1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 } 202 203 /* 204 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 205 */ 206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 207 u32 mbox_addr) 208 { 209 for ( ; nflit; nflit--, mbox_addr += 8) 210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 211 } 212 213 /* 214 * Handle a FW assertion reported in a mailbox. 215 */ 216 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 217 { 218 struct fw_debug_cmd asrt; 219 220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 221 dev_alert(adap->pdev_dev, 222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 225 } 226 227 /** 228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 229 * @adapter: the adapter 230 * @cmd: the Firmware Mailbox Command or Reply 231 * @size: command length in bytes 232 * @access: the time (ms) needed to access the Firmware Mailbox 233 * @execute: the time (ms) the command spent being executed 234 */ 235 static void t4_record_mbox(struct adapter *adapter, 236 const __be64 *cmd, unsigned int size, 237 int access, int execute) 238 { 239 struct mbox_cmd_log *log = adapter->mbox_log; 240 struct mbox_cmd *entry; 241 int i; 242 243 entry = mbox_cmd_log_entry(log, log->cursor++); 244 if (log->cursor == log->size) 245 log->cursor = 0; 246 247 for (i = 0; i < size / 8; i++) 248 entry->cmd[i] = be64_to_cpu(cmd[i]); 249 while (i < MBOX_LEN / 8) 250 entry->cmd[i++] = 0; 251 entry->timestamp = jiffies; 252 entry->seqno = log->seqno++; 253 entry->access = access; 254 entry->execute = execute; 255 } 256 257 /** 258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 259 * @adap: the adapter 260 * @mbox: index of the mailbox to use 261 * @cmd: the command to write 262 * @size: command length in bytes 263 * @rpl: where to optionally store the reply 264 * @sleep_ok: if true we may sleep while awaiting command completion 265 * @timeout: time to wait for command to finish before timing out 266 * 267 * Sends the given command to FW through the selected mailbox and waits 268 * for the FW to execute the command. If @rpl is not %NULL it is used to 269 * store the FW's reply to the command. The command and its optional 270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 271 * to respond. @sleep_ok determines whether we may sleep while awaiting 272 * the response. If sleeping is allowed we use progressive backoff 273 * otherwise we spin. 274 * 275 * The return value is 0 on success or a negative errno on failure. A 276 * failure can happen either because we are not able to execute the 277 * command or FW executes it but signals an error. In the latter case 278 * the return value is the error code indicated by FW (negated). 279 */ 280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 281 int size, void *rpl, bool sleep_ok, int timeout) 282 { 283 static const int delay[] = { 284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 285 }; 286 287 u16 access = 0; 288 u16 execute = 0; 289 u32 v; 290 u64 res; 291 int i, ms, delay_idx, ret; 292 const __be64 *p = cmd; 293 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 294 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 295 __be64 cmd_rpl[MBOX_LEN / 8]; 296 u32 pcie_fw; 297 298 if ((size & 15) || size > MBOX_LEN) 299 return -EINVAL; 300 301 /* 302 * If the device is off-line, as in EEH, commands will time out. 303 * Fail them early so we don't waste time waiting. 304 */ 305 if (adap->pdev->error_state != pci_channel_io_normal) 306 return -EIO; 307 308 /* If we have a negative timeout, that implies that we can't sleep. */ 309 if (timeout < 0) { 310 sleep_ok = false; 311 timeout = -timeout; 312 } 313 314 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 315 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 316 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 317 318 if (v != MBOX_OWNER_DRV) { 319 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 320 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret); 321 return ret; 322 } 323 324 /* Copy in the new mailbox command and send it on its way ... */ 325 t4_record_mbox(adap, cmd, MBOX_LEN, access, 0); 326 for (i = 0; i < size; i += 8) 327 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 328 329 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 330 t4_read_reg(adap, ctl_reg); /* flush write */ 331 332 delay_idx = 0; 333 ms = delay[0]; 334 335 for (i = 0; 336 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 337 i < timeout; 338 i += ms) { 339 if (sleep_ok) { 340 ms = delay[delay_idx]; /* last element may repeat */ 341 if (delay_idx < ARRAY_SIZE(delay) - 1) 342 delay_idx++; 343 msleep(ms); 344 } else 345 mdelay(ms); 346 347 v = t4_read_reg(adap, ctl_reg); 348 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 349 if (!(v & MBMSGVALID_F)) { 350 t4_write_reg(adap, ctl_reg, 0); 351 continue; 352 } 353 354 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 355 res = be64_to_cpu(cmd_rpl[0]); 356 357 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 358 fw_asrt(adap, data_reg); 359 res = FW_CMD_RETVAL_V(EIO); 360 } else if (rpl) { 361 memcpy(rpl, cmd_rpl, size); 362 } 363 364 t4_write_reg(adap, ctl_reg, 0); 365 366 execute = i + ms; 367 t4_record_mbox(adap, cmd_rpl, 368 MBOX_LEN, access, execute); 369 return -FW_CMD_RETVAL_G((int)res); 370 } 371 } 372 373 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret); 375 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 376 *(const u8 *)cmd, mbox); 377 t4_report_fw_error(adap); 378 return ret; 379 } 380 381 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 382 void *rpl, bool sleep_ok) 383 { 384 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 385 FW_CMD_MAX_TIMEOUT); 386 } 387 388 static int t4_edc_err_read(struct adapter *adap, int idx) 389 { 390 u32 edc_ecc_err_addr_reg; 391 u32 rdata_reg; 392 393 if (is_t4(adap->params.chip)) { 394 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 395 return 0; 396 } 397 if (idx != 0 && idx != 1) { 398 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 399 return 0; 400 } 401 402 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 403 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 404 405 CH_WARN(adap, 406 "edc%d err addr 0x%x: 0x%x.\n", 407 idx, edc_ecc_err_addr_reg, 408 t4_read_reg(adap, edc_ecc_err_addr_reg)); 409 CH_WARN(adap, 410 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 411 rdata_reg, 412 (unsigned long long)t4_read_reg64(adap, rdata_reg), 413 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 414 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 415 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 416 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 417 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 418 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 419 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 420 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 421 422 return 0; 423 } 424 425 /** 426 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 427 * @adap: the adapter 428 * @win: PCI-E Memory Window to use 429 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 430 * @addr: address within indicated memory type 431 * @len: amount of memory to transfer 432 * @hbuf: host memory buffer 433 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 434 * 435 * Reads/writes an [almost] arbitrary memory region in the firmware: the 436 * firmware memory address and host buffer must be aligned on 32-bit 437 * boudaries; the length may be arbitrary. The memory is transferred as 438 * a raw byte sequence from/to the firmware's memory. If this memory 439 * contains data structures which contain multi-byte integers, it's the 440 * caller's responsibility to perform appropriate byte order conversions. 441 */ 442 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 443 u32 len, void *hbuf, int dir) 444 { 445 u32 pos, offset, resid, memoffset; 446 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 447 u32 *buf; 448 449 /* Argument sanity checks ... 450 */ 451 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 452 return -EINVAL; 453 buf = (u32 *)hbuf; 454 455 /* It's convenient to be able to handle lengths which aren't a 456 * multiple of 32-bits because we often end up transferring files to 457 * the firmware. So we'll handle that by normalizing the length here 458 * and then handling any residual transfer at the end. 459 */ 460 resid = len & 0x3; 461 len -= resid; 462 463 /* Offset into the region of memory which is being accessed 464 * MEM_EDC0 = 0 465 * MEM_EDC1 = 1 466 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 467 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 468 */ 469 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 470 if (mtype != MEM_MC1) 471 memoffset = (mtype * (edc_size * 1024 * 1024)); 472 else { 473 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 474 MA_EXT_MEMORY0_BAR_A)); 475 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 476 } 477 478 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 479 addr = addr + memoffset; 480 481 /* Each PCI-E Memory Window is programmed with a window size -- or 482 * "aperture" -- which controls the granularity of its mapping onto 483 * adapter memory. We need to grab that aperture in order to know 484 * how to use the specified window. The window is also programmed 485 * with the base address of the Memory Window in BAR0's address 486 * space. For T4 this is an absolute PCI-E Bus Address. For T5 487 * the address is relative to BAR0. 488 */ 489 mem_reg = t4_read_reg(adap, 490 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 491 win)); 492 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 493 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 494 if (is_t4(adap->params.chip)) 495 mem_base -= adap->t4_bar0; 496 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 497 498 /* Calculate our initial PCI-E Memory Window Position and Offset into 499 * that Window. 500 */ 501 pos = addr & ~(mem_aperture-1); 502 offset = addr - pos; 503 504 /* Set up initial PCI-E Memory Window to cover the start of our 505 * transfer. (Read it back to ensure that changes propagate before we 506 * attempt to use the new value.) 507 */ 508 t4_write_reg(adap, 509 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 510 pos | win_pf); 511 t4_read_reg(adap, 512 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 513 514 /* Transfer data to/from the adapter as long as there's an integral 515 * number of 32-bit transfers to complete. 516 * 517 * A note on Endianness issues: 518 * 519 * The "register" reads and writes below from/to the PCI-E Memory 520 * Window invoke the standard adapter Big-Endian to PCI-E Link 521 * Little-Endian "swizzel." As a result, if we have the following 522 * data in adapter memory: 523 * 524 * Memory: ... | b0 | b1 | b2 | b3 | ... 525 * Address: i+0 i+1 i+2 i+3 526 * 527 * Then a read of the adapter memory via the PCI-E Memory Window 528 * will yield: 529 * 530 * x = readl(i) 531 * 31 0 532 * [ b3 | b2 | b1 | b0 ] 533 * 534 * If this value is stored into local memory on a Little-Endian system 535 * it will show up correctly in local memory as: 536 * 537 * ( ..., b0, b1, b2, b3, ... ) 538 * 539 * But on a Big-Endian system, the store will show up in memory 540 * incorrectly swizzled as: 541 * 542 * ( ..., b3, b2, b1, b0, ... ) 543 * 544 * So we need to account for this in the reads and writes to the 545 * PCI-E Memory Window below by undoing the register read/write 546 * swizzels. 547 */ 548 while (len > 0) { 549 if (dir == T4_MEMORY_READ) 550 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 551 mem_base + offset)); 552 else 553 t4_write_reg(adap, mem_base + offset, 554 (__force u32)cpu_to_le32(*buf++)); 555 offset += sizeof(__be32); 556 len -= sizeof(__be32); 557 558 /* If we've reached the end of our current window aperture, 559 * move the PCI-E Memory Window on to the next. Note that 560 * doing this here after "len" may be 0 allows us to set up 561 * the PCI-E Memory Window for a possible final residual 562 * transfer below ... 563 */ 564 if (offset == mem_aperture) { 565 pos += mem_aperture; 566 offset = 0; 567 t4_write_reg(adap, 568 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 569 win), pos | win_pf); 570 t4_read_reg(adap, 571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 572 win)); 573 } 574 } 575 576 /* If the original transfer had a length which wasn't a multiple of 577 * 32-bits, now's where we need to finish off the transfer of the 578 * residual amount. The PCI-E Memory Window has already been moved 579 * above (if necessary) to cover this final transfer. 580 */ 581 if (resid) { 582 union { 583 u32 word; 584 char byte[4]; 585 } last; 586 unsigned char *bp; 587 int i; 588 589 if (dir == T4_MEMORY_READ) { 590 last.word = le32_to_cpu( 591 (__force __le32)t4_read_reg(adap, 592 mem_base + offset)); 593 for (bp = (unsigned char *)buf, i = resid; i < 4; i++) 594 bp[i] = last.byte[i]; 595 } else { 596 last.word = *buf; 597 for (i = resid; i < 4; i++) 598 last.byte[i] = 0; 599 t4_write_reg(adap, mem_base + offset, 600 (__force u32)cpu_to_le32(last.word)); 601 } 602 } 603 604 return 0; 605 } 606 607 /* Return the specified PCI-E Configuration Space register from our Physical 608 * Function. We try first via a Firmware LDST Command since we prefer to let 609 * the firmware own all of these registers, but if that fails we go for it 610 * directly ourselves. 611 */ 612 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 613 { 614 u32 val, ldst_addrspace; 615 616 /* If fw_attach != 0, construct and send the Firmware LDST Command to 617 * retrieve the specified PCI-E Configuration Space register. 618 */ 619 struct fw_ldst_cmd ldst_cmd; 620 int ret; 621 622 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 623 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 624 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 625 FW_CMD_REQUEST_F | 626 FW_CMD_READ_F | 627 ldst_addrspace); 628 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 629 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 630 ldst_cmd.u.pcie.ctrl_to_fn = 631 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 632 ldst_cmd.u.pcie.r = reg; 633 634 /* If the LDST Command succeeds, return the result, otherwise 635 * fall through to reading it directly ourselves ... 636 */ 637 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 638 &ldst_cmd); 639 if (ret == 0) 640 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 641 else 642 /* Read the desired Configuration Space register via the PCI-E 643 * Backdoor mechanism. 644 */ 645 t4_hw_pci_read_cfg4(adap, reg, &val); 646 return val; 647 } 648 649 /* Get the window based on base passed to it. 650 * Window aperture is currently unhandled, but there is no use case for it 651 * right now 652 */ 653 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 654 u32 memwin_base) 655 { 656 u32 ret; 657 658 if (is_t4(adap->params.chip)) { 659 u32 bar0; 660 661 /* Truncation intentional: we only read the bottom 32-bits of 662 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 663 * mechanism to read BAR0 instead of using 664 * pci_resource_start() because we could be operating from 665 * within a Virtual Machine which is trapping our accesses to 666 * our Configuration Space and we need to set up the PCI-E 667 * Memory Window decoders with the actual addresses which will 668 * be coming across the PCI-E link. 669 */ 670 bar0 = t4_read_pcie_cfg4(adap, pci_base); 671 bar0 &= pci_mask; 672 adap->t4_bar0 = bar0; 673 674 ret = bar0 + memwin_base; 675 } else { 676 /* For T5, only relative offset inside the PCIe BAR is passed */ 677 ret = memwin_base; 678 } 679 return ret; 680 } 681 682 /* Get the default utility window (win0) used by everyone */ 683 u32 t4_get_util_window(struct adapter *adap) 684 { 685 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 686 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 687 } 688 689 /* Set up memory window for accessing adapter memory ranges. (Read 690 * back MA register to ensure that changes propagate before we attempt 691 * to use the new values.) 692 */ 693 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 694 { 695 t4_write_reg(adap, 696 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 697 memwin_base | BIR_V(0) | 698 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 699 t4_read_reg(adap, 700 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 701 } 702 703 /** 704 * t4_get_regs_len - return the size of the chips register set 705 * @adapter: the adapter 706 * 707 * Returns the size of the chip's BAR0 register space. 708 */ 709 unsigned int t4_get_regs_len(struct adapter *adapter) 710 { 711 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 712 713 switch (chip_version) { 714 case CHELSIO_T4: 715 return T4_REGMAP_SIZE; 716 717 case CHELSIO_T5: 718 case CHELSIO_T6: 719 return T5_REGMAP_SIZE; 720 } 721 722 dev_err(adapter->pdev_dev, 723 "Unsupported chip version %d\n", chip_version); 724 return 0; 725 } 726 727 /** 728 * t4_get_regs - read chip registers into provided buffer 729 * @adap: the adapter 730 * @buf: register buffer 731 * @buf_size: size (in bytes) of register buffer 732 * 733 * If the provided register buffer isn't large enough for the chip's 734 * full register range, the register dump will be truncated to the 735 * register buffer's size. 736 */ 737 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 738 { 739 static const unsigned int t4_reg_ranges[] = { 740 0x1008, 0x1108, 741 0x1180, 0x1184, 742 0x1190, 0x1194, 743 0x11a0, 0x11a4, 744 0x11b0, 0x11b4, 745 0x11fc, 0x123c, 746 0x1300, 0x173c, 747 0x1800, 0x18fc, 748 0x3000, 0x30d8, 749 0x30e0, 0x30e4, 750 0x30ec, 0x5910, 751 0x5920, 0x5924, 752 0x5960, 0x5960, 753 0x5968, 0x5968, 754 0x5970, 0x5970, 755 0x5978, 0x5978, 756 0x5980, 0x5980, 757 0x5988, 0x5988, 758 0x5990, 0x5990, 759 0x5998, 0x5998, 760 0x59a0, 0x59d4, 761 0x5a00, 0x5ae0, 762 0x5ae8, 0x5ae8, 763 0x5af0, 0x5af0, 764 0x5af8, 0x5af8, 765 0x6000, 0x6098, 766 0x6100, 0x6150, 767 0x6200, 0x6208, 768 0x6240, 0x6248, 769 0x6280, 0x62b0, 770 0x62c0, 0x6338, 771 0x6370, 0x638c, 772 0x6400, 0x643c, 773 0x6500, 0x6524, 774 0x6a00, 0x6a04, 775 0x6a14, 0x6a38, 776 0x6a60, 0x6a70, 777 0x6a78, 0x6a78, 778 0x6b00, 0x6b0c, 779 0x6b1c, 0x6b84, 780 0x6bf0, 0x6bf8, 781 0x6c00, 0x6c0c, 782 0x6c1c, 0x6c84, 783 0x6cf0, 0x6cf8, 784 0x6d00, 0x6d0c, 785 0x6d1c, 0x6d84, 786 0x6df0, 0x6df8, 787 0x6e00, 0x6e0c, 788 0x6e1c, 0x6e84, 789 0x6ef0, 0x6ef8, 790 0x6f00, 0x6f0c, 791 0x6f1c, 0x6f84, 792 0x6ff0, 0x6ff8, 793 0x7000, 0x700c, 794 0x701c, 0x7084, 795 0x70f0, 0x70f8, 796 0x7100, 0x710c, 797 0x711c, 0x7184, 798 0x71f0, 0x71f8, 799 0x7200, 0x720c, 800 0x721c, 0x7284, 801 0x72f0, 0x72f8, 802 0x7300, 0x730c, 803 0x731c, 0x7384, 804 0x73f0, 0x73f8, 805 0x7400, 0x7450, 806 0x7500, 0x7530, 807 0x7600, 0x760c, 808 0x7614, 0x761c, 809 0x7680, 0x76cc, 810 0x7700, 0x7798, 811 0x77c0, 0x77fc, 812 0x7900, 0x79fc, 813 0x7b00, 0x7b58, 814 0x7b60, 0x7b84, 815 0x7b8c, 0x7c38, 816 0x7d00, 0x7d38, 817 0x7d40, 0x7d80, 818 0x7d8c, 0x7ddc, 819 0x7de4, 0x7e04, 820 0x7e10, 0x7e1c, 821 0x7e24, 0x7e38, 822 0x7e40, 0x7e44, 823 0x7e4c, 0x7e78, 824 0x7e80, 0x7ea4, 825 0x7eac, 0x7edc, 826 0x7ee8, 0x7efc, 827 0x8dc0, 0x8e04, 828 0x8e10, 0x8e1c, 829 0x8e30, 0x8e78, 830 0x8ea0, 0x8eb8, 831 0x8ec0, 0x8f6c, 832 0x8fc0, 0x9008, 833 0x9010, 0x9058, 834 0x9060, 0x9060, 835 0x9068, 0x9074, 836 0x90fc, 0x90fc, 837 0x9400, 0x9408, 838 0x9410, 0x9458, 839 0x9600, 0x9600, 840 0x9608, 0x9638, 841 0x9640, 0x96bc, 842 0x9800, 0x9808, 843 0x9820, 0x983c, 844 0x9850, 0x9864, 845 0x9c00, 0x9c6c, 846 0x9c80, 0x9cec, 847 0x9d00, 0x9d6c, 848 0x9d80, 0x9dec, 849 0x9e00, 0x9e6c, 850 0x9e80, 0x9eec, 851 0x9f00, 0x9f6c, 852 0x9f80, 0x9fec, 853 0xd004, 0xd004, 854 0xd010, 0xd03c, 855 0xdfc0, 0xdfe0, 856 0xe000, 0xea7c, 857 0xf000, 0x11190, 858 0x19040, 0x1906c, 859 0x19078, 0x19080, 860 0x1908c, 0x190e4, 861 0x190f0, 0x190f8, 862 0x19100, 0x19110, 863 0x19120, 0x19124, 864 0x19150, 0x19194, 865 0x1919c, 0x191b0, 866 0x191d0, 0x191e8, 867 0x19238, 0x1924c, 868 0x193f8, 0x1943c, 869 0x1944c, 0x19474, 870 0x19490, 0x194e0, 871 0x194f0, 0x194f8, 872 0x19800, 0x19c08, 873 0x19c10, 0x19c90, 874 0x19ca0, 0x19ce4, 875 0x19cf0, 0x19d40, 876 0x19d50, 0x19d94, 877 0x19da0, 0x19de8, 878 0x19df0, 0x19e40, 879 0x19e50, 0x19e90, 880 0x19ea0, 0x19f4c, 881 0x1a000, 0x1a004, 882 0x1a010, 0x1a06c, 883 0x1a0b0, 0x1a0e4, 884 0x1a0ec, 0x1a0f4, 885 0x1a100, 0x1a108, 886 0x1a114, 0x1a120, 887 0x1a128, 0x1a130, 888 0x1a138, 0x1a138, 889 0x1a190, 0x1a1c4, 890 0x1a1fc, 0x1a1fc, 891 0x1e040, 0x1e04c, 892 0x1e284, 0x1e28c, 893 0x1e2c0, 0x1e2c0, 894 0x1e2e0, 0x1e2e0, 895 0x1e300, 0x1e384, 896 0x1e3c0, 0x1e3c8, 897 0x1e440, 0x1e44c, 898 0x1e684, 0x1e68c, 899 0x1e6c0, 0x1e6c0, 900 0x1e6e0, 0x1e6e0, 901 0x1e700, 0x1e784, 902 0x1e7c0, 0x1e7c8, 903 0x1e840, 0x1e84c, 904 0x1ea84, 0x1ea8c, 905 0x1eac0, 0x1eac0, 906 0x1eae0, 0x1eae0, 907 0x1eb00, 0x1eb84, 908 0x1ebc0, 0x1ebc8, 909 0x1ec40, 0x1ec4c, 910 0x1ee84, 0x1ee8c, 911 0x1eec0, 0x1eec0, 912 0x1eee0, 0x1eee0, 913 0x1ef00, 0x1ef84, 914 0x1efc0, 0x1efc8, 915 0x1f040, 0x1f04c, 916 0x1f284, 0x1f28c, 917 0x1f2c0, 0x1f2c0, 918 0x1f2e0, 0x1f2e0, 919 0x1f300, 0x1f384, 920 0x1f3c0, 0x1f3c8, 921 0x1f440, 0x1f44c, 922 0x1f684, 0x1f68c, 923 0x1f6c0, 0x1f6c0, 924 0x1f6e0, 0x1f6e0, 925 0x1f700, 0x1f784, 926 0x1f7c0, 0x1f7c8, 927 0x1f840, 0x1f84c, 928 0x1fa84, 0x1fa8c, 929 0x1fac0, 0x1fac0, 930 0x1fae0, 0x1fae0, 931 0x1fb00, 0x1fb84, 932 0x1fbc0, 0x1fbc8, 933 0x1fc40, 0x1fc4c, 934 0x1fe84, 0x1fe8c, 935 0x1fec0, 0x1fec0, 936 0x1fee0, 0x1fee0, 937 0x1ff00, 0x1ff84, 938 0x1ffc0, 0x1ffc8, 939 0x20000, 0x2002c, 940 0x20100, 0x2013c, 941 0x20190, 0x201a0, 942 0x201a8, 0x201b8, 943 0x201c4, 0x201c8, 944 0x20200, 0x20318, 945 0x20400, 0x204b4, 946 0x204c0, 0x20528, 947 0x20540, 0x20614, 948 0x21000, 0x21040, 949 0x2104c, 0x21060, 950 0x210c0, 0x210ec, 951 0x21200, 0x21268, 952 0x21270, 0x21284, 953 0x212fc, 0x21388, 954 0x21400, 0x21404, 955 0x21500, 0x21500, 956 0x21510, 0x21518, 957 0x2152c, 0x21530, 958 0x2153c, 0x2153c, 959 0x21550, 0x21554, 960 0x21600, 0x21600, 961 0x21608, 0x2161c, 962 0x21624, 0x21628, 963 0x21630, 0x21634, 964 0x2163c, 0x2163c, 965 0x21700, 0x2171c, 966 0x21780, 0x2178c, 967 0x21800, 0x21818, 968 0x21820, 0x21828, 969 0x21830, 0x21848, 970 0x21850, 0x21854, 971 0x21860, 0x21868, 972 0x21870, 0x21870, 973 0x21878, 0x21898, 974 0x218a0, 0x218a8, 975 0x218b0, 0x218c8, 976 0x218d0, 0x218d4, 977 0x218e0, 0x218e8, 978 0x218f0, 0x218f0, 979 0x218f8, 0x21a18, 980 0x21a20, 0x21a28, 981 0x21a30, 0x21a48, 982 0x21a50, 0x21a54, 983 0x21a60, 0x21a68, 984 0x21a70, 0x21a70, 985 0x21a78, 0x21a98, 986 0x21aa0, 0x21aa8, 987 0x21ab0, 0x21ac8, 988 0x21ad0, 0x21ad4, 989 0x21ae0, 0x21ae8, 990 0x21af0, 0x21af0, 991 0x21af8, 0x21c18, 992 0x21c20, 0x21c20, 993 0x21c28, 0x21c30, 994 0x21c38, 0x21c38, 995 0x21c80, 0x21c98, 996 0x21ca0, 0x21ca8, 997 0x21cb0, 0x21cc8, 998 0x21cd0, 0x21cd4, 999 0x21ce0, 0x21ce8, 1000 0x21cf0, 0x21cf0, 1001 0x21cf8, 0x21d7c, 1002 0x21e00, 0x21e04, 1003 0x22000, 0x2202c, 1004 0x22100, 0x2213c, 1005 0x22190, 0x221a0, 1006 0x221a8, 0x221b8, 1007 0x221c4, 0x221c8, 1008 0x22200, 0x22318, 1009 0x22400, 0x224b4, 1010 0x224c0, 0x22528, 1011 0x22540, 0x22614, 1012 0x23000, 0x23040, 1013 0x2304c, 0x23060, 1014 0x230c0, 0x230ec, 1015 0x23200, 0x23268, 1016 0x23270, 0x23284, 1017 0x232fc, 0x23388, 1018 0x23400, 0x23404, 1019 0x23500, 0x23500, 1020 0x23510, 0x23518, 1021 0x2352c, 0x23530, 1022 0x2353c, 0x2353c, 1023 0x23550, 0x23554, 1024 0x23600, 0x23600, 1025 0x23608, 0x2361c, 1026 0x23624, 0x23628, 1027 0x23630, 0x23634, 1028 0x2363c, 0x2363c, 1029 0x23700, 0x2371c, 1030 0x23780, 0x2378c, 1031 0x23800, 0x23818, 1032 0x23820, 0x23828, 1033 0x23830, 0x23848, 1034 0x23850, 0x23854, 1035 0x23860, 0x23868, 1036 0x23870, 0x23870, 1037 0x23878, 0x23898, 1038 0x238a0, 0x238a8, 1039 0x238b0, 0x238c8, 1040 0x238d0, 0x238d4, 1041 0x238e0, 0x238e8, 1042 0x238f0, 0x238f0, 1043 0x238f8, 0x23a18, 1044 0x23a20, 0x23a28, 1045 0x23a30, 0x23a48, 1046 0x23a50, 0x23a54, 1047 0x23a60, 0x23a68, 1048 0x23a70, 0x23a70, 1049 0x23a78, 0x23a98, 1050 0x23aa0, 0x23aa8, 1051 0x23ab0, 0x23ac8, 1052 0x23ad0, 0x23ad4, 1053 0x23ae0, 0x23ae8, 1054 0x23af0, 0x23af0, 1055 0x23af8, 0x23c18, 1056 0x23c20, 0x23c20, 1057 0x23c28, 0x23c30, 1058 0x23c38, 0x23c38, 1059 0x23c80, 0x23c98, 1060 0x23ca0, 0x23ca8, 1061 0x23cb0, 0x23cc8, 1062 0x23cd0, 0x23cd4, 1063 0x23ce0, 0x23ce8, 1064 0x23cf0, 0x23cf0, 1065 0x23cf8, 0x23d7c, 1066 0x23e00, 0x23e04, 1067 0x24000, 0x2402c, 1068 0x24100, 0x2413c, 1069 0x24190, 0x241a0, 1070 0x241a8, 0x241b8, 1071 0x241c4, 0x241c8, 1072 0x24200, 0x24318, 1073 0x24400, 0x244b4, 1074 0x244c0, 0x24528, 1075 0x24540, 0x24614, 1076 0x25000, 0x25040, 1077 0x2504c, 0x25060, 1078 0x250c0, 0x250ec, 1079 0x25200, 0x25268, 1080 0x25270, 0x25284, 1081 0x252fc, 0x25388, 1082 0x25400, 0x25404, 1083 0x25500, 0x25500, 1084 0x25510, 0x25518, 1085 0x2552c, 0x25530, 1086 0x2553c, 0x2553c, 1087 0x25550, 0x25554, 1088 0x25600, 0x25600, 1089 0x25608, 0x2561c, 1090 0x25624, 0x25628, 1091 0x25630, 0x25634, 1092 0x2563c, 0x2563c, 1093 0x25700, 0x2571c, 1094 0x25780, 0x2578c, 1095 0x25800, 0x25818, 1096 0x25820, 0x25828, 1097 0x25830, 0x25848, 1098 0x25850, 0x25854, 1099 0x25860, 0x25868, 1100 0x25870, 0x25870, 1101 0x25878, 0x25898, 1102 0x258a0, 0x258a8, 1103 0x258b0, 0x258c8, 1104 0x258d0, 0x258d4, 1105 0x258e0, 0x258e8, 1106 0x258f0, 0x258f0, 1107 0x258f8, 0x25a18, 1108 0x25a20, 0x25a28, 1109 0x25a30, 0x25a48, 1110 0x25a50, 0x25a54, 1111 0x25a60, 0x25a68, 1112 0x25a70, 0x25a70, 1113 0x25a78, 0x25a98, 1114 0x25aa0, 0x25aa8, 1115 0x25ab0, 0x25ac8, 1116 0x25ad0, 0x25ad4, 1117 0x25ae0, 0x25ae8, 1118 0x25af0, 0x25af0, 1119 0x25af8, 0x25c18, 1120 0x25c20, 0x25c20, 1121 0x25c28, 0x25c30, 1122 0x25c38, 0x25c38, 1123 0x25c80, 0x25c98, 1124 0x25ca0, 0x25ca8, 1125 0x25cb0, 0x25cc8, 1126 0x25cd0, 0x25cd4, 1127 0x25ce0, 0x25ce8, 1128 0x25cf0, 0x25cf0, 1129 0x25cf8, 0x25d7c, 1130 0x25e00, 0x25e04, 1131 0x26000, 0x2602c, 1132 0x26100, 0x2613c, 1133 0x26190, 0x261a0, 1134 0x261a8, 0x261b8, 1135 0x261c4, 0x261c8, 1136 0x26200, 0x26318, 1137 0x26400, 0x264b4, 1138 0x264c0, 0x26528, 1139 0x26540, 0x26614, 1140 0x27000, 0x27040, 1141 0x2704c, 0x27060, 1142 0x270c0, 0x270ec, 1143 0x27200, 0x27268, 1144 0x27270, 0x27284, 1145 0x272fc, 0x27388, 1146 0x27400, 0x27404, 1147 0x27500, 0x27500, 1148 0x27510, 0x27518, 1149 0x2752c, 0x27530, 1150 0x2753c, 0x2753c, 1151 0x27550, 0x27554, 1152 0x27600, 0x27600, 1153 0x27608, 0x2761c, 1154 0x27624, 0x27628, 1155 0x27630, 0x27634, 1156 0x2763c, 0x2763c, 1157 0x27700, 0x2771c, 1158 0x27780, 0x2778c, 1159 0x27800, 0x27818, 1160 0x27820, 0x27828, 1161 0x27830, 0x27848, 1162 0x27850, 0x27854, 1163 0x27860, 0x27868, 1164 0x27870, 0x27870, 1165 0x27878, 0x27898, 1166 0x278a0, 0x278a8, 1167 0x278b0, 0x278c8, 1168 0x278d0, 0x278d4, 1169 0x278e0, 0x278e8, 1170 0x278f0, 0x278f0, 1171 0x278f8, 0x27a18, 1172 0x27a20, 0x27a28, 1173 0x27a30, 0x27a48, 1174 0x27a50, 0x27a54, 1175 0x27a60, 0x27a68, 1176 0x27a70, 0x27a70, 1177 0x27a78, 0x27a98, 1178 0x27aa0, 0x27aa8, 1179 0x27ab0, 0x27ac8, 1180 0x27ad0, 0x27ad4, 1181 0x27ae0, 0x27ae8, 1182 0x27af0, 0x27af0, 1183 0x27af8, 0x27c18, 1184 0x27c20, 0x27c20, 1185 0x27c28, 0x27c30, 1186 0x27c38, 0x27c38, 1187 0x27c80, 0x27c98, 1188 0x27ca0, 0x27ca8, 1189 0x27cb0, 0x27cc8, 1190 0x27cd0, 0x27cd4, 1191 0x27ce0, 0x27ce8, 1192 0x27cf0, 0x27cf0, 1193 0x27cf8, 0x27d7c, 1194 0x27e00, 0x27e04, 1195 }; 1196 1197 static const unsigned int t5_reg_ranges[] = { 1198 0x1008, 0x10c0, 1199 0x10cc, 0x10f8, 1200 0x1100, 0x1100, 1201 0x110c, 0x1148, 1202 0x1180, 0x1184, 1203 0x1190, 0x1194, 1204 0x11a0, 0x11a4, 1205 0x11b0, 0x11b4, 1206 0x11fc, 0x123c, 1207 0x1280, 0x173c, 1208 0x1800, 0x18fc, 1209 0x3000, 0x3028, 1210 0x3060, 0x30b0, 1211 0x30b8, 0x30d8, 1212 0x30e0, 0x30fc, 1213 0x3140, 0x357c, 1214 0x35a8, 0x35cc, 1215 0x35ec, 0x35ec, 1216 0x3600, 0x5624, 1217 0x56cc, 0x56ec, 1218 0x56f4, 0x5720, 1219 0x5728, 0x575c, 1220 0x580c, 0x5814, 1221 0x5890, 0x589c, 1222 0x58a4, 0x58ac, 1223 0x58b8, 0x58bc, 1224 0x5940, 0x59c8, 1225 0x59d0, 0x59dc, 1226 0x59fc, 0x5a18, 1227 0x5a60, 0x5a70, 1228 0x5a80, 0x5a9c, 1229 0x5b94, 0x5bfc, 1230 0x6000, 0x6020, 1231 0x6028, 0x6040, 1232 0x6058, 0x609c, 1233 0x60a8, 0x614c, 1234 0x7700, 0x7798, 1235 0x77c0, 0x78fc, 1236 0x7b00, 0x7b58, 1237 0x7b60, 0x7b84, 1238 0x7b8c, 0x7c54, 1239 0x7d00, 0x7d38, 1240 0x7d40, 0x7d80, 1241 0x7d8c, 0x7ddc, 1242 0x7de4, 0x7e04, 1243 0x7e10, 0x7e1c, 1244 0x7e24, 0x7e38, 1245 0x7e40, 0x7e44, 1246 0x7e4c, 0x7e78, 1247 0x7e80, 0x7edc, 1248 0x7ee8, 0x7efc, 1249 0x8dc0, 0x8de0, 1250 0x8df8, 0x8e04, 1251 0x8e10, 0x8e84, 1252 0x8ea0, 0x8f84, 1253 0x8fc0, 0x9058, 1254 0x9060, 0x9060, 1255 0x9068, 0x90f8, 1256 0x9400, 0x9408, 1257 0x9410, 0x9470, 1258 0x9600, 0x9600, 1259 0x9608, 0x9638, 1260 0x9640, 0x96f4, 1261 0x9800, 0x9808, 1262 0x9820, 0x983c, 1263 0x9850, 0x9864, 1264 0x9c00, 0x9c6c, 1265 0x9c80, 0x9cec, 1266 0x9d00, 0x9d6c, 1267 0x9d80, 0x9dec, 1268 0x9e00, 0x9e6c, 1269 0x9e80, 0x9eec, 1270 0x9f00, 0x9f6c, 1271 0x9f80, 0xa020, 1272 0xd004, 0xd004, 1273 0xd010, 0xd03c, 1274 0xdfc0, 0xdfe0, 1275 0xe000, 0x1106c, 1276 0x11074, 0x11088, 1277 0x1109c, 0x1117c, 1278 0x11190, 0x11204, 1279 0x19040, 0x1906c, 1280 0x19078, 0x19080, 1281 0x1908c, 0x190e8, 1282 0x190f0, 0x190f8, 1283 0x19100, 0x19110, 1284 0x19120, 0x19124, 1285 0x19150, 0x19194, 1286 0x1919c, 0x191b0, 1287 0x191d0, 0x191e8, 1288 0x19238, 0x19290, 1289 0x193f8, 0x19428, 1290 0x19430, 0x19444, 1291 0x1944c, 0x1946c, 1292 0x19474, 0x19474, 1293 0x19490, 0x194cc, 1294 0x194f0, 0x194f8, 1295 0x19c00, 0x19c08, 1296 0x19c10, 0x19c60, 1297 0x19c94, 0x19ce4, 1298 0x19cf0, 0x19d40, 1299 0x19d50, 0x19d94, 1300 0x19da0, 0x19de8, 1301 0x19df0, 0x19e10, 1302 0x19e50, 0x19e90, 1303 0x19ea0, 0x19f24, 1304 0x19f34, 0x19f34, 1305 0x19f40, 0x19f50, 1306 0x19f90, 0x19fb4, 1307 0x19fc4, 0x19fe4, 1308 0x1a000, 0x1a004, 1309 0x1a010, 0x1a06c, 1310 0x1a0b0, 0x1a0e4, 1311 0x1a0ec, 0x1a0f8, 1312 0x1a100, 0x1a108, 1313 0x1a114, 0x1a120, 1314 0x1a128, 0x1a130, 1315 0x1a138, 0x1a138, 1316 0x1a190, 0x1a1c4, 1317 0x1a1fc, 0x1a1fc, 1318 0x1e008, 0x1e00c, 1319 0x1e040, 0x1e044, 1320 0x1e04c, 0x1e04c, 1321 0x1e284, 0x1e290, 1322 0x1e2c0, 0x1e2c0, 1323 0x1e2e0, 0x1e2e0, 1324 0x1e300, 0x1e384, 1325 0x1e3c0, 0x1e3c8, 1326 0x1e408, 0x1e40c, 1327 0x1e440, 0x1e444, 1328 0x1e44c, 0x1e44c, 1329 0x1e684, 0x1e690, 1330 0x1e6c0, 0x1e6c0, 1331 0x1e6e0, 0x1e6e0, 1332 0x1e700, 0x1e784, 1333 0x1e7c0, 0x1e7c8, 1334 0x1e808, 0x1e80c, 1335 0x1e840, 0x1e844, 1336 0x1e84c, 0x1e84c, 1337 0x1ea84, 0x1ea90, 1338 0x1eac0, 0x1eac0, 1339 0x1eae0, 0x1eae0, 1340 0x1eb00, 0x1eb84, 1341 0x1ebc0, 0x1ebc8, 1342 0x1ec08, 0x1ec0c, 1343 0x1ec40, 0x1ec44, 1344 0x1ec4c, 0x1ec4c, 1345 0x1ee84, 0x1ee90, 1346 0x1eec0, 0x1eec0, 1347 0x1eee0, 0x1eee0, 1348 0x1ef00, 0x1ef84, 1349 0x1efc0, 0x1efc8, 1350 0x1f008, 0x1f00c, 1351 0x1f040, 0x1f044, 1352 0x1f04c, 0x1f04c, 1353 0x1f284, 0x1f290, 1354 0x1f2c0, 0x1f2c0, 1355 0x1f2e0, 0x1f2e0, 1356 0x1f300, 0x1f384, 1357 0x1f3c0, 0x1f3c8, 1358 0x1f408, 0x1f40c, 1359 0x1f440, 0x1f444, 1360 0x1f44c, 0x1f44c, 1361 0x1f684, 0x1f690, 1362 0x1f6c0, 0x1f6c0, 1363 0x1f6e0, 0x1f6e0, 1364 0x1f700, 0x1f784, 1365 0x1f7c0, 0x1f7c8, 1366 0x1f808, 0x1f80c, 1367 0x1f840, 0x1f844, 1368 0x1f84c, 0x1f84c, 1369 0x1fa84, 0x1fa90, 1370 0x1fac0, 0x1fac0, 1371 0x1fae0, 0x1fae0, 1372 0x1fb00, 0x1fb84, 1373 0x1fbc0, 0x1fbc8, 1374 0x1fc08, 0x1fc0c, 1375 0x1fc40, 0x1fc44, 1376 0x1fc4c, 0x1fc4c, 1377 