xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 /**
228  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *	@adapter: the adapter
230  *	@cmd: the Firmware Mailbox Command or Reply
231  *	@size: command length in bytes
232  *	@access: the time (ms) needed to access the Firmware Mailbox
233  *	@execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236 			   const __be64 *cmd, unsigned int size,
237 			   int access, int execute)
238 {
239 	struct mbox_cmd_log *log = adapter->mbox_log;
240 	struct mbox_cmd *entry;
241 	int i;
242 
243 	entry = mbox_cmd_log_entry(log, log->cursor++);
244 	if (log->cursor == log->size)
245 		log->cursor = 0;
246 
247 	for (i = 0; i < size / 8; i++)
248 		entry->cmd[i] = be64_to_cpu(cmd[i]);
249 	while (i < MBOX_LEN / 8)
250 		entry->cmd[i++] = 0;
251 	entry->timestamp = jiffies;
252 	entry->seqno = log->seqno++;
253 	entry->access = access;
254 	entry->execute = execute;
255 }
256 
257 /**
258  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *	@adap: the adapter
260  *	@mbox: index of the mailbox to use
261  *	@cmd: the command to write
262  *	@size: command length in bytes
263  *	@rpl: where to optionally store the reply
264  *	@sleep_ok: if true we may sleep while awaiting command completion
265  *	@timeout: time to wait for command to finish before timing out
266  *
267  *	Sends the given command to FW through the selected mailbox and waits
268  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *	store the FW's reply to the command.  The command and its optional
270  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *	the response.  If sleeping is allowed we use progressive backoff
273  *	otherwise we spin.
274  *
275  *	The return value is 0 on success or a negative errno on failure.  A
276  *	failure can happen either because we are not able to execute the
277  *	command or FW executes it but signals an error.  In the latter case
278  *	the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 			    int size, void *rpl, bool sleep_ok, int timeout)
282 {
283 	static const int delay[] = {
284 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 	};
286 
287 	struct mbox_list entry;
288 	u16 access = 0;
289 	u16 execute = 0;
290 	u32 v;
291 	u64 res;
292 	int i, ms, delay_idx, ret;
293 	const __be64 *p = cmd;
294 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
296 	__be64 cmd_rpl[MBOX_LEN / 8];
297 	u32 pcie_fw;
298 
299 	if ((size & 15) || size > MBOX_LEN)
300 		return -EINVAL;
301 
302 	/*
303 	 * If the device is off-line, as in EEH, commands will time out.
304 	 * Fail them early so we don't waste time waiting.
305 	 */
306 	if (adap->pdev->error_state != pci_channel_io_normal)
307 		return -EIO;
308 
309 	/* If we have a negative timeout, that implies that we can't sleep. */
310 	if (timeout < 0) {
311 		sleep_ok = false;
312 		timeout = -timeout;
313 	}
314 
315 	/* Queue ourselves onto the mailbox access list.  When our entry is at
316 	 * the front of the list, we have rights to access the mailbox.  So we
317 	 * wait [for a while] till we're at the front [or bail out with an
318 	 * EBUSY] ...
319 	 */
320 	spin_lock(&adap->mbox_lock);
321 	list_add_tail(&entry.list, &adap->mlist.list);
322 	spin_unlock(&adap->mbox_lock);
323 
324 	delay_idx = 0;
325 	ms = delay[0];
326 
327 	for (i = 0; ; i += ms) {
328 		/* If we've waited too long, return a busy indication.  This
329 		 * really ought to be based on our initial position in the
330 		 * mailbox access list but this is a start.  We very rearely
331 		 * contend on access to the mailbox ...
332 		 */
333 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
335 			spin_lock(&adap->mbox_lock);
336 			list_del(&entry.list);
337 			spin_unlock(&adap->mbox_lock);
338 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
339 			t4_record_mbox(adap, cmd, size, access, ret);
340 			return ret;
341 		}
342 
343 		/* If we're at the head, break out and start the mailbox
344 		 * protocol.
345 		 */
346 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
347 				     list) == &entry)
348 			break;
349 
350 		/* Delay for a bit before checking again ... */
351 		if (sleep_ok) {
352 			ms = delay[delay_idx];  /* last element may repeat */
353 			if (delay_idx < ARRAY_SIZE(delay) - 1)
354 				delay_idx++;
355 			msleep(ms);
356 		} else {
357 			mdelay(ms);
358 		}
359 	}
360 
361 	/* Loop trying to get ownership of the mailbox.  Return an error
362 	 * if we can't gain ownership.
363 	 */
364 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
365 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
366 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	if (v != MBOX_OWNER_DRV) {
368 		spin_lock(&adap->mbox_lock);
369 		list_del(&entry.list);
370 		spin_unlock(&adap->mbox_lock);
371 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372 		t4_record_mbox(adap, cmd, size, access, ret);
373 		return ret;
374 	}
375 
376 	/* Copy in the new mailbox command and send it on its way ... */
377 	t4_record_mbox(adap, cmd, size, access, 0);
378 	for (i = 0; i < size; i += 8)
379 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380 
381 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
382 	t4_read_reg(adap, ctl_reg);          /* flush write */
383 
384 	delay_idx = 0;
385 	ms = delay[0];
386 
387 	for (i = 0;
388 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389 	     i < timeout;
390 	     i += ms) {
391 		if (sleep_ok) {
392 			ms = delay[delay_idx];  /* last element may repeat */
393 			if (delay_idx < ARRAY_SIZE(delay) - 1)
394 				delay_idx++;
395 			msleep(ms);
396 		} else
397 			mdelay(ms);
398 
399 		v = t4_read_reg(adap, ctl_reg);
400 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401 			if (!(v & MBMSGVALID_F)) {
402 				t4_write_reg(adap, ctl_reg, 0);
403 				continue;
404 			}
405 
406 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407 			res = be64_to_cpu(cmd_rpl[0]);
408 
409 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
410 				fw_asrt(adap, data_reg);
411 				res = FW_CMD_RETVAL_V(EIO);
412 			} else if (rpl) {
413 				memcpy(rpl, cmd_rpl, size);
414 			}
415 
416 			t4_write_reg(adap, ctl_reg, 0);
417 
418 			execute = i + ms;
419 			t4_record_mbox(adap, cmd_rpl,
420 				       MBOX_LEN, access, execute);
421 			spin_lock(&adap->mbox_lock);
422 			list_del(&entry.list);
423 			spin_unlock(&adap->mbox_lock);
424 			return -FW_CMD_RETVAL_G((int)res);
425 		}
426 	}
427 
428 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
429 	t4_record_mbox(adap, cmd, size, access, ret);
430 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431 		*(const u8 *)cmd, mbox);
432 	t4_report_fw_error(adap);
433 	spin_lock(&adap->mbox_lock);
434 	list_del(&entry.list);
435 	spin_unlock(&adap->mbox_lock);
436 	t4_fatal_err(adap);
437 	return ret;
438 }
439 
440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 		    void *rpl, bool sleep_ok)
442 {
443 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444 				       FW_CMD_MAX_TIMEOUT);
445 }
446 
447 static int t4_edc_err_read(struct adapter *adap, int idx)
448 {
449 	u32 edc_ecc_err_addr_reg;
450 	u32 rdata_reg;
451 
452 	if (is_t4(adap->params.chip)) {
453 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454 		return 0;
455 	}
456 	if (idx != 0 && idx != 1) {
457 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458 		return 0;
459 	}
460 
461 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463 
464 	CH_WARN(adap,
465 		"edc%d err addr 0x%x: 0x%x.\n",
466 		idx, edc_ecc_err_addr_reg,
467 		t4_read_reg(adap, edc_ecc_err_addr_reg));
468 	CH_WARN(adap,
469 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470 		rdata_reg,
471 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
472 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480 
481 	return 0;
482 }
483 
484 /**
485  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486  *	@adap: the adapter
487  *	@win: PCI-E Memory Window to use
488  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489  *	@addr: address within indicated memory type
490  *	@len: amount of memory to transfer
491  *	@hbuf: host memory buffer
492  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
493  *
494  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
495  *	firmware memory address and host buffer must be aligned on 32-bit
496  *	boudaries; the length may be arbitrary.  The memory is transferred as
497  *	a raw byte sequence from/to the firmware's memory.  If this memory
498  *	contains data structures which contain multi-byte integers, it's the
499  *	caller's responsibility to perform appropriate byte order conversions.
500  */
501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
502 		 u32 len, void *hbuf, int dir)
503 {
504 	u32 pos, offset, resid, memoffset;
505 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
506 	u32 *buf;
507 
508 	/* Argument sanity checks ...
509 	 */
510 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
511 		return -EINVAL;
512 	buf = (u32 *)hbuf;
513 
514 	/* It's convenient to be able to handle lengths which aren't a
515 	 * multiple of 32-bits because we often end up transferring files to
516 	 * the firmware.  So we'll handle that by normalizing the length here
517 	 * and then handling any residual transfer at the end.
518 	 */
519 	resid = len & 0x3;
520 	len -= resid;
521 
522 	/* Offset into the region of memory which is being accessed
523 	 * MEM_EDC0 = 0
524 	 * MEM_EDC1 = 1
525 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
526 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
527 	 */
528 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
529 	if (mtype != MEM_MC1)
530 		memoffset = (mtype * (edc_size * 1024 * 1024));
531 	else {
532 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
533 						      MA_EXT_MEMORY0_BAR_A));
534 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
535 	}
536 
537 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
538 	addr = addr + memoffset;
539 
540 	/* Each PCI-E Memory Window is programmed with a window size -- or
541 	 * "aperture" -- which controls the granularity of its mapping onto
542 	 * adapter memory.  We need to grab that aperture in order to know
543 	 * how to use the specified window.  The window is also programmed
544 	 * with the base address of the Memory Window in BAR0's address
545 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
546 	 * the address is relative to BAR0.
547 	 */
548 	mem_reg = t4_read_reg(adap,
549 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
550 						  win));
551 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
552 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
553 	if (is_t4(adap->params.chip))
554 		mem_base -= adap->t4_bar0;
555 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
556 
557 	/* Calculate our initial PCI-E Memory Window Position and Offset into
558 	 * that Window.
559 	 */
560 	pos = addr & ~(mem_aperture-1);
561 	offset = addr - pos;
562 
563 	/* Set up initial PCI-E Memory Window to cover the start of our
564 	 * transfer.  (Read it back to ensure that changes propagate before we
565 	 * attempt to use the new value.)
566 	 */
567 	t4_write_reg(adap,
568 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
569 		     pos | win_pf);
570 	t4_read_reg(adap,
571 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
572 
573 	/* Transfer data to/from the adapter as long as there's an integral
574 	 * number of 32-bit transfers to complete.
575 	 *
576 	 * A note on Endianness issues:
577 	 *
578 	 * The "register" reads and writes below from/to the PCI-E Memory
579 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
580 	 * Little-Endian "swizzel."  As a result, if we have the following
581 	 * data in adapter memory:
582 	 *
583 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
584 	 *     Address:      i+0  i+1  i+2  i+3
585 	 *
586 	 * Then a read of the adapter memory via the PCI-E Memory Window
587 	 * will yield:
588 	 *
589 	 *     x = readl(i)
590 	 *         31                  0
591 	 *         [ b3 | b2 | b1 | b0 ]
592 	 *
593 	 * If this value is stored into local memory on a Little-Endian system
594 	 * it will show up correctly in local memory as:
595 	 *
596 	 *     ( ..., b0, b1, b2, b3, ... )
597 	 *
598 	 * But on a Big-Endian system, the store will show up in memory
599 	 * incorrectly swizzled as:
600 	 *
601 	 *     ( ..., b3, b2, b1, b0, ... )
602 	 *
603 	 * So we need to account for this in the reads and writes to the
604 	 * PCI-E Memory Window below by undoing the register read/write
605 	 * swizzels.
606 	 */
607 	while (len > 0) {
608 		if (dir == T4_MEMORY_READ)
609 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
610 						mem_base + offset));
611 		else
612 			t4_write_reg(adap, mem_base + offset,
613 				     (__force u32)cpu_to_le32(*buf++));
614 		offset += sizeof(__be32);
615 		len -= sizeof(__be32);
616 
617 		/* If we've reached the end of our current window aperture,
618 		 * move the PCI-E Memory Window on to the next.  Note that
619 		 * doing this here after "len" may be 0 allows us to set up
620 		 * the PCI-E Memory Window for a possible final residual
621 		 * transfer below ...
622 		 */
623 		if (offset == mem_aperture) {
624 			pos += mem_aperture;
625 			offset = 0;
626 			t4_write_reg(adap,
627 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
628 						    win), pos | win_pf);
629 			t4_read_reg(adap,
630 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631 						    win));
632 		}
633 	}
634 
635 	/* If the original transfer had a length which wasn't a multiple of
636 	 * 32-bits, now's where we need to finish off the transfer of the
637 	 * residual amount.  The PCI-E Memory Window has already been moved
638 	 * above (if necessary) to cover this final transfer.
639 	 */
640 	if (resid) {
641 		union {
642 			u32 word;
643 			char byte[4];
644 		} last;
645 		unsigned char *bp;
646 		int i;
647 
648 		if (dir == T4_MEMORY_READ) {
649 			last.word = le32_to_cpu(
650 					(__force __le32)t4_read_reg(adap,
651 						mem_base + offset));
652 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
653 				bp[i] = last.byte[i];
654 		} else {
655 			last.word = *buf;
656 			for (i = resid; i < 4; i++)
657 				last.byte[i] = 0;
658 			t4_write_reg(adap, mem_base + offset,
659 				     (__force u32)cpu_to_le32(last.word));
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 /* Return the specified PCI-E Configuration Space register from our Physical
667  * Function.  We try first via a Firmware LDST Command since we prefer to let
668  * the firmware own all of these registers, but if that fails we go for it
669  * directly ourselves.
670  */
671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
672 {
673 	u32 val, ldst_addrspace;
674 
675 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
676 	 * retrieve the specified PCI-E Configuration Space register.
677 	 */
678 	struct fw_ldst_cmd ldst_cmd;
679 	int ret;
680 
681 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
682 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
683 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
684 					       FW_CMD_REQUEST_F |
685 					       FW_CMD_READ_F |
686 					       ldst_addrspace);
687 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
688 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
689 	ldst_cmd.u.pcie.ctrl_to_fn =
690 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
691 	ldst_cmd.u.pcie.r = reg;
692 
693 	/* If the LDST Command succeeds, return the result, otherwise
694 	 * fall through to reading it directly ourselves ...
695 	 */
696 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697 			 &ldst_cmd);
698 	if (ret == 0)
699 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700 	else
701 		/* Read the desired Configuration Space register via the PCI-E
702 		 * Backdoor mechanism.
703 		 */
704 		t4_hw_pci_read_cfg4(adap, reg, &val);
705 	return val;
706 }
707 
708 /* Get the window based on base passed to it.
709  * Window aperture is currently unhandled, but there is no use case for it
710  * right now
711  */
712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
713 			 u32 memwin_base)
714 {
715 	u32 ret;
716 
717 	if (is_t4(adap->params.chip)) {
718 		u32 bar0;
719 
720 		/* Truncation intentional: we only read the bottom 32-bits of
721 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
722 		 * mechanism to read BAR0 instead of using
723 		 * pci_resource_start() because we could be operating from
724 		 * within a Virtual Machine which is trapping our accesses to
725 		 * our Configuration Space and we need to set up the PCI-E
726 		 * Memory Window decoders with the actual addresses which will
727 		 * be coming across the PCI-E link.
728 		 */
729 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
730 		bar0 &= pci_mask;
731 		adap->t4_bar0 = bar0;
732 
733 		ret = bar0 + memwin_base;
734 	} else {
735 		/* For T5, only relative offset inside the PCIe BAR is passed */
736 		ret = memwin_base;
737 	}
738 	return ret;
739 }
740 
741 /* Get the default utility window (win0) used by everyone */
742 u32 t4_get_util_window(struct adapter *adap)
743 {
744 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
745 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
746 }
747 
748 /* Set up memory window for accessing adapter memory ranges.  (Read
749  * back MA register to ensure that changes propagate before we attempt
750  * to use the new values.)
751  */
752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
753 {
754 	t4_write_reg(adap,
755 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
756 		     memwin_base | BIR_V(0) |
757 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
758 	t4_read_reg(adap,
759 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
760 }
761 
762 /**
763  *	t4_get_regs_len - return the size of the chips register set
764  *	@adapter: the adapter
765  *
766  *	Returns the size of the chip's BAR0 register space.
767  */
768 unsigned int t4_get_regs_len(struct adapter *adapter)
769 {
770 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
771 
772 	switch (chip_version) {
773 	case CHELSIO_T4:
774 		return T4_REGMAP_SIZE;
775 
776 	case CHELSIO_T5:
777 	case CHELSIO_T6:
778 		return T5_REGMAP_SIZE;
779 	}
780 
781 	dev_err(adapter->pdev_dev,
782 		"Unsupported chip version %d\n", chip_version);
783 	return 0;
784 }
785 
786 /**
787  *	t4_get_regs - read chip registers into provided buffer
788  *	@adap: the adapter
789  *	@buf: register buffer
790  *	@buf_size: size (in bytes) of register buffer
791  *
792  *	If the provided register buffer isn't large enough for the chip's
793  *	full register range, the register dump will be truncated to the
794  *	register buffer's size.
795  */
796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
797 {
798 	static const unsigned int t4_reg_ranges[] = {
799 		0x1008, 0x1108,
800 		0x1180, 0x1184,
801 		0x1190, 0x1194,
802 		0x11a0, 0x11a4,
803 		0x11b0, 0x11b4,
804 		0x11fc, 0x123c,
805 		0x1300, 0x173c,
806 		0x1800, 0x18fc,
807 		0x3000, 0x30d8,
808 		0x30e0, 0x30e4,
809 		0x30ec, 0x5910,
810 		0x5920, 0x5924,
811 		0x5960, 0x5960,
812 		0x5968, 0x5968,
813 		0x5970, 0x5970,
814 		0x5978, 0x5978,
815 		0x5980, 0x5980,
816 		0x5988, 0x5988,
817 		0x5990, 0x5990,
818 		0x5998, 0x5998,
819 		0x59a0, 0x59d4,
820 		0x5a00, 0x5ae0,
821 		0x5ae8, 0x5ae8,
822 		0x5af0, 0x5af0,
823 		0x5af8, 0x5af8,
824 		0x6000, 0x6098,
825 		0x6100, 0x6150,
826 		0x6200, 0x6208,
827 		0x6240, 0x6248,
828 		0x6280, 0x62b0,
829 		0x62c0, 0x6338,
830 		0x6370, 0x638c,
831 		0x6400, 0x643c,
832 		0x6500, 0x6524,
833 		0x6a00, 0x6a04,
834 		0x6a14, 0x6a38,
835 		0x6a60, 0x6a70,
836 		0x6a78, 0x6a78,
837 		0x6b00, 0x6b0c,
838 		0x6b1c, 0x6b84,
839 		0x6bf0, 0x6bf8,
840 		0x6c00, 0x6c0c,
841 		0x6c1c, 0x6c84,
842 		0x6cf0, 0x6cf8,
843 		0x6d00, 0x6d0c,
844 		0x6d1c, 0x6d84,
845 		0x6df0, 0x6df8,
846 		0x6e00, 0x6e0c,
847 		0x6e1c, 0x6e84,
848 		0x6ef0, 0x6ef8,
849 		0x6f00, 0x6f0c,
850 		0x6f1c, 0x6f84,
851 		0x6ff0, 0x6ff8,
852 		0x7000, 0x700c,
853 		0x701c, 0x7084,
854 		0x70f0, 0x70f8,
855 		0x7100, 0x710c,
856 		0x711c, 0x7184,
857 		0x71f0, 0x71f8,
858 		0x7200, 0x720c,
859 		0x721c, 0x7284,
860 		0x72f0, 0x72f8,
861 		0x7300, 0x730c,
862 		0x731c, 0x7384,
863 		0x73f0, 0x73f8,
864 		0x7400, 0x7450,
865 		0x7500, 0x7530,
866 		0x7600, 0x760c,
867 		0x7614, 0x761c,
868 		0x7680, 0x76cc,
869 		0x7700, 0x7798,
870 		0x77c0, 0x77fc,
871 		0x7900, 0x79fc,
872 		0x7b00, 0x7b58,
873 		0x7b60, 0x7b84,
874 		0x7b8c, 0x7c38,
875 		0x7d00, 0x7d38,
876 		0x7d40, 0x7d80,
877 		0x7d8c, 0x7ddc,
878 		0x7de4, 0x7e04,
879 		0x7e10, 0x7e1c,
880 		0x7e24, 0x7e38,
881 		0x7e40, 0x7e44,
882 		0x7e4c, 0x7e78,
883 		0x7e80, 0x7ea4,
884 		0x7eac, 0x7edc,
885 		0x7ee8, 0x7efc,
886 		0x8dc0, 0x8e04,
887 		0x8e10, 0x8e1c,
888 		0x8e30, 0x8e78,
889 		0x8ea0, 0x8eb8,
890 		0x8ec0, 0x8f6c,
891 		0x8fc0, 0x9008,
892 		0x9010, 0x9058,
893 		0x9060, 0x9060,
894 		0x9068, 0x9074,
895 		0x90fc, 0x90fc,
896 		0x9400, 0x9408,
897 		0x9410, 0x9458,
898 		0x9600, 0x9600,
899 		0x9608, 0x9638,
900 		0x9640, 0x96bc,
901 		0x9800, 0x9808,
902 		0x9820, 0x983c,
903 		0x9850, 0x9864,
904 		0x9c00, 0x9c6c,
905 		0x9c80, 0x9cec,
906 		0x9d00, 0x9d6c,
907 		0x9d80, 0x9dec,
908 		0x9e00, 0x9e6c,
909 		0x9e80, 0x9eec,
910 		0x9f00, 0x9f6c,
911 		0x9f80, 0x9fec,
912 		0xd004, 0xd004,
913 		0xd010, 0xd03c,
914 		0xdfc0, 0xdfe0,
915 		0xe000, 0xea7c,
916 		0xf000, 0x11110,
917 		0x11118, 0x11190,
918 		0x19040, 0x1906c,
919 		0x19078, 0x19080,
920 		0x1908c, 0x190e4,
921 		0x190f0, 0x190f8,
922 		0x19100, 0x19110,
923 		0x19120, 0x19124,
924 		0x19150, 0x19194,
925 		0x1919c, 0x191b0,
926 		0x191d0, 0x191e8,
927 		0x19238, 0x1924c,
928 		0x193f8, 0x1943c,
929 		0x1944c, 0x19474,
930 		0x19490, 0x194e0,
931 		0x194f0, 0x194f8,
932 		0x19800, 0x19c08,
933 		0x19c10, 0x19c90,
934 		0x19ca0, 0x19ce4,
935 		0x19cf0, 0x19d40,
936 		0x19d50, 0x19d94,
937 		0x19da0, 0x19de8,
938 		0x19df0, 0x19e40,
939 		0x19e50, 0x19e90,
940 		0x19ea0, 0x19f4c,
941 		0x1a000, 0x1a004,
942 		0x1a010, 0x1a06c,
943 		0x1a0b0, 0x1a0e4,
944 		0x1a0ec, 0x1a0f4,
945 		0x1a100, 0x1a108,
946 		0x1a114, 0x1a120,
947 		0x1a128, 0x1a130,
948 		0x1a138, 0x1a138,
949 		0x1a190, 0x1a1c4,
950 		0x1a1fc, 0x1a1fc,
951 		0x1e040, 0x1e04c,
952 		0x1e284, 0x1e28c,
953 		0x1e2c0, 0x1e2c0,
954 		0x1e2e0, 0x1e2e0,
955 		0x1e300, 0x1e384,
956 		0x1e3c0, 0x1e3c8,
957 		0x1e440, 0x1e44c,
958 		0x1e684, 0x1e68c,
959 		0x1e6c0, 0x1e6c0,
960 		0x1e6e0, 0x1e6e0,
961 		0x1e700, 0x1e784,
962 		0x1e7c0, 0x1e7c8,
963 		0x1e840, 0x1e84c,
964 		0x1ea84, 0x1ea8c,
965 		0x1eac0, 0x1eac0,
966 		0x1eae0, 0x1eae0,
967 		0x1eb00, 0x1eb84,
968 		0x1ebc0, 0x1ebc8,
969 		0x1ec40, 0x1ec4c,
970 		0x1ee84, 0x1ee8c,
971 		0x1eec0, 0x1eec0,
972 		0x1eee0, 0x1eee0,
973 		0x1ef00, 0x1ef84,
974 		0x1efc0, 0x1efc8,
975 		0x1f040, 0x1f04c,
976 		0x1f284, 0x1f28c,
977 		0x1f2c0, 0x1f2c0,
978 		0x1f2e0, 0x1f2e0,
979 		0x1f300, 0x1f384,
980 		0x1f3c0, 0x1f3c8,
981 		0x1f440, 0x1f44c,
982 		0x1f684, 0x1f68c,
983 		0x1f6c0, 0x1f6c0,
984 		0x1f6e0, 0x1f6e0,
985 		0x1f700, 0x1f784,
986 		0x1f7c0, 0x1f7c8,
987 		0x1f840, 0x1f84c,
988 		0x1fa84, 0x1fa8c,
989 		0x1fac0, 0x1fac0,
990 		0x1fae0, 0x1fae0,
991 		0x1fb00, 0x1fb84,
992 		0x1fbc0, 0x1fbc8,
993 		0x1fc40, 0x1fc4c,
994 		0x1fe84, 0x1fe8c,
995 		0x1fec0, 0x1fec0,
996 		0x1fee0, 0x1fee0,
997 		0x1ff00, 0x1ff84,
998 		0x1ffc0, 0x1ffc8,
999 		0x20000, 0x2002c,
1000 		0x20100, 0x2013c,
1001 		0x20190, 0x201a0,
1002 		0x201a8, 0x201b8,
1003 		0x201c4, 0x201c8,
1004 		0x20200, 0x20318,
1005 		0x20400, 0x204b4,
1006 		0x204c0, 0x20528,
1007 		0x20540, 0x20614,
1008 		0x21000, 0x21040,
1009 		0x2104c, 0x21060,
1010 		0x210c0, 0x210ec,
1011 		0x21200, 0x21268,
1012 		0x21270, 0x21284,
1013 		0x212fc, 0x21388,
1014 		0x21400, 0x21404,
1015 		0x21500, 0x21500,
1016 		0x21510, 0x21518,
1017 		0x2152c, 0x21530,
1018 		0x2153c, 0x2153c,
1019 		0x21550, 0x21554,
1020 		0x21600, 0x21600,
1021 		0x21608, 0x2161c,
1022 		0x21624, 0x21628,
1023 		0x21630, 0x21634,
1024 		0x2163c, 0x2163c,
1025 		0x21700, 0x2171c,
1026 		0x21780, 0x2178c,
1027 		0x21800, 0x21818,
1028 		0x21820, 0x21828,
1029 		0x21830, 0x21848,
1030 		0x21850, 0x21854,
1031 		0x21860, 0x21868,
1032 		0x21870, 0x21870,
1033 		0x21878, 0x21898,
1034 		0x218a0, 0x218a8,
1035 		0x218b0, 0x218c8,
1036 		0x218d0, 0x218d4,
1037 		0x218e0, 0x218e8,
1038 		0x218f0, 0x218f0,
1039 		0x218f8, 0x21a18,
1040 		0x21a20, 0x21a28,
1041 		0x21a30, 0x21a48,
1042 		0x21a50, 0x21a54,
1043 		0x21a60, 0x21a68,
1044 		0x21a70, 0x21a70,
1045 		0x21a78, 0x21a98,
1046 		0x21aa0, 0x21aa8,
1047 		0x21ab0, 0x21ac8,
1048 		0x21ad0, 0x21ad4,
1049 		0x21ae0, 0x21ae8,
1050 		0x21af0, 0x21af0,
1051 		0x21af8, 0x21c18,
1052 		0x21c20, 0x21c20,
1053 		0x21c28, 0x21c30,
1054 		0x21c38, 0x21c38,
1055 		0x21c80, 0x21c98,
1056 		0x21ca0, 0x21ca8,
1057 		0x21cb0, 0x21cc8,
1058 		0x21cd0, 0x21cd4,
1059 		0x21ce0, 0x21ce8,
1060 		0x21cf0, 0x21cf0,
1061 		0x21cf8, 0x21d7c,
1062 		0x21e00, 0x21e04,
1063 		0x22000, 0x2202c,
1064 		0x22100, 0x2213c,
1065 		0x22190, 0x221a0,
1066 		0x221a8, 0x221b8,
1067 		0x221c4, 0x221c8,
1068 		0x22200, 0x22318,
1069 		0x22400, 0x224b4,
1070 		0x224c0, 0x22528,
1071 		0x22540, 0x22614,
1072 		0x23000, 0x23040,
1073 		0x2304c, 0x23060,
1074 		0x230c0, 0x230ec,
1075 		0x23200, 0x23268,
1076 		0x23270, 0x23284,
1077 		0x232fc, 0x23388,
1078 		0x23400, 0x23404,
1079 		0x23500, 0x23500,
1080 		0x23510, 0x23518,
1081 		0x2352c, 0x23530,
1082 		0x2353c, 0x2353c,
1083 		0x23550, 0x23554,
1084 		0x23600, 0x23600,
1085 		0x23608, 0x2361c,
1086 		0x23624, 0x23628,
1087 		0x23630, 0x23634,
1088 		0x2363c, 0x2363c,
1089 		0x23700, 0x2371c,
1090 		0x23780, 0x2378c,
1091 		0x23800, 0x23818,
1092 		0x23820, 0x23828,
1093 		0x23830, 0x23848,
1094 		0x23850, 0x23854,
1095 		0x23860, 0x23868,
1096 		0x23870, 0x23870,
1097 		0x23878, 0x23898,
1098 		0x238a0, 0x238a8,
1099 		0x238b0, 0x238c8,
1100 		0x238d0, 0x238d4,
1101 		0x238e0, 0x238e8,
1102 		0x238f0, 0x238f0,
1103 		0x238f8, 0x23a18,
1104 		0x23a20, 0x23a28,
1105 		0x23a30, 0x23a48,
1106 		0x23a50, 0x23a54,
1107 		0x23a60, 0x23a68,
1108 		0x23a70, 0x23a70,
1109 		0x23a78, 0x23a98,
1110 		0x23aa0, 0x23aa8,
1111 		0x23ab0, 0x23ac8,
1112 		0x23ad0, 0x23ad4,
1113 		0x23ae0, 0x23ae8,
1114 		0x23af0, 0x23af0,
1115 		0x23af8, 0x23c18,
1116 		0x23c20, 0x23c20,
1117 		0x23c28, 0x23c30,
1118 		0x23c38, 0x23c38,
1119 		0x23c80, 0x23c98,
1120 		0x23ca0, 0x23ca8,
1121 		0x23cb0, 0x23cc8,
1122 		0x23cd0, 0x23cd4,
1123 		0x23ce0, 0x23ce8,
1124 		0x23cf0, 0x23cf0,
1125 		0x23cf8, 0x23d7c,
1126 		0x23e00, 0x23e04,
1127 		0x24000, 0x2402c,
1128 		0x24100, 0x2413c,
1129 		0x24190, 0x241a0,
1130 		0x241a8, 0x241b8,
1131 		0x241c4, 0x241c8,
1132 		0x24200, 0x24318,
1133 		0x24400, 0x244b4,
1134 		0x244c0, 0x24528,
1135 		0x24540, 0x24614,
1136 		0x25000, 0x25040,
1137 		0x2504c, 0x25060,
1138 		0x250c0, 0x250ec,
1139 		0x25200, 0x25268,
1140 		0x25270, 0x25284,
1141 		0x252fc, 0x25388,
1142 		0x25400, 0x25404,
1143 		0x25500, 0x25500,
1144 		0x25510, 0x25518,
1145 		0x2552c, 0x25530,
1146 		0x2553c, 0x2553c,
1147 		0x25550, 0x25554,
1148 		0x25600, 0x25600,
1149 		0x25608, 0x2561c,
1150 		0x25624, 0x25628,
1151 		0x25630, 0x25634,
1152 		0x2563c, 0x2563c,
1153 		0x25700, 0x2571c,
1154 		0x25780, 0x2578c,
1155 		0x25800, 0x25818,
1156 		0x25820, 0x25828,
1157 		0x25830, 0x25848,
1158 		0x25850, 0x25854,
1159 		0x25860, 0x25868,
1160 		0x25870, 0x25870,
1161 		0x25878, 0x25898,
1162 		0x258a0, 0x258a8,
1163 		0x258b0, 0x258c8,
1164 		0x258d0, 0x258d4,
1165 		0x258e0, 0x258e8,
1166 		0x258f0, 0x258f0,
1167 		0x258f8, 0x25a18,
1168 		0x25a20, 0x25a28,
1169 		0x25a30, 0x25a48,
1170 		0x25a50, 0x25a54,
1171 		0x25a60, 0x25a68,
1172 		0x25a70, 0x25a70,
1173 		0x25a78, 0x25a98,
1174 		0x25aa0, 0x25aa8,
1175 		0x25ab0, 0x25ac8,
1176 		0x25ad0, 0x25ad4,
1177 		0x25ae0, 0x25ae8,
