1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rearely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boudaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9820, 0x983c, 1383 0x9850, 0x9864, 1384 0x9c00, 0x9c6c, 1385 0x9c80, 0x9cec, 1386 0x9d00, 0x9d6c, 1387 0x9d80, 0x9dec, 1388 0x9e00, 0x9e6c, 1389 0x9e80, 0x9eec, 1390 0x9f00, 0x9f6c, 1391 0x9f80, 0xa020, 1392 0xd004, 0xd004, 1393 0xd010, 0xd03c, 1394 0xdfc0, 0xdfe0, 1395 0xe000, 0x1106c, 1396 0x11074, 0x11088, 1397 0x1109c, 0x1117c, 1398 0x11190, 0x11204, 1399 0x19040, 0x1906c, 1400 0x19078, 0x19080, 1401 0x1908c, 0x190e8, 1402 0x190f0, 0x190f8, 1403 0x19100, 0x19110, 1404 0x19120, 0x19124, 1405 0x19150, 0x19194, 1406 0x1919c, 0x191b0, 1407 0x191d0, 0x191e8, 1408 0x19238, 0x19290, 1409 0x193f8, 0x19428, 1410 0x19430, 0x19444, 1411 0x1944c, 0x1946c, 1412 0x19474, 0x19474, 1413 0x19490, 0x194cc, 1414 0x194f0, 0x194f8, 1415 0x19c00, 0x19c08, 1416 0x19c10, 0x19c60, 1417 0x19c94, 0x19ce4, 1418 0x19cf0, 0x19d40, 1419 0x19d50, 0x19d94, 1420 0x19da0, 0x19de8, 1421 0x19df0, 0x19e10, 1422 0x19e50, 0x19e90, 1423 0x19ea0, 0x19f24, 1424 0x19f34, 0x19f34, 1425 0x19f40, 0x19f50, 1426 0x19f90, 0x19fb4, 1427 0x19fc4, 0x19fe4, 1428 0x1a000, 0x1a004, 1429 0x1a010, 0x1a06c, 1430 0x1a0b0, 0x1a0e4, 1431 0x1a0ec, 0x1a0f8, 1432 0x1a100, 0x1a108, 1433 0x1a114, 0x1a120, 1434 0x1a128, 0x1a130, 1435 0x1a138, 0x1a138, 1436 0x1a190, 0x1a1c4, 1437 0x1a1fc, 0x1a1fc, 1438 0x1e008, 0x1e00c, 1439 0x1e040, 0x1e044, 1440 0x1e04c, 0x1e04c, 1441 0x1e284, 0x1e290, 1442 0x1e2c0, 0x1e2c0, 1443 0x1e2e0, 0x1e2e0, 1444 0x1e300, 0x1e384, 1445 0x1e3c0, 0x1e3c8, 1446 0x1e408, 0x1e40c, 1447 0x1e440, 0x1e444, 1448 0x1e44c, 0x1e44c, 1449 0x1e684, 0x1e690, 1450 0x1e6c0, 0x1e6c0, 1451 0x1e6e0, 0x1e6e0, 1452 0x1e700, 0x1e784, 1453 0x1e7c0, 0x1e7c8, 1454 0x1e808, 0x1e80c, 1455 0x1e840, 0x1e844, 1456 0x1e84c, 0x1e84c, 1457 0x1ea84, 0x1ea90, 1458 0x1eac0, 0x1eac0, 1459 0x1eae0, 0x1eae0, 1460 0x1eb00, 0x1eb84, 1461 0x1ebc0, 0x1ebc8, 1462 0x1ec08, 0x1ec0c, 1463 0x1ec40, 0x1ec44, 1464 0x1ec4c, 0x1ec4c, 1465 0x1ee84, 0x1ee90, 1466 0x1eec0, 0x1eec0, 1467 0x1eee0, 0x1eee0, 1468 0x1ef00, 0x1ef84, 1469 0x1efc0, 0x1efc8, 1470 0x1f008, 0x1f00c, 1471 0x1f040, 0x1f044, 1472 0x1f04c, 0x1f04c, 1473 0x1f284, 0x1f290, 1474 0x1f2c0, 0x1f2c0, 1475 0x1f2e0, 0x1f2e0, 1476 0x1f300, 0x1f384, 1477 0x1f3c0, 0x1f3c8, 1478 0x1f408, 0x1f40c, 1479 0x1f440, 0x1f444, 1480 0x1f44c, 0x1f44c, 1481 0x1f684, 0x1f690, 1482 0x1f6c0, 0x1f6c0, 1483 0x1f6e0, 0x1f6e0, 1484 0x1f700, 0x1f784, 1485 0x1f7c0, 0x1f7c8, 1486 0x1f808, 0x1f80c, 1487 0x1f840, 0x1f844, 1488 0x1f84c, 0x1f84c, 1489 0x1fa84, 0x1fa90, 1490 0x1fac0, 0x1fac0, 1491 0x1fae0, 0x1fae0, 1492 0x1fb00, 0x1fb84, 1493 0x1fbc0, 0x1fbc8, 1494 0x1fc08, 0x1fc0c, 1495 0x1fc40, 0x1fc44, 1496 0x1fc4c, 0x1fc4c, 1497 0x1fe84, 0x1fe90, 1498 0x1fec0, 0x1fec0, 1499 0x1fee0, 0x1fee0, 1500 0x1ff00, 0x1ff84, 1501 0x1ffc0, 0x1ffc8, 1502 0x30000, 0x30030, 1503 0x30100, 0x30144, 1504 0x30190, 0x301a0, 1505 0x301a8, 0x301b8, 1506 0x301c4, 0x301c8, 1507 0x301d0, 0x301d0, 1508 0x30200, 0x30318, 1509 0x30400, 0x304b4, 1510 0x304c0, 0x3052c, 1511 0x30540, 0x3061c, 1512 0x30800, 0x30828, 1513 0x30834, 0x30834, 1514 0x308c0, 0x30908, 1515 0x30910, 0x309ac, 1516 0x30a00, 0x30a14, 1517 0x30a1c, 0x30a2c, 1518 0x30a44, 0x30a50, 1519 0x30a74, 0x30a74, 1520 0x30a7c, 0x30afc, 1521 0x30b08, 0x30c24, 1522 0x30d00, 0x30d00, 1523 0x30d08, 0x30d14, 1524 0x30d1c, 0x30d20, 1525 0x30d3c, 0x30d3c, 1526 0x30d48, 0x30d50, 1527 0x31200, 0x3120c, 1528 0x31220, 0x31220, 1529 0x31240, 0x31240, 1530 0x31600, 0x3160c, 1531 0x31a00, 0x31a1c, 1532 0x31e00, 0x31e20, 1533 0x31e38, 0x31e3c, 1534 0x31e80, 0x31e80, 1535 0x31e88, 0x31ea8, 1536 0x31eb0, 0x31eb4, 1537 0x31ec8, 0x31ed4, 1538 0x31fb8, 0x32004, 1539 0x32200, 0x32200, 1540 0x32208, 0x32240, 1541 0x32248, 0x32280, 1542 0x32288, 0x322c0, 1543 0x322c8, 0x322fc, 1544 0x32600, 0x32630, 1545 0x32a00, 0x32abc, 1546 0x32b00, 0x32b10, 1547 0x32b20, 0x32b30, 1548 0x32b40, 0x32b50, 1549 0x32b60, 0x32b70, 1550 0x33000, 0x33028, 1551 0x33030, 0x33048, 1552 0x33060, 0x33068, 1553 0x33070, 0x3309c, 1554 0x330f0, 0x33128, 1555 0x33130, 0x33148, 1556 0x33160, 0x33168, 1557 0x33170, 0x3319c, 1558 0x331f0, 0x33238, 1559 0x33240, 0x33240, 1560 0x33248, 0x33250, 1561 0x3325c, 0x33264, 1562 0x33270, 0x332b8, 1563 0x332c0, 0x332e4, 1564 0x332f8, 0x33338, 1565 0x33340, 0x33340, 1566 0x33348, 0x33350, 1567 0x3335c, 0x33364, 1568 0x33370, 0x333b8, 1569 0x333c0, 0x333e4, 1570 0x333f8, 0x33428, 1571 0x33430, 0x33448, 1572 0x33460, 0x33468, 1573 0x33470, 0x3349c, 1574 0x334f0, 0x33528, 1575 0x33530, 0x33548, 1576 0x33560, 0x33568, 1577 0x33570, 0x3359c, 1578 0x335f0, 0x33638, 1579 0x33640, 0x33640, 1580 0x33648, 0x33650, 1581 0x3365c, 0x33664, 1582 0x33670, 0x336b8, 1583 0x336c0, 0x336e4, 1584 0x336f8, 0x33738, 1585 0x33740, 0x33740, 1586 0x33748, 0x33750, 1587 0x3375c, 0x33764, 1588 0x33770, 0x337b8, 1589 0x337c0, 0x337e4, 1590 0x337f8, 0x337fc, 1591 0x33814, 0x33814, 1592 0x3382c, 0x3382c, 1593 0x33880, 0x3388c, 1594 0x338e8, 0x338ec, 1595 0x33900, 0x33928, 1596 0x33930, 0x33948, 1597 0x33960, 0x33968, 1598 0x33970, 0x3399c, 1599 0x339f0, 0x33a38, 1600 0x33a40, 0x33a40, 1601 0x33a48, 0x33a50, 1602 0x33a5c, 0x33a64, 1603 0x33a70, 0x33ab8, 1604 0x33ac0, 0x33ae4, 1605 0x33af8, 0x33b10, 1606 0x33b28, 0x33b28, 1607 0x33b3c, 0x33b50, 1608 0x33bf0, 0x33c10, 1609 0x33c28, 0x33c28, 1610 0x33c3c, 0x33c50, 1611 0x33cf0, 0x33cfc, 1612 0x34000, 0x34030, 1613 0x34100, 0x34144, 1614 0x34190, 0x341a0, 1615 0x341a8, 0x341b8, 1616 0x341c4, 0x341c8, 1617 0x341d0, 0x341d0, 1618 0x34200, 0x34318, 1619 0x34400, 0x344b4, 1620 0x344c0, 0x3452c, 1621 0x34540, 0x3461c, 1622 0x34800, 0x34828, 1623 0x34834, 0x34834, 1624 0x348c0, 0x34908, 1625 0x34910, 0x349ac, 1626 0x34a00, 0x34a14, 1627 0x34a1c, 0x34a2c, 1628 0x34a44, 0x34a50, 1629 0x34a74, 0x34a74, 1630 0x34a7c, 0x34afc, 1631 0x34b08, 0x34c24, 1632 0x34d00, 0x34d00, 1633 0x34d08, 0x34d14, 1634 0x34d1c, 0x34d20, 1635 0x34d3c, 0x34d3c, 1636 0x34d48, 0x34d50, 1637 0x35200, 0x3520c, 1638 0x35220, 0x35220, 1639 0x35240, 0x35240, 1640 0x35600, 0x3560c, 1641 0x35a00, 0x35a1c, 1642 0x35e00, 0x35e20, 1643 0x35e38, 0x35e3c, 1644 0x35e80, 0x35e80, 1645 0x35e88, 0x35ea8, 1646 0x35eb0, 0x35eb4, 1647 0x35ec8, 0x35ed4, 1648 0x35fb8, 0x36004, 1649 0x36200, 0x36200, 1650 0x36208, 0x36240, 1651 0x36248, 0x36280, 1652 0x36288, 0x362c0, 1653 0x362c8, 0x362fc, 1654 0x36600, 0x36630, 1655 0x36a00, 0x36abc, 1656 0x36b00, 0x36b10, 1657 0x36b20, 0x36b30, 1658 0x36b40, 0x36b50, 1659 0x36b60, 0x36b70, 1660 0x37000, 0x37028, 1661 0x37030, 0x37048, 1662 0x37060, 0x37068, 1663 0x37070, 0x3709c, 1664 0x370f0, 0x37128, 1665 0x37130, 0x37148, 1666 0x37160, 0x37168, 1667 0x37170, 0x3719c, 1668 0x371f0, 0x37238, 1669 0x37240, 0x37240, 1670 0x37248, 0x37250, 1671 0x3725c, 0x37264, 1672 0x37270, 0x372b8, 1673 0x372c0, 0x372e4, 1674 0x372f8, 0x37338, 1675 0x37340, 0x37340, 1676 0x37348, 0x37350, 1677 0x3735c, 0x37364, 1678 0x37370, 0x373b8, 1679 0x373c0, 0x373e4, 1680 0x373f8, 0x37428, 1681 0x37430, 0x37448, 1682 0x37460, 0x37468, 1683 0x37470, 0x3749c, 1684 0x374f0, 0x37528, 1685 0x37530, 0x37548, 1686 0x37560, 0x37568, 1687 0x37570, 0x3759c, 1688 0x375f0, 0x37638, 1689 0x37640, 0x37640, 1690 0x37648, 0x37650, 1691 0x3765c, 0x37664, 1692 0x37670, 0x376b8, 1693 0x376c0, 0x376e4, 1694 0x376f8, 0x37738, 1695 0x37740, 0x37740, 1696 0x37748, 0x37750, 1697 0x3775c, 0x37764, 1698 0x37770, 0x377b8, 1699 0x377c0, 0x377e4, 1700 0x377f8, 0x377fc, 1701 0x37814, 0x37814, 1702 0x3782c, 0x3782c, 1703 0x37880, 0x3788c, 1704 0x378e8, 0x378ec, 1705 0x37900, 0x37928, 1706 0x37930, 0x37948, 1707 0x37960, 0x37968, 1708 0x37970, 0x3799c, 1709 0x379f0, 0x37a38, 1710 0x37a40, 0x37a40, 1711 0x37a48, 0x37a50, 1712 0x37a5c, 0x37a64, 1713 0x37a70, 0x37ab8, 1714 0x37ac0, 0x37ae4, 1715 0x37af8, 0x37b10, 1716 0x37b28, 0x37b28, 1717 0x37b3c, 0x37b50, 1718 0x37bf0, 0x37c10, 1719 0x37c28, 0x37c28, 1720 0x37c3c, 0x37c50, 1721 0x37cf0, 0x37cfc, 1722 0x38000, 0x38030, 1723 0x38100, 0x38144, 1724 0x38190, 0x381a0, 1725 0x381a8, 0x381b8, 1726 0x381c4, 0x381c8, 1727 0x381d0, 0x381d0, 1728 0x38200, 0x38318, 1729 0x38400, 0x384b4, 1730 0x384c0, 0x3852c, 1731 0x38540, 0x3861c, 1732 0x38800, 0x38828, 1733 0x38834, 0x38834, 1734 0x388c0, 0x38908, 1735 0x38910, 0x389ac, 1736 0x38a00, 0x38a14, 1737 0x38a1c, 0x38a2c, 1738 0x38a44, 0x38a50, 1739 0x38a74, 0x38a74, 1740 0x38a7c, 0x38afc, 1741 0x38b08, 0x38c24, 1742 0x38d00, 0x38d00, 1743 0x38d08, 0x38d14, 1744 0x38d1c, 0x38d20, 1745 0x38d3c, 0x38d3c, 1746 0x38d48, 0x38d50, 1747 0x39200, 0x3920c, 1748 0x39220, 0x39220, 1749 0x39240, 0x39240, 1750 0x39600, 0x3960c, 1751 0x39a00, 0x39a1c, 1752 0x39e00, 0x39e20, 1753 0x39e38, 0x39e3c, 1754 0x39e80, 0x39e80, 1755 0x39e88, 0x39ea8, 1756 0x39eb0, 0x39eb4, 1757 0x39ec8, 0x39ed4, 1758 0x39fb8, 0x3a004, 1759 0x3a200, 0x3a200, 1760 0x3a208, 0x3a240, 1761 0x3a248, 0x3a280, 1762 0x3a288, 0x3a2c0, 1763 0x3a2c8, 0x3a2fc, 1764 0x3a600, 0x3a630, 1765 0x3aa00, 0x3aabc, 1766 0x3ab00, 0x3ab10, 1767 0x3ab20, 0x3ab30, 1768 0x3ab40, 0x3ab50, 1769 0x3ab60, 0x3ab70, 1770 0x3b000, 0x3b028, 1771 0x3b030, 0x3b048, 1772 0x3b060, 0x3b068, 1773 0x3b070, 0x3b09c, 1774 0x3b0f0, 0x3b128, 1775 0x3b130, 0x3b148, 1776 0x3b160, 0x3b168, 1777 0x3b170, 0x3b19c, 1778 0x3b1f0, 0x3b238, 1779 0x3b240, 0x3b240, 1780 0x3b248, 0x3b250, 1781 0x3b25c, 0x3b264, 1782 0x3b270, 0x3b2b8, 1783 0x3b2c0, 0x3b2e4, 1784 0x3b2f8, 0x3b338, 1785 0x3b340, 0x3b340, 1786 0x3b348, 0x3b350, 1787 0x3b35c, 0x3b364, 1788 0x3b370, 0x3b3b8, 1789 0x3b3c0, 0x3b3e4, 1790 0x3b3f8, 0x3b428, 1791 0x3b430, 0x3b448, 1792 0x3b460, 0x3b468, 1793 0x3b470, 0x3b49c, 1794 0x3b4f0, 0x3b528, 1795 0x3b530, 0x3b548, 1796 0x3b560, 0x3b568, 1797 0x3b570, 0x3b59c, 1798 0x3b5f0, 0x3b638, 1799 0x3b640, 0x3b640, 1800 0x3b648, 0x3b650, 1801 0x3b65c, 0x3b664, 1802 0x3b670, 0x3b6b8, 1803 0x3b6c0, 0x3b6e4, 1804 0x3b6f8, 0x3b738, 1805 0x3b740, 0x3b740, 1806 0x3b748, 0x3b750, 1807 0x3b75c, 0x3b764, 1808 0x3b770, 0x3b7b8, 1809 0x3b7c0, 0x3b7e4, 1810 0x3b7f8, 0x3b7fc, 1811 0x3b814, 0x3b814, 1812 0x3b82c, 0x3b82c, 1813 0x3b880, 0x3b88c, 1814 0x3b8e8, 0x3b8ec, 1815 0x3b900, 0x3b928, 1816 0x3b930, 0x3b948, 1817 0x3b960, 0x3b968, 1818 0x3b970, 0x3b99c, 1819 0x3b9f0, 0x3ba38, 1820 0x3ba40, 0x3ba40, 1821 0x3ba48, 0x3ba50, 1822 0x3ba5c, 0x3ba64, 1823 0x3ba70, 0x3bab8, 1824 0x3bac0, 0x3bae4, 1825 0x3baf8, 0x3bb10, 1826 0x3bb28, 0x3bb28, 1827 0x3bb3c, 0x3bb50, 1828 0x3bbf0, 0x3bc10, 1829 0x3bc28, 0x3bc28, 1830 0x3bc3c, 0x3bc50, 1831 0x3bcf0, 0x3bcfc, 1832 0x3c000, 0x3c030, 1833 0x3c100, 0x3c144, 1834 0x3c190, 0x3c1a0, 1835 0x3c1a8, 0x3c1b8, 1836 0x3c1c4, 0x3c1c8, 1837 0x3c1d0, 0x3c1d0, 1838 0x3c200, 0x3c318, 1839 0x3c400, 0x3c4b4, 1840 0x3c4c0, 0x3c52c, 1841 0x3c540, 0x3c61c, 1842 0x3c800, 0x3c828, 1843 0x3c834, 0x3c834, 1844 0x3c8c0, 0x3c908, 1845 0x3c910, 0x3c9ac, 1846 0x3ca00, 0x3ca14, 1847 0x3ca1c, 0x3ca2c, 1848 0x3ca44, 0x3ca50, 1849 0x3ca74, 0x3ca74, 1850 0x3ca7c, 0x3cafc, 1851 0x3cb08, 0x3cc24, 1852 0x3cd00, 0x3cd00, 1853 0x3cd08, 0x3cd14, 1854 0x3cd1c, 0x3cd20, 1855 0x3cd3c, 0x3cd3c, 1856 0x3cd48, 0x3cd50, 1857 0x3d200, 0x3d20c, 1858 0x3d220, 0x3d220, 1859 0x3d240, 0x3d240, 1860 0x3d600, 0x3d60c, 1861 0x3da00, 0x3da1c, 1862 0x3de00, 0x3de20, 1863 0x3de38, 0x3de3c, 1864 0x3de80, 0x3de80, 1865 0x3de88, 0x3dea8, 1866 0x3deb0, 0x3deb4, 1867 0x3dec8, 0x3ded4, 1868 0x3dfb8, 0x3e004, 1869 0x3e200, 0x3e200, 1870 0x3e208, 0x3e240, 1871 0x3e248, 0x3e280, 1872 0x3e288, 0x3e2c0, 1873 0x3e2c8, 0x3e2fc, 1874 0x3e600, 0x3e630, 1875 0x3ea00, 0x3eabc, 1876 0x3eb00, 0x3eb10, 1877 0x3eb20, 0x3eb30, 1878 0x3eb40, 0x3eb50, 1879 0x3eb60, 0x3eb70, 1880 0x3f000, 0x3f028, 1881 0x3f030, 0x3f048, 1882 0x3f060, 0x3f068, 1883 0x3f070, 0x3f09c, 1884 0x3f0f0, 0x3f128, 1885 0x3f130, 0x3f148, 1886 0x3f160, 0x3f168, 1887 0x3f170, 0x3f19c, 1888 0x3f1f0, 0x3f238, 1889 0x3f240, 0x3f240, 1890 0x3f248, 0x3f250, 1891 0x3f25c, 0x3f264, 1892 0x3f270, 0x3f2b8, 1893 0x3f2c0, 0x3f2e4, 1894 0x3f2f8, 0x3f338, 1895 0x3f340, 0x3f340, 1896 0x3f348, 0x3f350, 1897 0x3f35c, 0x3f364, 1898 0x3f370, 0x3f3b8, 1899 0x3f3c0, 0x3f3e4, 1900 0x3f3f8, 0x3f428, 1901 0x3f430, 0x3f448, 1902 0x3f460, 0x3f468, 1903 0x3f470, 0x3f49c, 1904 0x3f4f0, 0x3f528, 1905 0x3f530, 0x3f548, 1906 0x3f560, 0x3f568, 1907 0x3f570, 0x3f59c, 1908 0x3f5f0, 0x3f638, 1909 0x3f640, 0x3f640, 1910 0x3f648, 0x3f650, 1911 0x3f65c, 0x3f664, 1912 0x3f670, 0x3f6b8, 1913 0x3f6c0, 0x3f6e4, 1914 0x3f6f8, 0x3f738, 1915 0x3f740, 0x3f740, 1916 0x3f748, 0x3f750, 1917 0x3f75c, 0x3f764, 1918 0x3f770, 0x3f7b8, 1919 0x3f7c0, 0x3f7e4, 1920 0x3f7f8, 0x3f7fc, 1921 0x3f814, 0x3f814, 1922 0x3f82c, 0x3f82c, 1923 0x3f880, 0x3f88c, 1924 0x3f8e8, 0x3f8ec, 1925 0x3f900, 0x3f928, 1926 0x3f930, 0x3f948, 1927 0x3f960, 0x3f968, 1928 0x3f970, 0x3f99c, 1929 0x3f9f0, 0x3fa38, 1930 0x3fa40, 0x3fa40, 1931 0x3fa48, 0x3fa50, 1932 0x3fa5c, 0x3fa64, 1933 0x3fa70, 0x3fab8, 1934 0x3fac0, 0x3fae4, 1935 0x3faf8, 0x3fb10, 1936 0x3fb28, 0x3fb28, 1937 0x3fb3c, 0x3fb50, 1938 0x3fbf0, 0x3fc10, 1939 0x3fc28, 0x3fc28, 1940 0x3fc3c, 0x3fc50, 1941 0x3fcf0, 0x3fcfc, 1942 0x40000, 0x4000c, 1943 0x40040, 0x40050, 1944 0x40060, 0x40068, 1945 0x4007c, 0x4008c, 1946 0x40094, 0x400b0, 1947 0x400c0, 0x40144, 1948 0x40180, 0x4018c, 1949 0x40200, 0x40254, 1950 0x40260, 0x40264, 1951 0x40270, 0x40288, 1952 0x40290, 0x40298, 1953 0x402ac, 0x402c8, 1954 0x402d0, 0x402e0, 1955 0x402f0, 0x402f0, 1956 0x40300, 0x4033c, 1957 0x403f8, 0x403fc, 1958 0x41304, 0x413c4, 1959 0x41400, 0x4140c, 1960 0x41414, 0x4141c, 1961 0x41480, 0x414d0, 1962 0x44000, 0x44054, 1963 0x4405c, 0x44078, 1964 0x440c0, 0x44174, 1965 0x44180, 0x441ac, 1966 0x441b4, 0x441b8, 1967 0x441c0, 0x44254, 1968 0x4425c, 0x44278, 1969 0x442c0, 0x44374, 1970 0x44380, 0x443ac, 1971 0x443b4, 0x443b8, 1972 0x443c0, 0x44454, 1973 0x4445c, 0x44478, 1974 0x444c0, 0x44574, 1975 0x44580, 0x445ac, 1976 0x445b4, 0x445b8, 1977 0x445c0, 0x44654, 1978 0x4465c, 0x44678, 1979 0x446c0, 0x44774, 1980 0x44780, 0x447ac, 1981 0x447b4, 0x447b8, 1982 0x447c0, 0x44854, 1983 0x4485c, 0x44878, 1984 0x448c0, 0x44974, 1985 0x44980, 0x449ac, 1986 0x449b4, 0x449b8, 1987 0x449c0, 0x449fc, 1988 0x45000, 0x45004, 1989 0x45010, 0x45030, 1990 0x45040, 0x45060, 1991 0x45068, 0x45068, 1992 0x45080, 0x45084, 1993 0x450a0, 0x450b0, 1994 0x45200, 0x45204, 1995 0x45210, 0x45230, 1996 0x45240, 0x45260, 1997 0x45268, 0x45268, 1998 0x45280, 0x45284, 1999 0x452a0, 0x452b0, 2000 0x460c0, 0x460e4, 2001 0x47000, 0x4703c, 2002 0x47044, 0x4708c, 2003 0x47200, 0x47250, 2004 0x47400, 0x47408, 2005 0x47414, 0x47420, 2006 0x47600, 0x47618, 2007 0x47800, 0x47814, 2008 0x48000, 0x4800c, 2009 0x48040, 0x48050, 2010 0x48060, 0x48068, 2011 0x4807c, 0x4808c, 2012 0x48094, 0x480b0, 2013 0x480c0, 0x48144, 2014 0x48180, 0x4818c, 2015 0x48200, 0x48254, 2016 0x48260, 0x48264, 2017 0x48270, 0x48288, 2018 0x48290, 0x48298, 2019 0x482ac, 0x482c8, 2020 0x482d0, 0x482e0, 2021 0x482f0, 0x482f0, 2022 0x48300, 0x4833c, 2023 0x483f8, 0x483fc, 2024 0x49304, 0x493c4, 2025 0x49400, 0x4940c, 2026 0x49414, 0x4941c, 2027 0x49480, 0x494d0, 2028 0x4c000, 0x4c054, 2029 0x4c05c, 0x4c078, 2030 0x4c0c0, 0x4c174, 2031 0x4c180, 0x4c1ac, 2032 0x4c1b4, 0x4c1b8, 2033 0x4c1c0, 0x4c254, 2034 0x4c25c, 0x4c278, 2035 0x4c2c0, 0x4c374, 2036 0x4c380, 0x4c3ac, 2037 0x4c3b4, 0x4c3b8, 2038 0x4c3c0, 0x4c454, 2039 0x4c45c, 0x4c478, 2040 0x4c4c0, 0x4c574, 2041 0x4c580, 0x4c5ac, 2042 0x4c5b4, 0x4c5b8, 2043 0x4c5c0, 0x4c654, 2044 0x4c65c, 0x4c678, 2045 0x4c6c0, 0x4c774, 2046 0x4c780, 0x4c7ac, 2047 0x4c7b4, 0x4c7b8, 2048 0x4c7c0, 0x4c854, 2049 0x4c85c, 0x4c878, 2050 0x4c8c0, 0x4c974, 2051 0x4c980, 0x4c9ac, 2052 0x4c9b4, 0x4c9b8, 2053 0x4c9c0, 0x4c9fc, 2054 0x4d000, 0x4d004, 2055 0x4d010, 0x4d030, 2056 0x4d040, 0x4d060, 2057 0x4d068, 0x4d068, 2058 0x4d080, 0x4d084, 2059 0x4d0a0, 0x4d0b0, 2060 0x4d200, 0x4d204, 2061 0x4d210, 0x4d230, 2062 0x4d240, 0x4d260, 2063 0x4d268, 0x4d268, 2064 0x4d280, 0x4d284, 2065 0x4d2a0, 0x4d2b0, 2066 0x4e0c0, 0x4e0e4, 2067 0x4f000, 0x4f03c, 2068 0x4f044, 0x4f08c, 2069 0x4f200, 0x4f250, 2070 0x4f400, 0x4f408, 2071 0x4f414, 0x4f420, 2072 0x4f600, 0x4f618, 2073 0x4f800, 0x4f814, 2074 0x50000, 0x50084, 2075 0x50090, 0x500cc, 2076 0x50400, 0x50400, 2077 0x50800, 0x50884, 2078 0x50890, 0x508cc, 2079 0x50c00, 0x50c00, 2080 0x51000, 0x5101c, 2081 0x51300, 0x51308, 2082 }; 2083 2084 static const unsigned int t6_reg_ranges[] = { 2085 0x1008, 0x101c, 2086 0x1024, 0x10a8, 2087 0x10b4, 0x10f8, 2088 0x1100, 0x1114, 2089 0x111c, 0x112c, 2090 0x1138, 0x113c, 2091 0x1144, 0x114c, 2092 0x1180, 0x1184, 2093 0x1190, 0x1194, 2094 0x11a0, 0x11a4, 2095 0x11b0, 0x11b4, 2096 0x11fc, 0x1274, 2097 0x1280, 0x133c, 2098 0x1800, 0x18fc, 2099 0x3000, 0x302c, 2100 0x3060, 0x30b0, 2101 0x30b8, 0x30d8, 2102 0x30e0, 0x30fc, 2103 0x3140, 0x357c, 2104 0x35a8, 0x35cc, 2105 0x35ec, 0x35ec, 2106 0x3600, 0x5624, 2107 0x56cc, 0x56ec, 2108 0x56f4, 0x5720, 2109 0x5728, 0x575c, 2110 0x580c, 0x5814, 2111 0x5890, 0x589c, 2112 0x58a4, 0x58ac, 2113 0x58b8, 0x58bc, 2114 0x5940, 0x595c, 2115 0x5980, 0x598c, 2116 0x59b0, 0x59c8, 2117 0x59d0, 0x59dc, 2118 0x59fc, 0x5a18, 2119 0x5a60, 0x5a6c, 2120 0x5a80, 0x5a8c, 2121 0x5a94, 0x5a9c, 2122 0x5b94, 0x5bfc, 2123 0x5c10, 0x5e48, 2124 0x5e50, 0x5e94, 2125 0x5ea0, 0x5eb0, 2126 0x5ec0, 0x5ec0, 2127 0x5ec8, 0x5ed0, 2128 0x5ee0, 0x5ee0, 2129 0x5ef0, 0x5ef0, 2130 0x5f00, 0x5f00, 2131 0x6000, 0x6020, 2132 0x6028, 0x6040, 2133 0x6058, 0x609c, 2134 0x60a8, 0x619c, 2135 0x7700, 0x7798, 2136 0x77c0, 0x7880, 2137 0x78cc, 0x78fc, 2138 0x7b00, 0x7b58, 2139 0x7b60, 0x7b84, 2140 0x7b8c, 0x7c54, 2141 0x7d00, 0x7d38, 2142 0x7d40, 0x7d84, 2143 0x7d8c, 0x7ddc, 2144 0x7de4, 0x7e04, 2145 0x7e10, 0x7e1c, 2146 0x7e24, 0x7e38, 2147 0x7e40, 0x7e44, 2148 0x7e4c, 0x7e78, 2149 0x7e80, 0x7edc, 2150 0x7ee8, 0x7efc, 2151 0x8dc0, 0x8de4, 2152 0x8df8, 0x8e04, 2153 0x8e10, 0x8e84, 2154 0x8ea0, 0x8f88, 2155 0x8fb8, 0x9058, 2156 0x9060, 0x9060, 2157 0x9068, 0x90f8, 2158 0x9100, 0x9124, 2159 0x9400, 0x9470, 2160 0x9600, 0x9600, 2161 0x9608, 0x9638, 2162 0x9640, 0x9704, 2163 0x9710, 0x971c, 2164 0x9800, 0x9808, 2165 0x9820, 0x983c, 2166 0x9850, 0x9864, 2167 0x9c00, 0x9c6c, 2168 0x9c80, 0x9cec, 2169 0x9d00, 0x9d6c, 2170 0x9d80, 0x9dec, 2171 0x9e00, 0x9e6c, 2172 0x9e80, 0x9eec, 2173 0x9f00, 0x9f6c, 2174 0x9f80, 0xa020, 2175 0xd004, 0xd03c, 2176 0xd100, 0xd118, 2177 0xd200, 0xd214, 2178 0xd220, 0xd234, 2179 0xd240, 0xd254, 2180 0xd260, 0xd274, 2181 0xd280, 0xd294, 2182 0xd2a0, 0xd2b4, 2183 0xd2c0, 0xd2d4, 2184 0xd2e0, 0xd2f4, 2185 0xd300, 0xd31c, 2186 0xdfc0, 0xdfe0, 2187 0xe000, 0xf008, 2188 0xf010, 0xf018, 2189 0xf020, 0xf028, 2190 0x11000, 0x11014, 2191 0x11048, 0x1106c, 2192 0x11074, 0x11088, 2193 0x11098, 0x11120, 2194 0x1112c, 0x1117c, 2195 0x11190, 0x112e0, 2196 0x11300, 0x1130c, 2197 0x12000, 0x1206c, 2198 0x19040, 0x1906c, 2199 0x19078, 0x19080, 2200 0x1908c, 0x190e8, 2201 0x190f0, 0x190f8, 2202 0x19100, 0x19110, 2203 0x19120, 0x19124, 2204 0x19150, 0x19194, 2205 0x1919c, 0x191b0, 2206 0x191d0, 0x191e8, 2207 0x19238, 0x19290, 2208 0x192a4, 0x192b0, 2209 0x192bc, 0x192bc, 2210 0x19348, 0x1934c, 2211 0x193f8, 0x19418, 2212 0x19420, 0x19428, 2213 0x19430, 0x19444, 2214 0x1944c, 0x1946c, 2215 0x19474, 0x19474, 2216 0x19490, 0x194cc, 2217 0x194f0, 0x194f8, 2218 0x19c00, 0x19c48, 2219 0x19c50, 0x19c80, 2220 0x19c94, 0x19c98, 2221 0x19ca0, 0x19cbc, 2222 0x19ce4, 0x19ce4, 2223 0x19cf0, 0x19cf8, 2224 0x19d00, 0x19d28, 2225 0x19d50, 0x19d78, 2226 0x19d94, 0x19d98, 2227 0x19da0, 0x19dc8, 2228 0x19df0, 0x19e10, 2229 0x19e50, 0x19e6c, 2230 0x19ea0, 0x19ebc, 2231 0x19ec4, 0x19ef4, 2232 0x19f04, 0x19f2c, 2233 0x19f34, 0x19f34, 2234 0x19f40, 0x19f50, 2235 0x19f90, 0x19fac, 2236 0x19fc4, 0x19fc8, 2237 0x19fd0, 0x19fe4, 2238 0x1a000, 0x1a004, 2239 0x1a010, 0x1a06c, 2240 0x1a0b0, 0x1a0e4, 2241 0x1a0ec, 0x1a0f8, 2242 0x1a100, 0x1a108, 2243 0x1a114, 0x1a120, 2244 0x1a128, 0x1a130, 2245 0x1a138, 0x1a138, 2246 0x1a190, 0x1a1c4, 2247 0x1a1fc, 0x1a1fc, 2248 0x1e008, 0x1e00c, 2249 0x1e040, 0x1e044, 2250 0x1e04c, 0x1e04c, 2251 0x1e284, 0x1e290, 2252 0x1e2c0, 0x1e2c0, 2253 0x1e2e0, 0x1e2e0, 2254 0x1e300, 0x1e384, 2255 0x1e3c0, 0x1e3c8, 2256 0x1e408, 0x1e40c, 2257 0x1e440, 0x1e444, 2258 0x1e44c, 0x1e44c, 2259 0x1e684, 0x1e690, 2260 0x1e6c0, 0x1e6c0, 2261 0x1e6e0, 0x1e6e0, 2262 0x1e700, 0x1e784, 2263 0x1e7c0, 0x1e7c8, 2264 0x1e808, 0x1e80c, 2265 0x1e840, 0x1e844, 2266 0x1e84c, 0x1e84c, 2267 0x1ea84, 0x1ea90, 2268 0x1eac0, 0x1eac0, 2269 0x1eae0, 0x1eae0, 2270 0x1eb00, 0x1eb84, 2271 0x1ebc0, 0x1ebc8, 2272 0x1ec08, 0x1ec0c, 2273 0x1ec40, 0x1ec44, 2274 0x1ec4c, 0x1ec4c, 2275 0x1ee84, 0x1ee90, 2276 0x1eec0, 0x1eec0, 2277 0x1eee0, 0x1eee0, 2278 0x1ef00, 0x1ef84, 2279 0x1efc0, 0x1efc8, 2280 0x1f008, 0x1f00c, 2281 0x1f040, 0x1f044, 2282 0x1f04c, 0x1f04c, 2283 0x1f284, 0x1f290, 2284 0x1f2c0, 0x1f2c0, 2285 0x1f2e0, 0x1f2e0, 2286 0x1f300, 0x1f384, 2287 0x1f3c0, 0x1f3c8, 2288 0x1f408, 0x1f40c, 2289 0x1f440, 0x1f444, 2290 0x1f44c, 0x1f44c, 2291 0x1f684, 0x1f690, 2292 0x1f6c0, 0x1f6c0, 2293 0x1f6e0, 0x1f6e0, 2294 0x1f700, 0x1f784, 2295 0x1f7c0, 0x1f7c8, 2296 0x1f808, 0x1f80c, 2297 0x1f840, 0x1f844, 2298 0x1f84c, 0x1f84c, 2299 0x1fa84, 0x1fa90, 2300 0x1fac0, 0x1fac0, 2301 0x1fae0, 0x1fae0, 2302 0x1fb00, 0x1fb84, 2303 0x1fbc0, 0x1fbc8, 2304 0x1fc08, 0x1fc0c, 2305 0x1fc40, 0x1fc44, 2306 0x1fc4c, 0x1fc4c, 2307 0x1fe84, 0x1fe90, 2308 0x1fec0, 0x1fec0, 2309 0x1fee0, 0x1fee0, 2310 0x1ff00, 0x1ff84, 2311 0x1ffc0, 0x1ffc8, 2312 0x30000, 0x30030, 2313 0x30100, 0x30168, 2314 0x30190, 0x301a0, 2315 0x301a8, 0x301b8, 2316 0x301c4, 0x301c8, 2317 0x301d0, 0x301d0, 2318 0x30200, 0x30320, 2319 0x30400, 0x304b4, 2320 0x304c0, 0x3052c, 2321 0x30540, 0x3061c, 2322 0x30800, 0x308a0, 2323 0x308c0, 0x30908, 2324 0x30910, 0x309b8, 2325 0x30a00, 0x30a04, 2326 0x30a0c, 0x30a14, 2327 0x30a1c, 0x30a2c, 2328 0x30a44, 0x30a50, 2329 0x30a74, 0x30a74, 2330 0x30a7c, 0x30afc, 2331 0x30b08, 0x30c24, 2332 0x30d00, 0x30d14, 2333 0x30d1c, 0x30d3c, 2334 0x30d44, 0x30d4c, 2335 0x30d54, 0x30d74, 2336 0x30d7c, 0x30d7c, 2337 0x30de0, 0x30de0, 2338 0x30e00, 0x30ed4, 2339 0x30f00, 0x30fa4, 2340 0x30fc0, 0x30fc4, 2341 0x31000, 0x31004, 2342 0x31080, 0x310fc, 2343 0x31208, 0x31220, 2344 0x3123c, 0x31254, 2345 0x31300, 0x31300, 2346 0x31308, 0x3131c, 2347 0x31338, 0x3133c, 2348 0x31380, 0x31380, 2349 0x31388, 0x313a8, 2350 0x313b4, 0x313b4, 2351 0x31400, 0x31420, 2352 0x31438, 0x3143c, 2353 0x31480, 0x31480, 2354 0x314a8, 0x314a8, 2355 0x314b0, 0x314b4, 2356 0x314c8, 0x314d4, 2357 0x31a40, 0x31a4c, 2358 0x31af0, 0x31b20, 2359 0x31b38, 0x31b3c, 2360 0x31b80, 0x31b80, 2361 0x31ba8, 0x31ba8, 2362 0x31bb0, 0x31bb4, 2363 0x31bc8, 0x31bd4, 2364 0x32140, 0x3218c, 2365 0x321f0, 0x321f4, 2366 0x32200, 0x32200, 2367 0x32218, 0x32218, 2368 0x32400, 0x32400, 2369 0x32408, 0x3241c, 2370 0x32618, 0x32620, 2371 0x32664, 0x32664, 2372 0x326a8, 0x326a8, 2373 0x326ec, 0x326ec, 2374 0x32a00, 0x32abc, 2375 0x32b00, 0x32b18, 2376 0x32b20, 0x32b38, 2377 0x32b40, 0x32b58, 2378 0x32b60, 0x32b78, 2379 0x32c00, 0x32c00, 2380 0x32c08, 0x32c3c, 2381 0x33000, 0x3302c, 2382 0x33034, 0x33050, 2383 0x33058, 0x33058, 2384 0x33060, 0x3308c, 2385 0x3309c, 0x330ac, 2386 0x330c0, 0x330c0, 2387 0x330c8, 0x330d0, 2388 0x330d8, 0x330e0, 2389 0x330ec, 0x3312c, 2390 0x33134, 0x33150, 2391 0x33158, 0x33158, 2392 0x33160, 0x3318c, 2393 0x3319c, 0x331ac, 2394 0x331c0, 0x331c0, 2395 0x331c8, 0x331d0, 2396 0x331d8, 0x331e0, 2397 0x331ec, 0x33290, 2398 0x33298, 0x332c4, 2399 0x332e4, 0x33390, 2400 0x33398, 0x333c4, 2401 0x333e4, 0x3342c, 2402 0x33434, 0x33450, 2403 0x33458, 0x33458, 2404 0x33460, 0x3348c, 2405 0x3349c, 0x334ac, 2406 0x334c0, 0x334c0, 2407 0x334c8, 0x334d0, 2408 0x334d8, 0x334e0, 2409 0x334ec, 0x3352c, 2410 0x33534, 0x33550, 2411 0x33558, 0x33558, 2412 0x33560, 0x3358c, 2413 0x3359c, 0x335ac, 2414 0x335c0, 0x335c0, 2415 0x335c8, 0x335d0, 2416 0x335d8, 0x335e0, 2417 0x335ec, 0x33690, 2418 0x33698, 0x336c4, 2419 0x336e4, 0x33790, 2420 0x33798, 0x337c4, 2421 0x337e4, 0x337fc, 2422 0x33814, 0x33814, 2423 0x33854, 0x33868, 2424 0x33880, 0x3388c, 2425 0x338c0, 0x338d0, 2426 0x338e8, 0x338ec, 2427 0x33900, 0x3392c, 2428 0x33934, 0x33950, 2429 0x33958, 0x33958, 2430 0x33960, 0x3398c, 2431 0x3399c, 0x339ac, 2432 0x339c0, 0x339c0, 2433 0x339c8, 0x339d0, 2434 0x339d8, 0x339e0, 2435 0x339ec, 0x33a90, 2436 0x33a98, 0x33ac4, 2437 0x33ae4, 0x33b10, 2438 0x33b24, 0x33b28, 2439 0x33b38, 0x33b50, 2440 0x33bf0, 0x33c10, 2441 0x33c24, 0x33c28, 2442 0x33c38, 0x33c50, 2443 0x33cf0, 0x33cfc, 2444 0x34000, 0x34030, 2445 0x34100, 0x34168, 2446 0x34190, 0x341a0, 2447 0x341a8, 0x341b8, 2448 0x341c4, 0x341c8, 2449 0x341d0, 0x341d0, 2450 0x34200, 0x34320, 2451 0x34400, 0x344b4, 2452 0x344c0, 0x3452c, 2453 0x34540, 0x3461c, 2454 0x34800, 0x348a0, 2455 0x348c0, 0x34908, 2456 0x34910, 0x349b8, 2457 0x34a00, 0x34a04, 2458 0x34a0c, 0x34a14, 2459 0x34a1c, 0x34a2c, 2460 0x34a44, 0x34a50, 2461 0x34a74, 0x34a74, 2462 0x34a7c, 0x34afc, 2463 0x34b08, 0x34c24, 2464 0x34d00, 0x34d14, 2465 0x34d1c, 0x34d3c, 2466 0x34d44, 0x34d4c, 2467 0x34d54, 0x34d74, 2468 0x34d7c, 0x34d7c, 2469 0x34de0, 0x34de0, 2470 0x34e00, 0x34ed4, 2471 0x34f00, 0x34fa4, 2472 0x34fc0, 0x34fc4, 2473 0x35000, 0x35004, 2474 0x35080, 0x350fc, 2475 0x35208, 0x35220, 2476 0x3523c, 0x35254, 2477 0x35300, 0x35300, 2478 0x35308, 0x3531c, 2479 0x35338, 0x3533c, 2480 0x35380, 0x35380, 2481 0x35388, 0x353a8, 2482 0x353b4, 0x353b4, 2483 0x35400, 0x35420, 2484 0x35438, 0x3543c, 2485 0x35480, 0x35480, 2486 0x354a8, 0x354a8, 2487 0x354b0, 0x354b4, 2488 0x354c8, 0x354d4, 2489 0x35a40, 0x35a4c, 2490 0x35af0, 0x35b20, 2491 0x35b38, 0x35b3c, 2492 0x35b80, 0x35b80, 2493 0x35ba8, 0x35ba8, 2494 0x35bb0, 0x35bb4, 2495 0x35bc8, 0x35bd4, 2496 0x36140, 0x3618c, 2497 0x361f0, 0x361f4, 2498 0x36200, 0x36200, 2499 0x36218, 0x36218, 2500 0x36400, 0x36400, 2501 0x36408, 0x3641c, 2502 0x36618, 0x36620, 2503 0x36664, 0x36664, 2504 0x366a8, 0x366a8, 2505 0x366ec, 0x366ec, 2506 0x36a00, 0x36abc, 2507 0x36b00, 0x36b18, 2508 0x36b20, 0x36b38, 2509 0x36b40, 0x36b58, 2510 0x36b60, 0x36b78, 2511 0x36c00, 0x36c00, 2512 0x36c08, 0x36c3c, 2513 0x37000, 0x3702c, 2514 0x37034, 0x37050, 2515 0x37058, 0x37058, 2516 0x37060, 0x3708c, 2517 0x3709c, 0x370ac, 2518 0x370c0, 0x370c0, 2519 0x370c8, 0x370d0, 2520 0x370d8, 0x370e0, 2521 0x370ec, 0x3712c, 2522 0x37134, 0x37150, 2523 0x37158, 0x37158, 2524 0x37160, 0x3718c, 2525 0x3719c, 0x371ac, 2526 0x371c0, 0x371c0, 2527 0x371c8, 0x371d0, 2528 0x371d8, 0x371e0, 2529 0x371ec, 0x37290, 2530 0x37298, 0x372c4, 2531 0x372e4, 0x37390, 2532 0x37398, 0x373c4, 2533 0x373e4, 0x3742c, 2534 0x37434, 0x37450, 2535 0x37458, 0x37458, 2536 0x37460, 0x3748c, 2537 0x3749c, 0x374ac, 2538 0x374c0, 0x374c0, 2539 0x374c8, 0x374d0, 2540 0x374d8, 0x374e0, 2541 0x374ec, 0x3752c, 2542 0x37534, 0x37550, 2543 0x37558, 0x37558, 2544 0x37560, 0x3758c, 2545 0x3759c, 0x375ac, 2546 0x375c0, 0x375c0, 2547 0x375c8, 0x375d0, 2548 0x375d8, 0x375e0, 2549 0x375ec, 0x37690, 2550 0x37698, 0x376c4, 2551 0x376e4, 0x37790, 2552 0x37798, 0x377c4, 2553 0x377e4, 0x377fc, 2554 0x37814, 0x37814, 2555 0x37854, 0x37868, 2556 0x37880, 0x3788c, 2557 0x378c0, 0x378d0, 2558 0x378e8, 0x378ec, 2559 0x37900, 0x3792c, 2560 0x37934, 0x37950, 2561 0x37958, 0x37958, 2562 0x37960, 0x3798c, 2563 0x3799c, 0x379ac, 2564 0x379c0, 0x379c0, 2565 0x379c8, 0x379d0, 2566 0x379d8, 0x379e0, 2567 0x379ec, 0x37a90, 2568 0x37a98, 0x37ac4, 2569 0x37ae4, 0x37b10, 2570 0x37b24, 0x37b28, 2571 0x37b38, 0x37b50, 2572 0x37bf0, 0x37c10, 2573 0x37c24, 0x37c28, 2574 0x37c38, 0x37c50, 2575 0x37cf0, 0x37cfc, 2576 0x40040, 0x40040, 2577 0x40080, 0x40084, 2578 0x40100, 0x40100, 2579 0x40140, 0x401bc, 2580 0x40200, 0x40214, 2581 0x40228, 0x40228, 2582 0x40240, 0x40258, 2583 0x40280, 0x40280, 2584 0x40304, 0x40304, 2585 0x40330, 0x4033c, 2586 0x41304, 0x413c8, 2587 0x413d0, 0x413dc, 2588 0x413f0, 0x413f0, 2589 0x41400, 0x4140c, 2590 0x41414, 0x4141c, 2591 0x41480, 0x414d0, 2592 0x44000, 0x4407c, 2593 0x440c0, 0x441ac, 2594 0x441b4, 0x4427c, 2595 0x442c0, 0x443ac, 2596 0x443b4, 0x4447c, 2597 0x444c0, 0x445ac, 2598 0x445b4, 0x4467c, 2599 0x446c0, 0x447ac, 2600 0x447b4, 0x4487c, 2601 0x448c0, 0x449ac, 2602 0x449b4, 0x44a7c, 2603 0x44ac0, 0x44bac, 2604 0x44bb4, 0x44c7c, 2605 0x44cc0, 0x44dac, 2606 0x44db4, 0x44e7c, 2607 0x44ec0, 0x44fac, 2608 0x44fb4, 0x4507c, 2609 0x450c0, 0x451ac, 2610 0x451b4, 0x451fc, 2611 0x45800, 0x45804, 2612 0x45810, 0x45830, 2613 0x45840, 0x45860, 2614 0x45868, 0x45868, 2615 0x45880, 0x45884, 2616 0x458a0, 0x458b0, 2617 0x45a00, 0x45a04, 2618 0x45a10, 0x45a30, 2619 0x45a40, 0x45a60, 2620 0x45a68, 0x45a68, 2621 0x45a80, 0x45a84, 2622 0x45aa0, 0x45ab0, 2623 0x460c0, 0x460e4, 2624 0x47000, 0x4703c, 2625 0x47044, 0x4708c, 2626 0x47200, 0x47250, 2627 0x47400, 0x47408, 2628 0x47414, 0x47420, 2629 0x47600, 0x47618, 2630 0x47800, 0x47814, 2631 0x47820, 0x4782c, 2632 0x50000, 0x50084, 2633 0x50090, 0x500cc, 2634 0x50300, 0x50384, 2635 0x50400, 0x50400, 2636 0x50800, 0x50884, 2637 0x50890, 0x508cc, 2638 0x50b00, 0x50b84, 2639 0x50c00, 0x50c00, 2640 0x51000, 0x51020, 2641 0x51028, 0x510b0, 2642 0x51300, 0x51324, 2643 }; 2644 2645 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2646 const unsigned int *reg_ranges; 2647 int reg_ranges_size, range; 2648 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2649 2650 /* Select the right set of register ranges to dump depending on the 2651 * adapter chip type. 2652 */ 2653 switch (chip_version) { 2654 case CHELSIO_T4: 2655 reg_ranges = t4_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T5: 2660 reg_ranges = t5_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2662 break; 2663 2664 case CHELSIO_T6: 2665 reg_ranges = t6_reg_ranges; 2666 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2667 break; 2668 2669 default: 2670 dev_err(adap->pdev_dev, 2671 "Unsupported chip version %d\n", chip_version); 2672 return; 2673 } 2674 2675 /* Clear the register buffer and insert the appropriate register 2676 * values selected by the above register ranges. 2677 */ 2678 memset(buf, 0, buf_size); 2679 for (range = 0; range < reg_ranges_size; range += 2) { 2680 unsigned int reg = reg_ranges[range]; 2681 unsigned int last_reg = reg_ranges[range + 1]; 2682 u32 *bufp = (u32 *)((char *)buf + reg); 2683 2684 /* Iterate across the register range filling in the register 2685 * buffer but don't write past the end of the register buffer. 2686 */ 2687 while (reg <= last_reg && bufp < buf_end) { 2688 *bufp++ = t4_read_reg(adap, reg); 2689 reg += sizeof(u32); 2690 } 2691 } 2692 } 2693 2694 #define EEPROM_STAT_ADDR 0x7bfc 2695 #define VPD_BASE 0x400 2696 #define VPD_BASE_OLD 0 2697 #define VPD_LEN 1024 2698 #define CHELSIO_VPD_UNIQUE_ID 0x82 2699 2700 /** 2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2702 * @phys_addr: the physical EEPROM address 2703 * @fn: the PCI function number 2704 * @sz: size of function-specific area 2705 * 2706 * Translate a physical EEPROM address to virtual. The first 1K is 2707 * accessed through virtual addresses starting at 31K, the rest is 2708 * accessed through virtual addresses starting at 0. 2709 * 2710 * The mapping is as follows: 2711 * [0..1K) -> [31K..32K) 2712 * [1K..1K+A) -> [31K-A..31K) 2713 * [1K+A..ES) -> [0..ES-A-1K) 2714 * 2715 * where A = @fn * @sz, and ES = EEPROM size. 2716 */ 2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2718 { 2719 fn *= sz; 2720 if (phys_addr < 1024) 2721 return phys_addr + (31 << 10); 2722 if (phys_addr < 1024 + fn) 2723 return 31744 - fn + phys_addr - 1024; 2724 if (phys_addr < EEPROMSIZE) 2725 return phys_addr - 1024 - fn; 2726 return -EINVAL; 2727 } 2728 2729 /** 2730 * t4_seeprom_wp - enable/disable EEPROM write protection 2731 * @adapter: the adapter 2732 * @enable: whether to enable or disable write protection 2733 * 2734 * Enables or disables write protection on the serial EEPROM. 2735 */ 2736 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2737 { 2738 unsigned int v = enable ? 0xc : 0; 2739 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2740 return ret < 0 ? ret : 0; 2741 } 2742 2743 /** 2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2745 * @adapter: adapter to read 2746 * @p: where to store the parameters 2747 * 2748 * Reads card parameters stored in VPD EEPROM. 2749 */ 2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2751 { 2752 int i, ret = 0, addr; 2753 int ec, sn, pn, na; 2754 u8 *vpd, csum; 2755 unsigned int vpdr_len, kw_offset, id_len; 2756 2757 vpd = vmalloc(VPD_LEN); 2758 if (!vpd) 2759 return -ENOMEM; 2760 2761 /* Card information normally starts at VPD_BASE but early cards had 2762 * it at 0. 2763 */ 2764 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 /* The VPD shall have a unique identifier specified by the PCI SIG. 2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2771 * is expected to automatically put this entry at the 2772 * beginning of the VPD. 2773 */ 2774 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2775 2776 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2777 if (ret < 0) 2778 goto out; 2779 2780 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2781 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2782 ret = -EINVAL; 2783 goto out; 2784 } 2785 2786 id_len = pci_vpd_lrdt_size(vpd); 2787 if (id_len > ID_LEN) 2788 id_len = ID_LEN; 2789 2790 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2791 if (i < 0) { 2792 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2793 ret = -EINVAL; 2794 goto out; 2795 } 2796 2797 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2798 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2799 if (vpdr_len + kw_offset > VPD_LEN) { 2800 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2801 ret = -EINVAL; 2802 goto out; 2803 } 2804 2805 #define FIND_VPD_KW(var, name) do { \ 2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2807 if (var < 0) { \ 2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2809 ret = -EINVAL; \ 2810 goto out; \ 2811 } \ 2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2813 } while (0) 2814 2815 FIND_VPD_KW(i, "RV"); 2816 for (csum = 0; i >= 0; i--) 2817 csum += vpd[i]; 2818 2819 if (csum) { 2820 dev_err(adapter->pdev_dev, 2821 "corrupted VPD EEPROM, actual csum %u\n", csum); 2822 ret = -EINVAL; 2823 goto out; 2824 } 2825 2826 FIND_VPD_KW(ec, "EC"); 2827 FIND_VPD_KW(sn, "SN"); 2828 FIND_VPD_KW(pn, "PN"); 2829 FIND_VPD_KW(na, "NA"); 2830 #undef FIND_VPD_KW 2831 2832 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2833 strim(p->id); 2834 memcpy(p->ec, vpd + ec, EC_LEN); 2835 strim(p->ec); 2836 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2837 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2838 strim(p->sn); 2839 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2840 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2841 strim(p->pn); 2842 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2843 strim((char *)p->na); 2844 2845 out: 2846 vfree(vpd); 2847 return ret < 0 ? ret : 0; 2848 } 2849 2850 /** 2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2852 * @adapter: adapter to read 2853 * @p: where to store the parameters 2854 * 2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2856 * Clock. This can only be called after a connection to the firmware 2857 * is established. 2858 */ 2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2860 { 2861 u32 cclk_param, cclk_val; 2862 int ret; 2863 2864 /* Grab the raw VPD parameters. 2865 */ 2866 ret = t4_get_raw_vpd_params(adapter, p); 2867 if (ret) 2868 return ret; 2869 2870 /* Ask firmware for the Core Clock since it knows how to translate the 2871 * Reference Clock ('V2') VPD field into a Core Clock value ... 