 5474 a[27] = 100; 5475 a[28] = 200; 5476 a[29] = 300; 5477 a[30] = 400; 5478 a[31] = 500; 5479 5480 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5481 b[9] = b[10] = 1; 5482 b[11] = b[12] = 2; 5483 b[13] = b[14] = b[15] = b[16] = 3; 5484 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5485 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5486 b[28] = b[29] = 6; 5487 b[30] = b[31] = 7; 5488 } 5489 5490 /* The minimum additive increment value for the congestion control table */ 5491 #define CC_MIN_INCR 2U 5492 5493 /** 5494 * t4_load_mtus - write the MTU and congestion control HW tables 5495 * @adap: the adapter 5496 * @mtus: the values for the MTU table 5497 * @alpha: the values for the congestion control alpha parameter 5498 * @beta: the values for the congestion control beta parameter 5499 * 5500 * Write the HW MTU table with the supplied MTUs and the high-speed 5501 * congestion control table with the supplied alpha, beta, and MTUs. 5502 * We write the two tables together because the additive increments 5503 * depend on the MTUs. 5504 */ 5505 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5506 const unsigned short *alpha, const unsigned short *beta) 5507 { 5508 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5509 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5510 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5511 28672, 40960, 57344, 81920, 114688, 163840, 229376 5512 }; 5513 5514 unsigned int i, w; 5515 5516 for (i = 0; i < NMTUS; ++i) { 5517 unsigned int mtu = mtus[i]; 5518 unsigned int log2 = fls(mtu); 5519 5520 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5521 log2--; 5522 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5523 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5524 5525 for (w = 0; w < NCCTRL_WIN; ++w) { 5526 unsigned int inc; 5527 5528 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5529 CC_MIN_INCR); 5530 5531 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5532 (w << 16) | (beta[w] << 13) | inc); 5533 } 5534 } 5535 } 5536 5537 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5538 * clocks. The formula is 5539 * 5540 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5541 * 5542 * which is equivalent to 5543 * 5544 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5545 */ 5546 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5547 { 5548 u64 v = bytes256 * adap->params.vpd.cclk; 5549 5550 return v * 62 + v / 2; 5551 } 5552 5553 /** 5554 * t4_get_chan_txrate - get the current per channel Tx rates 5555 * @adap: the adapter 5556 * @nic_rate: rates for NIC traffic 5557 * @ofld_rate: rates for offloaded traffic 5558 * 5559 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5560 * for each channel. 5561 */ 5562 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5563 { 5564 u32 v; 5565 5566 v = t4_read_reg(adap, TP_TX_TRATE_A); 5567 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5568 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5569 if (adap->params.arch.nchan == NCHAN) { 5570 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5571 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5572 } 5573 5574 v = t4_read_reg(adap, TP_TX_ORATE_A); 5575 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5576 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5577 if (adap->params.arch.nchan == NCHAN) { 5578 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5579 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5580 } 5581 } 5582 5583 /** 5584 * t4_set_trace_filter - configure one of the tracing filters 5585 * @adap: the adapter 5586 * @tp: the desired trace filter parameters 5587 * @idx: which filter to configure 5588 * @enable: whether to enable or disable the filter 5589 * 5590 * Configures one of the tracing filters available in HW. If @enable is 5591 * %0 @tp is not examined and may be %NULL. The user is responsible to 5592 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5593 */ 5594 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5595 int idx, int enable) 5596 { 5597 int i, ofst = idx * 4; 5598 u32 data_reg, mask_reg, cfg; 5599 u32 multitrc = TRCMULTIFILTER_F; 5600 5601 if (!enable) { 5602 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5603 return 0; 5604 } 5605 5606 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5607 if (cfg & TRCMULTIFILTER_F) { 5608 /* If multiple tracers are enabled, then maximum 5609 * capture size is 2.5KB (FIFO size of a single channel) 5610 * minus 2 flits for CPL_TRACE_PKT header. 5611 */ 5612 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5613 return -EINVAL; 5614 } else { 5615 /* If multiple tracers are disabled, to avoid deadlocks 5616 * maximum packet capture size of 9600 bytes is recommended. 5617 * Also in this mode, only trace0 can be enabled and running. 5618 */ 5619 multitrc = 0; 5620 if (tp->snap_len > 9600 || idx) 5621 return -EINVAL; 5622 } 5623 5624 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5625 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5626 tp->min_len > TFMINPKTSIZE_M) 5627 return -EINVAL; 5628 5629 /* stop the tracer we'll be changing */ 5630 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5631 5632 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5633 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5634 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5635 5636 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5637 t4_write_reg(adap, data_reg, tp->data[i]); 5638 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5639 } 5640 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5641 TFCAPTUREMAX_V(tp->snap_len) | 5642 TFMINPKTSIZE_V(tp->min_len)); 5643 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5644 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5645 (is_t4(adap->params.chip) ? 5646 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5647 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5648 T5_TFINVERTMATCH_V(tp->invert))); 5649 5650 return 0; 5651 } 5652 5653 /** 5654 * t4_get_trace_filter - query one of the tracing filters 5655 * @adap: the adapter 5656 * @tp: the current trace filter parameters 5657 * @idx: which trace filter to query 5658 * @enabled: non-zero if the filter is enabled 5659 * 5660 * Returns the current settings of one of the HW tracing filters. 5661 */ 5662 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5663 int *enabled) 5664 { 5665 u32 ctla, ctlb; 5666 int i, ofst = idx * 4; 5667 u32 data_reg, mask_reg; 5668 5669 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5670 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5671 5672 if (is_t4(adap->params.chip)) { 5673 *enabled = !!(ctla & TFEN_F); 5674 tp->port = TFPORT_G(ctla); 5675 tp->invert = !!(ctla & TFINVERTMATCH_F); 5676 } else { 5677 *enabled = !!(ctla & T5_TFEN_F); 5678 tp->port = T5_TFPORT_G(ctla); 5679 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5680 } 5681 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5682 tp->min_len = TFMINPKTSIZE_G(ctlb); 5683 tp->skip_ofst = TFOFFSET_G(ctla); 5684 tp->skip_len = TFLENGTH_G(ctla); 5685 5686 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5687 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5688 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5689 5690 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5691 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5692 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5693 } 5694 } 5695 5696 /** 5697 * t4_pmtx_get_stats - returns the HW stats from PMTX 5698 * @adap: the adapter 5699 * @cnt: where to store the count statistics 5700 * @cycles: where to store the cycle statistics 5701 * 5702 * Returns performance statistics from PMTX. 5703 */ 5704 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5705 { 5706 int i; 5707 u32 data[2]; 5708 5709 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5710 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5711 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5712 if (is_t4(adap->params.chip)) { 5713 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5714 } else { 5715 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5716 PM_TX_DBG_DATA_A, data, 2, 5717 PM_TX_DBG_STAT_MSB_A); 5718 cycles[i] = (((u64)data[0] << 32) | data[1]); 5719 } 5720 } 5721 } 5722 5723 /** 5724 * t4_pmrx_get_stats - returns the HW stats from PMRX 5725 * @adap: the adapter 5726 * @cnt: where to store the count statistics 5727 * @cycles: where to store the cycle statistics 5728 * 5729 * Returns performance statistics from PMRX. 5730 */ 5731 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5732 { 5733 int i; 5734 u32 data[2]; 5735 5736 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5737 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5738 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5739 if (is_t4(adap->params.chip)) { 5740 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5741 } else { 5742 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5743 PM_RX_DBG_DATA_A, data, 2, 5744 PM_RX_DBG_STAT_MSB_A); 5745 cycles[i] = (((u64)data[0] << 32) | data[1]); 5746 } 5747 } 5748 } 5749 5750 /** 5751 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 5752 * @adap: the adapter 5753 * @pidx: the port index 5754 * 5755 * Computes and returns a bitmap indicating which MPS buffer groups are 5756 * associated with the given Port. Bit i is set if buffer group i is 5757 * used by the Port. 5758 */ 5759 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 5760 int pidx) 5761 { 5762 unsigned int chip_version, nports; 5763 5764 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5765 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5766 5767 switch (chip_version) { 5768 case CHELSIO_T4: 5769 case CHELSIO_T5: 5770 switch (nports) { 5771 case 1: return 0xf; 5772 case 2: return 3 << (2 * pidx); 5773 case 4: return 1 << pidx; 5774 } 5775 break; 5776 5777 case CHELSIO_T6: 5778 switch (nports) { 5779 case 2: return 1 << (2 * pidx); 5780 } 5781 break; 5782 } 5783 5784 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 5785 chip_version, nports); 5786 5787 return 0; 5788 } 5789 5790 /** 5791 * t4_get_mps_bg_map - return the buffer groups associated with a port 5792 * @adapter: the adapter 5793 * @pidx: the port index 5794 * 5795 * Returns a bitmap indicating which MPS buffer groups are associated 5796 * with the given Port. Bit i is set if buffer group i is used by the 5797 * Port. 5798 */ 5799 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 5800 { 5801 u8 *mps_bg_map; 5802 unsigned int nports; 5803 5804 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 5805 if (pidx >= nports) { 5806 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 5807 pidx, nports); 5808 return 0; 5809 } 5810 5811 /* If we've already retrieved/computed this, just return the result. 5812 */ 5813 mps_bg_map = adapter->params.mps_bg_map; 5814 if (mps_bg_map[pidx]) 5815 return mps_bg_map[pidx]; 5816 5817 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 5818 * If we're talking to such Firmware, let it tell us. If the new 5819 * API isn't supported, revert back to old hardcoded way. The value 5820 * obtained from Firmware is encoded in below format: 5821 * 5822 * val = (( MPSBGMAP[Port 3] << 24 ) | 5823 * ( MPSBGMAP[Port 2] << 16 ) | 5824 * ( MPSBGMAP[Port 1] << 8 ) | 5825 * ( MPSBGMAP[Port 0] << 0 )) 5826 */ 5827 if (adapter->flags & FW_OK) { 5828 u32 param, val; 5829 int ret; 5830 5831 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 5832 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 5833 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 5834 0, 1, ¶m, &val); 5835 if (!ret) { 5836 int p; 5837 5838 /* Store the BG Map for all of the Ports in order to 5839 * avoid more calls to the Firmware in the future. 5840 */ 5841 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 5842 mps_bg_map[p] = val & 0xff; 5843 5844 return mps_bg_map[pidx]; 5845 } 5846 } 5847 5848 /* Either we're not talking to the Firmware or we're dealing with 5849 * older Firmware which doesn't support the new API to get the MPS 5850 * Buffer Group Map. Fall back to computing it ourselves. 5851 */ 5852 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 5853 return mps_bg_map[pidx]; 5854 } 5855 5856 /** 5857 * t4_get_tp_ch_map - return TP ingress channels associated with a port 5858 * @adapter: the adapter 5859 * @pidx: the port index 5860 * 5861 * Returns a bitmap indicating which TP Ingress Channels are associated 5862 * with a given Port. Bit i is set if TP Ingress Channel i is used by 5863 * the Port. 5864 */ 5865 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 5866 { 5867 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 5868 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 5869 5870 if (pidx >= nports) { 5871 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 5872 pidx, nports); 5873 return 0; 5874 } 5875 5876 switch (chip_version) { 5877 case CHELSIO_T4: 5878 case CHELSIO_T5: 5879 /* Note that this happens to be the same values as the MPS 5880 * Buffer Group Map for these Chips. But we replicate the code 5881 * here because they're really separate concepts. 5882 */ 5883 switch (nports) { 5884 case 1: return 0xf; 5885 case 2: return 3 << (2 * pidx); 5886 case 4: return 1 << pidx; 5887 } 5888 break; 5889 5890 case CHELSIO_T6: 5891 switch (nports) { 5892 case 2: return 1 << pidx; 5893 } 5894 break; 5895 } 5896 5897 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 5898 chip_version, nports); 5899 return 0; 5900 } 5901 5902 /** 5903 * t4_get_port_type_description - return Port Type string description 5904 * @port_type: firmware Port Type enumeration 5905 */ 5906 const char *t4_get_port_type_description(enum fw_port_type port_type) 5907 { 5908 static const char *const port_type_description[] = { 5909 "Fiber_XFI", 5910 "Fiber_XAUI", 5911 "BT_SGMII", 5912 "BT_XFI", 5913 "BT_XAUI", 5914 "KX4", 5915 "CX4", 5916 "KX", 5917 "KR", 5918 "SFP", 5919 "BP_AP", 5920 "BP4_AP", 5921 "QSFP_10G", 5922 "QSA", 5923 "QSFP", 5924 "BP40_BA", 5925 "KR4_100G", 5926 "CR4_QSFP", 5927 "CR_QSFP", 5928 "CR2_QSFP", 5929 "SFP28", 5930 "KR_SFP28", 5931 }; 5932 5933 if (port_type < ARRAY_SIZE(port_type_description)) 5934 return port_type_description[port_type]; 5935 return "UNKNOWN"; 5936 } 5937 5938 /** 5939 * t4_get_port_stats_offset - collect port stats relative to a previous 5940 * snapshot 5941 * @adap: The adapter 5942 * @idx: The port 5943 * @stats: Current stats to fill 5944 * @offset: Previous stats snapshot 5945 */ 5946 void t4_get_port_stats_offset(struct adapter *adap, int idx, 5947 struct port_stats *stats, 5948 struct port_stats *offset) 5949 { 5950 u64 *s, *o; 5951 int i; 5952 5953 t4_get_port_stats(adap, idx, stats); 5954 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 5955 i < (sizeof(struct port_stats) / sizeof(u64)); 5956 i++, s++, o++) 5957 *s -= *o; 5958 } 5959 5960 /** 5961 * t4_get_port_stats - collect port statistics 5962 * @adap: the adapter 5963 * @idx: the port index 5964 * @p: the stats structure to fill 5965 * 5966 * Collect statistics related to the given port from HW. 5967 */ 5968 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 5969 { 5970 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5971 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 5972 5973 #define GET_STAT(name) \ 5974 t4_read_reg64(adap, \ 5975 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 5976 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 5977 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5978 5979 p->tx_octets = GET_STAT(TX_PORT_BYTES); 5980 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 5981 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 5982 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 5983 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 5984 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 5985 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 5986 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 5987 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 5988 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 5989 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 5990 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 5991 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 5992 p->tx_drop = GET_STAT(TX_PORT_DROP); 5993 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 5994 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 5995 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 5996 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 5997 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 