1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 /**
228  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *	@adapter: the adapter
230  *	@cmd: the Firmware Mailbox Command or Reply
231  *	@size: command length in bytes
232  *	@access: the time (ms) needed to access the Firmware Mailbox
233  *	@execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236 			   const __be64 *cmd, unsigned int size,
237 			   int access, int execute)
238 {
239 	struct mbox_cmd_log *log = adapter->mbox_log;
240 	struct mbox_cmd *entry;
241 	int i;
242 
243 	entry = mbox_cmd_log_entry(log, log->cursor++);
244 	if (log->cursor == log->size)
245 		log->cursor = 0;
246 
247 	for (i = 0; i < size / 8; i++)
248 		entry->cmd[i] = be64_to_cpu(cmd[i]);
249 	while (i < MBOX_LEN / 8)
250 		entry->cmd[i++] = 0;
251 	entry->timestamp = jiffies;
252 	entry->seqno = log->seqno++;
253 	entry->access = access;
254 	entry->execute = execute;
255 }
256 
257 /**
258  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *	@adap: the adapter
260  *	@mbox: index of the mailbox to use
261  *	@cmd: the command to write
262  *	@size: command length in bytes
263  *	@rpl: where to optionally store the reply
264  *	@sleep_ok: if true we may sleep while awaiting command completion
265  *	@timeout: time to wait for command to finish before timing out
266  *
267  *	Sends the given command to FW through the selected mailbox and waits
268  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *	store the FW's reply to the command.  The command and its optional
270  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *	the response.  If sleeping is allowed we use progressive backoff
273  *	otherwise we spin.
274  *
275  *	The return value is 0 on success or a negative errno on failure.  A
276  *	failure can happen either because we are not able to execute the
277  *	command or FW executes it but signals an error.  In the latter case
278  *	the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 			    int size, void *rpl, bool sleep_ok, int timeout)
282 {
283 	static const int delay[] = {
284 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 	};
286 
287 	struct mbox_list entry;
288 	u16 access = 0;
289 	u16 execute = 0;
290 	u32 v;
291 	u64 res;
292 	int i, ms, delay_idx, ret;
293 	const __be64 *p = cmd;
294 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
296 	__be64 cmd_rpl[MBOX_LEN / 8];
297 	u32 pcie_fw;
298 
299 	if ((size & 15) || size > MBOX_LEN)
300 		return -EINVAL;
301 
302 	/*
303 	 * If the device is off-line, as in EEH, commands will time out.
304 	 * Fail them early so we don't waste time waiting.
305 	 */
306 	if (adap->pdev->error_state != pci_channel_io_normal)
307 		return -EIO;
308 
309 	/* If we have a negative timeout, that implies that we can't sleep. */
310 	if (timeout < 0) {
311 		sleep_ok = false;
312 		timeout = -timeout;
313 	}
314 
315 	/* Queue ourselves onto the mailbox access list.  When our entry is at
316 	 * the front of the list, we have rights to access the mailbox.  So we
317 	 * wait [for a while] till we're at the front [or bail out with an
318 	 * EBUSY] ...
319 	 */
320 	spin_lock(&adap->mbox_lock);
321 	list_add_tail(&entry.list, &adap->mlist.list);
322 	spin_unlock(&adap->mbox_lock);
323 
324 	delay_idx = 0;
325 	ms = delay[0];
326 
327 	for (i = 0; ; i += ms) {
328 		/* If we've waited too long, return a busy indication.  This
329 		 * really ought to be based on our initial position in the
330 		 * mailbox access list but this is a start.  We very rearely
331 		 * contend on access to the mailbox ...
332 		 */
333 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
335 			spin_lock(&adap->mbox_lock);
336 			list_del(&entry.list);
337 			spin_unlock(&adap->mbox_lock);
338 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
339 			t4_record_mbox(adap, cmd, size, access, ret);
340 			return ret;
341 		}
342 
343 		/* If we're at the head, break out and start the mailbox
344 		 * protocol.
345 		 */
346 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
347 				     list) == &entry)
348 			break;
349 
350 		/* Delay for a bit before checking again ... */
351 		if (sleep_ok) {
352 			ms = delay[delay_idx];  /* last element may repeat */
353 			if (delay_idx < ARRAY_SIZE(delay) - 1)
354 				delay_idx++;
355 			msleep(ms);
356 		} else {
357 			mdelay(ms);
358 		}
359 	}
360 
361 	/* Loop trying to get ownership of the mailbox.  Return an error
362 	 * if we can't gain ownership.
363 	 */
364 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
365 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
366 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	if (v != MBOX_OWNER_DRV) {
368 		spin_lock(&adap->mbox_lock);
369 		list_del(&entry.list);
370 		spin_unlock(&adap->mbox_lock);
371 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372 		t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
373 		return ret;
374 	}
375 
376 	/* Copy in the new mailbox command and send it on its way ... */
377 	t4_record_mbox(adap, cmd, MBOX_LEN, access, 0);
378 	for (i = 0; i < size; i += 8)
379 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380 
381 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
382 	t4_read_reg(adap, ctl_reg);          /* flush write */
383 
384 	delay_idx = 0;
385 	ms = delay[0];
386 
387 	for (i = 0;
388 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389 	     i < timeout;
390 	     i += ms) {
391 		if (sleep_ok) {
392 			ms = delay[delay_idx];  /* last element may repeat */
393 			if (delay_idx < ARRAY_SIZE(delay) - 1)
394 				delay_idx++;
395 			msleep(ms);
396 		} else
397 			mdelay(ms);
398 
399 		v = t4_read_reg(adap, ctl_reg);
400 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401 			if (!(v & MBMSGVALID_F)) {
402 				t4_write_reg(adap, ctl_reg, 0);
403 				continue;
404 			}
405 
406 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407 			res = be64_to_cpu(cmd_rpl[0]);
408 
409 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
410 				fw_asrt(adap, data_reg);
411 				res = FW_CMD_RETVAL_V(EIO);
412 			} else if (rpl) {
413 				memcpy(rpl, cmd_rpl, size);
414 			}
415 
416 			t4_write_reg(adap, ctl_reg, 0);
417 
418 			execute = i + ms;
419 			t4_record_mbox(adap, cmd_rpl,
420 				       MBOX_LEN, access, execute);
421 			spin_lock(&adap->mbox_lock);
422 			list_del(&entry.list);
423 			spin_unlock(&adap->mbox_lock);
424 			return -FW_CMD_RETVAL_G((int)res);
425 		}
426 	}
427 
428 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
429 	t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
430 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431 		*(const u8 *)cmd, mbox);
432 	t4_report_fw_error(adap);
433 	spin_lock(&adap->mbox_lock);
434 	list_del(&entry.list);
435 	spin_unlock(&adap->mbox_lock);
436 	t4_fatal_err(adap);
437 	return ret;
438 }
439 
440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 		    void *rpl, bool sleep_ok)
442 {
443 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444 				       FW_CMD_MAX_TIMEOUT);
445 }
446 
447 static int t4_edc_err_read(struct adapter *adap, int idx)
448 {
449 	u32 edc_ecc_err_addr_reg;
450 	u32 rdata_reg;
451 
452 	if (is_t4(adap->params.chip)) {
453 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454 		return 0;
455 	}
456 	if (idx != 0 && idx != 1) {
457 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458 		return 0;
459 	}
460 
461 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463 
464 	CH_WARN(adap,
465 		"edc%d err addr 0x%x: 0x%x.\n",
466 		idx, edc_ecc_err_addr_reg,
467 		t4_read_reg(adap, edc_ecc_err_addr_reg));
468 	CH_WARN(adap,
469 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470 		rdata_reg,
471 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
472 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480 
481 	return 0;
482 }
483 
484 /**
485  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486  *	@adap: the adapter
487  *	@win: PCI-E Memory Window to use
488  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489  *	@addr: address within indicated memory type
490  *	@len: amount of memory to transfer
491  *	@hbuf: host memory buffer
492  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
493  *
494  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
495  *	firmware memory address and host buffer must be aligned on 32-bit
496  *	boudaries; the length may be arbitrary.  The memory is transferred as
497  *	a raw byte sequence from/to the firmware's memory.  If this memory
498  *	contains data structures which contain multi-byte integers, it's the
499  *	caller's responsibility to perform appropriate byte order conversions.
500  */
501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
502 		 u32 len, void *hbuf, int dir)
503 {
504 	u32 pos, offset, resid, memoffset;
505 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
506 	u32 *buf;
507 
508 	/* Argument sanity checks ...
509 	 */
510 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
511 		return -EINVAL;
512 	buf = (u32 *)hbuf;
513 
514 	/* It's convenient to be able to handle lengths which aren't a
515 	 * multiple of 32-bits because we often end up transferring files to
516 	 * the firmware.  So we'll handle that by normalizing the length here
517 	 * and then handling any residual transfer at the end.
518 	 */
519 	resid = len & 0x3;
520 	len -= resid;
521 
522 	/* Offset into the region of memory which is being accessed
523 	 * MEM_EDC0 = 0
524 	 * MEM_EDC1 = 1
525 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
526 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
527 	 */
528 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
529 	if (mtype != MEM_MC1)
530 		memoffset = (mtype * (edc_size * 1024 * 1024));
531 	else {
532 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
533 						      MA_EXT_MEMORY0_BAR_A));
534 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
535 	}
536 
537 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
538 	addr = addr + memoffset;
539 
540 	/* Each PCI-E Memory Window is programmed with a window size -- or
541 	 * "aperture" -- which controls the granularity of its mapping onto
542 	 * adapter memory.  We need to grab that aperture in order to know
543 	 * how to use the specified window.  The window is also programmed
544 	 * with the base address of the Memory Window in BAR0's address
545 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
546 	 * the address is relative to BAR0.
547 	 */
548 	mem_reg = t4_read_reg(adap,
549 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
550 						  win));
551 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
552 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
553 	if (is_t4(adap->params.chip))
554 		mem_base -= adap->t4_bar0;
555 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
556 
557 	/* Calculate our initial PCI-E Memory Window Position and Offset into
558 	 * that Window.
559 	 */
560 	pos = addr & ~(mem_aperture-1);
561 	offset = addr - pos;
562 
563 	/* Set up initial PCI-E Memory Window to cover the start of our
564 	 * transfer.  (Read it back to ensure that changes propagate before we
565 	 * attempt to use the new value.)
566 	 */
567 	t4_write_reg(adap,
568 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
569 		     pos | win_pf);
570 	t4_read_reg(adap,
571 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
572 
573 	/* Transfer data to/from the adapter as long as there's an integral
574 	 * number of 32-bit transfers to complete.
575 	 *
576 	 * A note on Endianness issues:
577 	 *
578 	 * The "register" reads and writes below from/to the PCI-E Memory
579 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
580 	 * Little-Endian "swizzel."  As a result, if we have the following
581 	 * data in adapter memory:
582 	 *
583 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
584 	 *     Address:      i+0  i+1  i+2  i+3
585 	 *
586 	 * Then a read of the adapter memory via the PCI-E Memory Window
587 	 * will yield:
588 	 *
589 	 *     x = readl(i)
590 	 *         31                  0
591 	 *         [ b3 | b2 | b1 | b0 ]
592 	 *
593 	 * If this value is stored into local memory on a Little-Endian system
594 	 * it will show up correctly in local memory as:
595 	 *
596 	 *     ( ..., b0, b1, b2, b3, ... )
597 	 *
598 	 * But on a Big-Endian system, the store will show up in memory
599 	 * incorrectly swizzled as:
600 	 *
601 	 *     ( ..., b3, b2, b1, b0, ... )
602 	 *
603 	 * So we need to account for this in the reads and writes to the
604 	 * PCI-E Memory Window below by undoing the register read/write
605 	 * swizzels.
606 	 */
607 	while (len > 0) {
608 		if (dir == T4_MEMORY_READ)
609 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
610 						mem_base + offset));
611 		else
612 			t4_write_reg(adap, mem_base + offset,
613 				     (__force u32)cpu_to_le32(*buf++));
614 		offset += sizeof(__be32);
615 		len -= sizeof(__be32);
616 
617 		/* If we've reached the end of our current window aperture,
618 		 * move the PCI-E Memory Window on to the next.  Note that
619 		 * doing this here after "len" may be 0 allows us to set up
620 		 * the PCI-E Memory Window for a possible final residual
621 		 * transfer below ...
622 		 */
623 		if (offset == mem_aperture) {
624 			pos += mem_aperture;
625 			offset = 0;
626 			t4_write_reg(adap,
627 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
628 						    win), pos | win_pf);
629 			t4_read_reg(adap,
630 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631 						    win));
632 		}
633 	}
634 
635 	/* If the original transfer had a length which wasn't a multiple of
636 	 * 32-bits, now's where we need to finish off the transfer of the
637 	 * residual amount.  The PCI-E Memory Window has already been moved
638 	 * above (if necessary) to cover this final transfer.
639 	 */
640 	if (resid) {
641 		union {
642 			u32 word;
643 			char byte[4];
644 		} last;
645 		unsigned char *bp;
646 		int i;
647 
648 		if (dir == T4_MEMORY_READ) {
649 			last.word = le32_to_cpu(
650 					(__force __le32)t4_read_reg(adap,
651 						mem_base + offset));
652 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
653 				bp[i] = last.byte[i];
654 		} else {
655 			last.word = *buf;
656 			for (i = resid; i < 4; i++)
657 				last.byte[i] = 0;
658 			t4_write_reg(adap, mem_base + offset,
659 				     (__force u32)cpu_to_le32(last.word));
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 /* Return the specified PCI-E Configuration Space register from our Physical
667  * Function.  We try first via a Firmware LDST Command since we prefer to let
668  * the firmware own all of these registers, but if that fails we go for it
669  * directly ourselves.
670  */
671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
672 {
673 	u32 val, ldst_addrspace;
674 
675 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
676 	 * retrieve the specified PCI-E Configuration Space register.
677 	 */
678 	struct fw_ldst_cmd ldst_cmd;
679 	int ret;
680 
681 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
682 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
683 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
684 					       FW_CMD_REQUEST_F |
685 					       FW_CMD_READ_F |
686 					       ldst_addrspace);
687 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
688 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
689 	ldst_cmd.u.pcie.ctrl_to_fn =
690 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
691 	ldst_cmd.u.pcie.r = reg;
692 
693 	/* If the LDST Command succeeds, return the result, otherwise
694 	 * fall through to reading it directly ourselves ...
695 	 */
696 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697 			 &ldst_cmd);
698 	if (ret == 0)
699 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700 	else
701 		/* Read the desired Configuration Space register via the PCI-E
702 		 * Backdoor mechanism.
703 		 */
704 		t4_hw_pci_read_cfg4(adap, reg, &val);
705 	return val;
706 }
707 
708 /* Get the window based on base passed to it.
709  * Window aperture is currently unhandled, but there is no use case for it
710  * right now
711  */
712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
713 			 u32 memwin_base)
714 {
715 	u32 ret;
716 
717 	if (is_t4(adap->params.chip)) {
718 		u32 bar0;
719 
720 		/* Truncation intentional: we only read the bottom 32-bits of
721 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
722 		 * mechanism to read BAR0 instead of using
723 		 * pci_resource_start() because we could be operating from
724 		 * within a Virtual Machine which is trapping our accesses to
725 		 * our Configuration Space and we need to set up the PCI-E
726 		 * Memory Window decoders with the actual addresses which will
727 		 * be coming across the PCI-E link.
728 		 */
729 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
730 		bar0 &= pci_mask;
731 		adap->t4_bar0 = bar0;
732 
733 		ret = bar0 + memwin_base;
734 	} else {
735 		/* For T5, only relative offset inside the PCIe BAR is passed */
736 		ret = memwin_base;
737 	}
738 	return ret;
739 }
740 
741 /* Get the default utility window (win0) used by everyone */
742 u32 t4_get_util_window(struct adapter *adap)
743 {
744 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
745 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
746 }
747 
748 /* Set up memory window for accessing adapter memory ranges.  (Read
749  * back MA register to ensure that changes propagate before we attempt
750  * to use the new values.)
751  */
752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
753 {
754 	t4_write_reg(adap,
755 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
756 		     memwin_base | BIR_V(0) |
757 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
758 	t4_read_reg(adap,
759 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
760 }
761 
762 /**
763  *	t4_get_regs_len - return the size of the chips register set
764  *	@adapter: the adapter
765  *
766  *	Returns the size of the chip's BAR0 register space.
767  */
768 unsigned int t4_get_regs_len(struct adapter *adapter)
769 {
770 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
771 
772 	switch (chip_version) {
773 	case CHELSIO_T4:
774 		return T4_REGMAP_SIZE;
775 
776 	case CHELSIO_T5:
777 	case CHELSIO_T6:
778 		return T5_REGMAP_SIZE;
779 	}
780 
781 	dev_err(adapter->pdev_dev,
782 		"Unsupported chip version %d\n", chip_version);
783 	return 0;
784 }
785 
786 /**
787  *	t4_get_regs - read chip registers into provided buffer
788  *	@adap: the adapter
789  *	@buf: register buffer
790  *	@buf_size: size (in bytes) of register buffer
791  *
792  *	If the provided register buffer isn't large enough for the chip's
793  *	full register range, the register dump will be truncated to the
794  *	register buffer's size.
795  */
796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
797 {
798 	static const unsigned int t4_reg_ranges[] = {
799 		0x1008, 0x1108,
800 		0x1180, 0x1184,
801 		0x1190, 0x1194,
802 		0x11a0, 0x11a4,
803 		0x11b0, 0x11b4,
804 		0x11fc, 0x123c,
805 		0x1300, 0x173c,
806 		0x1800, 0x18fc,
807 		0x3000, 0x30d8,
808 		0x30e0, 0x30e4,
809 		0x30ec, 0x5910,
810 		0x5920, 0x5924,
811 		0x5960, 0x5960,
812 		0x5968, 0x5968,