2872 */ 2873 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2875 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2876 1, &cclk_param, &cclk_val); 2877 2878 if (ret) 2879 return ret; 2880 p->cclk = cclk_val; 2881 2882 return 0; 2883 } 2884 2885 /** 2886 * t4_get_pfres - retrieve VF resource limits 2887 * @adapter: the adapter 2888 * 2889 * Retrieves configured resource limits and capabilities for a physical 2890 * function. The results are stored in @adapter->pfres. 2891 */ 2892 int t4_get_pfres(struct adapter *adapter) 2893 { 2894 struct pf_resources *pfres = &adapter->params.pfres; 2895 struct fw_pfvf_cmd cmd, rpl; 2896 int v; 2897 u32 word; 2898 2899 /* Execute PFVF Read command to get VF resource limits; bail out early 2900 * with error on command failure. 2901 */ 2902 memset(&cmd, 0, sizeof(cmd)); 2903 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2904 FW_CMD_REQUEST_F | 2905 FW_CMD_READ_F | 2906 FW_PFVF_CMD_PFN_V(adapter->pf) | 2907 FW_PFVF_CMD_VFN_V(0)); 2908 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2909 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2910 if (v != FW_SUCCESS) 2911 return v; 2912 2913 /* Extract PF resource limits and return success. 2914 */ 2915 word = be32_to_cpu(rpl.niqflint_niq); 2916 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2917 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2918 2919 word = be32_to_cpu(rpl.type_to_neq); 2920 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2921 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2922 2923 word = be32_to_cpu(rpl.tc_to_nexactf); 2924 pfres->tc = FW_PFVF_CMD_TC_G(word); 2925 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2926 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2927 2928 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2929 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2930 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2931 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2932 2933 return 0; 2934 } 2935 2936 /* serial flash and firmware constants */ 2937 enum { 2938 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2939 2940 /* flash command opcodes */ 2941 SF_PROG_PAGE = 2, /* program page */ 2942 SF_WR_DISABLE = 4, /* disable writes */ 2943 SF_RD_STATUS = 5, /* read status register */ 2944 SF_WR_ENABLE = 6, /* enable writes */ 2945 SF_RD_DATA_FAST = 0xb, /* read flash */ 2946 SF_RD_ID = 0x9f, /* read ID */ 2947 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2948 }; 2949 2950 /** 2951 * sf1_read - read data from the serial flash 2952 * @adapter: the adapter 2953 * @byte_cnt: number of bytes to read 2954 * @cont: whether another operation will be chained 2955 * @lock: whether to lock SF for PL access only 2956 * @valp: where to store the read data 2957 * 2958 * Reads up to 4 bytes of data from the serial flash. The location of 2959 * the read needs to be specified prior to calling this by issuing the 2960 * appropriate commands to the serial flash. 2961 */ 2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2963 int lock, u32 *valp) 2964 { 2965 int ret; 2966 2967 if (!byte_cnt || byte_cnt > 4) 2968 return -EINVAL; 2969 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2970 return -EBUSY; 2971 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2972 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2973 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2974 if (!ret) 2975 *valp = t4_read_reg(adapter, SF_DATA_A); 2976 return ret; 2977 } 2978 2979 /** 2980 * sf1_write - write data to the serial flash 2981 * @adapter: the adapter 2982 * @byte_cnt: number of bytes to write 2983 * @cont: whether another operation will be chained 2984 * @lock: whether to lock SF for PL access only 2985 * @val: value to write 2986 * 2987 * Writes up to 4 bytes of data to the serial flash. The location of 2988 * the write needs to be specified prior to calling this by issuing the 2989 * appropriate commands to the serial flash. 2990 */ 2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2992 int lock, u32 val) 2993 { 2994 if (!byte_cnt || byte_cnt > 4) 2995 return -EINVAL; 2996 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2997 return -EBUSY; 2998 t4_write_reg(adapter, SF_DATA_A, val); 2999 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 3000 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 3001 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 3002 } 3003 3004 /** 3005 * flash_wait_op - wait for a flash operation to complete 3006 * @adapter: the adapter 3007 * @attempts: max number of polls of the status register 3008 * @delay: delay between polls in ms 3009 * 3010 * Wait for a flash operation to complete by polling the status register. 3011 */ 3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3013 { 3014 int ret; 3015 u32 status; 3016 3017 while (1) { 3018 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3019 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3020 return ret; 3021 if (!(status & 1)) 3022 return 0; 3023 if (--attempts == 0) 3024 return -EAGAIN; 3025 if (delay) 3026 msleep(delay); 3027 } 3028 } 3029 3030 /** 3031 * t4_read_flash - read words from serial flash 3032 * @adapter: the adapter 3033 * @addr: the start address for the read 3034 * @nwords: how many 32-bit words to read 3035 * @data: where to store the read data 3036 * @byte_oriented: whether to store data as bytes or as words 3037 * 3038 * Read the specified number of 32-bit words from the serial flash. 3039 * If @byte_oriented is set the read data is stored as a byte array 3040 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3041 * natural endianness. 3042 */ 3043 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3044 unsigned int nwords, u32 *data, int byte_oriented) 3045 { 3046 int ret; 3047 3048 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3049 return -EINVAL; 3050 3051 addr = swab32(addr) | SF_RD_DATA_FAST; 3052 3053 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3054 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3055 return ret; 3056 3057 for ( ; nwords; nwords--, data++) { 3058 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3059 if (nwords == 1) 3060 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3061 if (ret) 3062 return ret; 3063 if (byte_oriented) 3064 *data = (__force __u32)(cpu_to_be32(*data)); 3065 } 3066 return 0; 3067 } 3068 3069 /** 3070 * t4_write_flash - write up to a page of data to the serial flash 3071 * @adapter: the adapter 3072 * @addr: the start address to write 3073 * @n: length of data to write in bytes 3074 * @data: the data to write 3075 * 3076 * Writes up to a page of data (256 bytes) to the serial flash starting 3077 * at the given address. All the data must be written to the same page. 3078 */ 3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3080 unsigned int n, const u8 *data) 3081 { 3082 int ret; 3083 u32 buf[64]; 3084 unsigned int i, c, left, val, offset = addr & 0xff; 3085 3086 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3087 return -EINVAL; 3088 3089 val = swab32(addr) | SF_PROG_PAGE; 3090 3091 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3092 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3093 goto unlock; 3094 3095 for (left = n; left; left -= c) { 3096 c = min(left, 4U); 3097 for (val = 0, i = 0; i < c; ++i) 3098 val = (val << 8) + *data++; 3099 3100 ret = sf1_write(adapter, c, c != left, 1, val); 3101 if (ret) 3102 goto unlock; 3103 } 3104 ret = flash_wait_op(adapter, 8, 1); 3105 if (ret) 3106 goto unlock; 3107 3108 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3109 3110 /* Read the page to verify the write succeeded */ 3111 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3112 if (ret) 3113 return ret; 3114 3115 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3116 dev_err(adapter->pdev_dev, 3117 "failed to correctly write the flash page at %#x\n", 3118 addr); 3119 return -EIO; 3120 } 3121 return 0; 3122 3123 unlock: 3124 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3125 return ret; 3126 } 3127 3128 /** 3129 * t4_get_fw_version - read the firmware version 3130 * @adapter: the adapter 3131 * @vers: where to place the version 3132 * 3133 * Reads the FW version from flash. 3134 */ 3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3136 { 3137 return t4_read_flash(adapter, FLASH_FW_START + 3138 offsetof(struct fw_hdr, fw_ver), 1, 3139 vers, 0); 3140 } 3141 3142 /** 3143 * t4_get_bs_version - read the firmware bootstrap version 3144 * @adapter: the adapter 3145 * @vers: where to place the version 3146 * 3147 * Reads the FW Bootstrap version from flash. 3148 */ 3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3150 { 3151 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3152 offsetof(struct fw_hdr, fw_ver), 1, 3153 vers, 0); 3154 } 3155 3156 /** 3157 * t4_get_tp_version - read the TP microcode version 3158 * @adapter: the adapter 3159 * @vers: where to place the version 3160 * 3161 * Reads the TP microcode version from flash. 3162 */ 3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3164 { 3165 return t4_read_flash(adapter, FLASH_FW_START + 3166 offsetof(struct fw_hdr, tp_microcode_ver), 3167 1, vers, 0); 3168 } 3169 3170 /** 3171 * t4_get_exprom_version - return the Expansion ROM version (if any) 3172 * @adapter: the adapter 3173 * @vers: where to place the version 3174 * 3175 * Reads the Expansion ROM header from FLASH and returns the version 3176 * number (if present) through the @vers return value pointer. We return 3177 * this in the Firmware Version Format since it's convenient. Return 3178 * 0 on success, -ENOENT if no Expansion ROM is present. 3179 */ 3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3181 { 3182 struct exprom_header { 3183 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3184 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3185 } *hdr; 3186 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3187 sizeof(u32))]; 3188 int ret; 3189 3190 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3191 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3192 0); 3193 if (ret) 3194 return ret; 3195 3196 hdr = (struct exprom_header *)exprom_header_buf; 3197 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3198 return -ENOENT; 3199 3200 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3201 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3202 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3203 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3204 return 0; 3205 } 3206 3207 /** 3208 * t4_get_vpd_version - return the VPD version 3209 * @adapter: the adapter 3210 * @vers: where to place the version 3211 * 3212 * Reads the VPD via the Firmware interface (thus this can only be called 3213 * once we're ready to issue Firmware commands). The format of the 3214 * VPD version is adapter specific. Returns 0 on success, an error on 3215 * failure. 3216 * 3217 * Note that early versions of the Firmware didn't include the ability 3218 * to retrieve the VPD version, so we zero-out the return-value parameter 3219 * in that case to avoid leaving it with garbage in it. 3220 * 3221 * Also note that the Firmware will return its cached copy of the VPD 3222 * Revision ID, not the actual Revision ID as written in the Serial 3223 * EEPROM. This is only an issue if a new VPD has been written and the 3224 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3225 * to defer calling this routine till after a FW_RESET_CMD has been issued 3226 * if the Host Driver will be performing a full adapter initialization. 3227 */ 3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3229 { 3230 u32 vpdrev_param; 3231 int ret; 3232 3233 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3234 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3235 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3236 1, &vpdrev_param, vers); 3237 if (ret) 3238 *vers = 0; 3239 return ret; 3240 } 3241 3242 /** 3243 * t4_get_scfg_version - return the Serial Configuration version 3244 * @adapter: the adapter 3245 * @vers: where to place the version 3246 * 3247 * Reads the Serial Configuration Version via the Firmware interface 3248 * (thus this can only be called once we're ready to issue Firmware 3249 * commands). The format of the Serial Configuration version is 3250 * adapter specific. Returns 0 on success, an error on failure. 3251 * 3252 * Note that early versions of the Firmware didn't include the ability 3253 * to retrieve the Serial Configuration version, so we zero-out the 3254 * return-value parameter in that case to avoid leaving it with 3255 * garbage in it. 3256 * 3257 * Also note that the Firmware will return its cached copy of the Serial 3258 * Initialization Revision ID, not the actual Revision ID as written in 3259 * the Serial EEPROM. This is only an issue if a new VPD has been written 3260 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3261 * it's best to defer calling this routine till after a FW_RESET_CMD has 3262 * been issued if the Host Driver will be performing a full adapter 3263 * initialization. 3264 */ 3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3266 { 3267 u32 scfgrev_param; 3268 int ret; 3269 3270 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3271 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3272 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3273 1, &scfgrev_param, vers); 3274 if (ret) 3275 *vers = 0; 3276 return ret; 3277 } 3278 3279 /** 3280 * t4_get_version_info - extract various chip/firmware version information 3281 * @adapter: the adapter 3282 * 3283 * Reads various chip/firmware version numbers and stores them into the 3284 * adapter Adapter Parameters structure. If any of the efforts fails 3285 * the first failure will be returned, but all of the version numbers 3286 * will be read. 3287 */ 3288 int t4_get_version_info(struct adapter *adapter) 3289 { 3290 int ret = 0; 3291 3292 #define FIRST_RET(__getvinfo) \ 3293 do { \ 3294 int __ret = __getvinfo; \ 3295 if (__ret && !ret) \ 3296 ret = __ret; \ 3297 } while (0) 3298 3299 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3300 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3301 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3302 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3303 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3304 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3305 3306 #undef FIRST_RET 3307 return ret; 3308 } 3309 3310 /** 3311 * t4_dump_version_info - dump all of the adapter configuration IDs 3312 * @adapter: the adapter 3313 * 3314 * Dumps all of the various bits of adapter configuration version/revision 3315 * IDs information. This is typically called at some point after 3316 * t4_get_version_info() has been called. 3317 */ 3318 void t4_dump_version_info(struct adapter *adapter) 3319 { 3320 /* Device information */ 3321 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3322 adapter->params.vpd.id, 3323 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3324 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3325 adapter->params.vpd.sn, adapter->params.vpd.pn); 3326 3327 /* Firmware Version */ 3328 if (!adapter->params.fw_vers) 3329 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3330 else 3331 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3332 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3333 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3334 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3335 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3336 3337 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3338 * Firmware, so dev_info() is more appropriate here.) 3339 */ 3340 if (!adapter->params.bs_vers) 3341 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3342 else 3343 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3344 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3345 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3346 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3347 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3348 3349 /* TP Microcode Version */ 3350 if (!adapter->params.tp_vers) 3351 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3352 else 3353 dev_info(adapter->pdev_dev, 3354 "TP Microcode version: %u.%u.%u.%u\n", 3355 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3356 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3357 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3358 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3359 3360 /* Expansion ROM version */ 3361 if (!adapter->params.er_vers) 3362 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3363 else 3364 dev_info(adapter->pdev_dev, 3365 "Expansion ROM version: %u.%u.%u.%u\n", 3366 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3367 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3368 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3369 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3370 3371 /* Serial Configuration version */ 3372 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3373 adapter->params.scfg_vers); 3374 3375 /* VPD Version */ 3376 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3377 adapter->params.vpd_vers); 3378 } 3379 3380 /** 3381 * t4_check_fw_version - check if the FW is supported with this driver 3382 * @adap: the adapter 3383 * 3384 * Checks if an adapter's FW is compatible with the driver. Returns 0 3385 * if there's exact match, a negative error if the version could not be 3386 * read or there's a major version mismatch 3387 */ 3388 int t4_check_fw_version(struct adapter *adap) 3389 { 3390 int i, ret, major, minor, micro; 3391 int exp_major, exp_minor, exp_micro; 3392 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3393 3394 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3395 /* Try multiple times before returning error */ 3396 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3397 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3398 3399 if (ret) 3400 return ret; 3401 3402 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3403 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3404 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3405 3406 switch (chip_version) { 3407 case CHELSIO_T4: 3408 exp_major = T4FW_MIN_VERSION_MAJOR; 3409 exp_minor = T4FW_MIN_VERSION_MINOR; 3410 exp_micro = T4FW_MIN_VERSION_MICRO; 3411 break; 3412 case CHELSIO_T5: 3413 exp_major = T5FW_MIN_VERSION_MAJOR; 3414 exp_minor = T5FW_MIN_VERSION_MINOR; 3415 exp_micro = T5FW_MIN_VERSION_MICRO; 3416 break; 3417 case CHELSIO_T6: 3418 exp_major = T6FW_MIN_VERSION_MAJOR; 3419 exp_minor = T6FW_MIN_VERSION_MINOR; 3420 exp_micro = T6FW_MIN_VERSION_MICRO; 3421 break; 3422 default: 3423 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3424 adap->chip); 3425 return -EINVAL; 3426 } 3427 3428 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3429 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3430 dev_err(adap->pdev_dev, 3431 "Card has firmware version %u.%u.%u, minimum " 3432 "supported firmware is %u.%u.%u.\n", major, minor, 3433 micro, exp_major, exp_minor, exp_micro); 3434 return -EFAULT; 3435 } 3436 return 0; 3437 } 3438 3439 /* Is the given firmware API compatible with the one the driver was compiled 3440 * with? 3441 */ 3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3443 { 3444 3445 /* short circuit if it's the exact same firmware version */ 3446 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3447 return 1; 3448 3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3450 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3451 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3452 return 1; 3453 #undef SAME_INTF 3454 3455 return 0; 3456 } 3457 3458 /* The firmware in the filesystem is usable, but should it be installed? 3459 * This routine explains itself in detail if it indicates the filesystem 3460 * firmware should be installed. 3461 */ 3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3463 int k, int c) 3464 { 3465 const char *reason; 3466 3467 if (!card_fw_usable) { 3468 reason = "incompatible or unusable"; 3469 goto install; 3470 } 3471 3472 if (k > c) { 3473 reason = "older than the version supported with this driver"; 3474 goto install; 3475 } 3476 3477 return 0; 3478 3479 install: 3480 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3481 "installing firmware %u.%u.%u.%u on card.\n", 3482 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3483 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3484 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3485 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3486 3487 return 1; 3488 } 3489 3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3491 const u8 *fw_data, unsigned int fw_size, 3492 struct fw_hdr *card_fw, enum dev_state state, 3493 int *reset) 3494 { 3495 int ret, card_fw_usable, fs_fw_usable; 3496 const struct fw_hdr *fs_fw; 3497 const struct fw_hdr *drv_fw; 3498 3499 drv_fw = &fw_info->fw_hdr; 3500 3501 /* Read the header of the firmware on the card */ 3502 ret = -t4_read_flash(adap, FLASH_FW_START, 3503 sizeof(*card_fw) / sizeof(uint32_t), 3504 (uint32_t *)card_fw, 1); 3505 if (ret == 0) { 3506 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3507 } else { 3508 dev_err(adap->pdev_dev, 3509 "Unable to read card's firmware header: %d\n", ret); 3510 card_fw_usable = 0; 3511 } 3512 3513 if (fw_data != NULL) { 3514 fs_fw = (const void *)fw_data; 3515 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3516 } else { 3517 fs_fw = NULL; 3518 fs_fw_usable = 0; 3519 } 3520 3521 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3522 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3523 /* Common case: the firmware on the card is an exact match and 3524 * the filesystem one is an exact match too, or the filesystem 3525 * one is absent/incompatible. 3526 */ 3527 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3528 should_install_fs_fw(adap, card_fw_usable, 3529 be32_to_cpu(fs_fw->fw_ver), 3530 be32_to_cpu(card_fw->fw_ver))) { 3531 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3532 fw_size, 0); 3533 if (ret != 0) { 3534 dev_err(adap->pdev_dev, 3535 "failed to install firmware: %d\n", ret); 3536 goto bye; 3537 } 3538 3539 /* Installed successfully, update the cached header too. */ 3540 *card_fw = *fs_fw; 3541 card_fw_usable = 1; 3542 *reset = 0; /* already reset as part of load_fw */ 3543 } 3544 3545 if (!card_fw_usable) { 3546 uint32_t d, c, k; 3547 3548 d = be32_to_cpu(drv_fw->fw_ver); 3549 c = be32_to_cpu(card_fw->fw_ver); 3550 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3551 3552 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3553 "chip state %d, " 3554 "driver compiled with %d.%d.%d.%d, " 3555 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3556 state, 3557 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3558 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3559 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3560 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3561 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3562 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3563 ret = EINVAL; 3564 goto bye; 3565 } 3566 3567 /* We're using whatever's on the card and it's known to be good. */ 3568 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3569 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3570 3571 bye: 3572 return ret; 3573 } 3574 3575 /** 3576 * t4_flash_erase_sectors - erase a range of flash sectors 3577 * @adapter: the adapter 3578 * @start: the first sector to erase 3579 * @end: the last sector to erase 3580 * 3581 * Erases the sectors in the given inclusive range. 3582 */ 3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3584 { 3585 int ret = 0; 3586 3587 if (end >= adapter->params.sf_nsec) 3588 return -EINVAL; 3589 3590 while (start <= end) { 3591 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3592 (ret = sf1_write(adapter, 4, 0, 1, 3593 SF_ERASE_SECTOR | (start << 8))) != 0 || 3594 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3595 dev_err(adapter->pdev_dev, 3596 "erase of flash sector %d failed, error %d\n", 3597 start, ret); 3598 break; 3599 } 3600 start++; 3601 } 3602 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3603 return ret; 3604 } 3605 3606 /** 3607 * t4_flash_cfg_addr - return the address of the flash configuration file 3608 * @adapter: the adapter 3609 * 3610 * Return the address within the flash where the Firmware Configuration 3611 * File is stored. 3612 */ 3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3614 { 3615 if (adapter->params.sf_size == 0x100000) 3616 return FLASH_FPGA_CFG_START; 3617 else 3618 return FLASH_CFG_START; 3619 } 3620 3621 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3622 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3623 * and emit an error message for mismatched firmware to save our caller the 3624 * effort ... 3625 */ 3626 static bool t4_fw_matches_chip(const struct adapter *adap, 3627 const struct fw_hdr *hdr) 3628 { 3629 /* The expression below will return FALSE for any unsupported adapter 3630 * which will keep us "honest" in the future ... 3631 */ 3632 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3633 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3634 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3635 return true; 3636 3637 dev_err(adap->pdev_dev, 3638 "FW image (%d) is not suitable for this adapter (%d)\n", 3639 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3640 return false; 3641 } 3642 3643 /** 3644 * t4_load_fw - download firmware 3645 * @adap: the adapter 3646 * @fw_data: the firmware image to write 3647 * @size: image size 3648 * 3649 * Write the supplied firmware image to the card's serial flash. 3650 */ 3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3652 { 3653 u32 csum; 3654 int ret, addr; 3655 unsigned int i; 3656 u8 first_page[SF_PAGE_SIZE]; 3657 const __be32 *p = (const __be32 *)fw_data; 3658 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3659 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3660 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3661 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3662 unsigned int fw_start = FLASH_FW_START; 3663 3664 if (!size) { 3665 dev_err(adap->pdev_dev, "FW image has no data\n"); 3666 return -EINVAL; 3667 } 3668 if (size & 511) { 3669 dev_err(adap->pdev_dev, 3670 "FW image size not multiple of 512 bytes\n"); 3671 return -EINVAL; 3672 } 3673 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3674 dev_err(adap->pdev_dev, 3675 "FW image size differs from size in FW header\n"); 3676 return -EINVAL; 3677 } 3678 if (size > fw_size) { 3679 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3680 fw_size); 3681 return -EFBIG; 3682 } 3683 if (!t4_fw_matches_chip(adap, hdr)) 3684 return -EINVAL; 3685 3686 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3687 csum += be32_to_cpu(p[i]); 3688 3689 if (csum != 0xffffffff) { 3690 dev_err(adap->pdev_dev, 3691 "corrupted firmware image, checksum %#x\n", csum); 3692 return -EINVAL; 3693 } 3694 3695 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3696 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3697 if (ret) 3698 goto out; 3699 3700 /* 3701 * We write the correct version at the end so the driver can see a bad 3702 * version if the FW write fails. Start by writing a copy of the 3703 * first page with a bad version. 3704 */ 3705 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3706 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3707 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3708 if (ret) 3709 goto out; 3710 3711 addr = fw_start; 3712 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3713 addr += SF_PAGE_SIZE; 3714 fw_data += SF_PAGE_SIZE; 3715 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3716 if (ret) 3717 goto out; 3718 } 3719 3720 ret = t4_write_flash(adap, 3721 fw_start + offsetof(struct fw_hdr, fw_ver), 3722 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3723 out: 3724 if (ret) 3725 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3726 ret); 3727 else 3728 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3729 return ret; 3730 } 3731 3732 /** 3733 * t4_phy_fw_ver - return current PHY firmware version 3734 * @adap: the adapter 3735 * @phy_fw_ver: return value buffer for PHY firmware version 3736 * 3737 * Returns the current version of external PHY firmware on the 3738 * adapter. 3739 */ 3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3741 { 3742 u32 param, val; 3743 int ret; 3744 3745 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3746 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3747 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3748 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3749 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3750 ¶m, &val); 3751 if (ret < 0) 3752 return ret; 3753 *phy_fw_ver = val; 3754 return 0; 3755 } 3756 3757 /** 3758 * t4_load_phy_fw - download port PHY firmware 3759 * @adap: the adapter 3760 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3761 * @win_lock: the lock to use to guard the memory copy 3762 * @phy_fw_version: function to check PHY firmware versions 3763 * @phy_fw_data: the PHY firmware image to write 3764 * @phy_fw_size: image size 3765 * 3766 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3767 * @phy_fw_version is supplied, then it will be used to determine if 3768 * it's necessary to perform the transfer by comparing the version 3769 * of any existing adapter PHY firmware with that of the passed in 3770 * PHY firmware image. If @win_lock is non-NULL then it will be used 3771 * around the call to t4_memory_rw() which transfers the PHY firmware 3772 * to the adapter. 3773 * 3774 * A negative error number will be returned if an error occurs. If 3775 * version number support is available and there's no need to upgrade 3776 * the firmware, 0 will be returned. If firmware is successfully 3777 * transferred to the adapter, 1 will be retured. 3778 * 3779 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3780 * a result, a RESET of the adapter would cause that RAM to lose its 3781 * contents. Thus, loading PHY firmware on such adapters must happen 3782 * after any FW_RESET_CMDs ... 3783 */ 3784 int t4_load_phy_fw(struct adapter *adap, 3785 int win, spinlock_t *win_lock, 3786 int (*phy_fw_version)(const u8 *, size_t), 3787 const u8 *phy_fw_data, size_t phy_fw_size) 3788 { 3789 unsigned long mtype = 0, maddr = 0; 3790 u32 param, val; 3791 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3792 int ret; 3793 3794 /* If we have version number support, then check to see if the adapter 3795 * already has up-to-date PHY firmware loaded. 3796 */ 3797 if (phy_fw_version) { 3798 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3799 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3800 if (ret < 0) 3801 return ret; 3802 3803 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3804 CH_WARN(adap, "PHY Firmware already up-to-date, " 3805 "version %#x\n", cur_phy_fw_ver); 3806 return 0; 3807 } 3808 } 3809 3810 /* Ask the firmware where it wants us to copy the PHY firmware image. 3811 * The size of the file requires a special version of the READ coommand 3812 * which will pass the file size via the values field in PARAMS_CMD and 3813 * retrieve the return value from firmware and place it in the same 3814 * buffer values 3815 */ 3816 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3817 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3818 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3819 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3820 val = phy_fw_size; 3821 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3822 ¶m, &val, 1, true); 3823 if (ret < 0) 3824 return ret; 3825 mtype = val >> 8; 3826 maddr = (val & 0xff) << 16; 3827 3828 /* Copy the supplied PHY Firmware image to the adapter memory location 3829 * allocated by the adapter firmware. 3830 */ 3831 if (win_lock) 3832 spin_lock_bh(win_lock); 3833 ret = t4_memory_rw(adap, win, mtype, maddr, 3834 phy_fw_size, (__be32 *)phy_fw_data, 3835 T4_MEMORY_WRITE); 3836 if (win_lock) 3837 spin_unlock_bh(win_lock); 3838 if (ret) 3839 return ret; 3840 3841 /* Tell the firmware that the PHY firmware image has been written to 3842 * RAM and it can now start copying it over to the PHYs. The chip 3843 * firmware will RESET the affected PHYs as part of this operation 3844 * leaving them running the new PHY firmware image. 3845 */ 3846 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3847 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3848 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3849 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3850 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3851 ¶m, &val, 30000); 3852 3853 /* If we have version number support, then check to see that the new 3854 * firmware got loaded properly. 3855 */ 3856 if (phy_fw_version) { 3857 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3858 if (ret < 0) 3859 return ret; 3860 3861 if (cur_phy_fw_ver != new_phy_fw_vers) { 3862 CH_WARN(adap, "PHY Firmware did not update: " 3863 "version on adapter %#x, " 3864 "version flashed %#x\n", 3865 cur_phy_fw_ver, new_phy_fw_vers); 3866 return -ENXIO; 3867 } 3868 } 3869 3870 return 1; 3871 } 3872 3873 /** 3874 * t4_fwcache - firmware cache operation 3875 * @adap: the adapter 3876 * @op : the operation (flush or flush and invalidate) 3877 */ 3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3879 { 3880 struct fw_params_cmd c; 3881 3882 memset(&c, 0, sizeof(c)); 3883 c.op_to_vfn = 3884 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3885 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3886 FW_PARAMS_CMD_PFN_V(adap->pf) | 3887 FW_PARAMS_CMD_VFN_V(0)); 3888 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3889 c.param[0].mnem = 3890 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3891 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3892 c.param[0].val = cpu_to_be32(op); 3893 3894 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3895 } 3896 3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3898 unsigned int *pif_req_wrptr, 3899 unsigned int *pif_rsp_wrptr) 3900 { 3901 int i, j; 3902 u32 cfg, val, req, rsp; 3903 3904 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3905 if (cfg & LADBGEN_F) 3906 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3907 3908 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3909 req = POLADBGWRPTR_G(val); 3910 rsp = PILADBGWRPTR_G(val); 3911 if (pif_req_wrptr) 3912 *pif_req_wrptr = req; 3913 if (pif_rsp_wrptr) 3914 *pif_rsp_wrptr = rsp; 3915 3916 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3917 for (j = 0; j < 6; j++) { 3918 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3919 PILADBGRDPTR_V(rsp)); 3920 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3921 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3922 req++; 3923 rsp++; 3924 } 3925 req = (req + 2) & POLADBGRDPTR_M; 3926 rsp = (rsp + 2) & PILADBGRDPTR_M; 3927 } 3928 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3929 } 3930 3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3932 { 3933 u32 cfg; 3934 int i, j, idx; 3935 3936 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3937 if (cfg & LADBGEN_F) 3938 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3939 3940 for (i = 0; i < CIM_MALA_SIZE; i++) { 3941 for (j = 0; j < 5; j++) { 3942 idx = 8 * i + j; 3943 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3944 PILADBGRDPTR_V(idx)); 3945 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3946 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3947 } 3948 } 3949 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3950 } 3951 3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3953 { 3954 unsigned int i, j; 3955 3956 for (i = 0; i < 8; i++) { 3957 u32 *p = la_buf + i; 3958 3959 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3960 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3961 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3962 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3963 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3964 } 3965 } 3966 3967 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3968 FW_PORT_CAP32_ANEG) 3969 3970 /** 3971 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3972 * @caps16: a 16-bit Port Capabilities value 3973 * 3974 * Returns the equivalent 32-bit Port Capabilities value. 