0x1fe84, 0x1fe90, 1378 0x1fec0, 0x1fec0, 1379 0x1fee0, 0x1fee0, 1380 0x1ff00, 0x1ff84, 1381 0x1ffc0, 0x1ffc8, 1382 0x30000, 0x30030, 1383 0x30038, 0x30038, 1384 0x30040, 0x30040, 1385 0x30100, 0x30144, 1386 0x30190, 0x301a0, 1387 0x301a8, 0x301b8, 1388 0x301c4, 0x301c8, 1389 0x301d0, 0x301d0, 1390 0x30200, 0x30318, 1391 0x30400, 0x304b4, 1392 0x304c0, 0x3052c, 1393 0x30540, 0x3061c, 1394 0x30800, 0x30828, 1395 0x30834, 0x30834, 1396 0x308c0, 0x30908, 1397 0x30910, 0x309ac, 1398 0x30a00, 0x30a14, 1399 0x30a1c, 0x30a2c, 1400 0x30a44, 0x30a50, 1401 0x30a74, 0x30a74, 1402 0x30a7c, 0x30afc, 1403 0x30b08, 0x30c24, 1404 0x30d00, 0x30d00, 1405 0x30d08, 0x30d14, 1406 0x30d1c, 0x30d20, 1407 0x30d3c, 0x30d3c, 1408 0x30d48, 0x30d50, 1409 0x31200, 0x3120c, 1410 0x31220, 0x31220, 1411 0x31240, 0x31240, 1412 0x31600, 0x3160c, 1413 0x31a00, 0x31a1c, 1414 0x31e00, 0x31e20, 1415 0x31e38, 0x31e3c, 1416 0x31e80, 0x31e80, 1417 0x31e88, 0x31ea8, 1418 0x31eb0, 0x31eb4, 1419 0x31ec8, 0x31ed4, 1420 0x31fb8, 0x32004, 1421 0x32200, 0x32200, 1422 0x32208, 0x32240, 1423 0x32248, 0x32280, 1424 0x32288, 0x322c0, 1425 0x322c8, 0x322fc, 1426 0x32600, 0x32630, 1427 0x32a00, 0x32abc, 1428 0x32b00, 0x32b10, 1429 0x32b20, 0x32b30, 1430 0x32b40, 0x32b50, 1431 0x32b60, 0x32b70, 1432 0x33000, 0x33028, 1433 0x33030, 0x33048, 1434 0x33060, 0x33068, 1435 0x33070, 0x3309c, 1436 0x330f0, 0x33128, 1437 0x33130, 0x33148, 1438 0x33160, 0x33168, 1439 0x33170, 0x3319c, 1440 0x331f0, 0x33238, 1441 0x33240, 0x33240, 1442 0x33248, 0x33250, 1443 0x3325c, 0x33264, 1444 0x33270, 0x332b8, 1445 0x332c0, 0x332e4, 1446 0x332f8, 0x33338, 1447 0x33340, 0x33340, 1448 0x33348, 0x33350, 1449 0x3335c, 0x33364, 1450 0x33370, 0x333b8, 1451 0x333c0, 0x333e4, 1452 0x333f8, 0x33428, 1453 0x33430, 0x33448, 1454 0x33460, 0x33468, 1455 0x33470, 0x3349c, 1456 0x334f0, 0x33528, 1457 0x33530, 0x33548, 1458 0x33560, 0x33568, 1459 0x33570, 0x3359c, 1460 0x335f0, 0x33638, 1461 0x33640, 0x33640, 1462 0x33648, 0x33650, 1463 0x3365c, 0x33664, 1464 0x33670, 0x336b8, 1465 0x336c0, 0x336e4, 1466 0x336f8, 0x33738, 1467 0x33740, 0x33740, 1468 0x33748, 0x33750, 1469 0x3375c, 0x33764, 1470 0x33770, 0x337b8, 1471 0x337c0, 0x337e4, 1472 0x337f8, 0x337fc, 1473 0x33814, 0x33814, 1474 0x3382c, 0x3382c, 1475 0x33880, 0x3388c, 1476 0x338e8, 0x338ec, 1477 0x33900, 0x33928, 1478 0x33930, 0x33948, 1479 0x33960, 0x33968, 1480 0x33970, 0x3399c, 1481 0x339f0, 0x33a38, 1482 0x33a40, 0x33a40, 1483 0x33a48, 0x33a50, 1484 0x33a5c, 0x33a64, 1485 0x33a70, 0x33ab8, 1486 0x33ac0, 0x33ae4, 1487 0x33af8, 0x33b10, 1488 0x33b28, 0x33b28, 1489 0x33b3c, 0x33b50, 1490 0x33bf0, 0x33c10, 1491 0x33c28, 0x33c28, 1492 0x33c3c, 0x33c50, 1493 0x33cf0, 0x33cfc, 1494 0x34000, 0x34030, 1495 0x34038, 0x34038, 1496 0x34040, 0x34040, 1497 0x34100, 0x34144, 1498 0x34190, 0x341a0, 1499 0x341a8, 0x341b8, 1500 0x341c4, 0x341c8, 1501 0x341d0, 0x341d0, 1502 0x34200, 0x34318, 1503 0x34400, 0x344b4, 1504 0x344c0, 0x3452c, 1505 0x34540, 0x3461c, 1506 0x34800, 0x34828, 1507 0x34834, 0x34834, 1508 0x348c0, 0x34908, 1509 0x34910, 0x349ac, 1510 0x34a00, 0x34a14, 1511 0x34a1c, 0x34a2c, 1512 0x34a44, 0x34a50, 1513 0x34a74, 0x34a74, 1514 0x34a7c, 0x34afc, 1515 0x34b08, 0x34c24, 1516 0x34d00, 0x34d00, 1517 0x34d08, 0x34d14, 1518 0x34d1c, 0x34d20, 1519 0x34d3c, 0x34d3c, 1520 0x34d48, 0x34d50, 1521 0x35200, 0x3520c, 1522 0x35220, 0x35220, 1523 0x35240, 0x35240, 1524 0x35600, 0x3560c, 1525 0x35a00, 0x35a1c, 1526 0x35e00, 0x35e20, 1527 0x35e38, 0x35e3c, 1528 0x35e80, 0x35e80, 1529 0x35e88, 0x35ea8, 1530 0x35eb0, 0x35eb4, 1531 0x35ec8, 0x35ed4, 1532 0x35fb8, 0x36004, 1533 0x36200, 0x36200, 1534 0x36208, 0x36240, 1535 0x36248, 0x36280, 1536 0x36288, 0x362c0, 1537 0x362c8, 0x362fc, 1538 0x36600, 0x36630, 1539 0x36a00, 0x36abc, 1540 0x36b00, 0x36b10, 1541 0x36b20, 0x36b30, 1542 0x36b40, 0x36b50, 1543 0x36b60, 0x36b70, 1544 0x37000, 0x37028, 1545 0x37030, 0x37048, 1546 0x37060, 0x37068, 1547 0x37070, 0x3709c, 1548 0x370f0, 0x37128, 1549 0x37130, 0x37148, 1550 0x37160, 0x37168, 1551 0x37170, 0x3719c, 1552 0x371f0, 0x37238, 1553 0x37240, 0x37240, 1554 0x37248, 0x37250, 1555 0x3725c, 0x37264, 1556 0x37270, 0x372b8, 1557 0x372c0, 0x372e4, 1558 0x372f8, 0x37338, 1559 0x37340, 0x37340, 1560 0x37348, 0x37350, 1561 0x3735c, 0x37364, 1562 0x37370, 0x373b8, 1563 0x373c0, 0x373e4, 1564 0x373f8, 0x37428, 1565 0x37430, 0x37448, 1566 0x37460, 0x37468, 1567 0x37470, 0x3749c, 1568 0x374f0, 0x37528, 1569 0x37530, 0x37548, 1570 0x37560, 0x37568, 1571 0x37570, 0x3759c, 1572 0x375f0, 0x37638, 1573 0x37640, 0x37640, 1574 0x37648, 0x37650, 1575 0x3765c, 0x37664, 1576 0x37670, 0x376b8, 1577 0x376c0, 0x376e4, 1578 0x376f8, 0x37738, 1579 0x37740, 0x37740, 1580 0x37748, 0x37750, 1581 0x3775c, 0x37764, 1582 0x37770, 0x377b8, 1583 0x377c0, 0x377e4, 1584 0x377f8, 0x377fc, 1585 0x37814, 0x37814, 1586 0x3782c, 0x3782c, 1587 0x37880, 0x3788c, 1588 0x378e8, 0x378ec, 1589 0x37900, 0x37928, 1590 0x37930, 0x37948, 1591 0x37960, 0x37968, 1592 0x37970, 0x3799c, 1593 0x379f0, 0x37a38, 1594 0x37a40, 0x37a40, 1595 0x37a48, 0x37a50, 1596 0x37a5c, 0x37a64, 1597 0x37a70, 0x37ab8, 1598 0x37ac0, 0x37ae4, 1599 0x37af8, 0x37b10, 1600 0x37b28, 0x37b28, 1601 0x37b3c, 0x37b50, 1602 0x37bf0, 0x37c10, 1603 0x37c28, 0x37c28, 1604 0x37c3c, 0x37c50, 1605 0x37cf0, 0x37cfc, 1606 0x38000, 0x38030, 1607 0x38038, 0x38038, 1608 0x38040, 0x38040, 1609 0x38100, 0x38144, 1610 0x38190, 0x381a0, 1611 0x381a8, 0x381b8, 1612 0x381c4, 0x381c8, 1613 0x381d0, 0x381d0, 1614 0x38200, 0x38318, 1615 0x38400, 0x384b4, 1616 0x384c0, 0x3852c, 1617 0x38540, 0x3861c, 1618 0x38800, 0x38828, 1619 0x38834, 0x38834, 1620 0x388c0, 0x38908, 1621 0x38910, 0x389ac, 1622 0x38a00, 0x38a14, 1623 0x38a1c, 0x38a2c, 1624 0x38a44, 0x38a50, 1625 0x38a74, 0x38a74, 1626 0x38a7c, 0x38afc, 1627 0x38b08, 0x38c24, 1628 0x38d00, 0x38d00, 1629 0x38d08, 0x38d14, 1630 0x38d1c, 0x38d20, 1631 0x38d3c, 0x38d3c, 1632 0x38d48, 0x38d50, 1633 0x39200, 0x3920c, 1634 0x39220, 0x39220, 1635 0x39240, 0x39240, 1636 0x39600, 0x3960c, 1637 0x39a00, 0x39a1c, 1638 0x39e00, 0x39e20, 1639 0x39e38, 0x39e3c, 1640 0x39e80, 0x39e80, 1641 0x39e88, 0x39ea8, 1642 0x39eb0, 0x39eb4, 1643 0x39ec8, 0x39ed4, 1644 0x39fb8, 0x3a004, 1645 0x3a200, 0x3a200, 1646 0x3a208, 0x3a240, 1647 0x3a248, 0x3a280, 1648 0x3a288, 0x3a2c0, 1649 0x3a2c8, 0x3a2fc, 1650 0x3a600, 0x3a630, 1651 0x3aa00, 0x3aabc, 1652 0x3ab00, 0x3ab10, 1653 0x3ab20, 0x3ab30, 1654 0x3ab40, 0x3ab50, 1655 0x3ab60, 0x3ab70, 1656 0x3b000, 0x3b028, 1657 0x3b030, 0x3b048, 1658 0x3b060, 0x3b068, 1659 0x3b070, 0x3b09c, 1660 0x3b0f0, 0x3b128, 1661 0x3b130, 0x3b148, 1662 0x3b160, 0x3b168, 1663 0x3b170, 0x3b19c, 1664 0x3b1f0, 0x3b238, 1665 0x3b240, 0x3b240, 1666 0x3b248, 0x3b250, 1667 0x3b25c, 0x3b264, 1668 0x3b270, 0x3b2b8, 1669 0x3b2c0, 0x3b2e4, 1670 0x3b2f8, 0x3b338, 1671 0x3b340, 0x3b340, 1672 0x3b348, 0x3b350, 1673 0x3b35c, 0x3b364, 1674 0x3b370, 0x3b3b8, 1675 0x3b3c0, 0x3b3e4, 1676 0x3b3f8, 0x3b428, 1677 0x3b430, 0x3b448, 1678 0x3b460, 0x3b468, 1679 0x3b470, 0x3b49c, 1680 0x3b4f0, 0x3b528, 1681 0x3b530, 0x3b548, 1682 0x3b560, 0x3b568, 1683 0x3b570, 0x3b59c, 1684 0x3b5f0, 0x3b638, 1685 0x3b640, 0x3b640, 1686 0x3b648, 0x3b650, 1687 0x3b65c, 0x3b664, 1688 0x3b670, 0x3b6b8, 1689 0x3b6c0, 0x3b6e4, 1690 0x3b6f8, 0x3b738, 1691 0x3b740, 0x3b740, 1692 0x3b748, 0x3b750, 1693 0x3b75c, 0x3b764, 1694 0x3b770, 0x3b7b8, 1695 0x3b7c0, 0x3b7e4, 1696 0x3b7f8, 0x3b7fc, 1697 0x3b814, 0x3b814, 1698 0x3b82c, 0x3b82c, 1699 0x3b880, 0x3b88c, 1700 0x3b8e8, 0x3b8ec, 1701 0x3b900, 0x3b928, 1702 0x3b930, 0x3b948, 1703 0x3b960, 0x3b968, 1704 0x3b970, 0x3b99c, 1705 0x3b9f0, 0x3ba38, 1706 0x3ba40, 0x3ba40, 1707 0x3ba48, 0x3ba50, 1708 0x3ba5c, 0x3ba64, 1709 0x3ba70, 0x3bab8, 1710 0x3bac0, 0x3bae4, 1711 0x3baf8, 0x3bb10, 1712 0x3bb28, 0x3bb28, 1713 0x3bb3c, 0x3bb50, 1714 0x3bbf0, 0x3bc10, 1715 0x3bc28, 0x3bc28, 1716 0x3bc3c, 0x3bc50, 1717 0x3bcf0, 0x3bcfc, 1718 0x3c000, 0x3c030, 1719 0x3c038, 0x3c038, 1720 0x3c040, 0x3c040, 1721 0x3c100, 0x3c144, 1722 0x3c190, 0x3c1a0, 1723 0x3c1a8, 0x3c1b8, 1724 0x3c1c4, 0x3c1c8, 1725 0x3c1d0, 0x3c1d0, 1726 0x3c200, 0x3c318, 1727 0x3c400, 0x3c4b4, 1728 0x3c4c0, 0x3c52c, 1729 0x3c540, 0x3c61c, 1730 0x3c800, 0x3c828, 1731 0x3c834, 0x3c834, 1732 0x3c8c0, 0x3c908, 1733 0x3c910, 0x3c9ac, 1734 0x3ca00, 0x3ca14, 1735 0x3ca1c, 0x3ca2c, 1736 0x3ca44, 0x3ca50, 1737 0x3ca74, 0x3ca74, 1738 0x3ca7c, 0x3cafc, 1739 0x3cb08, 0x3cc24, 1740 0x3cd00, 0x3cd00, 1741 0x3cd08, 0x3cd14, 1742 0x3cd1c, 0x3cd20, 1743 0x3cd3c, 0x3cd3c, 1744 0x3cd48, 0x3cd50, 1745 0x3d200, 0x3d20c, 1746 0x3d220, 0x3d220, 1747 0x3d240, 0x3d240, 1748 0x3d600, 0x3d60c, 1749 0x3da00, 0x3da1c, 1750 0x3de00, 0x3de20, 1751 0x3de38, 0x3de3c, 1752 0x3de80, 0x3de80, 1753 0x3de88, 0x3dea8, 1754 0x3deb0, 0x3deb4, 1755 0x3dec8, 0x3ded4, 1756 0x3dfb8, 0x3e004, 1757 0x3e200, 0x3e200, 1758 0x3e208, 0x3e240, 1759 0x3e248, 0x3e280, 1760 0x3e288, 0x3e2c0, 1761 0x3e2c8, 0x3e2fc, 1762 0x3e600, 0x3e630, 1763 0x3ea00, 0x3eabc, 1764 0x3eb00, 0x3eb10, 1765 0x3eb20, 0x3eb30, 1766 0x3eb40, 0x3eb50, 1767 0x3eb60, 0x3eb70, 1768 0x3f000, 0x3f028, 1769 0x3f030, 0x3f048, 1770 0x3f060, 0x3f068, 1771 0x3f070, 0x3f09c, 1772 0x3f0f0, 0x3f128, 1773 0x3f130, 0x3f148, 1774 0x3f160, 0x3f168, 1775 0x3f170, 0x3f19c, 1776 0x3f1f0, 0x3f238, 1777 0x3f240, 0x3f240, 1778 0x3f248, 0x3f250, 1779 0x3f25c, 0x3f264, 1780 0x3f270, 0x3f2b8, 1781 0x3f2c0, 0x3f2e4, 1782 0x3f2f8, 0x3f338, 1783 0x3f340, 0x3f340, 1784 0x3f348, 0x3f350, 1785 0x3f35c, 0x3f364, 1786 0x3f370, 0x3f3b8, 1787 0x3f3c0, 0x3f3e4, 1788 0x3f3f8, 0x3f428, 1789 0x3f430, 0x3f448, 1790 0x3f460, 0x3f468, 1791 0x3f470, 0x3f49c, 1792 0x3f4f0, 0x3f528, 1793 0x3f530, 0x3f548, 1794 0x3f560, 0x3f568, 1795 0x3f570, 0x3f59c, 1796 0x3f5f0, 0x3f638, 1797 0x3f640, 0x3f640, 1798 0x3f648, 0x3f650, 1799 0x3f65c, 0x3f664, 1800 0x3f670, 0x3f6b8, 1801 0x3f6c0, 0x3f6e4, 1802 0x3f6f8, 0x3f738, 1803 0x3f740, 0x3f740, 1804 0x3f748, 0x3f750, 1805 0x3f75c, 0x3f764, 1806 0x3f770, 0x3f7b8, 1807 0x3f7c0, 0x3f7e4, 1808 0x3f7f8, 0x3f7fc, 1809 0x3f814, 0x3f814, 1810 0x3f82c, 0x3f82c, 1811 0x3f880, 0x3f88c, 1812 0x3f8e8, 0x3f8ec, 1813 0x3f900, 0x3f928, 1814 0x3f930, 0x3f948, 1815 0x3f960, 0x3f968, 1816 0x3f970, 0x3f99c, 1817 0x3f9f0, 0x3fa38, 1818 0x3fa40, 0x3fa40, 1819 0x3fa48, 0x3fa50, 1820 0x3fa5c, 0x3fa64, 1821 0x3fa70, 0x3fab8, 1822 0x3fac0, 0x3fae4, 1823 0x3faf8, 0x3fb10, 1824 0x3fb28, 0x3fb28, 1825 0x3fb3c, 0x3fb50, 1826 0x3fbf0, 0x3fc10, 1827 0x3fc28, 0x3fc28, 1828 0x3fc3c, 0x3fc50, 1829 0x3fcf0, 0x3fcfc, 1830 0x40000, 0x4000c, 1831 0x40040, 0x40050, 1832 0x40060, 0x40068, 1833 0x4007c, 0x4008c, 1834 0x40094, 0x400b0, 1835 0x400c0, 0x40144, 1836 0x40180, 0x4018c, 1837 0x40200, 0x40254, 1838 0x40260, 0x40264, 1839 0x40270, 0x40288, 1840 0x40290, 0x40298, 1841 0x402ac, 0x402c8, 1842 0x402d0, 0x402e0, 1843 0x402f0, 0x402f0, 1844 0x40300, 0x4033c, 1845 0x403f8, 0x403fc, 1846 0x41304, 0x413c4, 1847 0x41400, 0x4140c, 1848 0x41414, 0x4141c, 1849 0x41480, 0x414d0, 1850 0x44000, 0x44054, 1851 0x4405c, 0x44078, 1852 0x440c0, 0x44174, 1853 0x44180, 0x441ac, 1854 0x441b4, 0x441b8, 1855 0x441c0, 0x44254, 1856 0x4425c, 0x44278, 1857 0x442c0, 0x44374, 1858 0x44380, 0x443ac, 1859 0x443b4, 0x443b8, 1860 0x443c0, 0x44454, 1861 0x4445c, 0x44478, 1862 0x444c0, 0x44574, 1863 0x44580, 0x445ac, 1864 0x445b4, 0x445b8, 1865 0x445c0, 0x44654, 1866 0x4465c, 0x44678, 1867 0x446c0, 0x44774, 1868 0x44780, 0x447ac, 1869 0x447b4, 0x447b8, 1870 0x447c0, 0x44854, 1871 0x4485c, 0x44878, 1872 0x448c0, 0x44974, 1873 0x44980, 0x449ac, 1874 0x449b4, 0x449b8, 1875 0x449c0, 0x449fc, 1876 0x45000, 0x45004, 1877 0x45010, 0x45030, 1878 0x45040, 0x45060, 1879 0x45068, 0x45068, 1880 0x45080, 0x45084, 1881 0x450a0, 0x450b0, 1882 0x45200, 0x45204, 1883 0x45210, 0x45230, 1884 0x45240, 0x45260, 1885 0x45268, 0x45268, 1886 0x45280, 0x45284, 1887 0x452a0, 0x452b0, 1888 0x460c0, 0x460e4, 1889 0x47000, 0x4703c, 1890 0x47044, 0x4708c, 1891 0x47200, 0x47250, 1892 0x47400, 0x47408, 1893 0x47414, 0x47420, 1894 0x47600, 0x47618, 1895 0x47800, 0x47814, 1896 0x48000, 0x4800c, 1897 0x48040, 0x48050, 1898 0x48060, 0x48068, 1899 0x4807c, 0x4808c, 1900 0x48094, 0x480b0, 1901 0x480c0, 0x48144, 1902 0x48180, 0x4818c, 1903 0x48200, 0x48254, 1904 0x48260, 0x48264, 1905 0x48270, 0x48288, 1906 0x48290, 0x48298, 1907 0x482ac, 0x482c8, 1908 0x482d0, 0x482e0, 1909 0x482f0, 0x482f0, 1910 0x48300, 0x4833c, 1911 0x483f8, 0x483fc, 1912 0x49304, 0x493c4, 1913 0x49400, 0x4940c, 1914 0x49414, 0x4941c, 1915 0x49480, 0x494d0, 1916 0x4c000, 0x4c054, 1917 0x4c05c, 0x4c078, 1918 0x4c0c0, 0x4c174, 1919 0x4c180, 0x4c1ac, 1920 0x4c1b4, 0x4c1b8, 1921 0x4c1c0, 0x4c254, 1922 0x4c25c, 0x4c278, 1923 0x4c2c0, 0x4c374, 1924 0x4c380, 0x4c3ac, 1925 0x4c3b4, 0x4c3b8, 1926 0x4c3c0, 0x4c454, 1927 0x4c45c, 0x4c478, 1928 0x4c4c0, 0x4c574, 1929 0x4c580, 0x4c5ac, 1930 0x4c5b4, 0x4c5b8, 1931 0x4c5c0, 0x4c654, 1932 0x4c65c, 0x4c678, 1933 0x4c6c0, 0x4c774, 1934 0x4c780, 0x4c7ac, 1935 0x4c7b4, 0x4c7b8, 1936 0x4c7c0, 0x4c854, 1937 0x4c85c, 0x4c878, 1938 0x4c8c0, 0x4c974, 1939 0x4c980, 0x4c9ac, 1940 0x4c9b4, 0x4c9b8, 1941 0x4c9c0, 0x4c9fc, 1942 0x4d000, 0x4d004, 1943 0x4d010, 0x4d030, 1944 0x4d040, 0x4d060, 1945 0x4d068, 0x4d068, 1946 0x4d080, 0x4d084, 1947 0x4d0a0, 0x4d0b0, 1948 0x4d200, 0x4d204, 1949 0x4d210, 0x4d230, 1950 0x4d240, 0x4d260, 1951 0x4d268, 0x4d268, 1952 0x4d280, 0x4d284, 1953 0x4d2a0, 0x4d2b0, 1954 0x4e0c0, 0x4e0e4, 1955 0x4f000, 0x4f03c, 1956 0x4f044, 0x4f08c, 1957 0x4f200, 0x4f250, 1958 0x4f400, 0x4f408, 1959 0x4f414, 0x4f420, 1960 0x4f600, 0x4f618, 1961 0x4f800, 0x4f814, 1962 0x50000, 0x50084, 1963 0x50090, 0x500cc, 1964 0x50400, 0x50400, 1965 0x50800, 0x50884, 1966 0x50890, 0x508cc, 1967 0x50c00, 0x50c00, 1968 0x51000, 0x5101c, 1969 0x51300, 0x51308, 1970 }; 1971 1972 static const unsigned int t6_reg_ranges[] = { 1973 0x1008, 0x101c, 1974 0x1024, 0x10a8, 1975 0x10b4, 0x10f8, 1976 0x1100, 0x1114, 1977 0x111c, 0x112c, 1978 0x1138, 0x113c, 1979 0x1144, 0x114c, 1980 0x1180, 0x1184, 1981 0x1190, 0x1194, 1982 0x11a0, 0x11a4, 1983 0x11b0, 0x11b4, 1984 0x11fc, 0x1258, 1985 0x1280, 0x12d4, 1986 0x12d9, 0x12d9, 1987 0x12de, 0x12de, 1988 0x12e3, 0x12e3, 1989 0x12e8, 0x133c, 1990 0x1800, 0x18fc, 1991 0x3000, 0x302c, 1992 0x3060, 0x30b0, 1993 0x30b8, 0x30d8, 1994 0x30e0, 0x30fc, 1995 0x3140, 0x357c, 1996 0x35a8, 0x35cc, 1997 0x35ec, 0x35ec, 1998 0x3600, 0x5624, 1999 0x56cc, 0x56ec, 2000 0x56f4, 0x5720, 2001 0x5728, 0x575c, 2002 0x580c, 0x5814, 2003 0x5890, 0x589c, 2004 0x58a4, 0x58ac, 2005 0x58b8, 0x58bc, 2006 0x5940, 0x595c, 2007 0x5980, 0x598c, 2008 0x59b0, 0x59c8, 2009 0x59d0, 0x59dc, 2010 0x59fc, 0x5a18, 2011 0x5a60, 0x5a6c, 2012 0x5a80, 0x5a8c, 2013 0x5a94, 0x5a9c, 2014 0x5b94, 0x5bfc, 2015 0x5c10, 0x5e48, 2016 0x5e50, 0x5e94, 2017 0x5ea0, 0x5eb0, 2018 0x5ec0, 0x5ec0, 2019 0x5ec8, 0x5ed0, 2020 0x6000, 0x6020, 2021 0x6028, 0x6040, 2022 0x6058, 0x609c, 2023 0x60a8, 0x619c, 2024 0x7700, 0x7798, 2025 0x77c0, 0x7880, 2026 0x78cc, 0x78fc, 2027 0x7b00, 0x7b58, 2028 0x7b60, 0x7b84, 2029 0x7b8c, 0x7c54, 2030 0x7d00, 0x7d38, 2031 0x7d40, 0x7d84, 2032 0x7d8c, 0x7ddc, 2033 0x7de4, 0x7e04, 2034 0x7e10, 0x7e1c, 2035 0x7e24, 0x7e38, 2036 0x7e40, 0x7e44, 2037 0x7e4c, 0x7e78, 2038 0x7e80, 0x7edc, 2039 0x7ee8, 0x7efc, 2040 0x8dc0, 0x8de4, 2041 0x8df8, 0x8e04, 2042 0x8e10, 0x8e84, 2043 0x8ea0, 0x8f88, 2044 0x8fb8, 0x9058, 2045 0x9060, 0x9060, 2046 0x9068, 0x90f8, 2047 0x9100, 0x9124, 2048 0x9400, 0x9470, 2049 0x9600, 0x9600, 2050 0x9608, 0x9638, 2051 0x9640, 0x9704, 2052 0x9710, 0x971c, 2053 0x9800, 0x9808, 2054 0x9820, 0x983c, 2055 0x9850, 0x9864, 2056 0x9c00, 0x9c6c, 2057 0x9c80, 0x9cec, 2058 0x9d00, 0x9d6c, 2059 0x9d80, 0x9dec, 2060 0x9e00, 0x9e6c, 2061 0x9e80, 0x9eec, 2062 0x9f00, 0x9f6c, 2063 0x9f80, 0xa020, 2064 0xd004, 0xd03c, 2065 0xd100, 0xd118, 2066 0xd200, 0xd214, 2067 0xd220, 0xd234, 2068 0xd240, 0xd254, 2069 0xd260, 0xd274, 2070 0xd280, 0xd294, 2071 0xd2a0, 0xd2b4, 2072 0xd2c0, 0xd2d4, 2073 0xd2e0, 0xd2f4, 2074 0xd300, 0xd31c, 2075 0xdfc0, 0xdfe0, 2076 0xe000, 0xf008, 2077 0x11000, 0x11014, 2078 0x11048, 0x1106c, 2079 0x11074, 0x11088, 2080 0x11098, 0x11120, 2081 0x1112c, 0x1117c, 2082 0x11190, 0x112e0, 2083 0x11300, 0x1130c, 2084 0x12000, 0x1206c, 2085 0x19040, 0x1906c, 2086 0x19078, 0x19080, 2087 0x1908c, 0x190e8, 2088 0x190f0, 0x190f8, 2089 0x19100, 0x19110, 2090 0x19120, 0x19124, 2091 0x19150, 0x19194, 2092 0x1919c, 0x191b0, 2093 0x191d0, 0x191e8, 2094 0x19238, 0x19290, 2095 0x192a4, 0x192b0, 2096 0x192bc, 0x192bc, 2097 0x19348, 0x1934c, 2098 0x193f8, 0x19418, 2099 0x19420, 0x19428, 2100 0x19430, 0x19444, 2101 0x1944c, 0x1946c, 2102 0x19474, 0x19474, 2103 0x19490, 0x194cc, 2104 0x194f0, 0x194f8, 2105 0x19c00, 0x19c48, 2106 0x19c50, 0x19c80, 2107 0x19c94, 0x19c98, 2108 0x19ca0, 0x19cbc, 2109 0x19ce4, 0x19ce4, 2110 0x19cf0, 0x19cf8, 2111 0x19d00, 0x19d28, 2112 0x19d50, 0x19d78, 2113 0x19d94, 0x19d98, 2114 0x19da0, 0x19dc8, 2115 0x19df0, 0x19e10, 2116 0x19e50, 0x19e6c, 2117 0x19ea0, 0x19ebc, 2118 0x19ec4, 0x19ef4, 2119 0x19f04, 0x19f2c, 2120 0x19f34, 0x19f34, 2121 0x19f40, 0x19f50, 2122 0x19f90, 0x19fac, 2123 0x19fc4, 0x19fc8, 2124 0x19fd0, 0x19fe4, 2125 0x1a000, 0x1a004, 2126 0x1a010, 0x1a06c, 2127 0x1a0b0, 0x1a0e4, 2128 0x1a0ec, 0x1a0f8, 2129 0x1a100, 0x1a108, 2130 0x1a114, 0x1a120, 2131 0x1a128, 0x1a130, 2132 0x1a138, 0x1a138, 2133 0x1a190, 0x1a1c4, 2134 0x1a1fc, 0x1a1fc, 2135 0x1e008, 0x1e00c, 2136 0x1e040, 0x1e044, 2137 0x1e04c, 0x1e04c, 2138 0x1e284, 0x1e290, 2139 0x1e2c0, 0x1e2c0, 2140 0x1e2e0, 0x1e2e0, 2141 0x1e300, 0x1e384, 2142 0x1e3c0, 0x1e3c8, 2143 0x1e408, 0x1e40c, 2144 0x1e440, 0x1e444, 2145 0x1e44c, 0x1e44c, 2146 0x1e684, 0x1e690, 2147 0x1e6c0, 0x1e6c0, 2148 0x1e6e0, 0x1e6e0, 2149 0x1e700, 0x1e784, 2150 0x1e7c0, 0x1e7c8, 2151 0x1e808, 0x1e80c, 2152 0x1e840, 0x1e844, 2153 0x1e84c, 0x1e84c, 2154 0x1ea84, 0x1ea90, 2155 0x1eac0, 0x1eac0, 2156 0x1eae0, 0x1eae0, 2157 0x1eb00, 0x1eb84, 2158 0x1ebc0, 0x1ebc8, 2159 0x1ec08, 0x1ec0c, 2160 0x1ec40, 0x1ec44, 2161 0x1ec4c, 0x1ec4c, 2162 0x1ee84, 0x1ee90, 2163 0x1eec0, 0x1eec0, 2164 0x1eee0, 0x1eee0, 2165 0x1ef00, 0x1ef84, 2166 0x1efc0, 0x1efc8, 2167 0x1f008, 0x1f00c, 2168 0x1f040, 0x1f044, 2169 0x1f04c, 0x1f04c, 2170 0x1f284, 0x1f290, 2171 0x1f2c0, 0x1f2c0, 2172 0x1f2e0, 0x1f2e0, 2173 0x1f300, 0x1f384, 2174 0x1f3c0, 0x1f3c8, 2175 0x1f408, 0x1f40c, 2176 0x1f440, 0x1f444, 2177 0x1f44c, 0x1f44c, 2178 0x1f684, 0x1f690, 2179 0x1f6c0, 0x1f6c0, 2180 0x1f6e0, 0x1f6e0, 2181 0x1f700, 0x1f784, 2182 0x1f7c0, 0x1f7c8, 2183 0x1f808, 0x1f80c, 2184 0x1f840, 0x1f844, 2185 0x1f84c, 0x1f84c, 2186 0x1fa84, 0x1fa90, 2187 0x1fac0, 0x1fac0, 2188 0x1fae0, 0x1fae0, 2189 0x1fb00, 0x1fb84, 2190 0x1fbc0, 0x1fbc8, 2191 0x1fc08, 0x1fc0c, 2192 0x1fc40, 0x1fc44, 2193 0x1fc4c, 0x1fc4c, 2194 0x1fe84, 0x1fe90, 2195 0x1fec0, 0x1fec0, 2196 0x1fee0, 0x1fee0, 2197 0x1ff00, 0x1ff84, 2198 0x1ffc0, 0x1ffc8, 2199 0x30000, 0x30030, 2200 0x30038, 0x30038, 2201 0x30040, 0x30040, 2202 0x30048, 0x30048, 2203 0x30050, 0x30050, 2204 0x3005c, 0x30060, 2205 0x30068, 0x30068, 2206 0x30070, 0x30070, 2207 0x30100, 0x30168, 2208 0x30190, 0x301a0, 2209 0x301a8, 0x301b8, 2210 0x301c4, 0x301c8, 2211 0x301d0, 0x301d0, 2212 0x30200, 0x30320, 2213 0x30400, 0x304b4, 2214 0x304c0, 0x3052c, 2215 0x30540, 0x3061c, 2216 0x30800, 0x308a0, 2217 0x308c0, 0x30908, 2218 0x30910, 0x309b8, 2219 0x30a00, 0x30a04, 2220 0x30a0c, 0x30a14, 2221 0x30a1c, 0x30a2c, 2222 0x30a44, 0x30a50, 2223 0x30a74, 0x30a74, 2224 0x30a7c, 0x30afc, 2225 0x30b08, 0x30c24, 2226 0x30d00, 0x30d14, 2227 0x30d1c, 0x30d3c, 2228 0x30d44, 0x30d4c, 2229 0x30d54, 0x30d74, 2230 0x30d7c, 0x30d7c, 2231 0x30de0, 0x30de0, 2232 0x30e00, 0x30ed4, 2233 0x30f00, 0x30fa4, 2234 0x30fc0, 0x30fc4, 2235 0x31000, 0x31004, 2236 0x31080, 0x310fc, 2237 0x31208, 0x31220, 2238 0x3123c, 0x31254, 2239 0x31300, 0x31300, 2240 0x31308, 0x3131c, 2241 0x31338, 0x3133c, 2242 0x31380, 0x31380, 2243 0x31388, 0x313a8, 2244 0x313b4, 0x313b4, 2245 0x31400, 0x31420, 2246 0x31438, 0x3143c, 2247 0x31480, 0x31480, 2248 0x314a8, 0x314a8, 2249 0x314b0, 0x314b4, 2250 0x314c8, 0x314d4, 2251 0x31a40, 0x31a4c, 2252 0x31af0, 0x31b20, 2253 0x31b38, 0x31b3c, 2254 0x31b80, 0x31b80, 2255 0x31ba8, 0x31ba8, 2256 0x31bb0, 0x31bb4, 2257 0x31bc8, 0x31bd4, 2258 0x32140, 0x3218c, 2259 0x321f0, 0x321f4, 2260 0x32200, 0x32200, 2261 0x32218, 0x32218, 2262 0x32400, 0x32400, 2263 0x32408, 0x3241c, 2264 0x32618, 0x32620, 2265 0x32664, 0x32664, 2266 0x326a8, 0x326a8, 2267 0x326ec, 0x326ec, 2268 0x32a00, 0x32abc, 2269 0x32b00, 0x32b38, 2270 0x32b40, 0x32b58, 2271 0x32b60, 0x32b78, 2272 0x32c00, 0x32c00, 2273 0x32c08, 0x32c3c, 2274 0x32e00, 0x32e2c, 2275 0x32f00, 0x32f2c, 2276 0x33000, 0x3302c, 2277 0x33034, 0x33050, 2278 0x33058, 0x33058, 2279 0x33060, 0x3308c, 2280 0x3309c, 0x330ac, 2281 0x330c0, 0x330c0, 2282 0x330c8, 0x330d0, 2283 0x330d8, 0x330e0, 2284 0x330ec, 0x3312c, 2285 0x33134, 0x33150, 2286 0x33158, 0x33158, 2287 0x33160, 0x3318c, 2288 0x3319c, 0x331ac, 2289 0x331c0, 0x331c0, 2290 0x331c8, 0x331d0, 2291 0x331d8, 0x331e0, 2292 0x331ec, 0x33290, 2293 0x33298, 0x332c4, 2294 0x332e4, 0x33390, 2295 0x33398, 0x333c4, 2296 0x333e4, 0x3342c, 2297 0x33434, 0x33450, 2298 0x33458, 0x33458, 2299 0x33460, 0x3348c, 2300 0x3349c, 0x334ac, 2301 0x334c0, 0x334c0, 2302 0x334c8, 0x334d0, 2303 0x334d8, 0x334e0, 2304 0x334ec, 0x3352c, 2305 0x33534, 0x33550, 2306 0x33558, 0x33558, 2307 0x33560, 0x3358c, 2308 0x3359c, 0x335ac, 2309 0x335c0, 0x335c0, 2310 0x335c8, 0x335d0, 2311 0x335d8, 0x335e0, 2312 0x335ec, 0x33690, 2313 0x33698, 0x336c4, 2314 0x336e4, 0x33790, 2315 0x33798, 0x337c4, 2316 0x337e4, 0x337fc, 2317 0x33814, 0x33814, 2318 0x33854, 0x33868, 2319 0x33880, 0x3388c, 2320 0x338c0, 0x338d0, 2321 0x338e8, 0x338ec, 2322 0x33900, 0x3392c, 2323 0x33934, 0x33950, 2324 0x33958, 0x33958, 2325 0x33960, 0x3398c, 2326 0x3399c, 0x339ac, 2327 0x339c0, 0x339c0, 2328 0x339c8, 0x339d0, 2329 0x339d8, 0x339e0, 2330 0x339ec, 0x33a90, 2331 0x33a98, 0x33ac4, 2332 0x33ae4, 0x33b10, 2333 0x33b24, 0x33b28, 2334 0x33b38, 0x33b50, 2335 0x33bf0, 0x33c10, 2336 0x33c24, 0x33c28, 2337 0x33c38, 0x33c50, 2338 0x33cf0, 0x33cfc, 2339 0x34000, 0x34030, 2340 0x34038, 0x34038, 2341 0x34040, 0x34040, 2342 0x34048, 0x34048, 2343 0x34050, 0x34050, 2344 0x3405c, 0x34060, 2345 0x34068, 0x34068, 2346 0x34070, 0x34070, 2347 0x34100, 0x34168, 2348 0x34190, 0x341a0, 2349 0x341a8, 0x341b8, 2350 0x341c4, 0x341c8, 2351 0x341d0, 0x341d0, 2352 0x34200, 0x34320, 2353 0x34400, 0x344b4, 2354 0x344c0, 0x3452c, 2355 0x34540, 0x3461c, 2356 0x34800, 0x348a0, 2357 0x348c0, 0x34908, 2358 0x34910, 0x349b8, 2359 0x34a00, 0x34a04, 2360 0x34a0c, 0x34a14, 2361 0x34a1c, 0x34a2c, 2362 0x34a44, 0x34a50, 2363 0x34a74, 0x34a74, 2364 0x34a7c, 0x34afc, 2365 0x34b08, 0x34c24, 2366 0x34d00, 0x34d14, 2367 0x34d1c, 0x34d3c, 2368 0x34d44, 0x34d4c, 2369 0x34d54, 0x34d74, 2370 0x34d7c, 0x34d7c, 2371 0x34de0, 0x34de0, 2372 0x34e00, 0x34ed4, 2373 0x34f00, 0x34fa4, 2374 0x34fc0, 0x34fc4, 2375 0x35000, 0x35004, 2376 0x35080, 0x350fc, 2377 0x35208, 0x35220, 2378 0x3523c, 0x35254, 2379 0x35300, 0x35300, 2380 0x35308, 0x3531c, 2381 0x35338, 0x3533c, 2382 0x35380, 0x35380, 2383 0x35388, 0x353a8, 2384 0x353b4, 0x353b4, 2385 0x35400, 0x35420, 2386 0x35438, 0x3543c, 2387 0x35480, 0x35480, 2388 0x354a8, 0x354a8, 2389 0x354b0, 0x354b4, 2390 0x354c8, 0x354d4, 2391 0x35a40, 0x35a4c, 2392 0x35af0, 0x35b20, 2393 0x35b38, 0x35b3c, 2394 0x35b80, 0x35b80, 2395 0x35ba8, 0x35ba8, 2396 0x35bb0, 0x35bb4, 2397 0x35bc8, 0x35bd4, 2398 0x36140, 0x3618c, 2399 0x361f0, 0x361f4, 2400 0x36200, 0x36200, 2401 0x36218, 0x36218, 2402 0x36400, 0x36400, 2403 0x36408, 0x3641c, 2404 0x36618, 0x36620, 2405 0x36664, 0x36664, 2406 0x366a8, 0x366a8, 2407 0x366ec, 0x366ec, 2408 0x36a00, 0x36abc, 2409 0x36b00, 0x36b38, 2410 0x36b40, 0x36b58, 2411 0x36b60, 0x36b78, 2412 0x36c00, 0x36c00, 2413 0x36c08, 0x36c3c, 2414 0x36e00, 0x36e2c, 2415 0x36f00, 0x36f2c, 2416 0x37000, 0x3702c, 2417 0x37034, 0x37050, 2418 0x37058, 0x37058, 2419 0x37060, 0x3708c, 2420 0x3709c, 0x370ac, 2421 0x370c0, 0x370c0, 2422 0x370c8, 0x370d0, 2423 0x370d8, 0x370e0, 2424 0x370ec, 0x3712c, 2425 0x37134, 0x37150, 2426 0x37158, 0x37158, 2427 0x37160, 0x3718c, 2428 0x3719c, 0x371ac, 2429 0x371c0, 0x371c0, 2430 0x371c8, 0x371d0, 2431 0x371d8, 0x371e0, 2432 0x371ec, 0x37290, 2433 0x37298, 0x372c4, 2434 0x372e4, 0x37390, 2435 0x37398, 0x373c4, 2436 0x373e4, 0x3742c, 2437 0x37434, 0x37450, 2438 0x37458, 0x37458, 2439 0x37460, 0x3748c, 2440 0x3749c, 0x374ac, 2441 0x374c0, 0x374c0, 2442 0x374c8, 0x374d0, 2443 0x374d8, 0x374e0, 2444 0x374ec, 0x3752c, 2445 0x37534, 0x37550, 2446 0x37558, 0x37558, 2447 0x37560, 0x3758c, 2448 0x3759c, 0x375ac, 2449 0x375c0, 0x375c0, 2450 0x375c8, 0x375d0, 2451 0x375d8, 0x375e0, 2452 0x375ec, 0x37690, 2453 0x37698, 0x376c4, 2454 0x376e4, 0x37790, 2455 0x37798, 0x377c4, 2456 0x377e4, 0x377fc, 2457 0x37814, 0x37814, 2458 0x37854, 0x37868, 2459 0x37880, 0x3788c, 2460 0x378c0, 0x378d0, 2461 0x378e8, 0x378ec, 2462 0x37900, 0x3792c, 2463 0x37934, 0x37950, 2464 0x37958, 0x37958, 2465 0x37960, 0x3798c, 2466 0x3799c, 0x379ac, 2467 0x379c0, 0x379c0, 2468 0x379c8, 0x379d0, 2469 0x379d8, 0x379e0, 2470 0x379ec, 0x37a90, 2471 0x37a98, 0x37ac4, 2472 0x37ae4, 0x37b10, 2473 0x37b24, 0x37b28, 2474 0x37b38, 0x37b50, 2475 0x37bf0, 0x37c10, 2476 0x37c24, 0x37c28, 2477 0x37c38, 0x37c50, 2478 0x37cf0, 0x37cfc, 2479 0x40040, 0x40040, 2480 0x40080, 0x40084, 2481 0x40100, 0x40100, 2482 0x40140, 0x401bc, 2483 0x40200, 0x40214, 2484 0x40228, 0x40228, 2485 0x40240, 0x40258, 2486 0x40280, 0x40280, 2487 0x40304, 0x40304, 2488 0x40330, 0x4033c, 2489 0x41304, 0x413b8, 2490 0x413c0, 0x413c8, 2491 0x413d0, 0x413dc, 2492 0x413f0, 0x413f0, 2493 0x41400, 0x4140c, 2494 0x41414, 0x4141c, 2495 0x41480, 0x414d0, 2496 0x44000, 0x4407c, 2497 0x440c0, 0x441ac, 2498 0x441b4, 0x4427c, 2499 0x442c0, 0x443ac, 2500 0x443b4, 0x4447c, 2501 0x444c0, 0x445ac, 2502 0x445b4, 0x4467c, 2503 0x446c0, 0x447ac, 2504 0x447b4, 0x4487c, 2505 0x448c0, 0x449ac, 2506 0x449b4, 0x44a7c, 2507 0x44ac0, 0x44bac, 2508 0x44bb4, 0x44c7c, 2509 0x44cc0, 0x44dac, 2510 0x44db4, 0x44e7c, 2511 0x44ec0, 0x44fac, 2512 0x44fb4, 0x4507c, 2513 0x450c0, 0x451ac, 2514 0x451b4, 0x451fc, 2515 0x45800, 0x45804, 2516 0x45810, 0x45830, 2517 0x45840, 0x45860, 2518 0x45868, 0x45868, 2519 0x45880, 0x45884, 2520 0x458a0, 0x458b0, 2521 0x45a00, 0x45a04, 2522 0x45a10, 0x45a30, 2523 0x45a40, 0x45a60, 2524 0x45a68, 0x45a68, 2525 0x45a80, 0x45a84, 2526 0x45aa0, 0x45ab0, 2527 0x460c0, 0x460e4, 2528 0x47000, 0x4703c, 2529 0x47044, 0x4708c, 2530 0x47200, 0x47250, 2531 0x47400, 0x47408, 2532 0x47414, 0x47420, 2533 0x47600, 0x47618, 2534 0x47800, 0x47814, 2535 0x47820, 0x4782c, 2536 0x50000, 0x50084, 2537 0x50090, 0x500cc, 2538 0x50300, 0x50384, 2539 0x50400, 0x50400, 2540 0x50800, 0x50884, 2541 0x50890, 0x508cc, 2542 0x50b00, 0x50b84, 2543 0x50c00, 0x50c00, 2544 0x51000, 0x51020, 2545 0x51028, 0x510b0, 2546 0x51300, 0x51324, 2547 }; 2548 2549 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2550 const unsigned int *reg_ranges; 2551 int reg_ranges_size, range; 2552 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2553 2554 /* Select the right set of register ranges to dump depending on the 2555 * adapter chip type. 2556 */ 2557 switch (chip_version) { 2558 case CHELSIO_T4: 2559 reg_ranges = t4_reg_ranges; 2560 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2561 break; 2562 2563 case CHELSIO_T5: 2564 reg_ranges = t5_reg_ranges; 2565 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2566 break; 2567 2568 case CHELSIO_T6: 2569 reg_ranges = t6_reg_ranges; 2570 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2571 break; 2572 2573 default: 2574 dev_err(adap->pdev_dev, 2575 "Unsupported chip version %d\n", chip_version); 2576 return; 2577 } 2578 2579 /* Clear the register buffer and insert the appropriate register 2580 * values selected by the above register ranges. 2581 */ 2582 memset(buf, 0, buf_size); 2583 for (range = 0; range < reg_ranges_size; range += 2) { 2584 unsigned int reg = reg_ranges[range]; 2585 unsigned int last_reg = reg_ranges[range + 1]; 2586 u32 *bufp = (u32 *)((char *)buf + reg); 2587 2588 /* Iterate across the register range filling in the register 2589 * buffer but don't write past the end of the register buffer. 2590 */ 2591 while (reg <= last_reg && bufp < buf_end) { 2592 *bufp++ = t4_read_reg(adap, reg); 2593 reg += sizeof(u32); 2594 } 2595 } 2596 } 2597 2598 #define EEPROM_STAT_ADDR 0x7bfc 2599 #define VPD_SIZE 0x800 2600 #define VPD_BASE 0x400 2601 #define VPD_BASE_OLD 0 2602 #define VPD_LEN 1024 2603 #define CHELSIO_VPD_UNIQUE_ID 0x82 2604 2605 /** 2606 * t4_seeprom_wp - enable/disable EEPROM write protection 2607 * @adapter: the adapter 2608 * @enable: whether to enable or disable write protection 2609 * 2610 * Enables or disables write protection on the serial EEPROM. 2611 */ 2612 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2613 { 2614 unsigned int v = enable ? 0xc : 0; 2615 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2616 return ret < 0 ? ret : 0; 2617 } 2618 2619 /** 2620 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2621 * @adapter: adapter to read 2622 * @p: where to store the parameters 2623 * 2624 * Reads card parameters stored in VPD EEPROM. 2625 */ 2626 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2627 { 2628 int i, ret = 0, addr; 2629 int ec, sn, pn, na; 2630 u8 *vpd, csum; 2631 unsigned int vpdr_len, kw_offset, id_len; 2632 2633 vpd = vmalloc(VPD_LEN); 2634 if (!vpd) 2635 return -ENOMEM; 2636 2637 /* We have two VPD data structures stored in the adapter VPD area. 2638 * By default, Linux calculates the size of the VPD area by traversing 2639 * the first VPD area at offset 0x0, so we need to tell the OS what 2640 * our real VPD size is. 2641 */ 2642 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE); 2643 if (ret < 0) 2644 goto out; 2645 2646 /* Card information normally starts at VPD_BASE but early cards had 2647 * it at 0. 2648 */ 2649 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2650 if (ret < 0) 2651 goto out; 2652 2653 /* The VPD shall have a unique identifier specified by the PCI SIG. 2654 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2655 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2656 * is expected to automatically put this entry at the 2657 * beginning of the VPD. 2658 */ 2659 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2660 2661 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2662 if (ret < 0) 2663 goto out; 2664 2665 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2666 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2667 ret = -EINVAL; 2668 goto out; 2669 } 2670 2671 id_len = pci_vpd_lrdt_size(vpd); 2672 if (id_len > ID_LEN) 2673 id_len = ID_LEN; 2674 2675 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2676 if (i < 0) { 2677 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2678 ret = -EINVAL; 2679 goto out; 2680 } 2681 2682 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2683 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2684 if (vpdr_len + kw_offset > VPD_LEN) { 2685 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2686 ret = -EINVAL; 2687 goto out; 2688 } 2689 2690 #define FIND_VPD_KW(var, name) do { \ 2691 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2692 if (var < 0) { \ 2693 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2694 ret = -EINVAL; \ 2695 goto out; \ 2696 } \ 2697 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2698 } while (0) 2699 2700 FIND_VPD_KW(i, "RV"); 2701 for (csum = 0; i >= 0; i--) 2702 csum += vpd[i]; 2703 2704 if (csum) { 2705 dev_err(adapter->pdev_dev, 2706 "corrupted VPD EEPROM, actual csum %u\n", csum); 2707 ret = -EINVAL; 2708 goto out; 2709 } 2710 2711 FIND_VPD_KW(ec, "EC"); 2712 FIND_VPD_KW(sn, "SN"); 2713 FIND_VPD_KW(pn, "PN"); 2714 FIND_VPD_KW(na, "NA"); 2715 #undef FIND_VPD_KW 2716 2717 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2718 strim(p->id); 2719 memcpy(p->ec, vpd + ec, EC_LEN); 2720 strim(p->ec); 2721 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2722 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2723 strim(p->sn); 2724 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2725 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2726 strim(p->pn); 2727 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2728 strim((char *)p->na); 2729 2730 out: 2731 vfree(vpd); 2732 return ret; 2733 } 2734 2735 /** 2736 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2737 * @adapter: adapter to read 2738 * @p: where to store the parameters 2739 * 2740 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2741 * Clock. This can only be called after a connection to the firmware 2742 * is established. 