813 		0x5970, 0x5970,
814 		0x5978, 0x5978,
815 		0x5980, 0x5980,
816 		0x5988, 0x5988,
817 		0x5990, 0x5990,
818 		0x5998, 0x5998,
819 		0x59a0, 0x59d4,
820 		0x5a00, 0x5ae0,
821 		0x5ae8, 0x5ae8,
822 		0x5af0, 0x5af0,
823 		0x5af8, 0x5af8,
824 		0x6000, 0x6098,
825 		0x6100, 0x6150,
826 		0x6200, 0x6208,
827 		0x6240, 0x6248,
828 		0x6280, 0x62b0,
829 		0x62c0, 0x6338,
830 		0x6370, 0x638c,
831 		0x6400, 0x643c,
832 		0x6500, 0x6524,
833 		0x6a00, 0x6a04,
834 		0x6a14, 0x6a38,
835 		0x6a60, 0x6a70,
836 		0x6a78, 0x6a78,
837 		0x6b00, 0x6b0c,
838 		0x6b1c, 0x6b84,
839 		0x6bf0, 0x6bf8,
840 		0x6c00, 0x6c0c,
841 		0x6c1c, 0x6c84,
842 		0x6cf0, 0x6cf8,
843 		0x6d00, 0x6d0c,
844 		0x6d1c, 0x6d84,
845 		0x6df0, 0x6df8,
846 		0x6e00, 0x6e0c,
847 		0x6e1c, 0x6e84,
848 		0x6ef0, 0x6ef8,
849 		0x6f00, 0x6f0c,
850 		0x6f1c, 0x6f84,
851 		0x6ff0, 0x6ff8,
852 		0x7000, 0x700c,
853 		0x701c, 0x7084,
854 		0x70f0, 0x70f8,
855 		0x7100, 0x710c,
856 		0x711c, 0x7184,
857 		0x71f0, 0x71f8,
858 		0x7200, 0x720c,
859 		0x721c, 0x7284,
860 		0x72f0, 0x72f8,
861 		0x7300, 0x730c,
862 		0x731c, 0x7384,
863 		0x73f0, 0x73f8,
864 		0x7400, 0x7450,
865 		0x7500, 0x7530,
866 		0x7600, 0x760c,
867 		0x7614, 0x761c,
868 		0x7680, 0x76cc,
869 		0x7700, 0x7798,
870 		0x77c0, 0x77fc,
871 		0x7900, 0x79fc,
872 		0x7b00, 0x7b58,
873 		0x7b60, 0x7b84,
874 		0x7b8c, 0x7c38,
875 		0x7d00, 0x7d38,
876 		0x7d40, 0x7d80,
877 		0x7d8c, 0x7ddc,
878 		0x7de4, 0x7e04,
879 		0x7e10, 0x7e1c,
880 		0x7e24, 0x7e38,
881 		0x7e40, 0x7e44,
882 		0x7e4c, 0x7e78,
883 		0x7e80, 0x7ea4,
884 		0x7eac, 0x7edc,
885 		0x7ee8, 0x7efc,
886 		0x8dc0, 0x8e04,
887 		0x8e10, 0x8e1c,
888 		0x8e30, 0x8e78,
889 		0x8ea0, 0x8eb8,
890 		0x8ec0, 0x8f6c,
891 		0x8fc0, 0x9008,
892 		0x9010, 0x9058,
893 		0x9060, 0x9060,
894 		0x9068, 0x9074,
895 		0x90fc, 0x90fc,
896 		0x9400, 0x9408,
897 		0x9410, 0x9458,
898 		0x9600, 0x9600,
899 		0x9608, 0x9638,
900 		0x9640, 0x96bc,
901 		0x9800, 0x9808,
902 		0x9820, 0x983c,
903 		0x9850, 0x9864,
904 		0x9c00, 0x9c6c,
905 		0x9c80, 0x9cec,
906 		0x9d00, 0x9d6c,
907 		0x9d80, 0x9dec,
908 		0x9e00, 0x9e6c,
909 		0x9e80, 0x9eec,
910 		0x9f00, 0x9f6c,
911 		0x9f80, 0x9fec,
912 		0xd004, 0xd004,
913 		0xd010, 0xd03c,
914 		0xdfc0, 0xdfe0,
915 		0xe000, 0xea7c,
916 		0xf000, 0x11190,
917 		0x19040, 0x1906c,
918 		0x19078, 0x19080,
919 		0x1908c, 0x190e4,
920 		0x190f0, 0x190f8,
921 		0x19100, 0x19110,
922 		0x19120, 0x19124,
923 		0x19150, 0x19194,
924 		0x1919c, 0x191b0,
925 		0x191d0, 0x191e8,
926 		0x19238, 0x1924c,
927 		0x193f8, 0x1943c,
928 		0x1944c, 0x19474,
929 		0x19490, 0x194e0,
930 		0x194f0, 0x194f8,
931 		0x19800, 0x19c08,
932 		0x19c10, 0x19c90,
933 		0x19ca0, 0x19ce4,
934 		0x19cf0, 0x19d40,
935 		0x19d50, 0x19d94,
936 		0x19da0, 0x19de8,
937 		0x19df0, 0x19e40,
938 		0x19e50, 0x19e90,
939 		0x19ea0, 0x19f4c,
940 		0x1a000, 0x1a004,
941 		0x1a010, 0x1a06c,
942 		0x1a0b0, 0x1a0e4,
943 		0x1a0ec, 0x1a0f4,
944 		0x1a100, 0x1a108,
945 		0x1a114, 0x1a120,
946 		0x1a128, 0x1a130,
947 		0x1a138, 0x1a138,
948 		0x1a190, 0x1a1c4,
949 		0x1a1fc, 0x1a1fc,
950 		0x1e040, 0x1e04c,
951 		0x1e284, 0x1e28c,
952 		0x1e2c0, 0x1e2c0,
953 		0x1e2e0, 0x1e2e0,
954 		0x1e300, 0x1e384,
955 		0x1e3c0, 0x1e3c8,
956 		0x1e440, 0x1e44c,
957 		0x1e684, 0x1e68c,
958 		0x1e6c0, 0x1e6c0,
959 		0x1e6e0, 0x1e6e0,
960 		0x1e700, 0x1e784,
961 		0x1e7c0, 0x1e7c8,
962 		0x1e840, 0x1e84c,
963 		0x1ea84, 0x1ea8c,
964 		0x1eac0, 0x1eac0,
965 		0x1eae0, 0x1eae0,
966 		0x1eb00, 0x1eb84,
967 		0x1ebc0, 0x1ebc8,
968 		0x1ec40, 0x1ec4c,
969 		0x1ee84, 0x1ee8c,
970 		0x1eec0, 0x1eec0,
971 		0x1eee0, 0x1eee0,
972 		0x1ef00, 0x1ef84,
973 		0x1efc0, 0x1efc8,
974 		0x1f040, 0x1f04c,
975 		0x1f284, 0x1f28c,
976 		0x1f2c0, 0x1f2c0,
977 		0x1f2e0, 0x1f2e0,
978 		0x1f300, 0x1f384,
979 		0x1f3c0, 0x1f3c8,
980 		0x1f440, 0x1f44c,
981 		0x1f684, 0x1f68c,
982 		0x1f6c0, 0x1f6c0,
983 		0x1f6e0, 0x1f6e0,
984 		0x1f700, 0x1f784,
985 		0x1f7c0, 0x1f7c8,
986 		0x1f840, 0x1f84c,
987 		0x1fa84, 0x1fa8c,
988 		0x1fac0, 0x1fac0,
989 		0x1fae0, 0x1fae0,
990 		0x1fb00, 0x1fb84,
991 		0x1fbc0, 0x1fbc8,
992 		0x1fc40, 0x1fc4c,
993 		0x1fe84, 0x1fe8c,
994 		0x1fec0, 0x1fec0,
995 		0x1fee0, 0x1fee0,
996 		0x1ff00, 0x1ff84,
997 		0x1ffc0, 0x1ffc8,
998 		0x20000, 0x2002c,
999 		0x20100, 0x2013c,
1000 		0x20190, 0x201a0,
1001 		0x201a8, 0x201b8,
1002 		0x201c4, 0x201c8,
1003 		0x20200, 0x20318,
1004 		0x20400, 0x204b4,
1005 		0x204c0, 0x20528,
1006 		0x20540, 0x20614,
1007 		0x21000, 0x21040,
1008 		0x2104c, 0x21060,
1009 		0x210c0, 0x210ec,
1010 		0x21200, 0x21268,
1011 		0x21270, 0x21284,
1012 		0x212fc, 0x21388,
1013 		0x21400, 0x21404,
1014 		0x21500, 0x21500,
1015 		0x21510, 0x21518,
1016 		0x2152c, 0x21530,
1017 		0x2153c, 0x2153c,
1018 		0x21550, 0x21554,
1019 		0x21600, 0x21600,
1020 		0x21608, 0x2161c,
1021 		0x21624, 0x21628,
1022 		0x21630, 0x21634,
1023 		0x2163c, 0x2163c,
1024 		0x21700, 0x2171c,
1025 		0x21780, 0x2178c,
1026 		0x21800, 0x21818,
1027 		0x21820, 0x21828,
1028 		0x21830, 0x21848,
1029 		0x21850, 0x21854,
1030 		0x21860, 0x21868,
1031 		0x21870, 0x21870,
1032 		0x21878, 0x21898,
1033 		0x218a0, 0x218a8,
1034 		0x218b0, 0x218c8,
1035 		0x218d0, 0x218d4,
1036 		0x218e0, 0x218e8,
1037 		0x218f0, 0x218f0,
1038 		0x218f8, 0x21a18,
1039 		0x21a20, 0x21a28,
1040 		0x21a30, 0x21a48,
1041 		0x21a50, 0x21a54,
1042 		0x21a60, 0x21a68,
1043 		0x21a70, 0x21a70,
1044 		0x21a78, 0x21a98,
1045 		0x21aa0, 0x21aa8,
1046 		0x21ab0, 0x21ac8,
1047 		0x21ad0, 0x21ad4,
1048 		0x21ae0, 0x21ae8,
1049 		0x21af0, 0x21af0,
1050 		0x21af8, 0x21c18,
1051 		0x21c20, 0x21c20,
1052 		0x21c28, 0x21c30,
1053 		0x21c38, 0x21c38,
1054 		0x21c80, 0x21c98,
1055 		0x21ca0, 0x21ca8,
1056 		0x21cb0, 0x21cc8,
1057 		0x21cd0, 0x21cd4,
1058 		0x21ce0, 0x21ce8,
1059 		0x21cf0, 0x21cf0,
1060 		0x21cf8, 0x21d7c,
1061 		0x21e00, 0x21e04,
1062 		0x22000, 0x2202c,
1063 		0x22100, 0x2213c,
1064 		0x22190, 0x221a0,
1065 		0x221a8, 0x221b8,
1066 		0x221c4, 0x221c8,
1067 		0x22200, 0x22318,
1068 		0x22400, 0x224b4,
1069 		0x224c0, 0x22528,
1070 		0x22540, 0x22614,
1071 		0x23000, 0x23040,
1072 		0x2304c, 0x23060,
1073 		0x230c0, 0x230ec,
1074 		0x23200, 0x23268,
1075 		0x23270, 0x23284,
1076 		0x232fc, 0x23388,
1077 		0x23400, 0x23404,
1078 		0x23500, 0x23500,
1079 		0x23510, 0x23518,
1080 		0x2352c, 0x23530,
1081 		0x2353c, 0x2353c,
1082 		0x23550, 0x23554,
1083 		0x23600, 0x23600,
1084 		0x23608, 0x2361c,
1085 		0x23624, 0x23628,
1086 		0x23630, 0x23634,
1087 		0x2363c, 0x2363c,
1088 		0x23700, 0x2371c,
1089 		0x23780, 0x2378c,
1090 		0x23800, 0x23818,
1091 		0x23820, 0x23828,
1092 		0x23830, 0x23848,
1093 		0x23850, 0x23854,
1094 		0x23860, 0x23868,
1095 		0x23870, 0x23870,
1096 		0x23878, 0x23898,
1097 		0x238a0, 0x238a8,
1098 		0x238b0, 0x238c8,
1099 		0x238d0, 0x238d4,
1100 		0x238e0, 0x238e8,
1101 		0x238f0, 0x238f0,
1102 		0x238f8, 0x23a18,
1103 		0x23a20, 0x23a28,
1104 		0x23a30, 0x23a48,
1105 		0x23a50, 0x23a54,
1106 		0x23a60, 0x23a68,
1107 		0x23a70, 0x23a70,
1108 		0x23a78, 0x23a98,
1109 		0x23aa0, 0x23aa8,
1110 		0x23ab0, 0x23ac8,
1111 		0x23ad0, 0x23ad4,
1112 		0x23ae0, 0x23ae8,
1113 		0x23af0, 0x23af0,
1114 		0x23af8, 0x23c18,
1115 		0x23c20, 0x23c20,
1116 		0x23c28, 0x23c30,
1117 		0x23c38, 0x23c38,
1118 		0x23c80, 0x23c98,
1119 		0x23ca0, 0x23ca8,
1120 		0x23cb0, 0x23cc8,
1121 		0x23cd0, 0x23cd4,
1122 		0x23ce0, 0x23ce8,
1123 		0x23cf0, 0x23cf0,
1124 		0x23cf8, 0x23d7c,
1125 		0x23e00, 0x23e04,
1126 		0x24000, 0x2402c,
1127 		0x24100, 0x2413c,
1128 		0x24190, 0x241a0,
1129 		0x241a8, 0x241b8,
1130 		0x241c4, 0x241c8,
1131 		0x24200, 0x24318,
1132 		0x24400, 0x244b4,
1133 		0x244c0, 0x24528,
1134 		0x24540, 0x24614,
1135 		0x25000, 0x25040,
1136 		0x2504c, 0x25060,
1137 		0x250c0, 0x250ec,
1138 		0x25200, 0x25268,
1139 		0x25270, 0x25284,
1140 		0x252fc, 0x25388,
1141 		0x25400, 0x25404,
1142 		0x25500, 0x25500,
1143 		0x25510, 0x25518,
1144 		0x2552c, 0x25530,
1145 		0x2553c, 0x2553c,
1146 		0x25550, 0x25554,
1147 		0x25600, 0x25600,
1148 		0x25608, 0x2561c,
1149 		0x25624, 0x25628,
1150 		0x25630, 0x25634,
1151 		0x2563c, 0x2563c,
1152 		0x25700, 0x2571c,
1153 		0x25780, 0x2578c,
1154 		0x25800, 0x25818,
1155 		0x25820, 0x25828,
1156 		0x25830, 0x25848,
1157 		0x25850, 0x25854,
1158 		0x25860, 0x25868,
1159 		0x25870, 0x25870,
1160 		0x25878, 0x25898,
1161 		0x258a0, 0x258a8,
1162 		0x258b0, 0x258c8,
1163 		0x258d0, 0x258d4,
1164 		0x258e0, 0x258e8,
1165 		0x258f0, 0x258f0,
1166 		0x258f8, 0x25a18,
1167 		0x25a20, 0x25a28,
1168 		0x25a30, 0x25a48,
1169 		0x25a50, 0x25a54,
1170 		0x25a60, 0x25a68,
1171 		0x25a70, 0x25a70,
1172 		0x25a78, 0x25a98,
1173 		0x25aa0, 0x25aa8,
1174 		0x25ab0, 0x25ac8,
1175 		0x25ad0, 0x25ad4,
1176 		0x25ae0, 0x25ae8,
1177 		0x25af0, 0x25af0,
1178 		0x25af8, 0x25c18,
1179 		0x25c20, 0x25c20,
1180 		0x25c28, 0x25c30,
1181 		0x25c38, 0x25c38,
1182 		0x25c80, 0x25c98,
1183 		0x25ca0, 0x25ca8,
1184 		0x25cb0, 0x25cc8,
1185 		0x25cd0, 0x25cd4,
1186 		0x25ce0, 0x25ce8,
1187 		0x25cf0, 0x25cf0,
1188 		0x25cf8, 0x25d7c,
1189 		0x25e00, 0x25e04,
1190 		0x26000, 0x2602c,
1191 		0x26100, 0x2613c,
1192 		0x26190, 0x261a0,
1193 		0x261a8, 0x261b8,
1194 		0x261c4, 0x261c8,
1195 		0x26200, 0x26318,
1196 		0x26400, 0x264b4,
1197 		0x264c0, 0x26528,
1198 		0x26540, 0x26614,
1199 		0x27000, 0x27040,
1200 		0x2704c, 0x27060,
1201 		0x270c0, 0x270ec,
1202 		0x27200, 0x27268,
1203 		0x27270, 0x27284,
1204 		0x272fc, 0x27388,
1205 		0x27400, 0x27404,
1206 		0x27500, 0x27500,
1207 		0x27510, 0x27518,
1208 		0x2752c, 0x27530,
1209 		0x2753c, 0x2753c,
1210 		0x27550, 0x27554,
1211 		0x27600, 0x27600,
1212 		0x27608, 0x2761c,
1213 		0x27624, 0x27628,
1214 		0x27630, 0x27634,
1215 		0x2763c, 0x2763c,
1216 		0x27700, 0x2771c,
1217 		0x27780, 0x2778c,
1218 		0x27800, 0x27818,
1219 		0x27820, 0x27828,
1220 		0x27830, 0x27848,
1221 		0x27850, 0x27854,
1222 		0x27860, 0x27868,
1223 		0x27870, 0x27870,
1224 		0x27878, 0x27898,
1225 		0x278a0, 0x278a8,
1226 		0x278b0, 0x278c8,
1227 		0x278d0, 0x278d4,
1228 		0x278e0, 0x278e8,
1229 		0x278f0, 0x278f0,
1230 		0x278f8, 0x27a18,
1231 		0x27a20, 0x27a28,
1232 		0x27a30, 0x27a48,
1233 		0x27a50, 0x27a54,
1234 		0x27a60, 0x27a68,
1235 		0x27a70, 0x27a70,
1236 		0x27a78, 0x27a98,
1237 		0x27aa0, 0x27aa8,
1238 		0x27ab0, 0x27ac8,
1239 		0x27ad0, 0x27ad4,
1240 		0x27ae0, 0x27ae8,
1241 		0x27af0, 0x27af0,
1242 		0x27af8, 0x27c18,
1243 		0x27c20, 0x27c20,
1244 		0x27c28, 0x27c30,
1245 		0x27c38, 0x27c38,
1246 		0x27c80, 0x27c98,
1247 		0x27ca0, 0x27ca8,
1248 		0x27cb0, 0x27cc8,
1249 		0x27cd0, 0x27cd4,
1250 		0x27ce0, 0x27ce8,
1251 		0x27cf0, 0x27cf0,
1252 		0x27cf8, 0x27d7c,
1253 		0x27e00, 0x27e04,
1254 	};
1255 
1256 	static const unsigned int t5_reg_ranges[] = {
1257 		0x1008, 0x10c0,
1258 		0x10cc, 0x10f8,
1259 		0x1100, 0x1100,
1260 		0x110c, 0x1148,
1261 		0x1180, 0x1184,
1262 		0x1190, 0x1194,
1263 		0x11a0, 0x11a4,
1264 		0x11b0, 0x11b4,
1265 		0x11fc, 0x123c,
1266 		0x1280, 0x173c,
1267 		0x1800, 0x18fc,
1268 		0x3000, 0x3028,
1269 		0x3060, 0x30b0,
1270 		0x30b8, 0x30d8,
1271 		0x30e0, 0x30fc,
1272 		0x3140, 0x357c,
1273 		0x35a8, 0x35cc,
1274 		0x35ec, 0x35ec,
1275 		0x3600, 0x5624,
1276 		0x56cc, 0x56ec,
1277 		0x56f4, 0x5720,
1278 		0x5728, 0x575c,
1279 		0x580c, 0x5814,
1280 		0x5890, 0x589c,
1281 		0x58a4, 0x58ac,
1282 		0x58b8, 0x58bc,
1283 		0x5940, 0x59c8,
1284 		0x59d0, 0x59dc,
1285 		0x59fc, 0x5a18,
1286 		0x5a60, 0x5a70,
1287 		0x5a80, 0x5a9c,
1288 		0x5b94, 0x5bfc,
1289 		0x6000, 0x6020,
1290 		0x6028, 0x6040,
1291 		0x6058, 0x609c,
1292 		0x60a8, 0x614c,
1293 		0x7700, 0x7798,
1294 		0x77c0, 0x78fc,
1295 		0x7b00, 0x7b58,
1296 		0x7b60, 0x7b84,
1297 		0x7b8c, 0x7c54,
1298 		0x7d00, 0x7d38,
1299 		0x7d40, 0x7d80,
1300 		0x7d8c, 0x7ddc,
1301 		0x7de4, 0x7e04,
1302 		0x7e10, 0x7e1c,
1303 		0x7e24, 0x7e38,
1304 		0x7e40, 0x7e44,
1305 		0x7e4c, 0x7e78,
1306 		0x7e80, 0x7edc,
1307 		0x7ee8, 0x7efc,
1308 		0x8dc0, 0x8de0,
1309 		0x8df8, 0x8e04,
1310 		0x8e10, 0x8e84,
1311 		0x8ea0, 0x8f84,
1312 		0x8fc0, 0x9058,
1313 		0x9060, 0x9060,
1314 		0x9068, 0x90f8,
1315 		0x9400, 0x9408,
1316 		0x9410, 0x9470,
1317 		0x9600, 0x9600,
1318 		0x9608, 0x9638,
1319 		0x9640, 0x96f4,
1320 		0x9800, 0x9808,
1321 		0x9820, 0x983c,
1322 		0x9850, 0x9864,
1323 		0x9c00, 0x9c6c,
1324 		0x9c80, 0x9cec,
1325 		0x9d00, 0x9d6c,
1326 		0x9d80, 0x9dec,
1327 		0x9e00, 0x9e6c,
1328 		0x9e80, 0x9eec,
1329 		0x9f00, 0x9f6c,
1330 		0x9f80, 0xa020,
1331 		0xd004, 0xd004,
1332 		0xd010, 0xd03c,
1333 		0xdfc0, 0xdfe0,
1334 		0xe000, 0x1106c,
1335 		0x11074, 0x11088,
1336 		0x1109c, 0x1117c,
1337 		0x11190, 0x11204,
1338 		0x19040, 0x1906c,
1339 		0x19078, 0x19080,
1340 		0x1908c, 0x190e8,
1341 		0x190f0, 0x190f8,
1342 		0x19100, 0x19110,
1343 		0x19120, 0x19124,
1344 		0x19150, 0x19194,
1345 		0x1919c, 0x191b0,
1346 		0x191d0, 0x191e8,
1347 		0x19238, 0x19290,
1348 		0x193f8, 0x19428,
1349 		0x19430, 0x19444,
1350 		0x1944c, 0x1946c,
1351 		0x19474, 0x19474,
1352 		0x19490, 0x194cc,
1353 		0x194f0, 0x194f8,
1354 		0x19c00, 0x19c08,
1355 		0x19c10, 0x19c60,
1356 		0x19c94, 0x19ce4,
1357 		0x19cf0, 0x19d40,
1358 		0x19d50, 0x19d94,
1359 		0x19da0, 0x19de8,
1360 		0x19df0, 0x19e10,
1361 		0x19e50, 0x19e90,
1362 		0x19ea0, 0x19f24,
1363 		0x19f34, 0x19f34,
1364 		0x19f40, 0x19f50,
1365 		0x19f90, 0x19fb4,
1366 		0x19fc4, 0x19fe4,
1367 		0x1a000, 0x1a004,
1368 		0x1a010, 0x1a06c,
1369 		0x1a0b0, 0x1a0e4,
1370 		0x1a0ec, 0x1a0f8,
1371 		0x1a100, 0x1a108,
1372 		0x1a114, 0x1a120,
1373 		0x1a128, 0x1a130,
1374 		0x1a138, 0x1a138,
1375 		0x1a190, 0x1a1c4,
1376 		0x1a1fc, 0x1a1fc,
1377 		0x1e008, 0x1e00c,
1378 		0x1e040, 0x1e044,
1379 		0x1e04c, 0x1e04c,
1380 		0x1e284, 0x1e290,
1381 		0x1e2c0, 0x1e2c0,
1382 		0x1e2e0, 0x1e2e0,
1383 		0x1e300, 0x1e384,
1384 		0x1e3c0, 0x1e3c8,
1385 		0x1e408, 0x1e40c,
1386 		0x1e440, 0x1e444,
1387 		0x1e44c, 0x1e44c,
1388 		0x1e684, 0x1e690,
1389 		0x1e6c0, 0x1e6c0,
1390 		0x1e6e0, 0x1e6e0,
1391 		0x1e700, 0x1e784,
1392 		0x1e7c0, 0x1e7c8,
1393 		0x1e808, 0x1e80c,
1394 		0x1e840, 0x1e844,
1395 		0x1e84c, 0x1e84c,
1396 		0x1ea84, 0x1ea90,
1397 		0x1eac0, 0x1eac0,
1398 		0x1eae0, 0x1eae0,
1399 		0x1eb00, 0x1eb84,
1400 		0x1ebc0, 0x1ebc8,
1401 		0x1ec08, 0x1ec0c,
1402 		0x1ec40, 0x1ec44,
1403 		0x1ec4c, 0x1ec4c,
1404 		0x1ee84, 0x1ee90,
1405 		0x1eec0, 0x1eec0,
1406 		0x1eee0, 0x1eee0,
1407 		0x1ef00, 0x1ef84,
1408 		0x1efc0, 0x1efc8,
1409 		0x1f008, 0x1f00c,
1410 		0x1f040, 0x1f044,
1411 		0x1f04c, 0x1f04c,
1412 		0x1f284, 0x1f290,
1413 		0x1f2c0, 0x1f2c0,
1414 		0x1f2e0, 0x1f2e0,
1415 		0x1f300, 0x1f384,
1416 		0x1f3c0, 0x1f3c8,
1417 		0x1f408, 0x1f40c,
1418 		0x1f440, 0x1f444,
1419 		0x1f44c, 0x1f44c,
1420 		0x1f684, 0x1f690,
1421 		0x1f6c0, 0x1f6c0,
1422 		0x1f6e0, 0x1f6e0,
1423 		0x1f700, 0x1f784,
1424 		0x1f7c0, 0x1f7c8,
1425 		0x1f808, 0x1f80c,
1426 		0x1f840, 0x1f844,
1427 		0x1f84c, 0x1f84c,
1428 		0x1fa84, 0x1fa90,
1429 		0x1fac0, 0x1fac0,
1430 		0x1fae0, 0x1fae0,
1431 		0x1fb00, 0x1fb84,
1432 		0x1fbc0, 0x1fbc8,
1433 		0x1fc08, 0x1fc0c,
1434 		0x1fc40, 0x1fc44,
1435 		0x1fc4c, 0x1fc4c,
1436 		0x1fe84, 0x1fe90,
1437 		0x1fec0, 0x1fec0,
1438 		0x1fee0, 0x1fee0,
1439 		0x1ff00, 0x1ff84,
1440 		0x1ffc0, 0x1ffc8,
1441 		0x30000, 0x30030,
1442 		0x30038, 0x30038,
1443 		0x30040, 0x30040,
1444 		0x30100, 0x30144,
1445 		0x30190, 0x301a0,
1446 		0x301a8, 0x301b8,
1447 		0x301c4, 0x301c8,
1448 		0x301d0, 0x301d0,
1449 		0x30200, 0x30318,
1450 		0x30400, 0x304b4,
1451 		0x304c0, 0x3052c,
1452 		0x30540, 0x3061c,
1453 		0x30800, 0x30828,
1454 		0x30834, 0x30834,
1455 		0x308c0, 0x30908,
1456 		0x30910, 0x309ac,
1457 		0x30a00, 0x30a14,
1458 		0x30a1c, 0x30a2c,
1459 		0x30a44, 0x30a50,
1460 		0x30a74, 0x30a74,
1461 		0x30a7c, 0x30afc,
1462 		0x30b08, 0x30c24,
1463 		0x30d00, 0x30d00,
1464 		0x30d08, 0x30d14,
1465 		0x30d1c, 0x30d20,
1466 		0x30d3c, 0x30d3c,
1467 		0x30d48, 0x30d50,
1468 		0x31200, 0x3120c,
1469 		0x31220, 0x31220,
1470 		0x31240, 0x31240,
1471 		0x31600, 0x3160c,
1472 		0x31a00, 0x31a1c,
1473 		0x31e00, 0x31e20,
1474 		0x31e38, 0x31e3c,
1475 		0x31e80, 0x31e80,
1476 		0x31e88, 0x31ea8,
1477 		0x31eb0, 0x31eb4,
1478 		0x31ec8, 0x31ed4,
1479 		0x31fb8, 0x32004,
1480 		0x32200, 0x32200,
1481 		0x32208, 0x32240,
1482 		0x32248, 0x32280,
1483 		0x32288, 0x322c0,
1484 		0x322c8, 0x322fc,
1485 		0x32600, 0x32630,
1486 		0x32a00, 0x32abc,
1487 		0x32b00, 0x32b10,
1488 		0x32b20, 0x32b30,
1489 		0x32b40, 0x32b50,
1490 		0x32b60, 0x32b70,
1491 		0x33000, 0x33028,
1492 		0x33030, 0x33048,
1493 		0x33060, 0x33068,
1494 		0x33070, 0x3309c,
1495 		0x330f0, 0x33128,
1496 		0x33130, 0x33148,
1497 		0x33160, 0x33168,
1498 		0x33170, 0x3319c,
1499 		0x331f0, 0x33238,
1500 		0x33240, 0x33240,
1501 		0x33248, 0x33250,
1502 		0x3325c, 0x33264,
1503 		0x33270, 0x332b8,
1504 		0x332c0, 0x332e4,
1505 		0x332f8, 0x33338,
1506 		0x33340, 0x33340,
1507 		0x33348, 0x33350,
1508 		0x3335c, 0x33364,
1509 		0x33370, 0x333b8,
1510 		0x333c0, 0x333e4,
1511 		0x333f8, 0x33428,
1512 		0x33430, 0x33448,
1513 		0x33460, 0x33468,
1514 		0x33470, 0x3349c,
1515 		0x334f0, 0x33528,
1516 		0x33530, 0x33548,
1517 		0x33560, 0x33568,
1518 		0x33570, 0x3359c,
1519 		0x335f0, 0x33638,
1520 		0x33640, 0x33640,
1521 		0x33648, 0x33650,
1522 		0x3365c, 0x33664,
1523 		0x33670, 0x336b8,
1524 		0x336c0, 0x336e4,
1525 		0x336f8, 0x33738,
1526 		0x33740, 0x33740,
1527 		0x33748, 0x33750,
1528 		0x3375c, 0x33764,
1529 		0x33770, 0x337b8,
1530 		0x337c0, 0x337e4,
1531 		0x337f8, 0x337fc,
1532 		0x33814, 0x33814,
1533 		0x3382c, 0x3382c,
1534 		0x33880, 0x3388c,
1535 		0x338e8, 0x338ec,
1536 		0x33900, 0x33928,
1537 		0x33930, 0x33948,
1538 		0x33960, 0x33968,
1539 		0x33970, 0x3399c,
1540 		0x339f0, 0x33a38,
1541 		0x33a40, 0x33a40,
1542 		0x33a48, 0x33a50,
1543 		0x33a5c, 0x33a64,
1544 		0x33a70, 0x33ab8,
1545 		0x33ac0, 0x33ae4,
1546 		0x33af8, 0x33b10,
1547 		0x33b28, 0x33b28,
1548 		0x33b3c, 0x33b50,
1549 		0x33bf0, 0x33c10,
1550 		0x33c28, 0x33c28,
1551 		0x33c3c, 0x33c50,
1552 		0x33cf0, 0x33cfc,
1553 		0x34000, 0x34030,
1554 		0x34038, 0x34038,
1555 		0x34040, 0x34040,
1556 		0x34100, 0x34144,
1557 		0x34190, 0x341a0,
1558 		0x341a8, 0x341b8,
1559 		0x341c4, 0x341c8,
1560 		0x341d0, 0x341d0,
1561 		0x34200, 0x34318,
1562 		0x34400, 0x344b4,
1563 		0x344c0, 0x3452c,
1564 		0x34540, 0x3461c,
1565 		0x34800, 0x34828,
1566 		0x34834, 0x34834,
1567 		0x348c0, 0x34908,
1568 		0x34910, 0x349ac,
1569 		0x34a00, 0x34a14,
1570 		0x34a1c, 0x34a2c,
1571 		0x34a44, 0x34a50,
1572 		0x34a74, 0x34a74,
1573 		0x34a7c, 0x34afc,
1574 		0x34b08, 0x34c24,
1575 		0x34d00, 0x34d00,
1576 		0x34d08, 0x34d14,
1577 		0x34d1c, 0x34d20,
1578 		0x34d3c, 0x34d3c,
1579 		0x34d48, 0x34d50,
1580 		0x35200, 0x3520c,
1581 		0x35220, 0x35220,
1582 		0x35240, 0x35240,
1583 		0x35600, 0x3560c,
1584 		0x35a00, 0x35a1c,
1585 		0x35e00, 0x35e20,
1586 		0x35e38, 0x35e3c,
1587 		0x35e80, 0x35e80,
1588 		0x35e88, 0x35ea8,
1589 		0x35eb0, 0x35eb4,
1590 		0x35ec8, 0x35ed4,
1591 		0x35fb8, 0x36004,
1592 		0x36200, 0x36200,
1593 		0x36208, 0x36240,
1594 		0x36248, 0x36280,
1595 		0x36288, 0x362c0,
1596 		0x362c8, 0x362fc,
1597 		0x36600, 0x36630,
1598 		0x36a00, 0x36abc,
1599 		0x36b00, 0x36b10,
1600 		0x36b20, 0x36b30,
1601 		0x36b40, 0x36b50,
1602 		0x36b60, 0x36b70,
1603 		0x37000, 0x37028,
1604 		0x37030, 0x37048,
1605 		0x37060, 0x37068,
1606 		0x37070, 0x3709c,
