1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 /**
228  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *	@adapter: the adapter
230  *	@cmd: the Firmware Mailbox Command or Reply
231  *	@size: command length in bytes
232  *	@access: the time (ms) needed to access the Firmware Mailbox
233  *	@execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236 			   const __be64 *cmd, unsigned int size,
237 			   int access, int execute)
238 {
239 	struct mbox_cmd_log *log = adapter->mbox_log;
240 	struct mbox_cmd *entry;
241 	int i;
242 
243 	entry = mbox_cmd_log_entry(log, log->cursor++);
244 	if (log->cursor == log->size)
245 		log->cursor = 0;
246 
247 	for (i = 0; i < size / 8; i++)
248 		entry->cmd[i] = be64_to_cpu(cmd[i]);
249 	while (i < MBOX_LEN / 8)
250 		entry->cmd[i++] = 0;
251 	entry->timestamp = jiffies;
252 	entry->seqno = log->seqno++;
253 	entry->access = access;
254 	entry->execute = execute;
255 }
256 
257 /**
258  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *	@adap: the adapter
260  *	@mbox: index of the mailbox to use
261  *	@cmd: the command to write
262  *	@size: command length in bytes
263  *	@rpl: where to optionally store the reply
264  *	@sleep_ok: if true we may sleep while awaiting command completion
265  *	@timeout: time to wait for command to finish before timing out
266  *
267  *	Sends the given command to FW through the selected mailbox and waits
268  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *	store the FW's reply to the command.  The command and its optional
270  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *	the response.  If sleeping is allowed we use progressive backoff
273  *	otherwise we spin.
274  *
275  *	The return value is 0 on success or a negative errno on failure.  A
276  *	failure can happen either because we are not able to execute the
277  *	command or FW executes it but signals an error.  In the latter case
278  *	the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 			    int size, void *rpl, bool sleep_ok, int timeout)
282 {
283 	static const int delay[] = {
284 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 	};
286 
287 	u16 access = 0;
288 	u16 execute = 0;
289 	u32 v;
290 	u64 res;
291 	int i, ms, delay_idx, ret;
292 	const __be64 *p = cmd;
293 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
294 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
295 	__be64 cmd_rpl[MBOX_LEN / 8];
296 	u32 pcie_fw;
297 
298 	if ((size & 15) || size > MBOX_LEN)
299 		return -EINVAL;
300 
301 	/*
302 	 * If the device is off-line, as in EEH, commands will time out.
303 	 * Fail them early so we don't waste time waiting.
304 	 */
305 	if (adap->pdev->error_state != pci_channel_io_normal)
306 		return -EIO;
307 
308 	/* If we have a negative timeout, that implies that we can't sleep. */
309 	if (timeout < 0) {
310 		sleep_ok = false;
311 		timeout = -timeout;
312 	}
313 
314 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
315 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
316 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
317 
318 	if (v != MBOX_OWNER_DRV) {
319 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
320 		t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
321 		return ret;
322 	}
323 
324 	/* Copy in the new mailbox command and send it on its way ... */
325 	t4_record_mbox(adap, cmd, MBOX_LEN, access, 0);
326 	for (i = 0; i < size; i += 8)
327 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
328 
329 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
330 	t4_read_reg(adap, ctl_reg);          /* flush write */
331 
332 	delay_idx = 0;
333 	ms = delay[0];
334 
335 	for (i = 0;
336 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
337 	     i < timeout;
338 	     i += ms) {
339 		if (sleep_ok) {
340 			ms = delay[delay_idx];  /* last element may repeat */
341 			if (delay_idx < ARRAY_SIZE(delay) - 1)
342 				delay_idx++;
343 			msleep(ms);
344 		} else
345 			mdelay(ms);
346 
347 		v = t4_read_reg(adap, ctl_reg);
348 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
349 			if (!(v & MBMSGVALID_F)) {
350 				t4_write_reg(adap, ctl_reg, 0);
351 				continue;
352 			}
353 
354 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
355 			res = be64_to_cpu(cmd_rpl[0]);
356 
357 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
358 				fw_asrt(adap, data_reg);
359 				res = FW_CMD_RETVAL_V(EIO);
360 			} else if (rpl) {
361 				memcpy(rpl, cmd_rpl, size);
362 			}
363 
364 			t4_write_reg(adap, ctl_reg, 0);
365 
366 			execute = i + ms;
367 			t4_record_mbox(adap, cmd_rpl,
368 				       MBOX_LEN, access, execute);
369 			return -FW_CMD_RETVAL_G((int)res);
370 		}
371 	}
372 
373 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
374 	t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
375 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
376 		*(const u8 *)cmd, mbox);
377 	t4_report_fw_error(adap);
378 	return ret;
379 }
380 
381 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
382 		    void *rpl, bool sleep_ok)
383 {
384 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
385 				       FW_CMD_MAX_TIMEOUT);
386 }
387 
388 static int t4_edc_err_read(struct adapter *adap, int idx)
389 {
390 	u32 edc_ecc_err_addr_reg;
391 	u32 rdata_reg;
392 
393 	if (is_t4(adap->params.chip)) {
394 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
395 		return 0;
396 	}
397 	if (idx != 0 && idx != 1) {
398 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
399 		return 0;
400 	}
401 
402 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
403 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
404 
405 	CH_WARN(adap,
406 		"edc%d err addr 0x%x: 0x%x.\n",
407 		idx, edc_ecc_err_addr_reg,
408 		t4_read_reg(adap, edc_ecc_err_addr_reg));
409 	CH_WARN(adap,
410 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
411 		rdata_reg,
412 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
413 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
414 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
415 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
416 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
417 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
418 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
419 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
420 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
421 
422 	return 0;
423 }
424 
425 /**
426  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
427  *	@adap: the adapter
428  *	@win: PCI-E Memory Window to use
429  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
430  *	@addr: address within indicated memory type
431  *	@len: amount of memory to transfer
432  *	@hbuf: host memory buffer
433  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
434  *
435  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
436  *	firmware memory address and host buffer must be aligned on 32-bit
437  *	boudaries; the length may be arbitrary.  The memory is transferred as
438  *	a raw byte sequence from/to the firmware's memory.  If this memory
439  *	contains data structures which contain multi-byte integers, it's the
440  *	caller's responsibility to perform appropriate byte order conversions.
441  */
442 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
443 		 u32 len, void *hbuf, int dir)
444 {
445 	u32 pos, offset, resid, memoffset;
446 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
447 	u32 *buf;
448 
449 	/* Argument sanity checks ...
450 	 */
451 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
452 		return -EINVAL;
453 	buf = (u32 *)hbuf;
454 
455 	/* It's convenient to be able to handle lengths which aren't a
456 	 * multiple of 32-bits because we often end up transferring files to
457 	 * the firmware.  So we'll handle that by normalizing the length here
458 	 * and then handling any residual transfer at the end.
459 	 */
460 	resid = len & 0x3;
461 	len -= resid;
462 
463 	/* Offset into the region of memory which is being accessed
464 	 * MEM_EDC0 = 0
465 	 * MEM_EDC1 = 1
466 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
467 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
468 	 */
469 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
470 	if (mtype != MEM_MC1)
471 		memoffset = (mtype * (edc_size * 1024 * 1024));
472 	else {
473 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
474 						      MA_EXT_MEMORY0_BAR_A));
475 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
476 	}
477 
478 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
479 	addr = addr + memoffset;
480 
481 	/* Each PCI-E Memory Window is programmed with a window size -- or
482 	 * "aperture" -- which controls the granularity of its mapping onto
483 	 * adapter memory.  We need to grab that aperture in order to know
484 	 * how to use the specified window.  The window is also programmed
485 	 * with the base address of the Memory Window in BAR0's address
486 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
487 	 * the address is relative to BAR0.
488 	 */
489 	mem_reg = t4_read_reg(adap,
490 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
491 						  win));
492 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
493 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
494 	if (is_t4(adap->params.chip))
495 		mem_base -= adap->t4_bar0;
496 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
497 
498 	/* Calculate our initial PCI-E Memory Window Position and Offset into
499 	 * that Window.
500 	 */
501 	pos = addr & ~(mem_aperture-1);
502 	offset = addr - pos;
503 
504 	/* Set up initial PCI-E Memory Window to cover the start of our
505 	 * transfer.  (Read it back to ensure that changes propagate before we
506 	 * attempt to use the new value.)
507 	 */
508 	t4_write_reg(adap,
509 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
510 		     pos | win_pf);
511 	t4_read_reg(adap,
512 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
513 
514 	/* Transfer data to/from the adapter as long as there's an integral
515 	 * number of 32-bit transfers to complete.
516 	 *
517 	 * A note on Endianness issues:
518 	 *
519 	 * The "register" reads and writes below from/to the PCI-E Memory
520 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
521 	 * Little-Endian "swizzel."  As a result, if we have the following
522 	 * data in adapter memory:
523 	 *
524 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
525 	 *     Address:      i+0  i+1  i+2  i+3
526 	 *
527 	 * Then a read of the adapter memory via the PCI-E Memory Window
528 	 * will yield:
529 	 *
530 	 *     x = readl(i)
531 	 *         31                  0
532 	 *         [ b3 | b2 | b1 | b0 ]
533 	 *
534 	 * If this value is stored into local memory on a Little-Endian system
535 	 * it will show up correctly in local memory as:
536 	 *
537 	 *     ( ..., b0, b1, b2, b3, ... )
538 	 *
539 	 * But on a Big-Endian system, the store will show up in memory
540 	 * incorrectly swizzled as:
541 	 *
542 	 *     ( ..., b3, b2, b1, b0, ... )
543 	 *
544 	 * So we need to account for this in the reads and writes to the
545 	 * PCI-E Memory Window below by undoing the register read/write
546 	 * swizzels.
547 	 */
548 	while (len > 0) {
549 		if (dir == T4_MEMORY_READ)
550 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
551 						mem_base + offset));
552 		else
553 			t4_write_reg(adap, mem_base + offset,
554 				     (__force u32)cpu_to_le32(*buf++));
555 		offset += sizeof(__be32);
556 		len -= sizeof(__be32);
557 
558 		/* If we've reached the end of our current window aperture,
559 		 * move the PCI-E Memory Window on to the next.  Note that
560 		 * doing this here after "len" may be 0 allows us to set up
561 		 * the PCI-E Memory Window for a possible final residual
562 		 * transfer below ...
563 		 */
564 		if (offset == mem_aperture) {
565 			pos += mem_aperture;
566 			offset = 0;
567 			t4_write_reg(adap,
568 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
569 						    win), pos | win_pf);
570 			t4_read_reg(adap,
571 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
572 						    win));
573 		}
574 	}
575 
576 	/* If the original transfer had a length which wasn't a multiple of
577 	 * 32-bits, now's where we need to finish off the transfer of the
578 	 * residual amount.  The PCI-E Memory Window has already been moved
579 	 * above (if necessary) to cover this final transfer.
580 	 */
581 	if (resid) {
582 		union {
583 			u32 word;
584 			char byte[4];
585 		} last;
586 		unsigned char *bp;
587 		int i;
588 
589 		if (dir == T4_MEMORY_READ) {
590 			last.word = le32_to_cpu(
591 					(__force __le32)t4_read_reg(adap,
592 						mem_base + offset));
593 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
594 				bp[i] = last.byte[i];
595 		} else {
596 			last.word = *buf;
597 			for (i = resid; i < 4; i++)
598 				last.byte[i] = 0;
599 			t4_write_reg(adap, mem_base + offset,
600 				     (__force u32)cpu_to_le32(last.word));
601 		}
602 	}
603 
604 	return 0;
605 }
606 
607 /* Return the specified PCI-E Configuration Space register from our Physical
608  * Function.  We try first via a Firmware LDST Command since we prefer to let
609  * the firmware own all of these registers, but if that fails we go for it
610  * directly ourselves.
611  */
612 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
613 {
614 	u32 val, ldst_addrspace;
615 
616 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
617 	 * retrieve the specified PCI-E Configuration Space register.
618 	 */
619 	struct fw_ldst_cmd ldst_cmd;
620 	int ret;
621 
622 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
623 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
624 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
625 					       FW_CMD_REQUEST_F |
626 					       FW_CMD_READ_F |
627 					       ldst_addrspace);
628 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
629 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
630 	ldst_cmd.u.pcie.ctrl_to_fn =
631 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
632 	ldst_cmd.u.pcie.r = reg;
633 
634 	/* If the LDST Command succeeds, return the result, otherwise
635 	 * fall through to reading it directly ourselves ...
636 	 */
637 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
638 			 &ldst_cmd);
639 	if (ret == 0)
640 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
641 	else
642 		/* Read the desired Configuration Space register via the PCI-E
643 		 * Backdoor mechanism.
644 		 */
645 		t4_hw_pci_read_cfg4(adap, reg, &val);
646 	return val;
647 }
648 
649 /* Get the window based on base passed to it.
650  * Window aperture is currently unhandled, but there is no use case for it
651  * right now
652  */
653 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
654 			 u32 memwin_base)
655 {
656 	u32 ret;
657 
658 	if (is_t4(adap->params.chip)) {
659 		u32 bar0;
660 
661 		/* Truncation intentional: we only read the bottom 32-bits of
662 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
663 		 * mechanism to read BAR0 instead of using
664 		 * pci_resource_start() because we could be operating from
665 		 * within a Virtual Machine which is trapping our accesses to
666 		 * our Configuration Space and we need to set up the PCI-E
667 		 * Memory Window decoders with the actual addresses which will
668 		 * be coming across the PCI-E link.
669 		 */
670 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
671 		bar0 &= pci_mask;
672 		adap->t4_bar0 = bar0;
673 
674 		ret = bar0 + memwin_base;
675 	} else {
676 		/* For T5, only relative offset inside the PCIe BAR is passed */
677 		ret = memwin_base;
678 	}
679 	return ret;
680 }
681 
682 /* Get the default utility window (win0) used by everyone */
683 u32 t4_get_util_window(struct adapter *adap)
684 {
685 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
686 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
687 }
688 
689 /* Set up memory window for accessing adapter memory ranges.  (Read
690  * back MA register to ensure that changes propagate before we attempt
691  * to use the new values.)
692  */
693 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
694 {
695 	t4_write_reg(adap,
696 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
697 		     memwin_base | BIR_V(0) |
698 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
699 	t4_read_reg(adap,
700 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
701 }
702 
703 /**
704  *	t4_get_regs_len - return the size of the chips register set
705  *	@adapter: the adapter
706  *
707  *	Returns the size of the chip's BAR0 register space.
708  */
709 unsigned int t4_get_regs_len(struct adapter *adapter)
710 {
711 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
712 
713 	switch (chip_version) {
714 	case CHELSIO_T4:
715 		return T4_REGMAP_SIZE;
716 
717 	case CHELSIO_T5:
718 	case CHELSIO_T6:
719 		return T5_REGMAP_SIZE;
720 	}
721 
722 	dev_err(adapter->pdev_dev,
723 		"Unsupported chip version %d\n", chip_version);
724 	return 0;
725 }
726 
727 /**
728  *	t4_get_regs - read chip registers into provided buffer
729  *	@adap: the adapter
730  *	@buf: register buffer
731  *	@buf_size: size (in bytes) of register buffer
732  *
733  *	If the provided register buffer isn't large enough for the chip's
734  *	full register range, the register dump will be truncated to the
735  *	register buffer's size.
736  */
737 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
738 {
739 	static const unsigned int t4_reg_ranges[] = {
740 		0x1008, 0x1108,
741 		0x1180, 0x1184,
742 		0x1190, 0x1194,
743 		0x11a0, 0x11a4,
744 		0x11b0, 0x11b4,
745 		0x11fc, 0x123c,
746 		0x1300, 0x173c,
747 		0x1800, 0x18fc,
748 		0x3000, 0x30d8,
749 		0x30e0, 0x30e4,
750 		0x30ec, 0x5910,
751 		0x5920, 0x5924,
752 		0x5960, 0x5960,
753 		0x5968, 0x5968,
754 		0x5970, 0x5970,
755 		0x5978, 0x5978,
756 		0x5980, 0x5980,
757 		0x5988, 0x5988,
758 		0x5990, 0x5990,
759 		0x5998, 0x5998,
760 		0x59a0, 0x59d4,
761 		0x5a00, 0x5ae0,
762 		0x5ae8, 0x5ae8,
763 		0x5af0, 0x5af0,
764 		0x5af8, 0x5af8,
765 		0x6000, 0x6098,
766 		0x6100, 0x6150,
767 		0x6200, 0x6208,
768 		0x6240, 0x6248,
769 		0x6280, 0x62b0,
770 		0x62c0, 0x6338,
771 		0x6370, 0x638c,
772 		0x6400, 0x643c,
773 		0x6500, 0x6524,
774 		0x6a00, 0x6a04,
775 		0x6a14, 0x6a38,
776 		0x6a60, 0x6a70,
777 		0x6a78, 0x6a78,
778 		0x6b00, 0x6b0c,
779 		0x6b1c, 0x6b84,
780 		0x6bf0, 0x6bf8,
781 		0x6c00, 0x6c0c,
782 		0x6c1c, 0x6c84,
783 		0x6cf0, 0x6cf8,
784 		0x6d00, 0x6d0c,
785 		0x6d1c, 0x6d84,
786 		0x6df0, 0x6df8,
787 		0x6e00, 0x6e0c,
788 		0x6e1c, 0x6e84,
789 		0x6ef0, 0x6ef8,
790 		0x6f00, 0x6f0c,
791 		0x6f1c, 0x6f84,
792 		0x6ff0, 0x6ff8,
793 		0x7000, 0x700c,
794 		0x701c, 0x7084,
795 		0x70f0, 0x70f8,
796 		0x7100, 0x710c,
797 		0x711c, 0x7184,
798 		0x71f0, 0x71f8,
799 		0x7200, 0x720c,
800 		0x721c, 0x7284,
801 		0x72f0, 0x72f8,
802 		0x7300, 0x730c,
803 		0x731c, 0x7384,
804 		0x73f0, 0x73f8,
805 		0x7400, 0x7450,
806 		0x7500, 0x7530,
807 		0x7600, 0x760c,
808 		0x7614, 0x761c,
809 		0x7680, 0x76cc,
810 		0x7700, 0x7798,
811 		0x77c0, 0x77fc,
812 		0x7900, 0x79fc,
813 		0x7b00, 0x7b58,
814 		0x7b60, 0x7b84,
815 		0x7b8c, 0x7c38,
816 		0x7d00, 0x7d38,
817 		0x7d40, 0x7d80,
818 		0x7d8c, 0x7ddc,
819 		0x7de4, 0x7e04,
820 		0x7e10, 0x7e1c,
821 		0x7e24, 0x7e38,
822 		0x7e40, 0x7e44,
823 		0x7e4c, 0x7e78,
824 		0x7e80, 0x7ea4,
825 		0x7eac, 0x7edc,
826 		0x7ee8, 0x7efc,
827 		0x8dc0, 0x8e04,
828 		0x8e10, 0x8e1c,
829 		0x8e30, 0x8e78,
830 		0x8ea0, 0x8eb8,
831 		0x8ec0, 0x8f6c,
832 		0x8fc0, 0x9008,
833 		0x9010, 0x9058,
834 		0x9060, 0x9060,
835 		0x9068, 0x9074,
836 		0x90fc, 0x90fc,
837 		0x9400, 0x9408,
838 		0x9410, 0x9458,
839 		0x9600, 0x9600,
840 		0x9608, 0x9638,
841 		0x9640, 0x96bc,
842 		0x9800, 0x9808,
843 		0x9820, 0x983c,
844 		0x9850, 0x9864,
845 		0x9c00, 0x9c6c,
846 		0x9c80, 0x9cec,
847 		0x9d00, 0x9d6c,
848 		0x9d80, 0x9dec,
849 		0x9e00, 0x9e6c,
850 		0x9e80, 0x9eec,
851 		0x9f00, 0x9f6c,
852 		0x9f80, 0x9fec,
853 		0xd004, 0xd004,
854 		0xd010, 0xd03c,
855 		0xdfc0, 0xdfe0,
856 		0xe000, 0xea7c,
857 		0xf000, 0x11190,
858 		0x19040, 0x1906c,
859 		0x19078, 0x19080,
860 		0x1908c, 0x190e4,
861 		0x190f0, 0x190f8,
862 		0x19100, 0x19110,
863 		0x19120, 0x19124,
864 		0x19150, 0x19194,
865 		0x1919c, 0x191b0,
866 		0x191d0, 0x191e8,
867 		0x19238, 0x1924c,
868 		0x193f8, 0x1943c,
869 		0x1944c, 0x19474,
870 		0x19490, 0x194e0,
871 		0x194f0, 0x194f8,
872 		0x19800, 0x19c08,
873 		0x19c10, 0x19c90,
874 		0x19ca0, 0x19ce4,
875 		0x19cf0, 0x19d40,
876 		0x19d50, 0x19d94,
877 		0x19da0, 0x19de8,
878 		0x19df0, 0x19e40,
879 		0x19e50, 0x19e90,
880 		0x19ea0, 0x19f4c,
881 		0x1a000, 0x1a004,
882 		0x1a010, 0x1a06c,
883 		0x1a0b0, 0x1a0e4,
884 		0x1a0ec, 0x1a0f4,
885 		0x1a100, 0x1a108,
886 		0x1a114, 0x1a120,
887 		0x1a128, 0x1a130,
888 		0x1a138, 0x1a138,
889 		0x1a190, 0x1a1c4,
890 		0x1a1fc, 0x1a1fc,
891 		0x1e040, 0x1e04c,
892 		0x1e284, 0x1e28c,
893 		0x1e2c0, 0x1e2c0,
894 		0x1e2e0, 0x1e2e0,
895 		0x1e300, 0x1e384,
896 		0x1e3c0, 0x1e3c8,
897 		0x1e440, 0x1e44c,
898 		0x1e684, 0x1e68c,
899 		0x1e6c0, 0x1e6c0,
900 		0x1e6e0, 0x1e6e0,
901 		0x1e700, 0x1e784,
902 		0x1e7c0, 0x1e7c8,
903 		0x1e840, 0x1e84c,
904 		0x1ea84, 0x1ea8c,
905 		0x1eac0, 0x1eac0,
906 		0x1eae0, 0x1eae0,
907 		0x1eb00, 0x1eb84,
908 		0x1ebc0, 0x1ebc8,
909 		0x1ec40, 0x1ec4c,
910 		0x1ee84, 0x1ee8c,
911 		0x1eec0, 0x1eec0,
912 		0x1eee0, 0x1eee0,
913 		0x1ef00, 0x1ef84,
914 		0x1efc0, 0x1efc8,
915 		0x1f040, 0x1f04c,
916 		0x1f284, 0x1f28c,
917 		0x1f2c0, 0x1f2c0,
918 		0x1f2e0, 0x1f2e0,
919 		0x1f300, 0x1f384,
920 		0x1f3c0, 0x1f3c8,
921 		0x1f440, 0x1f44c,
922 		0x1f684, 0x1f68c,
923 		0x1f6c0, 0x1f6c0,
924 		0x1f6e0, 0x1f6e0,
925 		0x1f700, 0x1f784,
926 		0x1f7c0, 0x1f7c8,