5998 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 5999 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6000 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6001 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6002 6003 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6004 if (stat_ctl & COUNTPAUSESTATTX_F) 6005 p->tx_frames_64 -= p->tx_pause; 6006 if (stat_ctl & COUNTPAUSEMCTX_F) 6007 p->tx_mcast_frames -= p->tx_pause; 6008 } 6009 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6010 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6011 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6012 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6013 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6014 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6015 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6016 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6017 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6018 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6019 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6020 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6021 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6022 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6023 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6024 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6025 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6026 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6027 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6028 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6029 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6030 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6031 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6032 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6033 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6034 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6035 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6036 6037 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6038 if (stat_ctl & COUNTPAUSESTATRX_F) 6039 p->rx_frames_64 -= p->rx_pause; 6040 if (stat_ctl & COUNTPAUSEMCRX_F) 6041 p->rx_mcast_frames -= p->rx_pause; 6042 } 6043 6044 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6045 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6046 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6047 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6048 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6049 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6050 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6051 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6052 6053 #undef GET_STAT 6054 #undef GET_STAT_COM 6055 } 6056 6057 /** 6058 * t4_get_lb_stats - collect loopback port statistics 6059 * @adap: the adapter 6060 * @idx: the loopback port index 6061 * @p: the stats structure to fill 6062 * 6063 * Return HW statistics for the given loopback port. 6064 */ 6065 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6066 { 6067 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6068 6069 #define GET_STAT(name) \ 6070 t4_read_reg64(adap, \ 6071 (is_t4(adap->params.chip) ? \ 6072 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6073 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6074 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6075 6076 p->octets = GET_STAT(BYTES); 6077 p->frames = GET_STAT(FRAMES); 6078 p->bcast_frames = GET_STAT(BCAST); 6079 p->mcast_frames = GET_STAT(MCAST); 6080 p->ucast_frames = GET_STAT(UCAST); 6081 p->error_frames = GET_STAT(ERROR); 6082 6083 p->frames_64 = GET_STAT(64B); 6084 p->frames_65_127 = GET_STAT(65B_127B); 6085 p->frames_128_255 = GET_STAT(128B_255B); 6086 p->frames_256_511 = GET_STAT(256B_511B); 6087 p->frames_512_1023 = GET_STAT(512B_1023B); 6088 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6089 p->frames_1519_max = GET_STAT(1519B_MAX); 6090 p->drop = GET_STAT(DROP_FRAMES); 6091 6092 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6093 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6094 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6095 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6096 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6097 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6098 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6099 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6100 6101 #undef GET_STAT 6102 #undef GET_STAT_COM 6103 } 6104 6105 /* t4_mk_filtdelwr - create a delete filter WR 6106 * @ftid: the filter ID 6107 * @wr: the filter work request to populate 6108 * @qid: ingress queue to receive the delete notification 6109 * 6110 * Creates a filter work request to delete the supplied filter. If @qid is 6111 * negative the delete notification is suppressed. 6112 */ 6113 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6114 { 6115 memset(wr, 0, sizeof(*wr)); 6116 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6117 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6118 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6119 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6120 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6121 if (qid >= 0) 6122 wr->rx_chan_rx_rpl_iq = 6123 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6124 } 6125 6126 #define INIT_CMD(var, cmd, rd_wr) do { \ 6127 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6128 FW_CMD_REQUEST_F | \ 6129 FW_CMD_##rd_wr##_F); \ 6130 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6131 } while (0) 6132 6133 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6134 u32 addr, u32 val) 6135 { 6136 u32 ldst_addrspace; 6137 struct fw_ldst_cmd c; 6138 6139 memset(&c, 0, sizeof(c)); 6140 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6141 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6142 FW_CMD_REQUEST_F | 6143 FW_CMD_WRITE_F | 6144 ldst_addrspace); 6145 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6146 c.u.addrval.addr = cpu_to_be32(addr); 6147 c.u.addrval.val = cpu_to_be32(val); 6148 6149 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6150 } 6151 6152 /** 6153 * t4_mdio_rd - read a PHY register through MDIO 6154 * @adap: the adapter 6155 * @mbox: mailbox to use for the FW command 6156 * @phy_addr: the PHY address 6157 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6158 * @reg: the register to read 6159 * @valp: where to store the value 6160 * 6161 * Issues a FW command through the given mailbox to read a PHY register. 6162 */ 6163 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6164 unsigned int mmd, unsigned int reg, u16 *valp) 6165 { 6166 int ret; 6167 u32 ldst_addrspace; 6168 struct fw_ldst_cmd c; 6169 6170 memset(&c, 0, sizeof(c)); 6171 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6172 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6173 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6174 ldst_addrspace); 6175 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6176 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6177 FW_LDST_CMD_MMD_V(mmd)); 6178 c.u.mdio.raddr = cpu_to_be16(reg); 6179 6180 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6181 if (ret == 0) 6182 *valp = be16_to_cpu(c.u.mdio.rval); 6183 return ret; 6184 } 6185 6186 /** 6187 * t4_mdio_wr - write a PHY register through MDIO 6188 * @adap: the adapter 6189 * @mbox: mailbox to use for the FW command 6190 * @phy_addr: the PHY address 6191 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6192 * @reg: the register to write 6193 * @valp: value to write 6194 * 6195 * Issues a FW command through the given mailbox to write a PHY register. 6196 */ 6197 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6198 unsigned int mmd, unsigned int reg, u16 val) 6199 { 6200 u32 ldst_addrspace; 6201 struct fw_ldst_cmd c; 6202 6203 memset(&c, 0, sizeof(c)); 6204 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6205 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6206 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6207 ldst_addrspace); 6208 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6209 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6210 FW_LDST_CMD_MMD_V(mmd)); 6211 c.u.mdio.raddr = cpu_to_be16(reg); 6212 c.u.mdio.rval = cpu_to_be16(val); 6213 6214 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6215 } 6216 6217 /** 6218 * t4_sge_decode_idma_state - decode the idma state 6219 * @adap: the adapter 6220 * @state: the state idma is stuck in 6221 */ 6222 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6223 { 6224 static const char * const t4_decode[] = { 6225 "IDMA_IDLE", 6226 "IDMA_PUSH_MORE_CPL_FIFO", 6227 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6228 "Not used", 6229 "IDMA_PHYSADDR_SEND_PCIEHDR", 6230 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6231 "IDMA_PHYSADDR_SEND_PAYLOAD", 6232 "IDMA_SEND_FIFO_TO_IMSG", 6233 "IDMA_FL_REQ_DATA_FL_PREP", 6234 "IDMA_FL_REQ_DATA_FL", 6235 "IDMA_FL_DROP", 6236 "IDMA_FL_H_REQ_HEADER_FL", 6237 "IDMA_FL_H_SEND_PCIEHDR", 6238 "IDMA_FL_H_PUSH_CPL_FIFO", 6239 "IDMA_FL_H_SEND_CPL", 6240 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6241 "IDMA_FL_H_SEND_IP_HDR", 6242 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6243 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6244 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6245 "IDMA_FL_D_SEND_PCIEHDR", 6246 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6247 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6248 "IDMA_FL_SEND_PCIEHDR", 6249 "IDMA_FL_PUSH_CPL_FIFO", 6250 "IDMA_FL_SEND_CPL", 6251 "IDMA_FL_SEND_PAYLOAD_FIRST", 6252 "IDMA_FL_SEND_PAYLOAD", 6253 "IDMA_FL_REQ_NEXT_DATA_FL", 6254 "IDMA_FL_SEND_NEXT_PCIEHDR", 6255 "IDMA_FL_SEND_PADDING", 6256 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6257 "IDMA_FL_SEND_FIFO_TO_IMSG", 6258 "IDMA_FL_REQ_DATAFL_DONE", 6259 "IDMA_FL_REQ_HEADERFL_DONE", 6260 }; 6261 static const char * const t5_decode[] = { 6262 "IDMA_IDLE", 6263 "IDMA_ALMOST_IDLE", 6264 "IDMA_PUSH_MORE_CPL_FIFO", 6265 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6266 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6267 "IDMA_PHYSADDR_SEND_PCIEHDR", 6268 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6269 "IDMA_PHYSADDR_SEND_PAYLOAD", 6270 "IDMA_SEND_FIFO_TO_IMSG", 6271 "IDMA_FL_REQ_DATA_FL", 6272 "IDMA_FL_DROP", 6273 "IDMA_FL_DROP_SEND_INC", 6274 "IDMA_FL_H_REQ_HEADER_FL", 6275 "IDMA_FL_H_SEND_PCIEHDR", 6276 "IDMA_FL_H_PUSH_CPL_FIFO", 6277 "IDMA_FL_H_SEND_CPL", 6278 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6279 "IDMA_FL_H_SEND_IP_HDR", 6280 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6281 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6282 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6283 "IDMA_FL_D_SEND_PCIEHDR", 6284 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6285 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6286 "IDMA_FL_SEND_PCIEHDR", 6287 "IDMA_FL_PUSH_CPL_FIFO", 6288 "IDMA_FL_SEND_CPL", 6289 "IDMA_FL_SEND_PAYLOAD_FIRST", 6290 "IDMA_FL_SEND_PAYLOAD", 6291 "IDMA_FL_REQ_NEXT_DATA_FL", 6292 "IDMA_FL_SEND_NEXT_PCIEHDR", 6293 "IDMA_FL_SEND_PADDING", 6294 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6295 }; 6296 static const char * const t6_decode[] = { 6297 "IDMA_IDLE", 6298 "IDMA_PUSH_MORE_CPL_FIFO", 6299 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6300 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6301 "IDMA_PHYSADDR_SEND_PCIEHDR", 6302 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6303 "IDMA_PHYSADDR_SEND_PAYLOAD", 6304 "IDMA_FL_REQ_DATA_FL", 6305 "IDMA_FL_DROP", 6306 "IDMA_FL_DROP_SEND_INC", 6307 "IDMA_FL_H_REQ_HEADER_FL", 6308 "IDMA_FL_H_SEND_PCIEHDR", 6309 "IDMA_FL_H_PUSH_CPL_FIFO", 6310 "IDMA_FL_H_SEND_CPL", 6311 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6312 "IDMA_FL_H_SEND_IP_HDR", 6313 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6314 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6315 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6316 "IDMA_FL_D_SEND_PCIEHDR", 6317 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6318 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6319 "IDMA_FL_SEND_PCIEHDR", 6320 "IDMA_FL_PUSH_CPL_FIFO", 6321 "IDMA_FL_SEND_CPL", 6322 "IDMA_FL_SEND_PAYLOAD_FIRST", 6323 "IDMA_FL_SEND_PAYLOAD", 6324 "IDMA_FL_REQ_NEXT_DATA_FL", 6325 "IDMA_FL_SEND_NEXT_PCIEHDR", 6326 "IDMA_FL_SEND_PADDING", 6327 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6328 }; 6329 static const u32 sge_regs[] = { 6330 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6331 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6332 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6333 }; 6334 const char **sge_idma_decode; 6335 int sge_idma_decode_nstates; 6336 int i; 6337 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6338 6339 /* Select the right set of decode strings to dump depending on the 6340 * adapter chip type. 6341 */ 6342 switch (chip_version) { 6343 case CHELSIO_T4: 6344 sge_idma_decode = (const char **)t4_decode; 6345 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6346 break; 6347 6348 case CHELSIO_T5: 6349 sge_idma_decode = (const char **)t5_decode; 6350 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6351 break; 6352 6353 case CHELSIO_T6: 6354 sge_idma_decode = (const char **)t6_decode; 6355 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6356 break; 6357 6358 default: 6359 dev_err(adapter->pdev_dev, 6360 "Unsupported chip version %d\n", chip_version); 6361 return; 6362 } 6363 6364 if (is_t4(adapter->params.chip)) { 6365 sge_idma_decode = (const char **)t4_decode; 6366 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6367 } else { 6368 sge_idma_decode = (const char **)t5_decode; 6369 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6370 } 6371 6372 if (state < sge_idma_decode_nstates) 6373 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6374 else 6375 CH_WARN(adapter, "idma state %d unknown\n", state); 6376 6377 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6378 CH_WARN(adapter, "SGE register %#x value %#x\n", 6379 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6380 } 6381 6382 /** 6383 * t4_sge_ctxt_flush - flush the SGE context cache 6384 * @adap: the adapter 6385 * @mbox: mailbox to use for the FW command 6386 * 6387 * Issues a FW command through the given mailbox to flush the 6388 * SGE context cache. 6389 */ 6390 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 6391 { 6392 int ret; 6393 u32 ldst_addrspace; 6394 struct fw_ldst_cmd c; 6395 6396 memset(&c, 0, sizeof(c)); 6397 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC); 6398 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6399 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6400 ldst_addrspace); 6401 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6402 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6403 6404 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6405 return ret; 6406 } 6407 6408 /** 6409 * t4_fw_hello - establish communication with FW 6410 * @adap: the adapter 6411 * @mbox: mailbox to use for the FW command 6412 * @evt_mbox: mailbox to receive async FW events 6413 * @master: specifies the caller's willingness to be the device master 6414 * @state: returns the current device state (if non-NULL) 6415 * 6416 * Issues a command to establish communication with FW. Returns either 6417 * an error (negative integer) or the mailbox of the Master PF. 6418 */ 6419 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6420 enum dev_master master, enum dev_state *state) 6421 { 6422 int ret; 6423 struct fw_hello_cmd c; 6424 u32 v; 6425 unsigned int master_mbox; 6426 int retries = FW_CMD_HELLO_RETRIES; 6427 6428 retry: 6429 memset(&c, 0, sizeof(c)); 6430 INIT_CMD(c, HELLO, WRITE); 6431 c.err_to_clearinit = cpu_to_be32( 6432 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6433 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6434 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6435 mbox : FW_HELLO_CMD_MBMASTER_M) | 6436 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6437 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6438 FW_HELLO_CMD_CLEARINIT_F); 6439 6440 /* 6441 * Issue the HELLO command to the firmware. If it's not successful 6442 * but indicates that we got a "busy" or "timeout" condition, retry 6443 * the HELLO until we exhaust our retry limit. If we do exceed our 6444 * retry limit, check to see if the firmware left us any error 6445 * information and report that if so. 6446 */ 6447 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6448 if (ret < 0) { 6449 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6450 goto retry; 6451 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6452 t4_report_fw_error(adap); 6453 return ret; 6454 } 6455 6456 v = be32_to_cpu(c.err_to_clearinit); 6457 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6458 if (state) { 6459 if (v & FW_HELLO_CMD_ERR_F) 6460 *state = DEV_STATE_ERR; 6461 else if (v & FW_HELLO_CMD_INIT_F) 6462 *state = DEV_STATE_INIT; 6463 else 6464 *state = DEV_STATE_UNINIT; 6465 } 6466 6467 /* 6468 * If we're not the Master PF then we need to wait around for the 6469 * Master PF Driver to finish setting up the adapter. 