1178 		0x25af0, 0x25af0,
1179 		0x25af8, 0x25c18,
1180 		0x25c20, 0x25c20,
1181 		0x25c28, 0x25c30,
1182 		0x25c38, 0x25c38,
1183 		0x25c80, 0x25c98,
1184 		0x25ca0, 0x25ca8,
1185 		0x25cb0, 0x25cc8,
1186 		0x25cd0, 0x25cd4,
1187 		0x25ce0, 0x25ce8,
1188 		0x25cf0, 0x25cf0,
1189 		0x25cf8, 0x25d7c,
1190 		0x25e00, 0x25e04,
1191 		0x26000, 0x2602c,
1192 		0x26100, 0x2613c,
1193 		0x26190, 0x261a0,
1194 		0x261a8, 0x261b8,
1195 		0x261c4, 0x261c8,
1196 		0x26200, 0x26318,
1197 		0x26400, 0x264b4,
1198 		0x264c0, 0x26528,
1199 		0x26540, 0x26614,
1200 		0x27000, 0x27040,
1201 		0x2704c, 0x27060,
1202 		0x270c0, 0x270ec,
1203 		0x27200, 0x27268,
1204 		0x27270, 0x27284,
1205 		0x272fc, 0x27388,
1206 		0x27400, 0x27404,
1207 		0x27500, 0x27500,
1208 		0x27510, 0x27518,
1209 		0x2752c, 0x27530,
1210 		0x2753c, 0x2753c,
1211 		0x27550, 0x27554,
1212 		0x27600, 0x27600,
1213 		0x27608, 0x2761c,
1214 		0x27624, 0x27628,
1215 		0x27630, 0x27634,
1216 		0x2763c, 0x2763c,
1217 		0x27700, 0x2771c,
1218 		0x27780, 0x2778c,
1219 		0x27800, 0x27818,
1220 		0x27820, 0x27828,
1221 		0x27830, 0x27848,
1222 		0x27850, 0x27854,
1223 		0x27860, 0x27868,
1224 		0x27870, 0x27870,
1225 		0x27878, 0x27898,
1226 		0x278a0, 0x278a8,
1227 		0x278b0, 0x278c8,
1228 		0x278d0, 0x278d4,
1229 		0x278e0, 0x278e8,
1230 		0x278f0, 0x278f0,
1231 		0x278f8, 0x27a18,
1232 		0x27a20, 0x27a28,
1233 		0x27a30, 0x27a48,
1234 		0x27a50, 0x27a54,
1235 		0x27a60, 0x27a68,
1236 		0x27a70, 0x27a70,
1237 		0x27a78, 0x27a98,
1238 		0x27aa0, 0x27aa8,
1239 		0x27ab0, 0x27ac8,
1240 		0x27ad0, 0x27ad4,
1241 		0x27ae0, 0x27ae8,
1242 		0x27af0, 0x27af0,
1243 		0x27af8, 0x27c18,
1244 		0x27c20, 0x27c20,
1245 		0x27c28, 0x27c30,
1246 		0x27c38, 0x27c38,
1247 		0x27c80, 0x27c98,
1248 		0x27ca0, 0x27ca8,
1249 		0x27cb0, 0x27cc8,
1250 		0x27cd0, 0x27cd4,
1251 		0x27ce0, 0x27ce8,
1252 		0x27cf0, 0x27cf0,
1253 		0x27cf8, 0x27d7c,
1254 		0x27e00, 0x27e04,
1255 	};
1256 
1257 	static const unsigned int t5_reg_ranges[] = {
1258 		0x1008, 0x10c0,
1259 		0x10cc, 0x10f8,
1260 		0x1100, 0x1100,
1261 		0x110c, 0x1148,
1262 		0x1180, 0x1184,
1263 		0x1190, 0x1194,
1264 		0x11a0, 0x11a4,
1265 		0x11b0, 0x11b4,
1266 		0x11fc, 0x123c,
1267 		0x1280, 0x173c,
1268 		0x1800, 0x18fc,
1269 		0x3000, 0x3028,
1270 		0x3060, 0x30b0,
1271 		0x30b8, 0x30d8,
1272 		0x30e0, 0x30fc,
1273 		0x3140, 0x357c,
1274 		0x35a8, 0x35cc,
1275 		0x35ec, 0x35ec,
1276 		0x3600, 0x5624,
1277 		0x56cc, 0x56ec,
1278 		0x56f4, 0x5720,
1279 		0x5728, 0x575c,
1280 		0x580c, 0x5814,
1281 		0x5890, 0x589c,
1282 		0x58a4, 0x58ac,
1283 		0x58b8, 0x58bc,
1284 		0x5940, 0x59c8,
1285 		0x59d0, 0x59dc,
1286 		0x59fc, 0x5a18,
1287 		0x5a60, 0x5a70,
1288 		0x5a80, 0x5a9c,
1289 		0x5b94, 0x5bfc,
1290 		0x6000, 0x6020,
1291 		0x6028, 0x6040,
1292 		0x6058, 0x609c,
1293 		0x60a8, 0x614c,
1294 		0x7700, 0x7798,
1295 		0x77c0, 0x78fc,
1296 		0x7b00, 0x7b58,
1297 		0x7b60, 0x7b84,
1298 		0x7b8c, 0x7c54,
1299 		0x7d00, 0x7d38,
1300 		0x7d40, 0x7d80,
1301 		0x7d8c, 0x7ddc,
1302 		0x7de4, 0x7e04,
1303 		0x7e10, 0x7e1c,
1304 		0x7e24, 0x7e38,
1305 		0x7e40, 0x7e44,
1306 		0x7e4c, 0x7e78,
1307 		0x7e80, 0x7edc,
1308 		0x7ee8, 0x7efc,
1309 		0x8dc0, 0x8de0,
1310 		0x8df8, 0x8e04,
1311 		0x8e10, 0x8e84,
1312 		0x8ea0, 0x8f84,
1313 		0x8fc0, 0x9058,
1314 		0x9060, 0x9060,
1315 		0x9068, 0x90f8,
1316 		0x9400, 0x9408,
1317 		0x9410, 0x9470,
1318 		0x9600, 0x9600,
1319 		0x9608, 0x9638,
1320 		0x9640, 0x96f4,
1321 		0x9800, 0x9808,
1322 		0x9820, 0x983c,
1323 		0x9850, 0x9864,
1324 		0x9c00, 0x9c6c,
1325 		0x9c80, 0x9cec,
1326 		0x9d00, 0x9d6c,
1327 		0x9d80, 0x9dec,
1328 		0x9e00, 0x9e6c,
1329 		0x9e80, 0x9eec,
1330 		0x9f00, 0x9f6c,
1331 		0x9f80, 0xa020,
1332 		0xd004, 0xd004,
1333 		0xd010, 0xd03c,
1334 		0xdfc0, 0xdfe0,
1335 		0xe000, 0x1106c,
1336 		0x11074, 0x11088,
1337 		0x1109c, 0x1117c,
1338 		0x11190, 0x11204,
1339 		0x19040, 0x1906c,
1340 		0x19078, 0x19080,
1341 		0x1908c, 0x190e8,
1342 		0x190f0, 0x190f8,
1343 		0x19100, 0x19110,
1344 		0x19120, 0x19124,
1345 		0x19150, 0x19194,
1346 		0x1919c, 0x191b0,
1347 		0x191d0, 0x191e8,
1348 		0x19238, 0x19290,
1349 		0x193f8, 0x19428,
1350 		0x19430, 0x19444,
1351 		0x1944c, 0x1946c,
1352 		0x19474, 0x19474,
1353 		0x19490, 0x194cc,
1354 		0x194f0, 0x194f8,
1355 		0x19c00, 0x19c08,
1356 		0x19c10, 0x19c60,
1357 		0x19c94, 0x19ce4,
1358 		0x19cf0, 0x19d40,
1359 		0x19d50, 0x19d94,
1360 		0x19da0, 0x19de8,
1361 		0x19df0, 0x19e10,
1362 		0x19e50, 0x19e90,
1363 		0x19ea0, 0x19f24,
1364 		0x19f34, 0x19f34,
1365 		0x19f40, 0x19f50,
1366 		0x19f90, 0x19fb4,
1367 		0x19fc4, 0x19fe4,
1368 		0x1a000, 0x1a004,
1369 		0x1a010, 0x1a06c,
1370 		0x1a0b0, 0x1a0e4,
1371 		0x1a0ec, 0x1a0f8,
1372 		0x1a100, 0x1a108,
1373 		0x1a114, 0x1a120,
1374 		0x1a128, 0x1a130,
1375 		0x1a138, 0x1a138,
1376 		0x1a190, 0x1a1c4,
1377 		0x1a1fc, 0x1a1fc,
1378 		0x1e008, 0x1e00c,
1379 		0x1e040, 0x1e044,
1380 		0x1e04c, 0x1e04c,
1381 		0x1e284, 0x1e290,
1382 		0x1e2c0, 0x1e2c0,
1383 		0x1e2e0, 0x1e2e0,
1384 		0x1e300, 0x1e384,
1385 		0x1e3c0, 0x1e3c8,
1386 		0x1e408, 0x1e40c,
1387 		0x1e440, 0x1e444,
1388 		0x1e44c, 0x1e44c,
1389 		0x1e684, 0x1e690,
1390 		0x1e6c0, 0x1e6c0,
1391 		0x1e6e0, 0x1e6e0,
1392 		0x1e700, 0x1e784,
1393 		0x1e7c0, 0x1e7c8,
1394 		0x1e808, 0x1e80c,
1395 		0x1e840, 0x1e844,
1396 		0x1e84c, 0x1e84c,
1397 		0x1ea84, 0x1ea90,
1398 		0x1eac0, 0x1eac0,
1399 		0x1eae0, 0x1eae0,
1400 		0x1eb00, 0x1eb84,
1401 		0x1ebc0, 0x1ebc8,
1402 		0x1ec08, 0x1ec0c,
1403 		0x1ec40, 0x1ec44,
1404 		0x1ec4c, 0x1ec4c,
1405 		0x1ee84, 0x1ee90,
1406 		0x1eec0, 0x1eec0,
1407 		0x1eee0, 0x1eee0,
1408 		0x1ef00, 0x1ef84,
1409 		0x1efc0, 0x1efc8,
1410 		0x1f008, 0x1f00c,
1411 		0x1f040, 0x1f044,
1412 		0x1f04c, 0x1f04c,
1413 		0x1f284, 0x1f290,
1414 		0x1f2c0, 0x1f2c0,
1415 		0x1f2e0, 0x1f2e0,
1416 		0x1f300, 0x1f384,
1417 		0x1f3c0, 0x1f3c8,
1418 		0x1f408, 0x1f40c,
1419 		0x1f440, 0x1f444,
1420 		0x1f44c, 0x1f44c,
1421 		0x1f684, 0x1f690,
1422 		0x1f6c0, 0x1f6c0,
1423 		0x1f6e0, 0x1f6e0,
1424 		0x1f700, 0x1f784,
1425 		0x1f7c0, 0x1f7c8,
1426 		0x1f808, 0x1f80c,
1427 		0x1f840, 0x1f844,
1428 		0x1f84c, 0x1f84c,
1429 		0x1fa84, 0x1fa90,
1430 		0x1fac0, 0x1fac0,
1431 		0x1fae0, 0x1fae0,
1432 		0x1fb00, 0x1fb84,
1433 		0x1fbc0, 0x1fbc8,
1434 		0x1fc08, 0x1fc0c,
1435 		0x1fc40, 0x1fc44,
1436 		0x1fc4c, 0x1fc4c,
1437 		0x1fe84, 0x1fe90,
1438 		0x1fec0, 0x1fec0,
1439 		0x1fee0, 0x1fee0,
1440 		0x1ff00, 0x1ff84,
1441 		0x1ffc0, 0x1ffc8,
1442 		0x30000, 0x30030,
1443 		0x30100, 0x30144,
1444 		0x30190, 0x301a0,
1445 		0x301a8, 0x301b8,
1446 		0x301c4, 0x301c8,
1447 		0x301d0, 0x301d0,
1448 		0x30200, 0x30318,
1449 		0x30400, 0x304b4,
1450 		0x304c0, 0x3052c,
1451 		0x30540, 0x3061c,
1452 		0x30800, 0x30828,
1453 		0x30834, 0x30834,
1454 		0x308c0, 0x30908,
1455 		0x30910, 0x309ac,
1456 		0x30a00, 0x30a14,
1457 		0x30a1c, 0x30a2c,
1458 		0x30a44, 0x30a50,
1459 		0x30a74, 0x30a74,
1460 		0x30a7c, 0x30afc,
1461 		0x30b08, 0x30c24,
1462 		0x30d00, 0x30d00,
1463 		0x30d08, 0x30d14,
1464 		0x30d1c, 0x30d20,
1465 		0x30d3c, 0x30d3c,
1466 		0x30d48, 0x30d50,
1467 		0x31200, 0x3120c,
1468 		0x31220, 0x31220,
1469 		0x31240, 0x31240,
1470 		0x31600, 0x3160c,
1471 		0x31a00, 0x31a1c,
1472 		0x31e00, 0x31e20,
1473 		0x31e38, 0x31e3c,
1474 		0x31e80, 0x31e80,
1475 		0x31e88, 0x31ea8,
1476 		0x31eb0, 0x31eb4,
1477 		0x31ec8, 0x31ed4,
1478 		0x31fb8, 0x32004,
1479 		0x32200, 0x32200,
1480 		0x32208, 0x32240,
1481 		0x32248, 0x32280,
1482 		0x32288, 0x322c0,
1483 		0x322c8, 0x322fc,
1484 		0x32600, 0x32630,
1485 		0x32a00, 0x32abc,
1486 		0x32b00, 0x32b10,
1487 		0x32b20, 0x32b30,
1488 		0x32b40, 0x32b50,
1489 		0x32b60, 0x32b70,
1490 		0x33000, 0x33028,
1491 		0x33030, 0x33048,
1492 		0x33060, 0x33068,
1493 		0x33070, 0x3309c,
1494 		0x330f0, 0x33128,
1495 		0x33130, 0x33148,
1496 		0x33160, 0x33168,
1497 		0x33170, 0x3319c,
1498 		0x331f0, 0x33238,
1499 		0x33240, 0x33240,
1500 		0x33248, 0x33250,
1501 		0x3325c, 0x33264,
1502 		0x33270, 0x332b8,
1503 		0x332c0, 0x332e4,
1504 		0x332f8, 0x33338,
1505 		0x33340, 0x33340,
1506 		0x33348, 0x33350,
1507 		0x3335c, 0x33364,
1508 		0x33370, 0x333b8,
1509 		0x333c0, 0x333e4,
1510 		0x333f8, 0x33428,
1511 		0x33430, 0x33448,
1512 		0x33460, 0x33468,
1513 		0x33470, 0x3349c,
1514 		0x334f0, 0x33528,
1515 		0x33530, 0x33548,
1516 		0x33560, 0x33568,
1517 		0x33570, 0x3359c,
1518 		0x335f0, 0x33638,
1519 		0x33640, 0x33640,
1520 		0x33648, 0x33650,
1521 		0x3365c, 0x33664,
1522 		0x33670, 0x336b8,
1523 		0x336c0, 0x336e4,
1524 		0x336f8, 0x33738,
1525 		0x33740, 0x33740,
1526 		0x33748, 0x33750,
1527 		0x3375c, 0x33764,
1528 		0x33770, 0x337b8,
1529 		0x337c0, 0x337e4,
1530 		0x337f8, 0x337fc,
1531 		0x33814, 0x33814,
1532 		0x3382c, 0x3382c,
1533 		0x33880, 0x3388c,
1534 		0x338e8, 0x338ec,
1535 		0x33900, 0x33928,
1536 		0x33930, 0x33948,
1537 		0x33960, 0x33968,
1538 		0x33970, 0x3399c,
1539 		0x339f0, 0x33a38,
1540 		0x33a40, 0x33a40,
1541 		0x33a48, 0x33a50,
1542 		0x33a5c, 0x33a64,
1543 		0x33a70, 0x33ab8,
1544 		0x33ac0, 0x33ae4,
1545 		0x33af8, 0x33b10,
1546 		0x33b28, 0x33b28,
1547 		0x33b3c, 0x33b50,
1548 		0x33bf0, 0x33c10,
1549 		0x33c28, 0x33c28,
1550 		0x33c3c, 0x33c50,
1551 		0x33cf0, 0x33cfc,
1552 		0x34000, 0x34030,
1553 		0x34100, 0x34144,
1554 		0x34190, 0x341a0,
1555 		0x341a8, 0x341b8,
1556 		0x341c4, 0x341c8,
1557 		0x341d0, 0x341d0,
1558 		0x34200, 0x34318,
1559 		0x34400, 0x344b4,
1560 		0x344c0, 0x3452c,
1561 		0x34540, 0x3461c,
1562 		0x34800, 0x34828,
1563 		0x34834, 0x34834,
1564 		0x348c0, 0x34908,
1565 		0x34910, 0x349ac,
1566 		0x34a00, 0x34a14,
1567 		0x34a1c, 0x34a2c,
1568 		0x34a44, 0x34a50,
1569 		0x34a74, 0x34a74,
1570 		0x34a7c, 0x34afc,
1571 		0x34b08, 0x34c24,
1572 		0x34d00, 0x34d00,
1573 		0x34d08, 0x34d14,
1574 		0x34d1c, 0x34d20,
1575 		0x34d3c, 0x34d3c,
1576 		0x34d48, 0x34d50,
1577 		0x35200, 0x3520c,
1578 		0x35220, 0x35220,
1579 		0x35240, 0x35240,
1580 		0x35600, 0x3560c,
1581 		0x35a00, 0x35a1c,
1582 		0x35e00, 0x35e20,
1583 		0x35e38, 0x35e3c,
1584 		0x35e80, 0x35e80,
1585 		0x35e88, 0x35ea8,
1586 		0x35eb0, 0x35eb4,
1587 		0x35ec8, 0x35ed4,
1588 		0x35fb8, 0x36004,
1589 		0x36200, 0x36200,
1590 		0x36208, 0x36240,
1591 		0x36248, 0x36280,
1592 		0x36288, 0x362c0,
1593 		0x362c8, 0x362fc,
1594 		0x36600, 0x36630,
1595 		0x36a00, 0x36abc,
1596 		0x36b00, 0x36b10,
1597 		0x36b20, 0x36b30,
1598 		0x36b40, 0x36b50,
1599 		0x36b60, 0x36b70,
1600 		0x37000, 0x37028,
1601 		0x37030, 0x37048,
1602 		0x37060, 0x37068,
1603 		0x37070, 0x3709c,
1604 		0x370f0, 0x37128,
1605 		0x37130, 0x37148,
1606 		0x37160, 0x37168,
1607 		0x37170, 0x3719c,
1608 		0x371f0, 0x37238,
1609 		0x37240, 0x37240,
1610 		0x37248, 0x37250,
1611 		0x3725c, 0x37264,
1612 		0x37270, 0x372b8,
1613 		0x372c0, 0x372e4,
1614 		0x372f8, 0x37338,
1615 		0x37340, 0x37340,
1616 		0x37348, 0x37350,
1617 		0x3735c, 0x37364,
1618 		0x37370, 0x373b8,
1619 		0x373c0, 0x373e4,
1620 		0x373f8, 0x37428,
1621 		0x37430, 0x37448,
1622 		0x37460, 0x37468,
1623 		0x37470, 0x3749c,
1624 		0x374f0, 0x37528,
1625 		0x37530, 0x37548,
1626 		0x37560, 0x37568,
1627 		0x37570, 0x3759c,
1628 		0x375f0, 0x37638,
1629 		0x37640, 0x37640,
1630 		0x37648, 0x37650,
1631 		0x3765c, 0x37664,
1632 		0x37670, 0x376b8,
1633 		0x376c0, 0x376e4,
1634 		0x376f8, 0x37738,
1635 		0x37740, 0x37740,
1636 		0x37748, 0x37750,
1637 		0x3775c, 0x37764,
1638 		0x37770, 0x377b8,
1639 		0x377c0, 0x377e4,
1640 		0x377f8, 0x377fc,
1641 		0x37814, 0x37814,
1642 		0x3782c, 0x3782c,
1643 		0x37880, 0x3788c,
1644 		0x378e8, 0x378ec,
1645 		0x37900, 0x37928,
1646 		0x37930, 0x37948,
1647 		0x37960, 0x37968,
1648 		0x37970, 0x3799c,
1649 		0x379f0, 0x37a38,
1650 		0x37a40, 0x37a40,
1651 		0x37a48, 0x37a50,
1652 		0x37a5c, 0x37a64,
1653 		0x37a70, 0x37ab8,
1654 		0x37ac0, 0x37ae4,
1655 		0x37af8, 0x37b10,
1656 		0x37b28, 0x37b28,
1657 		0x37b3c, 0x37b50,
1658 		0x37bf0, 0x37c10,
1659 		0x37c28, 0x37c28,
1660 		0x37c3c, 0x37c50,
1661 		0x37cf0, 0x37cfc,
1662 		0x38000, 0x38030,
1663 		0x38100, 0x38144,
1664 		0x38190, 0x381a0,
1665 		0x381a8, 0x381b8,
1666 		0x381c4, 0x381c8,
1667 		0x381d0, 0x381d0,
1668 		0x38200, 0x38318,
1669 		0x38400, 0x384b4,
1670 		0x384c0, 0x3852c,
1671 		0x38540, 0x3861c,
1672 		0x38800, 0x38828,
1673 		0x38834, 0x38834,
1674 		0x388c0, 0x38908,
1675 		0x38910, 0x389ac,
1676 		0x38a00, 0x38a14,
1677 		0x38a1c, 0x38a2c,
1678 		0x38a44, 0x38a50,
1679 		0x38a74, 0x38a74,
1680 		0x38a7c, 0x38afc,
1681 		0x38b08, 0x38c24,
1682 		0x38d00, 0x38d00,
1683 		0x38d08, 0x38d14,
1684 		0x38d1c, 0x38d20,
1685 		0x38d3c, 0x38d3c,
1686 		0x38d48, 0x38d50,
1687 		0x39200, 0x3920c,
1688 		0x39220, 0x39220,
1689 		0x39240, 0x39240,
1690 		0x39600, 0x3960c,
1691 		0x39a00, 0x39a1c,
1692 		0x39e00, 0x39e20,
1693 		0x39e38, 0x39e3c,
1694 		0x39e80, 0x39e80,
1695 		0x39e88, 0x39ea8,
1696 		0x39eb0, 0x39eb4,
1697 		0x39ec8, 0x39ed4,
1698 		0x39fb8, 0x3a004,
1699 		0x3a200, 0x3a200,
1700 		0x3a208, 0x3a240,
1701 		0x3a248, 0x3a280,
1702 		0x3a288, 0x3a2c0,
1703 		0x3a2c8, 0x3a2fc,
1704 		0x3a600, 0x3a630,
1705 		0x3aa00, 0x3aabc,
1706 		0x3ab00, 0x3ab10,
1707 		0x3ab20, 0x3ab30,
1708 		0x3ab40, 0x3ab50,
1709 		0x3ab60, 0x3ab70,
1710 		0x3b000, 0x3b028,
1711 		0x3b030, 0x3b048,
1712 		0x3b060, 0x3b068,
1713 		0x3b070, 0x3b09c,
1714 		0x3b0f0, 0x3b128,
1715 		0x3b130, 0x3b148,
1716 		0x3b160, 0x3b168,
1717 		0x3b170, 0x3b19c,
1718 		0x3b1f0, 0x3b238,
1719 		0x3b240, 0x3b240,
1720 		0x3b248, 0x3b250,
1721 		0x3b25c, 0x3b264,
1722 		0x3b270, 0x3b2b8,
1723 		0x3b2c0, 0x3b2e4,
1724 		0x3b2f8, 0x3b338,
1725 		0x3b340, 0x3b340,
1726 		0x3b348, 0x3b350,
1727 		0x3b35c, 0x3b364,
1728 		0x3b370, 0x3b3b8,
1729 		0x3b3c0, 0x3b3e4,
1730 		0x3b3f8, 0x3b428,
1731 		0x3b430, 0x3b448,
1732 		0x3b460, 0x3b468,
1733 		0x3b470, 0x3b49c,
1734 		0x3b4f0, 0x3b528,
1735 		0x3b530, 0x3b548,
1736 		0x3b560, 0x3b568,
1737 		0x3b570, 0x3b59c,
1738 		0x3b5f0, 0x3b638,
1739 		0x3b640, 0x3b640,
1740 		0x3b648, 0x3b650,
1741 		0x3b65c, 0x3b664,
1742 		0x3b670, 0x3b6b8,
1743 		0x3b6c0, 0x3b6e4,
1744 		0x3b6f8, 0x3b738,
1745 		0x3b740, 0x3b740,
1746 		0x3b748, 0x3b750,
1747 		0x3b75c, 0x3b764,
1748 		0x3b770, 0x3b7b8,
1749 		0x3b7c0, 0x3b7e4,
1750 		0x3b7f8, 0x3b7fc,
1751 		0x3b814, 0x3b814,
1752 		0x3b82c, 0x3b82c,
1753 		0x3b880, 0x3b88c,
1754 		0x3b8e8, 0x3b8ec,
1755 		0x3b900, 0x3b928,
1756 		0x3b930, 0x3b948,
1757 		0x3b960, 0x3b968,
1758 		0x3b970, 0x3b99c,
1759 		0x3b9f0, 0x3ba38,
1760 		0x3ba40, 0x3ba40,
1761 		0x3ba48, 0x3ba50,
1762 		0x3ba5c, 0x3ba64,
1763 		0x3ba70, 0x3bab8,
1764 		0x3bac0, 0x3bae4,
1765 		0x3baf8, 0x3bb10,
1766 		0x3bb28, 0x3bb28,
1767 		0x3bb3c, 0x3bb50,
1768 		0x3bbf0, 0x3bc10,
1769 		0x3bc28, 0x3bc28,
1770 		0x3bc3c, 0x3bc50,
1771 		0x3bcf0, 0x3bcfc,
1772 		0x3c000, 0x3c030,
1773 		0x3c100, 0x3c144,
1774 		0x3c190, 0x3c1a0,
1775 		0x3c1a8, 0x3c1b8,
1776 		0x3c1c4, 0x3c1c8,
1777 		0x3c1d0, 0x3c1d0,
1778 		0x3c200, 0x3c318,
1779 		0x3c400, 0x3c4b4,
1780 		0x3c4c0, 0x3c52c,
1781 		0x3c540, 0x3c61c,
1782 		0x3c800, 0x3c828,
1783 		0x3c834, 0x3c834,
1784 		0x3c8c0, 0x3c908,
1785 		0x3c910, 0x3c9ac,
1786 		0x3ca00, 0x3ca14,
1787 		0x3ca1c, 0x3ca2c,
1788 		0x3ca44, 0x3ca50,
1789 		0x3ca74, 0x3ca74,
1790 		0x3ca7c, 0x3cafc,
1791 		0x3cb08, 0x3cc24,
1792 		0x3cd00, 0x3cd00,
1793 		0x3cd08, 0x3cd14,
1794 		0x3cd1c, 0x3cd20,
1795 		0x3cd3c, 0x3cd3c,
1796 		0x3cd48, 0x3cd50,
1797 		0x3d200, 0x3d20c,
1798 		0x3d220, 0x3d220,
1799 		0x3d240, 0x3d240,
1800 		0x3d600, 0x3d60c,
1801 		0x3da00, 0x3da1c,
1802 		0x3de00, 0x3de20,
1803 		0x3de38, 0x3de3c,
1804 		0x3de80, 0x3de80,
1805 		0x3de88, 0x3dea8,
1806 		0x3deb0, 0x3deb4,
1807 		0x3dec8, 0x3ded4,
1808 		0x3dfb8, 0x3e004,
1809 		0x3e200, 0x3e200,
1810 		0x3e208, 0x3e240,
1811 		0x3e248, 0x3e280,
1812 		0x3e288, 0x3e2c0,
1813 		0x3e2c8, 0x3e2fc,
1814 		0x3e600, 0x3e630,
1815 		0x3ea00, 0x3eabc,
1816 		0x3eb00, 0x3eb10,
1817 		0x3eb20, 0x3eb30,
1818 		0x3eb40, 0x3eb50,
1819 		0x3eb60, 0x3eb70,
1820 		0x3f000, 0x3f028,
1821 		0x3f030, 0x3f048,
1822 		0x3f060, 0x3f068,
1823 		0x3f070, 0x3f09c,
1824 		0x3f0f0, 0x3f128,
1825 		0x3f130, 0x3f148,
1826 		0x3f160, 0x3f168,
1827 		0x3f170, 0x3f19c,
1828 		0x3f1f0, 0x3f238,
1829 		0x3f240, 0x3f240,
1830 		0x3f248, 0x3f250,
1831 		0x3f25c, 0x3f264,
1832 		0x3f270, 0x3f2b8,
1833 		0x3f2c0, 0x3f2e4,
1834 		0x3f2f8, 0x3f338,
1835 		0x3f340, 0x3f340,
1836 		0x3f348, 0x3f350,
1837 		0x3f35c, 0x3f364,
1838 		0x3f370, 0x3f3b8,
1839 		0x3f3c0, 0x3f3e4,
1840 		0x3f3f8, 0x3f428,
1841 		0x3f430, 0x3f448,
1842 		0x3f460, 0x3f468,
1843 		0x3f470, 0x3f49c,
1844 		0x3f4f0, 0x3f528,
1845 		0x3f530, 0x3f548,
1846 		0x3f560, 0x3f568,
1847 		0x3f570, 0x3f59c,
1848 		0x3f5f0, 0x3f638,
1849 		0x3f640, 0x3f640,
1850 		0x3f648, 0x3f650,
1851 		0x3f65c, 0x3f664,
1852 		0x3f670, 0x3f6b8,
1853 		0x3f6c0, 0x3f6e4,
1854 		0x3f6f8, 0x3f738,
1855 		0x3f740, 0x3f740,
1856 		0x3f748, 0x3f750,
1857 		0x3f75c, 0x3f764,
1858 		0x3f770, 0x3f7b8,
1859 		0x3f7c0, 0x3f7e4,
1860 		0x3f7f8, 0x3f7fc,
1861 		0x3f814, 0x3f814,
1862 		0x3f82c, 0x3f82c,
1863 		0x3f880, 0x3f88c,
1864 		0x3f8e8, 0x3f8ec,
1865 		0x3f900, 0x3f928,
1866 		0x3f930, 0x3f948,
1867 		0x3f960, 0x3f968,
1868 		0x3f970, 0x3f99c,
1869 		0x3f9f0, 0x3fa38,
1870 		0x3fa40, 0x3fa40,
1871 		0x3fa48, 0x3fa50,
1872 		0x3fa5c, 0x3fa64,
1873 		0x3fa70, 0x3fab8,
1874 		0x3fac0, 0x3fae4,
1875 		0x3faf8, 0x3fb10,
1876 		0x3fb28, 0x3fb28,
1877 		0x3fb3c, 0x3fb50,
1878 		0x3fbf0, 0x3fc10,
1879 		0x3fc28, 0x3fc28,
1880 		0x3fc3c, 0x3fc50,
1881 		0x3fcf0, 0x3fcfc,
1882 		0x40000, 0x4000c,
1883 		0x40040, 0x40050,
1884 		0x40060, 0x40068,
1885 		0x4007c, 0x4008c,
1886 		0x40094, 0x400b0,
1887 		0x400c0, 0x40144,
1888 		0x40180, 0x4018c,
1889 		0x40200, 0x40254,
1890 		0x40260, 0x40264,
1891 		0x40270, 0x40288,
1892 		0x40290, 0x40298,
1893 		0x402ac, 0x402c8,
1894 		0x402d0, 0x402e0,
1895 		0x402f0, 0x402f0,
1896 		0x40300, 0x4033c,
1897 		0x403f8, 0x403fc,
1898 		0x41304, 0x413c4,
1899 		0x41400, 0x4140c,
1900 		0x41414, 0x4141c,
1901 		0x41480, 0x414d0,
1902 		0x44000, 0x44054,
1903 		0x4405c, 0x44078,
1904 		0x440c0, 0x44174,
1905 		0x44180, 0x441ac,
1906 		0x441b4, 0x441b8,
1907 		0x441c0, 0x44254,
1908 		0x4425c, 0x44278,
1909 		0x442c0, 0x44374,
1910 		0x44380, 0x443ac,
1911 		0x443b4, 0x443b8,
1912 		0x443c0, 0x44454,
1913 		0x4445c, 0x44478,
1914 		0x444c0, 0x44574,
1915 		0x44580, 0x445ac,
1916 		0x445b4, 0x445b8,
1917 		0x445c0, 0x44654,
1918 		0x4465c, 0x44678,
1919 		0x446c0, 0x44774,
1920 		0x44780, 0x447ac,
1921 		0x447b4, 0x447b8,
1922 		0x447c0, 0x44854,
1923 		0x4485c, 0x44878,
1924 		0x448c0, 0x44974,
1925 		0x44980, 0x449ac,
1926 		0x449b4, 0x449b8,
1927 		0x449c0, 0x449fc,
1928 		0x45000, 0x45004,
1929 		0x45010, 0x45030,
1930 		0x45040, 0x45060,
1931 		0x45068, 0x45068,
1932 		0x45080, 0x45084,
1933 		0x450a0, 0x450b0,
1934 		0x45200, 0x45204,
1935 		0x45210, 0x45230,
1936 		0x45240, 0x45260,
1937 		0x45268, 0x45268,
1938 		0x45280, 0x45284,
1939 		0x452a0, 0x452b0,
1940 		0x460c0, 0x460e4,
1941 		0x47000, 0x4703c,
1942 		0x47044, 0x4708c,
1943 		0x47200, 0x47250,
1944 		0x47400, 0x47408,
1945 		0x47414, 0x47420,
1946 		0x47600, 0x47618,
1947 		0x47800, 0x47814,
1948 		0x48000, 0x4800c,
1949 		0x48040, 0x48050,
1950 		0x48060, 0x48068,
1951 		0x4807c, 0x4808c,
1952 		0x48094, 0x480b0,
1953 		0x480c0, 0x48144,
1954 		0x48180, 0x4818c,
1955 		0x48200, 0x48254,
1956 		0x48260, 0x48264,
1957 		0x48270, 0x48288,
1958 		0x48290, 0x48298,
1959 		0x482ac, 0x482c8,
1960 		0x482d0, 0x482e0,
1961 		0x482f0, 0x482f0,
1962 		0x48300, 0x4833c,
1963 		0x483f8, 0x483fc,
1964 		0x49304, 0x493c4,
1965 		0x49400, 0x4940c,
1966 		0x49414, 0x4941c,
1967 		0x49480, 0x494d0,
1968 		0x4c000, 0x4c054,
1969 		0x4c05c, 0x4c078,
1970 		0x4c0c0, 0x4c174,
1971 		0x4c180, 0x4c1ac,
1972 		0x4c1b4, 0x4c1b8,
1973 		0x4c1c0, 0x4c254,
1974 		0x4c25c, 0x4c278,
1975 		0x4c2c0, 0x4c374,
1976 		0x4c380, 0x4c3ac,
1977 		0x4c3b4, 0x4c3b8,
1978 		0x4c3c0, 0x4c454,
1979 		0x4c45c, 0x4c478,
1980 		0x4c4c0, 0x4c574,
1981 		0x4c580, 0x4c5ac,
1982 		0x4c5b4, 0x4c5b8,
1983 		0x4c5c0, 0x4c654,
1984 		0x4c65c, 0x4c678,
1985 		0x4c6c0, 0x4c774,
1986 		0x4c780, 0x4c7ac,
1987 		0x4c7b4, 0x4c7b8,
1988 		0x4c7c0, 0x4c854,
1989 		0x4c85c, 0x4c878,
1990 		0x4c8c0, 0x4c974,
1991 		0x4c980, 0x4c9ac,
1992 		0x4c9b4, 0x4c9b8,
1993 		0x4c9c0, 0x4c9fc,
1994 		0x4d000, 0x4d004,
1995 		0x4d010, 0x4d030,
1996 		0x4d040, 0x4d060,
1997 		0x4d068, 0x4d068,
1998 		0x4d080, 0x4d084,
1999 		0x4d0a0, 0x4d0b0,
2000 		0x4d200, 0x4d204,
2001 		0x4d210, 0x4d230,
2002 		0x4d240, 0x4d260,
2003 		0x4d268, 0x4d268,
2004 		0x4d280, 0x4d284,
2005 		0x4d2a0, 0x4d2b0,
2006 		0x4e0c0, 0x4e0e4,
2007 		0x4f000, 0x4f03c,
2008 		0x4f044, 0x4f08c,
2009 		0x4f200, 0x4f250,
2010 		0x4f400, 0x4f408,
2011 		0x4f414, 0x4f420,
2012 		0x4f600, 0x4f618,
2013 		0x4f800, 0x4f814,
2014 		0x50000, 0x50084,
2015 		0x50090, 0x500cc,
2016 		0x50400, 0x50400,
2017 		0x50800, 0x50884,
2018 		0x50890, 0x508cc,
2019 		0x50c00, 0x50c00,
2020 		0x51000, 0x5101c,
2021 		0x51300, 0x51308,
2022 	};
2023 
2024 	static const unsigned int t6_reg_ranges[] = {
2025 		0x1008, 0x101c,
2026 		0x1024, 0x10a8,
2027 		0x10b4, 0x10f8,
2028 		0x1100, 0x1114,
2029 		0x111c, 0x112c,
2030 		0x1138, 0x113c,
2031 		0x1144, 0x114c,
2032 		0x1180, 0x1184,
2033 		0x1190, 0x1194,
2034 		0x11a0, 0x11a4,
2035 		0x11b0, 0x11b4,
2036 		0x11fc, 0x1274,
2037 		0x1280, 0x133c,
2038 		0x1800, 0x18fc,
2039 		0x3000, 0x302c,
2040 		0x3060, 0x30b0,
2041 		0x30b8, 0x30d8,
2042 		0x30e0, 0x30fc,
2043 		0x3140, 0x357c,
2044 		0x35a8, 0x35cc,
2045 		0x35ec, 0x35ec,
2046 		0x3600, 0x5624,
2047 		0x56cc, 0x56ec,
2048 		0x56f4, 0x5720,
2049 		0x5728, 0x575c,
2050 		0x580c, 0x5814,
2051 		0x5890, 0x589c,
2052 		0x58a4, 0x58ac,
2053 		0x58b8, 0x58bc,
2054 		0x5940, 0x595c,
2055 		0x5980, 0x598c,
2056 		0x59b0, 0x59c8,
2057 		0x59d0, 0x59dc,
2058 		0x59fc, 0x5a18,
2059 		0x5a60, 0x5a6c,
2060 		0x5a80, 0x5a8c,
2061 		0x5a94, 0x5a9c,
2062 		0x5b94, 0x5bfc,
2063 		0x5c10, 0x5e48,
2064 		0x5e50, 0x5e94,
2065 		0x5ea0, 0x5eb0,
2066 		0x5ec0, 0x5ec0,
2067 		0x5ec8, 0x5ed0,
2068 		0x5ee0, 0x5ee0,
2069 		0x5ef0, 0x5ef0,
2070 		0x5f00, 0x5f00,
2071 		0x6000, 0x6020,
2072 		0x6028, 0x6040,
2073 		0x6058, 0x609c,
2074 		0x60a8, 0x619c,
2075 		0x7700, 0x7798,
2076 		0x77c0, 0x7880,
2077 		0x78cc, 0x78fc,
2078 		0x7b00, 0x7b58,
2079 		0x7b60, 0x7b84,
2080 		0x7b8c, 0x7c54,
2081 		0x7d00, 0x7d38,
2082 		0x7d40, 0x7d84,
2083 		0x7d8c, 0x7ddc,
2084 		0x7de4, 0x7e04,
2085 		0x7e10, 0x7e1c,
2086 		0x7e24, 0x7e38,
2087 		0x7e40, 0x7e44,
2088 		0x7e4c, 0x7e78,
2089 		0x7e80, 0x7edc,
2090 		0x7ee8, 0x7efc,
2091 		0x8dc0, 0x8de4,
2092 		0x8df8, 0x8e04,
2093 		0x8e10, 0x8e84,
2094 		0x8ea0, 0x8f88,
2095 		0x8fb8, 0x9058,
2096 		0x9060, 0x9060,
2097 		0x9068, 0x90f8,
2098 		0x9100, 0x9124,
2099 		0x9400, 0x9470,
2100 		0x9600, 0x9600,
2101 		0x9608, 0x9638,
2102 		0x9640, 0x9704,
2103 		0x9710, 0x971c,
2104 		0x9800, 0x9808,
2105 		0x9820, 0x983c,
2106 		0x9850, 0x9864,
2107 		0x9c00, 0x9c6c,
2108 		0x9c80, 0x9cec,
2109 		0x9d00, 0x9d6c,
2110 		0x9d80, 0x9dec,
2111 		0x9e00, 0x9e6c,
2112 		0x9e80, 0x9eec,
2113 		0x9f00, 0x9f6c,
2114 		0x9f80, 0xa020,
2115 		0xd004, 0xd03c,
2116 		0xd100, 0xd118,
2117 		0xd200, 0xd214,
2118 		0xd220, 0xd234,
2119 		0xd240, 0xd254,
2120 		0xd260, 0xd274,
2121 		0xd280, 0xd294,
2122 		0xd2a0, 0xd2b4,
2123 		0xd2c0, 0xd2d4,
2124 		0xd2e0, 0xd2f4,
2125 		0xd300, 0xd31c,
2126 		0xdfc0, 0xdfe0,
2127 		0xe000, 0xf008,
2128 		0xf010, 0xf018,
2129 		0xf020, 0xf028,
2130 		0x11000, 0x11014,
2131 		0x11048, 0x1106c,
2132 		0x11074, 0x11088,
2133 		0x11098, 0x11120,
2134 		0x1112c, 0x1117c,
2135 		0x11190, 0x112e0,
2136 		0x11300, 0x1130c,
2137 		0x12000, 0x1206c,
2138 		0x19040, 0x1906c,
2139 		0x19078, 0x19080,
2140 		0x1908c, 0x190e8,
2141 		0x190f0, 0x190f8,
2142 		0x19100, 0x19110,
2143 		0x19120, 0x19124,
2144 		0x19150, 0x19194,
2145 		0x1919c, 0x191b0,
2146 		0x191d0, 0x191e8,
2147 		0x19238, 0x19290,
2148 		0x192a4, 0x192b0,
2149 		0x192bc, 0x192bc,
2150 		0x19348, 0x1934c,
2151 		0x193f8, 0x19418,
2152 		0x19420, 0x19428,
2153 		0x19430, 0x19444,
2154 		0x1944c, 0x1946c,
2155 		0x19474, 0x19474,
2156 		0x19490, 0x194cc,
2157 		0x194f0, 0x194f8,
2158 		0x19c00, 0x19c48,
2159 		0x19c50, 0x19c80,
2160 		0x19c94, 0x19c98,
2161 		0x19ca0, 0x19cbc,
2162 		0x19ce4, 0x19ce4,
2163 		0x19cf0, 0x19cf8,
2164 		0x19d00, 0x19d28,
2165 		0x19d50, 0x19d78,
2166 		0x19d94, 0x19d98,
2167 		0x19da0, 0x19dc8,
2168 		0x19df0, 0x19e10,
2169 		0x19e50, 0x19e6c,
2170 		0x19ea0, 0x19ebc,
2171 		0x19ec4, 0x19ef4,
2172 		0x19f04, 0x19f2c,
2173 		0x19f34, 0x19f34,
2174 		0x19f40, 0x19f50,
2175 		0x19f90, 0x19fac,
2176 		0x19fc4, 0x19fc8,
2177 		0x19fd0, 0x19fe4,
2178 		0x1a000, 0x1a004,
2179 		0x1a010, 0x1a06c,
2180 		0x1a0b0, 0x1a0e4,
2181 		0x1a0ec, 0x1a0f8,
2182 		0x1a100, 0x1a108,
2183 		0x1a114, 0x1a120,
2184 		0x1a128, 0x1a130,
2185 		0x1a138, 0x1a138,
2186 		0x1a190, 0x1a1c4,
2187 		0x1a1fc, 0x1a1fc,
2188 		0x1e008, 0x1e00c,
2189 		0x1e040, 0x1e044,
2190 		0x1e04c, 0x1e04c,
2191 		0x1e284, 0x1e290,
2192 		0x1e2c0, 0x1e2c0,
2193 		0x1e2e0, 0x1e2e0,
2194 		0x1e300, 0x1e384,
2195 		0x1e3c0, 0x1e3c8,
2196 		0x1e408, 0x1e40c,
2197 		0x1e440, 0x1e444,
2198 		0x1e44c, 0x1e44c,
2199 		0x1e684, 0x1e690,
2200 		0x1e6c0, 0x1e6c0,
2201 		0x1e6e0, 0x1e6e0,
2202 		0x1e700, 0x1e784,
2203 		0x1e7c0, 0x1e7c8,
2204 		0x1e808, 0x1e80c,
2205 		0x1e840, 0x1e844,
2206 		0x1e84c, 0x1e84c,
2207 		0x1ea84, 0x1ea90,
2208 		0x1eac0, 0x1eac0,
2209 		0x1eae0, 0x1eae0,
2210 		0x1eb00, 0x1eb84,
2211 		0x1ebc0, 0x1ebc8,
2212 		0x1ec08, 0x1ec0c,
2213 		0x1ec40, 0x1ec44,
2214 		0x1ec4c, 0x1ec4c,
2215 		0x1ee84, 0x1ee90,
2216 		0x1eec0, 0x1eec0,
2217 		0x1eee0, 0x1eee0,
2218 		0x1ef00, 0x1ef84,
2219 		0x1efc0, 0x1efc8,
2220 		0x1f008, 0x1f00c,
2221 		0x1f040, 0x1f044,
2222 		0x1f04c, 0x1f04c,
2223 		0x1f284, 0x1f290,
2224 		0x1f2c0, 0x1f2c0,
2225 		0x1f2e0, 0x1f2e0,
2226 		0x1f300, 0x1f384,
2227 		0x1f3c0, 0x1f3c8,
2228 		0x1f408, 0x1f40c,
2229 		0x1f440, 0x1f444,
2230 		0x1f44c, 0x1f44c,
2231 		0x1f684, 0x1f690,
2232 		0x1f6c0, 0x1f6c0,
2233 		0x1f6e0, 0x1f6e0,
2234 		0x1f700, 0x1f784,
2235 		0x1f7c0, 0x1f7c8,
2236 		0x1f808, 0x1f80c,
2237 		0x1f840, 0x1f844,
2238 		0x1f84c, 0x1f84c,
2239 		0x1fa84, 0x1fa90,
2240 		0x1fac0, 0x1fac0,
2241 		0x1fae0, 0x1fae0,
2242 		0x1fb00, 0x1fb84,
2243 		0x1fbc0, 0x1fbc8,
2244 		0x1fc08, 0x1fc0c,
2245 		0x1fc40, 0x1fc44,
2246 		0x1fc4c, 0x1fc4c,
2247 		0x1fe84, 0x1fe90,
2248 		0x1fec0, 0x1fec0,
2249 		0x1fee0, 0x1fee0,
2250 		0x1ff00, 0x1ff84,
2251 		0x1ffc0, 0x1ffc8,
2252 		0x30000, 0x30030,
2253 		0x30100, 0x30168,
2254 		0x30190, 0x301a0,
2255 		0x301a8, 0x301b8,
2256 		0x301c4, 0x301c8,
2257 		0x301d0, 0x301d0,
2258 		0x30200, 0x30320,
2259 		0x30400, 0x304b4,
2260 		0x304c0, 0x3052c,
2261 		0x30540, 0x3061c,
2262 		0x30800, 0x308a0,
2263 		0x308c0, 0x30908,
2264 		0x30910, 0x309b8,
2265 		0x30a00, 0x30a04,
2266 		0x30a0c, 0x30a14,
2267 		0x30a1c, 0x30a2c,
2268 		0x30a44, 0x30a50,
2269 		0x30a74, 0x30a74,
2270 		0x30a7c, 0x30afc,
2271 		0x30b08, 0x30c24,
2272 		0x30d00, 0x30d14,
2273 		0x30d1c, 0x30d3c,
2274 		0x30d44, 0x30d4c,
2275 		0x30d54, 0x30d74,
2276 		0x30d7c, 0x30d7c,
2277 		0x30de0, 0x30de0,
2278 		0x30e00, 0x30ed4,
2279 		0x30f00, 0x30fa4,
2280 		0x30fc0, 0x30fc4,
2281 		0x31000, 0x31004,
2282 		0x31080, 0x310fc,
2283 		0x31208, 0x31220,
2284 		0x3123c, 0x31254,
2285 		0x31300, 0x31300,
2286 		0x31308, 0x3131c,
2287 		0x31338, 0x3133c,
2288 		0x31380, 0x31380,
2289 		0x31388, 0x313a8,
2290 		0x313b4, 0x313b4,
2291 		0x31400, 0x31420,
2292 		0x31438, 0x3143c,
2293 		0x31480, 0x31480,
2294 		0x314a8, 0x314a8,
2295 		0x314b0, 0x314b4,
2296 		0x314c8, 0x314d4,
2297 		0x31a40, 0x31a4c,
2298 		0x31af0, 0x31b20,
2299 		0x31b38, 0x31b3c,
2300 		0x31b80, 0x31b80,
2301 		0x31ba8, 0x31ba8,
2302 		0x31bb0, 0x31bb4,
2303 		0x31bc8, 0x31bd4,
2304 		0x32140, 0x3218c,
2305 		0x321f0, 0x321f4,
2306 		0x32200, 0x32200,
2307 		0x32218, 0x32218,
2308 		0x32400, 0x32400,
2309 		0x32408, 0x3241c,
2310 		0x32618, 0x32620,
2311 		0x32664, 0x32664,
2312 		0x326a8, 0x326a8,