3975 */ 3976 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3977 { 3978 fw_port_cap32_t caps32 = 0; 3979 3980 #define CAP16_TO_CAP32(__cap) \ 3981 do { \ 3982 if (caps16 & FW_PORT_CAP_##__cap) \ 3983 caps32 |= FW_PORT_CAP32_##__cap; \ 3984 } while (0) 3985 3986 CAP16_TO_CAP32(SPEED_100M); 3987 CAP16_TO_CAP32(SPEED_1G); 3988 CAP16_TO_CAP32(SPEED_25G); 3989 CAP16_TO_CAP32(SPEED_10G); 3990 CAP16_TO_CAP32(SPEED_40G); 3991 CAP16_TO_CAP32(SPEED_100G); 3992 CAP16_TO_CAP32(FC_RX); 3993 CAP16_TO_CAP32(FC_TX); 3994 CAP16_TO_CAP32(ANEG); 3995 CAP16_TO_CAP32(FORCE_PAUSE); 3996 CAP16_TO_CAP32(MDIAUTO); 3997 CAP16_TO_CAP32(MDISTRAIGHT); 3998 CAP16_TO_CAP32(FEC_RS); 3999 CAP16_TO_CAP32(FEC_BASER_RS); 4000 CAP16_TO_CAP32(802_3_PAUSE); 4001 CAP16_TO_CAP32(802_3_ASM_DIR); 4002 4003 #undef CAP16_TO_CAP32 4004 4005 return caps32; 4006 } 4007 4008 /** 4009 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 4010 * @caps32: a 32-bit Port Capabilities value 4011 * 4012 * Returns the equivalent 16-bit Port Capabilities value. Note that 4013 * not all 32-bit Port Capabilities can be represented in the 16-bit 4014 * Port Capabilities and some fields/values may not make it. 4015 */ 4016 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4017 { 4018 fw_port_cap16_t caps16 = 0; 4019 4020 #define CAP32_TO_CAP16(__cap) \ 4021 do { \ 4022 if (caps32 & FW_PORT_CAP32_##__cap) \ 4023 caps16 |= FW_PORT_CAP_##__cap; \ 4024 } while (0) 4025 4026 CAP32_TO_CAP16(SPEED_100M); 4027 CAP32_TO_CAP16(SPEED_1G); 4028 CAP32_TO_CAP16(SPEED_10G); 4029 CAP32_TO_CAP16(SPEED_25G); 4030 CAP32_TO_CAP16(SPEED_40G); 4031 CAP32_TO_CAP16(SPEED_100G); 4032 CAP32_TO_CAP16(FC_RX); 4033 CAP32_TO_CAP16(FC_TX); 4034 CAP32_TO_CAP16(802_3_PAUSE); 4035 CAP32_TO_CAP16(802_3_ASM_DIR); 4036 CAP32_TO_CAP16(ANEG); 4037 CAP32_TO_CAP16(FORCE_PAUSE); 4038 CAP32_TO_CAP16(MDIAUTO); 4039 CAP32_TO_CAP16(MDISTRAIGHT); 4040 CAP32_TO_CAP16(FEC_RS); 4041 CAP32_TO_CAP16(FEC_BASER_RS); 4042 4043 #undef CAP32_TO_CAP16 4044 4045 return caps16; 4046 } 4047 4048 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4049 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4050 { 4051 enum cc_pause cc_pause = 0; 4052 4053 if (fw_pause & FW_PORT_CAP32_FC_RX) 4054 cc_pause |= PAUSE_RX; 4055 if (fw_pause & FW_PORT_CAP32_FC_TX) 4056 cc_pause |= PAUSE_TX; 4057 4058 return cc_pause; 4059 } 4060 4061 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4062 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4063 { 4064 fw_port_cap32_t fw_pause = 0; 4065 4066 if (cc_pause & PAUSE_RX) 4067 fw_pause |= FW_PORT_CAP32_FC_RX; 4068 if (cc_pause & PAUSE_TX) 4069 fw_pause |= FW_PORT_CAP32_FC_TX; 4070 if (!(cc_pause & PAUSE_AUTONEG)) 4071 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4072 4073 return fw_pause; 4074 } 4075 4076 /* Translate Firmware Forward Error Correction specification to Common Code */ 4077 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4078 { 4079 enum cc_fec cc_fec = 0; 4080 4081 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4082 cc_fec |= FEC_RS; 4083 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4084 cc_fec |= FEC_BASER_RS; 4085 4086 return cc_fec; 4087 } 4088 4089 /* Translate Common Code Forward Error Correction specification to Firmware */ 4090 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4091 { 4092 fw_port_cap32_t fw_fec = 0; 4093 4094 if (cc_fec & FEC_RS) 4095 fw_fec |= FW_PORT_CAP32_FEC_RS; 4096 if (cc_fec & FEC_BASER_RS) 4097 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4098 4099 return fw_fec; 4100 } 4101 4102 /** 4103 * t4_link_l1cfg - apply link configuration to MAC/PHY 4104 * @adapter: the adapter 4105 * @mbox: the Firmware Mailbox to use 4106 * @port: the Port ID 4107 * @lc: the Port's Link Configuration 4108 * 4109 * Set up a port's MAC and PHY according to a desired link configuration. 4110 * - If the PHY can auto-negotiate first decide what to advertise, then 4111 * enable/disable auto-negotiation as desired, and reset. 4112 * - If the PHY does not auto-negotiate just reset it. 4113 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4114 * otherwise do it later based on the outcome of auto-negotiation. 4115 */ 4116 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4117 unsigned int port, struct link_config *lc, 4118 bool sleep_ok, int timeout) 4119 { 4120 unsigned int fw_caps = adapter->params.fw_caps_support; 4121 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 4122 struct fw_port_cmd cmd; 4123 unsigned int fw_mdi; 4124 int ret; 4125 4126 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4127 /* Convert driver coding of Pause Frame Flow Control settings into the 4128 * Firmware's API. 4129 */ 4130 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4131 4132 /* Convert Common Code Forward Error Control settings into the 4133 * Firmware's API. If the current Requested FEC has "Automatic" 4134 * (IEEE 802.3) specified, then we use whatever the Firmware 4135 * sent us as part of it's IEEE 802.3-based interpratation of 4136 * the Transceiver Module EPROM FEC parameters. Otherwise we 4137 * use whatever is in the current Requested FEC settings. 4138 */ 4139 if (lc->requested_fec & FEC_AUTO) 4140 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4141 else 4142 cc_fec = lc->requested_fec; 4143 fw_fec = cc_to_fwcap_fec(cc_fec); 4144 4145 /* Figure out what our Requested Port Capabilities are going to be. 4146 */ 4147 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4148 rcap = lc->acaps | fw_fc | fw_fec; 4149 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4150 lc->fec = cc_fec; 4151 } else if (lc->autoneg == AUTONEG_DISABLE) { 4152 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4153 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4154 lc->fec = cc_fec; 4155 } else { 4156 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4157 } 4158 4159 /* Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4160 * we need to exclude this from this check in order to maintain 4161 * compatibility ... 4162 */ 4163 if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4164 dev_err(adapter->pdev_dev, 4165 "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4166 rcap, lc->pcaps); 4167 return -EINVAL; 4168 } 4169 4170 /* And send that on to the Firmware ... 4171 */ 4172 memset(&cmd, 0, sizeof(cmd)); 4173 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4174 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4175 FW_PORT_CMD_PORTID_V(port)); 4176 cmd.action_to_len16 = 4177 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4178 ? FW_PORT_ACTION_L1_CFG 4179 : FW_PORT_ACTION_L1_CFG32) | 4180 FW_LEN16(cmd)); 4181 if (fw_caps == FW_CAPS16) 4182 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4183 else 4184 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4185 4186 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4187 sleep_ok, timeout); 4188 if (ret) { 4189 dev_err(adapter->pdev_dev, 4190 "Requested Port Capabilities %#x rejected, error %d\n", 4191 rcap, -ret); 4192 return ret; 4193 } 4194 return ret; 4195 } 4196 4197 /** 4198 * t4_restart_aneg - restart autonegotiation 4199 * @adap: the adapter 4200 * @mbox: mbox to use for the FW command 4201 * @port: the port id 4202 * 4203 * Restarts autonegotiation for the selected port. 4204 */ 4205 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4206 { 4207 unsigned int fw_caps = adap->params.fw_caps_support; 4208 struct fw_port_cmd c; 4209 4210 memset(&c, 0, sizeof(c)); 4211 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4212 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4213 FW_PORT_CMD_PORTID_V(port)); 4214 c.action_to_len16 = 4215 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4216 ? FW_PORT_ACTION_L1_CFG 4217 : FW_PORT_ACTION_L1_CFG32) | 4218 FW_LEN16(c)); 4219 if (fw_caps == FW_CAPS16) 4220 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4221 else 4222 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4223 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4224 } 4225 4226 typedef void (*int_handler_t)(struct adapter *adap); 4227 4228 struct intr_info { 4229 unsigned int mask; /* bits to check in interrupt status */ 4230 const char *msg; /* message to print or NULL */ 4231 short stat_idx; /* stat counter to increment or -1 */ 4232 unsigned short fatal; /* whether the condition reported is fatal */ 4233 int_handler_t int_handler; /* platform-specific int handler */ 4234 }; 4235 4236 /** 4237 * t4_handle_intr_status - table driven interrupt handler 4238 * @adapter: the adapter that generated the interrupt 4239 * @reg: the interrupt status register to process 4240 * @acts: table of interrupt actions 4241 * 4242 * A table driven interrupt handler that applies a set of masks to an 4243 * interrupt status word and performs the corresponding actions if the 4244 * interrupts described by the mask have occurred. The actions include 4245 * optionally emitting a warning or alert message. The table is terminated 4246 * by an entry specifying mask 0. Returns the number of fatal interrupt 4247 * conditions. 4248 */ 4249 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4250 const struct intr_info *acts) 4251 { 4252 int fatal = 0; 4253 unsigned int mask = 0; 4254 unsigned int status = t4_read_reg(adapter, reg); 4255 4256 for ( ; acts->mask; ++acts) { 4257 if (!(status & acts->mask)) 4258 continue; 4259 if (acts->fatal) { 4260 fatal++; 4261 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4262 status & acts->mask); 4263 } else if (acts->msg && printk_ratelimit()) 4264 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4265 status & acts->mask); 4266 if (acts->int_handler) 4267 acts->int_handler(adapter); 4268 mask |= acts->mask; 4269 } 4270 status &= mask; 4271 if (status) /* clear processed interrupts */ 4272 t4_write_reg(adapter, reg, status); 4273 return fatal; 4274 } 4275 4276 /* 4277 * Interrupt handler for the PCIE module. 4278 */ 4279 static void pcie_intr_handler(struct adapter *adapter) 4280 { 4281 static const struct intr_info sysbus_intr_info[] = { 4282 { RNPP_F, "RXNP array parity error", -1, 1 }, 4283 { RPCP_F, "RXPC array parity error", -1, 1 }, 4284 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4285 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4286 { RFTP_F, "RXFT array parity error", -1, 1 }, 4287 { 0 } 4288 }; 4289 static const struct intr_info pcie_port_intr_info[] = { 4290 { TPCP_F, "TXPC array parity error", -1, 1 }, 4291 { TNPP_F, "TXNP array parity error", -1, 1 }, 4292 { TFTP_F, "TXFT array parity error", -1, 1 }, 4293 { TCAP_F, "TXCA array parity error", -1, 1 }, 4294 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4295 { RCAP_F, "RXCA array parity error", -1, 1 }, 4296 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4297 { RDPE_F, "Rx data parity error", -1, 1 }, 4298 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4299 { 0 } 4300 }; 4301 static const struct intr_info pcie_intr_info[] = { 4302 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4303 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4304 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4305 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4306 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4307 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4308 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4309 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4310 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4311 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4312 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4313 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4314 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4315 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4316 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4317 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4318 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4319 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4320 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4321 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4322 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4323 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4324 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4325 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4326 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4327 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4328 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4329 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4330 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4331 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4332 -1, 0 }, 4333 { 0 } 4334 }; 4335 4336 static struct intr_info t5_pcie_intr_info[] = { 4337 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4338 -1, 1 }, 4339 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4340 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4341 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4342 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4343 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4344 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4345 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4346 -1, 1 }, 4347 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4348 -1, 1 }, 4349 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4350 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4351 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4352 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4353 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4354 -1, 1 }, 4355 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4356 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4357 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4358 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4359 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4360 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4361 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4362 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4363 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4364 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4365 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4366 -1, 1 }, 4367 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4368 -1, 1 }, 4369 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4370 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4371 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4372 { READRSPERR_F, "Outbound read error", -1, 0 }, 4373 { 0 } 4374 }; 4375 4376 int fat; 4377 4378 if (is_t4(adapter->params.chip)) 4379 fat = t4_handle_intr_status(adapter, 4380 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4381 sysbus_intr_info) + 4382 t4_handle_intr_status(adapter, 4383 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4384 pcie_port_intr_info) + 4385 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4386 pcie_intr_info); 4387 else 4388 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4389 t5_pcie_intr_info); 4390 4391 if (fat) 4392 t4_fatal_err(adapter); 4393 } 4394 4395 /* 4396 * TP interrupt handler. 4397 */ 4398 static void tp_intr_handler(struct adapter *adapter) 4399 { 4400 static const struct intr_info tp_intr_info[] = { 4401 { 0x3fffffff, "TP parity error", -1, 1 }, 4402 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4403 { 0 } 4404 }; 4405 4406 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4407 t4_fatal_err(adapter); 4408 } 4409 4410 /* 4411 * SGE interrupt handler. 4412 */ 4413 static void sge_intr_handler(struct adapter *adapter) 4414 { 4415 u64 v; 4416 u32 err; 4417 4418 static const struct intr_info sge_intr_info[] = { 4419 { ERR_CPL_EXCEED_IQE_SIZE_F, 4420 "SGE received CPL exceeding IQE size", -1, 1 }, 4421 { ERR_INVALID_CIDX_INC_F, 4422 "SGE GTS CIDX increment too large", -1, 0 }, 4423 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4424 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4425 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4426 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4427 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4428 0 }, 4429 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4430 0 }, 4431 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4432 0 }, 4433 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4434 0 }, 4435 { ERR_ING_CTXT_PRIO_F, 4436 "SGE too many priority ingress contexts", -1, 0 }, 4437 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4438 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4439 { 0 } 4440 }; 4441 4442 static struct intr_info t4t5_sge_intr_info[] = { 4443 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4444 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4445 { ERR_EGR_CTXT_PRIO_F, 4446 "SGE too many priority egress contexts", -1, 0 }, 4447 { 0 } 4448 }; 4449 4450 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4451 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4452 if (v) { 4453 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4454 (unsigned long long)v); 4455 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4456 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4457 } 4458 4459 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4460 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4461 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4462 t4t5_sge_intr_info); 4463 4464 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4465 if (err & ERROR_QID_VALID_F) { 4466 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4467 ERROR_QID_G(err)); 4468 if (err & UNCAPTURED_ERROR_F) 4469 dev_err(adapter->pdev_dev, 4470 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4471 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4472 UNCAPTURED_ERROR_F); 4473 } 4474 4475 if (v != 0) 4476 t4_fatal_err(adapter); 4477 } 4478 4479 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4480 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4481 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4482 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4483 4484 /* 4485 * CIM interrupt handler. 4486 */ 4487 static void cim_intr_handler(struct adapter *adapter) 4488 { 4489 static const struct intr_info cim_intr_info[] = { 4490 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4491 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4492 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4493 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4494 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4495 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4496 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4497 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4498 { 0 } 4499 }; 4500 static const struct intr_info cim_upintr_info[] = { 4501 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4502 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4503 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4504 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4505 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4506 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4507 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4508 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4509 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4510 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4511 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4512 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4513 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4514 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4515 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4516 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4517 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4518 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4519 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4520 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4521 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4522 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4523 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4524 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4525 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4526 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4527 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4528 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4529 { 0 } 4530 }; 4531 4532 u32 val, fw_err; 4533 int fat; 4534 4535 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4536 if (fw_err & PCIE_FW_ERR_F) 4537 t4_report_fw_error(adapter); 4538 4539 /* When the Firmware detects an internal error which normally 4540 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4541 * in order to make sure the Host sees the Firmware Crash. So 4542 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4543 * ignore the Timer0 interrupt. 4544 */ 4545 4546 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4547 if (val & TIMER0INT_F) 4548 if (!(fw_err & PCIE_FW_ERR_F) || 4549 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4550 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4551 TIMER0INT_F); 4552 4553 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4554 cim_intr_info) + 4555 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4556 cim_upintr_info); 4557 if (fat) 4558 t4_fatal_err(adapter); 4559 } 4560 4561 /* 4562 * ULP RX interrupt handler. 4563 */ 4564 static void ulprx_intr_handler(struct adapter *adapter) 4565 { 4566 static const struct intr_info ulprx_intr_info[] = { 4567 { 0x1800000, "ULPRX context error", -1, 1 }, 4568 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4569 { 0 } 4570 }; 4571 4572 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4573 t4_fatal_err(adapter); 4574 } 4575 4576 /* 4577 * ULP TX interrupt handler. 4578 */ 4579 static void ulptx_intr_handler(struct adapter *adapter) 4580 { 4581 static const struct intr_info ulptx_intr_info[] = { 4582 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4583 0 }, 4584 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4585 0 }, 4586 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4587 0 }, 4588 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4589 0 }, 4590 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4591 { 0 } 4592 }; 4593 4594 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4595 t4_fatal_err(adapter); 4596 } 4597 4598 /* 4599 * PM TX interrupt handler. 4600 */ 4601 static void pmtx_intr_handler(struct adapter *adapter) 4602 { 4603 static const struct intr_info pmtx_intr_info[] = { 4604 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4605 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4606 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4607 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4608 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4609 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4610 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4611 -1, 1 }, 4612 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4613 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4614 { 0 } 4615 }; 4616 4617 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4618 t4_fatal_err(adapter); 4619 } 4620 4621 /* 4622 * PM RX interrupt handler. 4623 */ 4624 static void pmrx_intr_handler(struct adapter *adapter) 4625 { 4626 static const struct intr_info pmrx_intr_info[] = { 4627 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4628 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4629 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4630 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4631 -1, 1 }, 4632 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4633 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4634 { 0 } 4635 }; 4636 4637 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4638 t4_fatal_err(adapter); 4639 } 4640 4641 /* 4642 * CPL switch interrupt handler. 4643 */ 4644 static void cplsw_intr_handler(struct adapter *adapter) 4645 { 4646 static const struct intr_info cplsw_intr_info[] = { 4647 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4648 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4649 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4650 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4651 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4652 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4653 { 0 } 4654 }; 4655 4656 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4657 t4_fatal_err(adapter); 4658 } 4659 4660 /* 4661 * LE interrupt handler. 4662 */ 4663 static void le_intr_handler(struct adapter *adap) 4664 { 4665 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4666 static const struct intr_info le_intr_info[] = { 4667 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4668 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4669 { PARITYERR_F, "LE parity error", -1, 1 }, 4670 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4671 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4672 { 0 } 4673 }; 4674 4675 static struct intr_info t6_le_intr_info[] = { 4676 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4677 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4678 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4679 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4680 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4681 { 0 } 4682 }; 4683 4684 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4685 (chip <= CHELSIO_T5) ? 4686 le_intr_info : t6_le_intr_info)) 4687 t4_fatal_err(adap); 4688 } 4689 4690 /* 4691 * MPS interrupt handler. 4692 */ 4693 static void mps_intr_handler(struct adapter *adapter) 4694 { 4695 static const struct intr_info mps_rx_intr_info[] = { 4696 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4697 { 0 } 4698 }; 4699 static const struct intr_info mps_tx_intr_info[] = { 4700 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4701 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4702 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4703 -1, 1 }, 4704 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4705 -1, 1 }, 4706 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4707 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4708 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4709 { 0 } 4710 }; 4711 static const struct intr_info t6_mps_tx_intr_info[] = { 4712 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4713 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4714 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4715 -1, 1 }, 4716 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4717 -1, 1 }, 4718 /* MPS Tx Bubble is normal for T6 */ 4719 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4720 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4721 { 0 } 4722 }; 4723 static const struct intr_info mps_trc_intr_info[] = { 4724 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4725 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4726 -1, 1 }, 4727 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4728 { 0 } 4729 }; 4730 static const struct intr_info mps_stat_sram_intr_info[] = { 4731 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4732 { 0 } 4733 }; 4734 static const struct intr_info mps_stat_tx_intr_info[] = { 4735 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4736 { 0 } 4737 }; 4738 static const struct intr_info mps_stat_rx_intr_info[] = { 4739 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4740 { 0 } 4741 }; 4742 static const struct intr_info mps_cls_intr_info[] = { 4743 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4744 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4745 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4746 { 0 } 4747 }; 4748 4749 int fat; 4750 4751 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4752 mps_rx_intr_info) + 4753 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4754 is_t6(adapter->params.chip) 4755 ? t6_mps_tx_intr_info 4756 : mps_tx_intr_info) + 4757 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4758 mps_trc_intr_info) + 4759 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4760 mps_stat_sram_intr_info) + 4761 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4762 mps_stat_tx_intr_info) + 4763 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4764 mps_stat_rx_intr_info) + 4765 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4766 mps_cls_intr_info); 4767 4768 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4769 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4770 if (fat) 4771 t4_fatal_err(adapter); 4772 } 4773 4774 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4775 ECC_UE_INT_CAUSE_F) 4776 4777 /* 4778 * EDC/MC interrupt handler. 4779 */ 4780 static void mem_intr_handler(struct adapter *adapter, int idx) 4781 { 4782 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4783 4784 unsigned int addr, cnt_addr, v; 4785 4786 if (idx <= MEM_EDC1) { 4787 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4788 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4789 } else if (idx == MEM_MC) { 4790 if (is_t4(adapter->params.chip)) { 4791 addr = MC_INT_CAUSE_A; 4792 cnt_addr = MC_ECC_STATUS_A; 4793 } else { 4794 addr = MC_P_INT_CAUSE_A; 4795 cnt_addr = MC_P_ECC_STATUS_A; 4796 } 4797 } else { 4798 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4799 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4800 } 4801 4802 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4803 if (v & PERR_INT_CAUSE_F) 4804 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4805 name[idx]); 4806 if (v & ECC_CE_INT_CAUSE_F) { 4807 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4808 4809 t4_edc_err_read(adapter, idx); 4810 4811 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4812 if (printk_ratelimit()) 4813 dev_warn(adapter->pdev_dev, 4814 "%u %s correctable ECC data error%s\n", 4815 cnt, name[idx], cnt > 1 ? "s" : ""); 4816 } 4817 if (v & ECC_UE_INT_CAUSE_F) 4818 dev_alert(adapter->pdev_dev, 4819 "%s uncorrectable ECC data error\n", name[idx]); 4820 4821 t4_write_reg(adapter, addr, v); 4822 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4823 t4_fatal_err(adapter); 4824 } 4825 4826 /* 4827 * MA interrupt handler. 4828 */ 4829 static void ma_intr_handler(struct adapter *adap) 4830 { 4831 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4832 4833 if (status & MEM_PERR_INT_CAUSE_F) { 4834 dev_alert(adap->pdev_dev, 4835 "MA parity error, parity status %#x\n", 4836 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4837 if (is_t5(adap->params.chip)) 4838 dev_alert(adap->pdev_dev, 4839 "MA parity error, parity status %#x\n", 4840 t4_read_reg(adap, 4841 MA_PARITY_ERROR_STATUS2_A)); 4842 } 4843 if (status & MEM_WRAP_INT_CAUSE_F) { 4844 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4845 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4846 "client %u to address %#x\n", 4847 MEM_WRAP_CLIENT_NUM_G(v), 4848 MEM_WRAP_ADDRESS_G(v) << 4); 4849 } 4850 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4851 t4_fatal_err(adap); 4852 } 4853 4854 /* 4855 * SMB interrupt handler. 4856 */ 4857 static void smb_intr_handler(struct adapter *adap) 4858 { 4859 static const struct intr_info smb_intr_info[] = { 4860 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4861 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4862 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4863 { 0 } 4864 }; 4865 4866 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4867 t4_fatal_err(adap); 4868 } 4869 4870 /* 4871 * NC-SI interrupt handler. 4872 */ 4873 static void ncsi_intr_handler(struct adapter *adap) 4874 { 4875 static const struct intr_info ncsi_intr_info[] = { 4876 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4877 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4878 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4879 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4880 { 0 } 4881 }; 4882 4883 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4884 t4_fatal_err(adap); 4885 } 4886 4887 /* 4888 * XGMAC interrupt handler. 4889 */ 4890 static void xgmac_intr_handler(struct adapter *adap, int port) 4891 { 4892 u32 v, int_cause_reg; 4893 4894 if (is_t4(adap->params.chip)) 4895 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4896 else 4897 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4898 4899 v = t4_read_reg(adap, int_cause_reg); 4900 4901 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4902 if (!v) 4903 return; 4904 4905 if (v & TXFIFO_PRTY_ERR_F) 4906 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4907 port); 4908 if (v & RXFIFO_PRTY_ERR_F) 4909 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4910 port); 4911 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4912 t4_fatal_err(adap); 4913 } 4914 4915 /* 4916 * PL interrupt handler. 4917 */ 4918 static void pl_intr_handler(struct adapter *adap) 4919 { 4920 static const struct intr_info pl_intr_info[] = { 4921 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4922 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4923 { 0 } 4924 }; 4925 4926 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4927 t4_fatal_err(adap); 4928 } 4929 4930 #define PF_INTR_MASK (PFSW_F) 4931 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4932 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4933 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4934 4935 /** 4936 * t4_slow_intr_handler - control path interrupt handler 4937 * @adapter: the adapter 4938 * 4939 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4940 * The designation 'slow' is because it involves register reads, while 4941 * data interrupts typically don't involve any MMIOs. 4942 */ 4943 int t4_slow_intr_handler(struct adapter *adapter) 4944 { 4945 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4946 4947 if (!