1607 		0x370f0, 0x37128,
1608 		0x37130, 0x37148,
1609 		0x37160, 0x37168,
1610 		0x37170, 0x3719c,
1611 		0x371f0, 0x37238,
1612 		0x37240, 0x37240,
1613 		0x37248, 0x37250,
1614 		0x3725c, 0x37264,
1615 		0x37270, 0x372b8,
1616 		0x372c0, 0x372e4,
1617 		0x372f8, 0x37338,
1618 		0x37340, 0x37340,
1619 		0x37348, 0x37350,
1620 		0x3735c, 0x37364,
1621 		0x37370, 0x373b8,
1622 		0x373c0, 0x373e4,
1623 		0x373f8, 0x37428,
1624 		0x37430, 0x37448,
1625 		0x37460, 0x37468,
1626 		0x37470, 0x3749c,
1627 		0x374f0, 0x37528,
1628 		0x37530, 0x37548,
1629 		0x37560, 0x37568,
1630 		0x37570, 0x3759c,
1631 		0x375f0, 0x37638,
1632 		0x37640, 0x37640,
1633 		0x37648, 0x37650,
1634 		0x3765c, 0x37664,
1635 		0x37670, 0x376b8,
1636 		0x376c0, 0x376e4,
1637 		0x376f8, 0x37738,
1638 		0x37740, 0x37740,
1639 		0x37748, 0x37750,
1640 		0x3775c, 0x37764,
1641 		0x37770, 0x377b8,
1642 		0x377c0, 0x377e4,
1643 		0x377f8, 0x377fc,
1644 		0x37814, 0x37814,
1645 		0x3782c, 0x3782c,
1646 		0x37880, 0x3788c,
1647 		0x378e8, 0x378ec,
1648 		0x37900, 0x37928,
1649 		0x37930, 0x37948,
1650 		0x37960, 0x37968,
1651 		0x37970, 0x3799c,
1652 		0x379f0, 0x37a38,
1653 		0x37a40, 0x37a40,
1654 		0x37a48, 0x37a50,
1655 		0x37a5c, 0x37a64,
1656 		0x37a70, 0x37ab8,
1657 		0x37ac0, 0x37ae4,
1658 		0x37af8, 0x37b10,
1659 		0x37b28, 0x37b28,
1660 		0x37b3c, 0x37b50,
1661 		0x37bf0, 0x37c10,
1662 		0x37c28, 0x37c28,
1663 		0x37c3c, 0x37c50,
1664 		0x37cf0, 0x37cfc,
1665 		0x38000, 0x38030,
1666 		0x38038, 0x38038,
1667 		0x38040, 0x38040,
1668 		0x38100, 0x38144,
1669 		0x38190, 0x381a0,
1670 		0x381a8, 0x381b8,
1671 		0x381c4, 0x381c8,
1672 		0x381d0, 0x381d0,
1673 		0x38200, 0x38318,
1674 		0x38400, 0x384b4,
1675 		0x384c0, 0x3852c,
1676 		0x38540, 0x3861c,
1677 		0x38800, 0x38828,
1678 		0x38834, 0x38834,
1679 		0x388c0, 0x38908,
1680 		0x38910, 0x389ac,
1681 		0x38a00, 0x38a14,
1682 		0x38a1c, 0x38a2c,
1683 		0x38a44, 0x38a50,
1684 		0x38a74, 0x38a74,
1685 		0x38a7c, 0x38afc,
1686 		0x38b08, 0x38c24,
1687 		0x38d00, 0x38d00,
1688 		0x38d08, 0x38d14,
1689 		0x38d1c, 0x38d20,
1690 		0x38d3c, 0x38d3c,
1691 		0x38d48, 0x38d50,
1692 		0x39200, 0x3920c,
1693 		0x39220, 0x39220,
1694 		0x39240, 0x39240,
1695 		0x39600, 0x3960c,
1696 		0x39a00, 0x39a1c,
1697 		0x39e00, 0x39e20,
1698 		0x39e38, 0x39e3c,
1699 		0x39e80, 0x39e80,
1700 		0x39e88, 0x39ea8,
1701 		0x39eb0, 0x39eb4,
1702 		0x39ec8, 0x39ed4,
1703 		0x39fb8, 0x3a004,
1704 		0x3a200, 0x3a200,
1705 		0x3a208, 0x3a240,
1706 		0x3a248, 0x3a280,
1707 		0x3a288, 0x3a2c0,
1708 		0x3a2c8, 0x3a2fc,
1709 		0x3a600, 0x3a630,
1710 		0x3aa00, 0x3aabc,
1711 		0x3ab00, 0x3ab10,
1712 		0x3ab20, 0x3ab30,
1713 		0x3ab40, 0x3ab50,
1714 		0x3ab60, 0x3ab70,
1715 		0x3b000, 0x3b028,
1716 		0x3b030, 0x3b048,
1717 		0x3b060, 0x3b068,
1718 		0x3b070, 0x3b09c,
1719 		0x3b0f0, 0x3b128,
1720 		0x3b130, 0x3b148,
1721 		0x3b160, 0x3b168,
1722 		0x3b170, 0x3b19c,
1723 		0x3b1f0, 0x3b238,
1724 		0x3b240, 0x3b240,
1725 		0x3b248, 0x3b250,
1726 		0x3b25c, 0x3b264,
1727 		0x3b270, 0x3b2b8,
1728 		0x3b2c0, 0x3b2e4,
1729 		0x3b2f8, 0x3b338,
1730 		0x3b340, 0x3b340,
1731 		0x3b348, 0x3b350,
1732 		0x3b35c, 0x3b364,
1733 		0x3b370, 0x3b3b8,
1734 		0x3b3c0, 0x3b3e4,
1735 		0x3b3f8, 0x3b428,
1736 		0x3b430, 0x3b448,
1737 		0x3b460, 0x3b468,
1738 		0x3b470, 0x3b49c,
1739 		0x3b4f0, 0x3b528,
1740 		0x3b530, 0x3b548,
1741 		0x3b560, 0x3b568,
1742 		0x3b570, 0x3b59c,
1743 		0x3b5f0, 0x3b638,
1744 		0x3b640, 0x3b640,
1745 		0x3b648, 0x3b650,
1746 		0x3b65c, 0x3b664,
1747 		0x3b670, 0x3b6b8,
1748 		0x3b6c0, 0x3b6e4,
1749 		0x3b6f8, 0x3b738,
1750 		0x3b740, 0x3b740,
1751 		0x3b748, 0x3b750,
1752 		0x3b75c, 0x3b764,
1753 		0x3b770, 0x3b7b8,
1754 		0x3b7c0, 0x3b7e4,
1755 		0x3b7f8, 0x3b7fc,
1756 		0x3b814, 0x3b814,
1757 		0x3b82c, 0x3b82c,
1758 		0x3b880, 0x3b88c,
1759 		0x3b8e8, 0x3b8ec,
1760 		0x3b900, 0x3b928,
1761 		0x3b930, 0x3b948,
1762 		0x3b960, 0x3b968,
1763 		0x3b970, 0x3b99c,
1764 		0x3b9f0, 0x3ba38,
1765 		0x3ba40, 0x3ba40,
1766 		0x3ba48, 0x3ba50,
1767 		0x3ba5c, 0x3ba64,
1768 		0x3ba70, 0x3bab8,
1769 		0x3bac0, 0x3bae4,
1770 		0x3baf8, 0x3bb10,
1771 		0x3bb28, 0x3bb28,
1772 		0x3bb3c, 0x3bb50,
1773 		0x3bbf0, 0x3bc10,
1774 		0x3bc28, 0x3bc28,
1775 		0x3bc3c, 0x3bc50,
1776 		0x3bcf0, 0x3bcfc,
1777 		0x3c000, 0x3c030,
1778 		0x3c038, 0x3c038,
1779 		0x3c040, 0x3c040,
1780 		0x3c100, 0x3c144,
1781 		0x3c190, 0x3c1a0,
1782 		0x3c1a8, 0x3c1b8,
1783 		0x3c1c4, 0x3c1c8,
1784 		0x3c1d0, 0x3c1d0,
1785 		0x3c200, 0x3c318,
1786 		0x3c400, 0x3c4b4,
1787 		0x3c4c0, 0x3c52c,
1788 		0x3c540, 0x3c61c,
1789 		0x3c800, 0x3c828,
1790 		0x3c834, 0x3c834,
1791 		0x3c8c0, 0x3c908,
1792 		0x3c910, 0x3c9ac,
1793 		0x3ca00, 0x3ca14,
1794 		0x3ca1c, 0x3ca2c,
1795 		0x3ca44, 0x3ca50,
1796 		0x3ca74, 0x3ca74,
1797 		0x3ca7c, 0x3cafc,
1798 		0x3cb08, 0x3cc24,
1799 		0x3cd00, 0x3cd00,
1800 		0x3cd08, 0x3cd14,
1801 		0x3cd1c, 0x3cd20,
1802 		0x3cd3c, 0x3cd3c,
1803 		0x3cd48, 0x3cd50,
1804 		0x3d200, 0x3d20c,
1805 		0x3d220, 0x3d220,
1806 		0x3d240, 0x3d240,
1807 		0x3d600, 0x3d60c,
1808 		0x3da00, 0x3da1c,
1809 		0x3de00, 0x3de20,
1810 		0x3de38, 0x3de3c,
1811 		0x3de80, 0x3de80,
1812 		0x3de88, 0x3dea8,
1813 		0x3deb0, 0x3deb4,
1814 		0x3dec8, 0x3ded4,
1815 		0x3dfb8, 0x3e004,
1816 		0x3e200, 0x3e200,
1817 		0x3e208, 0x3e240,
1818 		0x3e248, 0x3e280,
1819 		0x3e288, 0x3e2c0,
1820 		0x3e2c8, 0x3e2fc,
1821 		0x3e600, 0x3e630,
1822 		0x3ea00, 0x3eabc,
1823 		0x3eb00, 0x3eb10,
1824 		0x3eb20, 0x3eb30,
1825 		0x3eb40, 0x3eb50,
1826 		0x3eb60, 0x3eb70,
1827 		0x3f000, 0x3f028,
1828 		0x3f030, 0x3f048,
1829 		0x3f060, 0x3f068,
1830 		0x3f070, 0x3f09c,
1831 		0x3f0f0, 0x3f128,
1832 		0x3f130, 0x3f148,
1833 		0x3f160, 0x3f168,
1834 		0x3f170, 0x3f19c,
1835 		0x3f1f0, 0x3f238,
1836 		0x3f240, 0x3f240,
1837 		0x3f248, 0x3f250,
1838 		0x3f25c, 0x3f264,
1839 		0x3f270, 0x3f2b8,
1840 		0x3f2c0, 0x3f2e4,
1841 		0x3f2f8, 0x3f338,
1842 		0x3f340, 0x3f340,
1843 		0x3f348, 0x3f350,
1844 		0x3f35c, 0x3f364,
1845 		0x3f370, 0x3f3b8,
1846 		0x3f3c0, 0x3f3e4,
1847 		0x3f3f8, 0x3f428,
1848 		0x3f430, 0x3f448,
1849 		0x3f460, 0x3f468,
1850 		0x3f470, 0x3f49c,
1851 		0x3f4f0, 0x3f528,
1852 		0x3f530, 0x3f548,
1853 		0x3f560, 0x3f568,
1854 		0x3f570, 0x3f59c,
1855 		0x3f5f0, 0x3f638,
1856 		0x3f640, 0x3f640,
1857 		0x3f648, 0x3f650,
1858 		0x3f65c, 0x3f664,
1859 		0x3f670, 0x3f6b8,
1860 		0x3f6c0, 0x3f6e4,
1861 		0x3f6f8, 0x3f738,
1862 		0x3f740, 0x3f740,
1863 		0x3f748, 0x3f750,
1864 		0x3f75c, 0x3f764,
1865 		0x3f770, 0x3f7b8,
1866 		0x3f7c0, 0x3f7e4,
1867 		0x3f7f8, 0x3f7fc,
1868 		0x3f814, 0x3f814,
1869 		0x3f82c, 0x3f82c,
1870 		0x3f880, 0x3f88c,
1871 		0x3f8e8, 0x3f8ec,
1872 		0x3f900, 0x3f928,
1873 		0x3f930, 0x3f948,
1874 		0x3f960, 0x3f968,
1875 		0x3f970, 0x3f99c,
1876 		0x3f9f0, 0x3fa38,
1877 		0x3fa40, 0x3fa40,
1878 		0x3fa48, 0x3fa50,
1879 		0x3fa5c, 0x3fa64,
1880 		0x3fa70, 0x3fab8,
1881 		0x3fac0, 0x3fae4,
1882 		0x3faf8, 0x3fb10,
1883 		0x3fb28, 0x3fb28,
1884 		0x3fb3c, 0x3fb50,
1885 		0x3fbf0, 0x3fc10,
1886 		0x3fc28, 0x3fc28,
1887 		0x3fc3c, 0x3fc50,
1888 		0x3fcf0, 0x3fcfc,
1889 		0x40000, 0x4000c,
1890 		0x40040, 0x40050,
1891 		0x40060, 0x40068,
1892 		0x4007c, 0x4008c,
1893 		0x40094, 0x400b0,
1894 		0x400c0, 0x40144,
1895 		0x40180, 0x4018c,
1896 		0x40200, 0x40254,
1897 		0x40260, 0x40264,
1898 		0x40270, 0x40288,
1899 		0x40290, 0x40298,
1900 		0x402ac, 0x402c8,
1901 		0x402d0, 0x402e0,
1902 		0x402f0, 0x402f0,
1903 		0x40300, 0x4033c,
1904 		0x403f8, 0x403fc,
1905 		0x41304, 0x413c4,
1906 		0x41400, 0x4140c,
1907 		0x41414, 0x4141c,
1908 		0x41480, 0x414d0,
1909 		0x44000, 0x44054,
1910 		0x4405c, 0x44078,
1911 		0x440c0, 0x44174,
1912 		0x44180, 0x441ac,
1913 		0x441b4, 0x441b8,
1914 		0x441c0, 0x44254,
1915 		0x4425c, 0x44278,
1916 		0x442c0, 0x44374,
1917 		0x44380, 0x443ac,
1918 		0x443b4, 0x443b8,
1919 		0x443c0, 0x44454,
1920 		0x4445c, 0x44478,
1921 		0x444c0, 0x44574,
1922 		0x44580, 0x445ac,
1923 		0x445b4, 0x445b8,
1924 		0x445c0, 0x44654,
1925 		0x4465c, 0x44678,
1926 		0x446c0, 0x44774,
1927 		0x44780, 0x447ac,
1928 		0x447b4, 0x447b8,
1929 		0x447c0, 0x44854,
1930 		0x4485c, 0x44878,
1931 		0x448c0, 0x44974,
1932 		0x44980, 0x449ac,
1933 		0x449b4, 0x449b8,
1934 		0x449c0, 0x449fc,
1935 		0x45000, 0x45004,
1936 		0x45010, 0x45030,
1937 		0x45040, 0x45060,
1938 		0x45068, 0x45068,
1939 		0x45080, 0x45084,
1940 		0x450a0, 0x450b0,
1941 		0x45200, 0x45204,
1942 		0x45210, 0x45230,
1943 		0x45240, 0x45260,
1944 		0x45268, 0x45268,
1945 		0x45280, 0x45284,
1946 		0x452a0, 0x452b0,
1947 		0x460c0, 0x460e4,
1948 		0x47000, 0x4703c,
1949 		0x47044, 0x4708c,
1950 		0x47200, 0x47250,
1951 		0x47400, 0x47408,
1952 		0x47414, 0x47420,
1953 		0x47600, 0x47618,
1954 		0x47800, 0x47814,
1955 		0x48000, 0x4800c,
1956 		0x48040, 0x48050,
1957 		0x48060, 0x48068,
1958 		0x4807c, 0x4808c,
1959 		0x48094, 0x480b0,
1960 		0x480c0, 0x48144,
1961 		0x48180, 0x4818c,
1962 		0x48200, 0x48254,
1963 		0x48260, 0x48264,
1964 		0x48270, 0x48288,
1965 		0x48290, 0x48298,
1966 		0x482ac, 0x482c8,
1967 		0x482d0, 0x482e0,
1968 		0x482f0, 0x482f0,
1969 		0x48300, 0x4833c,
1970 		0x483f8, 0x483fc,
1971 		0x49304, 0x493c4,
1972 		0x49400, 0x4940c,
1973 		0x49414, 0x4941c,
1974 		0x49480, 0x494d0,
1975 		0x4c000, 0x4c054,
1976 		0x4c05c, 0x4c078,
1977 		0x4c0c0, 0x4c174,
1978 		0x4c180, 0x4c1ac,
1979 		0x4c1b4, 0x4c1b8,
1980 		0x4c1c0, 0x4c254,
1981 		0x4c25c, 0x4c278,
1982 		0x4c2c0, 0x4c374,
1983 		0x4c380, 0x4c3ac,
1984 		0x4c3b4, 0x4c3b8,
1985 		0x4c3c0, 0x4c454,
1986 		0x4c45c, 0x4c478,
1987 		0x4c4c0, 0x4c574,
1988 		0x4c580, 0x4c5ac,
1989 		0x4c5b4, 0x4c5b8,
1990 		0x4c5c0, 0x4c654,
1991 		0x4c65c, 0x4c678,
1992 		0x4c6c0, 0x4c774,
1993 		0x4c780, 0x4c7ac,
1994 		0x4c7b4, 0x4c7b8,
1995 		0x4c7c0, 0x4c854,
1996 		0x4c85c, 0x4c878,
1997 		0x4c8c0, 0x4c974,
1998 		0x4c980, 0x4c9ac,
1999 		0x4c9b4, 0x4c9b8,
2000 		0x4c9c0, 0x4c9fc,
2001 		0x4d000, 0x4d004,
2002 		0x4d010, 0x4d030,
2003 		0x4d040, 0x4d060,
2004 		0x4d068, 0x4d068,
2005 		0x4d080, 0x4d084,
2006 		0x4d0a0, 0x4d0b0,
2007 		0x4d200, 0x4d204,
2008 		0x4d210, 0x4d230,
2009 		0x4d240, 0x4d260,
2010 		0x4d268, 0x4d268,
2011 		0x4d280, 0x4d284,
2012 		0x4d2a0, 0x4d2b0,
2013 		0x4e0c0, 0x4e0e4,
2014 		0x4f000, 0x4f03c,
2015 		0x4f044, 0x4f08c,
2016 		0x4f200, 0x4f250,
2017 		0x4f400, 0x4f408,
2018 		0x4f414, 0x4f420,
2019 		0x4f600, 0x4f618,
2020 		0x4f800, 0x4f814,
2021 		0x50000, 0x50084,
2022 		0x50090, 0x500cc,
2023 		0x50400, 0x50400,
2024 		0x50800, 0x50884,
2025 		0x50890, 0x508cc,
2026 		0x50c00, 0x50c00,
2027 		0x51000, 0x5101c,
2028 		0x51300, 0x51308,
2029 	};
2030 
2031 	static const unsigned int t6_reg_ranges[] = {
2032 		0x1008, 0x101c,
2033 		0x1024, 0x10a8,
2034 		0x10b4, 0x10f8,
2035 		0x1100, 0x1114,
2036 		0x111c, 0x112c,
2037 		0x1138, 0x113c,
2038 		0x1144, 0x114c,
2039 		0x1180, 0x1184,
2040 		0x1190, 0x1194,
2041 		0x11a0, 0x11a4,
2042 		0x11b0, 0x11b4,
2043 		0x11fc, 0x1258,
2044 		0x1280, 0x12d4,
2045 		0x12d9, 0x12d9,
2046 		0x12de, 0x12de,
2047 		0x12e3, 0x12e3,
2048 		0x12e8, 0x133c,
2049 		0x1800, 0x18fc,
2050 		0x3000, 0x302c,
2051 		0x3060, 0x30b0,
2052 		0x30b8, 0x30d8,
2053 		0x30e0, 0x30fc,
2054 		0x3140, 0x357c,
2055 		0x35a8, 0x35cc,
2056 		0x35ec, 0x35ec,
2057 		0x3600, 0x5624,
2058 		0x56cc, 0x56ec,
2059 		0x56f4, 0x5720,
2060 		0x5728, 0x575c,
2061 		0x580c, 0x5814,
2062 		0x5890, 0x589c,
2063 		0x58a4, 0x58ac,
2064 		0x58b8, 0x58bc,
2065 		0x5940, 0x595c,
2066 		0x5980, 0x598c,
2067 		0x59b0, 0x59c8,
2068 		0x59d0, 0x59dc,
2069 		0x59fc, 0x5a18,
2070 		0x5a60, 0x5a6c,
2071 		0x5a80, 0x5a8c,
2072 		0x5a94, 0x5a9c,
2073 		0x5b94, 0x5bfc,
2074 		0x5c10, 0x5e48,
2075 		0x5e50, 0x5e94,
2076 		0x5ea0, 0x5eb0,
2077 		0x5ec0, 0x5ec0,
2078 		0x5ec8, 0x5ed0,
2079 		0x6000, 0x6020,
2080 		0x6028, 0x6040,
2081 		0x6058, 0x609c,
2082 		0x60a8, 0x619c,
2083 		0x7700, 0x7798,
2084 		0x77c0, 0x7880,
2085 		0x78cc, 0x78fc,
2086 		0x7b00, 0x7b58,
2087 		0x7b60, 0x7b84,
2088 		0x7b8c, 0x7c54,
2089 		0x7d00, 0x7d38,
2090 		0x7d40, 0x7d84,
2091 		0x7d8c, 0x7ddc,
2092 		0x7de4, 0x7e04,
2093 		0x7e10, 0x7e1c,
2094 		0x7e24, 0x7e38,
2095 		0x7e40, 0x7e44,
2096 		0x7e4c, 0x7e78,
2097 		0x7e80, 0x7edc,
2098 		0x7ee8, 0x7efc,
2099 		0x8dc0, 0x8de4,
2100 		0x8df8, 0x8e04,
2101 		0x8e10, 0x8e84,
2102 		0x8ea0, 0x8f88,
2103 		0x8fb8, 0x9058,
2104 		0x9060, 0x9060,
2105 		0x9068, 0x90f8,
2106 		0x9100, 0x9124,
2107 		0x9400, 0x9470,
2108 		0x9600, 0x9600,
2109 		0x9608, 0x9638,
2110 		0x9640, 0x9704,
2111 		0x9710, 0x971c,
2112 		0x9800, 0x9808,
2113 		0x9820, 0x983c,
2114 		0x9850, 0x9864,
2115 		0x9c00, 0x9c6c,
2116 		0x9c80, 0x9cec,
2117 		0x9d00, 0x9d6c,
2118 		0x9d80, 0x9dec,
2119 		0x9e00, 0x9e6c,
2120 		0x9e80, 0x9eec,
2121 		0x9f00, 0x9f6c,
2122 		0x9f80, 0xa020,
2123 		0xd004, 0xd03c,
2124 		0xd100, 0xd118,
2125 		0xd200, 0xd214,
2126 		0xd220, 0xd234,
2127 		0xd240, 0xd254,
2128 		0xd260, 0xd274,
2129 		0xd280, 0xd294,
2130 		0xd2a0, 0xd2b4,
2131 		0xd2c0, 0xd2d4,
2132 		0xd2e0, 0xd2f4,
2133 		0xd300, 0xd31c,
2134 		0xdfc0, 0xdfe0,
2135 		0xe000, 0xf008,
2136 		0x11000, 0x11014,
2137 		0x11048, 0x1106c,
2138 		0x11074, 0x11088,
2139 		0x11098, 0x11120,
2140 		0x1112c, 0x1117c,
2141 		0x11190, 0x112e0,
2142 		0x11300, 0x1130c,
2143 		0x12000, 0x1206c,
2144 		0x19040, 0x1906c,
2145 		0x19078, 0x19080,
2146 		0x1908c, 0x190e8,
2147 		0x190f0, 0x190f8,
2148 		0x19100, 0x19110,
2149 		0x19120, 0x19124,
2150 		0x19150, 0x19194,
2151 		0x1919c, 0x191b0,
2152 		0x191d0, 0x191e8,
2153 		0x19238, 0x19290,
2154 		0x192a4, 0x192b0,
2155 		0x192bc, 0x192bc,
2156 		0x19348, 0x1934c,
2157 		0x193f8, 0x19418,
2158 		0x19420, 0x19428,
2159 		0x19430, 0x19444,
2160 		0x1944c, 0x1946c,
2161 		0x19474, 0x19474,
2162 		0x19490, 0x194cc,
2163 		0x194f0, 0x194f8,
2164 		0x19c00, 0x19c48,
2165 		0x19c50, 0x19c80,
2166 		0x19c94, 0x19c98,
2167 		0x19ca0, 0x19cbc,
2168 		0x19ce4, 0x19ce4,
2169 		0x19cf0, 0x19cf8,
2170 		0x19d00, 0x19d28,
2171 		0x19d50, 0x19d78,
2172 		0x19d94, 0x19d98,
2173 		0x19da0, 0x19dc8,
2174 		0x19df0, 0x19e10,
2175 		0x19e50, 0x19e6c,
2176 		0x19ea0, 0x19ebc,
2177 		0x19ec4, 0x19ef4,
2178 		0x19f04, 0x19f2c,
2179 		0x19f34, 0x19f34,
2180 		0x19f40, 0x19f50,
2181 		0x19f90, 0x19fac,
2182 		0x19fc4, 0x19fc8,
2183 		0x19fd0, 0x19fe4,
2184 		0x1a000, 0x1a004,
2185 		0x1a010, 0x1a06c,
2186 		0x1a0b0, 0x1a0e4,
2187 		0x1a0ec, 0x1a0f8,
2188 		0x1a100, 0x1a108,
2189 		0x1a114, 0x1a120,
2190 		0x1a128, 0x1a130,
2191 		0x1a138, 0x1a138,
2192 		0x1a190, 0x1a1c4,
2193 		0x1a1fc, 0x1a1fc,
2194 		0x1e008, 0x1e00c,
2195 		0x1e040, 0x1e044,
2196 		0x1e04c, 0x1e04c,
2197 		0x1e284, 0x1e290,
2198 		0x1e2c0, 0x1e2c0,
2199 		0x1e2e0, 0x1e2e0,
2200 		0x1e300, 0x1e384,
2201 		0x1e3c0, 0x1e3c8,
2202 		0x1e408, 0x1e40c,
2203 		0x1e440, 0x1e444,
2204 		0x1e44c, 0x1e44c,
2205 		0x1e684, 0x1e690,
2206 		0x1e6c0, 0x1e6c0,
2207 		0x1e6e0, 0x1e6e0,
2208 		0x1e700, 0x1e784,
2209 		0x1e7c0, 0x1e7c8,
2210 		0x1e808, 0x1e80c,
2211 		0x1e840, 0x1e844,
2212 		0x1e84c, 0x1e84c,
2213 		0x1ea84, 0x1ea90,
2214 		0x1eac0, 0x1eac0,
2215 		0x1eae0, 0x1eae0,
2216 		0x1eb00, 0x1eb84,
2217 		0x1ebc0, 0x1ebc8,
2218 		0x1ec08, 0x1ec0c,
2219 		0x1ec40, 0x1ec44,
2220 		0x1ec4c, 0x1ec4c,
2221 		0x1ee84, 0x1ee90,
2222 		0x1eec0, 0x1eec0,
2223 		0x1eee0, 0x1eee0,
2224 		0x1ef00, 0x1ef84,
2225 		0x1efc0, 0x1efc8,
2226 		0x1f008, 0x1f00c,
2227 		0x1f040, 0x1f044,
2228 		0x1f04c, 0x1f04c,
2229 		0x1f284, 0x1f290,
2230 		0x1f2c0, 0x1f2c0,
2231 		0x1f2e0, 0x1f2e0,
2232 		0x1f300, 0x1f384,
2233 		0x1f3c0, 0x1f3c8,
2234 		0x1f408, 0x1f40c,
2235 		0x1f440, 0x1f444,
2236 		0x1f44c, 0x1f44c,
2237 		0x1f684, 0x1f690,
2238 		0x1f6c0, 0x1f6c0,
2239 		0x1f6e0, 0x1f6e0,
2240 		0x1f700, 0x1f784,
2241 		0x1f7c0, 0x1f7c8,
2242 		0x1f808, 0x1f80c,
2243 		0x1f840, 0x1f844,
2244 		0x1f84c, 0x1f84c,
2245 		0x1fa84, 0x1fa90,
2246 		0x1fac0, 0x1fac0,
2247 		0x1fae0, 0x1fae0,
2248 		0x1fb00, 0x1fb84,
2249 		0x1fbc0, 0x1fbc8,
2250 		0x1fc08, 0x1fc0c,
2251 		0x1fc40, 0x1fc44,
2252 		0x1fc4c, 0x1fc4c,
2253 		0x1fe84, 0x1fe90,
2254 		0x1fec0, 0x1fec0,
2255 		0x1fee0, 0x1fee0,
2256 		0x1ff00, 0x1ff84,
2257 		0x1ffc0, 0x1ffc8,
2258 		0x30000, 0x30030,
2259 		0x30038, 0x30038,
2260 		0x30040, 0x30040,
2261 		0x30048, 0x30048,
2262 		0x30050, 0x30050,
2263 		0x3005c, 0x30060,
2264 		0x30068, 0x30068,
2265 		0x30070, 0x30070,
2266 		0x30100, 0x30168,
2267 		0x30190, 0x301a0,
2268 		0x301a8, 0x301b8,
2269 		0x301c4, 0x301c8,
2270 		0x301d0, 0x301d0,
2271 		0x30200, 0x30320,
2272 		0x30400, 0x304b4,
2273 		0x304c0, 0x3052c,
2274 		0x30540, 0x3061c,
2275 		0x30800, 0x308a0,
2276 		0x308c0, 0x30908,
2277 		0x30910, 0x309b8,
2278 		0x30a00, 0x30a04,
2279 		0x30a0c, 0x30a14,
2280 		0x30a1c, 0x30a2c,
2281 		0x30a44, 0x30a50,
2282 		0x30a74, 0x30a74,
2283 		0x30a7c, 0x30afc,
2284 		0x30b08, 0x30c24,
2285 		0x30d00, 0x30d14,
2286 		0x30d1c, 0x30d3c,
2287 		0x30d44, 0x30d4c,
2288 		0x30d54, 0x30d74,
2289 		0x30d7c, 0x30d7c,
2290 		0x30de0, 0x30de0,
2291 		0x30e00, 0x30ed4,
2292 		0x30f00, 0x30fa4,
2293 		0x30fc0, 0x30fc4,
2294 		0x31000, 0x31004,
2295 		0x31080, 0x310fc,
2296 		0x31208, 0x31220,
2297 		0x3123c, 0x31254,
2298 		0x31300, 0x31300,
2299 		0x31308, 0x3131c,
2300 		0x31338, 0x3133c,
2301 		0x31380, 0x31380,
2302 		0x31388, 0x313a8,
2303 		0x313b4, 0x313b4,
2304 		0x31400, 0x31420,
2305 		0x31438, 0x3143c,
2306 		0x31480, 0x31480,
2307 		0x314a8, 0x314a8,
2308 		0x314b0, 0x314b4,
2309 		0x314c8, 0x314d4,
2310 		0x31a40, 0x31a4c,
2311 		0x31af0, 0x31b20,
2312 		0x31b38, 0x31b3c,
2313 		0x31b80, 0x31b80,
2314 		0x31ba8, 0x31ba8,
2315 		0x31bb0, 0x31bb4,
2316 		0x31bc8, 0x31bd4,
2317 		0x32140, 0x3218c,
2318 		0x321f0, 0x321f4,
2319 		0x32200, 0x32200,
2320 		0x32218, 0x32218,
2321 		0x32400, 0x32400,
2322 		0x32408, 0x3241c,
2323 		0x32618, 0x32620,
2324 		0x32664, 0x32664,
2325 		0x326a8, 0x326a8,
2326 		0x326ec, 0x326ec,
2327 		0x32a00, 0x32abc,
2328 		0x32b00, 0x32b38,
2329 		0x32b40, 0x32b58,
2330 		0x32b60, 0x32b78,
2331 		0x32c00, 0x32c00,
2332 		0x32c08, 0x32c3c,
2333 		0x32e00, 0x32e2c,
2334 		0x32f00, 0x32f2c,
2335 		0x33000, 0x3302c,
2336 		0x33034, 0x33050,
2337 		0x33058, 0x33058,
2338 		0x33060, 0x3308c,
2339 		0x3309c, 0x330ac,
2340 		0x330c0, 0x330c0,
2341 		0x330c8, 0x330d0,
2342 		0x330d8, 0x330e0,
2343 		0x330ec, 0x3312c,
2344 		0x33134, 0x33150,
2345 		0x33158, 0x33158,
2346 		0x33160, 0x3318c,
2347 		0x3319c, 0x331ac,
2348 		0x331c0, 0x331c0,
2349 		0x331c8, 0x331d0,
2350 		0x331d8, 0x331e0,
2351 		0x331ec, 0x33290,
2352 		0x33298, 0x332c4,
2353 		0x332e4, 0x33390,
2354 		0x33398, 0x333c4,
2355 		0x333e4, 0x3342c,
2356 		0x33434, 0x33450,
2357 		0x33458, 0x33458,
2358 		0x33460, 0x3348c,
2359 		0x3349c, 0x334ac,
2360 		0x334c0, 0x334c0,
2361 		0x334c8, 0x334d0,
2362 		0x334d8, 0x334e0,
2363 		0x334ec, 0x3352c,
2364 		0x33534, 0x33550,
2365 		0x33558, 0x33558,
2366 		0x33560, 0x3358c,
2367 		0x3359c, 0x335ac,
2368 		0x335c0, 0x335c0,
2369 		0x335c8, 0x335d0,
2370 		0x335d8, 0x335e0,
2371 		0x335ec, 0x33690,
2372 		0x33698, 0x336c4,
2373 		0x336e4, 0x33790,
2374 		0x33798, 0x337c4,
2375 		0x337e4, 0x337fc,
2376 		0x33814, 0x33814,
2377 		0x33854, 0x33868,
2378 		0x33880, 0x3388c,
2379 		0x338c0, 0x338d0,
2380 		0x338e8, 0x338ec,
2381 		0x33900, 0x3392c,
2382 		0x33934, 0x33950,
2383 		0x33958, 0x33958,
2384 		0x33960, 0x3398c,
2385 		0x3399c, 0x339ac,
2386 		0x339c0, 0x339c0,