2313 		0x326ec, 0x326ec,
2314 		0x32a00, 0x32abc,
2315 		0x32b00, 0x32b18,
2316 		0x32b20, 0x32b38,
2317 		0x32b40, 0x32b58,
2318 		0x32b60, 0x32b78,
2319 		0x32c00, 0x32c00,
2320 		0x32c08, 0x32c3c,
2321 		0x33000, 0x3302c,
2322 		0x33034, 0x33050,
2323 		0x33058, 0x33058,
2324 		0x33060, 0x3308c,
2325 		0x3309c, 0x330ac,
2326 		0x330c0, 0x330c0,
2327 		0x330c8, 0x330d0,
2328 		0x330d8, 0x330e0,
2329 		0x330ec, 0x3312c,
2330 		0x33134, 0x33150,
2331 		0x33158, 0x33158,
2332 		0x33160, 0x3318c,
2333 		0x3319c, 0x331ac,
2334 		0x331c0, 0x331c0,
2335 		0x331c8, 0x331d0,
2336 		0x331d8, 0x331e0,
2337 		0x331ec, 0x33290,
2338 		0x33298, 0x332c4,
2339 		0x332e4, 0x33390,
2340 		0x33398, 0x333c4,
2341 		0x333e4, 0x3342c,
2342 		0x33434, 0x33450,
2343 		0x33458, 0x33458,
2344 		0x33460, 0x3348c,
2345 		0x3349c, 0x334ac,
2346 		0x334c0, 0x334c0,
2347 		0x334c8, 0x334d0,
2348 		0x334d8, 0x334e0,
2349 		0x334ec, 0x3352c,
2350 		0x33534, 0x33550,
2351 		0x33558, 0x33558,
2352 		0x33560, 0x3358c,
2353 		0x3359c, 0x335ac,
2354 		0x335c0, 0x335c0,
2355 		0x335c8, 0x335d0,
2356 		0x335d8, 0x335e0,
2357 		0x335ec, 0x33690,
2358 		0x33698, 0x336c4,
2359 		0x336e4, 0x33790,
2360 		0x33798, 0x337c4,
2361 		0x337e4, 0x337fc,
2362 		0x33814, 0x33814,
2363 		0x33854, 0x33868,
2364 		0x33880, 0x3388c,
2365 		0x338c0, 0x338d0,
2366 		0x338e8, 0x338ec,
2367 		0x33900, 0x3392c,
2368 		0x33934, 0x33950,
2369 		0x33958, 0x33958,
2370 		0x33960, 0x3398c,
2371 		0x3399c, 0x339ac,
2372 		0x339c0, 0x339c0,
2373 		0x339c8, 0x339d0,
2374 		0x339d8, 0x339e0,
2375 		0x339ec, 0x33a90,
2376 		0x33a98, 0x33ac4,
2377 		0x33ae4, 0x33b10,
2378 		0x33b24, 0x33b28,
2379 		0x33b38, 0x33b50,
2380 		0x33bf0, 0x33c10,
2381 		0x33c24, 0x33c28,
2382 		0x33c38, 0x33c50,
2383 		0x33cf0, 0x33cfc,
2384 		0x34000, 0x34030,
2385 		0x34100, 0x34168,
2386 		0x34190, 0x341a0,
2387 		0x341a8, 0x341b8,
2388 		0x341c4, 0x341c8,
2389 		0x341d0, 0x341d0,
2390 		0x34200, 0x34320,
2391 		0x34400, 0x344b4,
2392 		0x344c0, 0x3452c,
2393 		0x34540, 0x3461c,
2394 		0x34800, 0x348a0,
2395 		0x348c0, 0x34908,
2396 		0x34910, 0x349b8,
2397 		0x34a00, 0x34a04,
2398 		0x34a0c, 0x34a14,
2399 		0x34a1c, 0x34a2c,
2400 		0x34a44, 0x34a50,
2401 		0x34a74, 0x34a74,
2402 		0x34a7c, 0x34afc,
2403 		0x34b08, 0x34c24,
2404 		0x34d00, 0x34d14,
2405 		0x34d1c, 0x34d3c,
2406 		0x34d44, 0x34d4c,
2407 		0x34d54, 0x34d74,
2408 		0x34d7c, 0x34d7c,
2409 		0x34de0, 0x34de0,
2410 		0x34e00, 0x34ed4,
2411 		0x34f00, 0x34fa4,
2412 		0x34fc0, 0x34fc4,
2413 		0x35000, 0x35004,
2414 		0x35080, 0x350fc,
2415 		0x35208, 0x35220,
2416 		0x3523c, 0x35254,
2417 		0x35300, 0x35300,
2418 		0x35308, 0x3531c,
2419 		0x35338, 0x3533c,
2420 		0x35380, 0x35380,
2421 		0x35388, 0x353a8,
2422 		0x353b4, 0x353b4,
2423 		0x35400, 0x35420,
2424 		0x35438, 0x3543c,
2425 		0x35480, 0x35480,
2426 		0x354a8, 0x354a8,
2427 		0x354b0, 0x354b4,
2428 		0x354c8, 0x354d4,
2429 		0x35a40, 0x35a4c,
2430 		0x35af0, 0x35b20,
2431 		0x35b38, 0x35b3c,
2432 		0x35b80, 0x35b80,
2433 		0x35ba8, 0x35ba8,
2434 		0x35bb0, 0x35bb4,
2435 		0x35bc8, 0x35bd4,
2436 		0x36140, 0x3618c,
2437 		0x361f0, 0x361f4,
2438 		0x36200, 0x36200,
2439 		0x36218, 0x36218,
2440 		0x36400, 0x36400,
2441 		0x36408, 0x3641c,
2442 		0x36618, 0x36620,
2443 		0x36664, 0x36664,
2444 		0x366a8, 0x366a8,
2445 		0x366ec, 0x366ec,
2446 		0x36a00, 0x36abc,
2447 		0x36b00, 0x36b18,
2448 		0x36b20, 0x36b38,
2449 		0x36b40, 0x36b58,
2450 		0x36b60, 0x36b78,
2451 		0x36c00, 0x36c00,
2452 		0x36c08, 0x36c3c,
2453 		0x37000, 0x3702c,
2454 		0x37034, 0x37050,
2455 		0x37058, 0x37058,
2456 		0x37060, 0x3708c,
2457 		0x3709c, 0x370ac,
2458 		0x370c0, 0x370c0,
2459 		0x370c8, 0x370d0,
2460 		0x370d8, 0x370e0,
2461 		0x370ec, 0x3712c,
2462 		0x37134, 0x37150,
2463 		0x37158, 0x37158,
2464 		0x37160, 0x3718c,
2465 		0x3719c, 0x371ac,
2466 		0x371c0, 0x371c0,
2467 		0x371c8, 0x371d0,
2468 		0x371d8, 0x371e0,
2469 		0x371ec, 0x37290,
2470 		0x37298, 0x372c4,
2471 		0x372e4, 0x37390,
2472 		0x37398, 0x373c4,
2473 		0x373e4, 0x3742c,
2474 		0x37434, 0x37450,
2475 		0x37458, 0x37458,
2476 		0x37460, 0x3748c,
2477 		0x3749c, 0x374ac,
2478 		0x374c0, 0x374c0,
2479 		0x374c8, 0x374d0,
2480 		0x374d8, 0x374e0,
2481 		0x374ec, 0x3752c,
2482 		0x37534, 0x37550,
2483 		0x37558, 0x37558,
2484 		0x37560, 0x3758c,
2485 		0x3759c, 0x375ac,
2486 		0x375c0, 0x375c0,
2487 		0x375c8, 0x375d0,
2488 		0x375d8, 0x375e0,
2489 		0x375ec, 0x37690,
2490 		0x37698, 0x376c4,
2491 		0x376e4, 0x37790,
2492 		0x37798, 0x377c4,
2493 		0x377e4, 0x377fc,
2494 		0x37814, 0x37814,
2495 		0x37854, 0x37868,
2496 		0x37880, 0x3788c,
2497 		0x378c0, 0x378d0,
2498 		0x378e8, 0x378ec,
2499 		0x37900, 0x3792c,
2500 		0x37934, 0x37950,
2501 		0x37958, 0x37958,
2502 		0x37960, 0x3798c,
2503 		0x3799c, 0x379ac,
2504 		0x379c0, 0x379c0,
2505 		0x379c8, 0x379d0,
2506 		0x379d8, 0x379e0,
2507 		0x379ec, 0x37a90,
2508 		0x37a98, 0x37ac4,
2509 		0x37ae4, 0x37b10,
2510 		0x37b24, 0x37b28,
2511 		0x37b38, 0x37b50,
2512 		0x37bf0, 0x37c10,
2513 		0x37c24, 0x37c28,
2514 		0x37c38, 0x37c50,
2515 		0x37cf0, 0x37cfc,
2516 		0x40040, 0x40040,
2517 		0x40080, 0x40084,
2518 		0x40100, 0x40100,
2519 		0x40140, 0x401bc,
2520 		0x40200, 0x40214,
2521 		0x40228, 0x40228,
2522 		0x40240, 0x40258,
2523 		0x40280, 0x40280,
2524 		0x40304, 0x40304,
2525 		0x40330, 0x4033c,
2526 		0x41304, 0x413c8,
2527 		0x413d0, 0x413dc,
2528 		0x413f0, 0x413f0,
2529 		0x41400, 0x4140c,
2530 		0x41414, 0x4141c,
2531 		0x41480, 0x414d0,
2532 		0x44000, 0x4407c,
2533 		0x440c0, 0x441ac,
2534 		0x441b4, 0x4427c,
2535 		0x442c0, 0x443ac,
2536 		0x443b4, 0x4447c,
2537 		0x444c0, 0x445ac,
2538 		0x445b4, 0x4467c,
2539 		0x446c0, 0x447ac,
2540 		0x447b4, 0x4487c,
2541 		0x448c0, 0x449ac,
2542 		0x449b4, 0x44a7c,
2543 		0x44ac0, 0x44bac,
2544 		0x44bb4, 0x44c7c,
2545 		0x44cc0, 0x44dac,
2546 		0x44db4, 0x44e7c,
2547 		0x44ec0, 0x44fac,
2548 		0x44fb4, 0x4507c,
2549 		0x450c0, 0x451ac,
2550 		0x451b4, 0x451fc,
2551 		0x45800, 0x45804,
2552 		0x45810, 0x45830,
2553 		0x45840, 0x45860,
2554 		0x45868, 0x45868,
2555 		0x45880, 0x45884,
2556 		0x458a0, 0x458b0,
2557 		0x45a00, 0x45a04,
2558 		0x45a10, 0x45a30,
2559 		0x45a40, 0x45a60,
2560 		0x45a68, 0x45a68,
2561 		0x45a80, 0x45a84,
2562 		0x45aa0, 0x45ab0,
2563 		0x460c0, 0x460e4,
2564 		0x47000, 0x4703c,
2565 		0x47044, 0x4708c,
2566 		0x47200, 0x47250,
2567 		0x47400, 0x47408,
2568 		0x47414, 0x47420,
2569 		0x47600, 0x47618,
2570 		0x47800, 0x47814,
2571 		0x47820, 0x4782c,
2572 		0x50000, 0x50084,
2573 		0x50090, 0x500cc,
2574 		0x50300, 0x50384,
2575 		0x50400, 0x50400,
2576 		0x50800, 0x50884,
2577 		0x50890, 0x508cc,
2578 		0x50b00, 0x50b84,
2579 		0x50c00, 0x50c00,
2580 		0x51000, 0x51020,
2581 		0x51028, 0x510b0,
2582 		0x51300, 0x51324,
2583 	};
2584 
2585 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2586 	const unsigned int *reg_ranges;
2587 	int reg_ranges_size, range;
2588 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2589 
2590 	/* Select the right set of register ranges to dump depending on the
2591 	 * adapter chip type.
2592 	 */
2593 	switch (chip_version) {
2594 	case CHELSIO_T4:
2595 		reg_ranges = t4_reg_ranges;
2596 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2597 		break;
2598 
2599 	case CHELSIO_T5:
2600 		reg_ranges = t5_reg_ranges;
2601 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2602 		break;
2603 
2604 	case CHELSIO_T6:
2605 		reg_ranges = t6_reg_ranges;
2606 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2607 		break;
2608 
2609 	default:
2610 		dev_err(adap->pdev_dev,
2611 			"Unsupported chip version %d\n", chip_version);
2612 		return;
2613 	}
2614 
2615 	/* Clear the register buffer and insert the appropriate register
2616 	 * values selected by the above register ranges.
2617 	 */
2618 	memset(buf, 0, buf_size);
2619 	for (range = 0; range < reg_ranges_size; range += 2) {
2620 		unsigned int reg = reg_ranges[range];
2621 		unsigned int last_reg = reg_ranges[range + 1];
2622 		u32 *bufp = (u32 *)((char *)buf + reg);
2623 
2624 		/* Iterate across the register range filling in the register
2625 		 * buffer but don't write past the end of the register buffer.
2626 		 */
2627 		while (reg <= last_reg && bufp < buf_end) {
2628 			*bufp++ = t4_read_reg(adap, reg);
2629 			reg += sizeof(u32);
2630 		}
2631 	}
2632 }
2633 
2634 #define EEPROM_STAT_ADDR   0x7bfc
2635 #define VPD_SIZE           0x800
2636 #define VPD_BASE           0x400
2637 #define VPD_BASE_OLD       0
2638 #define VPD_LEN            1024
2639 #define CHELSIO_VPD_UNIQUE_ID 0x82
2640 
2641 /**
2642  *	t4_seeprom_wp - enable/disable EEPROM write protection
2643  *	@adapter: the adapter
2644  *	@enable: whether to enable or disable write protection
2645  *
2646  *	Enables or disables write protection on the serial EEPROM.
2647  */
2648 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2649 {
2650 	unsigned int v = enable ? 0xc : 0;
2651 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2652 	return ret < 0 ? ret : 0;
2653 }
2654 
2655 /**
2656  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2657  *	@adapter: adapter to read
2658  *	@p: where to store the parameters
2659  *
2660  *	Reads card parameters stored in VPD EEPROM.
2661  */
2662 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2663 {
2664 	int i, ret = 0, addr;
2665 	int ec, sn, pn, na;
2666 	u8 *vpd, csum;
2667 	unsigned int vpdr_len, kw_offset, id_len;
2668 
2669 	vpd = vmalloc(VPD_LEN);
2670 	if (!vpd)
2671 		return -ENOMEM;
2672 
2673 	/* We have two VPD data structures stored in the adapter VPD area.
2674 	 * By default, Linux calculates the size of the VPD area by traversing
2675 	 * the first VPD area at offset 0x0, so we need to tell the OS what
2676 	 * our real VPD size is.
2677 	 */
2678 	ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2679 	if (ret < 0)
2680 		goto out;
2681 
2682 	/* Card information normally starts at VPD_BASE but early cards had
2683 	 * it at 0.
2684 	 */
2685 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2686 	if (ret < 0)
2687 		goto out;
2688 
2689 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2690 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2691 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2692 	 * is expected to automatically put this entry at the
2693 	 * beginning of the VPD.
2694 	 */
2695 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2696 
2697 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2698 	if (ret < 0)
2699 		goto out;
2700 
2701 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2702 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2703 		ret = -EINVAL;
2704 		goto out;
2705 	}
2706 
2707 	id_len = pci_vpd_lrdt_size(vpd);
2708 	if (id_len > ID_LEN)
2709 		id_len = ID_LEN;
2710 
2711 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2712 	if (i < 0) {
2713 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2714 		ret = -EINVAL;
2715 		goto out;
2716 	}
2717 
2718 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2719 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2720 	if (vpdr_len + kw_offset > VPD_LEN) {
2721 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2722 		ret = -EINVAL;
2723 		goto out;
2724 	}
2725 
2726 #define FIND_VPD_KW(var, name) do { \
2727 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2728 	if (var < 0) { \
2729 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2730 		ret = -EINVAL; \
2731 		goto out; \
2732 	} \
2733 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2734 } while (0)
2735 
2736 	FIND_VPD_KW(i, "RV");
2737 	for (csum = 0; i >= 0; i--)
2738 		csum += vpd[i];
2739 
2740 	if (csum) {
2741 		dev_err(adapter->pdev_dev,
2742 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2743 		ret = -EINVAL;
2744 		goto out;
2745 	}
2746 
2747 	FIND_VPD_KW(ec, "EC");
2748 	FIND_VPD_KW(sn, "SN");
2749 	FIND_VPD_KW(pn, "PN");
2750 	FIND_VPD_KW(na, "NA");
2751 #undef FIND_VPD_KW
2752 
2753 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2754 	strim(p->id);
2755 	memcpy(p->ec, vpd + ec, EC_LEN);
2756 	strim(p->ec);
2757 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2758 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2759 	strim(p->sn);
2760 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2761 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2762 	strim(p->pn);
2763 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2764 	strim((char *)p->na);
2765 
2766 out:
2767 	vfree(vpd);
2768 	return ret < 0 ? ret : 0;
2769 }
2770 
2771 /**
2772  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2773  *	@adapter: adapter to read
2774  *	@p: where to store the parameters
2775  *
2776  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2777  *	Clock.  This can only be called after a connection to the firmware
2778  *	is established.
2779  */
2780 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2781 {
2782 	u32 cclk_param, cclk_val;
2783 	int ret;
2784 
2785 	/* Grab the raw VPD parameters.
2786 	 */
2787 	ret = t4_get_raw_vpd_params(adapter, p);
2788 	if (ret)
2789 		return ret;
2790 
2791 	/* Ask firmware for the Core Clock since it knows how to translate the
2792 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2793 	 */
2794 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2795 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2796 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2797 			      1, &cclk_param, &cclk_val);
2798 
2799 	if (ret)
2800 		return ret;
2801 	p->cclk = cclk_val;
2802 
2803 	return 0;
2804 }
2805 
2806 /* serial flash and firmware constants */
2807 enum {
2808 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2809 
2810 	/* flash command opcodes */
2811 	SF_PROG_PAGE    = 2,          /* program page */
2812 	SF_WR_DISABLE   = 4,          /* disable writes */
2813 	SF_RD_STATUS    = 5,          /* read status register */
2814 	SF_WR_ENABLE    = 6,          /* enable writes */
2815 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2816 	SF_RD_ID        = 0x9f,       /* read ID */
2817 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2818 
2819 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2820 };
2821 
2822 /**
2823  *	sf1_read - read data from the serial flash
2824  *	@adapter: the adapter
2825  *	@byte_cnt: number of bytes to read
2826  *	@cont: whether another operation will be chained
2827  *	@lock: whether to lock SF for PL access only
2828  *	@valp: where to store the read data
2829  *
2830  *	Reads up to 4 bytes of data from the serial flash.  The location of
2831  *	the read needs to be specified prior to calling this by issuing the
2832  *	appropriate commands to the serial flash.
2833  */
2834 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2835 		    int lock, u32 *valp)
2836 {
2837 	int ret;
2838 
2839 	if (!byte_cnt || byte_cnt > 4)
2840 		return -EINVAL;
2841 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2842 		return -EBUSY;
2843 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2844 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2845 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2846 	if (!ret)
2847 		*valp = t4_read_reg(adapter, SF_DATA_A);
2848 	return ret;
2849 }
2850 
2851 /**
2852  *	sf1_write - write data to the serial flash
2853  *	@adapter: the adapter
2854  *	@byte_cnt: number of bytes to write
2855  *	@cont: whether another operation will be chained
2856  *	@lock: whether to lock SF for PL access only
2857  *	@val: value to write
2858  *
2859  *	Writes up to 4 bytes of data to the serial flash.  The location of
2860  *	the write needs to be specified prior to calling this by issuing the
2861  *	appropriate commands to the serial flash.
2862  */
2863 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2864 		     int lock, u32 val)
2865 {
2866 	if (!byte_cnt || byte_cnt > 4)
2867 		return -EINVAL;
2868 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2869 		return -EBUSY;
2870 	t4_write_reg(adapter, SF_DATA_A, val);
2871 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2872 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2873 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2874 }
2875 
2876 /**
2877  *	flash_wait_op - wait for a flash operation to complete
2878  *	@adapter: the adapter
2879  *	@attempts: max number of polls of the status register
2880  *	@delay: delay between polls in ms
2881  *
2882  *	Wait for a flash operation to complete by polling the status register.
2883  */
2884 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2885 {
2886 	int ret;
2887 	u32 status;
2888 
2889 	while (1) {
2890 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2891 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2892 			return ret;
2893 		if (!(status & 1))
2894 			return 0;
2895 		if (--attempts == 0)
2896 			return -EAGAIN;
2897 		if (delay)
2898 			msleep(delay);
2899 	}
2900 }
2901 
2902 /**
2903  *	t4_read_flash - read words from serial flash
2904  *	@adapter: the adapter
2905  *	@addr: the start address for the read
2906  *	@nwords: how many 32-bit words to read
2907  *	@data: where to store the read data
2908  *	@byte_oriented: whether to store data as bytes or as words
2909  *
2910  *	Read the specified number of 32-bit words from the serial flash.
2911  *	If @byte_oriented is set the read data is stored as a byte array
2912  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2913  *	natural endianness.
2914  */
2915 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2916 		  unsigned int nwords, u32 *data, int byte_oriented)
2917 {
2918 	int ret;
2919 
2920 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2921 		return -EINVAL;
2922 
2923 	addr = swab32(addr) | SF_RD_DATA_FAST;
2924 
2925 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2926 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2927 		return ret;
2928 
2929 	for ( ; nwords; nwords--, data++) {
2930 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2931 		if (nwords == 1)
2932 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2933 		if (ret)
2934 			return ret;
2935 		if (byte_oriented)
2936 			*data = (__force __u32)(cpu_to_be32(*data));
2937 	}
2938 	return 0;
2939 }
2940 
2941 /**
2942  *	t4_write_flash - write up to a page of data to the serial flash
2943  *	@adapter: the adapter
2944  *	@addr: the start address to write
2945  *	@n: length of data to write in bytes
2946  *	@data: the data to write
2947  *
2948  *	Writes up to a page of data (256 bytes) to the serial flash starting
2949  *	at the given address.  All the data must be written to the same page.
2950  */
2951 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2952 			  unsigned int n, const u8 *data)
2953 {
2954 	int ret;
2955 	u32 buf[64];
2956 	unsigned int i, c, left, val, offset = addr & 0xff;
2957 
2958 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2959 		return -EINVAL;
2960 
2961 	val = swab32(addr) | SF_PROG_PAGE;
2962 
2963 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2964 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2965 		goto unlock;
2966 
2967 	for (left = n; left; left -= c) {
2968 		c = min(left, 4U);
2969 		for (val = 0, i = 0; i < c; ++i)
2970 			val = (val << 8) + *data++;
2971 
2972 		ret = sf1_write(adapter, c, c != left, 1, val);
2973 		if (ret)
2974 			goto unlock;
2975 	}
2976 	ret = flash_wait_op(adapter, 8, 1);
2977 	if (ret)
2978 		goto unlock;
2979 
2980 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2981 
2982 	/* Read the page to verify the write succeeded */
2983 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2984 	if (ret)
2985 		return ret;
2986 
2987 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
2988 		dev_err(adapter->pdev_dev,
2989 			"failed to correctly write the flash page at %#x\n",
2990 			addr);
2991 		return -EIO;
2992 	}
2993 	return 0;
2994 
2995 unlock:
2996 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2997 	return ret;
2998 }
2999 
3000 /**
3001  *	t4_get_fw_version - read the firmware version
3002  *	@adapter: the adapter
3003  *	@vers: where to place the version
3004  *
3005  *	Reads the FW version from flash.
3006  */
3007 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3008 {
3009 	return t4_read_flash(adapter, FLASH_FW_START +
3010 			     offsetof(struct fw_hdr, fw_ver), 1,
3011 			     vers, 0);
3012 }
3013 
3014 /**
3015  *	t4_get_bs_version - read the firmware bootstrap version
3016  *	@adapter: the adapter
3017  *	@vers: where to place the version
3018  *
3019  *	Reads the FW Bootstrap version from flash.
3020  */
3021 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3022 {
3023 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3024 			     offsetof(struct fw_hdr, fw_ver), 1,
3025 			     vers, 0);
3026 }
3027 
3028 /**
3029  *	t4_get_tp_version - read the TP microcode version
3030  *	@adapter: the adapter
3031  *	@vers: where to place the version
3032  *
3033  *	Reads the TP microcode version from flash.
3034  */
3035 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3036 {
3037 	return t4_read_flash(adapter, FLASH_FW_START +
3038 			     offsetof(struct fw_hdr, tp_microcode_ver),
3039 			     1, vers, 0);
3040 }
3041 
3042 /**
3043  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3044  *	@adapter: the adapter
3045  *	@vers: where to place the version
3046  *
3047  *	Reads the Expansion ROM header from FLASH and returns the version
3048  *	number (if present) through the @vers return value pointer.  We return
3049  *	this in the Firmware Version Format since it's convenient.  Return
3050  *	0 on success, -ENOENT if no Expansion ROM is present.
3051  */
3052 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3053 {
3054 	struct exprom_header {
3055 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3056 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3057 	} *hdr;
3058 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3059 					   sizeof(u32))];
3060 	int ret;
3061 
3062 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3063 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3064 			    0);
3065 	if (ret)
3066 		return ret;
3067 
3068 	hdr = (struct exprom_header *)exprom_header_buf;
3069 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3070 		return -ENOENT;
3071 
3072 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3073 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3074 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3075 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3076 	return 0;
3077 }
3078 
3079 /**
3080  *      t4_get_vpd_version - return the VPD version
3081  *      @adapter: the adapter
3082  *      @vers: where to place the version
3083  *
3084  *      Reads the VPD via the Firmware interface (thus this can only be called
3085  *      once we're ready to issue Firmware commands).  The format of the
3086  *      VPD version is adapter specific.  Returns 0 on success, an error on
3087  *      failure.
3088  *
3089  *      Note that early versions of the Firmware didn't include the ability
3090  *      to retrieve the VPD version, so we zero-out the return-value parameter
3091  *      in that case to avoid leaving it with garbage in it.
3092  *
3093  *      Also note that the Firmware will return its cached copy of the VPD
3094  *      Revision ID, not the actual Revision ID as written in the Serial
3095  *      EEPROM.  This is only an issue if a new VPD has been written and the
3096  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3097  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3098  *      if the Host Driver will be performing a full adapter initialization.
3099  */
3100 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3101 {
3102 	u32 vpdrev_param;
3103 	int ret;
3104 
3105 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3106 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3107 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3108 			      1, &vpdrev_param, vers);
3109 	if (ret)
3110 		*vers = 0;
3111 	return ret;
3112 }
3113 
3114 /**
3115  *      t4_get_scfg_version - return the Serial Configuration version
3116  *      @adapter: the adapter
3117  *      @vers: where to place the version
3118  *
3119  *      Reads the Serial Configuration Version via the Firmware interface
3120  *      (thus this can only be called once we're ready to issue Firmware
3121  *      commands).  The format of the Serial Configuration version is
3122  *      adapter specific.  Returns 0 on success, an error on failure.
3123  *
3124  *      Note that early versions of the Firmware didn't include the ability
3125  *      to retrieve the Serial Configuration version, so we zero-out the
3126  *      return-value parameter in that case to avoid leaving it with
3127  *      garbage in it.
3128  *
3129  *      Also note that the Firmware will return its cached copy of the Serial
3130  *      Initialization Revision ID, not the actual Revision ID as written in
3131  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3132  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3133  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3134  *      been issued if the Host Driver will be performing a full adapter
3135  *      initialization.
3136  */
3137 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3138 {
3139 	u32 scfgrev_param;
3140 	int ret;
3141 
3142 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3143 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3144 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3145 			      1, &scfgrev_param, vers);
3146 	if (ret)
3147 		*vers = 0;
3148 	return ret;
3149 }
3150 
3151 /**
3152  *      t4_get_version_info - extract various chip/firmware version information
3153  *      @adapter: the adapter
3154  *
3155  *      Reads various chip/firmware version numbers and stores them into the
3156  *      adapter Adapter Parameters structure.  If any of the efforts fails
3157  *      the first failure will be returned, but all of the version numbers
3158  *      will be read.
3159  */
3160 int t4_get_version_info(struct adapter *adapter)
3161 {
3162 	int ret = 0;
3163 
3164 	#define FIRST_RET(__getvinfo) \
3165 	do { \
3166 		int __ret = __getvinfo; \
3167 		if (__ret && !ret) \
3168 			ret = __ret; \
3169 	} while (0)
3170 
3171 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3172 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3173 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3174 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3175 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3176 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3177 
3178 	#undef FIRST_RET
3179 	return ret;
3180 }
3181 
3182 /**
3183  *      t4_dump_version_info - dump all of the adapter configuration IDs
3184  *      @adapter: the adapter
3185  *
3186  *      Dumps all of the various bits of adapter configuration version/revision
3187  *      IDs information.  This is typically called at some point after
3188  *      t4_get_version_info() has been called.
3189  */
3190 void t4_dump_version_info(struct adapter *adapter)
3191 {
3192 	/* Device information */
3193 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3194 		 adapter->params.vpd.id,
3195 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3196 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3197 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3198 
3199 	/* Firmware Version */
3200 	if (!adapter->params.fw_vers)
3201 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3202 	else
3203 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3204 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3205 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3206 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3207 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3208 
3209 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3210 	 * Firmware, so dev_info() is more appropriate here.)