6470 * 6471 * Note that we also do this wait if we're a non-Master-capable PF and 6472 * there is no current Master PF; a Master PF may show up momentarily 6473 * and we wouldn't want to fail pointlessly. (This can happen when an 6474 * OS loads lots of different drivers rapidly at the same time). In 6475 * this case, the Master PF returned by the firmware will be 6476 * PCIE_FW_MASTER_M so the test below will work ... 6477 */ 6478 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6479 master_mbox != mbox) { 6480 int waiting = FW_CMD_HELLO_TIMEOUT; 6481 6482 /* 6483 * Wait for the firmware to either indicate an error or 6484 * initialized state. If we see either of these we bail out 6485 * and report the issue to the caller. If we exhaust the 6486 * "hello timeout" and we haven't exhausted our retries, try 6487 * again. Otherwise bail with a timeout error. 6488 */ 6489 for (;;) { 6490 u32 pcie_fw; 6491 6492 msleep(50); 6493 waiting -= 50; 6494 6495 /* 6496 * If neither Error nor Initialialized are indicated 6497 * by the firmware keep waiting till we exaust our 6498 * timeout ... and then retry if we haven't exhausted 6499 * our retries ... 6500 */ 6501 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6502 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6503 if (waiting <= 0) { 6504 if (retries-- > 0) 6505 goto retry; 6506 6507 return -ETIMEDOUT; 6508 } 6509 continue; 6510 } 6511 6512 /* 6513 * We either have an Error or Initialized condition 6514 * report errors preferentially. 6515 */ 6516 if (state) { 6517 if (pcie_fw & PCIE_FW_ERR_F) 6518 *state = DEV_STATE_ERR; 6519 else if (pcie_fw & PCIE_FW_INIT_F) 6520 *state = DEV_STATE_INIT; 6521 } 6522 6523 /* 6524 * If we arrived before a Master PF was selected and 6525 * there's not a valid Master PF, grab its identity 6526 * for our caller. 6527 */ 6528 if (master_mbox == PCIE_FW_MASTER_M && 6529 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6530 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6531 break; 6532 } 6533 } 6534 6535 return master_mbox; 6536 } 6537 6538 /** 6539 * t4_fw_bye - end communication with FW 6540 * @adap: the adapter 6541 * @mbox: mailbox to use for the FW command 6542 * 6543 * Issues a command to terminate communication with FW. 6544 */ 6545 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6546 { 6547 struct fw_bye_cmd c; 6548 6549 memset(&c, 0, sizeof(c)); 6550 INIT_CMD(c, BYE, WRITE); 6551 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6552 } 6553 6554 /** 6555 * t4_init_cmd - ask FW to initialize the device 6556 * @adap: the adapter 6557 * @mbox: mailbox to use for the FW command 6558 * 6559 * Issues a command to FW to partially initialize the device. This 6560 * performs initialization that generally doesn't depend on user input. 6561 */ 6562 int t4_early_init(struct adapter *adap, unsigned int mbox) 6563 { 6564 struct fw_initialize_cmd c; 6565 6566 memset(&c, 0, sizeof(c)); 6567 INIT_CMD(c, INITIALIZE, WRITE); 6568 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6569 } 6570 6571 /** 6572 * t4_fw_reset - issue a reset to FW 6573 * @adap: the adapter 6574 * @mbox: mailbox to use for the FW command 6575 * @reset: specifies the type of reset to perform 6576 * 6577 * Issues a reset command of the specified type to FW. 6578 */ 6579 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6580 { 6581 struct fw_reset_cmd c; 6582 6583 memset(&c, 0, sizeof(c)); 6584 INIT_CMD(c, RESET, WRITE); 6585 c.val = cpu_to_be32(reset); 6586 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6587 } 6588 6589 /** 6590 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6591 * @adap: the adapter 6592 * @mbox: mailbox to use for the FW RESET command (if desired) 6593 * @force: force uP into RESET even if FW RESET command fails 6594 * 6595 * Issues a RESET command to firmware (if desired) with a HALT indication 6596 * and then puts the microprocessor into RESET state. The RESET command 6597 * will only be issued if a legitimate mailbox is provided (mbox <= 6598 * PCIE_FW_MASTER_M). 6599 * 6600 * This is generally used in order for the host to safely manipulate the 6601 * adapter without fear of conflicting with whatever the firmware might 6602 * be doing. The only way out of this state is to RESTART the firmware 6603 * ... 6604 */ 6605 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6606 { 6607 int ret = 0; 6608 6609 /* 6610 * If a legitimate mailbox is provided, issue a RESET command 6611 * with a HALT indication. 6612 */ 6613 if (mbox <= PCIE_FW_MASTER_M) { 6614 struct fw_reset_cmd c; 6615 6616 memset(&c, 0, sizeof(c)); 6617 INIT_CMD(c, RESET, WRITE); 6618 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6619 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6620 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6621 } 6622 6623 /* 6624 * Normally we won't complete the operation if the firmware RESET 6625 * command fails but if our caller insists we'll go ahead and put the 6626 * uP into RESET. This can be useful if the firmware is hung or even 6627 * missing ... We'll have to take the risk of putting the uP into 6628 * RESET without the cooperation of firmware in that case. 6629 * 6630 * We also force the firmware's HALT flag to be on in case we bypassed 6631 * the firmware RESET command above or we're dealing with old firmware 6632 * which doesn't have the HALT capability. This will serve as a flag 6633 * for the incoming firmware to know that it's coming out of a HALT 6634 * rather than a RESET ... if it's new enough to understand that ... 6635 */ 6636 if (ret == 0 || force) { 6637 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6638 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6639 PCIE_FW_HALT_F); 6640 } 6641 6642 /* 6643 * And we always return the result of the firmware RESET command 6644 * even when we force the uP into RESET ... 6645 */ 6646 return ret; 6647 } 6648 6649 /** 6650 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6651 * @adap: the adapter 6652 * @reset: if we want to do a RESET to restart things 6653 * 6654 * Restart firmware previously halted by t4_fw_halt(). On successful 6655 * return the previous PF Master remains as the new PF Master and there 6656 * is no need to issue a new HELLO command, etc. 6657 * 6658 * We do this in two ways: 6659 * 6660 * 1. If we're dealing with newer firmware we'll simply want to take 6661 * the chip's microprocessor out of RESET. This will cause the 6662 * firmware to start up from its start vector. And then we'll loop 6663 * until the firmware indicates it's started again (PCIE_FW.HALT 6664 * reset to 0) or we timeout. 6665 * 6666 * 2. If we're dealing with older firmware then we'll need to RESET 6667 * the chip since older firmware won't recognize the PCIE_FW.HALT 6668 * flag and automatically RESET itself on startup. 6669 */ 6670 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6671 { 6672 if (reset) { 6673 /* 6674 * Since we're directing the RESET instead of the firmware 6675 * doing it automatically, we need to clear the PCIE_FW.HALT 6676 * bit. 6677 */ 6678 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6679 6680 /* 6681 * If we've been given a valid mailbox, first try to get the 6682 * firmware to do the RESET. If that works, great and we can 6683 * return success. Otherwise, if we haven't been given a 6684 * valid mailbox or the RESET command failed, fall back to 6685 * hitting the chip with a hammer. 6686 */ 6687 if (mbox <= PCIE_FW_MASTER_M) { 6688 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6689 msleep(100); 6690 if (t4_fw_reset(adap, mbox, 6691 PIORST_F | PIORSTMODE_F) == 0) 6692 return 0; 6693 } 6694 6695 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6696 msleep(2000); 6697 } else { 6698 int ms; 6699 6700 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6701 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6702 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6703 return 0; 6704 msleep(100); 6705 ms += 100; 6706 } 6707 return -ETIMEDOUT; 6708 } 6709 return 0; 6710 } 6711 6712 /** 6713 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6714 * @adap: the adapter 6715 * @mbox: mailbox to use for the FW RESET command (if desired) 6716 * @fw_data: the firmware image to write 6717 * @size: image size 6718 * @force: force upgrade even if firmware doesn't cooperate 6719 * 6720 * Perform all of the steps necessary for upgrading an adapter's 6721 * firmware image. Normally this requires the cooperation of the 6722 * existing firmware in order to halt all existing activities 6723 * but if an invalid mailbox token is passed in we skip that step 6724 * (though we'll still put the adapter microprocessor into RESET in 6725 * that case). 6726 * 6727 * On successful return the new firmware will have been loaded and 6728 * the adapter will have been fully RESET losing all previous setup 6729 * state. On unsuccessful return the adapter may be completely hosed ... 6730 * positive errno indicates that the adapter is ~probably~ intact, a 6731 * negative errno indicates that things are looking bad ... 6732 */ 6733 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6734 const u8 *fw_data, unsigned int size, int force) 6735 { 6736 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6737 int reset, ret; 6738 6739 if (!t4_fw_matches_chip(adap, fw_hdr)) 6740 return -EINVAL; 6741 6742 /* Disable FW_OK flag so that mbox commands with FW_OK flag set 6743 * wont be sent when we are flashing FW. 6744 */ 6745 adap->flags &= ~FW_OK; 6746 6747 ret = t4_fw_halt(adap, mbox, force); 6748 if (ret < 0 && !force) 6749 goto out; 6750 6751 ret = t4_load_fw(adap, fw_data, size); 6752 if (ret < 0) 6753 goto out; 6754 6755 /* 6756 * If there was a Firmware Configuration File stored in FLASH, 6757 * there's a good chance that it won't be compatible with the new 6758 * Firmware. In order to prevent difficult to diagnose adapter 6759 * initialization issues, we clear out the Firmware Configuration File 6760 * portion of the FLASH . The user will need to re-FLASH a new 6761 * Firmware Configuration File which is compatible with the new 6762 * Firmware if that's desired. 6763 */ 6764 (void)t4_load_cfg(adap, NULL, 0); 6765 6766 /* 6767 * Older versions of the firmware don't understand the new 6768 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6769 * restart. So for newly loaded older firmware we'll have to do the 6770 * RESET for it so it starts up on a clean slate. We can tell if 6771 * the newly loaded firmware will handle this right by checking 6772 * its header flags to see if it advertises the capability. 6773 */ 6774 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6775 ret = t4_fw_restart(adap, mbox, reset); 6776 6777 /* Grab potentially new Firmware Device Log parameters so we can see 6778 * how healthy the new Firmware is. It's okay to contact the new 6779 * Firmware for these parameters even though, as far as it's 6780 * concerned, we've never said "HELLO" to it ... 6781 */ 6782 (void)t4_init_devlog_params(adap); 6783 out: 6784 adap->flags |= FW_OK; 6785 return ret; 6786 } 6787 6788 /** 6789 * t4_fl_pkt_align - return the fl packet alignment 6790 * @adap: the adapter 6791 * 6792 * T4 has a single field to specify the packing and padding boundary. 6793 * T5 onwards has separate fields for this and hence the alignment for 6794 * next packet offset is maximum of these two. 6795 * 6796 */ 6797 int t4_fl_pkt_align(struct adapter *adap) 6798 { 6799 u32 sge_control, sge_control2; 6800 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 6801 6802 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 6803 6804 /* T4 uses a single control field to specify both the PCIe Padding and 6805 * Packing Boundary. T5 introduced the ability to specify these 6806 * separately. The actual Ingress Packet Data alignment boundary 6807 * within Packed Buffer Mode is the maximum of these two 6808 * specifications. (Note that it makes no real practical sense to 6809 * have the Pading Boudary be larger than the Packing Boundary but you 6810 * could set the chip up that way and, in fact, legacy T4 code would 6811 * end doing this because it would initialize the Padding Boundary and 6812 * leave the Packing Boundary initialized to 0 (16 bytes).) 6813 * Padding Boundary values in T6 starts from 8B, 6814 * where as it is 32B for T4 and T5. 6815 */ 6816 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 6817 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 6818 else 6819 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 6820 6821 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 6822 6823 fl_align = ingpadboundary; 6824 if (!is_t4(adap->params.chip)) { 6825 /* T5 has a weird interpretation of one of the PCIe Packing 6826 * Boundary values. No idea why ... 6827 */ 6828 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 6829 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 6830 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 6831 ingpackboundary = 16; 6832 else 6833 ingpackboundary = 1 << (ingpackboundary + 6834 INGPACKBOUNDARY_SHIFT_X); 6835 6836 fl_align = max(ingpadboundary, ingpackboundary); 6837 } 6838 return fl_align; 6839 } 6840 6841 /** 6842 * t4_fixup_host_params - fix up host-dependent parameters 6843 * @adap: the adapter 6844 * @page_size: the host's Base Page Size 6845 * @cache_line_size: the host's Cache Line Size 6846 * 6847 * Various registers in T4 contain values which are dependent on the 6848 * host's Base Page and Cache Line Sizes. This function will fix all of 6849 * those registers with the appropriate values as passed in ... 6850 */ 6851 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 6852 unsigned int cache_line_size) 6853 { 6854 unsigned int page_shift = fls(page_size) - 1; 6855 unsigned int sge_hps = page_shift - 10; 6856 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 6857 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 6858 unsigned int fl_align_log = fls(fl_align) - 1; 6859 6860 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 6861 HOSTPAGESIZEPF0_V(sge_hps) | 6862 HOSTPAGESIZEPF1_V(sge_hps) | 6863 HOSTPAGESIZEPF2_V(sge_hps) | 6864 HOSTPAGESIZEPF3_V(sge_hps) | 6865 HOSTPAGESIZEPF4_V(sge_hps) | 6866 HOSTPAGESIZEPF5_V(sge_hps) | 6867 HOSTPAGESIZEPF6_V(sge_hps) | 6868 HOSTPAGESIZEPF7_V(sge_hps)); 6869 6870 if (is_t4(adap->params.chip)) { 6871 t4_set_reg_field(adap, SGE_CONTROL_A, 6872 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6873 EGRSTATUSPAGESIZE_F, 6874 INGPADBOUNDARY_V(fl_align_log - 6875 INGPADBOUNDARY_SHIFT_X) | 6876 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6877 } else { 6878 unsigned int pack_align; 6879 unsigned int ingpad, ingpack; 6880 unsigned int pcie_cap; 6881 6882 /* T5 introduced the separation of the Free List Padding and 6883 * Packing Boundaries. Thus, we can select a smaller Padding 6884 * Boundary to avoid uselessly chewing up PCIe Link and Memory 6885 * Bandwidth, and use a Packing Boundary which is large enough 6886 * to avoid false sharing between CPUs, etc. 6887 * 6888 * For the PCI Link, the smaller the Padding Boundary the 6889 * better. For the Memory Controller, a smaller Padding 6890 * Boundary is better until we cross under the Memory Line 6891 * Size (the minimum unit of transfer to/from Memory). If we 6892 * have a Padding Boundary which is smaller than the Memory 6893 * Line Size, that'll involve a Read-Modify-Write cycle on the 6894 * Memory Controller which is never good. 6895 */ 6896 6897 /* We want the Packing Boundary to be based on the Cache Line 6898 * Size in order to help avoid False Sharing performance 6899 * issues between CPUs, etc. We also want the Packing 6900 * Boundary to incorporate the PCI-E Maximum Payload Size. We 6901 * get best performance when the Packing Boundary is a 6902 * multiple of the Maximum Payload Size. 6903 */ 6904 pack_align = fl_align; 6905 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 6906 if (pcie_cap) { 6907 unsigned int mps, mps_log; 6908 u16 devctl; 6909 6910 /* The PCIe Device Control Maximum Payload Size field 6911 * [bits 7:5] encodes sizes as powers of 2 starting at 6912 * 128 bytes. 