2743 */ 2744 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2745 { 2746 u32 cclk_param, cclk_val; 2747 int ret; 2748 2749 /* Grab the raw VPD parameters. 2750 */ 2751 ret = t4_get_raw_vpd_params(adapter, p); 2752 if (ret) 2753 return ret; 2754 2755 /* Ask firmware for the Core Clock since it knows how to translate the 2756 * Reference Clock ('V2') VPD field into a Core Clock value ... 2757 */ 2758 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2759 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2760 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2761 1, &cclk_param, &cclk_val); 2762 2763 if (ret) 2764 return ret; 2765 p->cclk = cclk_val; 2766 2767 return 0; 2768 } 2769 2770 /* serial flash and firmware constants */ 2771 enum { 2772 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2773 2774 /* flash command opcodes */ 2775 SF_PROG_PAGE = 2, /* program page */ 2776 SF_WR_DISABLE = 4, /* disable writes */ 2777 SF_RD_STATUS = 5, /* read status register */ 2778 SF_WR_ENABLE = 6, /* enable writes */ 2779 SF_RD_DATA_FAST = 0xb, /* read flash */ 2780 SF_RD_ID = 0x9f, /* read ID */ 2781 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2782 2783 FW_MAX_SIZE = 16 * SF_SEC_SIZE, 2784 }; 2785 2786 /** 2787 * sf1_read - read data from the serial flash 2788 * @adapter: the adapter 2789 * @byte_cnt: number of bytes to read 2790 * @cont: whether another operation will be chained 2791 * @lock: whether to lock SF for PL access only 2792 * @valp: where to store the read data 2793 * 2794 * Reads up to 4 bytes of data from the serial flash. The location of 2795 * the read needs to be specified prior to calling this by issuing the 2796 * appropriate commands to the serial flash. 2797 */ 2798 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2799 int lock, u32 *valp) 2800 { 2801 int ret; 2802 2803 if (!byte_cnt || byte_cnt > 4) 2804 return -EINVAL; 2805 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2806 return -EBUSY; 2807 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2808 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2809 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2810 if (!ret) 2811 *valp = t4_read_reg(adapter, SF_DATA_A); 2812 return ret; 2813 } 2814 2815 /** 2816 * sf1_write - write data to the serial flash 2817 * @adapter: the adapter 2818 * @byte_cnt: number of bytes to write 2819 * @cont: whether another operation will be chained 2820 * @lock: whether to lock SF for PL access only 2821 * @val: value to write 2822 * 2823 * Writes up to 4 bytes of data to the serial flash. The location of 2824 * the write needs to be specified prior to calling this by issuing the 2825 * appropriate commands to the serial flash. 2826 */ 2827 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2828 int lock, u32 val) 2829 { 2830 if (!byte_cnt || byte_cnt > 4) 2831 return -EINVAL; 2832 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2833 return -EBUSY; 2834 t4_write_reg(adapter, SF_DATA_A, val); 2835 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2836 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2837 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2838 } 2839 2840 /** 2841 * flash_wait_op - wait for a flash operation to complete 2842 * @adapter: the adapter 2843 * @attempts: max number of polls of the status register 2844 * @delay: delay between polls in ms 2845 * 2846 * Wait for a flash operation to complete by polling the status register. 2847 */ 2848 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2849 { 2850 int ret; 2851 u32 status; 2852 2853 while (1) { 2854 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2855 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2856 return ret; 2857 if (!(status & 1)) 2858 return 0; 2859 if (--attempts == 0) 2860 return -EAGAIN; 2861 if (delay) 2862 msleep(delay); 2863 } 2864 } 2865 2866 /** 2867 * t4_read_flash - read words from serial flash 2868 * @adapter: the adapter 2869 * @addr: the start address for the read 2870 * @nwords: how many 32-bit words to read 2871 * @data: where to store the read data 2872 * @byte_oriented: whether to store data as bytes or as words 2873 * 2874 * Read the specified number of 32-bit words from the serial flash. 2875 * If @byte_oriented is set the read data is stored as a byte array 2876 * (i.e., big-endian), otherwise as 32-bit words in the platform's 2877 * natural endianness. 2878 */ 2879 int t4_read_flash(struct adapter *adapter, unsigned int addr, 2880 unsigned int nwords, u32 *data, int byte_oriented) 2881 { 2882 int ret; 2883 2884 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 2885 return -EINVAL; 2886 2887 addr = swab32(addr) | SF_RD_DATA_FAST; 2888 2889 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 2890 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 2891 return ret; 2892 2893 for ( ; nwords; nwords--, data++) { 2894 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 2895 if (nwords == 1) 2896 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2897 if (ret) 2898 return ret; 2899 if (byte_oriented) 2900 *data = (__force __u32)(cpu_to_be32(*data)); 2901 } 2902 return 0; 2903 } 2904 2905 /** 2906 * t4_write_flash - write up to a page of data to the serial flash 2907 * @adapter: the adapter 2908 * @addr: the start address to write 2909 * @n: length of data to write in bytes 2910 * @data: the data to write 2911 * 2912 * Writes up to a page of data (256 bytes) to the serial flash starting 2913 * at the given address. All the data must be written to the same page. 2914 */ 2915 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 2916 unsigned int n, const u8 *data) 2917 { 2918 int ret; 2919 u32 buf[64]; 2920 unsigned int i, c, left, val, offset = addr & 0xff; 2921 2922 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 2923 return -EINVAL; 2924 2925 val = swab32(addr) | SF_PROG_PAGE; 2926 2927 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 2928 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 2929 goto unlock; 2930 2931 for (left = n; left; left -= c) { 2932 c = min(left, 4U); 2933 for (val = 0, i = 0; i < c; ++i) 2934 val = (val << 8) + *data++; 2935 2936 ret = sf1_write(adapter, c, c != left, 1, val); 2937 if (ret) 2938 goto unlock; 2939 } 2940 ret = flash_wait_op(adapter, 8, 1); 2941 if (ret) 2942 goto unlock; 2943 2944 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2945 2946 /* Read the page to verify the write succeeded */ 2947 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 2948 if (ret) 2949 return ret; 2950 2951 if (memcmp(data - n, (u8 *)buf + offset, n)) { 2952 dev_err(adapter->pdev_dev, 2953 "failed to correctly write the flash page at %#x\n", 2954 addr); 2955 return -EIO; 2956 } 2957 return 0; 2958 2959 unlock: 2960 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 2961 return ret; 2962 } 2963 2964 /** 2965 * t4_get_fw_version - read the firmware version 2966 * @adapter: the adapter 2967 * @vers: where to place the version 2968 * 2969 * Reads the FW version from flash. 2970 */ 2971 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 2972 { 2973 return t4_read_flash(adapter, FLASH_FW_START + 2974 offsetof(struct fw_hdr, fw_ver), 1, 2975 vers, 0); 2976 } 2977 2978 /** 2979 * t4_get_bs_version - read the firmware bootstrap version 2980 * @adapter: the adapter 2981 * @vers: where to place the version 2982 * 2983 * Reads the FW Bootstrap version from flash. 2984 */ 2985 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 2986 { 2987 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 2988 offsetof(struct fw_hdr, fw_ver), 1, 2989 vers, 0); 2990 } 2991 2992 /** 2993 * t4_get_tp_version - read the TP microcode version 2994 * @adapter: the adapter 2995 * @vers: where to place the version 2996 * 2997 * Reads the TP microcode version from flash. 2998 */ 2999 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3000 { 3001 return t4_read_flash(adapter, FLASH_FW_START + 3002 offsetof(struct fw_hdr, tp_microcode_ver), 3003 1, vers, 0); 3004 } 3005 3006 /** 3007 * t4_get_exprom_version - return the Expansion ROM version (if any) 3008 * @adapter: the adapter 3009 * @vers: where to place the version 3010 * 3011 * Reads the Expansion ROM header from FLASH and returns the version 3012 * number (if present) through the @vers return value pointer. We return 3013 * this in the Firmware Version Format since it's convenient. Return 3014 * 0 on success, -ENOENT if no Expansion ROM is present. 3015 */ 3016 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3017 { 3018 struct exprom_header { 3019 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3020 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3021 } *hdr; 3022 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3023 sizeof(u32))]; 3024 int ret; 3025 3026 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3027 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3028 0); 3029 if (ret) 3030 return ret; 3031 3032 hdr = (struct exprom_header *)exprom_header_buf; 3033 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3034 return -ENOENT; 3035 3036 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3037 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3038 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3039 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3040 return 0; 3041 } 3042 3043 /** 3044 * t4_check_fw_version - check if the FW is supported with this driver 3045 * @adap: the adapter 3046 * 3047 * Checks if an adapter's FW is compatible with the driver. Returns 0 3048 * if there's exact match, a negative error if the version could not be 3049 * read or there's a major version mismatch 3050 */ 3051 int t4_check_fw_version(struct adapter *adap) 3052 { 3053 int i, ret, major, minor, micro; 3054 int exp_major, exp_minor, exp_micro; 3055 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3056 3057 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3058 /* Try multiple times before returning error */ 3059 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3060 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3061 3062 if (ret) 3063 return ret; 3064 3065 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3066 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3067 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3068 3069 switch (chip_version) { 3070 case CHELSIO_T4: 3071 exp_major = T4FW_MIN_VERSION_MAJOR; 3072 exp_minor = T4FW_MIN_VERSION_MINOR; 3073 exp_micro = T4FW_MIN_VERSION_MICRO; 3074 break; 3075 case CHELSIO_T5: 3076 exp_major = T5FW_MIN_VERSION_MAJOR; 3077 exp_minor = T5FW_MIN_VERSION_MINOR; 3078 exp_micro = T5FW_MIN_VERSION_MICRO; 3079 break; 3080 case CHELSIO_T6: 3081 exp_major = T6FW_MIN_VERSION_MAJOR; 3082 exp_minor = T6FW_MIN_VERSION_MINOR; 3083 exp_micro = T6FW_MIN_VERSION_MICRO; 3084 break; 3085 default: 3086 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3087 adap->chip); 3088 return -EINVAL; 3089 } 3090 3091 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3092 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3093 dev_err(adap->pdev_dev, 3094 "Card has firmware version %u.%u.%u, minimum " 3095 "supported firmware is %u.%u.%u.\n", major, minor, 3096 micro, exp_major, exp_minor, exp_micro); 3097 return -EFAULT; 3098 } 3099 return 0; 3100 } 3101 3102 /* Is the given firmware API compatible with the one the driver was compiled 3103 * with? 3104 */ 3105 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3106 { 3107 3108 /* short circuit if it's the exact same firmware version */ 3109 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3110 return 1; 3111 3112 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3113 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3114 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3115 return 1; 3116 #undef SAME_INTF 3117 3118 return 0; 3119 } 3120 3121 /* The firmware in the filesystem is usable, but should it be installed? 3122 * This routine explains itself in detail if it indicates the filesystem 3123 * firmware should be installed. 3124 */ 3125 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3126 int k, int c) 3127 { 3128 const char *reason; 3129 3130 if (!card_fw_usable) { 3131 reason = "incompatible or unusable"; 3132 goto install; 3133 } 3134 3135 if (k > c) { 3136 reason = "older than the version supported with this driver"; 3137 goto install; 3138 } 3139 3140 return 0; 3141 3142 install: 3143 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3144 "installing firmware %u.%u.%u.%u on card.\n", 3145 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3146 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3147 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3148 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3149 3150 return 1; 3151 } 3152 3153 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3154 const u8 *fw_data, unsigned int fw_size, 3155 struct fw_hdr *card_fw, enum dev_state state, 3156 int *reset) 3157 { 3158 int ret, card_fw_usable, fs_fw_usable; 3159 const struct fw_hdr *fs_fw; 3160 const struct fw_hdr *drv_fw; 3161 3162 drv_fw = &fw_info->fw_hdr; 3163 3164 /* Read the header of the firmware on the card */ 3165 ret = -t4_read_flash(adap, FLASH_FW_START, 3166 sizeof(*card_fw) / sizeof(uint32_t), 3167 (uint32_t *)card_fw, 1); 3168 if (ret == 0) { 3169 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3170 } else { 3171 dev_err(adap->pdev_dev, 3172 "Unable to read card's firmware header: %d\n", ret); 3173 card_fw_usable = 0; 3174 } 3175 3176 if (fw_data != NULL) { 3177 fs_fw = (const void *)fw_data; 3178 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3179 } else { 3180 fs_fw = NULL; 3181 fs_fw_usable = 0; 3182 } 3183 3184 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3185 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3186 /* Common case: the firmware on the card is an exact match and 3187 * the filesystem one is an exact match too, or the filesystem 3188 * one is absent/incompatible. 3189 */ 3190 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3191 should_install_fs_fw(adap, card_fw_usable, 3192 be32_to_cpu(fs_fw->fw_ver), 3193 be32_to_cpu(card_fw->fw_ver))) { 3194 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3195 fw_size, 0); 3196 if (ret != 0) { 3197 dev_err(adap->pdev_dev, 3198 "failed to install firmware: %d\n", ret); 3199 goto bye; 3200 } 3201 3202 /* Installed successfully, update the cached header too. */ 3203 *card_fw = *fs_fw; 3204 card_fw_usable = 1; 3205 *reset = 0; /* already reset as part of load_fw */ 3206 } 3207 3208 if (!card_fw_usable) { 3209 uint32_t d, c, k; 3210 3211 d = be32_to_cpu(drv_fw->fw_ver); 3212 c = be32_to_cpu(card_fw->fw_ver); 3213 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3214 3215 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3216 "chip state %d, " 3217 "driver compiled with %d.%d.%d.%d, " 3218 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3219 state, 3220 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3221 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3222 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3223 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3224 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3225 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3226 ret = EINVAL; 3227 goto bye; 3228 } 3229 3230 /* We're using whatever's on the card and it's known to be good. */ 3231 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3232 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3233 3234 bye: 3235 return ret; 3236 } 3237 3238 /** 3239 * t4_flash_erase_sectors - erase a range of flash sectors 3240 * @adapter: the adapter 3241 * @start: the first sector to erase 3242 * @end: the last sector to erase 3243 * 3244 * Erases the sectors in the given inclusive range. 3245 */ 3246 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3247 { 3248 int ret = 0; 3249 3250 if (end >= adapter->params.sf_nsec) 3251 return -EINVAL; 3252 3253 while (start <= end) { 3254 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3255 (ret = sf1_write(adapter, 4, 0, 1, 3256 SF_ERASE_SECTOR | (start << 8))) != 0 || 3257 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3258 dev_err(adapter->pdev_dev, 3259 "erase of flash sector %d failed, error %d\n", 3260 start, ret); 3261 break; 3262 } 3263 start++; 3264 } 3265 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3266 return ret; 3267 } 3268 3269 /** 3270 * t4_flash_cfg_addr - return the address of the flash configuration file 3271 * @adapter: the adapter 3272 * 3273 * Return the address within the flash where the Firmware Configuration 3274 * File is stored. 3275 */ 3276 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3277 { 3278 if (adapter->params.sf_size == 0x100000) 3279 return FLASH_FPGA_CFG_START; 3280 else 3281 return FLASH_CFG_START; 3282 } 3283 3284 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3285 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3286 * and emit an error message for mismatched firmware to save our caller the 3287 * effort ... 3288 */ 3289 static bool t4_fw_matches_chip(const struct adapter *adap, 3290 const struct fw_hdr *hdr) 3291 { 3292 /* The expression below will return FALSE for any unsupported adapter 3293 * which will keep us "honest" in the future ... 3294 */ 3295 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3296 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3297 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3298 return true; 3299 3300 dev_err(adap->pdev_dev, 3301 "FW image (%d) is not suitable for this adapter (%d)\n", 3302 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3303 return false; 3304 } 3305 3306 /** 3307 * t4_load_fw - download firmware 3308 * @adap: the adapter 3309 * @fw_data: the firmware image to write 3310 * @size: image size 3311 * 3312 * Write the supplied firmware image to the card's serial flash. 3313 */ 3314 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3315 { 3316 u32 csum; 3317 int ret, addr; 3318 unsigned int i; 3319 u8 first_page[SF_PAGE_SIZE]; 3320 const __be32 *p = (const __be32 *)fw_data; 3321 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3322 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3323 unsigned int fw_img_start = adap->params.sf_fw_start; 3324 unsigned int fw_start_sec = fw_img_start / sf_sec_size; 3325 3326 if (!size) { 3327 dev_err(adap->pdev_dev, "FW image has no data\n"); 3328 return -EINVAL; 3329 } 3330 if (size & 511) { 3331 dev_err(adap->pdev_dev, 3332 "FW image size not multiple of 512 bytes\n"); 3333 return -EINVAL; 3334 } 3335 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3336 dev_err(adap->pdev_dev, 3337 "FW image size differs from size in FW header\n"); 3338 return -EINVAL; 3339 } 3340 if (size > FW_MAX_SIZE) { 3341 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3342 FW_MAX_SIZE); 3343 return -EFBIG; 3344 } 3345 if (!t4_fw_matches_chip(adap, hdr)) 3346 return -EINVAL; 3347 3348 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3349 csum += be32_to_cpu(p[i]); 3350 3351 if (csum != 0xffffffff) { 3352 dev_err(adap->pdev_dev, 3353 "corrupted firmware image, checksum %#x\n", csum); 3354 return -EINVAL; 3355 } 3356 3357 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3358 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3359 if (ret) 3360 goto out; 3361 3362 /* 3363 * We write the correct version at the end so the driver can see a bad 3364 * version if the FW write fails. Start by writing a copy of the 3365 * first page with a bad version. 3366 */ 3367 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3368 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3369 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); 3370 if (ret) 3371 goto out; 3372 3373 addr = fw_img_start; 3374 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3375 addr += SF_PAGE_SIZE; 3376 fw_data += SF_PAGE_SIZE; 3377 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3378 if (ret) 3379 goto out; 3380 } 3381 3382 ret = t4_write_flash(adap, 3383 fw_img_start + offsetof(struct fw_hdr, fw_ver), 3384 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3385 out: 3386 if (ret) 3387 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3388 ret); 3389 else 3390 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3391 return ret; 3392 } 3393 3394 /** 3395 * t4_phy_fw_ver - return current PHY firmware version 3396 * @adap: the adapter 3397 * @phy_fw_ver: return value buffer for PHY firmware version 3398 * 3399 * Returns the current version of external PHY firmware on the 3400 * adapter. 3401 */ 3402 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3403 { 3404 u32 param, val; 3405 int ret; 3406 3407 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3408 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3409 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3410 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3411 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3412 ¶m, &val); 3413 if (ret < 0) 3414 return ret; 3415 *phy_fw_ver = val; 3416 return 0; 3417 } 3418 3419 /** 3420 * t4_load_phy_fw - download port PHY firmware 3421 * @adap: the adapter 3422 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3423 * @win_lock: the lock to use to guard the memory copy 3424 * @phy_fw_version: function to check PHY firmware versions 3425 * @phy_fw_data: the PHY firmware image to write 3426 * @phy_fw_size: image size 3427 * 3428 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3429 * @phy_fw_version is supplied, then it will be used to determine if 3430 * it's necessary to perform the transfer by comparing the version 3431 * of any existing adapter PHY firmware with that of the passed in 3432 * PHY firmware image. If @win_lock is non-NULL then it will be used 3433 * around the call to t4_memory_rw() which transfers the PHY firmware 3434 * to the adapter. 3435 * 3436 * A negative error number will be returned if an error occurs. If 3437 * version number support is available and there's no need to upgrade 3438 * the firmware, 0 will be returned. If firmware is successfully 3439 * transferred to the adapter, 1 will be retured. 3440 * 3441 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3442 * a result, a RESET of the adapter would cause that RAM to lose its 3443 * contents. Thus, loading PHY firmware on such adapters must happen 3444 * after any FW_RESET_CMDs ... 3445 */ 3446 int t4_load_phy_fw(struct adapter *adap, 3447 int win, spinlock_t *win_lock, 3448 int (*phy_fw_version)(const u8 *, size_t), 3449 const u8 *phy_fw_data, size_t phy_fw_size) 3450 { 3451 unsigned long mtype = 0, maddr = 0; 3452 u32 param, val; 3453 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3454 int ret; 3455 3456 /* If we have version number support, then check to see if the adapter 3457 * already has up-to-date PHY firmware loaded. 3458 */ 3459 if (phy_fw_version) { 3460 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3461 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3462 if (ret < 0) 3463 return ret; 3464 3465 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3466 CH_WARN(adap, "PHY Firmware already up-to-date, " 3467 "version %#x\n", cur_phy_fw_ver); 3468 return 0; 3469 } 3470 } 3471 3472 /* Ask the firmware where it wants us to copy the PHY firmware image. 3473 * The size of the file requires a special version of the READ coommand 3474 * which will pass the file size via the values field in PARAMS_CMD and 3475 * retrieve the return value from firmware and place it in the same 3476 * buffer values 3477 */ 3478 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3479 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3480 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3481 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3482 val = phy_fw_size; 3483 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3484 ¶m, &val, 1); 3485 if (ret < 0) 3486 return ret; 3487 mtype = val >> 8; 3488 maddr = (val & 0xff) << 16; 3489 3490 /* Copy the supplied PHY Firmware image to the adapter memory location 3491 * allocated by the adapter firmware. 3492 */ 3493 if (win_lock) 3494 spin_lock_bh(win_lock); 3495 ret = t4_memory_rw(adap, win, mtype, maddr, 3496 phy_fw_size, (__be32 *)phy_fw_data, 3497 T4_MEMORY_WRITE); 3498 if (win_lock) 3499 spin_unlock_bh(win_lock); 3500 if (ret) 3501 return ret; 3502 3503 /* Tell the firmware that the PHY firmware image has been written to 3504 * RAM and it can now start copying it over to the PHYs. The chip 3505 * firmware will RESET the affected PHYs as part of this operation 3506 * leaving them running the new PHY firmware image. 3507 */ 3508 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3509 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3510 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3511 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3512 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3513 ¶m, &val, 30000); 3514 3515 /* If we have version number support, then check to see that the new 3516 * firmware got loaded properly. 3517 */ 3518 if (phy_fw_version) { 3519 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3520 if (ret < 0) 3521 return ret; 3522 3523 if (cur_phy_fw_ver != new_phy_fw_vers) { 3524 CH_WARN(adap, "PHY Firmware did not update: " 3525 "version on adapter %#x, " 3526 "version flashed %#x\n", 3527 cur_phy_fw_ver, new_phy_fw_vers); 3528 return -ENXIO; 3529 } 3530 } 3531 3532 return 1; 3533 } 3534 3535 /** 3536 * t4_fwcache - firmware cache operation 3537 * @adap: the adapter 3538 * @op : the operation (flush or flush and invalidate) 3539 */ 3540 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3541 { 3542 struct fw_params_cmd c; 3543 3544 memset(&c, 0, sizeof(c)); 3545 c.op_to_vfn = 3546 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3547 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3548 FW_PARAMS_CMD_PFN_V(adap->pf) | 3549 FW_PARAMS_CMD_VFN_V(0)); 3550 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3551 c.param[0].mnem = 3552 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3553 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3554 c.param[0].val = (__force __be32)op; 3555 3556 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3557 } 3558 3559 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3560 unsigned int *pif_req_wrptr, 3561 unsigned int *pif_rsp_wrptr) 3562 { 3563 int i, j; 3564 u32 cfg, val, req, rsp; 3565 3566 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3567 if (cfg & LADBGEN_F) 3568 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3569 3570 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3571 req = POLADBGWRPTR_G(val); 3572 rsp = PILADBGWRPTR_G(val); 3573 if (pif_req_wrptr) 3574 *pif_req_wrptr = req; 3575 if (pif_rsp_wrptr) 3576 *pif_rsp_wrptr = rsp; 3577 3578 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3579 for (j = 0; j < 6; j++) { 3580 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3581 PILADBGRDPTR_V(rsp)); 3582 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3583 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3584 req++; 3585 rsp++; 3586 } 3587 req = (req + 2) & POLADBGRDPTR_M; 3588 rsp = (rsp + 2) & PILADBGRDPTR_M; 3589 } 3590 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3591 } 3592 3593 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3594 { 3595 u32 cfg; 3596 int i, j, idx; 3597 3598 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3599 if (cfg & LADBGEN_F) 3600 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3601 3602 for (i = 0; i < CIM_MALA_SIZE; i++) { 3603 for (j = 0; j < 5; j++) { 3604 idx = 8 * i + j; 3605 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3606 PILADBGRDPTR_V(idx)); 3607 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3608 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3609 } 3610 } 3611 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3612 } 3613 3614 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3615 { 3616 unsigned int i, j; 3617 3618 for (i = 0; i < 8; i++) { 3619 u32 *p = la_buf + i; 3620 3621 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3622 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3623 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3624 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3625 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3626 } 3627 } 3628 3629 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ 3630 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \ 3631 FW_PORT_CAP_ANEG) 3632 3633 /** 3634 * t4_link_l1cfg - apply link configuration to MAC/PHY 3635 * @phy: the PHY to setup 3636 * @mac: the MAC to setup 3637 * @lc: the requested link configuration 3638 * 3639 * Set up a port's MAC and PHY according to a desired link configuration. 3640 * - If the PHY can auto-negotiate first decide what to advertise, then 3641 * enable/disable auto-negotiation as desired, and reset. 3642 * - If the PHY does not auto-negotiate just reset it. 3643 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3644 * otherwise do it later based on the outcome of auto-negotiation. 