927 		0x1f840, 0x1f84c,
928 		0x1fa84, 0x1fa8c,
929 		0x1fac0, 0x1fac0,
930 		0x1fae0, 0x1fae0,
931 		0x1fb00, 0x1fb84,
932 		0x1fbc0, 0x1fbc8,
933 		0x1fc40, 0x1fc4c,
934 		0x1fe84, 0x1fe8c,
935 		0x1fec0, 0x1fec0,
936 		0x1fee0, 0x1fee0,
937 		0x1ff00, 0x1ff84,
938 		0x1ffc0, 0x1ffc8,
939 		0x20000, 0x2002c,
940 		0x20100, 0x2013c,
941 		0x20190, 0x201a0,
942 		0x201a8, 0x201b8,
943 		0x201c4, 0x201c8,
944 		0x20200, 0x20318,
945 		0x20400, 0x204b4,
946 		0x204c0, 0x20528,
947 		0x20540, 0x20614,
948 		0x21000, 0x21040,
949 		0x2104c, 0x21060,
950 		0x210c0, 0x210ec,
951 		0x21200, 0x21268,
952 		0x21270, 0x21284,
953 		0x212fc, 0x21388,
954 		0x21400, 0x21404,
955 		0x21500, 0x21500,
956 		0x21510, 0x21518,
957 		0x2152c, 0x21530,
958 		0x2153c, 0x2153c,
959 		0x21550, 0x21554,
960 		0x21600, 0x21600,
961 		0x21608, 0x2161c,
962 		0x21624, 0x21628,
963 		0x21630, 0x21634,
964 		0x2163c, 0x2163c,
965 		0x21700, 0x2171c,
966 		0x21780, 0x2178c,
967 		0x21800, 0x21818,
968 		0x21820, 0x21828,
969 		0x21830, 0x21848,
970 		0x21850, 0x21854,
971 		0x21860, 0x21868,
972 		0x21870, 0x21870,
973 		0x21878, 0x21898,
974 		0x218a0, 0x218a8,
975 		0x218b0, 0x218c8,
976 		0x218d0, 0x218d4,
977 		0x218e0, 0x218e8,
978 		0x218f0, 0x218f0,
979 		0x218f8, 0x21a18,
980 		0x21a20, 0x21a28,
981 		0x21a30, 0x21a48,
982 		0x21a50, 0x21a54,
983 		0x21a60, 0x21a68,
984 		0x21a70, 0x21a70,
985 		0x21a78, 0x21a98,
986 		0x21aa0, 0x21aa8,
987 		0x21ab0, 0x21ac8,
988 		0x21ad0, 0x21ad4,
989 		0x21ae0, 0x21ae8,
990 		0x21af0, 0x21af0,
991 		0x21af8, 0x21c18,
992 		0x21c20, 0x21c20,
993 		0x21c28, 0x21c30,
994 		0x21c38, 0x21c38,
995 		0x21c80, 0x21c98,
996 		0x21ca0, 0x21ca8,
997 		0x21cb0, 0x21cc8,
998 		0x21cd0, 0x21cd4,
999 		0x21ce0, 0x21ce8,
1000 		0x21cf0, 0x21cf0,
1001 		0x21cf8, 0x21d7c,
1002 		0x21e00, 0x21e04,
1003 		0x22000, 0x2202c,
1004 		0x22100, 0x2213c,
1005 		0x22190, 0x221a0,
1006 		0x221a8, 0x221b8,
1007 		0x221c4, 0x221c8,
1008 		0x22200, 0x22318,
1009 		0x22400, 0x224b4,
1010 		0x224c0, 0x22528,
1011 		0x22540, 0x22614,
1012 		0x23000, 0x23040,
1013 		0x2304c, 0x23060,
1014 		0x230c0, 0x230ec,
1015 		0x23200, 0x23268,
1016 		0x23270, 0x23284,
1017 		0x232fc, 0x23388,
1018 		0x23400, 0x23404,
1019 		0x23500, 0x23500,
1020 		0x23510, 0x23518,
1021 		0x2352c, 0x23530,
1022 		0x2353c, 0x2353c,
1023 		0x23550, 0x23554,
1024 		0x23600, 0x23600,
1025 		0x23608, 0x2361c,
1026 		0x23624, 0x23628,
1027 		0x23630, 0x23634,
1028 		0x2363c, 0x2363c,
1029 		0x23700, 0x2371c,
1030 		0x23780, 0x2378c,
1031 		0x23800, 0x23818,
1032 		0x23820, 0x23828,
1033 		0x23830, 0x23848,
1034 		0x23850, 0x23854,
1035 		0x23860, 0x23868,
1036 		0x23870, 0x23870,
1037 		0x23878, 0x23898,
1038 		0x238a0, 0x238a8,
1039 		0x238b0, 0x238c8,
1040 		0x238d0, 0x238d4,
1041 		0x238e0, 0x238e8,
1042 		0x238f0, 0x238f0,
1043 		0x238f8, 0x23a18,
1044 		0x23a20, 0x23a28,
1045 		0x23a30, 0x23a48,
1046 		0x23a50, 0x23a54,
1047 		0x23a60, 0x23a68,
1048 		0x23a70, 0x23a70,
1049 		0x23a78, 0x23a98,
1050 		0x23aa0, 0x23aa8,
1051 		0x23ab0, 0x23ac8,
1052 		0x23ad0, 0x23ad4,
1053 		0x23ae0, 0x23ae8,
1054 		0x23af0, 0x23af0,
1055 		0x23af8, 0x23c18,
1056 		0x23c20, 0x23c20,
1057 		0x23c28, 0x23c30,
1058 		0x23c38, 0x23c38,
1059 		0x23c80, 0x23c98,
1060 		0x23ca0, 0x23ca8,
1061 		0x23cb0, 0x23cc8,
1062 		0x23cd0, 0x23cd4,
1063 		0x23ce0, 0x23ce8,
1064 		0x23cf0, 0x23cf0,
1065 		0x23cf8, 0x23d7c,
1066 		0x23e00, 0x23e04,
1067 		0x24000, 0x2402c,
1068 		0x24100, 0x2413c,
1069 		0x24190, 0x241a0,
1070 		0x241a8, 0x241b8,
1071 		0x241c4, 0x241c8,
1072 		0x24200, 0x24318,
1073 		0x24400, 0x244b4,
1074 		0x244c0, 0x24528,
1075 		0x24540, 0x24614,
1076 		0x25000, 0x25040,
1077 		0x2504c, 0x25060,
1078 		0x250c0, 0x250ec,
1079 		0x25200, 0x25268,
1080 		0x25270, 0x25284,
1081 		0x252fc, 0x25388,
1082 		0x25400, 0x25404,
1083 		0x25500, 0x25500,
1084 		0x25510, 0x25518,
1085 		0x2552c, 0x25530,
1086 		0x2553c, 0x2553c,
1087 		0x25550, 0x25554,
1088 		0x25600, 0x25600,
1089 		0x25608, 0x2561c,
1090 		0x25624, 0x25628,
1091 		0x25630, 0x25634,
1092 		0x2563c, 0x2563c,
1093 		0x25700, 0x2571c,
1094 		0x25780, 0x2578c,
1095 		0x25800, 0x25818,
1096 		0x25820, 0x25828,
1097 		0x25830, 0x25848,
1098 		0x25850, 0x25854,
1099 		0x25860, 0x25868,
1100 		0x25870, 0x25870,
1101 		0x25878, 0x25898,
1102 		0x258a0, 0x258a8,
1103 		0x258b0, 0x258c8,
1104 		0x258d0, 0x258d4,
1105 		0x258e0, 0x258e8,
1106 		0x258f0, 0x258f0,
1107 		0x258f8, 0x25a18,
1108 		0x25a20, 0x25a28,
1109 		0x25a30, 0x25a48,
1110 		0x25a50, 0x25a54,
1111 		0x25a60, 0x25a68,
1112 		0x25a70, 0x25a70,
1113 		0x25a78, 0x25a98,
1114 		0x25aa0, 0x25aa8,
1115 		0x25ab0, 0x25ac8,
1116 		0x25ad0, 0x25ad4,
1117 		0x25ae0, 0x25ae8,
1118 		0x25af0, 0x25af0,
1119 		0x25af8, 0x25c18,
1120 		0x25c20, 0x25c20,
1121 		0x25c28, 0x25c30,
1122 		0x25c38, 0x25c38,
1123 		0x25c80, 0x25c98,
1124 		0x25ca0, 0x25ca8,
1125 		0x25cb0, 0x25cc8,
1126 		0x25cd0, 0x25cd4,
1127 		0x25ce0, 0x25ce8,
1128 		0x25cf0, 0x25cf0,
1129 		0x25cf8, 0x25d7c,
1130 		0x25e00, 0x25e04,
1131 		0x26000, 0x2602c,
1132 		0x26100, 0x2613c,
1133 		0x26190, 0x261a0,
1134 		0x261a8, 0x261b8,
1135 		0x261c4, 0x261c8,
1136 		0x26200, 0x26318,
1137 		0x26400, 0x264b4,
1138 		0x264c0, 0x26528,
1139 		0x26540, 0x26614,
1140 		0x27000, 0x27040,
1141 		0x2704c, 0x27060,
1142 		0x270c0, 0x270ec,
1143 		0x27200, 0x27268,
1144 		0x27270, 0x27284,
1145 		0x272fc, 0x27388,
1146 		0x27400, 0x27404,
1147 		0x27500, 0x27500,
1148 		0x27510, 0x27518,
1149 		0x2752c, 0x27530,
1150 		0x2753c, 0x2753c,
1151 		0x27550, 0x27554,
1152 		0x27600, 0x27600,
1153 		0x27608, 0x2761c,
1154 		0x27624, 0x27628,
1155 		0x27630, 0x27634,
1156 		0x2763c, 0x2763c,
1157 		0x27700, 0x2771c,
1158 		0x27780, 0x2778c,
1159 		0x27800, 0x27818,
1160 		0x27820, 0x27828,
1161 		0x27830, 0x27848,
1162 		0x27850, 0x27854,
1163 		0x27860, 0x27868,
1164 		0x27870, 0x27870,
1165 		0x27878, 0x27898,
1166 		0x278a0, 0x278a8,
1167 		0x278b0, 0x278c8,
1168 		0x278d0, 0x278d4,
1169 		0x278e0, 0x278e8,
1170 		0x278f0, 0x278f0,
1171 		0x278f8, 0x27a18,
1172 		0x27a20, 0x27a28,
1173 		0x27a30, 0x27a48,
1174 		0x27a50, 0x27a54,
1175 		0x27a60, 0x27a68,
1176 		0x27a70, 0x27a70,
1177 		0x27a78, 0x27a98,
1178 		0x27aa0, 0x27aa8,
1179 		0x27ab0, 0x27ac8,
1180 		0x27ad0, 0x27ad4,
1181 		0x27ae0, 0x27ae8,
1182 		0x27af0, 0x27af0,
1183 		0x27af8, 0x27c18,
1184 		0x27c20, 0x27c20,
1185 		0x27c28, 0x27c30,
1186 		0x27c38, 0x27c38,
1187 		0x27c80, 0x27c98,
1188 		0x27ca0, 0x27ca8,
1189 		0x27cb0, 0x27cc8,
1190 		0x27cd0, 0x27cd4,
1191 		0x27ce0, 0x27ce8,
1192 		0x27cf0, 0x27cf0,
1193 		0x27cf8, 0x27d7c,
1194 		0x27e00, 0x27e04,
1195 	};
1196 
1197 	static const unsigned int t5_reg_ranges[] = {
1198 		0x1008, 0x10c0,
1199 		0x10cc, 0x10f8,
1200 		0x1100, 0x1100,
1201 		0x110c, 0x1148,
1202 		0x1180, 0x1184,
1203 		0x1190, 0x1194,
1204 		0x11a0, 0x11a4,
1205 		0x11b0, 0x11b4,
1206 		0x11fc, 0x123c,
1207 		0x1280, 0x173c,
1208 		0x1800, 0x18fc,
1209 		0x3000, 0x3028,
1210 		0x3060, 0x30b0,
1211 		0x30b8, 0x30d8,
1212 		0x30e0, 0x30fc,
1213 		0x3140, 0x357c,
1214 		0x35a8, 0x35cc,
1215 		0x35ec, 0x35ec,
1216 		0x3600, 0x5624,
1217 		0x56cc, 0x56ec,
1218 		0x56f4, 0x5720,
1219 		0x5728, 0x575c,
1220 		0x580c, 0x5814,
1221 		0x5890, 0x589c,
1222 		0x58a4, 0x58ac,
1223 		0x58b8, 0x58bc,
1224 		0x5940, 0x59c8,
1225 		0x59d0, 0x59dc,
1226 		0x59fc, 0x5a18,
1227 		0x5a60, 0x5a70,
1228 		0x5a80, 0x5a9c,
1229 		0x5b94, 0x5bfc,
1230 		0x6000, 0x6020,
1231 		0x6028, 0x6040,
1232 		0x6058, 0x609c,
1233 		0x60a8, 0x614c,
1234 		0x7700, 0x7798,
1235 		0x77c0, 0x78fc,
1236 		0x7b00, 0x7b58,
1237 		0x7b60, 0x7b84,
1238 		0x7b8c, 0x7c54,
1239 		0x7d00, 0x7d38,
1240 		0x7d40, 0x7d80,
1241 		0x7d8c, 0x7ddc,
1242 		0x7de4, 0x7e04,
1243 		0x7e10, 0x7e1c,
1244 		0x7e24, 0x7e38,
1245 		0x7e40, 0x7e44,
1246 		0x7e4c, 0x7e78,
1247 		0x7e80, 0x7edc,
1248 		0x7ee8, 0x7efc,
1249 		0x8dc0, 0x8de0,
1250 		0x8df8, 0x8e04,
1251 		0x8e10, 0x8e84,
1252 		0x8ea0, 0x8f84,
1253 		0x8fc0, 0x9058,
1254 		0x9060, 0x9060,
1255 		0x9068, 0x90f8,
1256 		0x9400, 0x9408,
1257 		0x9410, 0x9470,
1258 		0x9600, 0x9600,
1259 		0x9608, 0x9638,
1260 		0x9640, 0x96f4,
1261 		0x9800, 0x9808,
1262 		0x9820, 0x983c,
1263 		0x9850, 0x9864,
1264 		0x9c00, 0x9c6c,
1265 		0x9c80, 0x9cec,
1266 		0x9d00, 0x9d6c,
1267 		0x9d80, 0x9dec,
1268 		0x9e00, 0x9e6c,
1269 		0x9e80, 0x9eec,
1270 		0x9f00, 0x9f6c,
1271 		0x9f80, 0xa020,
1272 		0xd004, 0xd004,
1273 		0xd010, 0xd03c,
1274 		0xdfc0, 0xdfe0,
1275 		0xe000, 0x1106c,
1276 		0x11074, 0x11088,
1277 		0x1109c, 0x1117c,
1278 		0x11190, 0x11204,
1279 		0x19040, 0x1906c,
1280 		0x19078, 0x19080,
1281 		0x1908c, 0x190e8,
1282 		0x190f0, 0x190f8,
1283 		0x19100, 0x19110,
1284 		0x19120, 0x19124,
1285 		0x19150, 0x19194,
1286 		0x1919c, 0x191b0,
1287 		0x191d0, 0x191e8,
1288 		0x19238, 0x19290,
1289 		0x193f8, 0x19428,
1290 		0x19430, 0x19444,
1291 		0x1944c, 0x1946c,
1292 		0x19474, 0x19474,
1293 		0x19490, 0x194cc,
1294 		0x194f0, 0x194f8,
1295 		0x19c00, 0x19c08,
1296 		0x19c10, 0x19c60,
1297 		0x19c94, 0x19ce4,
1298 		0x19cf0, 0x19d40,
1299 		0x19d50, 0x19d94,
1300 		0x19da0, 0x19de8,
1301 		0x19df0, 0x19e10,
1302 		0x19e50, 0x19e90,
1303 		0x19ea0, 0x19f24,
1304 		0x19f34, 0x19f34,
1305 		0x19f40, 0x19f50,
1306 		0x19f90, 0x19fb4,
1307 		0x19fc4, 0x19fe4,
1308 		0x1a000, 0x1a004,
1309 		0x1a010, 0x1a06c,
1310 		0x1a0b0, 0x1a0e4,
1311 		0x1a0ec, 0x1a0f8,
1312 		0x1a100, 0x1a108,
1313 		0x1a114, 0x1a120,
1314 		0x1a128, 0x1a130,
1315 		0x1a138, 0x1a138,
1316 		0x1a190, 0x1a1c4,
1317 		0x1a1fc, 0x1a1fc,
1318 		0x1e008, 0x1e00c,
1319 		0x1e040, 0x1e044,
1320 		0x1e04c, 0x1e04c,
1321 		0x1e284, 0x1e290,
1322 		0x1e2c0, 0x1e2c0,
1323 		0x1e2e0, 0x1e2e0,
1324 		0x1e300, 0x1e384,
1325 		0x1e3c0, 0x1e3c8,
1326 		0x1e408, 0x1e40c,
1327 		0x1e440, 0x1e444,
1328 		0x1e44c, 0x1e44c,
1329 		0x1e684, 0x1e690,
1330 		0x1e6c0, 0x1e6c0,
1331 		0x1e6e0, 0x1e6e0,
1332 		0x1e700, 0x1e784,
1333 		0x1e7c0, 0x1e7c8,
1334 		0x1e808, 0x1e80c,
1335 		0x1e840, 0x1e844,
1336 		0x1e84c, 0x1e84c,
1337 		0x1ea84, 0x1ea90,
1338 		0x1eac0, 0x1eac0,
1339 		0x1eae0, 0x1eae0,
1340 		0x1eb00, 0x1eb84,
1341 		0x1ebc0, 0x1ebc8,
1342 		0x1ec08, 0x1ec0c,
1343 		0x1ec40, 0x1ec44,
1344 		0x1ec4c, 0x1ec4c,
1345 		0x1ee84, 0x1ee90,
1346 		0x1eec0, 0x1eec0,
1347 		0x1eee0, 0x1eee0,
1348 		0x1ef00, 0x1ef84,
1349 		0x1efc0, 0x1efc8,
1350 		0x1f008, 0x1f00c,
1351 		0x1f040, 0x1f044,
1352 		0x1f04c, 0x1f04c,
1353 		0x1f284, 0x1f290,
1354 		0x1f2c0, 0x1f2c0,
1355 		0x1f2e0, 0x1f2e0,
1356 		0x1f300, 0x1f384,
1357 		0x1f3c0, 0x1f3c8,
1358 		0x1f408, 0x1f40c,
1359 		0x1f440, 0x1f444,
1360 		0x1f44c, 0x1f44c,
1361 		0x1f684, 0x1f690,
1362 		0x1f6c0, 0x1f6c0,
1363 		0x1f6e0, 0x1f6e0,
1364 		0x1f700, 0x1f784,
1365 		0x1f7c0, 0x1f7c8,
1366 		0x1f808, 0x1f80c,
1367 		0x1f840, 0x1f844,
1368 		0x1f84c, 0x1f84c,
1369 		0x1fa84, 0x1fa90,
1370 		0x1fac0, 0x1fac0,
1371 		0x1fae0, 0x1fae0,
1372 		0x1fb00, 0x1fb84,
1373 		0x1fbc0, 0x1fbc8,
1374 		0x1fc08, 0x1fc0c,
1375 		0x1fc40, 0x1fc44,
1376 		0x1fc4c, 0x1fc4c,
1377 		0x1fe84, 0x1fe90,
1378 		0x1fec0, 0x1fec0,
1379 		0x1fee0, 0x1fee0,
1380 		0x1ff00, 0x1ff84,
1381 		0x1ffc0, 0x1ffc8,
1382 		0x30000, 0x30030,
1383 		0x30038, 0x30038,
1384 		0x30040, 0x30040,
1385 		0x30100, 0x30144,
1386 		0x30190, 0x301a0,
1387 		0x301a8, 0x301b8,
1388 		0x301c4, 0x301c8,
1389 		0x301d0, 0x301d0,
1390 		0x30200, 0x30318,
1391 		0x30400, 0x304b4,
1392 		0x304c0, 0x3052c,
1393 		0x30540, 0x3061c,
1394 		0x30800, 0x30828,
1395 		0x30834, 0x30834,
1396 		0x308c0, 0x30908,
1397 		0x30910, 0x309ac,
1398 		0x30a00, 0x30a14,
1399 		0x30a1c, 0x30a2c,
1400 		0x30a44, 0x30a50,
1401 		0x30a74, 0x30a74,
1402 		0x30a7c, 0x30afc,
1403 		0x30b08, 0x30c24,
1404 		0x30d00, 0x30d00,
1405 		0x30d08, 0x30d14,
1406 		0x30d1c, 0x30d20,
1407 		0x30d3c, 0x30d3c,
1408 		0x30d48, 0x30d50,
1409 		0x31200, 0x3120c,
1410 		0x31220, 0x31220,
1411 		0x31240, 0x31240,
1412 		0x31600, 0x3160c,
1413 		0x31a00, 0x31a1c,
1414 		0x31e00, 0x31e20,
1415 		0x31e38, 0x31e3c,
1416 		0x31e80, 0x31e80,
1417 		0x31e88, 0x31ea8,
1418 		0x31eb0, 0x31eb4,
1419 		0x31ec8, 0x31ed4,
1420 		0x31fb8, 0x32004,
1421 		0x32200, 0x32200,
1422 		0x32208, 0x32240,
1423 		0x32248, 0x32280,
1424 		0x32288, 0x322c0,
1425 		0x322c8, 0x322fc,
1426 		0x32600, 0x32630,
1427 		0x32a00, 0x32abc,
1428 		0x32b00, 0x32b10,
1429 		0x32b20, 0x32b30,
1430 		0x32b40, 0x32b50,
1431 		0x32b60, 0x32b70,
1432 		0x33000, 0x33028,
1433 		0x33030, 0x33048,
1434 		0x33060, 0x33068,
1435 		0x33070, 0x3309c,
1436 		0x330f0, 0x33128,
1437 		0x33130, 0x33148,
1438 		0x33160, 0x33168,
1439 		0x33170, 0x3319c,
1440 		0x331f0, 0x33238,
1441 		0x33240, 0x33240,
1442 		0x33248, 0x33250,
1443 		0x3325c, 0x33264,
1444 		0x33270, 0x332b8,
1445 		0x332c0, 0x332e4,
1446 		0x332f8, 0x33338,
1447 		0x33340, 0x33340,
1448 		0x33348, 0x33350,
1449 		0x3335c, 0x33364,
1450 		0x33370, 0x333b8,
1451 		0x333c0, 0x333e4,
1452 		0x333f8, 0x33428,
1453 		0x33430, 0x33448,
1454 		0x33460, 0x33468,
1455 		0x33470, 0x3349c,
1456 		0x334f0, 0x33528,
1457 		0x33530, 0x33548,
1458 		0x33560, 0x33568,
1459 		0x33570, 0x3359c,
1460 		0x335f0, 0x33638,
1461 		0x33640, 0x33640,
1462 		0x33648, 0x33650,
1463 		0x3365c, 0x33664,
1464 		0x33670, 0x336b8,
1465 		0x336c0, 0x336e4,
1466 		0x336f8, 0x33738,
1467 		0x33740, 0x33740,
1468 		0x33748, 0x33750,
1469 		0x3375c, 0x33764,
1470 		0x33770, 0x337b8,
1471 		0x337c0, 0x337e4,
1472 		0x337f8, 0x337fc,
1473 		0x33814, 0x33814,
1474 		0x3382c, 0x3382c,
1475 		0x33880, 0x3388c,
1476 		0x338e8, 0x338ec,
1477 		0x33900, 0x33928,
1478 		0x33930, 0x33948,
1479 		0x33960, 0x33968,
1480 		0x33970, 0x3399c,
1481 		0x339f0, 0x33a38,
1482 		0x33a40, 0x33a40,
1483 		0x33a48, 0x33a50,
1484 		0x33a5c, 0x33a64,
1485 		0x33a70, 0x33ab8,
1486 		0x33ac0, 0x33ae4,
1487 		0x33af8, 0x33b10,
1488 		0x33b28, 0x33b28,
1489 		0x33b3c, 0x33b50,
1490 		0x33bf0, 0x33c10,
1491 		0x33c28, 0x33c28,
1492 		0x33c3c, 0x33c50,
1493 		0x33cf0, 0x33cfc,
1494 		0x34000, 0x34030,
1495 		0x34038, 0x34038,
1496 		0x34040, 0x34040,
1497 		0x34100, 0x34144,
1498 		0x34190, 0x341a0,
1499 		0x341a8, 0x341b8,
1500 		0x341c4, 0x341c8,
1501 		0x341d0, 0x341d0,
1502 		0x34200, 0x34318,
1503 		0x34400, 0x344b4,
1504 		0x344c0, 0x3452c,
1505 		0x34540, 0x3461c,
1506 		0x34800, 0x34828,
1507 		0x34834, 0x34834,
1508 		0x348c0, 0x34908,
1509 		0x34910, 0x349ac,
1510 		0x34a00, 0x34a14,
1511 		0x34a1c, 0x34a2c,
1512 		0x34a44, 0x34a50,
1513 		0x34a74, 0x34a74,
1514 		0x34a7c, 0x34afc,
1515 		0x34b08, 0x34c24,
1516 		0x34d00, 0x34d00,
1517 		0x34d08, 0x34d14,
1518 		0x34d1c, 0x34d20,
1519 		0x34d3c, 0x34d3c,
1520 		0x34d48, 0x34d50,
1521 		0x35200, 0x3520c,
1522 		0x35220, 0x35220,
1523 		0x35240, 0x35240,
1524 		0x35600, 0x3560c,
1525 		0x35a00, 0x35a1c,
1526 		0x35e00, 0x35e20,
1527 		0x35e38, 0x35e3c,
1528 		0x35e80, 0x35e80,
1529 		0x35e88, 0x35ea8,
1530 		0x35eb0, 0x35eb4,
1531 		0x35ec8, 0x35ed4,
1532 		0x35fb8, 0x36004,
1533 		0x36200, 0x36200,
1534 		0x36208, 0x36240,
1535 		0x36248, 0x36280,
1536 		0x36288, 0x362c0,
1537 		0x362c8, 0x362fc,
1538 		0x36600, 0x36630,
1539 		0x36a00, 0x36abc,
1540 		0x36b00, 0x36b10,
1541 		0x36b20, 0x36b30,
1542 		0x36b40, 0x36b50,
1543 		0x36b60, 0x36b70,
1544 		0x37000, 0x37028,
1545 		0x37030, 0x37048,
1546 		0x37060, 0x37068,
1547 		0x37070, 0x3709c,
1548 		0x370f0, 0x37128,
1549 		0x37130, 0x37148,
1550 		0x37160, 0x37168,
1551 		0x37170, 0x3719c,
1552 		0x371f0, 0x37238,
1553 		0x37240, 0x37240,
1554 		0x37248, 0x37250,
1555 		0x3725c, 0x37264,
1556 		0x37270, 0x372b8,
1557 		0x372c0, 0x372e4,
1558 		0x372f8, 0x37338,
1559 		0x37340, 0x37340,
1560 		0x37348, 0x37350,
1561 		0x3735c, 0x37364,
1562 		0x37370, 0x373b8,
1563 		0x373c0, 0x373e4,
1564 		0x373f8, 0x37428,
1565 		0x37430, 0x37448,
1566 		0x37460, 0x37468,
1567 		0x37470, 0x3749c,
1568 		0x374f0, 0x37528,
1569 		0x37530, 0x37548,
1570 		0x37560, 0x37568,
1571 		0x37570, 0x3759c,
1572 		0x375f0, 0x37638,
1573 		0x37640, 0x37640,
1574 		0x37648, 0x37650,
1575 		0x3765c, 0x37664,
1576 		0x37670, 0x376b8,
1577 		0x376c0, 0x376e4,
1578 		0x376f8, 0x37738,
1579 		0x37740, 0x37740,
1580 		0x37748, 0x37750,
1581 		0x3775c, 0x37764,
1582 		0x37770, 0x377b8,
1583 		0x377c0, 0x377e4,
1584 		0x377f8, 0x377fc,
1585 		0x37814, 0x37814,
1586 		0x3782c, 0x3782c,
1587 		0x37880, 0x3788c,
1588 		0x378e8, 0x378ec,
1589 		0x37900, 0x37928,
1590 		0x37930, 0x37948,
1591 		0x37960, 0x37968,
1592 		0x37970, 0x3799c,
1593 		0x379f0, 0x37a38,
1594 		0x37a40, 0x37a40,
1595 		0x37a48, 0x37a50,
1596 		0x37a5c, 0x37a64,
1597 		0x37a70, 0x37ab8,
1598 		0x37ac0, 0x37ae4,
1599 		0x37af8, 0x37b10,
1600 		0x37b28, 0x37b28,
1601 		0x37b3c, 0x37b50,
1602 		0x37bf0, 0x37c10,
1603 		0x37c28, 0x37c28,
1604 		0x37c3c, 0x37c50,
1605 		0x37cf0, 0x37cfc,
1606 		0x38000, 0x38030,
1607 		0x38038, 0x38038,
1608 		0x38040, 0x38040,
1609 		0x38100, 0x38144,
1610 		0x38190, 0x381a0,
1611 		0x381a8, 0x381b8,
1612 		0x381c4, 0x381c8,
1613 		0x381d0, 0x381d0,
1614 		0x38200, 0x38318,
1615 		0x38400, 0x384b4,
1616 		0x384c0, 0x3852c,
1617 		0x38540, 0x3861c,
1618 		0x38800, 0x38828,
1619 		0x38834, 0x38834,
1620 		0x388c0, 0x38908,
1621 		0x38910, 0x389ac,
1622 		0x38a00, 0x38a14,
1623 		0x38a1c, 0x38a2c,
1624 		0x38a44, 0x38a50,
1625 		0x38a74, 0x38a74,
1626 		0x38a7c, 0x38afc,
1627 		0x38b08, 0x38c24,
1628 		0x38d00, 0x38d00,
1629 		0x38d08, 0x38d14,
1630 		0x38d1c, 0x38d20,
1631 		0x38d3c, 0x38d3c,
1632 		0x38d48, 0x38d50,
1633 		0x39200, 0x3920c,
1634 		0x39220, 0x39220,
1635 		0x39240, 0x39240,
1636 		0x39600, 0x3960c,
1637 		0x39a00, 0x39a1c,
1638 		0x39e00, 0x39e20,
1639 		0x39e38, 0x39e3c,
1640 		0x39e80, 0x39e80,
1641 		0x39e88, 0x39ea8,
1642 		0x39eb0, 0x39eb4,
1643 		0x39ec8, 0x39ed4,
1644 		0x39fb8, 0x3a004,
1645 		0x3a200, 0x3a200,
1646 		0x3a208, 0x3a240,
1647 		0x3a248, 0x3a280,
1648 		0x3a288, 0x3a2c0,
1649 		0x3a2c8, 0x3a2fc,
1650 		0x3a600, 0x3a630,
1651 		0x3aa00, 0x3aabc,
1652 		0x3ab00, 0x3ab10,
1653 		0x3ab20, 0x3ab30,
1654 		0x3ab40, 0x3ab50,
1655 		0x3ab60, 0x3ab70,
1656 		0x3b000, 0x3b028,
1657 		0x3b030, 0x3b048,
1658 		0x3b060, 0x3b068,
1659 		0x3b070, 0x3b09c,
1660 		0x3b0f0, 0x3b128,
1661 		0x3b130, 0x3b148,
1662 		0x3b160, 0x3b168,
1663 		0x3b170, 0x3b19c,
1664 		0x3b1f0, 0x3b238,
1665 		0x3b240, 0x3b240,
1666 		0x3b248, 0x3b250,
1667 		0x3b25c, 0x3b264,
1668 		0x3b270, 0x3b2b8,
1669 		0x3b2c0, 0x3b2e4,
1670 		0x3b2f8, 0x3b338,
1671 		0x3b340, 0x3b340,
1672 		0x3b348, 0x3b350,
1673 		0x3b35c, 0x3b364,
1674 		0x3b370, 0x3b3b8,
1675 		0x3b3c0, 0x3b3e4,
1676 		0x3b3f8, 0x3b428,
1677 		0x3b430, 0x3b448,
1678 		0x3b460, 0x3b468,
1679 		0x3b470, 0x3b49c,
1680 		0x3b4f0, 0x3b528,
1681 		0x3b530, 0x3b548,
1682 		0x3b560, 0x3b568,
1683 		0x3b570, 0x3b59c,
1684 		0x3b5f0, 0x3b638,
1685 		0x3b640, 0x3b640,
1686 		0x3b648, 0x3b650,
1687 		0x3b65c, 0x3b664,
1688 		0x3b670, 0x3b6b8,
1689 		0x3b6c0, 0x3b6e4,
1690 		0x3b6f8, 0x3b738,
1691 		0x3b740, 0x3b740,
1692 		0x3b748, 0x3b750,
1693 		0x3b75c, 0x3b764,
1694 		0x3b770, 0x3b7b8,
1695 		0x3b7c0, 0x3b7e4,
1696 		0x3b7f8, 0x3b7fc,
1697 		0x3b814, 0x3b814,
1698 		0x3b82c, 0x3b82c,
1699 		0x3b880, 0x3b88c,
1700 		0x3b8e8, 0x3b8ec,
1701 		0x3b900, 0x3b928,
1702 		0x3b930, 0x3b948,
1703 		0x3b960, 0x3b968,
1704 		0x3b970, 0x3b99c,
1705 		0x3b9f0, 0x3ba38,
1706 		0x3ba40, 0x3ba40,
1707 		0x3ba48, 0x3ba50,
1708 		0x3ba5c, 0x3ba64,
1709 		0x3ba70, 0x3bab8,
1710 		0x3bac0, 0x3bae4,
1711 		0x3baf8, 0x3bb10,
1712 		0x3bb28, 0x3bb28,
1713 		0x3bb3c, 0x3bb50,
1714 		0x3bbf0, 0x3bc10,
1715 		0x3bc28, 0x3bc28,
1716 		0x3bc3c, 0x3bc50,
1717 		0x3bcf0, 0x3bcfc,
1718 		0x3c000, 0x3c030,
1719 		0x3c038, 0x3c038,
1720 		0x3c040, 0x3c040,
1721 		0x3c100, 0x3c144,
1722 		0x3c190, 0x3c1a0,
1723 		0x3c1a8, 0x3c1b8,
1724 		0x3c1c4, 0x3c1c8,
1725 		0x3c1d0, 0x3c1d0,
1726 		0x3c200, 0x3c318,
1727 		0x3c400, 0x3c4b4,
1728 		0x3c4c0, 0x3c52c,
1729 		0x3c540, 0x3c61c,
1730 		0x3c800, 0x3c828,
1731 		0x3c834, 0x3c834,
1732 		0x3c8c0, 0x3c908,
1733 		0x3c910, 0x3c9ac,
1734 		0x3ca00, 0x3ca14,
1735 		0x3ca1c, 0x3ca2c,
1736 		0x3ca44, 0x3ca50,
1737 		0x3ca74, 0x3ca74,
1738 		0x3ca7c, 0x3cafc,
1739 		0x3cb08, 0x3cc24,
1740 		0x3cd00, 0x3cd00,
1741 		0x3cd08, 0x3cd14,
1742 		0x3cd1c, 0x3cd20,
1743 		0x3cd3c, 0x3cd3c,
1744 		0x3cd48, 0x3cd50,
1745 		0x3d200, 0x3d20c,
1746 		0x3d220, 0x3d220,
1747 		0x3d240, 0x3d240,
1748 		0x3d600, 0x3d60c,
1749 		0x3da00, 0x3da1c,
1750 		0x3de00, 0x3de20,
1751 		0x3de38, 0x3de3c,
1752 		0x3de80, 0x3de80,
1753 		0x3de88, 0x3dea8,
1754 		0x3deb0, 0x3deb4,
1755 		0x3dec8, 0x3ded4,
1756 		0x3dfb8, 0x3e004,
1757 		0x3e200, 0x3e200,
1758 		0x3e208, 0x3e240,
1759 		0x3e248, 0x3e280,
1760 		0x3e288, 0x3e2c0,
1761 		0x3e2c8, 0x3e2fc,
1762 		0x3e600, 0x3e630,
1763 		0x3ea00, 0x3eabc,
1764 		0x3eb00, 0x3eb10,
1765 		0x3eb20, 0x3eb30,
1766 		0x3eb40, 0x3eb50,
1767 		0x3eb60, 0x3eb70,
1768 		0x3f000, 0x3f028,
1769 		0x3f030, 0x3f048,
1770 		0x3f060, 0x3f068,
1771 		0x3f070, 0x3f09c,
1772 		0x3f0f0, 0x3f128,
1773 		0x3f130, 0x3f148,
1774 		0x3f160, 0x3f168,
1775 		0x3f170, 0x3f19c,
1776 		0x3f1f0, 0x3f238,
1777 		0x3f240, 0x3f240,
1778 		0x3f248, 0x3f250,
1779 		0x3f25c, 0x3f264,
1780 		0x3f270, 0x3f2b8,
1781 		0x3f2c0, 0x3f2e4,
1782 		0x3f2f8, 0x3f338,
1783 		0x3f340, 0x3f340,
1784 		0x3f348, 0x3f350,
1785 		0x3f35c, 0x3f364,
1786 		0x3f370, 0x3f3b8,
1787 		0x3f3c0, 0x3f3e4,
1788 		0x3f3f8, 0x3f428,
1789 		0x3f430, 0x3f448,
1790 		0x3f460, 0x3f468,
1791 		0x3f470, 0x3f49c,
1792 		0x3f4f0, 0x3f528,
1793 		0x3f530, 0x3f548,
1794 		0x3f560, 0x3f568,
1795 		0x3f570, 0x3f59c,
1796 		0x3f5f0, 0x3f638,
1797 		0x3f640, 0x3f640,
1798 		0x3f648, 0x3f650,
1799 		0x3f65c, 0x3f664,
1800 		0x3f670, 0x3f6b8,
1801 		0x3f6c0, 0x3f6e4,
1802 		0x3f6f8, 0x3f738,
1803 		0x3f740, 0x3f740,
1804 		0x3f748, 0x3f750,
1805 		0x3f75c, 0x3f764,
1806 		0x3f770, 0x3f7b8,
1807 		0x3f7c0, 0x3f7e4,
1808 		0x3f7f8, 0x3f7fc,