6913 */ 6914 pci_read_config_word(adap->pdev, 6915 pcie_cap + PCI_EXP_DEVCTL, 6916 &devctl); 6917 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 6918 mps = 1 << mps_log; 6919 if (mps > pack_align) 6920 pack_align = mps; 6921 } 6922 6923 /* N.B. T5/T6 have a crazy special interpretation of the "0" 6924 * value for the Packing Boundary. This corresponds to 16 6925 * bytes instead of the expected 32 bytes. So if we want 32 6926 * bytes, the best we can really do is 64 bytes ... 6927 */ 6928 if (pack_align <= 16) { 6929 ingpack = INGPACKBOUNDARY_16B_X; 6930 fl_align = 16; 6931 } else if (pack_align == 32) { 6932 ingpack = INGPACKBOUNDARY_64B_X; 6933 fl_align = 64; 6934 } else { 6935 unsigned int pack_align_log = fls(pack_align) - 1; 6936 6937 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 6938 fl_align = pack_align; 6939 } 6940 6941 /* Use the smallest Ingress Padding which isn't smaller than 6942 * the Memory Controller Read/Write Size. We'll take that as 6943 * being 8 bytes since we don't know of any system with a 6944 * wider Memory Controller Bus Width. 6945 */ 6946 if (is_t5(adap->params.chip)) 6947 ingpad = INGPADBOUNDARY_32B_X; 6948 else 6949 ingpad = T6_INGPADBOUNDARY_8B_X; 6950 6951 t4_set_reg_field(adap, SGE_CONTROL_A, 6952 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6953 EGRSTATUSPAGESIZE_F, 6954 INGPADBOUNDARY_V(ingpad) | 6955 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6956 t4_set_reg_field(adap, SGE_CONTROL2_A, 6957 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 6958 INGPACKBOUNDARY_V(ingpack)); 6959 } 6960 /* 6961 * Adjust various SGE Free List Host Buffer Sizes. 6962 * 6963 * This is something of a crock since we're using fixed indices into 6964 * the array which are also known by the sge.c code and the T4 6965 * Firmware Configuration File. We need to come up with a much better 6966 * approach to managing this array. For now, the first four entries 6967 * are: 6968 * 6969 * 0: Host Page Size 6970 * 1: 64KB 6971 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 6972 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 6973 * 6974 * For the single-MTU buffers in unpacked mode we need to include 6975 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 6976 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 6977 * Padding boundary. All of these are accommodated in the Factory 6978 * Default Firmware Configuration File but we need to adjust it for 6979 * this host's cache line size. 6980 */ 6981 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 6982 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 6983 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 6984 & ~(fl_align-1)); 6985 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 6986 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 6987 & ~(fl_align-1)); 6988 6989 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 6990 6991 return 0; 6992 } 6993 6994 /** 6995 * t4_fw_initialize - ask FW to initialize the device 6996 * @adap: the adapter 6997 * @mbox: mailbox to use for the FW command 6998 * 6999 * Issues a command to FW to partially initialize the device. This 7000 * performs initialization that generally doesn't depend on user input. 7001 */ 7002 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7003 { 7004 struct fw_initialize_cmd c; 7005 7006 memset(&c, 0, sizeof(c)); 7007 INIT_CMD(c, INITIALIZE, WRITE); 7008 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7009 } 7010 7011 /** 7012 * t4_query_params_rw - query FW or device parameters 7013 * @adap: the adapter 7014 * @mbox: mailbox to use for the FW command 7015 * @pf: the PF 7016 * @vf: the VF 7017 * @nparams: the number of parameters 7018 * @params: the parameter names 7019 * @val: the parameter values 7020 * @rw: Write and read flag 7021 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7022 * 7023 * Reads the value of FW or device parameters. Up to 7 parameters can be 7024 * queried at once. 7025 */ 7026 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7027 unsigned int vf, unsigned int nparams, const u32 *params, 7028 u32 *val, int rw, bool sleep_ok) 7029 { 7030 int i, ret; 7031 struct fw_params_cmd c; 7032 __be32 *p = &c.param[0].mnem; 7033 7034 if (nparams > 7) 7035 return -EINVAL; 7036 7037 memset(&c, 0, sizeof(c)); 7038 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7039 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7040 FW_PARAMS_CMD_PFN_V(pf) | 7041 FW_PARAMS_CMD_VFN_V(vf)); 7042 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7043 7044 for (i = 0; i < nparams; i++) { 7045 *p++ = cpu_to_be32(*params++); 7046 if (rw) 7047 *p = cpu_to_be32(*(val + i)); 7048 p++; 7049 } 7050 7051 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7052 if (ret == 0) 7053 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7054 *val++ = be32_to_cpu(*p); 7055 return ret; 7056 } 7057 7058 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7059 unsigned int vf, unsigned int nparams, const u32 *params, 7060 u32 *val) 7061 { 7062 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7063 true); 7064 } 7065 7066 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7067 unsigned int vf, unsigned int nparams, const u32 *params, 7068 u32 *val) 7069 { 7070 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7071 false); 7072 } 7073 7074 /** 7075 * t4_set_params_timeout - sets FW or device parameters 7076 * @adap: the adapter 7077 * @mbox: mailbox to use for the FW command 7078 * @pf: the PF 7079 * @vf: the VF 7080 * @nparams: the number of parameters 7081 * @params: the parameter names 7082 * @val: the parameter values 7083 * @timeout: the timeout time 7084 * 7085 * Sets the value of FW or device parameters. Up to 7 parameters can be 7086 * specified at once. 7087 */ 7088 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7089 unsigned int pf, unsigned int vf, 7090 unsigned int nparams, const u32 *params, 7091 const u32 *val, int timeout) 7092 { 7093 struct fw_params_cmd c; 7094 __be32 *p = &c.param[0].mnem; 7095 7096 if (nparams > 7) 7097 return -EINVAL; 7098 7099 memset(&c, 0, sizeof(c)); 7100 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7101 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7102 FW_PARAMS_CMD_PFN_V(pf) | 7103 FW_PARAMS_CMD_VFN_V(vf)); 7104 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7105 7106 while (nparams--) { 7107 *p++ = cpu_to_be32(*params++); 7108 *p++ = cpu_to_be32(*val++); 7109 } 7110 7111 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7112 } 7113 7114 /** 7115 * t4_set_params - sets FW or device parameters 7116 * @adap: the adapter 7117 * @mbox: mailbox to use for the FW command 7118 * @pf: the PF 7119 * @vf: the VF 7120 * @nparams: the number of parameters 7121 * @params: the parameter names 7122 * @val: the parameter values 7123 * 7124 * Sets the value of FW or device parameters. Up to 7 parameters can be 7125 * specified at once. 7126 */ 7127 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7128 unsigned int vf, unsigned int nparams, const u32 *params, 7129 const u32 *val) 7130 { 7131 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7132 FW_CMD_MAX_TIMEOUT); 7133 } 7134 7135 /** 7136 * t4_cfg_pfvf - configure PF/VF resource limits 7137 * @adap: the adapter 7138 * @mbox: mailbox to use for the FW command 7139 * @pf: the PF being configured 7140 * @vf: the VF being configured 7141 * @txq: the max number of egress queues 7142 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7143 * @rxqi: the max number of interrupt-capable ingress queues 7144 * @rxq: the max number of interruptless ingress queues 7145 * @tc: the PCI traffic class 7146 * @vi: the max number of virtual interfaces 7147 * @cmask: the channel access rights mask for the PF/VF 7148 * @pmask: the port access rights mask for the PF/VF 7149 * @nexact: the maximum number of exact MPS filters 7150 * @rcaps: read capabilities 7151 * @wxcaps: write/execute capabilities 7152 * 7153 * Configures resource limits and capabilities for a physical or virtual 7154 * function. 7155 */ 7156 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7157 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7158 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7159 unsigned int vi, unsigned int cmask, unsigned int pmask, 7160 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7161 { 7162 struct fw_pfvf_cmd c; 7163 7164 memset(&c, 0, sizeof(c)); 7165 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7166 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7167 FW_PFVF_CMD_VFN_V(vf)); 7168 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7169 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7170 FW_PFVF_CMD_NIQ_V(rxq)); 7171 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7172 FW_PFVF_CMD_PMASK_V(pmask) | 7173 FW_PFVF_CMD_NEQ_V(txq)); 7174 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7175 FW_PFVF_CMD_NVI_V(vi) | 7176 FW_PFVF_CMD_NEXACTF_V(nexact)); 7177 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7178 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7179 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7180 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7181 } 7182 7183 /** 7184 * t4_alloc_vi - allocate a virtual interface 7185 * @adap: the adapter 7186 * @mbox: mailbox to use for the FW command 7187 * @port: physical port associated with the VI 7188 * @pf: the PF owning the VI 7189 * @vf: the VF owning the VI 7190 * @nmac: number of MAC addresses needed (1 to 5) 7191 * @mac: the MAC addresses of the VI 7192 * @rss_size: size of RSS table slice associated with this VI 7193 * 7194 * Allocates a virtual interface for the given physical port. If @mac is 7195 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7196 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7197 * stored consecutively so the space needed is @nmac * 6 bytes. 7198 * Returns a negative error number or the non-negative VI id. 7199 */ 7200 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7201 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7202 unsigned int *rss_size) 7203 { 7204 int ret; 7205 struct fw_vi_cmd c; 7206 7207 memset(&c, 0, sizeof(c)); 7208 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7209 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7210 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7211 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7212 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7213 c.nmac = nmac - 1; 7214 7215 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7216 if (ret) 7217 return ret; 7218 7219 if (mac) { 7220 memcpy(mac, c.mac, sizeof(c.mac)); 7221 switch (nmac) { 7222 case 5: 7223 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7224 case 4: 7225 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7226 case 3: 7227 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7228 case 2: 7229 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7230 } 7231 } 7232 if (rss_size) 7233 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7234 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7235 } 7236 7237 /** 7238 * t4_free_vi - free a virtual interface 7239 * @adap: the adapter 7240 * @mbox: mailbox to use for the FW command 7241 * @pf: the PF owning the VI 7242 * @vf: the VF owning the VI 7243 * @viid: virtual interface identifiler 7244 * 7245 * Free a previously allocated virtual interface. 7246 */ 7247 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7248 unsigned int vf, unsigned int viid) 7249 { 7250 struct fw_vi_cmd c; 7251 7252 memset(&c, 0, sizeof(c)); 7253 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7254 FW_CMD_REQUEST_F | 7255 FW_CMD_EXEC_F | 7256 FW_VI_CMD_PFN_V(pf) | 7257 FW_VI_CMD_VFN_V(vf)); 7258 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7259 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7260 7261 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7262 } 7263 7264 /** 7265 * t4_set_rxmode - set Rx properties of a virtual interface 7266 * @adap: the adapter 7267 * @mbox: mailbox to use for the FW command 7268 * @viid: the VI id 7269 * @mtu: the new MTU or -1 7270 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7271 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7272 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7273 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7274 * @sleep_ok: if true we may sleep while awaiting command completion 7275 * 7276 * Sets Rx properties of a virtual interface. 7277 */ 7278 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7279 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7280 bool sleep_ok) 7281 { 7282 struct fw_vi_rxmode_cmd c; 7283 7284 /* convert to FW values */ 7285 if (mtu < 0) 7286 mtu = FW_RXMODE_MTU_NO_CHG; 7287 if (promisc < 0) 7288 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7289 if (all_multi < 0) 7290 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7291 if (bcast < 0) 7292 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7293 if (vlanex < 0) 7294 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7295 7296 memset(&c, 0, sizeof(c)); 7297 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7298 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7299 FW_VI_RXMODE_CMD_VIID_V(viid)); 7300 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7301 c.mtu_to_vlanexen = 7302 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7303 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7304 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7305 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7306 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7307 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7308 } 7309 7310 /** 7311 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7312 * @adap: the adapter 7313 * @mbox: mailbox to use for the FW command 7314 * @viid: the VI id 7315 * @free: if true any existing filters for this VI id are first removed 7316 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7317 * @addr: the MAC address(es) 7318 * @idx: where to store the index of each allocated filter 7319 * @hash: pointer to hash address filter bitmap 7320 * @sleep_ok: call is allowed to sleep 7321 * 7322 * Allocates an exact-match filter for each of the supplied addresses and 7323 * sets it to the corresponding address. If @idx is not %NULL it should 7324 * have at least @naddr entries, each of which will be set to the index of 7325 * the filter allocated for the corresponding MAC address. If a filter 7326 * could not be allocated for an address its index is set to 0xffff. 7327 * If @hash is not %NULL addresses that fail to allocate an exact filter 7328 * are hashed and update the hash filter bitmap pointed at by @hash. 7329 * 7330 * Returns a negative error number or the number of filters allocated. 7331 */ 7332 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7333 unsigned int viid, bool free, unsigned int naddr, 7334 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7335 { 7336 int offset, ret = 0; 7337 struct fw_vi_mac_cmd c; 7338 unsigned int nfilters = 0; 7339 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7340 unsigned int rem = naddr; 7341 7342 if (naddr > max_naddr) 7343 return -EINVAL; 7344 7345 for (offset = 0; offset < naddr ; /**/) { 7346 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7347 rem : ARRAY_SIZE(c.u.exact)); 7348 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7349 u.exact[fw_naddr]), 16); 7350 struct fw_vi_mac_exact *p; 7351 int i; 7352 7353 memset(&c, 0, sizeof(c)); 7354 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7355 FW_CMD_REQUEST_F | 7356 FW_CMD_WRITE_F | 7357 FW_CMD_EXEC_V(free) | 7358 FW_VI_MAC_CMD_VIID_V(viid)); 7359 c.freemacs_to_len16 = 7360 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7361 FW_CMD_LEN16_V(len16)); 7362 7363 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7364 p->valid_to_idx = 7365 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7366 FW_VI_MAC_CMD_IDX_V( 7367 FW_VI_MAC_ADD_MAC)); 7368 memcpy(p->macaddr, addr[offset + i], 7369 sizeof(p->macaddr)); 7370 } 7371 7372 /* It's okay if we run out of space in our MAC address arena. 7373 * Some of the addresses we submit may get stored so we need 7374 * to run through the reply to see what the results were ... 7375 */ 7376 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7377 if (ret && ret != -FW_ENOMEM) 7378 break; 7379 7380 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7381 u16 index = FW_VI_MAC_CMD_IDX_G( 7382 be16_to_cpu(p->valid_to_idx)); 7383 7384 if (idx) 7385 idx[offset + i] = (index >= max_naddr ? 