(cause & GLBL_INTR_MASK)) 4948 return 0; 4949 if (cause & CIM_F) 4950 cim_intr_handler(adapter); 4951 if (cause & MPS_F) 4952 mps_intr_handler(adapter); 4953 if (cause & NCSI_F) 4954 ncsi_intr_handler(adapter); 4955 if (cause & PL_F) 4956 pl_intr_handler(adapter); 4957 if (cause & SMB_F) 4958 smb_intr_handler(adapter); 4959 if (cause & XGMAC0_F) 4960 xgmac_intr_handler(adapter, 0); 4961 if (cause & XGMAC1_F) 4962 xgmac_intr_handler(adapter, 1); 4963 if (cause & XGMAC_KR0_F) 4964 xgmac_intr_handler(adapter, 2); 4965 if (cause & XGMAC_KR1_F) 4966 xgmac_intr_handler(adapter, 3); 4967 if (cause & PCIE_F) 4968 pcie_intr_handler(adapter); 4969 if (cause & MC_F) 4970 mem_intr_handler(adapter, MEM_MC); 4971 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4972 mem_intr_handler(adapter, MEM_MC1); 4973 if (cause & EDC0_F) 4974 mem_intr_handler(adapter, MEM_EDC0); 4975 if (cause & EDC1_F) 4976 mem_intr_handler(adapter, MEM_EDC1); 4977 if (cause & LE_F) 4978 le_intr_handler(adapter); 4979 if (cause & TP_F) 4980 tp_intr_handler(adapter); 4981 if (cause & MA_F) 4982 ma_intr_handler(adapter); 4983 if (cause & PM_TX_F) 4984 pmtx_intr_handler(adapter); 4985 if (cause & PM_RX_F) 4986 pmrx_intr_handler(adapter); 4987 if (cause & ULP_RX_F) 4988 ulprx_intr_handler(adapter); 4989 if (cause & CPL_SWITCH_F) 4990 cplsw_intr_handler(adapter); 4991 if (cause & SGE_F) 4992 sge_intr_handler(adapter); 4993 if (cause & ULP_TX_F) 4994 ulptx_intr_handler(adapter); 4995 4996 /* Clear the interrupts just processed for which we are the master. */ 4997 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4998 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4999 return 1; 5000 } 5001 5002 /** 5003 * t4_intr_enable - enable interrupts 5004 * @adapter: the adapter whose interrupts should be enabled 5005 * 5006 * Enable PF-specific interrupts for the calling function and the top-level 5007 * interrupt concentrator for global interrupts. Interrupts are already 5008 * enabled at each module, here we just enable the roots of the interrupt 5009 * hierarchies. 5010 * 5011 * Note: this function should be called only when the driver manages 5012 * non PF-specific interrupts from the various HW modules. Only one PCI 5013 * function at a time should be doing this. 5014 */ 5015 void t4_intr_enable(struct adapter *adapter) 5016 { 5017 u32 val = 0; 5018 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5019 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5020 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5021 5022 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5023 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5024 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5025 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5026 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5027 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5028 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5029 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5030 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5031 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5032 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5033 } 5034 5035 /** 5036 * t4_intr_disable - disable interrupts 5037 * @adapter: the adapter whose interrupts should be disabled 5038 * 5039 * Disable interrupts. We only disable the top-level interrupt 5040 * concentrators. The caller must be a PCI function managing global 5041 * interrupts. 5042 */ 5043 void t4_intr_disable(struct adapter *adapter) 5044 { 5045 u32 whoami, pf; 5046 5047 if (pci_channel_offline(adapter->pdev)) 5048 return; 5049 5050 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5051 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5052 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5053 5054 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5055 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5056 } 5057 5058 unsigned int t4_chip_rss_size(struct adapter *adap) 5059 { 5060 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5061 return RSS_NENTRIES; 5062 else 5063 return T6_RSS_NENTRIES; 5064 } 5065 5066 /** 5067 * t4_config_rss_range - configure a portion of the RSS mapping table 5068 * @adapter: the adapter 5069 * @mbox: mbox to use for the FW command 5070 * @viid: virtual interface whose RSS subtable is to be written 5071 * @start: start entry in the table to write 5072 * @n: how many table entries to write 5073 * @rspq: values for the response queue lookup table 5074 * @nrspq: number of values in @rspq 5075 * 5076 * Programs the selected part of the VI's RSS mapping table with the 5077 * provided values. If @nrspq < @n the supplied values are used repeatedly 5078 * until the full table range is populated. 5079 * 5080 * The caller must ensure the values in @rspq are in the range allowed for 5081 * @viid. 5082 */ 5083 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5084 int start, int n, const u16 *rspq, unsigned int nrspq) 5085 { 5086 int ret; 5087 const u16 *rsp = rspq; 5088 const u16 *rsp_end = rspq + nrspq; 5089 struct fw_rss_ind_tbl_cmd cmd; 5090 5091 memset(&cmd, 0, sizeof(cmd)); 5092 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5093 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5094 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5095 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5096 5097 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5098 while (n > 0) { 5099 int nq = min(n, 32); 5100 __be32 *qp = &cmd.iq0_to_iq2; 5101 5102 cmd.niqid = cpu_to_be16(nq); 5103 cmd.startidx = cpu_to_be16(start); 5104 5105 start += nq; 5106 n -= nq; 5107 5108 while (nq > 0) { 5109 unsigned int v; 5110 5111 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5112 if (++rsp >= rsp_end) 5113 rsp = rspq; 5114 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5115 if (++rsp >= rsp_end) 5116 rsp = rspq; 5117 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5118 if (++rsp >= rsp_end) 5119 rsp = rspq; 5120 5121 *qp++ = cpu_to_be32(v); 5122 nq -= 3; 5123 } 5124 5125 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5126 if (ret) 5127 return ret; 5128 } 5129 return 0; 5130 } 5131 5132 /** 5133 * t4_config_glbl_rss - configure the global RSS mode 5134 * @adapter: the adapter 5135 * @mbox: mbox to use for the FW command 5136 * @mode: global RSS mode 5137 * @flags: mode-specific flags 5138 * 5139 * Sets the global RSS mode. 5140 */ 5141 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5142 unsigned int flags) 5143 { 5144 struct fw_rss_glb_config_cmd c; 5145 5146 memset(&c, 0, sizeof(c)); 5147 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5148 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5149 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5150 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5151 c.u.manual.mode_pkd = 5152 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5153 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5154 c.u.basicvirtual.mode_pkd = 5155 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5156 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5157 } else 5158 return -EINVAL; 5159 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5160 } 5161 5162 /** 5163 * t4_config_vi_rss - configure per VI RSS settings 5164 * @adapter: the adapter 5165 * @mbox: mbox to use for the FW command 5166 * @viid: the VI id 5167 * @flags: RSS flags 5168 * @defq: id of the default RSS queue for the VI. 5169 * 5170 * Configures VI-specific RSS properties. 5171 */ 5172 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5173 unsigned int flags, unsigned int defq) 5174 { 5175 struct fw_rss_vi_config_cmd c; 5176 5177 memset(&c, 0, sizeof(c)); 5178 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5179 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5180 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5181 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5182 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5183 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5184 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5185 } 5186 5187 /* Read an RSS table row */ 5188 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5189 { 5190 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5191 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5192 5, 0, val); 5193 } 5194 5195 /** 5196 * t4_read_rss - read the contents of the RSS mapping table 5197 * @adapter: the adapter 5198 * @map: holds the contents of the RSS mapping table 5199 * 5200 * Reads the contents of the RSS hash->queue mapping table. 5201 */ 5202 int t4_read_rss(struct adapter *adapter, u16 *map) 5203 { 5204 int i, ret, nentries; 5205 u32 val; 5206 5207 nentries = t4_chip_rss_size(adapter); 5208 for (i = 0; i < nentries / 2; ++i) { 5209 ret = rd_rss_row(adapter, i, &val); 5210 if (ret) 5211 return ret; 5212 *map++ = LKPTBLQUEUE0_G(val); 5213 *map++ = LKPTBLQUEUE1_G(val); 5214 } 5215 return 0; 5216 } 5217 5218 static unsigned int t4_use_ldst(struct adapter *adap) 5219 { 5220 return (adap->flags & FW_OK) && !adap->use_bd; 5221 } 5222 5223 /** 5224 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5225 * @adap: the adapter 5226 * @cmd: TP fw ldst address space type 5227 * @vals: where the indirect register values are stored/written 5228 * @nregs: how many indirect registers to read/write 5229 * @start_idx: index of first indirect register to read/write 5230 * @rw: Read (1) or Write (0) 5231 * @sleep_ok: if true we may sleep while awaiting command completion 5232 * 5233 * Access TP indirect registers through LDST 5234 */ 5235 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5236 unsigned int nregs, unsigned int start_index, 5237 unsigned int rw, bool sleep_ok) 5238 { 5239 int ret = 0; 5240 unsigned int i; 5241 struct fw_ldst_cmd c; 5242 5243 for (i = 0; i < nregs; i++) { 5244 memset(&c, 0, sizeof(c)); 5245 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5246 FW_CMD_REQUEST_F | 5247 (rw ? FW_CMD_READ_F : 5248 FW_CMD_WRITE_F) | 5249 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5250 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5251 5252 c.u.addrval.addr = cpu_to_be32(start_index + i); 5253 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5254 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5255 sleep_ok); 5256 if (ret) 5257 return ret; 5258 5259 if (rw) 5260 vals[i] = be32_to_cpu(c.u.addrval.val); 5261 } 5262 return 0; 5263 } 5264 5265 /** 5266 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5267 * @adap: the adapter 5268 * @reg_addr: Address Register 5269 * @reg_data: Data register 5270 * @buff: where the indirect register values are stored/written 5271 * @nregs: how many indirect registers to read/write 5272 * @start_index: index of first indirect register to read/write 5273 * @rw: READ(1) or WRITE(0) 5274 * @sleep_ok: if true we may sleep while awaiting command completion 5275 * 5276 * Read/Write TP indirect registers through LDST if possible. 5277 * Else, use backdoor access 5278 **/ 5279 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5280 u32 *buff, u32 nregs, u32 start_index, int rw, 5281 bool sleep_ok) 5282 { 5283 int rc = -EINVAL; 5284 int cmd; 5285 5286 switch (reg_addr) { 5287 case TP_PIO_ADDR_A: 5288 cmd = FW_LDST_ADDRSPC_TP_PIO; 5289 break; 5290 case TP_TM_PIO_ADDR_A: 5291 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5292 break; 5293 case TP_MIB_INDEX_A: 5294 cmd = FW_LDST_ADDRSPC_TP_MIB; 5295 break; 5296 default: 5297 goto indirect_access; 5298 } 5299 5300 if (t4_use_ldst(adap)) 5301 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5302 sleep_ok); 5303 5304 indirect_access: 5305 5306 if (rc) { 5307 if (rw) 5308 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5309 start_index); 5310 else 5311 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5312 start_index); 5313 } 5314 } 5315 5316 /** 5317 * t4_tp_pio_read - Read TP PIO registers 5318 * @adap: the adapter 5319 * @buff: where the indirect register values are written 5320 * @nregs: how many indirect registers to read 5321 * @start_index: index of first indirect register to read 5322 * @sleep_ok: if true we may sleep while awaiting command completion 5323 * 5324 * Read TP PIO Registers 5325 **/ 5326 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5327 u32 start_index, bool sleep_ok) 5328 { 5329 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5330 start_index, 1, sleep_ok); 5331 } 5332 5333 /** 5334 * t4_tp_pio_write - Write TP PIO registers 5335 * @adap: the adapter 5336 * @buff: where the indirect register values are stored 5337 * @nregs: how many indirect registers to write 5338 * @start_index: index of first indirect register to write 5339 * @sleep_ok: if true we may sleep while awaiting command completion 5340 * 5341 * Write TP PIO Registers 5342 **/ 5343 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5344 u32 start_index, bool sleep_ok) 5345 { 5346 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5347 start_index, 0, sleep_ok); 5348 } 5349 5350 /** 5351 * t4_tp_tm_pio_read - Read TP TM PIO registers 5352 * @adap: the adapter 5353 * @buff: where the indirect register values are written 5354 * @nregs: how many indirect registers to read 5355 * @start_index: index of first indirect register to read 5356 * @sleep_ok: if true we may sleep while awaiting command completion 5357 * 5358 * Read TP TM PIO Registers 5359 **/ 5360 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5361 u32 start_index, bool sleep_ok) 5362 { 5363 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5364 nregs, start_index, 1, sleep_ok); 5365 } 5366 5367 /** 5368 * t4_tp_mib_read - Read TP MIB registers 5369 * @adap: the adapter 5370 * @buff: where the indirect register values are written 5371 * @nregs: how many indirect registers to read 5372 * @start_index: index of first indirect register to read 5373 * @sleep_ok: if true we may sleep while awaiting command completion 5374 * 5375 * Read TP MIB Registers 5376 **/ 5377 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5378 bool sleep_ok) 5379 { 5380 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5381 start_index, 1, sleep_ok); 5382 } 5383 5384 /** 5385 * t4_read_rss_key - read the global RSS key 5386 * @adap: the adapter 5387 * @key: 10-entry array holding the 320-bit RSS key 5388 * @sleep_ok: if true we may sleep while awaiting command completion 5389 * 5390 * Reads the global 320-bit RSS key. 5391 */ 5392 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5393 { 5394 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5395 } 5396 5397 /** 5398 * t4_write_rss_key - program one of the RSS keys 5399 * @adap: the adapter 5400 * @key: 10-entry array holding the 320-bit RSS key 5401 * @idx: which RSS key to write 5402 * @sleep_ok: if true we may sleep while awaiting command completion 5403 * 5404 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5405 * 0..15 the corresponding entry in the RSS key table is written, 5406 * otherwise the global RSS key is written. 5407 */ 5408 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5409 bool sleep_ok) 5410 { 5411 u8 rss_key_addr_cnt = 16; 5412 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5413 5414 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5415 * allows access to key addresses 16-63 by using KeyWrAddrX 5416 * as index[5:4](upper 2) into key table 5417 */ 5418 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5419 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5420 rss_key_addr_cnt = 32; 5421 5422 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5423 5424 if (idx >= 0 && idx < rss_key_addr_cnt) { 5425 if (rss_key_addr_cnt > 16) 5426 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5427 KEYWRADDRX_V(idx >> 4) | 5428 T6_VFWRADDR_V(idx) | KEYWREN_F); 5429 else 5430 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5431 KEYWRADDR_V(idx) | KEYWREN_F); 5432 } 5433 } 5434 5435 /** 5436 * t4_read_rss_pf_config - read PF RSS Configuration Table 5437 * @adapter: the adapter 5438 * @index: the entry in the PF RSS table to read 5439 * @valp: where to store the returned value 5440 * @sleep_ok: if true we may sleep while awaiting command completion 5441 * 5442 * Reads the PF RSS Configuration Table at the specified index and returns 5443 * the value found there. 5444 */ 5445 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5446 u32 *valp, bool sleep_ok) 5447 { 5448 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5449 } 5450 5451 /** 5452 * t4_read_rss_vf_config - read VF RSS Configuration Table 5453 * @adapter: the adapter 5454 * @index: the entry in the VF RSS table to read 5455 * @vfl: where to store the returned VFL 5456 * @vfh: where to store the returned VFH 5457 * @sleep_ok: if true we may sleep while awaiting command completion 5458 * 5459 * Reads the VF RSS Configuration Table at the specified index and returns 5460 * the (VFL, VFH) values found there. 5461 */ 5462 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5463 u32 *vfl, u32 *vfh, bool sleep_ok) 5464 { 5465 u32 vrt, mask, data; 5466 5467 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5468 mask = VFWRADDR_V(VFWRADDR_M); 5469 data = VFWRADDR_V(index); 5470 } else { 5471 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5472 data = T6_VFWRADDR_V(index); 5473 } 5474 5475 /* Request that the index'th VF Table values be read into VFL/VFH. 5476 */ 5477 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5478 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5479 vrt |= data | VFRDEN_F; 5480 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5481 5482 /* Grab the VFL/VFH values ... 5483 */ 5484 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5485 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5486 } 5487 5488 /** 5489 * t4_read_rss_pf_map - read PF RSS Map 5490 * @adapter: the adapter 5491 * @sleep_ok: if true we may sleep while awaiting command completion 5492 * 5493 * Reads the PF RSS Map register and returns its value. 5494 */ 5495 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5496 { 5497 u32 pfmap; 5498 5499 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5500 return pfmap; 5501 } 5502 5503 /** 5504 * t4_read_rss_pf_mask - read PF RSS Mask 5505 * @adapter: the adapter 5506 * @sleep_ok: if true we may sleep while awaiting command completion 5507 * 5508 * Reads the PF RSS Mask register and returns its value. 5509 */ 5510 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5511 { 5512 u32 pfmask; 5513 5514 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5515 return pfmask; 5516 } 5517 5518 /** 5519 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5520 * @adap: the adapter 5521 * @v4: holds the TCP/IP counter values 5522 * @v6: holds the TCP/IPv6 counter values 5523 * @sleep_ok: if true we may sleep while awaiting command completion 5524 * 5525 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5526 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5527 */ 5528 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5529 struct tp_tcp_stats *v6, bool sleep_ok) 5530 { 5531 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5532 5533 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5534 #define STAT(x) val[STAT_IDX(x)] 5535 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5536 5537 if (v4) { 5538 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5539 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5540 v4->tcp_out_rsts = STAT(OUT_RST); 5541 v4->tcp_in_segs = STAT64(IN_SEG); 5542 v4->tcp_out_segs = STAT64(OUT_SEG); 5543 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5544 } 5545 if (v6) { 5546 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5547 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5548 v6->tcp_out_rsts = STAT(OUT_RST); 5549 v6->tcp_in_segs = STAT64(IN_SEG); 5550 v6->tcp_out_segs = STAT64(OUT_SEG); 5551 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5552 } 5553 #undef STAT64 5554 #undef STAT 5555 #undef STAT_IDX 5556 } 5557 5558 /** 5559 * t4_tp_get_err_stats - read TP's error MIB counters 5560 * @adap: the adapter 5561 * @st: holds the counter values 5562 * @sleep_ok: if true we may sleep while awaiting command completion 5563 * 5564 * Returns the values of TP's error counters. 5565 */ 5566 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5567 bool sleep_ok) 5568 { 5569 int nchan = adap->params.arch.nchan; 5570 5571 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5572 sleep_ok); 5573 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5574 sleep_ok); 5575 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5576 sleep_ok); 5577 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5578 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5579 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5580 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5581 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5582 sleep_ok); 5583 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5584 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5585 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5586 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5587 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5588 sleep_ok); 5589 } 5590 5591 /** 5592 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5593 * @adap: the adapter 5594 * @st: holds the counter values 5595 * @sleep_ok: if true we may sleep while awaiting command completion 5596 * 5597 * Returns the values of TP's CPL counters. 5598 */ 5599 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5600 bool sleep_ok) 5601 { 5602 int nchan = adap->params.arch.nchan; 5603 5604 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5605 5606 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5607 } 5608 5609 /** 5610 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5611 * @adap: the adapter 5612 * @st: holds the counter values 5613 * @sleep_ok: if true we may sleep while awaiting command completion 5614 * 5615 * Returns the values of TP's RDMA counters. 5616 */ 5617 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5618 bool sleep_ok) 5619 { 5620 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5621 sleep_ok); 5622 } 5623 5624 /** 5625 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5626 * @adap: the adapter 5627 * @idx: the port index 5628 * @st: holds the counter values 5629 * @sleep_ok: if true we may sleep while awaiting command completion 5630 * 5631 * Returns the values of TP's FCoE counters for the selected port. 5632 */ 5633 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5634 struct tp_fcoe_stats *st, bool sleep_ok) 5635 { 5636 u32 val[2]; 5637 5638 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5639 sleep_ok); 5640 5641 t4_tp_mib_read(adap, &st->frames_drop, 1, 5642 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5643 5644 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5645 sleep_ok); 5646 5647 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5648 } 5649 5650 /** 5651 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5652 * @adap: the adapter 5653 * @st: holds the counter values 5654 * @sleep_ok: if true we may sleep while awaiting command completion 5655 * 5656 * Returns the values of TP's counters for non-TCP directly-placed packets. 5657 */ 5658 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5659 bool sleep_ok) 5660 { 5661 u32 val[4]; 5662 5663 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5664 st->frames = val[0]; 5665 st->drops = val[1]; 5666 st->octets = ((u64)val[2] << 32) | val[3]; 5667 } 5668 5669 /** 5670 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5671 * @adap: the adapter 5672 * @mtus: where to store the MTU values 5673 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5674 * 5675 * Reads the HW path MTU table. 5676 */ 5677 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5678 { 5679 u32 v; 5680 int i; 5681 5682 for (i = 0; i < NMTUS; ++i) { 5683 t4_write_reg(adap, TP_MTU_TABLE_A, 5684 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5685 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5686 mtus[i] = MTUVALUE_G(v); 5687 if (mtu_log) 5688 mtu_log[i] = MTUWIDTH_G(v); 5689 } 5690 } 5691 5692 /** 5693 * t4_read_cong_tbl - reads the congestion control table 5694 * @adap: the adapter 5695 * @incr: where to store the alpha values 5696 * 5697 * Reads the additive increments programmed into the HW congestion 5698 * control table. 5699 */ 5700 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5701 { 5702 unsigned int mtu, w; 5703 5704 for (mtu = 0; mtu < NMTUS; ++mtu) 5705 for (w = 0; w < NCCTRL_WIN; ++w) { 5706 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5707 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5708 incr[mtu][w] = (u16)t4_read_reg(adap, 5709 TP_CCTRL_TABLE_A) & 0x1fff; 5710 } 5711 } 5712 5713 /** 5714 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5715 * @adap: the adapter 5716 * @addr: the indirect TP register address 5717 * @mask: specifies the field within the register to modify 5718 * @val: new value for the field 5719 * 5720 * Sets a field of an indirect TP register to the given value. 5721 */ 5722 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5723 unsigned int mask, unsigned int val) 5724 { 5725 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5726 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5727 t4_write_reg(adap, TP_PIO_DATA_A, val); 5728 } 5729 5730 /** 5731 * init_cong_ctrl - initialize congestion control parameters 5732 * @a: the alpha values for congestion control 5733 * @b: the beta values for congestion control 5734 * 5735 * Initialize the congestion control parameters. 5736 */ 5737 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5738 { 5739 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5740 a[9] = 2; 5741 a[10] = 3; 5742 a[11] = 4; 5743 a[12] = 5; 5744 a[13] = 6; 5745 a[14] = 7; 5746 a[15] = 8; 5747 a[16] = 9; 5748 a[17] = 10; 5749 a[18] = 14; 5750 a[19] = 17; 5751 a[20] = 21; 5752 a[21] = 25; 5753 a[22] = 30; 5754 a[23] = 35; 5755 a[24] = 45; 5756 a[25] = 60; 5757 a[26] = 80; 5758 a[27] = 100; 5759 a[28] = 200; 5760 a[29] = 300; 5761 a[30] = 400; 5762 a[31] = 500; 5763 5764 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5765 b[9] = b[10] = 1; 5766 b[11] = b[12] = 2; 5767 b[13] = b[14] = b[15] = b[16] = 3; 5768 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5769 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5770 b[28] = b[29] = 6; 5771 b[30] = b[31] = 7; 5772 } 5773 5774 /* The minimum additive increment value for the congestion control table */ 5775 #define CC_MIN_INCR 2U 5776 5777 /** 5778 * t4_load_mtus - write the MTU and congestion control HW tables 5779 * @adap: the adapter 5780 * @mtus: the values for the MTU table 5781 * @alpha: the values for the congestion control alpha parameter 5782 * @beta: the values for the congestion control beta parameter 5783 * 5784 * Write the HW MTU table with the supplied MTUs and the high-speed 5785 * congestion control table with the supplied alpha, beta, and MTUs. 5786 * We write the two tables together because the additive increments 5787 * depend on the MTUs. 5788 */ 5789 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5790 const unsigned short *alpha, const unsigned short *beta) 5791 { 5792 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5793 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5794 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5795 28672, 40960, 57344, 81920, 114688, 163840, 229376 5796 }; 5797 5798 unsigned int i, w; 5799 5800 for (i = 0; i < NMTUS; ++i) { 5801 unsigned int mtu = mtus[i]; 5802 unsigned int log2 = fls(mtu); 5803 5804 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5805 log2--; 5806 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5807 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5808 5809 for (w = 0; w < NCCTRL_WIN; ++w) { 5810 unsigned int inc; 5811 5812 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5813 CC_MIN_INCR); 5814 5815 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5816 (w << 16) | (beta[w] << 13) | inc); 5817 } 5818 } 5819 } 5820 5821 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5822 * clocks. The formula is 5823 * 5824 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5825 * 5826 * which is equivalent to 5827 * 5828 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5829 */ 5830 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5831 { 5832 u64 v = bytes256 * adap->params.vpd.cclk; 5833 5834 return v * 62 + v / 2; 5835 } 5836 5837 /** 5838 * t4_get_chan_txrate - get the current per channel Tx rates 5839 * @adap: the adapter 5840 * @nic_rate: rates for NIC traffic 5841 * @ofld_rate: rates for offloaded traffic 5842 * 5843 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5844 * for each channel. 5845 */ 5846 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5847 { 5848 u32 v; 5849 5850 v = t4_read_reg(adap, TP_TX_TRATE_A); 5851 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5852 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5853 if (adap->params.arch.nchan == NCHAN) { 5854 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5855 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5856 } 5857 5858 v = t4_read_reg(adap, TP_TX_ORATE_A); 5859 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5860 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5861 if (adap->params.arch.nchan == NCHAN) { 5862 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5863 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5864 } 5865 } 5866 5867 /** 5868 * t4_set_trace_filter - configure one of the tracing filters 5869 * @adap: the adapter 5870 * @tp: the desired trace filter parameters 5871 * @idx: which filter to configure 5872 * @enable: whether to enable or disable the filter 5873 * 5874 * Configures one of the tracing filters available in HW. If @enable is 5875 * %0 @tp is not examined and may be %NULL. The user is responsible to 5876 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5877 */ 5878 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5879 int idx, int enable) 5880 { 5881 int i, ofst = idx * 4; 5882 u32 data_reg, mask_reg, cfg; 5883 u32 multitrc = TRCMULTIFILTER_F; 5884 5885 if (!enable) { 5886 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5887 return 0; 5888 } 5889 5890 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5891 if (cfg & TRCMULTIFILTER_F) { 5892 /* If multiple tracers are enabled, then maximum 5893 * capture size is 2.5KB (FIFO size of a single channel) 5894 * minus 2 flits for CPL_TRACE_PKT header. 5895 */ 5896 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5897 return -EINVAL; 5898 } else { 5899 /* If multiple tracers are disabled, to avoid deadlocks 5900 * maximum packet capture size of 9600 bytes is recommended. 5901 * Also in this mode, only trace0 can be enabled and running. 5902 */ 5903 multitrc = 0; 5904 if (tp->snap_len > 9600 || idx) 5905 return -EINVAL; 5906 } 5907 5908 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5909 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5910 tp->min_len > TFMINPKTSIZE_M) 5911 return -EINVAL; 5912 5913 /* stop the tracer we'll be changing */ 5914 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5915 5916 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5917 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5918 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5919 5920 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5921 t4_write_reg(adap, data_reg, tp->data[i]); 5922 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5923 } 5924 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5925 TFCAPTUREMAX_V(tp->snap_len) | 5926 TFMINPKTSIZE_V(tp->min_len)); 5927 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5928 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5929 (is_t4(adap->params.chip) ? 5930 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5931 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5932 T5_TFINVERTMATCH_V(tp->invert))); 5933 5934 return 0; 5935 } 5936 5937 /** 5938 * t4_get_trace_filter - query one of the tracing filters 5939 * @adap: the adapter 5940 * @tp: the current trace filter parameters 5941 * @idx: which trace filter to query 5942 * @enabled: non-zero if the filter is enabled 5943 * 5944 * Returns the current settings of one of the HW tracing filters. 5945 */ 5946 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5947 int *enabled) 5948 { 5949 u32 ctla, ctlb; 5950 int i, ofst = idx * 4; 5951 u32 data_reg, mask_reg; 5952 5953 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5954 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5955 5956 if (is_t4(adap->params.chip)) { 5957 *enabled = !!(ctla & TFEN_F); 5958 tp->port = TFPORT_G(ctla); 5959 tp->invert = !!(ctla & TFINVERTMATCH_F); 5960 } else { 5961 *enabled = !!(ctla & T5_TFEN_F); 5962 tp->port = T5_TFPORT_G(ctla); 5963 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5964 } 5965 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5966 tp->min_len = TFMINPKTSIZE_G(ctlb); 5967 tp->skip_ofst = TFOFFSET_G(ctla); 5968 tp->skip_len = TFLENGTH_G(ctla); 5969 5970 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5971 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5972 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5973 5974 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5975 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5976 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5977 } 5978 } 5979 5980 /** 5981 * t4_pmtx_get_stats - returns the HW stats from PMTX 5982 * @adap: the adapter 5983 * @cnt: where to store the count statistics 5984 * @cycles: where to store the cycle statistics 5985 * 5986 * Returns performance statistics from PMTX. 5987 */ 5988 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5989 { 5990 int i; 5991 u32 data[2]; 5992 5993 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5994 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5995 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5996 if (is_t4(adap->params.chip)) { 5997 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5998 } else { 5999 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6000 PM_TX_DBG_DATA_A, data, 2, 6001 PM_TX_DBG_STAT_MSB_A); 6002 cycles[i] = (((u64)data[0] << 32) | data[1]); 6003 } 6004 } 6005 } 6006 6007 /** 6008 * t4_pmrx_get_stats - returns the HW stats from PMRX 6009 * @adap: the adapter 6010 * @cnt: where to store the count statistics 6011 * @cycles: where to store the cycle statistics 6012 * 6013 * Returns performance statistics from PMRX. 6014 */ 6015 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6016 { 6017 int i; 6018 u32 data[2]; 6019 6020 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6021 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6022 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6023 if (is_t4(adap->params.chip)) { 6024 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6025 } else { 6026 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6027 PM_RX_DBG_DATA_A, data, 2, 6028 PM_RX_DBG_STAT_MSB_A); 6029 cycles[i] = (((u64)data[0] << 32) | data[1]); 6030 } 6031 } 6032 } 6033 6034 /** 6035 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6036 * @adap: the adapter 6037 * @pidx: the port index 6038 * 6039 * Computes and returns a bitmap indicating which MPS buffer groups are 6040 * associated with the given Port. Bit i is set if buffer group i is 6041 * used by the Port. 6042 */ 6043 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6044 int pidx) 6045 { 6046 unsigned int chip_version, nports; 6047 6048 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6049 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6050 6051 switch (chip_version) { 6052 case CHELSIO_T4: 6053 case CHELSIO_T5: 6054 switch (nports) { 6055 case 1: return 0xf; 6056 case 2: return 3 << (2 * pidx); 6057 case 4: return 1 << pidx; 6058 } 6059 break; 6060 6061 case CHELSIO_T6: 6062 switch (nports) { 6063 case 2: return 1 << (2 * pidx); 6064 } 6065 break; 6066 } 6067 6068 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6069 chip_version, nports); 6070 6071 return 0; 6072 } 6073 6074 /** 6075 * t4_get_mps_bg_map - return the buffer groups associated with a port 6076 * @adapter: the adapter 6077 * @pidx: the port index 6078 * 6079 * Returns a bitmap indicating which MPS buffer groups are associated 6080 * with the given Port. Bit i is set if buffer group i is used by the 6081 * Port. 6082 */ 6083 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6084 { 6085 u8 *mps_bg_map; 6086 unsigned int nports; 6087 6088 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6089 if (pidx >= nports) { 6090 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6091 pidx, nports); 6092 return 0; 6093 } 6094 6095 /* If we've already retrieved/computed this, just return the result. 