1809 		0x3f814, 0x3f814,
1810 		0x3f82c, 0x3f82c,
1811 		0x3f880, 0x3f88c,
1812 		0x3f8e8, 0x3f8ec,
1813 		0x3f900, 0x3f928,
1814 		0x3f930, 0x3f948,
1815 		0x3f960, 0x3f968,
1816 		0x3f970, 0x3f99c,
1817 		0x3f9f0, 0x3fa38,
1818 		0x3fa40, 0x3fa40,
1819 		0x3fa48, 0x3fa50,
1820 		0x3fa5c, 0x3fa64,
1821 		0x3fa70, 0x3fab8,
1822 		0x3fac0, 0x3fae4,
1823 		0x3faf8, 0x3fb10,
1824 		0x3fb28, 0x3fb28,
1825 		0x3fb3c, 0x3fb50,
1826 		0x3fbf0, 0x3fc10,
1827 		0x3fc28, 0x3fc28,
1828 		0x3fc3c, 0x3fc50,
1829 		0x3fcf0, 0x3fcfc,
1830 		0x40000, 0x4000c,
1831 		0x40040, 0x40050,
1832 		0x40060, 0x40068,
1833 		0x4007c, 0x4008c,
1834 		0x40094, 0x400b0,
1835 		0x400c0, 0x40144,
1836 		0x40180, 0x4018c,
1837 		0x40200, 0x40254,
1838 		0x40260, 0x40264,
1839 		0x40270, 0x40288,
1840 		0x40290, 0x40298,
1841 		0x402ac, 0x402c8,
1842 		0x402d0, 0x402e0,
1843 		0x402f0, 0x402f0,
1844 		0x40300, 0x4033c,
1845 		0x403f8, 0x403fc,
1846 		0x41304, 0x413c4,
1847 		0x41400, 0x4140c,
1848 		0x41414, 0x4141c,
1849 		0x41480, 0x414d0,
1850 		0x44000, 0x44054,
1851 		0x4405c, 0x44078,
1852 		0x440c0, 0x44174,
1853 		0x44180, 0x441ac,
1854 		0x441b4, 0x441b8,
1855 		0x441c0, 0x44254,
1856 		0x4425c, 0x44278,
1857 		0x442c0, 0x44374,
1858 		0x44380, 0x443ac,
1859 		0x443b4, 0x443b8,
1860 		0x443c0, 0x44454,
1861 		0x4445c, 0x44478,
1862 		0x444c0, 0x44574,
1863 		0x44580, 0x445ac,
1864 		0x445b4, 0x445b8,
1865 		0x445c0, 0x44654,
1866 		0x4465c, 0x44678,
1867 		0x446c0, 0x44774,
1868 		0x44780, 0x447ac,
1869 		0x447b4, 0x447b8,
1870 		0x447c0, 0x44854,
1871 		0x4485c, 0x44878,
1872 		0x448c0, 0x44974,
1873 		0x44980, 0x449ac,
1874 		0x449b4, 0x449b8,
1875 		0x449c0, 0x449fc,
1876 		0x45000, 0x45004,
1877 		0x45010, 0x45030,
1878 		0x45040, 0x45060,
1879 		0x45068, 0x45068,
1880 		0x45080, 0x45084,
1881 		0x450a0, 0x450b0,
1882 		0x45200, 0x45204,
1883 		0x45210, 0x45230,
1884 		0x45240, 0x45260,
1885 		0x45268, 0x45268,
1886 		0x45280, 0x45284,
1887 		0x452a0, 0x452b0,
1888 		0x460c0, 0x460e4,
1889 		0x47000, 0x4703c,
1890 		0x47044, 0x4708c,
1891 		0x47200, 0x47250,
1892 		0x47400, 0x47408,
1893 		0x47414, 0x47420,
1894 		0x47600, 0x47618,
1895 		0x47800, 0x47814,
1896 		0x48000, 0x4800c,
1897 		0x48040, 0x48050,
1898 		0x48060, 0x48068,
1899 		0x4807c, 0x4808c,
1900 		0x48094, 0x480b0,
1901 		0x480c0, 0x48144,
1902 		0x48180, 0x4818c,
1903 		0x48200, 0x48254,
1904 		0x48260, 0x48264,
1905 		0x48270, 0x48288,
1906 		0x48290, 0x48298,
1907 		0x482ac, 0x482c8,
1908 		0x482d0, 0x482e0,
1909 		0x482f0, 0x482f0,
1910 		0x48300, 0x4833c,
1911 		0x483f8, 0x483fc,
1912 		0x49304, 0x493c4,
1913 		0x49400, 0x4940c,
1914 		0x49414, 0x4941c,
1915 		0x49480, 0x494d0,
1916 		0x4c000, 0x4c054,
1917 		0x4c05c, 0x4c078,
1918 		0x4c0c0, 0x4c174,
1919 		0x4c180, 0x4c1ac,
1920 		0x4c1b4, 0x4c1b8,
1921 		0x4c1c0, 0x4c254,
1922 		0x4c25c, 0x4c278,
1923 		0x4c2c0, 0x4c374,
1924 		0x4c380, 0x4c3ac,
1925 		0x4c3b4, 0x4c3b8,
1926 		0x4c3c0, 0x4c454,
1927 		0x4c45c, 0x4c478,
1928 		0x4c4c0, 0x4c574,
1929 		0x4c580, 0x4c5ac,
1930 		0x4c5b4, 0x4c5b8,
1931 		0x4c5c0, 0x4c654,
1932 		0x4c65c, 0x4c678,
1933 		0x4c6c0, 0x4c774,
1934 		0x4c780, 0x4c7ac,
1935 		0x4c7b4, 0x4c7b8,
1936 		0x4c7c0, 0x4c854,
1937 		0x4c85c, 0x4c878,
1938 		0x4c8c0, 0x4c974,
1939 		0x4c980, 0x4c9ac,
1940 		0x4c9b4, 0x4c9b8,
1941 		0x4c9c0, 0x4c9fc,
1942 		0x4d000, 0x4d004,
1943 		0x4d010, 0x4d030,
1944 		0x4d040, 0x4d060,
1945 		0x4d068, 0x4d068,
1946 		0x4d080, 0x4d084,
1947 		0x4d0a0, 0x4d0b0,
1948 		0x4d200, 0x4d204,
1949 		0x4d210, 0x4d230,
1950 		0x4d240, 0x4d260,
1951 		0x4d268, 0x4d268,
1952 		0x4d280, 0x4d284,
1953 		0x4d2a0, 0x4d2b0,
1954 		0x4e0c0, 0x4e0e4,
1955 		0x4f000, 0x4f03c,
1956 		0x4f044, 0x4f08c,
1957 		0x4f200, 0x4f250,
1958 		0x4f400, 0x4f408,
1959 		0x4f414, 0x4f420,
1960 		0x4f600, 0x4f618,
1961 		0x4f800, 0x4f814,
1962 		0x50000, 0x50084,
1963 		0x50090, 0x500cc,
1964 		0x50400, 0x50400,
1965 		0x50800, 0x50884,
1966 		0x50890, 0x508cc,
1967 		0x50c00, 0x50c00,
1968 		0x51000, 0x5101c,
1969 		0x51300, 0x51308,
1970 	};
1971 
1972 	static const unsigned int t6_reg_ranges[] = {
1973 		0x1008, 0x101c,
1974 		0x1024, 0x10a8,
1975 		0x10b4, 0x10f8,
1976 		0x1100, 0x1114,
1977 		0x111c, 0x112c,
1978 		0x1138, 0x113c,
1979 		0x1144, 0x114c,
1980 		0x1180, 0x1184,
1981 		0x1190, 0x1194,
1982 		0x11a0, 0x11a4,
1983 		0x11b0, 0x11b4,
1984 		0x11fc, 0x1258,
1985 		0x1280, 0x12d4,
1986 		0x12d9, 0x12d9,
1987 		0x12de, 0x12de,
1988 		0x12e3, 0x12e3,
1989 		0x12e8, 0x133c,
1990 		0x1800, 0x18fc,
1991 		0x3000, 0x302c,
1992 		0x3060, 0x30b0,
1993 		0x30b8, 0x30d8,
1994 		0x30e0, 0x30fc,
1995 		0x3140, 0x357c,
1996 		0x35a8, 0x35cc,
1997 		0x35ec, 0x35ec,
1998 		0x3600, 0x5624,
1999 		0x56cc, 0x56ec,
2000 		0x56f4, 0x5720,
2001 		0x5728, 0x575c,
2002 		0x580c, 0x5814,
2003 		0x5890, 0x589c,
2004 		0x58a4, 0x58ac,
2005 		0x58b8, 0x58bc,
2006 		0x5940, 0x595c,
2007 		0x5980, 0x598c,
2008 		0x59b0, 0x59c8,
2009 		0x59d0, 0x59dc,
2010 		0x59fc, 0x5a18,
2011 		0x5a60, 0x5a6c,
2012 		0x5a80, 0x5a8c,
2013 		0x5a94, 0x5a9c,
2014 		0x5b94, 0x5bfc,
2015 		0x5c10, 0x5e48,
2016 		0x5e50, 0x5e94,
2017 		0x5ea0, 0x5eb0,
2018 		0x5ec0, 0x5ec0,
2019 		0x5ec8, 0x5ed0,
2020 		0x6000, 0x6020,
2021 		0x6028, 0x6040,
2022 		0x6058, 0x609c,
2023 		0x60a8, 0x619c,
2024 		0x7700, 0x7798,
2025 		0x77c0, 0x7880,
2026 		0x78cc, 0x78fc,
2027 		0x7b00, 0x7b58,
2028 		0x7b60, 0x7b84,
2029 		0x7b8c, 0x7c54,
2030 		0x7d00, 0x7d38,
2031 		0x7d40, 0x7d84,
2032 		0x7d8c, 0x7ddc,
2033 		0x7de4, 0x7e04,
2034 		0x7e10, 0x7e1c,
2035 		0x7e24, 0x7e38,
2036 		0x7e40, 0x7e44,
2037 		0x7e4c, 0x7e78,
2038 		0x7e80, 0x7edc,
2039 		0x7ee8, 0x7efc,
2040 		0x8dc0, 0x8de4,
2041 		0x8df8, 0x8e04,
2042 		0x8e10, 0x8e84,
2043 		0x8ea0, 0x8f88,
2044 		0x8fb8, 0x9058,
2045 		0x9060, 0x9060,
2046 		0x9068, 0x90f8,
2047 		0x9100, 0x9124,
2048 		0x9400, 0x9470,
2049 		0x9600, 0x9600,
2050 		0x9608, 0x9638,
2051 		0x9640, 0x9704,
2052 		0x9710, 0x971c,
2053 		0x9800, 0x9808,
2054 		0x9820, 0x983c,
2055 		0x9850, 0x9864,
2056 		0x9c00, 0x9c6c,
2057 		0x9c80, 0x9cec,
2058 		0x9d00, 0x9d6c,
2059 		0x9d80, 0x9dec,
2060 		0x9e00, 0x9e6c,
2061 		0x9e80, 0x9eec,
2062 		0x9f00, 0x9f6c,
2063 		0x9f80, 0xa020,
2064 		0xd004, 0xd03c,
2065 		0xd100, 0xd118,
2066 		0xd200, 0xd214,
2067 		0xd220, 0xd234,
2068 		0xd240, 0xd254,
2069 		0xd260, 0xd274,
2070 		0xd280, 0xd294,
2071 		0xd2a0, 0xd2b4,
2072 		0xd2c0, 0xd2d4,
2073 		0xd2e0, 0xd2f4,
2074 		0xd300, 0xd31c,
2075 		0xdfc0, 0xdfe0,
2076 		0xe000, 0xf008,
2077 		0x11000, 0x11014,
2078 		0x11048, 0x1106c,
2079 		0x11074, 0x11088,
2080 		0x11098, 0x11120,
2081 		0x1112c, 0x1117c,
2082 		0x11190, 0x112e0,
2083 		0x11300, 0x1130c,
2084 		0x12000, 0x1206c,
2085 		0x19040, 0x1906c,
2086 		0x19078, 0x19080,
2087 		0x1908c, 0x190e8,
2088 		0x190f0, 0x190f8,
2089 		0x19100, 0x19110,
2090 		0x19120, 0x19124,
2091 		0x19150, 0x19194,
2092 		0x1919c, 0x191b0,
2093 		0x191d0, 0x191e8,
2094 		0x19238, 0x19290,
2095 		0x192a4, 0x192b0,
2096 		0x192bc, 0x192bc,
2097 		0x19348, 0x1934c,
2098 		0x193f8, 0x19418,
2099 		0x19420, 0x19428,
2100 		0x19430, 0x19444,
2101 		0x1944c, 0x1946c,
2102 		0x19474, 0x19474,
2103 		0x19490, 0x194cc,
2104 		0x194f0, 0x194f8,
2105 		0x19c00, 0x19c48,
2106 		0x19c50, 0x19c80,
2107 		0x19c94, 0x19c98,
2108 		0x19ca0, 0x19cbc,
2109 		0x19ce4, 0x19ce4,
2110 		0x19cf0, 0x19cf8,
2111 		0x19d00, 0x19d28,
2112 		0x19d50, 0x19d78,
2113 		0x19d94, 0x19d98,
2114 		0x19da0, 0x19dc8,
2115 		0x19df0, 0x19e10,
2116 		0x19e50, 0x19e6c,
2117 		0x19ea0, 0x19ebc,
2118 		0x19ec4, 0x19ef4,
2119 		0x19f04, 0x19f2c,
2120 		0x19f34, 0x19f34,
2121 		0x19f40, 0x19f50,
2122 		0x19f90, 0x19fac,
2123 		0x19fc4, 0x19fc8,
2124 		0x19fd0, 0x19fe4,
2125 		0x1a000, 0x1a004,
2126 		0x1a010, 0x1a06c,
2127 		0x1a0b0, 0x1a0e4,
2128 		0x1a0ec, 0x1a0f8,
2129 		0x1a100, 0x1a108,
2130 		0x1a114, 0x1a120,
2131 		0x1a128, 0x1a130,
2132 		0x1a138, 0x1a138,
2133 		0x1a190, 0x1a1c4,
2134 		0x1a1fc, 0x1a1fc,
2135 		0x1e008, 0x1e00c,
2136 		0x1e040, 0x1e044,
2137 		0x1e04c, 0x1e04c,
2138 		0x1e284, 0x1e290,
2139 		0x1e2c0, 0x1e2c0,
2140 		0x1e2e0, 0x1e2e0,
2141 		0x1e300, 0x1e384,
2142 		0x1e3c0, 0x1e3c8,
2143 		0x1e408, 0x1e40c,
2144 		0x1e440, 0x1e444,
2145 		0x1e44c, 0x1e44c,
2146 		0x1e684, 0x1e690,
2147 		0x1e6c0, 0x1e6c0,
2148 		0x1e6e0, 0x1e6e0,
2149 		0x1e700, 0x1e784,
2150 		0x1e7c0, 0x1e7c8,
2151 		0x1e808, 0x1e80c,
2152 		0x1e840, 0x1e844,
2153 		0x1e84c, 0x1e84c,
2154 		0x1ea84, 0x1ea90,
2155 		0x1eac0, 0x1eac0,
2156 		0x1eae0, 0x1eae0,
2157 		0x1eb00, 0x1eb84,
2158 		0x1ebc0, 0x1ebc8,
2159 		0x1ec08, 0x1ec0c,
2160 		0x1ec40, 0x1ec44,
2161 		0x1ec4c, 0x1ec4c,
2162 		0x1ee84, 0x1ee90,
2163 		0x1eec0, 0x1eec0,
2164 		0x1eee0, 0x1eee0,
2165 		0x1ef00, 0x1ef84,
2166 		0x1efc0, 0x1efc8,
2167 		0x1f008, 0x1f00c,
2168 		0x1f040, 0x1f044,
2169 		0x1f04c, 0x1f04c,
2170 		0x1f284, 0x1f290,
2171 		0x1f2c0, 0x1f2c0,
2172 		0x1f2e0, 0x1f2e0,
2173 		0x1f300, 0x1f384,
2174 		0x1f3c0, 0x1f3c8,
2175 		0x1f408, 0x1f40c,
2176 		0x1f440, 0x1f444,
2177 		0x1f44c, 0x1f44c,
2178 		0x1f684, 0x1f690,
2179 		0x1f6c0, 0x1f6c0,
2180 		0x1f6e0, 0x1f6e0,
2181 		0x1f700, 0x1f784,
2182 		0x1f7c0, 0x1f7c8,
2183 		0x1f808, 0x1f80c,
2184 		0x1f840, 0x1f844,
2185 		0x1f84c, 0x1f84c,
2186 		0x1fa84, 0x1fa90,
2187 		0x1fac0, 0x1fac0,
2188 		0x1fae0, 0x1fae0,
2189 		0x1fb00, 0x1fb84,
2190 		0x1fbc0, 0x1fbc8,
2191 		0x1fc08, 0x1fc0c,
2192 		0x1fc40, 0x1fc44,
2193 		0x1fc4c, 0x1fc4c,
2194 		0x1fe84, 0x1fe90,
2195 		0x1fec0, 0x1fec0,
2196 		0x1fee0, 0x1fee0,
2197 		0x1ff00, 0x1ff84,
2198 		0x1ffc0, 0x1ffc8,
2199 		0x30000, 0x30030,
2200 		0x30038, 0x30038,
2201 		0x30040, 0x30040,
2202 		0x30048, 0x30048,
2203 		0x30050, 0x30050,
2204 		0x3005c, 0x30060,
2205 		0x30068, 0x30068,
2206 		0x30070, 0x30070,
2207 		0x30100, 0x30168,
2208 		0x30190, 0x301a0,
2209 		0x301a8, 0x301b8,
2210 		0x301c4, 0x301c8,
2211 		0x301d0, 0x301d0,
2212 		0x30200, 0x30320,
2213 		0x30400, 0x304b4,
2214 		0x304c0, 0x3052c,
2215 		0x30540, 0x3061c,
2216 		0x30800, 0x308a0,
2217 		0x308c0, 0x30908,
2218 		0x30910, 0x309b8,
2219 		0x30a00, 0x30a04,
2220 		0x30a0c, 0x30a14,
2221 		0x30a1c, 0x30a2c,
2222 		0x30a44, 0x30a50,
2223 		0x30a74, 0x30a74,
2224 		0x30a7c, 0x30afc,
2225 		0x30b08, 0x30c24,
2226 		0x30d00, 0x30d14,
2227 		0x30d1c, 0x30d3c,
2228 		0x30d44, 0x30d4c,
2229 		0x30d54, 0x30d74,
2230 		0x30d7c, 0x30d7c,
2231 		0x30de0, 0x30de0,
2232 		0x30e00, 0x30ed4,
2233 		0x30f00, 0x30fa4,
2234 		0x30fc0, 0x30fc4,
2235 		0x31000, 0x31004,
2236 		0x31080, 0x310fc,
2237 		0x31208, 0x31220,
2238 		0x3123c, 0x31254,
2239 		0x31300, 0x31300,
2240 		0x31308, 0x3131c,
2241 		0x31338, 0x3133c,
2242 		0x31380, 0x31380,
2243 		0x31388, 0x313a8,
2244 		0x313b4, 0x313b4,
2245 		0x31400, 0x31420,
2246 		0x31438, 0x3143c,
2247 		0x31480, 0x31480,
2248 		0x314a8, 0x314a8,
2249 		0x314b0, 0x314b4,
2250 		0x314c8, 0x314d4,
2251 		0x31a40, 0x31a4c,
2252 		0x31af0, 0x31b20,
2253 		0x31b38, 0x31b3c,
2254 		0x31b80, 0x31b80,
2255 		0x31ba8, 0x31ba8,
2256 		0x31bb0, 0x31bb4,
2257 		0x31bc8, 0x31bd4,
2258 		0x32140, 0x3218c,
2259 		0x321f0, 0x321f4,
2260 		0x32200, 0x32200,
2261 		0x32218, 0x32218,
2262 		0x32400, 0x32400,
2263 		0x32408, 0x3241c,
2264 		0x32618, 0x32620,
2265 		0x32664, 0x32664,
2266 		0x326a8, 0x326a8,
2267 		0x326ec, 0x326ec,
2268 		0x32a00, 0x32abc,
2269 		0x32b00, 0x32b38,
2270 		0x32b40, 0x32b58,
2271 		0x32b60, 0x32b78,
2272 		0x32c00, 0x32c00,
2273 		0x32c08, 0x32c3c,
2274 		0x32e00, 0x32e2c,
2275 		0x32f00, 0x32f2c,
2276 		0x33000, 0x3302c,
2277 		0x33034, 0x33050,
2278 		0x33058, 0x33058,
2279 		0x33060, 0x3308c,
2280 		0x3309c, 0x330ac,
2281 		0x330c0, 0x330c0,
2282 		0x330c8, 0x330d0,
2283 		0x330d8, 0x330e0,
2284 		0x330ec, 0x3312c,
2285 		0x33134, 0x33150,
2286 		0x33158, 0x33158,
2287 		0x33160, 0x3318c,
2288 		0x3319c, 0x331ac,
2289 		0x331c0, 0x331c0,
2290 		0x331c8, 0x331d0,
2291 		0x331d8, 0x331e0,
2292 		0x331ec, 0x33290,
2293 		0x33298, 0x332c4,
2294 		0x332e4, 0x33390,
2295 		0x33398, 0x333c4,
2296 		0x333e4, 0x3342c,
2297 		0x33434, 0x33450,
2298 		0x33458, 0x33458,
2299 		0x33460, 0x3348c,
2300 		0x3349c, 0x334ac,
2301 		0x334c0, 0x334c0,
2302 		0x334c8, 0x334d0,
2303 		0x334d8, 0x334e0,
2304 		0x334ec, 0x3352c,
2305 		0x33534, 0x33550,
2306 		0x33558, 0x33558,
2307 		0x33560, 0x3358c,
2308 		0x3359c, 0x335ac,
2309 		0x335c0, 0x335c0,
2310 		0x335c8, 0x335d0,
2311 		0x335d8, 0x335e0,
2312 		0x335ec, 0x33690,
2313 		0x33698, 0x336c4,
2314 		0x336e4, 0x33790,
2315 		0x33798, 0x337c4,
2316 		0x337e4, 0x337fc,
2317 		0x33814, 0x33814,
2318 		0x33854, 0x33868,
2319 		0x33880, 0x3388c,
2320 		0x338c0, 0x338d0,
2321 		0x338e8, 0x338ec,
2322 		0x33900, 0x3392c,
2323 		0x33934, 0x33950,
2324 		0x33958, 0x33958,
2325 		0x33960, 0x3398c,
2326 		0x3399c, 0x339ac,
2327 		0x339c0, 0x339c0,
2328 		0x339c8, 0x339d0,
2329 		0x339d8, 0x339e0,
2330 		0x339ec, 0x33a90,
2331 		0x33a98, 0x33ac4,
2332 		0x33ae4, 0x33b10,
2333 		0x33b24, 0x33b28,
2334 		0x33b38, 0x33b50,
2335 		0x33bf0, 0x33c10,
2336 		0x33c24, 0x33c28,
2337 		0x33c38, 0x33c50,
2338 		0x33cf0, 0x33cfc,
2339 		0x34000, 0x34030,
2340 		0x34038, 0x34038,
2341 		0x34040, 0x34040,
2342 		0x34048, 0x34048,
2343 		0x34050, 0x34050,
2344 		0x3405c, 0x34060,
2345 		0x34068, 0x34068,
2346 		0x34070, 0x34070,
2347 		0x34100, 0x34168,
2348 		0x34190, 0x341a0,
2349 		0x341a8, 0x341b8,
2350 		0x341c4, 0x341c8,
2351 		0x341d0, 0x341d0,
2352 		0x34200, 0x34320,
2353 		0x34400, 0x344b4,
2354 		0x344c0, 0x3452c,
2355 		0x34540, 0x3461c,
2356 		0x34800, 0x348a0,
2357 		0x348c0, 0x34908,
2358 		0x34910, 0x349b8,
2359 		0x34a00, 0x34a04,
2360 		0x34a0c, 0x34a14,
2361 		0x34a1c, 0x34a2c,
2362 		0x34a44, 0x34a50,
2363 		0x34a74, 0x34a74,
2364 		0x34a7c, 0x34afc,
2365 		0x34b08, 0x34c24,
2366 		0x34d00, 0x34d14,
2367 		0x34d1c, 0x34d3c,
2368 		0x34d44, 0x34d4c,
2369 		0x34d54, 0x34d74,
2370 		0x34d7c, 0x34d7c,
2371 		0x34de0, 0x34de0,
2372 		0x34e00, 0x34ed4,
2373 		0x34f00, 0x34fa4,
2374 		0x34fc0, 0x34fc4,
2375 		0x35000, 0x35004,
2376 		0x35080, 0x350fc,
2377 		0x35208, 0x35220,
2378 		0x3523c, 0x35254,
2379 		0x35300, 0x35300,
2380 		0x35308, 0x3531c,
2381 		0x35338, 0x3533c,
2382 		0x35380, 0x35380,
2383 		0x35388, 0x353a8,
2384 		0x353b4, 0x353b4,
2385 		0x35400, 0x35420,
2386 		0x35438, 0x3543c,
2387 		0x35480, 0x35480,
2388 		0x354a8, 0x354a8,
2389 		0x354b0, 0x354b4,
2390 		0x354c8, 0x354d4,
2391 		0x35a40, 0x35a4c,
2392 		0x35af0, 0x35b20,
2393 		0x35b38, 0x35b3c,
2394 		0x35b80, 0x35b80,
2395 		0x35ba8, 0x35ba8,
2396 		0x35bb0, 0x35bb4,
2397 		0x35bc8, 0x35bd4,
2398 		0x36140, 0x3618c,
2399 		0x361f0, 0x361f4,
2400 		0x36200, 0x36200,
2401 		0x36218, 0x36218,
2402 		0x36400, 0x36400,
2403 		0x36408, 0x3641c,
2404 		0x36618, 0x36620,
2405 		0x36664, 0x36664,
2406 		0x366a8, 0x366a8,
2407 		0x366ec, 0x366ec,
2408 		0x36a00, 0x36abc,
2409 		0x36b00, 0x36b38,
2410 		0x36b40, 0x36b58,
2411 		0x36b60, 0x36b78,
2412 		0x36c00, 0x36c00,
2413 		0x36c08, 0x36c3c,
2414 		0x36e00, 0x36e2c,
2415 		0x36f00, 0x36f2c,
2416 		0x37000, 0x3702c,
2417 		0x37034, 0x37050,
2418 		0x37058, 0x37058,
2419 		0x37060, 0x3708c,
2420 		0x3709c, 0x370ac,
2421 		0x370c0, 0x370c0,
2422 		0x370c8, 0x370d0,
2423 		0x370d8, 0x370e0,
2424 		0x370ec, 0x3712c,
2425 		0x37134, 0x37150,
2426 		0x37158, 0x37158,
2427 		0x37160, 0x3718c,
2428 		0x3719c, 0x371ac,
2429 		0x371c0, 0x371c0,
2430 		0x371c8, 0x371d0,
2431 		0x371d8, 0x371e0,
2432 		0x371ec, 0x37290,
2433 		0x37298, 0x372c4,
2434 		0x372e4, 0x37390,
2435 		0x37398, 0x373c4,
2436 		0x373e4, 0x3742c,
2437 		0x37434, 0x37450,
2438 		0x37458, 0x37458,
2439 		0x37460, 0x3748c,
2440 		0x3749c, 0x374ac,
2441 		0x374c0, 0x374c0,
2442 		0x374c8, 0x374d0,
2443 		0x374d8, 0x374e0,
2444 		0x374ec, 0x3752c,
2445 		0x37534, 0x37550,
2446 		0x37558, 0x37558,
2447 		0x37560, 0x3758c,
2448 		0x3759c, 0x375ac,
2449 		0x375c0, 0x375c0,
2450 		0x375c8, 0x375d0,
2451 		0x375d8, 0x375e0,
2452 		0x375ec, 0x37690,
2453 		0x37698, 0x376c4,
2454 		0x376e4, 0x37790,
2455 		0x37798, 0x377c4,
2456 		0x377e4, 0x377fc,
2457 		0x37814, 0x37814,
2458 		0x37854, 0x37868,
2459 		0x37880, 0x3788c,
2460 		0x378c0, 0x378d0,
2461 		0x378e8, 0x378ec,
2462 		0x37900, 0x3792c,
2463 		0x37934, 0x37950,
2464 		0x37958, 0x37958,
2465 		0x37960, 0x3798c,
2466 		0x3799c, 0x379ac,
2467 		0x379c0, 0x379c0,
2468 		0x379c8, 0x379d0,
2469 		0x379d8, 0x379e0,
2470 		0x379ec, 0x37a90,
2471 		0x37a98, 0x37ac4,
2472 		0x37ae4, 0x37b10,
2473 		0x37b24, 0x37b28,
2474 		0x37b38, 0x37b50,
2475 		0x37bf0, 0x37c10,
2476 		0x37c24, 0x37c28,
2477 		0x37c38, 0x37c50,
2478 		0x37cf0, 0x37cfc,
2479 		0x40040, 0x40040,
2480 		0x40080, 0x40084,
2481 		0x40100, 0x40100,
2482 		0x40140, 0x401bc,
2483 		0x40200, 0x40214,
2484 		0x40228, 0x40228,
2485 		0x40240, 0x40258,
2486 		0x40280, 0x40280,
2487 		0x40304, 0x40304,
2488 		0x40330, 0x4033c,
2489 		0x41304, 0x413b8,
2490 		0x413c0, 0x413c8,
2491 		0x413d0, 0x413dc,
2492 		0x413f0, 0x413f0,
2493 		0x41400, 0x4140c,
2494 		0x41414, 0x4141c,
2495 		0x41480, 0x414d0,
2496 		0x44000, 0x4407c,
2497 		0x440c0, 0x441ac,
2498 		0x441b4, 0x4427c,
2499 		0x442c0, 0x443ac,
2500 		0x443b4, 0x4447c,
2501 		0x444c0, 0x445ac,
2502 		0x445b4, 0x4467c,
2503 		0x446c0, 0x447ac,
2504 		0x447b4, 0x4487c,
2505 		0x448c0, 0x449ac,
2506 		0x449b4, 0x44a7c,
2507 		0x44ac0, 0x44bac,
2508 		0x44bb4, 0x44c7c,
2509 		0x44cc0, 0x44dac,
2510 		0x44db4, 0x44e7c,
2511 		0x44ec0, 0x44fac,
2512 		0x44fb4, 0x4507c,
2513 		0x450c0, 0x451ac,
2514 		0x451b4, 0x451fc,
2515 		0x45800, 0x45804,
2516 		0x45810, 0x45830,
2517 		0x45840, 0x45860,
2518 		0x45868, 0x45868,
2519 		0x45880, 0x45884,
2520 		0x458a0, 0x458b0,
2521 		0x45a00, 0x45a04,
2522 		0x45a10, 0x45a30,
2523 		0x45a40, 0x45a60,
2524 		0x45a68, 0x45a68,
2525 		0x45a80, 0x45a84,
2526 		0x45aa0, 0x45ab0,
2527 		0x460c0, 0x460e4,
2528 		0x47000, 0x4703c,
2529 		0x47044, 0x4708c,
2530 		0x47200, 0x47250,
2531 		0x47400, 0x47408,
2532 		0x47414, 0x47420,
2533 		0x47600, 0x47618,
2534 		0x47800, 0x47814,
2535 		0x47820, 0x4782c,
2536 		0x50000, 0x50084,
2537 		0x50090, 0x500cc,
2538 		0x50300, 0x50384,
2539 		0x50400, 0x50400,
2540 		0x50800, 0x50884,
2541 		0x50890, 0x508cc,
2542 		0x50b00, 0x50b84,
2543 		0x50c00, 0x50c00,
2544 		0x51000, 0x51020,
2545 		0x51028, 0x510b0,
2546 		0x51300, 0x51324,
2547 	};
2548 
2549 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2550 	const unsigned int *reg_ranges;
2551 	int reg_ranges_size, range;
2552 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2553 
2554 	/* Select the right set of register ranges to dump depending on the
2555 	 * adapter chip type.
2556 	 */
2557 	switch (chip_version) {
2558 	case CHELSIO_T4:
2559 		reg_ranges = t4_reg_ranges;
2560 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2561 		break;
2562 
2563 	case CHELSIO_T5:
2564 		reg_ranges = t5_reg_ranges;
2565 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2566 		break;
2567 
2568 	case CHELSIO_T6:
2569 		reg_ranges = t6_reg_ranges;
2570 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2571 		break;
2572 
2573 	default:
2574 		dev_err(adap->pdev_dev,
2575 			"Unsupported chip version %d\n", chip_version);
2576 		return;
2577 	}
2578 
2579 	/* Clear the register buffer and insert the appropriate register
2580 	 * values selected by the above register ranges.
2581 	 */
2582 	memset(buf, 0, buf_size);
2583 	for (range = 0; range < reg_ranges_size; range += 2) {
2584 		unsigned int reg = reg_ranges[range];
2585 		unsigned int last_reg = reg_ranges[range + 1];
2586 		u32 *bufp = (u32 *)((char *)buf + reg);
2587 
2588 		/* Iterate across the register range filling in the register
2589 		 * buffer but don't write past the end of the register buffer.
2590 		 */
2591 		while (reg <= last_reg && bufp < buf_end) {
2592 			*bufp++ = t4_read_reg(adap, reg);
2593 			reg += sizeof(u32);
2594 		}
2595 	}
2596 }
2597 
2598 #define EEPROM_STAT_ADDR   0x7bfc
2599 #define VPD_SIZE           0x800
2600 #define VPD_BASE           0x400
2601 #define VPD_BASE_OLD       0
2602 #define VPD_LEN            1024
2603 #define CHELSIO_VPD_UNIQUE_ID 0x82
2604 
2605 /**
2606  *	t4_seeprom_wp - enable/disable EEPROM write protection
2607  *	@adapter: the adapter
2608  *	@enable: whether to enable or disable write protection
2609  *
2610  *	Enables or disables write protection on the serial EEPROM.
2611  */
2612 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2613 {
2614 	unsigned int v = enable ? 0xc : 0;
2615 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2616 	return ret < 0 ? ret : 0;
2617 }
2618 
2619 /**
2620  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2621  *	@adapter: adapter to read
2622  *	@p: where to store the parameters
2623  *
2624  *	Reads card parameters stored in VPD EEPROM.
2625  */
2626 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2627 {
2628 	int i, ret = 0, addr;
2629 	int ec, sn, pn, na;
2630 	u8 *vpd, csum;
2631 	unsigned int vpdr_len, kw_offset, id_len;
2632 
2633 	vpd = vmalloc(VPD_LEN);
2634 	if (!vpd)
2635 		return -ENOMEM;
2636 
2637 	/* We have two VPD data structures stored in the adapter VPD area.
2638 	 * By default, Linux calculates the size of the VPD area by traversing
2639 	 * the first VPD area at offset 0x0, so we need to tell the OS what
2640 	 * our real VPD size is.
2641 	 */
2642 	ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2643 	if (ret < 0)
2644 		goto out;
2645 
2646 	/* Card information normally starts at VPD_BASE but early cards had
2647 	 * it at 0.
2648 	 */
2649 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2650 	if (ret < 0)
2651 		goto out;
2652 
2653 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2654 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2655 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2656 	 * is expected to automatically put this entry at the
2657 	 * beginning of the VPD.