3211 	 */
3212 	if (!adapter->params.bs_vers)
3213 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3214 	else
3215 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3216 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3217 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3218 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3219 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3220 
3221 	/* TP Microcode Version */
3222 	if (!adapter->params.tp_vers)
3223 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3224 	else
3225 		dev_info(adapter->pdev_dev,
3226 			 "TP Microcode version: %u.%u.%u.%u\n",
3227 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3228 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3229 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3230 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3231 
3232 	/* Expansion ROM version */
3233 	if (!adapter->params.er_vers)
3234 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3235 	else
3236 		dev_info(adapter->pdev_dev,
3237 			 "Expansion ROM version: %u.%u.%u.%u\n",
3238 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3239 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3240 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3241 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3242 
3243 	/* Serial Configuration version */
3244 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3245 		 adapter->params.scfg_vers);
3246 
3247 	/* VPD Version */
3248 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3249 		 adapter->params.vpd_vers);
3250 }
3251 
3252 /**
3253  *	t4_check_fw_version - check if the FW is supported with this driver
3254  *	@adap: the adapter
3255  *
3256  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3257  *	if there's exact match, a negative error if the version could not be
3258  *	read or there's a major version mismatch
3259  */
3260 int t4_check_fw_version(struct adapter *adap)
3261 {
3262 	int i, ret, major, minor, micro;
3263 	int exp_major, exp_minor, exp_micro;
3264 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3265 
3266 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3267 	/* Try multiple times before returning error */
3268 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3269 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3270 
3271 	if (ret)
3272 		return ret;
3273 
3274 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3275 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3276 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3277 
3278 	switch (chip_version) {
3279 	case CHELSIO_T4:
3280 		exp_major = T4FW_MIN_VERSION_MAJOR;
3281 		exp_minor = T4FW_MIN_VERSION_MINOR;
3282 		exp_micro = T4FW_MIN_VERSION_MICRO;
3283 		break;
3284 	case CHELSIO_T5:
3285 		exp_major = T5FW_MIN_VERSION_MAJOR;
3286 		exp_minor = T5FW_MIN_VERSION_MINOR;
3287 		exp_micro = T5FW_MIN_VERSION_MICRO;
3288 		break;
3289 	case CHELSIO_T6:
3290 		exp_major = T6FW_MIN_VERSION_MAJOR;
3291 		exp_minor = T6FW_MIN_VERSION_MINOR;
3292 		exp_micro = T6FW_MIN_VERSION_MICRO;
3293 		break;
3294 	default:
3295 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3296 			adap->chip);
3297 		return -EINVAL;
3298 	}
3299 
3300 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3301 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3302 		dev_err(adap->pdev_dev,
3303 			"Card has firmware version %u.%u.%u, minimum "
3304 			"supported firmware is %u.%u.%u.\n", major, minor,
3305 			micro, exp_major, exp_minor, exp_micro);
3306 		return -EFAULT;
3307 	}
3308 	return 0;
3309 }
3310 
3311 /* Is the given firmware API compatible with the one the driver was compiled
3312  * with?
3313  */
3314 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3315 {
3316 
3317 	/* short circuit if it's the exact same firmware version */
3318 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3319 		return 1;
3320 
3321 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3322 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3323 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3324 		return 1;
3325 #undef SAME_INTF
3326 
3327 	return 0;
3328 }
3329 
3330 /* The firmware in the filesystem is usable, but should it be installed?
3331  * This routine explains itself in detail if it indicates the filesystem
3332  * firmware should be installed.
3333  */
3334 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3335 				int k, int c)
3336 {
3337 	const char *reason;
3338 
3339 	if (!card_fw_usable) {
3340 		reason = "incompatible or unusable";
3341 		goto install;
3342 	}
3343 
3344 	if (k > c) {
3345 		reason = "older than the version supported with this driver";
3346 		goto install;
3347 	}
3348 
3349 	return 0;
3350 
3351 install:
3352 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3353 		"installing firmware %u.%u.%u.%u on card.\n",
3354 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3355 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3356 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3357 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3358 
3359 	return 1;
3360 }
3361 
3362 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3363 	       const u8 *fw_data, unsigned int fw_size,
3364 	       struct fw_hdr *card_fw, enum dev_state state,
3365 	       int *reset)
3366 {
3367 	int ret, card_fw_usable, fs_fw_usable;
3368 	const struct fw_hdr *fs_fw;
3369 	const struct fw_hdr *drv_fw;
3370 
3371 	drv_fw = &fw_info->fw_hdr;
3372 
3373 	/* Read the header of the firmware on the card */
3374 	ret = -t4_read_flash(adap, FLASH_FW_START,
3375 			    sizeof(*card_fw) / sizeof(uint32_t),
3376 			    (uint32_t *)card_fw, 1);
3377 	if (ret == 0) {
3378 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3379 	} else {
3380 		dev_err(adap->pdev_dev,
3381 			"Unable to read card's firmware header: %d\n", ret);
3382 		card_fw_usable = 0;
3383 	}
3384 
3385 	if (fw_data != NULL) {
3386 		fs_fw = (const void *)fw_data;
3387 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3388 	} else {
3389 		fs_fw = NULL;
3390 		fs_fw_usable = 0;
3391 	}
3392 
3393 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3394 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3395 		/* Common case: the firmware on the card is an exact match and
3396 		 * the filesystem one is an exact match too, or the filesystem
3397 		 * one is absent/incompatible.
3398 		 */
3399 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3400 		   should_install_fs_fw(adap, card_fw_usable,
3401 					be32_to_cpu(fs_fw->fw_ver),
3402 					be32_to_cpu(card_fw->fw_ver))) {
3403 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3404 				     fw_size, 0);
3405 		if (ret != 0) {
3406 			dev_err(adap->pdev_dev,
3407 				"failed to install firmware: %d\n", ret);
3408 			goto bye;
3409 		}
3410 
3411 		/* Installed successfully, update the cached header too. */
3412 		*card_fw = *fs_fw;
3413 		card_fw_usable = 1;
3414 		*reset = 0;	/* already reset as part of load_fw */
3415 	}
3416 
3417 	if (!card_fw_usable) {
3418 		uint32_t d, c, k;
3419 
3420 		d = be32_to_cpu(drv_fw->fw_ver);
3421 		c = be32_to_cpu(card_fw->fw_ver);
3422 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3423 
3424 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3425 			"chip state %d, "
3426 			"driver compiled with %d.%d.%d.%d, "
3427 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3428 			state,
3429 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3430 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3431 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3432 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3433 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3434 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3435 		ret = EINVAL;
3436 		goto bye;
3437 	}
3438 
3439 	/* We're using whatever's on the card and it's known to be good. */
3440 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3441 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3442 
3443 bye:
3444 	return ret;
3445 }
3446 
3447 /**
3448  *	t4_flash_erase_sectors - erase a range of flash sectors
3449  *	@adapter: the adapter
3450  *	@start: the first sector to erase
3451  *	@end: the last sector to erase
3452  *
3453  *	Erases the sectors in the given inclusive range.
3454  */
3455 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3456 {
3457 	int ret = 0;
3458 
3459 	if (end >= adapter->params.sf_nsec)
3460 		return -EINVAL;
3461 
3462 	while (start <= end) {
3463 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3464 		    (ret = sf1_write(adapter, 4, 0, 1,
3465 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3466 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3467 			dev_err(adapter->pdev_dev,
3468 				"erase of flash sector %d failed, error %d\n",
3469 				start, ret);
3470 			break;
3471 		}
3472 		start++;
3473 	}
3474 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3475 	return ret;
3476 }
3477 
3478 /**
3479  *	t4_flash_cfg_addr - return the address of the flash configuration file
3480  *	@adapter: the adapter
3481  *
3482  *	Return the address within the flash where the Firmware Configuration
3483  *	File is stored.
3484  */
3485 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3486 {
3487 	if (adapter->params.sf_size == 0x100000)
3488 		return FLASH_FPGA_CFG_START;
3489 	else
3490 		return FLASH_CFG_START;
3491 }
3492 
3493 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3494  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3495  * and emit an error message for mismatched firmware to save our caller the
3496  * effort ...
3497  */
3498 static bool t4_fw_matches_chip(const struct adapter *adap,
3499 			       const struct fw_hdr *hdr)
3500 {
3501 	/* The expression below will return FALSE for any unsupported adapter
3502 	 * which will keep us "honest" in the future ...
3503 	 */
3504 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3505 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3506 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3507 		return true;
3508 
3509 	dev_err(adap->pdev_dev,
3510 		"FW image (%d) is not suitable for this adapter (%d)\n",
3511 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3512 	return false;
3513 }
3514 
3515 /**
3516  *	t4_load_fw - download firmware
3517  *	@adap: the adapter
3518  *	@fw_data: the firmware image to write
3519  *	@size: image size
3520  *
3521  *	Write the supplied firmware image to the card's serial flash.
3522  */
3523 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3524 {
3525 	u32 csum;
3526 	int ret, addr;
3527 	unsigned int i;
3528 	u8 first_page[SF_PAGE_SIZE];
3529 	const __be32 *p = (const __be32 *)fw_data;
3530 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3531 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3532 	unsigned int fw_img_start = adap->params.sf_fw_start;
3533 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3534 
3535 	if (!size) {
3536 		dev_err(adap->pdev_dev, "FW image has no data\n");
3537 		return -EINVAL;
3538 	}
3539 	if (size & 511) {
3540 		dev_err(adap->pdev_dev,
3541 			"FW image size not multiple of 512 bytes\n");
3542 		return -EINVAL;
3543 	}
3544 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3545 		dev_err(adap->pdev_dev,
3546 			"FW image size differs from size in FW header\n");
3547 		return -EINVAL;
3548 	}
3549 	if (size > FW_MAX_SIZE) {
3550 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3551 			FW_MAX_SIZE);
3552 		return -EFBIG;
3553 	}
3554 	if (!t4_fw_matches_chip(adap, hdr))
3555 		return -EINVAL;
3556 
3557 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3558 		csum += be32_to_cpu(p[i]);
3559 
3560 	if (csum != 0xffffffff) {
3561 		dev_err(adap->pdev_dev,
3562 			"corrupted firmware image, checksum %#x\n", csum);
3563 		return -EINVAL;
3564 	}
3565 
3566 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3567 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3568 	if (ret)
3569 		goto out;
3570 
3571 	/*
3572 	 * We write the correct version at the end so the driver can see a bad
3573 	 * version if the FW write fails.  Start by writing a copy of the
3574 	 * first page with a bad version.
3575 	 */
3576 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3577 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3578 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3579 	if (ret)
3580 		goto out;
3581 
3582 	addr = fw_img_start;
3583 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3584 		addr += SF_PAGE_SIZE;
3585 		fw_data += SF_PAGE_SIZE;
3586 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3587 		if (ret)
3588 			goto out;
3589 	}
3590 
3591 	ret = t4_write_flash(adap,
3592 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3593 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3594 out:
3595 	if (ret)
3596 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3597 			ret);
3598 	else
3599 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3600 	return ret;
3601 }
3602 
3603 /**
3604  *	t4_phy_fw_ver - return current PHY firmware version
3605  *	@adap: the adapter
3606  *	@phy_fw_ver: return value buffer for PHY firmware version
3607  *
3608  *	Returns the current version of external PHY firmware on the
3609  *	adapter.
3610  */
3611 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3612 {
3613 	u32 param, val;
3614 	int ret;
3615 
3616 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3617 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3618 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3619 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3620 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3621 			      &param, &val);
3622 	if (ret < 0)
3623 		return ret;
3624 	*phy_fw_ver = val;
3625 	return 0;
3626 }
3627 
3628 /**
3629  *	t4_load_phy_fw - download port PHY firmware
3630  *	@adap: the adapter
3631  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3632  *	@win_lock: the lock to use to guard the memory copy
3633  *	@phy_fw_version: function to check PHY firmware versions
3634  *	@phy_fw_data: the PHY firmware image to write
3635  *	@phy_fw_size: image size
3636  *
3637  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3638  *	@phy_fw_version is supplied, then it will be used to determine if
3639  *	it's necessary to perform the transfer by comparing the version
3640  *	of any existing adapter PHY firmware with that of the passed in
3641  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3642  *	around the call to t4_memory_rw() which transfers the PHY firmware
3643  *	to the adapter.
3644  *
3645  *	A negative error number will be returned if an error occurs.  If
3646  *	version number support is available and there's no need to upgrade
3647  *	the firmware, 0 will be returned.  If firmware is successfully
3648  *	transferred to the adapter, 1 will be retured.
3649  *
3650  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3651  *	a result, a RESET of the adapter would cause that RAM to lose its
3652  *	contents.  Thus, loading PHY firmware on such adapters must happen
3653  *	after any FW_RESET_CMDs ...
3654  */
3655 int t4_load_phy_fw(struct adapter *adap,
3656 		   int win, spinlock_t *win_lock,
3657 		   int (*phy_fw_version)(const u8 *, size_t),
3658 		   const u8 *phy_fw_data, size_t phy_fw_size)
3659 {
3660 	unsigned long mtype = 0, maddr = 0;
3661 	u32 param, val;
3662 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3663 	int ret;
3664 
3665 	/* If we have version number support, then check to see if the adapter
3666 	 * already has up-to-date PHY firmware loaded.
3667 	 */
3668 	 if (phy_fw_version) {
3669 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3670 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3671 		if (ret < 0)
3672 			return ret;
3673 
3674 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3675 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3676 				"version %#x\n", cur_phy_fw_ver);
3677 			return 0;
3678 		}
3679 	}
3680 
3681 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3682 	 * The size of the file requires a special version of the READ coommand
3683 	 * which will pass the file size via the values field in PARAMS_CMD and
3684 	 * retrieve the return value from firmware and place it in the same
3685 	 * buffer values
3686 	 */
3687 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3688 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3689 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3690 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3691 	val = phy_fw_size;
3692 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3693 				 &param, &val, 1, true);
3694 	if (ret < 0)
3695 		return ret;
3696 	mtype = val >> 8;
3697 	maddr = (val & 0xff) << 16;
3698 
3699 	/* Copy the supplied PHY Firmware image to the adapter memory location
3700 	 * allocated by the adapter firmware.
3701 	 */
3702 	if (win_lock)
3703 		spin_lock_bh(win_lock);
3704 	ret = t4_memory_rw(adap, win, mtype, maddr,
3705 			   phy_fw_size, (__be32 *)phy_fw_data,
3706 			   T4_MEMORY_WRITE);
3707 	if (win_lock)
3708 		spin_unlock_bh(win_lock);
3709 	if (ret)
3710 		return ret;
3711 
3712 	/* Tell the firmware that the PHY firmware image has been written to
3713 	 * RAM and it can now start copying it over to the PHYs.  The chip
3714 	 * firmware will RESET the affected PHYs as part of this operation
3715 	 * leaving them running the new PHY firmware image.
3716 	 */
3717 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3718 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3719 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3720 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3721 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3722 				    &param, &val, 30000);
3723 
3724 	/* If we have version number support, then check to see that the new
3725 	 * firmware got loaded properly.
3726 	 */
3727 	if (phy_fw_version) {
3728 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3729 		if (ret < 0)
3730 			return ret;
3731 
3732 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3733 			CH_WARN(adap, "PHY Firmware did not update: "
3734 				"version on adapter %#x, "
3735 				"version flashed %#x\n",
3736 				cur_phy_fw_ver, new_phy_fw_vers);
3737 			return -ENXIO;
3738 		}
3739 	}
3740 
3741 	return 1;
3742 }
3743 
3744 /**
3745  *	t4_fwcache - firmware cache operation
3746  *	@adap: the adapter
3747  *	@op  : the operation (flush or flush and invalidate)
3748  */
3749 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3750 {
3751 	struct fw_params_cmd c;
3752 
3753 	memset(&c, 0, sizeof(c));
3754 	c.op_to_vfn =
3755 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3756 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3757 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3758 			    FW_PARAMS_CMD_VFN_V(0));
3759 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3760 	c.param[0].mnem =
3761 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3762 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3763 	c.param[0].val = (__force __be32)op;
3764 
3765 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3766 }
3767 
3768 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3769 			unsigned int *pif_req_wrptr,
3770 			unsigned int *pif_rsp_wrptr)
3771 {
3772 	int i, j;
3773 	u32 cfg, val, req, rsp;
3774 
3775 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3776 	if (cfg & LADBGEN_F)
3777 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3778 
3779 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3780 	req = POLADBGWRPTR_G(val);
3781 	rsp = PILADBGWRPTR_G(val);
3782 	if (pif_req_wrptr)
3783 		*pif_req_wrptr = req;
3784 	if (pif_rsp_wrptr)
3785 		*pif_rsp_wrptr = rsp;
3786 
3787 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3788 		for (j = 0; j < 6; j++) {
3789 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3790 				     PILADBGRDPTR_V(rsp));
3791 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3792 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3793 			req++;
3794 			rsp++;
3795 		}
3796 		req = (req + 2) & POLADBGRDPTR_M;
3797 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3798 	}
3799 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3800 }
3801 
3802 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3803 {
3804 	u32 cfg;
3805 	int i, j, idx;
3806 
3807 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3808 	if (cfg & LADBGEN_F)
3809 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3810 
3811 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3812 		for (j = 0; j < 5; j++) {
3813 			idx = 8 * i + j;
3814 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3815 				     PILADBGRDPTR_V(idx));
3816 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3817 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3818 		}
3819 	}
3820 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3821 }
3822 
3823 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3824 {
3825 	unsigned int i, j;
3826 
3827 	for (i = 0; i < 8; i++) {
3828 		u32 *p = la_buf + i;
3829 
3830 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3831 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3832 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3833 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3834 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3835 	}
3836 }
3837 
3838 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3839 		     FW_PORT_CAP32_ANEG)
3840 
3841 /**
3842  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3843  *	@caps16: a 16-bit Port Capabilities value
3844  *
3845  *	Returns the equivalent 32-bit Port Capabilities value.
3846  */
3847 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3848 {
3849 	fw_port_cap32_t caps32 = 0;
3850 
3851 	#define CAP16_TO_CAP32(__cap) \
3852 		do { \
3853 			if (caps16 & FW_PORT_CAP_##__cap) \
3854 				caps32 |= FW_PORT_CAP32_##__cap; \
3855 		} while (0)
3856 
3857 	CAP16_TO_CAP32(SPEED_100M);
3858 	CAP16_TO_CAP32(SPEED_1G);
3859 	CAP16_TO_CAP32(SPEED_25G);
3860 	CAP16_TO_CAP32(SPEED_10G);
3861 	CAP16_TO_CAP32(SPEED_40G);
3862 	CAP16_TO_CAP32(SPEED_100G);
3863 	CAP16_TO_CAP32(FC_RX);
3864 	CAP16_TO_CAP32(FC_TX);
3865 	CAP16_TO_CAP32(ANEG);
3866 	CAP16_TO_CAP32(MDIX);
3867 	CAP16_TO_CAP32(MDIAUTO);
3868 	CAP16_TO_CAP32(FEC_RS);
3869 	CAP16_TO_CAP32(FEC_BASER_RS);
3870 	CAP16_TO_CAP32(802_3_PAUSE);
3871 	CAP16_TO_CAP32(802_3_ASM_DIR);
3872 
3873 	#undef CAP16_TO_CAP32
3874 
3875 	return caps32;
3876 }
3877 
3878 /**
3879  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3880  *	@caps32: a 32-bit Port Capabilities value
3881  *
3882  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3883  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3884  *	Port Capabilities and some fields/values may not make it.
3885  */
3886 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3887 {
3888 	fw_port_cap16_t caps16 = 0;
3889 
3890 	#define CAP32_TO_CAP16(__cap) \
3891 		do { \
3892 			if (caps32 & FW_PORT_CAP32_##__cap) \
3893 				caps16 |= FW_PORT_CAP_##__cap; \
3894 		} while (0)
3895 
3896 	CAP32_TO_CAP16(SPEED_100M);
3897 	CAP32_TO_CAP16(SPEED_1G);
3898 	CAP32_TO_CAP16(SPEED_10G);
3899 	CAP32_TO_CAP16(SPEED_25G);
3900 	CAP32_TO_CAP16(SPEED_40G);
3901 	CAP32_TO_CAP16(SPEED_100G);
3902 	CAP32_TO_CAP16(FC_RX);
3903 	CAP32_TO_CAP16(FC_TX);
3904 	CAP32_TO_CAP16(802_3_PAUSE);
3905 	CAP32_TO_CAP16(802_3_ASM_DIR);
3906 	CAP32_TO_CAP16(ANEG);
3907 	CAP32_TO_CAP16(MDIX);
3908 	CAP32_TO_CAP16(MDIAUTO);
3909 	CAP32_TO_CAP16(FEC_RS);
3910 	CAP32_TO_CAP16(FEC_BASER_RS);
3911 
3912 	#undef CAP32_TO_CAP16
3913 
3914 	return caps16;
3915 }
3916 
3917 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3918 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3919 {
3920 	enum cc_pause cc_pause = 0;
3921 
3922 	if (fw_pause & FW_PORT_CAP32_FC_RX)
3923 		cc_pause |= PAUSE_RX;
3924 	if (fw_pause & FW_PORT_CAP32_FC_TX)
3925 		cc_pause |= PAUSE_TX;
3926 
3927 	return cc_pause;
3928 }
3929 
3930 /* Translate Common Code Pause specification into Firmware Port Capabilities */
3931 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
3932 {
3933 	fw_port_cap32_t fw_pause = 0;
3934 
3935 	if (cc_pause & PAUSE_RX)
3936 		fw_pause |= FW_PORT_CAP32_FC_RX;
3937 	if (cc_pause & PAUSE_TX)
3938 		fw_pause |= FW_PORT_CAP32_FC_TX;
3939 
3940 	return fw_pause;
3941 }
3942 
3943 /* Translate Firmware Forward Error Correction specification to Common Code */
3944 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
3945 {
3946 	enum cc_fec cc_fec = 0;
3947 
3948 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
3949 		cc_fec |= FEC_RS;
3950 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
3951 		cc_fec |= FEC_BASER_RS;
3952 
3953 	return cc_fec;
3954 }
3955 
3956 /* Translate Common Code Forward Error Correction specification to Firmware */
3957 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
3958 {
3959 	fw_port_cap32_t fw_fec = 0;
3960 
3961 	if (cc_fec & FEC_RS)
3962 		fw_fec |= FW_PORT_CAP32_FEC_RS;
3963 	if (cc_fec & FEC_BASER_RS)
3964 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
3965 
3966 	return fw_fec;
3967 }
3968 
3969 /**
3970  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3971  *	@adapter: the adapter
3972  *	@mbox: the Firmware Mailbox to use
3973  *	@port: the Port ID
3974  *	@lc: the Port's Link Configuration
3975  *
3976  *	Set up a port's MAC and PHY according to a desired link configuration.
3977  *	- If the PHY can auto-negotiate first decide what to advertise, then
3978  *	  enable/disable auto-negotiation as desired, and reset.
3979  *	- If the PHY does not auto-negotiate just reset it.
3980  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3981  *	  otherwise do it later based on the outcome of auto-negotiation.
3982  */
3983 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox,
3984 		  unsigned int port, struct link_config *lc)
3985 {
3986 	unsigned int fw_caps = adapter->params.fw_caps_support;
3987 	struct fw_port_cmd cmd;
3988 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
3989 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
3990 
3991 	lc->link_ok = 0;
3992 
3993 	/* Convert driver coding of Pause Frame Flow Control settings into the
3994 	 * Firmware's API.
3995 	 */
3996 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
3997 
3998 	/* Convert Common Code Forward Error Control settings into the
3999 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4000 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4001 	 * sent us as part of it's IEEE 802.3-based interpratation of
4002 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4003 	 * use whatever is in the current Requested FEC settings.
4004 	 */
4005 	if (lc->requested_fec & FEC_AUTO)
4006 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4007 	else
4008 		cc_fec = lc->requested_fec;
4009 	fw_fec = cc_to_fwcap_fec(cc_fec);
4010 
4011 	/* Figure out what our Requested Port Capabilities are going to be.
4012 	 */
4013 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4014 		rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
4015 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4016 		lc->fec = cc_fec;
4017 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4018 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4019 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4020 		lc->fec = cc_fec;
4021 	} else {
4022 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4023 	}
4024 
4025 	/* And send that on to the Firmware ...
4026 	 */
4027 	memset(&cmd, 0, sizeof(cmd));
4028 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4029 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4030 				       FW_PORT_CMD_PORTID_V(port));
4031 	cmd.action_to_len16 =
4032 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4033 						 ? FW_PORT_ACTION_L1_CFG
4034 						 : FW_PORT_ACTION_L1_CFG32) |
4035 			    FW_LEN16(cmd));
4036 	if (fw_caps == FW_CAPS16)
4037 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4038 	else
4039 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4040 	return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4041 }
4042 
4043 /**
4044  *	t4_restart_aneg - restart autonegotiation
4045  *	@adap: the adapter
4046  *	@mbox: mbox to use for the FW command
4047  *	@port: the port id
4048  *
4049  *	Restarts autonegotiation for the selected port.
4050  */
4051 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4052 {
4053 	struct fw_port_cmd c;
4054 
4055 	memset(&c, 0, sizeof(c));
4056 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4057 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4058 				     FW_PORT_CMD_PORTID_V(port));
4059 	c.action_to_len16 =
4060 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4061 			    FW_LEN16(c));
4062 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4063 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4064 }
4065 
4066 typedef void (*int_handler_t)(struct adapter *adap);
4067 
4068 struct intr_info {
4069 	unsigned int mask;       /* bits to check in interrupt status */
4070 	const char *msg;         /* message to print or NULL */
4071 	short stat_idx;          /* stat counter to increment or -1 */
4072 	unsigned short fatal;    /* whether the condition reported is fatal */
4073 	int_handler_t int_handler; /* platform-specific int handler */
4074 };
4075 
4076 /**
4077  *	t4_handle_intr_status - table driven interrupt handler
4078  *	@adapter: the adapter that generated the interrupt
4079  *	@reg: the interrupt status register to process
4080  *	@acts: table of interrupt actions
4081  *
4082  *	A table driven interrupt handler that applies a set of masks to an
4083  *	interrupt status word and performs the corresponding actions if the
4084  *	interrupts described by the mask have occurred.  The actions include
4085  *	optionally emitting a warning or alert message.  The table is terminated
4086  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4087  *	conditions.
4088  */
4089 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4090 				 const struct intr_info *acts)
4091 {
4092 	int fatal = 0;
4093 	unsigned int mask = 0;
4094 	unsigned int status = t4_read_reg(adapter, reg);
4095 
4096 	for ( ; acts->mask; ++acts) {
4097 		if (!(status & acts->mask))
4098 			continue;
4099 		if (acts->fatal) {
4100 			fatal++;
4101 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4102 				  status & acts->mask);
4103 		} else if (acts->msg && printk_ratelimit())
4104 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4105 				 status & acts->mask);
4106 		if (acts->int_handler)
4107 			acts->int_handler(adapter);
4108 		mask |= acts->mask;
4109 	}
4110 	status &= mask;
4111 	if (status)                           /* clear processed interrupts */
4112 		t4_write_reg(adapter, reg, status);
4113 	return fatal;
4114 }
4115 
4116 /*
4117  * Interrupt handler for the PCIE module.
4118  */
4119 static void pcie_intr_handler(struct adapter *adapter)
4120 {
4121 	static const struct intr_info sysbus_intr_info[] = {
4122 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4123 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4124 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4125 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4126 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4127 		{ 0 }
4128 	};
4129 	static const struct intr_info pcie_port_intr_info[] = {
4130 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4131 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4132 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4133 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4134 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4135 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4136 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4137 		{ RDPE_F, "Rx data parity error", -1, 1 },
4138 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4139 		{ 0 }
4140 	};
4141 	static const struct intr_info pcie_intr_info[] = {
4142 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4143 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4144 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4145 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4146 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4147 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4148 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4149 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4150 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4151 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4152 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4153 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4154 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4155 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4156 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4157 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4158 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4159 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4160 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4161 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4162 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4163 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4164 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4165 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4166 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4167 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4168 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4169 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4170 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4171 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4172 		  -1, 0 },
4173 		{ 0 }
4174 	};
4175 
4176 	static struct intr_info t5_pcie_intr_info[] = {
4177 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4178 		  -1, 1 },
4179 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4180 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4181 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4182 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4183 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4184 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4185 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4186 		  -1, 1 },
4187 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4188 		  -1, 1 },
4189 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4190 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4191 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4192 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4193 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4194 		  -1, 1 },
4195 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4196 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4197 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4198 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4199 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4200 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4201 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4202 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4203 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4204 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4205 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4206 		  -1, 1 },
4207 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4208 		  -1, 1 },
4209 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4210 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4211 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4212 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4213 		{ 0 }
4214 	};
4215 
4216 	int fat;
4217 
4218 	if (is_t4(adapter->params.chip))
4219 		fat = t4_handle_intr_status(adapter,
4220 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4221 				sysbus_intr_info) +
4222 			t4_handle_intr_status(adapter,
4223 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4224 					pcie_port_intr_info) +
4225 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4226 					      pcie_intr_info);
4227 	else
4228 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4229 					    t5_pcie_intr_info);
4230 
4231 	if (fat)
4232 		t4_fatal_err(adapter);
4233 }
4234 
4235 /*
4236  * TP interrupt handler.
4237  */
4238 static void tp_intr_handler(struct adapter *adapter)
4239 {
4240 	static const struct intr_info tp_intr_info[] = {
4241 		{ 0x3fffffff, "TP parity error", -1, 1 },
4242 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4243 		{ 0 }
4244 	};
4245 
4246 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4247 		t4_fatal_err(adapter);
4248 }
4249 
4250 /*
4251  * SGE interrupt handler.
4252  */
4253 static void sge_intr_handler(struct adapter *adapter)
4254 {
4255 	u64 v;
4256 	u32 err;
4257 
4258 	static const struct intr_info sge_intr_info[] = {
4259 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4260 		  "SGE received CPL exceeding IQE size", -1, 1 },
4261 		{ ERR_INVALID_CIDX_INC_F,
4262 		  "SGE GTS CIDX increment too large", -1, 0 },
4263 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4264 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4265 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4266 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4267 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4268 		  0 },
4269 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4270 		  0 },
4271 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4272 		  0 },
4273 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4274 		  0 },
4275 		{ ERR_ING_CTXT_PRIO_F,
4276 		  "SGE too many priority ingress contexts", -1, 0 },
4277 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4278 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4279 		{ 0 }
4280 	};
4281 
4282 	static struct intr_info t4t5_sge_intr_info[] = {
4283 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4284 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4285 		{ ERR_EGR_CTXT_PRIO_F,
4286 		  "SGE too many priority egress contexts", -1, 0 },
4287 		{ 0 }
4288 	};
4289 
4290 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4291 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4292 	if (v) {
4293 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4294 				(unsigned long long)v);
4295 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4296 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4297 	}
4298 
4299 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4300 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4301 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4302 					   t4t5_sge_intr_info);
4303 
4304 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4305 	if (err & ERROR_QID_VALID_F) {
4306 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4307 			ERROR_QID_G(err));
4308 		if (err & UNCAPTURED_ERROR_F)
4309 			dev_err(adapter->pdev_dev,
4310 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4311 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4312 			     UNCAPTURED_ERROR_F);
4313 	}
4314 
4315 	if (v != 0)
4316 		t4_fatal_err(adapter);
4317 }
4318 
4319 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4320 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4321 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4322 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4323 
4324 /*
4325  * CIM interrupt handler.
4326  */
4327 static void cim_intr_handler(struct adapter *adapter)
4328 {
4329 	static const struct intr_info cim_intr_info[] = {
4330 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4331 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4332 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4333 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4334 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4335 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4336 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4337 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4338 		{ 0 }
4339 	};
4340 	static const struct intr_info cim_upintr_info[] = {
4341 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4342 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4343 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4344 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4345 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4346 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4347 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4348 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4349 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4350 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4351 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4352 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4353 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4354 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4355 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4356 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4357 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4358 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4359 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4360 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4361 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4362 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4363 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4364 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4365 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4366 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4367 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4368 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4369 		{ 0 }
4370 	};
4371 
4372 	u32 val, fw_err;
4373 	int fat;
4374 
4375 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4376 	if (fw_err & PCIE_FW_ERR_F)
4377 		t4_report_fw_error(adapter);
4378 
4379 	/* When the Firmware detects an internal error which normally
4380 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4381 	 * in order to make sure the Host sees the Firmware Crash.  So
4382 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4383 	 * ignore the Timer0 interrupt.
4384 	 */
4385 
4386 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4387 	if (val & TIMER0INT_F)
4388 		if (!(fw_err & PCIE_FW_ERR_F) ||
4389 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4390 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4391 				     TIMER0INT_F);
4392 
4393 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4394 				    cim_intr_info) +
4395 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4396 				    cim_upintr_info);
4397 	if (fat)
4398 		t4_fatal_err(adapter);
4399 }
4400 
4401 /*
4402  * ULP RX interrupt handler.
4403  */
4404 static void ulprx_intr_handler(struct adapter *adapter)
4405 {
4406 	static const struct intr_info ulprx_intr_info[] = {
4407 		{ 0x1800000, "ULPRX context error", -1, 1 },
4408 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4409 		{ 0 }
4410 	};
4411 
4412 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4413 		t4_fatal_err(adapter);
4414 }
4415 
4416 /*
4417  * ULP TX interrupt handler.
4418  */
4419 static void ulptx_intr_handler(struct adapter *adapter)
4420 {
4421 	static const struct intr_info ulptx_intr_info[] = {
4422 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4423 		  0 },
4424 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4425 		  0 },
4426 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4427 		  0 },
4428 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4429 		  0 },
4430 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4431 		{ 0 }
4432 	};
4433 
4434 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4435 		t4_fatal_err(adapter);
4436 }
4437 
4438 /*
4439  * PM TX interrupt handler.
4440  */
4441 static void pmtx_intr_handler(struct adapter *adapter)
4442 {
4443 	static const struct intr_info pmtx_intr_info[] = {
4444 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4445 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4446 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4447 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4448 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4449 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4450 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4451 		  -1, 1 },
4452 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4453 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4454 		{ 0 }
4455 	};
4456 
4457 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4458 		t4_fatal_err(adapter);
4459 }
4460 
4461 /*
4462  * PM RX interrupt handler.
4463  */
4464 static void pmrx_intr_handler(struct adapter *adapter)
4465 {
4466 	static const struct intr_info pmrx_intr_info[] = {
4467 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4468 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4469 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4470 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4471 		  -1, 1 },
4472 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4473 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4474 		{ 0 }
4475 	};
4476 
4477 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4478 		t4_fatal_err(adapter);
4479 }
4480 
4481 /*
4482  * CPL switch interrupt handler.
4483  */
4484 static void cplsw_intr_handler(struct adapter *adapter)
4485 {
4486 	static const struct intr_info cplsw_intr_info[] = {
4487 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4488 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4489 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4490 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4491 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4492 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4493 		{ 0 }
4494 	};
4495 
4496 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4497 		t4_fatal_err(adapter);
4498 }
4499 
4500 /*
4501  * LE interrupt handler.
4502  */
4503 static void le_intr_handler(struct adapter *adap)
4504 {
4505 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4506 	static const struct intr_info le_intr_info[] = {
4507 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4508 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4509 		{ PARITYERR_F, "LE parity error", -1, 1 },
4510 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4511 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4512 		{ 0 }
4513 	};
4514 
4515 	static struct intr_info t6_le_intr_info[] = {
4516 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4517 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4518 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4519 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4520 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4521 		{ 0 }
4522 	};
4523 
4524 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4525 				  (chip <= CHELSIO_T5) ?
4526 				  le_intr_info : t6_le_intr_info))
4527 		t4_fatal_err(adap);
4528 }
4529 
4530 /*
4531  * MPS interrupt handler.
4532  */
4533 static void mps_intr_handler(struct adapter *adapter)
4534 {
4535 	static const struct intr_info mps_rx_intr_info[] = {
4536 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4537 		{ 0 }
4538 	};
4539 	static const struct intr_info mps_tx_intr_info[] = {
4540 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4541 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4542 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4543 		  -1, 1 },
4544 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4545 		  -1, 1 },
4546 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4547 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4548 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4549 		{ 0 }
4550 	};
4551 	static const struct intr_info t6_mps_tx_intr_info[] = {
4552 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4553 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4554 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4555 		  -1, 1 },
4556 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4557 		  -1, 1 },
4558 		/* MPS Tx Bubble is normal for T6 */
4559 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4560 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4561 		{ 0 }
4562 	};
4563 	static const struct intr_info mps_trc_intr_info[] = {
4564 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4565 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4566 		  -1, 1 },
4567 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4568 		{ 0 }
4569 	};
4570 	static const struct intr_info mps_stat_sram_intr_info[] = {
4571 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4572 		{ 0 }
4573 	};
4574 	static const struct intr_info mps_stat_tx_intr_info[] = {
4575 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4576 		{ 0 }
4577 	};
4578 	static const struct intr_info mps_stat_rx_intr_info[] = {
4579 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4580 		{ 0 }
4581 	};
4582 	static const struct intr_info mps_cls_intr_info[] = {
4583 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4584 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4585 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4586 		{ 0 }
4587 	};
4588 
4589 	int fat;
4590 
4591 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4592 				    mps_rx_intr_info) +
4593 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4594 				    is_t6(adapter->params.chip)
4595 				    ? t6_mps_tx_intr_info
4596 				    : mps_tx_intr_info) +
4597 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4598 				    mps_trc_intr_info) +
4599 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4600 				    mps_stat_sram_intr_info) +
4601 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4602 				    mps_stat_tx_intr_info) +
4603 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4604 				    mps_stat_rx_intr_info) +
4605 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4606 				    mps_cls_intr_info);
4607 
4608 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4609 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4610 	if (fat)
4611 		t4_fatal_err(adapter);
4612 }
4613 
4614 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4615 		      ECC_UE_INT_CAUSE_F)
4616 
4617 /*
4618  * EDC/MC interrupt handler.