6096 */ 6097 mps_bg_map = adapter->params.mps_bg_map; 6098 if (mps_bg_map[pidx]) 6099 return mps_bg_map[pidx]; 6100 6101 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6102 * If we're talking to such Firmware, let it tell us. If the new 6103 * API isn't supported, revert back to old hardcoded way. The value 6104 * obtained from Firmware is encoded in below format: 6105 * 6106 * val = (( MPSBGMAP[Port 3] << 24 ) | 6107 * ( MPSBGMAP[Port 2] << 16 ) | 6108 * ( MPSBGMAP[Port 1] << 8 ) | 6109 * ( MPSBGMAP[Port 0] << 0 )) 6110 */ 6111 if (adapter->flags & FW_OK) { 6112 u32 param, val; 6113 int ret; 6114 6115 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6116 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6117 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6118 0, 1, ¶m, &val); 6119 if (!ret) { 6120 int p; 6121 6122 /* Store the BG Map for all of the Ports in order to 6123 * avoid more calls to the Firmware in the future. 6124 */ 6125 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6126 mps_bg_map[p] = val & 0xff; 6127 6128 return mps_bg_map[pidx]; 6129 } 6130 } 6131 6132 /* Either we're not talking to the Firmware or we're dealing with 6133 * older Firmware which doesn't support the new API to get the MPS 6134 * Buffer Group Map. Fall back to computing it ourselves. 6135 */ 6136 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6137 return mps_bg_map[pidx]; 6138 } 6139 6140 /** 6141 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6142 * @adapter: the adapter 6143 * @pidx: the port index 6144 * 6145 * Returns a bitmap indicating which TP Ingress Channels are associated 6146 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6147 * the Port. 6148 */ 6149 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6150 { 6151 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6152 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6153 6154 if (pidx >= nports) { 6155 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6156 pidx, nports); 6157 return 0; 6158 } 6159 6160 switch (chip_version) { 6161 case CHELSIO_T4: 6162 case CHELSIO_T5: 6163 /* Note that this happens to be the same values as the MPS 6164 * Buffer Group Map for these Chips. But we replicate the code 6165 * here because they're really separate concepts. 6166 */ 6167 switch (nports) { 6168 case 1: return 0xf; 6169 case 2: return 3 << (2 * pidx); 6170 case 4: return 1 << pidx; 6171 } 6172 break; 6173 6174 case CHELSIO_T6: 6175 switch (nports) { 6176 case 1: 6177 case 2: return 1 << pidx; 6178 } 6179 break; 6180 } 6181 6182 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6183 chip_version, nports); 6184 return 0; 6185 } 6186 6187 /** 6188 * t4_get_port_type_description - return Port Type string description 6189 * @port_type: firmware Port Type enumeration 6190 */ 6191 const char *t4_get_port_type_description(enum fw_port_type port_type) 6192 { 6193 static const char *const port_type_description[] = { 6194 "Fiber_XFI", 6195 "Fiber_XAUI", 6196 "BT_SGMII", 6197 "BT_XFI", 6198 "BT_XAUI", 6199 "KX4", 6200 "CX4", 6201 "KX", 6202 "KR", 6203 "SFP", 6204 "BP_AP", 6205 "BP4_AP", 6206 "QSFP_10G", 6207 "QSA", 6208 "QSFP", 6209 "BP40_BA", 6210 "KR4_100G", 6211 "CR4_QSFP", 6212 "CR_QSFP", 6213 "CR2_QSFP", 6214 "SFP28", 6215 "KR_SFP28", 6216 "KR_XLAUI" 6217 }; 6218 6219 if (port_type < ARRAY_SIZE(port_type_description)) 6220 return port_type_description[port_type]; 6221 return "UNKNOWN"; 6222 } 6223 6224 /** 6225 * t4_get_port_stats_offset - collect port stats relative to a previous 6226 * snapshot 6227 * @adap: The adapter 6228 * @idx: The port 6229 * @stats: Current stats to fill 6230 * @offset: Previous stats snapshot 6231 */ 6232 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6233 struct port_stats *stats, 6234 struct port_stats *offset) 6235 { 6236 u64 *s, *o; 6237 int i; 6238 6239 t4_get_port_stats(adap, idx, stats); 6240 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6241 i < (sizeof(struct port_stats) / sizeof(u64)); 6242 i++, s++, o++) 6243 *s -= *o; 6244 } 6245 6246 /** 6247 * t4_get_port_stats - collect port statistics 6248 * @adap: the adapter 6249 * @idx: the port index 6250 * @p: the stats structure to fill 6251 * 6252 * Collect statistics related to the given port from HW. 6253 */ 6254 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6255 { 6256 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6257 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6258 6259 #define GET_STAT(name) \ 6260 t4_read_reg64(adap, \ 6261 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6262 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6263 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6264 6265 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6266 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6267 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6268 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6269 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6270 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6271 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6272 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6273 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6274 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6275 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6276 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6277 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6278 p->tx_drop = GET_STAT(TX_PORT_DROP); 6279 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6280 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6281 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6282 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6283 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6284 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6285 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6286 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6287 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6288 6289 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6290 if (stat_ctl & COUNTPAUSESTATTX_F) 6291 p->tx_frames_64 -= p->tx_pause; 6292 if (stat_ctl & COUNTPAUSEMCTX_F) 6293 p->tx_mcast_frames -= p->tx_pause; 6294 } 6295 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6296 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6297 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6298 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6299 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6300 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6301 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6302 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6303 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6304 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6305 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6306 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6307 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6308 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6309 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6310 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6311 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6312 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6313 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6314 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6315 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6316 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6317 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6318 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6319 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6320 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6321 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6322 6323 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6324 if (stat_ctl & COUNTPAUSESTATRX_F) 6325 p->rx_frames_64 -= p->rx_pause; 6326 if (stat_ctl & COUNTPAUSEMCRX_F) 6327 p->rx_mcast_frames -= p->rx_pause; 6328 } 6329 6330 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6331 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6332 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6333 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6334 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6335 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6336 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6337 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6338 6339 #undef GET_STAT 6340 #undef GET_STAT_COM 6341 } 6342 6343 /** 6344 * t4_get_lb_stats - collect loopback port statistics 6345 * @adap: the adapter 6346 * @idx: the loopback port index 6347 * @p: the stats structure to fill 6348 * 6349 * Return HW statistics for the given loopback port. 6350 */ 6351 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6352 { 6353 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6354 6355 #define GET_STAT(name) \ 6356 t4_read_reg64(adap, \ 6357 (is_t4(adap->params.chip) ? \ 6358 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6359 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6360 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6361 6362 p->octets = GET_STAT(BYTES); 6363 p->frames = GET_STAT(FRAMES); 6364 p->bcast_frames = GET_STAT(BCAST); 6365 p->mcast_frames = GET_STAT(MCAST); 6366 p->ucast_frames = GET_STAT(UCAST); 6367 p->error_frames = GET_STAT(ERROR); 6368 6369 p->frames_64 = GET_STAT(64B); 6370 p->frames_65_127 = GET_STAT(65B_127B); 6371 p->frames_128_255 = GET_STAT(128B_255B); 6372 p->frames_256_511 = GET_STAT(256B_511B); 6373 p->frames_512_1023 = GET_STAT(512B_1023B); 6374 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6375 p->frames_1519_max = GET_STAT(1519B_MAX); 6376 p->drop = GET_STAT(DROP_FRAMES); 6377 6378 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6379 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6380 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6381 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6382 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6383 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6384 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6385 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6386 6387 #undef GET_STAT 6388 #undef GET_STAT_COM 6389 } 6390 6391 /* t4_mk_filtdelwr - create a delete filter WR 6392 * @ftid: the filter ID 6393 * @wr: the filter work request to populate 6394 * @qid: ingress queue to receive the delete notification 6395 * 6396 * Creates a filter work request to delete the supplied filter. If @qid is 6397 * negative the delete notification is suppressed. 6398 */ 6399 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6400 { 6401 memset(wr, 0, sizeof(*wr)); 6402 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6403 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6404 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6405 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6406 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6407 if (qid >= 0) 6408 wr->rx_chan_rx_rpl_iq = 6409 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6410 } 6411 6412 #define INIT_CMD(var, cmd, rd_wr) do { \ 6413 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6414 FW_CMD_REQUEST_F | \ 6415 FW_CMD_##rd_wr##_F); \ 6416 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6417 } while (0) 6418 6419 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6420 u32 addr, u32 val) 6421 { 6422 u32 ldst_addrspace; 6423 struct fw_ldst_cmd c; 6424 6425 memset(&c, 0, sizeof(c)); 6426 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6427 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6428 FW_CMD_REQUEST_F | 6429 FW_CMD_WRITE_F | 6430 ldst_addrspace); 6431 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6432 c.u.addrval.addr = cpu_to_be32(addr); 6433 c.u.addrval.val = cpu_to_be32(val); 6434 6435 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6436 } 6437 6438 /** 6439 * t4_mdio_rd - read a PHY register through MDIO 6440 * @adap: the adapter 6441 * @mbox: mailbox to use for the FW command 6442 * @phy_addr: the PHY address 6443 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6444 * @reg: the register to read 6445 * @valp: where to store the value 6446 * 6447 * Issues a FW command through the given mailbox to read a PHY register. 6448 */ 6449 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6450 unsigned int mmd, unsigned int reg, u16 *valp) 6451 { 6452 int ret; 6453 u32 ldst_addrspace; 6454 struct fw_ldst_cmd c; 6455 6456 memset(&c, 0, sizeof(c)); 6457 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6458 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6459 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6460 ldst_addrspace); 6461 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6462 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6463 FW_LDST_CMD_MMD_V(mmd)); 6464 c.u.mdio.raddr = cpu_to_be16(reg); 6465 6466 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6467 if (ret == 0) 6468 *valp = be16_to_cpu(c.u.mdio.rval); 6469 return ret; 6470 } 6471 6472 /** 6473 * t4_mdio_wr - write a PHY register through MDIO 6474 * @adap: the adapter 6475 * @mbox: mailbox to use for the FW command 6476 * @phy_addr: the PHY address 6477 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6478 * @reg: the register to write 6479 * @valp: value to write 6480 * 6481 * Issues a FW command through the given mailbox to write a PHY register. 6482 */ 6483 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6484 unsigned int mmd, unsigned int reg, u16 val) 6485 { 6486 u32 ldst_addrspace; 6487 struct fw_ldst_cmd c; 6488 6489 memset(&c, 0, sizeof(c)); 6490 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6491 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6492 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6493 ldst_addrspace); 6494 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6495 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6496 FW_LDST_CMD_MMD_V(mmd)); 6497 c.u.mdio.raddr = cpu_to_be16(reg); 6498 c.u.mdio.rval = cpu_to_be16(val); 6499 6500 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6501 } 6502 6503 /** 6504 * t4_sge_decode_idma_state - decode the idma state 6505 * @adap: the adapter 6506 * @state: the state idma is stuck in 6507 */ 6508 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6509 { 6510 static const char * const t4_decode[] = { 6511 "IDMA_IDLE", 6512 "IDMA_PUSH_MORE_CPL_FIFO", 6513 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6514 "Not used", 6515 "IDMA_PHYSADDR_SEND_PCIEHDR", 6516 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6517 "IDMA_PHYSADDR_SEND_PAYLOAD", 6518 "IDMA_SEND_FIFO_TO_IMSG", 6519 "IDMA_FL_REQ_DATA_FL_PREP", 6520 "IDMA_FL_REQ_DATA_FL", 6521 "IDMA_FL_DROP", 6522 "IDMA_FL_H_REQ_HEADER_FL", 6523 "IDMA_FL_H_SEND_PCIEHDR", 6524 "IDMA_FL_H_PUSH_CPL_FIFO", 6525 "IDMA_FL_H_SEND_CPL", 6526 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6527 "IDMA_FL_H_SEND_IP_HDR", 6528 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6529 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6530 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6531 "IDMA_FL_D_SEND_PCIEHDR", 6532 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6533 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6534 "IDMA_FL_SEND_PCIEHDR", 6535 "IDMA_FL_PUSH_CPL_FIFO", 6536 "IDMA_FL_SEND_CPL", 6537 "IDMA_FL_SEND_PAYLOAD_FIRST", 6538 "IDMA_FL_SEND_PAYLOAD", 6539 "IDMA_FL_REQ_NEXT_DATA_FL", 6540 "IDMA_FL_SEND_NEXT_PCIEHDR", 6541 "IDMA_FL_SEND_PADDING", 6542 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6543 "IDMA_FL_SEND_FIFO_TO_IMSG", 6544 "IDMA_FL_REQ_DATAFL_DONE", 6545 "IDMA_FL_REQ_HEADERFL_DONE", 6546 }; 6547 static const char * const t5_decode[] = { 6548 "IDMA_IDLE", 6549 "IDMA_ALMOST_IDLE", 6550 "IDMA_PUSH_MORE_CPL_FIFO", 6551 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6552 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6553 "IDMA_PHYSADDR_SEND_PCIEHDR", 6554 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6555 "IDMA_PHYSADDR_SEND_PAYLOAD", 6556 "IDMA_SEND_FIFO_TO_IMSG", 6557 "IDMA_FL_REQ_DATA_FL", 6558 "IDMA_FL_DROP", 6559 "IDMA_FL_DROP_SEND_INC", 6560 "IDMA_FL_H_REQ_HEADER_FL", 6561 "IDMA_FL_H_SEND_PCIEHDR", 6562 "IDMA_FL_H_PUSH_CPL_FIFO", 6563 "IDMA_FL_H_SEND_CPL", 6564 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6565 "IDMA_FL_H_SEND_IP_HDR", 6566 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6567 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6568 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6569 "IDMA_FL_D_SEND_PCIEHDR", 6570 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6571 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6572 "IDMA_FL_SEND_PCIEHDR", 6573 "IDMA_FL_PUSH_CPL_FIFO", 6574 "IDMA_FL_SEND_CPL", 6575 "IDMA_FL_SEND_PAYLOAD_FIRST", 6576 "IDMA_FL_SEND_PAYLOAD", 6577 "IDMA_FL_REQ_NEXT_DATA_FL", 6578 "IDMA_FL_SEND_NEXT_PCIEHDR", 6579 "IDMA_FL_SEND_PADDING", 6580 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6581 }; 6582 static const char * const t6_decode[] = { 6583 "IDMA_IDLE", 6584 "IDMA_PUSH_MORE_CPL_FIFO", 6585 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6586 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6587 "IDMA_PHYSADDR_SEND_PCIEHDR", 6588 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6589 "IDMA_PHYSADDR_SEND_PAYLOAD", 6590 "IDMA_FL_REQ_DATA_FL", 6591 "IDMA_FL_DROP", 6592 "IDMA_FL_DROP_SEND_INC", 6593 "IDMA_FL_H_REQ_HEADER_FL", 6594 "IDMA_FL_H_SEND_PCIEHDR", 6595 "IDMA_FL_H_PUSH_CPL_FIFO", 6596 "IDMA_FL_H_SEND_CPL", 6597 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6598 "IDMA_FL_H_SEND_IP_HDR", 6599 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6600 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6601 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6602 "IDMA_FL_D_SEND_PCIEHDR", 6603 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6604 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6605 "IDMA_FL_SEND_PCIEHDR", 6606 "IDMA_FL_PUSH_CPL_FIFO", 6607 "IDMA_FL_SEND_CPL", 6608 "IDMA_FL_SEND_PAYLOAD_FIRST", 6609 "IDMA_FL_SEND_PAYLOAD", 6610 "IDMA_FL_REQ_NEXT_DATA_FL", 6611 "IDMA_FL_SEND_NEXT_PCIEHDR", 6612 "IDMA_FL_SEND_PADDING", 6613 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6614 }; 6615 static const u32 sge_regs[] = { 6616 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6617 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6618 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6619 }; 6620 const char **sge_idma_decode; 6621 int sge_idma_decode_nstates; 6622 int i; 6623 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6624 6625 /* Select the right set of decode strings to dump depending on the 6626 * adapter chip type. 6627 */ 6628 switch (chip_version) { 6629 case CHELSIO_T4: 6630 sge_idma_decode = (const char **)t4_decode; 6631 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6632 break; 6633 6634 case CHELSIO_T5: 6635 sge_idma_decode = (const char **)t5_decode; 6636 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6637 break; 6638 6639 case CHELSIO_T6: 6640 sge_idma_decode = (const char **)t6_decode; 6641 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6642 break; 6643 6644 default: 6645 dev_err(adapter->pdev_dev, 6646 "Unsupported chip version %d\n", chip_version); 6647 return; 6648 } 6649 6650 if (is_t4(adapter->params.chip)) { 6651 sge_idma_decode = (const char **)t4_decode; 6652 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6653 } else { 6654 sge_idma_decode = (const char **)t5_decode; 6655 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6656 } 6657 6658 if (state < sge_idma_decode_nstates) 6659 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6660 else 6661 CH_WARN(adapter, "idma state %d unknown\n", state); 6662 6663 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6664 CH_WARN(adapter, "SGE register %#x value %#x\n", 6665 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6666 } 6667 6668 /** 6669 * t4_sge_ctxt_flush - flush the SGE context cache 6670 * @adap: the adapter 6671 * @mbox: mailbox to use for the FW command 6672 * @ctx_type: Egress or Ingress 6673 * 6674 * Issues a FW command through the given mailbox to flush the 6675 * SGE context cache. 6676 */ 6677 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6678 { 6679 int ret; 6680 u32 ldst_addrspace; 6681 struct fw_ldst_cmd c; 6682 6683 memset(&c, 0, sizeof(c)); 6684 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6685 FW_LDST_ADDRSPC_SGE_EGRC : 6686 FW_LDST_ADDRSPC_SGE_INGC); 6687 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6688 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6689 ldst_addrspace); 6690 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6691 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6692 6693 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6694 return ret; 6695 } 6696 6697 /** 6698 * t4_fw_hello - establish communication with FW 6699 * @adap: the adapter 6700 * @mbox: mailbox to use for the FW command 6701 * @evt_mbox: mailbox to receive async FW events 6702 * @master: specifies the caller's willingness to be the device master 6703 * @state: returns the current device state (if non-NULL) 6704 * 6705 * Issues a command to establish communication with FW. Returns either 6706 * an error (negative integer) or the mailbox of the Master PF. 6707 */ 6708 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6709 enum dev_master master, enum dev_state *state) 6710 { 6711 int ret; 6712 struct fw_hello_cmd c; 6713 u32 v; 6714 unsigned int master_mbox; 6715 int retries = FW_CMD_HELLO_RETRIES; 6716 6717 retry: 6718 memset(&c, 0, sizeof(c)); 6719 INIT_CMD(c, HELLO, WRITE); 6720 c.err_to_clearinit = cpu_to_be32( 6721 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6722 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6723 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6724 mbox : FW_HELLO_CMD_MBMASTER_M) | 6725 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6726 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6727 FW_HELLO_CMD_CLEARINIT_F); 6728 6729 /* 6730 * Issue the HELLO command to the firmware. If it's not successful 6731 * but indicates that we got a "busy" or "timeout" condition, retry 6732 * the HELLO until we exhaust our retry limit. If we do exceed our 6733 * retry limit, check to see if the firmware left us any error 6734 * information and report that if so. 6735 */ 6736 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6737 if (ret < 0) { 6738 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6739 goto retry; 6740 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6741 t4_report_fw_error(adap); 6742 return ret; 6743 } 6744 6745 v = be32_to_cpu(c.err_to_clearinit); 6746 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6747 if (state) { 6748 if (v & FW_HELLO_CMD_ERR_F) 6749 *state = DEV_STATE_ERR; 6750 else if (v & FW_HELLO_CMD_INIT_F) 6751 *state = DEV_STATE_INIT; 6752 else 6753 *state = DEV_STATE_UNINIT; 6754 } 6755 6756 /* 6757 * If we're not the Master PF then we need to wait around for the 6758 * Master PF Driver to finish setting up the adapter. 6759 * 6760 * Note that we also do this wait if we're a non-Master-capable PF and 6761 * there is no current Master PF; a Master PF may show up momentarily 6762 * and we wouldn't want to fail pointlessly. (This can happen when an 6763 * OS loads lots of different drivers rapidly at the same time). In 6764 * this case, the Master PF returned by the firmware will be 6765 * PCIE_FW_MASTER_M so the test below will work ... 6766 */ 6767 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6768 master_mbox != mbox) { 6769 int waiting = FW_CMD_HELLO_TIMEOUT; 6770 6771 /* 6772 * Wait for the firmware to either indicate an error or 6773 * initialized state. If we see either of these we bail out 6774 * and report the issue to the caller. If we exhaust the 6775 * "hello timeout" and we haven't exhausted our retries, try 6776 * again. Otherwise bail with a timeout error. 6777 */ 6778 for (;;) { 6779 u32 pcie_fw; 6780 6781 msleep(50); 6782 waiting -= 50; 6783 6784 /* 6785 * If neither Error nor Initialialized are indicated 6786 * by the firmware keep waiting till we exaust our 6787 * timeout ... and then retry if we haven't exhausted 6788 * our retries ... 6789 */ 6790 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6791 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6792 if (waiting <= 0) { 6793 if (retries-- > 0) 6794 goto retry; 6795 6796 return -ETIMEDOUT; 6797 } 6798 continue; 6799 } 6800 6801 /* 6802 * We either have an Error or Initialized condition 6803 * report errors preferentially. 6804 */ 6805 if (state) { 6806 if (pcie_fw & PCIE_FW_ERR_F) 6807 *state = DEV_STATE_ERR; 6808 else if (pcie_fw & PCIE_FW_INIT_F) 6809 *state = DEV_STATE_INIT; 6810 } 6811 6812 /* 6813 * If we arrived before a Master PF was selected and 6814 * there's not a valid Master PF, grab its identity 6815 * for our caller. 6816 */ 6817 if (master_mbox == PCIE_FW_MASTER_M && 6818 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6819 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6820 break; 6821 } 6822 } 6823 6824 return master_mbox; 6825 } 6826 6827 /** 6828 * t4_fw_bye - end communication with FW 6829 * @adap: the adapter 6830 * @mbox: mailbox to use for the FW command 6831 * 6832 * Issues a command to terminate communication with FW. 6833 */ 6834 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6835 { 6836 struct fw_bye_cmd c; 6837 6838 memset(&c, 0, sizeof(c)); 6839 INIT_CMD(c, BYE, WRITE); 6840 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6841 } 6842 6843 /** 6844 * t4_init_cmd - ask FW to initialize the device 6845 * @adap: the adapter 6846 * @mbox: mailbox to use for the FW command 6847 * 6848 * Issues a command to FW to partially initialize the device. This 6849 * performs initialization that generally doesn't depend on user input. 6850 */ 6851 int t4_early_init(struct adapter *adap, unsigned int mbox) 6852 { 6853 struct fw_initialize_cmd c; 6854 6855 memset(&c, 0, sizeof(c)); 6856 INIT_CMD(c, INITIALIZE, WRITE); 6857 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6858 } 6859 6860 /** 6861 * t4_fw_reset - issue a reset to FW 6862 * @adap: the adapter 6863 * @mbox: mailbox to use for the FW command 6864 * @reset: specifies the type of reset to perform 6865 * 6866 * Issues a reset command of the specified type to FW. 6867 */ 6868 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6869 { 6870 struct fw_reset_cmd c; 6871 6872 memset(&c, 0, sizeof(c)); 6873 INIT_CMD(c, RESET, WRITE); 6874 c.val = cpu_to_be32(reset); 6875 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6876 } 6877 6878 /** 6879 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6880 * @adap: the adapter 6881 * @mbox: mailbox to use for the FW RESET command (if desired) 6882 * @force: force uP into RESET even if FW RESET command fails 6883 * 6884 * Issues a RESET command to firmware (if desired) with a HALT indication 6885 * and then puts the microprocessor into RESET state. The RESET command 6886 * will only be issued if a legitimate mailbox is provided (mbox <= 6887 * PCIE_FW_MASTER_M). 6888 * 6889 * This is generally used in order for the host to safely manipulate the 6890 * adapter without fear of conflicting with whatever the firmware might 6891 * be doing. The only way out of this state is to RESTART the firmware 6892 * ... 6893 */ 6894 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6895 { 6896 int ret = 0; 6897 6898 /* 6899 * If a legitimate mailbox is provided, issue a RESET command 6900 * with a HALT indication. 6901 */ 6902 if (mbox <= PCIE_FW_MASTER_M) { 6903 struct fw_reset_cmd c; 6904 6905 memset(&c, 0, sizeof(c)); 6906 INIT_CMD(c, RESET, WRITE); 6907 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6908 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6909 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6910 } 6911 6912 /* 6913 * Normally we won't complete the operation if the firmware RESET 6914 * command fails but if our caller insists we'll go ahead and put the 6915 * uP into RESET. This can be useful if the firmware is hung or even 6916 * missing ... We'll have to take the risk of putting the uP into 6917 * RESET without the cooperation of firmware in that case. 6918 * 6919 * We also force the firmware's HALT flag to be on in case we bypassed 6920 * the firmware RESET command above or we're dealing with old firmware 6921 * which doesn't have the HALT capability. This will serve as a flag 6922 * for the incoming firmware to know that it's coming out of a HALT 6923 * rather than a RESET ... if it's new enough to understand that ... 6924 */ 6925 if (ret == 0 || force) { 6926 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6927 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6928 PCIE_FW_HALT_F); 6929 } 6930 6931 /* 6932 * And we always return the result of the firmware RESET command 6933 * even when we force the uP into RESET ... 6934 */ 6935 return ret; 6936 } 6937 6938 /** 6939 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6940 * @adap: the adapter 6941 * @reset: if we want to do a RESET to restart things 6942 * 6943 * Restart firmware previously halted by t4_fw_halt(). On successful 6944 * return the previous PF Master remains as the new PF Master and there 6945 * is no need to issue a new HELLO command, etc. 6946 * 6947 * We do this in two ways: 6948 * 6949 * 1. If we're dealing with newer firmware we'll simply want to take 6950 * the chip's microprocessor out of RESET. This will cause the 6951 * firmware to start up from its start vector. And then we'll loop 6952 * until the firmware indicates it's started again (PCIE_FW.HALT 6953 * reset to 0) or we timeout. 6954 * 6955 * 2. If we're dealing with older firmware then we'll need to RESET 6956 * the chip since older firmware won't recognize the PCIE_FW.HALT 6957 * flag and automatically RESET itself on startup. 6958 */ 6959 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6960 { 6961 if (reset) { 6962 /* 6963 * Since we're directing the RESET instead of the firmware 6964 * doing it automatically, we need to clear the PCIE_FW.HALT 6965 * bit. 6966 */ 6967 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6968 6969 /* 6970 * If we've been given a valid mailbox, first try to get the 6971 * firmware to do the RESET. If that works, great and we can 6972 * return success. Otherwise, if we haven't been given a 6973 * valid mailbox or the RESET command failed, fall back to 6974 * hitting the chip with a hammer. 6975 */ 6976 if (mbox <= PCIE_FW_MASTER_M) { 6977 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6978 msleep(100); 6979 if (t4_fw_reset(adap, mbox, 6980 PIORST_F | PIORSTMODE_F) == 0) 6981 return 0; 6982 } 6983 6984 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6985 msleep(2000); 6986 } else { 6987 int ms; 6988 6989 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6990 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6991 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6992 return 0; 6993 msleep(100); 6994 ms += 100; 6995 } 6996 return -ETIMEDOUT; 6997 } 6998 return 0; 6999 } 7000 7001 /** 7002 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7003 * @adap: the adapter 7004 * @mbox: mailbox to use for the FW RESET command (if desired) 7005 * @fw_data: the firmware image to write 7006 * @size: image size 7007 * @force: force upgrade even if firmware doesn't cooperate 7008 * 7009 * Perform all of the steps necessary for upgrading an adapter's 7010 * firmware image. Normally this requires the cooperation of the 7011 * existing firmware in order to halt all existing activities 7012 * but if an invalid mailbox token is passed in we skip that step 7013 * (though we'll still put the adapter microprocessor into RESET in 7014 * that case). 7015 * 7016 * On successful return the new firmware will have been loaded and 7017 * the adapter will have been fully RESET losing all previous setup 7018 * state. On unsuccessful return the adapter may be completely hosed ... 7019 * positive errno indicates that the adapter is ~probably~ intact, a 7020 * negative errno indicates that things are looking bad ... 7021 */ 7022 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7023 const u8 *fw_data, unsigned int size, int force) 7024 { 7025 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7026 int reset, ret; 7027 7028 if (!t4_fw_matches_chip(adap, fw_hdr)) 7029 return -EINVAL; 7030 7031 /* Disable FW_OK flag so that mbox commands with FW_OK flag set 7032 * wont be sent when we are flashing FW. 7033 */ 7034 adap->flags &= ~FW_OK; 7035 7036 ret = t4_fw_halt(adap, mbox, force); 7037 if (ret < 0 && !force) 7038 goto out; 7039 7040 ret = t4_load_fw(adap, fw_data, size); 7041 if (ret < 0) 7042 goto out; 7043 7044 /* 7045 * If there was a Firmware Configuration File stored in FLASH, 7046 * there's a good chance that it won't be compatible with the new 7047 * Firmware. In order to prevent difficult to diagnose adapter 7048 * initialization issues, we clear out the Firmware Configuration File 7049 * portion of the FLASH . The user will need to re-FLASH a new 7050 * Firmware Configuration File which is compatible with the new 7051 * Firmware if that's desired. 7052 */ 7053 (void)t4_load_cfg(adap, NULL, 0); 7054 7055 /* 7056 * Older versions of the firmware don't understand the new 7057 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7058 * restart. So for newly loaded older firmware we'll have to do the 7059 * RESET for it so it starts up on a clean slate. We can tell if 7060 * the newly loaded firmware will handle this right by checking 7061 * its header flags to see if it advertises the capability. 7062 */ 7063 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7064 ret = t4_fw_restart(adap, mbox, reset); 7065 7066 /* Grab potentially new Firmware Device Log parameters so we can see 7067 * how healthy the new Firmware is. It's okay to contact the new 7068 * Firmware for these parameters even though, as far as it's 7069 * concerned, we've never said "HELLO" to it ... 7070 */ 7071 (void)t4_init_devlog_params(adap); 7072 out: 7073 adap->flags |= FW_OK; 7074 return ret; 7075 } 7076 7077 /** 7078 * t4_fl_pkt_align - return the fl packet alignment 7079 * @adap: the adapter 7080 * 7081 * T4 has a single field to specify the packing and padding boundary. 