2658 	 */
2659 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2660 
2661 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2662 	if (ret < 0)
2663 		goto out;
2664 
2665 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2666 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2667 		ret = -EINVAL;
2668 		goto out;
2669 	}
2670 
2671 	id_len = pci_vpd_lrdt_size(vpd);
2672 	if (id_len > ID_LEN)
2673 		id_len = ID_LEN;
2674 
2675 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2676 	if (i < 0) {
2677 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2678 		ret = -EINVAL;
2679 		goto out;
2680 	}
2681 
2682 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2683 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2684 	if (vpdr_len + kw_offset > VPD_LEN) {
2685 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2686 		ret = -EINVAL;
2687 		goto out;
2688 	}
2689 
2690 #define FIND_VPD_KW(var, name) do { \
2691 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2692 	if (var < 0) { \
2693 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2694 		ret = -EINVAL; \
2695 		goto out; \
2696 	} \
2697 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2698 } while (0)
2699 
2700 	FIND_VPD_KW(i, "RV");
2701 	for (csum = 0; i >= 0; i--)
2702 		csum += vpd[i];
2703 
2704 	if (csum) {
2705 		dev_err(adapter->pdev_dev,
2706 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2707 		ret = -EINVAL;
2708 		goto out;
2709 	}
2710 
2711 	FIND_VPD_KW(ec, "EC");
2712 	FIND_VPD_KW(sn, "SN");
2713 	FIND_VPD_KW(pn, "PN");
2714 	FIND_VPD_KW(na, "NA");
2715 #undef FIND_VPD_KW
2716 
2717 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2718 	strim(p->id);
2719 	memcpy(p->ec, vpd + ec, EC_LEN);
2720 	strim(p->ec);
2721 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2722 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2723 	strim(p->sn);
2724 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2725 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2726 	strim(p->pn);
2727 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2728 	strim((char *)p->na);
2729 
2730 out:
2731 	vfree(vpd);
2732 	return ret;
2733 }
2734 
2735 /**
2736  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2737  *	@adapter: adapter to read
2738  *	@p: where to store the parameters
2739  *
2740  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2741  *	Clock.  This can only be called after a connection to the firmware
2742  *	is established.
2743  */
2744 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746 	u32 cclk_param, cclk_val;
2747 	int ret;
2748 
2749 	/* Grab the raw VPD parameters.
2750 	 */
2751 	ret = t4_get_raw_vpd_params(adapter, p);
2752 	if (ret)
2753 		return ret;
2754 
2755 	/* Ask firmware for the Core Clock since it knows how to translate the
2756 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2757 	 */
2758 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2759 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2760 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2761 			      1, &cclk_param, &cclk_val);
2762 
2763 	if (ret)
2764 		return ret;
2765 	p->cclk = cclk_val;
2766 
2767 	return 0;
2768 }
2769 
2770 /* serial flash and firmware constants */
2771 enum {
2772 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2773 
2774 	/* flash command opcodes */
2775 	SF_PROG_PAGE    = 2,          /* program page */
2776 	SF_WR_DISABLE   = 4,          /* disable writes */
2777 	SF_RD_STATUS    = 5,          /* read status register */
2778 	SF_WR_ENABLE    = 6,          /* enable writes */
2779 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2780 	SF_RD_ID        = 0x9f,       /* read ID */
2781 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2782 
2783 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2784 };
2785 
2786 /**
2787  *	sf1_read - read data from the serial flash
2788  *	@adapter: the adapter
2789  *	@byte_cnt: number of bytes to read
2790  *	@cont: whether another operation will be chained
2791  *	@lock: whether to lock SF for PL access only
2792  *	@valp: where to store the read data
2793  *
2794  *	Reads up to 4 bytes of data from the serial flash.  The location of
2795  *	the read needs to be specified prior to calling this by issuing the
2796  *	appropriate commands to the serial flash.
2797  */
2798 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2799 		    int lock, u32 *valp)
2800 {
2801 	int ret;
2802 
2803 	if (!byte_cnt || byte_cnt > 4)
2804 		return -EINVAL;
2805 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2806 		return -EBUSY;
2807 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2808 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2809 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2810 	if (!ret)
2811 		*valp = t4_read_reg(adapter, SF_DATA_A);
2812 	return ret;
2813 }
2814 
2815 /**
2816  *	sf1_write - write data to the serial flash
2817  *	@adapter: the adapter
2818  *	@byte_cnt: number of bytes to write
2819  *	@cont: whether another operation will be chained
2820  *	@lock: whether to lock SF for PL access only
2821  *	@val: value to write
2822  *
2823  *	Writes up to 4 bytes of data to the serial flash.  The location of
2824  *	the write needs to be specified prior to calling this by issuing the
2825  *	appropriate commands to the serial flash.
2826  */
2827 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2828 		     int lock, u32 val)
2829 {
2830 	if (!byte_cnt || byte_cnt > 4)
2831 		return -EINVAL;
2832 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2833 		return -EBUSY;
2834 	t4_write_reg(adapter, SF_DATA_A, val);
2835 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2836 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2837 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2838 }
2839 
2840 /**
2841  *	flash_wait_op - wait for a flash operation to complete
2842  *	@adapter: the adapter
2843  *	@attempts: max number of polls of the status register
2844  *	@delay: delay between polls in ms
2845  *
2846  *	Wait for a flash operation to complete by polling the status register.
2847  */
2848 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2849 {
2850 	int ret;
2851 	u32 status;
2852 
2853 	while (1) {
2854 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2855 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2856 			return ret;
2857 		if (!(status & 1))
2858 			return 0;
2859 		if (--attempts == 0)
2860 			return -EAGAIN;
2861 		if (delay)
2862 			msleep(delay);
2863 	}
2864 }
2865 
2866 /**
2867  *	t4_read_flash - read words from serial flash
2868  *	@adapter: the adapter
2869  *	@addr: the start address for the read
2870  *	@nwords: how many 32-bit words to read
2871  *	@data: where to store the read data
2872  *	@byte_oriented: whether to store data as bytes or as words
2873  *
2874  *	Read the specified number of 32-bit words from the serial flash.
2875  *	If @byte_oriented is set the read data is stored as a byte array
2876  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2877  *	natural endianness.
2878  */
2879 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2880 		  unsigned int nwords, u32 *data, int byte_oriented)
2881 {
2882 	int ret;
2883 
2884 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2885 		return -EINVAL;
2886 
2887 	addr = swab32(addr) | SF_RD_DATA_FAST;
2888 
2889 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2890 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2891 		return ret;
2892 
2893 	for ( ; nwords; nwords--, data++) {
2894 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2895 		if (nwords == 1)
2896 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2897 		if (ret)
2898 			return ret;
2899 		if (byte_oriented)
2900 			*data = (__force __u32)(cpu_to_be32(*data));
2901 	}
2902 	return 0;
2903 }
2904 
2905 /**
2906  *	t4_write_flash - write up to a page of data to the serial flash
2907  *	@adapter: the adapter
2908  *	@addr: the start address to write
2909  *	@n: length of data to write in bytes
2910  *	@data: the data to write
2911  *
2912  *	Writes up to a page of data (256 bytes) to the serial flash starting
2913  *	at the given address.  All the data must be written to the same page.
2914  */
2915 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2916 			  unsigned int n, const u8 *data)
2917 {
2918 	int ret;
2919 	u32 buf[64];
2920 	unsigned int i, c, left, val, offset = addr & 0xff;
2921 
2922 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2923 		return -EINVAL;
2924 
2925 	val = swab32(addr) | SF_PROG_PAGE;
2926 
2927 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2928 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2929 		goto unlock;
2930 
2931 	for (left = n; left; left -= c) {
2932 		c = min(left, 4U);
2933 		for (val = 0, i = 0; i < c; ++i)
2934 			val = (val << 8) + *data++;
2935 
2936 		ret = sf1_write(adapter, c, c != left, 1, val);
2937 		if (ret)
2938 			goto unlock;
2939 	}
2940 	ret = flash_wait_op(adapter, 8, 1);
2941 	if (ret)
2942 		goto unlock;
2943 
2944 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2945 
2946 	/* Read the page to verify the write succeeded */
2947 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2948 	if (ret)
2949 		return ret;
2950 
2951 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
2952 		dev_err(adapter->pdev_dev,
2953 			"failed to correctly write the flash page at %#x\n",
2954 			addr);
2955 		return -EIO;
2956 	}
2957 	return 0;
2958 
2959 unlock:
2960 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2961 	return ret;
2962 }
2963 
2964 /**
2965  *	t4_get_fw_version - read the firmware version
2966  *	@adapter: the adapter
2967  *	@vers: where to place the version
2968  *
2969  *	Reads the FW version from flash.
2970  */
2971 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2972 {
2973 	return t4_read_flash(adapter, FLASH_FW_START +
2974 			     offsetof(struct fw_hdr, fw_ver), 1,
2975 			     vers, 0);
2976 }
2977 
2978 /**
2979  *	t4_get_bs_version - read the firmware bootstrap version
2980  *	@adapter: the adapter
2981  *	@vers: where to place the version
2982  *
2983  *	Reads the FW Bootstrap version from flash.
2984  */
2985 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2986 {
2987 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2988 			     offsetof(struct fw_hdr, fw_ver), 1,
2989 			     vers, 0);
2990 }
2991 
2992 /**
2993  *	t4_get_tp_version - read the TP microcode version
2994  *	@adapter: the adapter
2995  *	@vers: where to place the version
2996  *
2997  *	Reads the TP microcode version from flash.
2998  */
2999 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3000 {
3001 	return t4_read_flash(adapter, FLASH_FW_START +
3002 			     offsetof(struct fw_hdr, tp_microcode_ver),
3003 			     1, vers, 0);
3004 }
3005 
3006 /**
3007  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3008  *	@adapter: the adapter
3009  *	@vers: where to place the version
3010  *
3011  *	Reads the Expansion ROM header from FLASH and returns the version
3012  *	number (if present) through the @vers return value pointer.  We return
3013  *	this in the Firmware Version Format since it's convenient.  Return
3014  *	0 on success, -ENOENT if no Expansion ROM is present.
3015  */
3016 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3017 {
3018 	struct exprom_header {
3019 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3020 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3021 	} *hdr;
3022 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3023 					   sizeof(u32))];
3024 	int ret;
3025 
3026 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3027 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3028 			    0);
3029 	if (ret)
3030 		return ret;
3031 
3032 	hdr = (struct exprom_header *)exprom_header_buf;
3033 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3034 		return -ENOENT;
3035 
3036 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3037 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3038 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3039 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3040 	return 0;
3041 }
3042 
3043 /**
3044  *	t4_check_fw_version - check if the FW is supported with this driver
3045  *	@adap: the adapter
3046  *
3047  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3048  *	if there's exact match, a negative error if the version could not be
3049  *	read or there's a major version mismatch
3050  */
3051 int t4_check_fw_version(struct adapter *adap)
3052 {
3053 	int i, ret, major, minor, micro;
3054 	int exp_major, exp_minor, exp_micro;
3055 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3056 
3057 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3058 	/* Try multiple times before returning error */
3059 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3060 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3061 
3062 	if (ret)
3063 		return ret;
3064 
3065 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3066 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3067 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3068 
3069 	switch (chip_version) {
3070 	case CHELSIO_T4:
3071 		exp_major = T4FW_MIN_VERSION_MAJOR;
3072 		exp_minor = T4FW_MIN_VERSION_MINOR;
3073 		exp_micro = T4FW_MIN_VERSION_MICRO;
3074 		break;
3075 	case CHELSIO_T5:
3076 		exp_major = T5FW_MIN_VERSION_MAJOR;
3077 		exp_minor = T5FW_MIN_VERSION_MINOR;
3078 		exp_micro = T5FW_MIN_VERSION_MICRO;
3079 		break;
3080 	case CHELSIO_T6:
3081 		exp_major = T6FW_MIN_VERSION_MAJOR;
3082 		exp_minor = T6FW_MIN_VERSION_MINOR;
3083 		exp_micro = T6FW_MIN_VERSION_MICRO;
3084 		break;
3085 	default:
3086 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3087 			adap->chip);
3088 		return -EINVAL;
3089 	}
3090 
3091 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3092 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3093 		dev_err(adap->pdev_dev,
3094 			"Card has firmware version %u.%u.%u, minimum "
3095 			"supported firmware is %u.%u.%u.\n", major, minor,
3096 			micro, exp_major, exp_minor, exp_micro);
3097 		return -EFAULT;
3098 	}
3099 	return 0;
3100 }
3101 
3102 /* Is the given firmware API compatible with the one the driver was compiled
3103  * with?
3104  */
3105 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3106 {
3107 
3108 	/* short circuit if it's the exact same firmware version */
3109 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3110 		return 1;
3111 
3112 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3113 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3114 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3115 		return 1;
3116 #undef SAME_INTF
3117 
3118 	return 0;
3119 }
3120 
3121 /* The firmware in the filesystem is usable, but should it be installed?
3122  * This routine explains itself in detail if it indicates the filesystem
3123  * firmware should be installed.
3124  */
3125 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3126 				int k, int c)
3127 {
3128 	const char *reason;
3129 
3130 	if (!card_fw_usable) {
3131 		reason = "incompatible or unusable";
3132 		goto install;
3133 	}
3134 
3135 	if (k > c) {
3136 		reason = "older than the version supported with this driver";
3137 		goto install;
3138 	}
3139 
3140 	return 0;
3141 
3142 install:
3143 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3144 		"installing firmware %u.%u.%u.%u on card.\n",
3145 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3146 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3147 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3148 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3149 
3150 	return 1;
3151 }
3152 
3153 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3154 	       const u8 *fw_data, unsigned int fw_size,
3155 	       struct fw_hdr *card_fw, enum dev_state state,
3156 	       int *reset)
3157 {
3158 	int ret, card_fw_usable, fs_fw_usable;
3159 	const struct fw_hdr *fs_fw;
3160 	const struct fw_hdr *drv_fw;
3161 
3162 	drv_fw = &fw_info->fw_hdr;
3163 
3164 	/* Read the header of the firmware on the card */
3165 	ret = -t4_read_flash(adap, FLASH_FW_START,
3166 			    sizeof(*card_fw) / sizeof(uint32_t),
3167 			    (uint32_t *)card_fw, 1);
3168 	if (ret == 0) {
3169 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3170 	} else {
3171 		dev_err(adap->pdev_dev,
3172 			"Unable to read card's firmware header: %d\n", ret);
3173 		card_fw_usable = 0;
3174 	}
3175 
3176 	if (fw_data != NULL) {
3177 		fs_fw = (const void *)fw_data;
3178 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3179 	} else {
3180 		fs_fw = NULL;
3181 		fs_fw_usable = 0;
3182 	}
3183 
3184 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3185 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3186 		/* Common case: the firmware on the card is an exact match and
3187 		 * the filesystem one is an exact match too, or the filesystem
3188 		 * one is absent/incompatible.
3189 		 */
3190 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3191 		   should_install_fs_fw(adap, card_fw_usable,
3192 					be32_to_cpu(fs_fw->fw_ver),
3193 					be32_to_cpu(card_fw->fw_ver))) {
3194 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3195 				     fw_size, 0);
3196 		if (ret != 0) {
3197 			dev_err(adap->pdev_dev,
3198 				"failed to install firmware: %d\n", ret);
3199 			goto bye;
3200 		}
3201 
3202 		/* Installed successfully, update the cached header too. */
3203 		*card_fw = *fs_fw;
3204 		card_fw_usable = 1;
3205 		*reset = 0;	/* already reset as part of load_fw */
3206 	}
3207 
3208 	if (!card_fw_usable) {
3209 		uint32_t d, c, k;
3210 
3211 		d = be32_to_cpu(drv_fw->fw_ver);
3212 		c = be32_to_cpu(card_fw->fw_ver);
3213 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3214 
3215 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3216 			"chip state %d, "
3217 			"driver compiled with %d.%d.%d.%d, "
3218 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3219 			state,
3220 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3221 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3222 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3223 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3224 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3225 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3226 		ret = EINVAL;
3227 		goto bye;
3228 	}
3229 
3230 	/* We're using whatever's on the card and it's known to be good. */
3231 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3232 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3233 
3234 bye:
3235 	return ret;
3236 }
3237 
3238 /**
3239  *	t4_flash_erase_sectors - erase a range of flash sectors
3240  *	@adapter: the adapter
3241  *	@start: the first sector to erase
3242  *	@end: the last sector to erase
3243  *
3244  *	Erases the sectors in the given inclusive range.
3245  */
3246 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3247 {
3248 	int ret = 0;
3249 
3250 	if (end >= adapter->params.sf_nsec)
3251 		return -EINVAL;
3252 
3253 	while (start <= end) {
3254 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3255 		    (ret = sf1_write(adapter, 4, 0, 1,
3256 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3257 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3258 			dev_err(adapter->pdev_dev,
3259 				"erase of flash sector %d failed, error %d\n",
3260 				start, ret);
3261 			break;
3262 		}
3263 		start++;
3264 	}
3265 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3266 	return ret;
3267 }
3268 
3269 /**
3270  *	t4_flash_cfg_addr - return the address of the flash configuration file
3271  *	@adapter: the adapter
3272  *
3273  *	Return the address within the flash where the Firmware Configuration
3274  *	File is stored.
3275  */
3276 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3277 {
3278 	if (adapter->params.sf_size == 0x100000)
3279 		return FLASH_FPGA_CFG_START;
3280 	else
3281 		return FLASH_CFG_START;
3282 }
3283 
3284 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3285  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3286  * and emit an error message for mismatched firmware to save our caller the
3287  * effort ...
3288  */
3289 static bool t4_fw_matches_chip(const struct adapter *adap,
3290 			       const struct fw_hdr *hdr)
3291 {
3292 	/* The expression below will return FALSE for any unsupported adapter
3293 	 * which will keep us "honest" in the future ...
3294 	 */
3295 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3296 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3297 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3298 		return true;
3299 
3300 	dev_err(adap->pdev_dev,
3301 		"FW image (%d) is not suitable for this adapter (%d)\n",
3302 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3303 	return false;
3304 }
3305 
3306 /**
3307  *	t4_load_fw - download firmware
3308  *	@adap: the adapter
3309  *	@fw_data: the firmware image to write
3310  *	@size: image size
3311  *
3312  *	Write the supplied firmware image to the card's serial flash.
3313  */
3314 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3315 {
3316 	u32 csum;
3317 	int ret, addr;
3318 	unsigned int i;
3319 	u8 first_page[SF_PAGE_SIZE];
3320 	const __be32 *p = (const __be32 *)fw_data;
3321 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3322 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3323 	unsigned int fw_img_start = adap->params.sf_fw_start;
3324 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3325 
3326 	if (!size) {
3327 		dev_err(adap->pdev_dev, "FW image has no data\n");
3328 		return -EINVAL;
3329 	}
3330 	if (size & 511) {
3331 		dev_err(adap->pdev_dev,
3332 			"FW image size not multiple of 512 bytes\n");
3333 		return -EINVAL;
3334 	}
3335 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3336 		dev_err(adap->pdev_dev,
3337 			"FW image size differs from size in FW header\n");
3338 		return -EINVAL;
3339 	}
3340 	if (size > FW_MAX_SIZE) {
3341 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3342 			FW_MAX_SIZE);
3343 		return -EFBIG;
3344 	}
3345 	if (!t4_fw_matches_chip(adap, hdr))
3346 		return -EINVAL;
3347 
3348 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3349 		csum += be32_to_cpu(p[i]);
3350 
3351 	if (csum != 0xffffffff) {
3352 		dev_err(adap->pdev_dev,
3353 			"corrupted firmware image, checksum %#x\n", csum);
3354 		return -EINVAL;
3355 	}
3356 
3357 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3358 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3359 	if (ret)
3360 		goto out;
3361 
3362 	/*
3363 	 * We write the correct version at the end so the driver can see a bad
3364 	 * version if the FW write fails.  Start by writing a copy of the
3365 	 * first page with a bad version.
3366 	 */
3367 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3368 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3369 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3370 	if (ret)
3371 		goto out;
3372 
3373 	addr = fw_img_start;
3374 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3375 		addr += SF_PAGE_SIZE;
3376 		fw_data += SF_PAGE_SIZE;
3377 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3378 		if (ret)
3379 			goto out;
3380 	}
3381 
3382 	ret = t4_write_flash(adap,
3383 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3384 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3385 out:
3386 	if (ret)
3387 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3388 			ret);
3389 	else
3390 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3391 	return ret;
3392 }
3393 
3394 /**
3395  *	t4_phy_fw_ver - return current PHY firmware version
3396  *	@adap: the adapter
3397  *	@phy_fw_ver: return value buffer for PHY firmware version
3398  *
3399  *	Returns the current version of external PHY firmware on the
3400  *	adapter.
3401  */
3402 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3403 {
3404 	u32 param, val;
3405 	int ret;
3406 
3407 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3408 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3409 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3410 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3411 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3412 			      &param, &val);
3413 	if (ret < 0)
3414 		return ret;
3415 	*phy_fw_ver = val;
3416 	return 0;
3417 }
3418 
3419 /**
3420  *	t4_load_phy_fw - download port PHY firmware
3421  *	@adap: the adapter
3422  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3423  *	@win_lock: the lock to use to guard the memory copy
3424  *	@phy_fw_version: function to check PHY firmware versions
3425  *	@phy_fw_data: the PHY firmware image to write
3426  *	@phy_fw_size: image size
3427  *
3428  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3429  *	@phy_fw_version is supplied, then it will be used to determine if
3430  *	it's necessary to perform the transfer by comparing the version
3431  *	of any existing adapter PHY firmware with that of the passed in
3432  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3433  *	around the call to t4_memory_rw() which transfers the PHY firmware
3434  *	to the adapter.
3435  *
3436  *	A negative error number will be returned if an error occurs.  If
3437  *	version number support is available and there's no need to upgrade
3438  *	the firmware, 0 will be returned.  If firmware is successfully
3439  *	transferred to the adapter, 1 will be retured.
3440  *
3441  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3442  *	a result, a RESET of the adapter would cause that RAM to lose its
3443  *	contents.  Thus, loading PHY firmware on such adapters must happen
3444  *	after any FW_RESET_CMDs ...
3445  */
3446 int t4_load_phy_fw(struct adapter *adap,
3447 		   int win, spinlock_t *win_lock,
3448 		   int (*phy_fw_version)(const u8 *, size_t),
3449 		   const u8 *phy_fw_data, size_t phy_fw_size)
3450 {
3451 	unsigned long mtype = 0, maddr = 0;
3452 	u32 param, val;
3453 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3454 	int ret;
3455 
3456 	/* If we have version number support, then check to see if the adapter
3457 	 * already has up-to-date PHY firmware loaded.
3458 	 */
3459 	 if (phy_fw_version) {
3460 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3461 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3462 		if (ret < 0)
3463 			return ret;
3464 
3465 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3466 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3467 				"version %#x\n", cur_phy_fw_ver);
3468 			return 0;
3469 		}
3470 	}
3471 
3472 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3473 	 * The size of the file requires a special version of the READ coommand
3474 	 * which will pass the file size via the values field in PARAMS_CMD and
3475 	 * retrieve the return value from firmware and place it in the same
3476 	 * buffer values
3477 	 */
3478 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3479 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3480 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3481 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3482 	val = phy_fw_size;
3483 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3484 				 &param, &val, 1);
3485 	if (ret < 0)
3486 		return ret;
3487 	mtype = val >> 8;
3488 	maddr = (val & 0xff) << 16;
3489 
3490 	/* Copy the supplied PHY Firmware image to the adapter memory location
3491 	 * allocated by the adapter firmware.
3492 	 */
3493 	if (win_lock)
3494 		spin_lock_bh(win_lock);
3495 	ret = t4_memory_rw(adap, win, mtype, maddr,
3496 			   phy_fw_size, (__be32 *)phy_fw_data,
3497 			   T4_MEMORY_WRITE);
3498 	if (win_lock)
3499 		spin_unlock_bh(win_lock);
3500 	if (ret)
3501 		return ret;
3502 
3503 	/* Tell the firmware that the PHY firmware image has been written to
3504 	 * RAM and it can now start copying it over to the PHYs.  The chip
3505 	 * firmware will RESET the affected PHYs as part of this operation
3506 	 * leaving them running the new PHY firmware image.
3507 	 */
3508 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3509 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3510 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3511 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3512 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3513 				    &param, &val, 30000);
3514 
3515 	/* If we have version number support, then check to see that the new
3516 	 * firmware got loaded properly.
3517 	 */
3518 	if (phy_fw_version) {
3519 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3520 		if (ret < 0)
3521 			return ret;
3522 
3523 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3524 			CH_WARN(adap, "PHY Firmware did not update: "
3525 				"version on adapter %#x, "
3526 				"version flashed %#x\n",
3527 				cur_phy_fw_ver, new_phy_fw_vers);
3528 			return -ENXIO;
3529 		}
3530 	}
3531 
3532 	return 1;
3533 }
3534 
3535 /**
3536  *	t4_fwcache - firmware cache operation
3537  *	@adap: the adapter
3538  *	@op  : the operation (flush or flush and invalidate)
3539  */
3540 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3541 {
3542 	struct fw_params_cmd c;
3543 
3544 	memset(&c, 0, sizeof(c));
3545 	c.op_to_vfn =
3546 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3547 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3548 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3549 			    FW_PARAMS_CMD_VFN_V(0));
3550 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3551 	c.param[0].mnem =
3552 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3553 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3554 	c.param[0].val = (__force __be32)op;
3555 
3556 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3557 }
3558 
3559 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3560 			unsigned int *pif_req_wrptr,
3561 			unsigned int *pif_rsp_wrptr)
3562 {
3563 	int i, j;
3564 	u32 cfg, val, req, rsp;
3565 
3566 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3567 	if (cfg & LADBGEN_F)
3568 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3569 
3570 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3571 	req = POLADBGWRPTR_G(val);
3572 	rsp = PILADBGWRPTR_G(val);
3573 	if (pif_req_wrptr)
3574 		*pif_req_wrptr = req;
3575 	if (pif_rsp_wrptr)
3576 		*pif_rsp_wrptr = rsp;
3577 
3578 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3579 		for (j = 0; j < 6; j++) {
3580 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3581 				     PILADBGRDPTR_V(rsp));
3582 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3583 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3584 			req++;
3585 			rsp++;
3586 		}
3587 		req = (req + 2) & POLADBGRDPTR_M;
3588 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3589 	}
3590 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3591 }
3592 
3593 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3594 {
3595 	u32 cfg;
3596 	int i, j, idx;
3597 
3598 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3599 	if (cfg & LADBGEN_F)
3600 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3601 
3602 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3603 		for (j = 0; j < 5; j++) {
3604 			idx = 8 * i + j;
3605 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3606 				     PILADBGRDPTR_V(idx));
3607 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3608 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3609 		}
3610 	}
3611 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3612 }
3613 
3614 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3615 {
3616 	unsigned int i, j;
3617 
3618 	for (i = 0; i < 8; i++) {
3619 		u32 *p = la_buf + i;
3620 
3621 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3622 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3623 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3624 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3625 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3626 	}
3627 }
3628 
3629 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3630 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3631 		     FW_PORT_CAP_ANEG)
3632 
3633 /**
3634  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3635  *	@phy: the PHY to setup
3636  *	@mac: the MAC to setup
3637  *	@lc: the requested link configuration
3638  *
3639  *	Set up a port's MAC and PHY according to a desired link configuration.
3640  *	- If the PHY can auto-negotiate first decide what to advertise, then
3641  *	  enable/disable auto-negotiation as desired, and reset.
3642  *	- If the PHY does not auto-negotiate just reset it.
3643  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3644  *	  otherwise do it later based on the outcome of auto-negotiation.
3645  */
3646 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3647 		  struct link_config *lc)
3648 {
3649 	struct fw_port_cmd c;
3650 	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3651 
3652 	lc->link_ok = 0;
3653 	if (lc->requested_fc & PAUSE_RX)
3654 		fc |= FW_PORT_CAP_FC_RX;
3655 	if (lc->requested_fc & PAUSE_TX)
3656 		fc |= FW_PORT_CAP_FC_TX;
3657 
3658 	memset(&c, 0, sizeof(c));
3659 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3660 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3661 				     FW_PORT_CMD_PORTID_V(port));
3662 	c.action_to_len16 =
3663 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3664 			    FW_LEN16(c));
3665 
3666 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3667 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3668 					     fc);
3669 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3670 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3671 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3672 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3673 	} else
3674 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3675 
3676 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3677 }
3678 
3679 /**
3680  *	t4_restart_aneg - restart autonegotiation
3681  *	@adap: the adapter
3682  *	@mbox: mbox to use for the FW command
3683  *	@port: the port id
3684  *
3685  *	Restarts autonegotiation for the selected port.
3686  */
3687 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3688 {
3689 	struct fw_port_cmd c;
3690 
3691 	memset(&c, 0, sizeof(c));
3692 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3693 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3694 				     FW_PORT_CMD_PORTID_V(port));
3695 	c.action_to_len16 =
3696 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3697 			    FW_LEN16(c));
3698 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3699 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3700 }
3701 
3702 typedef void (*int_handler_t)(struct adapter *adap);
3703 
3704 struct intr_info {
3705 	unsigned int mask;       /* bits to check in interrupt status */
3706 	const char *msg;         /* message to print or NULL */
3707 	short stat_idx;          /* stat counter to increment or -1 */
3708 	unsigned short fatal;    /* whether the condition reported is fatal */
3709 	int_handler_t int_handler; /* platform-specific int handler */
3710 };
3711 
3712 /**
3713  *	t4_handle_intr_status - table driven interrupt handler
3714  *	@adapter: the adapter that generated the interrupt
3715  *	@reg: the interrupt status register to process
3716  *	@acts: table of interrupt actions
3717  *
3718  *	A table driven interrupt handler that applies a set of masks to an
3719  *	interrupt status word and performs the corresponding actions if the
3720  *	interrupts described by the mask have occurred.  The actions include
3721  *	optionally emitting a warning or alert message.  The table is terminated
3722  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3723  *	conditions.
3724  */
3725 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3726 				 const struct intr_info *acts)
3727 {
3728 	int fatal = 0;
3729 	unsigned int mask = 0;
3730 	unsigned int status = t4_read_reg(adapter, reg);
3731 
3732 	for ( ; acts->mask; ++acts) {
3733 		if (!(status & acts->mask))
3734 			continue;
3735 		if (acts->fatal) {
3736 			fatal++;
3737 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3738 				  status & acts->mask);
3739 		} else if (acts->msg && printk_ratelimit())
3740 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3741 				 status & acts->mask);
3742 		if (acts->int_handler)
3743 			acts->int_handler(adapter);
3744 		mask |= acts->mask;
3745 	}
3746 	status &= mask;
3747 	if (status)                           /* clear processed interrupts */
3748 		t4_write_reg(adapter, reg, status);
3749 	return fatal;
3750 }
3751 
3752 /*
3753  * Interrupt handler for the PCIE module.
3754  */
3755 static void pcie_intr_handler(struct adapter *adapter)
3756 {
3757 	static const struct intr_info sysbus_intr_info[] = {
3758 		{ RNPP_F, "RXNP array parity error", -1, 1 },
3759 		{ RPCP_F, "RXPC array parity error", -1, 1 },
3760 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
3761 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
3762 		{ RFTP_F, "RXFT array parity error", -1, 1 },
3763 		{ 0 }
3764 	};
3765 	static const struct intr_info pcie_port_intr_info[] = {
3766 		{ TPCP_F, "TXPC array parity error", -1, 1 },
3767 		{ TNPP_F, "TXNP array parity error", -1, 1 },
3768 		{ TFTP_F, "TXFT array parity error", -1, 1 },
3769 		{ TCAP_F, "TXCA array parity error", -1, 1 },
3770 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
3771 		{ RCAP_F, "RXCA array parity error", -1, 1 },
3772 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
3773 		{ RDPE_F, "Rx data parity error", -1, 1 },
3774 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
3775 		{ 0 }
3776 	};
3777 	static const struct intr_info pcie_intr_info[] = {
3778 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3779 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3780 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3781 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3782 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3783 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3784 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3785 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3786 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3787 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3788 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3789 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3790 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3791 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3792 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3793 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3794 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3795 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3796 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3797 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3798 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3799 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3800 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3801 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3802 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3803 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3804 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3805 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
3806 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
3807 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
3808 		  -1, 0 },
3809 		{ 0 }
3810 	};
3811 
3812 	static struct intr_info t5_pcie_intr_info[] = {
3813 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
3814 		  -1, 1 },
3815 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3816 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3817 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3818 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3819 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3820 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3821 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3822 		  -1, 1 },
3823 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3824 		  -1, 1 },
3825 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3826 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3827 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3828 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3829 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
3830 		  -1, 1 },
3831 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3832 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3833 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3834 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3835 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3836 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3837 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3838 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3839 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3840 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3841 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3842 		  -1, 1 },
3843 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3844 		  -1, 1 },
3845 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3846 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3847 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3848 		{ READRSPERR_F, "Outbound read error", -1, 0 },
3849 		{ 0 }
3850 	};
3851 
3852 	int fat;
3853 
3854 	if (is_t4(adapter->params.chip))
3855 		fat = t4_handle_intr_status(adapter,
3856 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3857 				sysbus_intr_info) +
3858 			t4_handle_intr_status(adapter,
3859 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3860 					pcie_port_intr_info) +
3861 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3862 					      pcie_intr_info);
3863 	else
3864 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3865 					    t5_pcie_intr_info);
3866 
3867 	if (fat)
3868 		t4_fatal_err(adapter);
3869 }
3870 
3871 /*
3872  * TP interrupt handler.