3645 */ 3646 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3647 struct link_config *lc) 3648 { 3649 struct fw_port_cmd c; 3650 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO); 3651 3652 lc->link_ok = 0; 3653 if (lc->requested_fc & PAUSE_RX) 3654 fc |= FW_PORT_CAP_FC_RX; 3655 if (lc->requested_fc & PAUSE_TX) 3656 fc |= FW_PORT_CAP_FC_TX; 3657 3658 memset(&c, 0, sizeof(c)); 3659 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 3660 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 3661 FW_PORT_CMD_PORTID_V(port)); 3662 c.action_to_len16 = 3663 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 3664 FW_LEN16(c)); 3665 3666 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 3667 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) | 3668 fc); 3669 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 3670 } else if (lc->autoneg == AUTONEG_DISABLE) { 3671 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi); 3672 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 3673 } else 3674 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi); 3675 3676 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3677 } 3678 3679 /** 3680 * t4_restart_aneg - restart autonegotiation 3681 * @adap: the adapter 3682 * @mbox: mbox to use for the FW command 3683 * @port: the port id 3684 * 3685 * Restarts autonegotiation for the selected port. 3686 */ 3687 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 3688 { 3689 struct fw_port_cmd c; 3690 3691 memset(&c, 0, sizeof(c)); 3692 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 3693 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 3694 FW_PORT_CMD_PORTID_V(port)); 3695 c.action_to_len16 = 3696 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | 3697 FW_LEN16(c)); 3698 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 3699 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3700 } 3701 3702 typedef void (*int_handler_t)(struct adapter *adap); 3703 3704 struct intr_info { 3705 unsigned int mask; /* bits to check in interrupt status */ 3706 const char *msg; /* message to print or NULL */ 3707 short stat_idx; /* stat counter to increment or -1 */ 3708 unsigned short fatal; /* whether the condition reported is fatal */ 3709 int_handler_t int_handler; /* platform-specific int handler */ 3710 }; 3711 3712 /** 3713 * t4_handle_intr_status - table driven interrupt handler 3714 * @adapter: the adapter that generated the interrupt 3715 * @reg: the interrupt status register to process 3716 * @acts: table of interrupt actions 3717 * 3718 * A table driven interrupt handler that applies a set of masks to an 3719 * interrupt status word and performs the corresponding actions if the 3720 * interrupts described by the mask have occurred. The actions include 3721 * optionally emitting a warning or alert message. The table is terminated 3722 * by an entry specifying mask 0. Returns the number of fatal interrupt 3723 * conditions. 3724 */ 3725 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 3726 const struct intr_info *acts) 3727 { 3728 int fatal = 0; 3729 unsigned int mask = 0; 3730 unsigned int status = t4_read_reg(adapter, reg); 3731 3732 for ( ; acts->mask; ++acts) { 3733 if (!(status & acts->mask)) 3734 continue; 3735 if (acts->fatal) { 3736 fatal++; 3737 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 3738 status & acts->mask); 3739 } else if (acts->msg && printk_ratelimit()) 3740 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 3741 status & acts->mask); 3742 if (acts->int_handler) 3743 acts->int_handler(adapter); 3744 mask |= acts->mask; 3745 } 3746 status &= mask; 3747 if (status) /* clear processed interrupts */ 3748 t4_write_reg(adapter, reg, status); 3749 return fatal; 3750 } 3751 3752 /* 3753 * Interrupt handler for the PCIE module. 3754 */ 3755 static void pcie_intr_handler(struct adapter *adapter) 3756 { 3757 static const struct intr_info sysbus_intr_info[] = { 3758 { RNPP_F, "RXNP array parity error", -1, 1 }, 3759 { RPCP_F, "RXPC array parity error", -1, 1 }, 3760 { RCIP_F, "RXCIF array parity error", -1, 1 }, 3761 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 3762 { RFTP_F, "RXFT array parity error", -1, 1 }, 3763 { 0 } 3764 }; 3765 static const struct intr_info pcie_port_intr_info[] = { 3766 { TPCP_F, "TXPC array parity error", -1, 1 }, 3767 { TNPP_F, "TXNP array parity error", -1, 1 }, 3768 { TFTP_F, "TXFT array parity error", -1, 1 }, 3769 { TCAP_F, "TXCA array parity error", -1, 1 }, 3770 { TCIP_F, "TXCIF array parity error", -1, 1 }, 3771 { RCAP_F, "RXCA array parity error", -1, 1 }, 3772 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 3773 { RDPE_F, "Rx data parity error", -1, 1 }, 3774 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 3775 { 0 } 3776 }; 3777 static const struct intr_info pcie_intr_info[] = { 3778 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 3779 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 3780 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 3781 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 3782 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 3783 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 3784 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 3785 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 3786 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 3787 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 3788 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 3789 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 3790 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 3791 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 3792 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 3793 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 3794 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 3795 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 3796 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 3797 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 3798 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 3799 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 3800 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 3801 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 3802 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 3803 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 3804 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 3805 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 3806 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 3807 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 3808 -1, 0 }, 3809 { 0 } 3810 }; 3811 3812 static struct intr_info t5_pcie_intr_info[] = { 3813 { MSTGRPPERR_F, "Master Response Read Queue parity error", 3814 -1, 1 }, 3815 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 3816 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 3817 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 3818 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 3819 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 3820 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 3821 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 3822 -1, 1 }, 3823 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 3824 -1, 1 }, 3825 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 3826 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 3827 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 3828 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 3829 { DREQWRPERR_F, "PCI DMA channel write request parity error", 3830 -1, 1 }, 3831 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 3832 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 3833 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 3834 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 3835 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 3836 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 3837 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 3838 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 3839 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 3840 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 3841 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 3842 -1, 1 }, 3843 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 3844 -1, 1 }, 3845 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 3846 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 3847 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 3848 { READRSPERR_F, "Outbound read error", -1, 0 }, 3849 { 0 } 3850 }; 3851 3852 int fat; 3853 3854 if (is_t4(adapter->params.chip)) 3855 fat = t4_handle_intr_status(adapter, 3856 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 3857 sysbus_intr_info) + 3858 t4_handle_intr_status(adapter, 3859 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 3860 pcie_port_intr_info) + 3861 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 3862 pcie_intr_info); 3863 else 3864 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 3865 t5_pcie_intr_info); 3866 3867 if (fat) 3868 t4_fatal_err(adapter); 3869 } 3870 3871 /* 3872 * TP interrupt handler. 3873 */ 3874 static void tp_intr_handler(struct adapter *adapter) 3875 { 3876 static const struct intr_info tp_intr_info[] = { 3877 { 0x3fffffff, "TP parity error", -1, 1 }, 3878 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 3879 { 0 } 3880 }; 3881 3882 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 3883 t4_fatal_err(adapter); 3884 } 3885 3886 /* 3887 * SGE interrupt handler. 3888 */ 3889 static void sge_intr_handler(struct adapter *adapter) 3890 { 3891 u64 v; 3892 u32 err; 3893 3894 static const struct intr_info sge_intr_info[] = { 3895 { ERR_CPL_EXCEED_IQE_SIZE_F, 3896 "SGE received CPL exceeding IQE size", -1, 1 }, 3897 { ERR_INVALID_CIDX_INC_F, 3898 "SGE GTS CIDX increment too large", -1, 0 }, 3899 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 3900 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 3901 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 3902 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 3903 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 3904 0 }, 3905 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 3906 0 }, 3907 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 3908 0 }, 3909 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 3910 0 }, 3911 { ERR_ING_CTXT_PRIO_F, 3912 "SGE too many priority ingress contexts", -1, 0 }, 3913 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 3914 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 3915 { 0 } 3916 }; 3917 3918 static struct intr_info t4t5_sge_intr_info[] = { 3919 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 3920 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 3921 { ERR_EGR_CTXT_PRIO_F, 3922 "SGE too many priority egress contexts", -1, 0 }, 3923 { 0 } 3924 }; 3925 3926 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 3927 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 3928 if (v) { 3929 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 3930 (unsigned long long)v); 3931 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 3932 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 3933 } 3934 3935 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 3936 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 3937 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 3938 t4t5_sge_intr_info); 3939 3940 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 3941 if (err & ERROR_QID_VALID_F) { 3942 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 3943 ERROR_QID_G(err)); 3944 if (err & UNCAPTURED_ERROR_F) 3945 dev_err(adapter->pdev_dev, 3946 "SGE UNCAPTURED_ERROR set (clearing)\n"); 3947 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 3948 UNCAPTURED_ERROR_F); 3949 } 3950 3951 if (v != 0) 3952 t4_fatal_err(adapter); 3953 } 3954 3955 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 3956 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 3957 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 3958 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 3959 3960 /* 3961 * CIM interrupt handler. 3962 */ 3963 static void cim_intr_handler(struct adapter *adapter) 3964 { 3965 static const struct intr_info cim_intr_info[] = { 3966 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 3967 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 3968 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 3969 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 3970 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 3971 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 3972 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 3973 { 0 } 3974 }; 3975 static const struct intr_info cim_upintr_info[] = { 3976 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 3977 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 3978 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 3979 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 3980 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 3981 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 3982 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 3983 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 3984 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 3985 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 3986 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 3987 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 3988 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 3989 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 3990 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 3991 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 3992 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 3993 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 3994 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 3995 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 3996 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 3997 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 3998 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 3999 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4000 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4001 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4002 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4003 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4004 { 0 } 4005 }; 4006 4007 int fat; 4008 4009 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F) 4010 t4_report_fw_error(adapter); 4011 4012 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4013 cim_intr_info) + 4014 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4015 cim_upintr_info); 4016 if (fat) 4017 t4_fatal_err(adapter); 4018 } 4019 4020 /* 4021 * ULP RX interrupt handler. 4022 */ 4023 static void ulprx_intr_handler(struct adapter *adapter) 4024 { 4025 static const struct intr_info ulprx_intr_info[] = { 4026 { 0x1800000, "ULPRX context error", -1, 1 }, 4027 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4028 { 0 } 4029 }; 4030 4031 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4032 t4_fatal_err(adapter); 4033 } 4034 4035 /* 4036 * ULP TX interrupt handler. 4037 */ 4038 static void ulptx_intr_handler(struct adapter *adapter) 4039 { 4040 static const struct intr_info ulptx_intr_info[] = { 4041 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4042 0 }, 4043 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4044 0 }, 4045 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4046 0 }, 4047 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4048 0 }, 4049 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4050 { 0 } 4051 }; 4052 4053 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4054 t4_fatal_err(adapter); 4055 } 4056 4057 /* 4058 * PM TX interrupt handler. 4059 */ 4060 static void pmtx_intr_handler(struct adapter *adapter) 4061 { 4062 static const struct intr_info pmtx_intr_info[] = { 4063 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4064 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4065 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4066 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4067 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4068 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4069 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4070 -1, 1 }, 4071 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4072 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4073 { 0 } 4074 }; 4075 4076 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4077 t4_fatal_err(adapter); 4078 } 4079 4080 /* 4081 * PM RX interrupt handler. 4082 */ 4083 static void pmrx_intr_handler(struct adapter *adapter) 4084 { 4085 static const struct intr_info pmrx_intr_info[] = { 4086 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4087 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4088 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4089 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4090 -1, 1 }, 4091 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4092 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4093 { 0 } 4094 }; 4095 4096 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4097 t4_fatal_err(adapter); 4098 } 4099 4100 /* 4101 * CPL switch interrupt handler. 4102 */ 4103 static void cplsw_intr_handler(struct adapter *adapter) 4104 { 4105 static const struct intr_info cplsw_intr_info[] = { 4106 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4107 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4108 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4109 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4110 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4111 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4112 { 0 } 4113 }; 4114 4115 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4116 t4_fatal_err(adapter); 4117 } 4118 4119 /* 4120 * LE interrupt handler. 4121 */ 4122 static void le_intr_handler(struct adapter *adap) 4123 { 4124 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4125 static const struct intr_info le_intr_info[] = { 4126 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4127 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4128 { PARITYERR_F, "LE parity error", -1, 1 }, 4129 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4130 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4131 { 0 } 4132 }; 4133 4134 static struct intr_info t6_le_intr_info[] = { 4135 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4136 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4137 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4138 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4139 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4140 { 0 } 4141 }; 4142 4143 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4144 (chip <= CHELSIO_T5) ? 4145 le_intr_info : t6_le_intr_info)) 4146 t4_fatal_err(adap); 4147 } 4148 4149 /* 4150 * MPS interrupt handler. 4151 */ 4152 static void mps_intr_handler(struct adapter *adapter) 4153 { 4154 static const struct intr_info mps_rx_intr_info[] = { 4155 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4156 { 0 } 4157 }; 4158 static const struct intr_info mps_tx_intr_info[] = { 4159 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4160 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4161 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4162 -1, 1 }, 4163 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4164 -1, 1 }, 4165 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4166 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4167 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4168 { 0 } 4169 }; 4170 static const struct intr_info mps_trc_intr_info[] = { 4171 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4172 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4173 -1, 1 }, 4174 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4175 { 0 } 4176 }; 4177 static const struct intr_info mps_stat_sram_intr_info[] = { 4178 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4179 { 0 } 4180 }; 4181 static const struct intr_info mps_stat_tx_intr_info[] = { 4182 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4183 { 0 } 4184 }; 4185 static const struct intr_info mps_stat_rx_intr_info[] = { 4186 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4187 { 0 } 4188 }; 4189 static const struct intr_info mps_cls_intr_info[] = { 4190 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4191 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4192 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4193 { 0 } 4194 }; 4195 4196 int fat; 4197 4198 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4199 mps_rx_intr_info) + 4200 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4201 mps_tx_intr_info) + 4202 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4203 mps_trc_intr_info) + 4204 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4205 mps_stat_sram_intr_info) + 4206 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4207 mps_stat_tx_intr_info) + 4208 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4209 mps_stat_rx_intr_info) + 4210 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4211 mps_cls_intr_info); 4212 4213 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4214 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4215 if (fat) 4216 t4_fatal_err(adapter); 4217 } 4218 4219 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4220 ECC_UE_INT_CAUSE_F) 4221 4222 /* 4223 * EDC/MC interrupt handler. 4224 */ 4225 static void mem_intr_handler(struct adapter *adapter, int idx) 4226 { 4227 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4228 4229 unsigned int addr, cnt_addr, v; 4230 4231 if (idx <= MEM_EDC1) { 4232 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4233 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4234 } else if (idx == MEM_MC) { 4235 if (is_t4(adapter->params.chip)) { 4236 addr = MC_INT_CAUSE_A; 4237 cnt_addr = MC_ECC_STATUS_A; 4238 } else { 4239 addr = MC_P_INT_CAUSE_A; 4240 cnt_addr = MC_P_ECC_STATUS_A; 4241 } 4242 } else { 4243 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4244 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4245 } 4246 4247 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4248 if (v & PERR_INT_CAUSE_F) 4249 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4250 name[idx]); 4251 if (v & ECC_CE_INT_CAUSE_F) { 4252 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4253 4254 t4_edc_err_read(adapter, idx); 4255 4256 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4257 if (printk_ratelimit()) 4258 dev_warn(adapter->pdev_dev, 4259 "%u %s correctable ECC data error%s\n", 4260 cnt, name[idx], cnt > 1 ? "s" : ""); 4261 } 4262 if (v & ECC_UE_INT_CAUSE_F) 4263 dev_alert(adapter->pdev_dev, 4264 "%s uncorrectable ECC data error\n", name[idx]); 4265 4266 t4_write_reg(adapter, addr, v); 4267 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4268 t4_fatal_err(adapter); 4269 } 4270 4271 /* 4272 * MA interrupt handler. 4273 */ 4274 static void ma_intr_handler(struct adapter *adap) 4275 { 4276 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4277 4278 if (status & MEM_PERR_INT_CAUSE_F) { 4279 dev_alert(adap->pdev_dev, 4280 "MA parity error, parity status %#x\n", 4281 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4282 if (is_t5(adap->params.chip)) 4283 dev_alert(adap->pdev_dev, 4284 "MA parity error, parity status %#x\n", 4285 t4_read_reg(adap, 4286 MA_PARITY_ERROR_STATUS2_A)); 4287 } 4288 if (status & MEM_WRAP_INT_CAUSE_F) { 4289 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4290 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4291 "client %u to address %#x\n", 4292 MEM_WRAP_CLIENT_NUM_G(v), 4293 MEM_WRAP_ADDRESS_G(v) << 4); 4294 } 4295 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4296 t4_fatal_err(adap); 4297 } 4298 4299 /* 4300 * SMB interrupt handler. 4301 */ 4302 static void smb_intr_handler(struct adapter *adap) 4303 { 4304 static const struct intr_info smb_intr_info[] = { 4305 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4306 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4307 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4308 { 0 } 4309 }; 4310 4311 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4312 t4_fatal_err(adap); 4313 } 4314 4315 /* 4316 * NC-SI interrupt handler. 4317 */ 4318 static void ncsi_intr_handler(struct adapter *adap) 4319 { 4320 static const struct intr_info ncsi_intr_info[] = { 4321 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4322 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4323 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4324 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4325 { 0 } 4326 }; 4327 4328 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4329 t4_fatal_err(adap); 4330 } 4331 4332 /* 4333 * XGMAC interrupt handler. 4334 */ 4335 static void xgmac_intr_handler(struct adapter *adap, int port) 4336 { 4337 u32 v, int_cause_reg; 4338 4339 if (is_t4(adap->params.chip)) 4340 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4341 else 4342 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4343 4344 v = t4_read_reg(adap, int_cause_reg); 4345 4346 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4347 if (!v) 4348 return; 4349 4350 if (v & TXFIFO_PRTY_ERR_F) 4351 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4352 port); 4353 if (v & RXFIFO_PRTY_ERR_F) 4354 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4355 port); 4356 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4357 t4_fatal_err(adap); 4358 } 4359 4360 /* 4361 * PL interrupt handler. 4362 */ 4363 static void pl_intr_handler(struct adapter *adap) 4364 { 4365 static const struct intr_info pl_intr_info[] = { 4366 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4367 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4368 { 0 } 4369 }; 4370 4371 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4372 t4_fatal_err(adap); 4373 } 4374 4375 #define PF_INTR_MASK (PFSW_F) 4376 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4377 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4378 CPL_SWITCH_F | SGE_F | ULP_TX_F) 4379 4380 /** 4381 * t4_slow_intr_handler - control path interrupt handler 4382 * @adapter: the adapter 4383 * 4384 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4385 * The designation 'slow' is because it involves register reads, while 4386 * data interrupts typically don't involve any MMIOs. 4387 */ 4388 int t4_slow_intr_handler(struct adapter *adapter) 4389 { 4390 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4391 4392 if (!(cause & GLBL_INTR_MASK)) 4393 return 0; 4394 if (cause & CIM_F) 4395 cim_intr_handler(adapter); 4396 if (cause & MPS_F) 4397 mps_intr_handler(adapter); 4398 if (cause & NCSI_F) 4399 ncsi_intr_handler(adapter); 4400 if (cause & PL_F) 4401 pl_intr_handler(adapter); 4402 if (cause & SMB_F) 4403 smb_intr_handler(adapter); 4404 if (cause & XGMAC0_F) 4405 xgmac_intr_handler(adapter, 0); 4406 if (cause & XGMAC1_F) 4407 xgmac_intr_handler(adapter, 1); 4408 if (cause & XGMAC_KR0_F) 4409 xgmac_intr_handler(adapter, 2); 4410 if (cause & XGMAC_KR1_F) 4411 xgmac_intr_handler(adapter, 3); 4412 if (cause & PCIE_F) 4413 pcie_intr_handler(adapter); 4414 if (cause & MC_F) 4415 mem_intr_handler(adapter, MEM_MC); 4416 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4417 mem_intr_handler(adapter, MEM_MC1); 4418 if (cause & EDC0_F) 4419 mem_intr_handler(adapter, MEM_EDC0); 4420 if (cause & EDC1_F) 4421 mem_intr_handler(adapter, MEM_EDC1); 4422 if (cause & LE_F) 4423 le_intr_handler(adapter); 4424 if (cause & TP_F) 4425 tp_intr_handler(adapter); 4426 if (cause & MA_F) 4427 ma_intr_handler(adapter); 4428 if (cause & PM_TX_F) 4429 pmtx_intr_handler(adapter); 4430 if (cause & PM_RX_F) 4431 pmrx_intr_handler(adapter); 4432 if (cause & ULP_RX_F) 4433 ulprx_intr_handler(adapter); 4434 if (cause & CPL_SWITCH_F) 4435 cplsw_intr_handler(adapter); 4436 if (cause & SGE_F) 4437 sge_intr_handler(adapter); 4438 if (cause & ULP_TX_F) 4439 ulptx_intr_handler(adapter); 4440 4441 /* Clear the interrupts just processed for which we are the master. */ 4442 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK); 4443 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 4444 return 1; 4445 } 4446 4447 /** 4448 * t4_intr_enable - enable interrupts 4449 * @adapter: the adapter whose interrupts should be enabled 4450 * 4451 * Enable PF-specific interrupts for the calling function and the top-level 4452 * interrupt concentrator for global interrupts. Interrupts are already 4453 * enabled at each module, here we just enable the roots of the interrupt 4454 * hierarchies. 4455 * 4456 * Note: this function should be called only when the driver manages 4457 * non PF-specific interrupts from the various HW modules. Only one PCI 4458 * function at a time should be doing this. 4459 */ 4460 void t4_intr_enable(struct adapter *adapter) 4461 { 4462 u32 val = 0; 4463 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4464 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4465 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4466 4467 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4468 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 4469 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 4470 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 4471 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 4472 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 4473 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 4474 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 4475 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 4476 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 4477 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 4478 } 4479 4480 /** 4481 * t4_intr_disable - disable interrupts 4482 * @adapter: the adapter whose interrupts should be disabled 4483 * 4484 * Disable interrupts. We only disable the top-level interrupt 4485 * concentrators. The caller must be a PCI function managing global 4486 * interrupts. 4487 */ 4488 void t4_intr_disable(struct adapter *adapter) 4489 { 4490 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 4491 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 4492 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4493 4494 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 4495 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 4496 } 4497 4498 /** 4499 * t4_config_rss_range - configure a portion of the RSS mapping table 4500 * @adapter: the adapter 4501 * @mbox: mbox to use for the FW command 4502 * @viid: virtual interface whose RSS subtable is to be written 4503 * @start: start entry in the table to write 4504 * @n: how many table entries to write 4505 * @rspq: values for the response queue lookup table 4506 * @nrspq: number of values in @rspq 4507 * 4508 * Programs the selected part of the VI's RSS mapping table with the 4509 * provided values. If @nrspq < @n the supplied values are used repeatedly 4510 * until the full table range is populated. 4511 * 4512 * The caller must ensure the values in @rspq are in the range allowed for 4513 * @viid. 4514 */ 4515 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 4516 int start, int n, const u16 *rspq, unsigned int nrspq) 4517 { 4518 int ret; 4519 const u16 *rsp = rspq; 4520 const u16 *rsp_end = rspq + nrspq; 4521 struct fw_rss_ind_tbl_cmd cmd; 4522 4523 memset(&cmd, 0, sizeof(cmd)); 4524 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 4525 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4526 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 4527 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 4528 4529 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 4530 while (n > 0) { 4531 int nq = min(n, 32); 4532 __be32 *qp = &cmd.iq0_to_iq2; 4533 4534 cmd.niqid = cpu_to_be16(nq); 4535 cmd.startidx = cpu_to_be16(start); 4536 4537 start += nq; 4538 n -= nq; 4539 4540 while (nq > 0) { 4541 unsigned int v; 4542 4543 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 4544 if (++rsp >= rsp_end) 4545 rsp = rspq; 4546 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 4547 if (++rsp >= rsp_end) 4548 rsp = rspq; 4549 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 4550 if (++rsp >= rsp_end) 4551 rsp = rspq; 4552 4553 *qp++ = cpu_to_be32(v); 4554 nq -= 3; 4555 } 4556 4557 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 4558 if (ret) 4559 return ret; 4560 } 4561 return 0; 4562 } 4563 4564 /** 4565 * t4_config_glbl_rss - configure the global RSS mode 4566 * @adapter: the adapter 4567 * @mbox: mbox to use for the FW command 4568 * @mode: global RSS mode 4569 * @flags: mode-specific flags 4570 * 4571 * Sets the global RSS mode. 4572 */ 4573 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 4574 unsigned int flags) 4575 { 4576 struct fw_rss_glb_config_cmd c; 4577 4578 memset(&c, 0, sizeof(c)); 4579 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 4580 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4581 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4582 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 4583 c.u.manual.mode_pkd = 4584 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4585 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 4586 c.u.basicvirtual.mode_pkd = 4587 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 4588 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 4589 } else 4590 return -EINVAL; 4591 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4592 } 4593 4594 /** 4595 * t4_config_vi_rss - configure per VI RSS settings 4596 * @adapter: the adapter 4597 * @mbox: mbox to use for the FW command 4598 * @viid: the VI id 4599 * @flags: RSS flags 4600 * @defq: id of the default RSS queue for the VI. 4601 * 4602 * Configures VI-specific RSS properties. 