7386 0xffff : index); 7387 if (index < max_naddr) 7388 nfilters++; 7389 else if (hash) 7390 *hash |= (1ULL << 7391 hash_mac_addr(addr[offset + i])); 7392 } 7393 7394 free = false; 7395 offset += fw_naddr; 7396 rem -= fw_naddr; 7397 } 7398 7399 if (ret == 0 || ret == -FW_ENOMEM) 7400 ret = nfilters; 7401 return ret; 7402 } 7403 7404 /** 7405 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7406 * @adap: the adapter 7407 * @mbox: mailbox to use for the FW command 7408 * @viid: the VI id 7409 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7410 * @addr: the MAC address(es) 7411 * @sleep_ok: call is allowed to sleep 7412 * 7413 * Frees the exact-match filter for each of the supplied addresses 7414 * 7415 * Returns a negative error number or the number of filters freed. 7416 */ 7417 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7418 unsigned int viid, unsigned int naddr, 7419 const u8 **addr, bool sleep_ok) 7420 { 7421 int offset, ret = 0; 7422 struct fw_vi_mac_cmd c; 7423 unsigned int nfilters = 0; 7424 unsigned int max_naddr = is_t4(adap->params.chip) ? 7425 NUM_MPS_CLS_SRAM_L_INSTANCES : 7426 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7427 unsigned int rem = naddr; 7428 7429 if (naddr > max_naddr) 7430 return -EINVAL; 7431 7432 for (offset = 0; offset < (int)naddr ; /**/) { 7433 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7434 ? rem 7435 : ARRAY_SIZE(c.u.exact)); 7436 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7437 u.exact[fw_naddr]), 16); 7438 struct fw_vi_mac_exact *p; 7439 int i; 7440 7441 memset(&c, 0, sizeof(c)); 7442 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7443 FW_CMD_REQUEST_F | 7444 FW_CMD_WRITE_F | 7445 FW_CMD_EXEC_V(0) | 7446 FW_VI_MAC_CMD_VIID_V(viid)); 7447 c.freemacs_to_len16 = 7448 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7449 FW_CMD_LEN16_V(len16)); 7450 7451 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7452 p->valid_to_idx = cpu_to_be16( 7453 FW_VI_MAC_CMD_VALID_F | 7454 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 7455 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7456 } 7457 7458 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7459 if (ret) 7460 break; 7461 7462 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7463 u16 index = FW_VI_MAC_CMD_IDX_G( 7464 be16_to_cpu(p->valid_to_idx)); 7465 7466 if (index < max_naddr) 7467 nfilters++; 7468 } 7469 7470 offset += fw_naddr; 7471 rem -= fw_naddr; 7472 } 7473 7474 if (ret == 0) 7475 ret = nfilters; 7476 return ret; 7477 } 7478 7479 /** 7480 * t4_change_mac - modifies the exact-match filter for a MAC address 7481 * @adap: the adapter 7482 * @mbox: mailbox to use for the FW command 7483 * @viid: the VI id 7484 * @idx: index of existing filter for old value of MAC address, or -1 7485 * @addr: the new MAC address value 7486 * @persist: whether a new MAC allocation should be persistent 7487 * @add_smt: if true also add the address to the HW SMT 7488 * 7489 * Modifies an exact-match filter and sets it to the new MAC address. 7490 * Note that in general it is not possible to modify the value of a given 7491 * filter so the generic way to modify an address filter is to free the one 7492 * being used by the old address value and allocate a new filter for the 7493 * new address value. @idx can be -1 if the address is a new addition. 7494 * 7495 * Returns a negative error number or the index of the filter with the new 7496 * MAC value. 7497 */ 7498 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7499 int idx, const u8 *addr, bool persist, bool add_smt) 7500 { 7501 int ret, mode; 7502 struct fw_vi_mac_cmd c; 7503 struct fw_vi_mac_exact *p = c.u.exact; 7504 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 7505 7506 if (idx < 0) /* new allocation */ 7507 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 7508 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 7509 7510 memset(&c, 0, sizeof(c)); 7511 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7512 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7513 FW_VI_MAC_CMD_VIID_V(viid)); 7514 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 7515 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7516 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 7517 FW_VI_MAC_CMD_IDX_V(idx)); 7518 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7519 7520 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7521 if (ret == 0) { 7522 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7523 if (ret >= max_mac_addr) 7524 ret = -ENOMEM; 7525 } 7526 return ret; 7527 } 7528 7529 /** 7530 * t4_set_addr_hash - program the MAC inexact-match hash filter 7531 * @adap: the adapter 7532 * @mbox: mailbox to use for the FW command 7533 * @viid: the VI id 7534 * @ucast: whether the hash filter should also match unicast addresses 7535 * @vec: the value to be written to the hash filter 7536 * @sleep_ok: call is allowed to sleep 7537 * 7538 * Sets the 64-bit inexact-match hash filter for a virtual interface. 7539 */ 7540 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 7541 bool ucast, u64 vec, bool sleep_ok) 7542 { 7543 struct fw_vi_mac_cmd c; 7544 7545 memset(&c, 0, sizeof(c)); 7546 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7547 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7548 FW_VI_ENABLE_CMD_VIID_V(viid)); 7549 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 7550 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 7551 FW_CMD_LEN16_V(1)); 7552 c.u.hash.hashvec = cpu_to_be64(vec); 7553 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7554 } 7555 7556 /** 7557 * t4_enable_vi_params - enable/disable a virtual interface 7558 * @adap: the adapter 7559 * @mbox: mailbox to use for the FW command 7560 * @viid: the VI id 7561 * @rx_en: 1=enable Rx, 0=disable Rx 7562 * @tx_en: 1=enable Tx, 0=disable Tx 7563 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 7564 * 7565 * Enables/disables a virtual interface. Note that setting DCB Enable 7566 * only makes sense when enabling a Virtual Interface ... 7567 */ 7568 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 7569 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 7570 { 7571 struct fw_vi_enable_cmd c; 7572 7573 memset(&c, 0, sizeof(c)); 7574 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7575 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7576 FW_VI_ENABLE_CMD_VIID_V(viid)); 7577 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 7578 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 7579 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 7580 FW_LEN16(c)); 7581 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 7582 } 7583 7584 /** 7585 * t4_enable_vi - enable/disable a virtual interface 7586 * @adap: the adapter 7587 * @mbox: mailbox to use for the FW command 7588 * @viid: the VI id 7589 * @rx_en: 1=enable Rx, 0=disable Rx 7590 * @tx_en: 1=enable Tx, 0=disable Tx 7591 * 7592 * Enables/disables a virtual interface. 7593 */ 7594 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 7595 bool rx_en, bool tx_en) 7596 { 7597 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 7598 } 7599 7600 /** 7601 * t4_identify_port - identify a VI's port by blinking its LED 7602 * @adap: the adapter 7603 * @mbox: mailbox to use for the FW command 7604 * @viid: the VI id 7605 * @nblinks: how many times to blink LED at 2.5 Hz 7606 * 7607 * Identifies a VI's port by blinking its LED. 7608 */ 7609 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 7610 unsigned int nblinks) 7611 { 7612 struct fw_vi_enable_cmd c; 7613 7614 memset(&c, 0, sizeof(c)); 7615 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 7616 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7617 FW_VI_ENABLE_CMD_VIID_V(viid)); 7618 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 7619 c.blinkdur = cpu_to_be16(nblinks); 7620 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7621 } 7622 7623 /** 7624 * t4_iq_stop - stop an ingress queue and its FLs 7625 * @adap: the adapter 7626 * @mbox: mailbox to use for the FW command 7627 * @pf: the PF owning the queues 7628 * @vf: the VF owning the queues 7629 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 7630 * @iqid: ingress queue id 7631 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7632 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7633 * 7634 * Stops an ingress queue and its associated FLs, if any. This causes 7635 * any current or future data/messages destined for these queues to be 7636 * tossed. 7637 */ 7638 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 7639 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7640 unsigned int fl0id, unsigned int fl1id) 7641 { 7642 struct fw_iq_cmd c; 7643 7644 memset(&c, 0, sizeof(c)); 7645 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7646 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7647 FW_IQ_CMD_VFN_V(vf)); 7648 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 7649 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7650 c.iqid = cpu_to_be16(iqid); 7651 c.fl0id = cpu_to_be16(fl0id); 7652 c.fl1id = cpu_to_be16(fl1id); 7653 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7654 } 7655 7656 /** 7657 * t4_iq_free - free an ingress queue and its FLs 7658 * @adap: the adapter 7659 * @mbox: mailbox to use for the FW command 7660 * @pf: the PF owning the queues 7661 * @vf: the VF owning the queues 7662 * @iqtype: the ingress queue type 7663 * @iqid: ingress queue id 7664 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7665 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7666 * 7667 * Frees an ingress queue and its associated FLs, if any. 7668 */ 7669 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7670 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7671 unsigned int fl0id, unsigned int fl1id) 7672 { 7673 struct fw_iq_cmd c; 7674 7675 memset(&c, 0, sizeof(c)); 7676 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7677 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7678 FW_IQ_CMD_VFN_V(vf)); 7679 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 7680 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7681 c.iqid = cpu_to_be16(iqid); 7682 c.fl0id = cpu_to_be16(fl0id); 7683 c.fl1id = cpu_to_be16(fl1id); 7684 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7685 } 7686 7687 /** 7688 * t4_eth_eq_free - free an Ethernet egress queue 7689 * @adap: the adapter 7690 * @mbox: mailbox to use for the FW command 7691 * @pf: the PF owning the queue 7692 * @vf: the VF owning the queue 7693 * @eqid: egress queue id 7694 * 7695 * Frees an Ethernet egress queue. 7696 */ 7697 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7698 unsigned int vf, unsigned int eqid) 7699 { 7700 struct fw_eq_eth_cmd c; 7701 7702 memset(&c, 0, sizeof(c)); 7703 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 7704 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7705 FW_EQ_ETH_CMD_PFN_V(pf) | 7706 FW_EQ_ETH_CMD_VFN_V(vf)); 7707 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 7708 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 7709 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7710 } 7711 7712 /** 7713 * t4_ctrl_eq_free - free a control egress queue 7714 * @adap: the adapter 7715 * @mbox: mailbox to use for the FW command 7716 * @pf: the PF owning the queue 7717 * @vf: the VF owning the queue 7718 * @eqid: egress queue id 7719 * 7720 * Frees a control egress queue. 7721 */ 7722 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7723 unsigned int vf, unsigned int eqid) 7724 { 7725 struct fw_eq_ctrl_cmd c; 7726 7727 memset(&c, 0, sizeof(c)); 7728 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 7729 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7730 FW_EQ_CTRL_CMD_PFN_V(pf) | 7731 FW_EQ_CTRL_CMD_VFN_V(vf)); 7732 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 7733 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 7734 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7735 } 7736 7737 /** 7738 * t4_ofld_eq_free - free an offload egress queue 7739 * @adap: the adapter 7740 * @mbox: mailbox to use for the FW command 7741 * @pf: the PF owning the queue 7742 * @vf: the VF owning the queue 7743 * @eqid: egress queue id 7744 * 7745 * Frees a control egress queue. 7746 */ 7747 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7748 unsigned int vf, unsigned int eqid) 7749 { 7750 struct fw_eq_ofld_cmd c; 7751 7752 memset(&c, 0, sizeof(c)); 7753 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 7754 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7755 FW_EQ_OFLD_CMD_PFN_V(pf) | 7756 FW_EQ_OFLD_CMD_VFN_V(vf)); 7757 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 7758 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 7759 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7760 } 7761 7762 /** 7763 * t4_link_down_rc_str - return a string for a Link Down Reason Code 7764 * @adap: the adapter 7765 * @link_down_rc: Link Down Reason Code 7766 * 7767 * Returns a string representation of the Link Down Reason Code. 7768 */ 7769 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 7770 { 7771 static const char * const reason[] = { 7772 "Link Down", 7773 "Remote Fault", 7774 "Auto-negotiation Failure", 7775 "Reserved", 7776 "Insufficient Airflow", 7777 "Unable To Determine Reason", 7778 "No RX Signal Detected", 7779 "Reserved", 7780 }; 7781 7782 if (link_down_rc >= ARRAY_SIZE(reason)) 7783 return "Bad Reason Code"; 7784 7785 return reason[link_down_rc]; 7786 } 7787 7788 /** 7789 * Return the highest speed set in the port capabilities, in Mb/s. 7790 */ 7791 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 7792 { 7793 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 7794 do { \ 7795 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 7796 return __speed; \ 7797 } while (0) 7798 7799 TEST_SPEED_RETURN(400G, 400000); 7800 TEST_SPEED_RETURN(200G, 200000); 7801 TEST_SPEED_RETURN(100G, 100000); 7802 TEST_SPEED_RETURN(50G, 50000); 7803 TEST_SPEED_RETURN(40G, 40000); 7804 TEST_SPEED_RETURN(25G, 25000); 7805 TEST_SPEED_RETURN(10G, 10000); 7806 TEST_SPEED_RETURN(1G, 1000); 7807 TEST_SPEED_RETURN(100M, 100); 7808 7809 #undef TEST_SPEED_RETURN 7810 7811 return 0; 7812 } 7813 7814 /** 7815 * fwcap_to_fwspeed - return highest speed in Port Capabilities 7816 * @acaps: advertised Port Capabilities 7817 * 7818 * Get the highest speed for the port from the advertised Port 7819 * Capabilities. It will be either the highest speed from the list of 7820 * speeds or whatever user has set using ethtool. 7821 */ 7822 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 7823 { 7824 #define TEST_SPEED_RETURN(__caps_speed) \ 7825 do { \ 7826 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 7827 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 7828 } while (0) 7829 7830 TEST_SPEED_RETURN(400G); 7831 TEST_SPEED_RETURN(200G); 7832 TEST_SPEED_RETURN(100G); 7833 TEST_SPEED_RETURN(50G); 7834 TEST_SPEED_RETURN(40G); 7835 TEST_SPEED_RETURN(25G); 7836 TEST_SPEED_RETURN(10G); 7837 TEST_SPEED_RETURN(1G); 7838 TEST_SPEED_RETURN(100M); 7839 7840 #undef TEST_SPEED_RETURN 7841 7842 return 0; 7843 } 7844 7845 /** 7846 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 7847 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 7848 * 7849 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 7850 * 32-bit Port Capabilities value. 7851 */ 7852 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 7853 { 7854 fw_port_cap32_t linkattr = 0; 7855 7856 /* Unfortunately the format of the Link Status in the old 7857 * 16-bit Port Information message isn't the same as the 7858 * 16-bit Port Capabilities bitfield used everywhere else ... 7859 */ 7860 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 7861 linkattr |= FW_PORT_CAP32_FC_RX; 7862 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 7863 linkattr |= FW_PORT_CAP32_FC_TX; 7864 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 7865 linkattr |= FW_PORT_CAP32_SPEED_100M; 7866 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 7867 linkattr |= FW_PORT_CAP32_SPEED_1G; 7868 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 7869 linkattr |= FW_PORT_CAP32_SPEED_10G; 7870 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 7871 linkattr |= FW_PORT_CAP32_SPEED_25G; 7872 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 7873 linkattr |= FW_PORT_CAP32_SPEED_40G; 7874 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 7875 linkattr |= FW_PORT_CAP32_SPEED_100G; 7876 7877 return linkattr; 7878 } 7879 7880 /** 7881 * t4_handle_get_port_info - process a FW reply message 7882 * @pi: the port info 7883 * @rpl: start of the FW message 7884 * 7885 * Processes a GET_PORT_INFO FW reply message. 