3873  */
3874 static void tp_intr_handler(struct adapter *adapter)
3875 {
3876 	static const struct intr_info tp_intr_info[] = {
3877 		{ 0x3fffffff, "TP parity error", -1, 1 },
3878 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3879 		{ 0 }
3880 	};
3881 
3882 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3883 		t4_fatal_err(adapter);
3884 }
3885 
3886 /*
3887  * SGE interrupt handler.
3888  */
3889 static void sge_intr_handler(struct adapter *adapter)
3890 {
3891 	u64 v;
3892 	u32 err;
3893 
3894 	static const struct intr_info sge_intr_info[] = {
3895 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3896 		  "SGE received CPL exceeding IQE size", -1, 1 },
3897 		{ ERR_INVALID_CIDX_INC_F,
3898 		  "SGE GTS CIDX increment too large", -1, 0 },
3899 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3900 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3901 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3902 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3903 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3904 		  0 },
3905 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3906 		  0 },
3907 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3908 		  0 },
3909 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3910 		  0 },
3911 		{ ERR_ING_CTXT_PRIO_F,
3912 		  "SGE too many priority ingress contexts", -1, 0 },
3913 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3914 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3915 		{ 0 }
3916 	};
3917 
3918 	static struct intr_info t4t5_sge_intr_info[] = {
3919 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3920 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3921 		{ ERR_EGR_CTXT_PRIO_F,
3922 		  "SGE too many priority egress contexts", -1, 0 },
3923 		{ 0 }
3924 	};
3925 
3926 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3927 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3928 	if (v) {
3929 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3930 				(unsigned long long)v);
3931 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3932 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3933 	}
3934 
3935 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3936 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3937 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3938 					   t4t5_sge_intr_info);
3939 
3940 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3941 	if (err & ERROR_QID_VALID_F) {
3942 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3943 			ERROR_QID_G(err));
3944 		if (err & UNCAPTURED_ERROR_F)
3945 			dev_err(adapter->pdev_dev,
3946 				"SGE UNCAPTURED_ERROR set (clearing)\n");
3947 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3948 			     UNCAPTURED_ERROR_F);
3949 	}
3950 
3951 	if (v != 0)
3952 		t4_fatal_err(adapter);
3953 }
3954 
3955 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3956 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3957 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3958 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3959 
3960 /*
3961  * CIM interrupt handler.
3962  */
3963 static void cim_intr_handler(struct adapter *adapter)
3964 {
3965 	static const struct intr_info cim_intr_info[] = {
3966 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3967 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3968 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3969 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3970 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3971 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3972 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3973 		{ 0 }
3974 	};
3975 	static const struct intr_info cim_upintr_info[] = {
3976 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3977 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3978 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3979 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3980 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3981 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3982 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3983 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3984 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3985 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3986 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3987 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3988 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3989 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3990 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3991 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3992 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3993 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3994 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3995 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3996 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3997 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3998 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3999 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4000 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4001 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4002 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4003 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4004 		{ 0 }
4005 	};
4006 
4007 	int fat;
4008 
4009 	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
4010 		t4_report_fw_error(adapter);
4011 
4012 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4013 				    cim_intr_info) +
4014 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4015 				    cim_upintr_info);
4016 	if (fat)
4017 		t4_fatal_err(adapter);
4018 }
4019 
4020 /*
4021  * ULP RX interrupt handler.
4022  */
4023 static void ulprx_intr_handler(struct adapter *adapter)
4024 {
4025 	static const struct intr_info ulprx_intr_info[] = {
4026 		{ 0x1800000, "ULPRX context error", -1, 1 },
4027 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4028 		{ 0 }
4029 	};
4030 
4031 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4032 		t4_fatal_err(adapter);
4033 }
4034 
4035 /*
4036  * ULP TX interrupt handler.
4037  */
4038 static void ulptx_intr_handler(struct adapter *adapter)
4039 {
4040 	static const struct intr_info ulptx_intr_info[] = {
4041 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4042 		  0 },
4043 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4044 		  0 },
4045 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4046 		  0 },
4047 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4048 		  0 },
4049 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4050 		{ 0 }
4051 	};
4052 
4053 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4054 		t4_fatal_err(adapter);
4055 }
4056 
4057 /*
4058  * PM TX interrupt handler.
4059  */
4060 static void pmtx_intr_handler(struct adapter *adapter)
4061 {
4062 	static const struct intr_info pmtx_intr_info[] = {
4063 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4064 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4065 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4066 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4067 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4068 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4069 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4070 		  -1, 1 },
4071 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4072 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4073 		{ 0 }
4074 	};
4075 
4076 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4077 		t4_fatal_err(adapter);
4078 }
4079 
4080 /*
4081  * PM RX interrupt handler.
4082  */
4083 static void pmrx_intr_handler(struct adapter *adapter)
4084 {
4085 	static const struct intr_info pmrx_intr_info[] = {
4086 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4087 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4088 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4089 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4090 		  -1, 1 },
4091 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4092 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4093 		{ 0 }
4094 	};
4095 
4096 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4097 		t4_fatal_err(adapter);
4098 }
4099 
4100 /*
4101  * CPL switch interrupt handler.
4102  */
4103 static void cplsw_intr_handler(struct adapter *adapter)
4104 {
4105 	static const struct intr_info cplsw_intr_info[] = {
4106 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4107 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4108 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4109 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4110 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4111 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4112 		{ 0 }
4113 	};
4114 
4115 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4116 		t4_fatal_err(adapter);
4117 }
4118 
4119 /*
4120  * LE interrupt handler.
4121  */
4122 static void le_intr_handler(struct adapter *adap)
4123 {
4124 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4125 	static const struct intr_info le_intr_info[] = {
4126 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4127 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4128 		{ PARITYERR_F, "LE parity error", -1, 1 },
4129 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4130 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4131 		{ 0 }
4132 	};
4133 
4134 	static struct intr_info t6_le_intr_info[] = {
4135 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4136 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4137 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4138 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4139 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4140 		{ 0 }
4141 	};
4142 
4143 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4144 				  (chip <= CHELSIO_T5) ?
4145 				  le_intr_info : t6_le_intr_info))
4146 		t4_fatal_err(adap);
4147 }
4148 
4149 /*
4150  * MPS interrupt handler.
4151  */
4152 static void mps_intr_handler(struct adapter *adapter)
4153 {
4154 	static const struct intr_info mps_rx_intr_info[] = {
4155 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4156 		{ 0 }
4157 	};
4158 	static const struct intr_info mps_tx_intr_info[] = {
4159 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4160 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4161 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4162 		  -1, 1 },
4163 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4164 		  -1, 1 },
4165 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4166 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4167 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4168 		{ 0 }
4169 	};
4170 	static const struct intr_info mps_trc_intr_info[] = {
4171 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4172 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4173 		  -1, 1 },
4174 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4175 		{ 0 }
4176 	};
4177 	static const struct intr_info mps_stat_sram_intr_info[] = {
4178 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4179 		{ 0 }
4180 	};
4181 	static const struct intr_info mps_stat_tx_intr_info[] = {
4182 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4183 		{ 0 }
4184 	};
4185 	static const struct intr_info mps_stat_rx_intr_info[] = {
4186 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4187 		{ 0 }
4188 	};
4189 	static const struct intr_info mps_cls_intr_info[] = {
4190 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4191 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4192 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4193 		{ 0 }
4194 	};
4195 
4196 	int fat;
4197 
4198 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4199 				    mps_rx_intr_info) +
4200 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4201 				    mps_tx_intr_info) +
4202 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4203 				    mps_trc_intr_info) +
4204 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4205 				    mps_stat_sram_intr_info) +
4206 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4207 				    mps_stat_tx_intr_info) +
4208 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4209 				    mps_stat_rx_intr_info) +
4210 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4211 				    mps_cls_intr_info);
4212 
4213 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4214 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4215 	if (fat)
4216 		t4_fatal_err(adapter);
4217 }
4218 
4219 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4220 		      ECC_UE_INT_CAUSE_F)
4221 
4222 /*
4223  * EDC/MC interrupt handler.
4224  */
4225 static void mem_intr_handler(struct adapter *adapter, int idx)
4226 {
4227 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4228 
4229 	unsigned int addr, cnt_addr, v;
4230 
4231 	if (idx <= MEM_EDC1) {
4232 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4233 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4234 	} else if (idx == MEM_MC) {
4235 		if (is_t4(adapter->params.chip)) {
4236 			addr = MC_INT_CAUSE_A;
4237 			cnt_addr = MC_ECC_STATUS_A;
4238 		} else {
4239 			addr = MC_P_INT_CAUSE_A;
4240 			cnt_addr = MC_P_ECC_STATUS_A;
4241 		}
4242 	} else {
4243 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4244 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4245 	}
4246 
4247 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4248 	if (v & PERR_INT_CAUSE_F)
4249 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4250 			  name[idx]);
4251 	if (v & ECC_CE_INT_CAUSE_F) {
4252 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4253 
4254 		t4_edc_err_read(adapter, idx);
4255 
4256 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4257 		if (printk_ratelimit())
4258 			dev_warn(adapter->pdev_dev,
4259 				 "%u %s correctable ECC data error%s\n",
4260 				 cnt, name[idx], cnt > 1 ? "s" : "");
4261 	}
4262 	if (v & ECC_UE_INT_CAUSE_F)
4263 		dev_alert(adapter->pdev_dev,
4264 			  "%s uncorrectable ECC data error\n", name[idx]);
4265 
4266 	t4_write_reg(adapter, addr, v);
4267 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4268 		t4_fatal_err(adapter);
4269 }
4270 
4271 /*
4272  * MA interrupt handler.
4273  */
4274 static void ma_intr_handler(struct adapter *adap)
4275 {
4276 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4277 
4278 	if (status & MEM_PERR_INT_CAUSE_F) {
4279 		dev_alert(adap->pdev_dev,
4280 			  "MA parity error, parity status %#x\n",
4281 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4282 		if (is_t5(adap->params.chip))
4283 			dev_alert(adap->pdev_dev,
4284 				  "MA parity error, parity status %#x\n",
4285 				  t4_read_reg(adap,
4286 					      MA_PARITY_ERROR_STATUS2_A));
4287 	}
4288 	if (status & MEM_WRAP_INT_CAUSE_F) {
4289 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4290 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4291 			  "client %u to address %#x\n",
4292 			  MEM_WRAP_CLIENT_NUM_G(v),
4293 			  MEM_WRAP_ADDRESS_G(v) << 4);
4294 	}
4295 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4296 	t4_fatal_err(adap);
4297 }
4298 
4299 /*
4300  * SMB interrupt handler.
4301  */
4302 static void smb_intr_handler(struct adapter *adap)
4303 {
4304 	static const struct intr_info smb_intr_info[] = {
4305 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4306 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4307 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4308 		{ 0 }
4309 	};
4310 
4311 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4312 		t4_fatal_err(adap);
4313 }
4314 
4315 /*
4316  * NC-SI interrupt handler.
4317  */
4318 static void ncsi_intr_handler(struct adapter *adap)
4319 {
4320 	static const struct intr_info ncsi_intr_info[] = {
4321 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4322 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4323 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4324 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4325 		{ 0 }
4326 	};
4327 
4328 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4329 		t4_fatal_err(adap);
4330 }
4331 
4332 /*
4333  * XGMAC interrupt handler.
4334  */
4335 static void xgmac_intr_handler(struct adapter *adap, int port)
4336 {
4337 	u32 v, int_cause_reg;
4338 
4339 	if (is_t4(adap->params.chip))
4340 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4341 	else
4342 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4343 
4344 	v = t4_read_reg(adap, int_cause_reg);
4345 
4346 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4347 	if (!v)
4348 		return;
4349 
4350 	if (v & TXFIFO_PRTY_ERR_F)
4351 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4352 			  port);
4353 	if (v & RXFIFO_PRTY_ERR_F)
4354 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4355 			  port);
4356 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4357 	t4_fatal_err(adap);
4358 }
4359 
4360 /*
4361  * PL interrupt handler.
4362  */
4363 static void pl_intr_handler(struct adapter *adap)
4364 {
4365 	static const struct intr_info pl_intr_info[] = {
4366 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4367 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4368 		{ 0 }
4369 	};
4370 
4371 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4372 		t4_fatal_err(adap);
4373 }
4374 
4375 #define PF_INTR_MASK (PFSW_F)
4376 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4377 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4378 		CPL_SWITCH_F | SGE_F | ULP_TX_F)
4379 
4380 /**
4381  *	t4_slow_intr_handler - control path interrupt handler
4382  *	@adapter: the adapter
4383  *
4384  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4385  *	The designation 'slow' is because it involves register reads, while
4386  *	data interrupts typically don't involve any MMIOs.
4387  */
4388 int t4_slow_intr_handler(struct adapter *adapter)
4389 {
4390 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4391 
4392 	if (!(cause & GLBL_INTR_MASK))
4393 		return 0;
4394 	if (cause & CIM_F)
4395 		cim_intr_handler(adapter);
4396 	if (cause & MPS_F)
4397 		mps_intr_handler(adapter);
4398 	if (cause & NCSI_F)
4399 		ncsi_intr_handler(adapter);
4400 	if (cause & PL_F)
4401 		pl_intr_handler(adapter);
4402 	if (cause & SMB_F)
4403 		smb_intr_handler(adapter);
4404 	if (cause & XGMAC0_F)
4405 		xgmac_intr_handler(adapter, 0);
4406 	if (cause & XGMAC1_F)
4407 		xgmac_intr_handler(adapter, 1);
4408 	if (cause & XGMAC_KR0_F)
4409 		xgmac_intr_handler(adapter, 2);
4410 	if (cause & XGMAC_KR1_F)
4411 		xgmac_intr_handler(adapter, 3);
4412 	if (cause & PCIE_F)
4413 		pcie_intr_handler(adapter);
4414 	if (cause & MC_F)
4415 		mem_intr_handler(adapter, MEM_MC);
4416 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4417 		mem_intr_handler(adapter, MEM_MC1);
4418 	if (cause & EDC0_F)
4419 		mem_intr_handler(adapter, MEM_EDC0);
4420 	if (cause & EDC1_F)
4421 		mem_intr_handler(adapter, MEM_EDC1);
4422 	if (cause & LE_F)
4423 		le_intr_handler(adapter);
4424 	if (cause & TP_F)
4425 		tp_intr_handler(adapter);
4426 	if (cause & MA_F)
4427 		ma_intr_handler(adapter);
4428 	if (cause & PM_TX_F)
4429 		pmtx_intr_handler(adapter);
4430 	if (cause & PM_RX_F)
4431 		pmrx_intr_handler(adapter);
4432 	if (cause & ULP_RX_F)
4433 		ulprx_intr_handler(adapter);
4434 	if (cause & CPL_SWITCH_F)
4435 		cplsw_intr_handler(adapter);
4436 	if (cause & SGE_F)
4437 		sge_intr_handler(adapter);
4438 	if (cause & ULP_TX_F)
4439 		ulptx_intr_handler(adapter);
4440 
4441 	/* Clear the interrupts just processed for which we are the master. */
4442 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4443 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4444 	return 1;
4445 }
4446 
4447 /**
4448  *	t4_intr_enable - enable interrupts
4449  *	@adapter: the adapter whose interrupts should be enabled
4450  *
4451  *	Enable PF-specific interrupts for the calling function and the top-level
4452  *	interrupt concentrator for global interrupts.  Interrupts are already
4453  *	enabled at each module,	here we just enable the roots of the interrupt
4454  *	hierarchies.
4455  *
4456  *	Note: this function should be called only when the driver manages
4457  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4458  *	function at a time should be doing this.
4459  */
4460 void t4_intr_enable(struct adapter *adapter)
4461 {
4462 	u32 val = 0;
4463 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4464 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4465 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4466 
4467 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4468 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4469 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4470 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4471 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4472 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4473 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4474 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4475 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4476 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4477 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4478 }
4479 
4480 /**
4481  *	t4_intr_disable - disable interrupts
4482  *	@adapter: the adapter whose interrupts should be disabled
4483  *
4484  *	Disable interrupts.  We only disable the top-level interrupt
4485  *	concentrators.  The caller must be a PCI function managing global
4486  *	interrupts.
4487  */
4488 void t4_intr_disable(struct adapter *adapter)
4489 {
4490 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4491 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4492 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4493 
4494 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4495 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4496 }
4497 
4498 /**
4499  *	t4_config_rss_range - configure a portion of the RSS mapping table
4500  *	@adapter: the adapter
4501  *	@mbox: mbox to use for the FW command
4502  *	@viid: virtual interface whose RSS subtable is to be written
4503  *	@start: start entry in the table to write
4504  *	@n: how many table entries to write
4505  *	@rspq: values for the response queue lookup table
4506  *	@nrspq: number of values in @rspq
4507  *
4508  *	Programs the selected part of the VI's RSS mapping table with the
4509  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4510  *	until the full table range is populated.
4511  *
4512  *	The caller must ensure the values in @rspq are in the range allowed for
4513  *	@viid.
4514  */
4515 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4516 			int start, int n, const u16 *rspq, unsigned int nrspq)
4517 {
4518 	int ret;
4519 	const u16 *rsp = rspq;
4520 	const u16 *rsp_end = rspq + nrspq;
4521 	struct fw_rss_ind_tbl_cmd cmd;
4522 
4523 	memset(&cmd, 0, sizeof(cmd));
4524 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4525 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4526 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4527 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4528 
4529 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4530 	while (n > 0) {
4531 		int nq = min(n, 32);
4532 		__be32 *qp = &cmd.iq0_to_iq2;
4533 
4534 		cmd.niqid = cpu_to_be16(nq);
4535 		cmd.startidx = cpu_to_be16(start);
4536 
4537 		start += nq;
4538 		n -= nq;
4539 
4540 		while (nq > 0) {
4541 			unsigned int v;
4542 
4543 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4544 			if (++rsp >= rsp_end)
4545 				rsp = rspq;
4546 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4547 			if (++rsp >= rsp_end)
4548 				rsp = rspq;
4549 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4550 			if (++rsp >= rsp_end)
4551 				rsp = rspq;
4552 
4553 			*qp++ = cpu_to_be32(v);
4554 			nq -= 3;
4555 		}
4556 
4557 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4558 		if (ret)
4559 			return ret;
4560 	}
4561 	return 0;
4562 }
4563 
4564 /**
4565  *	t4_config_glbl_rss - configure the global RSS mode
4566  *	@adapter: the adapter
4567  *	@mbox: mbox to use for the FW command
4568  *	@mode: global RSS mode
4569  *	@flags: mode-specific flags
4570  *
4571  *	Sets the global RSS mode.
4572  */
4573 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4574 		       unsigned int flags)
4575 {
4576 	struct fw_rss_glb_config_cmd c;
4577 
4578 	memset(&c, 0, sizeof(c));
4579 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4580 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4581 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4582 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4583 		c.u.manual.mode_pkd =
4584 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4585 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4586 		c.u.basicvirtual.mode_pkd =
4587 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4588 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4589 	} else
4590 		return -EINVAL;
4591 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4592 }
4593 
4594 /**
4595  *	t4_config_vi_rss - configure per VI RSS settings
4596  *	@adapter: the adapter
4597  *	@mbox: mbox to use for the FW command
4598  *	@viid: the VI id
4599  *	@flags: RSS flags
4600  *	@defq: id of the default RSS queue for the VI.
4601  *
4602  *	Configures VI-specific RSS properties.
4603  */
4604 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4605 		     unsigned int flags, unsigned int defq)
4606 {
4607 	struct fw_rss_vi_config_cmd c;
4608 
4609 	memset(&c, 0, sizeof(c));
4610 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4611 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4612 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4613 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4614 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4615 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4616 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4617 }
4618 
4619 /* Read an RSS table row */
4620 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4621 {
4622 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4623 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4624 				   5, 0, val);
4625 }
4626 
4627 /**
4628  *	t4_read_rss - read the contents of the RSS mapping table
4629  *	@adapter: the adapter
4630  *	@map: holds the contents of the RSS mapping table
4631  *
4632  *	Reads the contents of the RSS hash->queue mapping table.
4633  */
4634 int t4_read_rss(struct adapter *adapter, u16 *map)
4635 {
4636 	u32 val;
4637 	int i, ret;
4638 
4639 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4640 		ret = rd_rss_row(adapter, i, &val);
4641 		if (ret)
4642 			return ret;
4643 		*map++ = LKPTBLQUEUE0_G(val);
4644 		*map++ = LKPTBLQUEUE1_G(val);
4645 	}
4646 	return 0;
4647 }
4648 
4649 static unsigned int t4_use_ldst(struct adapter *adap)
4650 {
4651 	return (adap->flags & FW_OK) || !adap->use_bd;
4652 }
4653 
4654 /**
4655  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4656  *	@adap: the adapter
4657  *	@vals: where the indirect register values are stored/written
4658  *	@nregs: how many indirect registers to read/write
4659  *	@start_idx: index of first indirect register to read/write
4660  *	@rw: Read (1) or Write (0)
4661  *
4662  *	Access TP PIO registers through LDST
4663  */
4664 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4665 			    unsigned int start_index, unsigned int rw)
4666 {
4667 	int ret, i;
4668 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4669 	struct fw_ldst_cmd c;
4670 
4671 	for (i = 0 ; i < nregs; i++) {
4672 		memset(&c, 0, sizeof(c));
4673 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4674 						FW_CMD_REQUEST_F |
4675 						(rw ? FW_CMD_READ_F :
4676 						      FW_CMD_WRITE_F) |
4677 						FW_LDST_CMD_ADDRSPACE_V(cmd));
4678 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4679 
4680 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4681 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4682 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4683 		if (!ret && rw)
4684 			vals[i] = be32_to_cpu(c.u.addrval.val);
4685 	}
4686 }
4687 
4688 /**
4689  *	t4_read_rss_key - read the global RSS key
4690  *	@adap: the adapter
4691  *	@key: 10-entry array holding the 320-bit RSS key
4692  *
4693  *	Reads the global 320-bit RSS key.
4694  */
4695 void t4_read_rss_key(struct adapter *adap, u32 *key)
4696 {
4697 	if (t4_use_ldst(adap))
4698 		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4699 	else
4700 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4701 				 TP_RSS_SECRET_KEY0_A);
4702 }
4703 
4704 /**
4705  *	t4_write_rss_key - program one of the RSS keys
4706  *	@adap: the adapter
4707  *	@key: 10-entry array holding the 320-bit RSS key
4708  *	@idx: which RSS key to write
4709  *
4710  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4711  *	0..15 the corresponding entry in the RSS key table is written,
4712  *	otherwise the global RSS key is written.
4713  */
4714 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4715 {
4716 	u8 rss_key_addr_cnt = 16;
4717 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4718 
4719 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4720 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4721 	 * as index[5:4](upper 2) into key table
4722 	 */
4723 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4724 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4725 		rss_key_addr_cnt = 32;
4726 
4727 	if (t4_use_ldst(adap))
4728 		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4729 	else
4730 		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4731 				  TP_RSS_SECRET_KEY0_A);
4732 
4733 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4734 		if (rss_key_addr_cnt > 16)
4735 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4736 				     KEYWRADDRX_V(idx >> 4) |
4737 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
4738 		else
4739 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4740 				     KEYWRADDR_V(idx) | KEYWREN_F);
4741 	}
4742 }
4743 
4744 /**
4745  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4746  *	@adapter: the adapter
4747  *	@index: the entry in the PF RSS table to read
4748  *	@valp: where to store the returned value
4749  *
4750  *	Reads the PF RSS Configuration Table at the specified index and returns
4751  *	the value found there.
4752  */
4753 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4754 			   u32 *valp)
4755 {
4756 	if (t4_use_ldst(adapter))
4757 		t4_fw_tp_pio_rw(adapter, valp, 1,
4758 				TP_RSS_PF0_CONFIG_A + index, 1);
4759 	else
4760 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4761 				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4762 }
4763 
4764 /**
4765  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4766  *	@adapter: the adapter
4767  *	@index: the entry in the VF RSS table to read
4768  *	@vfl: where to store the returned VFL
4769  *	@vfh: where to store the returned VFH
4770  *
4771  *	Reads the VF RSS Configuration Table at the specified index and returns
4772  *	the (VFL, VFH) values found there.
4773  */
4774 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4775 			   u32 *vfl, u32 *vfh)
4776 {
4777 	u32 vrt, mask, data;
4778 
4779 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4780 		mask = VFWRADDR_V(VFWRADDR_M);
4781 		data = VFWRADDR_V(index);
4782 	} else {
4783 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4784 		 data = T6_VFWRADDR_V(index);
4785 	}
4786 
4787 	/* Request that the index'th VF Table values be read into VFL/VFH.
4788 	 */
4789 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4790 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4791 	vrt |= data | VFRDEN_F;
4792 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4793 
4794 	/* Grab the VFL/VFH values ...
4795 	 */
4796 	if (t4_use_ldst(adapter)) {
4797 		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4798 		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4799 	} else {
4800 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4801 				 vfl, 1, TP_RSS_VFL_CONFIG_A);
4802 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4803 				 vfh, 1, TP_RSS_VFH_CONFIG_A);
4804 	}
4805 }
4806 
4807 /**
4808  *	t4_read_rss_pf_map - read PF RSS Map
4809  *	@adapter: the adapter
4810  *
4811  *	Reads the PF RSS Map register and returns its value.
4812  */
4813 u32 t4_read_rss_pf_map(struct adapter *adapter)
4814 {
4815 	u32 pfmap;
4816 
4817 	if (t4_use_ldst(adapter))
4818 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4819 	else
4820 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4821 				 &pfmap, 1, TP_RSS_PF_MAP_A);
4822 	return pfmap;
4823 }
4824 
4825 /**
4826  *	t4_read_rss_pf_mask - read PF RSS Mask
4827  *	@adapter: the adapter
4828  *
4829  *	Reads the PF RSS Mask register and returns its value.
4830  */
4831 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4832 {
4833 	u32 pfmask;
4834 
4835 	if (t4_use_ldst(adapter))
4836 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4837 	else
4838 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4839 				 &pfmask, 1, TP_RSS_PF_MSK_A);
4840 	return pfmask;
4841 }
4842 
4843 /**
4844  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
4845  *	@adap: the adapter
4846  *	@v4: holds the TCP/IP counter values
4847  *	@v6: holds the TCP/IPv6 counter values
4848  *
4849  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4850  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4851  */
4852 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4853 			 struct tp_tcp_stats *v6)
4854 {
4855 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4856 
4857 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4858 #define STAT(x)     val[STAT_IDX(x)]
4859 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4860 
4861 	if (v4) {
4862 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4863 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4864 		v4->tcp_out_rsts = STAT(OUT_RST);
4865 		v4->tcp_in_segs  = STAT64(IN_SEG);
4866 		v4->tcp_out_segs = STAT64(OUT_SEG);
4867 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4868 	}
4869 	if (v6) {
4870 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4871 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4872 		v6->tcp_out_rsts = STAT(OUT_RST);
4873 		v6->tcp_in_segs  = STAT64(IN_SEG);
4874 		v6->tcp_out_segs = STAT64(OUT_SEG);
4875 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
4876 	}
4877 #undef STAT64
4878 #undef STAT
4879 #undef STAT_IDX
4880 }
4881 
4882 /**
4883  *	t4_tp_get_err_stats - read TP's error MIB counters
4884  *	@adap: the adapter
4885  *	@st: holds the counter values
4886  *
4887  *	Returns the values of TP's error counters.
4888  */
4889 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4890 {
4891 	int nchan = adap->params.arch.nchan;
4892 
4893 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4894 			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4895 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4896 			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4897 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4898 			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4899 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4900 			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4901 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4902 			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4903 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4904 			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4905 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4906 			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4907 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4908 			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4909 
4910 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4911 			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4912 }
4913 
4914 /**
4915  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
4916  *	@adap: the adapter
4917  *	@st: holds the counter values
4918  *
4919  *	Returns the values of TP's CPL counters.
4920  */
4921 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4922 {
4923 	int nchan = adap->params.arch.nchan;
4924 
4925 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4926 			 nchan, TP_MIB_CPL_IN_REQ_0_A);
4927 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4928 			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4929 
4930 }
4931 
4932 /**
4933  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4934  *	@adap: the adapter
4935  *	@st: holds the counter values
4936  *
4937  *	Returns the values of TP's RDMA counters.
4938  */
4939 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4940 {
4941 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4942 			 2, TP_MIB_RQE_DFR_PKT_A);
4943 }
4944 
4945 /**
4946  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4947  *	@adap: the adapter
4948  *	@idx: the port index
4949  *	@st: holds the counter values
4950  *
4951  *	Returns the values of TP's FCoE counters for the selected port.
4952  */
4953 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4954 		       struct tp_fcoe_stats *st)
4955 {
4956 	u32 val[2];
4957 
4958 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4959 			 1, TP_MIB_FCOE_DDP_0_A + idx);
4960 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4961 			 1, TP_MIB_FCOE_DROP_0_A + idx);
4962 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4963 			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4964 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
4965 }
4966 
4967 /**
4968  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4969  *	@adap: the adapter
4970  *	@st: holds the counter values
4971  *
4972  *	Returns the values of TP's counters for non-TCP directly-placed packets.
4973  */
4974 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4975 {
4976 	u32 val[4];
4977 
4978 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4979 			 TP_MIB_USM_PKTS_A);
4980 	st->frames = val[0];
4981 	st->drops = val[1];
4982 	st->octets = ((u64)val[2] << 32) | val[3];
4983 }
4984 
4985 /**
4986  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
4987  *	@adap: the adapter
4988  *	@mtus: where to store the MTU values
4989  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
4990  *
4991  *	Reads the HW path MTU table.
4992  */
4993 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4994 {
4995 	u32 v;
4996 	int i;
4997 
4998 	for (i = 0; i < NMTUS; ++i) {
4999 		t4_write_reg(adap, TP_MTU_TABLE_A,
5000 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5001 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5002 		mtus[i] = MTUVALUE_G(v);
5003 		if (mtu_log)
5004 			mtu_log[i] = MTUWIDTH_G(v);
5005 	}
5006 }
5007 
5008 /**
5009  *	t4_read_cong_tbl - reads the congestion control table
5010  *	@adap: the adapter
5011  *	@incr: where to store the alpha values
5012  *
5013  *	Reads the additive increments programmed into the HW congestion
5014  *	control table.
5015  */
5016 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5017 {
5018 	unsigned int mtu, w;
5019 
5020 	for (mtu = 0; mtu < NMTUS; ++mtu)
5021 		for (w = 0; w < NCCTRL_WIN; ++w) {
5022 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5023 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5024 			incr[mtu][w] = (u16)t4_read_reg(adap,
5025 						TP_CCTRL_TABLE_A) & 0x1fff;
5026 		}
5027 }
5028 
5029 /**
5030  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5031  *	@adap: the adapter
5032  *	@addr: the indirect TP register address
5033  *	@mask: specifies the field within the register to modify
5034  *	@val: new value for the field
5035  *
5036  *	Sets a field of an indirect TP register to the given value.
5037  */
5038 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5039 			    unsigned int mask, unsigned int val)
5040 {
5041 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5042 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5043 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5044 }
5045 
5046 /**
5047  *	init_cong_ctrl - initialize congestion control parameters
5048  *	@a: the alpha values for congestion control
5049  *	@b: the beta values for congestion control
5050  *
5051  *	Initialize the congestion control parameters.