4619  */
4620 static void mem_intr_handler(struct adapter *adapter, int idx)
4621 {
4622 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4623 
4624 	unsigned int addr, cnt_addr, v;
4625 
4626 	if (idx <= MEM_EDC1) {
4627 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4628 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4629 	} else if (idx == MEM_MC) {
4630 		if (is_t4(adapter->params.chip)) {
4631 			addr = MC_INT_CAUSE_A;
4632 			cnt_addr = MC_ECC_STATUS_A;
4633 		} else {
4634 			addr = MC_P_INT_CAUSE_A;
4635 			cnt_addr = MC_P_ECC_STATUS_A;
4636 		}
4637 	} else {
4638 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4639 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4640 	}
4641 
4642 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4643 	if (v & PERR_INT_CAUSE_F)
4644 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4645 			  name[idx]);
4646 	if (v & ECC_CE_INT_CAUSE_F) {
4647 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4648 
4649 		t4_edc_err_read(adapter, idx);
4650 
4651 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4652 		if (printk_ratelimit())
4653 			dev_warn(adapter->pdev_dev,
4654 				 "%u %s correctable ECC data error%s\n",
4655 				 cnt, name[idx], cnt > 1 ? "s" : "");
4656 	}
4657 	if (v & ECC_UE_INT_CAUSE_F)
4658 		dev_alert(adapter->pdev_dev,
4659 			  "%s uncorrectable ECC data error\n", name[idx]);
4660 
4661 	t4_write_reg(adapter, addr, v);
4662 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4663 		t4_fatal_err(adapter);
4664 }
4665 
4666 /*
4667  * MA interrupt handler.
4668  */
4669 static void ma_intr_handler(struct adapter *adap)
4670 {
4671 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4672 
4673 	if (status & MEM_PERR_INT_CAUSE_F) {
4674 		dev_alert(adap->pdev_dev,
4675 			  "MA parity error, parity status %#x\n",
4676 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4677 		if (is_t5(adap->params.chip))
4678 			dev_alert(adap->pdev_dev,
4679 				  "MA parity error, parity status %#x\n",
4680 				  t4_read_reg(adap,
4681 					      MA_PARITY_ERROR_STATUS2_A));
4682 	}
4683 	if (status & MEM_WRAP_INT_CAUSE_F) {
4684 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4685 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4686 			  "client %u to address %#x\n",
4687 			  MEM_WRAP_CLIENT_NUM_G(v),
4688 			  MEM_WRAP_ADDRESS_G(v) << 4);
4689 	}
4690 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4691 	t4_fatal_err(adap);
4692 }
4693 
4694 /*
4695  * SMB interrupt handler.
4696  */
4697 static void smb_intr_handler(struct adapter *adap)
4698 {
4699 	static const struct intr_info smb_intr_info[] = {
4700 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4701 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4702 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4703 		{ 0 }
4704 	};
4705 
4706 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4707 		t4_fatal_err(adap);
4708 }
4709 
4710 /*
4711  * NC-SI interrupt handler.
4712  */
4713 static void ncsi_intr_handler(struct adapter *adap)
4714 {
4715 	static const struct intr_info ncsi_intr_info[] = {
4716 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4717 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4718 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4719 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4720 		{ 0 }
4721 	};
4722 
4723 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4724 		t4_fatal_err(adap);
4725 }
4726 
4727 /*
4728  * XGMAC interrupt handler.
4729  */
4730 static void xgmac_intr_handler(struct adapter *adap, int port)
4731 {
4732 	u32 v, int_cause_reg;
4733 
4734 	if (is_t4(adap->params.chip))
4735 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4736 	else
4737 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4738 
4739 	v = t4_read_reg(adap, int_cause_reg);
4740 
4741 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4742 	if (!v)
4743 		return;
4744 
4745 	if (v & TXFIFO_PRTY_ERR_F)
4746 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4747 			  port);
4748 	if (v & RXFIFO_PRTY_ERR_F)
4749 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4750 			  port);
4751 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4752 	t4_fatal_err(adap);
4753 }
4754 
4755 /*
4756  * PL interrupt handler.
4757  */
4758 static void pl_intr_handler(struct adapter *adap)
4759 {
4760 	static const struct intr_info pl_intr_info[] = {
4761 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4762 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4763 		{ 0 }
4764 	};
4765 
4766 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4767 		t4_fatal_err(adap);
4768 }
4769 
4770 #define PF_INTR_MASK (PFSW_F)
4771 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4772 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4773 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4774 
4775 /**
4776  *	t4_slow_intr_handler - control path interrupt handler
4777  *	@adapter: the adapter
4778  *
4779  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4780  *	The designation 'slow' is because it involves register reads, while
4781  *	data interrupts typically don't involve any MMIOs.
4782  */
4783 int t4_slow_intr_handler(struct adapter *adapter)
4784 {
4785 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4786 
4787 	if (!(cause & GLBL_INTR_MASK))
4788 		return 0;
4789 	if (cause & CIM_F)
4790 		cim_intr_handler(adapter);
4791 	if (cause & MPS_F)
4792 		mps_intr_handler(adapter);
4793 	if (cause & NCSI_F)
4794 		ncsi_intr_handler(adapter);
4795 	if (cause & PL_F)
4796 		pl_intr_handler(adapter);
4797 	if (cause & SMB_F)
4798 		smb_intr_handler(adapter);
4799 	if (cause & XGMAC0_F)
4800 		xgmac_intr_handler(adapter, 0);
4801 	if (cause & XGMAC1_F)
4802 		xgmac_intr_handler(adapter, 1);
4803 	if (cause & XGMAC_KR0_F)
4804 		xgmac_intr_handler(adapter, 2);
4805 	if (cause & XGMAC_KR1_F)
4806 		xgmac_intr_handler(adapter, 3);
4807 	if (cause & PCIE_F)
4808 		pcie_intr_handler(adapter);
4809 	if (cause & MC_F)
4810 		mem_intr_handler(adapter, MEM_MC);
4811 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4812 		mem_intr_handler(adapter, MEM_MC1);
4813 	if (cause & EDC0_F)
4814 		mem_intr_handler(adapter, MEM_EDC0);
4815 	if (cause & EDC1_F)
4816 		mem_intr_handler(adapter, MEM_EDC1);
4817 	if (cause & LE_F)
4818 		le_intr_handler(adapter);
4819 	if (cause & TP_F)
4820 		tp_intr_handler(adapter);
4821 	if (cause & MA_F)
4822 		ma_intr_handler(adapter);
4823 	if (cause & PM_TX_F)
4824 		pmtx_intr_handler(adapter);
4825 	if (cause & PM_RX_F)
4826 		pmrx_intr_handler(adapter);
4827 	if (cause & ULP_RX_F)
4828 		ulprx_intr_handler(adapter);
4829 	if (cause & CPL_SWITCH_F)
4830 		cplsw_intr_handler(adapter);
4831 	if (cause & SGE_F)
4832 		sge_intr_handler(adapter);
4833 	if (cause & ULP_TX_F)
4834 		ulptx_intr_handler(adapter);
4835 
4836 	/* Clear the interrupts just processed for which we are the master. */
4837 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4838 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4839 	return 1;
4840 }
4841 
4842 /**
4843  *	t4_intr_enable - enable interrupts
4844  *	@adapter: the adapter whose interrupts should be enabled
4845  *
4846  *	Enable PF-specific interrupts for the calling function and the top-level
4847  *	interrupt concentrator for global interrupts.  Interrupts are already
4848  *	enabled at each module,	here we just enable the roots of the interrupt
4849  *	hierarchies.
4850  *
4851  *	Note: this function should be called only when the driver manages
4852  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4853  *	function at a time should be doing this.
4854  */
4855 void t4_intr_enable(struct adapter *adapter)
4856 {
4857 	u32 val = 0;
4858 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4859 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4860 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4861 
4862 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4863 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4864 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4865 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4866 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4867 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4868 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4869 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4870 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4871 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4872 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4873 }
4874 
4875 /**
4876  *	t4_intr_disable - disable interrupts
4877  *	@adapter: the adapter whose interrupts should be disabled
4878  *
4879  *	Disable interrupts.  We only disable the top-level interrupt
4880  *	concentrators.  The caller must be a PCI function managing global
4881  *	interrupts.
4882  */
4883 void t4_intr_disable(struct adapter *adapter)
4884 {
4885 	u32 whoami, pf;
4886 
4887 	if (pci_channel_offline(adapter->pdev))
4888 		return;
4889 
4890 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4891 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4892 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4893 
4894 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4895 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4896 }
4897 
4898 /**
4899  *	t4_config_rss_range - configure a portion of the RSS mapping table
4900  *	@adapter: the adapter
4901  *	@mbox: mbox to use for the FW command
4902  *	@viid: virtual interface whose RSS subtable is to be written
4903  *	@start: start entry in the table to write
4904  *	@n: how many table entries to write
4905  *	@rspq: values for the response queue lookup table
4906  *	@nrspq: number of values in @rspq
4907  *
4908  *	Programs the selected part of the VI's RSS mapping table with the
4909  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4910  *	until the full table range is populated.
4911  *
4912  *	The caller must ensure the values in @rspq are in the range allowed for
4913  *	@viid.
4914  */
4915 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4916 			int start, int n, const u16 *rspq, unsigned int nrspq)
4917 {
4918 	int ret;
4919 	const u16 *rsp = rspq;
4920 	const u16 *rsp_end = rspq + nrspq;
4921 	struct fw_rss_ind_tbl_cmd cmd;
4922 
4923 	memset(&cmd, 0, sizeof(cmd));
4924 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4925 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4926 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4927 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4928 
4929 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4930 	while (n > 0) {
4931 		int nq = min(n, 32);
4932 		__be32 *qp = &cmd.iq0_to_iq2;
4933 
4934 		cmd.niqid = cpu_to_be16(nq);
4935 		cmd.startidx = cpu_to_be16(start);
4936 
4937 		start += nq;
4938 		n -= nq;
4939 
4940 		while (nq > 0) {
4941 			unsigned int v;
4942 
4943 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4944 			if (++rsp >= rsp_end)
4945 				rsp = rspq;
4946 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4947 			if (++rsp >= rsp_end)
4948 				rsp = rspq;
4949 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4950 			if (++rsp >= rsp_end)
4951 				rsp = rspq;
4952 
4953 			*qp++ = cpu_to_be32(v);
4954 			nq -= 3;
4955 		}
4956 
4957 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4958 		if (ret)
4959 			return ret;
4960 	}
4961 	return 0;
4962 }
4963 
4964 /**
4965  *	t4_config_glbl_rss - configure the global RSS mode
4966  *	@adapter: the adapter
4967  *	@mbox: mbox to use for the FW command
4968  *	@mode: global RSS mode
4969  *	@flags: mode-specific flags
4970  *
4971  *	Sets the global RSS mode.
4972  */
4973 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4974 		       unsigned int flags)
4975 {
4976 	struct fw_rss_glb_config_cmd c;
4977 
4978 	memset(&c, 0, sizeof(c));
4979 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4980 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4981 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4982 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4983 		c.u.manual.mode_pkd =
4984 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4985 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4986 		c.u.basicvirtual.mode_pkd =
4987 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4988 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4989 	} else
4990 		return -EINVAL;
4991 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4992 }
4993 
4994 /**
4995  *	t4_config_vi_rss - configure per VI RSS settings
4996  *	@adapter: the adapter
4997  *	@mbox: mbox to use for the FW command
4998  *	@viid: the VI id
4999  *	@flags: RSS flags
5000  *	@defq: id of the default RSS queue for the VI.
5001  *
5002  *	Configures VI-specific RSS properties.
5003  */
5004 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5005 		     unsigned int flags, unsigned int defq)
5006 {
5007 	struct fw_rss_vi_config_cmd c;
5008 
5009 	memset(&c, 0, sizeof(c));
5010 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5011 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5012 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5013 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5014 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5015 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5016 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5017 }
5018 
5019 /* Read an RSS table row */
5020 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5021 {
5022 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5023 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5024 				   5, 0, val);
5025 }
5026 
5027 /**
5028  *	t4_read_rss - read the contents of the RSS mapping table
5029  *	@adapter: the adapter
5030  *	@map: holds the contents of the RSS mapping table
5031  *
5032  *	Reads the contents of the RSS hash->queue mapping table.
5033  */
5034 int t4_read_rss(struct adapter *adapter, u16 *map)
5035 {
5036 	u32 val;
5037 	int i, ret;
5038 
5039 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5040 		ret = rd_rss_row(adapter, i, &val);
5041 		if (ret)
5042 			return ret;
5043 		*map++ = LKPTBLQUEUE0_G(val);
5044 		*map++ = LKPTBLQUEUE1_G(val);
5045 	}
5046 	return 0;
5047 }
5048 
5049 static unsigned int t4_use_ldst(struct adapter *adap)
5050 {
5051 	return (adap->flags & FW_OK) || !adap->use_bd;
5052 }
5053 
5054 /**
5055  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5056  * @adap: the adapter
5057  * @cmd: TP fw ldst address space type
5058  * @vals: where the indirect register values are stored/written
5059  * @nregs: how many indirect registers to read/write
5060  * @start_idx: index of first indirect register to read/write
5061  * @rw: Read (1) or Write (0)
5062  * @sleep_ok: if true we may sleep while awaiting command completion
5063  *
5064  * Access TP indirect registers through LDST
5065  */
5066 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5067 			    unsigned int nregs, unsigned int start_index,
5068 			    unsigned int rw, bool sleep_ok)
5069 {
5070 	int ret = 0;
5071 	unsigned int i;
5072 	struct fw_ldst_cmd c;
5073 
5074 	for (i = 0; i < nregs; i++) {
5075 		memset(&c, 0, sizeof(c));
5076 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5077 						FW_CMD_REQUEST_F |
5078 						(rw ? FW_CMD_READ_F :
5079 						      FW_CMD_WRITE_F) |
5080 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5081 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5082 
5083 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5084 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5085 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5086 				      sleep_ok);
5087 		if (ret)
5088 			return ret;
5089 
5090 		if (rw)
5091 			vals[i] = be32_to_cpu(c.u.addrval.val);
5092 	}
5093 	return 0;
5094 }
5095 
5096 /**
5097  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5098  * @adap: the adapter
5099  * @reg_addr: Address Register
5100  * @reg_data: Data register
5101  * @buff: where the indirect register values are stored/written
5102  * @nregs: how many indirect registers to read/write
5103  * @start_index: index of first indirect register to read/write
5104  * @rw: READ(1) or WRITE(0)
5105  * @sleep_ok: if true we may sleep while awaiting command completion
5106  *
5107  * Read/Write TP indirect registers through LDST if possible.
5108  * Else, use backdoor access
5109  **/
5110 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5111 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5112 			      bool sleep_ok)
5113 {
5114 	int rc = -EINVAL;
5115 	int cmd;
5116 
5117 	switch (reg_addr) {
5118 	case TP_PIO_ADDR_A:
5119 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5120 		break;
5121 	case TP_TM_PIO_ADDR_A:
5122 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5123 		break;
5124 	case TP_MIB_INDEX_A:
5125 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5126 		break;
5127 	default:
5128 		goto indirect_access;
5129 	}
5130 
5131 	if (t4_use_ldst(adap))
5132 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5133 				      sleep_ok);
5134 
5135 indirect_access:
5136 
5137 	if (rc) {
5138 		if (rw)
5139 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5140 					 start_index);
5141 		else
5142 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5143 					  start_index);
5144 	}
5145 }
5146 
5147 /**
5148  * t4_tp_pio_read - Read TP PIO registers
5149  * @adap: the adapter
5150  * @buff: where the indirect register values are written
5151  * @nregs: how many indirect registers to read
5152  * @start_index: index of first indirect register to read
5153  * @sleep_ok: if true we may sleep while awaiting command completion
5154  *
5155  * Read TP PIO Registers
5156  **/
5157 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5158 		    u32 start_index, bool sleep_ok)
5159 {
5160 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5161 			  start_index, 1, sleep_ok);
5162 }
5163 
5164 /**
5165  * t4_tp_pio_write - Write TP PIO registers
5166  * @adap: the adapter
5167  * @buff: where the indirect register values are stored
5168  * @nregs: how many indirect registers to write
5169  * @start_index: index of first indirect register to write
5170  * @sleep_ok: if true we may sleep while awaiting command completion
5171  *
5172  * Write TP PIO Registers
5173  **/
5174 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5175 			    u32 start_index, bool sleep_ok)
5176 {
5177 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5178 			  start_index, 0, sleep_ok);
5179 }
5180 
5181 /**
5182  * t4_tp_tm_pio_read - Read TP TM PIO registers
5183  * @adap: the adapter
5184  * @buff: where the indirect register values are written
5185  * @nregs: how many indirect registers to read
5186  * @start_index: index of first indirect register to read
5187  * @sleep_ok: if true we may sleep while awaiting command completion
5188  *
5189  * Read TP TM PIO Registers
5190  **/
5191 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5192 		       u32 start_index, bool sleep_ok)
5193 {
5194 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5195 			  nregs, start_index, 1, sleep_ok);
5196 }
5197 
5198 /**
5199  * t4_tp_mib_read - Read TP MIB registers
5200  * @adap: the adapter
5201  * @buff: where the indirect register values are written
5202  * @nregs: how many indirect registers to read
5203  * @start_index: index of first indirect register to read
5204  * @sleep_ok: if true we may sleep while awaiting command completion
5205  *
5206  * Read TP MIB Registers
5207  **/
5208 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5209 		    bool sleep_ok)
5210 {
5211 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5212 			  start_index, 1, sleep_ok);
5213 }
5214 
5215 /**
5216  *	t4_read_rss_key - read the global RSS key
5217  *	@adap: the adapter
5218  *	@key: 10-entry array holding the 320-bit RSS key
5219  *      @sleep_ok: if true we may sleep while awaiting command completion
5220  *
5221  *	Reads the global 320-bit RSS key.
5222  */
5223 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5224 {
5225 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5226 }
5227 
5228 /**
5229  *	t4_write_rss_key - program one of the RSS keys
5230  *	@adap: the adapter
5231  *	@key: 10-entry array holding the 320-bit RSS key
5232  *	@idx: which RSS key to write
5233  *      @sleep_ok: if true we may sleep while awaiting command completion
5234  *
5235  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5236  *	0..15 the corresponding entry in the RSS key table is written,
5237  *	otherwise the global RSS key is written.
5238  */
5239 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5240 		      bool sleep_ok)
5241 {
5242 	u8 rss_key_addr_cnt = 16;
5243 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5244 
5245 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5246 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5247 	 * as index[5:4](upper 2) into key table
5248 	 */
5249 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5250 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5251 		rss_key_addr_cnt = 32;
5252 
5253 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5254 
5255 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5256 		if (rss_key_addr_cnt > 16)
5257 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5258 				     KEYWRADDRX_V(idx >> 4) |
5259 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5260 		else
5261 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5262 				     KEYWRADDR_V(idx) | KEYWREN_F);
5263 	}
5264 }
5265 
5266 /**
5267  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5268  *	@adapter: the adapter
5269  *	@index: the entry in the PF RSS table to read
5270  *	@valp: where to store the returned value
5271  *      @sleep_ok: if true we may sleep while awaiting command completion
5272  *
5273  *	Reads the PF RSS Configuration Table at the specified index and returns
5274  *	the value found there.
5275  */
5276 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5277 			   u32 *valp, bool sleep_ok)
5278 {
5279 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5280 }
5281 
5282 /**
5283  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5284  *	@adapter: the adapter
5285  *	@index: the entry in the VF RSS table to read
5286  *	@vfl: where to store the returned VFL
5287  *	@vfh: where to store the returned VFH
5288  *      @sleep_ok: if true we may sleep while awaiting command completion
5289  *
5290  *	Reads the VF RSS Configuration Table at the specified index and returns
5291  *	the (VFL, VFH) values found there.
5292  */
5293 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5294 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5295 {
5296 	u32 vrt, mask, data;
5297 
5298 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5299 		mask = VFWRADDR_V(VFWRADDR_M);
5300 		data = VFWRADDR_V(index);
5301 	} else {
5302 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5303 		 data = T6_VFWRADDR_V(index);
5304 	}
5305 
5306 	/* Request that the index'th VF Table values be read into VFL/VFH.
5307 	 */
5308 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5309 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5310 	vrt |= data | VFRDEN_F;
5311 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5312 
5313 	/* Grab the VFL/VFH values ...
5314 	 */
5315 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5316 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5317 }
5318 
5319 /**
5320  *	t4_read_rss_pf_map - read PF RSS Map
5321  *	@adapter: the adapter
5322  *      @sleep_ok: if true we may sleep while awaiting command completion
5323  *
5324  *	Reads the PF RSS Map register and returns its value.
5325  */
5326 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5327 {
5328 	u32 pfmap;
5329 
5330 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5331 	return pfmap;
5332 }
5333 
5334 /**
5335  *	t4_read_rss_pf_mask - read PF RSS Mask
5336  *	@adapter: the adapter
5337  *      @sleep_ok: if true we may sleep while awaiting command completion
5338  *
5339  *	Reads the PF RSS Mask register and returns its value.
5340  */
5341 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5342 {
5343 	u32 pfmask;
5344 
5345 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5346 	return pfmask;
5347 }
5348 
5349 /**
5350  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5351  *	@adap: the adapter
5352  *	@v4: holds the TCP/IP counter values
5353  *	@v6: holds the TCP/IPv6 counter values
5354  *      @sleep_ok: if true we may sleep while awaiting command completion
5355  *
5356  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5357  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5358  */
5359 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5360 			 struct tp_tcp_stats *v6, bool sleep_ok)
5361 {
5362 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5363 
5364 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5365 #define STAT(x)     val[STAT_IDX(x)]
5366 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5367 
5368 	if (v4) {
5369 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5370 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5371 		v4->tcp_out_rsts = STAT(OUT_RST);
5372 		v4->tcp_in_segs  = STAT64(IN_SEG);
5373 		v4->tcp_out_segs = STAT64(OUT_SEG);
5374 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5375 	}
5376 	if (v6) {
5377 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5378 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5379 		v6->tcp_out_rsts = STAT(OUT_RST);
5380 		v6->tcp_in_segs  = STAT64(IN_SEG);
5381 		v6->tcp_out_segs = STAT64(OUT_SEG);
5382 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5383 	}
5384 #undef STAT64
5385 #undef STAT
5386 #undef STAT_IDX
5387 }
5388 
5389 /**
5390  *	t4_tp_get_err_stats - read TP's error MIB counters
5391  *	@adap: the adapter
5392  *	@st: holds the counter values
5393  *      @sleep_ok: if true we may sleep while awaiting command completion
5394  *
5395  *	Returns the values of TP's error counters.
5396  */
5397 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5398 			 bool sleep_ok)
5399 {
5400 	int nchan = adap->params.arch.nchan;
5401 
5402 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5403 		       sleep_ok);
5404 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5405 		       sleep_ok);
5406 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5407 		       sleep_ok);
5408 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5409 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5410 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5411 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5412 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5413 		       sleep_ok);
5414 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5415 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5416 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5417 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5418 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5419 		       sleep_ok);
5420 }
5421 
5422 /**
5423  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5424  *	@adap: the adapter
5425  *	@st: holds the counter values
5426  *      @sleep_ok: if true we may sleep while awaiting command completion
5427  *
5428  *	Returns the values of TP's CPL counters.
5429  */
5430 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5431 			 bool sleep_ok)
5432 {
5433 	int nchan = adap->params.arch.nchan;
5434 
5435 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5436 
5437 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5438 }
5439 
5440 /**
5441  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5442  *	@adap: the adapter
5443  *	@st: holds the counter values
5444  *      @sleep_ok: if true we may sleep while awaiting command completion
5445  *
5446  *	Returns the values of TP's RDMA counters.
5447  */
5448 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5449 			  bool sleep_ok)
5450 {
5451 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5452 		       sleep_ok);
5453 }
5454 
5455 /**
5456  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5457  *	@adap: the adapter
5458  *	@idx: the port index
5459  *	@st: holds the counter values
5460  *      @sleep_ok: if true we may sleep while awaiting command completion
5461  *
5462  *	Returns the values of TP's FCoE counters for the selected port.
5463  */
5464 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5465 		       struct tp_fcoe_stats *st, bool sleep_ok)
5466 {
5467 	u32 val[2];
5468 
5469 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5470 		       sleep_ok);
5471 
5472 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5473 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5474 
5475 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5476 		       sleep_ok);
5477 
5478 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5479 }
5480 
5481 /**
5482  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5483  *	@adap: the adapter
5484  *	@st: holds the counter values
5485  *      @sleep_ok: if true we may sleep while awaiting command completion
5486  *
5487  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5488  */
5489 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5490 		      bool sleep_ok)
5491 {
5492 	u32 val[4];
5493 
5494 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5495 	st->frames = val[0];
5496 	st->drops = val[1];
5497 	st->octets = ((u64)val[2] << 32) | val[3];
5498 }
5499 
5500 /**
5501  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5502  *	@adap: the adapter
5503  *	@mtus: where to store the MTU values
5504  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5505  *
5506  *	Reads the HW path MTU table.
5507  */
5508 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5509 {
5510 	u32 v;
5511 	int i;
5512 
5513 	for (i = 0; i < NMTUS; ++i) {
5514 		t4_write_reg(adap, TP_MTU_TABLE_A,
5515 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5516 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5517 		mtus[i] = MTUVALUE_G(v);
5518 		if (mtu_log)
5519 			mtu_log[i] = MTUWIDTH_G(v);
5520 	}
5521 }
5522 
5523 /**
5524  *	t4_read_cong_tbl - reads the congestion control table
5525  *	@adap: the adapter
5526  *	@incr: where to store the alpha values
5527  *
5528  *	Reads the additive increments programmed into the HW congestion
5529  *	control table.
5530  */
5531 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5532 {
5533 	unsigned int mtu, w;
5534 
5535 	for (mtu = 0; mtu < NMTUS; ++mtu)
5536 		for (w = 0; w < NCCTRL_WIN; ++w) {
5537 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5538 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5539 			incr[mtu][w] = (u16)t4_read_reg(adap,
5540 						TP_CCTRL_TABLE_A) & 0x1fff;
5541 		}
5542 }
5543 
5544 /**
5545  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5546  *	@adap: the adapter
5547  *	@addr: the indirect TP register address
5548  *	@mask: specifies the field within the register to modify
5549  *	@val: new value for the field
5550  *
5551  *	Sets a field of an indirect TP register to the given value.
5552  */
5553 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5554 			    unsigned int mask, unsigned int val)
5555 {
5556 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5557 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5558 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5559 }
5560 
5561 /**
5562  *	init_cong_ctrl - initialize congestion control parameters
5563  *	@a: the alpha values for congestion control
5564  *	@b: the beta values for congestion control
5565  *
5566  *	Initialize the congestion control parameters.
5567  */
5568 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5569 {
5570 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5571 	a[9] = 2;
5572 	a[10] = 3;
5573 	a[11] = 4;
5574 	a[12] = 5;
5575 	a[13] = 6;
5576 	a[14] = 7;
5577 	a[15] = 8;
5578 	a[16] = 9;
5579 	a[17] = 10;
5580 	a[18] = 14;
5581 	a[19] = 17;
5582 	a[20] = 21;
5583 	a[21] = 25;
5584 	a[22] = 30;
5585 	a[23] = 35;
5586 	a[24] = 45;
5587 	a[25] = 60;
5588 	a[26] = 80;
5589 	a[27] = 100;
5590 	a[28] = 200;
5591 	a[29] = 300;
5592 	a[30] = 400;
5593 	a[31] = 500;
5594 
5595 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5596 	b[9] = b[10] = 1;
5597 	b[11] = b[12] = 2;
5598 	b[13] = b[14] = b[15] = b[16] = 3;
5599 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5600 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5601 	b[28] = b[29] = 6;
5602 	b[30] = b[31] = 7;
5603 }
5604 
5605 /* The minimum additive increment value for the congestion control table */
5606 #define CC_MIN_INCR 2U
5607 
5608 /**
5609  *	t4_load_mtus - write the MTU and congestion control HW tables
5610  *	@adap: the adapter
5611  *	@mtus: the values for the MTU table
5612  *	@alpha: the values for the congestion control alpha parameter
5613  *	@beta: the values for the congestion control beta parameter
5614  *
5615  *	Write the HW MTU table with the supplied MTUs and the high-speed
5616  *	congestion control table with the supplied alpha, beta, and MTUs.
5617  *	We write the two tables together because the additive increments
5618  *	depend on the MTUs.
5619  */
5620 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5621 		  const unsigned short *alpha, const unsigned short *beta)
5622 {
5623 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5624 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5625 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5626 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5627 	};
5628 
5629 	unsigned int i, w;
5630 
5631 	for (i = 0; i < NMTUS; ++i) {
5632 		unsigned int mtu = mtus[i];
5633 		unsigned int log2 = fls(mtu);
5634 
5635 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5636 			log2--;
5637 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5638 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5639 
5640 		for (w = 0; w < NCCTRL_WIN; ++w) {
5641 			unsigned int inc;
5642 
5643 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5644 				  CC_MIN_INCR);
5645 
5646 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5647 				     (w << 16) | (beta[w] << 13) | inc);
5648 		}
5649 	}
5650 }
5651 
5652 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5653  * clocks.  The formula is
5654  *
5655  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5656  *
5657  * which is equivalent to
5658  *
5659  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5660  */
5661 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5662 {
5663 	u64 v = bytes256 * adap->params.vpd.cclk;
5664 
5665 	return v * 62 + v / 2;
5666 }
5667 
5668 /**
5669  *	t4_get_chan_txrate - get the current per channel Tx rates
5670  *	@adap: the adapter
5671  *	@nic_rate: rates for NIC traffic
5672  *	@ofld_rate: rates for offloaded traffic
5673  *
5674  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5675  *	for each channel.
5676  */
5677 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5678 {
5679 	u32 v;
5680 
5681 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5682 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5683 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5684 	if (adap->params.arch.nchan == NCHAN) {
5685 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5686 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5687 	}
5688 
5689 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5690 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5691 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5692 	if (adap->params.arch.nchan == NCHAN) {
5693 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5694 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5695 	}
5696 }
5697 
5698 /**
5699  *	t4_set_trace_filter - configure one of the tracing filters
5700  *	@adap: the adapter
5701  *	@tp: the desired trace filter parameters
5702  *	@idx: which filter to configure
5703  *	@enable: whether to enable or disable the filter
5704  *
5705  *	Configures one of the tracing filters available in HW.  If @enable is
5706  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5707  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5708  */
5709 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5710 			int idx, int enable)
5711 {
5712 	int i, ofst = idx * 4;
5713 	u32 data_reg, mask_reg, cfg;
5714 	u32 multitrc = TRCMULTIFILTER_F;
5715 
5716 	if (!enable) {
5717 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5718 		return 0;
5719 	}
5720 
5721 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5722 	if (cfg & TRCMULTIFILTER_F) {
5723 		/* If multiple tracers are enabled, then maximum
5724 		 * capture size is 2.5KB (FIFO size of a single channel)
5725 		 * minus 2 flits for CPL_TRACE_PKT header.
5726 		 */
5727 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5728 			return -EINVAL;
5729 	} else {
5730 		/* If multiple tracers are disabled, to avoid deadlocks
5731 		 * maximum packet capture size of 9600 bytes is recommended.
5732 		 * Also in this mode, only trace0 can be enabled and running.
5733 		 */
5734 		multitrc = 0;
5735 		if (tp->snap_len > 9600 || idx)
5736 			return -EINVAL;
5737 	}
5738 
5739 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5740 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5741 	    tp->min_len > TFMINPKTSIZE_M)
5742 		return -EINVAL;
5743 
5744 	/* stop the tracer we'll be changing */
5745 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5746 
5747 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5748 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5749 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5750 
5751 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5752 		t4_write_reg(adap, data_reg, tp->data[i]);
5753 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5754 	}
5755 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5756 		     TFCAPTUREMAX_V(tp->snap_len) |
5757 		     TFMINPKTSIZE_V(tp->min_len));
5758 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5759 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5760 		     (is_t4(adap->params.chip) ?
5761 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5762 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5763 		     T5_TFINVERTMATCH_V(tp->invert)));
5764 
5765 	return 0;
5766 }
5767 
5768 /**
5769  *	t4_get_trace_filter - query one of the tracing filters
5770  *	@adap: the adapter
5771  *	@tp: the current trace filter parameters
5772  *	@idx: which trace filter to query
5773  *	@enabled: non-zero if the filter is enabled
5774  *
5775  *	Returns the current settings of one of the HW tracing filters.
5776  */
5777 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5778 			 int *enabled)
5779 {
5780 	u32 ctla, ctlb;
5781 	int i, ofst = idx * 4;
5782 	u32 data_reg, mask_reg;
5783 
5784 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5785 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5786 
5787 	if (is_t4(adap->params.chip)) {
5788 		*enabled = !!(ctla & TFEN_F);
5789 		tp->port =  TFPORT_G(ctla);
5790 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5791 	} else {
5792 		*enabled = !!(ctla & T5_TFEN_F);
5793 		tp->port = T5_TFPORT_G(ctla);
5794 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5795 	}
5796 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5797 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5798 	tp->skip_ofst = TFOFFSET_G(ctla);
5799 	tp->skip_len = TFLENGTH_G(ctla);
5800 
5801 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5802 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5803 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5804 
5805 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5806 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5807 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5808 	}
5809 }
5810 
5811 /**
5812  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5813  *	@adap: the adapter
5814  *	@cnt: where to store the count statistics
5815  *	@cycles: where to store the cycle statistics
5816  *
5817  *	Returns performance statistics from PMTX.
5818  */
5819 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5820 {
5821 	int i;
5822 	u32 data[2];
5823 
5824 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5825 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5826 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5827 		if (is_t4(adap->params.chip)) {
5828 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5829 		} else {
5830 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5831 					 PM_TX_DBG_DATA_A, data, 2,
5832 					 PM_TX_DBG_STAT_MSB_A);
5833 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5834 		}
5835 	}
5836 }
5837 
5838 /**
5839  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5840  *	@adap: the adapter
5841  *	@cnt: where to store the count statistics
5842  *	@cycles: where to store the cycle statistics
5843  *
5844  *	Returns performance statistics from PMRX.
5845  */
5846 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5847 {
5848 	int i;
5849 	u32 data[2];
5850 
5851 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5852 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5853 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5854 		if (is_t4(adap->params.chip)) {
5855 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5856 		} else {
5857 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5858 					 PM_RX_DBG_DATA_A, data, 2,
5859 					 PM_RX_DBG_STAT_MSB_A);
5860 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5861 		}
5862 	}
5863 }
5864 
5865 /**
5866  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5867  *	@adap: the adapter
5868  *	@pidx: the port index
5869  *
5870  *	Computes and returns a bitmap indicating which MPS buffer groups are
5871  *	associated with the given Port.  Bit i is set if buffer group i is
5872  *	used by the Port.
5873  */
5874 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5875 					      int pidx)
5876 {
5877 	unsigned int chip_version, nports;
5878 
5879 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5880 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5881 
5882 	switch (chip_version) {
5883 	case CHELSIO_T4:
5884 	case CHELSIO_T5:
5885 		switch (nports) {
5886 		case 1: return 0xf;
5887 		case 2: return 3 << (2 * pidx);
5888 		case 4: return 1 << pidx;
5889 		}
5890 		break;
5891 
5892 	case CHELSIO_T6:
5893 		switch (nports) {
5894 		case 2: return 1 << (2 * pidx);
5895 		}
5896 		break;
5897 	}
5898 
5899 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
5900 		chip_version, nports);
5901 
5902 	return 0;
5903 }
5904 
5905 /**
5906  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5907  *	@adapter: the adapter
5908  *	@pidx: the port index
5909  *
5910  *	Returns a bitmap indicating which MPS buffer groups are associated
5911  *	with the given Port.  Bit i is set if buffer group i is used by the
5912  *	Port.
5913  */
5914 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
5915 {
5916 	u8 *mps_bg_map;
5917 	unsigned int nports;
5918 
5919 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5920 	if (pidx >= nports) {
5921 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
5922 			pidx, nports);
5923 		return 0;
5924 	}
5925 
5926 	/* If we've already retrieved/computed this, just return the result.
5927 	 */
5928 	mps_bg_map = adapter->params.mps_bg_map;
5929 	if (mps_bg_map[pidx])
5930 		return mps_bg_map[pidx];
5931 
5932 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
5933 	 * If we're talking to such Firmware, let it tell us.  If the new
5934 	 * API isn't supported, revert back to old hardcoded way.  The value
5935 	 * obtained from Firmware is encoded in below format:
5936 	 *
5937 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
5938 	 *        ( MPSBGMAP[Port 2] << 16 ) |
5939 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
5940 	 *        ( MPSBGMAP[Port 0] <<  0 ))
5941 	 */
5942 	if (adapter->flags & FW_OK) {
5943 		u32 param, val;
5944 		int ret;
5945 
5946 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5947 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
5948 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
5949 					 0, 1, &param, &val);
5950 		if (!ret) {
5951 			int p;
5952 
5953 			/* Store the BG Map for all of the Ports in order to
5954 			 * avoid more calls to the Firmware in the future.