7082 * T5 onwards has separate fields for this and hence the alignment for 7083 * next packet offset is maximum of these two. 7084 * 7085 */ 7086 int t4_fl_pkt_align(struct adapter *adap) 7087 { 7088 u32 sge_control, sge_control2; 7089 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7090 7091 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7092 7093 /* T4 uses a single control field to specify both the PCIe Padding and 7094 * Packing Boundary. T5 introduced the ability to specify these 7095 * separately. The actual Ingress Packet Data alignment boundary 7096 * within Packed Buffer Mode is the maximum of these two 7097 * specifications. (Note that it makes no real practical sense to 7098 * have the Pading Boudary be larger than the Packing Boundary but you 7099 * could set the chip up that way and, in fact, legacy T4 code would 7100 * end doing this because it would initialize the Padding Boundary and 7101 * leave the Packing Boundary initialized to 0 (16 bytes).) 7102 * Padding Boundary values in T6 starts from 8B, 7103 * where as it is 32B for T4 and T5. 7104 */ 7105 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7106 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7107 else 7108 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7109 7110 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7111 7112 fl_align = ingpadboundary; 7113 if (!is_t4(adap->params.chip)) { 7114 /* T5 has a weird interpretation of one of the PCIe Packing 7115 * Boundary values. No idea why ... 7116 */ 7117 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7118 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7119 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7120 ingpackboundary = 16; 7121 else 7122 ingpackboundary = 1 << (ingpackboundary + 7123 INGPACKBOUNDARY_SHIFT_X); 7124 7125 fl_align = max(ingpadboundary, ingpackboundary); 7126 } 7127 return fl_align; 7128 } 7129 7130 /** 7131 * t4_fixup_host_params - fix up host-dependent parameters 7132 * @adap: the adapter 7133 * @page_size: the host's Base Page Size 7134 * @cache_line_size: the host's Cache Line Size 7135 * 7136 * Various registers in T4 contain values which are dependent on the 7137 * host's Base Page and Cache Line Sizes. This function will fix all of 7138 * those registers with the appropriate values as passed in ... 7139 */ 7140 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7141 unsigned int cache_line_size) 7142 { 7143 unsigned int page_shift = fls(page_size) - 1; 7144 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7145 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7146 unsigned int fl_align_log = fls(fl_align) - 1; 7147 7148 if (is_t4(adap->params.chip)) { 7149 t4_set_reg_field(adap, SGE_CONTROL_A, 7150 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7151 EGRSTATUSPAGESIZE_F, 7152 INGPADBOUNDARY_V(fl_align_log - 7153 INGPADBOUNDARY_SHIFT_X) | 7154 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7155 } else { 7156 unsigned int pack_align; 7157 unsigned int ingpad, ingpack; 7158 unsigned int pcie_cap; 7159 7160 /* T5 introduced the separation of the Free List Padding and 7161 * Packing Boundaries. Thus, we can select a smaller Padding 7162 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7163 * Bandwidth, and use a Packing Boundary which is large enough 7164 * to avoid false sharing between CPUs, etc. 7165 * 7166 * For the PCI Link, the smaller the Padding Boundary the 7167 * better. For the Memory Controller, a smaller Padding 7168 * Boundary is better until we cross under the Memory Line 7169 * Size (the minimum unit of transfer to/from Memory). If we 7170 * have a Padding Boundary which is smaller than the Memory 7171 * Line Size, that'll involve a Read-Modify-Write cycle on the 7172 * Memory Controller which is never good. 7173 */ 7174 7175 /* We want the Packing Boundary to be based on the Cache Line 7176 * Size in order to help avoid False Sharing performance 7177 * issues between CPUs, etc. We also want the Packing 7178 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7179 * get best performance when the Packing Boundary is a 7180 * multiple of the Maximum Payload Size. 7181 */ 7182 pack_align = fl_align; 7183 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7184 if (pcie_cap) { 7185 unsigned int mps, mps_log; 7186 u16 devctl; 7187 7188 /* The PCIe Device Control Maximum Payload Size field 7189 * [bits 7:5] encodes sizes as powers of 2 starting at 7190 * 128 bytes. 7191 */ 7192 pci_read_config_word(adap->pdev, 7193 pcie_cap + PCI_EXP_DEVCTL, 7194 &devctl); 7195 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7196 mps = 1 << mps_log; 7197 if (mps > pack_align) 7198 pack_align = mps; 7199 } 7200 7201 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7202 * value for the Packing Boundary. This corresponds to 16 7203 * bytes instead of the expected 32 bytes. So if we want 32 7204 * bytes, the best we can really do is 64 bytes ... 7205 */ 7206 if (pack_align <= 16) { 7207 ingpack = INGPACKBOUNDARY_16B_X; 7208 fl_align = 16; 7209 } else if (pack_align == 32) { 7210 ingpack = INGPACKBOUNDARY_64B_X; 7211 fl_align = 64; 7212 } else { 7213 unsigned int pack_align_log = fls(pack_align) - 1; 7214 7215 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7216 fl_align = pack_align; 7217 } 7218 7219 /* Use the smallest Ingress Padding which isn't smaller than 7220 * the Memory Controller Read/Write Size. We'll take that as 7221 * being 8 bytes since we don't know of any system with a 7222 * wider Memory Controller Bus Width. 7223 */ 7224 if (is_t5(adap->params.chip)) 7225 ingpad = INGPADBOUNDARY_32B_X; 7226 else 7227 ingpad = T6_INGPADBOUNDARY_8B_X; 7228 7229 t4_set_reg_field(adap, SGE_CONTROL_A, 7230 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7231 EGRSTATUSPAGESIZE_F, 7232 INGPADBOUNDARY_V(ingpad) | 7233 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7234 t4_set_reg_field(adap, SGE_CONTROL2_A, 7235 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7236 INGPACKBOUNDARY_V(ingpack)); 7237 } 7238 /* 7239 * Adjust various SGE Free List Host Buffer Sizes. 7240 * 7241 * This is something of a crock since we're using fixed indices into 7242 * the array which are also known by the sge.c code and the T4 7243 * Firmware Configuration File. We need to come up with a much better 7244 * approach to managing this array. For now, the first four entries 7245 * are: 7246 * 7247 * 0: Host Page Size 7248 * 1: 64KB 7249 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7250 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7251 * 7252 * For the single-MTU buffers in unpacked mode we need to include 7253 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7254 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7255 * Padding boundary. All of these are accommodated in the Factory 7256 * Default Firmware Configuration File but we need to adjust it for 7257 * this host's cache line size. 7258 */ 7259 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7260 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7261 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7262 & ~(fl_align-1)); 7263 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7264 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7265 & ~(fl_align-1)); 7266 7267 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7268 7269 return 0; 7270 } 7271 7272 /** 7273 * t4_fw_initialize - ask FW to initialize the device 7274 * @adap: the adapter 7275 * @mbox: mailbox to use for the FW command 7276 * 7277 * Issues a command to FW to partially initialize the device. This 7278 * performs initialization that generally doesn't depend on user input. 7279 */ 7280 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7281 { 7282 struct fw_initialize_cmd c; 7283 7284 memset(&c, 0, sizeof(c)); 7285 INIT_CMD(c, INITIALIZE, WRITE); 7286 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7287 } 7288 7289 /** 7290 * t4_query_params_rw - query FW or device parameters 7291 * @adap: the adapter 7292 * @mbox: mailbox to use for the FW command 7293 * @pf: the PF 7294 * @vf: the VF 7295 * @nparams: the number of parameters 7296 * @params: the parameter names 7297 * @val: the parameter values 7298 * @rw: Write and read flag 7299 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7300 * 7301 * Reads the value of FW or device parameters. Up to 7 parameters can be 7302 * queried at once. 7303 */ 7304 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7305 unsigned int vf, unsigned int nparams, const u32 *params, 7306 u32 *val, int rw, bool sleep_ok) 7307 { 7308 int i, ret; 7309 struct fw_params_cmd c; 7310 __be32 *p = &c.param[0].mnem; 7311 7312 if (nparams > 7) 7313 return -EINVAL; 7314 7315 memset(&c, 0, sizeof(c)); 7316 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7317 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7318 FW_PARAMS_CMD_PFN_V(pf) | 7319 FW_PARAMS_CMD_VFN_V(vf)); 7320 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7321 7322 for (i = 0; i < nparams; i++) { 7323 *p++ = cpu_to_be32(*params++); 7324 if (rw) 7325 *p = cpu_to_be32(*(val + i)); 7326 p++; 7327 } 7328 7329 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7330 if (ret == 0) 7331 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7332 *val++ = be32_to_cpu(*p); 7333 return ret; 7334 } 7335 7336 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7337 unsigned int vf, unsigned int nparams, const u32 *params, 7338 u32 *val) 7339 { 7340 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7341 true); 7342 } 7343 7344 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7345 unsigned int vf, unsigned int nparams, const u32 *params, 7346 u32 *val) 7347 { 7348 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7349 false); 7350 } 7351 7352 /** 7353 * t4_set_params_timeout - sets FW or device parameters 7354 * @adap: the adapter 7355 * @mbox: mailbox to use for the FW command 7356 * @pf: the PF 7357 * @vf: the VF 7358 * @nparams: the number of parameters 7359 * @params: the parameter names 7360 * @val: the parameter values 7361 * @timeout: the timeout time 7362 * 7363 * Sets the value of FW or device parameters. Up to 7 parameters can be 7364 * specified at once. 7365 */ 7366 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7367 unsigned int pf, unsigned int vf, 7368 unsigned int nparams, const u32 *params, 7369 const u32 *val, int timeout) 7370 { 7371 struct fw_params_cmd c; 7372 __be32 *p = &c.param[0].mnem; 7373 7374 if (nparams > 7) 7375 return -EINVAL; 7376 7377 memset(&c, 0, sizeof(c)); 7378 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7379 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7380 FW_PARAMS_CMD_PFN_V(pf) | 7381 FW_PARAMS_CMD_VFN_V(vf)); 7382 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7383 7384 while (nparams--) { 7385 *p++ = cpu_to_be32(*params++); 7386 *p++ = cpu_to_be32(*val++); 7387 } 7388 7389 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7390 } 7391 7392 /** 7393 * t4_set_params - sets FW or device parameters 7394 * @adap: the adapter 7395 * @mbox: mailbox to use for the FW command 7396 * @pf: the PF 7397 * @vf: the VF 7398 * @nparams: the number of parameters 7399 * @params: the parameter names 7400 * @val: the parameter values 7401 * 7402 * Sets the value of FW or device parameters. Up to 7 parameters can be 7403 * specified at once. 7404 */ 7405 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7406 unsigned int vf, unsigned int nparams, const u32 *params, 7407 const u32 *val) 7408 { 7409 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7410 FW_CMD_MAX_TIMEOUT); 7411 } 7412 7413 /** 7414 * t4_cfg_pfvf - configure PF/VF resource limits 7415 * @adap: the adapter 7416 * @mbox: mailbox to use for the FW command 7417 * @pf: the PF being configured 7418 * @vf: the VF being configured 7419 * @txq: the max number of egress queues 7420 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7421 * @rxqi: the max number of interrupt-capable ingress queues 7422 * @rxq: the max number of interruptless ingress queues 7423 * @tc: the PCI traffic class 7424 * @vi: the max number of virtual interfaces 7425 * @cmask: the channel access rights mask for the PF/VF 7426 * @pmask: the port access rights mask for the PF/VF 7427 * @nexact: the maximum number of exact MPS filters 7428 * @rcaps: read capabilities 7429 * @wxcaps: write/execute capabilities 7430 * 7431 * Configures resource limits and capabilities for a physical or virtual 7432 * function. 7433 */ 7434 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7435 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7436 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7437 unsigned int vi, unsigned int cmask, unsigned int pmask, 7438 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7439 { 7440 struct fw_pfvf_cmd c; 7441 7442 memset(&c, 0, sizeof(c)); 7443 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7444 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7445 FW_PFVF_CMD_VFN_V(vf)); 7446 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7447 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7448 FW_PFVF_CMD_NIQ_V(rxq)); 7449 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7450 FW_PFVF_CMD_PMASK_V(pmask) | 7451 FW_PFVF_CMD_NEQ_V(txq)); 7452 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7453 FW_PFVF_CMD_NVI_V(vi) | 7454 FW_PFVF_CMD_NEXACTF_V(nexact)); 7455 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7456 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7457 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7458 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7459 } 7460 7461 /** 7462 * t4_alloc_vi - allocate a virtual interface 7463 * @adap: the adapter 7464 * @mbox: mailbox to use for the FW command 7465 * @port: physical port associated with the VI 7466 * @pf: the PF owning the VI 7467 * @vf: the VF owning the VI 7468 * @nmac: number of MAC addresses needed (1 to 5) 7469 * @mac: the MAC addresses of the VI 7470 * @rss_size: size of RSS table slice associated with this VI 7471 * 7472 * Allocates a virtual interface for the given physical port. If @mac is 7473 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7474 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7475 * stored consecutively so the space needed is @nmac * 6 bytes. 7476 * Returns a negative error number or the non-negative VI id. 7477 */ 7478 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7479 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7480 unsigned int *rss_size) 7481 { 7482 int ret; 7483 struct fw_vi_cmd c; 7484 7485 memset(&c, 0, sizeof(c)); 7486 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7487 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7488 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7489 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7490 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7491 c.nmac = nmac - 1; 7492 7493 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7494 if (ret) 7495 return ret; 7496 7497 if (mac) { 7498 memcpy(mac, c.mac, sizeof(c.mac)); 7499 switch (nmac) { 7500 case 5: 7501 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7502 /* Fall through */ 7503 case 4: 7504 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7505 /* Fall through */ 7506 case 3: 7507 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7508 /* Fall through */ 7509 case 2: 7510 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7511 } 7512 } 7513 if (rss_size) 7514 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7515 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7516 } 7517 7518 /** 7519 * t4_free_vi - free a virtual interface 7520 * @adap: the adapter 7521 * @mbox: mailbox to use for the FW command 7522 * @pf: the PF owning the VI 7523 * @vf: the VF owning the VI 7524 * @viid: virtual interface identifiler 7525 * 7526 * Free a previously allocated virtual interface. 7527 */ 7528 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7529 unsigned int vf, unsigned int viid) 7530 { 7531 struct fw_vi_cmd c; 7532 7533 memset(&c, 0, sizeof(c)); 7534 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7535 FW_CMD_REQUEST_F | 7536 FW_CMD_EXEC_F | 7537 FW_VI_CMD_PFN_V(pf) | 7538 FW_VI_CMD_VFN_V(vf)); 7539 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7540 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7541 7542 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7543 } 7544 7545 /** 7546 * t4_set_rxmode - set Rx properties of a virtual interface 7547 * @adap: the adapter 7548 * @mbox: mailbox to use for the FW command 7549 * @viid: the VI id 7550 * @mtu: the new MTU or -1 7551 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7552 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7553 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7554 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7555 * @sleep_ok: if true we may sleep while awaiting command completion 7556 * 7557 * Sets Rx properties of a virtual interface. 7558 */ 7559 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7560 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7561 bool sleep_ok) 7562 { 7563 struct fw_vi_rxmode_cmd c; 7564 7565 /* convert to FW values */ 7566 if (mtu < 0) 7567 mtu = FW_RXMODE_MTU_NO_CHG; 7568 if (promisc < 0) 7569 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7570 if (all_multi < 0) 7571 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7572 if (bcast < 0) 7573 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7574 if (vlanex < 0) 7575 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7576 7577 memset(&c, 0, sizeof(c)); 7578 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7579 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7580 FW_VI_RXMODE_CMD_VIID_V(viid)); 7581 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7582 c.mtu_to_vlanexen = 7583 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7584 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7585 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7586 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7587 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7588 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7589 } 7590 7591 /** 7592 * t4_free_encap_mac_filt - frees MPS entry at given index 7593 * @adap: the adapter 7594 * @viid: the VI id 7595 * @idx: index of MPS entry to be freed 7596 * @sleep_ok: call is allowed to sleep 7597 * 7598 * Frees the MPS entry at supplied index 7599 * 7600 * Returns a negative error number or zero on success 7601 */ 7602 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7603 int idx, bool sleep_ok) 7604 { 7605 struct fw_vi_mac_exact *p; 7606 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7607 struct fw_vi_mac_cmd c; 7608 int ret = 0; 7609 u32 exact; 7610 7611 memset(&c, 0, sizeof(c)); 7612 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7613 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7614 FW_CMD_EXEC_V(0) | 7615 FW_VI_MAC_CMD_VIID_V(viid)); 7616 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7617 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7618 exact | 7619 FW_CMD_LEN16_V(1)); 7620 p = c.u.exact; 7621 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7622 FW_VI_MAC_CMD_IDX_V(idx)); 7623 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7624 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7625 return ret; 7626 } 7627 7628 /** 7629 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7630 * @adap: the adapter 7631 * @viid: the VI id 7632 * @addr: the MAC address 7633 * @mask: the mask 7634 * @idx: index of the entry in mps tcam 7635 * @lookup_type: MAC address for inner (1) or outer (0) header 7636 * @port_id: the port index 7637 * @sleep_ok: call is allowed to sleep 7638 * 7639 * Removes the mac entry at the specified index using raw mac interface. 7640 * 7641 * Returns a negative error number on failure. 7642 */ 7643 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7644 const u8 *addr, const u8 *mask, unsigned int idx, 7645 u8 lookup_type, u8 port_id, bool sleep_ok) 7646 { 7647 struct fw_vi_mac_cmd c; 7648 struct fw_vi_mac_raw *p = &c.u.raw; 7649 u32 val; 7650 7651 memset(&c, 0, sizeof(c)); 7652 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7653 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7654 FW_CMD_EXEC_V(0) | 7655 FW_VI_MAC_CMD_VIID_V(viid)); 7656 val = FW_CMD_LEN16_V(1) | 7657 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7658 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7659 FW_CMD_LEN16_V(val)); 7660 7661 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7662 FW_VI_MAC_ID_BASED_FREE); 7663 7664 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7665 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7666 DATAPORTNUM_V(port_id)); 7667 /* Lookup mask and port mask */ 7668 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7669 DATAPORTNUM_V(DATAPORTNUM_M)); 7670 7671 /* Copy the address and the mask */ 7672 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7673 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7674 7675 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7676 } 7677 7678 /** 7679 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7680 * @adap: the adapter 7681 * @viid: the VI id 7682 * @mac: the MAC address 7683 * @mask: the mask 7684 * @vni: the VNI id for the tunnel protocol 7685 * @vni_mask: mask for the VNI id 7686 * @dip_hit: to enable DIP match for the MPS entry 7687 * @lookup_type: MAC address for inner (1) or outer (0) header 7688 * @sleep_ok: call is allowed to sleep 7689 * 7690 * Allocates an MPS entry with specified MAC address and VNI value. 7691 * 7692 * Returns a negative error number or the allocated index for this mac. 7693 */ 7694 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7695 const u8 *addr, const u8 *mask, unsigned int vni, 7696 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7697 bool sleep_ok) 7698 { 7699 struct fw_vi_mac_cmd c; 7700 struct fw_vi_mac_vni *p = c.u.exact_vni; 7701 int ret = 0; 7702 u32 val; 7703 7704 memset(&c, 0, sizeof(c)); 7705 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7706 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7707 FW_VI_MAC_CMD_VIID_V(viid)); 7708 val = FW_CMD_LEN16_V(1) | 7709 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7710 c.freemacs_to_len16 = cpu_to_be32(val); 7711 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7712 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7713 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7714 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7715 7716 p->lookup_type_to_vni = 7717 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7718 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7719 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7720 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7721 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7722 if (ret == 0) 7723 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7724 return ret; 7725 } 7726 7727 /** 7728 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7729 * @adap: the adapter 7730 * @viid: the VI id 7731 * @mac: the MAC address 7732 * @mask: the mask 7733 * @idx: index at which to add this entry 7734 * @port_id: the port index 7735 * @lookup_type: MAC address for inner (1) or outer (0) header 7736 * @sleep_ok: call is allowed to sleep 7737 * 7738 * Adds the mac entry at the specified index using raw mac interface. 7739 * 7740 * Returns a negative error number or the allocated index for this mac. 7741 */ 7742 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7743 const u8 *addr, const u8 *mask, unsigned int idx, 7744 u8 lookup_type, u8 port_id, bool sleep_ok) 7745 { 7746 int ret = 0; 7747 struct fw_vi_mac_cmd c; 7748 struct fw_vi_mac_raw *p = &c.u.raw; 7749 u32 val; 7750 7751 memset(&c, 0, sizeof(c)); 7752 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7753 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7754 FW_VI_MAC_CMD_VIID_V(viid)); 7755 val = FW_CMD_LEN16_V(1) | 7756 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7757 c.freemacs_to_len16 = cpu_to_be32(val); 7758 7759 /* Specify that this is an inner mac address */ 7760 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7761 7762 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7763 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7764 DATAPORTNUM_V(port_id)); 7765 /* Lookup mask and port mask */ 7766 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7767 DATAPORTNUM_V(DATAPORTNUM_M)); 7768 7769 /* Copy the address and the mask */ 7770 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7771 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7772 7773 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7774 if (ret == 0) { 7775 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7776 if (ret != idx) 7777 ret = -ENOMEM; 7778 } 7779 7780 return ret; 7781 } 7782 7783 /** 7784 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7785 * @adap: the adapter 7786 * @mbox: mailbox to use for the FW command 7787 * @viid: the VI id 7788 * @free: if true any existing filters for this VI id are first removed 7789 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7790 * @addr: the MAC address(es) 7791 * @idx: where to store the index of each allocated filter 7792 * @hash: pointer to hash address filter bitmap 7793 * @sleep_ok: call is allowed to sleep 7794 * 7795 * Allocates an exact-match filter for each of the supplied addresses and 7796 * sets it to the corresponding address. If @idx is not %NULL it should 7797 * have at least @naddr entries, each of which will be set to the index of 7798 * the filter allocated for the corresponding MAC address. If a filter 7799 * could not be allocated for an address its index is set to 0xffff. 7800 * If @hash is not %NULL addresses that fail to allocate an exact filter 7801 * are hashed and update the hash filter bitmap pointed at by @hash. 7802 * 7803 * Returns a negative error number or the number of filters allocated. 7804 */ 7805 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7806 unsigned int viid, bool free, unsigned int naddr, 7807 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7808 { 7809 int offset, ret = 0; 7810 struct fw_vi_mac_cmd c; 7811 unsigned int nfilters = 0; 7812 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7813 unsigned int rem = naddr; 7814 7815 if (naddr > max_naddr) 7816 return -EINVAL; 7817 7818 for (offset = 0; offset < naddr ; /**/) { 7819 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7820 rem : ARRAY_SIZE(c.u.exact)); 7821 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7822 u.exact[fw_naddr]), 16); 7823 struct fw_vi_mac_exact *p; 7824 int i; 7825 7826 memset(&c, 0, sizeof(c)); 7827 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7828 FW_CMD_REQUEST_F | 7829 FW_CMD_WRITE_F | 7830 FW_CMD_EXEC_V(free) | 7831 FW_VI_MAC_CMD_VIID_V(viid)); 7832 c.freemacs_to_len16 = 7833 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7834 FW_CMD_LEN16_V(len16)); 7835 7836 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7837 p->valid_to_idx = 7838 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7839 FW_VI_MAC_CMD_IDX_V( 7840 FW_VI_MAC_ADD_MAC)); 7841 memcpy(p->macaddr, addr[offset + i], 7842 sizeof(p->macaddr)); 7843 } 7844 7845 /* It's okay if we run out of space in our MAC address arena. 7846 * Some of the addresses we submit may get stored so we need 7847 * to run through the reply to see what the results were ... 7848 */ 7849 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7850 if (ret && ret != -FW_ENOMEM) 7851 break; 7852 7853 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7854 u16 index = FW_VI_MAC_CMD_IDX_G( 7855 be16_to_cpu(p->valid_to_idx)); 7856 7857 if (idx) 7858 idx[offset + i] = (index >= max_naddr ? 7859 0xffff : index); 7860 if (index < max_naddr) 7861 nfilters++; 7862 else if (hash) 7863 *hash |= (1ULL << 7864 hash_mac_addr(addr[offset + i])); 7865 } 7866 7867 free = false; 7868 offset += fw_naddr; 7869 rem -= fw_naddr; 7870 } 7871 7872 if (ret == 0 || ret == -FW_ENOMEM) 7873 ret = nfilters; 7874 return ret; 7875 } 7876 7877 /** 7878 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7879 * @adap: the adapter 7880 * @mbox: mailbox to use for the FW command 7881 * @viid: the VI id 7882 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7883 * @addr: the MAC address(es) 7884 * @sleep_ok: call is allowed to sleep 7885 * 7886 * Frees the exact-match filter for each of the supplied addresses 7887 * 7888 * Returns a negative error number or the number of filters freed. 7889 */ 7890 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7891 unsigned int viid, unsigned int naddr, 7892 const u8 **addr, bool sleep_ok) 7893 { 7894 int offset, ret = 0; 7895 struct fw_vi_mac_cmd c; 7896 unsigned int nfilters = 0; 7897 unsigned int max_naddr = is_t4(adap->params.chip) ? 7898 NUM_MPS_CLS_SRAM_L_INSTANCES : 7899 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7900 unsigned int rem = naddr; 7901 7902 if (naddr > max_naddr) 7903 return -EINVAL; 7904 7905 for (offset = 0; offset < (int)naddr ; /**/) { 7906 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7907 ? rem 7908 : ARRAY_SIZE(c.u.exact)); 7909 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7910 u.exact[fw_naddr]), 16); 7911 struct fw_vi_mac_exact *p; 7912 int i; 7913 7914 memset(&c, 0, sizeof(c)); 7915 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7916 FW_CMD_REQUEST_F | 7917 FW_CMD_WRITE_F | 7918 FW_CMD_EXEC_V(0) | 7919 FW_VI_MAC_CMD_VIID_V(viid)); 7920 c.freemacs_to_len16 = 7921 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7922 FW_CMD_LEN16_V(len16)); 7923 7924 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7925 p->valid_to_idx = cpu_to_be16( 7926 FW_VI_MAC_CMD_VALID_F | 7927 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 7928 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7929 } 7930 7931 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7932 if (ret) 7933 break; 7934 7935 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7936 u16 index = FW_VI_MAC_CMD_IDX_G( 7937 be16_to_cpu(p->valid_to_idx)); 7938 7939 if (index < max_naddr) 7940 nfilters++; 7941 } 7942 7943 offset += fw_naddr; 7944 rem -= fw_naddr; 7945 } 7946 7947 if (ret == 0) 7948 ret = nfilters; 7949 return ret; 7950 } 7951 7952 /** 7953 * t4_change_mac - modifies the exact-match filter for a MAC address 7954 * @adap: the adapter 7955 * @mbox: mailbox to use for the FW command 7956 * @viid: the VI id 7957 * @idx: index of existing filter for old value of MAC address, or -1 7958 * @addr: the new MAC address value 7959 * @persist: whether a new MAC allocation should be persistent 7960 * @add_smt: if true also add the address to the HW SMT 7961 * 7962 * Modifies an exact-match filter and sets it to the new MAC address. 7963 * Note that in general it is not possible to modify the value of a given 7964 * filter so the generic way to modify an address filter is to free the one 7965 * being used by the old address value and allocate a new filter for the 7966 * new address value. @idx can be -1 if the address is a new addition. 7967 * 7968 * Returns a negative error number or the index of the filter with the new 7969 * MAC value. 7970 */ 7971 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 7972 int idx, const u8 *addr, bool persist, bool add_smt) 7973 { 7974 int ret, mode; 7975 struct fw_vi_mac_cmd c; 7976 struct fw_vi_mac_exact *p = c.u.exact; 7977 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 7978 7979 if (idx < 0) /* new allocation */ 7980 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 7981 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 7982 7983 memset(&c, 0, sizeof(c)); 7984 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7985 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7986 FW_VI_MAC_CMD_VIID_V(viid)); 7987 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 7988 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7989 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 7990 FW_VI_MAC_CMD_IDX_V(idx)); 7991 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7992 7993 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7994 if (ret == 0) { 7995 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7996 if (ret >= max_mac_addr) 7997 ret = -ENOMEM; 7998 } 7999 return ret; 8000 } 8001 8002 /** 8003 * t4_set_addr_hash - program the MAC inexact-match hash filter 8004 * @adap: the adapter 8005 * @mbox: mailbox to use for the FW command 8006 * @viid: the VI id 8007 * @ucast: whether the hash filter should also match unicast addresses 8008 * @vec: the value to be written to the hash filter 8009 * @sleep_ok: call is allowed to sleep 8010 * 8011 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8012 */ 8013 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8014 bool ucast, u64 vec, bool sleep_ok) 8015 { 8016 struct fw_vi_mac_cmd c; 8017 8018 memset(&c, 0, sizeof(c)); 8019 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8020 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8021 FW_VI_ENABLE_CMD_VIID_V(viid)); 8022 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8023 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8024 FW_CMD_LEN16_V(1)); 8025 c.u.hash.hashvec = cpu_to_be64(vec); 8026 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8027 } 8028 8029 /** 8030 * t4_enable_vi_params - enable/disable a virtual interface 8031 * @adap: the adapter 8032 * @mbox: mailbox to use for the FW command 8033 * @viid: the VI id 8034 * @rx_en: 1=enable Rx, 0=disable Rx 8035 * @tx_en: 1=enable Tx, 0=disable Tx 8036 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8037 * 8038 * Enables/disables a virtual interface. Note that setting DCB Enable 8039 * only makes sense when enabling a Virtual Interface ... 8040 */ 8041 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8042 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8043 { 8044 struct fw_vi_enable_cmd c; 8045 8046 memset(&c, 0, sizeof(c)); 8047 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8048 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8049 FW_VI_ENABLE_CMD_VIID_V(viid)); 8050 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8051 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8052 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8053 FW_LEN16(c)); 8054 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8055 } 8056 8057 /** 8058 * t4_enable_vi - enable/disable a virtual interface 8059 * @adap: the adapter 8060 * @mbox: mailbox to use for the FW command 8061 * @viid: the VI id 8062 * @rx_en: 1=enable Rx, 0=disable Rx 8063 * @tx_en: 1=enable Tx, 0=disable Tx 8064 * 8065 * Enables/disables a virtual interface. 8066 */ 8067 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8068 bool rx_en, bool tx_en) 8069 { 8070 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8071 } 8072 8073 /** 8074 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8075 * @adap: the adapter 8076 * @mbox: mailbox to use for the FW command 8077 * @pi: the Port Information structure 8078 * @rx_en: 1=enable Rx, 0=disable Rx 8079 * @tx_en: 1=enable Tx, 0=disable Tx 8080 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8081 * 8082 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8083 * Enable only makes sense when enabling a Virtual Interface ... 