1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228 {
229 	dev_err(adap->pdev_dev,
230 		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231 		(unsigned long long)t4_read_reg64(adap, data_reg),
232 		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
233 		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
234 		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
235 		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
236 		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
237 		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
238 		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
239 }
240 
241 /**
242  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *	@adap: the adapter
244  *	@mbox: index of the mailbox to use
245  *	@cmd: the command to write
246  *	@size: command length in bytes
247  *	@rpl: where to optionally store the reply
248  *	@sleep_ok: if true we may sleep while awaiting command completion
249  *	@timeout: time to wait for command to finish before timing out
250  *
251  *	Sends the given command to FW through the selected mailbox and waits
252  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
253  *	store the FW's reply to the command.  The command and its optional
254  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
255  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
256  *	the response.  If sleeping is allowed we use progressive backoff
257  *	otherwise we spin.
258  *
259  *	The return value is 0 on success or a negative errno on failure.  A
260  *	failure can happen either because we are not able to execute the
261  *	command or FW executes it but signals an error.  In the latter case
262  *	the return value is the error code indicated by FW (negated).
263  */
264 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265 			    int size, void *rpl, bool sleep_ok, int timeout)
266 {
267 	static const int delay[] = {
268 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269 	};
270 
271 	u32 v;
272 	u64 res;
273 	int i, ms, delay_idx;
274 	const __be64 *p = cmd;
275 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277 
278 	if ((size & 15) || size > MBOX_LEN)
279 		return -EINVAL;
280 
281 	/*
282 	 * If the device is off-line, as in EEH, commands will time out.
283 	 * Fail them early so we don't waste time waiting.
284 	 */
285 	if (adap->pdev->error_state != pci_channel_io_normal)
286 		return -EIO;
287 
288 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291 
292 	if (v != MBOX_OWNER_DRV)
293 		return v ? -EBUSY : -ETIMEDOUT;
294 
295 	for (i = 0; i < size; i += 8)
296 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297 
298 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299 	t4_read_reg(adap, ctl_reg);          /* flush write */
300 
301 	delay_idx = 0;
302 	ms = delay[0];
303 
304 	for (i = 0; i < timeout; i += ms) {
305 		if (sleep_ok) {
306 			ms = delay[delay_idx];  /* last element may repeat */
307 			if (delay_idx < ARRAY_SIZE(delay) - 1)
308 				delay_idx++;
309 			msleep(ms);
310 		} else
311 			mdelay(ms);
312 
313 		v = t4_read_reg(adap, ctl_reg);
314 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315 			if (!(v & MBMSGVALID_F)) {
316 				t4_write_reg(adap, ctl_reg, 0);
317 				continue;
318 			}
319 
320 			res = t4_read_reg64(adap, data_reg);
321 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322 				fw_asrt(adap, data_reg);
323 				res = FW_CMD_RETVAL_V(EIO);
324 			} else if (rpl) {
325 				get_mbox_rpl(adap, rpl, size / 8, data_reg);
326 			}
327 
328 			if (FW_CMD_RETVAL_G((int)res))
329 				dump_mbox(adap, mbox, data_reg);
330 			t4_write_reg(adap, ctl_reg, 0);
331 			return -FW_CMD_RETVAL_G((int)res);
332 		}
333 	}
334 
335 	dump_mbox(adap, mbox, data_reg);
336 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337 		*(const u8 *)cmd, mbox);
338 	t4_report_fw_error(adap);
339 	return -ETIMEDOUT;
340 }
341 
342 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343 		    void *rpl, bool sleep_ok)
344 {
345 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346 				       FW_CMD_MAX_TIMEOUT);
347 }
348 
349 static int t4_edc_err_read(struct adapter *adap, int idx)
350 {
351 	u32 edc_ecc_err_addr_reg;
352 	u32 rdata_reg;
353 
354 	if (is_t4(adap->params.chip)) {
355 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356 		return 0;
357 	}
358 	if (idx != 0 && idx != 1) {
359 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360 		return 0;
361 	}
362 
363 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365 
366 	CH_WARN(adap,
367 		"edc%d err addr 0x%x: 0x%x.\n",
368 		idx, edc_ecc_err_addr_reg,
369 		t4_read_reg(adap, edc_ecc_err_addr_reg));
370 	CH_WARN(adap,
371 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372 		rdata_reg,
373 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
374 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382 
383 	return 0;
384 }
385 
386 /**
387  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388  *	@adap: the adapter
389  *	@win: PCI-E Memory Window to use
390  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391  *	@addr: address within indicated memory type
392  *	@len: amount of memory to transfer
393  *	@hbuf: host memory buffer
394  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395  *
396  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
397  *	firmware memory address and host buffer must be aligned on 32-bit
398  *	boudaries; the length may be arbitrary.  The memory is transferred as
399  *	a raw byte sequence from/to the firmware's memory.  If this memory
400  *	contains data structures which contain multi-byte integers, it's the
401  *	caller's responsibility to perform appropriate byte order conversions.
402  */
403 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404 		 u32 len, void *hbuf, int dir)
405 {
406 	u32 pos, offset, resid, memoffset;
407 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408 	u32 *buf;
409 
410 	/* Argument sanity checks ...
411 	 */
412 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413 		return -EINVAL;
414 	buf = (u32 *)hbuf;
415 
416 	/* It's convenient to be able to handle lengths which aren't a
417 	 * multiple of 32-bits because we often end up transferring files to
418 	 * the firmware.  So we'll handle that by normalizing the length here
419 	 * and then handling any residual transfer at the end.
420 	 */
421 	resid = len & 0x3;
422 	len -= resid;
423 
424 	/* Offset into the region of memory which is being accessed
425 	 * MEM_EDC0 = 0
426 	 * MEM_EDC1 = 1
427 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
428 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
429 	 */
430 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
431 	if (mtype != MEM_MC1)
432 		memoffset = (mtype * (edc_size * 1024 * 1024));
433 	else {
434 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435 						      MA_EXT_MEMORY0_BAR_A));
436 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437 	}
438 
439 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
440 	addr = addr + memoffset;
441 
442 	/* Each PCI-E Memory Window is programmed with a window size -- or
443 	 * "aperture" -- which controls the granularity of its mapping onto
444 	 * adapter memory.  We need to grab that aperture in order to know
445 	 * how to use the specified window.  The window is also programmed
446 	 * with the base address of the Memory Window in BAR0's address
447 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
448 	 * the address is relative to BAR0.
449 	 */
450 	mem_reg = t4_read_reg(adap,
451 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452 						  win));
453 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455 	if (is_t4(adap->params.chip))
456 		mem_base -= adap->t4_bar0;
457 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458 
459 	/* Calculate our initial PCI-E Memory Window Position and Offset into
460 	 * that Window.
461 	 */
462 	pos = addr & ~(mem_aperture-1);
463 	offset = addr - pos;
464 
465 	/* Set up initial PCI-E Memory Window to cover the start of our
466 	 * transfer.  (Read it back to ensure that changes propagate before we
467 	 * attempt to use the new value.)
468 	 */
469 	t4_write_reg(adap,
470 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471 		     pos | win_pf);
472 	t4_read_reg(adap,
473 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474 
475 	/* Transfer data to/from the adapter as long as there's an integral
476 	 * number of 32-bit transfers to complete.
477 	 *
478 	 * A note on Endianness issues:
479 	 *
480 	 * The "register" reads and writes below from/to the PCI-E Memory
481 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
482 	 * Little-Endian "swizzel."  As a result, if we have the following
483 	 * data in adapter memory:
484 	 *
485 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
486 	 *     Address:      i+0  i+1  i+2  i+3
487 	 *
488 	 * Then a read of the adapter memory via the PCI-E Memory Window
489 	 * will yield:
490 	 *
491 	 *     x = readl(i)
492 	 *         31                  0
493 	 *         [ b3 | b2 | b1 | b0 ]
494 	 *
495 	 * If this value is stored into local memory on a Little-Endian system
496 	 * it will show up correctly in local memory as:
497 	 *
498 	 *     ( ..., b0, b1, b2, b3, ... )
499 	 *
500 	 * But on a Big-Endian system, the store will show up in memory
501 	 * incorrectly swizzled as:
502 	 *
503 	 *     ( ..., b3, b2, b1, b0, ... )
504 	 *
505 	 * So we need to account for this in the reads and writes to the
506 	 * PCI-E Memory Window below by undoing the register read/write
507 	 * swizzels.
508 	 */
509 	while (len > 0) {
510 		if (dir == T4_MEMORY_READ)
511 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512 						mem_base + offset));
513 		else
514 			t4_write_reg(adap, mem_base + offset,
515 				     (__force u32)cpu_to_le32(*buf++));
516 		offset += sizeof(__be32);
517 		len -= sizeof(__be32);
518 
519 		/* If we've reached the end of our current window aperture,
520 		 * move the PCI-E Memory Window on to the next.  Note that
521 		 * doing this here after "len" may be 0 allows us to set up
522 		 * the PCI-E Memory Window for a possible final residual
523 		 * transfer below ...
524 		 */
525 		if (offset == mem_aperture) {
526 			pos += mem_aperture;
527 			offset = 0;
528 			t4_write_reg(adap,
529 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530 						    win), pos | win_pf);
531 			t4_read_reg(adap,
532 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533 						    win));
534 		}
535 	}
536 
537 	/* If the original transfer had a length which wasn't a multiple of
538 	 * 32-bits, now's where we need to finish off the transfer of the
539 	 * residual amount.  The PCI-E Memory Window has already been moved
540 	 * above (if necessary) to cover this final transfer.
541 	 */
542 	if (resid) {
543 		union {
544 			u32 word;
545 			char byte[4];
546 		} last;
547 		unsigned char *bp;
548 		int i;
549 
550 		if (dir == T4_MEMORY_READ) {
551 			last.word = le32_to_cpu(
552 					(__force __le32)t4_read_reg(adap,
553 						mem_base + offset));
554 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555 				bp[i] = last.byte[i];
556 		} else {
557 			last.word = *buf;
558 			for (i = resid; i < 4; i++)
559 				last.byte[i] = 0;
560 			t4_write_reg(adap, mem_base + offset,
561 				     (__force u32)cpu_to_le32(last.word));
562 		}
563 	}
564 
565 	return 0;
566 }
567 
568 /* Return the specified PCI-E Configuration Space register from our Physical
569  * Function.  We try first via a Firmware LDST Command since we prefer to let
570  * the firmware own all of these registers, but if that fails we go for it
571  * directly ourselves.
572  */
573 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574 {
575 	u32 val, ldst_addrspace;
576 
577 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
578 	 * retrieve the specified PCI-E Configuration Space register.
579 	 */
580 	struct fw_ldst_cmd ldst_cmd;
581 	int ret;
582 
583 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586 					       FW_CMD_REQUEST_F |
587 					       FW_CMD_READ_F |
588 					       ldst_addrspace);
589 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591 	ldst_cmd.u.pcie.ctrl_to_fn =
592 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593 	ldst_cmd.u.pcie.r = reg;
594 
595 	/* If the LDST Command succeeds, return the result, otherwise
596 	 * fall through to reading it directly ourselves ...
597 	 */
598 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599 			 &ldst_cmd);
600 	if (ret == 0)
601 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602 	else
603 		/* Read the desired Configuration Space register via the PCI-E
604 		 * Backdoor mechanism.
605 		 */
606 		t4_hw_pci_read_cfg4(adap, reg, &val);
607 	return val;
608 }
609 
610 /* Get the window based on base passed to it.
611  * Window aperture is currently unhandled, but there is no use case for it
612  * right now
613  */
614 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615 			 u32 memwin_base)
616 {
617 	u32 ret;
618 
619 	if (is_t4(adap->params.chip)) {
620 		u32 bar0;
621 
622 		/* Truncation intentional: we only read the bottom 32-bits of
623 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
624 		 * mechanism to read BAR0 instead of using
625 		 * pci_resource_start() because we could be operating from
626 		 * within a Virtual Machine which is trapping our accesses to
627 		 * our Configuration Space and we need to set up the PCI-E
628 		 * Memory Window decoders with the actual addresses which will
629 		 * be coming across the PCI-E link.
630 		 */
631 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
632 		bar0 &= pci_mask;
633 		adap->t4_bar0 = bar0;
634 
635 		ret = bar0 + memwin_base;
636 	} else {
637 		/* For T5, only relative offset inside the PCIe BAR is passed */
638 		ret = memwin_base;
639 	}
640 	return ret;
641 }
642 
643 /* Get the default utility window (win0) used by everyone */
644 u32 t4_get_util_window(struct adapter *adap)
645 {
646 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648 }
649 
650 /* Set up memory window for accessing adapter memory ranges.  (Read
651  * back MA register to ensure that changes propagate before we attempt
652  * to use the new values.)
653  */
654 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655 {
656 	t4_write_reg(adap,
657 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658 		     memwin_base | BIR_V(0) |
659 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660 	t4_read_reg(adap,
661 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662 }
663 
664 /**
665  *	t4_get_regs_len - return the size of the chips register set
666  *	@adapter: the adapter
667  *
668  *	Returns the size of the chip's BAR0 register space.
669  */
670 unsigned int t4_get_regs_len(struct adapter *adapter)
671 {
672 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673 
674 	switch (chip_version) {
675 	case CHELSIO_T4:
676 		return T4_REGMAP_SIZE;
677 
678 	case CHELSIO_T5:
679 	case CHELSIO_T6:
680 		return T5_REGMAP_SIZE;
681 	}
682 
683 	dev_err(adapter->pdev_dev,
684 		"Unsupported chip version %d\n", chip_version);
685 	return 0;
686 }
687 
688 /**
689  *	t4_get_regs - read chip registers into provided buffer
690  *	@adap: the adapter
691  *	@buf: register buffer
692  *	@buf_size: size (in bytes) of register buffer
693  *
694  *	If the provided register buffer isn't large enough for the chip's
695  *	full register range, the register dump will be truncated to the
696  *	register buffer's size.
697  */
698 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699 {
700 	static const unsigned int t4_reg_ranges[] = {
701 		0x1008, 0x1108,
702 		0x1180, 0x1184,
703 		0x1190, 0x1194,
704 		0x11a0, 0x11a4,
705 		0x11b0, 0x11b4,
706 		0x11fc, 0x123c,
707 		0x1300, 0x173c,
708 		0x1800, 0x18fc,
709 		0x3000, 0x30d8,
710 		0x30e0, 0x30e4,
711 		0x30ec, 0x5910,
712 		0x5920, 0x5924,
713 		0x5960, 0x5960,
714 		0x5968, 0x5968,
715 		0x5970, 0x5970,
716 		0x5978, 0x5978,
717 		0x5980, 0x5980,
718 		0x5988, 0x5988,
719 		0x5990, 0x5990,
720 		0x5998, 0x5998,
721 		0x59a0, 0x59d4,
722 		0x5a00, 0x5ae0,
723 		0x5ae8, 0x5ae8,
724 		0x5af0, 0x5af0,
725 		0x5af8, 0x5af8,
726 		0x6000, 0x6098,
727 		0x6100, 0x6150,
728 		0x6200, 0x6208,
729 		0x6240, 0x6248,
730 		0x6280, 0x62b0,
731 		0x62c0, 0x6338,
732 		0x6370, 0x638c,
733 		0x6400, 0x643c,
734 		0x6500, 0x6524,
735 		0x6a00, 0x6a04,
736 		0x6a14, 0x6a38,
737 		0x6a60, 0x6a70,
738 		0x6a78, 0x6a78,
739 		0x6b00, 0x6b0c,
740 		0x6b1c, 0x6b84,
741 		0x6bf0, 0x6bf8,
742 		0x6c00, 0x6c0c,
743 		0x6c1c, 0x6c84,
744 		0x6cf0, 0x6cf8,
745 		0x6d00, 0x6d0c,
746 		0x6d1c, 0x6d84,
747 		0x6df0, 0x6df8,
748 		0x6e00, 0x6e0c,
749 		0x6e1c, 0x6e84,
750 		0x6ef0, 0x6ef8,
751 		0x6f00, 0x6f0c,
752 		0x6f1c, 0x6f84,
753 		0x6ff0, 0x6ff8,
754 		0x7000, 0x700c,
755 		0x701c, 0x7084,
756 		0x70f0, 0x70f8,
757 		0x7100, 0x710c,
758 		0x711c, 0x7184,
759 		0x71f0, 0x71f8,
760 		0x7200, 0x720c,
761 		0x721c, 0x7284,
762 		0x72f0, 0x72f8,
763 		0x7300, 0x730c,
764 		0x731c, 0x7384,
765 		0x73f0, 0x73f8,
766 		0x7400, 0x7450,
767 		0x7500, 0x7530,
768 		0x7600, 0x760c,
769 		0x7614, 0x761c,
770 		0x7680, 0x76cc,
771 		0x7700, 0x7798,
772 		0x77c0, 0x77fc,
773 		0x7900, 0x79fc,
774 		0x7b00, 0x7b58,
775 		0x7b60, 0x7b84,
776 		0x7b8c, 0x7c38,
777 		0x7d00, 0x7d38,
778 		0x7d40, 0x7d80,
779 		0x7d8c, 0x7ddc,
780 		0x7de4, 0x7e04,
781 		0x7e10, 0x7e1c,
782 		0x7e24, 0x7e38,
783 		0x7e40, 0x7e44,
784 		0x7e4c, 0x7e78,
785 		0x7e80, 0x7ea4,
786 		0x7eac, 0x7edc,
787 		0x7ee8, 0x7efc,
788 		0x8dc0, 0x8e04,
789 		0x8e10, 0x8e1c,
790 		0x8e30, 0x8e78,
791 		0x8ea0, 0x8eb8,
792 		0x8ec0, 0x8f6c,
793 		0x8fc0, 0x9008,
794 		0x9010, 0x9058,
795 		0x9060, 0x9060,
796 		0x9068, 0x9074,
797 		0x90fc, 0x90fc,
798 		0x9400, 0x9408,
799 		0x9410, 0x9458,
800 		0x9600, 0x9600,
801 		0x9608, 0x9638,
802 		0x9640, 0x96bc,
803 		0x9800, 0x9808,
804 		0x9820, 0x983c,
805 		0x9850, 0x9864,
806 		0x9c00, 0x9c6c,
807 		0x9c80, 0x9cec,
808 		0x9d00, 0x9d6c,
809 		0x9d80, 0x9dec,
810 		0x9e00, 0x9e6c,
811 		0x9e80, 0x9eec,
812 		0x9f00, 0x9f6c,
813 		0x9f80, 0x9fec,
814 		0xd004, 0xd004,
815 		0xd010, 0xd03c,
816 		0xdfc0, 0xdfe0,
817 		0xe000, 0xea7c,
818 		0xf000, 0x11190,
819 		0x19040, 0x1906c,
820 		0x19078, 0x19080,
821 		0x1908c, 0x190e4,
822 		0x190f0, 0x190f8,
823 		0x19100, 0x19110,
824 		0x19120, 0x19124,
825 		0x19150, 0x19194,
826 		0x1919c, 0x191b0,
827 		0x191d0, 0x191e8,
828 		0x19238, 0x1924c,
829 		0x193f8, 0x1943c,
830 		0x1944c, 0x19474,
831 		0x19490, 0x194e0,
832 		0x194f0, 0x194f8,
833 		0x19800, 0x19c08,
834 		0x19c10, 0x19c90,
835 		0x19ca0, 0x19ce4,
836 		0x19cf0, 0x19d40,
837 		0x19d50, 0x19d94,
838 		0x19da0, 0x19de8,
839 		0x19df0, 0x19e40,
840 		0x19e50, 0x19e90,
841 		0x19ea0, 0x19f4c,
842 		0x1a000, 0x1a004,
843 		0x1a010, 0x1a06c,
844 		0x1a0b0, 0x1a0e4,
845 		0x1a0ec, 0x1a0f4,
846 		0x1a100, 0x1a108,
847 		0x1a114, 0x1a120,
848 		0x1a128, 0x1a130,
849 		0x1a138, 0x1a138,
850 		0x1a190, 0x1a1c4,
851 		0x1a1fc, 0x1a1fc,
852 		0x1e040, 0x1e04c,
853 		0x1e284, 0x1e28c,
854 		0x1e2c0, 0x1e2c0,
855 		0x1e2e0, 0x1e2e0,
856 		0x1e300, 0x1e384,
857 		0x1e3c0, 0x1e3c8,
858 		0x1e440, 0x1e44c,
859 		0x1e684, 0x1e68c,
860 		0x1e6c0, 0x1e6c0,
861 		0x1e6e0, 0x1e6e0,
862 		0x1e700, 0x1e784,
863 		0x1e7c0, 0x1e7c8,
864 		0x1e840, 0x1e84c,
865 		0x1ea84, 0x1ea8c,
866 		0x1eac0, 0x1eac0,
867 		0x1eae0, 0x1eae0,
868 		0x1eb00, 0x1eb84,
869 		0x1ebc0, 0x1ebc8,
870 		0x1ec40, 0x1ec4c,
871 		0x1ee84, 0x1ee8c,
872 		0x1eec0, 0x1eec0,
873 		0x1eee0, 0x1eee0,
874 		0x1ef00, 0x1ef84,
875 		0x1efc0, 0x1efc8,
876 		0x1f040, 0x1f04c,
877 		0x1f284, 0x1f28c,
878 		0x1f2c0, 0x1f2c0,
879 		0x1f2e0, 0x1f2e0,
880 		0x1f300, 0x1f384,
881 		0x1f3c0, 0x1f3c8,
882 		0x1f440, 0x1f44c,
883 		0x1f684, 0x1f68c,
884 		0x1f6c0, 0x1f6c0,
885 		0x1f6e0, 0x1f6e0,
886 		0x1f700, 0x1f784,
887 		0x1f7c0, 0x1f7c8,
888 		0x1f840, 0x1f84c,
889 		0x1fa84, 0x1fa8c,
890 		0x1fac0, 0x1fac0,
891 		0x1fae0, 0x1fae0,
892 		0x1fb00, 0x1fb84,
893 		0x1fbc0, 0x1fbc8,
894 		0x1fc40, 0x1fc4c,
895 		0x1fe84, 0x1fe8c,
896 		0x1fec0, 0x1fec0,
897 		0x1fee0, 0x1fee0,
898 		0x1ff00, 0x1ff84,
899 		0x1ffc0, 0x1ffc8,
900 		0x20000, 0x2002c,
901 		0x20100, 0x2013c,
902 		0x20190, 0x201a0,
903 		0x201a8, 0x201b8,
904 		0x201c4, 0x201c8,
905 		0x20200, 0x20318,
906 		0x20400, 0x204b4,
907 		0x204c0, 0x20528,
908 		0x20540, 0x20614,
909 		0x21000, 0x21040,
910 		0x2104c, 0x21060,
911 		0x210c0, 0x210ec,
912 		0x21200, 0x21268,
913 		0x21270, 0x21284,
914 		0x212fc, 0x21388,
915 		0x21400, 0x21404,
916 		0x21500, 0x21500,
917 		0x21510, 0x21518,
918 		0x2152c, 0x21530,
919 		0x2153c, 0x2153c,
920 		0x21550, 0x21554,
921 		0x21600, 0x21600,
922 		0x21608, 0x2161c,
923 		0x21624, 0x21628,
924 		0x21630, 0x21634,
925 		0x2163c, 0x2163c,
926 		0x21700, 0x2171c,
927 		0x21780, 0x2178c,
928 		0x21800, 0x21818,
929 		0x21820, 0x21828,
930 		0x21830, 0x21848,
931 		0x21850, 0x21854,
932 		0x21860, 0x21868,