4603 */ 4604 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 4605 unsigned int flags, unsigned int defq) 4606 { 4607 struct fw_rss_vi_config_cmd c; 4608 4609 memset(&c, 0, sizeof(c)); 4610 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 4611 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 4612 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 4613 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 4614 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 4615 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 4616 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 4617 } 4618 4619 /* Read an RSS table row */ 4620 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 4621 { 4622 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 4623 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 4624 5, 0, val); 4625 } 4626 4627 /** 4628 * t4_read_rss - read the contents of the RSS mapping table 4629 * @adapter: the adapter 4630 * @map: holds the contents of the RSS mapping table 4631 * 4632 * Reads the contents of the RSS hash->queue mapping table. 4633 */ 4634 int t4_read_rss(struct adapter *adapter, u16 *map) 4635 { 4636 u32 val; 4637 int i, ret; 4638 4639 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 4640 ret = rd_rss_row(adapter, i, &val); 4641 if (ret) 4642 return ret; 4643 *map++ = LKPTBLQUEUE0_G(val); 4644 *map++ = LKPTBLQUEUE1_G(val); 4645 } 4646 return 0; 4647 } 4648 4649 static unsigned int t4_use_ldst(struct adapter *adap) 4650 { 4651 return (adap->flags & FW_OK) || !adap->use_bd; 4652 } 4653 4654 /** 4655 * t4_fw_tp_pio_rw - Access TP PIO through LDST 4656 * @adap: the adapter 4657 * @vals: where the indirect register values are stored/written 4658 * @nregs: how many indirect registers to read/write 4659 * @start_idx: index of first indirect register to read/write 4660 * @rw: Read (1) or Write (0) 4661 * 4662 * Access TP PIO registers through LDST 4663 */ 4664 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs, 4665 unsigned int start_index, unsigned int rw) 4666 { 4667 int ret, i; 4668 int cmd = FW_LDST_ADDRSPC_TP_PIO; 4669 struct fw_ldst_cmd c; 4670 4671 for (i = 0 ; i < nregs; i++) { 4672 memset(&c, 0, sizeof(c)); 4673 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 4674 FW_CMD_REQUEST_F | 4675 (rw ? FW_CMD_READ_F : 4676 FW_CMD_WRITE_F) | 4677 FW_LDST_CMD_ADDRSPACE_V(cmd)); 4678 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 4679 4680 c.u.addrval.addr = cpu_to_be32(start_index + i); 4681 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 4682 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4683 if (!ret && rw) 4684 vals[i] = be32_to_cpu(c.u.addrval.val); 4685 } 4686 } 4687 4688 /** 4689 * t4_read_rss_key - read the global RSS key 4690 * @adap: the adapter 4691 * @key: 10-entry array holding the 320-bit RSS key 4692 * 4693 * Reads the global 320-bit RSS key. 4694 */ 4695 void t4_read_rss_key(struct adapter *adap, u32 *key) 4696 { 4697 if (t4_use_ldst(adap)) 4698 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1); 4699 else 4700 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 4701 TP_RSS_SECRET_KEY0_A); 4702 } 4703 4704 /** 4705 * t4_write_rss_key - program one of the RSS keys 4706 * @adap: the adapter 4707 * @key: 10-entry array holding the 320-bit RSS key 4708 * @idx: which RSS key to write 4709 * 4710 * Writes one of the RSS keys with the given 320-bit value. If @idx is 4711 * 0..15 the corresponding entry in the RSS key table is written, 4712 * otherwise the global RSS key is written. 4713 */ 4714 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx) 4715 { 4716 u8 rss_key_addr_cnt = 16; 4717 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 4718 4719 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 4720 * allows access to key addresses 16-63 by using KeyWrAddrX 4721 * as index[5:4](upper 2) into key table 4722 */ 4723 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 4724 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 4725 rss_key_addr_cnt = 32; 4726 4727 if (t4_use_ldst(adap)) 4728 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0); 4729 else 4730 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10, 4731 TP_RSS_SECRET_KEY0_A); 4732 4733 if (idx >= 0 && idx < rss_key_addr_cnt) { 4734 if (rss_key_addr_cnt > 16) 4735 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 4736 KEYWRADDRX_V(idx >> 4) | 4737 T6_VFWRADDR_V(idx) | KEYWREN_F); 4738 else 4739 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 4740 KEYWRADDR_V(idx) | KEYWREN_F); 4741 } 4742 } 4743 4744 /** 4745 * t4_read_rss_pf_config - read PF RSS Configuration Table 4746 * @adapter: the adapter 4747 * @index: the entry in the PF RSS table to read 4748 * @valp: where to store the returned value 4749 * 4750 * Reads the PF RSS Configuration Table at the specified index and returns 4751 * the value found there. 4752 */ 4753 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 4754 u32 *valp) 4755 { 4756 if (t4_use_ldst(adapter)) 4757 t4_fw_tp_pio_rw(adapter, valp, 1, 4758 TP_RSS_PF0_CONFIG_A + index, 1); 4759 else 4760 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4761 valp, 1, TP_RSS_PF0_CONFIG_A + index); 4762 } 4763 4764 /** 4765 * t4_read_rss_vf_config - read VF RSS Configuration Table 4766 * @adapter: the adapter 4767 * @index: the entry in the VF RSS table to read 4768 * @vfl: where to store the returned VFL 4769 * @vfh: where to store the returned VFH 4770 * 4771 * Reads the VF RSS Configuration Table at the specified index and returns 4772 * the (VFL, VFH) values found there. 4773 */ 4774 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 4775 u32 *vfl, u32 *vfh) 4776 { 4777 u32 vrt, mask, data; 4778 4779 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 4780 mask = VFWRADDR_V(VFWRADDR_M); 4781 data = VFWRADDR_V(index); 4782 } else { 4783 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 4784 data = T6_VFWRADDR_V(index); 4785 } 4786 4787 /* Request that the index'th VF Table values be read into VFL/VFH. 4788 */ 4789 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 4790 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 4791 vrt |= data | VFRDEN_F; 4792 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 4793 4794 /* Grab the VFL/VFH values ... 4795 */ 4796 if (t4_use_ldst(adapter)) { 4797 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1); 4798 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1); 4799 } else { 4800 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4801 vfl, 1, TP_RSS_VFL_CONFIG_A); 4802 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4803 vfh, 1, TP_RSS_VFH_CONFIG_A); 4804 } 4805 } 4806 4807 /** 4808 * t4_read_rss_pf_map - read PF RSS Map 4809 * @adapter: the adapter 4810 * 4811 * Reads the PF RSS Map register and returns its value. 4812 */ 4813 u32 t4_read_rss_pf_map(struct adapter *adapter) 4814 { 4815 u32 pfmap; 4816 4817 if (t4_use_ldst(adapter)) 4818 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1); 4819 else 4820 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4821 &pfmap, 1, TP_RSS_PF_MAP_A); 4822 return pfmap; 4823 } 4824 4825 /** 4826 * t4_read_rss_pf_mask - read PF RSS Mask 4827 * @adapter: the adapter 4828 * 4829 * Reads the PF RSS Mask register and returns its value. 4830 */ 4831 u32 t4_read_rss_pf_mask(struct adapter *adapter) 4832 { 4833 u32 pfmask; 4834 4835 if (t4_use_ldst(adapter)) 4836 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1); 4837 else 4838 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4839 &pfmask, 1, TP_RSS_PF_MSK_A); 4840 return pfmask; 4841 } 4842 4843 /** 4844 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 4845 * @adap: the adapter 4846 * @v4: holds the TCP/IP counter values 4847 * @v6: holds the TCP/IPv6 counter values 4848 * 4849 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 4850 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 4851 */ 4852 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 4853 struct tp_tcp_stats *v6) 4854 { 4855 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 4856 4857 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 4858 #define STAT(x) val[STAT_IDX(x)] 4859 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 4860 4861 if (v4) { 4862 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4863 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A); 4864 v4->tcp_out_rsts = STAT(OUT_RST); 4865 v4->tcp_in_segs = STAT64(IN_SEG); 4866 v4->tcp_out_segs = STAT64(OUT_SEG); 4867 v4->tcp_retrans_segs = STAT64(RXT_SEG); 4868 } 4869 if (v6) { 4870 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4871 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A); 4872 v6->tcp_out_rsts = STAT(OUT_RST); 4873 v6->tcp_in_segs = STAT64(IN_SEG); 4874 v6->tcp_out_segs = STAT64(OUT_SEG); 4875 v6->tcp_retrans_segs = STAT64(RXT_SEG); 4876 } 4877 #undef STAT64 4878 #undef STAT 4879 #undef STAT_IDX 4880 } 4881 4882 /** 4883 * t4_tp_get_err_stats - read TP's error MIB counters 4884 * @adap: the adapter 4885 * @st: holds the counter values 4886 * 4887 * Returns the values of TP's error counters. 4888 */ 4889 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st) 4890 { 4891 int nchan = adap->params.arch.nchan; 4892 4893 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4894 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A); 4895 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4896 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A); 4897 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4898 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A); 4899 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4900 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A); 4901 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4902 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A); 4903 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4904 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A); 4905 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4906 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A); 4907 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4908 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A); 4909 4910 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, 4911 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A); 4912 } 4913 4914 /** 4915 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 4916 * @adap: the adapter 4917 * @st: holds the counter values 4918 * 4919 * Returns the values of TP's CPL counters. 4920 */ 4921 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st) 4922 { 4923 int nchan = adap->params.arch.nchan; 4924 4925 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req, 4926 nchan, TP_MIB_CPL_IN_REQ_0_A); 4927 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp, 4928 nchan, TP_MIB_CPL_OUT_RSP_0_A); 4929 4930 } 4931 4932 /** 4933 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 4934 * @adap: the adapter 4935 * @st: holds the counter values 4936 * 4937 * Returns the values of TP's RDMA counters. 4938 */ 4939 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st) 4940 { 4941 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt, 4942 2, TP_MIB_RQE_DFR_PKT_A); 4943 } 4944 4945 /** 4946 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 4947 * @adap: the adapter 4948 * @idx: the port index 4949 * @st: holds the counter values 4950 * 4951 * Returns the values of TP's FCoE counters for the selected port. 4952 */ 4953 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 4954 struct tp_fcoe_stats *st) 4955 { 4956 u32 val[2]; 4957 4958 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp, 4959 1, TP_MIB_FCOE_DDP_0_A + idx); 4960 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop, 4961 1, TP_MIB_FCOE_DROP_0_A + idx); 4962 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4963 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx); 4964 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 4965 } 4966 4967 /** 4968 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 4969 * @adap: the adapter 4970 * @st: holds the counter values 4971 * 4972 * Returns the values of TP's counters for non-TCP directly-placed packets. 4973 */ 4974 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st) 4975 { 4976 u32 val[4]; 4977 4978 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4, 4979 TP_MIB_USM_PKTS_A); 4980 st->frames = val[0]; 4981 st->drops = val[1]; 4982 st->octets = ((u64)val[2] << 32) | val[3]; 4983 } 4984 4985 /** 4986 * t4_read_mtu_tbl - returns the values in the HW path MTU table 4987 * @adap: the adapter 4988 * @mtus: where to store the MTU values 4989 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 4990 * 4991 * Reads the HW path MTU table. 4992 */ 4993 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 4994 { 4995 u32 v; 4996 int i; 4997 4998 for (i = 0; i < NMTUS; ++i) { 4999 t4_write_reg(adap, TP_MTU_TABLE_A, 5000 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5001 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5002 mtus[i] = MTUVALUE_G(v); 5003 if (mtu_log) 5004 mtu_log[i] = MTUWIDTH_G(v); 5005 } 5006 } 5007 5008 /** 5009 * t4_read_cong_tbl - reads the congestion control table 5010 * @adap: the adapter 5011 * @incr: where to store the alpha values 5012 * 5013 * Reads the additive increments programmed into the HW congestion 5014 * control table. 5015 */ 5016 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5017 { 5018 unsigned int mtu, w; 5019 5020 for (mtu = 0; mtu < NMTUS; ++mtu) 5021 for (w = 0; w < NCCTRL_WIN; ++w) { 5022 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5023 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5024 incr[mtu][w] = (u16)t4_read_reg(adap, 5025 TP_CCTRL_TABLE_A) & 0x1fff; 5026 } 5027 } 5028 5029 /** 5030 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5031 * @adap: the adapter 5032 * @addr: the indirect TP register address 5033 * @mask: specifies the field within the register to modify 5034 * @val: new value for the field 5035 * 5036 * Sets a field of an indirect TP register to the given value. 5037 */ 5038 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5039 unsigned int mask, unsigned int val) 5040 { 5041 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5042 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5043 t4_write_reg(adap, TP_PIO_DATA_A, val); 5044 } 5045 5046 /** 5047 * init_cong_ctrl - initialize congestion control parameters 5048 * @a: the alpha values for congestion control 5049 * @b: the beta values for congestion control 5050 * 5051 * Initialize the congestion control parameters. 5052 */ 5053 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5054 { 5055 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5056 a[9] = 2; 5057 a[10] = 3; 5058 a[11] = 4; 5059 a[12] = 5; 5060 a[13] = 6; 5061 a[14] = 7; 5062 a[15] = 8; 5063 a[16] = 9; 5064 a[17] = 10; 5065 a[18] = 14; 5066 a[19] = 17; 5067 a[20] = 21; 5068 a[21] = 25; 5069 a[22] = 30; 5070 a[23] = 35; 5071 a[24] = 45; 5072 a[25] = 60; 5073 a[26] = 80; 5074 a[27] = 100; 5075 a[28] = 200; 5076 a[29] = 300; 5077 a[30] = 400; 5078 a[31] = 500; 5079 5080 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5081 b[9] = b[10] = 1; 5082 b[11] = b[12] = 2; 5083 b[13] = b[14] = b[15] = b[16] = 3; 5084 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5085 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5086 b[28] = b[29] = 6; 5087 b[30] = b[31] = 7; 5088 } 5089 5090 /* The minimum additive increment value for the congestion control table */ 5091 #define CC_MIN_INCR 2U 5092 5093 /** 5094 * t4_load_mtus - write the MTU and congestion control HW tables 5095 * @adap: the adapter 5096 * @mtus: the values for the MTU table 5097 * @alpha: the values for the congestion control alpha parameter 5098 * @beta: the values for the congestion control beta parameter 5099 * 5100 * Write the HW MTU table with the supplied MTUs and the high-speed 5101 * congestion control table with the supplied alpha, beta, and MTUs. 5102 * We write the two tables together because the additive increments 5103 * depend on the MTUs. 5104 */ 5105 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5106 const unsigned short *alpha, const unsigned short *beta) 5107 { 5108 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5109 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5110 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5111 28672, 40960, 57344, 81920, 114688, 163840, 229376 5112 }; 5113 5114 unsigned int i, w; 5115 5116 for (i = 0; i < NMTUS; ++i) { 5117 unsigned int mtu = mtus[i]; 5118 unsigned int log2 = fls(mtu); 5119 5120 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5121 log2--; 5122 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5123 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5124 5125 for (w = 0; w < NCCTRL_WIN; ++w) { 5126 unsigned int inc; 5127 5128 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5129 CC_MIN_INCR); 5130 5131 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5132 (w << 16) | (beta[w] << 13) | inc); 5133 } 5134 } 5135 } 5136 5137 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5138 * clocks. The formula is 5139 * 5140 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5141 * 5142 * which is equivalent to 5143 * 5144 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5145 */ 5146 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5147 { 5148 u64 v = bytes256 * adap->params.vpd.cclk; 5149 5150 return v * 62 + v / 2; 5151 } 5152 5153 /** 5154 * t4_get_chan_txrate - get the current per channel Tx rates 5155 * @adap: the adapter 5156 * @nic_rate: rates for NIC traffic 5157 * @ofld_rate: rates for offloaded traffic 5158 * 5159 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5160 * for each channel. 5161 */ 5162 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5163 { 5164 u32 v; 5165 5166 v = t4_read_reg(adap, TP_TX_TRATE_A); 5167 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5168 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5169 if (adap->params.arch.nchan == NCHAN) { 5170 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5171 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5172 } 5173 5174 v = t4_read_reg(adap, TP_TX_ORATE_A); 5175 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5176 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5177 if (adap->params.arch.nchan == NCHAN) { 5178 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5179 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5180 } 5181 } 5182 5183 /** 5184 * t4_set_trace_filter - configure one of the tracing filters 5185 * @adap: the adapter 5186 * @tp: the desired trace filter parameters 5187 * @idx: which filter to configure 5188 * @enable: whether to enable or disable the filter 5189 * 5190 * Configures one of the tracing filters available in HW. If @enable is 5191 * %0 @tp is not examined and may be %NULL. The user is responsible to 5192 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5193 */ 5194 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5195 int idx, int enable) 5196 { 5197 int i, ofst = idx * 4; 5198 u32 data_reg, mask_reg, cfg; 5199 u32 multitrc = TRCMULTIFILTER_F; 5200 5201 if (!enable) { 5202 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5203 return 0; 5204 } 5205 5206 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5207 if (cfg & TRCMULTIFILTER_F) { 5208 /* If multiple tracers are enabled, then maximum 5209 * capture size is 2.5KB (FIFO size of a single channel) 5210 * minus 2 flits for CPL_TRACE_PKT header. 5211 */ 5212 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5213 return -EINVAL; 5214 } else { 5215 /* If multiple tracers are disabled, to avoid deadlocks 5216 * maximum packet capture size of 9600 bytes is recommended. 5217 * Also in this mode, only trace0 can be enabled and running. 5218 */ 5219 multitrc = 0; 5220 if (tp->snap_len > 9600 || idx) 5221 return -EINVAL; 5222 } 5223 5224 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5225 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5226 tp->min_len > TFMINPKTSIZE_M) 5227 return -EINVAL; 5228 5229 /* stop the tracer we'll be changing */ 5230 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5231 5232 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5233 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5234 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5235 5236 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5237 t4_write_reg(adap, data_reg, tp->data[i]); 5238 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5239 } 5240 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5241 TFCAPTUREMAX_V(tp->snap_len) | 5242 TFMINPKTSIZE_V(tp->min_len)); 5243 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5244 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5245 (is_t4(adap->params.chip) ? 5246 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5247 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5248 T5_TFINVERTMATCH_V(tp->invert))); 5249 5250 return 0; 5251 } 5252 5253 /** 5254 * t4_get_trace_filter - query one of the tracing filters 5255 * @adap: the adapter 5256 * @tp: the current trace filter parameters 5257 * @idx: which trace filter to query 5258 * @enabled: non-zero if the filter is enabled 5259 * 5260 * Returns the current settings of one of the HW tracing filters. 5261 */ 5262 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5263 int *enabled) 5264 { 5265 u32 ctla, ctlb; 5266 int i, ofst = idx * 4; 5267 u32 data_reg, mask_reg; 5268 5269 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5270 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5271 5272 if (is_t4(adap->params.chip)) { 5273 *enabled = !!(ctla & TFEN_F); 5274 tp->port = TFPORT_G(ctla); 5275 tp->invert = !!(ctla & TFINVERTMATCH_F); 5276 } else { 5277 *enabled = !!(ctla & T5_TFEN_F); 5278 tp->port = T5_TFPORT_G(ctla); 5279 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5280 } 5281 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5282 tp->min_len = TFMINPKTSIZE_G(ctlb); 5283 tp->skip_ofst = TFOFFSET_G(ctla); 5284 tp->skip_len = TFLENGTH_G(ctla); 5285 5286 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5287 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5288 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5289 5290 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5291 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 5292 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 5293 } 5294 } 5295 5296 /** 5297 * t4_pmtx_get_stats - returns the HW stats from PMTX 5298 * @adap: the adapter 5299 * @cnt: where to store the count statistics 5300 * @cycles: where to store the cycle statistics 5301 * 5302 * Returns performance statistics from PMTX. 5303 */ 5304 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5305 { 5306 int i; 5307 u32 data[2]; 5308 5309 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5310 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 5311 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 5312 if (is_t4(adap->params.chip)) { 5313 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 5314 } else { 5315 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 5316 PM_TX_DBG_DATA_A, data, 2, 5317 PM_TX_DBG_STAT_MSB_A); 5318 cycles[i] = (((u64)data[0] << 32) | data[1]); 5319 } 5320 } 5321 } 5322 5323 /** 5324 * t4_pmrx_get_stats - returns the HW stats from PMRX 5325 * @adap: the adapter 5326 * @cnt: where to store the count statistics 5327 * @cycles: where to store the cycle statistics 5328 * 5329 * Returns performance statistics from PMRX. 5330 */ 5331 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 5332 { 5333 int i; 5334 u32 data[2]; 5335 5336 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 5337 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 5338 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 5339 if (is_t4(adap->params.chip)) { 5340 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 5341 } else { 5342 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 5343 PM_RX_DBG_DATA_A, data, 2, 5344 PM_RX_DBG_STAT_MSB_A); 5345 cycles[i] = (((u64)data[0] << 32) | data[1]); 5346 } 5347 } 5348 } 5349 5350 /** 5351 * t4_get_mps_bg_map - return the buffer groups associated with a port 5352 * @adap: the adapter 5353 * @idx: the port index 5354 * 5355 * Returns a bitmap indicating which MPS buffer groups are associated 5356 * with the given port. Bit i is set if buffer group i is used by the 5357 * port. 5358 */ 5359 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 5360 { 5361 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 5362 5363 if (n == 0) 5364 return idx == 0 ? 0xf : 0; 5365 /* In T6 (which is a 2 port card), 5366 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1. 5367 * For 2 port T4/T5 adapter, 5368 * port 0 is mapped to channel 0 and 1, 5369 * port 1 is mapped to channel 2 and 3. 5370 */ 5371 if ((n == 1) && 5372 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)) 5373 return idx < 2 ? (3 << (2 * idx)) : 0; 5374 return 1 << idx; 5375 } 5376 5377 /** 5378 * t4_get_port_type_description - return Port Type string description 5379 * @port_type: firmware Port Type enumeration 5380 */ 5381 const char *t4_get_port_type_description(enum fw_port_type port_type) 5382 { 5383 static const char *const port_type_description[] = { 5384 "R XFI", 5385 "R XAUI", 5386 "T SGMII", 5387 "T XFI", 5388 "T XAUI", 5389 "KX4", 5390 "CX4", 5391 "KX", 5392 "KR", 5393 "R SFP+", 5394 "KR/KX", 5395 "KR/KX/KX4", 5396 "R QSFP_10G", 5397 "R QSA", 5398 "R QSFP", 5399 "R BP40_BA", 5400 }; 5401 5402 if (port_type < ARRAY_SIZE(port_type_description)) 5403 return port_type_description[port_type]; 5404 return "UNKNOWN"; 5405 } 5406 5407 /** 5408 * t4_get_port_stats_offset - collect port stats relative to a previous 5409 * snapshot 5410 * @adap: The adapter 5411 * @idx: The port 5412 * @stats: Current stats to fill 5413 * @offset: Previous stats snapshot 5414 */ 5415 void t4_get_port_stats_offset(struct adapter *adap, int idx, 5416 struct port_stats *stats, 5417 struct port_stats *offset) 5418 { 5419 u64 *s, *o; 5420 int i; 5421 5422 t4_get_port_stats(adap, idx, stats); 5423 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 5424 i < (sizeof(struct port_stats) / sizeof(u64)); 5425 i++, s++, o++) 5426 *s -= *o; 5427 } 5428 5429 /** 5430 * t4_get_port_stats - collect port statistics 5431 * @adap: the adapter 5432 * @idx: the port index 5433 * @p: the stats structure to fill 5434 * 5435 * Collect statistics related to the given port from HW. 5436 */ 5437 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 5438 { 5439 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5440 5441 #define GET_STAT(name) \ 5442 t4_read_reg64(adap, \ 5443 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 5444 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 5445 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5446 5447 p->tx_octets = GET_STAT(TX_PORT_BYTES); 5448 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 5449 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 5450 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 5451 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 5452 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 5453 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 5454 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 5455 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 5456 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 5457 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 5458 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 5459 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 5460 p->tx_drop = GET_STAT(TX_PORT_DROP); 5461 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 5462 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 5463 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 5464 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 5465 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 5466 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 5467 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 5468 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 5469 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 5470 5471 p->rx_octets = GET_STAT(RX_PORT_BYTES); 5472 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 5473 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 5474 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 5475 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 5476 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 5477 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 5478 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 5479 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 5480 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 5481 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 5482 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 5483 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 5484 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 5485 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 5486 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 5487 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 5488 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 5489 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 5490 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 5491 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 5492 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 5493 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 5494 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 5495 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 5496 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 5497 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 5498 5499 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 5500 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 5501 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 5502 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 5503 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 5504 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 5505 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 5506 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 5507 5508 #undef GET_STAT 5509 #undef GET_STAT_COM 5510 } 5511 5512 /** 5513 * t4_get_lb_stats - collect loopback port statistics 5514 * @adap: the adapter 5515 * @idx: the loopback port index 5516 * @p: the stats structure to fill 5517 * 5518 * Return HW statistics for the given loopback port. 5519 */ 5520 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 5521 { 5522 u32 bgmap = t4_get_mps_bg_map(adap, idx); 5523 5524 #define GET_STAT(name) \ 5525 t4_read_reg64(adap, \ 5526 (is_t4(adap->params.chip) ? \ 5527 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 5528 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 5529 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 5530 5531 p->octets = GET_STAT(BYTES); 5532 p->frames = GET_STAT(FRAMES); 5533 p->bcast_frames = GET_STAT(BCAST); 5534 p->mcast_frames = GET_STAT(MCAST); 5535 p->ucast_frames = GET_STAT(UCAST); 5536 p->error_frames = GET_STAT(ERROR); 5537 5538 p->frames_64 = GET_STAT(64B); 5539 p->frames_65_127 = GET_STAT(65B_127B); 5540 p->frames_128_255 = GET_STAT(128B_255B); 5541 p->frames_256_511 = GET_STAT(256B_511B); 5542 p->frames_512_1023 = GET_STAT(512B_1023B); 5543 p->frames_1024_1518 = GET_STAT(1024B_1518B); 5544 p->frames_1519_max = GET_STAT(1519B_MAX); 5545 p->drop = GET_STAT(DROP_FRAMES); 5546 5547 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 5548 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 5549 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 5550 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 5551 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 5552 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 5553 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 5554 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 5555 5556 #undef GET_STAT 5557 #undef GET_STAT_COM 5558 } 5559 5560 /* t4_mk_filtdelwr - create a delete filter WR 5561 * @ftid: the filter ID 5562 * @wr: the filter work request to populate 5563 * @qid: ingress queue to receive the delete notification 5564 * 5565 * Creates a filter work request to delete the supplied filter. If @qid is 5566 * negative the delete notification is suppressed. 