5955 			 */
5956 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
5957 				mps_bg_map[p] = val & 0xff;
5958 
5959 			return mps_bg_map[pidx];
5960 		}
5961 	}
5962 
5963 	/* Either we're not talking to the Firmware or we're dealing with
5964 	 * older Firmware which doesn't support the new API to get the MPS
5965 	 * Buffer Group Map.  Fall back to computing it ourselves.
5966 	 */
5967 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
5968 	return mps_bg_map[pidx];
5969 }
5970 
5971 /**
5972  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
5973  *	@adapter: the adapter
5974  *	@pidx: the port index
5975  *
5976  *	Returns a bitmap indicating which TP Ingress Channels are associated
5977  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
5978  *	the Port.
5979  */
5980 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
5981 {
5982 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
5983 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5984 
5985 	if (pidx >= nports) {
5986 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
5987 			 pidx, nports);
5988 		return 0;
5989 	}
5990 
5991 	switch (chip_version) {
5992 	case CHELSIO_T4:
5993 	case CHELSIO_T5:
5994 		/* Note that this happens to be the same values as the MPS
5995 		 * Buffer Group Map for these Chips.  But we replicate the code
5996 		 * here because they're really separate concepts.
5997 		 */
5998 		switch (nports) {
5999 		case 1: return 0xf;
6000 		case 2: return 3 << (2 * pidx);
6001 		case 4: return 1 << pidx;
6002 		}
6003 		break;
6004 
6005 	case CHELSIO_T6:
6006 		switch (nports) {
6007 		case 2: return 1 << pidx;
6008 		}
6009 		break;
6010 	}
6011 
6012 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6013 		chip_version, nports);
6014 	return 0;
6015 }
6016 
6017 /**
6018  *      t4_get_port_type_description - return Port Type string description
6019  *      @port_type: firmware Port Type enumeration
6020  */
6021 const char *t4_get_port_type_description(enum fw_port_type port_type)
6022 {
6023 	static const char *const port_type_description[] = {
6024 		"Fiber_XFI",
6025 		"Fiber_XAUI",
6026 		"BT_SGMII",
6027 		"BT_XFI",
6028 		"BT_XAUI",
6029 		"KX4",
6030 		"CX4",
6031 		"KX",
6032 		"KR",
6033 		"SFP",
6034 		"BP_AP",
6035 		"BP4_AP",
6036 		"QSFP_10G",
6037 		"QSA",
6038 		"QSFP",
6039 		"BP40_BA",
6040 		"KR4_100G",
6041 		"CR4_QSFP",
6042 		"CR_QSFP",
6043 		"CR2_QSFP",
6044 		"SFP28",
6045 		"KR_SFP28",
6046 	};
6047 
6048 	if (port_type < ARRAY_SIZE(port_type_description))
6049 		return port_type_description[port_type];
6050 	return "UNKNOWN";
6051 }
6052 
6053 /**
6054  *      t4_get_port_stats_offset - collect port stats relative to a previous
6055  *                                 snapshot
6056  *      @adap: The adapter
6057  *      @idx: The port
6058  *      @stats: Current stats to fill
6059  *      @offset: Previous stats snapshot
6060  */
6061 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6062 			      struct port_stats *stats,
6063 			      struct port_stats *offset)
6064 {
6065 	u64 *s, *o;
6066 	int i;
6067 
6068 	t4_get_port_stats(adap, idx, stats);
6069 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6070 			i < (sizeof(struct port_stats) / sizeof(u64));
6071 			i++, s++, o++)
6072 		*s -= *o;
6073 }
6074 
6075 /**
6076  *	t4_get_port_stats - collect port statistics
6077  *	@adap: the adapter
6078  *	@idx: the port index
6079  *	@p: the stats structure to fill
6080  *
6081  *	Collect statistics related to the given port from HW.
6082  */
6083 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6084 {
6085 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6086 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6087 
6088 #define GET_STAT(name) \
6089 	t4_read_reg64(adap, \
6090 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6091 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6092 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6093 
6094 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6095 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6096 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6097 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6098 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6099 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6100 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6101 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6102 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6103 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6104 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6105 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6106 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6107 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6108 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6109 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6110 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6111 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6112 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6113 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6114 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6115 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6116 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6117 
6118 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6119 		if (stat_ctl & COUNTPAUSESTATTX_F)
6120 			p->tx_frames_64 -= p->tx_pause;
6121 		if (stat_ctl & COUNTPAUSEMCTX_F)
6122 			p->tx_mcast_frames -= p->tx_pause;
6123 	}
6124 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6125 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6126 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6127 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6128 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6129 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6130 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6131 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6132 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6133 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6134 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6135 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6136 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6137 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6138 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6139 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6140 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6141 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6142 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6143 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6144 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6145 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6146 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6147 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6148 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6149 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6150 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6151 
6152 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6153 		if (stat_ctl & COUNTPAUSESTATRX_F)
6154 			p->rx_frames_64 -= p->rx_pause;
6155 		if (stat_ctl & COUNTPAUSEMCRX_F)
6156 			p->rx_mcast_frames -= p->rx_pause;
6157 	}
6158 
6159 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6160 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6161 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6162 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6163 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6164 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6165 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6166 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6167 
6168 #undef GET_STAT
6169 #undef GET_STAT_COM
6170 }
6171 
6172 /**
6173  *	t4_get_lb_stats - collect loopback port statistics
6174  *	@adap: the adapter
6175  *	@idx: the loopback port index
6176  *	@p: the stats structure to fill
6177  *
6178  *	Return HW statistics for the given loopback port.
6179  */
6180 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6181 {
6182 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6183 
6184 #define GET_STAT(name) \
6185 	t4_read_reg64(adap, \
6186 	(is_t4(adap->params.chip) ? \
6187 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6188 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6189 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6190 
6191 	p->octets           = GET_STAT(BYTES);
6192 	p->frames           = GET_STAT(FRAMES);
6193 	p->bcast_frames     = GET_STAT(BCAST);
6194 	p->mcast_frames     = GET_STAT(MCAST);
6195 	p->ucast_frames     = GET_STAT(UCAST);
6196 	p->error_frames     = GET_STAT(ERROR);
6197 
6198 	p->frames_64        = GET_STAT(64B);
6199 	p->frames_65_127    = GET_STAT(65B_127B);
6200 	p->frames_128_255   = GET_STAT(128B_255B);
6201 	p->frames_256_511   = GET_STAT(256B_511B);
6202 	p->frames_512_1023  = GET_STAT(512B_1023B);
6203 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6204 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6205 	p->drop             = GET_STAT(DROP_FRAMES);
6206 
6207 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6208 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6209 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6210 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6211 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6212 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6213 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6214 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6215 
6216 #undef GET_STAT
6217 #undef GET_STAT_COM
6218 }
6219 
6220 /*     t4_mk_filtdelwr - create a delete filter WR
6221  *     @ftid: the filter ID
6222  *     @wr: the filter work request to populate
6223  *     @qid: ingress queue to receive the delete notification
6224  *
6225  *     Creates a filter work request to delete the supplied filter.  If @qid is
6226  *     negative the delete notification is suppressed.
6227  */
6228 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6229 {
6230 	memset(wr, 0, sizeof(*wr));
6231 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6232 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6233 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6234 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6235 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6236 	if (qid >= 0)
6237 		wr->rx_chan_rx_rpl_iq =
6238 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6239 }
6240 
6241 #define INIT_CMD(var, cmd, rd_wr) do { \
6242 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6243 					FW_CMD_REQUEST_F | \
6244 					FW_CMD_##rd_wr##_F); \
6245 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6246 } while (0)
6247 
6248 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6249 			  u32 addr, u32 val)
6250 {
6251 	u32 ldst_addrspace;
6252 	struct fw_ldst_cmd c;
6253 
6254 	memset(&c, 0, sizeof(c));
6255 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6256 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6257 					FW_CMD_REQUEST_F |
6258 					FW_CMD_WRITE_F |
6259 					ldst_addrspace);
6260 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6261 	c.u.addrval.addr = cpu_to_be32(addr);
6262 	c.u.addrval.val = cpu_to_be32(val);
6263 
6264 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6265 }
6266 
6267 /**
6268  *	t4_mdio_rd - read a PHY register through MDIO
6269  *	@adap: the adapter
6270  *	@mbox: mailbox to use for the FW command
6271  *	@phy_addr: the PHY address
6272  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6273  *	@reg: the register to read
6274  *	@valp: where to store the value
6275  *
6276  *	Issues a FW command through the given mailbox to read a PHY register.
6277  */
6278 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6279 	       unsigned int mmd, unsigned int reg, u16 *valp)
6280 {
6281 	int ret;
6282 	u32 ldst_addrspace;
6283 	struct fw_ldst_cmd c;
6284 
6285 	memset(&c, 0, sizeof(c));
6286 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6287 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6288 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6289 					ldst_addrspace);
6290 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6291 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6292 					 FW_LDST_CMD_MMD_V(mmd));
6293 	c.u.mdio.raddr = cpu_to_be16(reg);
6294 
6295 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6296 	if (ret == 0)
6297 		*valp = be16_to_cpu(c.u.mdio.rval);
6298 	return ret;
6299 }
6300 
6301 /**
6302  *	t4_mdio_wr - write a PHY register through MDIO
6303  *	@adap: the adapter
6304  *	@mbox: mailbox to use for the FW command
6305  *	@phy_addr: the PHY address
6306  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6307  *	@reg: the register to write
6308  *	@valp: value to write
6309  *
6310  *	Issues a FW command through the given mailbox to write a PHY register.
6311  */
6312 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6313 	       unsigned int mmd, unsigned int reg, u16 val)
6314 {
6315 	u32 ldst_addrspace;
6316 	struct fw_ldst_cmd c;
6317 
6318 	memset(&c, 0, sizeof(c));
6319 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6320 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6321 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6322 					ldst_addrspace);
6323 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6324 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6325 					 FW_LDST_CMD_MMD_V(mmd));
6326 	c.u.mdio.raddr = cpu_to_be16(reg);
6327 	c.u.mdio.rval = cpu_to_be16(val);
6328 
6329 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6330 }
6331 
6332 /**
6333  *	t4_sge_decode_idma_state - decode the idma state
6334  *	@adap: the adapter
6335  *	@state: the state idma is stuck in
6336  */
6337 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6338 {
6339 	static const char * const t4_decode[] = {
6340 		"IDMA_IDLE",
6341 		"IDMA_PUSH_MORE_CPL_FIFO",
6342 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6343 		"Not used",
6344 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6345 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6346 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6347 		"IDMA_SEND_FIFO_TO_IMSG",
6348 		"IDMA_FL_REQ_DATA_FL_PREP",
6349 		"IDMA_FL_REQ_DATA_FL",
6350 		"IDMA_FL_DROP",
6351 		"IDMA_FL_H_REQ_HEADER_FL",
6352 		"IDMA_FL_H_SEND_PCIEHDR",
6353 		"IDMA_FL_H_PUSH_CPL_FIFO",
6354 		"IDMA_FL_H_SEND_CPL",
6355 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6356 		"IDMA_FL_H_SEND_IP_HDR",
6357 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6358 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6359 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6360 		"IDMA_FL_D_SEND_PCIEHDR",
6361 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6362 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6363 		"IDMA_FL_SEND_PCIEHDR",
6364 		"IDMA_FL_PUSH_CPL_FIFO",
6365 		"IDMA_FL_SEND_CPL",
6366 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6367 		"IDMA_FL_SEND_PAYLOAD",
6368 		"IDMA_FL_REQ_NEXT_DATA_FL",
6369 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6370 		"IDMA_FL_SEND_PADDING",
6371 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6372 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6373 		"IDMA_FL_REQ_DATAFL_DONE",
6374 		"IDMA_FL_REQ_HEADERFL_DONE",
6375 	};
6376 	static const char * const t5_decode[] = {
6377 		"IDMA_IDLE",
6378 		"IDMA_ALMOST_IDLE",
6379 		"IDMA_PUSH_MORE_CPL_FIFO",
6380 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6381 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6382 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6383 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6384 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6385 		"IDMA_SEND_FIFO_TO_IMSG",
6386 		"IDMA_FL_REQ_DATA_FL",
6387 		"IDMA_FL_DROP",
6388 		"IDMA_FL_DROP_SEND_INC",
6389 		"IDMA_FL_H_REQ_HEADER_FL",
6390 		"IDMA_FL_H_SEND_PCIEHDR",
6391 		"IDMA_FL_H_PUSH_CPL_FIFO",
6392 		"IDMA_FL_H_SEND_CPL",
6393 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6394 		"IDMA_FL_H_SEND_IP_HDR",
6395 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6396 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6397 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6398 		"IDMA_FL_D_SEND_PCIEHDR",
6399 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6400 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6401 		"IDMA_FL_SEND_PCIEHDR",
6402 		"IDMA_FL_PUSH_CPL_FIFO",
6403 		"IDMA_FL_SEND_CPL",
6404 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6405 		"IDMA_FL_SEND_PAYLOAD",
6406 		"IDMA_FL_REQ_NEXT_DATA_FL",
6407 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6408 		"IDMA_FL_SEND_PADDING",
6409 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6410 	};
6411 	static const char * const t6_decode[] = {
6412 		"IDMA_IDLE",
6413 		"IDMA_PUSH_MORE_CPL_FIFO",
6414 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6415 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6416 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6417 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6418 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6419 		"IDMA_FL_REQ_DATA_FL",
6420 		"IDMA_FL_DROP",
6421 		"IDMA_FL_DROP_SEND_INC",
6422 		"IDMA_FL_H_REQ_HEADER_FL",
6423 		"IDMA_FL_H_SEND_PCIEHDR",
6424 		"IDMA_FL_H_PUSH_CPL_FIFO",
6425 		"IDMA_FL_H_SEND_CPL",
6426 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6427 		"IDMA_FL_H_SEND_IP_HDR",
6428 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6429 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6430 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6431 		"IDMA_FL_D_SEND_PCIEHDR",
6432 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6433 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6434 		"IDMA_FL_SEND_PCIEHDR",
6435 		"IDMA_FL_PUSH_CPL_FIFO",
6436 		"IDMA_FL_SEND_CPL",
6437 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6438 		"IDMA_FL_SEND_PAYLOAD",
6439 		"IDMA_FL_REQ_NEXT_DATA_FL",
6440 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6441 		"IDMA_FL_SEND_PADDING",
6442 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6443 	};
6444 	static const u32 sge_regs[] = {
6445 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6446 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6447 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6448 	};
6449 	const char **sge_idma_decode;
6450 	int sge_idma_decode_nstates;
6451 	int i;
6452 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6453 
6454 	/* Select the right set of decode strings to dump depending on the
6455 	 * adapter chip type.
6456 	 */
6457 	switch (chip_version) {
6458 	case CHELSIO_T4:
6459 		sge_idma_decode = (const char **)t4_decode;
6460 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6461 		break;
6462 
6463 	case CHELSIO_T5:
6464 		sge_idma_decode = (const char **)t5_decode;
6465 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6466 		break;
6467 
6468 	case CHELSIO_T6:
6469 		sge_idma_decode = (const char **)t6_decode;
6470 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6471 		break;
6472 
6473 	default:
6474 		dev_err(adapter->pdev_dev,
6475 			"Unsupported chip version %d\n", chip_version);
6476 		return;
6477 	}
6478 
6479 	if (is_t4(adapter->params.chip)) {
6480 		sge_idma_decode = (const char **)t4_decode;
6481 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6482 	} else {
6483 		sge_idma_decode = (const char **)t5_decode;
6484 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6485 	}
6486 
6487 	if (state < sge_idma_decode_nstates)
6488 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6489 	else
6490 		CH_WARN(adapter, "idma state %d unknown\n", state);
6491 
6492 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6493 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6494 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6495 }
6496 
6497 /**
6498  *      t4_sge_ctxt_flush - flush the SGE context cache
6499  *      @adap: the adapter
6500  *      @mbox: mailbox to use for the FW command
6501  *
6502  *      Issues a FW command through the given mailbox to flush the
6503  *      SGE context cache.
6504  */
6505 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6506 {
6507 	int ret;
6508 	u32 ldst_addrspace;
6509 	struct fw_ldst_cmd c;
6510 
6511 	memset(&c, 0, sizeof(c));
6512 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
6513 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6514 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6515 					ldst_addrspace);
6516 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6517 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6518 
6519 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6520 	return ret;
6521 }
6522 
6523 /**
6524  *      t4_fw_hello - establish communication with FW
6525  *      @adap: the adapter
6526  *      @mbox: mailbox to use for the FW command
6527  *      @evt_mbox: mailbox to receive async FW events
6528  *      @master: specifies the caller's willingness to be the device master
6529  *	@state: returns the current device state (if non-NULL)
6530  *
6531  *	Issues a command to establish communication with FW.  Returns either
6532  *	an error (negative integer) or the mailbox of the Master PF.
6533  */
6534 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6535 		enum dev_master master, enum dev_state *state)
6536 {
6537 	int ret;
6538 	struct fw_hello_cmd c;
6539 	u32 v;
6540 	unsigned int master_mbox;
6541 	int retries = FW_CMD_HELLO_RETRIES;
6542 
6543 retry:
6544 	memset(&c, 0, sizeof(c));
6545 	INIT_CMD(c, HELLO, WRITE);
6546 	c.err_to_clearinit = cpu_to_be32(
6547 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6548 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6549 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6550 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6551 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6552 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6553 		FW_HELLO_CMD_CLEARINIT_F);
6554 
6555 	/*
6556 	 * Issue the HELLO command to the firmware.  If it's not successful
6557 	 * but indicates that we got a "busy" or "timeout" condition, retry
6558 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6559 	 * retry limit, check to see if the firmware left us any error
6560 	 * information and report that if so.
6561 	 */
6562 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6563 	if (ret < 0) {
6564 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6565 			goto retry;
6566 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6567 			t4_report_fw_error(adap);
6568 		return ret;
6569 	}
6570 
6571 	v = be32_to_cpu(c.err_to_clearinit);
6572 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6573 	if (state) {
6574 		if (v & FW_HELLO_CMD_ERR_F)
6575 			*state = DEV_STATE_ERR;
6576 		else if (v & FW_HELLO_CMD_INIT_F)
6577 			*state = DEV_STATE_INIT;
6578 		else
6579 			*state = DEV_STATE_UNINIT;
6580 	}
6581 
6582 	/*
6583 	 * If we're not the Master PF then we need to wait around for the
6584 	 * Master PF Driver to finish setting up the adapter.
6585 	 *
6586 	 * Note that we also do this wait if we're a non-Master-capable PF and
6587 	 * there is no current Master PF; a Master PF may show up momentarily
6588 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6589 	 * OS loads lots of different drivers rapidly at the same time).  In
6590 	 * this case, the Master PF returned by the firmware will be
6591 	 * PCIE_FW_MASTER_M so the test below will work ...
6592 	 */
6593 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6594 	    master_mbox != mbox) {
6595 		int waiting = FW_CMD_HELLO_TIMEOUT;
6596 
6597 		/*
6598 		 * Wait for the firmware to either indicate an error or
6599 		 * initialized state.  If we see either of these we bail out
6600 		 * and report the issue to the caller.  If we exhaust the
6601 		 * "hello timeout" and we haven't exhausted our retries, try
6602 		 * again.  Otherwise bail with a timeout error.
6603 		 */
6604 		for (;;) {
6605 			u32 pcie_fw;
6606 
6607 			msleep(50);
6608 			waiting -= 50;
6609 
6610 			/*
6611 			 * If neither Error nor Initialialized are indicated
6612 			 * by the firmware keep waiting till we exaust our
6613 			 * timeout ... and then retry if we haven't exhausted
6614 			 * our retries ...
6615 			 */
6616 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6617 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6618 				if (waiting <= 0) {
6619 					if (retries-- > 0)
6620 						goto retry;
6621 
6622 					return -ETIMEDOUT;
6623 				}
6624 				continue;
6625 			}
6626 
6627 			/*
6628 			 * We either have an Error or Initialized condition
6629 			 * report errors preferentially.
6630 			 */
6631 			if (state) {
6632 				if (pcie_fw & PCIE_FW_ERR_F)
6633 					*state = DEV_STATE_ERR;
6634 				else if (pcie_fw & PCIE_FW_INIT_F)
6635 					*state = DEV_STATE_INIT;
6636 			}
6637 
6638 			/*
6639 			 * If we arrived before a Master PF was selected and
6640 			 * there's not a valid Master PF, grab its identity
6641 			 * for our caller.
6642 			 */
6643 			if (master_mbox == PCIE_FW_MASTER_M &&
6644 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6645 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6646 			break;
6647 		}
6648 	}
6649 
6650 	return master_mbox;
6651 }
6652 
6653 /**
6654  *	t4_fw_bye - end communication with FW
6655  *	@adap: the adapter
6656  *	@mbox: mailbox to use for the FW command
6657  *
6658  *	Issues a command to terminate communication with FW.
6659  */
6660 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6661 {
6662 	struct fw_bye_cmd c;
6663 
6664 	memset(&c, 0, sizeof(c));
6665 	INIT_CMD(c, BYE, WRITE);
6666 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6667 }
6668 
6669 /**
6670  *	t4_init_cmd - ask FW to initialize the device
6671  *	@adap: the adapter
6672  *	@mbox: mailbox to use for the FW command
6673  *
6674  *	Issues a command to FW to partially initialize the device.  This
6675  *	performs initialization that generally doesn't depend on user input.
6676  */
6677 int t4_early_init(struct adapter *adap, unsigned int mbox)
6678 {
6679 	struct fw_initialize_cmd c;
6680 
6681 	memset(&c, 0, sizeof(c));
6682 	INIT_CMD(c, INITIALIZE, WRITE);
6683 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6684 }
6685 
6686 /**
6687  *	t4_fw_reset - issue a reset to FW
6688  *	@adap: the adapter
6689  *	@mbox: mailbox to use for the FW command
6690  *	@reset: specifies the type of reset to perform
6691  *
6692  *	Issues a reset command of the specified type to FW.
6693  */
6694 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6695 {
6696 	struct fw_reset_cmd c;
6697 
6698 	memset(&c, 0, sizeof(c));
6699 	INIT_CMD(c, RESET, WRITE);
6700 	c.val = cpu_to_be32(reset);
6701 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6702 }
6703 
6704 /**
6705  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6706  *	@adap: the adapter
6707  *	@mbox: mailbox to use for the FW RESET command (if desired)
6708  *	@force: force uP into RESET even if FW RESET command fails
6709  *
6710  *	Issues a RESET command to firmware (if desired) with a HALT indication
6711  *	and then puts the microprocessor into RESET state.  The RESET command
6712  *	will only be issued if a legitimate mailbox is provided (mbox <=
6713  *	PCIE_FW_MASTER_M).
6714  *
6715  *	This is generally used in order for the host to safely manipulate the
6716  *	adapter without fear of conflicting with whatever the firmware might
6717  *	be doing.  The only way out of this state is to RESTART the firmware
6718  *	...
6719  */
6720 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6721 {
6722 	int ret = 0;
6723 
6724 	/*
6725 	 * If a legitimate mailbox is provided, issue a RESET command
6726 	 * with a HALT indication.
6727 	 */
6728 	if (mbox <= PCIE_FW_MASTER_M) {
6729 		struct fw_reset_cmd c;
6730 
6731 		memset(&c, 0, sizeof(c));
6732 		INIT_CMD(c, RESET, WRITE);
6733 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6734 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6735 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6736 	}
6737 
6738 	/*
6739 	 * Normally we won't complete the operation if the firmware RESET
6740 	 * command fails but if our caller insists we'll go ahead and put the
6741 	 * uP into RESET.  This can be useful if the firmware is hung or even
6742 	 * missing ...  We'll have to take the risk of putting the uP into
6743 	 * RESET without the cooperation of firmware in that case.
6744 	 *
6745 	 * We also force the firmware's HALT flag to be on in case we bypassed
6746 	 * the firmware RESET command above or we're dealing with old firmware
6747 	 * which doesn't have the HALT capability.  This will serve as a flag
6748 	 * for the incoming firmware to know that it's coming out of a HALT
6749 	 * rather than a RESET ... if it's new enough to understand that ...
6750 	 */
6751 	if (ret == 0 || force) {
6752 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6753 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6754 				 PCIE_FW_HALT_F);
6755 	}
6756 
6757 	/*
6758 	 * And we always return the result of the firmware RESET command
6759 	 * even when we force the uP into RESET ...
6760 	 */
6761 	return ret;
6762 }
6763 
6764 /**
6765  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6766  *	@adap: the adapter
6767  *	@reset: if we want to do a RESET to restart things
6768  *
6769  *	Restart firmware previously halted by t4_fw_halt().  On successful
6770  *	return the previous PF Master remains as the new PF Master and there
6771  *	is no need to issue a new HELLO command, etc.
6772  *
6773  *	We do this in two ways:
6774  *
6775  *	 1. If we're dealing with newer firmware we'll simply want to take
6776  *	    the chip's microprocessor out of RESET.  This will cause the
6777  *	    firmware to start up from its start vector.  And then we'll loop
6778  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6779  *	    reset to 0) or we timeout.
6780  *
6781  *	 2. If we're dealing with older firmware then we'll need to RESET
6782  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6783  *	    flag and automatically RESET itself on startup.
6784  */
6785 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6786 {
6787 	if (reset) {
6788 		/*
6789 		 * Since we're directing the RESET instead of the firmware
6790 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6791 		 * bit.
6792 		 */
6793 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6794 
6795 		/*
6796 		 * If we've been given a valid mailbox, first try to get the
6797 		 * firmware to do the RESET.  If that works, great and we can
6798 		 * return success.  Otherwise, if we haven't been given a
6799 		 * valid mailbox or the RESET command failed, fall back to
6800 		 * hitting the chip with a hammer.
6801 		 */
6802 		if (mbox <= PCIE_FW_MASTER_M) {
6803 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6804 			msleep(100);
6805 			if (t4_fw_reset(adap, mbox,
6806 					PIORST_F | PIORSTMODE_F) == 0)
6807 				return 0;
6808 		}
6809 
6810 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6811 		msleep(2000);
6812 	} else {
6813 		int ms;
6814 
6815 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6816 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6817 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6818 				return 0;
6819 			msleep(100);
6820 			ms += 100;
6821 		}
6822 		return -ETIMEDOUT;
6823 	}
6824 	return 0;
6825 }
6826 
6827 /**
6828  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6829  *	@adap: the adapter
6830  *	@mbox: mailbox to use for the FW RESET command (if desired)
6831  *	@fw_data: the firmware image to write
6832  *	@size: image size
6833  *	@force: force upgrade even if firmware doesn't cooperate
6834  *
6835  *	Perform all of the steps necessary for upgrading an adapter's
6836  *	firmware image.  Normally this requires the cooperation of the
6837  *	existing firmware in order to halt all existing activities
6838  *	but if an invalid mailbox token is passed in we skip that step
6839  *	(though we'll still put the adapter microprocessor into RESET in
6840  *	that case).
6841  *
6842  *	On successful return the new firmware will have been loaded and
6843  *	the adapter will have been fully RESET losing all previous setup
6844  *	state.  On unsuccessful return the adapter may be completely hosed ...
6845  *	positive errno indicates that the adapter is ~probably~ intact, a
6846  *	negative errno indicates that things are looking bad ...
6847  */
6848 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6849 		  const u8 *fw_data, unsigned int size, int force)
6850 {
6851 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6852 	int reset, ret;
6853 
6854 	if (!t4_fw_matches_chip(adap, fw_hdr))
6855 		return -EINVAL;
6856 
6857 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6858 	 * wont be sent when we are flashing FW.
6859 	 */
6860 	adap->flags &= ~FW_OK;
6861 
6862 	ret = t4_fw_halt(adap, mbox, force);
6863 	if (ret < 0 && !force)
6864 		goto out;
6865 
6866 	ret = t4_load_fw(adap, fw_data, size);
6867 	if (ret < 0)
6868 		goto out;
6869 
6870 	/*
6871 	 * If there was a Firmware Configuration File stored in FLASH,
6872 	 * there's a good chance that it won't be compatible with the new
6873 	 * Firmware.  In order to prevent difficult to diagnose adapter
6874 	 * initialization issues, we clear out the Firmware Configuration File
6875 	 * portion of the FLASH .  The user will need to re-FLASH a new
6876 	 * Firmware Configuration File which is compatible with the new
6877 	 * Firmware if that's desired.
6878 	 */
6879 	(void)t4_load_cfg(adap, NULL, 0);
6880 
6881 	/*
6882 	 * Older versions of the firmware don't understand the new
6883 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6884 	 * restart.  So for newly loaded older firmware we'll have to do the
6885 	 * RESET for it so it starts up on a clean slate.  We can tell if
6886 	 * the newly loaded firmware will handle this right by checking
6887 	 * its header flags to see if it advertises the capability.
6888 	 */
6889 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6890 	ret = t4_fw_restart(adap, mbox, reset);
6891 
6892 	/* Grab potentially new Firmware Device Log parameters so we can see
6893 	 * how healthy the new Firmware is.  It's okay to contact the new
6894 	 * Firmware for these parameters even though, as far as it's
6895 	 * concerned, we've never said "HELLO" to it ...
6896 	 */
6897 	(void)t4_init_devlog_params(adap);
6898 out:
6899 	adap->flags |= FW_OK;
6900 	return ret;
6901 }
6902 
6903 /**
6904  *	t4_fl_pkt_align - return the fl packet alignment
6905  *	@adap: the adapter
6906  *
6907  *	T4 has a single field to specify the packing and padding boundary.
6908  *	T5 onwards has separate fields for this and hence the alignment for
6909  *	next packet offset is maximum of these two.
6910  *
6911  */
6912 int t4_fl_pkt_align(struct adapter *adap)
6913 {
6914 	u32 sge_control, sge_control2;
6915 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6916 
6917 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6918 
6919 	/* T4 uses a single control field to specify both the PCIe Padding and
6920 	 * Packing Boundary.  T5 introduced the ability to specify these
6921 	 * separately.  The actual Ingress Packet Data alignment boundary
6922 	 * within Packed Buffer Mode is the maximum of these two
6923 	 * specifications.  (Note that it makes no real practical sense to
6924 	 * have the Pading Boudary be larger than the Packing Boundary but you
6925 	 * could set the chip up that way and, in fact, legacy T4 code would
6926 	 * end doing this because it would initialize the Padding Boundary and
6927 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6928 	 * Padding Boundary values in T6 starts from 8B,
6929 	 * where as it is 32B for T4 and T5.
6930 	 */
6931 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6932 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6933 	else
6934 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6935 
6936 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6937 
6938 	fl_align = ingpadboundary;
6939 	if (!is_t4(adap->params.chip)) {
6940 		/* T5 has a weird interpretation of one of the PCIe Packing
6941 		 * Boundary values.  No idea why ...
6942 		 */
6943 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6944 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6945 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6946 			ingpackboundary = 16;
6947 		else
6948 			ingpackboundary = 1 << (ingpackboundary +
6949 						INGPACKBOUNDARY_SHIFT_X);
6950 
6951 		fl_align = max(ingpadboundary, ingpackboundary);
6952 	}
6953 	return fl_align;
6954 }
6955 
6956 /**
6957  *	t4_fixup_host_params - fix up host-dependent parameters
6958  *	@adap: the adapter
6959  *	@page_size: the host's Base Page Size
6960  *	@cache_line_size: the host's Cache Line Size
6961  *
6962  *	Various registers in T4 contain values which are dependent on the
6963  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6964  *	those registers with the appropriate values as passed in ...
6965  */
6966 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6967 			 unsigned int cache_line_size)
6968 {
6969 	unsigned int page_shift = fls(page_size) - 1;
6970 	unsigned int sge_hps = page_shift - 10;
6971 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6972 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6973 	unsigned int fl_align_log = fls(fl_align) - 1;
6974 
6975 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6976 		     HOSTPAGESIZEPF0_V(sge_hps) |
6977 		     HOSTPAGESIZEPF1_V(sge_hps) |
6978 		     HOSTPAGESIZEPF2_V(sge_hps) |
6979 		     HOSTPAGESIZEPF3_V(sge_hps) |
6980 		     HOSTPAGESIZEPF4_V(sge_hps) |
6981 		     HOSTPAGESIZEPF5_V(sge_hps) |
6982 		     HOSTPAGESIZEPF6_V(sge_hps) |
6983 		     HOSTPAGESIZEPF7_V(sge_hps));
6984 
6985 	if (is_t4(adap->params.chip)) {
6986 		t4_set_reg_field(adap, SGE_CONTROL_A,
6987 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6988 				 EGRSTATUSPAGESIZE_F,
6989 				 INGPADBOUNDARY_V(fl_align_log -
6990 						  INGPADBOUNDARY_SHIFT_X) |
6991 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6992 	} else {
6993 		unsigned int pack_align;
6994 		unsigned int ingpad, ingpack;
6995 		unsigned int pcie_cap;
6996 
6997 		/* T5 introduced the separation of the Free List Padding and
6998 		 * Packing Boundaries.  Thus, we can select a smaller Padding
6999 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7000 		 * Bandwidth, and use a Packing Boundary which is large enough
7001 		 * to avoid false sharing between CPUs, etc.
7002 		 *
7003 		 * For the PCI Link, the smaller the Padding Boundary the
7004 		 * better.  For the Memory Controller, a smaller Padding
7005 		 * Boundary is better until we cross under the Memory Line
7006 		 * Size (the minimum unit of transfer to/from Memory).  If we
7007 		 * have a Padding Boundary which is smaller than the Memory
7008 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7009 		 * Memory Controller which is never good.
7010 		 */
7011 
7012 		/* We want the Packing Boundary to be based on the Cache Line
7013 		 * Size in order to help avoid False Sharing performance
7014 		 * issues between CPUs, etc.  We also want the Packing
7015 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7016 		 * get best performance when the Packing Boundary is a
7017 		 * multiple of the Maximum Payload Size.
7018 		 */
7019 		pack_align = fl_align;
7020 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7021 		if (pcie_cap) {
7022 			unsigned int mps, mps_log;
7023 			u16 devctl;
7024 
7025 			/* The PCIe Device Control Maximum Payload Size field
7026 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7027 			 * 128 bytes.
7028 			 */
7029 			pci_read_config_word(adap->pdev,
7030 					     pcie_cap + PCI_EXP_DEVCTL,
7031 					     &devctl);
7032 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7033 			mps = 1 << mps_log;
7034 			if (mps > pack_align)
7035 				pack_align = mps;
7036 		}
7037 
7038 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7039 		 * value for the Packing Boundary.  This corresponds to 16
7040 		 * bytes instead of the expected 32 bytes.  So if we want 32
7041 		 * bytes, the best we can really do is 64 bytes ...
7042 		 */
7043 		if (pack_align <= 16) {
7044 			ingpack = INGPACKBOUNDARY_16B_X;
7045 			fl_align = 16;
7046 		} else if (pack_align == 32) {
7047 			ingpack = INGPACKBOUNDARY_64B_X;
7048 			fl_align = 64;
7049 		} else {
7050 			unsigned int pack_align_log = fls(pack_align) - 1;
7051 
7052 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7053 			fl_align = pack_align;
7054 		}
7055 
7056 		/* Use the smallest Ingress Padding which isn't smaller than
7057 		 * the Memory Controller Read/Write Size.  We'll take that as
7058 		 * being 8 bytes since we don't know of any system with a
7059 		 * wider Memory Controller Bus Width.
7060 		 */
7061 		if (is_t5(adap->params.chip))
7062 			ingpad = INGPADBOUNDARY_32B_X;
7063 		else
7064 			ingpad = T6_INGPADBOUNDARY_8B_X;
7065 
7066 		t4_set_reg_field(adap, SGE_CONTROL_A,
7067 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7068 				 EGRSTATUSPAGESIZE_F,
7069 				 INGPADBOUNDARY_V(ingpad) |
7070 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7071 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7072 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7073 				 INGPACKBOUNDARY_V(ingpack));
7074 	}
7075 	/*
7076 	 * Adjust various SGE Free List Host Buffer Sizes.
7077 	 *
7078 	 * This is something of a crock since we're using fixed indices into
7079 	 * the array which are also known by the sge.c code and the T4
7080 	 * Firmware Configuration File.  We need to come up with a much better
7081 	 * approach to managing this array.  For now, the first four entries
7082 	 * are:
7083 	 *
7084 	 *   0: Host Page Size
7085 	 *   1: 64KB
7086 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7087 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7088 	 *
7089 	 * For the single-MTU buffers in unpacked mode we need to include
7090 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7091 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7092 	 * Padding boundary.  All of these are accommodated in the Factory
7093 	 * Default Firmware Configuration File but we need to adjust it for
7094 	 * this host's cache line size.
7095 	 */
7096 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7097 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7098 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7099 		     & ~(fl_align-1));
7100 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7101 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7102 		     & ~(fl_align-1));
7103 
7104 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7105 
7106 	return 0;
7107 }
7108 
7109 /**
7110  *	t4_fw_initialize - ask FW to initialize the device
7111  *	@adap: the adapter
7112  *	@mbox: mailbox to use for the FW command
7113  *
7114  *	Issues a command to FW to partially initialize the device.  This
7115  *	performs initialization that generally doesn't depend on user input.