933 		0x21870, 0x21870,
934 		0x21878, 0x21898,
935 		0x218a0, 0x218a8,
936 		0x218b0, 0x218c8,
937 		0x218d0, 0x218d4,
938 		0x218e0, 0x218e8,
939 		0x218f0, 0x218f0,
940 		0x218f8, 0x21a18,
941 		0x21a20, 0x21a28,
942 		0x21a30, 0x21a48,
943 		0x21a50, 0x21a54,
944 		0x21a60, 0x21a68,
945 		0x21a70, 0x21a70,
946 		0x21a78, 0x21a98,
947 		0x21aa0, 0x21aa8,
948 		0x21ab0, 0x21ac8,
949 		0x21ad0, 0x21ad4,
950 		0x21ae0, 0x21ae8,
951 		0x21af0, 0x21af0,
952 		0x21af8, 0x21c18,
953 		0x21c20, 0x21c20,
954 		0x21c28, 0x21c30,
955 		0x21c38, 0x21c38,
956 		0x21c80, 0x21c98,
957 		0x21ca0, 0x21ca8,
958 		0x21cb0, 0x21cc8,
959 		0x21cd0, 0x21cd4,
960 		0x21ce0, 0x21ce8,
961 		0x21cf0, 0x21cf0,
962 		0x21cf8, 0x21d7c,
963 		0x21e00, 0x21e04,
964 		0x22000, 0x2202c,
965 		0x22100, 0x2213c,
966 		0x22190, 0x221a0,
967 		0x221a8, 0x221b8,
968 		0x221c4, 0x221c8,
969 		0x22200, 0x22318,
970 		0x22400, 0x224b4,
971 		0x224c0, 0x22528,
972 		0x22540, 0x22614,
973 		0x23000, 0x23040,
974 		0x2304c, 0x23060,
975 		0x230c0, 0x230ec,
976 		0x23200, 0x23268,
977 		0x23270, 0x23284,
978 		0x232fc, 0x23388,
979 		0x23400, 0x23404,
980 		0x23500, 0x23500,
981 		0x23510, 0x23518,
982 		0x2352c, 0x23530,
983 		0x2353c, 0x2353c,
984 		0x23550, 0x23554,
985 		0x23600, 0x23600,
986 		0x23608, 0x2361c,
987 		0x23624, 0x23628,
988 		0x23630, 0x23634,
989 		0x2363c, 0x2363c,
990 		0x23700, 0x2371c,
991 		0x23780, 0x2378c,
992 		0x23800, 0x23818,
993 		0x23820, 0x23828,
994 		0x23830, 0x23848,
995 		0x23850, 0x23854,
996 		0x23860, 0x23868,
997 		0x23870, 0x23870,
998 		0x23878, 0x23898,
999 		0x238a0, 0x238a8,
1000 		0x238b0, 0x238c8,
1001 		0x238d0, 0x238d4,
1002 		0x238e0, 0x238e8,
1003 		0x238f0, 0x238f0,
1004 		0x238f8, 0x23a18,
1005 		0x23a20, 0x23a28,
1006 		0x23a30, 0x23a48,
1007 		0x23a50, 0x23a54,
1008 		0x23a60, 0x23a68,
1009 		0x23a70, 0x23a70,
1010 		0x23a78, 0x23a98,
1011 		0x23aa0, 0x23aa8,
1012 		0x23ab0, 0x23ac8,
1013 		0x23ad0, 0x23ad4,
1014 		0x23ae0, 0x23ae8,
1015 		0x23af0, 0x23af0,
1016 		0x23af8, 0x23c18,
1017 		0x23c20, 0x23c20,
1018 		0x23c28, 0x23c30,
1019 		0x23c38, 0x23c38,
1020 		0x23c80, 0x23c98,
1021 		0x23ca0, 0x23ca8,
1022 		0x23cb0, 0x23cc8,
1023 		0x23cd0, 0x23cd4,
1024 		0x23ce0, 0x23ce8,
1025 		0x23cf0, 0x23cf0,
1026 		0x23cf8, 0x23d7c,
1027 		0x23e00, 0x23e04,
1028 		0x24000, 0x2402c,
1029 		0x24100, 0x2413c,
1030 		0x24190, 0x241a0,
1031 		0x241a8, 0x241b8,
1032 		0x241c4, 0x241c8,
1033 		0x24200, 0x24318,
1034 		0x24400, 0x244b4,
1035 		0x244c0, 0x24528,
1036 		0x24540, 0x24614,
1037 		0x25000, 0x25040,
1038 		0x2504c, 0x25060,
1039 		0x250c0, 0x250ec,
1040 		0x25200, 0x25268,
1041 		0x25270, 0x25284,
1042 		0x252fc, 0x25388,
1043 		0x25400, 0x25404,
1044 		0x25500, 0x25500,
1045 		0x25510, 0x25518,
1046 		0x2552c, 0x25530,
1047 		0x2553c, 0x2553c,
1048 		0x25550, 0x25554,
1049 		0x25600, 0x25600,
1050 		0x25608, 0x2561c,
1051 		0x25624, 0x25628,
1052 		0x25630, 0x25634,
1053 		0x2563c, 0x2563c,
1054 		0x25700, 0x2571c,
1055 		0x25780, 0x2578c,
1056 		0x25800, 0x25818,
1057 		0x25820, 0x25828,
1058 		0x25830, 0x25848,
1059 		0x25850, 0x25854,
1060 		0x25860, 0x25868,
1061 		0x25870, 0x25870,
1062 		0x25878, 0x25898,
1063 		0x258a0, 0x258a8,
1064 		0x258b0, 0x258c8,
1065 		0x258d0, 0x258d4,
1066 		0x258e0, 0x258e8,
1067 		0x258f0, 0x258f0,
1068 		0x258f8, 0x25a18,
1069 		0x25a20, 0x25a28,
1070 		0x25a30, 0x25a48,
1071 		0x25a50, 0x25a54,
1072 		0x25a60, 0x25a68,
1073 		0x25a70, 0x25a70,
1074 		0x25a78, 0x25a98,
1075 		0x25aa0, 0x25aa8,
1076 		0x25ab0, 0x25ac8,
1077 		0x25ad0, 0x25ad4,
1078 		0x25ae0, 0x25ae8,
1079 		0x25af0, 0x25af0,
1080 		0x25af8, 0x25c18,
1081 		0x25c20, 0x25c20,
1082 		0x25c28, 0x25c30,
1083 		0x25c38, 0x25c38,
1084 		0x25c80, 0x25c98,
1085 		0x25ca0, 0x25ca8,
1086 		0x25cb0, 0x25cc8,
1087 		0x25cd0, 0x25cd4,
1088 		0x25ce0, 0x25ce8,
1089 		0x25cf0, 0x25cf0,
1090 		0x25cf8, 0x25d7c,
1091 		0x25e00, 0x25e04,
1092 		0x26000, 0x2602c,
1093 		0x26100, 0x2613c,
1094 		0x26190, 0x261a0,
1095 		0x261a8, 0x261b8,
1096 		0x261c4, 0x261c8,
1097 		0x26200, 0x26318,
1098 		0x26400, 0x264b4,
1099 		0x264c0, 0x26528,
1100 		0x26540, 0x26614,
1101 		0x27000, 0x27040,
1102 		0x2704c, 0x27060,
1103 		0x270c0, 0x270ec,
1104 		0x27200, 0x27268,
1105 		0x27270, 0x27284,
1106 		0x272fc, 0x27388,
1107 		0x27400, 0x27404,
1108 		0x27500, 0x27500,
1109 		0x27510, 0x27518,
1110 		0x2752c, 0x27530,
1111 		0x2753c, 0x2753c,
1112 		0x27550, 0x27554,
1113 		0x27600, 0x27600,
1114 		0x27608, 0x2761c,
1115 		0x27624, 0x27628,
1116 		0x27630, 0x27634,
1117 		0x2763c, 0x2763c,
1118 		0x27700, 0x2771c,
1119 		0x27780, 0x2778c,
1120 		0x27800, 0x27818,
1121 		0x27820, 0x27828,
1122 		0x27830, 0x27848,
1123 		0x27850, 0x27854,
1124 		0x27860, 0x27868,
1125 		0x27870, 0x27870,
1126 		0x27878, 0x27898,
1127 		0x278a0, 0x278a8,
1128 		0x278b0, 0x278c8,
1129 		0x278d0, 0x278d4,
1130 		0x278e0, 0x278e8,
1131 		0x278f0, 0x278f0,
1132 		0x278f8, 0x27a18,
1133 		0x27a20, 0x27a28,
1134 		0x27a30, 0x27a48,
1135 		0x27a50, 0x27a54,
1136 		0x27a60, 0x27a68,
1137 		0x27a70, 0x27a70,
1138 		0x27a78, 0x27a98,
1139 		0x27aa0, 0x27aa8,
1140 		0x27ab0, 0x27ac8,
1141 		0x27ad0, 0x27ad4,
1142 		0x27ae0, 0x27ae8,
1143 		0x27af0, 0x27af0,
1144 		0x27af8, 0x27c18,
1145 		0x27c20, 0x27c20,
1146 		0x27c28, 0x27c30,
1147 		0x27c38, 0x27c38,
1148 		0x27c80, 0x27c98,
1149 		0x27ca0, 0x27ca8,
1150 		0x27cb0, 0x27cc8,
1151 		0x27cd0, 0x27cd4,
1152 		0x27ce0, 0x27ce8,
1153 		0x27cf0, 0x27cf0,
1154 		0x27cf8, 0x27d7c,
1155 		0x27e00, 0x27e04,
1156 	};
1157 
1158 	static const unsigned int t5_reg_ranges[] = {
1159 		0x1008, 0x10c0,
1160 		0x10cc, 0x10f8,
1161 		0x1100, 0x1100,
1162 		0x110c, 0x1148,
1163 		0x1180, 0x1184,
1164 		0x1190, 0x1194,
1165 		0x11a0, 0x11a4,
1166 		0x11b0, 0x11b4,
1167 		0x11fc, 0x123c,
1168 		0x1280, 0x173c,
1169 		0x1800, 0x18fc,
1170 		0x3000, 0x3028,
1171 		0x3060, 0x30b0,
1172 		0x30b8, 0x30d8,
1173 		0x30e0, 0x30fc,
1174 		0x3140, 0x357c,
1175 		0x35a8, 0x35cc,
1176 		0x35ec, 0x35ec,
1177 		0x3600, 0x5624,
1178 		0x56cc, 0x56ec,
1179 		0x56f4, 0x5720,
1180 		0x5728, 0x575c,
1181 		0x580c, 0x5814,
1182 		0x5890, 0x589c,
1183 		0x58a4, 0x58ac,
1184 		0x58b8, 0x58bc,
1185 		0x5940, 0x59c8,
1186 		0x59d0, 0x59dc,
1187 		0x59fc, 0x5a18,
1188 		0x5a60, 0x5a70,
1189 		0x5a80, 0x5a9c,
1190 		0x5b94, 0x5bfc,
1191 		0x6000, 0x6020,
1192 		0x6028, 0x6040,
1193 		0x6058, 0x609c,
1194 		0x60a8, 0x614c,
1195 		0x7700, 0x7798,
1196 		0x77c0, 0x78fc,
1197 		0x7b00, 0x7b58,
1198 		0x7b60, 0x7b84,
1199 		0x7b8c, 0x7c54,
1200 		0x7d00, 0x7d38,
1201 		0x7d40, 0x7d80,
1202 		0x7d8c, 0x7ddc,
1203 		0x7de4, 0x7e04,
1204 		0x7e10, 0x7e1c,
1205 		0x7e24, 0x7e38,
1206 		0x7e40, 0x7e44,
1207 		0x7e4c, 0x7e78,
1208 		0x7e80, 0x7edc,
1209 		0x7ee8, 0x7efc,
1210 		0x8dc0, 0x8de0,
1211 		0x8df8, 0x8e04,
1212 		0x8e10, 0x8e84,
1213 		0x8ea0, 0x8f84,
1214 		0x8fc0, 0x9058,
1215 		0x9060, 0x9060,
1216 		0x9068, 0x90f8,
1217 		0x9400, 0x9408,
1218 		0x9410, 0x9470,
1219 		0x9600, 0x9600,
1220 		0x9608, 0x9638,
1221 		0x9640, 0x96f4,
1222 		0x9800, 0x9808,
1223 		0x9820, 0x983c,
1224 		0x9850, 0x9864,
1225 		0x9c00, 0x9c6c,
1226 		0x9c80, 0x9cec,
1227 		0x9d00, 0x9d6c,
1228 		0x9d80, 0x9dec,
1229 		0x9e00, 0x9e6c,
1230 		0x9e80, 0x9eec,
1231 		0x9f00, 0x9f6c,
1232 		0x9f80, 0xa020,
1233 		0xd004, 0xd004,
1234 		0xd010, 0xd03c,
1235 		0xdfc0, 0xdfe0,
1236 		0xe000, 0x1106c,
1237 		0x11074, 0x11088,
1238 		0x1109c, 0x1117c,
1239 		0x11190, 0x11204,
1240 		0x19040, 0x1906c,
1241 		0x19078, 0x19080,
1242 		0x1908c, 0x190e8,
1243 		0x190f0, 0x190f8,
1244 		0x19100, 0x19110,
1245 		0x19120, 0x19124,
1246 		0x19150, 0x19194,
1247 		0x1919c, 0x191b0,
1248 		0x191d0, 0x191e8,
1249 		0x19238, 0x19290,
1250 		0x193f8, 0x19428,
1251 		0x19430, 0x19444,
1252 		0x1944c, 0x1946c,
1253 		0x19474, 0x19474,
1254 		0x19490, 0x194cc,
1255 		0x194f0, 0x194f8,
1256 		0x19c00, 0x19c08,
1257 		0x19c10, 0x19c60,
1258 		0x19c94, 0x19ce4,
1259 		0x19cf0, 0x19d40,
1260 		0x19d50, 0x19d94,
1261 		0x19da0, 0x19de8,
1262 		0x19df0, 0x19e10,
1263 		0x19e50, 0x19e90,
1264 		0x19ea0, 0x19f24,
1265 		0x19f34, 0x19f34,
1266 		0x19f40, 0x19f50,
1267 		0x19f90, 0x19fb4,
1268 		0x19fc4, 0x19fe4,
1269 		0x1a000, 0x1a004,
1270 		0x1a010, 0x1a06c,
1271 		0x1a0b0, 0x1a0e4,
1272 		0x1a0ec, 0x1a0f8,
1273 		0x1a100, 0x1a108,
1274 		0x1a114, 0x1a120,
1275 		0x1a128, 0x1a130,
1276 		0x1a138, 0x1a138,
1277 		0x1a190, 0x1a1c4,
1278 		0x1a1fc, 0x1a1fc,
1279 		0x1e008, 0x1e00c,
1280 		0x1e040, 0x1e044,
1281 		0x1e04c, 0x1e04c,
1282 		0x1e284, 0x1e290,
1283 		0x1e2c0, 0x1e2c0,
1284 		0x1e2e0, 0x1e2e0,
1285 		0x1e300, 0x1e384,
1286 		0x1e3c0, 0x1e3c8,
1287 		0x1e408, 0x1e40c,
1288 		0x1e440, 0x1e444,
1289 		0x1e44c, 0x1e44c,
1290 		0x1e684, 0x1e690,
1291 		0x1e6c0, 0x1e6c0,
1292 		0x1e6e0, 0x1e6e0,
1293 		0x1e700, 0x1e784,
1294 		0x1e7c0, 0x1e7c8,
1295 		0x1e808, 0x1e80c,
1296 		0x1e840, 0x1e844,
1297 		0x1e84c, 0x1e84c,
1298 		0x1ea84, 0x1ea90,
1299 		0x1eac0, 0x1eac0,
1300 		0x1eae0, 0x1eae0,
1301 		0x1eb00, 0x1eb84,
1302 		0x1ebc0, 0x1ebc8,
1303 		0x1ec08, 0x1ec0c,
1304 		0x1ec40, 0x1ec44,
1305 		0x1ec4c, 0x1ec4c,
1306 		0x1ee84, 0x1ee90,
1307 		0x1eec0, 0x1eec0,
1308 		0x1eee0, 0x1eee0,
1309 		0x1ef00, 0x1ef84,
1310 		0x1efc0, 0x1efc8,
1311 		0x1f008, 0x1f00c,
1312 		0x1f040, 0x1f044,
1313 		0x1f04c, 0x1f04c,
1314 		0x1f284, 0x1f290,
1315 		0x1f2c0, 0x1f2c0,
1316 		0x1f2e0, 0x1f2e0,
1317 		0x1f300, 0x1f384,
1318 		0x1f3c0, 0x1f3c8,
1319 		0x1f408, 0x1f40c,
1320 		0x1f440, 0x1f444,
1321 		0x1f44c, 0x1f44c,
1322 		0x1f684, 0x1f690,
1323 		0x1f6c0, 0x1f6c0,
1324 		0x1f6e0, 0x1f6e0,
1325 		0x1f700, 0x1f784,
1326 		0x1f7c0, 0x1f7c8,
1327 		0x1f808, 0x1f80c,
1328 		0x1f840, 0x1f844,
1329 		0x1f84c, 0x1f84c,
1330 		0x1fa84, 0x1fa90,
1331 		0x1fac0, 0x1fac0,
1332 		0x1fae0, 0x1fae0,
1333 		0x1fb00, 0x1fb84,
1334 		0x1fbc0, 0x1fbc8,
1335 		0x1fc08, 0x1fc0c,
1336 		0x1fc40, 0x1fc44,
1337 		0x1fc4c, 0x1fc4c,
1338 		0x1fe84, 0x1fe90,
1339 		0x1fec0, 0x1fec0,
1340 		0x1fee0, 0x1fee0,
1341 		0x1ff00, 0x1ff84,
1342 		0x1ffc0, 0x1ffc8,
1343 		0x30000, 0x30030,
1344 		0x30038, 0x30038,
1345 		0x30040, 0x30040,
1346 		0x30100, 0x30144,
1347 		0x30190, 0x301a0,
1348 		0x301a8, 0x301b8,
1349 		0x301c4, 0x301c8,
1350 		0x301d0, 0x301d0,
1351 		0x30200, 0x30318,
1352 		0x30400, 0x304b4,
1353 		0x304c0, 0x3052c,
1354 		0x30540, 0x3061c,
1355 		0x30800, 0x30828,
1356 		0x30834, 0x30834,
1357 		0x308c0, 0x30908,
1358 		0x30910, 0x309ac,
1359 		0x30a00, 0x30a14,
1360 		0x30a1c, 0x30a2c,
1361 		0x30a44, 0x30a50,
1362 		0x30a74, 0x30a74,
1363 		0x30a7c, 0x30afc,
1364 		0x30b08, 0x30c24,
1365 		0x30d00, 0x30d00,
1366 		0x30d08, 0x30d14,
1367 		0x30d1c, 0x30d20,
1368 		0x30d3c, 0x30d3c,
1369 		0x30d48, 0x30d50,
1370 		0x31200, 0x3120c,
1371 		0x31220, 0x31220,
1372 		0x31240, 0x31240,
1373 		0x31600, 0x3160c,
1374 		0x31a00, 0x31a1c,
1375 		0x31e00, 0x31e20,
1376 		0x31e38, 0x31e3c,
1377 		0x31e80, 0x31e80,
1378 		0x31e88, 0x31ea8,
1379 		0x31eb0, 0x31eb4,
1380 		0x31ec8, 0x31ed4,
1381 		0x31fb8, 0x32004,
1382 		0x32200, 0x32200,
1383 		0x32208, 0x32240,
1384 		0x32248, 0x32280,
1385 		0x32288, 0x322c0,
1386 		0x322c8, 0x322fc,
1387 		0x32600, 0x32630,
1388 		0x32a00, 0x32abc,
1389 		0x32b00, 0x32b10,
1390 		0x32b20, 0x32b30,
1391 		0x32b40, 0x32b50,
1392 		0x32b60, 0x32b70,
1393 		0x33000, 0x33028,
1394 		0x33030, 0x33048,
1395 		0x33060, 0x33068,
1396 		0x33070, 0x3309c,
1397 		0x330f0, 0x33128,
1398 		0x33130, 0x33148,
1399 		0x33160, 0x33168,
1400 		0x33170, 0x3319c,
1401 		0x331f0, 0x33238,
1402 		0x33240, 0x33240,
1403 		0x33248, 0x33250,
1404 		0x3325c, 0x33264,
1405 		0x33270, 0x332b8,
1406 		0x332c0, 0x332e4,
1407 		0x332f8, 0x33338,
1408 		0x33340, 0x33340,
1409 		0x33348, 0x33350,
1410 		0x3335c, 0x33364,
1411 		0x33370, 0x333b8,
1412 		0x333c0, 0x333e4,
1413 		0x333f8, 0x33428,
1414 		0x33430, 0x33448,
1415 		0x33460, 0x33468,
1416 		0x33470, 0x3349c,
1417 		0x334f0, 0x33528,
1418 		0x33530, 0x33548,
1419 		0x33560, 0x33568,
1420 		0x33570, 0x3359c,
1421 		0x335f0, 0x33638,
1422 		0x33640, 0x33640,
1423 		0x33648, 0x33650,
1424 		0x3365c, 0x33664,
1425 		0x33670, 0x336b8,
1426 		0x336c0, 0x336e4,
1427 		0x336f8, 0x33738,
1428 		0x33740, 0x33740,
1429 		0x33748, 0x33750,
1430 		0x3375c, 0x33764,
1431 		0x33770, 0x337b8,
1432 		0x337c0, 0x337e4,
1433 		0x337f8, 0x337fc,
1434 		0x33814, 0x33814,
1435 		0x3382c, 0x3382c,
1436 		0x33880, 0x3388c,
1437 		0x338e8, 0x338ec,
1438 		0x33900, 0x33928,
1439 		0x33930, 0x33948,
1440 		0x33960, 0x33968,
1441 		0x33970, 0x3399c,
1442 		0x339f0, 0x33a38,
1443 		0x33a40, 0x33a40,
1444 		0x33a48, 0x33a50,
1445 		0x33a5c, 0x33a64,
1446 		0x33a70, 0x33ab8,
1447 		0x33ac0, 0x33ae4,
1448 		0x33af8, 0x33b10,
1449 		0x33b28, 0x33b28,
1450 		0x33b3c, 0x33b50,
1451 		0x33bf0, 0x33c10,
1452 		0x33c28, 0x33c28,
1453 		0x33c3c, 0x33c50,
1454 		0x33cf0, 0x33cfc,
1455 		0x34000, 0x34030,
1456 		0x34038, 0x34038,
1457 		0x34040, 0x34040,
1458 		0x34100, 0x34144,
1459 		0x34190, 0x341a0,
1460 		0x341a8, 0x341b8,
1461 		0x341c4, 0x341c8,
1462 		0x341d0, 0x341d0,
1463 		0x34200, 0x34318,
1464 		0x34400, 0x344b4,
1465 		0x344c0, 0x3452c,
1466 		0x34540, 0x3461c,
1467 		0x34800, 0x34828,
1468 		0x34834, 0x34834,
1469 		0x348c0, 0x34908,
1470 		0x34910, 0x349ac,
1471 		0x34a00, 0x34a14,
1472 		0x34a1c, 0x34a2c,
1473 		0x34a44, 0x34a50,
1474 		0x34a74, 0x34a74,
1475 		0x34a7c, 0x34afc,
1476 		0x34b08, 0x34c24,
1477 		0x34d00, 0x34d00,
1478 		0x34d08, 0x34d14,
1479 		0x34d1c, 0x34d20,
1480 		0x34d3c, 0x34d3c,
1481 		0x34d48, 0x34d50,
1482 		0x35200, 0x3520c,
1483 		0x35220, 0x35220,
1484 		0x35240, 0x35240,
1485 		0x35600, 0x3560c,
1486 		0x35a00, 0x35a1c,
1487 		0x35e00, 0x35e20,
1488 		0x35e38, 0x35e3c,
1489 		0x35e80, 0x35e80,
1490 		0x35e88, 0x35ea8,
1491 		0x35eb0, 0x35eb4,
1492 		0x35ec8, 0x35ed4,
1493 		0x35fb8, 0x36004,
1494 		0x36200, 0x36200,
1495 		0x36208, 0x36240,
1496 		0x36248, 0x36280,
1497 		0x36288, 0x362c0,
1498 		0x362c8, 0x362fc,
1499 		0x36600, 0x36630,
1500 		0x36a00, 0x36abc,
1501 		0x36b00, 0x36b10,
1502 		0x36b20, 0x36b30,
1503 		0x36b40, 0x36b50,
1504 		0x36b60, 0x36b70,
1505 		0x37000, 0x37028,
1506 		0x37030, 0x37048,
1507 		0x37060, 0x37068,
1508 		0x37070, 0x3709c,
1509 		0x370f0, 0x37128,
1510 		0x37130, 0x37148,
1511 		0x37160, 0x37168,
1512 		0x37170, 0x3719c,
1513 		0x371f0, 0x37238,
1514 		0x37240, 0x37240,
1515 		0x37248, 0x37250,
1516 		0x3725c, 0x37264,
1517 		0x37270, 0x372b8,
1518 		0x372c0, 0x372e4,
1519 		0x372f8, 0x37338,
1520 		0x37340, 0x37340,
1521 		0x37348, 0x37350,
1522 		0x3735c, 0x37364,
1523 		0x37370, 0x373b8,
1524 		0x373c0, 0x373e4,
1525 		0x373f8, 0x37428,
1526 		0x37430, 0x37448,
1527 		0x37460, 0x37468,
1528 		0x37470, 0x3749c,
1529 		0x374f0, 0x37528,
1530 		0x37530, 0x37548,
1531 		0x37560, 0x37568,
1532 		0x37570, 0x3759c,
1533 		0x375f0, 0x37638,
1534 		0x37640, 0x37640,
1535 		0x37648, 0x37650,
1536 		0x3765c, 0x37664,
1537 		0x37670, 0x376b8,
1538 		0x376c0, 0x376e4,
1539 		0x376f8, 0x37738,
1540 		0x37740, 0x37740,
1541 		0x37748, 0x37750,
1542 		0x3775c, 0x37764,
1543 		0x37770, 0x377b8,
1544 		0x377c0, 0x377e4,
1545 		0x377f8, 0x377fc,
1546 		0x37814, 0x37814,
1547 		0x3782c, 0x3782c,
1548 		0x37880, 0x3788c,
1549 		0x378e8, 0x378ec,
1550 		0x37900, 0x37928,
1551 		0x37930, 0x37948,
1552 		0x37960, 0x37968,
1553 		0x37970, 0x3799c,
1554 		0x379f0, 0x37a38,
1555 		0x37a40, 0x37a40,
1556 		0x37a48, 0x37a50,
1557 		0x37a5c, 0x37a64,
1558 		0x37a70, 0x37ab8,
1559 		0x37ac0, 0x37ae4,
1560 		0x37af8, 0x37b10,
1561 		0x37b28, 0x37b28,
1562 		0x37b3c, 0x37b50,
1563 		0x37bf0, 0x37c10,
1564 		0x37c28, 0x37c28,
1565 		0x37c3c, 0x37c50,
1566 		0x37cf0, 0x37cfc,
1567 		0x38000, 0x38030,
1568 		0x38038, 0x38038,
1569 		0x38040, 0x38040,
1570 		0x38100, 0x38144,
1571 		0x38190, 0x381a0,
1572 		0x381a8, 0x381b8,
1573 		0x381c4, 0x381c8,
1574 		0x381d0, 0x381d0,
1575 		0x38200, 0x38318,
1576 		0x38400, 0x384b4,
1577 		0x384c0, 0x3852c,
1578 		0x38540, 0x3861c,
1579 		0x38800, 0x38828,
1580 		0x38834, 0x38834,
1581 		0x388c0, 0x38908,
1582 		0x38910, 0x389ac,
1583 		0x38a00, 0x38a14,
1584 		0x38a1c, 0x38a2c,
1585 		0x38a44, 0x38a50,
1586 		0x38a74, 0x38a74,
1587 		0x38a7c, 0x38afc,
1588 		0x38b08, 0x38c24,
1589 		0x38d00, 0x38d00,
1590 		0x38d08, 0x38d14,
1591 		0x38d1c, 0x38d20,
1592 		0x38d3c, 0x38d3c,
1593 		0x38d48, 0x38d50,
1594 		0x39200, 0x3920c,
1595 		0x39220, 0x39220,
1596 		0x39240, 0x39240,
1597 		0x39600, 0x3960c,
1598 		0x39a00, 0x39a1c,
1599 		0x39e00, 0x39e20,
1600 		0x39e38, 0x39e3c,
1601 		0x39e80, 0x39e80,
1602 		0x39e88, 0x39ea8,
1603 		0x39eb0, 0x39eb4,
1604 		0x39ec8, 0x39ed4,
1605 		0x39fb8, 0x3a004,
1606 		0x3a200, 0x3a200,
1607 		0x3a208, 0x3a240,
1608 		0x3a248, 0x3a280,
1609 		0x3a288, 0x3a2c0,
1610 		0x3a2c8, 0x3a2fc,
1611 		0x3a600, 0x3a630,
1612 		0x3aa00, 0x3aabc,
1613 		0x3ab00, 0x3ab10,
1614 		0x3ab20, 0x3ab30,
1615 		0x3ab40, 0x3ab50,
1616 		0x3ab60, 0x3ab70,
1617 		0x3b000, 0x3b028,
1618 		0x3b030, 0x3b048,
1619 		0x3b060, 0x3b068,
1620 		0x3b070, 0x3b09c,
1621 		0x3b0f0, 0x3b128,
1622 		0x3b130, 0x3b148,
1623 		0x3b160, 0x3b168,
1624 		0x3b170, 0x3b19c,
1625 		0x3b1f0, 0x3b238,
1626 		0x3b240, 0x3b240,
1627 		0x3b248, 0x3b250,
1628 		0x3b25c, 0x3b264,
1629 		0x3b270, 0x3b2b8,
1630 		0x3b2c0, 0x3b2e4,
1631 		0x3b2f8, 0x3b338,
1632 		0x3b340, 0x3b340,
1633 		0x3b348, 0x3b350,
1634 		0x3b35c, 0x3b364,
1635 		0x3b370, 0x3b3b8,
1636 		0x3b3c0, 0x3b3e4,
1637 		0x3b3f8, 0x3b428,
1638 		0x3b430, 0x3b448,
1639 		0x3b460, 0x3b468,
1640 		0x3b470, 0x3b49c,
1641 		0x3b4f0, 0x3b528,
1642 		0x3b530, 0x3b548,
1643 		0x3b560, 0x3b568,
1644 		0x3b570, 0x3b59c,
1645 		0x3b5f0, 0x3b638,
1646 		0x3b640, 0x3b640,
1647 		0x3b648, 0x3b650,
1648 		0x3b65c, 0x3b664,
1649 		0x3b670, 0x3b6b8,
1650 		0x3b6c0, 0x3b6e4,
1651 		0x3b6f8, 0x3b738,
1652 		0x3b740, 0x3b740,
1653 		0x3b748, 0x3b750,
1654 		0x3b75c, 0x3b764,
1655 		0x3b770, 0x3b7b8,
1656 		0x3b7c0, 0x3b7e4,
1657 		0x3b7f8, 0x3b7fc,
1658 		0x3b814, 0x3b814,
1659 		0x3b82c, 0x3b82c,
1660 		0x3b880, 0x3b88c,
1661 		0x3b8e8, 0x3b8ec,
1662 		0x3b900, 0x3b928,
1663 		0x3b930, 0x3b948,
1664 		0x3b960, 0x3b968,
1665 		0x3b970, 0x3b99c,
1666 		0x3b9f0, 0x3ba38,
1667 		0x3ba40, 0x3ba40,
1668 		0x3ba48, 0x3ba50,
1669 		0x3ba5c, 0x3ba64,
1670 		0x3ba70, 0x3bab8,
1671 		0x3bac0, 0x3bae4,
1672 		0x3baf8, 0x3bb10,
1673 		0x3bb28, 0x3bb28,
1674 		0x3bb3c, 0x3bb50,
1675 		0x3bbf0, 0x3bc10,
1676 		0x3bc28, 0x3bc28,
1677 		0x3bc3c, 0x3bc50,
1678 		0x3bcf0, 0x3bcfc,
1679 		0x3c000, 0x3c030,
1680 		0x3c038, 0x3c038,
1681 		0x3c040, 0x3c040,
1682 		0x3c100, 0x3c144,
1683 		0x3c190, 0x3c1a0,
1684 		0x3c1a8, 0x3c1b8,
1685 		0x3c1c4, 0x3c1c8,
1686 		0x3c1d0, 0x3c1d0,
1687 		0x3c200, 0x3c318,
1688 		0x3c400, 0x3c4b4,
1689 		0x3c4c0, 0x3c52c,
1690 		0x3c540, 0x3c61c,
1691 		0x3c800, 0x3c828,
1692 		0x3c834, 0x3c834,
1693 		0x3c8c0, 0x3c908,
1694 		0x3c910, 0x3c9ac,
1695 		0x3ca00, 0x3ca14,
1696 		0x3ca1c, 0x3ca2c,
1697 		0x3ca44, 0x3ca50,
1698 		0x3ca74, 0x3ca74,
1699 		0x3ca7c, 0x3cafc,
1700 		0x3cb08, 0x3cc24,
1701 		0x3cd00, 0x3cd00,
1702 		0x3cd08, 0x3cd14,
1703 		0x3cd1c, 0x3cd20,
1704 		0x3cd3c, 0x3cd3c,
1705 		0x3cd48, 0x3cd50,
1706 		0x3d200, 0x3d20c,
1707 		0x3d220, 0x3d220,
1708 		0x3d240, 0x3d240,
1709 		0x3d600, 0x3d60c,
1710 		0x3da00, 0x3da1c,
1711 		0x3de00, 0x3de20,
1712 		0x3de38, 0x3de3c,
1713 		0x3de80, 0x3de80,
1714 		0x3de88, 0x3dea8,
1715 		0x3deb0, 0x3deb4,
1716 		0x3dec8, 0x3ded4,
1717 		0x3dfb8, 0x3e004,
1718 		0x3e200, 0x3e200,
1719 		0x3e208, 0x3e240,
1720 		0x3e248, 0x3e280,
1721 		0x3e288, 0x3e2c0,
1722 		0x3e2c8, 0x3e2fc,
1723 		0x3e600, 0x3e630,
1724 		0x3ea00, 0x3eabc,
1725 		0x3eb00, 0x3eb10,
1726 		0x3eb20, 0x3eb30,
1727 		0x3eb40, 0x3eb50,
1728 		0x3eb60, 0x3eb70,
1729 		0x3f000, 0x3f028,
1730 		0x3f030, 0x3f048,
1731 		0x3f060, 0x3f068,
1732 		0x3f070, 0x3f09c,
1733 		0x3f0f0, 0x3f128,
1734 		0x3f130, 0x3f148,
1735 		0x3f160, 0x3f168,
1736 		0x3f170, 0x3f19c,
1737 		0x3f1f0, 0x3f238,
1738 		0x3f240, 0x3f240,
1739 		0x3f248, 0x3f250,
1740 		0x3f25c, 0x3f264,
1741 		0x3f270, 0x3f2b8,
1742 		0x3f2c0, 0x3f2e4,
1743 		0x3f2f8, 0x3f338,
1744 		0x3f340, 0x3f340,
1745 		0x3f348, 0x3f350,
1746 		0x3f35c, 0x3f364,
1747 		0x3f370, 0x3f3b8,
1748 		0x3f3c0, 0x3f3e4,
1749 		0x3f3f8, 0x3f428,
1750 		0x3f430, 0x3f448,
1751 		0x3f460, 0x3f468,
1752 		0x3f470, 0x3f49c,
1753 		0x3f4f0, 0x3f528,
1754 		0x3f530, 0x3f548,
1755 		0x3f560, 0x3f568,
1756 		0x3f570, 0x3f59c,
1757 		0x3f5f0, 0x3f638,
1758 		0x3f640, 0x3f640,
1759 		0x3f648, 0x3f650,
1760 		0x3f65c, 0x3f664,
1761 		0x3f670, 0x3f6b8,
1762 		0x3f6c0, 0x3f6e4,
1763 		0x3f6f8, 0x3f738,
1764 		0x3f740, 0x3f740,
1765 		0x3f748, 0x3f750,
1766 		0x3f75c, 0x3f764,
1767 		0x3f770, 0x3f7b8,
1768 		0x3f7c0, 0x3f7e4,
1769 		0x3f7f8, 0x3f7fc,
1770 		0x3f814, 0x3f814,
1771 		0x3f82c, 0x3f82c,
1772 		0x3f880, 0x3f88c,
1773 		0x3f8e8, 0x3f8ec,
1774 		0x3f900, 0x3f928,
1775 		0x3f930, 0x3f948,
1776 		0x3f960, 0x3f968,
1777 		0x3f970, 0x3f99c,
1778 		0x3f9f0, 0x3fa38,
1779 		0x3fa40, 0x3fa40,
1780 		0x3fa48, 0x3fa50,
1781 		0x3fa5c, 0x3fa64,
1782 		0x3fa70, 0x3fab8,
1783 		0x3fac0, 0x3fae4,