5567 */ 5568 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 5569 { 5570 memset(wr, 0, sizeof(*wr)); 5571 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 5572 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 5573 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 5574 FW_FILTER_WR_NOREPLY_V(qid < 0)); 5575 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 5576 if (qid >= 0) 5577 wr->rx_chan_rx_rpl_iq = 5578 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 5579 } 5580 5581 #define INIT_CMD(var, cmd, rd_wr) do { \ 5582 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 5583 FW_CMD_REQUEST_F | \ 5584 FW_CMD_##rd_wr##_F); \ 5585 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 5586 } while (0) 5587 5588 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 5589 u32 addr, u32 val) 5590 { 5591 u32 ldst_addrspace; 5592 struct fw_ldst_cmd c; 5593 5594 memset(&c, 0, sizeof(c)); 5595 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 5596 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5597 FW_CMD_REQUEST_F | 5598 FW_CMD_WRITE_F | 5599 ldst_addrspace); 5600 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5601 c.u.addrval.addr = cpu_to_be32(addr); 5602 c.u.addrval.val = cpu_to_be32(val); 5603 5604 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5605 } 5606 5607 /** 5608 * t4_mdio_rd - read a PHY register through MDIO 5609 * @adap: the adapter 5610 * @mbox: mailbox to use for the FW command 5611 * @phy_addr: the PHY address 5612 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 5613 * @reg: the register to read 5614 * @valp: where to store the value 5615 * 5616 * Issues a FW command through the given mailbox to read a PHY register. 5617 */ 5618 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 5619 unsigned int mmd, unsigned int reg, u16 *valp) 5620 { 5621 int ret; 5622 u32 ldst_addrspace; 5623 struct fw_ldst_cmd c; 5624 5625 memset(&c, 0, sizeof(c)); 5626 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 5627 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5628 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5629 ldst_addrspace); 5630 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5631 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 5632 FW_LDST_CMD_MMD_V(mmd)); 5633 c.u.mdio.raddr = cpu_to_be16(reg); 5634 5635 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5636 if (ret == 0) 5637 *valp = be16_to_cpu(c.u.mdio.rval); 5638 return ret; 5639 } 5640 5641 /** 5642 * t4_mdio_wr - write a PHY register through MDIO 5643 * @adap: the adapter 5644 * @mbox: mailbox to use for the FW command 5645 * @phy_addr: the PHY address 5646 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 5647 * @reg: the register to write 5648 * @valp: value to write 5649 * 5650 * Issues a FW command through the given mailbox to write a PHY register. 5651 */ 5652 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 5653 unsigned int mmd, unsigned int reg, u16 val) 5654 { 5655 u32 ldst_addrspace; 5656 struct fw_ldst_cmd c; 5657 5658 memset(&c, 0, sizeof(c)); 5659 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 5660 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5661 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5662 ldst_addrspace); 5663 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5664 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 5665 FW_LDST_CMD_MMD_V(mmd)); 5666 c.u.mdio.raddr = cpu_to_be16(reg); 5667 c.u.mdio.rval = cpu_to_be16(val); 5668 5669 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 5670 } 5671 5672 /** 5673 * t4_sge_decode_idma_state - decode the idma state 5674 * @adap: the adapter 5675 * @state: the state idma is stuck in 5676 */ 5677 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 5678 { 5679 static const char * const t4_decode[] = { 5680 "IDMA_IDLE", 5681 "IDMA_PUSH_MORE_CPL_FIFO", 5682 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5683 "Not used", 5684 "IDMA_PHYSADDR_SEND_PCIEHDR", 5685 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5686 "IDMA_PHYSADDR_SEND_PAYLOAD", 5687 "IDMA_SEND_FIFO_TO_IMSG", 5688 "IDMA_FL_REQ_DATA_FL_PREP", 5689 "IDMA_FL_REQ_DATA_FL", 5690 "IDMA_FL_DROP", 5691 "IDMA_FL_H_REQ_HEADER_FL", 5692 "IDMA_FL_H_SEND_PCIEHDR", 5693 "IDMA_FL_H_PUSH_CPL_FIFO", 5694 "IDMA_FL_H_SEND_CPL", 5695 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5696 "IDMA_FL_H_SEND_IP_HDR", 5697 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5698 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5699 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5700 "IDMA_FL_D_SEND_PCIEHDR", 5701 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5702 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5703 "IDMA_FL_SEND_PCIEHDR", 5704 "IDMA_FL_PUSH_CPL_FIFO", 5705 "IDMA_FL_SEND_CPL", 5706 "IDMA_FL_SEND_PAYLOAD_FIRST", 5707 "IDMA_FL_SEND_PAYLOAD", 5708 "IDMA_FL_REQ_NEXT_DATA_FL", 5709 "IDMA_FL_SEND_NEXT_PCIEHDR", 5710 "IDMA_FL_SEND_PADDING", 5711 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5712 "IDMA_FL_SEND_FIFO_TO_IMSG", 5713 "IDMA_FL_REQ_DATAFL_DONE", 5714 "IDMA_FL_REQ_HEADERFL_DONE", 5715 }; 5716 static const char * const t5_decode[] = { 5717 "IDMA_IDLE", 5718 "IDMA_ALMOST_IDLE", 5719 "IDMA_PUSH_MORE_CPL_FIFO", 5720 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5721 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 5722 "IDMA_PHYSADDR_SEND_PCIEHDR", 5723 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5724 "IDMA_PHYSADDR_SEND_PAYLOAD", 5725 "IDMA_SEND_FIFO_TO_IMSG", 5726 "IDMA_FL_REQ_DATA_FL", 5727 "IDMA_FL_DROP", 5728 "IDMA_FL_DROP_SEND_INC", 5729 "IDMA_FL_H_REQ_HEADER_FL", 5730 "IDMA_FL_H_SEND_PCIEHDR", 5731 "IDMA_FL_H_PUSH_CPL_FIFO", 5732 "IDMA_FL_H_SEND_CPL", 5733 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5734 "IDMA_FL_H_SEND_IP_HDR", 5735 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5736 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5737 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5738 "IDMA_FL_D_SEND_PCIEHDR", 5739 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5740 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5741 "IDMA_FL_SEND_PCIEHDR", 5742 "IDMA_FL_PUSH_CPL_FIFO", 5743 "IDMA_FL_SEND_CPL", 5744 "IDMA_FL_SEND_PAYLOAD_FIRST", 5745 "IDMA_FL_SEND_PAYLOAD", 5746 "IDMA_FL_REQ_NEXT_DATA_FL", 5747 "IDMA_FL_SEND_NEXT_PCIEHDR", 5748 "IDMA_FL_SEND_PADDING", 5749 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5750 }; 5751 static const char * const t6_decode[] = { 5752 "IDMA_IDLE", 5753 "IDMA_PUSH_MORE_CPL_FIFO", 5754 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 5755 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 5756 "IDMA_PHYSADDR_SEND_PCIEHDR", 5757 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 5758 "IDMA_PHYSADDR_SEND_PAYLOAD", 5759 "IDMA_FL_REQ_DATA_FL", 5760 "IDMA_FL_DROP", 5761 "IDMA_FL_DROP_SEND_INC", 5762 "IDMA_FL_H_REQ_HEADER_FL", 5763 "IDMA_FL_H_SEND_PCIEHDR", 5764 "IDMA_FL_H_PUSH_CPL_FIFO", 5765 "IDMA_FL_H_SEND_CPL", 5766 "IDMA_FL_H_SEND_IP_HDR_FIRST", 5767 "IDMA_FL_H_SEND_IP_HDR", 5768 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 5769 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 5770 "IDMA_FL_H_SEND_IP_HDR_PADDING", 5771 "IDMA_FL_D_SEND_PCIEHDR", 5772 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 5773 "IDMA_FL_D_REQ_NEXT_DATA_FL", 5774 "IDMA_FL_SEND_PCIEHDR", 5775 "IDMA_FL_PUSH_CPL_FIFO", 5776 "IDMA_FL_SEND_CPL", 5777 "IDMA_FL_SEND_PAYLOAD_FIRST", 5778 "IDMA_FL_SEND_PAYLOAD", 5779 "IDMA_FL_REQ_NEXT_DATA_FL", 5780 "IDMA_FL_SEND_NEXT_PCIEHDR", 5781 "IDMA_FL_SEND_PADDING", 5782 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 5783 }; 5784 static const u32 sge_regs[] = { 5785 SGE_DEBUG_DATA_LOW_INDEX_2_A, 5786 SGE_DEBUG_DATA_LOW_INDEX_3_A, 5787 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 5788 }; 5789 const char **sge_idma_decode; 5790 int sge_idma_decode_nstates; 5791 int i; 5792 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 5793 5794 /* Select the right set of decode strings to dump depending on the 5795 * adapter chip type. 5796 */ 5797 switch (chip_version) { 5798 case CHELSIO_T4: 5799 sge_idma_decode = (const char **)t4_decode; 5800 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 5801 break; 5802 5803 case CHELSIO_T5: 5804 sge_idma_decode = (const char **)t5_decode; 5805 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 5806 break; 5807 5808 case CHELSIO_T6: 5809 sge_idma_decode = (const char **)t6_decode; 5810 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 5811 break; 5812 5813 default: 5814 dev_err(adapter->pdev_dev, 5815 "Unsupported chip version %d\n", chip_version); 5816 return; 5817 } 5818 5819 if (is_t4(adapter->params.chip)) { 5820 sge_idma_decode = (const char **)t4_decode; 5821 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 5822 } else { 5823 sge_idma_decode = (const char **)t5_decode; 5824 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 5825 } 5826 5827 if (state < sge_idma_decode_nstates) 5828 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 5829 else 5830 CH_WARN(adapter, "idma state %d unknown\n", state); 5831 5832 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 5833 CH_WARN(adapter, "SGE register %#x value %#x\n", 5834 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 5835 } 5836 5837 /** 5838 * t4_sge_ctxt_flush - flush the SGE context cache 5839 * @adap: the adapter 5840 * @mbox: mailbox to use for the FW command 5841 * 5842 * Issues a FW command through the given mailbox to flush the 5843 * SGE context cache. 5844 */ 5845 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 5846 { 5847 int ret; 5848 u32 ldst_addrspace; 5849 struct fw_ldst_cmd c; 5850 5851 memset(&c, 0, sizeof(c)); 5852 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC); 5853 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5854 FW_CMD_REQUEST_F | FW_CMD_READ_F | 5855 ldst_addrspace); 5856 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5857 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 5858 5859 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5860 return ret; 5861 } 5862 5863 /** 5864 * t4_fw_hello - establish communication with FW 5865 * @adap: the adapter 5866 * @mbox: mailbox to use for the FW command 5867 * @evt_mbox: mailbox to receive async FW events 5868 * @master: specifies the caller's willingness to be the device master 5869 * @state: returns the current device state (if non-NULL) 5870 * 5871 * Issues a command to establish communication with FW. Returns either 5872 * an error (negative integer) or the mailbox of the Master PF. 5873 */ 5874 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 5875 enum dev_master master, enum dev_state *state) 5876 { 5877 int ret; 5878 struct fw_hello_cmd c; 5879 u32 v; 5880 unsigned int master_mbox; 5881 int retries = FW_CMD_HELLO_RETRIES; 5882 5883 retry: 5884 memset(&c, 0, sizeof(c)); 5885 INIT_CMD(c, HELLO, WRITE); 5886 c.err_to_clearinit = cpu_to_be32( 5887 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 5888 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 5889 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 5890 mbox : FW_HELLO_CMD_MBMASTER_M) | 5891 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 5892 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 5893 FW_HELLO_CMD_CLEARINIT_F); 5894 5895 /* 5896 * Issue the HELLO command to the firmware. If it's not successful 5897 * but indicates that we got a "busy" or "timeout" condition, retry 5898 * the HELLO until we exhaust our retry limit. If we do exceed our 5899 * retry limit, check to see if the firmware left us any error 5900 * information and report that if so. 5901 */ 5902 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 5903 if (ret < 0) { 5904 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 5905 goto retry; 5906 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 5907 t4_report_fw_error(adap); 5908 return ret; 5909 } 5910 5911 v = be32_to_cpu(c.err_to_clearinit); 5912 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 5913 if (state) { 5914 if (v & FW_HELLO_CMD_ERR_F) 5915 *state = DEV_STATE_ERR; 5916 else if (v & FW_HELLO_CMD_INIT_F) 5917 *state = DEV_STATE_INIT; 5918 else 5919 *state = DEV_STATE_UNINIT; 5920 } 5921 5922 /* 5923 * If we're not the Master PF then we need to wait around for the 5924 * Master PF Driver to finish setting up the adapter. 5925 * 5926 * Note that we also do this wait if we're a non-Master-capable PF and 5927 * there is no current Master PF; a Master PF may show up momentarily 5928 * and we wouldn't want to fail pointlessly. (This can happen when an 5929 * OS loads lots of different drivers rapidly at the same time). In 5930 * this case, the Master PF returned by the firmware will be 5931 * PCIE_FW_MASTER_M so the test below will work ... 5932 */ 5933 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 5934 master_mbox != mbox) { 5935 int waiting = FW_CMD_HELLO_TIMEOUT; 5936 5937 /* 5938 * Wait for the firmware to either indicate an error or 5939 * initialized state. If we see either of these we bail out 5940 * and report the issue to the caller. If we exhaust the 5941 * "hello timeout" and we haven't exhausted our retries, try 5942 * again. Otherwise bail with a timeout error. 5943 */ 5944 for (;;) { 5945 u32 pcie_fw; 5946 5947 msleep(50); 5948 waiting -= 50; 5949 5950 /* 5951 * If neither Error nor Initialialized are indicated 5952 * by the firmware keep waiting till we exaust our 5953 * timeout ... and then retry if we haven't exhausted 5954 * our retries ... 5955 */ 5956 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 5957 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 5958 if (waiting <= 0) { 5959 if (retries-- > 0) 5960 goto retry; 5961 5962 return -ETIMEDOUT; 5963 } 5964 continue; 5965 } 5966 5967 /* 5968 * We either have an Error or Initialized condition 5969 * report errors preferentially. 5970 */ 5971 if (state) { 5972 if (pcie_fw & PCIE_FW_ERR_F) 5973 *state = DEV_STATE_ERR; 5974 else if (pcie_fw & PCIE_FW_INIT_F) 5975 *state = DEV_STATE_INIT; 5976 } 5977 5978 /* 5979 * If we arrived before a Master PF was selected and 5980 * there's not a valid Master PF, grab its identity 5981 * for our caller. 5982 */ 5983 if (master_mbox == PCIE_FW_MASTER_M && 5984 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 5985 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 5986 break; 5987 } 5988 } 5989 5990 return master_mbox; 5991 } 5992 5993 /** 5994 * t4_fw_bye - end communication with FW 5995 * @adap: the adapter 5996 * @mbox: mailbox to use for the FW command 5997 * 5998 * Issues a command to terminate communication with FW. 5999 */ 6000 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6001 { 6002 struct fw_bye_cmd c; 6003 6004 memset(&c, 0, sizeof(c)); 6005 INIT_CMD(c, BYE, WRITE); 6006 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6007 } 6008 6009 /** 6010 * t4_init_cmd - ask FW to initialize the device 6011 * @adap: the adapter 6012 * @mbox: mailbox to use for the FW command 6013 * 6014 * Issues a command to FW to partially initialize the device. This 6015 * performs initialization that generally doesn't depend on user input. 6016 */ 6017 int t4_early_init(struct adapter *adap, unsigned int mbox) 6018 { 6019 struct fw_initialize_cmd c; 6020 6021 memset(&c, 0, sizeof(c)); 6022 INIT_CMD(c, INITIALIZE, WRITE); 6023 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6024 } 6025 6026 /** 6027 * t4_fw_reset - issue a reset to FW 6028 * @adap: the adapter 6029 * @mbox: mailbox to use for the FW command 6030 * @reset: specifies the type of reset to perform 6031 * 6032 * Issues a reset command of the specified type to FW. 6033 */ 6034 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6035 { 6036 struct fw_reset_cmd c; 6037 6038 memset(&c, 0, sizeof(c)); 6039 INIT_CMD(c, RESET, WRITE); 6040 c.val = cpu_to_be32(reset); 6041 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6042 } 6043 6044 /** 6045 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6046 * @adap: the adapter 6047 * @mbox: mailbox to use for the FW RESET command (if desired) 6048 * @force: force uP into RESET even if FW RESET command fails 6049 * 6050 * Issues a RESET command to firmware (if desired) with a HALT indication 6051 * and then puts the microprocessor into RESET state. The RESET command 6052 * will only be issued if a legitimate mailbox is provided (mbox <= 6053 * PCIE_FW_MASTER_M). 6054 * 6055 * This is generally used in order for the host to safely manipulate the 6056 * adapter without fear of conflicting with whatever the firmware might 6057 * be doing. The only way out of this state is to RESTART the firmware 6058 * ... 6059 */ 6060 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6061 { 6062 int ret = 0; 6063 6064 /* 6065 * If a legitimate mailbox is provided, issue a RESET command 6066 * with a HALT indication. 6067 */ 6068 if (mbox <= PCIE_FW_MASTER_M) { 6069 struct fw_reset_cmd c; 6070 6071 memset(&c, 0, sizeof(c)); 6072 INIT_CMD(c, RESET, WRITE); 6073 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6074 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6075 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6076 } 6077 6078 /* 6079 * Normally we won't complete the operation if the firmware RESET 6080 * command fails but if our caller insists we'll go ahead and put the 6081 * uP into RESET. This can be useful if the firmware is hung or even 6082 * missing ... We'll have to take the risk of putting the uP into 6083 * RESET without the cooperation of firmware in that case. 6084 * 6085 * We also force the firmware's HALT flag to be on in case we bypassed 6086 * the firmware RESET command above or we're dealing with old firmware 6087 * which doesn't have the HALT capability. This will serve as a flag 6088 * for the incoming firmware to know that it's coming out of a HALT 6089 * rather than a RESET ... if it's new enough to understand that ... 6090 */ 6091 if (ret == 0 || force) { 6092 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6093 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6094 PCIE_FW_HALT_F); 6095 } 6096 6097 /* 6098 * And we always return the result of the firmware RESET command 6099 * even when we force the uP into RESET ... 6100 */ 6101 return ret; 6102 } 6103 6104 /** 6105 * t4_fw_restart - restart the firmware by taking the uP out of RESET 6106 * @adap: the adapter 6107 * @reset: if we want to do a RESET to restart things 6108 * 6109 * Restart firmware previously halted by t4_fw_halt(). On successful 6110 * return the previous PF Master remains as the new PF Master and there 6111 * is no need to issue a new HELLO command, etc. 6112 * 6113 * We do this in two ways: 6114 * 6115 * 1. If we're dealing with newer firmware we'll simply want to take 6116 * the chip's microprocessor out of RESET. This will cause the 6117 * firmware to start up from its start vector. And then we'll loop 6118 * until the firmware indicates it's started again (PCIE_FW.HALT 6119 * reset to 0) or we timeout. 6120 * 6121 * 2. If we're dealing with older firmware then we'll need to RESET 6122 * the chip since older firmware won't recognize the PCIE_FW.HALT 6123 * flag and automatically RESET itself on startup. 6124 */ 6125 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 6126 { 6127 if (reset) { 6128 /* 6129 * Since we're directing the RESET instead of the firmware 6130 * doing it automatically, we need to clear the PCIE_FW.HALT 6131 * bit. 6132 */ 6133 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 6134 6135 /* 6136 * If we've been given a valid mailbox, first try to get the 6137 * firmware to do the RESET. If that works, great and we can 6138 * return success. Otherwise, if we haven't been given a 6139 * valid mailbox or the RESET command failed, fall back to 6140 * hitting the chip with a hammer. 6141 */ 6142 if (mbox <= PCIE_FW_MASTER_M) { 6143 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6144 msleep(100); 6145 if (t4_fw_reset(adap, mbox, 6146 PIORST_F | PIORSTMODE_F) == 0) 6147 return 0; 6148 } 6149 6150 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 6151 msleep(2000); 6152 } else { 6153 int ms; 6154 6155 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 6156 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 6157 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 6158 return 0; 6159 msleep(100); 6160 ms += 100; 6161 } 6162 return -ETIMEDOUT; 6163 } 6164 return 0; 6165 } 6166 6167 /** 6168 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 6169 * @adap: the adapter 6170 * @mbox: mailbox to use for the FW RESET command (if desired) 6171 * @fw_data: the firmware image to write 6172 * @size: image size 6173 * @force: force upgrade even if firmware doesn't cooperate 6174 * 6175 * Perform all of the steps necessary for upgrading an adapter's 6176 * firmware image. Normally this requires the cooperation of the 6177 * existing firmware in order to halt all existing activities 6178 * but if an invalid mailbox token is passed in we skip that step 6179 * (though we'll still put the adapter microprocessor into RESET in 6180 * that case). 6181 * 6182 * On successful return the new firmware will have been loaded and 6183 * the adapter will have been fully RESET losing all previous setup 6184 * state. On unsuccessful return the adapter may be completely hosed ... 6185 * positive errno indicates that the adapter is ~probably~ intact, a 6186 * negative errno indicates that things are looking bad ... 6187 */ 6188 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 6189 const u8 *fw_data, unsigned int size, int force) 6190 { 6191 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 6192 int reset, ret; 6193 6194 if (!t4_fw_matches_chip(adap, fw_hdr)) 6195 return -EINVAL; 6196 6197 ret = t4_fw_halt(adap, mbox, force); 6198 if (ret < 0 && !force) 6199 return ret; 6200 6201 ret = t4_load_fw(adap, fw_data, size); 6202 if (ret < 0) 6203 return ret; 6204 6205 /* 6206 * Older versions of the firmware don't understand the new 6207 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 6208 * restart. So for newly loaded older firmware we'll have to do the 6209 * RESET for it so it starts up on a clean slate. We can tell if 6210 * the newly loaded firmware will handle this right by checking 6211 * its header flags to see if it advertises the capability. 6212 */ 6213 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 6214 return t4_fw_restart(adap, mbox, reset); 6215 } 6216 6217 /** 6218 * t4_fl_pkt_align - return the fl packet alignment 6219 * @adap: the adapter 6220 * 6221 * T4 has a single field to specify the packing and padding boundary. 6222 * T5 onwards has separate fields for this and hence the alignment for 6223 * next packet offset is maximum of these two. 6224 * 6225 */ 6226 int t4_fl_pkt_align(struct adapter *adap) 6227 { 6228 u32 sge_control, sge_control2; 6229 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 6230 6231 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 6232 6233 /* T4 uses a single control field to specify both the PCIe Padding and 6234 * Packing Boundary. T5 introduced the ability to specify these 6235 * separately. The actual Ingress Packet Data alignment boundary 6236 * within Packed Buffer Mode is the maximum of these two 6237 * specifications. (Note that it makes no real practical sense to 6238 * have the Pading Boudary be larger than the Packing Boundary but you 6239 * could set the chip up that way and, in fact, legacy T4 code would 6240 * end doing this because it would initialize the Padding Boundary and 6241 * leave the Packing Boundary initialized to 0 (16 bytes).) 6242 * Padding Boundary values in T6 starts from 8B, 6243 * where as it is 32B for T4 and T5. 6244 */ 6245 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 6246 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 6247 else 6248 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 6249 6250 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 6251 6252 fl_align = ingpadboundary; 6253 if (!is_t4(adap->params.chip)) { 6254 /* T5 has a weird interpretation of one of the PCIe Packing 6255 * Boundary values. No idea why ... 6256 */ 6257 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 6258 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 6259 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 6260 ingpackboundary = 16; 6261 else 6262 ingpackboundary = 1 << (ingpackboundary + 6263 INGPACKBOUNDARY_SHIFT_X); 6264 6265 fl_align = max(ingpadboundary, ingpackboundary); 6266 } 6267 return fl_align; 6268 } 6269 6270 /** 6271 * t4_fixup_host_params - fix up host-dependent parameters 6272 * @adap: the adapter 6273 * @page_size: the host's Base Page Size 6274 * @cache_line_size: the host's Cache Line Size 6275 * 6276 * Various registers in T4 contain values which are dependent on the 6277 * host's Base Page and Cache Line Sizes. This function will fix all of 6278 * those registers with the appropriate values as passed in ... 6279 */ 6280 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 6281 unsigned int cache_line_size) 6282 { 6283 unsigned int page_shift = fls(page_size) - 1; 6284 unsigned int sge_hps = page_shift - 10; 6285 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 6286 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 6287 unsigned int fl_align_log = fls(fl_align) - 1; 6288 unsigned int ingpad; 6289 6290 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 6291 HOSTPAGESIZEPF0_V(sge_hps) | 6292 HOSTPAGESIZEPF1_V(sge_hps) | 6293 HOSTPAGESIZEPF2_V(sge_hps) | 6294 HOSTPAGESIZEPF3_V(sge_hps) | 6295 HOSTPAGESIZEPF4_V(sge_hps) | 6296 HOSTPAGESIZEPF5_V(sge_hps) | 6297 HOSTPAGESIZEPF6_V(sge_hps) | 6298 HOSTPAGESIZEPF7_V(sge_hps)); 6299 6300 if (is_t4(adap->params.chip)) { 6301 t4_set_reg_field(adap, SGE_CONTROL_A, 6302 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6303 EGRSTATUSPAGESIZE_F, 6304 INGPADBOUNDARY_V(fl_align_log - 6305 INGPADBOUNDARY_SHIFT_X) | 6306 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6307 } else { 6308 /* T5 introduced the separation of the Free List Padding and 6309 * Packing Boundaries. Thus, we can select a smaller Padding 6310 * Boundary to avoid uselessly chewing up PCIe Link and Memory 6311 * Bandwidth, and use a Packing Boundary which is large enough 6312 * to avoid false sharing between CPUs, etc. 6313 * 6314 * For the PCI Link, the smaller the Padding Boundary the 6315 * better. For the Memory Controller, a smaller Padding 6316 * Boundary is better until we cross under the Memory Line 6317 * Size (the minimum unit of transfer to/from Memory). If we 6318 * have a Padding Boundary which is smaller than the Memory 6319 * Line Size, that'll involve a Read-Modify-Write cycle on the 6320 * Memory Controller which is never good. For T5 the smallest 6321 * Padding Boundary which we can select is 32 bytes which is 6322 * larger than any known Memory Controller Line Size so we'll 6323 * use that. 6324 * 6325 * T5 has a different interpretation of the "0" value for the 6326 * Packing Boundary. This corresponds to 16 bytes instead of 6327 * the expected 32 bytes. We never have a Packing Boundary 6328 * less than 32 bytes so we can't use that special value but 6329 * on the other hand, if we wanted 32 bytes, the best we can 6330 * really do is 64 bytes. 6331 */ 6332 if (fl_align <= 32) { 6333 fl_align = 64; 6334 fl_align_log = 6; 6335 } 6336 6337 if (is_t5(adap->params.chip)) 6338 ingpad = INGPCIEBOUNDARY_32B_X; 6339 else 6340 ingpad = T6_INGPADBOUNDARY_32B_X; 6341 6342 t4_set_reg_field(adap, SGE_CONTROL_A, 6343 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 6344 EGRSTATUSPAGESIZE_F, 6345 INGPADBOUNDARY_V(ingpad) | 6346 EGRSTATUSPAGESIZE_V(stat_len != 64)); 6347 t4_set_reg_field(adap, SGE_CONTROL2_A, 6348 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 6349 INGPACKBOUNDARY_V(fl_align_log - 6350 INGPACKBOUNDARY_SHIFT_X)); 6351 } 6352 /* 6353 * Adjust various SGE Free List Host Buffer Sizes. 6354 * 6355 * This is something of a crock since we're using fixed indices into 6356 * the array which are also known by the sge.c code and the T4 6357 * Firmware Configuration File. We need to come up with a much better 6358 * approach to managing this array. For now, the first four entries 6359 * are: 6360 * 6361 * 0: Host Page Size 6362 * 1: 64KB 6363 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 6364 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 6365 * 6366 * For the single-MTU buffers in unpacked mode we need to include 6367 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 6368 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 6369 * Padding boundary. All of these are accommodated in the Factory 6370 * Default Firmware Configuration File but we need to adjust it for 6371 * this host's cache line size. 6372 */ 6373 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 6374 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 6375 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 6376 & ~(fl_align-1)); 6377 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 6378 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 6379 & ~(fl_align-1)); 6380 6381 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 6382 6383 return 0; 6384 } 6385 6386 /** 6387 * t4_fw_initialize - ask FW to initialize the device 6388 * @adap: the adapter 6389 * @mbox: mailbox to use for the FW command 6390 * 6391 * Issues a command to FW to partially initialize the device. This 6392 * performs initialization that generally doesn't depend on user input. 