8084 * If the Virtual Interface enable/disable operation is successful, 8085 * we notify the OS-specific code of a potential Link Status change 8086 * via the OS Contract API t4_os_link_changed(). 8087 */ 8088 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8089 struct port_info *pi, 8090 bool rx_en, bool tx_en, bool dcb_en) 8091 { 8092 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8093 rx_en, tx_en, dcb_en); 8094 if (ret) 8095 return ret; 8096 t4_os_link_changed(adap, pi->port_id, 8097 rx_en && tx_en && pi->link_cfg.link_ok); 8098 return 0; 8099 } 8100 8101 /** 8102 * t4_identify_port - identify a VI's port by blinking its LED 8103 * @adap: the adapter 8104 * @mbox: mailbox to use for the FW command 8105 * @viid: the VI id 8106 * @nblinks: how many times to blink LED at 2.5 Hz 8107 * 8108 * Identifies a VI's port by blinking its LED. 8109 */ 8110 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8111 unsigned int nblinks) 8112 { 8113 struct fw_vi_enable_cmd c; 8114 8115 memset(&c, 0, sizeof(c)); 8116 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8117 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8118 FW_VI_ENABLE_CMD_VIID_V(viid)); 8119 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8120 c.blinkdur = cpu_to_be16(nblinks); 8121 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8122 } 8123 8124 /** 8125 * t4_iq_stop - stop an ingress queue and its FLs 8126 * @adap: the adapter 8127 * @mbox: mailbox to use for the FW command 8128 * @pf: the PF owning the queues 8129 * @vf: the VF owning the queues 8130 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8131 * @iqid: ingress queue id 8132 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8133 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8134 * 8135 * Stops an ingress queue and its associated FLs, if any. This causes 8136 * any current or future data/messages destined for these queues to be 8137 * tossed. 8138 */ 8139 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8140 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8141 unsigned int fl0id, unsigned int fl1id) 8142 { 8143 struct fw_iq_cmd c; 8144 8145 memset(&c, 0, sizeof(c)); 8146 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8147 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8148 FW_IQ_CMD_VFN_V(vf)); 8149 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8150 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8151 c.iqid = cpu_to_be16(iqid); 8152 c.fl0id = cpu_to_be16(fl0id); 8153 c.fl1id = cpu_to_be16(fl1id); 8154 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8155 } 8156 8157 /** 8158 * t4_iq_free - free an ingress queue and its FLs 8159 * @adap: the adapter 8160 * @mbox: mailbox to use for the FW command 8161 * @pf: the PF owning the queues 8162 * @vf: the VF owning the queues 8163 * @iqtype: the ingress queue type 8164 * @iqid: ingress queue id 8165 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8166 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8167 * 8168 * Frees an ingress queue and its associated FLs, if any. 8169 */ 8170 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8171 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8172 unsigned int fl0id, unsigned int fl1id) 8173 { 8174 struct fw_iq_cmd c; 8175 8176 memset(&c, 0, sizeof(c)); 8177 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8178 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8179 FW_IQ_CMD_VFN_V(vf)); 8180 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8181 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8182 c.iqid = cpu_to_be16(iqid); 8183 c.fl0id = cpu_to_be16(fl0id); 8184 c.fl1id = cpu_to_be16(fl1id); 8185 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8186 } 8187 8188 /** 8189 * t4_eth_eq_free - free an Ethernet egress queue 8190 * @adap: the adapter 8191 * @mbox: mailbox to use for the FW command 8192 * @pf: the PF owning the queue 8193 * @vf: the VF owning the queue 8194 * @eqid: egress queue id 8195 * 8196 * Frees an Ethernet egress queue. 8197 */ 8198 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8199 unsigned int vf, unsigned int eqid) 8200 { 8201 struct fw_eq_eth_cmd c; 8202 8203 memset(&c, 0, sizeof(c)); 8204 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8205 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8206 FW_EQ_ETH_CMD_PFN_V(pf) | 8207 FW_EQ_ETH_CMD_VFN_V(vf)); 8208 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8209 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8210 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8211 } 8212 8213 /** 8214 * t4_ctrl_eq_free - free a control egress queue 8215 * @adap: the adapter 8216 * @mbox: mailbox to use for the FW command 8217 * @pf: the PF owning the queue 8218 * @vf: the VF owning the queue 8219 * @eqid: egress queue id 8220 * 8221 * Frees a control egress queue. 8222 */ 8223 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8224 unsigned int vf, unsigned int eqid) 8225 { 8226 struct fw_eq_ctrl_cmd c; 8227 8228 memset(&c, 0, sizeof(c)); 8229 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8230 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8231 FW_EQ_CTRL_CMD_PFN_V(pf) | 8232 FW_EQ_CTRL_CMD_VFN_V(vf)); 8233 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8234 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8235 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8236 } 8237 8238 /** 8239 * t4_ofld_eq_free - free an offload egress queue 8240 * @adap: the adapter 8241 * @mbox: mailbox to use for the FW command 8242 * @pf: the PF owning the queue 8243 * @vf: the VF owning the queue 8244 * @eqid: egress queue id 8245 * 8246 * Frees a control egress queue. 8247 */ 8248 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8249 unsigned int vf, unsigned int eqid) 8250 { 8251 struct fw_eq_ofld_cmd c; 8252 8253 memset(&c, 0, sizeof(c)); 8254 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8255 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8256 FW_EQ_OFLD_CMD_PFN_V(pf) | 8257 FW_EQ_OFLD_CMD_VFN_V(vf)); 8258 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8259 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8260 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8261 } 8262 8263 /** 8264 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8265 * @adap: the adapter 8266 * @link_down_rc: Link Down Reason Code 8267 * 8268 * Returns a string representation of the Link Down Reason Code. 8269 */ 8270 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8271 { 8272 static const char * const reason[] = { 8273 "Link Down", 8274 "Remote Fault", 8275 "Auto-negotiation Failure", 8276 "Reserved", 8277 "Insufficient Airflow", 8278 "Unable To Determine Reason", 8279 "No RX Signal Detected", 8280 "Reserved", 8281 }; 8282 8283 if (link_down_rc >= ARRAY_SIZE(reason)) 8284 return "Bad Reason Code"; 8285 8286 return reason[link_down_rc]; 8287 } 8288 8289 /** 8290 * Return the highest speed set in the port capabilities, in Mb/s. 8291 */ 8292 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8293 { 8294 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8295 do { \ 8296 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8297 return __speed; \ 8298 } while (0) 8299 8300 TEST_SPEED_RETURN(400G, 400000); 8301 TEST_SPEED_RETURN(200G, 200000); 8302 TEST_SPEED_RETURN(100G, 100000); 8303 TEST_SPEED_RETURN(50G, 50000); 8304 TEST_SPEED_RETURN(40G, 40000); 8305 TEST_SPEED_RETURN(25G, 25000); 8306 TEST_SPEED_RETURN(10G, 10000); 8307 TEST_SPEED_RETURN(1G, 1000); 8308 TEST_SPEED_RETURN(100M, 100); 8309 8310 #undef TEST_SPEED_RETURN 8311 8312 return 0; 8313 } 8314 8315 /** 8316 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8317 * @acaps: advertised Port Capabilities 8318 * 8319 * Get the highest speed for the port from the advertised Port 8320 * Capabilities. It will be either the highest speed from the list of 8321 * speeds or whatever user has set using ethtool. 8322 */ 8323 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8324 { 8325 #define TEST_SPEED_RETURN(__caps_speed) \ 8326 do { \ 8327 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8328 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8329 } while (0) 8330 8331 TEST_SPEED_RETURN(400G); 8332 TEST_SPEED_RETURN(200G); 8333 TEST_SPEED_RETURN(100G); 8334 TEST_SPEED_RETURN(50G); 8335 TEST_SPEED_RETURN(40G); 8336 TEST_SPEED_RETURN(25G); 8337 TEST_SPEED_RETURN(10G); 8338 TEST_SPEED_RETURN(1G); 8339 TEST_SPEED_RETURN(100M); 8340 8341 #undef TEST_SPEED_RETURN 8342 8343 return 0; 8344 } 8345 8346 /** 8347 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8348 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8349 * 8350 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8351 * 32-bit Port Capabilities value. 8352 */ 8353 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8354 { 8355 fw_port_cap32_t linkattr = 0; 8356 8357 /* Unfortunately the format of the Link Status in the old 8358 * 16-bit Port Information message isn't the same as the 8359 * 16-bit Port Capabilities bitfield used everywhere else ... 8360 */ 8361 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8362 linkattr |= FW_PORT_CAP32_FC_RX; 8363 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8364 linkattr |= FW_PORT_CAP32_FC_TX; 8365 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8366 linkattr |= FW_PORT_CAP32_SPEED_100M; 8367 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8368 linkattr |= FW_PORT_CAP32_SPEED_1G; 8369 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8370 linkattr |= FW_PORT_CAP32_SPEED_10G; 8371 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8372 linkattr |= FW_PORT_CAP32_SPEED_25G; 8373 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8374 linkattr |= FW_PORT_CAP32_SPEED_40G; 8375 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8376 linkattr |= FW_PORT_CAP32_SPEED_100G; 8377 8378 return linkattr; 8379 } 8380 8381 /** 8382 * t4_handle_get_port_info - process a FW reply message 8383 * @pi: the port info 8384 * @rpl: start of the FW message 8385 * 8386 * Processes a GET_PORT_INFO FW reply message. 8387 */ 8388 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8389 { 8390 const struct fw_port_cmd *cmd = (const void *)rpl; 8391 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8392 struct adapter *adapter = pi->adapter; 8393 struct link_config *lc = &pi->link_cfg; 8394 int link_ok, linkdnrc; 8395 enum fw_port_type port_type; 8396 enum fw_port_module_type mod_type; 8397 unsigned int speed, fc, fec; 8398 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8399 8400 /* Extract the various fields from the Port Information message. 8401 */ 8402 switch (action) { 8403 case FW_PORT_ACTION_GET_PORT_INFO: { 8404 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8405 8406 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8407 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8408 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8409 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8410 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8411 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8412 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8413 linkattr = lstatus_to_fwcap(lstatus); 8414 break; 8415 } 8416 8417 case FW_PORT_ACTION_GET_PORT_INFO32: { 8418 u32 lstatus32; 8419 8420 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8421 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8422 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8423 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8424 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8425 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8426 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8427 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8428 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8429 break; 8430 } 8431 8432 default: 8433 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8434 be32_to_cpu(cmd->action_to_len16)); 8435 return; 8436 } 8437 8438 fec = fwcap_to_cc_fec(acaps); 8439 fc = fwcap_to_cc_pause(linkattr); 8440 speed = fwcap_to_speed(linkattr); 8441 8442 lc->new_module = false; 8443 lc->redo_l1cfg = false; 8444 8445 if (mod_type != pi->mod_type) { 8446 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8447 * various fundamental Port Capabilities which used to be 8448 * immutable can now change radically. We can now have 8449 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8450 * all change based on what Transceiver Module is inserted. 8451 * So we need to record the Physical "Port" Capabilities on 8452 * every Transceiver Module change. 8453 */ 8454 lc->pcaps = pcaps; 8455 8456 /* When a new Transceiver Module is inserted, the Firmware 8457 * will examine its i2c EPROM to determine its type and 8458 * general operating parameters including things like Forward 8459 * Error Control, etc. Various IEEE 802.3 standards dictate 8460 * how to interpret these i2c values to determine default 8461 * "sutomatic" settings. We record these for future use when 8462 * the user explicitly requests these standards-based values. 8463 */ 8464 lc->def_acaps = acaps; 8465 8466 /* Some versions of the early T6 Firmware "cheated" when 8467 * handling different Transceiver Modules by changing the 8468 * underlaying Port Type reported to the Host Drivers. As 8469 * such we need to capture whatever Port Type the Firmware 8470 * sends us and record it in case it's different from what we 8471 * were told earlier. Unfortunately, since Firmware is 8472 * forever, we'll need to keep this code here forever, but in 8473 * later T6 Firmware it should just be an assignment of the 8474 * same value already recorded. 8475 */ 8476 pi->port_type = port_type; 8477 8478 pi->mod_type = mod_type; 8479 8480 lc->new_module = t4_is_inserted_mod_type(mod_type); 8481 t4_os_portmod_changed(adapter, pi->port_id); 8482 } 8483 8484 if (link_ok != lc->link_ok || speed != lc->speed || 8485 fc != lc->fc || fec != lc->fec) { /* something changed */ 8486 if (!link_ok && lc->link_ok) { 8487 lc->link_down_rc = linkdnrc; 8488 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n", 8489 pi->tx_chan, t4_link_down_rc_str(linkdnrc)); 8490 } 8491 lc->link_ok = link_ok; 8492 lc->speed = speed; 8493 lc->fc = fc; 8494 lc->fec = fec; 8495 8496 lc->lpacaps = lpacaps; 8497 lc->acaps = acaps & ADVERT_MASK; 8498 8499 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8500 lc->autoneg = AUTONEG_DISABLE; 8501 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8502 lc->autoneg = AUTONEG_ENABLE; 8503 } else { 8504 /* When Autoneg is disabled, user needs to set 8505 * single speed. 8506 * Similar to cxgb4_ethtool.c: set_link_ksettings 8507 */ 8508 lc->acaps = 0; 8509 lc->speed_caps = fwcap_to_fwspeed(acaps); 8510 lc->autoneg = AUTONEG_DISABLE; 8511 } 8512 8513 t4_os_link_changed(adapter, pi->port_id, link_ok); 8514 } 8515 8516 if (lc->new_module && lc->redo_l1cfg) { 8517 struct link_config old_lc; 8518 int ret; 8519 8520 /* Save the current L1 Configuration and restore it if an 8521 * error occurs. We probably should fix the l1_cfg*() 8522 * routines not to change the link_config when an error 8523 * occurs ... 8524 */ 8525 old_lc = *lc; 8526 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8527 if (ret) { 8528 *lc = old_lc; 8529 dev_warn(adapter->pdev_dev, 8530 "Attempt to update new Transceiver Module settings failed\n"); 8531 } 8532 } 8533 lc->new_module = false; 8534 lc->redo_l1cfg = false; 8535 } 8536 8537 /** 8538 * t4_update_port_info - retrieve and update port information if changed 8539 * @pi: the port_info 8540 * 8541 * We issue a Get Port Information Command to the Firmware and, if 8542 * successful, we check to see if anything is different from what we 8543 * last recorded and update things accordingly. 8544 */ 8545 int t4_update_port_info(struct port_info *pi) 8546 { 8547 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8548 struct fw_port_cmd port_cmd; 8549 int ret; 8550 8551 memset(&port_cmd, 0, sizeof(port_cmd)); 8552 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8553 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8554 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8555 port_cmd.action_to_len16 = cpu_to_be32( 8556 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8557 ? FW_PORT_ACTION_GET_PORT_INFO 8558 : FW_PORT_ACTION_GET_PORT_INFO32) | 8559 FW_LEN16(port_cmd)); 8560 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8561 &port_cmd, sizeof(port_cmd), &port_cmd); 8562 if (ret) 8563 return ret; 8564 8565 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8566 return 0; 8567 } 8568 8569 /** 8570 * t4_get_link_params - retrieve basic link parameters for given port 8571 * @pi: the port 8572 * @link_okp: value return pointer for link up/down 8573 * @speedp: value return pointer for speed (Mb/s) 8574 * @mtup: value return pointer for mtu 8575 * 8576 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8577 * and MTU for a specified port. A negative error is returned on 8578 * failure; 0 on success. 8579 */ 8580 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8581 unsigned int *speedp, unsigned int *mtup) 8582 { 8583 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8584 struct fw_port_cmd port_cmd; 8585 unsigned int action, link_ok, speed, mtu; 8586 fw_port_cap32_t linkattr; 8587 int ret; 8588 8589 memset(&port_cmd, 0, sizeof(port_cmd)); 8590 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8591 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8592 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8593 action = (fw_caps == FW_CAPS16 8594 ? FW_PORT_ACTION_GET_PORT_INFO 8595 : FW_PORT_ACTION_GET_PORT_INFO32); 8596 port_cmd.action_to_len16 = cpu_to_be32( 8597 FW_PORT_CMD_ACTION_V(action) | 8598 FW_LEN16(port_cmd)); 8599 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8600 &port_cmd, sizeof(port_cmd), &port_cmd); 8601 if (ret) 8602 return ret; 8603 8604 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8605 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8606 8607 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8608 linkattr = lstatus_to_fwcap(lstatus); 8609 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8610 } else { 8611 u32 lstatus32 = 8612 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8613 8614 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8615 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8616 mtu = FW_PORT_CMD_MTU32_G( 8617 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8618 } 8619 speed = fwcap_to_speed(linkattr); 8620 8621 *link_okp = link_ok; 8622 *speedp = fwcap_to_speed(linkattr); 8623 *mtup = mtu; 8624 8625 return 0; 8626 } 8627 8628 /** 8629 * t4_handle_fw_rpl - process a FW reply message 8630 * @adap: the adapter 8631 * @rpl: start of the FW message 8632 * 8633 * Processes a FW message, such as link state change messages. 8634 */ 8635 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8636 { 8637 u8 opcode = *(const u8 *)rpl; 8638 8639 /* This might be a port command ... this simplifies the following 8640 * conditionals ... We can get away with pre-dereferencing 8641 * action_to_len16 because it's in the first 16 bytes and all messages 8642 * will be at least that long. 8643 */ 8644 const struct fw_port_cmd *p = (const void *)rpl; 8645 unsigned int action = 8646 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8647 8648 if (opcode == FW_PORT_CMD && 8649 (action == FW_PORT_ACTION_GET_PORT_INFO || 8650 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8651 int i; 8652 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8653 struct port_info *pi = NULL; 8654 8655 for_each_port(adap, i) { 8656 pi = adap2pinfo(adap, i); 8657 if (pi->tx_chan == chan) 8658 break; 8659 } 8660 8661 t4_handle_get_port_info(pi, rpl); 8662 } else { 8663 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8664 opcode); 8665 return -EINVAL; 8666 } 8667 return 0; 8668 } 8669 8670 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8671 { 8672 u16 val; 8673 8674 if (pci_is_pcie(adapter->pdev)) { 8675 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8676 p->speed = val & PCI_EXP_LNKSTA_CLS; 8677 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8678 } 8679 } 8680 8681 /** 8682 * init_link_config - initialize a link's SW state 8683 * @lc: pointer to structure holding the link state 8684 * @pcaps: link Port Capabilities 8685 * @acaps: link current Advertised Port Capabilities 8686 * 8687 * Initializes the SW state maintained for each link, including the link's 8688 * capabilities and default speed/flow-control/autonegotiation settings. 8689 */ 8690 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8691 fw_port_cap32_t acaps) 8692 { 8693 lc->pcaps = pcaps; 8694 lc->def_acaps = acaps; 8695 lc->lpacaps = 0; 8696 lc->speed_caps = 0; 8697 lc->speed = 0; 8698 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8699 8700 /* For Forward Error Control, we default to whatever the Firmware 8701 * tells us the Link is currently advertising. 8702 */ 8703 lc->requested_fec = FEC_AUTO; 8704 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8705 8706 /* If the Port is capable of Auto-Negtotiation, initialize it as 8707 * "enabled" and copy over all of the Physical Port Capabilities 8708 * to the Advertised Port Capabilities. Otherwise mark it as 8709 * Auto-Negotiate disabled and select the highest supported speed 8710 * for the link. Note parallel structure in t4_link_l1cfg_core() 8711 * and t4_handle_get_port_info(). 8712 */ 8713 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8714 lc->acaps = lc->pcaps & ADVERT_MASK; 8715 lc->autoneg = AUTONEG_ENABLE; 8716 lc->requested_fc |= PAUSE_AUTONEG; 8717 } else { 8718 lc->acaps = 0; 8719 lc->autoneg = AUTONEG_DISABLE; 8720 lc->speed_caps = fwcap_to_fwspeed(acaps); 8721 } 8722 } 8723 8724 #define CIM_PF_NOACCESS 0xeeeeeeee 8725 8726 int t4_wait_dev_ready(void __iomem *regs) 8727 { 8728 u32 whoami; 8729 8730 whoami = readl(regs + PL_WHOAMI_A); 8731 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8732 return 0; 8733 8734 msleep(500); 8735 whoami = readl(regs + PL_WHOAMI_A); 8736 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8737 } 8738 8739 struct flash_desc { 8740 u32 vendor_and_model_id; 8741 u32 size_mb; 8742 }; 8743 8744 static int t4_get_flash_params(struct adapter *adap) 8745 { 8746 /* Table for non-Numonix supported flash parts. Numonix parts are left 8747 * to the preexisting code. All flash parts have 64KB sectors. 8748 */ 8749 static struct flash_desc supported_flash[] = { 8750 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8751 }; 8752 8753 unsigned int part, manufacturer; 8754 unsigned int density, size = 0; 8755 u32 flashid = 0; 8756 int ret; 8757 8758 /* Issue a Read ID Command to the Flash part. We decode supported 8759 * Flash parts and their sizes from this. There's a newer Query 8760 * Command which can retrieve detailed geometry information but many 8761 * Flash parts don't support it. 8762 */ 8763 8764 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8765 if (!ret) 8766 ret = sf1_read(adap, 3, 0, 1, &flashid); 8767 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8768 if (ret) 8769 return ret; 8770 8771 /* Check to see if it's one of our non-standard supported Flash parts. 8772 */ 8773 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8774 if (supported_flash[part].vendor_and_model_id == flashid) { 8775 adap->params.sf_size = supported_flash[part].size_mb; 8776 adap->params.sf_nsec = 8777 adap->params.sf_size / SF_SEC_SIZE; 8778 goto found; 8779 } 8780 8781 /* Decode Flash part size. The code below looks repetative with 8782 * common encodings, but that's not guaranteed in the JEDEC 8783 * specification for the Read JADEC ID command. The only thing that 8784 * we're guaranteed by the JADEC specification is where the 8785 * Manufacturer ID is in the returned result. After that each 8786 * Manufacturer ~could~ encode things completely differently. 8787 * Note, all Flash parts must have 64KB sectors. 8788 */ 8789 manufacturer = flashid & 0xff; 8790 switch (manufacturer) { 8791 case 0x20: { /* Micron/Numonix */ 8792 /* This Density -> Size decoding table is taken from Micron 8793 * Data Sheets. 8794 */ 8795 density = (flashid >> 16) & 0xff; 8796 switch (density) { 8797 case 0x14: /* 1MB */ 8798 size = 1 << 20; 8799 break; 8800 case 0x15: /* 2MB */ 8801 size = 1 << 21; 8802 break; 8803 case 0x16: /* 4MB */ 8804 size = 1 << 22; 8805 break; 8806 case 0x17: /* 8MB */ 8807 size = 1 << 23; 8808 break; 8809 case 0x18: /* 16MB */ 8810 size = 1 << 24; 8811 break; 8812 case 0x19: /* 32MB */ 8813 size = 1 << 25; 8814 break; 8815 case 0x20: /* 64MB */ 8816 size = 1 << 26; 8817 break; 8818 case 0x21: /* 128MB */ 8819 size = 1 << 27; 8820 break; 8821 case 0x22: /* 256MB */ 8822 size = 1 << 28; 8823 break; 8824 } 8825 break; 8826 } 8827 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 8828 /* This Density -> Size decoding table is taken from ISSI 8829 * Data Sheets. 8830 */ 8831 density = (flashid >> 16) & 0xff; 8832 switch (density) { 8833 case 0x16: /* 32 MB */ 8834 size = 1 << 25; 8835 break; 8836 case 0x17: /* 64MB */ 8837 size = 1 << 26; 8838 break; 8839 } 8840 break; 8841 } 8842 case 0xc2: { /* Macronix */ 8843 /* This Density -> Size decoding table is taken from Macronix 8844 * Data Sheets. 8845 */ 8846 density = (flashid >> 16) & 0xff; 8847 switch (density) { 8848 case 0x17: /* 8MB */ 8849 size = 1 << 23; 8850 break; 8851 case 0x18: /* 16MB */ 8852 size = 1 << 24; 8853 break; 8854 } 8855 break; 8856 } 8857 case 0xef: { /* Winbond */ 8858 /* This Density -> Size decoding table is taken from Winbond 8859 * Data Sheets. 8860 */ 8861 density = (flashid >> 16) & 0xff; 8862 switch (density) { 8863 case 0x17: /* 8MB */ 8864 size = 1 << 23; 8865 break; 8866 case 0x18: /* 16MB */ 8867 size = 1 << 24; 8868 break; 8869 } 8870 break; 8871 } 8872 } 8873 8874 /* If we didn't recognize the FLASH part, that's no real issue: the 8875 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 8876 * use a FLASH part which is at least 4MB in size and has 64KB 8877 * sectors. The unrecognized FLASH part is likely to be much larger 8878 * than 4MB, but that's all we really need. 8879 */ 8880 if (size == 0) { 8881 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 8882 flashid); 8883 size = 1 << 22; 8884 } 8885 8886 /* Store decoded Flash size and fall through into vetting code. */ 8887 adap->params.sf_size = size; 8888 adap->params.sf_nsec = size / SF_SEC_SIZE; 8889 8890 found: 8891 if (adap->params.sf_size < FLASH_MIN_SIZE) 8892 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8893 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 8894 return 0; 8895 } 8896 8897 /** 8898 * t4_prep_adapter - prepare SW and HW for operation 8899 * @adapter: the adapter 8900 * @reset: if true perform a HW reset 8901 * 8902 * Initialize adapter SW state for the various HW modules, set initial 8903 * values for some adapter tunables, take PHYs out of reset, and 8904 * initialize the MDIO interface. 8905 */ 8906 int t4_prep_adapter(struct adapter *adapter) 8907 { 8908 int ret, ver; 8909 uint16_t device_id; 8910 u32 pl_rev; 8911 8912 get_pci_mode(adapter, &adapter->params.pci); 8913 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 8914 8915 ret = t4_get_flash_params(adapter); 8916 if (ret < 0) { 8917 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 8918 return ret; 8919 } 8920 8921 /* Retrieve adapter's device ID 8922 */ 8923 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 8924 ver = device_id >> 12; 8925 adapter->params.chip = 0; 8926 switch (ver) { 8927 case CHELSIO_T4: 8928 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 8929 adapter->params.arch.sge_fl_db = DBPRIO_F; 8930 adapter->params.arch.mps_tcam_size = 8931 NUM_MPS_CLS_SRAM_L_INSTANCES; 8932 adapter->params.arch.mps_rplc_size = 128; 8933 adapter->params.arch.nchan = NCHAN; 8934 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8935 adapter->params.arch.vfcount = 128; 8936 /* Congestion map is for 4 channels so that 8937 * MPS can have 4 priority per port. 8938 */ 8939 adapter->params.arch.cng_ch_bits_log = 2; 8940 break; 8941 case CHELSIO_T5: 8942 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 8943 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 8944 adapter->params.arch.mps_tcam_size = 8945 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8946 adapter->params.arch.mps_rplc_size = 128; 8947 adapter->params.arch.nchan = NCHAN; 8948 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 8949 adapter->params.arch.vfcount = 128; 8950 adapter->params.arch.cng_ch_bits_log = 2; 8951 break; 8952 case CHELSIO_T6: 8953 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 8954 adapter->params.arch.sge_fl_db = 0; 8955 adapter->params.arch.mps_tcam_size = 8956 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8957 adapter->params.arch.mps_rplc_size = 256; 8958 adapter->params.arch.nchan = 2; 8959 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 8960 adapter->params.arch.vfcount = 256; 8961 /* Congestion map will be for 2 channels so that 8962 * MPS can have 8 priority per port. 8963 */ 8964 adapter->params.arch.cng_ch_bits_log = 3; 8965 break; 8966 default: 8967 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 8968 device_id); 8969 return -EINVAL; 8970 } 8971 8972 adapter->params.cim_la_size = CIMLA_SIZE; 8973 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8974 8975 /* 8976 * Default port for debugging in case we can't reach FW. 8977 */ 8978 adapter->params.nports = 1; 8979 adapter->params.portvec = 1; 8980 adapter->params.vpd.cclk = 50000; 8981 8982 /* Set PCIe completion timeout to 4 seconds. */ 8983 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 8984 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 8985 return 0; 8986 } 8987 8988 /** 8989 * t4_shutdown_adapter - shut down adapter, host & wire 8990 * @adapter: the adapter 8991 * 8992 * Perform an emergency shutdown of the adapter and stop it from 8993 * continuing any further communication on the ports or DMA to the 8994 * host. This is typically used when the adapter and/or firmware 8995 * have crashed and we want to prevent any further accidental 8996 * communication with the rest of the world. This will also force 8997 * the port Link Status to go down -- if register writes work -- 8998 * which should help our peers figure out that we're down. 8999 */ 9000 int t4_shutdown_adapter(struct adapter *adapter) 9001 { 9002 int port; 9003 9004 t4_intr_disable(adapter); 9005 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9006 for_each_port(adapter, port) { 9007 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9008 PORT_REG(port, XGMAC_PORT_CFG_A) : 9009 T5_PORT_REG(port, MAC_PORT_CFG_A); 9010 9011 t4_write_reg(adapter, a_port_cfg, 9012 t4_read_reg(adapter, a_port_cfg) 9013 & ~SIGNAL_DET_V(1)); 9014 } 9015 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9016 9017 return 0; 9018 } 9019 9020 /** 9021 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9022 * @adapter: the adapter 9023 * @qid: the Queue ID 9024 * @qtype: the Ingress or Egress type for @qid 9025 * @user: true if this request is for a user mode queue 9026 * @pbar2_qoffset: BAR2 Queue Offset 9027 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9028 * 9029 * Returns the BAR2 SGE Queue Registers information associated with the 9030 * indicated Absolute Queue ID. These are passed back in return value 9031 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9032 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9033 * 9034 * This may return an error which indicates that BAR2 SGE Queue 9035 * registers aren't available. If an error is not returned, then the 9036 * following values are returned: 9037 * 9038 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9039 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9040 * 9041 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9042 * require the "Inferred Queue ID" ability may be used. E.g. the 9043 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9044 * then these "Inferred Queue ID" register may not be used. 9045 */ 9046 int t4_bar2_sge_qregs(struct adapter *adapter, 9047 unsigned int qid, 9048 enum t4_bar2_qtype qtype, 9049 int user, 9050 u64 *pbar2_qoffset, 9051 unsigned int *pbar2_qid) 9052 { 9053 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9054 u64 bar2_page_offset, bar2_qoffset; 9055 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9056 9057 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9058 if (!user && is_t4(adapter->params.chip)) 9059 return -EINVAL; 9060 9061 /* Get our SGE Page Size parameters. 9062 */ 9063 page_shift = adapter->params.sge.hps + 10; 9064 page_size = 1 << page_shift; 9065 9066 /* Get the right Queues per Page parameters for our Queue. 9067 */ 9068 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9069 ? adapter->params.sge.eq_qpp 9070 : adapter->params.sge.iq_qpp); 9071 qpp_mask = (1 << qpp_shift) - 1; 9072 9073 /* Calculate the basics of the BAR2 SGE Queue register area: 9074 * o The BAR2 page the Queue registers will be in. 9075 * o The BAR2 Queue ID. 9076 * o The BAR2 Queue ID Offset into the BAR2 page. 9077 */ 9078 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9079 bar2_qid = qid & qpp_mask; 9080 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9081 9082 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9083 * hardware will infer the Absolute Queue ID simply from the writes to 9084 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9085 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9086 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9087 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9088 * from the BAR2 Page and BAR2 Queue ID. 9089 * 9090 * One important censequence of this is that some BAR2 SGE registers 9091 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9092 * there. But other registers synthesize the SGE Queue ID purely 9093 * from the writes to the registers -- the Write Combined Doorbell 9094 * Buffer is a good example. These BAR2 SGE Registers are only 9095 * available for those BAR2 SGE Register areas where the SGE Absolute 9096 * Queue ID can be inferred from simple writes. 9097 */ 9098 bar2_qoffset = bar2_page_offset; 9099 bar2_qinferred = (bar2_qid_offset < page_size); 9100 if (bar2_qinferred) { 9101 bar2_qoffset += bar2_qid_offset; 9102 bar2_qid = 0; 9103 } 9104 9105 *pbar2_qoffset = bar2_qoffset; 9106 *pbar2_qid = bar2_qid; 9107 return 0; 9108 } 9109 9110 /** 9111 * t4_init_devlog_params - initialize adapter->params.devlog 9112 * @adap: the adapter 9113 * 9114 * Initialize various fields of the adapter's Firmware Device Log 9115 * Parameters structure. 9116 */ 9117 int t4_init_devlog_params(struct adapter *adap) 9118 { 9119 struct devlog_params *dparams = &adap->params.devlog; 9120 u32 pf_dparams; 9121 unsigned int devlog_meminfo; 9122 struct fw_devlog_cmd devlog_cmd; 9123 int ret; 9124 9125 /* If we're dealing with newer firmware, the Device Log Paramerters 9126 * are stored in a designated register which allows us to access the 9127 * Device Log even if we can't talk to the firmware. 9128 */ 9129 pf_dparams = 9130 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9131 if (pf_dparams) { 9132 unsigned int nentries, nentries128; 9133 9134 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9135 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9136 9137 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9138 nentries = (nentries128 + 1) * 128; 9139 dparams->size = nentries * sizeof(struct fw_devlog_e); 9140 9141 return 0; 9142 } 9143 9144 /* Otherwise, ask the firmware for it's Device Log Parameters. 