7886 */ 7887 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 7888 { 7889 const struct fw_port_cmd *cmd = (const void *)rpl; 7890 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 7891 struct adapter *adapter = pi->adapter; 7892 struct link_config *lc = &pi->link_cfg; 7893 int link_ok, linkdnrc; 7894 enum fw_port_type port_type; 7895 enum fw_port_module_type mod_type; 7896 unsigned int speed, fc, fec; 7897 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 7898 7899 /* Extract the various fields from the Port Information message. 7900 */ 7901 switch (action) { 7902 case FW_PORT_ACTION_GET_PORT_INFO: { 7903 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 7904 7905 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 7906 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 7907 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 7908 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 7909 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 7910 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 7911 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 7912 linkattr = lstatus_to_fwcap(lstatus); 7913 break; 7914 } 7915 7916 case FW_PORT_ACTION_GET_PORT_INFO32: { 7917 u32 lstatus32; 7918 7919 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 7920 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 7921 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 7922 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 7923 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 7924 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 7925 acaps = be32_to_cpu(cmd->u.info32.acaps32); 7926 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 7927 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 7928 break; 7929 } 7930 7931 default: 7932 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 7933 be32_to_cpu(cmd->action_to_len16)); 7934 return; 7935 } 7936 7937 fec = fwcap_to_cc_fec(acaps); 7938 fc = fwcap_to_cc_pause(linkattr); 7939 speed = fwcap_to_speed(linkattr); 7940 7941 if (mod_type != pi->mod_type) { 7942 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 7943 * various fundamental Port Capabilities which used to be 7944 * immutable can now change radically. We can now have 7945 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 7946 * all change based on what Transceiver Module is inserted. 7947 * So we need to record the Physical "Port" Capabilities on 7948 * every Transceiver Module change. 7949 */ 7950 lc->pcaps = pcaps; 7951 7952 /* When a new Transceiver Module is inserted, the Firmware 7953 * will examine its i2c EPROM to determine its type and 7954 * general operating parameters including things like Forward 7955 * Error Control, etc. Various IEEE 802.3 standards dictate 7956 * how to interpret these i2c values to determine default 7957 * "sutomatic" settings. We record these for future use when 7958 * the user explicitly requests these standards-based values. 7959 */ 7960 lc->def_acaps = acaps; 7961 7962 /* Some versions of the early T6 Firmware "cheated" when 7963 * handling different Transceiver Modules by changing the 7964 * underlaying Port Type reported to the Host Drivers. As 7965 * such we need to capture whatever Port Type the Firmware 7966 * sends us and record it in case it's different from what we 7967 * were told earlier. Unfortunately, since Firmware is 7968 * forever, we'll need to keep this code here forever, but in 7969 * later T6 Firmware it should just be an assignment of the 7970 * same value already recorded. 7971 */ 7972 pi->port_type = port_type; 7973 7974 pi->mod_type = mod_type; 7975 t4_os_portmod_changed(adapter, pi->port_id); 7976 } 7977 7978 if (link_ok != lc->link_ok || speed != lc->speed || 7979 fc != lc->fc || fec != lc->fec) { /* something changed */ 7980 if (!link_ok && lc->link_ok) { 7981 lc->link_down_rc = linkdnrc; 7982 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n", 7983 pi->tx_chan, t4_link_down_rc_str(linkdnrc)); 7984 } 7985 lc->link_ok = link_ok; 7986 lc->speed = speed; 7987 lc->fc = fc; 7988 lc->fec = fec; 7989 7990 lc->lpacaps = lpacaps; 7991 lc->acaps = acaps & ADVERT_MASK; 7992 7993 if (lc->acaps & FW_PORT_CAP32_ANEG) { 7994 lc->autoneg = AUTONEG_ENABLE; 7995 } else { 7996 /* When Autoneg is disabled, user needs to set 7997 * single speed. 7998 * Similar to cxgb4_ethtool.c: set_link_ksettings 7999 */ 8000 lc->acaps = 0; 8001 lc->speed_caps = fwcap_to_fwspeed(acaps); 8002 lc->autoneg = AUTONEG_DISABLE; 8003 } 8004 8005 t4_os_link_changed(adapter, pi->port_id, link_ok); 8006 } 8007 } 8008 8009 /** 8010 * t4_update_port_info - retrieve and update port information if changed 8011 * @pi: the port_info 8012 * 8013 * We issue a Get Port Information Command to the Firmware and, if 8014 * successful, we check to see if anything is different from what we 8015 * last recorded and update things accordingly. 8016 */ 8017 int t4_update_port_info(struct port_info *pi) 8018 { 8019 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8020 struct fw_port_cmd port_cmd; 8021 int ret; 8022 8023 memset(&port_cmd, 0, sizeof(port_cmd)); 8024 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8025 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8026 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8027 port_cmd.action_to_len16 = cpu_to_be32( 8028 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8029 ? FW_PORT_ACTION_GET_PORT_INFO 8030 : FW_PORT_ACTION_GET_PORT_INFO32) | 8031 FW_LEN16(port_cmd)); 8032 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8033 &port_cmd, sizeof(port_cmd), &port_cmd); 8034 if (ret) 8035 return ret; 8036 8037 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8038 return 0; 8039 } 8040 8041 /** 8042 * t4_get_link_params - retrieve basic link parameters for given port 8043 * @pi: the port 8044 * @link_okp: value return pointer for link up/down 8045 * @speedp: value return pointer for speed (Mb/s) 8046 * @mtup: value return pointer for mtu 8047 * 8048 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8049 * and MTU for a specified port. A negative error is returned on 8050 * failure; 0 on success. 8051 */ 8052 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8053 unsigned int *speedp, unsigned int *mtup) 8054 { 8055 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8056 struct fw_port_cmd port_cmd; 8057 unsigned int action, link_ok, speed, mtu; 8058 fw_port_cap32_t linkattr; 8059 int ret; 8060 8061 memset(&port_cmd, 0, sizeof(port_cmd)); 8062 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8063 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8064 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8065 action = (fw_caps == FW_CAPS16 8066 ? FW_PORT_ACTION_GET_PORT_INFO 8067 : FW_PORT_ACTION_GET_PORT_INFO32); 8068 port_cmd.action_to_len16 = cpu_to_be32( 8069 FW_PORT_CMD_ACTION_V(action) | 8070 FW_LEN16(port_cmd)); 8071 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8072 &port_cmd, sizeof(port_cmd), &port_cmd); 8073 if (ret) 8074 return ret; 8075 8076 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8077 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8078 8079 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8080 linkattr = lstatus_to_fwcap(lstatus); 8081 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8082 } else { 8083 u32 lstatus32 = 8084 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8085 8086 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8087 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8088 mtu = FW_PORT_CMD_MTU32_G( 8089 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8090 } 8091 speed = fwcap_to_speed(linkattr); 8092 8093 *link_okp = link_ok; 8094 *speedp = fwcap_to_speed(linkattr); 8095 *mtup = mtu; 8096 8097 return 0; 8098 } 8099 8100 /** 8101 * t4_handle_fw_rpl - process a FW reply message 8102 * @adap: the adapter 8103 * @rpl: start of the FW message 8104 * 8105 * Processes a FW message, such as link state change messages. 8106 */ 8107 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8108 { 8109 u8 opcode = *(const u8 *)rpl; 8110 8111 /* This might be a port command ... this simplifies the following 8112 * conditionals ... We can get away with pre-dereferencing 8113 * action_to_len16 because it's in the first 16 bytes and all messages 8114 * will be at least that long. 8115 */ 8116 const struct fw_port_cmd *p = (const void *)rpl; 8117 unsigned int action = 8118 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8119 8120 if (opcode == FW_PORT_CMD && 8121 (action == FW_PORT_ACTION_GET_PORT_INFO || 8122 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8123 int i; 8124 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8125 struct port_info *pi = NULL; 8126 8127 for_each_port(adap, i) { 8128 pi = adap2pinfo(adap, i); 8129 if (pi->tx_chan == chan) 8130 break; 8131 } 8132 8133 t4_handle_get_port_info(pi, rpl); 8134 } else { 8135 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8136 opcode); 8137 return -EINVAL; 8138 } 8139 return 0; 8140 } 8141 8142 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8143 { 8144 u16 val; 8145 8146 if (pci_is_pcie(adapter->pdev)) { 8147 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8148 p->speed = val & PCI_EXP_LNKSTA_CLS; 8149 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8150 } 8151 } 8152 8153 /** 8154 * init_link_config - initialize a link's SW state 8155 * @lc: pointer to structure holding the link state 8156 * @pcaps: link Port Capabilities 8157 * @acaps: link current Advertised Port Capabilities 8158 * 8159 * Initializes the SW state maintained for each link, including the link's 8160 * capabilities and default speed/flow-control/autonegotiation settings. 8161 */ 8162 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8163 fw_port_cap32_t acaps) 8164 { 8165 lc->pcaps = pcaps; 8166 lc->def_acaps = acaps; 8167 lc->lpacaps = 0; 8168 lc->speed_caps = 0; 8169 lc->speed = 0; 8170 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8171 8172 /* For Forward Error Control, we default to whatever the Firmware 8173 * tells us the Link is currently advertising. 8174 */ 8175 lc->requested_fec = FEC_AUTO; 8176 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8177 8178 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8179 lc->acaps = lc->pcaps & ADVERT_MASK; 8180 lc->autoneg = AUTONEG_ENABLE; 8181 lc->requested_fc |= PAUSE_AUTONEG; 8182 } else { 8183 lc->acaps = 0; 8184 lc->autoneg = AUTONEG_DISABLE; 8185 } 8186 } 8187 8188 #define CIM_PF_NOACCESS 0xeeeeeeee 8189 8190 int t4_wait_dev_ready(void __iomem *regs) 8191 { 8192 u32 whoami; 8193 8194 whoami = readl(regs + PL_WHOAMI_A); 8195 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8196 return 0; 8197 8198 msleep(500); 8199 whoami = readl(regs + PL_WHOAMI_A); 8200 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8201 } 8202 8203 struct flash_desc { 8204 u32 vendor_and_model_id; 8205 u32 size_mb; 8206 }; 8207 8208 static int get_flash_params(struct adapter *adap) 8209 { 8210 /* Table for non-Numonix supported flash parts. Numonix parts are left 8211 * to the preexisting code. All flash parts have 64KB sectors. 8212 */ 8213 static struct flash_desc supported_flash[] = { 8214 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8215 }; 8216 8217 int ret; 8218 u32 info; 8219 8220 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8221 if (!ret) 8222 ret = sf1_read(adap, 3, 0, 1, &info); 8223 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8224 if (ret) 8225 return ret; 8226 8227 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret) 8228 if (supported_flash[ret].vendor_and_model_id == info) { 8229 adap->params.sf_size = supported_flash[ret].size_mb; 8230 adap->params.sf_nsec = 8231 adap->params.sf_size / SF_SEC_SIZE; 8232 return 0; 8233 } 8234 8235 if ((info & 0xff) != 0x20) /* not a Numonix flash */ 8236 return -EINVAL; 8237 info >>= 16; /* log2 of size */ 8238 if (info >= 0x14 && info < 0x18) 8239 adap->params.sf_nsec = 1 << (info - 16); 8240 else if (info == 0x18) 8241 adap->params.sf_nsec = 64; 8242 else 8243 return -EINVAL; 8244 adap->params.sf_size = 1 << info; 8245 adap->params.sf_fw_start = 8246 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M; 8247 8248 if (adap->params.sf_size < FLASH_MIN_SIZE) 8249 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n", 8250 adap->params.sf_size, FLASH_MIN_SIZE); 8251 return 0; 8252 } 8253 8254 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range) 8255 { 8256 u16 val; 8257 u32 pcie_cap; 8258 8259 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 8260 if (pcie_cap) { 8261 pci_read_config_word(adapter->pdev, 8262 pcie_cap + PCI_EXP_DEVCTL2, &val); 8263 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT; 8264 val |= range; 8265 pci_write_config_word(adapter->pdev, 8266 pcie_cap + PCI_EXP_DEVCTL2, val); 8267 } 8268 } 8269 8270 /** 8271 * t4_prep_adapter - prepare SW and HW for operation 8272 * @adapter: the adapter 8273 * @reset: if true perform a HW reset 8274 * 8275 * Initialize adapter SW state for the various HW modules, set initial 8276 * values for some adapter tunables, take PHYs out of reset, and 8277 * initialize the MDIO interface. 8278 */ 8279 int t4_prep_adapter(struct adapter *adapter) 8280 { 8281 int ret, ver; 8282 uint16_t device_id; 8283 u32 pl_rev; 8284 8285 get_pci_mode(adapter, &adapter->params.pci); 8286 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 8287 8288 ret = get_flash_params(adapter); 8289 if (ret < 0) { 8290 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 8291 return ret; 8292 } 8293 8294 /* Retrieve adapter's device ID 8295 */ 8296 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 8297 ver = device_id >> 12; 8298 adapter->params.chip = 0; 8299 switch (ver) { 8300 case CHELSIO_T4: 8301 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 8302 adapter->params.arch.sge_fl_db = DBPRIO_F; 8303 adapter->params.arch.mps_tcam_size = 8304 NUM_MPS_CLS_SRAM_L_INSTANCES; 8305 adapter->params.arch.mps_rplc_size = 128; 8306 adapter->params.arch.nchan = NCHAN; 8307 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8308 adapter->params.arch.vfcount = 128; 8309 /* Congestion map is for 4 channels so that 8310 * MPS can have 4 priority per port. 8311 */ 8312 adapter->params.arch.cng_ch_bits_log = 2; 8313 break; 8314 case CHELSIO_T5: 8315 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 8316 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 8317 adapter->params.arch.mps_tcam_size = 8318 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8319 adapter->params.arch.mps_rplc_size = 128; 8320 adapter->params.arch.nchan = NCHAN; 8321 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8322 adapter->params.arch.vfcount = 128; 8323 adapter->params.arch.cng_ch_bits_log = 2; 8324 break; 8325 case CHELSIO_T6: 8326 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 8327 adapter->params.arch.sge_fl_db = 0; 8328 adapter->params.arch.mps_tcam_size = 8329 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8330 adapter->params.arch.mps_rplc_size = 256; 8331 adapter->params.arch.nchan = 2; 8332 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 8333 adapter->params.arch.vfcount = 256; 8334 /* Congestion map will be for 2 channels so that 8335 * MPS can have 8 priority per port. 8336 */ 8337 adapter->params.arch.cng_ch_bits_log = 3; 8338 break; 8339 default: 8340 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 8341 device_id); 8342 return -EINVAL; 8343 } 8344 8345 adapter->params.cim_la_size = CIMLA_SIZE; 8346 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8347 8348 /* 8349 * Default port for debugging in case we can't reach FW. 8350 */ 8351 adapter->params.nports = 1; 8352 adapter->params.portvec = 1; 8353 adapter->params.vpd.cclk = 50000; 8354 8355 /* Set pci completion timeout value to 4 seconds. */ 8356 set_pcie_completion_timeout(adapter, 0xd); 8357 return 0; 8358 } 8359 8360 /** 8361 * t4_shutdown_adapter - shut down adapter, host & wire 8362 * @adapter: the adapter 8363 * 8364 * Perform an emergency shutdown of the adapter and stop it from 8365 * continuing any further communication on the ports or DMA to the 8366 * host. This is typically used when the adapter and/or firmware 8367 * have crashed and we want to prevent any further accidental 8368 * communication with the rest of the world. This will also force 8369 * the port Link Status to go down -- if register writes work -- 8370 * which should help our peers figure out that we're down. 8371 */ 8372 int t4_shutdown_adapter(struct adapter *adapter) 8373 { 8374 int port; 8375 8376 t4_intr_disable(adapter); 8377 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 8378 for_each_port(adapter, port) { 8379 u32 a_port_cfg = is_t4(adapter->params.chip) ? 