6393 */ 6394 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 6395 { 6396 struct fw_initialize_cmd c; 6397 6398 memset(&c, 0, sizeof(c)); 6399 INIT_CMD(c, INITIALIZE, WRITE); 6400 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6401 } 6402 6403 /** 6404 * t4_query_params_rw - query FW or device parameters 6405 * @adap: the adapter 6406 * @mbox: mailbox to use for the FW command 6407 * @pf: the PF 6408 * @vf: the VF 6409 * @nparams: the number of parameters 6410 * @params: the parameter names 6411 * @val: the parameter values 6412 * @rw: Write and read flag 6413 * 6414 * Reads the value of FW or device parameters. Up to 7 parameters can be 6415 * queried at once. 6416 */ 6417 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 6418 unsigned int vf, unsigned int nparams, const u32 *params, 6419 u32 *val, int rw) 6420 { 6421 int i, ret; 6422 struct fw_params_cmd c; 6423 __be32 *p = &c.param[0].mnem; 6424 6425 if (nparams > 7) 6426 return -EINVAL; 6427 6428 memset(&c, 0, sizeof(c)); 6429 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 6430 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6431 FW_PARAMS_CMD_PFN_V(pf) | 6432 FW_PARAMS_CMD_VFN_V(vf)); 6433 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6434 6435 for (i = 0; i < nparams; i++) { 6436 *p++ = cpu_to_be32(*params++); 6437 if (rw) 6438 *p = cpu_to_be32(*(val + i)); 6439 p++; 6440 } 6441 6442 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6443 if (ret == 0) 6444 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 6445 *val++ = be32_to_cpu(*p); 6446 return ret; 6447 } 6448 6449 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 6450 unsigned int vf, unsigned int nparams, const u32 *params, 6451 u32 *val) 6452 { 6453 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 6454 } 6455 6456 /** 6457 * t4_set_params_timeout - sets FW or device parameters 6458 * @adap: the adapter 6459 * @mbox: mailbox to use for the FW command 6460 * @pf: the PF 6461 * @vf: the VF 6462 * @nparams: the number of parameters 6463 * @params: the parameter names 6464 * @val: the parameter values 6465 * @timeout: the timeout time 6466 * 6467 * Sets the value of FW or device parameters. Up to 7 parameters can be 6468 * specified at once. 6469 */ 6470 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 6471 unsigned int pf, unsigned int vf, 6472 unsigned int nparams, const u32 *params, 6473 const u32 *val, int timeout) 6474 { 6475 struct fw_params_cmd c; 6476 __be32 *p = &c.param[0].mnem; 6477 6478 if (nparams > 7) 6479 return -EINVAL; 6480 6481 memset(&c, 0, sizeof(c)); 6482 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 6483 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6484 FW_PARAMS_CMD_PFN_V(pf) | 6485 FW_PARAMS_CMD_VFN_V(vf)); 6486 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6487 6488 while (nparams--) { 6489 *p++ = cpu_to_be32(*params++); 6490 *p++ = cpu_to_be32(*val++); 6491 } 6492 6493 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 6494 } 6495 6496 /** 6497 * t4_set_params - sets FW or device parameters 6498 * @adap: the adapter 6499 * @mbox: mailbox to use for the FW command 6500 * @pf: the PF 6501 * @vf: the VF 6502 * @nparams: the number of parameters 6503 * @params: the parameter names 6504 * @val: the parameter values 6505 * 6506 * Sets the value of FW or device parameters. Up to 7 parameters can be 6507 * specified at once. 6508 */ 6509 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 6510 unsigned int vf, unsigned int nparams, const u32 *params, 6511 const u32 *val) 6512 { 6513 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 6514 FW_CMD_MAX_TIMEOUT); 6515 } 6516 6517 /** 6518 * t4_cfg_pfvf - configure PF/VF resource limits 6519 * @adap: the adapter 6520 * @mbox: mailbox to use for the FW command 6521 * @pf: the PF being configured 6522 * @vf: the VF being configured 6523 * @txq: the max number of egress queues 6524 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 6525 * @rxqi: the max number of interrupt-capable ingress queues 6526 * @rxq: the max number of interruptless ingress queues 6527 * @tc: the PCI traffic class 6528 * @vi: the max number of virtual interfaces 6529 * @cmask: the channel access rights mask for the PF/VF 6530 * @pmask: the port access rights mask for the PF/VF 6531 * @nexact: the maximum number of exact MPS filters 6532 * @rcaps: read capabilities 6533 * @wxcaps: write/execute capabilities 6534 * 6535 * Configures resource limits and capabilities for a physical or virtual 6536 * function. 6537 */ 6538 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 6539 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 6540 unsigned int rxqi, unsigned int rxq, unsigned int tc, 6541 unsigned int vi, unsigned int cmask, unsigned int pmask, 6542 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 6543 { 6544 struct fw_pfvf_cmd c; 6545 6546 memset(&c, 0, sizeof(c)); 6547 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 6548 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 6549 FW_PFVF_CMD_VFN_V(vf)); 6550 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6551 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 6552 FW_PFVF_CMD_NIQ_V(rxq)); 6553 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 6554 FW_PFVF_CMD_PMASK_V(pmask) | 6555 FW_PFVF_CMD_NEQ_V(txq)); 6556 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 6557 FW_PFVF_CMD_NVI_V(vi) | 6558 FW_PFVF_CMD_NEXACTF_V(nexact)); 6559 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 6560 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 6561 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 6562 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6563 } 6564 6565 /** 6566 * t4_alloc_vi - allocate a virtual interface 6567 * @adap: the adapter 6568 * @mbox: mailbox to use for the FW command 6569 * @port: physical port associated with the VI 6570 * @pf: the PF owning the VI 6571 * @vf: the VF owning the VI 6572 * @nmac: number of MAC addresses needed (1 to 5) 6573 * @mac: the MAC addresses of the VI 6574 * @rss_size: size of RSS table slice associated with this VI 6575 * 6576 * Allocates a virtual interface for the given physical port. If @mac is 6577 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 6578 * @mac should be large enough to hold @nmac Ethernet addresses, they are 6579 * stored consecutively so the space needed is @nmac * 6 bytes. 6580 * Returns a negative error number or the non-negative VI id. 6581 */ 6582 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 6583 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 6584 unsigned int *rss_size) 6585 { 6586 int ret; 6587 struct fw_vi_cmd c; 6588 6589 memset(&c, 0, sizeof(c)); 6590 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 6591 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 6592 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 6593 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 6594 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 6595 c.nmac = nmac - 1; 6596 6597 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6598 if (ret) 6599 return ret; 6600 6601 if (mac) { 6602 memcpy(mac, c.mac, sizeof(c.mac)); 6603 switch (nmac) { 6604 case 5: 6605 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 6606 case 4: 6607 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 6608 case 3: 6609 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 6610 case 2: 6611 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 6612 } 6613 } 6614 if (rss_size) 6615 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 6616 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 6617 } 6618 6619 /** 6620 * t4_free_vi - free a virtual interface 6621 * @adap: the adapter 6622 * @mbox: mailbox to use for the FW command 6623 * @pf: the PF owning the VI 6624 * @vf: the VF owning the VI 6625 * @viid: virtual interface identifiler 6626 * 6627 * Free a previously allocated virtual interface. 6628 */ 6629 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 6630 unsigned int vf, unsigned int viid) 6631 { 6632 struct fw_vi_cmd c; 6633 6634 memset(&c, 0, sizeof(c)); 6635 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 6636 FW_CMD_REQUEST_F | 6637 FW_CMD_EXEC_F | 6638 FW_VI_CMD_PFN_V(pf) | 6639 FW_VI_CMD_VFN_V(vf)); 6640 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 6641 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 6642 6643 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6644 } 6645 6646 /** 6647 * t4_set_rxmode - set Rx properties of a virtual interface 6648 * @adap: the adapter 6649 * @mbox: mailbox to use for the FW command 6650 * @viid: the VI id 6651 * @mtu: the new MTU or -1 6652 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 6653 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 6654 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 6655 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 6656 * @sleep_ok: if true we may sleep while awaiting command completion 6657 * 6658 * Sets Rx properties of a virtual interface. 6659 */ 6660 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 6661 int mtu, int promisc, int all_multi, int bcast, int vlanex, 6662 bool sleep_ok) 6663 { 6664 struct fw_vi_rxmode_cmd c; 6665 6666 /* convert to FW values */ 6667 if (mtu < 0) 6668 mtu = FW_RXMODE_MTU_NO_CHG; 6669 if (promisc < 0) 6670 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 6671 if (all_multi < 0) 6672 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 6673 if (bcast < 0) 6674 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 6675 if (vlanex < 0) 6676 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 6677 6678 memset(&c, 0, sizeof(c)); 6679 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 6680 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6681 FW_VI_RXMODE_CMD_VIID_V(viid)); 6682 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 6683 c.mtu_to_vlanexen = 6684 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 6685 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 6686 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 6687 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 6688 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 6689 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 6690 } 6691 6692 /** 6693 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 6694 * @adap: the adapter 6695 * @mbox: mailbox to use for the FW command 6696 * @viid: the VI id 6697 * @free: if true any existing filters for this VI id are first removed 6698 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 6699 * @addr: the MAC address(es) 6700 * @idx: where to store the index of each allocated filter 6701 * @hash: pointer to hash address filter bitmap 6702 * @sleep_ok: call is allowed to sleep 6703 * 6704 * Allocates an exact-match filter for each of the supplied addresses and 6705 * sets it to the corresponding address. If @idx is not %NULL it should 6706 * have at least @naddr entries, each of which will be set to the index of 6707 * the filter allocated for the corresponding MAC address. If a filter 6708 * could not be allocated for an address its index is set to 0xffff. 6709 * If @hash is not %NULL addresses that fail to allocate an exact filter 6710 * are hashed and update the hash filter bitmap pointed at by @hash. 6711 * 6712 * Returns a negative error number or the number of filters allocated. 6713 */ 6714 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 6715 unsigned int viid, bool free, unsigned int naddr, 6716 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 6717 { 6718 int offset, ret = 0; 6719 struct fw_vi_mac_cmd c; 6720 unsigned int nfilters = 0; 6721 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 6722 unsigned int rem = naddr; 6723 6724 if (naddr > max_naddr) 6725 return -EINVAL; 6726 6727 for (offset = 0; offset < naddr ; /**/) { 6728 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 6729 rem : ARRAY_SIZE(c.u.exact)); 6730 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 6731 u.exact[fw_naddr]), 16); 6732 struct fw_vi_mac_exact *p; 6733 int i; 6734 6735 memset(&c, 0, sizeof(c)); 6736 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6737 FW_CMD_REQUEST_F | 6738 FW_CMD_WRITE_F | 6739 FW_CMD_EXEC_V(free) | 6740 FW_VI_MAC_CMD_VIID_V(viid)); 6741 c.freemacs_to_len16 = 6742 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 6743 FW_CMD_LEN16_V(len16)); 6744 6745 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6746 p->valid_to_idx = 6747 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 6748 FW_VI_MAC_CMD_IDX_V( 6749 FW_VI_MAC_ADD_MAC)); 6750 memcpy(p->macaddr, addr[offset + i], 6751 sizeof(p->macaddr)); 6752 } 6753 6754 /* It's okay if we run out of space in our MAC address arena. 6755 * Some of the addresses we submit may get stored so we need 6756 * to run through the reply to see what the results were ... 6757 */ 6758 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 6759 if (ret && ret != -FW_ENOMEM) 6760 break; 6761 6762 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6763 u16 index = FW_VI_MAC_CMD_IDX_G( 6764 be16_to_cpu(p->valid_to_idx)); 6765 6766 if (idx) 6767 idx[offset + i] = (index >= max_naddr ? 6768 0xffff : index); 6769 if (index < max_naddr) 6770 nfilters++; 6771 else if (hash) 6772 *hash |= (1ULL << 6773 hash_mac_addr(addr[offset + i])); 6774 } 6775 6776 free = false; 6777 offset += fw_naddr; 6778 rem -= fw_naddr; 6779 } 6780 6781 if (ret == 0 || ret == -FW_ENOMEM) 6782 ret = nfilters; 6783 return ret; 6784 } 6785 6786 /** 6787 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 6788 * @adap: the adapter 6789 * @mbox: mailbox to use for the FW command 6790 * @viid: the VI id 6791 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 6792 * @addr: the MAC address(es) 6793 * @sleep_ok: call is allowed to sleep 6794 * 6795 * Frees the exact-match filter for each of the supplied addresses 6796 * 6797 * Returns a negative error number or the number of filters freed. 6798 */ 6799 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 6800 unsigned int viid, unsigned int naddr, 6801 const u8 **addr, bool sleep_ok) 6802 { 6803 int offset, ret = 0; 6804 struct fw_vi_mac_cmd c; 6805 unsigned int nfilters = 0; 6806 unsigned int max_naddr = is_t4(adap->params.chip) ? 6807 NUM_MPS_CLS_SRAM_L_INSTANCES : 6808 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 6809 unsigned int rem = naddr; 6810 6811 if (naddr > max_naddr) 6812 return -EINVAL; 6813 6814 for (offset = 0; offset < (int)naddr ; /**/) { 6815 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 6816 ? rem 6817 : ARRAY_SIZE(c.u.exact)); 6818 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 6819 u.exact[fw_naddr]), 16); 6820 struct fw_vi_mac_exact *p; 6821 int i; 6822 6823 memset(&c, 0, sizeof(c)); 6824 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6825 FW_CMD_REQUEST_F | 6826 FW_CMD_WRITE_F | 6827 FW_CMD_EXEC_V(0) | 6828 FW_VI_MAC_CMD_VIID_V(viid)); 6829 c.freemacs_to_len16 = 6830 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 6831 FW_CMD_LEN16_V(len16)); 6832 6833 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 6834 p->valid_to_idx = cpu_to_be16( 6835 FW_VI_MAC_CMD_VALID_F | 6836 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 6837 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 6838 } 6839 6840 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 6841 if (ret) 6842 break; 6843 6844 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 6845 u16 index = FW_VI_MAC_CMD_IDX_G( 6846 be16_to_cpu(p->valid_to_idx)); 6847 6848 if (index < max_naddr) 6849 nfilters++; 6850 } 6851 6852 offset += fw_naddr; 6853 rem -= fw_naddr; 6854 } 6855 6856 if (ret == 0) 6857 ret = nfilters; 6858 return ret; 6859 } 6860 6861 /** 6862 * t4_change_mac - modifies the exact-match filter for a MAC address 6863 * @adap: the adapter 6864 * @mbox: mailbox to use for the FW command 6865 * @viid: the VI id 6866 * @idx: index of existing filter for old value of MAC address, or -1 6867 * @addr: the new MAC address value 6868 * @persist: whether a new MAC allocation should be persistent 6869 * @add_smt: if true also add the address to the HW SMT 6870 * 6871 * Modifies an exact-match filter and sets it to the new MAC address. 6872 * Note that in general it is not possible to modify the value of a given 6873 * filter so the generic way to modify an address filter is to free the one 6874 * being used by the old address value and allocate a new filter for the 6875 * new address value. @idx can be -1 if the address is a new addition. 6876 * 6877 * Returns a negative error number or the index of the filter with the new 6878 * MAC value. 6879 */ 6880 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 6881 int idx, const u8 *addr, bool persist, bool add_smt) 6882 { 6883 int ret, mode; 6884 struct fw_vi_mac_cmd c; 6885 struct fw_vi_mac_exact *p = c.u.exact; 6886 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 6887 6888 if (idx < 0) /* new allocation */ 6889 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 6890 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 6891 6892 memset(&c, 0, sizeof(c)); 6893 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6894 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6895 FW_VI_MAC_CMD_VIID_V(viid)); 6896 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 6897 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 6898 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 6899 FW_VI_MAC_CMD_IDX_V(idx)); 6900 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 6901 6902 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6903 if (ret == 0) { 6904 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 6905 if (ret >= max_mac_addr) 6906 ret = -ENOMEM; 6907 } 6908 return ret; 6909 } 6910 6911 /** 6912 * t4_set_addr_hash - program the MAC inexact-match hash filter 6913 * @adap: the adapter 6914 * @mbox: mailbox to use for the FW command 6915 * @viid: the VI id 6916 * @ucast: whether the hash filter should also match unicast addresses 6917 * @vec: the value to be written to the hash filter 6918 * @sleep_ok: call is allowed to sleep 6919 * 6920 * Sets the 64-bit inexact-match hash filter for a virtual interface. 6921 */ 6922 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 6923 bool ucast, u64 vec, bool sleep_ok) 6924 { 6925 struct fw_vi_mac_cmd c; 6926 6927 memset(&c, 0, sizeof(c)); 6928 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 6929 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6930 FW_VI_ENABLE_CMD_VIID_V(viid)); 6931 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 6932 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 6933 FW_CMD_LEN16_V(1)); 6934 c.u.hash.hashvec = cpu_to_be64(vec); 6935 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 6936 } 6937 6938 /** 6939 * t4_enable_vi_params - enable/disable a virtual interface 6940 * @adap: the adapter 6941 * @mbox: mailbox to use for the FW command 6942 * @viid: the VI id 6943 * @rx_en: 1=enable Rx, 0=disable Rx 6944 * @tx_en: 1=enable Tx, 0=disable Tx 6945 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 6946 * 6947 * Enables/disables a virtual interface. Note that setting DCB Enable 6948 * only makes sense when enabling a Virtual Interface ... 6949 */ 6950 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 6951 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 6952 { 6953 struct fw_vi_enable_cmd c; 6954 6955 memset(&c, 0, sizeof(c)); 6956 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 6957 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6958 FW_VI_ENABLE_CMD_VIID_V(viid)); 6959 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 6960 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 6961 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 6962 FW_LEN16(c)); 6963 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 6964 } 6965 6966 /** 6967 * t4_enable_vi - enable/disable a virtual interface 6968 * @adap: the adapter 6969 * @mbox: mailbox to use for the FW command 6970 * @viid: the VI id 6971 * @rx_en: 1=enable Rx, 0=disable Rx 6972 * @tx_en: 1=enable Tx, 0=disable Tx 6973 * 6974 * Enables/disables a virtual interface. 6975 */ 6976 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 6977 bool rx_en, bool tx_en) 6978 { 6979 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 6980 } 6981 6982 /** 6983 * t4_identify_port - identify a VI's port by blinking its LED 6984 * @adap: the adapter 6985 * @mbox: mailbox to use for the FW command 6986 * @viid: the VI id 6987 * @nblinks: how many times to blink LED at 2.5 Hz 6988 * 6989 * Identifies a VI's port by blinking its LED. 6990 */ 6991 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 6992 unsigned int nblinks) 6993 { 6994 struct fw_vi_enable_cmd c; 6995 6996 memset(&c, 0, sizeof(c)); 6997 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 6998 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 6999 FW_VI_ENABLE_CMD_VIID_V(viid)); 7000 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 7001 c.blinkdur = cpu_to_be16(nblinks); 7002 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7003 } 7004 7005 /** 7006 * t4_iq_stop - stop an ingress queue and its FLs 7007 * @adap: the adapter 7008 * @mbox: mailbox to use for the FW command 7009 * @pf: the PF owning the queues 7010 * @vf: the VF owning the queues 7011 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 7012 * @iqid: ingress queue id 7013 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7014 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7015 * 7016 * Stops an ingress queue and its associated FLs, if any. This causes 7017 * any current or future data/messages destined for these queues to be 7018 * tossed. 7019 */ 7020 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 7021 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7022 unsigned int fl0id, unsigned int fl1id) 7023 { 7024 struct fw_iq_cmd c; 7025 7026 memset(&c, 0, sizeof(c)); 7027 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7028 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7029 FW_IQ_CMD_VFN_V(vf)); 7030 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 7031 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7032 c.iqid = cpu_to_be16(iqid); 7033 c.fl0id = cpu_to_be16(fl0id); 7034 c.fl1id = cpu_to_be16(fl1id); 7035 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7036 } 7037 7038 /** 7039 * t4_iq_free - free an ingress queue and its FLs 7040 * @adap: the adapter 7041 * @mbox: mailbox to use for the FW command 7042 * @pf: the PF owning the queues 7043 * @vf: the VF owning the queues 7044 * @iqtype: the ingress queue type 7045 * @iqid: ingress queue id 7046 * @fl0id: FL0 queue id or 0xffff if no attached FL0 7047 * @fl1id: FL1 queue id or 0xffff if no attached FL1 7048 * 7049 * Frees an ingress queue and its associated FLs, if any. 7050 */ 7051 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7052 unsigned int vf, unsigned int iqtype, unsigned int iqid, 7053 unsigned int fl0id, unsigned int fl1id) 7054 { 7055 struct fw_iq_cmd c; 7056 7057 memset(&c, 0, sizeof(c)); 7058 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 7059 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 7060 FW_IQ_CMD_VFN_V(vf)); 7061 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 7062 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 7063 c.iqid = cpu_to_be16(iqid); 7064 c.fl0id = cpu_to_be16(fl0id); 7065 c.fl1id = cpu_to_be16(fl1id); 7066 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7067 } 7068 7069 /** 7070 * t4_eth_eq_free - free an Ethernet egress queue 7071 * @adap: the adapter 7072 * @mbox: mailbox to use for the FW command 7073 * @pf: the PF owning the queue 7074 * @vf: the VF owning the queue 7075 * @eqid: egress queue id 7076 * 7077 * Frees an Ethernet egress queue. 7078 */ 7079 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7080 unsigned int vf, unsigned int eqid) 7081 { 7082 struct fw_eq_eth_cmd c; 7083 7084 memset(&c, 0, sizeof(c)); 7085 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 7086 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7087 FW_EQ_ETH_CMD_PFN_V(pf) | 7088 FW_EQ_ETH_CMD_VFN_V(vf)); 7089 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 7090 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 7091 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7092 } 7093 7094 /** 7095 * t4_ctrl_eq_free - free a control egress queue 7096 * @adap: the adapter 7097 * @mbox: mailbox to use for the FW command 7098 * @pf: the PF owning the queue 7099 * @vf: the VF owning the queue 7100 * @eqid: egress queue id 7101 * 7102 * Frees a control egress queue. 7103 */ 7104 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7105 unsigned int vf, unsigned int eqid) 7106 { 7107 struct fw_eq_ctrl_cmd c; 7108 7109 memset(&c, 0, sizeof(c)); 7110 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 7111 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7112 FW_EQ_CTRL_CMD_PFN_V(pf) | 7113 FW_EQ_CTRL_CMD_VFN_V(vf)); 7114 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 7115 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 7116 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7117 } 7118 7119 /** 7120 * t4_ofld_eq_free - free an offload egress queue 7121 * @adap: the adapter 7122 * @mbox: mailbox to use for the FW command 7123 * @pf: the PF owning the queue 7124 * @vf: the VF owning the queue 7125 * @eqid: egress queue id 7126 * 7127 * Frees a control egress queue. 7128 */ 7129 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 7130 unsigned int vf, unsigned int eqid) 7131 { 7132 struct fw_eq_ofld_cmd c; 7133 7134 memset(&c, 0, sizeof(c)); 7135 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 7136 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 7137 FW_EQ_OFLD_CMD_PFN_V(pf) | 7138 FW_EQ_OFLD_CMD_VFN_V(vf)); 7139 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 7140 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 7141 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7142 } 7143 7144 /** 7145 * t4_link_down_rc_str - return a string for a Link Down Reason Code 7146 * @adap: the adapter 7147 * @link_down_rc: Link Down Reason Code 7148 * 7149 * Returns a string representation of the Link Down Reason Code. 7150 */ 7151 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 7152 { 7153 static const char * const reason[] = { 7154 "Link Down", 7155 "Remote Fault", 7156 "Auto-negotiation Failure", 7157 "Reserved", 7158 "Insufficient Airflow", 7159 "Unable To Determine Reason", 7160 "No RX Signal Detected", 7161 "Reserved", 7162 }; 7163 7164 if (link_down_rc >= ARRAY_SIZE(reason)) 7165 return "Bad Reason Code"; 7166 7167 return reason[link_down_rc]; 7168 } 7169 7170 /** 7171 * t4_handle_get_port_info - process a FW reply message 7172 * @pi: the port info 7173 * @rpl: start of the FW message 7174 * 7175 * Processes a GET_PORT_INFO FW reply message. 7176 */ 7177 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 7178 { 7179 const struct fw_port_cmd *p = (const void *)rpl; 7180 struct adapter *adap = pi->adapter; 7181 7182 /* link/module state change message */ 7183 int speed = 0, fc = 0; 7184 struct link_config *lc; 7185 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 7186 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; 7187 u32 mod = FW_PORT_CMD_MODTYPE_G(stat); 7188 7189 if (stat & FW_PORT_CMD_RXPAUSE_F) 7190 fc |= PAUSE_RX; 7191 if (stat & FW_PORT_CMD_TXPAUSE_F) 7192 fc |= PAUSE_TX; 7193 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 7194 speed = 100; 7195 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 7196 speed = 1000; 7197 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 7198 speed = 10000; 7199 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 7200 speed = 40000; 7201 7202 lc = &pi->link_cfg; 7203 7204 if (mod != pi->mod_type) { 7205 pi->mod_type = mod; 7206 t4_os_portmod_changed(adap, pi->port_id); 7207 } 7208 if (link_ok != lc->link_ok || speed != lc->speed || 7209 fc != lc->fc) { /* something changed */ 7210 if (!link_ok && lc->link_ok) { 7211 unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat); 7212 7213 lc->link_down_rc = rc; 7214 dev_warn(adap->pdev_dev, 7215 "Port %d link down, reason: %s\n", 7216 pi->port_id, t4_link_down_rc_str(rc)); 7217 } 7218 lc->link_ok = link_ok; 7219 lc->speed = speed; 7220 lc->fc = fc; 7221 lc->supported = be16_to_cpu(p->u.info.pcap); 7222 lc->lp_advertising = be16_to_cpu(p->u.info.lpacap); 7223 t4_os_link_changed(adap, pi->port_id, link_ok); 7224 } 7225 } 7226 7227 /** 7228 * t4_handle_fw_rpl - process a FW reply message 7229 * @adap: the adapter 7230 * @rpl: start of the FW message 7231 * 7232 * Processes a FW message, such as link state change messages. 7233 */ 7234 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 7235 { 7236 u8 opcode = *(const u8 *)rpl; 7237 7238 /* This might be a port command ... this simplifies the following 7239 * conditionals ... We can get away with pre-dereferencing 7240 * action_to_len16 because it's in the first 16 bytes and all messages 7241 * will be at least that long. 7242 */ 7243 const struct fw_port_cmd *p = (const void *)rpl; 7244 unsigned int action = 7245 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 7246 7247 if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) { 7248 int i; 7249 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 7250 struct port_info *pi = NULL; 7251 7252 for_each_port(adap, i) { 7253 pi = adap2pinfo(adap, i); 7254 if (pi->tx_chan == chan) 7255 break; 7256 } 7257 7258 t4_handle_get_port_info(pi, rpl); 7259 } else { 7260 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode); 7261 return -EINVAL; 7262 } 7263 return 0; 7264 } 7265 7266 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 7267 { 7268 u16 val; 7269 7270 if (pci_is_pcie(adapter->pdev)) { 7271 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 7272 p->speed = val & PCI_EXP_LNKSTA_CLS; 7273 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 7274 } 7275 } 7276 7277 /** 7278 * init_link_config - initialize a link's SW state 7279 * @lc: structure holding the link state 7280 * @caps: link capabilities 7281 * 7282 * Initializes the SW state maintained for each link, including the link's 7283 * capabilities and default speed/flow-control/autonegotiation settings. 7284 */ 7285 static void init_link_config(struct link_config *lc, unsigned int caps) 7286 { 7287 lc->supported = caps; 7288 lc->lp_advertising = 0; 7289 lc->requested_speed = 0; 7290 lc->speed = 0; 7291 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 7292 if (lc->supported & FW_PORT_CAP_ANEG) { 7293 lc->advertising = lc->supported & ADVERT_MASK; 7294 lc->autoneg = AUTONEG_ENABLE; 7295 lc->requested_fc |= PAUSE_AUTONEG; 7296 } else { 7297 lc->advertising = 0; 7298 lc->autoneg = AUTONEG_DISABLE; 7299 } 7300 } 7301 7302 #define CIM_PF_NOACCESS 0xeeeeeeee 7303 7304 int t4_wait_dev_ready(void __iomem *regs) 7305 { 7306 u32 whoami; 7307 7308 whoami = readl(regs + PL_WHOAMI_A); 7309 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 7310 return 0; 7311 7312 msleep(500); 7313 whoami = readl(regs + PL_WHOAMI_A); 7314 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 7315 } 7316 7317 struct flash_desc { 7318 u32 vendor_and_model_id; 7319 u32 size_mb; 7320 }; 7321 7322 static int get_flash_params(struct adapter *adap) 7323 { 7324 /* Table for non-Numonix supported flash parts. Numonix parts are left 7325 * to the preexisting code. All flash parts have 64KB sectors. 