5052  */
5053 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5054 {
5055 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5056 	a[9] = 2;
5057 	a[10] = 3;
5058 	a[11] = 4;
5059 	a[12] = 5;
5060 	a[13] = 6;
5061 	a[14] = 7;
5062 	a[15] = 8;
5063 	a[16] = 9;
5064 	a[17] = 10;
5065 	a[18] = 14;
5066 	a[19] = 17;
5067 	a[20] = 21;
5068 	a[21] = 25;
5069 	a[22] = 30;
5070 	a[23] = 35;
5071 	a[24] = 45;
5072 	a[25] = 60;
5073 	a[26] = 80;
5074 	a[27] = 100;
5075 	a[28] = 200;
5076 	a[29] = 300;
5077 	a[30] = 400;
5078 	a[31] = 500;
5079 
5080 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5081 	b[9] = b[10] = 1;
5082 	b[11] = b[12] = 2;
5083 	b[13] = b[14] = b[15] = b[16] = 3;
5084 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5085 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5086 	b[28] = b[29] = 6;
5087 	b[30] = b[31] = 7;
5088 }
5089 
5090 /* The minimum additive increment value for the congestion control table */
5091 #define CC_MIN_INCR 2U
5092 
5093 /**
5094  *	t4_load_mtus - write the MTU and congestion control HW tables
5095  *	@adap: the adapter
5096  *	@mtus: the values for the MTU table
5097  *	@alpha: the values for the congestion control alpha parameter
5098  *	@beta: the values for the congestion control beta parameter
5099  *
5100  *	Write the HW MTU table with the supplied MTUs and the high-speed
5101  *	congestion control table with the supplied alpha, beta, and MTUs.
5102  *	We write the two tables together because the additive increments
5103  *	depend on the MTUs.
5104  */
5105 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5106 		  const unsigned short *alpha, const unsigned short *beta)
5107 {
5108 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5109 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5110 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5111 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5112 	};
5113 
5114 	unsigned int i, w;
5115 
5116 	for (i = 0; i < NMTUS; ++i) {
5117 		unsigned int mtu = mtus[i];
5118 		unsigned int log2 = fls(mtu);
5119 
5120 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5121 			log2--;
5122 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5123 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5124 
5125 		for (w = 0; w < NCCTRL_WIN; ++w) {
5126 			unsigned int inc;
5127 
5128 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5129 				  CC_MIN_INCR);
5130 
5131 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5132 				     (w << 16) | (beta[w] << 13) | inc);
5133 		}
5134 	}
5135 }
5136 
5137 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5138  * clocks.  The formula is
5139  *
5140  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5141  *
5142  * which is equivalent to
5143  *
5144  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5145  */
5146 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5147 {
5148 	u64 v = bytes256 * adap->params.vpd.cclk;
5149 
5150 	return v * 62 + v / 2;
5151 }
5152 
5153 /**
5154  *	t4_get_chan_txrate - get the current per channel Tx rates
5155  *	@adap: the adapter
5156  *	@nic_rate: rates for NIC traffic
5157  *	@ofld_rate: rates for offloaded traffic
5158  *
5159  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5160  *	for each channel.
5161  */
5162 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5163 {
5164 	u32 v;
5165 
5166 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5167 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5168 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5169 	if (adap->params.arch.nchan == NCHAN) {
5170 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5171 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5172 	}
5173 
5174 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5175 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5176 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5177 	if (adap->params.arch.nchan == NCHAN) {
5178 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5179 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5180 	}
5181 }
5182 
5183 /**
5184  *	t4_set_trace_filter - configure one of the tracing filters
5185  *	@adap: the adapter
5186  *	@tp: the desired trace filter parameters
5187  *	@idx: which filter to configure
5188  *	@enable: whether to enable or disable the filter
5189  *
5190  *	Configures one of the tracing filters available in HW.  If @enable is
5191  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5192  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5193  */
5194 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5195 			int idx, int enable)
5196 {
5197 	int i, ofst = idx * 4;
5198 	u32 data_reg, mask_reg, cfg;
5199 	u32 multitrc = TRCMULTIFILTER_F;
5200 
5201 	if (!enable) {
5202 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5203 		return 0;
5204 	}
5205 
5206 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5207 	if (cfg & TRCMULTIFILTER_F) {
5208 		/* If multiple tracers are enabled, then maximum
5209 		 * capture size is 2.5KB (FIFO size of a single channel)
5210 		 * minus 2 flits for CPL_TRACE_PKT header.
5211 		 */
5212 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5213 			return -EINVAL;
5214 	} else {
5215 		/* If multiple tracers are disabled, to avoid deadlocks
5216 		 * maximum packet capture size of 9600 bytes is recommended.
5217 		 * Also in this mode, only trace0 can be enabled and running.
5218 		 */
5219 		multitrc = 0;
5220 		if (tp->snap_len > 9600 || idx)
5221 			return -EINVAL;
5222 	}
5223 
5224 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5225 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5226 	    tp->min_len > TFMINPKTSIZE_M)
5227 		return -EINVAL;
5228 
5229 	/* stop the tracer we'll be changing */
5230 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5231 
5232 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5233 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5234 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5235 
5236 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5237 		t4_write_reg(adap, data_reg, tp->data[i]);
5238 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5239 	}
5240 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5241 		     TFCAPTUREMAX_V(tp->snap_len) |
5242 		     TFMINPKTSIZE_V(tp->min_len));
5243 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5244 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5245 		     (is_t4(adap->params.chip) ?
5246 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5247 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5248 		     T5_TFINVERTMATCH_V(tp->invert)));
5249 
5250 	return 0;
5251 }
5252 
5253 /**
5254  *	t4_get_trace_filter - query one of the tracing filters
5255  *	@adap: the adapter
5256  *	@tp: the current trace filter parameters
5257  *	@idx: which trace filter to query
5258  *	@enabled: non-zero if the filter is enabled
5259  *
5260  *	Returns the current settings of one of the HW tracing filters.
5261  */
5262 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5263 			 int *enabled)
5264 {
5265 	u32 ctla, ctlb;
5266 	int i, ofst = idx * 4;
5267 	u32 data_reg, mask_reg;
5268 
5269 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5270 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5271 
5272 	if (is_t4(adap->params.chip)) {
5273 		*enabled = !!(ctla & TFEN_F);
5274 		tp->port =  TFPORT_G(ctla);
5275 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5276 	} else {
5277 		*enabled = !!(ctla & T5_TFEN_F);
5278 		tp->port = T5_TFPORT_G(ctla);
5279 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5280 	}
5281 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5282 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5283 	tp->skip_ofst = TFOFFSET_G(ctla);
5284 	tp->skip_len = TFLENGTH_G(ctla);
5285 
5286 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5287 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5288 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5289 
5290 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5291 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5292 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5293 	}
5294 }
5295 
5296 /**
5297  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5298  *	@adap: the adapter
5299  *	@cnt: where to store the count statistics
5300  *	@cycles: where to store the cycle statistics
5301  *
5302  *	Returns performance statistics from PMTX.
5303  */
5304 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5305 {
5306 	int i;
5307 	u32 data[2];
5308 
5309 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5310 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5311 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5312 		if (is_t4(adap->params.chip)) {
5313 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5314 		} else {
5315 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5316 					 PM_TX_DBG_DATA_A, data, 2,
5317 					 PM_TX_DBG_STAT_MSB_A);
5318 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5319 		}
5320 	}
5321 }
5322 
5323 /**
5324  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5325  *	@adap: the adapter
5326  *	@cnt: where to store the count statistics
5327  *	@cycles: where to store the cycle statistics
5328  *
5329  *	Returns performance statistics from PMRX.
5330  */
5331 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5332 {
5333 	int i;
5334 	u32 data[2];
5335 
5336 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5337 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5338 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5339 		if (is_t4(adap->params.chip)) {
5340 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5341 		} else {
5342 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5343 					 PM_RX_DBG_DATA_A, data, 2,
5344 					 PM_RX_DBG_STAT_MSB_A);
5345 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5346 		}
5347 	}
5348 }
5349 
5350 /**
5351  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5352  *	@adap: the adapter
5353  *	@idx: the port index
5354  *
5355  *	Returns a bitmap indicating which MPS buffer groups are associated
5356  *	with the given port.  Bit i is set if buffer group i is used by the
5357  *	port.
5358  */
5359 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5360 {
5361 	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5362 
5363 	if (n == 0)
5364 		return idx == 0 ? 0xf : 0;
5365 	/* In T6 (which is a 2 port card),
5366 	 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5367 	 * For 2 port T4/T5 adapter,
5368 	 * port 0 is mapped to channel 0 and 1,
5369 	 * port 1 is mapped to channel 2 and 3.
5370 	 */
5371 	if ((n == 1) &&
5372 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5373 		return idx < 2 ? (3 << (2 * idx)) : 0;
5374 	return 1 << idx;
5375 }
5376 
5377 /**
5378  *      t4_get_port_type_description - return Port Type string description
5379  *      @port_type: firmware Port Type enumeration
5380  */
5381 const char *t4_get_port_type_description(enum fw_port_type port_type)
5382 {
5383 	static const char *const port_type_description[] = {
5384 		"R XFI",
5385 		"R XAUI",
5386 		"T SGMII",
5387 		"T XFI",
5388 		"T XAUI",
5389 		"KX4",
5390 		"CX4",
5391 		"KX",
5392 		"KR",
5393 		"R SFP+",
5394 		"KR/KX",
5395 		"KR/KX/KX4",
5396 		"R QSFP_10G",
5397 		"R QSA",
5398 		"R QSFP",
5399 		"R BP40_BA",
5400 	};
5401 
5402 	if (port_type < ARRAY_SIZE(port_type_description))
5403 		return port_type_description[port_type];
5404 	return "UNKNOWN";
5405 }
5406 
5407 /**
5408  *      t4_get_port_stats_offset - collect port stats relative to a previous
5409  *                                 snapshot
5410  *      @adap: The adapter
5411  *      @idx: The port
5412  *      @stats: Current stats to fill
5413  *      @offset: Previous stats snapshot
5414  */
5415 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5416 			      struct port_stats *stats,
5417 			      struct port_stats *offset)
5418 {
5419 	u64 *s, *o;
5420 	int i;
5421 
5422 	t4_get_port_stats(adap, idx, stats);
5423 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5424 			i < (sizeof(struct port_stats) / sizeof(u64));
5425 			i++, s++, o++)
5426 		*s -= *o;
5427 }
5428 
5429 /**
5430  *	t4_get_port_stats - collect port statistics
5431  *	@adap: the adapter
5432  *	@idx: the port index
5433  *	@p: the stats structure to fill
5434  *
5435  *	Collect statistics related to the given port from HW.
5436  */
5437 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5438 {
5439 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5440 
5441 #define GET_STAT(name) \
5442 	t4_read_reg64(adap, \
5443 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5444 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5445 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5446 
5447 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5448 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5449 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5450 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5451 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5452 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5453 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5454 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5455 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5456 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5457 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5458 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5459 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5460 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
5461 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5462 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5463 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5464 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5465 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5466 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5467 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5468 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5469 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5470 
5471 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5472 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5473 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5474 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5475 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5476 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5477 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5478 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5479 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5480 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5481 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5482 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5483 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5484 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5485 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5486 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5487 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5488 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5489 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5490 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5491 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5492 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5493 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5494 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5495 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5496 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5497 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5498 
5499 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5500 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5501 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5502 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5503 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5504 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5505 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5506 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5507 
5508 #undef GET_STAT
5509 #undef GET_STAT_COM
5510 }
5511 
5512 /**
5513  *	t4_get_lb_stats - collect loopback port statistics
5514  *	@adap: the adapter
5515  *	@idx: the loopback port index
5516  *	@p: the stats structure to fill
5517  *
5518  *	Return HW statistics for the given loopback port.
5519  */
5520 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5521 {
5522 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5523 
5524 #define GET_STAT(name) \
5525 	t4_read_reg64(adap, \
5526 	(is_t4(adap->params.chip) ? \
5527 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5528 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5529 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5530 
5531 	p->octets           = GET_STAT(BYTES);
5532 	p->frames           = GET_STAT(FRAMES);
5533 	p->bcast_frames     = GET_STAT(BCAST);
5534 	p->mcast_frames     = GET_STAT(MCAST);
5535 	p->ucast_frames     = GET_STAT(UCAST);
5536 	p->error_frames     = GET_STAT(ERROR);
5537 
5538 	p->frames_64        = GET_STAT(64B);
5539 	p->frames_65_127    = GET_STAT(65B_127B);
5540 	p->frames_128_255   = GET_STAT(128B_255B);
5541 	p->frames_256_511   = GET_STAT(256B_511B);
5542 	p->frames_512_1023  = GET_STAT(512B_1023B);
5543 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
5544 	p->frames_1519_max  = GET_STAT(1519B_MAX);
5545 	p->drop             = GET_STAT(DROP_FRAMES);
5546 
5547 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5548 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5549 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5550 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5551 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5552 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5553 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5554 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5555 
5556 #undef GET_STAT
5557 #undef GET_STAT_COM
5558 }
5559 
5560 /*     t4_mk_filtdelwr - create a delete filter WR
5561  *     @ftid: the filter ID
5562  *     @wr: the filter work request to populate
5563  *     @qid: ingress queue to receive the delete notification
5564  *
5565  *     Creates a filter work request to delete the supplied filter.  If @qid is
5566  *     negative the delete notification is suppressed.
5567  */
5568 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5569 {
5570 	memset(wr, 0, sizeof(*wr));
5571 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5572 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5573 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5574 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
5575 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5576 	if (qid >= 0)
5577 		wr->rx_chan_rx_rpl_iq =
5578 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5579 }
5580 
5581 #define INIT_CMD(var, cmd, rd_wr) do { \
5582 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5583 					FW_CMD_REQUEST_F | \
5584 					FW_CMD_##rd_wr##_F); \
5585 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5586 } while (0)
5587 
5588 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5589 			  u32 addr, u32 val)
5590 {
5591 	u32 ldst_addrspace;
5592 	struct fw_ldst_cmd c;
5593 
5594 	memset(&c, 0, sizeof(c));
5595 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5596 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5597 					FW_CMD_REQUEST_F |
5598 					FW_CMD_WRITE_F |
5599 					ldst_addrspace);
5600 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5601 	c.u.addrval.addr = cpu_to_be32(addr);
5602 	c.u.addrval.val = cpu_to_be32(val);
5603 
5604 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5605 }
5606 
5607 /**
5608  *	t4_mdio_rd - read a PHY register through MDIO
5609  *	@adap: the adapter
5610  *	@mbox: mailbox to use for the FW command
5611  *	@phy_addr: the PHY address
5612  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5613  *	@reg: the register to read
5614  *	@valp: where to store the value
5615  *
5616  *	Issues a FW command through the given mailbox to read a PHY register.
5617  */
5618 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5619 	       unsigned int mmd, unsigned int reg, u16 *valp)
5620 {
5621 	int ret;
5622 	u32 ldst_addrspace;
5623 	struct fw_ldst_cmd c;
5624 
5625 	memset(&c, 0, sizeof(c));
5626 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5627 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5628 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5629 					ldst_addrspace);
5630 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5631 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5632 					 FW_LDST_CMD_MMD_V(mmd));
5633 	c.u.mdio.raddr = cpu_to_be16(reg);
5634 
5635 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5636 	if (ret == 0)
5637 		*valp = be16_to_cpu(c.u.mdio.rval);
5638 	return ret;
5639 }
5640 
5641 /**
5642  *	t4_mdio_wr - write a PHY register through MDIO
5643  *	@adap: the adapter
5644  *	@mbox: mailbox to use for the FW command
5645  *	@phy_addr: the PHY address
5646  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5647  *	@reg: the register to write
5648  *	@valp: value to write
5649  *
5650  *	Issues a FW command through the given mailbox to write a PHY register.
5651  */
5652 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5653 	       unsigned int mmd, unsigned int reg, u16 val)
5654 {
5655 	u32 ldst_addrspace;
5656 	struct fw_ldst_cmd c;
5657 
5658 	memset(&c, 0, sizeof(c));
5659 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5660 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5661 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5662 					ldst_addrspace);
5663 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5664 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5665 					 FW_LDST_CMD_MMD_V(mmd));
5666 	c.u.mdio.raddr = cpu_to_be16(reg);
5667 	c.u.mdio.rval = cpu_to_be16(val);
5668 
5669 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5670 }
5671 
5672 /**
5673  *	t4_sge_decode_idma_state - decode the idma state
5674  *	@adap: the adapter
5675  *	@state: the state idma is stuck in
5676  */
5677 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5678 {
5679 	static const char * const t4_decode[] = {
5680 		"IDMA_IDLE",
5681 		"IDMA_PUSH_MORE_CPL_FIFO",
5682 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5683 		"Not used",
5684 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5685 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5686 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5687 		"IDMA_SEND_FIFO_TO_IMSG",
5688 		"IDMA_FL_REQ_DATA_FL_PREP",
5689 		"IDMA_FL_REQ_DATA_FL",
5690 		"IDMA_FL_DROP",
5691 		"IDMA_FL_H_REQ_HEADER_FL",
5692 		"IDMA_FL_H_SEND_PCIEHDR",
5693 		"IDMA_FL_H_PUSH_CPL_FIFO",
5694 		"IDMA_FL_H_SEND_CPL",
5695 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5696 		"IDMA_FL_H_SEND_IP_HDR",
5697 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5698 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5699 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5700 		"IDMA_FL_D_SEND_PCIEHDR",
5701 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5702 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5703 		"IDMA_FL_SEND_PCIEHDR",
5704 		"IDMA_FL_PUSH_CPL_FIFO",
5705 		"IDMA_FL_SEND_CPL",
5706 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5707 		"IDMA_FL_SEND_PAYLOAD",
5708 		"IDMA_FL_REQ_NEXT_DATA_FL",
5709 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5710 		"IDMA_FL_SEND_PADDING",
5711 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5712 		"IDMA_FL_SEND_FIFO_TO_IMSG",
5713 		"IDMA_FL_REQ_DATAFL_DONE",
5714 		"IDMA_FL_REQ_HEADERFL_DONE",
5715 	};
5716 	static const char * const t5_decode[] = {
5717 		"IDMA_IDLE",
5718 		"IDMA_ALMOST_IDLE",
5719 		"IDMA_PUSH_MORE_CPL_FIFO",
5720 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5721 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5722 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5723 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5724 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5725 		"IDMA_SEND_FIFO_TO_IMSG",
5726 		"IDMA_FL_REQ_DATA_FL",
5727 		"IDMA_FL_DROP",
5728 		"IDMA_FL_DROP_SEND_INC",
5729 		"IDMA_FL_H_REQ_HEADER_FL",
5730 		"IDMA_FL_H_SEND_PCIEHDR",
5731 		"IDMA_FL_H_PUSH_CPL_FIFO",
5732 		"IDMA_FL_H_SEND_CPL",
5733 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5734 		"IDMA_FL_H_SEND_IP_HDR",
5735 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5736 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5737 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5738 		"IDMA_FL_D_SEND_PCIEHDR",
5739 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5740 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5741 		"IDMA_FL_SEND_PCIEHDR",
5742 		"IDMA_FL_PUSH_CPL_FIFO",
5743 		"IDMA_FL_SEND_CPL",
5744 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5745 		"IDMA_FL_SEND_PAYLOAD",
5746 		"IDMA_FL_REQ_NEXT_DATA_FL",
5747 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5748 		"IDMA_FL_SEND_PADDING",
5749 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5750 	};
5751 	static const char * const t6_decode[] = {
5752 		"IDMA_IDLE",
5753 		"IDMA_PUSH_MORE_CPL_FIFO",
5754 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5755 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5756 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5757 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5758 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5759 		"IDMA_FL_REQ_DATA_FL",
5760 		"IDMA_FL_DROP",
5761 		"IDMA_FL_DROP_SEND_INC",
5762 		"IDMA_FL_H_REQ_HEADER_FL",
5763 		"IDMA_FL_H_SEND_PCIEHDR",
5764 		"IDMA_FL_H_PUSH_CPL_FIFO",
5765 		"IDMA_FL_H_SEND_CPL",
5766 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5767 		"IDMA_FL_H_SEND_IP_HDR",
5768 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5769 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5770 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5771 		"IDMA_FL_D_SEND_PCIEHDR",
5772 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5773 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5774 		"IDMA_FL_SEND_PCIEHDR",
5775 		"IDMA_FL_PUSH_CPL_FIFO",
5776 		"IDMA_FL_SEND_CPL",
5777 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5778 		"IDMA_FL_SEND_PAYLOAD",
5779 		"IDMA_FL_REQ_NEXT_DATA_FL",
5780 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5781 		"IDMA_FL_SEND_PADDING",
5782 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5783 	};
5784 	static const u32 sge_regs[] = {
5785 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
5786 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
5787 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5788 	};
5789 	const char **sge_idma_decode;
5790 	int sge_idma_decode_nstates;
5791 	int i;
5792 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5793 
5794 	/* Select the right set of decode strings to dump depending on the
5795 	 * adapter chip type.
5796 	 */
5797 	switch (chip_version) {
5798 	case CHELSIO_T4:
5799 		sge_idma_decode = (const char **)t4_decode;
5800 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5801 		break;
5802 
5803 	case CHELSIO_T5:
5804 		sge_idma_decode = (const char **)t5_decode;
5805 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5806 		break;
5807 
5808 	case CHELSIO_T6:
5809 		sge_idma_decode = (const char **)t6_decode;
5810 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5811 		break;
5812 
5813 	default:
5814 		dev_err(adapter->pdev_dev,
5815 			"Unsupported chip version %d\n", chip_version);
5816 		return;
5817 	}
5818 
5819 	if (is_t4(adapter->params.chip)) {
5820 		sge_idma_decode = (const char **)t4_decode;
5821 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5822 	} else {
5823 		sge_idma_decode = (const char **)t5_decode;
5824 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5825 	}
5826 
5827 	if (state < sge_idma_decode_nstates)
5828 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5829 	else
5830 		CH_WARN(adapter, "idma state %d unknown\n", state);
5831 
5832 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5833 		CH_WARN(adapter, "SGE register %#x value %#x\n",
5834 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5835 }
5836 
5837 /**
5838  *      t4_sge_ctxt_flush - flush the SGE context cache
5839  *      @adap: the adapter
5840  *      @mbox: mailbox to use for the FW command
5841  *
5842  *      Issues a FW command through the given mailbox to flush the
5843  *      SGE context cache.
5844  */
5845 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5846 {
5847 	int ret;
5848 	u32 ldst_addrspace;
5849 	struct fw_ldst_cmd c;
5850 
5851 	memset(&c, 0, sizeof(c));
5852 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5853 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5854 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5855 					ldst_addrspace);
5856 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5857 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5858 
5859 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5860 	return ret;
5861 }
5862 
5863 /**
5864  *      t4_fw_hello - establish communication with FW
5865  *      @adap: the adapter
5866  *      @mbox: mailbox to use for the FW command
5867  *      @evt_mbox: mailbox to receive async FW events
5868  *      @master: specifies the caller's willingness to be the device master
5869  *	@state: returns the current device state (if non-NULL)
5870  *
5871  *	Issues a command to establish communication with FW.  Returns either
5872  *	an error (negative integer) or the mailbox of the Master PF.
5873  */
5874 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5875 		enum dev_master master, enum dev_state *state)
5876 {
5877 	int ret;
5878 	struct fw_hello_cmd c;
5879 	u32 v;
5880 	unsigned int master_mbox;
5881 	int retries = FW_CMD_HELLO_RETRIES;
5882 
5883 retry:
5884 	memset(&c, 0, sizeof(c));
5885 	INIT_CMD(c, HELLO, WRITE);
5886 	c.err_to_clearinit = cpu_to_be32(
5887 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5888 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5889 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5890 					mbox : FW_HELLO_CMD_MBMASTER_M) |
5891 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5892 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5893 		FW_HELLO_CMD_CLEARINIT_F);
5894 
5895 	/*
5896 	 * Issue the HELLO command to the firmware.  If it's not successful
5897 	 * but indicates that we got a "busy" or "timeout" condition, retry
5898 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
5899 	 * retry limit, check to see if the firmware left us any error
5900 	 * information and report that if so.
5901 	 */
5902 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5903 	if (ret < 0) {
5904 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5905 			goto retry;
5906 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5907 			t4_report_fw_error(adap);
5908 		return ret;
5909 	}
5910 
5911 	v = be32_to_cpu(c.err_to_clearinit);
5912 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5913 	if (state) {
5914 		if (v & FW_HELLO_CMD_ERR_F)
5915 			*state = DEV_STATE_ERR;
5916 		else if (v & FW_HELLO_CMD_INIT_F)
5917 			*state = DEV_STATE_INIT;
5918 		else
5919 			*state = DEV_STATE_UNINIT;
5920 	}
5921 
5922 	/*
5923 	 * If we're not the Master PF then we need to wait around for the
5924 	 * Master PF Driver to finish setting up the adapter.
5925 	 *
5926 	 * Note that we also do this wait if we're a non-Master-capable PF and
5927 	 * there is no current Master PF; a Master PF may show up momentarily
5928 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
5929 	 * OS loads lots of different drivers rapidly at the same time).  In
5930 	 * this case, the Master PF returned by the firmware will be
5931 	 * PCIE_FW_MASTER_M so the test below will work ...
5932 	 */
5933 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5934 	    master_mbox != mbox) {
5935 		int waiting = FW_CMD_HELLO_TIMEOUT;
5936 
5937 		/*
5938 		 * Wait for the firmware to either indicate an error or
5939 		 * initialized state.  If we see either of these we bail out
5940 		 * and report the issue to the caller.  If we exhaust the
5941 		 * "hello timeout" and we haven't exhausted our retries, try
5942 		 * again.  Otherwise bail with a timeout error.
5943 		 */
5944 		for (;;) {
5945 			u32 pcie_fw;
5946 
5947 			msleep(50);
5948 			waiting -= 50;
5949 
5950 			/*
5951 			 * If neither Error nor Initialialized are indicated
5952 			 * by the firmware keep waiting till we exaust our
5953 			 * timeout ... and then retry if we haven't exhausted
5954 			 * our retries ...
5955 			 */
5956 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5957 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5958 				if (waiting <= 0) {
5959 					if (retries-- > 0)
5960 						goto retry;
5961 
5962 					return -ETIMEDOUT;
5963 				}
5964 				continue;
5965 			}
5966 
5967 			/*
5968 			 * We either have an Error or Initialized condition
5969 			 * report errors preferentially.
5970 			 */
5971 			if (state) {
5972 				if (pcie_fw & PCIE_FW_ERR_F)
5973 					*state = DEV_STATE_ERR;
5974 				else if (pcie_fw & PCIE_FW_INIT_F)
5975 					*state = DEV_STATE_INIT;
5976 			}
5977 
5978 			/*
5979 			 * If we arrived before a Master PF was selected and
5980 			 * there's not a valid Master PF, grab its identity
5981 			 * for our caller.
5982 			 */
5983 			if (master_mbox == PCIE_FW_MASTER_M &&
5984 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
5985 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5986 			break;
5987 		}
5988 	}
5989 
5990 	return master_mbox;
5991 }
5992 
5993 /**
5994  *	t4_fw_bye - end communication with FW
5995  *	@adap: the adapter
5996  *	@mbox: mailbox to use for the FW command
5997  *
5998  *	Issues a command to terminate communication with FW.
5999  */
6000 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6001 {
6002 	struct fw_bye_cmd c;
6003 
6004 	memset(&c, 0, sizeof(c));
6005 	INIT_CMD(c, BYE, WRITE);
6006 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6007 }
6008 
6009 /**
6010  *	t4_init_cmd - ask FW to initialize the device
6011  *	@adap: the adapter
6012  *	@mbox: mailbox to use for the FW command
6013  *
6014  *	Issues a command to FW to partially initialize the device.  This
6015  *	performs initialization that generally doesn't depend on user input.
6016  */
6017 int t4_early_init(struct adapter *adap, unsigned int mbox)
6018 {
6019 	struct fw_initialize_cmd c;
6020 
6021 	memset(&c, 0, sizeof(c));
6022 	INIT_CMD(c, INITIALIZE, WRITE);
6023 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6024 }
6025 
6026 /**
6027  *	t4_fw_reset - issue a reset to FW
6028  *	@adap: the adapter
6029  *	@mbox: mailbox to use for the FW command
6030  *	@reset: specifies the type of reset to perform
6031  *
6032  *	Issues a reset command of the specified type to FW.
6033  */
6034 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6035 {
6036 	struct fw_reset_cmd c;
6037 
6038 	memset(&c, 0, sizeof(c));
6039 	INIT_CMD(c, RESET, WRITE);
6040 	c.val = cpu_to_be32(reset);
6041 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6042 }
6043 
6044 /**
6045  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6046  *	@adap: the adapter
6047  *	@mbox: mailbox to use for the FW RESET command (if desired)
6048  *	@force: force uP into RESET even if FW RESET command fails
6049  *
6050  *	Issues a RESET command to firmware (if desired) with a HALT indication
6051  *	and then puts the microprocessor into RESET state.  The RESET command
6052  *	will only be issued if a legitimate mailbox is provided (mbox <=
6053  *	PCIE_FW_MASTER_M).
6054  *
6055  *	This is generally used in order for the host to safely manipulate the
6056  *	adapter without fear of conflicting with whatever the firmware might
6057  *	be doing.  The only way out of this state is to RESTART the firmware
6058  *	...
6059  */
6060 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6061 {
6062 	int ret = 0;
6063 
6064 	/*
6065 	 * If a legitimate mailbox is provided, issue a RESET command
6066 	 * with a HALT indication.
6067 	 */
6068 	if (mbox <= PCIE_FW_MASTER_M) {
6069 		struct fw_reset_cmd c;
6070 
6071 		memset(&c, 0, sizeof(c));
6072 		INIT_CMD(c, RESET, WRITE);
6073 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6074 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6075 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6076 	}
6077 
6078 	/*
6079 	 * Normally we won't complete the operation if the firmware RESET
6080 	 * command fails but if our caller insists we'll go ahead and put the
6081 	 * uP into RESET.  This can be useful if the firmware is hung or even
6082 	 * missing ...  We'll have to take the risk of putting the uP into
6083 	 * RESET without the cooperation of firmware in that case.
6084 	 *
6085 	 * We also force the firmware's HALT flag to be on in case we bypassed
6086 	 * the firmware RESET command above or we're dealing with old firmware
6087 	 * which doesn't have the HALT capability.  This will serve as a flag
6088 	 * for the incoming firmware to know that it's coming out of a HALT
6089 	 * rather than a RESET ... if it's new enough to understand that ...
6090 	 */
6091 	if (ret == 0 || force) {
6092 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6093 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6094 				 PCIE_FW_HALT_F);
6095 	}
6096 
6097 	/*
6098 	 * And we always return the result of the firmware RESET command
6099 	 * even when we force the uP into RESET ...
6100 	 */
6101 	return ret;
6102 }
6103 
6104 /**
6105  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6106  *	@adap: the adapter
6107  *	@reset: if we want to do a RESET to restart things
6108  *
6109  *	Restart firmware previously halted by t4_fw_halt().  On successful
6110  *	return the previous PF Master remains as the new PF Master and there
6111  *	is no need to issue a new HELLO command, etc.
6112  *
6113  *	We do this in two ways:
6114  *
6115  *	 1. If we're dealing with newer firmware we'll simply want to take
6116  *	    the chip's microprocessor out of RESET.  This will cause the
6117  *	    firmware to start up from its start vector.  And then we'll loop
6118  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6119  *	    reset to 0) or we timeout.
6120  *
6121  *	 2. If we're dealing with older firmware then we'll need to RESET
6122  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6123  *	    flag and automatically RESET itself on startup.
6124  */
6125 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6126 {
6127 	if (reset) {
6128 		/*
6129 		 * Since we're directing the RESET instead of the firmware
6130 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6131 		 * bit.
6132 		 */
6133 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6134 
6135 		/*
6136 		 * If we've been given a valid mailbox, first try to get the
6137 		 * firmware to do the RESET.  If that works, great and we can
6138 		 * return success.  Otherwise, if we haven't been given a
6139 		 * valid mailbox or the RESET command failed, fall back to
6140 		 * hitting the chip with a hammer.
6141 		 */
6142 		if (mbox <= PCIE_FW_MASTER_M) {
6143 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6144 			msleep(100);
6145 			if (t4_fw_reset(adap, mbox,
6146 					PIORST_F | PIORSTMODE_F) == 0)
6147 				return 0;
6148 		}
6149 
6150 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6151 		msleep(2000);
6152 	} else {
6153 		int ms;
6154 
6155 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6156 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6157 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6158 				return 0;
6159 			msleep(100);
6160 			ms += 100;
6161 		}
6162 		return -ETIMEDOUT;
6163 	}
6164 	return 0;
6165 }
6166 
6167 /**
6168  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6169  *	@adap: the adapter
6170  *	@mbox: mailbox to use for the FW RESET command (if desired)
6171  *	@fw_data: the firmware image to write
6172  *	@size: image size
6173  *	@force: force upgrade even if firmware doesn't cooperate
6174  *
6175  *	Perform all of the steps necessary for upgrading an adapter's
6176  *	firmware image.  Normally this requires the cooperation of the
6177  *	existing firmware in order to halt all existing activities
6178  *	but if an invalid mailbox token is passed in we skip that step
6179  *	(though we'll still put the adapter microprocessor into RESET in
6180  *	that case).