1784 		0x3faf8, 0x3fb10,
1785 		0x3fb28, 0x3fb28,
1786 		0x3fb3c, 0x3fb50,
1787 		0x3fbf0, 0x3fc10,
1788 		0x3fc28, 0x3fc28,
1789 		0x3fc3c, 0x3fc50,
1790 		0x3fcf0, 0x3fcfc,
1791 		0x40000, 0x4000c,
1792 		0x40040, 0x40050,
1793 		0x40060, 0x40068,
1794 		0x4007c, 0x4008c,
1795 		0x40094, 0x400b0,
1796 		0x400c0, 0x40144,
1797 		0x40180, 0x4018c,
1798 		0x40200, 0x40254,
1799 		0x40260, 0x40264,
1800 		0x40270, 0x40288,
1801 		0x40290, 0x40298,
1802 		0x402ac, 0x402c8,
1803 		0x402d0, 0x402e0,
1804 		0x402f0, 0x402f0,
1805 		0x40300, 0x4033c,
1806 		0x403f8, 0x403fc,
1807 		0x41304, 0x413c4,
1808 		0x41400, 0x4140c,
1809 		0x41414, 0x4141c,
1810 		0x41480, 0x414d0,
1811 		0x44000, 0x44054,
1812 		0x4405c, 0x44078,
1813 		0x440c0, 0x44174,
1814 		0x44180, 0x441ac,
1815 		0x441b4, 0x441b8,
1816 		0x441c0, 0x44254,
1817 		0x4425c, 0x44278,
1818 		0x442c0, 0x44374,
1819 		0x44380, 0x443ac,
1820 		0x443b4, 0x443b8,
1821 		0x443c0, 0x44454,
1822 		0x4445c, 0x44478,
1823 		0x444c0, 0x44574,
1824 		0x44580, 0x445ac,
1825 		0x445b4, 0x445b8,
1826 		0x445c0, 0x44654,
1827 		0x4465c, 0x44678,
1828 		0x446c0, 0x44774,
1829 		0x44780, 0x447ac,
1830 		0x447b4, 0x447b8,
1831 		0x447c0, 0x44854,
1832 		0x4485c, 0x44878,
1833 		0x448c0, 0x44974,
1834 		0x44980, 0x449ac,
1835 		0x449b4, 0x449b8,
1836 		0x449c0, 0x449fc,
1837 		0x45000, 0x45004,
1838 		0x45010, 0x45030,
1839 		0x45040, 0x45060,
1840 		0x45068, 0x45068,
1841 		0x45080, 0x45084,
1842 		0x450a0, 0x450b0,
1843 		0x45200, 0x45204,
1844 		0x45210, 0x45230,
1845 		0x45240, 0x45260,
1846 		0x45268, 0x45268,
1847 		0x45280, 0x45284,
1848 		0x452a0, 0x452b0,
1849 		0x460c0, 0x460e4,
1850 		0x47000, 0x4703c,
1851 		0x47044, 0x4708c,
1852 		0x47200, 0x47250,
1853 		0x47400, 0x47408,
1854 		0x47414, 0x47420,
1855 		0x47600, 0x47618,
1856 		0x47800, 0x47814,
1857 		0x48000, 0x4800c,
1858 		0x48040, 0x48050,
1859 		0x48060, 0x48068,
1860 		0x4807c, 0x4808c,
1861 		0x48094, 0x480b0,
1862 		0x480c0, 0x48144,
1863 		0x48180, 0x4818c,
1864 		0x48200, 0x48254,
1865 		0x48260, 0x48264,
1866 		0x48270, 0x48288,
1867 		0x48290, 0x48298,
1868 		0x482ac, 0x482c8,
1869 		0x482d0, 0x482e0,
1870 		0x482f0, 0x482f0,
1871 		0x48300, 0x4833c,
1872 		0x483f8, 0x483fc,
1873 		0x49304, 0x493c4,
1874 		0x49400, 0x4940c,
1875 		0x49414, 0x4941c,
1876 		0x49480, 0x494d0,
1877 		0x4c000, 0x4c054,
1878 		0x4c05c, 0x4c078,
1879 		0x4c0c0, 0x4c174,
1880 		0x4c180, 0x4c1ac,
1881 		0x4c1b4, 0x4c1b8,
1882 		0x4c1c0, 0x4c254,
1883 		0x4c25c, 0x4c278,
1884 		0x4c2c0, 0x4c374,
1885 		0x4c380, 0x4c3ac,
1886 		0x4c3b4, 0x4c3b8,
1887 		0x4c3c0, 0x4c454,
1888 		0x4c45c, 0x4c478,
1889 		0x4c4c0, 0x4c574,
1890 		0x4c580, 0x4c5ac,
1891 		0x4c5b4, 0x4c5b8,
1892 		0x4c5c0, 0x4c654,
1893 		0x4c65c, 0x4c678,
1894 		0x4c6c0, 0x4c774,
1895 		0x4c780, 0x4c7ac,
1896 		0x4c7b4, 0x4c7b8,
1897 		0x4c7c0, 0x4c854,
1898 		0x4c85c, 0x4c878,
1899 		0x4c8c0, 0x4c974,
1900 		0x4c980, 0x4c9ac,
1901 		0x4c9b4, 0x4c9b8,
1902 		0x4c9c0, 0x4c9fc,
1903 		0x4d000, 0x4d004,
1904 		0x4d010, 0x4d030,
1905 		0x4d040, 0x4d060,
1906 		0x4d068, 0x4d068,
1907 		0x4d080, 0x4d084,
1908 		0x4d0a0, 0x4d0b0,
1909 		0x4d200, 0x4d204,
1910 		0x4d210, 0x4d230,
1911 		0x4d240, 0x4d260,
1912 		0x4d268, 0x4d268,
1913 		0x4d280, 0x4d284,
1914 		0x4d2a0, 0x4d2b0,
1915 		0x4e0c0, 0x4e0e4,
1916 		0x4f000, 0x4f03c,
1917 		0x4f044, 0x4f08c,
1918 		0x4f200, 0x4f250,
1919 		0x4f400, 0x4f408,
1920 		0x4f414, 0x4f420,
1921 		0x4f600, 0x4f618,
1922 		0x4f800, 0x4f814,
1923 		0x50000, 0x50084,
1924 		0x50090, 0x500cc,
1925 		0x50400, 0x50400,
1926 		0x50800, 0x50884,
1927 		0x50890, 0x508cc,
1928 		0x50c00, 0x50c00,
1929 		0x51000, 0x5101c,
1930 		0x51300, 0x51308,
1931 	};
1932 
1933 	static const unsigned int t6_reg_ranges[] = {
1934 		0x1008, 0x101c,
1935 		0x1024, 0x10a8,
1936 		0x10b4, 0x10f8,
1937 		0x1100, 0x1114,
1938 		0x111c, 0x112c,
1939 		0x1138, 0x113c,
1940 		0x1144, 0x114c,
1941 		0x1180, 0x1184,
1942 		0x1190, 0x1194,
1943 		0x11a0, 0x11a4,
1944 		0x11b0, 0x11b4,
1945 		0x11fc, 0x1258,
1946 		0x1280, 0x12d4,
1947 		0x12d9, 0x12d9,
1948 		0x12de, 0x12de,
1949 		0x12e3, 0x12e3,
1950 		0x12e8, 0x133c,
1951 		0x1800, 0x18fc,
1952 		0x3000, 0x302c,
1953 		0x3060, 0x30b0,
1954 		0x30b8, 0x30d8,
1955 		0x30e0, 0x30fc,
1956 		0x3140, 0x357c,
1957 		0x35a8, 0x35cc,
1958 		0x35ec, 0x35ec,
1959 		0x3600, 0x5624,
1960 		0x56cc, 0x56ec,
1961 		0x56f4, 0x5720,
1962 		0x5728, 0x575c,
1963 		0x580c, 0x5814,
1964 		0x5890, 0x589c,
1965 		0x58a4, 0x58ac,
1966 		0x58b8, 0x58bc,
1967 		0x5940, 0x595c,
1968 		0x5980, 0x598c,
1969 		0x59b0, 0x59c8,
1970 		0x59d0, 0x59dc,
1971 		0x59fc, 0x5a18,
1972 		0x5a60, 0x5a6c,
1973 		0x5a80, 0x5a8c,
1974 		0x5a94, 0x5a9c,
1975 		0x5b94, 0x5bfc,
1976 		0x5c10, 0x5e48,
1977 		0x5e50, 0x5e94,
1978 		0x5ea0, 0x5eb0,
1979 		0x5ec0, 0x5ec0,
1980 		0x5ec8, 0x5ed0,
1981 		0x6000, 0x6020,
1982 		0x6028, 0x6040,
1983 		0x6058, 0x609c,
1984 		0x60a8, 0x619c,
1985 		0x7700, 0x7798,
1986 		0x77c0, 0x7880,
1987 		0x78cc, 0x78fc,
1988 		0x7b00, 0x7b58,
1989 		0x7b60, 0x7b84,
1990 		0x7b8c, 0x7c54,
1991 		0x7d00, 0x7d38,
1992 		0x7d40, 0x7d84,
1993 		0x7d8c, 0x7ddc,
1994 		0x7de4, 0x7e04,
1995 		0x7e10, 0x7e1c,
1996 		0x7e24, 0x7e38,
1997 		0x7e40, 0x7e44,
1998 		0x7e4c, 0x7e78,
1999 		0x7e80, 0x7edc,
2000 		0x7ee8, 0x7efc,
2001 		0x8dc0, 0x8de4,
2002 		0x8df8, 0x8e04,
2003 		0x8e10, 0x8e84,
2004 		0x8ea0, 0x8f88,
2005 		0x8fb8, 0x9058,
2006 		0x9060, 0x9060,
2007 		0x9068, 0x90f8,
2008 		0x9100, 0x9124,
2009 		0x9400, 0x9470,
2010 		0x9600, 0x9600,
2011 		0x9608, 0x9638,
2012 		0x9640, 0x9704,
2013 		0x9710, 0x971c,
2014 		0x9800, 0x9808,
2015 		0x9820, 0x983c,
2016 		0x9850, 0x9864,
2017 		0x9c00, 0x9c6c,
2018 		0x9c80, 0x9cec,
2019 		0x9d00, 0x9d6c,
2020 		0x9d80, 0x9dec,
2021 		0x9e00, 0x9e6c,
2022 		0x9e80, 0x9eec,
2023 		0x9f00, 0x9f6c,
2024 		0x9f80, 0xa020,
2025 		0xd004, 0xd03c,
2026 		0xd100, 0xd118,
2027 		0xd200, 0xd214,
2028 		0xd220, 0xd234,
2029 		0xd240, 0xd254,
2030 		0xd260, 0xd274,
2031 		0xd280, 0xd294,
2032 		0xd2a0, 0xd2b4,
2033 		0xd2c0, 0xd2d4,
2034 		0xd2e0, 0xd2f4,
2035 		0xd300, 0xd31c,
2036 		0xdfc0, 0xdfe0,
2037 		0xe000, 0xf008,
2038 		0x11000, 0x11014,
2039 		0x11048, 0x1106c,
2040 		0x11074, 0x11088,
2041 		0x11098, 0x11120,
2042 		0x1112c, 0x1117c,
2043 		0x11190, 0x112e0,
2044 		0x11300, 0x1130c,
2045 		0x12000, 0x1206c,
2046 		0x19040, 0x1906c,
2047 		0x19078, 0x19080,
2048 		0x1908c, 0x190e8,
2049 		0x190f0, 0x190f8,
2050 		0x19100, 0x19110,
2051 		0x19120, 0x19124,
2052 		0x19150, 0x19194,
2053 		0x1919c, 0x191b0,
2054 		0x191d0, 0x191e8,
2055 		0x19238, 0x19290,
2056 		0x192a4, 0x192b0,
2057 		0x192bc, 0x192bc,
2058 		0x19348, 0x1934c,
2059 		0x193f8, 0x19418,
2060 		0x19420, 0x19428,
2061 		0x19430, 0x19444,
2062 		0x1944c, 0x1946c,
2063 		0x19474, 0x19474,
2064 		0x19490, 0x194cc,
2065 		0x194f0, 0x194f8,
2066 		0x19c00, 0x19c48,
2067 		0x19c50, 0x19c80,
2068 		0x19c94, 0x19c98,
2069 		0x19ca0, 0x19cbc,
2070 		0x19ce4, 0x19ce4,
2071 		0x19cf0, 0x19cf8,
2072 		0x19d00, 0x19d28,
2073 		0x19d50, 0x19d78,
2074 		0x19d94, 0x19d98,
2075 		0x19da0, 0x19dc8,
2076 		0x19df0, 0x19e10,
2077 		0x19e50, 0x19e6c,
2078 		0x19ea0, 0x19ebc,
2079 		0x19ec4, 0x19ef4,
2080 		0x19f04, 0x19f2c,
2081 		0x19f34, 0x19f34,
2082 		0x19f40, 0x19f50,
2083 		0x19f90, 0x19fac,
2084 		0x19fc4, 0x19fc8,
2085 		0x19fd0, 0x19fe4,
2086 		0x1a000, 0x1a004,
2087 		0x1a010, 0x1a06c,
2088 		0x1a0b0, 0x1a0e4,
2089 		0x1a0ec, 0x1a0f8,
2090 		0x1a100, 0x1a108,
2091 		0x1a114, 0x1a120,
2092 		0x1a128, 0x1a130,
2093 		0x1a138, 0x1a138,
2094 		0x1a190, 0x1a1c4,
2095 		0x1a1fc, 0x1a1fc,
2096 		0x1e008, 0x1e00c,
2097 		0x1e040, 0x1e044,
2098 		0x1e04c, 0x1e04c,
2099 		0x1e284, 0x1e290,
2100 		0x1e2c0, 0x1e2c0,
2101 		0x1e2e0, 0x1e2e0,
2102 		0x1e300, 0x1e384,
2103 		0x1e3c0, 0x1e3c8,
2104 		0x1e408, 0x1e40c,
2105 		0x1e440, 0x1e444,
2106 		0x1e44c, 0x1e44c,
2107 		0x1e684, 0x1e690,
2108 		0x1e6c0, 0x1e6c0,
2109 		0x1e6e0, 0x1e6e0,
2110 		0x1e700, 0x1e784,
2111 		0x1e7c0, 0x1e7c8,
2112 		0x1e808, 0x1e80c,
2113 		0x1e840, 0x1e844,
2114 		0x1e84c, 0x1e84c,
2115 		0x1ea84, 0x1ea90,
2116 		0x1eac0, 0x1eac0,
2117 		0x1eae0, 0x1eae0,
2118 		0x1eb00, 0x1eb84,
2119 		0x1ebc0, 0x1ebc8,
2120 		0x1ec08, 0x1ec0c,
2121 		0x1ec40, 0x1ec44,
2122 		0x1ec4c, 0x1ec4c,
2123 		0x1ee84, 0x1ee90,
2124 		0x1eec0, 0x1eec0,
2125 		0x1eee0, 0x1eee0,
2126 		0x1ef00, 0x1ef84,
2127 		0x1efc0, 0x1efc8,
2128 		0x1f008, 0x1f00c,
2129 		0x1f040, 0x1f044,
2130 		0x1f04c, 0x1f04c,
2131 		0x1f284, 0x1f290,
2132 		0x1f2c0, 0x1f2c0,
2133 		0x1f2e0, 0x1f2e0,
2134 		0x1f300, 0x1f384,
2135 		0x1f3c0, 0x1f3c8,
2136 		0x1f408, 0x1f40c,
2137 		0x1f440, 0x1f444,
2138 		0x1f44c, 0x1f44c,
2139 		0x1f684, 0x1f690,
2140 		0x1f6c0, 0x1f6c0,
2141 		0x1f6e0, 0x1f6e0,
2142 		0x1f700, 0x1f784,
2143 		0x1f7c0, 0x1f7c8,
2144 		0x1f808, 0x1f80c,
2145 		0x1f840, 0x1f844,
2146 		0x1f84c, 0x1f84c,
2147 		0x1fa84, 0x1fa90,
2148 		0x1fac0, 0x1fac0,
2149 		0x1fae0, 0x1fae0,
2150 		0x1fb00, 0x1fb84,
2151 		0x1fbc0, 0x1fbc8,
2152 		0x1fc08, 0x1fc0c,
2153 		0x1fc40, 0x1fc44,
2154 		0x1fc4c, 0x1fc4c,
2155 		0x1fe84, 0x1fe90,
2156 		0x1fec0, 0x1fec0,
2157 		0x1fee0, 0x1fee0,
2158 		0x1ff00, 0x1ff84,
2159 		0x1ffc0, 0x1ffc8,
2160 		0x30000, 0x30030,
2161 		0x30038, 0x30038,
2162 		0x30040, 0x30040,
2163 		0x30048, 0x30048,
2164 		0x30050, 0x30050,
2165 		0x3005c, 0x30060,
2166 		0x30068, 0x30068,
2167 		0x30070, 0x30070,
2168 		0x30100, 0x30168,
2169 		0x30190, 0x301a0,
2170 		0x301a8, 0x301b8,
2171 		0x301c4, 0x301c8,
2172 		0x301d0, 0x301d0,
2173 		0x30200, 0x30320,
2174 		0x30400, 0x304b4,
2175 		0x304c0, 0x3052c,
2176 		0x30540, 0x3061c,
2177 		0x30800, 0x308a0,
2178 		0x308c0, 0x30908,
2179 		0x30910, 0x309b8,
2180 		0x30a00, 0x30a04,
2181 		0x30a0c, 0x30a14,
2182 		0x30a1c, 0x30a2c,
2183 		0x30a44, 0x30a50,
2184 		0x30a74, 0x30a74,
2185 		0x30a7c, 0x30afc,
2186 		0x30b08, 0x30c24,
2187 		0x30d00, 0x30d14,
2188 		0x30d1c, 0x30d3c,
2189 		0x30d44, 0x30d4c,
2190 		0x30d54, 0x30d74,
2191 		0x30d7c, 0x30d7c,
2192 		0x30de0, 0x30de0,
2193 		0x30e00, 0x30ed4,
2194 		0x30f00, 0x30fa4,
2195 		0x30fc0, 0x30fc4,
2196 		0x31000, 0x31004,
2197 		0x31080, 0x310fc,
2198 		0x31208, 0x31220,
2199 		0x3123c, 0x31254,
2200 		0x31300, 0x31300,
2201 		0x31308, 0x3131c,
2202 		0x31338, 0x3133c,
2203 		0x31380, 0x31380,
2204 		0x31388, 0x313a8,
2205 		0x313b4, 0x313b4,
2206 		0x31400, 0x31420,
2207 		0x31438, 0x3143c,
2208 		0x31480, 0x31480,
2209 		0x314a8, 0x314a8,
2210 		0x314b0, 0x314b4,
2211 		0x314c8, 0x314d4,
2212 		0x31a40, 0x31a4c,
2213 		0x31af0, 0x31b20,
2214 		0x31b38, 0x31b3c,
2215 		0x31b80, 0x31b80,
2216 		0x31ba8, 0x31ba8,
2217 		0x31bb0, 0x31bb4,
2218 		0x31bc8, 0x31bd4,
2219 		0x32140, 0x3218c,
2220 		0x321f0, 0x321f4,
2221 		0x32200, 0x32200,
2222 		0x32218, 0x32218,
2223 		0x32400, 0x32400,
2224 		0x32408, 0x3241c,
2225 		0x32618, 0x32620,
2226 		0x32664, 0x32664,
2227 		0x326a8, 0x326a8,
2228 		0x326ec, 0x326ec,
2229 		0x32a00, 0x32abc,
2230 		0x32b00, 0x32b38,
2231 		0x32b40, 0x32b58,
2232 		0x32b60, 0x32b78,
2233 		0x32c00, 0x32c00,
2234 		0x32c08, 0x32c3c,
2235 		0x32e00, 0x32e2c,
2236 		0x32f00, 0x32f2c,
2237 		0x33000, 0x3302c,
2238 		0x33034, 0x33050,
2239 		0x33058, 0x33058,
2240 		0x33060, 0x3308c,
2241 		0x3309c, 0x330ac,
2242 		0x330c0, 0x330c0,
2243 		0x330c8, 0x330d0,
2244 		0x330d8, 0x330e0,
2245 		0x330ec, 0x3312c,
2246 		0x33134, 0x33150,
2247 		0x33158, 0x33158,
2248 		0x33160, 0x3318c,
2249 		0x3319c, 0x331ac,
2250 		0x331c0, 0x331c0,
2251 		0x331c8, 0x331d0,
2252 		0x331d8, 0x331e0,
2253 		0x331ec, 0x33290,
2254 		0x33298, 0x332c4,
2255 		0x332e4, 0x33390,
2256 		0x33398, 0x333c4,
2257 		0x333e4, 0x3342c,
2258 		0x33434, 0x33450,
2259 		0x33458, 0x33458,
2260 		0x33460, 0x3348c,
2261 		0x3349c, 0x334ac,
2262 		0x334c0, 0x334c0,
2263 		0x334c8, 0x334d0,
2264 		0x334d8, 0x334e0,
2265 		0x334ec, 0x3352c,
2266 		0x33534, 0x33550,
2267 		0x33558, 0x33558,
2268 		0x33560, 0x3358c,
2269 		0x3359c, 0x335ac,
2270 		0x335c0, 0x335c0,
2271 		0x335c8, 0x335d0,
2272 		0x335d8, 0x335e0,
2273 		0x335ec, 0x33690,
2274 		0x33698, 0x336c4,
2275 		0x336e4, 0x33790,
2276 		0x33798, 0x337c4,
2277 		0x337e4, 0x337fc,
2278 		0x33814, 0x33814,
2279 		0x33854, 0x33868,
2280 		0x33880, 0x3388c,
2281 		0x338c0, 0x338d0,
2282 		0x338e8, 0x338ec,
2283 		0x33900, 0x3392c,
2284 		0x33934, 0x33950,
2285 		0x33958, 0x33958,
2286 		0x33960, 0x3398c,
2287 		0x3399c, 0x339ac,
2288 		0x339c0, 0x339c0,
2289 		0x339c8, 0x339d0,
2290 		0x339d8, 0x339e0,
2291 		0x339ec, 0x33a90,
2292 		0x33a98, 0x33ac4,
2293 		0x33ae4, 0x33b10,
2294 		0x33b24, 0x33b28,
2295 		0x33b38, 0x33b50,
2296 		0x33bf0, 0x33c10,
2297 		0x33c24, 0x33c28,
2298 		0x33c38, 0x33c50,
2299 		0x33cf0, 0x33cfc,
2300 		0x34000, 0x34030,
2301 		0x34038, 0x34038,
2302 		0x34040, 0x34040,
2303 		0x34048, 0x34048,
2304 		0x34050, 0x34050,
2305 		0x3405c, 0x34060,
2306 		0x34068, 0x34068,
2307 		0x34070, 0x34070,
2308 		0x34100, 0x34168,
2309 		0x34190, 0x341a0,
2310 		0x341a8, 0x341b8,
2311 		0x341c4, 0x341c8,
2312 		0x341d0, 0x341d0,
2313 		0x34200, 0x34320,
2314 		0x34400, 0x344b4,
2315 		0x344c0, 0x3452c,
2316 		0x34540, 0x3461c,
2317 		0x34800, 0x348a0,
2318 		0x348c0, 0x34908,
2319 		0x34910, 0x349b8,
2320 		0x34a00, 0x34a04,
2321 		0x34a0c, 0x34a14,
2322 		0x34a1c, 0x34a2c,
2323 		0x34a44, 0x34a50,
2324 		0x34a74, 0x34a74,
2325 		0x34a7c, 0x34afc,
2326 		0x34b08, 0x34c24,
2327 		0x34d00, 0x34d14,
2328 		0x34d1c, 0x34d3c,
2329 		0x34d44, 0x34d4c,
2330 		0x34d54, 0x34d74,
2331 		0x34d7c, 0x34d7c,
2332 		0x34de0, 0x34de0,
2333 		0x34e00, 0x34ed4,
2334 		0x34f00, 0x34fa4,
2335 		0x34fc0, 0x34fc4,
2336 		0x35000, 0x35004,
2337 		0x35080, 0x350fc,
2338 		0x35208, 0x35220,
2339 		0x3523c, 0x35254,
2340 		0x35300, 0x35300,
2341 		0x35308, 0x3531c,
2342 		0x35338, 0x3533c,
2343 		0x35380, 0x35380,
2344 		0x35388, 0x353a8,
2345 		0x353b4, 0x353b4,
2346 		0x35400, 0x35420,
2347 		0x35438, 0x3543c,
2348 		0x35480, 0x35480,
2349 		0x354a8, 0x354a8,
2350 		0x354b0, 0x354b4,
2351 		0x354c8, 0x354d4,
2352 		0x35a40, 0x35a4c,
2353 		0x35af0, 0x35b20,
2354 		0x35b38, 0x35b3c,
2355 		0x35b80, 0x35b80,
2356 		0x35ba8, 0x35ba8,
2357 		0x35bb0, 0x35bb4,
2358 		0x35bc8, 0x35bd4,
2359 		0x36140, 0x3618c,
2360 		0x361f0, 0x361f4,
2361 		0x36200, 0x36200,
2362 		0x36218, 0x36218,
2363 		0x36400, 0x36400,
2364 		0x36408, 0x3641c,
2365 		0x36618, 0x36620,
2366 		0x36664, 0x36664,
2367 		0x366a8, 0x366a8,
2368 		0x366ec, 0x366ec,
2369 		0x36a00, 0x36abc,
2370 		0x36b00, 0x36b38,
2371 		0x36b40, 0x36b58,
2372 		0x36b60, 0x36b78,
2373 		0x36c00, 0x36c00,
2374 		0x36c08, 0x36c3c,
2375 		0x36e00, 0x36e2c,
2376 		0x36f00, 0x36f2c,
2377 		0x37000, 0x3702c,
2378 		0x37034, 0x37050,
2379 		0x37058, 0x37058,
2380 		0x37060, 0x3708c,
2381 		0x3709c, 0x370ac,
2382 		0x370c0, 0x370c0,
2383 		0x370c8, 0x370d0,
2384 		0x370d8, 0x370e0,
2385 		0x370ec, 0x3712c,
2386 		0x37134, 0x37150,
2387 		0x37158, 0x37158,
2388 		0x37160, 0x3718c,
2389 		0x3719c, 0x371ac,
2390 		0x371c0, 0x371c0,
2391 		0x371c8, 0x371d0,
2392 		0x371d8, 0x371e0,
2393 		0x371ec, 0x37290,
2394 		0x37298, 0x372c4,
2395 		0x372e4, 0x37390,
2396 		0x37398, 0x373c4,
2397 		0x373e4, 0x3742c,
2398 		0x37434, 0x37450,
2399 		0x37458, 0x37458,
2400 		0x37460, 0x3748c,
2401 		0x3749c, 0x374ac,
2402 		0x374c0, 0x374c0,
2403 		0x374c8, 0x374d0,
2404 		0x374d8, 0x374e0,
2405 		0x374ec, 0x3752c,
2406 		0x37534, 0x37550,
2407 		0x37558, 0x37558,
2408 		0x37560, 0x3758c,
2409 		0x3759c, 0x375ac,
2410 		0x375c0, 0x375c0,
2411 		0x375c8, 0x375d0,
2412 		0x375d8, 0x375e0,
2413 		0x375ec, 0x37690,
2414 		0x37698, 0x376c4,
2415 		0x376e4, 0x37790,
2416 		0x37798, 0x377c4,
2417 		0x377e4, 0x377fc,
2418 		0x37814, 0x37814,
2419 		0x37854, 0x37868,
2420 		0x37880, 0x3788c,
2421 		0x378c0, 0x378d0,
2422 		0x378e8, 0x378ec,
2423 		0x37900, 0x3792c,
2424 		0x37934, 0x37950,
2425 		0x37958, 0x37958,
2426 		0x37960, 0x3798c,
2427 		0x3799c, 0x379ac,
2428 		0x379c0, 0x379c0,
2429 		0x379c8, 0x379d0,
2430 		0x379d8, 0x379e0,
2431 		0x379ec, 0x37a90,
2432 		0x37a98, 0x37ac4,
2433 		0x37ae4, 0x37b10,
2434 		0x37b24, 0x37b28,
2435 		0x37b38, 0x37b50,
2436 		0x37bf0, 0x37c10,
2437 		0x37c24, 0x37c28,
2438 		0x37c38, 0x37c50,
2439 		0x37cf0, 0x37cfc,
2440 		0x40040, 0x40040,
2441 		0x40080, 0x40084,
2442 		0x40100, 0x40100,
2443 		0x40140, 0x401bc,
2444 		0x40200, 0x40214,
2445 		0x40228, 0x40228,
2446 		0x40240, 0x40258,
2447 		0x40280, 0x40280,
2448 		0x40304, 0x40304,
2449 		0x40330, 0x4033c,
2450 		0x41304, 0x413b8,
2451 		0x413c0, 0x413c8,
2452 		0x413d0, 0x413dc,
2453 		0x413f0, 0x413f0,
2454 		0x41400, 0x4140c,
2455 		0x41414, 0x4141c,
2456 		0x41480, 0x414d0,
2457 		0x44000, 0x4407c,
2458 		0x440c0, 0x441ac,
2459 		0x441b4, 0x4427c,
2460 		0x442c0, 0x443ac,
2461 		0x443b4, 0x4447c,
2462 		0x444c0, 0x445ac,
2463 		0x445b4, 0x4467c,
2464 		0x446c0, 0x447ac,
2465 		0x447b4, 0x4487c,
2466 		0x448c0, 0x449ac,
2467 		0x449b4, 0x44a7c,
2468 		0x44ac0, 0x44bac,
2469 		0x44bb4, 0x44c7c,
2470 		0x44cc0, 0x44dac,
2471 		0x44db4, 0x44e7c,
2472 		0x44ec0, 0x44fac,
2473 		0x44fb4, 0x4507c,
2474 		0x450c0, 0x451ac,
2475 		0x451b4, 0x451fc,
2476 		0x45800, 0x45804,
2477 		0x45810, 0x45830,
2478 		0x45840, 0x45860,
2479 		0x45868, 0x45868,
2480 		0x45880, 0x45884,
2481 		0x458a0, 0x458b0,
2482 		0x45a00, 0x45a04,
2483 		0x45a10, 0x45a30,
2484 		0x45a40, 0x45a60,
2485 		0x45a68, 0x45a68,
2486 		0x45a80, 0x45a84,
2487 		0x45aa0, 0x45ab0,
2488 		0x460c0, 0x460e4,
2489 		0x47000, 0x4703c,
2490 		0x47044, 0x4708c,
2491 		0x47200, 0x47250,
2492 		0x47400, 0x47408,
2493 		0x47414, 0x47420,
2494 		0x47600, 0x47618,
2495 		0x47800, 0x47814,
2496 		0x47820, 0x4782c,
2497 		0x50000, 0x50084,
2498 		0x50090, 0x500cc,
2499 		0x50300, 0x50384,
2500 		0x50400, 0x50400,
2501 		0x50800, 0x50884,
2502 		0x50890, 0x508cc,
2503 		0x50b00, 0x50b84,
2504 		0x50c00, 0x50c00,
2505 		0x51000, 0x51020,
2506 		0x51028, 0x510b0,
2507 		0x51300, 0x51324,
2508 	};
2509 
2510 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2511 	const unsigned int *reg_ranges;
2512 	int reg_ranges_size, range;
2513 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2514 
2515 	/* Select the right set of register ranges to dump depending on the
2516 	 * adapter chip type.
2517 	 */
2518 	switch (chip_version) {
2519 	case CHELSIO_T4:
2520 		reg_ranges = t4_reg_ranges;
2521 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2522 		break;
2523 
2524 	case CHELSIO_T5:
2525 		reg_ranges = t5_reg_ranges;
2526 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2527 		break;
2528 
2529 	case CHELSIO_T6:
2530 		reg_ranges = t6_reg_ranges;
2531 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2532 		break;
2533 
2534 	default:
2535 		dev_err(adap->pdev_dev,
2536 			"Unsupported chip version %d\n", chip_version);
2537 		return;
2538 	}
2539 
2540 	/* Clear the register buffer and insert the appropriate register
2541 	 * values selected by the above register ranges.
2542 	 */
2543 	memset(buf, 0, buf_size);
2544 	for (range = 0; range < reg_ranges_size; range += 2) {
2545 		unsigned int reg = reg_ranges[range];
2546 		unsigned int last_reg = reg_ranges[range + 1];
2547 		u32 *bufp = (u32 *)((char *)buf + reg);
2548 
2549 		/* Iterate across the register range filling in the register
2550 		 * buffer but don't write past the end of the register buffer.
2551 		 */
2552 		while (reg <= last_reg && bufp < buf_end) {
2553 			*bufp++ = t4_read_reg(adap, reg);
2554 			reg += sizeof(u32);
2555 		}
2556 	}
2557 }
2558 
2559 #define EEPROM_STAT_ADDR   0x7bfc
2560 #define VPD_BASE           0x400
2561 #define VPD_BASE_OLD       0
2562 #define VPD_LEN            1024
2563 #define CHELSIO_VPD_UNIQUE_ID 0x82
2564 
2565 /**
2566  *	t4_seeprom_wp - enable/disable EEPROM write protection
2567  *	@adapter: the adapter
2568  *	@enable: whether to enable or disable write protection
2569  *
2570  *	Enables or disables write protection on the serial EEPROM.
2571  */
2572 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2573 {
2574 	unsigned int v = enable ? 0xc : 0;
2575 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2576 	return ret < 0 ? ret : 0;
2577 }
2578 
2579 /**
2580  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2581  *	@adapter: adapter to read
2582  *	@p: where to store the parameters
2583  *
2584  *	Reads card parameters stored in VPD EEPROM.
2585  */
2586 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2587 {
2588 	int i, ret = 0, addr;
2589 	int ec, sn, pn, na;
2590 	u8 *vpd, csum;
2591 	unsigned int vpdr_len, kw_offset, id_len;
2592 
2593 	vpd = vmalloc(VPD_LEN);
2594 	if (!vpd)
2595 		return -ENOMEM;
2596 
2597 	/* Card information normally starts at VPD_BASE but early cards had
2598 	 * it at 0.
2599 	 */
2600 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2601 	if (ret < 0)
2602 		goto out;
2603 
2604 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2605 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2606 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2607 	 * is expected to automatically put this entry at the
2608 	 * beginning of the VPD.