7326 */ 7327 static struct flash_desc supported_flash[] = { 7328 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 7329 }; 7330 7331 int ret; 7332 u32 info; 7333 7334 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 7335 if (!ret) 7336 ret = sf1_read(adap, 3, 0, 1, &info); 7337 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 7338 if (ret) 7339 return ret; 7340 7341 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret) 7342 if (supported_flash[ret].vendor_and_model_id == info) { 7343 adap->params.sf_size = supported_flash[ret].size_mb; 7344 adap->params.sf_nsec = 7345 adap->params.sf_size / SF_SEC_SIZE; 7346 return 0; 7347 } 7348 7349 if ((info & 0xff) != 0x20) /* not a Numonix flash */ 7350 return -EINVAL; 7351 info >>= 16; /* log2 of size */ 7352 if (info >= 0x14 && info < 0x18) 7353 adap->params.sf_nsec = 1 << (info - 16); 7354 else if (info == 0x18) 7355 adap->params.sf_nsec = 64; 7356 else 7357 return -EINVAL; 7358 adap->params.sf_size = 1 << info; 7359 adap->params.sf_fw_start = 7360 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M; 7361 7362 if (adap->params.sf_size < FLASH_MIN_SIZE) 7363 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n", 7364 adap->params.sf_size, FLASH_MIN_SIZE); 7365 return 0; 7366 } 7367 7368 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range) 7369 { 7370 u16 val; 7371 u32 pcie_cap; 7372 7373 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 7374 if (pcie_cap) { 7375 pci_read_config_word(adapter->pdev, 7376 pcie_cap + PCI_EXP_DEVCTL2, &val); 7377 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT; 7378 val |= range; 7379 pci_write_config_word(adapter->pdev, 7380 pcie_cap + PCI_EXP_DEVCTL2, val); 7381 } 7382 } 7383 7384 /** 7385 * t4_prep_adapter - prepare SW and HW for operation 7386 * @adapter: the adapter 7387 * @reset: if true perform a HW reset 7388 * 7389 * Initialize adapter SW state for the various HW modules, set initial 7390 * values for some adapter tunables, take PHYs out of reset, and 7391 * initialize the MDIO interface. 7392 */ 7393 int t4_prep_adapter(struct adapter *adapter) 7394 { 7395 int ret, ver; 7396 uint16_t device_id; 7397 u32 pl_rev; 7398 7399 get_pci_mode(adapter, &adapter->params.pci); 7400 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 7401 7402 ret = get_flash_params(adapter); 7403 if (ret < 0) { 7404 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 7405 return ret; 7406 } 7407 7408 /* Retrieve adapter's device ID 7409 */ 7410 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 7411 ver = device_id >> 12; 7412 adapter->params.chip = 0; 7413 switch (ver) { 7414 case CHELSIO_T4: 7415 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 7416 adapter->params.arch.sge_fl_db = DBPRIO_F; 7417 adapter->params.arch.mps_tcam_size = 7418 NUM_MPS_CLS_SRAM_L_INSTANCES; 7419 adapter->params.arch.mps_rplc_size = 128; 7420 adapter->params.arch.nchan = NCHAN; 7421 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 7422 adapter->params.arch.vfcount = 128; 7423 /* Congestion map is for 4 channels so that 7424 * MPS can have 4 priority per port. 7425 */ 7426 adapter->params.arch.cng_ch_bits_log = 2; 7427 break; 7428 case CHELSIO_T5: 7429 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 7430 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 7431 adapter->params.arch.mps_tcam_size = 7432 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7433 adapter->params.arch.mps_rplc_size = 128; 7434 adapter->params.arch.nchan = NCHAN; 7435 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 7436 adapter->params.arch.vfcount = 128; 7437 adapter->params.arch.cng_ch_bits_log = 2; 7438 break; 7439 case CHELSIO_T6: 7440 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 7441 adapter->params.arch.sge_fl_db = 0; 7442 adapter->params.arch.mps_tcam_size = 7443 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7444 adapter->params.arch.mps_rplc_size = 256; 7445 adapter->params.arch.nchan = 2; 7446 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 7447 adapter->params.arch.vfcount = 256; 7448 /* Congestion map will be for 2 channels so that 7449 * MPS can have 8 priority per port. 7450 */ 7451 adapter->params.arch.cng_ch_bits_log = 3; 7452 break; 7453 default: 7454 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 7455 device_id); 7456 return -EINVAL; 7457 } 7458 7459 adapter->params.cim_la_size = CIMLA_SIZE; 7460 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 7461 7462 /* 7463 * Default port for debugging in case we can't reach FW. 7464 */ 7465 adapter->params.nports = 1; 7466 adapter->params.portvec = 1; 7467 adapter->params.vpd.cclk = 50000; 7468 7469 /* Set pci completion timeout value to 4 seconds. */ 7470 set_pcie_completion_timeout(adapter, 0xd); 7471 return 0; 7472 } 7473 7474 /** 7475 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 7476 * @adapter: the adapter 7477 * @qid: the Queue ID 7478 * @qtype: the Ingress or Egress type for @qid 7479 * @user: true if this request is for a user mode queue 7480 * @pbar2_qoffset: BAR2 Queue Offset 7481 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 7482 * 7483 * Returns the BAR2 SGE Queue Registers information associated with the 7484 * indicated Absolute Queue ID. These are passed back in return value 7485 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 7486 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 7487 * 7488 * This may return an error which indicates that BAR2 SGE Queue 7489 * registers aren't available. If an error is not returned, then the 7490 * following values are returned: 7491 * 7492 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 7493 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 7494 * 7495 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 7496 * require the "Inferred Queue ID" ability may be used. E.g. the 7497 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 7498 * then these "Inferred Queue ID" register may not be used. 7499 */ 7500 int t4_bar2_sge_qregs(struct adapter *adapter, 7501 unsigned int qid, 7502 enum t4_bar2_qtype qtype, 7503 int user, 7504 u64 *pbar2_qoffset, 7505 unsigned int *pbar2_qid) 7506 { 7507 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 7508 u64 bar2_page_offset, bar2_qoffset; 7509 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 7510 7511 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 7512 if (!user && is_t4(adapter->params.chip)) 7513 return -EINVAL; 7514 7515 /* Get our SGE Page Size parameters. 7516 */ 7517 page_shift = adapter->params.sge.hps + 10; 7518 page_size = 1 << page_shift; 7519 7520 /* Get the right Queues per Page parameters for our Queue. 7521 */ 7522 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 7523 ? adapter->params.sge.eq_qpp 7524 : adapter->params.sge.iq_qpp); 7525 qpp_mask = (1 << qpp_shift) - 1; 7526 7527 /* Calculate the basics of the BAR2 SGE Queue register area: 7528 * o The BAR2 page the Queue registers will be in. 7529 * o The BAR2 Queue ID. 7530 * o The BAR2 Queue ID Offset into the BAR2 page. 7531 */ 7532 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 7533 bar2_qid = qid & qpp_mask; 7534 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 7535 7536 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 7537 * hardware will infer the Absolute Queue ID simply from the writes to 7538 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 7539 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 7540 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 7541 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 7542 * from the BAR2 Page and BAR2 Queue ID. 7543 * 7544 * One important censequence of this is that some BAR2 SGE registers 7545 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 7546 * there. But other registers synthesize the SGE Queue ID purely 7547 * from the writes to the registers -- the Write Combined Doorbell 7548 * Buffer is a good example. These BAR2 SGE Registers are only 7549 * available for those BAR2 SGE Register areas where the SGE Absolute 7550 * Queue ID can be inferred from simple writes. 7551 */ 7552 bar2_qoffset = bar2_page_offset; 7553 bar2_qinferred = (bar2_qid_offset < page_size); 7554 if (bar2_qinferred) { 7555 bar2_qoffset += bar2_qid_offset; 7556 bar2_qid = 0; 7557 } 7558 7559 *pbar2_qoffset = bar2_qoffset; 7560 *pbar2_qid = bar2_qid; 7561 return 0; 7562 } 7563 7564 /** 7565 * t4_init_devlog_params - initialize adapter->params.devlog 7566 * @adap: the adapter 7567 * 7568 * Initialize various fields of the adapter's Firmware Device Log 7569 * Parameters structure. 7570 */ 7571 int t4_init_devlog_params(struct adapter *adap) 7572 { 7573 struct devlog_params *dparams = &adap->params.devlog; 7574 u32 pf_dparams; 7575 unsigned int devlog_meminfo; 7576 struct fw_devlog_cmd devlog_cmd; 7577 int ret; 7578 7579 /* If we're dealing with newer firmware, the Device Log Paramerters 7580 * are stored in a designated register which allows us to access the 7581 * Device Log even if we can't talk to the firmware. 7582 */ 7583 pf_dparams = 7584 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 7585 if (pf_dparams) { 7586 unsigned int nentries, nentries128; 7587 7588 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 7589 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 7590 7591 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 7592 nentries = (nentries128 + 1) * 128; 7593 dparams->size = nentries * sizeof(struct fw_devlog_e); 7594 7595 return 0; 7596 } 7597 7598 /* Otherwise, ask the firmware for it's Device Log Parameters. 7599 */ 7600 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 7601 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 7602 FW_CMD_REQUEST_F | FW_CMD_READ_F); 7603 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 7604 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 7605 &devlog_cmd); 7606 if (ret) 7607 return ret; 7608 7609 devlog_meminfo = 7610 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 7611 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 7612 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 7613 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 7614 7615 return 0; 7616 } 7617 7618 /** 7619 * t4_init_sge_params - initialize adap->params.sge 7620 * @adapter: the adapter 7621 * 7622 * Initialize various fields of the adapter's SGE Parameters structure. 7623 */ 7624 int t4_init_sge_params(struct adapter *adapter) 7625 { 7626 struct sge_params *sge_params = &adapter->params.sge; 7627 u32 hps, qpp; 7628 unsigned int s_hps, s_qpp; 7629 7630 /* Extract the SGE Page Size for our PF. 7631 */ 7632 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 7633 s_hps = (HOSTPAGESIZEPF0_S + 7634 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 7635 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 7636 7637 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 7638 */ 7639 s_qpp = (QUEUESPERPAGEPF0_S + 7640 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 7641 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 7642 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 7643 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 7644 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 7645 7646 return 0; 7647 } 7648 7649 /** 7650 * t4_init_tp_params - initialize adap->params.tp 7651 * @adap: the adapter 7652 * 7653 * Initialize various fields of the adapter's TP Parameters structure. 7654 */ 7655 int t4_init_tp_params(struct adapter *adap) 7656 { 7657 int chan; 7658 u32 v; 7659 7660 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 7661 adap->params.tp.tre = TIMERRESOLUTION_G(v); 7662 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 7663 7664 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 7665 for (chan = 0; chan < NCHAN; chan++) 7666 adap->params.tp.tx_modq[chan] = chan; 7667 7668 /* Cache the adapter's Compressed Filter Mode and global Incress 7669 * Configuration. 7670 */ 7671 if (t4_use_ldst(adap)) { 7672 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1, 7673 TP_VLAN_PRI_MAP_A, 1); 7674 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1, 7675 TP_INGRESS_CONFIG_A, 1); 7676 } else { 7677 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 7678 &adap->params.tp.vlan_pri_map, 1, 7679 TP_VLAN_PRI_MAP_A); 7680 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 7681 &adap->params.tp.ingress_config, 1, 7682 TP_INGRESS_CONFIG_A); 7683 } 7684 7685 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 7686 * shift positions of several elements of the Compressed Filter Tuple 7687 * for this adapter which we need frequently ... 7688 */ 7689 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 7690 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 7691 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 7692 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 7693 PROTOCOL_F); 7694 7695 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 7696 * represents the presence of an Outer VLAN instead of a VNIC ID. 7697 */ 7698 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 7699 adap->params.tp.vnic_shift = -1; 7700 7701 return 0; 7702 } 7703 7704 /** 7705 * t4_filter_field_shift - calculate filter field shift 7706 * @adap: the adapter 7707 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 7708 * 7709 * Return the shift position of a filter field within the Compressed 7710 * Filter Tuple. The filter field is specified via its selection bit 7711 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 7712 */ 7713 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 7714 { 7715 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 7716 unsigned int sel; 7717 int field_shift; 7718 7719 if ((filter_mode & filter_sel) == 0) 7720 return -1; 7721 7722 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 7723 switch (filter_mode & sel) { 7724 case FCOE_F: 7725 field_shift += FT_FCOE_W; 7726 break; 7727 case PORT_F: 7728 field_shift += FT_PORT_W; 7729 break; 7730 case VNIC_ID_F: 7731 field_shift += FT_VNIC_ID_W; 7732 break; 7733 case VLAN_F: 7734 field_shift += FT_VLAN_W; 7735 break; 7736 case TOS_F: 7737 field_shift += FT_TOS_W; 7738 break; 7739 case PROTOCOL_F: 7740 field_shift += FT_PROTOCOL_W; 7741 break; 7742 case ETHERTYPE_F: 7743 field_shift += FT_ETHERTYPE_W; 7744 break; 7745 case MACMATCH_F: 7746 field_shift += FT_MACMATCH_W; 7747 break; 7748 case MPSHITTYPE_F: 7749 field_shift += FT_MPSHITTYPE_W; 7750 break; 7751 case FRAGMENTATION_F: 7752 field_shift += FT_FRAGMENTATION_W; 7753 break; 7754 } 7755 } 7756 return field_shift; 7757 } 7758 7759 int t4_init_rss_mode(struct adapter *adap, int mbox) 7760 { 7761 int i, ret; 7762 struct fw_rss_vi_config_cmd rvc; 7763 7764 memset(&rvc, 0, sizeof(rvc)); 7765 7766 for_each_port(adap, i) { 7767 struct port_info *p = adap2pinfo(adap, i); 7768 7769 rvc.op_to_viid = 7770 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 7771 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7772 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 7773 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 7774 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 7775 if (ret) 7776 return ret; 7777 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 7778 } 7779 return 0; 7780 } 7781 7782 /** 7783 * t4_init_portinfo - allocate a virtual interface amd initialize port_info 7784 * @pi: the port_info 7785 * @mbox: mailbox to use for the FW command 7786 * @port: physical port associated with the VI 7787 * @pf: the PF owning the VI 7788 * @vf: the VF owning the VI 7789 * @mac: the MAC address of the VI 7790 * 7791 * Allocates a virtual interface for the given physical port. If @mac is 7792 * not %NULL it contains the MAC address of the VI as assigned by FW. 7793 * @mac should be large enough to hold an Ethernet address. 7794 * Returns < 0 on error. 7795 */ 7796 int t4_init_portinfo(struct port_info *pi, int mbox, 7797 int port, int pf, int vf, u8 mac[]) 7798 { 7799 int ret; 7800 struct fw_port_cmd c; 7801 unsigned int rss_size; 7802 7803 memset(&c, 0, sizeof(c)); 7804 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 7805 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7806 FW_PORT_CMD_PORTID_V(port)); 7807 c.action_to_len16 = cpu_to_be32( 7808 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 7809 FW_LEN16(c)); 7810 ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c); 7811 if (ret) 7812 return ret; 7813 7814 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size); 7815 if (ret < 0) 7816 return ret; 7817 7818 pi->viid = ret; 7819 pi->tx_chan = port; 7820 pi->lport = port; 7821 pi->rss_size = rss_size; 7822 7823 ret = be32_to_cpu(c.u.info.lstatus_to_modtype); 7824 pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ? 7825 FW_PORT_CMD_MDIOADDR_G(ret) : -1; 7826 pi->port_type = FW_PORT_CMD_PTYPE_G(ret); 7827 pi->mod_type = FW_PORT_MOD_TYPE_NA; 7828 7829 init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap)); 7830 return 0; 7831 } 7832 7833 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 7834 { 7835 u8 addr[6]; 7836 int ret, i, j = 0; 7837 7838 for_each_port(adap, i) { 7839 struct port_info *pi = adap2pinfo(adap, i); 7840 7841 while ((adap->params.portvec & (1 << j)) == 0) 7842 j++; 7843 7844 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 7845 if (ret) 7846 return ret; 7847 7848 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 7849 adap->port[i]->dev_port = j; 7850 j++; 7851 } 7852 return 0; 7853 } 7854 7855 /** 7856 * t4_read_cimq_cfg - read CIM queue configuration 7857 * @adap: the adapter 7858 * @base: holds the queue base addresses in bytes 7859 * @size: holds the queue sizes in bytes 7860 * @thres: holds the queue full thresholds in bytes 7861 * 7862 * Returns the current configuration of the CIM queues, starting with 7863 * the IBQs, then the OBQs. 7864 */ 7865 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 7866 { 7867 unsigned int i, v; 7868 int cim_num_obq = is_t4(adap->params.chip) ? 7869 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 7870 7871 for (i = 0; i < CIM_NUM_IBQ; i++) { 7872 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 7873 QUENUMSELECT_V(i)); 7874 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 7875 /* value is in 256-byte units */ 7876 *base++ = CIMQBASE_G(v) * 256; 7877 *size++ = CIMQSIZE_G(v) * 256; 7878 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 7879 } 7880 for (i = 0; i < cim_num_obq; i++) { 7881 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 7882 QUENUMSELECT_V(i)); 7883 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 7884 /* value is in 256-byte units */ 7885 *base++ = CIMQBASE_G(v) * 256; 7886 *size++ = CIMQSIZE_G(v) * 256; 7887 } 7888 } 7889 7890 /** 7891 * t4_read_cim_ibq - read the contents of a CIM inbound queue 7892 * @adap: the adapter 7893 * @qid: the queue index 7894 * @data: where to store the queue contents 7895 * @n: capacity of @data in 32-bit words 7896 * 7897 * Reads the contents of the selected CIM queue starting at address 0 up 7898 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 7899 * error and the number of 32-bit words actually read on success. 7900 */ 7901 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 7902 { 7903 int i, err, attempts; 7904 unsigned int addr; 7905 const unsigned int nwords = CIM_IBQ_SIZE * 4; 7906 7907 if (qid > 5 || (n & 3)) 7908 return -EINVAL; 7909 7910 addr = qid * nwords; 7911 if (n > nwords) 7912 n = nwords; 7913 7914 /* It might take 3-10ms before the IBQ debug read access is allowed. 7915 * Wait for 1 Sec with a delay of 1 usec. 7916 */ 7917 attempts = 1000000; 7918 7919 for (i = 0; i < n; i++, addr++) { 7920 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 7921 IBQDBGEN_F); 7922 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 7923 attempts, 1); 7924 if (err) 7925 return err; 7926 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 7927 } 7928 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 7929 return i; 7930 } 7931 7932 /** 7933 * t4_read_cim_obq - read the contents of a CIM outbound queue 7934 * @adap: the adapter 7935 * @qid: the queue index 7936 * @data: where to store the queue contents 7937 * @n: capacity of @data in 32-bit words 7938 * 7939 * Reads the contents of the selected CIM queue starting at address 0 up 7940 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 7941 * error and the number of 32-bit words actually read on success. 7942 */ 7943 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 7944 { 7945 int i, err; 7946 unsigned int addr, v, nwords; 7947 int cim_num_obq = is_t4(adap->params.chip) ? 7948 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 7949 7950 if ((qid > (cim_num_obq - 1)) || (n & 3)) 7951 return -EINVAL; 7952 7953 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 7954 QUENUMSELECT_V(qid)); 7955 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 7956 7957 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 7958 nwords = CIMQSIZE_G(v) * 64; /* same */ 7959 if (n > nwords) 7960 n = nwords; 7961 7962 for (i = 0; i < n; i++, addr++) { 7963 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 7964 OBQDBGEN_F); 7965 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 7966 2, 1); 7967 if (err) 7968 return err; 7969 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 7970 } 7971 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 7972 return i; 7973 } 7974 7975 /** 7976 * t4_cim_read - read a block from CIM internal address space 7977 * @adap: the adapter 7978 * @addr: the start address within the CIM address space 7979 * @n: number of words to read 7980 * @valp: where to store the result 7981 * 7982 * Reads a block of 4-byte words from the CIM intenal address space. 7983 */ 7984 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 7985 unsigned int *valp) 7986 { 7987 int ret = 0; 7988 7989 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 7990 return -EBUSY; 7991 7992 for ( ; !ret && n--; addr += 4) { 7993 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 7994 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 7995 0, 5, 2); 7996 if (!ret) 7997 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 7998 } 7999 return ret; 8000 } 8001 8002 /** 8003 * t4_cim_write - write a block into CIM internal address space 8004 * @adap: the adapter 8005 * @addr: the start address within the CIM address space 8006 * @n: number of words to write 8007 * @valp: set of values to write 8008 * 8009 * Writes a block of 4-byte words into the CIM intenal address space. 8010 */ 8011 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 8012 const unsigned int *valp) 8013 { 8014 int ret = 0; 8015 8016 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 8017 return -EBUSY; 8018 8019 for ( ; !ret && n--; addr += 4) { 8020 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 8021 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 8022 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 8023 0, 5, 2); 8024 } 8025 return ret; 8026 } 8027 8028 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 8029 unsigned int val) 8030 { 8031 return t4_cim_write(adap, addr, 1, &val); 8032 } 8033 8034 /** 8035 * t4_cim_read_la - read CIM LA capture buffer 8036 * @adap: the adapter 8037 * @la_buf: where to store the LA data 8038 * @wrptr: the HW write pointer within the capture buffer 8039 * 8040 * Reads the contents of the CIM LA buffer with the most recent entry at 8041 * the end of the returned data and with the entry at @wrptr first. 8042 * We try to leave the LA in the running state we find it in. 8043 */ 8044 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 8045 { 8046 int i, ret; 8047 unsigned int cfg, val, idx; 8048 8049 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 8050 if (ret) 8051 return ret; 8052 8053 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 8054 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 8055 if (ret) 8056 return ret; 8057 } 8058 8059 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 8060 if (ret) 8061 goto restart; 8062 8063 idx = UPDBGLAWRPTR_G(val); 8064 if (wrptr) 8065 *wrptr = idx; 8066 8067 for (i = 0; i < adap->params.cim_la_size; i++) { 8068 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 8069 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 8070 if (ret) 8071 break; 8072 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 8073 if (ret) 8074 break; 8075 if (val & UPDBGLARDEN_F) { 8076 ret = -ETIMEDOUT; 8077 break; 8078 } 8079 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 8080 if (ret) 8081 break; 8082 idx = (idx + 1) & UPDBGLARDPTR_M; 8083 } 8084 restart: 8085 if (cfg & UPDBGLAEN_F) { 8086 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 8087 cfg & ~UPDBGLARDEN_F); 8088 if (!ret) 8089 ret = r; 8090 } 8091 return ret; 8092 } 8093 8094 /** 8095 * t4_tp_read_la - read TP LA capture buffer 8096 * @adap: the adapter 8097 * @la_buf: where to store the LA data 8098 * @wrptr: the HW write pointer within the capture buffer 8099 * 8100 * Reads the contents of the TP LA buffer with the most recent entry at 8101 * the end of the returned data and with the entry at @wrptr first. 8102 * We leave the LA in the running state we find it in. 8103 */ 8104 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 8105 { 8106 bool last_incomplete; 8107 unsigned int i, cfg, val, idx; 8108 8109 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 8110 if (cfg & DBGLAENABLE_F) /* freeze LA */ 8111 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 8112 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 8113 8114 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 8115 idx = DBGLAWPTR_G(val); 8116 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 8117 if (last_incomplete) 8118 idx = (idx + 1) & DBGLARPTR_M; 8119 if (wrptr) 8120 *wrptr = idx; 8121 8122 val &= 0xffff; 8123 val &= ~DBGLARPTR_V(DBGLARPTR_M); 8124 val |= adap->params.tp.la_mask; 8125 8126 for (i = 0; i < TPLA_SIZE; i++) { 8127 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 8128 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 8129 idx = (idx + 1) & DBGLARPTR_M; 8130 } 8131 8132 /* Wipe out last entry if it isn't valid */ 8133 if (last_incomplete) 8134 la_buf[TPLA_SIZE - 1] = ~0ULL; 8135 8136 if (cfg & DBGLAENABLE_F) /* restore running state */ 8137 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 8138 cfg | adap->params.tp.la_mask); 8139 } 8140 8141 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 8142 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 8143 * state for more than the Warning Threshold then we'll issue a warning about 8144 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 8145 * appears to be hung every Warning Repeat second till the situation clears. 8146 * If the situation clears, we'll note that as well. 8147 */ 8148 #define SGE_IDMA_WARN_THRESH 1 8149 #define SGE_IDMA_WARN_REPEAT 300 8150 8151 /** 8152 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 8153 * @adapter: the adapter 8154 * @idma: the adapter IDMA Monitor state 8155 * 8156 * Initialize the state of an SGE Ingress DMA Monitor. 8157 */ 8158 void t4_idma_monitor_init(struct adapter *adapter, 8159 struct sge_idma_monitor_state *idma) 8160 { 8161 /* Initialize the state variables for detecting an SGE Ingress DMA 8162 * hang. The SGE has internal counters which count up on each clock 8163 * tick whenever the SGE finds its Ingress DMA State Engines in the 8164 * same state they were on the previous clock tick. The clock used is 8165 * the Core Clock so we have a limit on the maximum "time" they can 8166 * record; typically a very small number of seconds. For instance, 8167 * with a 600MHz Core Clock, we can only count up to a bit more than 8168 * 7s. So we'll synthesize a larger counter in order to not run the 8169 * risk of having the "timers" overflow and give us the flexibility to 8170 * maintain a Hung SGE State Machine of our own which operates across 8171 * a longer time frame. 8172 */ 8173 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 8174 idma->idma_stalled[0] = 0; 8175 idma->idma_stalled[1] = 0; 8176 } 8177 8178 /** 8179 * t4_idma_monitor - monitor SGE Ingress DMA state 8180 * @adapter: the adapter 8181 * @idma: the adapter IDMA Monitor state 8182 * @hz: number of ticks/second 8183 * @ticks: number of ticks since the last IDMA Monitor call 8184 */ 8185 void t4_idma_monitor(struct adapter *adapter, 8186 struct sge_idma_monitor_state *idma, 8187 int hz, int ticks) 8188 { 8189 int i, idma_same_state_cnt[2]; 8190 8191 /* Read the SGE Debug Ingress DMA Same State Count registers. These 8192 * are counters inside the SGE which count up on each clock when the 8193 * SGE finds its Ingress DMA State Engines in the same states they 8194 * were in the previous clock. The counters will peg out at 8195 * 0xffffffff without wrapping around so once they pass the 1s 8196 * threshold they'll stay above that till the IDMA state changes. 8197 */ 8198 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 8199 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 8200 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8201 8202 for (i = 0; i < 2; i++) { 8203 u32 debug0, debug11; 8204 8205 /* If the Ingress DMA Same State Counter ("timer") is less 8206 * than 1s, then we can reset our synthesized Stall Timer and 8207 * continue. If we have previously emitted warnings about a 8208 * potential stalled Ingress Queue, issue a note indicating 8209 * that the Ingress Queue has resumed forward progress. 8210 */ 8211 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 8212 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 8213 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 8214 "resumed after %d seconds\n", 8215 i, idma->idma_qid[i], 8216 idma->idma_stalled[i] / hz); 8217 idma->idma_stalled[i] = 0; 8218 continue; 8219 } 8220 8221 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 8222 * domain. The first time we get here it'll be because we 8223 * passed the 1s Threshold; each additional time it'll be 8224 * because the RX Timer Callback is being fired on its regular 8225 * schedule. 8226 * 8227 * If the stall is below our Potential Hung Ingress Queue 8228 * Warning Threshold, continue. 8229 */ 8230 if (idma->idma_stalled[i] == 0) { 8231 idma->idma_stalled[i] = hz; 8232 idma->idma_warn[i] = 0; 8233 } else { 8234 idma->idma_stalled[i] += ticks; 8235 idma->idma_warn[i] -= ticks; 8236 } 8237 8238 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 8239 continue; 8240 8241 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 8242 */ 8243 if (idma->idma_warn[i] > 0) 8244 continue; 8245 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 8246 8247 /* Read and save the SGE IDMA State and Queue ID information. 8248 * We do this every time in case it changes across time ... 8249 * can't be too careful ... 8250 */ 8251 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 8252 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8253 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 8254 8255 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 8256 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 8257 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 8258 8259 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 8260 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 8261 i, idma->idma_qid[i], idma->idma_state[i], 8262 idma->idma_stalled[i] / hz, 8263 debug0, debug11); 8264 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 8265 } 8266 } 8267