6181  *
6182  *	On successful return the new firmware will have been loaded and
6183  *	the adapter will have been fully RESET losing all previous setup
6184  *	state.  On unsuccessful return the adapter may be completely hosed ...
6185  *	positive errno indicates that the adapter is ~probably~ intact, a
6186  *	negative errno indicates that things are looking bad ...
6187  */
6188 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6189 		  const u8 *fw_data, unsigned int size, int force)
6190 {
6191 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6192 	int reset, ret;
6193 
6194 	if (!t4_fw_matches_chip(adap, fw_hdr))
6195 		return -EINVAL;
6196 
6197 	ret = t4_fw_halt(adap, mbox, force);
6198 	if (ret < 0 && !force)
6199 		return ret;
6200 
6201 	ret = t4_load_fw(adap, fw_data, size);
6202 	if (ret < 0)
6203 		return ret;
6204 
6205 	/*
6206 	 * Older versions of the firmware don't understand the new
6207 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6208 	 * restart.  So for newly loaded older firmware we'll have to do the
6209 	 * RESET for it so it starts up on a clean slate.  We can tell if
6210 	 * the newly loaded firmware will handle this right by checking
6211 	 * its header flags to see if it advertises the capability.
6212 	 */
6213 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6214 	return t4_fw_restart(adap, mbox, reset);
6215 }
6216 
6217 /**
6218  *	t4_fl_pkt_align - return the fl packet alignment
6219  *	@adap: the adapter
6220  *
6221  *	T4 has a single field to specify the packing and padding boundary.
6222  *	T5 onwards has separate fields for this and hence the alignment for
6223  *	next packet offset is maximum of these two.
6224  *
6225  */
6226 int t4_fl_pkt_align(struct adapter *adap)
6227 {
6228 	u32 sge_control, sge_control2;
6229 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6230 
6231 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6232 
6233 	/* T4 uses a single control field to specify both the PCIe Padding and
6234 	 * Packing Boundary.  T5 introduced the ability to specify these
6235 	 * separately.  The actual Ingress Packet Data alignment boundary
6236 	 * within Packed Buffer Mode is the maximum of these two
6237 	 * specifications.  (Note that it makes no real practical sense to
6238 	 * have the Pading Boudary be larger than the Packing Boundary but you
6239 	 * could set the chip up that way and, in fact, legacy T4 code would
6240 	 * end doing this because it would initialize the Padding Boundary and
6241 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6242 	 * Padding Boundary values in T6 starts from 8B,
6243 	 * where as it is 32B for T4 and T5.
6244 	 */
6245 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6246 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6247 	else
6248 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6249 
6250 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6251 
6252 	fl_align = ingpadboundary;
6253 	if (!is_t4(adap->params.chip)) {
6254 		/* T5 has a weird interpretation of one of the PCIe Packing
6255 		 * Boundary values.  No idea why ...
6256 		 */
6257 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6258 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6259 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6260 			ingpackboundary = 16;
6261 		else
6262 			ingpackboundary = 1 << (ingpackboundary +
6263 						INGPACKBOUNDARY_SHIFT_X);
6264 
6265 		fl_align = max(ingpadboundary, ingpackboundary);
6266 	}
6267 	return fl_align;
6268 }
6269 
6270 /**
6271  *	t4_fixup_host_params - fix up host-dependent parameters
6272  *	@adap: the adapter
6273  *	@page_size: the host's Base Page Size
6274  *	@cache_line_size: the host's Cache Line Size
6275  *
6276  *	Various registers in T4 contain values which are dependent on the
6277  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6278  *	those registers with the appropriate values as passed in ...
6279  */
6280 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6281 			 unsigned int cache_line_size)
6282 {
6283 	unsigned int page_shift = fls(page_size) - 1;
6284 	unsigned int sge_hps = page_shift - 10;
6285 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6286 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6287 	unsigned int fl_align_log = fls(fl_align) - 1;
6288 	unsigned int ingpad;
6289 
6290 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6291 		     HOSTPAGESIZEPF0_V(sge_hps) |
6292 		     HOSTPAGESIZEPF1_V(sge_hps) |
6293 		     HOSTPAGESIZEPF2_V(sge_hps) |
6294 		     HOSTPAGESIZEPF3_V(sge_hps) |
6295 		     HOSTPAGESIZEPF4_V(sge_hps) |
6296 		     HOSTPAGESIZEPF5_V(sge_hps) |
6297 		     HOSTPAGESIZEPF6_V(sge_hps) |
6298 		     HOSTPAGESIZEPF7_V(sge_hps));
6299 
6300 	if (is_t4(adap->params.chip)) {
6301 		t4_set_reg_field(adap, SGE_CONTROL_A,
6302 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6303 				 EGRSTATUSPAGESIZE_F,
6304 				 INGPADBOUNDARY_V(fl_align_log -
6305 						  INGPADBOUNDARY_SHIFT_X) |
6306 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6307 	} else {
6308 		/* T5 introduced the separation of the Free List Padding and
6309 		 * Packing Boundaries.  Thus, we can select a smaller Padding
6310 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6311 		 * Bandwidth, and use a Packing Boundary which is large enough
6312 		 * to avoid false sharing between CPUs, etc.
6313 		 *
6314 		 * For the PCI Link, the smaller the Padding Boundary the
6315 		 * better.  For the Memory Controller, a smaller Padding
6316 		 * Boundary is better until we cross under the Memory Line
6317 		 * Size (the minimum unit of transfer to/from Memory).  If we
6318 		 * have a Padding Boundary which is smaller than the Memory
6319 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
6320 		 * Memory Controller which is never good.  For T5 the smallest
6321 		 * Padding Boundary which we can select is 32 bytes which is
6322 		 * larger than any known Memory Controller Line Size so we'll
6323 		 * use that.
6324 		 *
6325 		 * T5 has a different interpretation of the "0" value for the
6326 		 * Packing Boundary.  This corresponds to 16 bytes instead of
6327 		 * the expected 32 bytes.  We never have a Packing Boundary
6328 		 * less than 32 bytes so we can't use that special value but
6329 		 * on the other hand, if we wanted 32 bytes, the best we can
6330 		 * really do is 64 bytes.
6331 		*/
6332 		if (fl_align <= 32) {
6333 			fl_align = 64;
6334 			fl_align_log = 6;
6335 		}
6336 
6337 		if (is_t5(adap->params.chip))
6338 			ingpad = INGPCIEBOUNDARY_32B_X;
6339 		else
6340 			ingpad = T6_INGPADBOUNDARY_32B_X;
6341 
6342 		t4_set_reg_field(adap, SGE_CONTROL_A,
6343 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6344 				 EGRSTATUSPAGESIZE_F,
6345 				 INGPADBOUNDARY_V(ingpad) |
6346 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6347 		t4_set_reg_field(adap, SGE_CONTROL2_A,
6348 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6349 				 INGPACKBOUNDARY_V(fl_align_log -
6350 						   INGPACKBOUNDARY_SHIFT_X));
6351 	}
6352 	/*
6353 	 * Adjust various SGE Free List Host Buffer Sizes.
6354 	 *
6355 	 * This is something of a crock since we're using fixed indices into
6356 	 * the array which are also known by the sge.c code and the T4
6357 	 * Firmware Configuration File.  We need to come up with a much better
6358 	 * approach to managing this array.  For now, the first four entries
6359 	 * are:
6360 	 *
6361 	 *   0: Host Page Size
6362 	 *   1: 64KB
6363 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6364 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6365 	 *
6366 	 * For the single-MTU buffers in unpacked mode we need to include
6367 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6368 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6369 	 * Padding boundary.  All of these are accommodated in the Factory
6370 	 * Default Firmware Configuration File but we need to adjust it for
6371 	 * this host's cache line size.
6372 	 */
6373 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6374 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6375 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6376 		     & ~(fl_align-1));
6377 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6378 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6379 		     & ~(fl_align-1));
6380 
6381 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6382 
6383 	return 0;
6384 }
6385 
6386 /**
6387  *	t4_fw_initialize - ask FW to initialize the device
6388  *	@adap: the adapter
6389  *	@mbox: mailbox to use for the FW command
6390  *
6391  *	Issues a command to FW to partially initialize the device.  This
6392  *	performs initialization that generally doesn't depend on user input.
6393  */
6394 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6395 {
6396 	struct fw_initialize_cmd c;
6397 
6398 	memset(&c, 0, sizeof(c));
6399 	INIT_CMD(c, INITIALIZE, WRITE);
6400 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6401 }
6402 
6403 /**
6404  *	t4_query_params_rw - query FW or device parameters
6405  *	@adap: the adapter
6406  *	@mbox: mailbox to use for the FW command
6407  *	@pf: the PF
6408  *	@vf: the VF
6409  *	@nparams: the number of parameters
6410  *	@params: the parameter names
6411  *	@val: the parameter values
6412  *	@rw: Write and read flag
6413  *
6414  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6415  *	queried at once.
6416  */
6417 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6418 		       unsigned int vf, unsigned int nparams, const u32 *params,
6419 		       u32 *val, int rw)
6420 {
6421 	int i, ret;
6422 	struct fw_params_cmd c;
6423 	__be32 *p = &c.param[0].mnem;
6424 
6425 	if (nparams > 7)
6426 		return -EINVAL;
6427 
6428 	memset(&c, 0, sizeof(c));
6429 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6430 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
6431 				  FW_PARAMS_CMD_PFN_V(pf) |
6432 				  FW_PARAMS_CMD_VFN_V(vf));
6433 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6434 
6435 	for (i = 0; i < nparams; i++) {
6436 		*p++ = cpu_to_be32(*params++);
6437 		if (rw)
6438 			*p = cpu_to_be32(*(val + i));
6439 		p++;
6440 	}
6441 
6442 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6443 	if (ret == 0)
6444 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6445 			*val++ = be32_to_cpu(*p);
6446 	return ret;
6447 }
6448 
6449 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6450 		    unsigned int vf, unsigned int nparams, const u32 *params,
6451 		    u32 *val)
6452 {
6453 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6454 }
6455 
6456 /**
6457  *      t4_set_params_timeout - sets FW or device parameters
6458  *      @adap: the adapter
6459  *      @mbox: mailbox to use for the FW command
6460  *      @pf: the PF
6461  *      @vf: the VF
6462  *      @nparams: the number of parameters
6463  *      @params: the parameter names
6464  *      @val: the parameter values
6465  *      @timeout: the timeout time
6466  *
6467  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6468  *      specified at once.
6469  */
6470 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6471 			  unsigned int pf, unsigned int vf,
6472 			  unsigned int nparams, const u32 *params,
6473 			  const u32 *val, int timeout)
6474 {
6475 	struct fw_params_cmd c;
6476 	__be32 *p = &c.param[0].mnem;
6477 
6478 	if (nparams > 7)
6479 		return -EINVAL;
6480 
6481 	memset(&c, 0, sizeof(c));
6482 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6483 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6484 				  FW_PARAMS_CMD_PFN_V(pf) |
6485 				  FW_PARAMS_CMD_VFN_V(vf));
6486 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6487 
6488 	while (nparams--) {
6489 		*p++ = cpu_to_be32(*params++);
6490 		*p++ = cpu_to_be32(*val++);
6491 	}
6492 
6493 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6494 }
6495 
6496 /**
6497  *	t4_set_params - sets FW or device parameters
6498  *	@adap: the adapter
6499  *	@mbox: mailbox to use for the FW command
6500  *	@pf: the PF
6501  *	@vf: the VF
6502  *	@nparams: the number of parameters
6503  *	@params: the parameter names
6504  *	@val: the parameter values
6505  *
6506  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6507  *	specified at once.
6508  */
6509 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6510 		  unsigned int vf, unsigned int nparams, const u32 *params,
6511 		  const u32 *val)
6512 {
6513 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6514 				     FW_CMD_MAX_TIMEOUT);
6515 }
6516 
6517 /**
6518  *	t4_cfg_pfvf - configure PF/VF resource limits
6519  *	@adap: the adapter
6520  *	@mbox: mailbox to use for the FW command
6521  *	@pf: the PF being configured
6522  *	@vf: the VF being configured
6523  *	@txq: the max number of egress queues
6524  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6525  *	@rxqi: the max number of interrupt-capable ingress queues
6526  *	@rxq: the max number of interruptless ingress queues
6527  *	@tc: the PCI traffic class
6528  *	@vi: the max number of virtual interfaces
6529  *	@cmask: the channel access rights mask for the PF/VF
6530  *	@pmask: the port access rights mask for the PF/VF
6531  *	@nexact: the maximum number of exact MPS filters
6532  *	@rcaps: read capabilities
6533  *	@wxcaps: write/execute capabilities
6534  *
6535  *	Configures resource limits and capabilities for a physical or virtual
6536  *	function.
6537  */
6538 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6539 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6540 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6541 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6542 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6543 {
6544 	struct fw_pfvf_cmd c;
6545 
6546 	memset(&c, 0, sizeof(c));
6547 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6548 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6549 				  FW_PFVF_CMD_VFN_V(vf));
6550 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6551 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6552 				     FW_PFVF_CMD_NIQ_V(rxq));
6553 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6554 				    FW_PFVF_CMD_PMASK_V(pmask) |
6555 				    FW_PFVF_CMD_NEQ_V(txq));
6556 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6557 				      FW_PFVF_CMD_NVI_V(vi) |
6558 				      FW_PFVF_CMD_NEXACTF_V(nexact));
6559 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6560 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6561 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6562 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6563 }
6564 
6565 /**
6566  *	t4_alloc_vi - allocate a virtual interface
6567  *	@adap: the adapter
6568  *	@mbox: mailbox to use for the FW command
6569  *	@port: physical port associated with the VI
6570  *	@pf: the PF owning the VI
6571  *	@vf: the VF owning the VI
6572  *	@nmac: number of MAC addresses needed (1 to 5)
6573  *	@mac: the MAC addresses of the VI
6574  *	@rss_size: size of RSS table slice associated with this VI
6575  *
6576  *	Allocates a virtual interface for the given physical port.  If @mac is
6577  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6578  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6579  *	stored consecutively so the space needed is @nmac * 6 bytes.
6580  *	Returns a negative error number or the non-negative VI id.
6581  */
6582 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6583 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6584 		unsigned int *rss_size)
6585 {
6586 	int ret;
6587 	struct fw_vi_cmd c;
6588 
6589 	memset(&c, 0, sizeof(c));
6590 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6591 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6592 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6593 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6594 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6595 	c.nmac = nmac - 1;
6596 
6597 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6598 	if (ret)
6599 		return ret;
6600 
6601 	if (mac) {
6602 		memcpy(mac, c.mac, sizeof(c.mac));
6603 		switch (nmac) {
6604 		case 5:
6605 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6606 		case 4:
6607 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6608 		case 3:
6609 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6610 		case 2:
6611 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6612 		}
6613 	}
6614 	if (rss_size)
6615 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6616 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6617 }
6618 
6619 /**
6620  *	t4_free_vi - free a virtual interface
6621  *	@adap: the adapter
6622  *	@mbox: mailbox to use for the FW command
6623  *	@pf: the PF owning the VI
6624  *	@vf: the VF owning the VI
6625  *	@viid: virtual interface identifiler
6626  *
6627  *	Free a previously allocated virtual interface.
6628  */
6629 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6630 	       unsigned int vf, unsigned int viid)
6631 {
6632 	struct fw_vi_cmd c;
6633 
6634 	memset(&c, 0, sizeof(c));
6635 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6636 				  FW_CMD_REQUEST_F |
6637 				  FW_CMD_EXEC_F |
6638 				  FW_VI_CMD_PFN_V(pf) |
6639 				  FW_VI_CMD_VFN_V(vf));
6640 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6641 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6642 
6643 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6644 }
6645 
6646 /**
6647  *	t4_set_rxmode - set Rx properties of a virtual interface
6648  *	@adap: the adapter
6649  *	@mbox: mailbox to use for the FW command
6650  *	@viid: the VI id
6651  *	@mtu: the new MTU or -1
6652  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6653  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6654  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6655  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6656  *	@sleep_ok: if true we may sleep while awaiting command completion
6657  *
6658  *	Sets Rx properties of a virtual interface.
6659  */
6660 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6661 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6662 		  bool sleep_ok)
6663 {
6664 	struct fw_vi_rxmode_cmd c;
6665 
6666 	/* convert to FW values */
6667 	if (mtu < 0)
6668 		mtu = FW_RXMODE_MTU_NO_CHG;
6669 	if (promisc < 0)
6670 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6671 	if (all_multi < 0)
6672 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6673 	if (bcast < 0)
6674 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6675 	if (vlanex < 0)
6676 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6677 
6678 	memset(&c, 0, sizeof(c));
6679 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6680 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6681 				   FW_VI_RXMODE_CMD_VIID_V(viid));
6682 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6683 	c.mtu_to_vlanexen =
6684 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6685 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6686 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6687 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6688 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6689 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6690 }
6691 
6692 /**
6693  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6694  *	@adap: the adapter
6695  *	@mbox: mailbox to use for the FW command
6696  *	@viid: the VI id
6697  *	@free: if true any existing filters for this VI id are first removed
6698  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6699  *	@addr: the MAC address(es)
6700  *	@idx: where to store the index of each allocated filter
6701  *	@hash: pointer to hash address filter bitmap
6702  *	@sleep_ok: call is allowed to sleep
6703  *
6704  *	Allocates an exact-match filter for each of the supplied addresses and
6705  *	sets it to the corresponding address.  If @idx is not %NULL it should
6706  *	have at least @naddr entries, each of which will be set to the index of
6707  *	the filter allocated for the corresponding MAC address.  If a filter
6708  *	could not be allocated for an address its index is set to 0xffff.
6709  *	If @hash is not %NULL addresses that fail to allocate an exact filter
6710  *	are hashed and update the hash filter bitmap pointed at by @hash.
6711  *
6712  *	Returns a negative error number or the number of filters allocated.
6713  */
6714 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6715 		      unsigned int viid, bool free, unsigned int naddr,
6716 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6717 {
6718 	int offset, ret = 0;
6719 	struct fw_vi_mac_cmd c;
6720 	unsigned int nfilters = 0;
6721 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6722 	unsigned int rem = naddr;
6723 
6724 	if (naddr > max_naddr)
6725 		return -EINVAL;
6726 
6727 	for (offset = 0; offset < naddr ; /**/) {
6728 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6729 					 rem : ARRAY_SIZE(c.u.exact));
6730 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6731 						     u.exact[fw_naddr]), 16);
6732 		struct fw_vi_mac_exact *p;
6733 		int i;
6734 
6735 		memset(&c, 0, sizeof(c));
6736 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6737 					   FW_CMD_REQUEST_F |
6738 					   FW_CMD_WRITE_F |
6739 					   FW_CMD_EXEC_V(free) |
6740 					   FW_VI_MAC_CMD_VIID_V(viid));
6741 		c.freemacs_to_len16 =
6742 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6743 				    FW_CMD_LEN16_V(len16));
6744 
6745 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6746 			p->valid_to_idx =
6747 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6748 					    FW_VI_MAC_CMD_IDX_V(
6749 						    FW_VI_MAC_ADD_MAC));
6750 			memcpy(p->macaddr, addr[offset + i],
6751 			       sizeof(p->macaddr));
6752 		}
6753 
6754 		/* It's okay if we run out of space in our MAC address arena.
6755 		 * Some of the addresses we submit may get stored so we need
6756 		 * to run through the reply to see what the results were ...
6757 		 */
6758 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6759 		if (ret && ret != -FW_ENOMEM)
6760 			break;
6761 
6762 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6763 			u16 index = FW_VI_MAC_CMD_IDX_G(
6764 					be16_to_cpu(p->valid_to_idx));
6765 
6766 			if (idx)
6767 				idx[offset + i] = (index >= max_naddr ?
6768 						   0xffff : index);
6769 			if (index < max_naddr)
6770 				nfilters++;
6771 			else if (hash)
6772 				*hash |= (1ULL <<
6773 					  hash_mac_addr(addr[offset + i]));
6774 		}
6775 
6776 		free = false;
6777 		offset += fw_naddr;
6778 		rem -= fw_naddr;
6779 	}
6780 
6781 	if (ret == 0 || ret == -FW_ENOMEM)
6782 		ret = nfilters;
6783 	return ret;
6784 }
6785 
6786 /**
6787  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
6788  *	@adap: the adapter
6789  *	@mbox: mailbox to use for the FW command
6790  *	@viid: the VI id
6791  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6792  *	@addr: the MAC address(es)
6793  *	@sleep_ok: call is allowed to sleep
6794  *
6795  *	Frees the exact-match filter for each of the supplied addresses
6796  *
6797  *	Returns a negative error number or the number of filters freed.
6798  */
6799 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6800 		     unsigned int viid, unsigned int naddr,
6801 		     const u8 **addr, bool sleep_ok)
6802 {
6803 	int offset, ret = 0;
6804 	struct fw_vi_mac_cmd c;
6805 	unsigned int nfilters = 0;
6806 	unsigned int max_naddr = is_t4(adap->params.chip) ?
6807 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
6808 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6809 	unsigned int rem = naddr;
6810 
6811 	if (naddr > max_naddr)
6812 		return -EINVAL;
6813 
6814 	for (offset = 0; offset < (int)naddr ; /**/) {
6815 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6816 					 ? rem
6817 					 : ARRAY_SIZE(c.u.exact));
6818 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6819 						     u.exact[fw_naddr]), 16);
6820 		struct fw_vi_mac_exact *p;
6821 		int i;
6822 
6823 		memset(&c, 0, sizeof(c));
6824 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6825 				     FW_CMD_REQUEST_F |
6826 				     FW_CMD_WRITE_F |
6827 				     FW_CMD_EXEC_V(0) |
6828 				     FW_VI_MAC_CMD_VIID_V(viid));
6829 		c.freemacs_to_len16 =
6830 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6831 					    FW_CMD_LEN16_V(len16));
6832 
6833 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6834 			p->valid_to_idx = cpu_to_be16(
6835 				FW_VI_MAC_CMD_VALID_F |
6836 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6837 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6838 		}
6839 
6840 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6841 		if (ret)
6842 			break;
6843 
6844 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6845 			u16 index = FW_VI_MAC_CMD_IDX_G(
6846 						be16_to_cpu(p->valid_to_idx));
6847 
6848 			if (index < max_naddr)
6849 				nfilters++;
6850 		}
6851 
6852 		offset += fw_naddr;
6853 		rem -= fw_naddr;
6854 	}
6855 
6856 	if (ret == 0)
6857 		ret = nfilters;
6858 	return ret;
6859 }
6860 
6861 /**
6862  *	t4_change_mac - modifies the exact-match filter for a MAC address
6863  *	@adap: the adapter
6864  *	@mbox: mailbox to use for the FW command
6865  *	@viid: the VI id
6866  *	@idx: index of existing filter for old value of MAC address, or -1
6867  *	@addr: the new MAC address value
6868  *	@persist: whether a new MAC allocation should be persistent
6869  *	@add_smt: if true also add the address to the HW SMT
6870  *
6871  *	Modifies an exact-match filter and sets it to the new MAC address.
6872  *	Note that in general it is not possible to modify the value of a given
6873  *	filter so the generic way to modify an address filter is to free the one
6874  *	being used by the old address value and allocate a new filter for the
6875  *	new address value.  @idx can be -1 if the address is a new addition.
6876  *
6877  *	Returns a negative error number or the index of the filter with the new
6878  *	MAC value.
6879  */
6880 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6881 		  int idx, const u8 *addr, bool persist, bool add_smt)
6882 {
6883 	int ret, mode;
6884 	struct fw_vi_mac_cmd c;
6885 	struct fw_vi_mac_exact *p = c.u.exact;
6886 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6887 
6888 	if (idx < 0)                             /* new allocation */
6889 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6890 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6891 
6892 	memset(&c, 0, sizeof(c));
6893 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6894 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6895 				   FW_VI_MAC_CMD_VIID_V(viid));
6896 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6897 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6898 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6899 				      FW_VI_MAC_CMD_IDX_V(idx));
6900 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
6901 
6902 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6903 	if (ret == 0) {
6904 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6905 		if (ret >= max_mac_addr)
6906 			ret = -ENOMEM;
6907 	}
6908 	return ret;
6909 }
6910 
6911 /**
6912  *	t4_set_addr_hash - program the MAC inexact-match hash filter
6913  *	@adap: the adapter
6914  *	@mbox: mailbox to use for the FW command
6915  *	@viid: the VI id
6916  *	@ucast: whether the hash filter should also match unicast addresses
6917  *	@vec: the value to be written to the hash filter
6918  *	@sleep_ok: call is allowed to sleep
6919  *
6920  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
6921  */
6922 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6923 		     bool ucast, u64 vec, bool sleep_ok)
6924 {
6925 	struct fw_vi_mac_cmd c;
6926 
6927 	memset(&c, 0, sizeof(c));
6928 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6929 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6930 				   FW_VI_ENABLE_CMD_VIID_V(viid));
6931 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6932 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6933 					  FW_CMD_LEN16_V(1));
6934 	c.u.hash.hashvec = cpu_to_be64(vec);
6935 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6936 }
6937 
6938 /**
6939  *      t4_enable_vi_params - enable/disable a virtual interface
6940  *      @adap: the adapter
6941  *      @mbox: mailbox to use for the FW command
6942  *      @viid: the VI id
6943  *      @rx_en: 1=enable Rx, 0=disable Rx
6944  *      @tx_en: 1=enable Tx, 0=disable Tx
6945  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6946  *
6947  *      Enables/disables a virtual interface.  Note that setting DCB Enable
6948  *      only makes sense when enabling a Virtual Interface ...
6949  */
6950 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6951 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6952 {
6953 	struct fw_vi_enable_cmd c;
6954 
6955 	memset(&c, 0, sizeof(c));
6956 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6957 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6958 				   FW_VI_ENABLE_CMD_VIID_V(viid));
6959 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6960 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6961 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6962 				     FW_LEN16(c));
6963 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6964 }
6965 
6966 /**
6967  *	t4_enable_vi - enable/disable a virtual interface
6968  *	@adap: the adapter
6969  *	@mbox: mailbox to use for the FW command
6970  *	@viid: the VI id
6971  *	@rx_en: 1=enable Rx, 0=disable Rx
6972  *	@tx_en: 1=enable Tx, 0=disable Tx
6973  *
6974  *	Enables/disables a virtual interface.
6975  */
6976 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6977 		 bool rx_en, bool tx_en)
6978 {
6979 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6980 }
6981 
6982 /**
6983  *	t4_identify_port - identify a VI's port by blinking its LED
6984  *	@adap: the adapter
6985  *	@mbox: mailbox to use for the FW command
6986  *	@viid: the VI id
6987  *	@nblinks: how many times to blink LED at 2.5 Hz
6988  *
6989  *	Identifies a VI's port by blinking its LED.
6990  */
6991 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6992 		     unsigned int nblinks)
6993 {
6994 	struct fw_vi_enable_cmd c;
6995 
6996 	memset(&c, 0, sizeof(c));
6997 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6998 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6999 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7000 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7001 	c.blinkdur = cpu_to_be16(nblinks);
7002 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7003 }
7004 
7005 /**
7006  *	t4_iq_stop - stop an ingress queue and its FLs
7007  *	@adap: the adapter
7008  *	@mbox: mailbox to use for the FW command
7009  *	@pf: the PF owning the queues
7010  *	@vf: the VF owning the queues
7011  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7012  *	@iqid: ingress queue id
7013  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7014  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7015  *
7016  *	Stops an ingress queue and its associated FLs, if any.  This causes
7017  *	any current or future data/messages destined for these queues to be
7018  *	tossed.
7019  */
7020 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7021 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7022 	       unsigned int fl0id, unsigned int fl1id)
7023 {
7024 	struct fw_iq_cmd c;
7025 
7026 	memset(&c, 0, sizeof(c));
7027 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7028 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7029 				  FW_IQ_CMD_VFN_V(vf));
7030 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7031 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7032 	c.iqid = cpu_to_be16(iqid);
7033 	c.fl0id = cpu_to_be16(fl0id);
7034 	c.fl1id = cpu_to_be16(fl1id);
7035 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7036 }
7037 
7038 /**
7039  *	t4_iq_free - free an ingress queue and its FLs
7040  *	@adap: the adapter
7041  *	@mbox: mailbox to use for the FW command
7042  *	@pf: the PF owning the queues
7043  *	@vf: the VF owning the queues
7044  *	@iqtype: the ingress queue type
7045  *	@iqid: ingress queue id
7046  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7047  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7048  *
7049  *	Frees an ingress queue and its associated FLs, if any.
7050  */
7051 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7052 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7053 	       unsigned int fl0id, unsigned int fl1id)
7054 {
7055 	struct fw_iq_cmd c;
7056 
7057 	memset(&c, 0, sizeof(c));
7058 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7059 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7060 				  FW_IQ_CMD_VFN_V(vf));
7061 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7062 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7063 	c.iqid = cpu_to_be16(iqid);
7064 	c.fl0id = cpu_to_be16(fl0id);
7065 	c.fl1id = cpu_to_be16(fl1id);
7066 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7067 }
7068 
7069 /**
7070  *	t4_eth_eq_free - free an Ethernet egress queue
7071  *	@adap: the adapter
7072  *	@mbox: mailbox to use for the FW command
7073  *	@pf: the PF owning the queue
7074  *	@vf: the VF owning the queue
7075  *	@eqid: egress queue id
7076  *
7077  *	Frees an Ethernet egress queue.
7078  */
7079 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7080 		   unsigned int vf, unsigned int eqid)
7081 {
7082 	struct fw_eq_eth_cmd c;
7083 
7084 	memset(&c, 0, sizeof(c));
7085 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7086 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7087 				  FW_EQ_ETH_CMD_PFN_V(pf) |
7088 				  FW_EQ_ETH_CMD_VFN_V(vf));
7089 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7090 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7091 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7092 }
7093 
7094 /**
7095  *	t4_ctrl_eq_free - free a control egress queue
7096  *	@adap: the adapter
7097  *	@mbox: mailbox to use for the FW command
7098  *	@pf: the PF owning the queue
7099  *	@vf: the VF owning the queue
7100  *	@eqid: egress queue id
7101  *
7102  *	Frees a control egress queue.
7103  */
7104 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7105 		    unsigned int vf, unsigned int eqid)
7106 {
7107 	struct fw_eq_ctrl_cmd c;
7108 
7109 	memset(&c, 0, sizeof(c));
7110 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7111 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7112 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7113 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7114 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7115 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7116 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7117 }
7118 
7119 /**
7120  *	t4_ofld_eq_free - free an offload egress queue
7121  *	@adap: the adapter
7122  *	@mbox: mailbox to use for the FW command
7123  *	@pf: the PF owning the queue
7124  *	@vf: the VF owning the queue
7125  *	@eqid: egress queue id
7126  *
7127  *	Frees a control egress queue.
7128  */
7129 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7130 		    unsigned int vf, unsigned int eqid)
7131 {
7132 	struct fw_eq_ofld_cmd c;
7133 
7134 	memset(&c, 0, sizeof(c));
7135 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7136 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7137 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7138 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7139 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7140 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7141 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7142 }
7143 
7144 /**
7145  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7146  *	@adap: the adapter
7147  *	@link_down_rc: Link Down Reason Code
7148  *
7149  *	Returns a string representation of the Link Down Reason Code.
7150  */
7151 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7152 {
7153 	static const char * const reason[] = {
7154 		"Link Down",
7155 		"Remote Fault",
7156 		"Auto-negotiation Failure",
7157 		"Reserved",
7158 		"Insufficient Airflow",
7159 		"Unable To Determine Reason",
7160 		"No RX Signal Detected",
7161 		"Reserved",
7162 	};
7163 
7164 	if (link_down_rc >= ARRAY_SIZE(reason))
7165 		return "Bad Reason Code";
7166 
7167 	return reason[link_down_rc];
7168 }
7169 
7170 /**
7171  *	t4_handle_get_port_info - process a FW reply message
7172  *	@pi: the port info
7173  *	@rpl: start of the FW message
7174  *
7175  *	Processes a GET_PORT_INFO FW reply message.