2387 		0x339c8, 0x339d0,
2388 		0x339d8, 0x339e0,
2389 		0x339ec, 0x33a90,
2390 		0x33a98, 0x33ac4,
2391 		0x33ae4, 0x33b10,
2392 		0x33b24, 0x33b28,
2393 		0x33b38, 0x33b50,
2394 		0x33bf0, 0x33c10,
2395 		0x33c24, 0x33c28,
2396 		0x33c38, 0x33c50,
2397 		0x33cf0, 0x33cfc,
2398 		0x34000, 0x34030,
2399 		0x34038, 0x34038,
2400 		0x34040, 0x34040,
2401 		0x34048, 0x34048,
2402 		0x34050, 0x34050,
2403 		0x3405c, 0x34060,
2404 		0x34068, 0x34068,
2405 		0x34070, 0x34070,
2406 		0x34100, 0x34168,
2407 		0x34190, 0x341a0,
2408 		0x341a8, 0x341b8,
2409 		0x341c4, 0x341c8,
2410 		0x341d0, 0x341d0,
2411 		0x34200, 0x34320,
2412 		0x34400, 0x344b4,
2413 		0x344c0, 0x3452c,
2414 		0x34540, 0x3461c,
2415 		0x34800, 0x348a0,
2416 		0x348c0, 0x34908,
2417 		0x34910, 0x349b8,
2418 		0x34a00, 0x34a04,
2419 		0x34a0c, 0x34a14,
2420 		0x34a1c, 0x34a2c,
2421 		0x34a44, 0x34a50,
2422 		0x34a74, 0x34a74,
2423 		0x34a7c, 0x34afc,
2424 		0x34b08, 0x34c24,
2425 		0x34d00, 0x34d14,
2426 		0x34d1c, 0x34d3c,
2427 		0x34d44, 0x34d4c,
2428 		0x34d54, 0x34d74,
2429 		0x34d7c, 0x34d7c,
2430 		0x34de0, 0x34de0,
2431 		0x34e00, 0x34ed4,
2432 		0x34f00, 0x34fa4,
2433 		0x34fc0, 0x34fc4,
2434 		0x35000, 0x35004,
2435 		0x35080, 0x350fc,
2436 		0x35208, 0x35220,
2437 		0x3523c, 0x35254,
2438 		0x35300, 0x35300,
2439 		0x35308, 0x3531c,
2440 		0x35338, 0x3533c,
2441 		0x35380, 0x35380,
2442 		0x35388, 0x353a8,
2443 		0x353b4, 0x353b4,
2444 		0x35400, 0x35420,
2445 		0x35438, 0x3543c,
2446 		0x35480, 0x35480,
2447 		0x354a8, 0x354a8,
2448 		0x354b0, 0x354b4,
2449 		0x354c8, 0x354d4,
2450 		0x35a40, 0x35a4c,
2451 		0x35af0, 0x35b20,
2452 		0x35b38, 0x35b3c,
2453 		0x35b80, 0x35b80,
2454 		0x35ba8, 0x35ba8,
2455 		0x35bb0, 0x35bb4,
2456 		0x35bc8, 0x35bd4,
2457 		0x36140, 0x3618c,
2458 		0x361f0, 0x361f4,
2459 		0x36200, 0x36200,
2460 		0x36218, 0x36218,
2461 		0x36400, 0x36400,
2462 		0x36408, 0x3641c,
2463 		0x36618, 0x36620,
2464 		0x36664, 0x36664,
2465 		0x366a8, 0x366a8,
2466 		0x366ec, 0x366ec,
2467 		0x36a00, 0x36abc,
2468 		0x36b00, 0x36b38,
2469 		0x36b40, 0x36b58,
2470 		0x36b60, 0x36b78,
2471 		0x36c00, 0x36c00,
2472 		0x36c08, 0x36c3c,
2473 		0x36e00, 0x36e2c,
2474 		0x36f00, 0x36f2c,
2475 		0x37000, 0x3702c,
2476 		0x37034, 0x37050,
2477 		0x37058, 0x37058,
2478 		0x37060, 0x3708c,
2479 		0x3709c, 0x370ac,
2480 		0x370c0, 0x370c0,
2481 		0x370c8, 0x370d0,
2482 		0x370d8, 0x370e0,
2483 		0x370ec, 0x3712c,
2484 		0x37134, 0x37150,
2485 		0x37158, 0x37158,
2486 		0x37160, 0x3718c,
2487 		0x3719c, 0x371ac,
2488 		0x371c0, 0x371c0,
2489 		0x371c8, 0x371d0,
2490 		0x371d8, 0x371e0,
2491 		0x371ec, 0x37290,
2492 		0x37298, 0x372c4,
2493 		0x372e4, 0x37390,
2494 		0x37398, 0x373c4,
2495 		0x373e4, 0x3742c,
2496 		0x37434, 0x37450,
2497 		0x37458, 0x37458,
2498 		0x37460, 0x3748c,
2499 		0x3749c, 0x374ac,
2500 		0x374c0, 0x374c0,
2501 		0x374c8, 0x374d0,
2502 		0x374d8, 0x374e0,
2503 		0x374ec, 0x3752c,
2504 		0x37534, 0x37550,
2505 		0x37558, 0x37558,
2506 		0x37560, 0x3758c,
2507 		0x3759c, 0x375ac,
2508 		0x375c0, 0x375c0,
2509 		0x375c8, 0x375d0,
2510 		0x375d8, 0x375e0,
2511 		0x375ec, 0x37690,
2512 		0x37698, 0x376c4,
2513 		0x376e4, 0x37790,
2514 		0x37798, 0x377c4,
2515 		0x377e4, 0x377fc,
2516 		0x37814, 0x37814,
2517 		0x37854, 0x37868,
2518 		0x37880, 0x3788c,
2519 		0x378c0, 0x378d0,
2520 		0x378e8, 0x378ec,
2521 		0x37900, 0x3792c,
2522 		0x37934, 0x37950,
2523 		0x37958, 0x37958,
2524 		0x37960, 0x3798c,
2525 		0x3799c, 0x379ac,
2526 		0x379c0, 0x379c0,
2527 		0x379c8, 0x379d0,
2528 		0x379d8, 0x379e0,
2529 		0x379ec, 0x37a90,
2530 		0x37a98, 0x37ac4,
2531 		0x37ae4, 0x37b10,
2532 		0x37b24, 0x37b28,
2533 		0x37b38, 0x37b50,
2534 		0x37bf0, 0x37c10,
2535 		0x37c24, 0x37c28,
2536 		0x37c38, 0x37c50,
2537 		0x37cf0, 0x37cfc,
2538 		0x40040, 0x40040,
2539 		0x40080, 0x40084,
2540 		0x40100, 0x40100,
2541 		0x40140, 0x401bc,
2542 		0x40200, 0x40214,
2543 		0x40228, 0x40228,
2544 		0x40240, 0x40258,
2545 		0x40280, 0x40280,
2546 		0x40304, 0x40304,
2547 		0x40330, 0x4033c,
2548 		0x41304, 0x413b8,
2549 		0x413c0, 0x413c8,
2550 		0x413d0, 0x413dc,
2551 		0x413f0, 0x413f0,
2552 		0x41400, 0x4140c,
2553 		0x41414, 0x4141c,
2554 		0x41480, 0x414d0,
2555 		0x44000, 0x4407c,
2556 		0x440c0, 0x441ac,
2557 		0x441b4, 0x4427c,
2558 		0x442c0, 0x443ac,
2559 		0x443b4, 0x4447c,
2560 		0x444c0, 0x445ac,
2561 		0x445b4, 0x4467c,
2562 		0x446c0, 0x447ac,
2563 		0x447b4, 0x4487c,
2564 		0x448c0, 0x449ac,
2565 		0x449b4, 0x44a7c,
2566 		0x44ac0, 0x44bac,
2567 		0x44bb4, 0x44c7c,
2568 		0x44cc0, 0x44dac,
2569 		0x44db4, 0x44e7c,
2570 		0x44ec0, 0x44fac,
2571 		0x44fb4, 0x4507c,
2572 		0x450c0, 0x451ac,
2573 		0x451b4, 0x451fc,
2574 		0x45800, 0x45804,
2575 		0x45810, 0x45830,
2576 		0x45840, 0x45860,
2577 		0x45868, 0x45868,
2578 		0x45880, 0x45884,
2579 		0x458a0, 0x458b0,
2580 		0x45a00, 0x45a04,
2581 		0x45a10, 0x45a30,
2582 		0x45a40, 0x45a60,
2583 		0x45a68, 0x45a68,
2584 		0x45a80, 0x45a84,
2585 		0x45aa0, 0x45ab0,
2586 		0x460c0, 0x460e4,
2587 		0x47000, 0x4703c,
2588 		0x47044, 0x4708c,
2589 		0x47200, 0x47250,
2590 		0x47400, 0x47408,
2591 		0x47414, 0x47420,
2592 		0x47600, 0x47618,
2593 		0x47800, 0x47814,
2594 		0x47820, 0x4782c,
2595 		0x50000, 0x50084,
2596 		0x50090, 0x500cc,
2597 		0x50300, 0x50384,
2598 		0x50400, 0x50400,
2599 		0x50800, 0x50884,
2600 		0x50890, 0x508cc,
2601 		0x50b00, 0x50b84,
2602 		0x50c00, 0x50c00,
2603 		0x51000, 0x51020,
2604 		0x51028, 0x510b0,
2605 		0x51300, 0x51324,
2606 	};
2607 
2608 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2609 	const unsigned int *reg_ranges;
2610 	int reg_ranges_size, range;
2611 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2612 
2613 	/* Select the right set of register ranges to dump depending on the
2614 	 * adapter chip type.
2615 	 */
2616 	switch (chip_version) {
2617 	case CHELSIO_T4:
2618 		reg_ranges = t4_reg_ranges;
2619 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2620 		break;
2621 
2622 	case CHELSIO_T5:
2623 		reg_ranges = t5_reg_ranges;
2624 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2625 		break;
2626 
2627 	case CHELSIO_T6:
2628 		reg_ranges = t6_reg_ranges;
2629 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2630 		break;
2631 
2632 	default:
2633 		dev_err(adap->pdev_dev,
2634 			"Unsupported chip version %d\n", chip_version);
2635 		return;
2636 	}
2637 
2638 	/* Clear the register buffer and insert the appropriate register
2639 	 * values selected by the above register ranges.
2640 	 */
2641 	memset(buf, 0, buf_size);
2642 	for (range = 0; range < reg_ranges_size; range += 2) {
2643 		unsigned int reg = reg_ranges[range];
2644 		unsigned int last_reg = reg_ranges[range + 1];
2645 		u32 *bufp = (u32 *)((char *)buf + reg);
2646 
2647 		/* Iterate across the register range filling in the register
2648 		 * buffer but don't write past the end of the register buffer.
2649 		 */
2650 		while (reg <= last_reg && bufp < buf_end) {
2651 			*bufp++ = t4_read_reg(adap, reg);
2652 			reg += sizeof(u32);
2653 		}
2654 	}
2655 }
2656 
2657 #define EEPROM_STAT_ADDR   0x7bfc
2658 #define VPD_SIZE           0x800
2659 #define VPD_BASE           0x400
2660 #define VPD_BASE_OLD       0
2661 #define VPD_LEN            1024
2662 #define CHELSIO_VPD_UNIQUE_ID 0x82
2663 
2664 /**
2665  *	t4_seeprom_wp - enable/disable EEPROM write protection
2666  *	@adapter: the adapter
2667  *	@enable: whether to enable or disable write protection
2668  *
2669  *	Enables or disables write protection on the serial EEPROM.
2670  */
2671 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2672 {
2673 	unsigned int v = enable ? 0xc : 0;
2674 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2675 	return ret < 0 ? ret : 0;
2676 }
2677 
2678 /**
2679  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2680  *	@adapter: adapter to read
2681  *	@p: where to store the parameters
2682  *
2683  *	Reads card parameters stored in VPD EEPROM.
2684  */
2685 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2686 {
2687 	int i, ret = 0, addr;
2688 	int ec, sn, pn, na;
2689 	u8 *vpd, csum;
2690 	unsigned int vpdr_len, kw_offset, id_len;
2691 
2692 	vpd = vmalloc(VPD_LEN);
2693 	if (!vpd)
2694 		return -ENOMEM;
2695 
2696 	/* We have two VPD data structures stored in the adapter VPD area.
2697 	 * By default, Linux calculates the size of the VPD area by traversing
2698 	 * the first VPD area at offset 0x0, so we need to tell the OS what
2699 	 * our real VPD size is.
2700 	 */
2701 	ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2702 	if (ret < 0)
2703 		goto out;
2704 
2705 	/* Card information normally starts at VPD_BASE but early cards had
2706 	 * it at 0.
2707 	 */
2708 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2709 	if (ret < 0)
2710 		goto out;
2711 
2712 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2713 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2714 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2715 	 * is expected to automatically put this entry at the
2716 	 * beginning of the VPD.
2717 	 */
2718 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2719 
2720 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2721 	if (ret < 0)
2722 		goto out;
2723 
2724 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2725 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2726 		ret = -EINVAL;
2727 		goto out;
2728 	}
2729 
2730 	id_len = pci_vpd_lrdt_size(vpd);
2731 	if (id_len > ID_LEN)
2732 		id_len = ID_LEN;
2733 
2734 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2735 	if (i < 0) {
2736 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2737 		ret = -EINVAL;
2738 		goto out;
2739 	}
2740 
2741 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2742 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2743 	if (vpdr_len + kw_offset > VPD_LEN) {
2744 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2745 		ret = -EINVAL;
2746 		goto out;
2747 	}
2748 
2749 #define FIND_VPD_KW(var, name) do { \
2750 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2751 	if (var < 0) { \
2752 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2753 		ret = -EINVAL; \
2754 		goto out; \
2755 	} \
2756 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2757 } while (0)
2758 
2759 	FIND_VPD_KW(i, "RV");
2760 	for (csum = 0; i >= 0; i--)
2761 		csum += vpd[i];
2762 
2763 	if (csum) {
2764 		dev_err(adapter->pdev_dev,
2765 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2766 		ret = -EINVAL;
2767 		goto out;
2768 	}
2769 
2770 	FIND_VPD_KW(ec, "EC");
2771 	FIND_VPD_KW(sn, "SN");
2772 	FIND_VPD_KW(pn, "PN");
2773 	FIND_VPD_KW(na, "NA");
2774 #undef FIND_VPD_KW
2775 
2776 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2777 	strim(p->id);
2778 	memcpy(p->ec, vpd + ec, EC_LEN);
2779 	strim(p->ec);
2780 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2781 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2782 	strim(p->sn);
2783 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2784 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2785 	strim(p->pn);
2786 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2787 	strim((char *)p->na);
2788 
2789 out:
2790 	vfree(vpd);
2791 	return ret < 0 ? ret : 0;
2792 }
2793 
2794 /**
2795  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2796  *	@adapter: adapter to read
2797  *	@p: where to store the parameters
2798  *
2799  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2800  *	Clock.  This can only be called after a connection to the firmware
2801  *	is established.
2802  */
2803 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2804 {
2805 	u32 cclk_param, cclk_val;
2806 	int ret;
2807 
2808 	/* Grab the raw VPD parameters.
2809 	 */
2810 	ret = t4_get_raw_vpd_params(adapter, p);
2811 	if (ret)
2812 		return ret;
2813 
2814 	/* Ask firmware for the Core Clock since it knows how to translate the
2815 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2816 	 */
2817 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2818 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2819 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2820 			      1, &cclk_param, &cclk_val);
2821 
2822 	if (ret)
2823 		return ret;
2824 	p->cclk = cclk_val;
2825 
2826 	return 0;
2827 }
2828 
2829 /* serial flash and firmware constants */
2830 enum {
2831 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2832 
2833 	/* flash command opcodes */
2834 	SF_PROG_PAGE    = 2,          /* program page */
2835 	SF_WR_DISABLE   = 4,          /* disable writes */
2836 	SF_RD_STATUS    = 5,          /* read status register */
2837 	SF_WR_ENABLE    = 6,          /* enable writes */
2838 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2839 	SF_RD_ID        = 0x9f,       /* read ID */
2840 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2841 
2842 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2843 };
2844 
2845 /**
2846  *	sf1_read - read data from the serial flash
2847  *	@adapter: the adapter
2848  *	@byte_cnt: number of bytes to read
2849  *	@cont: whether another operation will be chained
2850  *	@lock: whether to lock SF for PL access only
2851  *	@valp: where to store the read data
2852  *
2853  *	Reads up to 4 bytes of data from the serial flash.  The location of
2854  *	the read needs to be specified prior to calling this by issuing the
2855  *	appropriate commands to the serial flash.
2856  */
2857 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2858 		    int lock, u32 *valp)
2859 {
2860 	int ret;
2861 
2862 	if (!byte_cnt || byte_cnt > 4)
2863 		return -EINVAL;
2864 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2865 		return -EBUSY;
2866 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2867 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2868 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2869 	if (!ret)
2870 		*valp = t4_read_reg(adapter, SF_DATA_A);
2871 	return ret;
2872 }
2873 
2874 /**
2875  *	sf1_write - write data to the serial flash
2876  *	@adapter: the adapter
2877  *	@byte_cnt: number of bytes to write
2878  *	@cont: whether another operation will be chained
2879  *	@lock: whether to lock SF for PL access only
2880  *	@val: value to write
2881  *
2882  *	Writes up to 4 bytes of data to the serial flash.  The location of
2883  *	the write needs to be specified prior to calling this by issuing the
2884  *	appropriate commands to the serial flash.
2885  */
2886 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2887 		     int lock, u32 val)
2888 {
2889 	if (!byte_cnt || byte_cnt > 4)
2890 		return -EINVAL;
2891 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2892 		return -EBUSY;
2893 	t4_write_reg(adapter, SF_DATA_A, val);
2894 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2895 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2896 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2897 }
2898 
2899 /**
2900  *	flash_wait_op - wait for a flash operation to complete
2901  *	@adapter: the adapter
2902  *	@attempts: max number of polls of the status register
2903  *	@delay: delay between polls in ms
2904  *
2905  *	Wait for a flash operation to complete by polling the status register.
2906  */
2907 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2908 {
2909 	int ret;
2910 	u32 status;
2911 
2912 	while (1) {
2913 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2914 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2915 			return ret;
2916 		if (!(status & 1))
2917 			return 0;
2918 		if (--attempts == 0)
2919 			return -EAGAIN;
2920 		if (delay)
2921 			msleep(delay);
2922 	}
2923 }
2924 
2925 /**
2926  *	t4_read_flash - read words from serial flash
2927  *	@adapter: the adapter
2928  *	@addr: the start address for the read
2929  *	@nwords: how many 32-bit words to read
2930  *	@data: where to store the read data
2931  *	@byte_oriented: whether to store data as bytes or as words
2932  *
2933  *	Read the specified number of 32-bit words from the serial flash.
2934  *	If @byte_oriented is set the read data is stored as a byte array
2935  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2936  *	natural endianness.
2937  */
2938 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2939 		  unsigned int nwords, u32 *data, int byte_oriented)
2940 {
2941 	int ret;
2942 
2943 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2944 		return -EINVAL;
2945 
2946 	addr = swab32(addr) | SF_RD_DATA_FAST;
2947 
2948 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2949 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2950 		return ret;
2951 
2952 	for ( ; nwords; nwords--, data++) {
2953 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2954 		if (nwords == 1)
2955 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2956 		if (ret)
2957 			return ret;
2958 		if (byte_oriented)
2959 			*data = (__force __u32)(cpu_to_be32(*data));
2960 	}
2961 	return 0;
2962 }
2963 
2964 /**
2965  *	t4_write_flash - write up to a page of data to the serial flash
2966  *	@adapter: the adapter
2967  *	@addr: the start address to write
2968  *	@n: length of data to write in bytes
2969  *	@data: the data to write
2970  *
2971  *	Writes up to a page of data (256 bytes) to the serial flash starting
2972  *	at the given address.  All the data must be written to the same page.
2973  */
2974 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2975 			  unsigned int n, const u8 *data)
2976 {
2977 	int ret;
2978 	u32 buf[64];
2979 	unsigned int i, c, left, val, offset = addr & 0xff;
2980 
2981 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2982 		return -EINVAL;
2983 
2984 	val = swab32(addr) | SF_PROG_PAGE;
2985 
2986 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2987 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2988 		goto unlock;
2989 
2990 	for (left = n; left; left -= c) {
2991 		c = min(left, 4U);
2992 		for (val = 0, i = 0; i < c; ++i)
2993 			val = (val << 8) + *data++;
2994 
2995 		ret = sf1_write(adapter, c, c != left, 1, val);
2996 		if (ret)
2997 			goto unlock;
2998 	}
2999 	ret = flash_wait_op(adapter, 8, 1);
3000 	if (ret)
3001 		goto unlock;
3002 
3003 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3004 
3005 	/* Read the page to verify the write succeeded */
3006 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3007 	if (ret)
3008 		return ret;
3009 
3010 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3011 		dev_err(adapter->pdev_dev,
3012 			"failed to correctly write the flash page at %#x\n",
3013 			addr);
3014 		return -EIO;
3015 	}
3016 	return 0;
3017 
3018 unlock:
3019 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3020 	return ret;
3021 }
3022 
3023 /**
3024  *	t4_get_fw_version - read the firmware version
3025  *	@adapter: the adapter
3026  *	@vers: where to place the version
3027  *
3028  *	Reads the FW version from flash.
3029  */
3030 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3031 {
3032 	return t4_read_flash(adapter, FLASH_FW_START +
3033 			     offsetof(struct fw_hdr, fw_ver), 1,
3034 			     vers, 0);
3035 }
3036 
3037 /**
3038  *	t4_get_bs_version - read the firmware bootstrap version
3039  *	@adapter: the adapter
3040  *	@vers: where to place the version
3041  *
3042  *	Reads the FW Bootstrap version from flash.