8380 PORT_REG(port, XGMAC_PORT_CFG_A) : 8381 T5_PORT_REG(port, MAC_PORT_CFG_A); 8382 8383 t4_write_reg(adapter, a_port_cfg, 8384 t4_read_reg(adapter, a_port_cfg) 8385 & ~SIGNAL_DET_V(1)); 8386 } 8387 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 8388 8389 return 0; 8390 } 8391 8392 /** 8393 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 8394 * @adapter: the adapter 8395 * @qid: the Queue ID 8396 * @qtype: the Ingress or Egress type for @qid 8397 * @user: true if this request is for a user mode queue 8398 * @pbar2_qoffset: BAR2 Queue Offset 8399 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 8400 * 8401 * Returns the BAR2 SGE Queue Registers information associated with the 8402 * indicated Absolute Queue ID. These are passed back in return value 8403 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 8404 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 8405 * 8406 * This may return an error which indicates that BAR2 SGE Queue 8407 * registers aren't available. If an error is not returned, then the 8408 * following values are returned: 8409 * 8410 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 8411 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 8412 * 8413 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 8414 * require the "Inferred Queue ID" ability may be used. E.g. the 8415 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 8416 * then these "Inferred Queue ID" register may not be used. 8417 */ 8418 int t4_bar2_sge_qregs(struct adapter *adapter, 8419 unsigned int qid, 8420 enum t4_bar2_qtype qtype, 8421 int user, 8422 u64 *pbar2_qoffset, 8423 unsigned int *pbar2_qid) 8424 { 8425 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 8426 u64 bar2_page_offset, bar2_qoffset; 8427 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 8428 8429 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 8430 if (!user && is_t4(adapter->params.chip)) 8431 return -EINVAL; 8432 8433 /* Get our SGE Page Size parameters. 8434 */ 8435 page_shift = adapter->params.sge.hps + 10; 8436 page_size = 1 << page_shift; 8437 8438 /* Get the right Queues per Page parameters for our Queue. 8439 */ 8440 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 8441 ? adapter->params.sge.eq_qpp 8442 : adapter->params.sge.iq_qpp); 8443 qpp_mask = (1 << qpp_shift) - 1; 8444 8445 /* Calculate the basics of the BAR2 SGE Queue register area: 8446 * o The BAR2 page the Queue registers will be in. 8447 * o The BAR2 Queue ID. 8448 * o The BAR2 Queue ID Offset into the BAR2 page. 8449 */ 8450 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 8451 bar2_qid = qid & qpp_mask; 8452 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 8453 8454 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 8455 * hardware will infer the Absolute Queue ID simply from the writes to 8456 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 8457 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 8458 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 8459 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 8460 * from the BAR2 Page and BAR2 Queue ID. 8461 * 8462 * One important censequence of this is that some BAR2 SGE registers 8463 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 8464 * there. But other registers synthesize the SGE Queue ID purely 8465 * from the writes to the registers -- the Write Combined Doorbell 8466 * Buffer is a good example. These BAR2 SGE Registers are only 8467 * available for those BAR2 SGE Register areas where the SGE Absolute 8468 * Queue ID can be inferred from simple writes. 8469 */ 8470 bar2_qoffset = bar2_page_offset; 8471 bar2_qinferred = (bar2_qid_offset < page_size); 8472 if (bar2_qinferred) { 8473 bar2_qoffset += bar2_qid_offset; 8474 bar2_qid = 0; 8475 } 8476 8477 *pbar2_qoffset = bar2_qoffset; 8478 *pbar2_qid = bar2_qid; 8479 return 0; 8480 } 8481 8482 /** 8483 * t4_init_devlog_params - initialize adapter->params.devlog 8484 * @adap: the adapter 8485 * 8486 * Initialize various fields of the adapter's Firmware Device Log 8487 * Parameters structure. 8488 */ 8489 int t4_init_devlog_params(struct adapter *adap) 8490 { 8491 struct devlog_params *dparams = &adap->params.devlog; 8492 u32 pf_dparams; 8493 unsigned int devlog_meminfo; 8494 struct fw_devlog_cmd devlog_cmd; 8495 int ret; 8496 8497 /* If we're dealing with newer firmware, the Device Log Paramerters 8498 * are stored in a designated register which allows us to access the 8499 * Device Log even if we can't talk to the firmware. 8500 */ 8501 pf_dparams = 8502 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 8503 if (pf_dparams) { 8504 unsigned int nentries, nentries128; 8505 8506 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 8507 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 8508 8509 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 8510 nentries = (nentries128 + 1) * 128; 8511 dparams->size = nentries * sizeof(struct fw_devlog_e); 8512 8513 return 0; 8514 } 8515 8516 /* Otherwise, ask the firmware for it's Device Log Parameters. 8517 */ 8518 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 8519 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 8520 FW_CMD_REQUEST_F | FW_CMD_READ_F); 8521 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 8522 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 8523 &devlog_cmd); 8524 if (ret) 8525 return ret; 8526 8527 devlog_meminfo = 8528 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 8529 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 8530 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 8531 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 8532 8533 return 0; 8534 } 8535 8536 /** 8537 * t4_init_sge_params - initialize adap->params.sge 8538 * @adapter: the adapter 8539 * 8540 * Initialize various fields of the adapter's SGE Parameters structure. 8541 */ 8542 int t4_init_sge_params(struct adapter *adapter) 8543 { 8544 struct sge_params *sge_params = &adapter->params.sge; 8545 u32 hps, qpp; 8546 unsigned int s_hps, s_qpp; 8547 8548 /* Extract the SGE Page Size for our PF. 8549 */ 8550 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 8551 s_hps = (HOSTPAGESIZEPF0_S + 8552 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 8553 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 8554 8555 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 8556 */ 8557 s_qpp = (QUEUESPERPAGEPF0_S + 8558 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 8559 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 8560 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 8561 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 8562 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 8563 8564 return 0; 8565 } 8566 8567 /** 8568 * t4_init_tp_params - initialize adap->params.tp 8569 * @adap: the adapter 8570 * 8571 * Initialize various fields of the adapter's TP Parameters structure. 8572 */ 8573 int t4_init_tp_params(struct adapter *adap) 8574 { 8575 int chan; 8576 u32 v; 8577 8578 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 8579 adap->params.tp.tre = TIMERRESOLUTION_G(v); 8580 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 8581 8582 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 8583 for (chan = 0; chan < NCHAN; chan++) 8584 adap->params.tp.tx_modq[chan] = chan; 8585 8586 /* Cache the adapter's Compressed Filter Mode and global Incress 8587 * Configuration. 8588 */ 8589 if (t4_use_ldst(adap)) { 8590 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1, 8591 TP_VLAN_PRI_MAP_A, 1); 8592 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1, 8593 TP_INGRESS_CONFIG_A, 1); 8594 } else { 8595 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 8596 &adap->params.tp.vlan_pri_map, 1, 8597 TP_VLAN_PRI_MAP_A); 8598 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 8599 &adap->params.tp.ingress_config, 1, 8600 TP_INGRESS_CONFIG_A); 8601 } 8602 /* For T6, cache the adapter's compressed error vector 8603 * and passing outer header info for encapsulated packets. 8604 */ 8605 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 8606 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 8607 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 8608 } 8609 8610 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 8611 * shift positions of several elements of the Compressed Filter Tuple 8612 * for this adapter which we need frequently ... 8613 */ 8614 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 8615 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 8616 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 8617 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 8618 PROTOCOL_F); 8619 8620 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 8621 * represents the presence of an Outer VLAN instead of a VNIC ID. 8622 */ 8623 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 8624 adap->params.tp.vnic_shift = -1; 8625 8626 return 0; 8627 } 8628 8629 /** 8630 * t4_filter_field_shift - calculate filter field shift 8631 * @adap: the adapter 8632 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 8633 * 8634 * Return the shift position of a filter field within the Compressed 8635 * Filter Tuple. The filter field is specified via its selection bit 8636 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 8637 */ 8638 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 8639 { 8640 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 8641 unsigned int sel; 8642 int field_shift; 8643 8644 if ((filter_mode & filter_sel) == 0) 8645 return -1; 8646 8647 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 8648 switch (filter_mode & sel) { 8649 case FCOE_F: 8650 field_shift += FT_FCOE_W; 8651 break; 8652 case PORT_F: 8653 field_shift += FT_PORT_W; 8654 break; 8655 case VNIC_ID_F: 8656 field_shift += FT_VNIC_ID_W; 8657 break; 8658 case VLAN_F: 8659 field_shift += FT_VLAN_W; 8660 break; 8661 case TOS_F: 8662 field_shift += FT_TOS_W; 8663 break; 8664 case PROTOCOL_F: 8665 field_shift += FT_PROTOCOL_W; 8666 break; 8667 case ETHERTYPE_F: 8668 field_shift += FT_ETHERTYPE_W; 8669 break; 8670 case MACMATCH_F: 8671 field_shift += FT_MACMATCH_W; 8672 break; 8673 case MPSHITTYPE_F: 8674 field_shift += FT_MPSHITTYPE_W; 8675 break; 8676 case FRAGMENTATION_F: 8677 field_shift += FT_FRAGMENTATION_W; 8678 break; 8679 } 8680 } 8681 return field_shift; 8682 } 8683 8684 int t4_init_rss_mode(struct adapter *adap, int mbox) 8685 { 8686 int i, ret; 8687 struct fw_rss_vi_config_cmd rvc; 8688 8689 memset(&rvc, 0, sizeof(rvc)); 8690 8691 for_each_port(adap, i) { 8692 struct port_info *p = adap2pinfo(adap, i); 8693 8694 rvc.op_to_viid = 8695 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 8696 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8697 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 8698 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 8699 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 8700 if (ret) 8701 return ret; 8702 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 8703 } 8704 return 0; 8705 } 8706 8707 /** 8708 * t4_init_portinfo - allocate a virtual interface and initialize port_info 8709 * @pi: the port_info 8710 * @mbox: mailbox to use for the FW command 8711 * @port: physical port associated with the VI 8712 * @pf: the PF owning the VI 8713 * @vf: the VF owning the VI 8714 * @mac: the MAC address of the VI 8715 * 8716 * Allocates a virtual interface for the given physical port. If @mac is 8717 * not %NULL it contains the MAC address of the VI as assigned by FW. 8718 * @mac should be large enough to hold an Ethernet address. 8719 * Returns < 0 on error. 8720 */ 8721 int t4_init_portinfo(struct port_info *pi, int mbox, 8722 int port, int pf, int vf, u8 mac[]) 8723 { 8724 struct adapter *adapter = pi->adapter; 8725 unsigned int fw_caps = adapter->params.fw_caps_support; 8726 struct fw_port_cmd cmd; 8727 unsigned int rss_size; 8728 enum fw_port_type port_type; 8729 int mdio_addr; 8730 fw_port_cap32_t pcaps, acaps; 8731 int ret; 8732 8733 /* If we haven't yet determined whether we're talking to Firmware 8734 * which knows the new 32-bit Port Capabilities, it's time to find 8735 * out now. This will also tell new Firmware to send us Port Status 8736 * Updates using the new 32-bit Port Capabilities version of the 8737 * Port Information message. 8738 */ 8739 if (fw_caps == FW_CAPS_UNKNOWN) { 8740 u32 param, val; 8741 8742 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 8743 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 8744 val = 1; 8745 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 8746 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 8747 adapter->params.fw_caps_support = fw_caps; 8748 } 8749 8750 memset(&cmd, 0, sizeof(cmd)); 8751 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8752 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8753 FW_PORT_CMD_PORTID_V(port)); 8754 cmd.action_to_len16 = cpu_to_be32( 8755 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8756 ? FW_PORT_ACTION_GET_PORT_INFO 8757 : FW_PORT_ACTION_GET_PORT_INFO32) | 8758 FW_LEN16(cmd)); 8759 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 8760 if (ret) 8761 return ret; 8762 8763 /* Extract the various fields from the Port Information message. 8764 */ 8765 if (fw_caps == FW_CAPS16) { 8766 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 8767 8768 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8769 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 8770 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 8771 : -1); 8772 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 8773 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 8774 } else { 8775 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 8776 8777 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8778 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 8779 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 8780 : -1); 8781 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 8782 acaps = be32_to_cpu(cmd.u.info32.acaps32); 8783 } 8784 8785 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 8786 if (ret < 0) 8787 return ret; 8788 8789 pi->viid = ret; 8790 pi->tx_chan = port; 8791 pi->lport = port; 8792 pi->rss_size = rss_size; 8793 8794 pi->port_type = port_type; 8795 pi->mdio_addr = mdio_addr; 8796 pi->mod_type = FW_PORT_MOD_TYPE_NA; 8797 8798 init_link_config(&pi->link_cfg, pcaps, acaps); 8799 return 0; 8800 } 8801 8802 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 8803 { 8804 u8 addr[6]; 8805 int ret, i, j = 0; 8806 8807 for_each_port(adap, i) { 8808 struct port_info *pi = adap2pinfo(adap, i); 8809 8810 while ((adap->params.portvec & (1 << j)) == 0) 8811 j++; 8812 8813 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 8814 if (ret) 8815 return ret; 8816 8817 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 8818 j++; 8819 } 8820 return 0; 8821 } 8822 8823 /** 8824 * t4_read_cimq_cfg - read CIM queue configuration 8825 * @adap: the adapter 8826 * @base: holds the queue base addresses in bytes 8827 * @size: holds the queue sizes in bytes 8828 * @thres: holds the queue full thresholds in bytes 8829 * 8830 * Returns the current configuration of the CIM queues, starting with 8831 * the IBQs, then the OBQs. 8832 */ 8833 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 8834 { 8835 unsigned int i, v; 8836 int cim_num_obq = is_t4(adap->params.chip) ? 8837 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 8838 8839 for (i = 0; i < CIM_NUM_IBQ; i++) { 8840 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 8841 QUENUMSELECT_V(i)); 8842 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 8843 /* value is in 256-byte units */ 8844 *base++ = CIMQBASE_G(v) * 256; 8845 *size++ = CIMQSIZE_G(v) * 256; 8846 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 8847 } 8848 for (i = 0; i < cim_num_obq; i++) { 8849 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 8850 QUENUMSELECT_V(i)); 8851 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 8852 /* value is in 256-byte units */ 8853 *base++ = CIMQBASE_G(v) * 256; 8854 *size++ = CIMQSIZE_G(v) * 256; 8855 } 8856 } 8857 8858 /** 8859 * t4_read_cim_ibq - read the contents of a CIM inbound queue 8860 * @adap: the adapter 8861 * @qid: the queue index 8862 * @data: where to store the queue contents 8863 * @n: capacity of @data in 32-bit words 8864 * 8865 * Reads the contents of the selected CIM queue starting at address 0 up 8866 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 8867 * error and the number of 32-bit words actually read on success. 