9145 */ 9146 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9147 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9148 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9149 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9150 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9151 &devlog_cmd); 9152 if (ret) 9153 return ret; 9154 9155 devlog_meminfo = 9156 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9157 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9158 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9159 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9160 9161 return 0; 9162 } 9163 9164 /** 9165 * t4_init_sge_params - initialize adap->params.sge 9166 * @adapter: the adapter 9167 * 9168 * Initialize various fields of the adapter's SGE Parameters structure. 9169 */ 9170 int t4_init_sge_params(struct adapter *adapter) 9171 { 9172 struct sge_params *sge_params = &adapter->params.sge; 9173 u32 hps, qpp; 9174 unsigned int s_hps, s_qpp; 9175 9176 /* Extract the SGE Page Size for our PF. 9177 */ 9178 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9179 s_hps = (HOSTPAGESIZEPF0_S + 9180 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9181 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9182 9183 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9184 */ 9185 s_qpp = (QUEUESPERPAGEPF0_S + 9186 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9187 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9188 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9189 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9190 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9191 9192 return 0; 9193 } 9194 9195 /** 9196 * t4_init_tp_params - initialize adap->params.tp 9197 * @adap: the adapter 9198 * @sleep_ok: if true we may sleep while awaiting command completion 9199 * 9200 * Initialize various fields of the adapter's TP Parameters structure. 9201 */ 9202 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9203 { 9204 int chan; 9205 u32 v; 9206 9207 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9208 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9209 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9210 9211 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9212 for (chan = 0; chan < NCHAN; chan++) 9213 adap->params.tp.tx_modq[chan] = chan; 9214 9215 /* Cache the adapter's Compressed Filter Mode and global Incress 9216 * Configuration. 9217 */ 9218 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9219 TP_VLAN_PRI_MAP_A, sleep_ok); 9220 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9221 TP_INGRESS_CONFIG_A, sleep_ok); 9222 9223 /* For T6, cache the adapter's compressed error vector 9224 * and passing outer header info for encapsulated packets. 9225 */ 9226 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9227 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9228 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9229 } 9230 9231 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9232 * shift positions of several elements of the Compressed Filter Tuple 9233 * for this adapter which we need frequently ... 9234 */ 9235 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9236 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9237 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9238 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9239 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9240 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9241 PROTOCOL_F); 9242 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9243 ETHERTYPE_F); 9244 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9245 MACMATCH_F); 9246 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9247 MPSHITTYPE_F); 9248 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9249 FRAGMENTATION_F); 9250 9251 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9252 * represents the presence of an Outer VLAN instead of a VNIC ID. 9253 */ 9254 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9255 adap->params.tp.vnic_shift = -1; 9256 9257 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9258 adap->params.tp.hash_filter_mask = v; 9259 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9260 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9261 return 0; 9262 } 9263 9264 /** 9265 * t4_filter_field_shift - calculate filter field shift 9266 * @adap: the adapter 9267 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9268 * 9269 * Return the shift position of a filter field within the Compressed 9270 * Filter Tuple. The filter field is specified via its selection bit 9271 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9272 */ 9273 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9274 { 9275 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9276 unsigned int sel; 9277 int field_shift; 9278 9279 if ((filter_mode & filter_sel) == 0) 9280 return -1; 9281 9282 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9283 switch (filter_mode & sel) { 9284 case FCOE_F: 9285 field_shift += FT_FCOE_W; 9286 break; 9287 case PORT_F: 9288 field_shift += FT_PORT_W; 9289 break; 9290 case VNIC_ID_F: 9291 field_shift += FT_VNIC_ID_W; 9292 break; 9293 case VLAN_F: 9294 field_shift += FT_VLAN_W; 9295 break; 9296 case TOS_F: 9297 field_shift += FT_TOS_W; 9298 break; 9299 case PROTOCOL_F: 9300 field_shift += FT_PROTOCOL_W; 9301 break; 9302 case ETHERTYPE_F: 9303 field_shift += FT_ETHERTYPE_W; 9304 break; 9305 case MACMATCH_F: 9306 field_shift += FT_MACMATCH_W; 9307 break; 9308 case MPSHITTYPE_F: 9309 field_shift += FT_MPSHITTYPE_W; 9310 break; 9311 case FRAGMENTATION_F: 9312 field_shift += FT_FRAGMENTATION_W; 9313 break; 9314 } 9315 } 9316 return field_shift; 9317 } 9318 9319 int t4_init_rss_mode(struct adapter *adap, int mbox) 9320 { 9321 int i, ret; 9322 struct fw_rss_vi_config_cmd rvc; 9323 9324 memset(&rvc, 0, sizeof(rvc)); 9325 9326 for_each_port(adap, i) { 9327 struct port_info *p = adap2pinfo(adap, i); 9328 9329 rvc.op_to_viid = 9330 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9331 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9332 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9333 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9334 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9335 if (ret) 9336 return ret; 9337 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9338 } 9339 return 0; 9340 } 9341 9342 /** 9343 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9344 * @pi: the port_info 9345 * @mbox: mailbox to use for the FW command 9346 * @port: physical port associated with the VI 9347 * @pf: the PF owning the VI 9348 * @vf: the VF owning the VI 9349 * @mac: the MAC address of the VI 9350 * 9351 * Allocates a virtual interface for the given physical port. If @mac is 9352 * not %NULL it contains the MAC address of the VI as assigned by FW. 9353 * @mac should be large enough to hold an Ethernet address. 9354 * Returns < 0 on error. 9355 */ 9356 int t4_init_portinfo(struct port_info *pi, int mbox, 9357 int port, int pf, int vf, u8 mac[]) 9358 { 9359 struct adapter *adapter = pi->adapter; 9360 unsigned int fw_caps = adapter->params.fw_caps_support; 9361 struct fw_port_cmd cmd; 9362 unsigned int rss_size; 9363 enum fw_port_type port_type; 9364 int mdio_addr; 9365 fw_port_cap32_t pcaps, acaps; 9366 int ret; 9367 9368 /* If we haven't yet determined whether we're talking to Firmware 9369 * which knows the new 32-bit Port Capabilities, it's time to find 9370 * out now. This will also tell new Firmware to send us Port Status 9371 * Updates using the new 32-bit Port Capabilities version of the 9372 * Port Information message. 9373 */ 9374 if (fw_caps == FW_CAPS_UNKNOWN) { 9375 u32 param, val; 9376 9377 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9378 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9379 val = 1; 9380 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9381 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9382 adapter->params.fw_caps_support = fw_caps; 9383 } 9384 9385 memset(&cmd, 0, sizeof(cmd)); 9386 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9387 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9388 FW_PORT_CMD_PORTID_V(port)); 9389 cmd.action_to_len16 = cpu_to_be32( 9390 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9391 ? FW_PORT_ACTION_GET_PORT_INFO 9392 : FW_PORT_ACTION_GET_PORT_INFO32) | 9393 FW_LEN16(cmd)); 9394 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9395 if (ret) 9396 return ret; 9397 9398 /* Extract the various fields from the Port Information message. 9399 */ 9400 if (fw_caps == FW_CAPS16) { 9401 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9402 9403 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9404 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9405 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9406 : -1); 9407 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9408 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9409 } else { 9410 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9411 9412 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9413 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9414 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9415 : -1); 9416 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9417 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9418 } 9419 9420 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 9421 if (ret < 0) 9422 return ret; 9423 9424 pi->viid = ret; 9425 pi->tx_chan = port; 9426 pi->lport = port; 9427 pi->rss_size = rss_size; 9428 9429 pi->port_type = port_type; 9430 pi->mdio_addr = mdio_addr; 9431 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9432 9433 init_link_config(&pi->link_cfg, pcaps, acaps); 9434 return 0; 9435 } 9436 9437 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9438 { 9439 u8 addr[6]; 9440 int ret, i, j = 0; 9441 9442 for_each_port(adap, i) { 9443 struct port_info *pi = adap2pinfo(adap, i); 9444 9445 while ((adap->params.portvec & (1 << j)) == 0) 9446 j++; 9447 9448 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9449 if (ret) 9450 return ret; 9451 9452 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9453 j++; 9454 } 9455 return 0; 9456 } 9457 9458 /** 9459 * t4_read_cimq_cfg - read CIM queue configuration 9460 * @adap: the adapter 9461 * @base: holds the queue base addresses in bytes 9462 * @size: holds the queue sizes in bytes 9463 * @thres: holds the queue full thresholds in bytes 9464 * 9465 * Returns the current configuration of the CIM queues, starting with 9466 * the IBQs, then the OBQs. 9467 */ 9468 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9469 { 9470 unsigned int i, v; 9471 int cim_num_obq = is_t4(adap->params.chip) ? 9472 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9473 9474 for (i = 0; i < CIM_NUM_IBQ; i++) { 9475 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9476 QUENUMSELECT_V(i)); 9477 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9478 /* value is in 256-byte units */ 9479 *base++ = CIMQBASE_G(v) * 256; 9480 *size++ = CIMQSIZE_G(v) * 256; 9481 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9482 } 9483 for (i = 0; i < cim_num_obq; i++) { 9484 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9485 QUENUMSELECT_V(i)); 9486 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9487 /* value is in 256-byte units */ 9488 *base++ = CIMQBASE_G(v) * 256; 9489 *size++ = CIMQSIZE_G(v) * 256; 9490 } 9491 } 9492 9493 /** 9494 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9495 * @adap: the adapter 9496 * @qid: the queue index 9497 * @data: where to store the queue contents 9498 * @n: capacity of @data in 32-bit words 9499 * 9500 * Reads the contents of the selected CIM queue starting at address 0 up 9501 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9502 * error and the number of 32-bit words actually read on success. 9503 */ 9504 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9505 { 9506 int i, err, attempts; 9507 unsigned int addr; 9508 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9509 9510 if (qid > 5 || (n & 3)) 9511 return -EINVAL; 9512 9513 addr = qid * nwords; 9514 if (n > nwords) 9515 n = nwords; 9516 9517 /* It might take 3-10ms before the IBQ debug read access is allowed. 9518 * Wait for 1 Sec with a delay of 1 usec. 9519 */ 9520 attempts = 1000000; 9521 9522 for (i = 0; i < n; i++, addr++) { 9523 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9524 IBQDBGEN_F); 9525 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9526 attempts, 1); 9527 if (err) 9528 return err; 9529 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9530 } 9531 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9532 return i; 9533 } 9534 9535 /** 9536 * t4_read_cim_obq - read the contents of a CIM outbound queue 9537 * @adap: the adapter 9538 * @qid: the queue index 9539 * @data: where to store the queue contents 9540 * @n: capacity of @data in 32-bit words 9541 * 9542 * Reads the contents of the selected CIM queue starting at address 0 up 9543 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9544 * error and the number of 32-bit words actually read on success. 9545 */ 9546 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9547 { 9548 int i, err; 9549 unsigned int addr, v, nwords; 9550 int cim_num_obq = is_t4(adap->params.chip) ? 9551 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9552 9553 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9554 return -EINVAL; 9555 9556 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9557 QUENUMSELECT_V(qid)); 9558 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9559 9560 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9561 nwords = CIMQSIZE_G(v) * 64; /* same */ 9562 if (n > nwords) 9563 n = nwords; 9564 9565 for (i = 0; i < n; i++, addr++) { 9566 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9567 OBQDBGEN_F); 9568 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9569 2, 1); 9570 if (err) 9571 return err; 9572 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9573 } 9574 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9575 return i; 9576 } 9577 9578 /** 9579 * t4_cim_read - read a block from CIM internal address space 9580 * @adap: the adapter 9581 * @addr: the start address within the CIM address space 9582 * @n: number of words to read 9583 * @valp: where to store the result 9584 * 9585 * Reads a block of 4-byte words from the CIM intenal address space. 9586 */ 9587 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9588 unsigned int *valp) 9589 { 9590 int ret = 0; 9591 9592 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9593 return -EBUSY; 9594 9595 for ( ; !ret && n--; addr += 4) { 9596 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9597 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9598 0, 5, 2); 9599 if (!ret) 9600 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9601 } 9602 return ret; 9603 } 9604 9605 /** 9606 * t4_cim_write - write a block into CIM internal address space 9607 * @adap: the adapter 9608 * @addr: the start address within the CIM address space 9609 * @n: number of words to write 9610 * @valp: set of values to write 9611 * 9612 * Writes a block of 4-byte words into the CIM intenal address space. 9613 */ 9614 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9615 const unsigned int *valp) 9616 { 9617 int ret = 0; 9618 9619 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9620 return -EBUSY; 9621 9622 for ( ; !ret && n--; addr += 4) { 9623 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9624 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9625 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9626 0, 5, 2); 9627 } 9628 return ret; 9629 } 9630 9631 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9632 unsigned int val) 9633 { 9634 return t4_cim_write(adap, addr, 1, &val); 9635 } 9636 9637 /** 9638 * t4_cim_read_la - read CIM LA capture buffer 9639 * @adap: the adapter 9640 * @la_buf: where to store the LA data 9641 * @wrptr: the HW write pointer within the capture buffer 9642 * 9643 * Reads the contents of the CIM LA buffer with the most recent entry at 9644 * the end of the returned data and with the entry at @wrptr first. 9645 * We try to leave the LA in the running state we find it in. 9646 */ 9647 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9648 { 9649 int i, ret; 9650 unsigned int cfg, val, idx; 9651 9652 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9653 if (ret) 9654 return ret; 9655 9656 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9657 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9658 if (ret) 9659 return ret; 9660 } 9661 9662 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9663 if (ret) 9664 goto restart; 9665 9666 idx = UPDBGLAWRPTR_G(val); 9667 if (wrptr) 9668 *wrptr = idx; 9669 9670 for (i = 0; i < adap->params.cim_la_size; i++) { 9671 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9672 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9673 if (ret) 9674 break; 9675 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9676 if (ret) 9677 break; 9678 if (val & UPDBGLARDEN_F) { 9679 ret = -ETIMEDOUT; 9680 break; 9681 } 9682 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9683 if (ret) 9684 break; 9685 9686 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9687 * identify the 32-bit portion of the full 312-bit data 9688 */ 9689 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9690 idx = (idx & 0xff0) + 0x10; 9691 else 9692 idx++; 9693 /* address can't exceed 0xfff */ 9694 idx &= UPDBGLARDPTR_M; 9695 } 9696 restart: 9697 if (cfg & UPDBGLAEN_F) { 9698 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9699 cfg & ~UPDBGLARDEN_F); 9700 if (!ret) 9701 ret = r; 9702 } 9703 return ret; 9704 } 9705 9706 /** 9707 * t4_tp_read_la - read TP LA capture buffer 9708 * @adap: the adapter 9709 * @la_buf: where to store the LA data 9710 * @wrptr: the HW write pointer within the capture buffer 9711 * 9712 * Reads the contents of the TP LA buffer with the most recent entry at 9713 * the end of the returned data and with the entry at @wrptr first. 9714 * We leave the LA in the running state we find it in. 9715 */ 9716 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9717 { 9718 bool last_incomplete; 9719 unsigned int i, cfg, val, idx; 9720 9721 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9722 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9723 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9724 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9725 9726 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9727 idx = DBGLAWPTR_G(val); 9728 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9729 if (last_incomplete) 9730 idx = (idx + 1) & DBGLARPTR_M; 9731 if (wrptr) 9732 *wrptr = idx; 9733 9734 val &= 0xffff; 9735 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9736 val |= adap->params.tp.la_mask; 9737 9738 for (i = 0; i < TPLA_SIZE; i++) { 9739 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9740 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9741 idx = (idx + 1) & DBGLARPTR_M; 9742 } 9743 9744 /* Wipe out last entry if it isn't valid */ 9745 if (last_incomplete) 9746 la_buf[TPLA_SIZE - 1] = ~0ULL; 9747 9748 if (cfg & DBGLAENABLE_F) /* restore running state */ 9749 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9750 cfg | adap->params.tp.la_mask); 9751 } 9752 9753 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9754 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9755 * state for more than the Warning Threshold then we'll issue a warning about 9756 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9757 * appears to be hung every Warning Repeat second till the situation clears. 9758 * If the situation clears, we'll note that as well. 9759 */ 9760 #define SGE_IDMA_WARN_THRESH 1 9761 #define SGE_IDMA_WARN_REPEAT 300 9762 9763 /** 9764 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9765 * @adapter: the adapter 9766 * @idma: the adapter IDMA Monitor state 9767 * 9768 * Initialize the state of an SGE Ingress DMA Monitor. 9769 */ 9770 void t4_idma_monitor_init(struct adapter *adapter, 9771 struct sge_idma_monitor_state *idma) 9772 { 9773 /* Initialize the state variables for detecting an SGE Ingress DMA 9774 * hang. The SGE has internal counters which count up on each clock 9775 * tick whenever the SGE finds its Ingress DMA State Engines in the 9776 * same state they were on the previous clock tick. The clock used is 9777 * the Core Clock so we have a limit on the maximum "time" they can 9778 * record; typically a very small number of seconds. For instance, 9779 * with a 600MHz Core Clock, we can only count up to a bit more than 9780 * 7s. So we'll synthesize a larger counter in order to not run the 9781 * risk of having the "timers" overflow and give us the flexibility to 9782 * maintain a Hung SGE State Machine of our own which operates across 9783 * a longer time frame. 9784 */ 9785 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9786 idma->idma_stalled[0] = 0; 9787 idma->idma_stalled[1] = 0; 9788 } 9789 9790 /** 9791 * t4_idma_monitor - monitor SGE Ingress DMA state 9792 * @adapter: the adapter 9793 * @idma: the adapter IDMA Monitor state 9794 * @hz: number of ticks/second 9795 * @ticks: number of ticks since the last IDMA Monitor call 9796 */ 9797 void t4_idma_monitor(struct adapter *adapter, 9798 struct sge_idma_monitor_state *idma, 9799 int hz, int ticks) 9800 { 9801 int i, idma_same_state_cnt[2]; 9802 9803 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9804 * are counters inside the SGE which count up on each clock when the 9805 * SGE finds its Ingress DMA State Engines in the same states they 9806 * were in the previous clock. The counters will peg out at 9807 * 0xffffffff without wrapping around so once they pass the 1s 9808 * threshold they'll stay above that till the IDMA state changes. 9809 */ 9810 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9811 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9812 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9813 9814 for (i = 0; i < 2; i++) { 9815 u32 debug0, debug11; 9816 9817 /* If the Ingress DMA Same State Counter ("timer") is less 9818 * than 1s, then we can reset our synthesized Stall Timer and 9819 * continue. If we have previously emitted warnings about a 9820 * potential stalled Ingress Queue, issue a note indicating 9821 * that the Ingress Queue has resumed forward progress. 9822 */ 9823 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9824 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9825 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9826 "resumed after %d seconds\n", 9827 i, idma->idma_qid[i], 9828 idma->idma_stalled[i] / hz); 9829 idma->idma_stalled[i] = 0; 9830 continue; 9831 } 9832 9833 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9834 * domain. The first time we get here it'll be because we 9835 * passed the 1s Threshold; each additional time it'll be 9836 * because the RX Timer Callback is being fired on its regular 9837 * schedule. 9838 * 9839 * If the stall is below our Potential Hung Ingress Queue 9840 * Warning Threshold, continue. 9841 */ 9842 if (idma->idma_stalled[i] == 0) { 9843 idma->idma_stalled[i] = hz; 9844 idma->idma_warn[i] = 0; 9845 } else { 9846 idma->idma_stalled[i] += ticks; 9847 idma->idma_warn[i] -= ticks; 9848 } 9849 9850 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9851 continue; 9852 9853 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9854 */ 9855 if (idma->idma_warn[i] > 0) 9856 continue; 9857 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9858 9859 /* Read and save the SGE IDMA State and Queue ID information. 9860 * We do this every time in case it changes across time ... 9861 * can't be too careful ... 9862 */ 9863 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9864 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9865 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9866 9867 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9868 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9869 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9870 9871 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9872 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9873 i, idma->idma_qid[i], idma->idma_state[i], 9874 idma->idma_stalled[i] / hz, 9875 debug0, debug11); 9876 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9877 } 9878 } 9879 9880 /** 9881 * t4_load_cfg - download config file 9882 * @adap: the adapter 9883 * @cfg_data: the cfg text file to write 9884 * @size: text file size 9885 * 9886 * Write the supplied config text file to the card's serial flash. 9887 */ 9888 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9889 { 9890 int ret, i, n, cfg_addr; 9891 unsigned int addr; 9892 unsigned int flash_cfg_start_sec; 9893 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9894 9895 cfg_addr = t4_flash_cfg_addr(adap); 9896 if (cfg_addr < 0) 9897 return cfg_addr; 9898 9899 addr = cfg_addr; 9900 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9901 9902 if (size > FLASH_CFG_MAX_SIZE) { 9903 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 9904 FLASH_CFG_MAX_SIZE); 9905 return -EFBIG; 9906 } 9907 9908 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9909 sf_sec_size); 9910 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9911 flash_cfg_start_sec + i - 1); 9912 /* If size == 0 then we're simply erasing the FLASH sectors associated 9913 * with the on-adapter Firmware Configuration File. 9914 */ 9915 if (ret || size == 0) 9916 goto out; 9917 9918 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9919 for (i = 0; i < size; i += SF_PAGE_SIZE) { 9920 if ((size - i) < SF_PAGE_SIZE) 9921 n = size - i; 9922 else 9923 n = SF_PAGE_SIZE; 9924 ret = t4_write_flash(adap, addr, n, cfg_data); 9925 if (ret) 9926 goto out; 9927 9928 addr += SF_PAGE_SIZE; 9929 cfg_data += SF_PAGE_SIZE; 9930 } 9931 9932 out: 9933 if (ret) 9934 dev_err(adap->pdev_dev, "config file %s failed %d\n", 9935 (size == 0 ? "clear" : "download"), ret); 9936 return ret; 9937 } 9938 9939 /** 9940 * t4_set_vf_mac - Set MAC address for the specified VF 9941 * @adapter: The adapter 9942 * @vf: one of the VFs instantiated by the specified PF 9943 * @naddr: the number of MAC addresses 9944 * @addr: the MAC address(es) to be set to the specified VF 9945 */ 9946 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 9947 unsigned int naddr, u8 *addr) 9948 { 9949 struct fw_acl_mac_cmd cmd; 9950 9951 memset(&cmd, 0, sizeof(cmd)); 9952 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 9953 FW_CMD_REQUEST_F | 9954 FW_CMD_WRITE_F | 9955 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 9956 FW_ACL_MAC_CMD_VFN_V(vf)); 9957 9958 /* Note: Do not enable the ACL */ 9959 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 9960 cmd.nmac = naddr; 9961 9962 switch (adapter->pf) { 9963 case 3: 9964 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 9965 break; 9966 case 2: 9967 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 9968 break; 9969 case 1: 9970 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 9971 break; 9972 case 0: 9973 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 9974 break; 9975 } 9976 9977 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 9978 } 9979 9980 /** 9981 * t4_read_pace_tbl - read the pace table 9982 * @adap: the adapter 9983 * @pace_vals: holds the returned values 9984 * 9985 * Returns the values of TP's pace table in microseconds. 9986 */ 9987 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9988 { 9989 unsigned int i, v; 9990 9991 for (i = 0; i < NTX_SCHED; i++) { 9992 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 9993 v = t4_read_reg(adap, TP_PACE_TABLE_A); 9994 pace_vals[i] = dack_ticks_to_usec(adap, v); 9995 } 9996 } 9997 9998 /** 9999 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10000 * @adap: the adapter 10001 * @sched: the scheduler index 10002 * @kbps: the byte rate in Kbps 10003 * @ipg: the interpacket delay in tenths of nanoseconds 10004 * @sleep_ok: if true we may sleep while awaiting command completion 10005 * 10006 * Return the current configuration of a HW Tx scheduler. 10007 */ 10008 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10009 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10010 { 10011 unsigned int v, addr, bpt, cpt; 10012 10013 if (kbps) { 10014 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10015 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10016 if (sched & 1) 10017 v >>= 16; 10018 bpt = (v >> 8) & 0xff; 10019 cpt = v & 0xff; 10020 if (!cpt) { 10021 *kbps = 0; /* scheduler disabled */ 10022 } else { 10023 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10024 *kbps = (v * bpt) / 125; 10025 } 10026 } 10027 if (ipg) { 10028 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10029 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10030 if (sched & 1) 10031 v >>= 16; 10032 v &= 0xffff; 10033 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10034 } 10035 } 10036 10037 /* t4_sge_ctxt_rd - read an SGE context through FW 10038 * @adap: the adapter 10039 * @mbox: mailbox to use for the FW command 10040 * @cid: the context id 10041 * @ctype: the context type 10042 * @data: where to store the context data 10043 * 10044 * Issues a FW command through the given mailbox to read an SGE context. 10045 */ 10046 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10047 enum ctxt_type ctype, u32 *data) 10048 { 10049 struct fw_ldst_cmd c; 10050 int ret; 10051 10052 if (ctype == CTXT_FLM) 10053 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10054 else 10055 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10056 10057 memset(&c, 0, sizeof(c)); 10058 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10059 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10060 FW_LDST_CMD_ADDRSPACE_V(ret)); 10061 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10062 c.u.idctxt.physid = cpu_to_be32(cid); 10063 10064 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10065 if (ret == 0) { 10066 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10067 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10068 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10069 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10070 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10071 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10072 } 10073 return ret; 10074 } 10075 10076 /** 10077 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10078 * @adap: the adapter 10079 * @cid: the context id 10080 * @ctype: the context type 10081 * @data: where to store the context data 10082 * 10083 * Reads an SGE context directly, bypassing FW. This is only for 10084 * debugging when FW is unavailable. 10085 */ 10086 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10087 enum ctxt_type ctype, u32 *data) 10088 { 10089 int i, ret; 10090 10091 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10092 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10093 if (!ret) 10094 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10095 *data++ = t4_read_reg(adap, i); 10096 return ret; 10097 } 10098 10099 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10100 int rateunit, int ratemode, int channel, int class, 10101 int minrate, int maxrate, int weight, int pktsize) 10102 { 10103 struct fw_sched_cmd cmd; 10104 10105 memset(&cmd, 0, sizeof(cmd)); 10106 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10107 FW_CMD_REQUEST_F | 10108 FW_CMD_WRITE_F); 10109 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10110 10111 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10112 cmd.u.params.type = type; 10113 cmd.u.params.level = level; 10114 cmd.u.params.mode = mode; 10115 cmd.u.params.ch = channel; 10116 cmd.u.params.cl = class; 10117 cmd.u.params.unit = rateunit; 10118 cmd.u.params.rate = ratemode; 10119 cmd.u.params.min = cpu_to_be32(minrate); 10120 cmd.u.params.max = cpu_to_be32(maxrate); 10121 cmd.u.params.weight = cpu_to_be16(weight); 10122 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10123 10124 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10125 NULL, 1); 10126 } 10127 10128 /** 10129 * t4_i2c_rd - read I2C data from adapter 10130 * @adap: the adapter 10131 * @port: Port number if per-port device; <0 if not 10132 * @devid: per-port device ID or absolute device ID 10133 * @offset: byte offset into device I2C space 10134 * @len: byte length of I2C space data 10135 * @buf: buffer in which to return I2C data 10136 * 10137 * Reads the I2C data from the indicated device and location. 10138 */ 10139 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10140 unsigned int devid, unsigned int offset, 10141 unsigned int len, u8 *buf) 10142 { 10143 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10144 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10145 int ret = 0; 10146 10147 if (len > I2C_PAGE_SIZE) 10148 return -EINVAL; 10149 10150 /* Dont allow reads that spans multiple pages */ 10151 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10152 return -EINVAL; 10153 10154 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10155 ldst_cmd.op_to_addrspace = 10156 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10157 FW_CMD_REQUEST_F | 10158 FW_CMD_READ_F | 10159 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10160 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10161 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10162 ldst_cmd.u.i2c.did = devid; 10163 10164 while (len > 0) { 10165 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10166 10167 ldst_cmd.u.i2c.boffset = offset; 10168 ldst_cmd.u.i2c.blen = i2c_len; 10169 10170 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10171 &ldst_rpl); 10172 if (ret) 10173 break; 10174 10175 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10176 offset += i2c_len; 10177 buf += i2c_len; 10178 len -= i2c_len; 10179 } 10180 10181 return ret; 10182 } 10183 10184 /** 10185 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10186 * @adapter: the adapter 10187 * @mbox: mailbox to use for the FW command 10188 * @vf: one of the VFs instantiated by the specified PF 10189 * @vlan: The vlanid to be set 10190 */ 10191 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10192 u16 vlan) 10193 { 10194 struct fw_acl_vlan_cmd vlan_cmd; 10195 unsigned int enable; 10196 10197 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10198 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10199 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10200 FW_CMD_REQUEST_F | 10201 FW_CMD_WRITE_F | 10202 FW_CMD_EXEC_F | 10203 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10204 FW_ACL_VLAN_CMD_VFN_V(vf)); 10205 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10206 /* Drop all packets that donot match vlan id */ 10207 vlan_cmd.dropnovlan_fm = (enable 10208 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10209 FW_ACL_VLAN_CMD_FM_F) : 0); 10210 if (enable != 0) { 10211 vlan_cmd.nvlan = 1; 10212 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10213 } 10214 10215 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10216 } 10217