3043  */
3044 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3045 {
3046 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3047 			     offsetof(struct fw_hdr, fw_ver), 1,
3048 			     vers, 0);
3049 }
3050 
3051 /**
3052  *	t4_get_tp_version - read the TP microcode version
3053  *	@adapter: the adapter
3054  *	@vers: where to place the version
3055  *
3056  *	Reads the TP microcode version from flash.
3057  */
3058 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3059 {
3060 	return t4_read_flash(adapter, FLASH_FW_START +
3061 			     offsetof(struct fw_hdr, tp_microcode_ver),
3062 			     1, vers, 0);
3063 }
3064 
3065 /**
3066  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3067  *	@adapter: the adapter
3068  *	@vers: where to place the version
3069  *
3070  *	Reads the Expansion ROM header from FLASH and returns the version
3071  *	number (if present) through the @vers return value pointer.  We return
3072  *	this in the Firmware Version Format since it's convenient.  Return
3073  *	0 on success, -ENOENT if no Expansion ROM is present.
3074  */
3075 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3076 {
3077 	struct exprom_header {
3078 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3079 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3080 	} *hdr;
3081 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3082 					   sizeof(u32))];
3083 	int ret;
3084 
3085 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3086 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3087 			    0);
3088 	if (ret)
3089 		return ret;
3090 
3091 	hdr = (struct exprom_header *)exprom_header_buf;
3092 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3093 		return -ENOENT;
3094 
3095 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3096 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3097 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3098 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3099 	return 0;
3100 }
3101 
3102 /**
3103  *	t4_check_fw_version - check if the FW is supported with this driver
3104  *	@adap: the adapter
3105  *
3106  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3107  *	if there's exact match, a negative error if the version could not be
3108  *	read or there's a major version mismatch
3109  */
3110 int t4_check_fw_version(struct adapter *adap)
3111 {
3112 	int i, ret, major, minor, micro;
3113 	int exp_major, exp_minor, exp_micro;
3114 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3115 
3116 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3117 	/* Try multiple times before returning error */
3118 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3119 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3120 
3121 	if (ret)
3122 		return ret;
3123 
3124 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3125 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3126 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3127 
3128 	switch (chip_version) {
3129 	case CHELSIO_T4:
3130 		exp_major = T4FW_MIN_VERSION_MAJOR;
3131 		exp_minor = T4FW_MIN_VERSION_MINOR;
3132 		exp_micro = T4FW_MIN_VERSION_MICRO;
3133 		break;
3134 	case CHELSIO_T5:
3135 		exp_major = T5FW_MIN_VERSION_MAJOR;
3136 		exp_minor = T5FW_MIN_VERSION_MINOR;
3137 		exp_micro = T5FW_MIN_VERSION_MICRO;
3138 		break;
3139 	case CHELSIO_T6:
3140 		exp_major = T6FW_MIN_VERSION_MAJOR;
3141 		exp_minor = T6FW_MIN_VERSION_MINOR;
3142 		exp_micro = T6FW_MIN_VERSION_MICRO;
3143 		break;
3144 	default:
3145 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3146 			adap->chip);
3147 		return -EINVAL;
3148 	}
3149 
3150 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3151 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3152 		dev_err(adap->pdev_dev,
3153 			"Card has firmware version %u.%u.%u, minimum "
3154 			"supported firmware is %u.%u.%u.\n", major, minor,
3155 			micro, exp_major, exp_minor, exp_micro);
3156 		return -EFAULT;
3157 	}
3158 	return 0;
3159 }
3160 
3161 /* Is the given firmware API compatible with the one the driver was compiled
3162  * with?
3163  */
3164 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3165 {
3166 
3167 	/* short circuit if it's the exact same firmware version */
3168 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3169 		return 1;
3170 
3171 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3172 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3173 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3174 		return 1;
3175 #undef SAME_INTF
3176 
3177 	return 0;
3178 }
3179 
3180 /* The firmware in the filesystem is usable, but should it be installed?
3181  * This routine explains itself in detail if it indicates the filesystem
3182  * firmware should be installed.
3183  */
3184 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3185 				int k, int c)
3186 {
3187 	const char *reason;
3188 
3189 	if (!card_fw_usable) {
3190 		reason = "incompatible or unusable";
3191 		goto install;
3192 	}
3193 
3194 	if (k > c) {
3195 		reason = "older than the version supported with this driver";
3196 		goto install;
3197 	}
3198 
3199 	return 0;
3200 
3201 install:
3202 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3203 		"installing firmware %u.%u.%u.%u on card.\n",
3204 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3205 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3206 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3207 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3208 
3209 	return 1;
3210 }
3211 
3212 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3213 	       const u8 *fw_data, unsigned int fw_size,
3214 	       struct fw_hdr *card_fw, enum dev_state state,
3215 	       int *reset)
3216 {
3217 	int ret, card_fw_usable, fs_fw_usable;
3218 	const struct fw_hdr *fs_fw;
3219 	const struct fw_hdr *drv_fw;
3220 
3221 	drv_fw = &fw_info->fw_hdr;
3222 
3223 	/* Read the header of the firmware on the card */
3224 	ret = -t4_read_flash(adap, FLASH_FW_START,
3225 			    sizeof(*card_fw) / sizeof(uint32_t),
3226 			    (uint32_t *)card_fw, 1);
3227 	if (ret == 0) {
3228 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3229 	} else {
3230 		dev_err(adap->pdev_dev,
3231 			"Unable to read card's firmware header: %d\n", ret);
3232 		card_fw_usable = 0;
3233 	}
3234 
3235 	if (fw_data != NULL) {
3236 		fs_fw = (const void *)fw_data;
3237 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3238 	} else {
3239 		fs_fw = NULL;
3240 		fs_fw_usable = 0;
3241 	}
3242 
3243 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3244 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3245 		/* Common case: the firmware on the card is an exact match and
3246 		 * the filesystem one is an exact match too, or the filesystem
3247 		 * one is absent/incompatible.
3248 		 */
3249 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3250 		   should_install_fs_fw(adap, card_fw_usable,
3251 					be32_to_cpu(fs_fw->fw_ver),
3252 					be32_to_cpu(card_fw->fw_ver))) {
3253 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3254 				     fw_size, 0);
3255 		if (ret != 0) {
3256 			dev_err(adap->pdev_dev,
3257 				"failed to install firmware: %d\n", ret);
3258 			goto bye;
3259 		}
3260 
3261 		/* Installed successfully, update the cached header too. */
3262 		*card_fw = *fs_fw;
3263 		card_fw_usable = 1;
3264 		*reset = 0;	/* already reset as part of load_fw */
3265 	}
3266 
3267 	if (!card_fw_usable) {
3268 		uint32_t d, c, k;
3269 
3270 		d = be32_to_cpu(drv_fw->fw_ver);
3271 		c = be32_to_cpu(card_fw->fw_ver);
3272 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3273 
3274 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3275 			"chip state %d, "
3276 			"driver compiled with %d.%d.%d.%d, "
3277 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3278 			state,
3279 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3280 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3281 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3282 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3283 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3284 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3285 		ret = EINVAL;
3286 		goto bye;
3287 	}
3288 
3289 	/* We're using whatever's on the card and it's known to be good. */
3290 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3291 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3292 
3293 bye:
3294 	return ret;
3295 }
3296 
3297 /**
3298  *	t4_flash_erase_sectors - erase a range of flash sectors
3299  *	@adapter: the adapter
3300  *	@start: the first sector to erase
3301  *	@end: the last sector to erase
3302  *
3303  *	Erases the sectors in the given inclusive range.
3304  */
3305 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3306 {
3307 	int ret = 0;
3308 
3309 	if (end >= adapter->params.sf_nsec)
3310 		return -EINVAL;
3311 
3312 	while (start <= end) {
3313 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3314 		    (ret = sf1_write(adapter, 4, 0, 1,
3315 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3316 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3317 			dev_err(adapter->pdev_dev,
3318 				"erase of flash sector %d failed, error %d\n",
3319 				start, ret);
3320 			break;
3321 		}
3322 		start++;
3323 	}
3324 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3325 	return ret;
3326 }
3327 
3328 /**
3329  *	t4_flash_cfg_addr - return the address of the flash configuration file
3330  *	@adapter: the adapter
3331  *
3332  *	Return the address within the flash where the Firmware Configuration
3333  *	File is stored.
3334  */
3335 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3336 {
3337 	if (adapter->params.sf_size == 0x100000)
3338 		return FLASH_FPGA_CFG_START;
3339 	else
3340 		return FLASH_CFG_START;
3341 }
3342 
3343 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3344  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3345  * and emit an error message for mismatched firmware to save our caller the
3346  * effort ...
3347  */
3348 static bool t4_fw_matches_chip(const struct adapter *adap,
3349 			       const struct fw_hdr *hdr)
3350 {
3351 	/* The expression below will return FALSE for any unsupported adapter
3352 	 * which will keep us "honest" in the future ...
3353 	 */
3354 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3355 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3356 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3357 		return true;
3358 
3359 	dev_err(adap->pdev_dev,
3360 		"FW image (%d) is not suitable for this adapter (%d)\n",
3361 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3362 	return false;
3363 }
3364 
3365 /**
3366  *	t4_load_fw - download firmware
3367  *	@adap: the adapter
3368  *	@fw_data: the firmware image to write
3369  *	@size: image size
3370  *
3371  *	Write the supplied firmware image to the card's serial flash.
3372  */
3373 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3374 {
3375 	u32 csum;
3376 	int ret, addr;
3377 	unsigned int i;
3378 	u8 first_page[SF_PAGE_SIZE];
3379 	const __be32 *p = (const __be32 *)fw_data;
3380 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3381 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3382 	unsigned int fw_img_start = adap->params.sf_fw_start;
3383 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3384 
3385 	if (!size) {
3386 		dev_err(adap->pdev_dev, "FW image has no data\n");
3387 		return -EINVAL;
3388 	}
3389 	if (size & 511) {
3390 		dev_err(adap->pdev_dev,
3391 			"FW image size not multiple of 512 bytes\n");
3392 		return -EINVAL;
3393 	}
3394 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3395 		dev_err(adap->pdev_dev,
3396 			"FW image size differs from size in FW header\n");
3397 		return -EINVAL;
3398 	}
3399 	if (size > FW_MAX_SIZE) {
3400 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3401 			FW_MAX_SIZE);
3402 		return -EFBIG;
3403 	}
3404 	if (!t4_fw_matches_chip(adap, hdr))
3405 		return -EINVAL;
3406 
3407 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3408 		csum += be32_to_cpu(p[i]);
3409 
3410 	if (csum != 0xffffffff) {
3411 		dev_err(adap->pdev_dev,
3412 			"corrupted firmware image, checksum %#x\n", csum);
3413 		return -EINVAL;
3414 	}
3415 
3416 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3417 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3418 	if (ret)
3419 		goto out;
3420 
3421 	/*
3422 	 * We write the correct version at the end so the driver can see a bad
3423 	 * version if the FW write fails.  Start by writing a copy of the
3424 	 * first page with a bad version.
3425 	 */
3426 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3427 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3428 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3429 	if (ret)
3430 		goto out;
3431 
3432 	addr = fw_img_start;
3433 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3434 		addr += SF_PAGE_SIZE;
3435 		fw_data += SF_PAGE_SIZE;
3436 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3437 		if (ret)
3438 			goto out;
3439 	}
3440 
3441 	ret = t4_write_flash(adap,
3442 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3443 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3444 out:
3445 	if (ret)
3446 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3447 			ret);
3448 	else
3449 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3450 	return ret;
3451 }
3452 
3453 /**
3454  *	t4_phy_fw_ver - return current PHY firmware version
3455  *	@adap: the adapter
3456  *	@phy_fw_ver: return value buffer for PHY firmware version
3457  *
3458  *	Returns the current version of external PHY firmware on the
3459  *	adapter.
3460  */
3461 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3462 {
3463 	u32 param, val;
3464 	int ret;
3465 
3466 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3467 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3468 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3469 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3470 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3471 			      &param, &val);
3472 	if (ret < 0)
3473 		return ret;
3474 	*phy_fw_ver = val;
3475 	return 0;
3476 }
3477 
3478 /**
3479  *	t4_load_phy_fw - download port PHY firmware
3480  *	@adap: the adapter
3481  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3482  *	@win_lock: the lock to use to guard the memory copy
3483  *	@phy_fw_version: function to check PHY firmware versions
3484  *	@phy_fw_data: the PHY firmware image to write
3485  *	@phy_fw_size: image size
3486  *
3487  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3488  *	@phy_fw_version is supplied, then it will be used to determine if
3489  *	it's necessary to perform the transfer by comparing the version
3490  *	of any existing adapter PHY firmware with that of the passed in
3491  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3492  *	around the call to t4_memory_rw() which transfers the PHY firmware
3493  *	to the adapter.
3494  *
3495  *	A negative error number will be returned if an error occurs.  If
3496  *	version number support is available and there's no need to upgrade
3497  *	the firmware, 0 will be returned.  If firmware is successfully
3498  *	transferred to the adapter, 1 will be retured.
3499  *
3500  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3501  *	a result, a RESET of the adapter would cause that RAM to lose its
3502  *	contents.  Thus, loading PHY firmware on such adapters must happen
3503  *	after any FW_RESET_CMDs ...
3504  */
3505 int t4_load_phy_fw(struct adapter *adap,
3506 		   int win, spinlock_t *win_lock,
3507 		   int (*phy_fw_version)(const u8 *, size_t),
3508 		   const u8 *phy_fw_data, size_t phy_fw_size)
3509 {
3510 	unsigned long mtype = 0, maddr = 0;
3511 	u32 param, val;
3512 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3513 	int ret;
3514 
3515 	/* If we have version number support, then check to see if the adapter
3516 	 * already has up-to-date PHY firmware loaded.
3517 	 */
3518 	 if (phy_fw_version) {
3519 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3520 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3521 		if (ret < 0)
3522 			return ret;
3523 
3524 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3525 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3526 				"version %#x\n", cur_phy_fw_ver);
3527 			return 0;
3528 		}
3529 	}
3530 
3531 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3532 	 * The size of the file requires a special version of the READ coommand
3533 	 * which will pass the file size via the values field in PARAMS_CMD and
3534 	 * retrieve the return value from firmware and place it in the same
3535 	 * buffer values
3536 	 */
3537 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3538 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3539 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3540 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3541 	val = phy_fw_size;
3542 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3543 				 &param, &val, 1);
3544 	if (ret < 0)
3545 		return ret;
3546 	mtype = val >> 8;
3547 	maddr = (val & 0xff) << 16;
3548 
3549 	/* Copy the supplied PHY Firmware image to the adapter memory location
3550 	 * allocated by the adapter firmware.
3551 	 */
3552 	if (win_lock)
3553 		spin_lock_bh(win_lock);
3554 	ret = t4_memory_rw(adap, win, mtype, maddr,
3555 			   phy_fw_size, (__be32 *)phy_fw_data,
3556 			   T4_MEMORY_WRITE);
3557 	if (win_lock)
3558 		spin_unlock_bh(win_lock);
3559 	if (ret)
3560 		return ret;
3561 
3562 	/* Tell the firmware that the PHY firmware image has been written to
3563 	 * RAM and it can now start copying it over to the PHYs.  The chip
3564 	 * firmware will RESET the affected PHYs as part of this operation
3565 	 * leaving them running the new PHY firmware image.
3566 	 */
3567 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3568 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3569 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3570 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3571 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3572 				    &param, &val, 30000);
3573 
3574 	/* If we have version number support, then check to see that the new
3575 	 * firmware got loaded properly.
3576 	 */
3577 	if (phy_fw_version) {
3578 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3579 		if (ret < 0)
3580 			return ret;
3581 
3582 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3583 			CH_WARN(adap, "PHY Firmware did not update: "
3584 				"version on adapter %#x, "
3585 				"version flashed %#x\n",
3586 				cur_phy_fw_ver, new_phy_fw_vers);
3587 			return -ENXIO;
3588 		}
3589 	}
3590 
3591 	return 1;
3592 }
3593 
3594 /**
3595  *	t4_fwcache - firmware cache operation
3596  *	@adap: the adapter
3597  *	@op  : the operation (flush or flush and invalidate)
3598  */
3599 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3600 {
3601 	struct fw_params_cmd c;
3602 
3603 	memset(&c, 0, sizeof(c));
3604 	c.op_to_vfn =
3605 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3606 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3607 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3608 			    FW_PARAMS_CMD_VFN_V(0));
3609 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3610 	c.param[0].mnem =
3611 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3612 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3613 	c.param[0].val = (__force __be32)op;
3614 
3615 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3616 }
3617 
3618 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3619 			unsigned int *pif_req_wrptr,
3620 			unsigned int *pif_rsp_wrptr)
3621 {
3622 	int i, j;
3623 	u32 cfg, val, req, rsp;
3624 
3625 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3626 	if (cfg & LADBGEN_F)
3627 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3628 
3629 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3630 	req = POLADBGWRPTR_G(val);
3631 	rsp = PILADBGWRPTR_G(val);
3632 	if (pif_req_wrptr)
3633 		*pif_req_wrptr = req;
3634 	if (pif_rsp_wrptr)
3635 		*pif_rsp_wrptr = rsp;
3636 
3637 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3638 		for (j = 0; j < 6; j++) {
3639 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3640 				     PILADBGRDPTR_V(rsp));
3641 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3642 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3643 			req++;
3644 			rsp++;
3645 		}
3646 		req = (req + 2) & POLADBGRDPTR_M;
3647 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3648 	}
3649 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3650 }
3651 
3652 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3653 {
3654 	u32 cfg;
3655 	int i, j, idx;
3656 
3657 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3658 	if (cfg & LADBGEN_F)
3659 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3660 
3661 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3662 		for (j = 0; j < 5; j++) {
3663 			idx = 8 * i + j;
3664 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3665 				     PILADBGRDPTR_V(idx));
3666 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3667 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3668 		}
3669 	}
3670 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3671 }
3672 
3673 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3674 {
3675 	unsigned int i, j;
3676 
3677 	for (i = 0; i < 8; i++) {
3678 		u32 *p = la_buf + i;
3679 
3680 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3681 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3682 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3683 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3684 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3685 	}
3686 }
3687 
3688 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3689 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3690 		     FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
3691 		     FW_PORT_CAP_ANEG)
3692 
3693 /**
3694  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3695  *	@phy: the PHY to setup
3696  *	@mac: the MAC to setup
3697  *	@lc: the requested link configuration
3698  *
3699  *	Set up a port's MAC and PHY according to a desired link configuration.
3700  *	- If the PHY can auto-negotiate first decide what to advertise, then
3701  *	  enable/disable auto-negotiation as desired, and reset.
3702  *	- If the PHY does not auto-negotiate just reset it.
3703  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3704  *	  otherwise do it later based on the outcome of auto-negotiation.
3705  */
3706 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3707 		  struct link_config *lc)
3708 {
3709 	struct fw_port_cmd c;
3710 	unsigned int mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3711 	unsigned int fc = 0, fec = 0, fw_fec = 0;
3712 
3713 	lc->link_ok = 0;
3714 	if (lc->requested_fc & PAUSE_RX)
3715 		fc |= FW_PORT_CAP_FC_RX;
3716 	if (lc->requested_fc & PAUSE_TX)
3717 		fc |= FW_PORT_CAP_FC_TX;
3718 
3719 	fec = lc->requested_fec & FEC_AUTO ? lc->auto_fec : lc->requested_fec;
3720 
3721 	if (fec & FEC_RS)
3722 		fw_fec |= FW_PORT_CAP_FEC_RS;
3723 	if (fec & FEC_BASER_RS)
3724 		fw_fec |= FW_PORT_CAP_FEC_BASER_RS;
3725 
3726 	memset(&c, 0, sizeof(c));
3727 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3728 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3729 				     FW_PORT_CMD_PORTID_V(port));
3730 	c.action_to_len16 =
3731 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3732 			    FW_LEN16(c));
3733 
3734 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3735 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3736 					     fc | fw_fec);
3737 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3738 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3739 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc |
3740 					     fw_fec | mdi);
3741 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3742 	} else
3743 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc |
3744 					     fw_fec | mdi);
3745 
3746 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3747 }
3748 
3749 /**
3750  *	t4_restart_aneg - restart autonegotiation
3751  *	@adap: the adapter
3752  *	@mbox: mbox to use for the FW command
3753  *	@port: the port id
3754  *
3755  *	Restarts autonegotiation for the selected port.
3756  */
3757 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3758 {
3759 	struct fw_port_cmd c;
3760 
3761 	memset(&c, 0, sizeof(c));
3762 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3763 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3764 				     FW_PORT_CMD_PORTID_V(port));
3765 	c.action_to_len16 =
3766 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3767 			    FW_LEN16(c));
3768 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3769 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3770 }
3771 
3772 typedef void (*int_handler_t)(struct adapter *adap);
3773 
3774 struct intr_info {
3775 	unsigned int mask;       /* bits to check in interrupt status */
3776 	const char *msg;         /* message to print or NULL */
3777 	short stat_idx;          /* stat counter to increment or -1 */
3778 	unsigned short fatal;    /* whether the condition reported is fatal */
3779 	int_handler_t int_handler; /* platform-specific int handler */
3780 };
3781 
3782 /**
3783  *	t4_handle_intr_status - table driven interrupt handler
3784  *	@adapter: the adapter that generated the interrupt
3785  *	@reg: the interrupt status register to process
3786  *	@acts: table of interrupt actions
3787  *
3788  *	A table driven interrupt handler that applies a set of masks to an
3789  *	interrupt status word and performs the corresponding actions if the
3790  *	interrupts described by the mask have occurred.  The actions include
3791  *	optionally emitting a warning or alert message.  The table is terminated
3792  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3793  *	conditions.
3794  */
3795 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3796 				 const struct intr_info *acts)
3797 {
3798 	int fatal = 0;
3799 	unsigned int mask = 0;
3800 	unsigned int status = t4_read_reg(adapter, reg);
3801 
3802 	for ( ; acts->mask; ++acts) {
3803 		if (!(status & acts->mask))
3804 			continue;
3805 		if (acts->fatal) {
3806 			fatal++;
3807 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3808 				  status & acts->mask);
3809 		} else if (acts->msg && printk_ratelimit())
3810 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3811 				 status & acts->mask);
3812 		if (acts->int_handler)
3813 			acts->int_handler(adapter);
3814 		mask |= acts->mask;
3815 	}
3816 	status &= mask;
3817 	if (status)                           /* clear processed interrupts */
3818 		t4_write_reg(adapter, reg, status);
3819 	return fatal;
3820 }
3821 
3822 /*
3823  * Interrupt handler for the PCIE module.
3824  */
3825 static void pcie_intr_handler(struct adapter *adapter)
3826 {
3827 	static const struct intr_info sysbus_intr_info[] = {
3828 		{ RNPP_F, "RXNP array parity error", -1, 1 },
3829 		{ RPCP_F, "RXPC array parity error", -1, 1 },
3830 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
3831 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
3832 		{ RFTP_F, "RXFT array parity error", -1, 1 },
3833 		{ 0 }
3834 	};
3835 	static const struct intr_info pcie_port_intr_info[] = {
3836 		{ TPCP_F, "TXPC array parity error", -1, 1 },
3837 		{ TNPP_F, "TXNP array parity error", -1, 1 },
3838 		{ TFTP_F, "TXFT array parity error", -1, 1 },
3839 		{ TCAP_F, "TXCA array parity error", -1, 1 },
3840 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
3841 		{ RCAP_F, "RXCA array parity error", -1, 1 },
3842 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
3843 		{ RDPE_F, "Rx data parity error", -1, 1 },
3844 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
3845 		{ 0 }
3846 	};
3847 	static const struct intr_info pcie_intr_info[] = {
3848 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3849 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3850 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3851 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3852 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3853 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3854 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3855 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3856 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3857 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3858 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3859 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3860 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3861 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3862 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3863 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3864 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3865 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3866 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3867 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3868 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3869 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3870 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3871 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3872 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3873 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3874 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3875 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
3876 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
3877 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
3878 		  -1, 0 },
3879 		{ 0 }
3880 	};
3881 
3882 	static struct intr_info t5_pcie_intr_info[] = {
3883 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
3884 		  -1, 1 },
3885 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3886 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3887 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3888 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3889 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3890 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3891 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3892 		  -1, 1 },
3893 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3894 		  -1, 1 },
3895 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3896 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3897 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3898 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3899 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
3900 		  -1, 1 },
3901 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3902 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3903 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3904 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3905 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3906 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3907 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3908 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3909 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3910 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3911 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3912 		  -1, 1 },
3913 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3914 		  -1, 1 },
3915 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3916 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3917 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3918 		{ READRSPERR_F, "Outbound read error", -1, 0 },
3919 		{ 0 }
3920 	};
3921 
3922 	int fat;
3923 
3924 	if (is_t4(adapter->params.chip))
3925 		fat = t4_handle_intr_status(adapter,
3926 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3927 				sysbus_intr_info) +
3928 			t4_handle_intr_status(adapter,
3929 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3930 					pcie_port_intr_info) +
3931 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3932 					      pcie_intr_info);
3933 	else
3934 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3935 					    t5_pcie_intr_info);
3936 
3937 	if (fat)
3938 		t4_fatal_err(adapter);
3939 }
3940 
3941 /*
3942  * TP interrupt handler.
3943  */
3944 static void tp_intr_handler(struct adapter *adapter)
3945 {
3946 	static const struct intr_info tp_intr_info[] = {
3947 		{ 0x3fffffff, "TP parity error", -1, 1 },
3948 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3949 		{ 0 }
3950 	};
3951 
3952 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3953 		t4_fatal_err(adapter);
3954 }
3955 
3956 /*
3957  * SGE interrupt handler.
3958  */
3959 static void sge_intr_handler(struct adapter *adapter)
3960 {
3961 	u64 v;
3962 	u32 err;
3963 
3964 	static const struct intr_info sge_intr_info[] = {
3965 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3966 		  "SGE received CPL exceeding IQE size", -1, 1 },
3967 		{ ERR_INVALID_CIDX_INC_F,
3968 		  "SGE GTS CIDX increment too large", -1, 0 },
3969 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3970 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3971 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3972 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3973 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3974 		  0 },
3975 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3976 		  0 },
3977 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3978 		  0 },
3979 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3980 		  0 },
3981 		{ ERR_ING_CTXT_PRIO_F,
3982 		  "SGE too many priority ingress contexts", -1, 0 },
3983 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3984 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3985 		{ 0 }
3986 	};
3987 
3988 	static struct intr_info t4t5_sge_intr_info[] = {
3989 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3990 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3991 		{ ERR_EGR_CTXT_PRIO_F,
3992 		  "SGE too many priority egress contexts", -1, 0 },
3993 		{ 0 }
3994 	};
3995 
3996 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3997 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3998 	if (v) {
3999 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4000 				(unsigned long long)v);
4001 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4002 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4003 	}
4004 
4005 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4006 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4007 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4008 					   t4t5_sge_intr_info);
4009 
4010 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4011 	if (err & ERROR_QID_VALID_F) {
4012 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4013 			ERROR_QID_G(err));
4014 		if (err & UNCAPTURED_ERROR_F)
4015 			dev_err(adapter->pdev_dev,
4016 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4017 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4018 			     UNCAPTURED_ERROR_F);
4019 	}
4020 
4021 	if (v != 0)
4022 		t4_fatal_err(adapter);
4023 }
4024 
4025 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4026 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4027 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4028 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4029 
4030 /*
4031  * CIM interrupt handler.