2609 	 */
2610 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2611 
2612 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2613 	if (ret < 0)
2614 		goto out;
2615 
2616 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2617 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2618 		ret = -EINVAL;
2619 		goto out;
2620 	}
2621 
2622 	id_len = pci_vpd_lrdt_size(vpd);
2623 	if (id_len > ID_LEN)
2624 		id_len = ID_LEN;
2625 
2626 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2627 	if (i < 0) {
2628 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2629 		ret = -EINVAL;
2630 		goto out;
2631 	}
2632 
2633 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2634 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2635 	if (vpdr_len + kw_offset > VPD_LEN) {
2636 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2637 		ret = -EINVAL;
2638 		goto out;
2639 	}
2640 
2641 #define FIND_VPD_KW(var, name) do { \
2642 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2643 	if (var < 0) { \
2644 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2645 		ret = -EINVAL; \
2646 		goto out; \
2647 	} \
2648 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2649 } while (0)
2650 
2651 	FIND_VPD_KW(i, "RV");
2652 	for (csum = 0; i >= 0; i--)
2653 		csum += vpd[i];
2654 
2655 	if (csum) {
2656 		dev_err(adapter->pdev_dev,
2657 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2658 		ret = -EINVAL;
2659 		goto out;
2660 	}
2661 
2662 	FIND_VPD_KW(ec, "EC");
2663 	FIND_VPD_KW(sn, "SN");
2664 	FIND_VPD_KW(pn, "PN");
2665 	FIND_VPD_KW(na, "NA");
2666 #undef FIND_VPD_KW
2667 
2668 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2669 	strim(p->id);
2670 	memcpy(p->ec, vpd + ec, EC_LEN);
2671 	strim(p->ec);
2672 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2673 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2674 	strim(p->sn);
2675 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2676 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2677 	strim(p->pn);
2678 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2679 	strim((char *)p->na);
2680 
2681 out:
2682 	vfree(vpd);
2683 	return ret;
2684 }
2685 
2686 /**
2687  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2688  *	@adapter: adapter to read
2689  *	@p: where to store the parameters
2690  *
2691  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2692  *	Clock.  This can only be called after a connection to the firmware
2693  *	is established.
2694  */
2695 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2696 {
2697 	u32 cclk_param, cclk_val;
2698 	int ret;
2699 
2700 	/* Grab the raw VPD parameters.
2701 	 */
2702 	ret = t4_get_raw_vpd_params(adapter, p);
2703 	if (ret)
2704 		return ret;
2705 
2706 	/* Ask firmware for the Core Clock since it knows how to translate the
2707 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2708 	 */
2709 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2710 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2711 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2712 			      1, &cclk_param, &cclk_val);
2713 
2714 	if (ret)
2715 		return ret;
2716 	p->cclk = cclk_val;
2717 
2718 	return 0;
2719 }
2720 
2721 /* serial flash and firmware constants */
2722 enum {
2723 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2724 
2725 	/* flash command opcodes */
2726 	SF_PROG_PAGE    = 2,          /* program page */
2727 	SF_WR_DISABLE   = 4,          /* disable writes */
2728 	SF_RD_STATUS    = 5,          /* read status register */
2729 	SF_WR_ENABLE    = 6,          /* enable writes */
2730 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2731 	SF_RD_ID        = 0x9f,       /* read ID */
2732 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2733 
2734 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2735 };
2736 
2737 /**
2738  *	sf1_read - read data from the serial flash
2739  *	@adapter: the adapter
2740  *	@byte_cnt: number of bytes to read
2741  *	@cont: whether another operation will be chained
2742  *	@lock: whether to lock SF for PL access only
2743  *	@valp: where to store the read data
2744  *
2745  *	Reads up to 4 bytes of data from the serial flash.  The location of
2746  *	the read needs to be specified prior to calling this by issuing the
2747  *	appropriate commands to the serial flash.
2748  */
2749 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2750 		    int lock, u32 *valp)
2751 {
2752 	int ret;
2753 
2754 	if (!byte_cnt || byte_cnt > 4)
2755 		return -EINVAL;
2756 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2757 		return -EBUSY;
2758 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2759 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2760 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2761 	if (!ret)
2762 		*valp = t4_read_reg(adapter, SF_DATA_A);
2763 	return ret;
2764 }
2765 
2766 /**
2767  *	sf1_write - write data to the serial flash
2768  *	@adapter: the adapter
2769  *	@byte_cnt: number of bytes to write
2770  *	@cont: whether another operation will be chained
2771  *	@lock: whether to lock SF for PL access only
2772  *	@val: value to write
2773  *
2774  *	Writes up to 4 bytes of data to the serial flash.  The location of
2775  *	the write needs to be specified prior to calling this by issuing the
2776  *	appropriate commands to the serial flash.
2777  */
2778 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2779 		     int lock, u32 val)
2780 {
2781 	if (!byte_cnt || byte_cnt > 4)
2782 		return -EINVAL;
2783 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2784 		return -EBUSY;
2785 	t4_write_reg(adapter, SF_DATA_A, val);
2786 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2787 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2788 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2789 }
2790 
2791 /**
2792  *	flash_wait_op - wait for a flash operation to complete
2793  *	@adapter: the adapter
2794  *	@attempts: max number of polls of the status register
2795  *	@delay: delay between polls in ms
2796  *
2797  *	Wait for a flash operation to complete by polling the status register.
2798  */
2799 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2800 {
2801 	int ret;
2802 	u32 status;
2803 
2804 	while (1) {
2805 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2806 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2807 			return ret;
2808 		if (!(status & 1))
2809 			return 0;
2810 		if (--attempts == 0)
2811 			return -EAGAIN;
2812 		if (delay)
2813 			msleep(delay);
2814 	}
2815 }
2816 
2817 /**
2818  *	t4_read_flash - read words from serial flash
2819  *	@adapter: the adapter
2820  *	@addr: the start address for the read
2821  *	@nwords: how many 32-bit words to read
2822  *	@data: where to store the read data
2823  *	@byte_oriented: whether to store data as bytes or as words
2824  *
2825  *	Read the specified number of 32-bit words from the serial flash.
2826  *	If @byte_oriented is set the read data is stored as a byte array
2827  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2828  *	natural endianness.
2829  */
2830 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2831 		  unsigned int nwords, u32 *data, int byte_oriented)
2832 {
2833 	int ret;
2834 
2835 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2836 		return -EINVAL;
2837 
2838 	addr = swab32(addr) | SF_RD_DATA_FAST;
2839 
2840 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2841 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2842 		return ret;
2843 
2844 	for ( ; nwords; nwords--, data++) {
2845 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2846 		if (nwords == 1)
2847 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2848 		if (ret)
2849 			return ret;
2850 		if (byte_oriented)
2851 			*data = (__force __u32)(cpu_to_be32(*data));
2852 	}
2853 	return 0;
2854 }
2855 
2856 /**
2857  *	t4_write_flash - write up to a page of data to the serial flash
2858  *	@adapter: the adapter
2859  *	@addr: the start address to write
2860  *	@n: length of data to write in bytes
2861  *	@data: the data to write
2862  *
2863  *	Writes up to a page of data (256 bytes) to the serial flash starting
2864  *	at the given address.  All the data must be written to the same page.
2865  */
2866 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2867 			  unsigned int n, const u8 *data)
2868 {
2869 	int ret;
2870 	u32 buf[64];
2871 	unsigned int i, c, left, val, offset = addr & 0xff;
2872 
2873 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2874 		return -EINVAL;
2875 
2876 	val = swab32(addr) | SF_PROG_PAGE;
2877 
2878 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2879 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2880 		goto unlock;
2881 
2882 	for (left = n; left; left -= c) {
2883 		c = min(left, 4U);
2884 		for (val = 0, i = 0; i < c; ++i)
2885 			val = (val << 8) + *data++;
2886 
2887 		ret = sf1_write(adapter, c, c != left, 1, val);
2888 		if (ret)
2889 			goto unlock;
2890 	}
2891 	ret = flash_wait_op(adapter, 8, 1);
2892 	if (ret)
2893 		goto unlock;
2894 
2895 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2896 
2897 	/* Read the page to verify the write succeeded */
2898 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2899 	if (ret)
2900 		return ret;
2901 
2902 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
2903 		dev_err(adapter->pdev_dev,
2904 			"failed to correctly write the flash page at %#x\n",
2905 			addr);
2906 		return -EIO;
2907 	}
2908 	return 0;
2909 
2910 unlock:
2911 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2912 	return ret;
2913 }
2914 
2915 /**
2916  *	t4_get_fw_version - read the firmware version
2917  *	@adapter: the adapter
2918  *	@vers: where to place the version
2919  *
2920  *	Reads the FW version from flash.
2921  */
2922 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2923 {
2924 	return t4_read_flash(adapter, FLASH_FW_START +
2925 			     offsetof(struct fw_hdr, fw_ver), 1,
2926 			     vers, 0);
2927 }
2928 
2929 /**
2930  *	t4_get_tp_version - read the TP microcode version
2931  *	@adapter: the adapter
2932  *	@vers: where to place the version
2933  *
2934  *	Reads the TP microcode version from flash.
2935  */
2936 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2937 {
2938 	return t4_read_flash(adapter, FLASH_FW_START +
2939 			     offsetof(struct fw_hdr, tp_microcode_ver),
2940 			     1, vers, 0);
2941 }
2942 
2943 /**
2944  *	t4_get_exprom_version - return the Expansion ROM version (if any)
2945  *	@adapter: the adapter
2946  *	@vers: where to place the version
2947  *
2948  *	Reads the Expansion ROM header from FLASH and returns the version
2949  *	number (if present) through the @vers return value pointer.  We return
2950  *	this in the Firmware Version Format since it's convenient.  Return
2951  *	0 on success, -ENOENT if no Expansion ROM is present.
2952  */
2953 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2954 {
2955 	struct exprom_header {
2956 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
2957 		unsigned char hdr_ver[4];	/* Expansion ROM version */
2958 	} *hdr;
2959 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2960 					   sizeof(u32))];
2961 	int ret;
2962 
2963 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2964 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2965 			    0);
2966 	if (ret)
2967 		return ret;
2968 
2969 	hdr = (struct exprom_header *)exprom_header_buf;
2970 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2971 		return -ENOENT;
2972 
2973 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2974 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2975 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2976 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2977 	return 0;
2978 }
2979 
2980 /**
2981  *	t4_check_fw_version - check if the FW is supported with this driver
2982  *	@adap: the adapter
2983  *
2984  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
2985  *	if there's exact match, a negative error if the version could not be
2986  *	read or there's a major version mismatch
2987  */
2988 int t4_check_fw_version(struct adapter *adap)
2989 {
2990 	int i, ret, major, minor, micro;
2991 	int exp_major, exp_minor, exp_micro;
2992 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2993 
2994 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2995 	/* Try multiple times before returning error */
2996 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
2997 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2998 
2999 	if (ret)
3000 		return ret;
3001 
3002 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3003 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3004 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3005 
3006 	switch (chip_version) {
3007 	case CHELSIO_T4:
3008 		exp_major = T4FW_MIN_VERSION_MAJOR;
3009 		exp_minor = T4FW_MIN_VERSION_MINOR;
3010 		exp_micro = T4FW_MIN_VERSION_MICRO;
3011 		break;
3012 	case CHELSIO_T5:
3013 		exp_major = T5FW_MIN_VERSION_MAJOR;
3014 		exp_minor = T5FW_MIN_VERSION_MINOR;
3015 		exp_micro = T5FW_MIN_VERSION_MICRO;
3016 		break;
3017 	case CHELSIO_T6:
3018 		exp_major = T6FW_MIN_VERSION_MAJOR;
3019 		exp_minor = T6FW_MIN_VERSION_MINOR;
3020 		exp_micro = T6FW_MIN_VERSION_MICRO;
3021 		break;
3022 	default:
3023 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3024 			adap->chip);
3025 		return -EINVAL;
3026 	}
3027 
3028 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3029 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3030 		dev_err(adap->pdev_dev,
3031 			"Card has firmware version %u.%u.%u, minimum "
3032 			"supported firmware is %u.%u.%u.\n", major, minor,
3033 			micro, exp_major, exp_minor, exp_micro);
3034 		return -EFAULT;
3035 	}
3036 	return 0;
3037 }
3038 
3039 /* Is the given firmware API compatible with the one the driver was compiled
3040  * with?
3041  */
3042 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3043 {
3044 
3045 	/* short circuit if it's the exact same firmware version */
3046 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3047 		return 1;
3048 
3049 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3050 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3051 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3052 		return 1;
3053 #undef SAME_INTF
3054 
3055 	return 0;
3056 }
3057 
3058 /* The firmware in the filesystem is usable, but should it be installed?
3059  * This routine explains itself in detail if it indicates the filesystem
3060  * firmware should be installed.
3061  */
3062 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3063 				int k, int c)
3064 {
3065 	const char *reason;
3066 
3067 	if (!card_fw_usable) {
3068 		reason = "incompatible or unusable";
3069 		goto install;
3070 	}
3071 
3072 	if (k > c) {
3073 		reason = "older than the version supported with this driver";
3074 		goto install;
3075 	}
3076 
3077 	return 0;
3078 
3079 install:
3080 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3081 		"installing firmware %u.%u.%u.%u on card.\n",
3082 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3083 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3084 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3085 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3086 
3087 	return 1;
3088 }
3089 
3090 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3091 	       const u8 *fw_data, unsigned int fw_size,
3092 	       struct fw_hdr *card_fw, enum dev_state state,
3093 	       int *reset)
3094 {
3095 	int ret, card_fw_usable, fs_fw_usable;
3096 	const struct fw_hdr *fs_fw;
3097 	const struct fw_hdr *drv_fw;
3098 
3099 	drv_fw = &fw_info->fw_hdr;
3100 
3101 	/* Read the header of the firmware on the card */
3102 	ret = -t4_read_flash(adap, FLASH_FW_START,
3103 			    sizeof(*card_fw) / sizeof(uint32_t),
3104 			    (uint32_t *)card_fw, 1);
3105 	if (ret == 0) {
3106 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3107 	} else {
3108 		dev_err(adap->pdev_dev,
3109 			"Unable to read card's firmware header: %d\n", ret);
3110 		card_fw_usable = 0;
3111 	}
3112 
3113 	if (fw_data != NULL) {
3114 		fs_fw = (const void *)fw_data;
3115 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3116 	} else {
3117 		fs_fw = NULL;
3118 		fs_fw_usable = 0;
3119 	}
3120 
3121 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3122 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3123 		/* Common case: the firmware on the card is an exact match and
3124 		 * the filesystem one is an exact match too, or the filesystem
3125 		 * one is absent/incompatible.
3126 		 */
3127 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3128 		   should_install_fs_fw(adap, card_fw_usable,
3129 					be32_to_cpu(fs_fw->fw_ver),
3130 					be32_to_cpu(card_fw->fw_ver))) {
3131 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3132 				     fw_size, 0);
3133 		if (ret != 0) {
3134 			dev_err(adap->pdev_dev,
3135 				"failed to install firmware: %d\n", ret);
3136 			goto bye;
3137 		}
3138 
3139 		/* Installed successfully, update the cached header too. */
3140 		*card_fw = *fs_fw;
3141 		card_fw_usable = 1;
3142 		*reset = 0;	/* already reset as part of load_fw */
3143 	}
3144 
3145 	if (!card_fw_usable) {
3146 		uint32_t d, c, k;
3147 
3148 		d = be32_to_cpu(drv_fw->fw_ver);
3149 		c = be32_to_cpu(card_fw->fw_ver);
3150 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3151 
3152 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3153 			"chip state %d, "
3154 			"driver compiled with %d.%d.%d.%d, "
3155 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3156 			state,
3157 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3158 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3159 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3160 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3161 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3162 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3163 		ret = EINVAL;
3164 		goto bye;
3165 	}
3166 
3167 	/* We're using whatever's on the card and it's known to be good. */
3168 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3169 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3170 
3171 bye:
3172 	return ret;
3173 }
3174 
3175 /**
3176  *	t4_flash_erase_sectors - erase a range of flash sectors
3177  *	@adapter: the adapter
3178  *	@start: the first sector to erase
3179  *	@end: the last sector to erase
3180  *
3181  *	Erases the sectors in the given inclusive range.
3182  */
3183 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3184 {
3185 	int ret = 0;
3186 
3187 	if (end >= adapter->params.sf_nsec)
3188 		return -EINVAL;
3189 
3190 	while (start <= end) {
3191 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3192 		    (ret = sf1_write(adapter, 4, 0, 1,
3193 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3194 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3195 			dev_err(adapter->pdev_dev,
3196 				"erase of flash sector %d failed, error %d\n",
3197 				start, ret);
3198 			break;
3199 		}
3200 		start++;
3201 	}
3202 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3203 	return ret;
3204 }
3205 
3206 /**
3207  *	t4_flash_cfg_addr - return the address of the flash configuration file
3208  *	@adapter: the adapter
3209  *
3210  *	Return the address within the flash where the Firmware Configuration
3211  *	File is stored.
3212  */
3213 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3214 {
3215 	if (adapter->params.sf_size == 0x100000)
3216 		return FLASH_FPGA_CFG_START;
3217 	else
3218 		return FLASH_CFG_START;
3219 }
3220 
3221 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3222  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3223  * and emit an error message for mismatched firmware to save our caller the
3224  * effort ...
3225  */
3226 static bool t4_fw_matches_chip(const struct adapter *adap,
3227 			       const struct fw_hdr *hdr)
3228 {
3229 	/* The expression below will return FALSE for any unsupported adapter
3230 	 * which will keep us "honest" in the future ...
3231 	 */
3232 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3233 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3234 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3235 		return true;
3236 
3237 	dev_err(adap->pdev_dev,
3238 		"FW image (%d) is not suitable for this adapter (%d)\n",
3239 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3240 	return false;
3241 }
3242 
3243 /**
3244  *	t4_load_fw - download firmware
3245  *	@adap: the adapter
3246  *	@fw_data: the firmware image to write
3247  *	@size: image size
3248  *
3249  *	Write the supplied firmware image to the card's serial flash.
3250  */
3251 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3252 {
3253 	u32 csum;
3254 	int ret, addr;
3255 	unsigned int i;
3256 	u8 first_page[SF_PAGE_SIZE];
3257 	const __be32 *p = (const __be32 *)fw_data;
3258 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3259 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3260 	unsigned int fw_img_start = adap->params.sf_fw_start;
3261 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3262 
3263 	if (!size) {
3264 		dev_err(adap->pdev_dev, "FW image has no data\n");
3265 		return -EINVAL;
3266 	}
3267 	if (size & 511) {
3268 		dev_err(adap->pdev_dev,
3269 			"FW image size not multiple of 512 bytes\n");
3270 		return -EINVAL;
3271 	}
3272 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3273 		dev_err(adap->pdev_dev,
3274 			"FW image size differs from size in FW header\n");
3275 		return -EINVAL;
3276 	}
3277 	if (size > FW_MAX_SIZE) {
3278 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3279 			FW_MAX_SIZE);
3280 		return -EFBIG;
3281 	}
3282 	if (!t4_fw_matches_chip(adap, hdr))
3283 		return -EINVAL;
3284 
3285 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3286 		csum += be32_to_cpu(p[i]);
3287 
3288 	if (csum != 0xffffffff) {
3289 		dev_err(adap->pdev_dev,
3290 			"corrupted firmware image, checksum %#x\n", csum);
3291 		return -EINVAL;
3292 	}
3293 
3294 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3295 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3296 	if (ret)
3297 		goto out;
3298 
3299 	/*
3300 	 * We write the correct version at the end so the driver can see a bad
3301 	 * version if the FW write fails.  Start by writing a copy of the
3302 	 * first page with a bad version.
3303 	 */
3304 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3305 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3306 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3307 	if (ret)
3308 		goto out;
3309 
3310 	addr = fw_img_start;
3311 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3312 		addr += SF_PAGE_SIZE;
3313 		fw_data += SF_PAGE_SIZE;
3314 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3315 		if (ret)
3316 			goto out;
3317 	}
3318 
3319 	ret = t4_write_flash(adap,
3320 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3321 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3322 out:
3323 	if (ret)
3324 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3325 			ret);
3326 	else
3327 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3328 	return ret;
3329 }
3330 
3331 /**
3332  *	t4_phy_fw_ver - return current PHY firmware version
3333  *	@adap: the adapter
3334  *	@phy_fw_ver: return value buffer for PHY firmware version
3335  *
3336  *	Returns the current version of external PHY firmware on the
3337  *	adapter.
3338  */
3339 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3340 {
3341 	u32 param, val;
3342 	int ret;
3343 
3344 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3345 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3346 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3347 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3348 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3349 			      &param, &val);
3350 	if (ret < 0)
3351 		return ret;
3352 	*phy_fw_ver = val;
3353 	return 0;
3354 }
3355 
3356 /**
3357  *	t4_load_phy_fw - download port PHY firmware
3358  *	@adap: the adapter
3359  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3360  *	@win_lock: the lock to use to guard the memory copy
3361  *	@phy_fw_version: function to check PHY firmware versions
3362  *	@phy_fw_data: the PHY firmware image to write
3363  *	@phy_fw_size: image size
3364  *
3365  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3366  *	@phy_fw_version is supplied, then it will be used to determine if
3367  *	it's necessary to perform the transfer by comparing the version
3368  *	of any existing adapter PHY firmware with that of the passed in
3369  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3370  *	around the call to t4_memory_rw() which transfers the PHY firmware
3371  *	to the adapter.
3372  *
3373  *	A negative error number will be returned if an error occurs.  If
3374  *	version number support is available and there's no need to upgrade
3375  *	the firmware, 0 will be returned.  If firmware is successfully
3376  *	transferred to the adapter, 1 will be retured.
3377  *
3378  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3379  *	a result, a RESET of the adapter would cause that RAM to lose its
3380  *	contents.  Thus, loading PHY firmware on such adapters must happen
3381  *	after any FW_RESET_CMDs ...
3382  */
3383 int t4_load_phy_fw(struct adapter *adap,
3384 		   int win, spinlock_t *win_lock,
3385 		   int (*phy_fw_version)(const u8 *, size_t),
3386 		   const u8 *phy_fw_data, size_t phy_fw_size)
3387 {
3388 	unsigned long mtype = 0, maddr = 0;
3389 	u32 param, val;
3390 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3391 	int ret;
3392 
3393 	/* If we have version number support, then check to see if the adapter
3394 	 * already has up-to-date PHY firmware loaded.
3395 	 */
3396 	 if (phy_fw_version) {
3397 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3398 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3399 		if (ret < 0)
3400 			return ret;
3401 
3402 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3403 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3404 				"version %#x\n", cur_phy_fw_ver);
3405 			return 0;
3406 		}
3407 	}
3408 
3409 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3410 	 * The size of the file requires a special version of the READ coommand
3411 	 * which will pass the file size via the values field in PARAMS_CMD and
3412 	 * retrieve the return value from firmware and place it in the same
3413 	 * buffer values
3414 	 */
3415 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3416 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3417 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3418 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3419 	val = phy_fw_size;
3420 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3421 				 &param, &val, 1);
3422 	if (ret < 0)
3423 		return ret;
3424 	mtype = val >> 8;
3425 	maddr = (val & 0xff) << 16;
3426 
3427 	/* Copy the supplied PHY Firmware image to the adapter memory location
3428 	 * allocated by the adapter firmware.
3429 	 */
3430 	if (win_lock)
3431 		spin_lock_bh(win_lock);
3432 	ret = t4_memory_rw(adap, win, mtype, maddr,
3433 			   phy_fw_size, (__be32 *)phy_fw_data,
3434 			   T4_MEMORY_WRITE);
3435 	if (win_lock)
3436 		spin_unlock_bh(win_lock);
3437 	if (ret)
3438 		return ret;
3439 
3440 	/* Tell the firmware that the PHY firmware image has been written to
3441 	 * RAM and it can now start copying it over to the PHYs.  The chip
3442 	 * firmware will RESET the affected PHYs as part of this operation
3443 	 * leaving them running the new PHY firmware image.
3444 	 */
3445 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3446 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3447 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3448 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3449 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3450 				    &param, &val, 30000);
3451 
3452 	/* If we have version number support, then check to see that the new
3453 	 * firmware got loaded properly.
3454 	 */
3455 	if (phy_fw_version) {
3456 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3457 		if (ret < 0)
3458 			return ret;
3459 
3460 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3461 			CH_WARN(adap, "PHY Firmware did not update: "
3462 				"version on adapter %#x, "
3463 				"version flashed %#x\n",
3464 				cur_phy_fw_ver, new_phy_fw_vers);
3465 			return -ENXIO;
3466 		}
3467 	}
3468 
3469 	return 1;
3470 }
3471 
3472 /**
3473  *	t4_fwcache - firmware cache operation
3474  *	@adap: the adapter
3475  *	@op  : the operation (flush or flush and invalidate)
3476  */
3477 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3478 {
3479 	struct fw_params_cmd c;
3480 
3481 	memset(&c, 0, sizeof(c));
3482 	c.op_to_vfn =
3483 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3484 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3485 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3486 			    FW_PARAMS_CMD_VFN_V(0));
3487 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3488 	c.param[0].mnem =
3489 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3490 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3491 	c.param[0].val = (__force __be32)op;
3492 
3493 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3494 }
3495 
3496 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3497 			unsigned int *pif_req_wrptr,
3498 			unsigned int *pif_rsp_wrptr)
3499 {
3500 	int i, j;
3501 	u32 cfg, val, req, rsp;
3502 
3503 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3504 	if (cfg & LADBGEN_F)
3505 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3506 
3507 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3508 	req = POLADBGWRPTR_G(val);
3509 	rsp = PILADBGWRPTR_G(val);
3510 	if (pif_req_wrptr)
3511 		*pif_req_wrptr = req;
3512 	if (pif_rsp_wrptr)
3513 		*pif_rsp_wrptr = rsp;
3514 
3515 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3516 		for (j = 0; j < 6; j++) {
3517 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3518 				     PILADBGRDPTR_V(rsp));
3519 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3520 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3521 			req++;
3522 			rsp++;
3523 		}
3524 		req = (req + 2) & POLADBGRDPTR_M;
3525 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3526 	}
3527 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3528 }
3529 
3530 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3531 {
3532 	u32 cfg;
3533 	int i, j, idx;
3534 
3535 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3536 	if (cfg & LADBGEN_F)
3537 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3538 
3539 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3540 		for (j = 0; j < 5; j++) {
3541 			idx = 8 * i + j;
3542 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3543 				     PILADBGRDPTR_V(idx));
3544 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3545 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3546 		}
3547 	}
3548 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3549 }
3550 
3551 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3552 {
3553 	unsigned int i, j;
3554 
3555 	for (i = 0; i < 8; i++) {
3556 		u32 *p = la_buf + i;
3557 
3558 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3559 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3560 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3561 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3562 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3563 	}
3564 }
3565 
3566 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3567 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3568 		     FW_PORT_CAP_ANEG)
3569 
3570 /**
3571  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3572  *	@phy: the PHY to setup
3573  *	@mac: the MAC to setup
3574  *	@lc: the requested link configuration
3575  *
3576  *	Set up a port's MAC and PHY according to a desired link configuration.
3577  *	- If the PHY can auto-negotiate first decide what to advertise, then
3578  *	  enable/disable auto-negotiation as desired, and reset.
3579  *	- If the PHY does not auto-negotiate just reset it.
3580  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3581  *	  otherwise do it later based on the outcome of auto-negotiation.
3582  */
3583 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3584 		  struct link_config *lc)
3585 {
3586 	struct fw_port_cmd c;
3587 	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3588 
3589 	lc->link_ok = 0;
3590 	if (lc->requested_fc & PAUSE_RX)
3591 		fc |= FW_PORT_CAP_FC_RX;
3592 	if (lc->requested_fc & PAUSE_TX)
3593 		fc |= FW_PORT_CAP_FC_TX;
3594 
3595 	memset(&c, 0, sizeof(c));
3596 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3597 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3598 				     FW_PORT_CMD_PORTID_V(port));
3599 	c.action_to_len16 =
3600 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3601 			    FW_LEN16(c));
3602 
3603 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3604 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3605 					     fc);
3606 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3607 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3608 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3609 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3610 	} else
3611 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3612 
3613 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3614 }
3615 
3616 /**
3617  *	t4_restart_aneg - restart autonegotiation
3618  *	@adap: the adapter
3619  *	@mbox: mbox to use for the FW command
3620  *	@port: the port id
3621  *
3622  *	Restarts autonegotiation for the selected port.
3623  */
3624 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3625 {
3626 	struct fw_port_cmd c;
3627 
3628 	memset(&c, 0, sizeof(c));
3629 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3630 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3631 				     FW_PORT_CMD_PORTID_V(port));
3632 	c.action_to_len16 =
3633 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3634 			    FW_LEN16(c));
3635 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3636 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3637 }
3638 
3639 typedef void (*int_handler_t)(struct adapter *adap);
3640 
3641 struct intr_info {
3642 	unsigned int mask;       /* bits to check in interrupt status */
3643 	const char *msg;         /* message to print or NULL */
3644 	short stat_idx;          /* stat counter to increment or -1 */
3645 	unsigned short fatal;    /* whether the condition reported is fatal */
3646 	int_handler_t int_handler; /* platform-specific int handler */
3647 };
3648 
3649 /**
3650  *	t4_handle_intr_status - table driven interrupt handler
3651  *	@adapter: the adapter that generated the interrupt
3652  *	@reg: the interrupt status register to process
3653  *	@acts: table of interrupt actions
3654  *
3655  *	A table driven interrupt handler that applies a set of masks to an
3656  *	interrupt status word and performs the corresponding actions if the
3657  *	interrupts described by the mask have occurred.  The actions include
3658  *	optionally emitting a warning or alert message.  The table is terminated
3659  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3660  *	conditions.
3661  */
3662 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3663 				 const struct intr_info *acts)
3664 {
3665 	int fatal = 0;
3666 	unsigned int mask = 0;
3667 	unsigned int status = t4_read_reg(adapter, reg);
3668 
3669 	for ( ; acts->mask; ++acts) {
3670 		if (!(status & acts->mask))
3671 			continue;
3672 		if (acts->fatal) {
3673 			fatal++;
3674 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3675 				  status & acts->mask);
3676 		} else if (acts->msg && printk_ratelimit())
3677 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3678 				 status & acts->mask);
3679 		if (acts->int_handler)
3680 			acts->int_handler(adapter);
3681 		mask |= acts->mask;
3682 	}
3683 	status &= mask;
3684 	if (status)                           /* clear processed interrupts */
3685 		t4_write_reg(adapter, reg, status);
3686 	return fatal;
3687 }
3688 
3689 /*
3690  * Interrupt handler for the PCIE module.
3691  */
3692 static void pcie_intr_handler(struct adapter *adapter)
3693 {
3694 	static const struct intr_info sysbus_intr_info[] = {
3695 		{ RNPP_F, "RXNP array parity error", -1, 1 },
3696 		{ RPCP_F, "RXPC array parity error", -1, 1 },
3697 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
3698 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
3699 		{ RFTP_F, "RXFT array parity error", -1, 1 },
3700 		{ 0 }
3701 	};
3702 	static const struct intr_info pcie_port_intr_info[] = {
3703 		{ TPCP_F, "TXPC array parity error", -1, 1 },
3704 		{ TNPP_F, "TXNP array parity error", -1, 1 },
3705 		{ TFTP_F, "TXFT array parity error", -1, 1 },
3706 		{ TCAP_F, "TXCA array parity error", -1, 1 },
3707 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
3708 		{ RCAP_F, "RXCA array parity error", -1, 1 },
3709 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
3710 		{ RDPE_F, "Rx data parity error", -1, 1 },
3711 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
3712 		{ 0 }
3713 	};
3714 	static const struct intr_info pcie_intr_info[] = {
3715 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3716 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3717 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3718 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3719 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3720 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3721 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3722 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3723 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3724 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3725 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3726 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3727 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3728 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3729 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3730 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3731 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3732 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3733 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3734 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3735 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3736 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3737 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3738 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3739 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3740 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3741 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3742 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
3743 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
3744 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
3745 		  -1, 0 },
3746 		{ 0 }
3747 	};
3748 
3749 	static struct intr_info t5_pcie_intr_info[] = {
3750 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
3751 		  -1, 1 },
3752 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3753 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3754 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3755 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3756 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3757 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3758 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3759 		  -1, 1 },
3760 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3761 		  -1, 1 },
3762 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3763 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3764 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3765 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3766 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
3767 		  -1, 1 },
3768 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3769 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3770 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3771 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3772 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3773 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3774 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3775 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3776 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3777 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3778 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3779 		  -1, 1 },
3780 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3781 		  -1, 1 },
3782 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3783 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3784 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3785 		{ READRSPERR_F, "Outbound read error", -1, 0 },
3786 		{ 0 }
3787 	};
3788 
3789 	int fat;
3790 
3791 	if (is_t4(adapter->params.chip))
3792 		fat = t4_handle_intr_status(adapter,
3793 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3794 				sysbus_intr_info) +
3795 			t4_handle_intr_status(adapter,
3796 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3797 					pcie_port_intr_info) +
3798 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3799 					      pcie_intr_info);
3800 	else
3801 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3802 					    t5_pcie_intr_info);
3803 
3804 	if (fat)
3805 		t4_fatal_err(adapter);
3806 }
3807 
3808 /*
3809  * TP interrupt handler.