7176  */
7177 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7178 {
7179 	const struct fw_port_cmd *p = (const void *)rpl;
7180 	struct adapter *adap = pi->adapter;
7181 
7182 	/* link/module state change message */
7183 	int speed = 0, fc = 0;
7184 	struct link_config *lc;
7185 	u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7186 	int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7187 	u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7188 
7189 	if (stat & FW_PORT_CMD_RXPAUSE_F)
7190 		fc |= PAUSE_RX;
7191 	if (stat & FW_PORT_CMD_TXPAUSE_F)
7192 		fc |= PAUSE_TX;
7193 	if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7194 		speed = 100;
7195 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7196 		speed = 1000;
7197 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7198 		speed = 10000;
7199 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7200 		speed = 40000;
7201 
7202 	lc = &pi->link_cfg;
7203 
7204 	if (mod != pi->mod_type) {
7205 		pi->mod_type = mod;
7206 		t4_os_portmod_changed(adap, pi->port_id);
7207 	}
7208 	if (link_ok != lc->link_ok || speed != lc->speed ||
7209 	    fc != lc->fc) {	/* something changed */
7210 		if (!link_ok && lc->link_ok) {
7211 			unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7212 
7213 			lc->link_down_rc = rc;
7214 			dev_warn(adap->pdev_dev,
7215 				 "Port %d link down, reason: %s\n",
7216 				 pi->port_id, t4_link_down_rc_str(rc));
7217 		}
7218 		lc->link_ok = link_ok;
7219 		lc->speed = speed;
7220 		lc->fc = fc;
7221 		lc->supported = be16_to_cpu(p->u.info.pcap);
7222 		lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
7223 		t4_os_link_changed(adap, pi->port_id, link_ok);
7224 	}
7225 }
7226 
7227 /**
7228  *      t4_handle_fw_rpl - process a FW reply message
7229  *      @adap: the adapter
7230  *      @rpl: start of the FW message
7231  *
7232  *      Processes a FW message, such as link state change messages.
7233  */
7234 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7235 {
7236 	u8 opcode = *(const u8 *)rpl;
7237 
7238 	/* This might be a port command ... this simplifies the following
7239 	 * conditionals ...  We can get away with pre-dereferencing
7240 	 * action_to_len16 because it's in the first 16 bytes and all messages
7241 	 * will be at least that long.
7242 	 */
7243 	const struct fw_port_cmd *p = (const void *)rpl;
7244 	unsigned int action =
7245 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7246 
7247 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7248 		int i;
7249 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7250 		struct port_info *pi = NULL;
7251 
7252 		for_each_port(adap, i) {
7253 			pi = adap2pinfo(adap, i);
7254 			if (pi->tx_chan == chan)
7255 				break;
7256 		}
7257 
7258 		t4_handle_get_port_info(pi, rpl);
7259 	} else {
7260 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7261 		return -EINVAL;
7262 	}
7263 	return 0;
7264 }
7265 
7266 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7267 {
7268 	u16 val;
7269 
7270 	if (pci_is_pcie(adapter->pdev)) {
7271 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7272 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7273 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7274 	}
7275 }
7276 
7277 /**
7278  *	init_link_config - initialize a link's SW state
7279  *	@lc: structure holding the link state
7280  *	@caps: link capabilities
7281  *
7282  *	Initializes the SW state maintained for each link, including the link's
7283  *	capabilities and default speed/flow-control/autonegotiation settings.
7284  */
7285 static void init_link_config(struct link_config *lc, unsigned int caps)
7286 {
7287 	lc->supported = caps;
7288 	lc->lp_advertising = 0;
7289 	lc->requested_speed = 0;
7290 	lc->speed = 0;
7291 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7292 	if (lc->supported & FW_PORT_CAP_ANEG) {
7293 		lc->advertising = lc->supported & ADVERT_MASK;
7294 		lc->autoneg = AUTONEG_ENABLE;
7295 		lc->requested_fc |= PAUSE_AUTONEG;
7296 	} else {
7297 		lc->advertising = 0;
7298 		lc->autoneg = AUTONEG_DISABLE;
7299 	}
7300 }
7301 
7302 #define CIM_PF_NOACCESS 0xeeeeeeee
7303 
7304 int t4_wait_dev_ready(void __iomem *regs)
7305 {
7306 	u32 whoami;
7307 
7308 	whoami = readl(regs + PL_WHOAMI_A);
7309 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7310 		return 0;
7311 
7312 	msleep(500);
7313 	whoami = readl(regs + PL_WHOAMI_A);
7314 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7315 }
7316 
7317 struct flash_desc {
7318 	u32 vendor_and_model_id;
7319 	u32 size_mb;
7320 };
7321 
7322 static int get_flash_params(struct adapter *adap)
7323 {
7324 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
7325 	 * to the preexisting code.  All flash parts have 64KB sectors.
7326 	 */
7327 	static struct flash_desc supported_flash[] = {
7328 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7329 	};
7330 
7331 	int ret;
7332 	u32 info;
7333 
7334 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7335 	if (!ret)
7336 		ret = sf1_read(adap, 3, 0, 1, &info);
7337 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7338 	if (ret)
7339 		return ret;
7340 
7341 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7342 		if (supported_flash[ret].vendor_and_model_id == info) {
7343 			adap->params.sf_size = supported_flash[ret].size_mb;
7344 			adap->params.sf_nsec =
7345 				adap->params.sf_size / SF_SEC_SIZE;
7346 			return 0;
7347 		}
7348 
7349 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7350 		return -EINVAL;
7351 	info >>= 16;                           /* log2 of size */
7352 	if (info >= 0x14 && info < 0x18)
7353 		adap->params.sf_nsec = 1 << (info - 16);
7354 	else if (info == 0x18)
7355 		adap->params.sf_nsec = 64;
7356 	else
7357 		return -EINVAL;
7358 	adap->params.sf_size = 1 << info;
7359 	adap->params.sf_fw_start =
7360 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7361 
7362 	if (adap->params.sf_size < FLASH_MIN_SIZE)
7363 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7364 			 adap->params.sf_size, FLASH_MIN_SIZE);
7365 	return 0;
7366 }
7367 
7368 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7369 {
7370 	u16 val;
7371 	u32 pcie_cap;
7372 
7373 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7374 	if (pcie_cap) {
7375 		pci_read_config_word(adapter->pdev,
7376 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
7377 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7378 		val |= range;
7379 		pci_write_config_word(adapter->pdev,
7380 				      pcie_cap + PCI_EXP_DEVCTL2, val);
7381 	}
7382 }
7383 
7384 /**
7385  *	t4_prep_adapter - prepare SW and HW for operation
7386  *	@adapter: the adapter
7387  *	@reset: if true perform a HW reset
7388  *
7389  *	Initialize adapter SW state for the various HW modules, set initial
7390  *	values for some adapter tunables, take PHYs out of reset, and
7391  *	initialize the MDIO interface.
7392  */
7393 int t4_prep_adapter(struct adapter *adapter)
7394 {
7395 	int ret, ver;
7396 	uint16_t device_id;
7397 	u32 pl_rev;
7398 
7399 	get_pci_mode(adapter, &adapter->params.pci);
7400 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7401 
7402 	ret = get_flash_params(adapter);
7403 	if (ret < 0) {
7404 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7405 		return ret;
7406 	}
7407 
7408 	/* Retrieve adapter's device ID
7409 	 */
7410 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7411 	ver = device_id >> 12;
7412 	adapter->params.chip = 0;
7413 	switch (ver) {
7414 	case CHELSIO_T4:
7415 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7416 		adapter->params.arch.sge_fl_db = DBPRIO_F;
7417 		adapter->params.arch.mps_tcam_size =
7418 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
7419 		adapter->params.arch.mps_rplc_size = 128;
7420 		adapter->params.arch.nchan = NCHAN;
7421 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7422 		adapter->params.arch.vfcount = 128;
7423 		/* Congestion map is for 4 channels so that
7424 		 * MPS can have 4 priority per port.
7425 		 */
7426 		adapter->params.arch.cng_ch_bits_log = 2;
7427 		break;
7428 	case CHELSIO_T5:
7429 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7430 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7431 		adapter->params.arch.mps_tcam_size =
7432 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7433 		adapter->params.arch.mps_rplc_size = 128;
7434 		adapter->params.arch.nchan = NCHAN;
7435 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7436 		adapter->params.arch.vfcount = 128;
7437 		adapter->params.arch.cng_ch_bits_log = 2;
7438 		break;
7439 	case CHELSIO_T6:
7440 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7441 		adapter->params.arch.sge_fl_db = 0;
7442 		adapter->params.arch.mps_tcam_size =
7443 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7444 		adapter->params.arch.mps_rplc_size = 256;
7445 		adapter->params.arch.nchan = 2;
7446 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7447 		adapter->params.arch.vfcount = 256;
7448 		/* Congestion map will be for 2 channels so that
7449 		 * MPS can have 8 priority per port.
7450 		 */
7451 		adapter->params.arch.cng_ch_bits_log = 3;
7452 		break;
7453 	default:
7454 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7455 			device_id);
7456 		return -EINVAL;
7457 	}
7458 
7459 	adapter->params.cim_la_size = CIMLA_SIZE;
7460 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7461 
7462 	/*
7463 	 * Default port for debugging in case we can't reach FW.
7464 	 */
7465 	adapter->params.nports = 1;
7466 	adapter->params.portvec = 1;
7467 	adapter->params.vpd.cclk = 50000;
7468 
7469 	/* Set pci completion timeout value to 4 seconds. */
7470 	set_pcie_completion_timeout(adapter, 0xd);
7471 	return 0;
7472 }
7473 
7474 /**
7475  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7476  *	@adapter: the adapter
7477  *	@qid: the Queue ID
7478  *	@qtype: the Ingress or Egress type for @qid
7479  *	@user: true if this request is for a user mode queue
7480  *	@pbar2_qoffset: BAR2 Queue Offset
7481  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7482  *
7483  *	Returns the BAR2 SGE Queue Registers information associated with the
7484  *	indicated Absolute Queue ID.  These are passed back in return value
7485  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7486  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7487  *
7488  *	This may return an error which indicates that BAR2 SGE Queue
7489  *	registers aren't available.  If an error is not returned, then the
7490  *	following values are returned:
7491  *
7492  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7493  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7494  *
7495  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7496  *	require the "Inferred Queue ID" ability may be used.  E.g. the
7497  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7498  *	then these "Inferred Queue ID" register may not be used.
7499  */
7500 int t4_bar2_sge_qregs(struct adapter *adapter,
7501 		      unsigned int qid,
7502 		      enum t4_bar2_qtype qtype,
7503 		      int user,
7504 		      u64 *pbar2_qoffset,
7505 		      unsigned int *pbar2_qid)
7506 {
7507 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7508 	u64 bar2_page_offset, bar2_qoffset;
7509 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7510 
7511 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7512 	if (!user && is_t4(adapter->params.chip))
7513 		return -EINVAL;
7514 
7515 	/* Get our SGE Page Size parameters.
7516 	 */
7517 	page_shift = adapter->params.sge.hps + 10;
7518 	page_size = 1 << page_shift;
7519 
7520 	/* Get the right Queues per Page parameters for our Queue.
7521 	 */
7522 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7523 		     ? adapter->params.sge.eq_qpp
7524 		     : adapter->params.sge.iq_qpp);
7525 	qpp_mask = (1 << qpp_shift) - 1;
7526 
7527 	/*  Calculate the basics of the BAR2 SGE Queue register area:
7528 	 *  o The BAR2 page the Queue registers will be in.
7529 	 *  o The BAR2 Queue ID.
7530 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
7531 	 */
7532 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7533 	bar2_qid = qid & qpp_mask;
7534 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7535 
7536 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
7537 	 * hardware will infer the Absolute Queue ID simply from the writes to
7538 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7539 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7540 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7541 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7542 	 * from the BAR2 Page and BAR2 Queue ID.
7543 	 *
7544 	 * One important censequence of this is that some BAR2 SGE registers
7545 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7546 	 * there.  But other registers synthesize the SGE Queue ID purely
7547 	 * from the writes to the registers -- the Write Combined Doorbell
7548 	 * Buffer is a good example.  These BAR2 SGE Registers are only
7549 	 * available for those BAR2 SGE Register areas where the SGE Absolute
7550 	 * Queue ID can be inferred from simple writes.
7551 	 */
7552 	bar2_qoffset = bar2_page_offset;
7553 	bar2_qinferred = (bar2_qid_offset < page_size);
7554 	if (bar2_qinferred) {
7555 		bar2_qoffset += bar2_qid_offset;
7556 		bar2_qid = 0;
7557 	}
7558 
7559 	*pbar2_qoffset = bar2_qoffset;
7560 	*pbar2_qid = bar2_qid;
7561 	return 0;
7562 }
7563 
7564 /**
7565  *	t4_init_devlog_params - initialize adapter->params.devlog
7566  *	@adap: the adapter
7567  *
7568  *	Initialize various fields of the adapter's Firmware Device Log
7569  *	Parameters structure.
7570  */
7571 int t4_init_devlog_params(struct adapter *adap)
7572 {
7573 	struct devlog_params *dparams = &adap->params.devlog;
7574 	u32 pf_dparams;
7575 	unsigned int devlog_meminfo;
7576 	struct fw_devlog_cmd devlog_cmd;
7577 	int ret;
7578 
7579 	/* If we're dealing with newer firmware, the Device Log Paramerters
7580 	 * are stored in a designated register which allows us to access the
7581 	 * Device Log even if we can't talk to the firmware.
7582 	 */
7583 	pf_dparams =
7584 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7585 	if (pf_dparams) {
7586 		unsigned int nentries, nentries128;
7587 
7588 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7589 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7590 
7591 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7592 		nentries = (nentries128 + 1) * 128;
7593 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7594 
7595 		return 0;
7596 	}
7597 
7598 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7599 	 */
7600 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7601 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7602 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
7603 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7604 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7605 			 &devlog_cmd);
7606 	if (ret)
7607 		return ret;
7608 
7609 	devlog_meminfo =
7610 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7611 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7612 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7613 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7614 
7615 	return 0;
7616 }
7617 
7618 /**
7619  *	t4_init_sge_params - initialize adap->params.sge
7620  *	@adapter: the adapter
7621  *
7622  *	Initialize various fields of the adapter's SGE Parameters structure.
7623  */
7624 int t4_init_sge_params(struct adapter *adapter)
7625 {
7626 	struct sge_params *sge_params = &adapter->params.sge;
7627 	u32 hps, qpp;
7628 	unsigned int s_hps, s_qpp;
7629 
7630 	/* Extract the SGE Page Size for our PF.
7631 	 */
7632 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7633 	s_hps = (HOSTPAGESIZEPF0_S +
7634 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7635 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7636 
7637 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7638 	 */
7639 	s_qpp = (QUEUESPERPAGEPF0_S +
7640 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7641 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7642 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7643 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7644 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7645 
7646 	return 0;
7647 }
7648 
7649 /**
7650  *      t4_init_tp_params - initialize adap->params.tp
7651  *      @adap: the adapter
7652  *
7653  *      Initialize various fields of the adapter's TP Parameters structure.
7654  */
7655 int t4_init_tp_params(struct adapter *adap)
7656 {
7657 	int chan;
7658 	u32 v;
7659 
7660 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7661 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
7662 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7663 
7664 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7665 	for (chan = 0; chan < NCHAN; chan++)
7666 		adap->params.tp.tx_modq[chan] = chan;
7667 
7668 	/* Cache the adapter's Compressed Filter Mode and global Incress
7669 	 * Configuration.
7670 	 */
7671 	if (t4_use_ldst(adap)) {
7672 		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7673 				TP_VLAN_PRI_MAP_A, 1);
7674 		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7675 				TP_INGRESS_CONFIG_A, 1);
7676 	} else {
7677 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7678 				 &adap->params.tp.vlan_pri_map, 1,
7679 				 TP_VLAN_PRI_MAP_A);
7680 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7681 				 &adap->params.tp.ingress_config, 1,
7682 				 TP_INGRESS_CONFIG_A);
7683 	}
7684 
7685 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7686 	 * shift positions of several elements of the Compressed Filter Tuple
7687 	 * for this adapter which we need frequently ...
7688 	 */
7689 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7690 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7691 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7692 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7693 							       PROTOCOL_F);
7694 
7695 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7696 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7697 	 */
7698 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7699 		adap->params.tp.vnic_shift = -1;
7700 
7701 	return 0;
7702 }
7703 
7704 /**
7705  *      t4_filter_field_shift - calculate filter field shift
7706  *      @adap: the adapter
7707  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7708  *
7709  *      Return the shift position of a filter field within the Compressed
7710  *      Filter Tuple.  The filter field is specified via its selection bit
7711  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7712  */
7713 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7714 {
7715 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7716 	unsigned int sel;
7717 	int field_shift;
7718 
7719 	if ((filter_mode & filter_sel) == 0)
7720 		return -1;
7721 
7722 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7723 		switch (filter_mode & sel) {
7724 		case FCOE_F:
7725 			field_shift += FT_FCOE_W;
7726 			break;
7727 		case PORT_F:
7728 			field_shift += FT_PORT_W;
7729 			break;
7730 		case VNIC_ID_F:
7731 			field_shift += FT_VNIC_ID_W;
7732 			break;
7733 		case VLAN_F:
7734 			field_shift += FT_VLAN_W;
7735 			break;
7736 		case TOS_F:
7737 			field_shift += FT_TOS_W;
7738 			break;
7739 		case PROTOCOL_F:
7740 			field_shift += FT_PROTOCOL_W;
7741 			break;
7742 		case ETHERTYPE_F:
7743 			field_shift += FT_ETHERTYPE_W;
7744 			break;
7745 		case MACMATCH_F:
7746 			field_shift += FT_MACMATCH_W;
7747 			break;
7748 		case MPSHITTYPE_F:
7749 			field_shift += FT_MPSHITTYPE_W;
7750 			break;
7751 		case FRAGMENTATION_F:
7752 			field_shift += FT_FRAGMENTATION_W;
7753 			break;
7754 		}
7755 	}
7756 	return field_shift;
7757 }
7758 
7759 int t4_init_rss_mode(struct adapter *adap, int mbox)
7760 {
7761 	int i, ret;
7762 	struct fw_rss_vi_config_cmd rvc;
7763 
7764 	memset(&rvc, 0, sizeof(rvc));
7765 
7766 	for_each_port(adap, i) {
7767 		struct port_info *p = adap2pinfo(adap, i);
7768 
7769 		rvc.op_to_viid =
7770 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7771 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7772 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7773 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7774 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7775 		if (ret)
7776 			return ret;
7777 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7778 	}
7779 	return 0;
7780 }
7781 
7782 /**
7783  *	t4_init_portinfo - allocate a virtual interface amd initialize port_info
7784  *	@pi: the port_info
7785  *	@mbox: mailbox to use for the FW command
7786  *	@port: physical port associated with the VI
7787  *	@pf: the PF owning the VI
7788  *	@vf: the VF owning the VI
7789  *	@mac: the MAC address of the VI
7790  *
7791  *	Allocates a virtual interface for the given physical port.  If @mac is
7792  *	not %NULL it contains the MAC address of the VI as assigned by FW.
7793  *	@mac should be large enough to hold an Ethernet address.
7794  *	Returns < 0 on error.
7795  */
7796 int t4_init_portinfo(struct port_info *pi, int mbox,
7797 		     int port, int pf, int vf, u8 mac[])
7798 {
7799 	int ret;
7800 	struct fw_port_cmd c;
7801 	unsigned int rss_size;
7802 
7803 	memset(&c, 0, sizeof(c));
7804 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7805 				     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7806 				     FW_PORT_CMD_PORTID_V(port));
7807 	c.action_to_len16 = cpu_to_be32(
7808 		FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7809 		FW_LEN16(c));
7810 	ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
7811 	if (ret)
7812 		return ret;
7813 
7814 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
7815 	if (ret < 0)
7816 		return ret;
7817 
7818 	pi->viid = ret;
7819 	pi->tx_chan = port;
7820 	pi->lport = port;
7821 	pi->rss_size = rss_size;
7822 
7823 	ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7824 	pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7825 		FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7826 	pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
7827 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
7828 
7829 	init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap));
7830 	return 0;
7831 }
7832 
7833 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7834 {
7835 	u8 addr[6];
7836 	int ret, i, j = 0;
7837 
7838 	for_each_port(adap, i) {
7839 		struct port_info *pi = adap2pinfo(adap, i);
7840 
7841 		while ((adap->params.portvec & (1 << j)) == 0)
7842 			j++;
7843 
7844 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
7845 		if (ret)
7846 			return ret;
7847 
7848 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7849 		adap->port[i]->dev_port = j;
7850 		j++;
7851 	}
7852 	return 0;
7853 }
7854 
7855 /**
7856  *	t4_read_cimq_cfg - read CIM queue configuration
7857  *	@adap: the adapter
7858  *	@base: holds the queue base addresses in bytes
7859  *	@size: holds the queue sizes in bytes
7860  *	@thres: holds the queue full thresholds in bytes
7861  *
7862  *	Returns the current configuration of the CIM queues, starting with
7863  *	the IBQs, then the OBQs.
7864  */
7865 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7866 {
7867 	unsigned int i, v;
7868 	int cim_num_obq = is_t4(adap->params.chip) ?
7869 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7870 
7871 	for (i = 0; i < CIM_NUM_IBQ; i++) {
7872 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7873 			     QUENUMSELECT_V(i));
7874 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7875 		/* value is in 256-byte units */
7876 		*base++ = CIMQBASE_G(v) * 256;
7877 		*size++ = CIMQSIZE_G(v) * 256;
7878 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7879 	}
7880 	for (i = 0; i < cim_num_obq; i++) {
7881 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7882 			     QUENUMSELECT_V(i));
7883 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7884 		/* value is in 256-byte units */
7885 		*base++ = CIMQBASE_G(v) * 256;
7886 		*size++ = CIMQSIZE_G(v) * 256;
7887 	}
7888 }
7889 
7890 /**
7891  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
7892  *	@adap: the adapter
7893  *	@qid: the queue index
7894  *	@data: where to store the queue contents
7895  *	@n: capacity of @data in 32-bit words
7896  *
7897  *	Reads the contents of the selected CIM queue starting at address 0 up
7898  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7899  *	error and the number of 32-bit words actually read on success.
7900  */
7901 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7902 {
7903 	int i, err, attempts;
7904 	unsigned int addr;
7905 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
7906 
7907 	if (qid > 5 || (n & 3))
7908 		return -EINVAL;
7909 
7910 	addr = qid * nwords;
7911 	if (n > nwords)
7912 		n = nwords;
7913 
7914 	/* It might take 3-10ms before the IBQ debug read access is allowed.
7915 	 * Wait for 1 Sec with a delay of 1 usec.
7916 	 */
7917 	attempts = 1000000;
7918 
7919 	for (i = 0; i < n; i++, addr++) {
7920 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7921 			     IBQDBGEN_F);
7922 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7923 				      attempts, 1);
7924 		if (err)
7925 			return err;
7926 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7927 	}
7928 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7929 	return i;
7930 }
7931 
7932 /**
7933  *	t4_read_cim_obq - read the contents of a CIM outbound queue
7934  *	@adap: the adapter
7935  *	@qid: the queue index
7936  *	@data: where to store the queue contents
7937  *	@n: capacity of @data in 32-bit words
7938  *
7939  *	Reads the contents of the selected CIM queue starting at address 0 up
7940  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7941  *	error and the number of 32-bit words actually read on success.
7942  */
7943 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7944 {
7945 	int i, err;
7946 	unsigned int addr, v, nwords;
7947 	int cim_num_obq = is_t4(adap->params.chip) ?
7948 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7949 
7950 	if ((qid > (cim_num_obq - 1)) || (n & 3))
7951 		return -EINVAL;
7952 
7953 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7954 		     QUENUMSELECT_V(qid));
7955 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7956 
7957 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7958 	nwords = CIMQSIZE_G(v) * 64;  /* same */
7959 	if (n > nwords)
7960 		n = nwords;
7961 
7962 	for (i = 0; i < n; i++, addr++) {
7963 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7964 			     OBQDBGEN_F);
7965 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7966 				      2, 1);
7967 		if (err)
7968 			return err;
7969 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7970 	}
7971 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7972 	return i;
7973 }
7974 
7975 /**
7976  *	t4_cim_read - read a block from CIM internal address space
7977  *	@adap: the adapter
7978  *	@addr: the start address within the CIM address space
7979  *	@n: number of words to read
7980  *	@valp: where to store the result
7981  *
7982  *	Reads a block of 4-byte words from the CIM intenal address space.
7983  */
7984 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7985 		unsigned int *valp)
7986 {
7987 	int ret = 0;
7988 
7989 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7990 		return -EBUSY;
7991 
7992 	for ( ; !ret && n--; addr += 4) {
7993 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7994 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7995 				      0, 5, 2);
7996 		if (!ret)
7997 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7998 	}
7999 	return ret;
8000 }
8001 
8002 /**
8003  *	t4_cim_write - write a block into CIM internal address space
8004  *	@adap: the adapter
8005  *	@addr: the start address within the CIM address space
8006  *	@n: number of words to write
8007  *	@valp: set of values to write
8008  *
8009  *	Writes a block of 4-byte words into the CIM intenal address space.
8010  */
8011 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8012 		 const unsigned int *valp)
8013 {
8014 	int ret = 0;
8015 
8016 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8017 		return -EBUSY;
8018 
8019 	for ( ; !ret && n--; addr += 4) {
8020 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8021 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8022 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8023 				      0, 5, 2);
8024 	}
8025 	return ret;
8026 }
8027 
8028 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8029 			 unsigned int val)
8030 {
8031 	return t4_cim_write(adap, addr, 1, &val);
8032 }
8033 
8034 /**
8035  *	t4_cim_read_la - read CIM LA capture buffer
8036  *	@adap: the adapter
8037  *	@la_buf: where to store the LA data
8038  *	@wrptr: the HW write pointer within the capture buffer
8039  *
8040  *	Reads the contents of the CIM LA buffer with the most recent entry at
8041  *	the end	of the returned data and with the entry at @wrptr first.
8042  *	We try to leave the LA in the running state we find it in.
8043  */
8044 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8045 {
8046 	int i, ret;
8047 	unsigned int cfg, val, idx;
8048 
8049 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8050 	if (ret)
8051 		return ret;
8052 
8053 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
8054 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8055 		if (ret)
8056 			return ret;
8057 	}
8058 
8059 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8060 	if (ret)
8061 		goto restart;
8062 
8063 	idx = UPDBGLAWRPTR_G(val);
8064 	if (wrptr)
8065 		*wrptr = idx;
8066 
8067 	for (i = 0; i < adap->params.cim_la_size; i++) {
8068 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8069 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8070 		if (ret)
8071 			break;
8072 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8073 		if (ret)
8074 			break;
8075 		if (val & UPDBGLARDEN_F) {
8076 			ret = -ETIMEDOUT;
8077 			break;
8078 		}
8079 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8080 		if (ret)
8081 			break;
8082 		idx = (idx + 1) & UPDBGLARDPTR_M;
8083 	}
8084 restart:
8085 	if (cfg & UPDBGLAEN_F) {
8086 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8087 				      cfg & ~UPDBGLARDEN_F);
8088 		if (!ret)
8089 			ret = r;
8090 	}
8091 	return ret;
8092 }
8093 
8094 /**
8095  *	t4_tp_read_la - read TP LA capture buffer
8096  *	@adap: the adapter
8097  *	@la_buf: where to store the LA data
8098  *	@wrptr: the HW write pointer within the capture buffer
8099  *
8100  *	Reads the contents of the TP LA buffer with the most recent entry at
8101  *	the end	of the returned data and with the entry at @wrptr first.
8102  *	We leave the LA in the running state we find it in.
8103  */
8104 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8105 {
8106 	bool last_incomplete;
8107 	unsigned int i, cfg, val, idx;
8108 
8109 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8110 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
8111 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8112 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8113 
8114 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8115 	idx = DBGLAWPTR_G(val);
8116 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8117 	if (last_incomplete)
8118 		idx = (idx + 1) & DBGLARPTR_M;
8119 	if (wrptr)
8120 		*wrptr = idx;
8121 
8122 	val &= 0xffff;
8123 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
8124 	val |= adap->params.tp.la_mask;
8125 
8126 	for (i = 0; i < TPLA_SIZE; i++) {
8127 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8128 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8129 		idx = (idx + 1) & DBGLARPTR_M;
8130 	}
8131 
8132 	/* Wipe out last entry if it isn't valid */
8133 	if (last_incomplete)
8134 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8135 
8136 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
8137 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8138 			     cfg | adap->params.tp.la_mask);
8139 }
8140 
8141 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8142  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8143  * state for more than the Warning Threshold then we'll issue a warning about
8144  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8145  * appears to be hung every Warning Repeat second till the situation clears.
8146  * If the situation clears, we'll note that as well.
8147  */
8148 #define SGE_IDMA_WARN_THRESH 1
8149 #define SGE_IDMA_WARN_REPEAT 300
8150 
8151 /**
8152  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8153  *	@adapter: the adapter
8154  *	@idma: the adapter IDMA Monitor state
8155  *
8156  *	Initialize the state of an SGE Ingress DMA Monitor.
8157  */
8158 void t4_idma_monitor_init(struct adapter *adapter,
8159 			  struct sge_idma_monitor_state *idma)
8160 {
8161 	/* Initialize the state variables for detecting an SGE Ingress DMA
8162 	 * hang.  The SGE has internal counters which count up on each clock
8163 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8164 	 * same state they were on the previous clock tick.  The clock used is
8165 	 * the Core Clock so we have a limit on the maximum "time" they can
8166 	 * record; typically a very small number of seconds.  For instance,
8167 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8168 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8169 	 * risk of having the "timers" overflow and give us the flexibility to
8170 	 * maintain a Hung SGE State Machine of our own which operates across
8171 	 * a longer time frame.
8172 	 */
8173 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8174 	idma->idma_stalled[0] = 0;
8175 	idma->idma_stalled[1] = 0;
8176 }
8177 
8178 /**
8179  *	t4_idma_monitor - monitor SGE Ingress DMA state
8180  *	@adapter: the adapter
8181  *	@idma: the adapter IDMA Monitor state
8182  *	@hz: number of ticks/second
8183  *	@ticks: number of ticks since the last IDMA Monitor call
8184  */
8185 void t4_idma_monitor(struct adapter *adapter,
8186 		     struct sge_idma_monitor_state *idma,
8187 		     int hz, int ticks)
8188 {
8189 	int i, idma_same_state_cnt[2];
8190 
8191 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8192 	  * are counters inside the SGE which count up on each clock when the
8193 	  * SGE finds its Ingress DMA State Engines in the same states they
8194 	  * were in the previous clock.  The counters will peg out at
8195 	  * 0xffffffff without wrapping around so once they pass the 1s
8196 	  * threshold they'll stay above that till the IDMA state changes.
8197 	  */
8198 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8199 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8200 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8201 
8202 	for (i = 0; i < 2; i++) {
8203 		u32 debug0, debug11;
8204 
8205 		/* If the Ingress DMA Same State Counter ("timer") is less
8206 		 * than 1s, then we can reset our synthesized Stall Timer and
8207 		 * continue.  If we have previously emitted warnings about a
8208 		 * potential stalled Ingress Queue, issue a note indicating
8209 		 * that the Ingress Queue has resumed forward progress.
8210 		 */
8211 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8212 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8213 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8214 					 "resumed after %d seconds\n",
8215 					 i, idma->idma_qid[i],
8216 					 idma->idma_stalled[i] / hz);
8217 			idma->idma_stalled[i] = 0;
8218 			continue;
8219 		}
8220 
8221 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8222 		 * domain.  The first time we get here it'll be because we
8223 		 * passed the 1s Threshold; each additional time it'll be
8224 		 * because the RX Timer Callback is being fired on its regular
8225 		 * schedule.
8226 		 *
8227 		 * If the stall is below our Potential Hung Ingress Queue
8228 		 * Warning Threshold, continue.
8229 		 */
8230 		if (idma->idma_stalled[i] == 0) {
8231 			idma->idma_stalled[i] = hz;
8232 			idma->idma_warn[i] = 0;
8233 		} else {
8234 			idma->idma_stalled[i] += ticks;
8235 			idma->idma_warn[i] -= ticks;
8236 		}
8237 
8238 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8239 			continue;
8240 
8241 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8242 		 */
8243 		if (idma->idma_warn[i] > 0)
8244 			continue;
8245 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8246 
8247 		/* Read and save the SGE IDMA State and Queue ID information.
8248 		 * We do this every time in case it changes across time ...
8249 		 * can't be too careful ...
8250 		 */
8251 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8252 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8253 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8254 
8255 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8256 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8257 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8258 
8259 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8260 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8261 			 i, idma->idma_qid[i], idma->idma_state[i],
8262 			 idma->idma_stalled[i] / hz,
8263 			 debug0, debug11);
8264 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8265 	}
8266 }
8267