4032  */
4033 static void cim_intr_handler(struct adapter *adapter)
4034 {
4035 	static const struct intr_info cim_intr_info[] = {
4036 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4037 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4038 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4039 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4040 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4041 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4042 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4043 		{ 0 }
4044 	};
4045 	static const struct intr_info cim_upintr_info[] = {
4046 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4047 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4048 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4049 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4050 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4051 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4052 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4053 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4054 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4055 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4056 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4057 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4058 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4059 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4060 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4061 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4062 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4063 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4064 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4065 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4066 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4067 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4068 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4069 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4070 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4071 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4072 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4073 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4074 		{ 0 }
4075 	};
4076 
4077 	int fat;
4078 
4079 	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
4080 		t4_report_fw_error(adapter);
4081 
4082 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4083 				    cim_intr_info) +
4084 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4085 				    cim_upintr_info);
4086 	if (fat)
4087 		t4_fatal_err(adapter);
4088 }
4089 
4090 /*
4091  * ULP RX interrupt handler.
4092  */
4093 static void ulprx_intr_handler(struct adapter *adapter)
4094 {
4095 	static const struct intr_info ulprx_intr_info[] = {
4096 		{ 0x1800000, "ULPRX context error", -1, 1 },
4097 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4098 		{ 0 }
4099 	};
4100 
4101 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4102 		t4_fatal_err(adapter);
4103 }
4104 
4105 /*
4106  * ULP TX interrupt handler.
4107  */
4108 static void ulptx_intr_handler(struct adapter *adapter)
4109 {
4110 	static const struct intr_info ulptx_intr_info[] = {
4111 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4112 		  0 },
4113 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4114 		  0 },
4115 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4116 		  0 },
4117 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4118 		  0 },
4119 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4120 		{ 0 }
4121 	};
4122 
4123 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4124 		t4_fatal_err(adapter);
4125 }
4126 
4127 /*
4128  * PM TX interrupt handler.
4129  */
4130 static void pmtx_intr_handler(struct adapter *adapter)
4131 {
4132 	static const struct intr_info pmtx_intr_info[] = {
4133 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4134 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4135 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4136 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4137 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4138 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4139 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4140 		  -1, 1 },
4141 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4142 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4143 		{ 0 }
4144 	};
4145 
4146 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4147 		t4_fatal_err(adapter);
4148 }
4149 
4150 /*
4151  * PM RX interrupt handler.
4152  */
4153 static void pmrx_intr_handler(struct adapter *adapter)
4154 {
4155 	static const struct intr_info pmrx_intr_info[] = {
4156 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4157 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4158 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4159 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4160 		  -1, 1 },
4161 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4162 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4163 		{ 0 }
4164 	};
4165 
4166 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4167 		t4_fatal_err(adapter);
4168 }
4169 
4170 /*
4171  * CPL switch interrupt handler.
4172  */
4173 static void cplsw_intr_handler(struct adapter *adapter)
4174 {
4175 	static const struct intr_info cplsw_intr_info[] = {
4176 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4177 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4178 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4179 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4180 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4181 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4182 		{ 0 }
4183 	};
4184 
4185 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4186 		t4_fatal_err(adapter);
4187 }
4188 
4189 /*
4190  * LE interrupt handler.
4191  */
4192 static void le_intr_handler(struct adapter *adap)
4193 {
4194 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4195 	static const struct intr_info le_intr_info[] = {
4196 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4197 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4198 		{ PARITYERR_F, "LE parity error", -1, 1 },
4199 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4200 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4201 		{ 0 }
4202 	};
4203 
4204 	static struct intr_info t6_le_intr_info[] = {
4205 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4206 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4207 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4208 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4209 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4210 		{ 0 }
4211 	};
4212 
4213 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4214 				  (chip <= CHELSIO_T5) ?
4215 				  le_intr_info : t6_le_intr_info))
4216 		t4_fatal_err(adap);
4217 }
4218 
4219 /*
4220  * MPS interrupt handler.
4221  */
4222 static void mps_intr_handler(struct adapter *adapter)
4223 {
4224 	static const struct intr_info mps_rx_intr_info[] = {
4225 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4226 		{ 0 }
4227 	};
4228 	static const struct intr_info mps_tx_intr_info[] = {
4229 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4230 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4231 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4232 		  -1, 1 },
4233 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4234 		  -1, 1 },
4235 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4236 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4237 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4238 		{ 0 }
4239 	};
4240 	static const struct intr_info mps_trc_intr_info[] = {
4241 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4242 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4243 		  -1, 1 },
4244 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4245 		{ 0 }
4246 	};
4247 	static const struct intr_info mps_stat_sram_intr_info[] = {
4248 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4249 		{ 0 }
4250 	};
4251 	static const struct intr_info mps_stat_tx_intr_info[] = {
4252 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4253 		{ 0 }
4254 	};
4255 	static const struct intr_info mps_stat_rx_intr_info[] = {
4256 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4257 		{ 0 }
4258 	};
4259 	static const struct intr_info mps_cls_intr_info[] = {
4260 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4261 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4262 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4263 		{ 0 }
4264 	};
4265 
4266 	int fat;
4267 
4268 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4269 				    mps_rx_intr_info) +
4270 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4271 				    mps_tx_intr_info) +
4272 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4273 				    mps_trc_intr_info) +
4274 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4275 				    mps_stat_sram_intr_info) +
4276 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4277 				    mps_stat_tx_intr_info) +
4278 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4279 				    mps_stat_rx_intr_info) +
4280 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4281 				    mps_cls_intr_info);
4282 
4283 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4284 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4285 	if (fat)
4286 		t4_fatal_err(adapter);
4287 }
4288 
4289 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4290 		      ECC_UE_INT_CAUSE_F)
4291 
4292 /*
4293  * EDC/MC interrupt handler.
4294  */
4295 static void mem_intr_handler(struct adapter *adapter, int idx)
4296 {
4297 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4298 
4299 	unsigned int addr, cnt_addr, v;
4300 
4301 	if (idx <= MEM_EDC1) {
4302 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4303 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4304 	} else if (idx == MEM_MC) {
4305 		if (is_t4(adapter->params.chip)) {
4306 			addr = MC_INT_CAUSE_A;
4307 			cnt_addr = MC_ECC_STATUS_A;
4308 		} else {
4309 			addr = MC_P_INT_CAUSE_A;
4310 			cnt_addr = MC_P_ECC_STATUS_A;
4311 		}
4312 	} else {
4313 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4314 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4315 	}
4316 
4317 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4318 	if (v & PERR_INT_CAUSE_F)
4319 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4320 			  name[idx]);
4321 	if (v & ECC_CE_INT_CAUSE_F) {
4322 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4323 
4324 		t4_edc_err_read(adapter, idx);
4325 
4326 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4327 		if (printk_ratelimit())
4328 			dev_warn(adapter->pdev_dev,
4329 				 "%u %s correctable ECC data error%s\n",
4330 				 cnt, name[idx], cnt > 1 ? "s" : "");
4331 	}
4332 	if (v & ECC_UE_INT_CAUSE_F)
4333 		dev_alert(adapter->pdev_dev,
4334 			  "%s uncorrectable ECC data error\n", name[idx]);
4335 
4336 	t4_write_reg(adapter, addr, v);
4337 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4338 		t4_fatal_err(adapter);
4339 }
4340 
4341 /*
4342  * MA interrupt handler.
4343  */
4344 static void ma_intr_handler(struct adapter *adap)
4345 {
4346 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4347 
4348 	if (status & MEM_PERR_INT_CAUSE_F) {
4349 		dev_alert(adap->pdev_dev,
4350 			  "MA parity error, parity status %#x\n",
4351 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4352 		if (is_t5(adap->params.chip))
4353 			dev_alert(adap->pdev_dev,
4354 				  "MA parity error, parity status %#x\n",
4355 				  t4_read_reg(adap,
4356 					      MA_PARITY_ERROR_STATUS2_A));
4357 	}
4358 	if (status & MEM_WRAP_INT_CAUSE_F) {
4359 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4360 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4361 			  "client %u to address %#x\n",
4362 			  MEM_WRAP_CLIENT_NUM_G(v),
4363 			  MEM_WRAP_ADDRESS_G(v) << 4);
4364 	}
4365 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4366 	t4_fatal_err(adap);
4367 }
4368 
4369 /*
4370  * SMB interrupt handler.
4371  */
4372 static void smb_intr_handler(struct adapter *adap)
4373 {
4374 	static const struct intr_info smb_intr_info[] = {
4375 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4376 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4377 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4378 		{ 0 }
4379 	};
4380 
4381 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4382 		t4_fatal_err(adap);
4383 }
4384 
4385 /*
4386  * NC-SI interrupt handler.
4387  */
4388 static void ncsi_intr_handler(struct adapter *adap)
4389 {
4390 	static const struct intr_info ncsi_intr_info[] = {
4391 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4392 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4393 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4394 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4395 		{ 0 }
4396 	};
4397 
4398 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4399 		t4_fatal_err(adap);
4400 }
4401 
4402 /*
4403  * XGMAC interrupt handler.
4404  */
4405 static void xgmac_intr_handler(struct adapter *adap, int port)
4406 {
4407 	u32 v, int_cause_reg;
4408 
4409 	if (is_t4(adap->params.chip))
4410 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4411 	else
4412 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4413 
4414 	v = t4_read_reg(adap, int_cause_reg);
4415 
4416 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4417 	if (!v)
4418 		return;
4419 
4420 	if (v & TXFIFO_PRTY_ERR_F)
4421 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4422 			  port);
4423 	if (v & RXFIFO_PRTY_ERR_F)
4424 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4425 			  port);
4426 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4427 	t4_fatal_err(adap);
4428 }
4429 
4430 /*
4431  * PL interrupt handler.
4432  */
4433 static void pl_intr_handler(struct adapter *adap)
4434 {
4435 	static const struct intr_info pl_intr_info[] = {
4436 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4437 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4438 		{ 0 }
4439 	};
4440 
4441 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4442 		t4_fatal_err(adap);
4443 }
4444 
4445 #define PF_INTR_MASK (PFSW_F)
4446 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4447 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4448 		CPL_SWITCH_F | SGE_F | ULP_TX_F)
4449 
4450 /**
4451  *	t4_slow_intr_handler - control path interrupt handler
4452  *	@adapter: the adapter
4453  *
4454  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4455  *	The designation 'slow' is because it involves register reads, while
4456  *	data interrupts typically don't involve any MMIOs.
4457  */
4458 int t4_slow_intr_handler(struct adapter *adapter)
4459 {
4460 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4461 
4462 	if (!(cause & GLBL_INTR_MASK))
4463 		return 0;
4464 	if (cause & CIM_F)
4465 		cim_intr_handler(adapter);
4466 	if (cause & MPS_F)
4467 		mps_intr_handler(adapter);
4468 	if (cause & NCSI_F)
4469 		ncsi_intr_handler(adapter);
4470 	if (cause & PL_F)
4471 		pl_intr_handler(adapter);
4472 	if (cause & SMB_F)
4473 		smb_intr_handler(adapter);
4474 	if (cause & XGMAC0_F)
4475 		xgmac_intr_handler(adapter, 0);
4476 	if (cause & XGMAC1_F)
4477 		xgmac_intr_handler(adapter, 1);
4478 	if (cause & XGMAC_KR0_F)
4479 		xgmac_intr_handler(adapter, 2);
4480 	if (cause & XGMAC_KR1_F)
4481 		xgmac_intr_handler(adapter, 3);
4482 	if (cause & PCIE_F)
4483 		pcie_intr_handler(adapter);
4484 	if (cause & MC_F)
4485 		mem_intr_handler(adapter, MEM_MC);
4486 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4487 		mem_intr_handler(adapter, MEM_MC1);
4488 	if (cause & EDC0_F)
4489 		mem_intr_handler(adapter, MEM_EDC0);
4490 	if (cause & EDC1_F)
4491 		mem_intr_handler(adapter, MEM_EDC1);
4492 	if (cause & LE_F)
4493 		le_intr_handler(adapter);
4494 	if (cause & TP_F)
4495 		tp_intr_handler(adapter);
4496 	if (cause & MA_F)
4497 		ma_intr_handler(adapter);
4498 	if (cause & PM_TX_F)
4499 		pmtx_intr_handler(adapter);
4500 	if (cause & PM_RX_F)
4501 		pmrx_intr_handler(adapter);
4502 	if (cause & ULP_RX_F)
4503 		ulprx_intr_handler(adapter);
4504 	if (cause & CPL_SWITCH_F)
4505 		cplsw_intr_handler(adapter);
4506 	if (cause & SGE_F)
4507 		sge_intr_handler(adapter);
4508 	if (cause & ULP_TX_F)
4509 		ulptx_intr_handler(adapter);
4510 
4511 	/* Clear the interrupts just processed for which we are the master. */
4512 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4513 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4514 	return 1;
4515 }
4516 
4517 /**
4518  *	t4_intr_enable - enable interrupts
4519  *	@adapter: the adapter whose interrupts should be enabled
4520  *
4521  *	Enable PF-specific interrupts for the calling function and the top-level
4522  *	interrupt concentrator for global interrupts.  Interrupts are already
4523  *	enabled at each module,	here we just enable the roots of the interrupt
4524  *	hierarchies.
4525  *
4526  *	Note: this function should be called only when the driver manages
4527  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4528  *	function at a time should be doing this.
4529  */
4530 void t4_intr_enable(struct adapter *adapter)
4531 {
4532 	u32 val = 0;
4533 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4534 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4535 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4536 
4537 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4538 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4539 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4540 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4541 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4542 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4543 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4544 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4545 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4546 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4547 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4548 }
4549 
4550 /**
4551  *	t4_intr_disable - disable interrupts
4552  *	@adapter: the adapter whose interrupts should be disabled
4553  *
4554  *	Disable interrupts.  We only disable the top-level interrupt
4555  *	concentrators.  The caller must be a PCI function managing global
4556  *	interrupts.
4557  */
4558 void t4_intr_disable(struct adapter *adapter)
4559 {
4560 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4561 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4562 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4563 
4564 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4565 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4566 }
4567 
4568 /**
4569  *	t4_config_rss_range - configure a portion of the RSS mapping table
4570  *	@adapter: the adapter
4571  *	@mbox: mbox to use for the FW command
4572  *	@viid: virtual interface whose RSS subtable is to be written
4573  *	@start: start entry in the table to write
4574  *	@n: how many table entries to write
4575  *	@rspq: values for the response queue lookup table
4576  *	@nrspq: number of values in @rspq
4577  *
4578  *	Programs the selected part of the VI's RSS mapping table with the
4579  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4580  *	until the full table range is populated.
4581  *
4582  *	The caller must ensure the values in @rspq are in the range allowed for
4583  *	@viid.
4584  */
4585 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4586 			int start, int n, const u16 *rspq, unsigned int nrspq)
4587 {
4588 	int ret;
4589 	const u16 *rsp = rspq;
4590 	const u16 *rsp_end = rspq + nrspq;
4591 	struct fw_rss_ind_tbl_cmd cmd;
4592 
4593 	memset(&cmd, 0, sizeof(cmd));
4594 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4595 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4596 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4597 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4598 
4599 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4600 	while (n > 0) {
4601 		int nq = min(n, 32);
4602 		__be32 *qp = &cmd.iq0_to_iq2;
4603 
4604 		cmd.niqid = cpu_to_be16(nq);
4605 		cmd.startidx = cpu_to_be16(start);
4606 
4607 		start += nq;
4608 		n -= nq;
4609 
4610 		while (nq > 0) {
4611 			unsigned int v;
4612 
4613 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4614 			if (++rsp >= rsp_end)
4615 				rsp = rspq;
4616 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4617 			if (++rsp >= rsp_end)
4618 				rsp = rspq;
4619 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4620 			if (++rsp >= rsp_end)
4621 				rsp = rspq;
4622 
4623 			*qp++ = cpu_to_be32(v);
4624 			nq -= 3;
4625 		}
4626 
4627 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4628 		if (ret)
4629 			return ret;
4630 	}
4631 	return 0;
4632 }
4633 
4634 /**
4635  *	t4_config_glbl_rss - configure the global RSS mode
4636  *	@adapter: the adapter
4637  *	@mbox: mbox to use for the FW command
4638  *	@mode: global RSS mode
4639  *	@flags: mode-specific flags
4640  *
4641  *	Sets the global RSS mode.
4642  */
4643 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4644 		       unsigned int flags)
4645 {
4646 	struct fw_rss_glb_config_cmd c;
4647 
4648 	memset(&c, 0, sizeof(c));
4649 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4650 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4651 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4652 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4653 		c.u.manual.mode_pkd =
4654 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4655 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4656 		c.u.basicvirtual.mode_pkd =
4657 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4658 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4659 	} else
4660 		return -EINVAL;
4661 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4662 }
4663 
4664 /**
4665  *	t4_config_vi_rss - configure per VI RSS settings
4666  *	@adapter: the adapter
4667  *	@mbox: mbox to use for the FW command
4668  *	@viid: the VI id
4669  *	@flags: RSS flags
4670  *	@defq: id of the default RSS queue for the VI.
4671  *
4672  *	Configures VI-specific RSS properties.
4673  */
4674 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4675 		     unsigned int flags, unsigned int defq)
4676 {
4677 	struct fw_rss_vi_config_cmd c;
4678 
4679 	memset(&c, 0, sizeof(c));
4680 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4681 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4682 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4683 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4684 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4685 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4686 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4687 }
4688 
4689 /* Read an RSS table row */
4690 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4691 {
4692 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4693 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4694 				   5, 0, val);
4695 }
4696 
4697 /**
4698  *	t4_read_rss - read the contents of the RSS mapping table
4699  *	@adapter: the adapter
4700  *	@map: holds the contents of the RSS mapping table
4701  *
4702  *	Reads the contents of the RSS hash->queue mapping table.
4703  */
4704 int t4_read_rss(struct adapter *adapter, u16 *map)
4705 {
4706 	u32 val;
4707 	int i, ret;
4708 
4709 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4710 		ret = rd_rss_row(adapter, i, &val);
4711 		if (ret)
4712 			return ret;
4713 		*map++ = LKPTBLQUEUE0_G(val);
4714 		*map++ = LKPTBLQUEUE1_G(val);
4715 	}
4716 	return 0;
4717 }
4718 
4719 static unsigned int t4_use_ldst(struct adapter *adap)
4720 {
4721 	return (adap->flags & FW_OK) || !adap->use_bd;
4722 }
4723 
4724 /**
4725  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4726  *	@adap: the adapter
4727  *	@vals: where the indirect register values are stored/written
4728  *	@nregs: how many indirect registers to read/write
4729  *	@start_idx: index of first indirect register to read/write
4730  *	@rw: Read (1) or Write (0)
4731  *
4732  *	Access TP PIO registers through LDST
4733  */
4734 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4735 			    unsigned int start_index, unsigned int rw)
4736 {
4737 	int ret, i;
4738 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4739 	struct fw_ldst_cmd c;
4740 
4741 	for (i = 0 ; i < nregs; i++) {
4742 		memset(&c, 0, sizeof(c));
4743 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4744 						FW_CMD_REQUEST_F |
4745 						(rw ? FW_CMD_READ_F :
4746 						      FW_CMD_WRITE_F) |
4747 						FW_LDST_CMD_ADDRSPACE_V(cmd));
4748 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4749 
4750 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4751 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4752 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4753 		if (!ret && rw)
4754 			vals[i] = be32_to_cpu(c.u.addrval.val);
4755 	}
4756 }
4757 
4758 /**
4759  *	t4_read_rss_key - read the global RSS key
4760  *	@adap: the adapter
4761  *	@key: 10-entry array holding the 320-bit RSS key
4762  *
4763  *	Reads the global 320-bit RSS key.
4764  */
4765 void t4_read_rss_key(struct adapter *adap, u32 *key)
4766 {
4767 	if (t4_use_ldst(adap))
4768 		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4769 	else
4770 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4771 				 TP_RSS_SECRET_KEY0_A);
4772 }
4773 
4774 /**
4775  *	t4_write_rss_key - program one of the RSS keys
4776  *	@adap: the adapter
4777  *	@key: 10-entry array holding the 320-bit RSS key
4778  *	@idx: which RSS key to write
4779  *
4780  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4781  *	0..15 the corresponding entry in the RSS key table is written,
4782  *	otherwise the global RSS key is written.
4783  */
4784 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4785 {
4786 	u8 rss_key_addr_cnt = 16;
4787 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4788 
4789 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4790 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4791 	 * as index[5:4](upper 2) into key table
4792 	 */
4793 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4794 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4795 		rss_key_addr_cnt = 32;
4796 
4797 	if (t4_use_ldst(adap))
4798 		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4799 	else
4800 		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4801 				  TP_RSS_SECRET_KEY0_A);
4802 
4803 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4804 		if (rss_key_addr_cnt > 16)
4805 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4806 				     KEYWRADDRX_V(idx >> 4) |
4807 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
4808 		else
4809 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4810 				     KEYWRADDR_V(idx) | KEYWREN_F);
4811 	}
4812 }
4813 
4814 /**
4815  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4816  *	@adapter: the adapter
4817  *	@index: the entry in the PF RSS table to read
4818  *	@valp: where to store the returned value
4819  *
4820  *	Reads the PF RSS Configuration Table at the specified index and returns
4821  *	the value found there.
4822  */
4823 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4824 			   u32 *valp)
4825 {
4826 	if (t4_use_ldst(adapter))
4827 		t4_fw_tp_pio_rw(adapter, valp, 1,
4828 				TP_RSS_PF0_CONFIG_A + index, 1);
4829 	else
4830 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4831 				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4832 }
4833 
4834 /**
4835  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4836  *	@adapter: the adapter
4837  *	@index: the entry in the VF RSS table to read
4838  *	@vfl: where to store the returned VFL
4839  *	@vfh: where to store the returned VFH
4840  *
4841  *	Reads the VF RSS Configuration Table at the specified index and returns
4842  *	the (VFL, VFH) values found there.
4843  */
4844 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4845 			   u32 *vfl, u32 *vfh)
4846 {
4847 	u32 vrt, mask, data;
4848 
4849 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4850 		mask = VFWRADDR_V(VFWRADDR_M);
4851 		data = VFWRADDR_V(index);
4852 	} else {
4853 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4854 		 data = T6_VFWRADDR_V(index);
4855 	}
4856 
4857 	/* Request that the index'th VF Table values be read into VFL/VFH.
4858 	 */
4859 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4860 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4861 	vrt |= data | VFRDEN_F;
4862 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4863 
4864 	/* Grab the VFL/VFH values ...
4865 	 */
4866 	if (t4_use_ldst(adapter)) {
4867 		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4868 		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4869 	} else {
4870 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4871 				 vfl, 1, TP_RSS_VFL_CONFIG_A);
4872 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4873 				 vfh, 1, TP_RSS_VFH_CONFIG_A);
4874 	}
4875 }
4876 
4877 /**
4878  *	t4_read_rss_pf_map - read PF RSS Map
4879  *	@adapter: the adapter
4880  *
4881  *	Reads the PF RSS Map register and returns its value.
4882  */
4883 u32 t4_read_rss_pf_map(struct adapter *adapter)
4884 {
4885 	u32 pfmap;
4886 
4887 	if (t4_use_ldst(adapter))
4888 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4889 	else
4890 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4891 				 &pfmap, 1, TP_RSS_PF_MAP_A);
4892 	return pfmap;
4893 }
4894 
4895 /**
4896  *	t4_read_rss_pf_mask - read PF RSS Mask
4897  *	@adapter: the adapter
4898  *
4899  *	Reads the PF RSS Mask register and returns its value.
4900  */
4901 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4902 {
4903 	u32 pfmask;
4904 
4905 	if (t4_use_ldst(adapter))
4906 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4907 	else
4908 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4909 				 &pfmask, 1, TP_RSS_PF_MSK_A);
4910 	return pfmask;
4911 }
4912 
4913 /**
4914  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
4915  *	@adap: the adapter
4916  *	@v4: holds the TCP/IP counter values
4917  *	@v6: holds the TCP/IPv6 counter values
4918  *
4919  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4920  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4921  */
4922 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4923 			 struct tp_tcp_stats *v6)
4924 {
4925 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4926 
4927 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4928 #define STAT(x)     val[STAT_IDX(x)]
4929 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4930 
4931 	if (v4) {
4932 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4933 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4934 		v4->tcp_out_rsts = STAT(OUT_RST);
4935 		v4->tcp_in_segs  = STAT64(IN_SEG);
4936 		v4->tcp_out_segs = STAT64(OUT_SEG);
4937 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4938 	}
4939 	if (v6) {
4940 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4941 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4942 		v6->tcp_out_rsts = STAT(OUT_RST);
4943 		v6->tcp_in_segs  = STAT64(IN_SEG);
4944 		v6->tcp_out_segs = STAT64(OUT_SEG);
4945 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
4946 	}
4947 #undef STAT64
4948 #undef STAT
4949 #undef STAT_IDX
4950 }
4951 
4952 /**
4953  *	t4_tp_get_err_stats - read TP's error MIB counters
4954  *	@adap: the adapter
4955  *	@st: holds the counter values
4956  *
4957  *	Returns the values of TP's error counters.
4958  */
4959 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4960 {
4961 	int nchan = adap->params.arch.nchan;
4962 
4963 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4964 			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4965 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4966 			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4967 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4968 			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4969 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4970 			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4971 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4972 			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4973 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4974 			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4975 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4976 			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4977 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4978 			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4979 
4980 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4981 			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4982 }
4983 
4984 /**
4985  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
4986  *	@adap: the adapter
4987  *	@st: holds the counter values
4988  *
4989  *	Returns the values of TP's CPL counters.
4990  */
4991 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4992 {
4993 	int nchan = adap->params.arch.nchan;
4994 
4995 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4996 			 nchan, TP_MIB_CPL_IN_REQ_0_A);
4997 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4998 			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4999 
5000 }
5001 
5002 /**
5003  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5004  *	@adap: the adapter
5005  *	@st: holds the counter values
5006  *
5007  *	Returns the values of TP's RDMA counters.
5008  */
5009 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5010 {
5011 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
5012 			 2, TP_MIB_RQE_DFR_PKT_A);
5013 }
5014 
5015 /**
5016  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5017  *	@adap: the adapter
5018  *	@idx: the port index
5019  *	@st: holds the counter values
5020  *
5021  *	Returns the values of TP's FCoE counters for the selected port.