3810  */
3811 static void tp_intr_handler(struct adapter *adapter)
3812 {
3813 	static const struct intr_info tp_intr_info[] = {
3814 		{ 0x3fffffff, "TP parity error", -1, 1 },
3815 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3816 		{ 0 }
3817 	};
3818 
3819 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3820 		t4_fatal_err(adapter);
3821 }
3822 
3823 /*
3824  * SGE interrupt handler.
3825  */
3826 static void sge_intr_handler(struct adapter *adapter)
3827 {
3828 	u64 v;
3829 	u32 err;
3830 
3831 	static const struct intr_info sge_intr_info[] = {
3832 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3833 		  "SGE received CPL exceeding IQE size", -1, 1 },
3834 		{ ERR_INVALID_CIDX_INC_F,
3835 		  "SGE GTS CIDX increment too large", -1, 0 },
3836 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3837 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3838 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3839 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3840 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3841 		  0 },
3842 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3843 		  0 },
3844 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3845 		  0 },
3846 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3847 		  0 },
3848 		{ ERR_ING_CTXT_PRIO_F,
3849 		  "SGE too many priority ingress contexts", -1, 0 },
3850 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3851 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3852 		{ 0 }
3853 	};
3854 
3855 	static struct intr_info t4t5_sge_intr_info[] = {
3856 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3857 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3858 		{ ERR_EGR_CTXT_PRIO_F,
3859 		  "SGE too many priority egress contexts", -1, 0 },
3860 		{ 0 }
3861 	};
3862 
3863 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3864 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3865 	if (v) {
3866 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3867 				(unsigned long long)v);
3868 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3869 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3870 	}
3871 
3872 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3873 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3874 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3875 					   t4t5_sge_intr_info);
3876 
3877 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3878 	if (err & ERROR_QID_VALID_F) {
3879 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3880 			ERROR_QID_G(err));
3881 		if (err & UNCAPTURED_ERROR_F)
3882 			dev_err(adapter->pdev_dev,
3883 				"SGE UNCAPTURED_ERROR set (clearing)\n");
3884 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3885 			     UNCAPTURED_ERROR_F);
3886 	}
3887 
3888 	if (v != 0)
3889 		t4_fatal_err(adapter);
3890 }
3891 
3892 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3893 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3894 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3895 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3896 
3897 /*
3898  * CIM interrupt handler.
3899  */
3900 static void cim_intr_handler(struct adapter *adapter)
3901 {
3902 	static const struct intr_info cim_intr_info[] = {
3903 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3904 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3905 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3906 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3907 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3908 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3909 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3910 		{ 0 }
3911 	};
3912 	static const struct intr_info cim_upintr_info[] = {
3913 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3914 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3915 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3916 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3917 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3918 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3919 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3920 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3921 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3922 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3923 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3924 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3925 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3926 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3927 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3928 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3929 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3930 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3931 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3932 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3933 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3934 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3935 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3936 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3937 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3938 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3939 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3940 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3941 		{ 0 }
3942 	};
3943 
3944 	int fat;
3945 
3946 	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3947 		t4_report_fw_error(adapter);
3948 
3949 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3950 				    cim_intr_info) +
3951 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3952 				    cim_upintr_info);
3953 	if (fat)
3954 		t4_fatal_err(adapter);
3955 }
3956 
3957 /*
3958  * ULP RX interrupt handler.
3959  */
3960 static void ulprx_intr_handler(struct adapter *adapter)
3961 {
3962 	static const struct intr_info ulprx_intr_info[] = {
3963 		{ 0x1800000, "ULPRX context error", -1, 1 },
3964 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3965 		{ 0 }
3966 	};
3967 
3968 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3969 		t4_fatal_err(adapter);
3970 }
3971 
3972 /*
3973  * ULP TX interrupt handler.
3974  */
3975 static void ulptx_intr_handler(struct adapter *adapter)
3976 {
3977 	static const struct intr_info ulptx_intr_info[] = {
3978 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3979 		  0 },
3980 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3981 		  0 },
3982 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3983 		  0 },
3984 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3985 		  0 },
3986 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3987 		{ 0 }
3988 	};
3989 
3990 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3991 		t4_fatal_err(adapter);
3992 }
3993 
3994 /*
3995  * PM TX interrupt handler.
3996  */
3997 static void pmtx_intr_handler(struct adapter *adapter)
3998 {
3999 	static const struct intr_info pmtx_intr_info[] = {
4000 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4001 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4002 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4003 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4004 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4005 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4006 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4007 		  -1, 1 },
4008 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4009 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4010 		{ 0 }
4011 	};
4012 
4013 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4014 		t4_fatal_err(adapter);
4015 }
4016 
4017 /*
4018  * PM RX interrupt handler.
4019  */
4020 static void pmrx_intr_handler(struct adapter *adapter)
4021 {
4022 	static const struct intr_info pmrx_intr_info[] = {
4023 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4024 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4025 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4026 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4027 		  -1, 1 },
4028 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4029 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4030 		{ 0 }
4031 	};
4032 
4033 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4034 		t4_fatal_err(adapter);
4035 }
4036 
4037 /*
4038  * CPL switch interrupt handler.
4039  */
4040 static void cplsw_intr_handler(struct adapter *adapter)
4041 {
4042 	static const struct intr_info cplsw_intr_info[] = {
4043 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4044 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4045 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4046 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4047 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4048 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4049 		{ 0 }
4050 	};
4051 
4052 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4053 		t4_fatal_err(adapter);
4054 }
4055 
4056 /*
4057  * LE interrupt handler.
4058  */
4059 static void le_intr_handler(struct adapter *adap)
4060 {
4061 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4062 	static const struct intr_info le_intr_info[] = {
4063 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4064 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4065 		{ PARITYERR_F, "LE parity error", -1, 1 },
4066 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4067 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4068 		{ 0 }
4069 	};
4070 
4071 	static struct intr_info t6_le_intr_info[] = {
4072 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4073 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4074 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4075 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4076 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4077 		{ 0 }
4078 	};
4079 
4080 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4081 				  (chip <= CHELSIO_T5) ?
4082 				  le_intr_info : t6_le_intr_info))
4083 		t4_fatal_err(adap);
4084 }
4085 
4086 /*
4087  * MPS interrupt handler.
4088  */
4089 static void mps_intr_handler(struct adapter *adapter)
4090 {
4091 	static const struct intr_info mps_rx_intr_info[] = {
4092 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4093 		{ 0 }
4094 	};
4095 	static const struct intr_info mps_tx_intr_info[] = {
4096 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4097 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4098 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4099 		  -1, 1 },
4100 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4101 		  -1, 1 },
4102 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4103 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4104 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4105 		{ 0 }
4106 	};
4107 	static const struct intr_info mps_trc_intr_info[] = {
4108 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4109 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4110 		  -1, 1 },
4111 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4112 		{ 0 }
4113 	};
4114 	static const struct intr_info mps_stat_sram_intr_info[] = {
4115 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4116 		{ 0 }
4117 	};
4118 	static const struct intr_info mps_stat_tx_intr_info[] = {
4119 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4120 		{ 0 }
4121 	};
4122 	static const struct intr_info mps_stat_rx_intr_info[] = {
4123 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4124 		{ 0 }
4125 	};
4126 	static const struct intr_info mps_cls_intr_info[] = {
4127 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4128 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4129 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4130 		{ 0 }
4131 	};
4132 
4133 	int fat;
4134 
4135 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4136 				    mps_rx_intr_info) +
4137 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4138 				    mps_tx_intr_info) +
4139 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4140 				    mps_trc_intr_info) +
4141 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4142 				    mps_stat_sram_intr_info) +
4143 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4144 				    mps_stat_tx_intr_info) +
4145 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4146 				    mps_stat_rx_intr_info) +
4147 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4148 				    mps_cls_intr_info);
4149 
4150 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4151 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4152 	if (fat)
4153 		t4_fatal_err(adapter);
4154 }
4155 
4156 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4157 		      ECC_UE_INT_CAUSE_F)
4158 
4159 /*
4160  * EDC/MC interrupt handler.
4161  */
4162 static void mem_intr_handler(struct adapter *adapter, int idx)
4163 {
4164 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4165 
4166 	unsigned int addr, cnt_addr, v;
4167 
4168 	if (idx <= MEM_EDC1) {
4169 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4170 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4171 	} else if (idx == MEM_MC) {
4172 		if (is_t4(adapter->params.chip)) {
4173 			addr = MC_INT_CAUSE_A;
4174 			cnt_addr = MC_ECC_STATUS_A;
4175 		} else {
4176 			addr = MC_P_INT_CAUSE_A;
4177 			cnt_addr = MC_P_ECC_STATUS_A;
4178 		}
4179 	} else {
4180 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4181 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4182 	}
4183 
4184 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4185 	if (v & PERR_INT_CAUSE_F)
4186 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4187 			  name[idx]);
4188 	if (v & ECC_CE_INT_CAUSE_F) {
4189 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4190 
4191 		t4_edc_err_read(adapter, idx);
4192 
4193 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4194 		if (printk_ratelimit())
4195 			dev_warn(adapter->pdev_dev,
4196 				 "%u %s correctable ECC data error%s\n",
4197 				 cnt, name[idx], cnt > 1 ? "s" : "");
4198 	}
4199 	if (v & ECC_UE_INT_CAUSE_F)
4200 		dev_alert(adapter->pdev_dev,
4201 			  "%s uncorrectable ECC data error\n", name[idx]);
4202 
4203 	t4_write_reg(adapter, addr, v);
4204 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4205 		t4_fatal_err(adapter);
4206 }
4207 
4208 /*
4209  * MA interrupt handler.
4210  */
4211 static void ma_intr_handler(struct adapter *adap)
4212 {
4213 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4214 
4215 	if (status & MEM_PERR_INT_CAUSE_F) {
4216 		dev_alert(adap->pdev_dev,
4217 			  "MA parity error, parity status %#x\n",
4218 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4219 		if (is_t5(adap->params.chip))
4220 			dev_alert(adap->pdev_dev,
4221 				  "MA parity error, parity status %#x\n",
4222 				  t4_read_reg(adap,
4223 					      MA_PARITY_ERROR_STATUS2_A));
4224 	}
4225 	if (status & MEM_WRAP_INT_CAUSE_F) {
4226 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4227 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4228 			  "client %u to address %#x\n",
4229 			  MEM_WRAP_CLIENT_NUM_G(v),
4230 			  MEM_WRAP_ADDRESS_G(v) << 4);
4231 	}
4232 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4233 	t4_fatal_err(adap);
4234 }
4235 
4236 /*
4237  * SMB interrupt handler.
4238  */
4239 static void smb_intr_handler(struct adapter *adap)
4240 {
4241 	static const struct intr_info smb_intr_info[] = {
4242 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4243 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4244 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4245 		{ 0 }
4246 	};
4247 
4248 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4249 		t4_fatal_err(adap);
4250 }
4251 
4252 /*
4253  * NC-SI interrupt handler.
4254  */
4255 static void ncsi_intr_handler(struct adapter *adap)
4256 {
4257 	static const struct intr_info ncsi_intr_info[] = {
4258 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4259 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4260 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4261 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4262 		{ 0 }
4263 	};
4264 
4265 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4266 		t4_fatal_err(adap);
4267 }
4268 
4269 /*
4270  * XGMAC interrupt handler.
4271  */
4272 static void xgmac_intr_handler(struct adapter *adap, int port)
4273 {
4274 	u32 v, int_cause_reg;
4275 
4276 	if (is_t4(adap->params.chip))
4277 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4278 	else
4279 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4280 
4281 	v = t4_read_reg(adap, int_cause_reg);
4282 
4283 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4284 	if (!v)
4285 		return;
4286 
4287 	if (v & TXFIFO_PRTY_ERR_F)
4288 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4289 			  port);
4290 	if (v & RXFIFO_PRTY_ERR_F)
4291 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4292 			  port);
4293 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4294 	t4_fatal_err(adap);
4295 }
4296 
4297 /*
4298  * PL interrupt handler.
4299  */
4300 static void pl_intr_handler(struct adapter *adap)
4301 {
4302 	static const struct intr_info pl_intr_info[] = {
4303 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4304 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4305 		{ 0 }
4306 	};
4307 
4308 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4309 		t4_fatal_err(adap);
4310 }
4311 
4312 #define PF_INTR_MASK (PFSW_F)
4313 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4314 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4315 		CPL_SWITCH_F | SGE_F | ULP_TX_F)
4316 
4317 /**
4318  *	t4_slow_intr_handler - control path interrupt handler
4319  *	@adapter: the adapter
4320  *
4321  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4322  *	The designation 'slow' is because it involves register reads, while
4323  *	data interrupts typically don't involve any MMIOs.
4324  */
4325 int t4_slow_intr_handler(struct adapter *adapter)
4326 {
4327 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4328 
4329 	if (!(cause & GLBL_INTR_MASK))
4330 		return 0;
4331 	if (cause & CIM_F)
4332 		cim_intr_handler(adapter);
4333 	if (cause & MPS_F)
4334 		mps_intr_handler(adapter);
4335 	if (cause & NCSI_F)
4336 		ncsi_intr_handler(adapter);
4337 	if (cause & PL_F)
4338 		pl_intr_handler(adapter);
4339 	if (cause & SMB_F)
4340 		smb_intr_handler(adapter);
4341 	if (cause & XGMAC0_F)
4342 		xgmac_intr_handler(adapter, 0);
4343 	if (cause & XGMAC1_F)
4344 		xgmac_intr_handler(adapter, 1);
4345 	if (cause & XGMAC_KR0_F)
4346 		xgmac_intr_handler(adapter, 2);
4347 	if (cause & XGMAC_KR1_F)
4348 		xgmac_intr_handler(adapter, 3);
4349 	if (cause & PCIE_F)
4350 		pcie_intr_handler(adapter);
4351 	if (cause & MC_F)
4352 		mem_intr_handler(adapter, MEM_MC);
4353 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4354 		mem_intr_handler(adapter, MEM_MC1);
4355 	if (cause & EDC0_F)
4356 		mem_intr_handler(adapter, MEM_EDC0);
4357 	if (cause & EDC1_F)
4358 		mem_intr_handler(adapter, MEM_EDC1);
4359 	if (cause & LE_F)
4360 		le_intr_handler(adapter);
4361 	if (cause & TP_F)
4362 		tp_intr_handler(adapter);
4363 	if (cause & MA_F)
4364 		ma_intr_handler(adapter);
4365 	if (cause & PM_TX_F)
4366 		pmtx_intr_handler(adapter);
4367 	if (cause & PM_RX_F)
4368 		pmrx_intr_handler(adapter);
4369 	if (cause & ULP_RX_F)
4370 		ulprx_intr_handler(adapter);
4371 	if (cause & CPL_SWITCH_F)
4372 		cplsw_intr_handler(adapter);
4373 	if (cause & SGE_F)
4374 		sge_intr_handler(adapter);
4375 	if (cause & ULP_TX_F)
4376 		ulptx_intr_handler(adapter);
4377 
4378 	/* Clear the interrupts just processed for which we are the master. */
4379 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4380 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4381 	return 1;
4382 }
4383 
4384 /**
4385  *	t4_intr_enable - enable interrupts
4386  *	@adapter: the adapter whose interrupts should be enabled
4387  *
4388  *	Enable PF-specific interrupts for the calling function and the top-level
4389  *	interrupt concentrator for global interrupts.  Interrupts are already
4390  *	enabled at each module,	here we just enable the roots of the interrupt
4391  *	hierarchies.
4392  *
4393  *	Note: this function should be called only when the driver manages
4394  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4395  *	function at a time should be doing this.
4396  */
4397 void t4_intr_enable(struct adapter *adapter)
4398 {
4399 	u32 val = 0;
4400 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4401 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4402 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4403 
4404 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4405 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4406 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4407 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4408 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4409 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4410 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4411 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4412 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4413 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4414 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4415 }
4416 
4417 /**
4418  *	t4_intr_disable - disable interrupts
4419  *	@adapter: the adapter whose interrupts should be disabled
4420  *
4421  *	Disable interrupts.  We only disable the top-level interrupt
4422  *	concentrators.  The caller must be a PCI function managing global
4423  *	interrupts.
4424  */
4425 void t4_intr_disable(struct adapter *adapter)
4426 {
4427 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4428 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4429 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4430 
4431 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4432 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4433 }
4434 
4435 /**
4436  *	t4_config_rss_range - configure a portion of the RSS mapping table
4437  *	@adapter: the adapter
4438  *	@mbox: mbox to use for the FW command
4439  *	@viid: virtual interface whose RSS subtable is to be written
4440  *	@start: start entry in the table to write
4441  *	@n: how many table entries to write
4442  *	@rspq: values for the response queue lookup table
4443  *	@nrspq: number of values in @rspq
4444  *
4445  *	Programs the selected part of the VI's RSS mapping table with the
4446  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4447  *	until the full table range is populated.
4448  *
4449  *	The caller must ensure the values in @rspq are in the range allowed for
4450  *	@viid.
4451  */
4452 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4453 			int start, int n, const u16 *rspq, unsigned int nrspq)
4454 {
4455 	int ret;
4456 	const u16 *rsp = rspq;
4457 	const u16 *rsp_end = rspq + nrspq;
4458 	struct fw_rss_ind_tbl_cmd cmd;
4459 
4460 	memset(&cmd, 0, sizeof(cmd));
4461 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4462 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4463 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4464 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4465 
4466 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4467 	while (n > 0) {
4468 		int nq = min(n, 32);
4469 		__be32 *qp = &cmd.iq0_to_iq2;
4470 
4471 		cmd.niqid = cpu_to_be16(nq);
4472 		cmd.startidx = cpu_to_be16(start);
4473 
4474 		start += nq;
4475 		n -= nq;
4476 
4477 		while (nq > 0) {
4478 			unsigned int v;
4479 
4480 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4481 			if (++rsp >= rsp_end)
4482 				rsp = rspq;
4483 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4484 			if (++rsp >= rsp_end)
4485 				rsp = rspq;
4486 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4487 			if (++rsp >= rsp_end)
4488 				rsp = rspq;
4489 
4490 			*qp++ = cpu_to_be32(v);
4491 			nq -= 3;
4492 		}
4493 
4494 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4495 		if (ret)
4496 			return ret;
4497 	}
4498 	return 0;
4499 }
4500 
4501 /**
4502  *	t4_config_glbl_rss - configure the global RSS mode
4503  *	@adapter: the adapter
4504  *	@mbox: mbox to use for the FW command
4505  *	@mode: global RSS mode
4506  *	@flags: mode-specific flags
4507  *
4508  *	Sets the global RSS mode.
4509  */
4510 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4511 		       unsigned int flags)
4512 {
4513 	struct fw_rss_glb_config_cmd c;
4514 
4515 	memset(&c, 0, sizeof(c));
4516 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4517 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4518 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4519 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4520 		c.u.manual.mode_pkd =
4521 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4522 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4523 		c.u.basicvirtual.mode_pkd =
4524 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4525 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4526 	} else
4527 		return -EINVAL;
4528 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4529 }
4530 
4531 /**
4532  *	t4_config_vi_rss - configure per VI RSS settings
4533  *	@adapter: the adapter
4534  *	@mbox: mbox to use for the FW command
4535  *	@viid: the VI id
4536  *	@flags: RSS flags
4537  *	@defq: id of the default RSS queue for the VI.
4538  *
4539  *	Configures VI-specific RSS properties.
4540  */
4541 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4542 		     unsigned int flags, unsigned int defq)
4543 {
4544 	struct fw_rss_vi_config_cmd c;
4545 
4546 	memset(&c, 0, sizeof(c));
4547 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4548 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4549 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4550 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4551 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4552 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4553 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4554 }
4555 
4556 /* Read an RSS table row */
4557 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4558 {
4559 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4560 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4561 				   5, 0, val);
4562 }
4563 
4564 /**
4565  *	t4_read_rss - read the contents of the RSS mapping table
4566  *	@adapter: the adapter
4567  *	@map: holds the contents of the RSS mapping table
4568  *
4569  *	Reads the contents of the RSS hash->queue mapping table.
4570  */
4571 int t4_read_rss(struct adapter *adapter, u16 *map)
4572 {
4573 	u32 val;
4574 	int i, ret;
4575 
4576 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4577 		ret = rd_rss_row(adapter, i, &val);
4578 		if (ret)
4579 			return ret;
4580 		*map++ = LKPTBLQUEUE0_G(val);
4581 		*map++ = LKPTBLQUEUE1_G(val);
4582 	}
4583 	return 0;
4584 }
4585 
4586 static unsigned int t4_use_ldst(struct adapter *adap)
4587 {
4588 	return (adap->flags & FW_OK) || !adap->use_bd;
4589 }
4590 
4591 /**
4592  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4593  *	@adap: the adapter
4594  *	@vals: where the indirect register values are stored/written
4595  *	@nregs: how many indirect registers to read/write
4596  *	@start_idx: index of first indirect register to read/write
4597  *	@rw: Read (1) or Write (0)
4598  *
4599  *	Access TP PIO registers through LDST
4600  */
4601 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4602 			    unsigned int start_index, unsigned int rw)
4603 {
4604 	int ret, i;
4605 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4606 	struct fw_ldst_cmd c;
4607 
4608 	for (i = 0 ; i < nregs; i++) {
4609 		memset(&c, 0, sizeof(c));
4610 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4611 						FW_CMD_REQUEST_F |
4612 						(rw ? FW_CMD_READ_F :
4613 						      FW_CMD_WRITE_F) |
4614 						FW_LDST_CMD_ADDRSPACE_V(cmd));
4615 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4616 
4617 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4618 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4619 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4620 		if (!ret && rw)
4621 			vals[i] = be32_to_cpu(c.u.addrval.val);
4622 	}
4623 }
4624 
4625 /**
4626  *	t4_read_rss_key - read the global RSS key
4627  *	@adap: the adapter
4628  *	@key: 10-entry array holding the 320-bit RSS key
4629  *
4630  *	Reads the global 320-bit RSS key.
4631  */
4632 void t4_read_rss_key(struct adapter *adap, u32 *key)
4633 {
4634 	if (t4_use_ldst(adap))
4635 		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4636 	else
4637 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4638 				 TP_RSS_SECRET_KEY0_A);
4639 }
4640 
4641 /**
4642  *	t4_write_rss_key - program one of the RSS keys
4643  *	@adap: the adapter
4644  *	@key: 10-entry array holding the 320-bit RSS key
4645  *	@idx: which RSS key to write
4646  *
4647  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4648  *	0..15 the corresponding entry in the RSS key table is written,
4649  *	otherwise the global RSS key is written.
4650  */
4651 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4652 {
4653 	u8 rss_key_addr_cnt = 16;
4654 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4655 
4656 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4657 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4658 	 * as index[5:4](upper 2) into key table
4659 	 */
4660 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4661 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4662 		rss_key_addr_cnt = 32;
4663 
4664 	if (t4_use_ldst(adap))
4665 		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4666 	else
4667 		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4668 				  TP_RSS_SECRET_KEY0_A);
4669 
4670 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4671 		if (rss_key_addr_cnt > 16)
4672 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4673 				     KEYWRADDRX_V(idx >> 4) |
4674 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
4675 		else
4676 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4677 				     KEYWRADDR_V(idx) | KEYWREN_F);
4678 	}
4679 }
4680 
4681 /**
4682  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4683  *	@adapter: the adapter
4684  *	@index: the entry in the PF RSS table to read
4685  *	@valp: where to store the returned value
4686  *
4687  *	Reads the PF RSS Configuration Table at the specified index and returns
4688  *	the value found there.
4689  */
4690 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4691 			   u32 *valp)
4692 {
4693 	if (t4_use_ldst(adapter))
4694 		t4_fw_tp_pio_rw(adapter, valp, 1,
4695 				TP_RSS_PF0_CONFIG_A + index, 1);
4696 	else
4697 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4698 				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4699 }
4700 
4701 /**
4702  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4703  *	@adapter: the adapter
4704  *	@index: the entry in the VF RSS table to read
4705  *	@vfl: where to store the returned VFL
4706  *	@vfh: where to store the returned VFH
4707  *
4708  *	Reads the VF RSS Configuration Table at the specified index and returns
4709  *	the (VFL, VFH) values found there.
4710  */
4711 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4712 			   u32 *vfl, u32 *vfh)
4713 {
4714 	u32 vrt, mask, data;
4715 
4716 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4717 		mask = VFWRADDR_V(VFWRADDR_M);
4718 		data = VFWRADDR_V(index);
4719 	} else {
4720 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4721 		 data = T6_VFWRADDR_V(index);
4722 	}
4723 
4724 	/* Request that the index'th VF Table values be read into VFL/VFH.
4725 	 */
4726 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4727 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4728 	vrt |= data | VFRDEN_F;
4729 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4730 
4731 	/* Grab the VFL/VFH values ...
4732 	 */
4733 	if (t4_use_ldst(adapter)) {
4734 		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4735 		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4736 	} else {
4737 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4738 				 vfl, 1, TP_RSS_VFL_CONFIG_A);
4739 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4740 				 vfh, 1, TP_RSS_VFH_CONFIG_A);
4741 	}
4742 }
4743 
4744 /**
4745  *	t4_read_rss_pf_map - read PF RSS Map
4746  *	@adapter: the adapter
4747  *
4748  *	Reads the PF RSS Map register and returns its value.
4749  */
4750 u32 t4_read_rss_pf_map(struct adapter *adapter)
4751 {
4752 	u32 pfmap;
4753 
4754 	if (t4_use_ldst(adapter))
4755 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4756 	else
4757 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4758 				 &pfmap, 1, TP_RSS_PF_MAP_A);
4759 	return pfmap;
4760 }
4761 
4762 /**
4763  *	t4_read_rss_pf_mask - read PF RSS Mask
4764  *	@adapter: the adapter
4765  *
4766  *	Reads the PF RSS Mask register and returns its value.
4767  */
4768 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4769 {
4770 	u32 pfmask;
4771 
4772 	if (t4_use_ldst(adapter))
4773 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4774 	else
4775 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4776 				 &pfmask, 1, TP_RSS_PF_MSK_A);
4777 	return pfmask;
4778 }
4779 
4780 /**
4781  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
4782  *	@adap: the adapter
4783  *	@v4: holds the TCP/IP counter values
4784  *	@v6: holds the TCP/IPv6 counter values
4785  *
4786  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4787  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4788  */
4789 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4790 			 struct tp_tcp_stats *v6)
4791 {
4792 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4793 
4794 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4795 #define STAT(x)     val[STAT_IDX(x)]
4796 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4797 
4798 	if (v4) {
4799 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4800 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4801 		v4->tcp_out_rsts = STAT(OUT_RST);
4802 		v4->tcp_in_segs  = STAT64(IN_SEG);
4803 		v4->tcp_out_segs = STAT64(OUT_SEG);
4804 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4805 	}
4806 	if (v6) {
4807 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4808 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4809 		v6->tcp_out_rsts = STAT(OUT_RST);
4810 		v6->tcp_in_segs  = STAT64(IN_SEG);
4811 		v6->tcp_out_segs = STAT64(OUT_SEG);
4812 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
4813 	}
4814 #undef STAT64
4815 #undef STAT
4816 #undef STAT_IDX
4817 }
4818 
4819 /**
4820  *	t4_tp_get_err_stats - read TP's error MIB counters
4821  *	@adap: the adapter
4822  *	@st: holds the counter values
4823  *
4824  *	Returns the values of TP's error counters.
4825  */
4826 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4827 {
4828 	int nchan = adap->params.arch.nchan;
4829 
4830 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4831 			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4832 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4833 			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4834 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4835 			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4836 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4837 			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4838 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4839 			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4840 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4841 			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4842 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4843 			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4844 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4845 			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4846 
4847 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4848 			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4849 }
4850 
4851 /**
4852  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
4853  *	@adap: the adapter
4854  *	@st: holds the counter values
4855  *
4856  *	Returns the values of TP's CPL counters.
4857  */
4858 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4859 {
4860 	int nchan = adap->params.arch.nchan;
4861 
4862 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4863 			 nchan, TP_MIB_CPL_IN_REQ_0_A);
4864 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4865 			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4866 
4867 }
4868 
4869 /**
4870  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4871  *	@adap: the adapter
4872  *	@st: holds the counter values
4873  *
4874  *	Returns the values of TP's RDMA counters.
4875  */
4876 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4877 {
4878 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4879 			 2, TP_MIB_RQE_DFR_PKT_A);
4880 }
4881 
4882 /**
4883  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4884  *	@adap: the adapter
4885  *	@idx: the port index
4886  *	@st: holds the counter values
4887  *
4888  *	Returns the values of TP's FCoE counters for the selected port.
4889  */
4890 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4891 		       struct tp_fcoe_stats *st)
4892 {
4893 	u32 val[2];
4894 
4895 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4896 			 1, TP_MIB_FCOE_DDP_0_A + idx);
4897 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4898 			 1, TP_MIB_FCOE_DROP_0_A + idx);
4899 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4900 			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4901 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
4902 }
4903 
4904 /**
4905  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4906  *	@adap: the adapter
4907  *	@st: holds the counter values
4908  *
4909  *	Returns the values of TP's counters for non-TCP directly-placed packets.
4910  */
4911 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4912 {
4913 	u32 val[4];
4914 
4915 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4916 			 TP_MIB_USM_PKTS_A);
4917 	st->frames = val[0];
4918 	st->drops = val[1];
4919 	st->octets = ((u64)val[2] << 32) | val[3];
4920 }
4921 
4922 /**
4923  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
4924  *	@adap: the adapter
4925  *	@mtus: where to store the MTU values
4926  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
4927  *
4928  *	Reads the HW path MTU table.
4929  */
4930 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4931 {
4932 	u32 v;
4933 	int i;
4934 
4935 	for (i = 0; i < NMTUS; ++i) {
4936 		t4_write_reg(adap, TP_MTU_TABLE_A,
4937 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
4938 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
4939 		mtus[i] = MTUVALUE_G(v);
4940 		if (mtu_log)
4941 			mtu_log[i] = MTUWIDTH_G(v);
4942 	}
4943 }
4944 
4945 /**
4946  *	t4_read_cong_tbl - reads the congestion control table
4947  *	@adap: the adapter
4948  *	@incr: where to store the alpha values
4949  *
4950  *	Reads the additive increments programmed into the HW congestion
4951  *	control table.
4952  */
4953 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4954 {
4955 	unsigned int mtu, w;
4956 
4957 	for (mtu = 0; mtu < NMTUS; ++mtu)
4958 		for (w = 0; w < NCCTRL_WIN; ++w) {
4959 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
4960 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
4961 			incr[mtu][w] = (u16)t4_read_reg(adap,
4962 						TP_CCTRL_TABLE_A) & 0x1fff;
4963 		}
4964 }
4965 
4966 /**
4967  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4968  *	@adap: the adapter
4969  *	@addr: the indirect TP register address
4970  *	@mask: specifies the field within the register to modify
4971  *	@val: new value for the field
4972  *
4973  *	Sets a field of an indirect TP register to the given value.