8868 */ 8869 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 8870 { 8871 int i, err, attempts; 8872 unsigned int addr; 8873 const unsigned int nwords = CIM_IBQ_SIZE * 4; 8874 8875 if (qid > 5 || (n & 3)) 8876 return -EINVAL; 8877 8878 addr = qid * nwords; 8879 if (n > nwords) 8880 n = nwords; 8881 8882 /* It might take 3-10ms before the IBQ debug read access is allowed. 8883 * Wait for 1 Sec with a delay of 1 usec. 8884 */ 8885 attempts = 1000000; 8886 8887 for (i = 0; i < n; i++, addr++) { 8888 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 8889 IBQDBGEN_F); 8890 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 8891 attempts, 1); 8892 if (err) 8893 return err; 8894 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 8895 } 8896 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 8897 return i; 8898 } 8899 8900 /** 8901 * t4_read_cim_obq - read the contents of a CIM outbound queue 8902 * @adap: the adapter 8903 * @qid: the queue index 8904 * @data: where to store the queue contents 8905 * @n: capacity of @data in 32-bit words 8906 * 8907 * Reads the contents of the selected CIM queue starting at address 0 up 8908 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 8909 * error and the number of 32-bit words actually read on success. 8910 */ 8911 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 8912 { 8913 int i, err; 8914 unsigned int addr, v, nwords; 8915 int cim_num_obq = is_t4(adap->params.chip) ? 8916 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 8917 8918 if ((qid > (cim_num_obq - 1)) || (n & 3)) 8919 return -EINVAL; 8920 8921 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 8922 QUENUMSELECT_V(qid)); 8923 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 8924 8925 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 8926 nwords = CIMQSIZE_G(v) * 64; /* same */ 8927 if (n > nwords) 8928 n = nwords; 8929 8930 for (i = 0; i < n; i++, addr++) { 8931 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 8932 OBQDBGEN_F); 8933 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 8934 2, 1); 8935 if (err) 8936 return err; 8937 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 8938 } 8939 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 8940 return i; 8941 } 8942 8943 /** 8944 * t4_cim_read - read a block from CIM internal address space 8945 * @adap: the adapter 8946 * @addr: the start address within the CIM address space 8947 * @n: number of words to read 8948 * @valp: where to store the result 8949 * 8950 * Reads a block of 4-byte words from the CIM intenal address space. 8951 */ 8952 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 8953 unsigned int *valp) 8954 { 8955 int ret = 0; 8956 8957 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 8958 return -EBUSY; 8959 8960 for ( ; !ret && n--; addr += 4) { 8961 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 8962 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 8963 0, 5, 2); 8964 if (!ret) 8965 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 8966 } 8967 return ret; 8968 } 8969 8970 /** 8971 * t4_cim_write - write a block into CIM internal address space 8972 * @adap: the adapter 8973 * @addr: the start address within the CIM address space 8974 * @n: number of words to write 8975 * @valp: set of values to write 8976 * 8977 * Writes a block of 4-byte words into the CIM intenal address space. 8978 */ 8979 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 8980 const unsigned int *valp) 8981 { 8982 int ret = 0; 8983 8984 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 8985 return -EBUSY; 8986 8987 for ( ; !ret && n--; addr += 4) { 8988 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 8989 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 8990 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 8991 0, 5, 2); 8992 } 8993 return ret; 8994 } 8995 8996 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 8997 unsigned int val) 8998 { 8999 return t4_cim_write(adap, addr, 1, &val); 9000 } 9001 9002 /** 9003 * t4_cim_read_la - read CIM LA capture buffer 9004 * @adap: the adapter 9005 * @la_buf: where to store the LA data 9006 * @wrptr: the HW write pointer within the capture buffer 9007 * 9008 * Reads the contents of the CIM LA buffer with the most recent entry at 9009 * the end of the returned data and with the entry at @wrptr first. 9010 * We try to leave the LA in the running state we find it in. 9011 */ 9012 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9013 { 9014 int i, ret; 9015 unsigned int cfg, val, idx; 9016 9017 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9018 if (ret) 9019 return ret; 9020 9021 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9022 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9023 if (ret) 9024 return ret; 9025 } 9026 9027 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9028 if (ret) 9029 goto restart; 9030 9031 idx = UPDBGLAWRPTR_G(val); 9032 if (wrptr) 9033 *wrptr = idx; 9034 9035 for (i = 0; i < adap->params.cim_la_size; i++) { 9036 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9037 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9038 if (ret) 9039 break; 9040 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9041 if (ret) 9042 break; 9043 if (val & UPDBGLARDEN_F) { 9044 ret = -ETIMEDOUT; 9045 break; 9046 } 9047 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9048 if (ret) 9049 break; 9050 9051 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9052 * identify the 32-bit portion of the full 312-bit data 9053 */ 9054 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9055 idx = (idx & 0xff0) + 0x10; 9056 else 9057 idx++; 9058 /* address can't exceed 0xfff */ 9059 idx &= UPDBGLARDPTR_M; 9060 } 9061 restart: 9062 if (cfg & UPDBGLAEN_F) { 9063 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9064 cfg & ~UPDBGLARDEN_F); 9065 if (!ret) 9066 ret = r; 9067 } 9068 return ret; 9069 } 9070 9071 /** 9072 * t4_tp_read_la - read TP LA capture buffer 9073 * @adap: the adapter 9074 * @la_buf: where to store the LA data 9075 * @wrptr: the HW write pointer within the capture buffer 9076 * 9077 * Reads the contents of the TP LA buffer with the most recent entry at 9078 * the end of the returned data and with the entry at @wrptr first. 9079 * We leave the LA in the running state we find it in. 9080 */ 9081 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9082 { 9083 bool last_incomplete; 9084 unsigned int i, cfg, val, idx; 9085 9086 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9087 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9088 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9089 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9090 9091 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9092 idx = DBGLAWPTR_G(val); 9093 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9094 if (last_incomplete) 9095 idx = (idx + 1) & DBGLARPTR_M; 9096 if (wrptr) 9097 *wrptr = idx; 9098 9099 val &= 0xffff; 9100 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9101 val |= adap->params.tp.la_mask; 9102 9103 for (i = 0; i < TPLA_SIZE; i++) { 9104 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9105 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9106 idx = (idx + 1) & DBGLARPTR_M; 9107 } 9108 9109 /* Wipe out last entry if it isn't valid */ 9110 if (last_incomplete) 9111 la_buf[TPLA_SIZE - 1] = ~0ULL; 9112 9113 if (cfg & DBGLAENABLE_F) /* restore running state */ 9114 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9115 cfg | adap->params.tp.la_mask); 9116 } 9117 9118 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9119 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9120 * state for more than the Warning Threshold then we'll issue a warning about 9121 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9122 * appears to be hung every Warning Repeat second till the situation clears. 9123 * If the situation clears, we'll note that as well. 9124 */ 9125 #define SGE_IDMA_WARN_THRESH 1 9126 #define SGE_IDMA_WARN_REPEAT 300 9127 9128 /** 9129 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9130 * @adapter: the adapter 9131 * @idma: the adapter IDMA Monitor state 9132 * 9133 * Initialize the state of an SGE Ingress DMA Monitor. 9134 */ 9135 void t4_idma_monitor_init(struct adapter *adapter, 9136 struct sge_idma_monitor_state *idma) 9137 { 9138 /* Initialize the state variables for detecting an SGE Ingress DMA 9139 * hang. The SGE has internal counters which count up on each clock 9140 * tick whenever the SGE finds its Ingress DMA State Engines in the 9141 * same state they were on the previous clock tick. The clock used is 9142 * the Core Clock so we have a limit on the maximum "time" they can 9143 * record; typically a very small number of seconds. For instance, 9144 * with a 600MHz Core Clock, we can only count up to a bit more than 9145 * 7s. So we'll synthesize a larger counter in order to not run the 9146 * risk of having the "timers" overflow and give us the flexibility to 9147 * maintain a Hung SGE State Machine of our own which operates across 9148 * a longer time frame. 9149 */ 9150 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9151 idma->idma_stalled[0] = 0; 9152 idma->idma_stalled[1] = 0; 9153 } 9154 9155 /** 9156 * t4_idma_monitor - monitor SGE Ingress DMA state 9157 * @adapter: the adapter 9158 * @idma: the adapter IDMA Monitor state 9159 * @hz: number of ticks/second 9160 * @ticks: number of ticks since the last IDMA Monitor call 9161 */ 9162 void t4_idma_monitor(struct adapter *adapter, 9163 struct sge_idma_monitor_state *idma, 9164 int hz, int ticks) 9165 { 9166 int i, idma_same_state_cnt[2]; 9167 9168 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9169 * are counters inside the SGE which count up on each clock when the 9170 * SGE finds its Ingress DMA State Engines in the same states they 9171 * were in the previous clock. The counters will peg out at 9172 * 0xffffffff without wrapping around so once they pass the 1s 9173 * threshold they'll stay above that till the IDMA state changes. 9174 */ 9175 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9176 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9177 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9178 9179 for (i = 0; i < 2; i++) { 9180 u32 debug0, debug11; 9181 9182 /* If the Ingress DMA Same State Counter ("timer") is less 9183 * than 1s, then we can reset our synthesized Stall Timer and 9184 * continue. If we have previously emitted warnings about a 9185 * potential stalled Ingress Queue, issue a note indicating 9186 * that the Ingress Queue has resumed forward progress. 9187 */ 9188 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9189 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9190 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9191 "resumed after %d seconds\n", 9192 i, idma->idma_qid[i], 9193 idma->idma_stalled[i] / hz); 9194 idma->idma_stalled[i] = 0; 9195 continue; 9196 } 9197 9198 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9199 * domain. The first time we get here it'll be because we 9200 * passed the 1s Threshold; each additional time it'll be 9201 * because the RX Timer Callback is being fired on its regular 9202 * schedule. 9203 * 9204 * If the stall is below our Potential Hung Ingress Queue 9205 * Warning Threshold, continue. 9206 */ 9207 if (idma->idma_stalled[i] == 0) { 9208 idma->idma_stalled[i] = hz; 9209 idma->idma_warn[i] = 0; 9210 } else { 9211 idma->idma_stalled[i] += ticks; 9212 idma->idma_warn[i] -= ticks; 9213 } 9214 9215 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9216 continue; 9217 9218 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9219 */ 9220 if (idma->idma_warn[i] > 0) 9221 continue; 9222 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9223 9224 /* Read and save the SGE IDMA State and Queue ID information. 9225 * We do this every time in case it changes across time ... 9226 * can't be too careful ... 9227 */ 9228 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9229 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9230 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9231 9232 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9233 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9234 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9235 9236 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9237 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9238 i, idma->idma_qid[i], idma->idma_state[i], 9239 idma->idma_stalled[i] / hz, 9240 debug0, debug11); 9241 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9242 } 9243 } 9244 9245 /** 9246 * t4_load_cfg - download config file 9247 * @adap: the adapter 9248 * @cfg_data: the cfg text file to write 9249 * @size: text file size 9250 * 9251 * Write the supplied config text file to the card's serial flash. 9252 */ 9253 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9254 { 9255 int ret, i, n, cfg_addr; 9256 unsigned int addr; 9257 unsigned int flash_cfg_start_sec; 9258 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9259 9260 cfg_addr = t4_flash_cfg_addr(adap); 9261 if (cfg_addr < 0) 9262 return cfg_addr; 9263 9264 addr = cfg_addr; 9265 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9266 9267 if (size > FLASH_CFG_MAX_SIZE) { 9268 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 9269 FLASH_CFG_MAX_SIZE); 9270 return -EFBIG; 9271 } 9272 9273 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9274 sf_sec_size); 9275 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9276 flash_cfg_start_sec + i - 1); 9277 /* If size == 0 then we're simply erasing the FLASH sectors associated 9278 * with the on-adapter Firmware Configuration File. 9279 */ 9280 if (ret || size == 0) 9281 goto out; 9282 9283 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9284 for (i = 0; i < size; i += SF_PAGE_SIZE) { 9285 if ((size - i) < SF_PAGE_SIZE) 9286 n = size - i; 9287 else 9288 n = SF_PAGE_SIZE; 9289 ret = t4_write_flash(adap, addr, n, cfg_data); 9290 if (ret) 9291 goto out; 9292 9293 addr += SF_PAGE_SIZE; 9294 cfg_data += SF_PAGE_SIZE; 9295 } 9296 9297 out: 9298 if (ret) 9299 dev_err(adap->pdev_dev, "config file %s failed %d\n", 9300 (size == 0 ? "clear" : "download"), ret); 9301 return ret; 9302 } 9303 9304 /** 9305 * t4_set_vf_mac - Set MAC address for the specified VF 9306 * @adapter: The adapter 9307 * @vf: one of the VFs instantiated by the specified PF 9308 * @naddr: the number of MAC addresses 9309 * @addr: the MAC address(es) to be set to the specified VF 9310 */ 9311 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 9312 unsigned int naddr, u8 *addr) 9313 { 9314 struct fw_acl_mac_cmd cmd; 9315 9316 memset(&cmd, 0, sizeof(cmd)); 9317 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 9318 FW_CMD_REQUEST_F | 9319 FW_CMD_WRITE_F | 9320 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 9321 FW_ACL_MAC_CMD_VFN_V(vf)); 9322 9323 /* Note: Do not enable the ACL */ 9324 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 9325 cmd.nmac = naddr; 9326 9327 switch (adapter->pf) { 9328 case 3: 9329 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 9330 break; 9331 case 2: 9332 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 9333 break; 9334 case 1: 9335 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 9336 break; 9337 case 0: 9338 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 9339 break; 9340 } 9341 9342 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 9343 } 9344 9345 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 9346 int rateunit, int ratemode, int channel, int class, 9347 int minrate, int maxrate, int weight, int pktsize) 9348 { 9349 struct fw_sched_cmd cmd; 9350 9351 memset(&cmd, 0, sizeof(cmd)); 9352 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 9353 FW_CMD_REQUEST_F | 9354 FW_CMD_WRITE_F); 9355 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 9356 9357 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 9358 cmd.u.params.type = type; 9359 cmd.u.params.level = level; 9360 cmd.u.params.mode = mode; 9361 cmd.u.params.ch = channel; 9362 cmd.u.params.cl = class; 9363 cmd.u.params.unit = rateunit; 9364 cmd.u.params.rate = ratemode; 9365 cmd.u.params.min = cpu_to_be32(minrate); 9366 cmd.u.params.max = cpu_to_be32(maxrate); 9367 cmd.u.params.weight = cpu_to_be16(weight); 9368 cmd.u.params.pktsize = cpu_to_be16(pktsize); 9369 9370 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 9371 NULL, 1); 9372 } 9373