5022  */
5023 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5024 		       struct tp_fcoe_stats *st)
5025 {
5026 	u32 val[2];
5027 
5028 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
5029 			 1, TP_MIB_FCOE_DDP_0_A + idx);
5030 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
5031 			 1, TP_MIB_FCOE_DROP_0_A + idx);
5032 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5033 			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
5034 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5035 }
5036 
5037 /**
5038  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5039  *	@adap: the adapter
5040  *	@st: holds the counter values
5041  *
5042  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5043  */
5044 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5045 {
5046 	u32 val[4];
5047 
5048 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
5049 			 TP_MIB_USM_PKTS_A);
5050 	st->frames = val[0];
5051 	st->drops = val[1];
5052 	st->octets = ((u64)val[2] << 32) | val[3];
5053 }
5054 
5055 /**
5056  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5057  *	@adap: the adapter
5058  *	@mtus: where to store the MTU values
5059  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5060  *
5061  *	Reads the HW path MTU table.
5062  */
5063 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5064 {
5065 	u32 v;
5066 	int i;
5067 
5068 	for (i = 0; i < NMTUS; ++i) {
5069 		t4_write_reg(adap, TP_MTU_TABLE_A,
5070 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5071 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5072 		mtus[i] = MTUVALUE_G(v);
5073 		if (mtu_log)
5074 			mtu_log[i] = MTUWIDTH_G(v);
5075 	}
5076 }
5077 
5078 /**
5079  *	t4_read_cong_tbl - reads the congestion control table
5080  *	@adap: the adapter
5081  *	@incr: where to store the alpha values
5082  *
5083  *	Reads the additive increments programmed into the HW congestion
5084  *	control table.
5085  */
5086 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5087 {
5088 	unsigned int mtu, w;
5089 
5090 	for (mtu = 0; mtu < NMTUS; ++mtu)
5091 		for (w = 0; w < NCCTRL_WIN; ++w) {
5092 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5093 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5094 			incr[mtu][w] = (u16)t4_read_reg(adap,
5095 						TP_CCTRL_TABLE_A) & 0x1fff;
5096 		}
5097 }
5098 
5099 /**
5100  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5101  *	@adap: the adapter
5102  *	@addr: the indirect TP register address
5103  *	@mask: specifies the field within the register to modify
5104  *	@val: new value for the field
5105  *
5106  *	Sets a field of an indirect TP register to the given value.
5107  */
5108 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5109 			    unsigned int mask, unsigned int val)
5110 {
5111 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5112 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5113 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5114 }
5115 
5116 /**
5117  *	init_cong_ctrl - initialize congestion control parameters
5118  *	@a: the alpha values for congestion control
5119  *	@b: the beta values for congestion control
5120  *
5121  *	Initialize the congestion control parameters.
5122  */
5123 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5124 {
5125 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5126 	a[9] = 2;
5127 	a[10] = 3;
5128 	a[11] = 4;
5129 	a[12] = 5;
5130 	a[13] = 6;
5131 	a[14] = 7;
5132 	a[15] = 8;
5133 	a[16] = 9;
5134 	a[17] = 10;
5135 	a[18] = 14;
5136 	a[19] = 17;
5137 	a[20] = 21;
5138 	a[21] = 25;
5139 	a[22] = 30;
5140 	a[23] = 35;
5141 	a[24] = 45;
5142 	a[25] = 60;
5143 	a[26] = 80;
5144 	a[27] = 100;
5145 	a[28] = 200;
5146 	a[29] = 300;
5147 	a[30] = 400;
5148 	a[31] = 500;
5149 
5150 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5151 	b[9] = b[10] = 1;
5152 	b[11] = b[12] = 2;
5153 	b[13] = b[14] = b[15] = b[16] = 3;
5154 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5155 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5156 	b[28] = b[29] = 6;
5157 	b[30] = b[31] = 7;
5158 }
5159 
5160 /* The minimum additive increment value for the congestion control table */
5161 #define CC_MIN_INCR 2U
5162 
5163 /**
5164  *	t4_load_mtus - write the MTU and congestion control HW tables
5165  *	@adap: the adapter
5166  *	@mtus: the values for the MTU table
5167  *	@alpha: the values for the congestion control alpha parameter
5168  *	@beta: the values for the congestion control beta parameter
5169  *
5170  *	Write the HW MTU table with the supplied MTUs and the high-speed
5171  *	congestion control table with the supplied alpha, beta, and MTUs.
5172  *	We write the two tables together because the additive increments
5173  *	depend on the MTUs.
5174  */
5175 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5176 		  const unsigned short *alpha, const unsigned short *beta)
5177 {
5178 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5179 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5180 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5181 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5182 	};
5183 
5184 	unsigned int i, w;
5185 
5186 	for (i = 0; i < NMTUS; ++i) {
5187 		unsigned int mtu = mtus[i];
5188 		unsigned int log2 = fls(mtu);
5189 
5190 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5191 			log2--;
5192 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5193 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5194 
5195 		for (w = 0; w < NCCTRL_WIN; ++w) {
5196 			unsigned int inc;
5197 
5198 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5199 				  CC_MIN_INCR);
5200 
5201 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5202 				     (w << 16) | (beta[w] << 13) | inc);
5203 		}
5204 	}
5205 }
5206 
5207 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5208  * clocks.  The formula is
5209  *
5210  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5211  *
5212  * which is equivalent to
5213  *
5214  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5215  */
5216 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5217 {
5218 	u64 v = bytes256 * adap->params.vpd.cclk;
5219 
5220 	return v * 62 + v / 2;
5221 }
5222 
5223 /**
5224  *	t4_get_chan_txrate - get the current per channel Tx rates
5225  *	@adap: the adapter
5226  *	@nic_rate: rates for NIC traffic
5227  *	@ofld_rate: rates for offloaded traffic
5228  *
5229  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5230  *	for each channel.
5231  */
5232 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5233 {
5234 	u32 v;
5235 
5236 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5237 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5238 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5239 	if (adap->params.arch.nchan == NCHAN) {
5240 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5241 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5242 	}
5243 
5244 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5245 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5246 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5247 	if (adap->params.arch.nchan == NCHAN) {
5248 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5249 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5250 	}
5251 }
5252 
5253 /**
5254  *	t4_set_trace_filter - configure one of the tracing filters
5255  *	@adap: the adapter
5256  *	@tp: the desired trace filter parameters
5257  *	@idx: which filter to configure
5258  *	@enable: whether to enable or disable the filter
5259  *
5260  *	Configures one of the tracing filters available in HW.  If @enable is
5261  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5262  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5263  */
5264 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5265 			int idx, int enable)
5266 {
5267 	int i, ofst = idx * 4;
5268 	u32 data_reg, mask_reg, cfg;
5269 	u32 multitrc = TRCMULTIFILTER_F;
5270 
5271 	if (!enable) {
5272 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5273 		return 0;
5274 	}
5275 
5276 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5277 	if (cfg & TRCMULTIFILTER_F) {
5278 		/* If multiple tracers are enabled, then maximum
5279 		 * capture size is 2.5KB (FIFO size of a single channel)
5280 		 * minus 2 flits for CPL_TRACE_PKT header.
5281 		 */
5282 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5283 			return -EINVAL;
5284 	} else {
5285 		/* If multiple tracers are disabled, to avoid deadlocks
5286 		 * maximum packet capture size of 9600 bytes is recommended.
5287 		 * Also in this mode, only trace0 can be enabled and running.
5288 		 */
5289 		multitrc = 0;
5290 		if (tp->snap_len > 9600 || idx)
5291 			return -EINVAL;
5292 	}
5293 
5294 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5295 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5296 	    tp->min_len > TFMINPKTSIZE_M)
5297 		return -EINVAL;
5298 
5299 	/* stop the tracer we'll be changing */
5300 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5301 
5302 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5303 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5304 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5305 
5306 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5307 		t4_write_reg(adap, data_reg, tp->data[i]);
5308 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5309 	}
5310 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5311 		     TFCAPTUREMAX_V(tp->snap_len) |
5312 		     TFMINPKTSIZE_V(tp->min_len));
5313 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5314 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5315 		     (is_t4(adap->params.chip) ?
5316 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5317 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5318 		     T5_TFINVERTMATCH_V(tp->invert)));
5319 
5320 	return 0;
5321 }
5322 
5323 /**
5324  *	t4_get_trace_filter - query one of the tracing filters
5325  *	@adap: the adapter
5326  *	@tp: the current trace filter parameters
5327  *	@idx: which trace filter to query
5328  *	@enabled: non-zero if the filter is enabled
5329  *
5330  *	Returns the current settings of one of the HW tracing filters.
5331  */
5332 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5333 			 int *enabled)
5334 {
5335 	u32 ctla, ctlb;
5336 	int i, ofst = idx * 4;
5337 	u32 data_reg, mask_reg;
5338 
5339 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5340 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5341 
5342 	if (is_t4(adap->params.chip)) {
5343 		*enabled = !!(ctla & TFEN_F);
5344 		tp->port =  TFPORT_G(ctla);
5345 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5346 	} else {
5347 		*enabled = !!(ctla & T5_TFEN_F);
5348 		tp->port = T5_TFPORT_G(ctla);
5349 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5350 	}
5351 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5352 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5353 	tp->skip_ofst = TFOFFSET_G(ctla);
5354 	tp->skip_len = TFLENGTH_G(ctla);
5355 
5356 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5357 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5358 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5359 
5360 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5361 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5362 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5363 	}
5364 }
5365 
5366 /**
5367  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5368  *	@adap: the adapter
5369  *	@cnt: where to store the count statistics
5370  *	@cycles: where to store the cycle statistics
5371  *
5372  *	Returns performance statistics from PMTX.
5373  */
5374 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5375 {
5376 	int i;
5377 	u32 data[2];
5378 
5379 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5380 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5381 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5382 		if (is_t4(adap->params.chip)) {
5383 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5384 		} else {
5385 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5386 					 PM_TX_DBG_DATA_A, data, 2,
5387 					 PM_TX_DBG_STAT_MSB_A);
5388 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5389 		}
5390 	}
5391 }
5392 
5393 /**
5394  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5395  *	@adap: the adapter
5396  *	@cnt: where to store the count statistics
5397  *	@cycles: where to store the cycle statistics
5398  *
5399  *	Returns performance statistics from PMRX.
5400  */
5401 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5402 {
5403 	int i;
5404 	u32 data[2];
5405 
5406 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5407 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5408 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5409 		if (is_t4(adap->params.chip)) {
5410 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5411 		} else {
5412 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5413 					 PM_RX_DBG_DATA_A, data, 2,
5414 					 PM_RX_DBG_STAT_MSB_A);
5415 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5416 		}
5417 	}
5418 }
5419 
5420 /**
5421  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5422  *	@adap: the adapter
5423  *	@idx: the port index
5424  *
5425  *	Returns a bitmap indicating which MPS buffer groups are associated
5426  *	with the given port.  Bit i is set if buffer group i is used by the
5427  *	port.
5428  */
5429 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5430 {
5431 	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5432 
5433 	if (n == 0)
5434 		return idx == 0 ? 0xf : 0;
5435 	/* In T6 (which is a 2 port card),
5436 	 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5437 	 * For 2 port T4/T5 adapter,
5438 	 * port 0 is mapped to channel 0 and 1,
5439 	 * port 1 is mapped to channel 2 and 3.
5440 	 */
5441 	if ((n == 1) &&
5442 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5443 		return idx < 2 ? (3 << (2 * idx)) : 0;
5444 	return 1 << idx;
5445 }
5446 
5447 /**
5448  *      t4_get_port_type_description - return Port Type string description
5449  *      @port_type: firmware Port Type enumeration
5450  */
5451 const char *t4_get_port_type_description(enum fw_port_type port_type)
5452 {
5453 	static const char *const port_type_description[] = {
5454 		"Fiber_XFI",
5455 		"Fiber_XAUI",
5456 		"BT_SGMII",
5457 		"BT_XFI",
5458 		"BT_XAUI",
5459 		"KX4",
5460 		"CX4",
5461 		"KX",
5462 		"KR",
5463 		"SFP",
5464 		"BP_AP",
5465 		"BP4_AP",
5466 		"QSFP_10G",
5467 		"QSA",
5468 		"QSFP",
5469 		"BP40_BA",
5470 		"KR4_100G",
5471 		"CR4_QSFP",
5472 		"CR_QSFP",
5473 		"CR2_QSFP",
5474 		"SFP28",
5475 		"KR_SFP28",
5476 	};
5477 
5478 	if (port_type < ARRAY_SIZE(port_type_description))
5479 		return port_type_description[port_type];
5480 	return "UNKNOWN";
5481 }
5482 
5483 /**
5484  *      t4_get_port_stats_offset - collect port stats relative to a previous
5485  *                                 snapshot
5486  *      @adap: The adapter
5487  *      @idx: The port
5488  *      @stats: Current stats to fill
5489  *      @offset: Previous stats snapshot
5490  */
5491 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5492 			      struct port_stats *stats,
5493 			      struct port_stats *offset)
5494 {
5495 	u64 *s, *o;
5496 	int i;
5497 
5498 	t4_get_port_stats(adap, idx, stats);
5499 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5500 			i < (sizeof(struct port_stats) / sizeof(u64));
5501 			i++, s++, o++)
5502 		*s -= *o;
5503 }
5504 
5505 /**
5506  *	t4_get_port_stats - collect port statistics
5507  *	@adap: the adapter
5508  *	@idx: the port index
5509  *	@p: the stats structure to fill
5510  *
5511  *	Collect statistics related to the given port from HW.
5512  */
5513 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5514 {
5515 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5516 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
5517 
5518 #define GET_STAT(name) \
5519 	t4_read_reg64(adap, \
5520 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5521 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5522 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5523 
5524 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5525 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5526 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5527 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5528 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5529 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5530 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5531 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5532 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5533 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5534 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5535 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5536 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5537 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
5538 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5539 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5540 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5541 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5542 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5543 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5544 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5545 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5546 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5547 
5548 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5549 		if (stat_ctl & COUNTPAUSESTATTX_F) {
5550 			p->tx_frames -= p->tx_pause;
5551 			p->tx_octets -= p->tx_pause * 64;
5552 		}
5553 		if (stat_ctl & COUNTPAUSEMCTX_F)
5554 			p->tx_mcast_frames -= p->tx_pause;
5555 	}
5556 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5557 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5558 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5559 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5560 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5561 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5562 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5563 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5564 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5565 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5566 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5567 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5568 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5569 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5570 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5571 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5572 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5573 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5574 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5575 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5576 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5577 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5578 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5579 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5580 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5581 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5582 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5583 
5584 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5585 		if (stat_ctl & COUNTPAUSESTATRX_F) {
5586 			p->rx_frames -= p->rx_pause;
5587 			p->rx_octets -= p->rx_pause * 64;
5588 		}
5589 		if (stat_ctl & COUNTPAUSEMCRX_F)
5590 			p->rx_mcast_frames -= p->rx_pause;
5591 	}
5592 
5593 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5594 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5595 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5596 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5597 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5598 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5599 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5600 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5601 
5602 #undef GET_STAT
5603 #undef GET_STAT_COM
5604 }
5605 
5606 /**
5607  *	t4_get_lb_stats - collect loopback port statistics
5608  *	@adap: the adapter
5609  *	@idx: the loopback port index
5610  *	@p: the stats structure to fill
5611  *
5612  *	Return HW statistics for the given loopback port.
5613  */
5614 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5615 {
5616 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5617 
5618 #define GET_STAT(name) \
5619 	t4_read_reg64(adap, \
5620 	(is_t4(adap->params.chip) ? \
5621 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5622 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5623 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5624 
5625 	p->octets           = GET_STAT(BYTES);
5626 	p->frames           = GET_STAT(FRAMES);
5627 	p->bcast_frames     = GET_STAT(BCAST);
5628 	p->mcast_frames     = GET_STAT(MCAST);
5629 	p->ucast_frames     = GET_STAT(UCAST);
5630 	p->error_frames     = GET_STAT(ERROR);
5631 
5632 	p->frames_64        = GET_STAT(64B);
5633 	p->frames_65_127    = GET_STAT(65B_127B);
5634 	p->frames_128_255   = GET_STAT(128B_255B);
5635 	p->frames_256_511   = GET_STAT(256B_511B);
5636 	p->frames_512_1023  = GET_STAT(512B_1023B);
5637 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
5638 	p->frames_1519_max  = GET_STAT(1519B_MAX);
5639 	p->drop             = GET_STAT(DROP_FRAMES);
5640 
5641 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5642 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5643 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5644 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5645 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5646 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5647 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5648 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5649 
5650 #undef GET_STAT
5651 #undef GET_STAT_COM
5652 }
5653 
5654 /*     t4_mk_filtdelwr - create a delete filter WR
5655  *     @ftid: the filter ID
5656  *     @wr: the filter work request to populate
5657  *     @qid: ingress queue to receive the delete notification
5658  *
5659  *     Creates a filter work request to delete the supplied filter.  If @qid is
5660  *     negative the delete notification is suppressed.
5661  */
5662 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5663 {
5664 	memset(wr, 0, sizeof(*wr));
5665 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5666 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5667 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5668 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
5669 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5670 	if (qid >= 0)
5671 		wr->rx_chan_rx_rpl_iq =
5672 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5673 }
5674 
5675 #define INIT_CMD(var, cmd, rd_wr) do { \
5676 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5677 					FW_CMD_REQUEST_F | \
5678 					FW_CMD_##rd_wr##_F); \
5679 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5680 } while (0)
5681 
5682 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5683 			  u32 addr, u32 val)
5684 {
5685 	u32 ldst_addrspace;
5686 	struct fw_ldst_cmd c;
5687 
5688 	memset(&c, 0, sizeof(c));
5689 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5690 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5691 					FW_CMD_REQUEST_F |
5692 					FW_CMD_WRITE_F |
5693 					ldst_addrspace);
5694 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5695 	c.u.addrval.addr = cpu_to_be32(addr);
5696 	c.u.addrval.val = cpu_to_be32(val);
5697 
5698 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5699 }
5700 
5701 /**
5702  *	t4_mdio_rd - read a PHY register through MDIO
5703  *	@adap: the adapter
5704  *	@mbox: mailbox to use for the FW command
5705  *	@phy_addr: the PHY address
5706  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5707  *	@reg: the register to read
5708  *	@valp: where to store the value
5709  *
5710  *	Issues a FW command through the given mailbox to read a PHY register.
5711  */
5712 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5713 	       unsigned int mmd, unsigned int reg, u16 *valp)
5714 {
5715 	int ret;
5716 	u32 ldst_addrspace;
5717 	struct fw_ldst_cmd c;
5718 
5719 	memset(&c, 0, sizeof(c));
5720 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5721 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5722 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5723 					ldst_addrspace);
5724 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5725 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5726 					 FW_LDST_CMD_MMD_V(mmd));
5727 	c.u.mdio.raddr = cpu_to_be16(reg);
5728 
5729 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5730 	if (ret == 0)
5731 		*valp = be16_to_cpu(c.u.mdio.rval);
5732 	return ret;
5733 }
5734 
5735 /**
5736  *	t4_mdio_wr - write a PHY register through MDIO
5737  *	@adap: the adapter
5738  *	@mbox: mailbox to use for the FW command
5739  *	@phy_addr: the PHY address
5740  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5741  *	@reg: the register to write
5742  *	@valp: value to write
5743  *
5744  *	Issues a FW command through the given mailbox to write a PHY register.
5745  */
5746 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5747 	       unsigned int mmd, unsigned int reg, u16 val)
5748 {
5749 	u32 ldst_addrspace;
5750 	struct fw_ldst_cmd c;
5751 
5752 	memset(&c, 0, sizeof(c));
5753 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5754 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5755 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5756 					ldst_addrspace);
5757 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5758 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5759 					 FW_LDST_CMD_MMD_V(mmd));
5760 	c.u.mdio.raddr = cpu_to_be16(reg);
5761 	c.u.mdio.rval = cpu_to_be16(val);
5762 
5763 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5764 }
5765 
5766 /**
5767  *	t4_sge_decode_idma_state - decode the idma state
5768  *	@adap: the adapter
5769  *	@state: the state idma is stuck in
5770  */
5771 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5772 {
5773 	static const char * const t4_decode[] = {
5774 		"IDMA_IDLE",
5775 		"IDMA_PUSH_MORE_CPL_FIFO",
5776 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5777 		"Not used",
5778 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5779 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5780 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5781 		"IDMA_SEND_FIFO_TO_IMSG",
5782 		"IDMA_FL_REQ_DATA_FL_PREP",
5783 		"IDMA_FL_REQ_DATA_FL",
5784 		"IDMA_FL_DROP",
5785 		"IDMA_FL_H_REQ_HEADER_FL",
5786 		"IDMA_FL_H_SEND_PCIEHDR",
5787 		"IDMA_FL_H_PUSH_CPL_FIFO",
5788 		"IDMA_FL_H_SEND_CPL",
5789 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5790 		"IDMA_FL_H_SEND_IP_HDR",
5791 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5792 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5793 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5794 		"IDMA_FL_D_SEND_PCIEHDR",
5795 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5796 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5797 		"IDMA_FL_SEND_PCIEHDR",
5798 		"IDMA_FL_PUSH_CPL_FIFO",
5799 		"IDMA_FL_SEND_CPL",
5800 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5801 		"IDMA_FL_SEND_PAYLOAD",
5802 		"IDMA_FL_REQ_NEXT_DATA_FL",
5803 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5804 		"IDMA_FL_SEND_PADDING",
5805 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5806 		"IDMA_FL_SEND_FIFO_TO_IMSG",
5807 		"IDMA_FL_REQ_DATAFL_DONE",
5808 		"IDMA_FL_REQ_HEADERFL_DONE",
5809 	};
5810 	static const char * const t5_decode[] = {
5811 		"IDMA_IDLE",
5812 		"IDMA_ALMOST_IDLE",
5813 		"IDMA_PUSH_MORE_CPL_FIFO",
5814 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5815 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5816 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5817 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5818 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5819 		"IDMA_SEND_FIFO_TO_IMSG",
5820 		"IDMA_FL_REQ_DATA_FL",
5821 		"IDMA_FL_DROP",
5822 		"IDMA_FL_DROP_SEND_INC",
5823 		"IDMA_FL_H_REQ_HEADER_FL",
5824 		"IDMA_FL_H_SEND_PCIEHDR",
5825 		"IDMA_FL_H_PUSH_CPL_FIFO",
5826 		"IDMA_FL_H_SEND_CPL",
5827 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5828 		"IDMA_FL_H_SEND_IP_HDR",
5829 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5830 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5831 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5832 		"IDMA_FL_D_SEND_PCIEHDR",
5833 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5834 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5835 		"IDMA_FL_SEND_PCIEHDR",
5836 		"IDMA_FL_PUSH_CPL_FIFO",
5837 		"IDMA_FL_SEND_CPL",
5838 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5839 		"IDMA_FL_SEND_PAYLOAD",
5840 		"IDMA_FL_REQ_NEXT_DATA_FL",
5841 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5842 		"IDMA_FL_SEND_PADDING",
5843 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5844 	};
5845 	static const char * const t6_decode[] = {
5846 		"IDMA_IDLE",
5847 		"IDMA_PUSH_MORE_CPL_FIFO",
5848 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5849 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5850 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5851 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5852 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5853 		"IDMA_FL_REQ_DATA_FL",
5854 		"IDMA_FL_DROP",
5855 		"IDMA_FL_DROP_SEND_INC",
5856 		"IDMA_FL_H_REQ_HEADER_FL",
5857 		"IDMA_FL_H_SEND_PCIEHDR",
5858 		"IDMA_FL_H_PUSH_CPL_FIFO",
5859 		"IDMA_FL_H_SEND_CPL",
5860 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5861 		"IDMA_FL_H_SEND_IP_HDR",
5862 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5863 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5864 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5865 		"IDMA_FL_D_SEND_PCIEHDR",
5866 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5867 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5868 		"IDMA_FL_SEND_PCIEHDR",
5869 		"IDMA_FL_PUSH_CPL_FIFO",
5870 		"IDMA_FL_SEND_CPL",
5871 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5872 		"IDMA_FL_SEND_PAYLOAD",
5873 		"IDMA_FL_REQ_NEXT_DATA_FL",
5874 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5875 		"IDMA_FL_SEND_PADDING",
5876 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5877 	};
5878 	static const u32 sge_regs[] = {
5879 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
5880 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
5881 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5882 	};
5883 	const char **sge_idma_decode;
5884 	int sge_idma_decode_nstates;
5885 	int i;
5886 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5887 
5888 	/* Select the right set of decode strings to dump depending on the
5889 	 * adapter chip type.
5890 	 */
5891 	switch (chip_version) {
5892 	case CHELSIO_T4:
5893 		sge_idma_decode = (const char **)t4_decode;
5894 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5895 		break;
5896 
5897 	case CHELSIO_T5:
5898 		sge_idma_decode = (const char **)t5_decode;
5899 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5900 		break;
5901 
5902 	case CHELSIO_T6:
5903 		sge_idma_decode = (const char **)t6_decode;
5904 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5905 		break;
5906 
5907 	default:
5908 		dev_err(adapter->pdev_dev,
5909 			"Unsupported chip version %d\n", chip_version);
5910 		return;
5911 	}
5912 
5913 	if (is_t4(adapter->params.chip)) {
5914 		sge_idma_decode = (const char **)t4_decode;
5915 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5916 	} else {
5917 		sge_idma_decode = (const char **)t5_decode;
5918 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5919 	}
5920 
5921 	if (state < sge_idma_decode_nstates)
5922 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5923 	else
5924 		CH_WARN(adapter, "idma state %d unknown\n", state);
5925 
5926 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5927 		CH_WARN(adapter, "SGE register %#x value %#x\n",
5928 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5929 }
5930 
5931 /**
5932  *      t4_sge_ctxt_flush - flush the SGE context cache
5933  *      @adap: the adapter
5934  *      @mbox: mailbox to use for the FW command
5935  *
5936  *      Issues a FW command through the given mailbox to flush the
5937  *      SGE context cache.
5938  */
5939 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5940 {
5941 	int ret;
5942 	u32 ldst_addrspace;
5943 	struct fw_ldst_cmd c;
5944 
5945 	memset(&c, 0, sizeof(c));
5946 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5947 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5948 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5949 					ldst_addrspace);
5950 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5951 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5952 
5953 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5954 	return ret;
5955 }
5956 
5957 /**
5958  *      t4_fw_hello - establish communication with FW
5959  *      @adap: the adapter
5960  *      @mbox: mailbox to use for the FW command
5961  *      @evt_mbox: mailbox to receive async FW events
5962  *      @master: specifies the caller's willingness to be the device master
5963  *	@state: returns the current device state (if non-NULL)
5964  *
5965  *	Issues a command to establish communication with FW.  Returns either
5966  *	an error (negative integer) or the mailbox of the Master PF.