4974  */
4975 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4976 			    unsigned int mask, unsigned int val)
4977 {
4978 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4979 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4980 	t4_write_reg(adap, TP_PIO_DATA_A, val);
4981 }
4982 
4983 /**
4984  *	init_cong_ctrl - initialize congestion control parameters
4985  *	@a: the alpha values for congestion control
4986  *	@b: the beta values for congestion control
4987  *
4988  *	Initialize the congestion control parameters.
4989  */
4990 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
4991 {
4992 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
4993 	a[9] = 2;
4994 	a[10] = 3;
4995 	a[11] = 4;
4996 	a[12] = 5;
4997 	a[13] = 6;
4998 	a[14] = 7;
4999 	a[15] = 8;
5000 	a[16] = 9;
5001 	a[17] = 10;
5002 	a[18] = 14;
5003 	a[19] = 17;
5004 	a[20] = 21;
5005 	a[21] = 25;
5006 	a[22] = 30;
5007 	a[23] = 35;
5008 	a[24] = 45;
5009 	a[25] = 60;
5010 	a[26] = 80;
5011 	a[27] = 100;
5012 	a[28] = 200;
5013 	a[29] = 300;
5014 	a[30] = 400;
5015 	a[31] = 500;
5016 
5017 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5018 	b[9] = b[10] = 1;
5019 	b[11] = b[12] = 2;
5020 	b[13] = b[14] = b[15] = b[16] = 3;
5021 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5022 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5023 	b[28] = b[29] = 6;
5024 	b[30] = b[31] = 7;
5025 }
5026 
5027 /* The minimum additive increment value for the congestion control table */
5028 #define CC_MIN_INCR 2U
5029 
5030 /**
5031  *	t4_load_mtus - write the MTU and congestion control HW tables
5032  *	@adap: the adapter
5033  *	@mtus: the values for the MTU table
5034  *	@alpha: the values for the congestion control alpha parameter
5035  *	@beta: the values for the congestion control beta parameter
5036  *
5037  *	Write the HW MTU table with the supplied MTUs and the high-speed
5038  *	congestion control table with the supplied alpha, beta, and MTUs.
5039  *	We write the two tables together because the additive increments
5040  *	depend on the MTUs.
5041  */
5042 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5043 		  const unsigned short *alpha, const unsigned short *beta)
5044 {
5045 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5046 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5047 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5048 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5049 	};
5050 
5051 	unsigned int i, w;
5052 
5053 	for (i = 0; i < NMTUS; ++i) {
5054 		unsigned int mtu = mtus[i];
5055 		unsigned int log2 = fls(mtu);
5056 
5057 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5058 			log2--;
5059 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5060 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5061 
5062 		for (w = 0; w < NCCTRL_WIN; ++w) {
5063 			unsigned int inc;
5064 
5065 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5066 				  CC_MIN_INCR);
5067 
5068 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5069 				     (w << 16) | (beta[w] << 13) | inc);
5070 		}
5071 	}
5072 }
5073 
5074 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5075  * clocks.  The formula is
5076  *
5077  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5078  *
5079  * which is equivalent to
5080  *
5081  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5082  */
5083 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5084 {
5085 	u64 v = bytes256 * adap->params.vpd.cclk;
5086 
5087 	return v * 62 + v / 2;
5088 }
5089 
5090 /**
5091  *	t4_get_chan_txrate - get the current per channel Tx rates
5092  *	@adap: the adapter
5093  *	@nic_rate: rates for NIC traffic
5094  *	@ofld_rate: rates for offloaded traffic
5095  *
5096  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5097  *	for each channel.
5098  */
5099 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5100 {
5101 	u32 v;
5102 
5103 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5104 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5105 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5106 	if (adap->params.arch.nchan == NCHAN) {
5107 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5108 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5109 	}
5110 
5111 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5112 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5113 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5114 	if (adap->params.arch.nchan == NCHAN) {
5115 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5116 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5117 	}
5118 }
5119 
5120 /**
5121  *	t4_set_trace_filter - configure one of the tracing filters
5122  *	@adap: the adapter
5123  *	@tp: the desired trace filter parameters
5124  *	@idx: which filter to configure
5125  *	@enable: whether to enable or disable the filter
5126  *
5127  *	Configures one of the tracing filters available in HW.  If @enable is
5128  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5129  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5130  */
5131 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5132 			int idx, int enable)
5133 {
5134 	int i, ofst = idx * 4;
5135 	u32 data_reg, mask_reg, cfg;
5136 	u32 multitrc = TRCMULTIFILTER_F;
5137 
5138 	if (!enable) {
5139 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5140 		return 0;
5141 	}
5142 
5143 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5144 	if (cfg & TRCMULTIFILTER_F) {
5145 		/* If multiple tracers are enabled, then maximum
5146 		 * capture size is 2.5KB (FIFO size of a single channel)
5147 		 * minus 2 flits for CPL_TRACE_PKT header.
5148 		 */
5149 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5150 			return -EINVAL;
5151 	} else {
5152 		/* If multiple tracers are disabled, to avoid deadlocks
5153 		 * maximum packet capture size of 9600 bytes is recommended.
5154 		 * Also in this mode, only trace0 can be enabled and running.
5155 		 */
5156 		multitrc = 0;
5157 		if (tp->snap_len > 9600 || idx)
5158 			return -EINVAL;
5159 	}
5160 
5161 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5162 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5163 	    tp->min_len > TFMINPKTSIZE_M)
5164 		return -EINVAL;
5165 
5166 	/* stop the tracer we'll be changing */
5167 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5168 
5169 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5170 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5171 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5172 
5173 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5174 		t4_write_reg(adap, data_reg, tp->data[i]);
5175 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5176 	}
5177 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5178 		     TFCAPTUREMAX_V(tp->snap_len) |
5179 		     TFMINPKTSIZE_V(tp->min_len));
5180 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5181 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5182 		     (is_t4(adap->params.chip) ?
5183 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5184 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5185 		     T5_TFINVERTMATCH_V(tp->invert)));
5186 
5187 	return 0;
5188 }
5189 
5190 /**
5191  *	t4_get_trace_filter - query one of the tracing filters
5192  *	@adap: the adapter
5193  *	@tp: the current trace filter parameters
5194  *	@idx: which trace filter to query
5195  *	@enabled: non-zero if the filter is enabled
5196  *
5197  *	Returns the current settings of one of the HW tracing filters.
5198  */
5199 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5200 			 int *enabled)
5201 {
5202 	u32 ctla, ctlb;
5203 	int i, ofst = idx * 4;
5204 	u32 data_reg, mask_reg;
5205 
5206 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5207 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5208 
5209 	if (is_t4(adap->params.chip)) {
5210 		*enabled = !!(ctla & TFEN_F);
5211 		tp->port =  TFPORT_G(ctla);
5212 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5213 	} else {
5214 		*enabled = !!(ctla & T5_TFEN_F);
5215 		tp->port = T5_TFPORT_G(ctla);
5216 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5217 	}
5218 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5219 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5220 	tp->skip_ofst = TFOFFSET_G(ctla);
5221 	tp->skip_len = TFLENGTH_G(ctla);
5222 
5223 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5224 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5225 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5226 
5227 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5228 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5229 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5230 	}
5231 }
5232 
5233 /**
5234  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5235  *	@adap: the adapter
5236  *	@cnt: where to store the count statistics
5237  *	@cycles: where to store the cycle statistics
5238  *
5239  *	Returns performance statistics from PMTX.
5240  */
5241 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5242 {
5243 	int i;
5244 	u32 data[2];
5245 
5246 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5247 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5248 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5249 		if (is_t4(adap->params.chip)) {
5250 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5251 		} else {
5252 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5253 					 PM_TX_DBG_DATA_A, data, 2,
5254 					 PM_TX_DBG_STAT_MSB_A);
5255 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5256 		}
5257 	}
5258 }
5259 
5260 /**
5261  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5262  *	@adap: the adapter
5263  *	@cnt: where to store the count statistics
5264  *	@cycles: where to store the cycle statistics
5265  *
5266  *	Returns performance statistics from PMRX.
5267  */
5268 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5269 {
5270 	int i;
5271 	u32 data[2];
5272 
5273 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5274 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5275 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5276 		if (is_t4(adap->params.chip)) {
5277 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5278 		} else {
5279 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5280 					 PM_RX_DBG_DATA_A, data, 2,
5281 					 PM_RX_DBG_STAT_MSB_A);
5282 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5283 		}
5284 	}
5285 }
5286 
5287 /**
5288  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5289  *	@adap: the adapter
5290  *	@idx: the port index
5291  *
5292  *	Returns a bitmap indicating which MPS buffer groups are associated
5293  *	with the given port.  Bit i is set if buffer group i is used by the
5294  *	port.
5295  */
5296 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5297 {
5298 	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5299 
5300 	if (n == 0)
5301 		return idx == 0 ? 0xf : 0;
5302 	/* In T6 (which is a 2 port card),
5303 	 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5304 	 * For 2 port T4/T5 adapter,
5305 	 * port 0 is mapped to channel 0 and 1,
5306 	 * port 1 is mapped to channel 2 and 3.
5307 	 */
5308 	if ((n == 1) &&
5309 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5310 		return idx < 2 ? (3 << (2 * idx)) : 0;
5311 	return 1 << idx;
5312 }
5313 
5314 /**
5315  *      t4_get_port_type_description - return Port Type string description
5316  *      @port_type: firmware Port Type enumeration
5317  */
5318 const char *t4_get_port_type_description(enum fw_port_type port_type)
5319 {
5320 	static const char *const port_type_description[] = {
5321 		"R XFI",
5322 		"R XAUI",
5323 		"T SGMII",
5324 		"T XFI",
5325 		"T XAUI",
5326 		"KX4",
5327 		"CX4",
5328 		"KX",
5329 		"KR",
5330 		"R SFP+",
5331 		"KR/KX",
5332 		"KR/KX/KX4",
5333 		"R QSFP_10G",
5334 		"R QSA",
5335 		"R QSFP",
5336 		"R BP40_BA",
5337 	};
5338 
5339 	if (port_type < ARRAY_SIZE(port_type_description))
5340 		return port_type_description[port_type];
5341 	return "UNKNOWN";
5342 }
5343 
5344 /**
5345  *      t4_get_port_stats_offset - collect port stats relative to a previous
5346  *                                 snapshot
5347  *      @adap: The adapter
5348  *      @idx: The port
5349  *      @stats: Current stats to fill
5350  *      @offset: Previous stats snapshot
5351  */
5352 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5353 			      struct port_stats *stats,
5354 			      struct port_stats *offset)
5355 {
5356 	u64 *s, *o;
5357 	int i;
5358 
5359 	t4_get_port_stats(adap, idx, stats);
5360 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5361 			i < (sizeof(struct port_stats) / sizeof(u64));
5362 			i++, s++, o++)
5363 		*s -= *o;
5364 }
5365 
5366 /**
5367  *	t4_get_port_stats - collect port statistics
5368  *	@adap: the adapter
5369  *	@idx: the port index
5370  *	@p: the stats structure to fill
5371  *
5372  *	Collect statistics related to the given port from HW.
5373  */
5374 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5375 {
5376 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5377 
5378 #define GET_STAT(name) \
5379 	t4_read_reg64(adap, \
5380 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5381 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5382 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5383 
5384 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5385 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5386 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5387 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5388 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5389 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5390 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5391 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5392 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5393 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5394 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5395 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5396 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5397 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
5398 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5399 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5400 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5401 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5402 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5403 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5404 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5405 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5406 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5407 
5408 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5409 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5410 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5411 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5412 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5413 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5414 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5415 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5416 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5417 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5418 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5419 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5420 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5421 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5422 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5423 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5424 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5425 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5426 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5427 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5428 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5429 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5430 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5431 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5432 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5433 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5434 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5435 
5436 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5437 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5438 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5439 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5440 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5441 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5442 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5443 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5444 
5445 #undef GET_STAT
5446 #undef GET_STAT_COM
5447 }
5448 
5449 /**
5450  *	t4_get_lb_stats - collect loopback port statistics
5451  *	@adap: the adapter
5452  *	@idx: the loopback port index
5453  *	@p: the stats structure to fill
5454  *
5455  *	Return HW statistics for the given loopback port.
5456  */
5457 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5458 {
5459 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5460 
5461 #define GET_STAT(name) \
5462 	t4_read_reg64(adap, \
5463 	(is_t4(adap->params.chip) ? \
5464 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5465 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5466 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5467 
5468 	p->octets           = GET_STAT(BYTES);
5469 	p->frames           = GET_STAT(FRAMES);
5470 	p->bcast_frames     = GET_STAT(BCAST);
5471 	p->mcast_frames     = GET_STAT(MCAST);
5472 	p->ucast_frames     = GET_STAT(UCAST);
5473 	p->error_frames     = GET_STAT(ERROR);
5474 
5475 	p->frames_64        = GET_STAT(64B);
5476 	p->frames_65_127    = GET_STAT(65B_127B);
5477 	p->frames_128_255   = GET_STAT(128B_255B);
5478 	p->frames_256_511   = GET_STAT(256B_511B);
5479 	p->frames_512_1023  = GET_STAT(512B_1023B);
5480 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
5481 	p->frames_1519_max  = GET_STAT(1519B_MAX);
5482 	p->drop             = GET_STAT(DROP_FRAMES);
5483 
5484 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5485 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5486 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5487 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5488 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5489 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5490 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5491 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5492 
5493 #undef GET_STAT
5494 #undef GET_STAT_COM
5495 }
5496 
5497 /*     t4_mk_filtdelwr - create a delete filter WR
5498  *     @ftid: the filter ID
5499  *     @wr: the filter work request to populate
5500  *     @qid: ingress queue to receive the delete notification
5501  *
5502  *     Creates a filter work request to delete the supplied filter.  If @qid is
5503  *     negative the delete notification is suppressed.
5504  */
5505 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5506 {
5507 	memset(wr, 0, sizeof(*wr));
5508 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5509 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5510 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5511 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
5512 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5513 	if (qid >= 0)
5514 		wr->rx_chan_rx_rpl_iq =
5515 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5516 }
5517 
5518 #define INIT_CMD(var, cmd, rd_wr) do { \
5519 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5520 					FW_CMD_REQUEST_F | \
5521 					FW_CMD_##rd_wr##_F); \
5522 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5523 } while (0)
5524 
5525 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5526 			  u32 addr, u32 val)
5527 {
5528 	u32 ldst_addrspace;
5529 	struct fw_ldst_cmd c;
5530 
5531 	memset(&c, 0, sizeof(c));
5532 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5533 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5534 					FW_CMD_REQUEST_F |
5535 					FW_CMD_WRITE_F |
5536 					ldst_addrspace);
5537 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5538 	c.u.addrval.addr = cpu_to_be32(addr);
5539 	c.u.addrval.val = cpu_to_be32(val);
5540 
5541 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5542 }
5543 
5544 /**
5545  *	t4_mdio_rd - read a PHY register through MDIO
5546  *	@adap: the adapter
5547  *	@mbox: mailbox to use for the FW command
5548  *	@phy_addr: the PHY address
5549  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5550  *	@reg: the register to read
5551  *	@valp: where to store the value
5552  *
5553  *	Issues a FW command through the given mailbox to read a PHY register.
5554  */
5555 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5556 	       unsigned int mmd, unsigned int reg, u16 *valp)
5557 {
5558 	int ret;
5559 	u32 ldst_addrspace;
5560 	struct fw_ldst_cmd c;
5561 
5562 	memset(&c, 0, sizeof(c));
5563 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5564 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5565 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5566 					ldst_addrspace);
5567 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5568 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5569 					 FW_LDST_CMD_MMD_V(mmd));
5570 	c.u.mdio.raddr = cpu_to_be16(reg);
5571 
5572 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5573 	if (ret == 0)
5574 		*valp = be16_to_cpu(c.u.mdio.rval);
5575 	return ret;
5576 }
5577 
5578 /**
5579  *	t4_mdio_wr - write a PHY register through MDIO
5580  *	@adap: the adapter
5581  *	@mbox: mailbox to use for the FW command
5582  *	@phy_addr: the PHY address
5583  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5584  *	@reg: the register to write
5585  *	@valp: value to write
5586  *
5587  *	Issues a FW command through the given mailbox to write a PHY register.
5588  */
5589 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5590 	       unsigned int mmd, unsigned int reg, u16 val)
5591 {
5592 	u32 ldst_addrspace;
5593 	struct fw_ldst_cmd c;
5594 
5595 	memset(&c, 0, sizeof(c));
5596 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5597 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5598 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5599 					ldst_addrspace);
5600 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5601 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5602 					 FW_LDST_CMD_MMD_V(mmd));
5603 	c.u.mdio.raddr = cpu_to_be16(reg);
5604 	c.u.mdio.rval = cpu_to_be16(val);
5605 
5606 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5607 }
5608 
5609 /**
5610  *	t4_sge_decode_idma_state - decode the idma state
5611  *	@adap: the adapter
5612  *	@state: the state idma is stuck in
5613  */
5614 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5615 {
5616 	static const char * const t4_decode[] = {
5617 		"IDMA_IDLE",
5618 		"IDMA_PUSH_MORE_CPL_FIFO",
5619 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5620 		"Not used",
5621 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5622 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5623 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5624 		"IDMA_SEND_FIFO_TO_IMSG",
5625 		"IDMA_FL_REQ_DATA_FL_PREP",
5626 		"IDMA_FL_REQ_DATA_FL",
5627 		"IDMA_FL_DROP",
5628 		"IDMA_FL_H_REQ_HEADER_FL",
5629 		"IDMA_FL_H_SEND_PCIEHDR",
5630 		"IDMA_FL_H_PUSH_CPL_FIFO",
5631 		"IDMA_FL_H_SEND_CPL",
5632 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5633 		"IDMA_FL_H_SEND_IP_HDR",
5634 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5635 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5636 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5637 		"IDMA_FL_D_SEND_PCIEHDR",
5638 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5639 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5640 		"IDMA_FL_SEND_PCIEHDR",
5641 		"IDMA_FL_PUSH_CPL_FIFO",
5642 		"IDMA_FL_SEND_CPL",
5643 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5644 		"IDMA_FL_SEND_PAYLOAD",
5645 		"IDMA_FL_REQ_NEXT_DATA_FL",
5646 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5647 		"IDMA_FL_SEND_PADDING",
5648 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5649 		"IDMA_FL_SEND_FIFO_TO_IMSG",
5650 		"IDMA_FL_REQ_DATAFL_DONE",
5651 		"IDMA_FL_REQ_HEADERFL_DONE",
5652 	};
5653 	static const char * const t5_decode[] = {
5654 		"IDMA_IDLE",
5655 		"IDMA_ALMOST_IDLE",
5656 		"IDMA_PUSH_MORE_CPL_FIFO",
5657 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5658 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5659 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5660 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5661 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5662 		"IDMA_SEND_FIFO_TO_IMSG",
5663 		"IDMA_FL_REQ_DATA_FL",
5664 		"IDMA_FL_DROP",
5665 		"IDMA_FL_DROP_SEND_INC",
5666 		"IDMA_FL_H_REQ_HEADER_FL",
5667 		"IDMA_FL_H_SEND_PCIEHDR",
5668 		"IDMA_FL_H_PUSH_CPL_FIFO",
5669 		"IDMA_FL_H_SEND_CPL",
5670 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5671 		"IDMA_FL_H_SEND_IP_HDR",
5672 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5673 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5674 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5675 		"IDMA_FL_D_SEND_PCIEHDR",
5676 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5677 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5678 		"IDMA_FL_SEND_PCIEHDR",
5679 		"IDMA_FL_PUSH_CPL_FIFO",
5680 		"IDMA_FL_SEND_CPL",
5681 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5682 		"IDMA_FL_SEND_PAYLOAD",
5683 		"IDMA_FL_REQ_NEXT_DATA_FL",
5684 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5685 		"IDMA_FL_SEND_PADDING",
5686 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5687 	};
5688 	static const char * const t6_decode[] = {
5689 		"IDMA_IDLE",
5690 		"IDMA_PUSH_MORE_CPL_FIFO",
5691 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5692 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5693 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5694 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5695 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5696 		"IDMA_FL_REQ_DATA_FL",
5697 		"IDMA_FL_DROP",
5698 		"IDMA_FL_DROP_SEND_INC",
5699 		"IDMA_FL_H_REQ_HEADER_FL",
5700 		"IDMA_FL_H_SEND_PCIEHDR",
5701 		"IDMA_FL_H_PUSH_CPL_FIFO",
5702 		"IDMA_FL_H_SEND_CPL",
5703 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5704 		"IDMA_FL_H_SEND_IP_HDR",
5705 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5706 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5707 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5708 		"IDMA_FL_D_SEND_PCIEHDR",
5709 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5710 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5711 		"IDMA_FL_SEND_PCIEHDR",
5712 		"IDMA_FL_PUSH_CPL_FIFO",
5713 		"IDMA_FL_SEND_CPL",
5714 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5715 		"IDMA_FL_SEND_PAYLOAD",
5716 		"IDMA_FL_REQ_NEXT_DATA_FL",
5717 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5718 		"IDMA_FL_SEND_PADDING",
5719 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5720 	};
5721 	static const u32 sge_regs[] = {
5722 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
5723 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
5724 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5725 	};
5726 	const char **sge_idma_decode;
5727 	int sge_idma_decode_nstates;
5728 	int i;
5729 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5730 
5731 	/* Select the right set of decode strings to dump depending on the
5732 	 * adapter chip type.
5733 	 */
5734 	switch (chip_version) {
5735 	case CHELSIO_T4:
5736 		sge_idma_decode = (const char **)t4_decode;
5737 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5738 		break;
5739 
5740 	case CHELSIO_T5:
5741 		sge_idma_decode = (const char **)t5_decode;
5742 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5743 		break;
5744 
5745 	case CHELSIO_T6:
5746 		sge_idma_decode = (const char **)t6_decode;
5747 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5748 		break;
5749 
5750 	default:
5751 		dev_err(adapter->pdev_dev,
5752 			"Unsupported chip version %d\n", chip_version);
5753 		return;
5754 	}
5755 
5756 	if (is_t4(adapter->params.chip)) {
5757 		sge_idma_decode = (const char **)t4_decode;
5758 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5759 	} else {
5760 		sge_idma_decode = (const char **)t5_decode;
5761 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5762 	}
5763 
5764 	if (state < sge_idma_decode_nstates)
5765 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5766 	else
5767 		CH_WARN(adapter, "idma state %d unknown\n", state);
5768 
5769 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5770 		CH_WARN(adapter, "SGE register %#x value %#x\n",
5771 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5772 }
5773 
5774 /**
5775  *      t4_sge_ctxt_flush - flush the SGE context cache
5776  *      @adap: the adapter
5777  *      @mbox: mailbox to use for the FW command
5778  *
5779  *      Issues a FW command through the given mailbox to flush the
5780  *      SGE context cache.
5781  */
5782 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5783 {
5784 	int ret;
5785 	u32 ldst_addrspace;
5786 	struct fw_ldst_cmd c;
5787 
5788 	memset(&c, 0, sizeof(c));
5789 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5790 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5791 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5792 					ldst_addrspace);
5793 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5794 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5795 
5796 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5797 	return ret;
5798 }
5799 
5800 /**
5801  *      t4_fw_hello - establish communication with FW
5802  *      @adap: the adapter
5803  *      @mbox: mailbox to use for the FW command
5804  *      @evt_mbox: mailbox to receive async FW events
5805  *      @master: specifies the caller's willingness to be the device master
5806  *	@state: returns the current device state (if non-NULL)
5807  *
5808  *	Issues a command to establish communication with FW.  Returns either
5809  *	an error (negative integer) or the mailbox of the Master PF.
5810  */
5811 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5812 		enum dev_master master, enum dev_state *state)
5813 {
5814 	int ret;
5815 	struct fw_hello_cmd c;
5816 	u32 v;
5817 	unsigned int master_mbox;
5818 	int retries = FW_CMD_HELLO_RETRIES;
5819 
5820 retry:
5821 	memset(&c, 0, sizeof(c));
5822 	INIT_CMD(c, HELLO, WRITE);
5823 	c.err_to_clearinit = cpu_to_be32(
5824 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5825 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5826 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5827 					mbox : FW_HELLO_CMD_MBMASTER_M) |
5828 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5829 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5830 		FW_HELLO_CMD_CLEARINIT_F);
5831 
5832 	/*
5833 	 * Issue the HELLO command to the firmware.  If it's not successful
5834 	 * but indicates that we got a "busy" or "timeout" condition, retry
5835 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
5836 	 * retry limit, check to see if the firmware left us any error
5837 	 * information and report that if so.
5838 	 */
5839 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5840 	if (ret < 0) {
5841 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5842 			goto retry;
5843 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5844 			t4_report_fw_error(adap);
5845 		return ret;
5846 	}
5847 
5848 	v = be32_to_cpu(c.err_to_clearinit);
5849 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5850 	if (state) {
5851 		if (v & FW_HELLO_CMD_ERR_F)
5852 			*state = DEV_STATE_ERR;
5853 		else if (v & FW_HELLO_CMD_INIT_F)
5854 			*state = DEV_STATE_INIT;
5855 		else
5856 			*state = DEV_STATE_UNINIT;
5857 	}
5858 
5859 	/*
5860 	 * If we're not the Master PF then we need to wait around for the
5861 	 * Master PF Driver to finish setting up the adapter.
5862 	 *
5863 	 * Note that we also do this wait if we're a non-Master-capable PF and
5864 	 * there is no current Master PF; a Master PF may show up momentarily
5865 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
5866 	 * OS loads lots of different drivers rapidly at the same time).  In
5867 	 * this case, the Master PF returned by the firmware will be
5868 	 * PCIE_FW_MASTER_M so the test below will work ...
5869 	 */
5870 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5871 	    master_mbox != mbox) {
5872 		int waiting = FW_CMD_HELLO_TIMEOUT;
5873 
5874 		/*
5875 		 * Wait for the firmware to either indicate an error or
5876 		 * initialized state.  If we see either of these we bail out
5877 		 * and report the issue to the caller.  If we exhaust the
5878 		 * "hello timeout" and we haven't exhausted our retries, try
5879 		 * again.  Otherwise bail with a timeout error.
5880 		 */
5881 		for (;;) {
5882 			u32 pcie_fw;
5883 
5884 			msleep(50);
5885 			waiting -= 50;
5886 
5887 			/*
5888 			 * If neither Error nor Initialialized are indicated
5889 			 * by the firmware keep waiting till we exaust our
5890 			 * timeout ... and then retry if we haven't exhausted
5891 			 * our retries ...
5892 			 */
5893 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5894 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5895 				if (waiting <= 0) {
5896 					if (retries-- > 0)
5897 						goto retry;
5898 
5899 					return -ETIMEDOUT;
5900 				}
5901 				continue;
5902 			}
5903 
5904 			/*
5905 			 * We either have an Error or Initialized condition
5906 			 * report errors preferentially.
5907 			 */
5908 			if (state) {
5909 				if (pcie_fw & PCIE_FW_ERR_F)
5910 					*state = DEV_STATE_ERR;
5911 				else if (pcie_fw & PCIE_FW_INIT_F)
5912 					*state = DEV_STATE_INIT;
5913 			}
5914 
5915 			/*
5916 			 * If we arrived before a Master PF was selected and
5917 			 * there's not a valid Master PF, grab its identity
5918 			 * for our caller.
5919 			 */
5920 			if (master_mbox == PCIE_FW_MASTER_M &&
5921 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
5922 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5923 			break;
5924 		}
5925 	}
5926 
5927 	return master_mbox;
5928 }
5929 
5930 /**
5931  *	t4_fw_bye - end communication with FW
5932  *	@adap: the adapter
5933  *	@mbox: mailbox to use for the FW command
5934  *
5935  *	Issues a command to terminate communication with FW.
5936  */
5937 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5938 {
5939 	struct fw_bye_cmd c;
5940 
5941 	memset(&c, 0, sizeof(c));
5942 	INIT_CMD(c, BYE, WRITE);
5943 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5944 }
5945 
5946 /**
5947  *	t4_init_cmd - ask FW to initialize the device
5948  *	@adap: the adapter
5949  *	@mbox: mailbox to use for the FW command
5950  *
5951  *	Issues a command to FW to partially initialize the device.  This
5952  *	performs initialization that generally doesn't depend on user input.
5953  */
5954 int t4_early_init(struct adapter *adap, unsigned int mbox)
5955 {
5956 	struct fw_initialize_cmd c;
5957 
5958 	memset(&c, 0, sizeof(c));
5959 	INIT_CMD(c, INITIALIZE, WRITE);
5960 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5961 }
5962 
5963 /**
5964  *	t4_fw_reset - issue a reset to FW
5965  *	@adap: the adapter
5966  *	@mbox: mailbox to use for the FW command
5967  *	@reset: specifies the type of reset to perform
5968  *
5969  *	Issues a reset command of the specified type to FW.
5970  */
5971 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5972 {
5973 	struct fw_reset_cmd c;
5974 
5975 	memset(&c, 0, sizeof(c));
5976 	INIT_CMD(c, RESET, WRITE);
5977 	c.val = cpu_to_be32(reset);
5978 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5979 }
5980 
5981 /**
5982  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5983  *	@adap: the adapter
5984  *	@mbox: mailbox to use for the FW RESET command (if desired)
5985  *	@force: force uP into RESET even if FW RESET command fails
5986  *
5987  *	Issues a RESET command to firmware (if desired) with a HALT indication
5988  *	and then puts the microprocessor into RESET state.  The RESET command
5989  *	will only be issued if a legitimate mailbox is provided (mbox <=
5990  *	PCIE_FW_MASTER_M).
5991  *
5992  *	This is generally used in order for the host to safely manipulate the
5993  *	adapter without fear of conflicting with whatever the firmware might
5994  *	be doing.  The only way out of this state is to RESTART the firmware
5995  *	...
5996  */
5997 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5998 {
5999 	int ret = 0;
6000 
6001 	/*
6002 	 * If a legitimate mailbox is provided, issue a RESET command
6003 	 * with a HALT indication.
6004 	 */
6005 	if (mbox <= PCIE_FW_MASTER_M) {
6006 		struct fw_reset_cmd c;
6007 
6008 		memset(&c, 0, sizeof(c));
6009 		INIT_CMD(c, RESET, WRITE);
6010 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6011 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6012 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6013 	}
6014 
6015 	/*
6016 	 * Normally we won't complete the operation if the firmware RESET
6017 	 * command fails but if our caller insists we'll go ahead and put the
6018 	 * uP into RESET.  This can be useful if the firmware is hung or even
6019 	 * missing ...  We'll have to take the risk of putting the uP into
6020 	 * RESET without the cooperation of firmware in that case.
6021 	 *
6022 	 * We also force the firmware's HALT flag to be on in case we bypassed
6023 	 * the firmware RESET command above or we're dealing with old firmware
6024 	 * which doesn't have the HALT capability.  This will serve as a flag
6025 	 * for the incoming firmware to know that it's coming out of a HALT
6026 	 * rather than a RESET ... if it's new enough to understand that ...
6027 	 */
6028 	if (ret == 0 || force) {
6029 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6030 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6031 				 PCIE_FW_HALT_F);
6032 	}
6033 
6034 	/*
6035 	 * And we always return the result of the firmware RESET command
6036 	 * even when we force the uP into RESET ...
6037 	 */
6038 	return ret;
6039 }
6040 
6041 /**
6042  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6043  *	@adap: the adapter
6044  *	@reset: if we want to do a RESET to restart things
6045  *
6046  *	Restart firmware previously halted by t4_fw_halt().  On successful
6047  *	return the previous PF Master remains as the new PF Master and there
6048  *	is no need to issue a new HELLO command, etc.