7116  */
7117 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7118 {
7119 	struct fw_initialize_cmd c;
7120 
7121 	memset(&c, 0, sizeof(c));
7122 	INIT_CMD(c, INITIALIZE, WRITE);
7123 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7124 }
7125 
7126 /**
7127  *	t4_query_params_rw - query FW or device parameters
7128  *	@adap: the adapter
7129  *	@mbox: mailbox to use for the FW command
7130  *	@pf: the PF
7131  *	@vf: the VF
7132  *	@nparams: the number of parameters
7133  *	@params: the parameter names
7134  *	@val: the parameter values
7135  *	@rw: Write and read flag
7136  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7137  *
7138  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7139  *	queried at once.
7140  */
7141 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7142 		       unsigned int vf, unsigned int nparams, const u32 *params,
7143 		       u32 *val, int rw, bool sleep_ok)
7144 {
7145 	int i, ret;
7146 	struct fw_params_cmd c;
7147 	__be32 *p = &c.param[0].mnem;
7148 
7149 	if (nparams > 7)
7150 		return -EINVAL;
7151 
7152 	memset(&c, 0, sizeof(c));
7153 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7154 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7155 				  FW_PARAMS_CMD_PFN_V(pf) |
7156 				  FW_PARAMS_CMD_VFN_V(vf));
7157 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7158 
7159 	for (i = 0; i < nparams; i++) {
7160 		*p++ = cpu_to_be32(*params++);
7161 		if (rw)
7162 			*p = cpu_to_be32(*(val + i));
7163 		p++;
7164 	}
7165 
7166 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7167 	if (ret == 0)
7168 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7169 			*val++ = be32_to_cpu(*p);
7170 	return ret;
7171 }
7172 
7173 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7174 		    unsigned int vf, unsigned int nparams, const u32 *params,
7175 		    u32 *val)
7176 {
7177 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7178 				  true);
7179 }
7180 
7181 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7182 		       unsigned int vf, unsigned int nparams, const u32 *params,
7183 		       u32 *val)
7184 {
7185 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7186 				  false);
7187 }
7188 
7189 /**
7190  *      t4_set_params_timeout - sets FW or device parameters
7191  *      @adap: the adapter
7192  *      @mbox: mailbox to use for the FW command
7193  *      @pf: the PF
7194  *      @vf: the VF
7195  *      @nparams: the number of parameters
7196  *      @params: the parameter names
7197  *      @val: the parameter values
7198  *      @timeout: the timeout time
7199  *
7200  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7201  *      specified at once.
7202  */
7203 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7204 			  unsigned int pf, unsigned int vf,
7205 			  unsigned int nparams, const u32 *params,
7206 			  const u32 *val, int timeout)
7207 {
7208 	struct fw_params_cmd c;
7209 	__be32 *p = &c.param[0].mnem;
7210 
7211 	if (nparams > 7)
7212 		return -EINVAL;
7213 
7214 	memset(&c, 0, sizeof(c));
7215 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7216 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7217 				  FW_PARAMS_CMD_PFN_V(pf) |
7218 				  FW_PARAMS_CMD_VFN_V(vf));
7219 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7220 
7221 	while (nparams--) {
7222 		*p++ = cpu_to_be32(*params++);
7223 		*p++ = cpu_to_be32(*val++);
7224 	}
7225 
7226 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7227 }
7228 
7229 /**
7230  *	t4_set_params - sets FW or device parameters
7231  *	@adap: the adapter
7232  *	@mbox: mailbox to use for the FW command
7233  *	@pf: the PF
7234  *	@vf: the VF
7235  *	@nparams: the number of parameters
7236  *	@params: the parameter names
7237  *	@val: the parameter values
7238  *
7239  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7240  *	specified at once.
7241  */
7242 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7243 		  unsigned int vf, unsigned int nparams, const u32 *params,
7244 		  const u32 *val)
7245 {
7246 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7247 				     FW_CMD_MAX_TIMEOUT);
7248 }
7249 
7250 /**
7251  *	t4_cfg_pfvf - configure PF/VF resource limits
7252  *	@adap: the adapter
7253  *	@mbox: mailbox to use for the FW command
7254  *	@pf: the PF being configured
7255  *	@vf: the VF being configured
7256  *	@txq: the max number of egress queues
7257  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7258  *	@rxqi: the max number of interrupt-capable ingress queues
7259  *	@rxq: the max number of interruptless ingress queues
7260  *	@tc: the PCI traffic class
7261  *	@vi: the max number of virtual interfaces
7262  *	@cmask: the channel access rights mask for the PF/VF
7263  *	@pmask: the port access rights mask for the PF/VF
7264  *	@nexact: the maximum number of exact MPS filters
7265  *	@rcaps: read capabilities
7266  *	@wxcaps: write/execute capabilities
7267  *
7268  *	Configures resource limits and capabilities for a physical or virtual
7269  *	function.
7270  */
7271 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7272 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7273 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7274 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7275 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7276 {
7277 	struct fw_pfvf_cmd c;
7278 
7279 	memset(&c, 0, sizeof(c));
7280 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7281 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7282 				  FW_PFVF_CMD_VFN_V(vf));
7283 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7284 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7285 				     FW_PFVF_CMD_NIQ_V(rxq));
7286 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7287 				    FW_PFVF_CMD_PMASK_V(pmask) |
7288 				    FW_PFVF_CMD_NEQ_V(txq));
7289 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7290 				      FW_PFVF_CMD_NVI_V(vi) |
7291 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7292 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7293 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7294 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7295 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7296 }
7297 
7298 /**
7299  *	t4_alloc_vi - allocate a virtual interface
7300  *	@adap: the adapter
7301  *	@mbox: mailbox to use for the FW command
7302  *	@port: physical port associated with the VI
7303  *	@pf: the PF owning the VI
7304  *	@vf: the VF owning the VI
7305  *	@nmac: number of MAC addresses needed (1 to 5)
7306  *	@mac: the MAC addresses of the VI
7307  *	@rss_size: size of RSS table slice associated with this VI
7308  *
7309  *	Allocates a virtual interface for the given physical port.  If @mac is
7310  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7311  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7312  *	stored consecutively so the space needed is @nmac * 6 bytes.
7313  *	Returns a negative error number or the non-negative VI id.
7314  */
7315 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7316 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7317 		unsigned int *rss_size)
7318 {
7319 	int ret;
7320 	struct fw_vi_cmd c;
7321 
7322 	memset(&c, 0, sizeof(c));
7323 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7324 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7325 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7326 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7327 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7328 	c.nmac = nmac - 1;
7329 
7330 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7331 	if (ret)
7332 		return ret;
7333 
7334 	if (mac) {
7335 		memcpy(mac, c.mac, sizeof(c.mac));
7336 		switch (nmac) {
7337 		case 5:
7338 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7339 		case 4:
7340 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7341 		case 3:
7342 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7343 		case 2:
7344 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7345 		}
7346 	}
7347 	if (rss_size)
7348 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7349 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7350 }
7351 
7352 /**
7353  *	t4_free_vi - free a virtual interface
7354  *	@adap: the adapter
7355  *	@mbox: mailbox to use for the FW command
7356  *	@pf: the PF owning the VI
7357  *	@vf: the VF owning the VI
7358  *	@viid: virtual interface identifiler
7359  *
7360  *	Free a previously allocated virtual interface.
7361  */
7362 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7363 	       unsigned int vf, unsigned int viid)
7364 {
7365 	struct fw_vi_cmd c;
7366 
7367 	memset(&c, 0, sizeof(c));
7368 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7369 				  FW_CMD_REQUEST_F |
7370 				  FW_CMD_EXEC_F |
7371 				  FW_VI_CMD_PFN_V(pf) |
7372 				  FW_VI_CMD_VFN_V(vf));
7373 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7374 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7375 
7376 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7377 }
7378 
7379 /**
7380  *	t4_set_rxmode - set Rx properties of a virtual interface
7381  *	@adap: the adapter
7382  *	@mbox: mailbox to use for the FW command
7383  *	@viid: the VI id
7384  *	@mtu: the new MTU or -1
7385  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7386  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7387  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7388  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7389  *	@sleep_ok: if true we may sleep while awaiting command completion
7390  *
7391  *	Sets Rx properties of a virtual interface.
7392  */
7393 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7394 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7395 		  bool sleep_ok)
7396 {
7397 	struct fw_vi_rxmode_cmd c;
7398 
7399 	/* convert to FW values */
7400 	if (mtu < 0)
7401 		mtu = FW_RXMODE_MTU_NO_CHG;
7402 	if (promisc < 0)
7403 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7404 	if (all_multi < 0)
7405 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7406 	if (bcast < 0)
7407 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7408 	if (vlanex < 0)
7409 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7410 
7411 	memset(&c, 0, sizeof(c));
7412 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7413 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7414 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7415 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7416 	c.mtu_to_vlanexen =
7417 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7418 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7419 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7420 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7421 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7422 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7423 }
7424 
7425 /**
7426  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7427  *	@adap: the adapter
7428  *	@mbox: mailbox to use for the FW command
7429  *	@viid: the VI id
7430  *	@free: if true any existing filters for this VI id are first removed
7431  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7432  *	@addr: the MAC address(es)
7433  *	@idx: where to store the index of each allocated filter
7434  *	@hash: pointer to hash address filter bitmap
7435  *	@sleep_ok: call is allowed to sleep
7436  *
7437  *	Allocates an exact-match filter for each of the supplied addresses and
7438  *	sets it to the corresponding address.  If @idx is not %NULL it should
7439  *	have at least @naddr entries, each of which will be set to the index of
7440  *	the filter allocated for the corresponding MAC address.  If a filter
7441  *	could not be allocated for an address its index is set to 0xffff.
7442  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7443  *	are hashed and update the hash filter bitmap pointed at by @hash.
7444  *
7445  *	Returns a negative error number or the number of filters allocated.
7446  */
7447 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7448 		      unsigned int viid, bool free, unsigned int naddr,
7449 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7450 {
7451 	int offset, ret = 0;
7452 	struct fw_vi_mac_cmd c;
7453 	unsigned int nfilters = 0;
7454 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7455 	unsigned int rem = naddr;
7456 
7457 	if (naddr > max_naddr)
7458 		return -EINVAL;
7459 
7460 	for (offset = 0; offset < naddr ; /**/) {
7461 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7462 					 rem : ARRAY_SIZE(c.u.exact));
7463 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7464 						     u.exact[fw_naddr]), 16);
7465 		struct fw_vi_mac_exact *p;
7466 		int i;
7467 
7468 		memset(&c, 0, sizeof(c));
7469 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7470 					   FW_CMD_REQUEST_F |
7471 					   FW_CMD_WRITE_F |
7472 					   FW_CMD_EXEC_V(free) |
7473 					   FW_VI_MAC_CMD_VIID_V(viid));
7474 		c.freemacs_to_len16 =
7475 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7476 				    FW_CMD_LEN16_V(len16));
7477 
7478 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7479 			p->valid_to_idx =
7480 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7481 					    FW_VI_MAC_CMD_IDX_V(
7482 						    FW_VI_MAC_ADD_MAC));
7483 			memcpy(p->macaddr, addr[offset + i],
7484 			       sizeof(p->macaddr));
7485 		}
7486 
7487 		/* It's okay if we run out of space in our MAC address arena.
7488 		 * Some of the addresses we submit may get stored so we need
7489 		 * to run through the reply to see what the results were ...
7490 		 */
7491 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7492 		if (ret && ret != -FW_ENOMEM)
7493 			break;
7494 
7495 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7496 			u16 index = FW_VI_MAC_CMD_IDX_G(
7497 					be16_to_cpu(p->valid_to_idx));
7498 
7499 			if (idx)
7500 				idx[offset + i] = (index >= max_naddr ?
7501 						   0xffff : index);
7502 			if (index < max_naddr)
7503 				nfilters++;
7504 			else if (hash)
7505 				*hash |= (1ULL <<
7506 					  hash_mac_addr(addr[offset + i]));
7507 		}
7508 
7509 		free = false;
7510 		offset += fw_naddr;
7511 		rem -= fw_naddr;
7512 	}
7513 
7514 	if (ret == 0 || ret == -FW_ENOMEM)
7515 		ret = nfilters;
7516 	return ret;
7517 }
7518 
7519 /**
7520  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7521  *	@adap: the adapter
7522  *	@mbox: mailbox to use for the FW command
7523  *	@viid: the VI id
7524  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7525  *	@addr: the MAC address(es)
7526  *	@sleep_ok: call is allowed to sleep
7527  *
7528  *	Frees the exact-match filter for each of the supplied addresses
7529  *
7530  *	Returns a negative error number or the number of filters freed.
7531  */
7532 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7533 		     unsigned int viid, unsigned int naddr,
7534 		     const u8 **addr, bool sleep_ok)
7535 {
7536 	int offset, ret = 0;
7537 	struct fw_vi_mac_cmd c;
7538 	unsigned int nfilters = 0;
7539 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7540 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7541 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7542 	unsigned int rem = naddr;
7543 
7544 	if (naddr > max_naddr)
7545 		return -EINVAL;
7546 
7547 	for (offset = 0; offset < (int)naddr ; /**/) {
7548 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7549 					 ? rem
7550 					 : ARRAY_SIZE(c.u.exact));
7551 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7552 						     u.exact[fw_naddr]), 16);
7553 		struct fw_vi_mac_exact *p;
7554 		int i;
7555 
7556 		memset(&c, 0, sizeof(c));
7557 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7558 				     FW_CMD_REQUEST_F |
7559 				     FW_CMD_WRITE_F |
7560 				     FW_CMD_EXEC_V(0) |
7561 				     FW_VI_MAC_CMD_VIID_V(viid));
7562 		c.freemacs_to_len16 =
7563 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7564 					    FW_CMD_LEN16_V(len16));
7565 
7566 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7567 			p->valid_to_idx = cpu_to_be16(
7568 				FW_VI_MAC_CMD_VALID_F |
7569 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7570 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7571 		}
7572 
7573 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7574 		if (ret)
7575 			break;
7576 
7577 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7578 			u16 index = FW_VI_MAC_CMD_IDX_G(
7579 						be16_to_cpu(p->valid_to_idx));
7580 
7581 			if (index < max_naddr)
7582 				nfilters++;
7583 		}
7584 
7585 		offset += fw_naddr;
7586 		rem -= fw_naddr;
7587 	}
7588 
7589 	if (ret == 0)
7590 		ret = nfilters;
7591 	return ret;
7592 }
7593 
7594 /**
7595  *	t4_change_mac - modifies the exact-match filter for a MAC address
7596  *	@adap: the adapter
7597  *	@mbox: mailbox to use for the FW command
7598  *	@viid: the VI id
7599  *	@idx: index of existing filter for old value of MAC address, or -1
7600  *	@addr: the new MAC address value
7601  *	@persist: whether a new MAC allocation should be persistent
7602  *	@add_smt: if true also add the address to the HW SMT
7603  *
7604  *	Modifies an exact-match filter and sets it to the new MAC address.
7605  *	Note that in general it is not possible to modify the value of a given
7606  *	filter so the generic way to modify an address filter is to free the one
7607  *	being used by the old address value and allocate a new filter for the
7608  *	new address value.  @idx can be -1 if the address is a new addition.
7609  *
7610  *	Returns a negative error number or the index of the filter with the new
7611  *	MAC value.
7612  */
7613 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7614 		  int idx, const u8 *addr, bool persist, bool add_smt)
7615 {
7616 	int ret, mode;
7617 	struct fw_vi_mac_cmd c;
7618 	struct fw_vi_mac_exact *p = c.u.exact;
7619 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7620 
7621 	if (idx < 0)                             /* new allocation */
7622 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7623 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7624 
7625 	memset(&c, 0, sizeof(c));
7626 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7627 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7628 				   FW_VI_MAC_CMD_VIID_V(viid));
7629 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7630 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7631 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7632 				      FW_VI_MAC_CMD_IDX_V(idx));
7633 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7634 
7635 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7636 	if (ret == 0) {
7637 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7638 		if (ret >= max_mac_addr)
7639 			ret = -ENOMEM;
7640 	}
7641 	return ret;
7642 }
7643 
7644 /**
7645  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7646  *	@adap: the adapter
7647  *	@mbox: mailbox to use for the FW command
7648  *	@viid: the VI id
7649  *	@ucast: whether the hash filter should also match unicast addresses
7650  *	@vec: the value to be written to the hash filter
7651  *	@sleep_ok: call is allowed to sleep
7652  *
7653  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7654  */
7655 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7656 		     bool ucast, u64 vec, bool sleep_ok)
7657 {
7658 	struct fw_vi_mac_cmd c;
7659 
7660 	memset(&c, 0, sizeof(c));
7661 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7662 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7663 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7664 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7665 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7666 					  FW_CMD_LEN16_V(1));
7667 	c.u.hash.hashvec = cpu_to_be64(vec);
7668 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7669 }
7670 
7671 /**
7672  *      t4_enable_vi_params - enable/disable a virtual interface
7673  *      @adap: the adapter
7674  *      @mbox: mailbox to use for the FW command
7675  *      @viid: the VI id
7676  *      @rx_en: 1=enable Rx, 0=disable Rx
7677  *      @tx_en: 1=enable Tx, 0=disable Tx
7678  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7679  *
7680  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7681  *      only makes sense when enabling a Virtual Interface ...
7682  */
7683 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7684 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7685 {
7686 	struct fw_vi_enable_cmd c;
7687 
7688 	memset(&c, 0, sizeof(c));
7689 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7690 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7691 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7692 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7693 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7694 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7695 				     FW_LEN16(c));
7696 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7697 }
7698 
7699 /**
7700  *	t4_enable_vi - enable/disable a virtual interface
7701  *	@adap: the adapter
7702  *	@mbox: mailbox to use for the FW command
7703  *	@viid: the VI id
7704  *	@rx_en: 1=enable Rx, 0=disable Rx
7705  *	@tx_en: 1=enable Tx, 0=disable Tx
7706  *
7707  *	Enables/disables a virtual interface.
7708  */
7709 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7710 		 bool rx_en, bool tx_en)
7711 {
7712 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7713 }
7714 
7715 /**
7716  *	t4_identify_port - identify a VI's port by blinking its LED
7717  *	@adap: the adapter
7718  *	@mbox: mailbox to use for the FW command
7719  *	@viid: the VI id
7720  *	@nblinks: how many times to blink LED at 2.5 Hz
7721  *
7722  *	Identifies a VI's port by blinking its LED.
7723  */
7724 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7725 		     unsigned int nblinks)
7726 {
7727 	struct fw_vi_enable_cmd c;
7728 
7729 	memset(&c, 0, sizeof(c));
7730 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7731 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7732 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7733 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7734 	c.blinkdur = cpu_to_be16(nblinks);
7735 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7736 }
7737 
7738 /**
7739  *	t4_iq_stop - stop an ingress queue and its FLs
7740  *	@adap: the adapter
7741  *	@mbox: mailbox to use for the FW command
7742  *	@pf: the PF owning the queues
7743  *	@vf: the VF owning the queues
7744  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7745  *	@iqid: ingress queue id
7746  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7747  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7748  *
7749  *	Stops an ingress queue and its associated FLs, if any.  This causes
7750  *	any current or future data/messages destined for these queues to be
7751  *	tossed.
7752  */
7753 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7754 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7755 	       unsigned int fl0id, unsigned int fl1id)
7756 {
7757 	struct fw_iq_cmd c;
7758 
7759 	memset(&c, 0, sizeof(c));
7760 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7761 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7762 				  FW_IQ_CMD_VFN_V(vf));
7763 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7764 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7765 	c.iqid = cpu_to_be16(iqid);
7766 	c.fl0id = cpu_to_be16(fl0id);
7767 	c.fl1id = cpu_to_be16(fl1id);
7768 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7769 }
7770 
7771 /**
7772  *	t4_iq_free - free an ingress queue and its FLs
7773  *	@adap: the adapter
7774  *	@mbox: mailbox to use for the FW command
7775  *	@pf: the PF owning the queues
7776  *	@vf: the VF owning the queues
7777  *	@iqtype: the ingress queue type
7778  *	@iqid: ingress queue id
7779  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7780  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7781  *
7782  *	Frees an ingress queue and its associated FLs, if any.
7783  */
7784 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7785 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7786 	       unsigned int fl0id, unsigned int fl1id)
7787 {
7788 	struct fw_iq_cmd c;
7789 
7790 	memset(&c, 0, sizeof(c));
7791 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7792 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7793 				  FW_IQ_CMD_VFN_V(vf));
7794 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7795 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7796 	c.iqid = cpu_to_be16(iqid);
7797 	c.fl0id = cpu_to_be16(fl0id);
7798 	c.fl1id = cpu_to_be16(fl1id);
7799 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7800 }
7801 
7802 /**
7803  *	t4_eth_eq_free - free an Ethernet egress queue
7804  *	@adap: the adapter
7805  *	@mbox: mailbox to use for the FW command
7806  *	@pf: the PF owning the queue
7807  *	@vf: the VF owning the queue
7808  *	@eqid: egress queue id
7809  *
7810  *	Frees an Ethernet egress queue.
7811  */
7812 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7813 		   unsigned int vf, unsigned int eqid)
7814 {
7815 	struct fw_eq_eth_cmd c;
7816 
7817 	memset(&c, 0, sizeof(c));
7818 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7819 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7820 				  FW_EQ_ETH_CMD_PFN_V(pf) |
7821 				  FW_EQ_ETH_CMD_VFN_V(vf));
7822 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7823 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7824 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7825 }
7826 
7827 /**
7828  *	t4_ctrl_eq_free - free a control egress queue
7829  *	@adap: the adapter
7830  *	@mbox: mailbox to use for the FW command
7831  *	@pf: the PF owning the queue
7832  *	@vf: the VF owning the queue
7833  *	@eqid: egress queue id
7834  *
7835  *	Frees a control egress queue.
7836  */
7837 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7838 		    unsigned int vf, unsigned int eqid)
7839 {
7840 	struct fw_eq_ctrl_cmd c;
7841 
7842 	memset(&c, 0, sizeof(c));
7843 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7844 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7845 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7846 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7847 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7848 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7849 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7850 }
7851 
7852 /**
7853  *	t4_ofld_eq_free - free an offload egress queue
7854  *	@adap: the adapter
7855  *	@mbox: mailbox to use for the FW command
7856  *	@pf: the PF owning the queue
7857  *	@vf: the VF owning the queue
7858  *	@eqid: egress queue id
7859  *
7860  *	Frees a control egress queue.
7861  */
7862 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7863 		    unsigned int vf, unsigned int eqid)
7864 {
7865 	struct fw_eq_ofld_cmd c;
7866 
7867 	memset(&c, 0, sizeof(c));
7868 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7869 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7870 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7871 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7872 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7873 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7874 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7875 }
7876 
7877 /**
7878  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7879  *	@adap: the adapter
7880  *	@link_down_rc: Link Down Reason Code
7881  *
7882  *	Returns a string representation of the Link Down Reason Code.
7883  */
7884 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7885 {
7886 	static const char * const reason[] = {
7887 		"Link Down",
7888 		"Remote Fault",
7889 		"Auto-negotiation Failure",
7890 		"Reserved",
7891 		"Insufficient Airflow",
7892 		"Unable To Determine Reason",
7893 		"No RX Signal Detected",
7894 		"Reserved",
7895 	};
7896 
7897 	if (link_down_rc >= ARRAY_SIZE(reason))
7898 		return "Bad Reason Code";
7899 
7900 	return reason[link_down_rc];
7901 }
7902 
7903 /**
7904  * Return the highest speed set in the port capabilities, in Mb/s.
7905  */
7906 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
7907 {
7908 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
7909 		do { \
7910 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7911 				return __speed; \
7912 		} while (0)
7913 
7914 	TEST_SPEED_RETURN(400G, 400000);
7915 	TEST_SPEED_RETURN(200G, 200000);
7916 	TEST_SPEED_RETURN(100G, 100000);
7917 	TEST_SPEED_RETURN(50G,   50000);
7918 	TEST_SPEED_RETURN(40G,   40000);
7919 	TEST_SPEED_RETURN(25G,   25000);
7920 	TEST_SPEED_RETURN(10G,   10000);
7921 	TEST_SPEED_RETURN(1G,     1000);
7922 	TEST_SPEED_RETURN(100M,    100);
7923 
7924 	#undef TEST_SPEED_RETURN
7925 
7926 	return 0;
7927 }
7928 
7929 /**
7930  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
7931  *	@acaps: advertised Port Capabilities
7932  *
7933  *	Get the highest speed for the port from the advertised Port
7934  *	Capabilities.  It will be either the highest speed from the list of
7935  *	speeds or whatever user has set using ethtool.
7936  */
7937 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
7938 {
7939 	#define TEST_SPEED_RETURN(__caps_speed) \
7940 		do { \
7941 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7942 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
7943 		} while (0)
7944 
7945 	TEST_SPEED_RETURN(400G);
7946 	TEST_SPEED_RETURN(200G);
7947 	TEST_SPEED_RETURN(100G);
7948 	TEST_SPEED_RETURN(50G);
7949 	TEST_SPEED_RETURN(40G);
7950 	TEST_SPEED_RETURN(25G);
7951 	TEST_SPEED_RETURN(10G);
7952 	TEST_SPEED_RETURN(1G);
7953 	TEST_SPEED_RETURN(100M);
7954 
7955 	#undef TEST_SPEED_RETURN
7956 
7957 	return 0;
7958 }
7959 
7960 /**
7961  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
7962  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
7963  *
7964  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
7965  *	32-bit Port Capabilities value.
7966  */
7967 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
7968 {
7969 	fw_port_cap32_t linkattr = 0;
7970 
7971 	/* Unfortunately the format of the Link Status in the old
7972 	 * 16-bit Port Information message isn't the same as the
7973 	 * 16-bit Port Capabilities bitfield used everywhere else ...
7974 	 */
7975 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
7976 		linkattr |= FW_PORT_CAP32_FC_RX;
7977 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
7978 		linkattr |= FW_PORT_CAP32_FC_TX;
7979 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7980 		linkattr |= FW_PORT_CAP32_SPEED_100M;
7981 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7982 		linkattr |= FW_PORT_CAP32_SPEED_1G;
7983 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7984 		linkattr |= FW_PORT_CAP32_SPEED_10G;
7985 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7986 		linkattr |= FW_PORT_CAP32_SPEED_25G;
7987 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7988 		linkattr |= FW_PORT_CAP32_SPEED_40G;
7989 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7990 		linkattr |= FW_PORT_CAP32_SPEED_100G;
7991 
7992 	return linkattr;
7993 }
7994 
7995 /**
7996  *	t4_handle_get_port_info - process a FW reply message
7997  *	@pi: the port info
7998  *	@rpl: start of the FW message
7999  *
8000  *	Processes a GET_PORT_INFO FW reply message.
8001  */
8002 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8003 {
8004 	const struct fw_port_cmd *cmd = (const void *)rpl;
8005 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8006 	struct adapter *adapter = pi->adapter;
8007 	struct link_config *lc = &pi->link_cfg;
8008 	int link_ok, linkdnrc;
8009 	enum fw_port_type port_type;
8010 	enum fw_port_module_type mod_type;
8011 	unsigned int speed, fc, fec;
8012 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8013 
8014 	/* Extract the various fields from the Port Information message.
8015 	 */
8016 	switch (action) {
8017 	case FW_PORT_ACTION_GET_PORT_INFO: {
8018 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8019 
8020 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8021 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8022 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8023 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8024 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8025 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8026 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8027 		linkattr = lstatus_to_fwcap(lstatus);
8028 		break;
8029 	}
8030 
8031 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8032 		u32 lstatus32;
8033 
8034 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8035 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8036 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8037 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8038 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8039 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8040 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8041 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8042 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8043 		break;
8044 	}
8045 
8046 	default:
8047 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8048 			be32_to_cpu(cmd->action_to_len16));
8049 		return;
8050 	}
8051 
8052 	fec = fwcap_to_cc_fec(acaps);
8053 	fc = fwcap_to_cc_pause(linkattr);
8054 	speed = fwcap_to_speed(linkattr);
8055 
8056 	if (mod_type != pi->mod_type) {
8057 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8058 		 * various fundamental Port Capabilities which used to be
8059 		 * immutable can now change radically.  We can now have
8060 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8061 		 * all change based on what Transceiver Module is inserted.
8062 		 * So we need to record the Physical "Port" Capabilities on
8063 		 * every Transceiver Module change.
8064 		 */
8065 		lc->pcaps = pcaps;
8066 
8067 		/* When a new Transceiver Module is inserted, the Firmware
8068 		 * will examine its i2c EPROM to determine its type and
8069 		 * general operating parameters including things like Forward
8070 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8071 		 * how to interpret these i2c values to determine default
8072 		 * "sutomatic" settings.  We record these for future use when
8073 		 * the user explicitly requests these standards-based values.
8074 		 */
8075 		lc->def_acaps = acaps;
8076 
8077 		/* Some versions of the early T6 Firmware "cheated" when
8078 		 * handling different Transceiver Modules by changing the
8079 		 * underlaying Port Type reported to the Host Drivers.  As
8080 		 * such we need to capture whatever Port Type the Firmware
8081 		 * sends us and record it in case it's different from what we
8082 		 * were told earlier.  Unfortunately, since Firmware is
8083 		 * forever, we'll need to keep this code here forever, but in
8084 		 * later T6 Firmware it should just be an assignment of the
8085 		 * same value already recorded.
8086 		 */
8087 		pi->port_type = port_type;
8088 
8089 		pi->mod_type = mod_type;
8090 		t4_os_portmod_changed(adapter, pi->port_id);
8091 	}
8092 
8093 	if (link_ok != lc->link_ok || speed != lc->speed ||
8094 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
8095 		if (!link_ok && lc->link_ok) {
8096 			lc->link_down_rc = linkdnrc;
8097 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8098 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8099 		}
8100 		lc->link_ok = link_ok;
8101 		lc->speed = speed;
8102 		lc->fc = fc;
8103 		lc->fec = fec;
8104 
8105 		lc->lpacaps = lpacaps;
8106 		lc->acaps = acaps & ADVERT_MASK;
8107 
8108 		if (lc->acaps & FW_PORT_CAP32_ANEG) {
8109 			lc->autoneg = AUTONEG_ENABLE;
8110 		} else {
8111 			/* When Autoneg is disabled, user needs to set
8112 			 * single speed.
8113 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8114 			 */
8115 			lc->acaps = 0;
8116 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8117 			lc->autoneg = AUTONEG_DISABLE;
8118 		}
8119 
8120 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8121 	}
8122 }
8123 
8124 /**
8125  *	t4_update_port_info - retrieve and update port information if changed
8126  *	@pi: the port_info
8127  *
8128  *	We issue a Get Port Information Command to the Firmware and, if
8129  *	successful, we check to see if anything is different from what we
8130  *	last recorded and update things accordingly.
8131  */
8132 int t4_update_port_info(struct port_info *pi)
8133 {
8134 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8135 	struct fw_port_cmd port_cmd;
8136 	int ret;
8137 
8138 	memset(&port_cmd, 0, sizeof(port_cmd));
8139 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8140 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8141 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8142 	port_cmd.action_to_len16 = cpu_to_be32(
8143 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8144 				     ? FW_PORT_ACTION_GET_PORT_INFO
8145 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8146 		FW_LEN16(port_cmd));
8147 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8148 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8149 	if (ret)
8150 		return ret;
8151 
8152 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8153 	return 0;
8154 }
8155 
8156 /**
8157  *	t4_get_link_params - retrieve basic link parameters for given port
8158  *	@pi: the port
8159  *	@link_okp: value return pointer for link up/down
8160  *	@speedp: value return pointer for speed (Mb/s)
8161  *	@mtup: value return pointer for mtu
8162  *
8163  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8164  *	and MTU for a specified port.  A negative error is returned on
8165  *	failure; 0 on success.
8166  */
8167 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8168 		       unsigned int *speedp, unsigned int *mtup)
8169 {
8170 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8171 	struct fw_port_cmd port_cmd;
8172 	unsigned int action, link_ok, speed, mtu;
8173 	fw_port_cap32_t linkattr;
8174 	int ret;
8175 
8176 	memset(&port_cmd, 0, sizeof(port_cmd));
8177 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8178 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8179 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8180 	action = (fw_caps == FW_CAPS16
8181 		  ? FW_PORT_ACTION_GET_PORT_INFO
8182 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8183 	port_cmd.action_to_len16 = cpu_to_be32(
8184 		FW_PORT_CMD_ACTION_V(action) |
8185 		FW_LEN16(port_cmd));
8186 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8187 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8188 	if (ret)
8189 		return ret;
8190 
8191 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8192 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8193 
8194 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8195 		linkattr = lstatus_to_fwcap(lstatus);
8196 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8197 	} else {
8198 		u32 lstatus32 =
8199 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8200 
8201 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8202 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8203 		mtu = FW_PORT_CMD_MTU32_G(
8204 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8205 	}
8206 	speed = fwcap_to_speed(linkattr);
8207 
8208 	*link_okp = link_ok;
8209 	*speedp = fwcap_to_speed(linkattr);
8210 	*mtup = mtu;
8211 
8212 	return 0;
8213 }
8214 
8215 /**
8216  *      t4_handle_fw_rpl - process a FW reply message
8217  *      @adap: the adapter
8218  *      @rpl: start of the FW message
8219  *
8220  *      Processes a FW message, such as link state change messages.
8221  */
8222 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8223 {
8224 	u8 opcode = *(const u8 *)rpl;
8225 
8226 	/* This might be a port command ... this simplifies the following
8227 	 * conditionals ...  We can get away with pre-dereferencing
8228 	 * action_to_len16 because it's in the first 16 bytes and all messages
8229 	 * will be at least that long.
8230 	 */
8231 	const struct fw_port_cmd *p = (const void *)rpl;
8232 	unsigned int action =
8233 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8234 
8235 	if (opcode == FW_PORT_CMD &&
8236 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8237 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8238 		int i;
8239 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8240 		struct port_info *pi = NULL;
8241 
8242 		for_each_port(adap, i) {
8243 			pi = adap2pinfo(adap, i);
8244 			if (pi->tx_chan == chan)
8245 				break;
8246 		}
8247 
8248 		t4_handle_get_port_info(pi, rpl);
8249 	} else {
8250 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8251 			 opcode);
8252 		return -EINVAL;
8253 	}
8254 	return 0;
8255 }
8256 
8257 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8258 {
8259 	u16 val;
8260 
8261 	if (pci_is_pcie(adapter->pdev)) {
8262 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8263 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8264 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8265 	}
8266 }
8267 
8268 /**
8269  *	init_link_config - initialize a link's SW state
8270  *	@lc: pointer to structure holding the link state
8271  *	@pcaps: link Port Capabilities
8272  *	@acaps: link current Advertised Port Capabilities
8273  *
8274  *	Initializes the SW state maintained for each link, including the link's
8275  *	capabilities and default speed/flow-control/autonegotiation settings.
8276  */
8277 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8278 			     fw_port_cap32_t acaps)
8279 {
8280 	lc->pcaps = pcaps;
8281 	lc->def_acaps = acaps;
8282 	lc->lpacaps = 0;
8283 	lc->speed_caps = 0;
8284 	lc->speed = 0;
8285 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8286 
8287 	/* For Forward Error Control, we default to whatever the Firmware
8288 	 * tells us the Link is currently advertising.
8289 	 */
8290 	lc->requested_fec = FEC_AUTO;
8291 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8292 
8293 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8294 		lc->acaps = lc->pcaps & ADVERT_MASK;
8295 		lc->autoneg = AUTONEG_ENABLE;
8296 		lc->requested_fc |= PAUSE_AUTONEG;
8297 	} else {
8298 		lc->acaps = 0;
8299 		lc->autoneg = AUTONEG_DISABLE;
8300 	}
8301 }
8302 
8303 #define CIM_PF_NOACCESS 0xeeeeeeee
8304 
8305 int t4_wait_dev_ready(void __iomem *regs)
8306 {
8307 	u32 whoami;
8308 
8309 	whoami = readl(regs + PL_WHOAMI_A);
8310 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8311 		return 0;
8312 
8313 	msleep(500);
8314 	whoami = readl(regs + PL_WHOAMI_A);
8315 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8316 }
8317 
8318 struct flash_desc {
8319 	u32 vendor_and_model_id;
8320 	u32 size_mb;
8321 };
8322 
8323 static int t4_get_flash_params(struct adapter *adap)
8324 {
8325 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8326 	 * to the preexisting code.  All flash parts have 64KB sectors.
8327 	 */
8328 	static struct flash_desc supported_flash[] = {
8329 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8330 	};
8331 
8332 	unsigned int part, manufacturer;
8333 	unsigned int density, size;
8334 	u32 flashid = 0;
8335 	int ret;
8336 
8337 	/* Issue a Read ID Command to the Flash part.  We decode supported
8338 	 * Flash parts and their sizes from this.  There's a newer Query
8339 	 * Command which can retrieve detailed geometry information but many
8340 	 * Flash parts don't support it.
8341 	 */
8342 
8343 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8344 	if (!ret)
8345 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8346 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8347 	if (ret)
8348 		return ret;
8349 
8350 	/* Check to see if it's one of our non-standard supported Flash parts.
8351 	 */
8352 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8353 		if (supported_flash[part].vendor_and_model_id == flashid) {
8354 			adap->params.sf_size = supported_flash[part].size_mb;
8355 			adap->params.sf_nsec =
8356 				adap->params.sf_size / SF_SEC_SIZE;
8357 			goto found;
8358 		}
8359 
8360 	/* Decode Flash part size.  The code below looks repetative with
8361 	 * common encodings, but that's not guaranteed in the JEDEC
8362 	 * specification for the Read JADEC ID command.  The only thing that
8363 	 * we're guaranteed by the JADEC specification is where the
8364 	 * Manufacturer ID is in the returned result.  After that each
8365 	 * Manufacturer ~could~ encode things completely differently.
8366 	 * Note, all Flash parts must have 64KB sectors.
8367 	 */
8368 	manufacturer = flashid & 0xff;
8369 	switch (manufacturer) {
8370 	case 0x20: { /* Micron/Numonix */
8371 		/* This Density -> Size decoding table is taken from Micron
8372 		 * Data Sheets.
8373 		 */
8374 		density = (flashid >> 16) & 0xff;
8375 		switch (density) {
8376 		case 0x14: /* 1MB */
8377 			size = 1 << 20;
8378 			break;
8379 		case 0x15: /* 2MB */
8380 			size = 1 << 21;
8381 			break;
8382 		case 0x16: /* 4MB */
8383 			size = 1 << 22;
8384 			break;
8385 		case 0x17: /* 8MB */
8386 			size = 1 << 23;
8387 			break;
8388 		case 0x18: /* 16MB */
8389 			size = 1 << 24;
8390 			break;
8391 		case 0x19: /* 32MB */
8392 			size = 1 << 25;
8393 			break;
8394 		case 0x20: /* 64MB */
8395 			size = 1 << 26;
8396 			break;
8397 		case 0x21: /* 128MB */
8398 			size = 1 << 27;
8399 			break;
8400 		case 0x22: /* 256MB */
8401 			size = 1 << 28;
8402 			break;
8403 
8404 		default:
8405 			dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n",
8406 				flashid, density);
8407 			return -EINVAL;
8408 		}
8409 		break;
8410 	}
8411 	case 0xc2: { /* Macronix */
8412 		/* This Density -> Size decoding table is taken from Macronix
8413 		 * Data Sheets.
8414 		 */
8415 		density = (flashid >> 16) & 0xff;
8416 		switch (density) {
8417 		case 0x17: /* 8MB */
8418 			size = 1 << 23;
8419 			break;
8420 		case 0x18: /* 16MB */
8421 			size = 1 << 24;
8422 			break;
8423 		default:
8424 			dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n",
8425 				flashid, density);
8426 			return -EINVAL;
8427 		}
8428 		break;
8429 	}
8430 	case 0xef: { /* Winbond */
8431 		/* This Density -> Size decoding table is taken from Winbond
8432 		 * Data Sheets.
8433 		 */
8434 		density = (flashid >> 16) & 0xff;
8435 		switch (density) {
8436 		case 0x17: /* 8MB */
8437 			size = 1 << 23;
8438 			break;
8439 		case 0x18: /* 16MB */
8440 			size = 1 << 24;
8441 			break;
8442 		default:
8443 			dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n",
8444 				flashid, density);
8445 			return -EINVAL;
8446 		}
8447 		break;
8448 	}
8449 	default:
8450 		dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n",
8451 			flashid);
8452 		return -EINVAL;
8453 	}
8454 
8455 	/* Store decoded Flash size and fall through into vetting code. */
8456 	adap->params.sf_size = size;
8457 	adap->params.sf_nsec = size / SF_SEC_SIZE;
8458 
8459 found:
8460 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8461 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8462 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8463 	return 0;
8464 }
8465 
8466 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
8467 {
8468 	u16 val;
8469 	u32 pcie_cap;
8470 
8471 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
8472 	if (pcie_cap) {
8473 		pci_read_config_word(adapter->pdev,
8474 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
8475 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
8476 		val |= range;
8477 		pci_write_config_word(adapter->pdev,
8478 				      pcie_cap + PCI_EXP_DEVCTL2, val);
8479 	}
8480 }
8481 
8482 /**
8483  *	t4_prep_adapter - prepare SW and HW for operation
8484  *	@adapter: the adapter
8485  *	@reset: if true perform a HW reset
8486  *
8487  *	Initialize adapter SW state for the various HW modules, set initial
8488  *	values for some adapter tunables, take PHYs out of reset, and
8489  *	initialize the MDIO interface.
8490  */
8491 int t4_prep_adapter(struct adapter *adapter)
8492 {
8493 	int ret, ver;
8494 	uint16_t device_id;
8495 	u32 pl_rev;
8496 
8497 	get_pci_mode(adapter, &adapter->params.pci);
8498 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8499 
8500 	ret = t4_get_flash_params(adapter);
8501 	if (ret < 0) {
8502 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8503 		return ret;
8504 	}
8505 
8506 	/* Retrieve adapter's device ID
8507 	 */
8508 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8509 	ver = device_id >> 12;
8510 	adapter->params.chip = 0;
8511 	switch (ver) {
8512 	case CHELSIO_T4:
8513 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8514 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8515 		adapter->params.arch.mps_tcam_size =
8516 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8517 		adapter->params.arch.mps_rplc_size = 128;
8518 		adapter->params.arch.nchan = NCHAN;
8519 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8520 		adapter->params.arch.vfcount = 128;
8521 		/* Congestion map is for 4 channels so that
8522 		 * MPS can have 4 priority per port.
8523 		 */
8524 		adapter->params.arch.cng_ch_bits_log = 2;
8525 		break;
8526 	case CHELSIO_T5:
8527 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8528 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8529 		adapter->params.arch.mps_tcam_size =
8530 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8531 		adapter->params.arch.mps_rplc_size = 128;
8532 		adapter->params.arch.nchan = NCHAN;
8533 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8534 		adapter->params.arch.vfcount = 128;
8535 		adapter->params.arch.cng_ch_bits_log = 2;
8536 		break;
8537 	case CHELSIO_T6:
8538 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8539 		adapter->params.arch.sge_fl_db = 0;
8540 		adapter->params.arch.mps_tcam_size =
8541 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8542 		adapter->params.arch.mps_rplc_size = 256;
8543 		adapter->params.arch.nchan = 2;
8544 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8545 		adapter->params.arch.vfcount = 256;
8546 		/* Congestion map will be for 2 channels so that
8547 		 * MPS can have 8 priority per port.
8548 		 */
8549 		adapter->params.arch.cng_ch_bits_log = 3;
8550 		break;
8551 	default:
8552 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8553 			device_id);
8554 		return -EINVAL;
8555 	}
8556 
8557 	adapter->params.cim_la_size = CIMLA_SIZE;
8558 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8559 
8560 	/*
8561 	 * Default port for debugging in case we can't reach FW.
8562 	 */
8563 	adapter->params.nports = 1;
8564 	adapter->params.portvec = 1;
8565 	adapter->params.vpd.cclk = 50000;
8566 
8567 	/* Set pci completion timeout value to 4 seconds. */
8568 	set_pcie_completion_timeout(adapter, 0xd);
8569 	return 0;
8570 }
8571 
8572 /**
8573  *	t4_shutdown_adapter - shut down adapter, host & wire
8574  *	@adapter: the adapter
8575  *
8576  *	Perform an emergency shutdown of the adapter and stop it from
8577  *	continuing any further communication on the ports or DMA to the
8578  *	host.  This is typically used when the adapter and/or firmware
8579  *	have crashed and we want to prevent any further accidental
8580  *	communication with the rest of the world.  This will also force
8581  *	the port Link Status to go down -- if register writes work --
8582  *	which should help our peers figure out that we're down.
8583  */
8584 int t4_shutdown_adapter(struct adapter *adapter)
8585 {
8586 	int port;
8587 
8588 	t4_intr_disable(adapter);
8589 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8590 	for_each_port(adapter, port) {
8591 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
8592 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
8593 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
8594 
8595 		t4_write_reg(adapter, a_port_cfg,
8596 			     t4_read_reg(adapter, a_port_cfg)
8597 			     & ~SIGNAL_DET_V(1));
8598 	}
8599 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8600 
8601 	return 0;
8602 }
8603 
8604 /**
8605  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8606  *	@adapter: the adapter
8607  *	@qid: the Queue ID
8608  *	@qtype: the Ingress or Egress type for @qid
8609  *	@user: true if this request is for a user mode queue
8610  *	@pbar2_qoffset: BAR2 Queue Offset
8611  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8612  *
8613  *	Returns the BAR2 SGE Queue Registers information associated with the
8614  *	indicated Absolute Queue ID.  These are passed back in return value
8615  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8616  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8617  *
8618  *	This may return an error which indicates that BAR2 SGE Queue
8619  *	registers aren't available.  If an error is not returned, then the
8620  *	following values are returned:
8621  *
8622  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8623  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8624  *
8625  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8626  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8627  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8628  *	then these "Inferred Queue ID" register may not be used.
8629  */
8630 int t4_bar2_sge_qregs(struct adapter *adapter,
8631 		      unsigned int qid,
8632 		      enum t4_bar2_qtype qtype,
8633 		      int user,
8634 		      u64 *pbar2_qoffset,
8635 		      unsigned int *pbar2_qid)
8636 {
8637 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8638 	u64 bar2_page_offset, bar2_qoffset;
8639 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8640 
8641 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
8642 	if (!user && is_t4(adapter->params.chip))
8643 		return -EINVAL;
8644 
8645 	/* Get our SGE Page Size parameters.
8646 	 */
8647 	page_shift = adapter->params.sge.hps + 10;
8648 	page_size = 1 << page_shift;
8649 
8650 	/* Get the right Queues per Page parameters for our Queue.
8651 	 */
8652 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8653 		     ? adapter->params.sge.eq_qpp
8654 		     : adapter->params.sge.iq_qpp);
8655 	qpp_mask = (1 << qpp_shift) - 1;
8656 
8657 	/*  Calculate the basics of the BAR2 SGE Queue register area:
8658 	 *  o The BAR2 page the Queue registers will be in.
8659 	 *  o The BAR2 Queue ID.
8660 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8661 	 */
8662 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8663 	bar2_qid = qid & qpp_mask;
8664 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8665 
8666 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8667 	 * hardware will infer the Absolute Queue ID simply from the writes to
8668 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8669 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8670 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8671 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8672 	 * from the BAR2 Page and BAR2 Queue ID.
8673 	 *
8674 	 * One important censequence of this is that some BAR2 SGE registers
8675 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8676 	 * there.  But other registers synthesize the SGE Queue ID purely
8677 	 * from the writes to the registers -- the Write Combined Doorbell
8678 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8679 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8680 	 * Queue ID can be inferred from simple writes.
8681 	 */
8682 	bar2_qoffset = bar2_page_offset;
8683 	bar2_qinferred = (bar2_qid_offset < page_size);
8684 	if (bar2_qinferred) {
8685 		bar2_qoffset += bar2_qid_offset;
8686 		bar2_qid = 0;
8687 	}
8688 
8689 	*pbar2_qoffset = bar2_qoffset;
8690 	*pbar2_qid = bar2_qid;
8691 	return 0;
8692 }
8693 
8694 /**
8695  *	t4_init_devlog_params - initialize adapter->params.devlog
8696  *	@adap: the adapter
8697  *
8698  *	Initialize various fields of the adapter's Firmware Device Log
8699  *	Parameters structure.
8700  */
8701 int t4_init_devlog_params(struct adapter *adap)
8702 {
8703 	struct devlog_params *dparams = &adap->params.devlog;
8704 	u32 pf_dparams;
8705 	unsigned int devlog_meminfo;
8706 	struct fw_devlog_cmd devlog_cmd;
8707 	int ret;
8708 
8709 	/* If we're dealing with newer firmware, the Device Log Paramerters
8710 	 * are stored in a designated register which allows us to access the
8711 	 * Device Log even if we can't talk to the firmware.
8712 	 */
8713 	pf_dparams =
8714 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
8715 	if (pf_dparams) {
8716 		unsigned int nentries, nentries128;
8717 
8718 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
8719 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
8720 
8721 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
8722 		nentries = (nentries128 + 1) * 128;
8723 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8724 
8725 		return 0;
8726 	}
8727 
8728 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8729 	 */
8730 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
8731 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
8732 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
8733 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8734 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8735 			 &devlog_cmd);
8736 	if (ret)
8737 		return ret;
8738 
8739 	devlog_meminfo =
8740 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8741 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
8742 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
8743 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8744 
8745 	return 0;
8746 }
8747 
8748 /**
8749  *	t4_init_sge_params - initialize adap->params.sge
8750  *	@adapter: the adapter
8751  *
8752  *	Initialize various fields of the adapter's SGE Parameters structure.
8753  */
8754 int t4_init_sge_params(struct adapter *adapter)
8755 {
8756 	struct sge_params *sge_params = &adapter->params.sge;
8757 	u32 hps, qpp;
8758 	unsigned int s_hps, s_qpp;
8759 
8760 	/* Extract the SGE Page Size for our PF.
8761 	 */
8762 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
8763 	s_hps = (HOSTPAGESIZEPF0_S +
8764 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
8765 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8766 
8767 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8768 	 */
8769 	s_qpp = (QUEUESPERPAGEPF0_S +
8770 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
8771 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8772 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8773 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
8774 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8775 
8776 	return 0;
8777 }
8778 
8779 /**
8780  *      t4_init_tp_params - initialize adap->params.tp
8781  *      @adap: the adapter
8782  *      @sleep_ok: if true we may sleep while awaiting command completion
8783  *
8784  *      Initialize various fields of the adapter's TP Parameters structure.
8785  */
8786 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8787 {
8788 	int chan;
8789 	u32 v;
8790 
8791 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8792 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
8793 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
8794 
8795 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8796 	for (chan = 0; chan < NCHAN; chan++)
8797 		adap->params.tp.tx_modq[chan] = chan;
8798 
8799 	/* Cache the adapter's Compressed Filter Mode and global Incress
8800 	 * Configuration.
8801 	 */
8802 	t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
8803 		       TP_VLAN_PRI_MAP_A, sleep_ok);
8804 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
8805 		       TP_INGRESS_CONFIG_A, sleep_ok);
8806 
8807 	/* For T6, cache the adapter's compressed error vector
8808 	 * and passing outer header info for encapsulated packets.
8809 	 */
8810 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
8811 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
8812 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
8813 	}
8814 
8815 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8816 	 * shift positions of several elements of the Compressed Filter Tuple
8817 	 * for this adapter which we need frequently ...
8818 	 */
8819 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
8820 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
8821 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
8822 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
8823 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
8824 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
8825 							       PROTOCOL_F);
8826 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
8827 								ETHERTYPE_F);
8828 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
8829 							       MACMATCH_F);
8830 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
8831 								MPSHITTYPE_F);
8832 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
8833 							   FRAGMENTATION_F);
8834 
8835 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8836 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8837 	 */
8838 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
8839 		adap->params.tp.vnic_shift = -1;
8840 
8841 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
8842 	adap->params.tp.hash_filter_mask = v;
8843 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
8844 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
8845 	return 0;
8846 }
8847 
8848 /**
8849  *      t4_filter_field_shift - calculate filter field shift
8850  *      @adap: the adapter
8851  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8852  *
8853  *      Return the shift position of a filter field within the Compressed
8854  *      Filter Tuple.  The filter field is specified via its selection bit
8855  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8856  */
8857 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8858 {
8859 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8860 	unsigned int sel;
8861 	int field_shift;
8862 
8863 	if ((filter_mode & filter_sel) == 0)
8864 		return -1;
8865 
8866 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8867 		switch (filter_mode & sel) {
8868 		case FCOE_F:
8869 			field_shift += FT_FCOE_W;
8870 			break;
8871 		case PORT_F:
8872 			field_shift += FT_PORT_W;
8873 			break;
8874 		case VNIC_ID_F:
8875 			field_shift += FT_VNIC_ID_W;
8876 			break;
8877 		case VLAN_F:
8878 			field_shift += FT_VLAN_W;
8879 			break;
8880 		case TOS_F:
8881 			field_shift += FT_TOS_W;
8882 			break;
8883 		case PROTOCOL_F:
8884 			field_shift += FT_PROTOCOL_W;
8885 			break;
8886 		case ETHERTYPE_F:
8887 			field_shift += FT_ETHERTYPE_W;
8888 			break;
8889 		case MACMATCH_F:
8890 			field_shift += FT_MACMATCH_W;
8891 			break;
8892 		case MPSHITTYPE_F:
8893 			field_shift += FT_MPSHITTYPE_W;
8894 			break;
8895 		case FRAGMENTATION_F:
8896 			field_shift += FT_FRAGMENTATION_W;
8897 			break;
8898 		}
8899 	}
8900 	return field_shift;
8901 }
8902 
8903 int t4_init_rss_mode(struct adapter *adap, int mbox)
8904 {
8905 	int i, ret;
8906 	struct fw_rss_vi_config_cmd rvc;
8907 
8908 	memset(&rvc, 0, sizeof(rvc));
8909 
8910 	for_each_port(adap, i) {
8911 		struct port_info *p = adap2pinfo(adap, i);
8912 
8913 		rvc.op_to_viid =
8914 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
8915 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8916 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
8917 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
8918 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
8919 		if (ret)
8920 			return ret;
8921 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
8922 	}
8923 	return 0;
8924 }
8925 
8926 /**
8927  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
8928  *	@pi: the port_info
8929  *	@mbox: mailbox to use for the FW command
8930  *	@port: physical port associated with the VI
8931  *	@pf: the PF owning the VI
8932  *	@vf: the VF owning the VI
8933  *	@mac: the MAC address of the VI
8934  *
8935  *	Allocates a virtual interface for the given physical port.  If @mac is
8936  *	not %NULL it contains the MAC address of the VI as assigned by FW.
8937  *	@mac should be large enough to hold an Ethernet address.
8938  *	Returns < 0 on error.
8939  */
8940 int t4_init_portinfo(struct port_info *pi, int mbox,
8941 		     int port, int pf, int vf, u8 mac[])
8942 {
8943 	struct adapter *adapter = pi->adapter;
8944 	unsigned int fw_caps = adapter->params.fw_caps_support;
8945 	struct fw_port_cmd cmd;
8946 	unsigned int rss_size;
8947 	enum fw_port_type port_type;
8948 	int mdio_addr;
8949 	fw_port_cap32_t pcaps, acaps;
8950 	int ret;
8951 
8952 	/* If we haven't yet determined whether we're talking to Firmware
8953 	 * which knows the new 32-bit Port Capabilities, it's time to find
8954 	 * out now.  This will also tell new Firmware to send us Port Status
8955 	 * Updates using the new 32-bit Port Capabilities version of the
8956 	 * Port Information message.
8957 	 */
8958 	if (fw_caps == FW_CAPS_UNKNOWN) {
8959 		u32 param, val;
8960 
8961 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
8962 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
8963 		val = 1;
8964 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
8965 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
8966 		adapter->params.fw_caps_support = fw_caps;
8967 	}
8968 
8969 	memset(&cmd, 0, sizeof(cmd));
8970 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8971 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
8972 				       FW_PORT_CMD_PORTID_V(port));
8973 	cmd.action_to_len16 = cpu_to_be32(
8974 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8975 				     ? FW_PORT_ACTION_GET_PORT_INFO
8976 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8977 		FW_LEN16(cmd));
8978 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
8979 	if (ret)
8980 		return ret;
8981 
8982 	/* Extract the various fields from the Port Information message.
8983 	 */
8984 	if (fw_caps == FW_CAPS16) {
8985 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
8986 
8987 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8988 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
8989 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
8990 			     : -1);
8991 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
8992 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
8993 	} else {
8994 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
8995 
8996 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8997 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
8998 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
8999 			     : -1);
9000 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9001 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9002 	}
9003 
9004 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9005 	if (ret < 0)
9006 		return ret;
9007 
9008 	pi->viid = ret;
9009 	pi->tx_chan = port;
9010 	pi->lport = port;
9011 	pi->rss_size = rss_size;
9012 
9013 	pi->port_type = port_type;
9014 	pi->mdio_addr = mdio_addr;
9015 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9016 
9017 	init_link_config(&pi->link_cfg, pcaps, acaps);
9018 	return 0;
9019 }
9020 
9021 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9022 {
9023 	u8 addr[6];
9024 	int ret, i, j = 0;
9025 
9026 	for_each_port(adap, i) {
9027 		struct port_info *pi = adap2pinfo(adap, i);
9028 
9029 		while ((adap->params.portvec & (1 << j)) == 0)
9030 			j++;
9031 
9032 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9033 		if (ret)
9034 			return ret;
9035 
9036 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9037 		j++;
9038 	}
9039 	return 0;
9040 }
9041 
9042 /**
9043  *	t4_read_cimq_cfg - read CIM queue configuration
9044  *	@adap: the adapter
9045  *	@base: holds the queue base addresses in bytes
9046  *	@size: holds the queue sizes in bytes
9047  *	@thres: holds the queue full thresholds in bytes
9048  *
9049  *	Returns the current configuration of the CIM queues, starting with
9050  *	the IBQs, then the OBQs.
9051  */
9052 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9053 {
9054 	unsigned int i, v;
9055 	int cim_num_obq = is_t4(adap->params.chip) ?
9056 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9057 
9058 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9059 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9060 			     QUENUMSELECT_V(i));
9061 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9062 		/* value is in 256-byte units */
9063 		*base++ = CIMQBASE_G(v) * 256;
9064 		*size++ = CIMQSIZE_G(v) * 256;
9065 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9066 	}
9067 	for (i = 0; i < cim_num_obq; i++) {
9068 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9069 			     QUENUMSELECT_V(i));
9070 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9071 		/* value is in 256-byte units */
9072 		*base++ = CIMQBASE_G(v) * 256;
9073 		*size++ = CIMQSIZE_G(v) * 256;
9074 	}
9075 }
9076 
9077 /**
9078  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9079  *	@adap: the adapter
9080  *	@qid: the queue index
9081  *	@data: where to store the queue contents
9082  *	@n: capacity of @data in 32-bit words
9083  *
9084  *	Reads the contents of the selected CIM queue starting at address 0 up
9085  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9086  *	error and the number of 32-bit words actually read on success.
9087  */
9088 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9089 {
9090 	int i, err, attempts;
9091 	unsigned int addr;
9092 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9093 
9094 	if (qid > 5 || (n & 3))
9095 		return -EINVAL;
9096 
9097 	addr = qid * nwords;
9098 	if (n > nwords)
9099 		n = nwords;
9100 
9101 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9102 	 * Wait for 1 Sec with a delay of 1 usec.
9103 	 */
9104 	attempts = 1000000;
9105 
9106 	for (i = 0; i < n; i++, addr++) {
9107 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9108 			     IBQDBGEN_F);
9109 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9110 				      attempts, 1);
9111 		if (err)
9112 			return err;
9113 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9114 	}
9115 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9116 	return i;
9117 }
9118 
9119 /**
9120  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9121  *	@adap: the adapter
9122  *	@qid: the queue index
9123  *	@data: where to store the queue contents
9124  *	@n: capacity of @data in 32-bit words
9125  *
9126  *	Reads the contents of the selected CIM queue starting at address 0 up
9127  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9128  *	error and the number of 32-bit words actually read on success.
9129  */
9130 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9131 {
9132 	int i, err;
9133 	unsigned int addr, v, nwords;
9134 	int cim_num_obq = is_t4(adap->params.chip) ?
9135 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9136 
9137 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9138 		return -EINVAL;
9139 
9140 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9141 		     QUENUMSELECT_V(qid));
9142 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9143 
9144 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9145 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9146 	if (n > nwords)
9147 		n = nwords;
9148 
9149 	for (i = 0; i < n; i++, addr++) {
9150 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9151 			     OBQDBGEN_F);
9152 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9153 				      2, 1);
9154 		if (err)
9155 			return err;
9156 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9157 	}
9158 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9159 	return i;
9160 }
9161 
9162 /**
9163  *	t4_cim_read - read a block from CIM internal address space
9164  *	@adap: the adapter
9165  *	@addr: the start address within the CIM address space
9166  *	@n: number of words to read
9167  *	@valp: where to store the result
9168  *
9169  *	Reads a block of 4-byte words from the CIM intenal address space.
9170  */
9171 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9172 		unsigned int *valp)
9173 {
9174 	int ret = 0;
9175 
9176 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9177 		return -EBUSY;
9178 
9179 	for ( ; !ret && n--; addr += 4) {
9180 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9181 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9182 				      0, 5, 2);
9183 		if (!ret)
9184 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9185 	}
9186 	return ret;
9187 }
9188 
9189 /**
9190  *	t4_cim_write - write a block into CIM internal address space
9191  *	@adap: the adapter
9192  *	@addr: the start address within the CIM address space
9193  *	@n: number of words to write
9194  *	@valp: set of values to write
9195  *
9196  *	Writes a block of 4-byte words into the CIM intenal address space.
9197  */
9198 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9199 		 const unsigned int *valp)
9200 {
9201 	int ret = 0;
9202 
9203 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9204 		return -EBUSY;
9205 
9206 	for ( ; !ret && n--; addr += 4) {
9207 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9208 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9209 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9210 				      0, 5, 2);
9211 	}
9212 	return ret;
9213 }
9214 
9215 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9216 			 unsigned int val)
9217 {
9218 	return t4_cim_write(adap, addr, 1, &val);
9219 }
9220 
9221 /**
9222  *	t4_cim_read_la - read CIM LA capture buffer
9223  *	@adap: the adapter
9224  *	@la_buf: where to store the LA data
9225  *	@wrptr: the HW write pointer within the capture buffer
9226  *
9227  *	Reads the contents of the CIM LA buffer with the most recent entry at
9228  *	the end	of the returned data and with the entry at @wrptr first.
9229  *	We try to leave the LA in the running state we find it in.
9230  */
9231 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9232 {
9233 	int i, ret;
9234 	unsigned int cfg, val, idx;
9235 
9236 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9237 	if (ret)
9238 		return ret;
9239 
9240 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9241 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9242 		if (ret)
9243 			return ret;
9244 	}
9245 
9246 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9247 	if (ret)
9248 		goto restart;
9249 
9250 	idx = UPDBGLAWRPTR_G(val);
9251 	if (wrptr)
9252 		*wrptr = idx;
9253 
9254 	for (i = 0; i < adap->params.cim_la_size; i++) {
9255 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9256 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9257 		if (ret)
9258 			break;
9259 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9260 		if (ret)
9261 			break;
9262 		if (val & UPDBGLARDEN_F) {
9263 			ret = -ETIMEDOUT;
9264 			break;
9265 		}
9266 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9267 		if (ret)
9268 			break;
9269 
9270 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9271 		 * identify the 32-bit portion of the full 312-bit data
9272 		 */
9273 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9274 			idx = (idx & 0xff0) + 0x10;
9275 		else
9276 			idx++;
9277 		/* address can't exceed 0xfff */
9278 		idx &= UPDBGLARDPTR_M;
9279 	}
9280 restart:
9281 	if (cfg & UPDBGLAEN_F) {
9282 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9283 				      cfg & ~UPDBGLARDEN_F);
9284 		if (!ret)
9285 			ret = r;
9286 	}
9287 	return ret;
9288 }
9289 
9290 /**
9291  *	t4_tp_read_la - read TP LA capture buffer
9292  *	@adap: the adapter
9293  *	@la_buf: where to store the LA data
9294  *	@wrptr: the HW write pointer within the capture buffer
9295  *
9296  *	Reads the contents of the TP LA buffer with the most recent entry at
9297  *	the end	of the returned data and with the entry at @wrptr first.
9298  *	We leave the LA in the running state we find it in.
9299  */
9300 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9301 {
9302 	bool last_incomplete;
9303 	unsigned int i, cfg, val, idx;
9304 
9305 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9306 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9307 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9308 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9309 
9310 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9311 	idx = DBGLAWPTR_G(val);
9312 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9313 	if (last_incomplete)
9314 		idx = (idx + 1) & DBGLARPTR_M;
9315 	if (wrptr)
9316 		*wrptr = idx;
9317 
9318 	val &= 0xffff;
9319 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9320 	val |= adap->params.tp.la_mask;
9321 
9322 	for (i = 0; i < TPLA_SIZE; i++) {
9323 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9324 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9325 		idx = (idx + 1) & DBGLARPTR_M;
9326 	}
9327 
9328 	/* Wipe out last entry if it isn't valid */
9329 	if (last_incomplete)
9330 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9331 
9332 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9333 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9334 			     cfg | adap->params.tp.la_mask);
9335 }
9336 
9337 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9338  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9339  * state for more than the Warning Threshold then we'll issue a warning about
9340  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9341  * appears to be hung every Warning Repeat second till the situation clears.
9342  * If the situation clears, we'll note that as well.
9343  */
9344 #define SGE_IDMA_WARN_THRESH 1
9345 #define SGE_IDMA_WARN_REPEAT 300
9346 
9347 /**
9348  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9349  *	@adapter: the adapter
9350  *	@idma: the adapter IDMA Monitor state
9351  *
9352  *	Initialize the state of an SGE Ingress DMA Monitor.
9353  */
9354 void t4_idma_monitor_init(struct adapter *adapter,
9355 			  struct sge_idma_monitor_state *idma)
9356 {
9357 	/* Initialize the state variables for detecting an SGE Ingress DMA
9358 	 * hang.  The SGE has internal counters which count up on each clock
9359 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9360 	 * same state they were on the previous clock tick.  The clock used is
9361 	 * the Core Clock so we have a limit on the maximum "time" they can
9362 	 * record; typically a very small number of seconds.  For instance,
9363 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9364 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9365 	 * risk of having the "timers" overflow and give us the flexibility to
9366 	 * maintain a Hung SGE State Machine of our own which operates across
9367 	 * a longer time frame.
9368 	 */
9369 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9370 	idma->idma_stalled[0] = 0;
9371 	idma->idma_stalled[1] = 0;
9372 }
9373 
9374 /**
9375  *	t4_idma_monitor - monitor SGE Ingress DMA state
9376  *	@adapter: the adapter
9377  *	@idma: the adapter IDMA Monitor state
9378  *	@hz: number of ticks/second
9379  *	@ticks: number of ticks since the last IDMA Monitor call
9380  */
9381 void t4_idma_monitor(struct adapter *adapter,
9382 		     struct sge_idma_monitor_state *idma,
9383 		     int hz, int ticks)
9384 {
9385 	int i, idma_same_state_cnt[2];
9386 
9387 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9388 	  * are counters inside the SGE which count up on each clock when the
9389 	  * SGE finds its Ingress DMA State Engines in the same states they
9390 	  * were in the previous clock.  The counters will peg out at
9391 	  * 0xffffffff without wrapping around so once they pass the 1s
9392 	  * threshold they'll stay above that till the IDMA state changes.
9393 	  */
9394 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9395 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9396 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9397 
9398 	for (i = 0; i < 2; i++) {
9399 		u32 debug0, debug11;
9400 
9401 		/* If the Ingress DMA Same State Counter ("timer") is less
9402 		 * than 1s, then we can reset our synthesized Stall Timer and
9403 		 * continue.  If we have previously emitted warnings about a
9404 		 * potential stalled Ingress Queue, issue a note indicating
9405 		 * that the Ingress Queue has resumed forward progress.
9406 		 */
9407 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9408 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9409 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9410 					 "resumed after %d seconds\n",
9411 					 i, idma->idma_qid[i],
9412 					 idma->idma_stalled[i] / hz);
9413 			idma->idma_stalled[i] = 0;
9414 			continue;
9415 		}
9416 
9417 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9418 		 * domain.  The first time we get here it'll be because we
9419 		 * passed the 1s Threshold; each additional time it'll be
9420 		 * because the RX Timer Callback is being fired on its regular
9421 		 * schedule.
9422 		 *
9423 		 * If the stall is below our Potential Hung Ingress Queue
9424 		 * Warning Threshold, continue.
9425 		 */
9426 		if (idma->idma_stalled[i] == 0) {
9427 			idma->idma_stalled[i] = hz;
9428 			idma->idma_warn[i] = 0;
9429 		} else {
9430 			idma->idma_stalled[i] += ticks;
9431 			idma->idma_warn[i] -= ticks;
9432 		}
9433 
9434 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9435 			continue;
9436 
9437 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9438 		 */
9439 		if (idma->idma_warn[i] > 0)
9440 			continue;
9441 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9442 
9443 		/* Read and save the SGE IDMA State and Queue ID information.
9444 		 * We do this every time in case it changes across time ...
9445 		 * can't be too careful ...
9446 		 */
9447 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9448 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9449 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9450 
9451 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9452 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9453 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9454 
9455 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9456 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9457 			 i, idma->idma_qid[i], idma->idma_state[i],
9458 			 idma->idma_stalled[i] / hz,
9459 			 debug0, debug11);
9460 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9461 	}
9462 }
9463 
9464 /**
9465  *	t4_load_cfg - download config file
9466  *	@adap: the adapter
9467  *	@cfg_data: the cfg text file to write
9468  *	@size: text file size
9469  *
9470  *	Write the supplied config text file to the card's serial flash.
9471  */
9472 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9473 {
9474 	int ret, i, n, cfg_addr;
9475 	unsigned int addr;
9476 	unsigned int flash_cfg_start_sec;
9477 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9478 
9479 	cfg_addr = t4_flash_cfg_addr(adap);
9480 	if (cfg_addr < 0)
9481 		return cfg_addr;
9482 
9483 	addr = cfg_addr;
9484 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9485 
9486 	if (size > FLASH_CFG_MAX_SIZE) {
9487 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9488 			FLASH_CFG_MAX_SIZE);
9489 		return -EFBIG;
9490 	}
9491 
9492 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9493 			 sf_sec_size);
9494 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9495 				     flash_cfg_start_sec + i - 1);
9496 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9497 	 * with the on-adapter Firmware Configuration File.
9498 	 */
9499 	if (ret || size == 0)
9500 		goto out;
9501 
9502 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9503 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9504 		if ((size - i) <  SF_PAGE_SIZE)
9505 			n = size - i;
9506 		else
9507 			n = SF_PAGE_SIZE;
9508 		ret = t4_write_flash(adap, addr, n, cfg_data);
9509 		if (ret)
9510 			goto out;
9511 
9512 		addr += SF_PAGE_SIZE;
9513 		cfg_data += SF_PAGE_SIZE;
9514 	}
9515 
9516 out:
9517 	if (ret)
9518 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9519 			(size == 0 ? "clear" : "download"), ret);
9520 	return ret;
9521 }
9522 
9523 /**
9524  *	t4_set_vf_mac - Set MAC address for the specified VF
9525  *	@adapter: The adapter
9526  *	@vf: one of the VFs instantiated by the specified PF
9527  *	@naddr: the number of MAC addresses
9528  *	@addr: the MAC address(es) to be set to the specified VF
9529  */
9530 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9531 		      unsigned int naddr, u8 *addr)
9532 {
9533 	struct fw_acl_mac_cmd cmd;
9534 
9535 	memset(&cmd, 0, sizeof(cmd));
9536 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9537 				    FW_CMD_REQUEST_F |
9538 				    FW_CMD_WRITE_F |
9539 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9540 				    FW_ACL_MAC_CMD_VFN_V(vf));
9541 
9542 	/* Note: Do not enable the ACL */
9543 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9544 	cmd.nmac = naddr;
9545 
9546 	switch (adapter->pf) {
9547 	case 3:
9548 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9549 		break;
9550 	case 2:
9551 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9552 		break;
9553 	case 1:
9554 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9555 		break;
9556 	case 0:
9557 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9558 		break;
9559 	}
9560 
9561 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9562 }
9563 
9564 /**
9565  * t4_read_pace_tbl - read the pace table
9566  * @adap: the adapter
9567  * @pace_vals: holds the returned values
9568  *
9569  * Returns the values of TP's pace table in microseconds.
9570  */
9571 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9572 {
9573 	unsigned int i, v;
9574 
9575 	for (i = 0; i < NTX_SCHED; i++) {
9576 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
9577 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
9578 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9579 	}
9580 }
9581 
9582 /**
9583  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9584  * @adap: the adapter
9585  * @sched: the scheduler index
9586  * @kbps: the byte rate in Kbps
9587  * @ipg: the interpacket delay in tenths of nanoseconds
9588  * @sleep_ok: if true we may sleep while awaiting command completion
9589  *
9590  * Return the current configuration of a HW Tx scheduler.
9591  */
9592 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
9593 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
9594 {
9595 	unsigned int v, addr, bpt, cpt;
9596 
9597 	if (kbps) {
9598 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
9599 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9600 		if (sched & 1)
9601 			v >>= 16;
9602 		bpt = (v >> 8) & 0xff;
9603 		cpt = v & 0xff;
9604 		if (!cpt) {
9605 			*kbps = 0;	/* scheduler disabled */
9606 		} else {
9607 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9608 			*kbps = (v * bpt) / 125;
9609 		}
9610 	}
9611 	if (ipg) {
9612 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
9613 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9614 		if (sched & 1)
9615 			v >>= 16;
9616 		v &= 0xffff;
9617 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9618 	}
9619 }
9620 
9621 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9622 		    int rateunit, int ratemode, int channel, int class,
9623 		    int minrate, int maxrate, int weight, int pktsize)
9624 {
9625 	struct fw_sched_cmd cmd;
9626 
9627 	memset(&cmd, 0, sizeof(cmd));
9628 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
9629 				      FW_CMD_REQUEST_F |
9630 				      FW_CMD_WRITE_F);
9631 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9632 
9633 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9634 	cmd.u.params.type = type;
9635 	cmd.u.params.level = level;
9636 	cmd.u.params.mode = mode;
9637 	cmd.u.params.ch = channel;
9638 	cmd.u.params.cl = class;
9639 	cmd.u.params.unit = rateunit;
9640 	cmd.u.params.rate = ratemode;
9641 	cmd.u.params.min = cpu_to_be32(minrate);
9642 	cmd.u.params.max = cpu_to_be32(maxrate);
9643 	cmd.u.params.weight = cpu_to_be16(weight);
9644 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9645 
9646 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
9647 			       NULL, 1);
9648 }
9649