6049  *
6050  *	We do this in two ways:
6051  *
6052  *	 1. If we're dealing with newer firmware we'll simply want to take
6053  *	    the chip's microprocessor out of RESET.  This will cause the
6054  *	    firmware to start up from its start vector.  And then we'll loop
6055  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6056  *	    reset to 0) or we timeout.
6057  *
6058  *	 2. If we're dealing with older firmware then we'll need to RESET
6059  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6060  *	    flag and automatically RESET itself on startup.
6061  */
6062 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6063 {
6064 	if (reset) {
6065 		/*
6066 		 * Since we're directing the RESET instead of the firmware
6067 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6068 		 * bit.
6069 		 */
6070 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6071 
6072 		/*
6073 		 * If we've been given a valid mailbox, first try to get the
6074 		 * firmware to do the RESET.  If that works, great and we can
6075 		 * return success.  Otherwise, if we haven't been given a
6076 		 * valid mailbox or the RESET command failed, fall back to
6077 		 * hitting the chip with a hammer.
6078 		 */
6079 		if (mbox <= PCIE_FW_MASTER_M) {
6080 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6081 			msleep(100);
6082 			if (t4_fw_reset(adap, mbox,
6083 					PIORST_F | PIORSTMODE_F) == 0)
6084 				return 0;
6085 		}
6086 
6087 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6088 		msleep(2000);
6089 	} else {
6090 		int ms;
6091 
6092 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6093 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6094 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6095 				return 0;
6096 			msleep(100);
6097 			ms += 100;
6098 		}
6099 		return -ETIMEDOUT;
6100 	}
6101 	return 0;
6102 }
6103 
6104 /**
6105  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6106  *	@adap: the adapter
6107  *	@mbox: mailbox to use for the FW RESET command (if desired)
6108  *	@fw_data: the firmware image to write
6109  *	@size: image size
6110  *	@force: force upgrade even if firmware doesn't cooperate
6111  *
6112  *	Perform all of the steps necessary for upgrading an adapter's
6113  *	firmware image.  Normally this requires the cooperation of the
6114  *	existing firmware in order to halt all existing activities
6115  *	but if an invalid mailbox token is passed in we skip that step
6116  *	(though we'll still put the adapter microprocessor into RESET in
6117  *	that case).
6118  *
6119  *	On successful return the new firmware will have been loaded and
6120  *	the adapter will have been fully RESET losing all previous setup
6121  *	state.  On unsuccessful return the adapter may be completely hosed ...
6122  *	positive errno indicates that the adapter is ~probably~ intact, a
6123  *	negative errno indicates that things are looking bad ...
6124  */
6125 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6126 		  const u8 *fw_data, unsigned int size, int force)
6127 {
6128 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6129 	int reset, ret;
6130 
6131 	if (!t4_fw_matches_chip(adap, fw_hdr))
6132 		return -EINVAL;
6133 
6134 	ret = t4_fw_halt(adap, mbox, force);
6135 	if (ret < 0 && !force)
6136 		return ret;
6137 
6138 	ret = t4_load_fw(adap, fw_data, size);
6139 	if (ret < 0)
6140 		return ret;
6141 
6142 	/*
6143 	 * Older versions of the firmware don't understand the new
6144 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6145 	 * restart.  So for newly loaded older firmware we'll have to do the
6146 	 * RESET for it so it starts up on a clean slate.  We can tell if
6147 	 * the newly loaded firmware will handle this right by checking
6148 	 * its header flags to see if it advertises the capability.
6149 	 */
6150 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6151 	return t4_fw_restart(adap, mbox, reset);
6152 }
6153 
6154 /**
6155  *	t4_fl_pkt_align - return the fl packet alignment
6156  *	@adap: the adapter
6157  *
6158  *	T4 has a single field to specify the packing and padding boundary.
6159  *	T5 onwards has separate fields for this and hence the alignment for
6160  *	next packet offset is maximum of these two.
6161  *
6162  */
6163 int t4_fl_pkt_align(struct adapter *adap)
6164 {
6165 	u32 sge_control, sge_control2;
6166 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6167 
6168 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6169 
6170 	/* T4 uses a single control field to specify both the PCIe Padding and
6171 	 * Packing Boundary.  T5 introduced the ability to specify these
6172 	 * separately.  The actual Ingress Packet Data alignment boundary
6173 	 * within Packed Buffer Mode is the maximum of these two
6174 	 * specifications.  (Note that it makes no real practical sense to
6175 	 * have the Pading Boudary be larger than the Packing Boundary but you
6176 	 * could set the chip up that way and, in fact, legacy T4 code would
6177 	 * end doing this because it would initialize the Padding Boundary and
6178 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6179 	 * Padding Boundary values in T6 starts from 8B,
6180 	 * where as it is 32B for T4 and T5.
6181 	 */
6182 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6183 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6184 	else
6185 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6186 
6187 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6188 
6189 	fl_align = ingpadboundary;
6190 	if (!is_t4(adap->params.chip)) {
6191 		/* T5 has a weird interpretation of one of the PCIe Packing
6192 		 * Boundary values.  No idea why ...
6193 		 */
6194 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6195 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6196 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6197 			ingpackboundary = 16;
6198 		else
6199 			ingpackboundary = 1 << (ingpackboundary +
6200 						INGPACKBOUNDARY_SHIFT_X);
6201 
6202 		fl_align = max(ingpadboundary, ingpackboundary);
6203 	}
6204 	return fl_align;
6205 }
6206 
6207 /**
6208  *	t4_fixup_host_params - fix up host-dependent parameters
6209  *	@adap: the adapter
6210  *	@page_size: the host's Base Page Size
6211  *	@cache_line_size: the host's Cache Line Size
6212  *
6213  *	Various registers in T4 contain values which are dependent on the
6214  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6215  *	those registers with the appropriate values as passed in ...
6216  */
6217 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6218 			 unsigned int cache_line_size)
6219 {
6220 	unsigned int page_shift = fls(page_size) - 1;
6221 	unsigned int sge_hps = page_shift - 10;
6222 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6223 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6224 	unsigned int fl_align_log = fls(fl_align) - 1;
6225 	unsigned int ingpad;
6226 
6227 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6228 		     HOSTPAGESIZEPF0_V(sge_hps) |
6229 		     HOSTPAGESIZEPF1_V(sge_hps) |
6230 		     HOSTPAGESIZEPF2_V(sge_hps) |
6231 		     HOSTPAGESIZEPF3_V(sge_hps) |
6232 		     HOSTPAGESIZEPF4_V(sge_hps) |
6233 		     HOSTPAGESIZEPF5_V(sge_hps) |
6234 		     HOSTPAGESIZEPF6_V(sge_hps) |
6235 		     HOSTPAGESIZEPF7_V(sge_hps));
6236 
6237 	if (is_t4(adap->params.chip)) {
6238 		t4_set_reg_field(adap, SGE_CONTROL_A,
6239 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6240 				 EGRSTATUSPAGESIZE_F,
6241 				 INGPADBOUNDARY_V(fl_align_log -
6242 						  INGPADBOUNDARY_SHIFT_X) |
6243 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6244 	} else {
6245 		/* T5 introduced the separation of the Free List Padding and
6246 		 * Packing Boundaries.  Thus, we can select a smaller Padding
6247 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6248 		 * Bandwidth, and use a Packing Boundary which is large enough
6249 		 * to avoid false sharing between CPUs, etc.
6250 		 *
6251 		 * For the PCI Link, the smaller the Padding Boundary the
6252 		 * better.  For the Memory Controller, a smaller Padding
6253 		 * Boundary is better until we cross under the Memory Line
6254 		 * Size (the minimum unit of transfer to/from Memory).  If we
6255 		 * have a Padding Boundary which is smaller than the Memory
6256 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
6257 		 * Memory Controller which is never good.  For T5 the smallest
6258 		 * Padding Boundary which we can select is 32 bytes which is
6259 		 * larger than any known Memory Controller Line Size so we'll
6260 		 * use that.
6261 		 *
6262 		 * T5 has a different interpretation of the "0" value for the
6263 		 * Packing Boundary.  This corresponds to 16 bytes instead of
6264 		 * the expected 32 bytes.  We never have a Packing Boundary
6265 		 * less than 32 bytes so we can't use that special value but
6266 		 * on the other hand, if we wanted 32 bytes, the best we can
6267 		 * really do is 64 bytes.
6268 		*/
6269 		if (fl_align <= 32) {
6270 			fl_align = 64;
6271 			fl_align_log = 6;
6272 		}
6273 
6274 		if (is_t5(adap->params.chip))
6275 			ingpad = INGPCIEBOUNDARY_32B_X;
6276 		else
6277 			ingpad = T6_INGPADBOUNDARY_32B_X;
6278 
6279 		t4_set_reg_field(adap, SGE_CONTROL_A,
6280 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6281 				 EGRSTATUSPAGESIZE_F,
6282 				 INGPADBOUNDARY_V(ingpad) |
6283 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6284 		t4_set_reg_field(adap, SGE_CONTROL2_A,
6285 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6286 				 INGPACKBOUNDARY_V(fl_align_log -
6287 						   INGPACKBOUNDARY_SHIFT_X));
6288 	}
6289 	/*
6290 	 * Adjust various SGE Free List Host Buffer Sizes.
6291 	 *
6292 	 * This is something of a crock since we're using fixed indices into
6293 	 * the array which are also known by the sge.c code and the T4
6294 	 * Firmware Configuration File.  We need to come up with a much better
6295 	 * approach to managing this array.  For now, the first four entries
6296 	 * are:
6297 	 *
6298 	 *   0: Host Page Size
6299 	 *   1: 64KB
6300 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6301 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6302 	 *
6303 	 * For the single-MTU buffers in unpacked mode we need to include
6304 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6305 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6306 	 * Padding boundary.  All of these are accommodated in the Factory
6307 	 * Default Firmware Configuration File but we need to adjust it for
6308 	 * this host's cache line size.
6309 	 */
6310 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6311 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6312 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6313 		     & ~(fl_align-1));
6314 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6315 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6316 		     & ~(fl_align-1));
6317 
6318 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6319 
6320 	return 0;
6321 }
6322 
6323 /**
6324  *	t4_fw_initialize - ask FW to initialize the device
6325  *	@adap: the adapter
6326  *	@mbox: mailbox to use for the FW command
6327  *
6328  *	Issues a command to FW to partially initialize the device.  This
6329  *	performs initialization that generally doesn't depend on user input.
6330  */
6331 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6332 {
6333 	struct fw_initialize_cmd c;
6334 
6335 	memset(&c, 0, sizeof(c));
6336 	INIT_CMD(c, INITIALIZE, WRITE);
6337 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6338 }
6339 
6340 /**
6341  *	t4_query_params_rw - query FW or device parameters
6342  *	@adap: the adapter
6343  *	@mbox: mailbox to use for the FW command
6344  *	@pf: the PF
6345  *	@vf: the VF
6346  *	@nparams: the number of parameters
6347  *	@params: the parameter names
6348  *	@val: the parameter values
6349  *	@rw: Write and read flag
6350  *
6351  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6352  *	queried at once.
6353  */
6354 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6355 		       unsigned int vf, unsigned int nparams, const u32 *params,
6356 		       u32 *val, int rw)
6357 {
6358 	int i, ret;
6359 	struct fw_params_cmd c;
6360 	__be32 *p = &c.param[0].mnem;
6361 
6362 	if (nparams > 7)
6363 		return -EINVAL;
6364 
6365 	memset(&c, 0, sizeof(c));
6366 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6367 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
6368 				  FW_PARAMS_CMD_PFN_V(pf) |
6369 				  FW_PARAMS_CMD_VFN_V(vf));
6370 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6371 
6372 	for (i = 0; i < nparams; i++) {
6373 		*p++ = cpu_to_be32(*params++);
6374 		if (rw)
6375 			*p = cpu_to_be32(*(val + i));
6376 		p++;
6377 	}
6378 
6379 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6380 	if (ret == 0)
6381 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6382 			*val++ = be32_to_cpu(*p);
6383 	return ret;
6384 }
6385 
6386 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6387 		    unsigned int vf, unsigned int nparams, const u32 *params,
6388 		    u32 *val)
6389 {
6390 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6391 }
6392 
6393 /**
6394  *      t4_set_params_timeout - sets FW or device parameters
6395  *      @adap: the adapter
6396  *      @mbox: mailbox to use for the FW command
6397  *      @pf: the PF
6398  *      @vf: the VF
6399  *      @nparams: the number of parameters
6400  *      @params: the parameter names
6401  *      @val: the parameter values
6402  *      @timeout: the timeout time
6403  *
6404  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6405  *      specified at once.
6406  */
6407 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6408 			  unsigned int pf, unsigned int vf,
6409 			  unsigned int nparams, const u32 *params,
6410 			  const u32 *val, int timeout)
6411 {
6412 	struct fw_params_cmd c;
6413 	__be32 *p = &c.param[0].mnem;
6414 
6415 	if (nparams > 7)
6416 		return -EINVAL;
6417 
6418 	memset(&c, 0, sizeof(c));
6419 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6420 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6421 				  FW_PARAMS_CMD_PFN_V(pf) |
6422 				  FW_PARAMS_CMD_VFN_V(vf));
6423 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6424 
6425 	while (nparams--) {
6426 		*p++ = cpu_to_be32(*params++);
6427 		*p++ = cpu_to_be32(*val++);
6428 	}
6429 
6430 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6431 }
6432 
6433 /**
6434  *	t4_set_params - sets FW or device parameters
6435  *	@adap: the adapter
6436  *	@mbox: mailbox to use for the FW command
6437  *	@pf: the PF
6438  *	@vf: the VF
6439  *	@nparams: the number of parameters
6440  *	@params: the parameter names
6441  *	@val: the parameter values
6442  *
6443  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6444  *	specified at once.
6445  */
6446 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6447 		  unsigned int vf, unsigned int nparams, const u32 *params,
6448 		  const u32 *val)
6449 {
6450 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6451 				     FW_CMD_MAX_TIMEOUT);
6452 }
6453 
6454 /**
6455  *	t4_cfg_pfvf - configure PF/VF resource limits
6456  *	@adap: the adapter
6457  *	@mbox: mailbox to use for the FW command
6458  *	@pf: the PF being configured
6459  *	@vf: the VF being configured
6460  *	@txq: the max number of egress queues
6461  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6462  *	@rxqi: the max number of interrupt-capable ingress queues
6463  *	@rxq: the max number of interruptless ingress queues
6464  *	@tc: the PCI traffic class
6465  *	@vi: the max number of virtual interfaces
6466  *	@cmask: the channel access rights mask for the PF/VF
6467  *	@pmask: the port access rights mask for the PF/VF
6468  *	@nexact: the maximum number of exact MPS filters
6469  *	@rcaps: read capabilities
6470  *	@wxcaps: write/execute capabilities
6471  *
6472  *	Configures resource limits and capabilities for a physical or virtual
6473  *	function.
6474  */
6475 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6476 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6477 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6478 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6479 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6480 {
6481 	struct fw_pfvf_cmd c;
6482 
6483 	memset(&c, 0, sizeof(c));
6484 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6485 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6486 				  FW_PFVF_CMD_VFN_V(vf));
6487 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6488 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6489 				     FW_PFVF_CMD_NIQ_V(rxq));
6490 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6491 				    FW_PFVF_CMD_PMASK_V(pmask) |
6492 				    FW_PFVF_CMD_NEQ_V(txq));
6493 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6494 				      FW_PFVF_CMD_NVI_V(vi) |
6495 				      FW_PFVF_CMD_NEXACTF_V(nexact));
6496 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6497 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6498 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6499 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6500 }
6501 
6502 /**
6503  *	t4_alloc_vi - allocate a virtual interface
6504  *	@adap: the adapter
6505  *	@mbox: mailbox to use for the FW command
6506  *	@port: physical port associated with the VI
6507  *	@pf: the PF owning the VI
6508  *	@vf: the VF owning the VI
6509  *	@nmac: number of MAC addresses needed (1 to 5)
6510  *	@mac: the MAC addresses of the VI
6511  *	@rss_size: size of RSS table slice associated with this VI
6512  *
6513  *	Allocates a virtual interface for the given physical port.  If @mac is
6514  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6515  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6516  *	stored consecutively so the space needed is @nmac * 6 bytes.
6517  *	Returns a negative error number or the non-negative VI id.
6518  */
6519 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6520 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6521 		unsigned int *rss_size)
6522 {
6523 	int ret;
6524 	struct fw_vi_cmd c;
6525 
6526 	memset(&c, 0, sizeof(c));
6527 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6528 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6529 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6530 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6531 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6532 	c.nmac = nmac - 1;
6533 
6534 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6535 	if (ret)
6536 		return ret;
6537 
6538 	if (mac) {
6539 		memcpy(mac, c.mac, sizeof(c.mac));
6540 		switch (nmac) {
6541 		case 5:
6542 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6543 		case 4:
6544 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6545 		case 3:
6546 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6547 		case 2:
6548 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6549 		}
6550 	}
6551 	if (rss_size)
6552 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6553 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6554 }
6555 
6556 /**
6557  *	t4_free_vi - free a virtual interface
6558  *	@adap: the adapter
6559  *	@mbox: mailbox to use for the FW command
6560  *	@pf: the PF owning the VI
6561  *	@vf: the VF owning the VI
6562  *	@viid: virtual interface identifiler
6563  *
6564  *	Free a previously allocated virtual interface.
6565  */
6566 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6567 	       unsigned int vf, unsigned int viid)
6568 {
6569 	struct fw_vi_cmd c;
6570 
6571 	memset(&c, 0, sizeof(c));
6572 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6573 				  FW_CMD_REQUEST_F |
6574 				  FW_CMD_EXEC_F |
6575 				  FW_VI_CMD_PFN_V(pf) |
6576 				  FW_VI_CMD_VFN_V(vf));
6577 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6578 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6579 
6580 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6581 }
6582 
6583 /**
6584  *	t4_set_rxmode - set Rx properties of a virtual interface
6585  *	@adap: the adapter
6586  *	@mbox: mailbox to use for the FW command
6587  *	@viid: the VI id
6588  *	@mtu: the new MTU or -1
6589  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6590  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6591  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6592  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6593  *	@sleep_ok: if true we may sleep while awaiting command completion
6594  *
6595  *	Sets Rx properties of a virtual interface.
6596  */
6597 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6598 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6599 		  bool sleep_ok)
6600 {
6601 	struct fw_vi_rxmode_cmd c;
6602 
6603 	/* convert to FW values */
6604 	if (mtu < 0)
6605 		mtu = FW_RXMODE_MTU_NO_CHG;
6606 	if (promisc < 0)
6607 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6608 	if (all_multi < 0)
6609 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6610 	if (bcast < 0)
6611 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6612 	if (vlanex < 0)
6613 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6614 
6615 	memset(&c, 0, sizeof(c));
6616 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6617 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6618 				   FW_VI_RXMODE_CMD_VIID_V(viid));
6619 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6620 	c.mtu_to_vlanexen =
6621 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6622 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6623 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6624 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6625 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6626 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6627 }
6628 
6629 /**
6630  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6631  *	@adap: the adapter
6632  *	@mbox: mailbox to use for the FW command
6633  *	@viid: the VI id
6634  *	@free: if true any existing filters for this VI id are first removed
6635  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6636  *	@addr: the MAC address(es)
6637  *	@idx: where to store the index of each allocated filter
6638  *	@hash: pointer to hash address filter bitmap
6639  *	@sleep_ok: call is allowed to sleep
6640  *
6641  *	Allocates an exact-match filter for each of the supplied addresses and
6642  *	sets it to the corresponding address.  If @idx is not %NULL it should
6643  *	have at least @naddr entries, each of which will be set to the index of
6644  *	the filter allocated for the corresponding MAC address.  If a filter
6645  *	could not be allocated for an address its index is set to 0xffff.
6646  *	If @hash is not %NULL addresses that fail to allocate an exact filter
6647  *	are hashed and update the hash filter bitmap pointed at by @hash.
6648  *
6649  *	Returns a negative error number or the number of filters allocated.
6650  */
6651 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6652 		      unsigned int viid, bool free, unsigned int naddr,
6653 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6654 {
6655 	int offset, ret = 0;
6656 	struct fw_vi_mac_cmd c;
6657 	unsigned int nfilters = 0;
6658 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6659 	unsigned int rem = naddr;
6660 
6661 	if (naddr > max_naddr)
6662 		return -EINVAL;
6663 
6664 	for (offset = 0; offset < naddr ; /**/) {
6665 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6666 					 rem : ARRAY_SIZE(c.u.exact));
6667 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6668 						     u.exact[fw_naddr]), 16);
6669 		struct fw_vi_mac_exact *p;
6670 		int i;
6671 
6672 		memset(&c, 0, sizeof(c));
6673 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6674 					   FW_CMD_REQUEST_F |
6675 					   FW_CMD_WRITE_F |
6676 					   FW_CMD_EXEC_V(free) |
6677 					   FW_VI_MAC_CMD_VIID_V(viid));
6678 		c.freemacs_to_len16 =
6679 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6680 				    FW_CMD_LEN16_V(len16));
6681 
6682 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6683 			p->valid_to_idx =
6684 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6685 					    FW_VI_MAC_CMD_IDX_V(
6686 						    FW_VI_MAC_ADD_MAC));
6687 			memcpy(p->macaddr, addr[offset + i],
6688 			       sizeof(p->macaddr));
6689 		}
6690 
6691 		/* It's okay if we run out of space in our MAC address arena.
6692 		 * Some of the addresses we submit may get stored so we need
6693 		 * to run through the reply to see what the results were ...
6694 		 */
6695 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6696 		if (ret && ret != -FW_ENOMEM)
6697 			break;
6698 
6699 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6700 			u16 index = FW_VI_MAC_CMD_IDX_G(
6701 					be16_to_cpu(p->valid_to_idx));
6702 
6703 			if (idx)
6704 				idx[offset + i] = (index >= max_naddr ?
6705 						   0xffff : index);
6706 			if (index < max_naddr)
6707 				nfilters++;
6708 			else if (hash)
6709 				*hash |= (1ULL <<
6710 					  hash_mac_addr(addr[offset + i]));
6711 		}
6712 
6713 		free = false;
6714 		offset += fw_naddr;
6715 		rem -= fw_naddr;
6716 	}
6717 
6718 	if (ret == 0 || ret == -FW_ENOMEM)
6719 		ret = nfilters;
6720 	return ret;
6721 }
6722 
6723 /**
6724  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
6725  *	@adap: the adapter
6726  *	@mbox: mailbox to use for the FW command
6727  *	@viid: the VI id
6728  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6729  *	@addr: the MAC address(es)
6730  *	@sleep_ok: call is allowed to sleep
6731  *
6732  *	Frees the exact-match filter for each of the supplied addresses
6733  *
6734  *	Returns a negative error number or the number of filters freed.
6735  */
6736 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6737 		     unsigned int viid, unsigned int naddr,
6738 		     const u8 **addr, bool sleep_ok)
6739 {
6740 	int offset, ret = 0;
6741 	struct fw_vi_mac_cmd c;
6742 	unsigned int nfilters = 0;
6743 	unsigned int max_naddr = is_t4(adap->params.chip) ?
6744 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
6745 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6746 	unsigned int rem = naddr;
6747 
6748 	if (naddr > max_naddr)
6749 		return -EINVAL;
6750 
6751 	for (offset = 0; offset < (int)naddr ; /**/) {
6752 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6753 					 ? rem
6754 					 : ARRAY_SIZE(c.u.exact));
6755 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6756 						     u.exact[fw_naddr]), 16);
6757 		struct fw_vi_mac_exact *p;
6758 		int i;
6759 
6760 		memset(&c, 0, sizeof(c));
6761 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6762 				     FW_CMD_REQUEST_F |
6763 				     FW_CMD_WRITE_F |
6764 				     FW_CMD_EXEC_V(0) |
6765 				     FW_VI_MAC_CMD_VIID_V(viid));
6766 		c.freemacs_to_len16 =
6767 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6768 					    FW_CMD_LEN16_V(len16));
6769 
6770 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6771 			p->valid_to_idx = cpu_to_be16(
6772 				FW_VI_MAC_CMD_VALID_F |
6773 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6774 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6775 		}
6776 
6777 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6778 		if (ret)
6779 			break;
6780 
6781 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6782 			u16 index = FW_VI_MAC_CMD_IDX_G(
6783 						be16_to_cpu(p->valid_to_idx));
6784 
6785 			if (index < max_naddr)
6786 				nfilters++;
6787 		}
6788 
6789 		offset += fw_naddr;
6790 		rem -= fw_naddr;
6791 	}
6792 
6793 	if (ret == 0)
6794 		ret = nfilters;
6795 	return ret;
6796 }
6797 
6798 /**
6799  *	t4_change_mac - modifies the exact-match filter for a MAC address
6800  *	@adap: the adapter
6801  *	@mbox: mailbox to use for the FW command
6802  *	@viid: the VI id
6803  *	@idx: index of existing filter for old value of MAC address, or -1
6804  *	@addr: the new MAC address value
6805  *	@persist: whether a new MAC allocation should be persistent
6806  *	@add_smt: if true also add the address to the HW SMT
6807  *
6808  *	Modifies an exact-match filter and sets it to the new MAC address.
6809  *	Note that in general it is not possible to modify the value of a given
6810  *	filter so the generic way to modify an address filter is to free the one
6811  *	being used by the old address value and allocate a new filter for the
6812  *	new address value.  @idx can be -1 if the address is a new addition.
6813  *
6814  *	Returns a negative error number or the index of the filter with the new
6815  *	MAC value.
6816  */
6817 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6818 		  int idx, const u8 *addr, bool persist, bool add_smt)
6819 {
6820 	int ret, mode;
6821 	struct fw_vi_mac_cmd c;
6822 	struct fw_vi_mac_exact *p = c.u.exact;
6823 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6824 
6825 	if (idx < 0)                             /* new allocation */
6826 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6827 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6828 
6829 	memset(&c, 0, sizeof(c));
6830 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6831 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6832 				   FW_VI_MAC_CMD_VIID_V(viid));
6833 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6834 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6835 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6836 				      FW_VI_MAC_CMD_IDX_V(idx));
6837 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
6838 
6839 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6840 	if (ret == 0) {
6841 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6842 		if (ret >= max_mac_addr)
6843 			ret = -ENOMEM;
6844 	}
6845 	return ret;
6846 }
6847 
6848 /**
6849  *	t4_set_addr_hash - program the MAC inexact-match hash filter
6850  *	@adap: the adapter
6851  *	@mbox: mailbox to use for the FW command
6852  *	@viid: the VI id
6853  *	@ucast: whether the hash filter should also match unicast addresses
6854  *	@vec: the value to be written to the hash filter
6855  *	@sleep_ok: call is allowed to sleep
6856  *
6857  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
6858  */
6859 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6860 		     bool ucast, u64 vec, bool sleep_ok)
6861 {
6862 	struct fw_vi_mac_cmd c;
6863 
6864 	memset(&c, 0, sizeof(c));
6865 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6866 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6867 				   FW_VI_ENABLE_CMD_VIID_V(viid));
6868 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6869 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6870 					  FW_CMD_LEN16_V(1));
6871 	c.u.hash.hashvec = cpu_to_be64(vec);
6872 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6873 }
6874 
6875 /**
6876  *      t4_enable_vi_params - enable/disable a virtual interface
6877  *      @adap: the adapter
6878  *      @mbox: mailbox to use for the FW command
6879  *      @viid: the VI id
6880  *      @rx_en: 1=enable Rx, 0=disable Rx
6881  *      @tx_en: 1=enable Tx, 0=disable Tx
6882  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6883  *
6884  *      Enables/disables a virtual interface.  Note that setting DCB Enable
6885  *      only makes sense when enabling a Virtual Interface ...
6886  */
6887 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6888 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6889 {
6890 	struct fw_vi_enable_cmd c;
6891 
6892 	memset(&c, 0, sizeof(c));
6893 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6894 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6895 				   FW_VI_ENABLE_CMD_VIID_V(viid));
6896 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6897 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6898 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6899 				     FW_LEN16(c));
6900 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6901 }
6902 
6903 /**
6904  *	t4_enable_vi - enable/disable a virtual interface
6905  *	@adap: the adapter
6906  *	@mbox: mailbox to use for the FW command
6907  *	@viid: the VI id
6908  *	@rx_en: 1=enable Rx, 0=disable Rx
6909  *	@tx_en: 1=enable Tx, 0=disable Tx
6910  *
6911  *	Enables/disables a virtual interface.
6912  */
6913 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6914 		 bool rx_en, bool tx_en)
6915 {
6916 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6917 }
6918 
6919 /**
6920  *	t4_identify_port - identify a VI's port by blinking its LED
6921  *	@adap: the adapter
6922  *	@mbox: mailbox to use for the FW command
6923  *	@viid: the VI id
6924  *	@nblinks: how many times to blink LED at 2.5 Hz
6925  *
6926  *	Identifies a VI's port by blinking its LED.
6927  */
6928 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6929 		     unsigned int nblinks)
6930 {
6931 	struct fw_vi_enable_cmd c;
6932 
6933 	memset(&c, 0, sizeof(c));
6934 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6935 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6936 				   FW_VI_ENABLE_CMD_VIID_V(viid));
6937 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6938 	c.blinkdur = cpu_to_be16(nblinks);
6939 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6940 }
6941 
6942 /**
6943  *	t4_iq_free - free an ingress queue and its FLs
6944  *	@adap: the adapter
6945  *	@mbox: mailbox to use for the FW command
6946  *	@pf: the PF owning the queues
6947  *	@vf: the VF owning the queues
6948  *	@iqtype: the ingress queue type
6949  *	@iqid: ingress queue id
6950  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
6951  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
6952  *
6953  *	Frees an ingress queue and its associated FLs, if any.
6954  */
6955 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6956 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
6957 	       unsigned int fl0id, unsigned int fl1id)
6958 {
6959 	struct fw_iq_cmd c;
6960 
6961 	memset(&c, 0, sizeof(c));
6962 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6963 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6964 				  FW_IQ_CMD_VFN_V(vf));
6965 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
6966 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6967 	c.iqid = cpu_to_be16(iqid);
6968 	c.fl0id = cpu_to_be16(fl0id);
6969 	c.fl1id = cpu_to_be16(fl1id);
6970 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6971 }
6972 
6973 /**
6974  *	t4_eth_eq_free - free an Ethernet egress queue
6975  *	@adap: the adapter
6976  *	@mbox: mailbox to use for the FW command
6977  *	@pf: the PF owning the queue
6978  *	@vf: the VF owning the queue
6979  *	@eqid: egress queue id
6980  *
6981  *	Frees an Ethernet egress queue.
6982  */
6983 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6984 		   unsigned int vf, unsigned int eqid)
6985 {
6986 	struct fw_eq_eth_cmd c;
6987 
6988 	memset(&c, 0, sizeof(c));
6989 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
6990 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6991 				  FW_EQ_ETH_CMD_PFN_V(pf) |
6992 				  FW_EQ_ETH_CMD_VFN_V(vf));
6993 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
6994 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
6995 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6996 }
6997 
6998 /**
6999  *	t4_ctrl_eq_free - free a control egress queue
7000  *	@adap: the adapter
7001  *	@mbox: mailbox to use for the FW command
7002  *	@pf: the PF owning the queue
7003  *	@vf: the VF owning the queue
7004  *	@eqid: egress queue id
7005  *
7006  *	Frees a control egress queue.
7007  */
7008 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7009 		    unsigned int vf, unsigned int eqid)
7010 {
7011 	struct fw_eq_ctrl_cmd c;
7012 
7013 	memset(&c, 0, sizeof(c));
7014 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7015 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7016 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7017 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7018 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7019 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7020 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7021 }
7022 
7023 /**
7024  *	t4_ofld_eq_free - free an offload egress queue
7025  *	@adap: the adapter
7026  *	@mbox: mailbox to use for the FW command
7027  *	@pf: the PF owning the queue
7028  *	@vf: the VF owning the queue
7029  *	@eqid: egress queue id
7030  *
7031  *	Frees a control egress queue.
7032  */
7033 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7034 		    unsigned int vf, unsigned int eqid)
7035 {
7036 	struct fw_eq_ofld_cmd c;
7037 
7038 	memset(&c, 0, sizeof(c));
7039 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7040 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7041 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7042 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7043 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7044 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7045 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7046 }
7047 
7048 /**
7049  *	t4_handle_fw_rpl - process a FW reply message
7050  *	@adap: the adapter
7051  *	@rpl: start of the FW message
7052  *
7053  *	Processes a FW message, such as link state change messages.
7054  */
7055 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7056 {
7057 	u8 opcode = *(const u8 *)rpl;
7058 
7059 	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
7060 		int speed = 0, fc = 0;
7061 		const struct fw_port_cmd *p = (void *)rpl;
7062 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7063 		int port = adap->chan_map[chan];
7064 		struct port_info *pi = adap2pinfo(adap, port);
7065 		struct link_config *lc = &pi->link_cfg;
7066 		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7067 		int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7068 		u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7069 
7070 		if (stat & FW_PORT_CMD_RXPAUSE_F)
7071 			fc |= PAUSE_RX;
7072 		if (stat & FW_PORT_CMD_TXPAUSE_F)
7073 			fc |= PAUSE_TX;
7074 		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7075 			speed = 100;
7076 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7077 			speed = 1000;
7078 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7079 			speed = 10000;
7080 		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7081 			speed = 40000;
7082 
7083 		if (link_ok != lc->link_ok || speed != lc->speed ||
7084 		    fc != lc->fc) {                    /* something changed */
7085 			lc->link_ok = link_ok;
7086 			lc->speed = speed;
7087 			lc->fc = fc;
7088 			lc->supported = be16_to_cpu(p->u.info.pcap);
7089 			t4_os_link_changed(adap, port, link_ok);
7090 		}
7091 		if (mod != pi->mod_type) {
7092 			pi->mod_type = mod;
7093 			t4_os_portmod_changed(adap, port);
7094 		}
7095 	}
7096 	return 0;
7097 }
7098 
7099 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7100 {
7101 	u16 val;
7102 
7103 	if (pci_is_pcie(adapter->pdev)) {
7104 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7105 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7106 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7107 	}
7108 }
7109 
7110 /**
7111  *	init_link_config - initialize a link's SW state
7112  *	@lc: structure holding the link state
7113  *	@caps: link capabilities
7114  *
7115  *	Initializes the SW state maintained for each link, including the link's
7116  *	capabilities and default speed/flow-control/autonegotiation settings.
7117  */
7118 static void init_link_config(struct link_config *lc, unsigned int caps)
7119 {
7120 	lc->supported = caps;
7121 	lc->requested_speed = 0;
7122 	lc->speed = 0;
7123 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7124 	if (lc->supported & FW_PORT_CAP_ANEG) {
7125 		lc->advertising = lc->supported & ADVERT_MASK;
7126 		lc->autoneg = AUTONEG_ENABLE;
7127 		lc->requested_fc |= PAUSE_AUTONEG;
7128 	} else {
7129 		lc->advertising = 0;
7130 		lc->autoneg = AUTONEG_DISABLE;
7131 	}
7132 }
7133 
7134 #define CIM_PF_NOACCESS 0xeeeeeeee
7135 
7136 int t4_wait_dev_ready(void __iomem *regs)
7137 {
7138 	u32 whoami;
7139 
7140 	whoami = readl(regs + PL_WHOAMI_A);
7141 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7142 		return 0;
7143 
7144 	msleep(500);
7145 	whoami = readl(regs + PL_WHOAMI_A);
7146 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7147 }
7148 
7149 struct flash_desc {
7150 	u32 vendor_and_model_id;
7151 	u32 size_mb;
7152 };
7153 
7154 static int get_flash_params(struct adapter *adap)
7155 {
7156 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
7157 	 * to the preexisting code.  All flash parts have 64KB sectors.
7158 	 */
7159 	static struct flash_desc supported_flash[] = {
7160 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7161 	};
7162 
7163 	int ret;
7164 	u32 info;
7165 
7166 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7167 	if (!ret)
7168 		ret = sf1_read(adap, 3, 0, 1, &info);
7169 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7170 	if (ret)
7171 		return ret;
7172 
7173 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7174 		if (supported_flash[ret].vendor_and_model_id == info) {
7175 			adap->params.sf_size = supported_flash[ret].size_mb;
7176 			adap->params.sf_nsec =
7177 				adap->params.sf_size / SF_SEC_SIZE;
7178 			return 0;
7179 		}
7180 
7181 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7182 		return -EINVAL;
7183 	info >>= 16;                           /* log2 of size */
7184 	if (info >= 0x14 && info < 0x18)
7185 		adap->params.sf_nsec = 1 << (info - 16);
7186 	else if (info == 0x18)
7187 		adap->params.sf_nsec = 64;
7188 	else
7189 		return -EINVAL;
7190 	adap->params.sf_size = 1 << info;
7191 	adap->params.sf_fw_start =
7192 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7193 
7194 	if (adap->params.sf_size < FLASH_MIN_SIZE)
7195 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7196 			 adap->params.sf_size, FLASH_MIN_SIZE);
7197 	return 0;
7198 }
7199 
7200 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7201 {
7202 	u16 val;
7203 	u32 pcie_cap;
7204 
7205 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7206 	if (pcie_cap) {
7207 		pci_read_config_word(adapter->pdev,
7208 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
7209 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7210 		val |= range;
7211 		pci_write_config_word(adapter->pdev,
7212 				      pcie_cap + PCI_EXP_DEVCTL2, val);
7213 	}
7214 }
7215 
7216 /**
7217  *	t4_prep_adapter - prepare SW and HW for operation
7218  *	@adapter: the adapter
7219  *	@reset: if true perform a HW reset
7220  *
7221  *	Initialize adapter SW state for the various HW modules, set initial
7222  *	values for some adapter tunables, take PHYs out of reset, and
7223  *	initialize the MDIO interface.
7224  */
7225 int t4_prep_adapter(struct adapter *adapter)
7226 {
7227 	int ret, ver;
7228 	uint16_t device_id;
7229 	u32 pl_rev;
7230 
7231 	get_pci_mode(adapter, &adapter->params.pci);
7232 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7233 
7234 	ret = get_flash_params(adapter);
7235 	if (ret < 0) {
7236 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7237 		return ret;
7238 	}
7239 
7240 	/* Retrieve adapter's device ID
7241 	 */
7242 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7243 	ver = device_id >> 12;
7244 	adapter->params.chip = 0;
7245 	switch (ver) {
7246 	case CHELSIO_T4:
7247 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7248 		adapter->params.arch.sge_fl_db = DBPRIO_F;
7249 		adapter->params.arch.mps_tcam_size =
7250 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
7251 		adapter->params.arch.mps_rplc_size = 128;
7252 		adapter->params.arch.nchan = NCHAN;
7253 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7254 		adapter->params.arch.vfcount = 128;
7255 		/* Congestion map is for 4 channels so that
7256 		 * MPS can have 4 priority per port.
7257 		 */
7258 		adapter->params.arch.cng_ch_bits_log = 2;
7259 		break;
7260 	case CHELSIO_T5:
7261 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7262 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7263 		adapter->params.arch.mps_tcam_size =
7264 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7265 		adapter->params.arch.mps_rplc_size = 128;
7266 		adapter->params.arch.nchan = NCHAN;
7267 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7268 		adapter->params.arch.vfcount = 128;
7269 		adapter->params.arch.cng_ch_bits_log = 2;
7270 		break;
7271 	case CHELSIO_T6:
7272 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7273 		adapter->params.arch.sge_fl_db = 0;
7274 		adapter->params.arch.mps_tcam_size =
7275 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7276 		adapter->params.arch.mps_rplc_size = 256;
7277 		adapter->params.arch.nchan = 2;
7278 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7279 		adapter->params.arch.vfcount = 256;
7280 		/* Congestion map will be for 2 channels so that
7281 		 * MPS can have 8 priority per port.
7282 		 */
7283 		adapter->params.arch.cng_ch_bits_log = 3;
7284 		break;
7285 	default:
7286 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7287 			device_id);
7288 		return -EINVAL;
7289 	}
7290 
7291 	adapter->params.cim_la_size = CIMLA_SIZE;
7292 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7293 
7294 	/*
7295 	 * Default port for debugging in case we can't reach FW.
7296 	 */
7297 	adapter->params.nports = 1;
7298 	adapter->params.portvec = 1;
7299 	adapter->params.vpd.cclk = 50000;
7300 
7301 	/* Set pci completion timeout value to 4 seconds. */
7302 	set_pcie_completion_timeout(adapter, 0xd);
7303 	return 0;
7304 }
7305 
7306 /**
7307  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7308  *	@adapter: the adapter
7309  *	@qid: the Queue ID
7310  *	@qtype: the Ingress or Egress type for @qid
7311  *	@user: true if this request is for a user mode queue
7312  *	@pbar2_qoffset: BAR2 Queue Offset
7313  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7314  *
7315  *	Returns the BAR2 SGE Queue Registers information associated with the
7316  *	indicated Absolute Queue ID.  These are passed back in return value
7317  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7318  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7319  *
7320  *	This may return an error which indicates that BAR2 SGE Queue
7321  *	registers aren't available.  If an error is not returned, then the
7322  *	following values are returned:
7323  *
7324  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7325  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7326  *
7327  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7328  *	require the "Inferred Queue ID" ability may be used.  E.g. the
7329  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7330  *	then these "Inferred Queue ID" register may not be used.
7331  */
7332 int t4_bar2_sge_qregs(struct adapter *adapter,
7333 		      unsigned int qid,
7334 		      enum t4_bar2_qtype qtype,
7335 		      int user,
7336 		      u64 *pbar2_qoffset,
7337 		      unsigned int *pbar2_qid)
7338 {
7339 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7340 	u64 bar2_page_offset, bar2_qoffset;
7341 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7342 
7343 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7344 	if (!user && is_t4(adapter->params.chip))
7345 		return -EINVAL;
7346 
7347 	/* Get our SGE Page Size parameters.
7348 	 */
7349 	page_shift = adapter->params.sge.hps + 10;
7350 	page_size = 1 << page_shift;
7351 
7352 	/* Get the right Queues per Page parameters for our Queue.
7353 	 */
7354 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7355 		     ? adapter->params.sge.eq_qpp
7356 		     : adapter->params.sge.iq_qpp);
7357 	qpp_mask = (1 << qpp_shift) - 1;
7358 
7359 	/*  Calculate the basics of the BAR2 SGE Queue register area:
7360 	 *  o The BAR2 page the Queue registers will be in.
7361 	 *  o The BAR2 Queue ID.
7362 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
7363 	 */
7364 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7365 	bar2_qid = qid & qpp_mask;
7366 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7367 
7368 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
7369 	 * hardware will infer the Absolute Queue ID simply from the writes to
7370 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7371 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7372 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7373 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7374 	 * from the BAR2 Page and BAR2 Queue ID.
7375 	 *
7376 	 * One important censequence of this is that some BAR2 SGE registers
7377 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7378 	 * there.  But other registers synthesize the SGE Queue ID purely
7379 	 * from the writes to the registers -- the Write Combined Doorbell
7380 	 * Buffer is a good example.  These BAR2 SGE Registers are only
7381 	 * available for those BAR2 SGE Register areas where the SGE Absolute
7382 	 * Queue ID can be inferred from simple writes.
7383 	 */
7384 	bar2_qoffset = bar2_page_offset;
7385 	bar2_qinferred = (bar2_qid_offset < page_size);
7386 	if (bar2_qinferred) {
7387 		bar2_qoffset += bar2_qid_offset;
7388 		bar2_qid = 0;
7389 	}
7390 
7391 	*pbar2_qoffset = bar2_qoffset;
7392 	*pbar2_qid = bar2_qid;
7393 	return 0;
7394 }
7395 
7396 /**
7397  *	t4_init_devlog_params - initialize adapter->params.devlog
7398  *	@adap: the adapter
7399  *
7400  *	Initialize various fields of the adapter's Firmware Device Log
7401  *	Parameters structure.
7402  */
7403 int t4_init_devlog_params(struct adapter *adap)
7404 {
7405 	struct devlog_params *dparams = &adap->params.devlog;
7406 	u32 pf_dparams;
7407 	unsigned int devlog_meminfo;
7408 	struct fw_devlog_cmd devlog_cmd;
7409 	int ret;
7410 
7411 	/* If we're dealing with newer firmware, the Device Log Paramerters
7412 	 * are stored in a designated register which allows us to access the
7413 	 * Device Log even if we can't talk to the firmware.
7414 	 */
7415 	pf_dparams =
7416 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7417 	if (pf_dparams) {
7418 		unsigned int nentries, nentries128;
7419 
7420 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7421 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7422 
7423 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7424 		nentries = (nentries128 + 1) * 128;
7425 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7426 
7427 		return 0;
7428 	}
7429 
7430 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7431 	 */
7432 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7433 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7434 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
7435 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7436 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7437 			 &devlog_cmd);
7438 	if (ret)
7439 		return ret;
7440 
7441 	devlog_meminfo =
7442 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7443 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7444 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7445 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7446 
7447 	return 0;
7448 }
7449 
7450 /**
7451  *	t4_init_sge_params - initialize adap->params.sge
7452  *	@adapter: the adapter
7453  *
7454  *	Initialize various fields of the adapter's SGE Parameters structure.
7455  */
7456 int t4_init_sge_params(struct adapter *adapter)
7457 {
7458 	struct sge_params *sge_params = &adapter->params.sge;
7459 	u32 hps, qpp;
7460 	unsigned int s_hps, s_qpp;
7461 
7462 	/* Extract the SGE Page Size for our PF.
7463 	 */
7464 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7465 	s_hps = (HOSTPAGESIZEPF0_S +
7466 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7467 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7468 
7469 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7470 	 */
7471 	s_qpp = (QUEUESPERPAGEPF0_S +
7472 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7473 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7474 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7475 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7476 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7477 
7478 	return 0;
7479 }
7480 
7481 /**
7482  *      t4_init_tp_params - initialize adap->params.tp
7483  *      @adap: the adapter
7484  *
7485  *      Initialize various fields of the adapter's TP Parameters structure.
7486  */
7487 int t4_init_tp_params(struct adapter *adap)
7488 {
7489 	int chan;
7490 	u32 v;
7491 
7492 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7493 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
7494 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7495 
7496 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7497 	for (chan = 0; chan < NCHAN; chan++)
7498 		adap->params.tp.tx_modq[chan] = chan;
7499 
7500 	/* Cache the adapter's Compressed Filter Mode and global Incress
7501 	 * Configuration.
7502 	 */
7503 	if (t4_use_ldst(adap)) {
7504 		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7505 				TP_VLAN_PRI_MAP_A, 1);
7506 		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7507 				TP_INGRESS_CONFIG_A, 1);
7508 	} else {
7509 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7510 				 &adap->params.tp.vlan_pri_map, 1,
7511 				 TP_VLAN_PRI_MAP_A);
7512 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7513 				 &adap->params.tp.ingress_config, 1,
7514 				 TP_INGRESS_CONFIG_A);
7515 	}
7516 
7517 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7518 	 * shift positions of several elements of the Compressed Filter Tuple
7519 	 * for this adapter which we need frequently ...
7520 	 */
7521 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7522 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7523 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7524 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7525 							       PROTOCOL_F);
7526 
7527 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7528 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7529 	 */
7530 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7531 		adap->params.tp.vnic_shift = -1;
7532 
7533 	return 0;
7534 }
7535 
7536 /**
7537  *      t4_filter_field_shift - calculate filter field shift
7538  *      @adap: the adapter
7539  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7540  *
7541  *      Return the shift position of a filter field within the Compressed
7542  *      Filter Tuple.  The filter field is specified via its selection bit
7543  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7544  */
7545 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7546 {
7547 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7548 	unsigned int sel;
7549 	int field_shift;
7550 
7551 	if ((filter_mode & filter_sel) == 0)
7552 		return -1;
7553 
7554 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7555 		switch (filter_mode & sel) {
7556 		case FCOE_F:
7557 			field_shift += FT_FCOE_W;
7558 			break;
7559 		case PORT_F:
7560 			field_shift += FT_PORT_W;
7561 			break;
7562 		case VNIC_ID_F:
7563 			field_shift += FT_VNIC_ID_W;
7564 			break;
7565 		case VLAN_F:
7566 			field_shift += FT_VLAN_W;
7567 			break;
7568 		case TOS_F:
7569 			field_shift += FT_TOS_W;
7570 			break;
7571 		case PROTOCOL_F:
7572 			field_shift += FT_PROTOCOL_W;
7573 			break;
7574 		case ETHERTYPE_F:
7575 			field_shift += FT_ETHERTYPE_W;
7576 			break;
7577 		case MACMATCH_F:
7578 			field_shift += FT_MACMATCH_W;
7579 			break;
7580 		case MPSHITTYPE_F:
7581 			field_shift += FT_MPSHITTYPE_W;
7582 			break;
7583 		case FRAGMENTATION_F:
7584 			field_shift += FT_FRAGMENTATION_W;
7585 			break;
7586 		}
7587 	}
7588 	return field_shift;
7589 }
7590 
7591 int t4_init_rss_mode(struct adapter *adap, int mbox)
7592 {
7593 	int i, ret;
7594 	struct fw_rss_vi_config_cmd rvc;
7595 
7596 	memset(&rvc, 0, sizeof(rvc));
7597 
7598 	for_each_port(adap, i) {
7599 		struct port_info *p = adap2pinfo(adap, i);
7600 
7601 		rvc.op_to_viid =
7602 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7603 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7604 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7605 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7606 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7607 		if (ret)
7608 			return ret;
7609 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7610 	}
7611 	return 0;
7612 }
7613 
7614 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7615 {
7616 	u8 addr[6];
7617 	int ret, i, j = 0;
7618 	struct fw_port_cmd c;
7619 	struct fw_rss_vi_config_cmd rvc;
7620 
7621 	memset(&c, 0, sizeof(c));
7622 	memset(&rvc, 0, sizeof(rvc));
7623 
7624 	for_each_port(adap, i) {
7625 		unsigned int rss_size;
7626 		struct port_info *p = adap2pinfo(adap, i);
7627 
7628 		while ((adap->params.portvec & (1 << j)) == 0)
7629 			j++;
7630 
7631 		c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7632 					     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7633 					     FW_PORT_CMD_PORTID_V(j));
7634 		c.action_to_len16 = cpu_to_be32(
7635 			FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7636 			FW_LEN16(c));
7637 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7638 		if (ret)
7639 			return ret;
7640 
7641 		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7642 		if (ret < 0)
7643 			return ret;
7644 
7645 		p->viid = ret;
7646 		p->tx_chan = j;
7647 		p->lport = j;
7648 		p->rss_size = rss_size;
7649 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7650 		adap->port[i]->dev_port = j;
7651 
7652 		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7653 		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7654 			FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7655 		p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7656 		p->mod_type = FW_PORT_MOD_TYPE_NA;
7657 
7658 		rvc.op_to_viid =
7659 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7660 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7661 				    FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7662 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7663 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7664 		if (ret)
7665 			return ret;
7666 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7667 
7668 		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7669 		j++;
7670 	}
7671 	return 0;
7672 }
7673 
7674 /**
7675  *	t4_read_cimq_cfg - read CIM queue configuration
7676  *	@adap: the adapter
7677  *	@base: holds the queue base addresses in bytes
7678  *	@size: holds the queue sizes in bytes
7679  *	@thres: holds the queue full thresholds in bytes
7680  *
7681  *	Returns the current configuration of the CIM queues, starting with
7682  *	the IBQs, then the OBQs.
7683  */
7684 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7685 {
7686 	unsigned int i, v;
7687 	int cim_num_obq = is_t4(adap->params.chip) ?
7688 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7689 
7690 	for (i = 0; i < CIM_NUM_IBQ; i++) {
7691 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7692 			     QUENUMSELECT_V(i));
7693 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7694 		/* value is in 256-byte units */
7695 		*base++ = CIMQBASE_G(v) * 256;
7696 		*size++ = CIMQSIZE_G(v) * 256;
7697 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7698 	}
7699 	for (i = 0; i < cim_num_obq; i++) {
7700 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7701 			     QUENUMSELECT_V(i));
7702 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7703 		/* value is in 256-byte units */
7704 		*base++ = CIMQBASE_G(v) * 256;
7705 		*size++ = CIMQSIZE_G(v) * 256;
7706 	}
7707 }
7708 
7709 /**
7710  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
7711  *	@adap: the adapter
7712  *	@qid: the queue index
7713  *	@data: where to store the queue contents
7714  *	@n: capacity of @data in 32-bit words
7715  *
7716  *	Reads the contents of the selected CIM queue starting at address 0 up
7717  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7718  *	error and the number of 32-bit words actually read on success.
7719  */
7720 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7721 {
7722 	int i, err, attempts;
7723 	unsigned int addr;
7724 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
7725 
7726 	if (qid > 5 || (n & 3))
7727 		return -EINVAL;
7728 
7729 	addr = qid * nwords;
7730 	if (n > nwords)
7731 		n = nwords;
7732 
7733 	/* It might take 3-10ms before the IBQ debug read access is allowed.
7734 	 * Wait for 1 Sec with a delay of 1 usec.
7735 	 */
7736 	attempts = 1000000;
7737 
7738 	for (i = 0; i < n; i++, addr++) {
7739 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7740 			     IBQDBGEN_F);
7741 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7742 				      attempts, 1);
7743 		if (err)
7744 			return err;
7745 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7746 	}
7747 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7748 	return i;
7749 }
7750 
7751 /**
7752  *	t4_read_cim_obq - read the contents of a CIM outbound queue
7753  *	@adap: the adapter
7754  *	@qid: the queue index
7755  *	@data: where to store the queue contents
7756  *	@n: capacity of @data in 32-bit words
7757  *
7758  *	Reads the contents of the selected CIM queue starting at address 0 up
7759  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7760  *	error and the number of 32-bit words actually read on success.
7761  */
7762 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7763 {
7764 	int i, err;
7765 	unsigned int addr, v, nwords;
7766 	int cim_num_obq = is_t4(adap->params.chip) ?
7767 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7768 
7769 	if ((qid > (cim_num_obq - 1)) || (n & 3))
7770 		return -EINVAL;
7771 
7772 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7773 		     QUENUMSELECT_V(qid));
7774 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7775 
7776 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7777 	nwords = CIMQSIZE_G(v) * 64;  /* same */
7778 	if (n > nwords)
7779 		n = nwords;
7780 
7781 	for (i = 0; i < n; i++, addr++) {
7782 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7783 			     OBQDBGEN_F);
7784 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7785 				      2, 1);
7786 		if (err)
7787 			return err;
7788 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7789 	}
7790 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7791 	return i;
7792 }
7793 
7794 /**
7795  *	t4_cim_read - read a block from CIM internal address space
7796  *	@adap: the adapter
7797  *	@addr: the start address within the CIM address space
7798  *	@n: number of words to read
7799  *	@valp: where to store the result
7800  *
7801  *	Reads a block of 4-byte words from the CIM intenal address space.
7802  */
7803 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7804 		unsigned int *valp)
7805 {
7806 	int ret = 0;
7807 
7808 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7809 		return -EBUSY;
7810 
7811 	for ( ; !ret && n--; addr += 4) {
7812 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7813 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7814 				      0, 5, 2);
7815 		if (!ret)
7816 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7817 	}
7818 	return ret;
7819 }
7820 
7821 /**
7822  *	t4_cim_write - write a block into CIM internal address space
7823  *	@adap: the adapter
7824  *	@addr: the start address within the CIM address space
7825  *	@n: number of words to write
7826  *	@valp: set of values to write
7827  *
7828  *	Writes a block of 4-byte words into the CIM intenal address space.
7829  */
7830 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7831 		 const unsigned int *valp)
7832 {
7833 	int ret = 0;
7834 
7835 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7836 		return -EBUSY;
7837 
7838 	for ( ; !ret && n--; addr += 4) {
7839 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7840 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7841 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7842 				      0, 5, 2);
7843 	}
7844 	return ret;
7845 }
7846 
7847 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7848 			 unsigned int val)
7849 {
7850 	return t4_cim_write(adap, addr, 1, &val);
7851 }
7852 
7853 /**
7854  *	t4_cim_read_la - read CIM LA capture buffer
7855  *	@adap: the adapter
7856  *	@la_buf: where to store the LA data
7857  *	@wrptr: the HW write pointer within the capture buffer
7858  *
7859  *	Reads the contents of the CIM LA buffer with the most recent entry at
7860  *	the end	of the returned data and with the entry at @wrptr first.
7861  *	We try to leave the LA in the running state we find it in.
7862  */
7863 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7864 {
7865 	int i, ret;
7866 	unsigned int cfg, val, idx;
7867 
7868 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7869 	if (ret)
7870 		return ret;
7871 
7872 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
7873 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7874 		if (ret)
7875 			return ret;
7876 	}
7877 
7878 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7879 	if (ret)
7880 		goto restart;
7881 
7882 	idx = UPDBGLAWRPTR_G(val);
7883 	if (wrptr)
7884 		*wrptr = idx;
7885 
7886 	for (i = 0; i < adap->params.cim_la_size; i++) {
7887 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7888 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7889 		if (ret)
7890 			break;
7891 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7892 		if (ret)
7893 			break;
7894 		if (val & UPDBGLARDEN_F) {
7895 			ret = -ETIMEDOUT;
7896 			break;
7897 		}
7898 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7899 		if (ret)
7900 			break;
7901 		idx = (idx + 1) & UPDBGLARDPTR_M;
7902 	}
7903 restart:
7904 	if (cfg & UPDBGLAEN_F) {
7905 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7906 				      cfg & ~UPDBGLARDEN_F);
7907 		if (!ret)
7908 			ret = r;
7909 	}
7910 	return ret;
7911 }
7912 
7913 /**
7914  *	t4_tp_read_la - read TP LA capture buffer
7915  *	@adap: the adapter
7916  *	@la_buf: where to store the LA data
7917  *	@wrptr: the HW write pointer within the capture buffer
7918  *
7919  *	Reads the contents of the TP LA buffer with the most recent entry at
7920  *	the end	of the returned data and with the entry at @wrptr first.
7921  *	We leave the LA in the running state we find it in.
7922  */
7923 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7924 {
7925 	bool last_incomplete;
7926 	unsigned int i, cfg, val, idx;
7927 
7928 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7929 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
7930 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7931 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7932 
7933 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7934 	idx = DBGLAWPTR_G(val);
7935 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7936 	if (last_incomplete)
7937 		idx = (idx + 1) & DBGLARPTR_M;
7938 	if (wrptr)
7939 		*wrptr = idx;
7940 
7941 	val &= 0xffff;
7942 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
7943 	val |= adap->params.tp.la_mask;
7944 
7945 	for (i = 0; i < TPLA_SIZE; i++) {
7946 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7947 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7948 		idx = (idx + 1) & DBGLARPTR_M;
7949 	}
7950 
7951 	/* Wipe out last entry if it isn't valid */
7952 	if (last_incomplete)
7953 		la_buf[TPLA_SIZE - 1] = ~0ULL;
7954 
7955 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
7956 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7957 			     cfg | adap->params.tp.la_mask);
7958 }
7959 
7960 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
7961  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
7962  * state for more than the Warning Threshold then we'll issue a warning about
7963  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
7964  * appears to be hung every Warning Repeat second till the situation clears.
7965  * If the situation clears, we'll note that as well.
7966  */
7967 #define SGE_IDMA_WARN_THRESH 1
7968 #define SGE_IDMA_WARN_REPEAT 300
7969 
7970 /**
7971  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
7972  *	@adapter: the adapter
7973  *	@idma: the adapter IDMA Monitor state
7974  *
7975  *	Initialize the state of an SGE Ingress DMA Monitor.
7976  */
7977 void t4_idma_monitor_init(struct adapter *adapter,
7978 			  struct sge_idma_monitor_state *idma)
7979 {
7980 	/* Initialize the state variables for detecting an SGE Ingress DMA
7981 	 * hang.  The SGE has internal counters which count up on each clock
7982 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
7983 	 * same state they were on the previous clock tick.  The clock used is
7984 	 * the Core Clock so we have a limit on the maximum "time" they can
7985 	 * record; typically a very small number of seconds.  For instance,
7986 	 * with a 600MHz Core Clock, we can only count up to a bit more than
7987 	 * 7s.  So we'll synthesize a larger counter in order to not run the
7988 	 * risk of having the "timers" overflow and give us the flexibility to
7989 	 * maintain a Hung SGE State Machine of our own which operates across
7990 	 * a longer time frame.
7991 	 */
7992 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
7993 	idma->idma_stalled[0] = 0;
7994 	idma->idma_stalled[1] = 0;
7995 }
7996 
7997 /**
7998  *	t4_idma_monitor - monitor SGE Ingress DMA state
7999  *	@adapter: the adapter
8000  *	@idma: the adapter IDMA Monitor state
8001  *	@hz: number of ticks/second
8002  *	@ticks: number of ticks since the last IDMA Monitor call
8003  */
8004 void t4_idma_monitor(struct adapter *adapter,
8005 		     struct sge_idma_monitor_state *idma,
8006 		     int hz, int ticks)
8007 {
8008 	int i, idma_same_state_cnt[2];
8009 
8010 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8011 	  * are counters inside the SGE which count up on each clock when the
8012 	  * SGE finds its Ingress DMA State Engines in the same states they
8013 	  * were in the previous clock.  The counters will peg out at
8014 	  * 0xffffffff without wrapping around so once they pass the 1s
8015 	  * threshold they'll stay above that till the IDMA state changes.
8016 	  */
8017 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8018 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8019 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8020 
8021 	for (i = 0; i < 2; i++) {
8022 		u32 debug0, debug11;
8023 
8024 		/* If the Ingress DMA Same State Counter ("timer") is less
8025 		 * than 1s, then we can reset our synthesized Stall Timer and
8026 		 * continue.  If we have previously emitted warnings about a
8027 		 * potential stalled Ingress Queue, issue a note indicating
8028 		 * that the Ingress Queue has resumed forward progress.
8029 		 */
8030 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8031 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8032 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8033 					 "resumed after %d seconds\n",
8034 					 i, idma->idma_qid[i],
8035 					 idma->idma_stalled[i] / hz);
8036 			idma->idma_stalled[i] = 0;
8037 			continue;
8038 		}
8039 
8040 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8041 		 * domain.  The first time we get here it'll be because we
8042 		 * passed the 1s Threshold; each additional time it'll be
8043 		 * because the RX Timer Callback is being fired on its regular
8044 		 * schedule.
8045 		 *
8046 		 * If the stall is below our Potential Hung Ingress Queue
8047 		 * Warning Threshold, continue.
8048 		 */
8049 		if (idma->idma_stalled[i] == 0) {
8050 			idma->idma_stalled[i] = hz;
8051 			idma->idma_warn[i] = 0;
8052 		} else {
8053 			idma->idma_stalled[i] += ticks;
8054 			idma->idma_warn[i] -= ticks;
8055 		}
8056 
8057 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8058 			continue;
8059 
8060 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8061 		 */
8062 		if (idma->idma_warn[i] > 0)
8063 			continue;
8064 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8065 
8066 		/* Read and save the SGE IDMA State and Queue ID information.
8067 		 * We do this every time in case it changes across time ...
8068 		 * can't be too careful ...
8069 		 */
8070 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8071 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8072 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8073 
8074 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8075 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8076 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8077 
8078 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8079 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8080 			 i, idma->idma_qid[i], idma->idma_state[i],
8081 			 idma->idma_stalled[i] / hz,
8082 			 debug0, debug11);
8083 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8084 	}
8085 }
8086