5967  */
5968 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5969 		enum dev_master master, enum dev_state *state)
5970 {
5971 	int ret;
5972 	struct fw_hello_cmd c;
5973 	u32 v;
5974 	unsigned int master_mbox;
5975 	int retries = FW_CMD_HELLO_RETRIES;
5976 
5977 retry:
5978 	memset(&c, 0, sizeof(c));
5979 	INIT_CMD(c, HELLO, WRITE);
5980 	c.err_to_clearinit = cpu_to_be32(
5981 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5982 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5983 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5984 					mbox : FW_HELLO_CMD_MBMASTER_M) |
5985 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5986 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5987 		FW_HELLO_CMD_CLEARINIT_F);
5988 
5989 	/*
5990 	 * Issue the HELLO command to the firmware.  If it's not successful
5991 	 * but indicates that we got a "busy" or "timeout" condition, retry
5992 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
5993 	 * retry limit, check to see if the firmware left us any error
5994 	 * information and report that if so.
5995 	 */
5996 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5997 	if (ret < 0) {
5998 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5999 			goto retry;
6000 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6001 			t4_report_fw_error(adap);
6002 		return ret;
6003 	}
6004 
6005 	v = be32_to_cpu(c.err_to_clearinit);
6006 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6007 	if (state) {
6008 		if (v & FW_HELLO_CMD_ERR_F)
6009 			*state = DEV_STATE_ERR;
6010 		else if (v & FW_HELLO_CMD_INIT_F)
6011 			*state = DEV_STATE_INIT;
6012 		else
6013 			*state = DEV_STATE_UNINIT;
6014 	}
6015 
6016 	/*
6017 	 * If we're not the Master PF then we need to wait around for the
6018 	 * Master PF Driver to finish setting up the adapter.
6019 	 *
6020 	 * Note that we also do this wait if we're a non-Master-capable PF and
6021 	 * there is no current Master PF; a Master PF may show up momentarily
6022 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6023 	 * OS loads lots of different drivers rapidly at the same time).  In
6024 	 * this case, the Master PF returned by the firmware will be
6025 	 * PCIE_FW_MASTER_M so the test below will work ...
6026 	 */
6027 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6028 	    master_mbox != mbox) {
6029 		int waiting = FW_CMD_HELLO_TIMEOUT;
6030 
6031 		/*
6032 		 * Wait for the firmware to either indicate an error or
6033 		 * initialized state.  If we see either of these we bail out
6034 		 * and report the issue to the caller.  If we exhaust the
6035 		 * "hello timeout" and we haven't exhausted our retries, try
6036 		 * again.  Otherwise bail with a timeout error.
6037 		 */
6038 		for (;;) {
6039 			u32 pcie_fw;
6040 
6041 			msleep(50);
6042 			waiting -= 50;
6043 
6044 			/*
6045 			 * If neither Error nor Initialialized are indicated
6046 			 * by the firmware keep waiting till we exaust our
6047 			 * timeout ... and then retry if we haven't exhausted
6048 			 * our retries ...
6049 			 */
6050 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6051 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6052 				if (waiting <= 0) {
6053 					if (retries-- > 0)
6054 						goto retry;
6055 
6056 					return -ETIMEDOUT;
6057 				}
6058 				continue;
6059 			}
6060 
6061 			/*
6062 			 * We either have an Error or Initialized condition
6063 			 * report errors preferentially.
6064 			 */
6065 			if (state) {
6066 				if (pcie_fw & PCIE_FW_ERR_F)
6067 					*state = DEV_STATE_ERR;
6068 				else if (pcie_fw & PCIE_FW_INIT_F)
6069 					*state = DEV_STATE_INIT;
6070 			}
6071 
6072 			/*
6073 			 * If we arrived before a Master PF was selected and
6074 			 * there's not a valid Master PF, grab its identity
6075 			 * for our caller.
6076 			 */
6077 			if (master_mbox == PCIE_FW_MASTER_M &&
6078 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6079 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6080 			break;
6081 		}
6082 	}
6083 
6084 	return master_mbox;
6085 }
6086 
6087 /**
6088  *	t4_fw_bye - end communication with FW
6089  *	@adap: the adapter
6090  *	@mbox: mailbox to use for the FW command
6091  *
6092  *	Issues a command to terminate communication with FW.
6093  */
6094 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6095 {
6096 	struct fw_bye_cmd c;
6097 
6098 	memset(&c, 0, sizeof(c));
6099 	INIT_CMD(c, BYE, WRITE);
6100 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6101 }
6102 
6103 /**
6104  *	t4_init_cmd - ask FW to initialize the device
6105  *	@adap: the adapter
6106  *	@mbox: mailbox to use for the FW command
6107  *
6108  *	Issues a command to FW to partially initialize the device.  This
6109  *	performs initialization that generally doesn't depend on user input.
6110  */
6111 int t4_early_init(struct adapter *adap, unsigned int mbox)
6112 {
6113 	struct fw_initialize_cmd c;
6114 
6115 	memset(&c, 0, sizeof(c));
6116 	INIT_CMD(c, INITIALIZE, WRITE);
6117 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6118 }
6119 
6120 /**
6121  *	t4_fw_reset - issue a reset to FW
6122  *	@adap: the adapter
6123  *	@mbox: mailbox to use for the FW command
6124  *	@reset: specifies the type of reset to perform
6125  *
6126  *	Issues a reset command of the specified type to FW.
6127  */
6128 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6129 {
6130 	struct fw_reset_cmd c;
6131 
6132 	memset(&c, 0, sizeof(c));
6133 	INIT_CMD(c, RESET, WRITE);
6134 	c.val = cpu_to_be32(reset);
6135 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6136 }
6137 
6138 /**
6139  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6140  *	@adap: the adapter
6141  *	@mbox: mailbox to use for the FW RESET command (if desired)
6142  *	@force: force uP into RESET even if FW RESET command fails
6143  *
6144  *	Issues a RESET command to firmware (if desired) with a HALT indication
6145  *	and then puts the microprocessor into RESET state.  The RESET command
6146  *	will only be issued if a legitimate mailbox is provided (mbox <=
6147  *	PCIE_FW_MASTER_M).
6148  *
6149  *	This is generally used in order for the host to safely manipulate the
6150  *	adapter without fear of conflicting with whatever the firmware might
6151  *	be doing.  The only way out of this state is to RESTART the firmware
6152  *	...
6153  */
6154 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6155 {
6156 	int ret = 0;
6157 
6158 	/*
6159 	 * If a legitimate mailbox is provided, issue a RESET command
6160 	 * with a HALT indication.
6161 	 */
6162 	if (mbox <= PCIE_FW_MASTER_M) {
6163 		struct fw_reset_cmd c;
6164 
6165 		memset(&c, 0, sizeof(c));
6166 		INIT_CMD(c, RESET, WRITE);
6167 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6168 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6169 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6170 	}
6171 
6172 	/*
6173 	 * Normally we won't complete the operation if the firmware RESET
6174 	 * command fails but if our caller insists we'll go ahead and put the
6175 	 * uP into RESET.  This can be useful if the firmware is hung or even
6176 	 * missing ...  We'll have to take the risk of putting the uP into
6177 	 * RESET without the cooperation of firmware in that case.
6178 	 *
6179 	 * We also force the firmware's HALT flag to be on in case we bypassed
6180 	 * the firmware RESET command above or we're dealing with old firmware
6181 	 * which doesn't have the HALT capability.  This will serve as a flag
6182 	 * for the incoming firmware to know that it's coming out of a HALT
6183 	 * rather than a RESET ... if it's new enough to understand that ...
6184 	 */
6185 	if (ret == 0 || force) {
6186 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6187 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6188 				 PCIE_FW_HALT_F);
6189 	}
6190 
6191 	/*
6192 	 * And we always return the result of the firmware RESET command
6193 	 * even when we force the uP into RESET ...
6194 	 */
6195 	return ret;
6196 }
6197 
6198 /**
6199  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6200  *	@adap: the adapter
6201  *	@reset: if we want to do a RESET to restart things
6202  *
6203  *	Restart firmware previously halted by t4_fw_halt().  On successful
6204  *	return the previous PF Master remains as the new PF Master and there
6205  *	is no need to issue a new HELLO command, etc.
6206  *
6207  *	We do this in two ways:
6208  *
6209  *	 1. If we're dealing with newer firmware we'll simply want to take
6210  *	    the chip's microprocessor out of RESET.  This will cause the
6211  *	    firmware to start up from its start vector.  And then we'll loop
6212  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6213  *	    reset to 0) or we timeout.
6214  *
6215  *	 2. If we're dealing with older firmware then we'll need to RESET
6216  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6217  *	    flag and automatically RESET itself on startup.
6218  */
6219 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6220 {
6221 	if (reset) {
6222 		/*
6223 		 * Since we're directing the RESET instead of the firmware
6224 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6225 		 * bit.
6226 		 */
6227 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6228 
6229 		/*
6230 		 * If we've been given a valid mailbox, first try to get the
6231 		 * firmware to do the RESET.  If that works, great and we can
6232 		 * return success.  Otherwise, if we haven't been given a
6233 		 * valid mailbox or the RESET command failed, fall back to
6234 		 * hitting the chip with a hammer.
6235 		 */
6236 		if (mbox <= PCIE_FW_MASTER_M) {
6237 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6238 			msleep(100);
6239 			if (t4_fw_reset(adap, mbox,
6240 					PIORST_F | PIORSTMODE_F) == 0)
6241 				return 0;
6242 		}
6243 
6244 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6245 		msleep(2000);
6246 	} else {
6247 		int ms;
6248 
6249 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6250 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6251 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6252 				return 0;
6253 			msleep(100);
6254 			ms += 100;
6255 		}
6256 		return -ETIMEDOUT;
6257 	}
6258 	return 0;
6259 }
6260 
6261 /**
6262  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6263  *	@adap: the adapter
6264  *	@mbox: mailbox to use for the FW RESET command (if desired)
6265  *	@fw_data: the firmware image to write
6266  *	@size: image size
6267  *	@force: force upgrade even if firmware doesn't cooperate
6268  *
6269  *	Perform all of the steps necessary for upgrading an adapter's
6270  *	firmware image.  Normally this requires the cooperation of the
6271  *	existing firmware in order to halt all existing activities
6272  *	but if an invalid mailbox token is passed in we skip that step
6273  *	(though we'll still put the adapter microprocessor into RESET in
6274  *	that case).
6275  *
6276  *	On successful return the new firmware will have been loaded and
6277  *	the adapter will have been fully RESET losing all previous setup
6278  *	state.  On unsuccessful return the adapter may be completely hosed ...
6279  *	positive errno indicates that the adapter is ~probably~ intact, a
6280  *	negative errno indicates that things are looking bad ...
6281  */
6282 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6283 		  const u8 *fw_data, unsigned int size, int force)
6284 {
6285 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6286 	int reset, ret;
6287 
6288 	if (!t4_fw_matches_chip(adap, fw_hdr))
6289 		return -EINVAL;
6290 
6291 	ret = t4_fw_halt(adap, mbox, force);
6292 	if (ret < 0 && !force)
6293 		return ret;
6294 
6295 	ret = t4_load_fw(adap, fw_data, size);
6296 	if (ret < 0)
6297 		return ret;
6298 
6299 	/*
6300 	 * Older versions of the firmware don't understand the new
6301 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6302 	 * restart.  So for newly loaded older firmware we'll have to do the
6303 	 * RESET for it so it starts up on a clean slate.  We can tell if
6304 	 * the newly loaded firmware will handle this right by checking
6305 	 * its header flags to see if it advertises the capability.
6306 	 */
6307 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6308 	return t4_fw_restart(adap, mbox, reset);
6309 }
6310 
6311 /**
6312  *	t4_fl_pkt_align - return the fl packet alignment
6313  *	@adap: the adapter
6314  *
6315  *	T4 has a single field to specify the packing and padding boundary.
6316  *	T5 onwards has separate fields for this and hence the alignment for
6317  *	next packet offset is maximum of these two.
6318  *
6319  */
6320 int t4_fl_pkt_align(struct adapter *adap)
6321 {
6322 	u32 sge_control, sge_control2;
6323 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6324 
6325 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6326 
6327 	/* T4 uses a single control field to specify both the PCIe Padding and
6328 	 * Packing Boundary.  T5 introduced the ability to specify these
6329 	 * separately.  The actual Ingress Packet Data alignment boundary
6330 	 * within Packed Buffer Mode is the maximum of these two
6331 	 * specifications.  (Note that it makes no real practical sense to
6332 	 * have the Pading Boudary be larger than the Packing Boundary but you
6333 	 * could set the chip up that way and, in fact, legacy T4 code would
6334 	 * end doing this because it would initialize the Padding Boundary and
6335 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6336 	 * Padding Boundary values in T6 starts from 8B,
6337 	 * where as it is 32B for T4 and T5.
6338 	 */
6339 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6340 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6341 	else
6342 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6343 
6344 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6345 
6346 	fl_align = ingpadboundary;
6347 	if (!is_t4(adap->params.chip)) {
6348 		/* T5 has a weird interpretation of one of the PCIe Packing
6349 		 * Boundary values.  No idea why ...
6350 		 */
6351 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6352 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6353 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6354 			ingpackboundary = 16;
6355 		else
6356 			ingpackboundary = 1 << (ingpackboundary +
6357 						INGPACKBOUNDARY_SHIFT_X);
6358 
6359 		fl_align = max(ingpadboundary, ingpackboundary);
6360 	}
6361 	return fl_align;
6362 }
6363 
6364 /**
6365  *	t4_fixup_host_params - fix up host-dependent parameters
6366  *	@adap: the adapter
6367  *	@page_size: the host's Base Page Size
6368  *	@cache_line_size: the host's Cache Line Size
6369  *
6370  *	Various registers in T4 contain values which are dependent on the
6371  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6372  *	those registers with the appropriate values as passed in ...
6373  */
6374 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6375 			 unsigned int cache_line_size)
6376 {
6377 	unsigned int page_shift = fls(page_size) - 1;
6378 	unsigned int sge_hps = page_shift - 10;
6379 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6380 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6381 	unsigned int fl_align_log = fls(fl_align) - 1;
6382 
6383 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6384 		     HOSTPAGESIZEPF0_V(sge_hps) |
6385 		     HOSTPAGESIZEPF1_V(sge_hps) |
6386 		     HOSTPAGESIZEPF2_V(sge_hps) |
6387 		     HOSTPAGESIZEPF3_V(sge_hps) |
6388 		     HOSTPAGESIZEPF4_V(sge_hps) |
6389 		     HOSTPAGESIZEPF5_V(sge_hps) |
6390 		     HOSTPAGESIZEPF6_V(sge_hps) |
6391 		     HOSTPAGESIZEPF7_V(sge_hps));
6392 
6393 	if (is_t4(adap->params.chip)) {
6394 		t4_set_reg_field(adap, SGE_CONTROL_A,
6395 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6396 				 EGRSTATUSPAGESIZE_F,
6397 				 INGPADBOUNDARY_V(fl_align_log -
6398 						  INGPADBOUNDARY_SHIFT_X) |
6399 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6400 	} else {
6401 		unsigned int pack_align;
6402 		unsigned int ingpad, ingpack;
6403 		unsigned int pcie_cap;
6404 
6405 		/* T5 introduced the separation of the Free List Padding and
6406 		 * Packing Boundaries.  Thus, we can select a smaller Padding
6407 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6408 		 * Bandwidth, and use a Packing Boundary which is large enough
6409 		 * to avoid false sharing between CPUs, etc.
6410 		 *
6411 		 * For the PCI Link, the smaller the Padding Boundary the
6412 		 * better.  For the Memory Controller, a smaller Padding
6413 		 * Boundary is better until we cross under the Memory Line
6414 		 * Size (the minimum unit of transfer to/from Memory).  If we
6415 		 * have a Padding Boundary which is smaller than the Memory
6416 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
6417 		 * Memory Controller which is never good.
6418 		 */
6419 
6420 		/* We want the Packing Boundary to be based on the Cache Line
6421 		 * Size in order to help avoid False Sharing performance
6422 		 * issues between CPUs, etc.  We also want the Packing
6423 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
6424 		 * get best performance when the Packing Boundary is a
6425 		 * multiple of the Maximum Payload Size.
6426 		 */
6427 		pack_align = fl_align;
6428 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
6429 		if (pcie_cap) {
6430 			unsigned int mps, mps_log;
6431 			u16 devctl;
6432 
6433 			/* The PCIe Device Control Maximum Payload Size field
6434 			 * [bits 7:5] encodes sizes as powers of 2 starting at
6435 			 * 128 bytes.
6436 			 */
6437 			pci_read_config_word(adap->pdev,
6438 					     pcie_cap + PCI_EXP_DEVCTL,
6439 					     &devctl);
6440 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
6441 			mps = 1 << mps_log;
6442 			if (mps > pack_align)
6443 				pack_align = mps;
6444 		}
6445 
6446 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
6447 		 * value for the Packing Boundary.  This corresponds to 16
6448 		 * bytes instead of the expected 32 bytes.  So if we want 32
6449 		 * bytes, the best we can really do is 64 bytes ...
6450 		 */
6451 		if (pack_align <= 16) {
6452 			ingpack = INGPACKBOUNDARY_16B_X;
6453 			fl_align = 16;
6454 		} else if (pack_align == 32) {
6455 			ingpack = INGPACKBOUNDARY_64B_X;
6456 			fl_align = 64;
6457 		} else {
6458 			unsigned int pack_align_log = fls(pack_align) - 1;
6459 
6460 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
6461 			fl_align = pack_align;
6462 		}
6463 
6464 		/* Use the smallest Ingress Padding which isn't smaller than
6465 		 * the Memory Controller Read/Write Size.  We'll take that as
6466 		 * being 8 bytes since we don't know of any system with a
6467 		 * wider Memory Controller Bus Width.
6468 		 */
6469 		if (is_t5(adap->params.chip))
6470 			ingpad = INGPADBOUNDARY_32B_X;
6471 		else
6472 			ingpad = T6_INGPADBOUNDARY_8B_X;
6473 
6474 		t4_set_reg_field(adap, SGE_CONTROL_A,
6475 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6476 				 EGRSTATUSPAGESIZE_F,
6477 				 INGPADBOUNDARY_V(ingpad) |
6478 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6479 		t4_set_reg_field(adap, SGE_CONTROL2_A,
6480 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6481 				 INGPACKBOUNDARY_V(ingpack));
6482 	}
6483 	/*
6484 	 * Adjust various SGE Free List Host Buffer Sizes.
6485 	 *
6486 	 * This is something of a crock since we're using fixed indices into
6487 	 * the array which are also known by the sge.c code and the T4
6488 	 * Firmware Configuration File.  We need to come up with a much better
6489 	 * approach to managing this array.  For now, the first four entries
6490 	 * are:
6491 	 *
6492 	 *   0: Host Page Size
6493 	 *   1: 64KB
6494 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6495 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6496 	 *
6497 	 * For the single-MTU buffers in unpacked mode we need to include
6498 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6499 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6500 	 * Padding boundary.  All of these are accommodated in the Factory
6501 	 * Default Firmware Configuration File but we need to adjust it for
6502 	 * this host's cache line size.
6503 	 */
6504 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6505 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6506 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6507 		     & ~(fl_align-1));
6508 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6509 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6510 		     & ~(fl_align-1));
6511 
6512 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6513 
6514 	return 0;
6515 }
6516 
6517 /**
6518  *	t4_fw_initialize - ask FW to initialize the device
6519  *	@adap: the adapter
6520  *	@mbox: mailbox to use for the FW command
6521  *
6522  *	Issues a command to FW to partially initialize the device.  This
6523  *	performs initialization that generally doesn't depend on user input.
6524  */
6525 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6526 {
6527 	struct fw_initialize_cmd c;
6528 
6529 	memset(&c, 0, sizeof(c));
6530 	INIT_CMD(c, INITIALIZE, WRITE);
6531 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6532 }
6533 
6534 /**
6535  *	t4_query_params_rw - query FW or device parameters
6536  *	@adap: the adapter
6537  *	@mbox: mailbox to use for the FW command
6538  *	@pf: the PF
6539  *	@vf: the VF
6540  *	@nparams: the number of parameters
6541  *	@params: the parameter names
6542  *	@val: the parameter values
6543  *	@rw: Write and read flag
6544  *
6545  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6546  *	queried at once.
6547  */
6548 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6549 		       unsigned int vf, unsigned int nparams, const u32 *params,
6550 		       u32 *val, int rw)
6551 {
6552 	int i, ret;
6553 	struct fw_params_cmd c;
6554 	__be32 *p = &c.param[0].mnem;
6555 
6556 	if (nparams > 7)
6557 		return -EINVAL;
6558 
6559 	memset(&c, 0, sizeof(c));
6560 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6561 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
6562 				  FW_PARAMS_CMD_PFN_V(pf) |
6563 				  FW_PARAMS_CMD_VFN_V(vf));
6564 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6565 
6566 	for (i = 0; i < nparams; i++) {
6567 		*p++ = cpu_to_be32(*params++);
6568 		if (rw)
6569 			*p = cpu_to_be32(*(val + i));
6570 		p++;
6571 	}
6572 
6573 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6574 	if (ret == 0)
6575 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6576 			*val++ = be32_to_cpu(*p);
6577 	return ret;
6578 }
6579 
6580 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6581 		    unsigned int vf, unsigned int nparams, const u32 *params,
6582 		    u32 *val)
6583 {
6584 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6585 }
6586 
6587 /**
6588  *      t4_set_params_timeout - sets FW or device parameters
6589  *      @adap: the adapter
6590  *      @mbox: mailbox to use for the FW command
6591  *      @pf: the PF
6592  *      @vf: the VF
6593  *      @nparams: the number of parameters
6594  *      @params: the parameter names
6595  *      @val: the parameter values
6596  *      @timeout: the timeout time
6597  *
6598  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6599  *      specified at once.
6600  */
6601 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6602 			  unsigned int pf, unsigned int vf,
6603 			  unsigned int nparams, const u32 *params,
6604 			  const u32 *val, int timeout)
6605 {
6606 	struct fw_params_cmd c;
6607 	__be32 *p = &c.param[0].mnem;
6608 
6609 	if (nparams > 7)
6610 		return -EINVAL;
6611 
6612 	memset(&c, 0, sizeof(c));
6613 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6614 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6615 				  FW_PARAMS_CMD_PFN_V(pf) |
6616 				  FW_PARAMS_CMD_VFN_V(vf));
6617 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6618 
6619 	while (nparams--) {
6620 		*p++ = cpu_to_be32(*params++);
6621 		*p++ = cpu_to_be32(*val++);
6622 	}
6623 
6624 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6625 }
6626 
6627 /**
6628  *	t4_set_params - sets FW or device parameters
6629  *	@adap: the adapter
6630  *	@mbox: mailbox to use for the FW command
6631  *	@pf: the PF
6632  *	@vf: the VF
6633  *	@nparams: the number of parameters
6634  *	@params: the parameter names
6635  *	@val: the parameter values
6636  *
6637  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6638  *	specified at once.
6639  */
6640 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6641 		  unsigned int vf, unsigned int nparams, const u32 *params,
6642 		  const u32 *val)
6643 {
6644 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6645 				     FW_CMD_MAX_TIMEOUT);
6646 }
6647 
6648 /**
6649  *	t4_cfg_pfvf - configure PF/VF resource limits
6650  *	@adap: the adapter
6651  *	@mbox: mailbox to use for the FW command
6652  *	@pf: the PF being configured
6653  *	@vf: the VF being configured
6654  *	@txq: the max number of egress queues
6655  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6656  *	@rxqi: the max number of interrupt-capable ingress queues
6657  *	@rxq: the max number of interruptless ingress queues
6658  *	@tc: the PCI traffic class
6659  *	@vi: the max number of virtual interfaces
6660  *	@cmask: the channel access rights mask for the PF/VF
6661  *	@pmask: the port access rights mask for the PF/VF
6662  *	@nexact: the maximum number of exact MPS filters
6663  *	@rcaps: read capabilities
6664  *	@wxcaps: write/execute capabilities
6665  *
6666  *	Configures resource limits and capabilities for a physical or virtual
6667  *	function.
6668  */
6669 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6670 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6671 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6672 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6673 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6674 {
6675 	struct fw_pfvf_cmd c;
6676 
6677 	memset(&c, 0, sizeof(c));
6678 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6679 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6680 				  FW_PFVF_CMD_VFN_V(vf));
6681 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6682 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6683 				     FW_PFVF_CMD_NIQ_V(rxq));
6684 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6685 				    FW_PFVF_CMD_PMASK_V(pmask) |
6686 				    FW_PFVF_CMD_NEQ_V(txq));
6687 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6688 				      FW_PFVF_CMD_NVI_V(vi) |
6689 				      FW_PFVF_CMD_NEXACTF_V(nexact));
6690 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6691 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6692 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6693 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6694 }
6695 
6696 /**
6697  *	t4_alloc_vi - allocate a virtual interface
6698  *	@adap: the adapter
6699  *	@mbox: mailbox to use for the FW command
6700  *	@port: physical port associated with the VI
6701  *	@pf: the PF owning the VI
6702  *	@vf: the VF owning the VI
6703  *	@nmac: number of MAC addresses needed (1 to 5)
6704  *	@mac: the MAC addresses of the VI
6705  *	@rss_size: size of RSS table slice associated with this VI
6706  *
6707  *	Allocates a virtual interface for the given physical port.  If @mac is
6708  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6709  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6710  *	stored consecutively so the space needed is @nmac * 6 bytes.
6711  *	Returns a negative error number or the non-negative VI id.
6712  */
6713 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6714 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6715 		unsigned int *rss_size)
6716 {
6717 	int ret;
6718 	struct fw_vi_cmd c;
6719 
6720 	memset(&c, 0, sizeof(c));
6721 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6722 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6723 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6724 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6725 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6726 	c.nmac = nmac - 1;
6727 
6728 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6729 	if (ret)
6730 		return ret;
6731 
6732 	if (mac) {
6733 		memcpy(mac, c.mac, sizeof(c.mac));
6734 		switch (nmac) {
6735 		case 5:
6736 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6737 		case 4:
6738 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6739 		case 3:
6740 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6741 		case 2:
6742 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6743 		}
6744 	}
6745 	if (rss_size)
6746 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6747 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6748 }
6749 
6750 /**
6751  *	t4_free_vi - free a virtual interface
6752  *	@adap: the adapter
6753  *	@mbox: mailbox to use for the FW command
6754  *	@pf: the PF owning the VI
6755  *	@vf: the VF owning the VI
6756  *	@viid: virtual interface identifiler
6757  *
6758  *	Free a previously allocated virtual interface.
6759  */
6760 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6761 	       unsigned int vf, unsigned int viid)
6762 {
6763 	struct fw_vi_cmd c;
6764 
6765 	memset(&c, 0, sizeof(c));
6766 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6767 				  FW_CMD_REQUEST_F |
6768 				  FW_CMD_EXEC_F |
6769 				  FW_VI_CMD_PFN_V(pf) |
6770 				  FW_VI_CMD_VFN_V(vf));
6771 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6772 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6773 
6774 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6775 }
6776 
6777 /**
6778  *	t4_set_rxmode - set Rx properties of a virtual interface
6779  *	@adap: the adapter
6780  *	@mbox: mailbox to use for the FW command
6781  *	@viid: the VI id
6782  *	@mtu: the new MTU or -1
6783  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6784  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6785  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6786  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6787  *	@sleep_ok: if true we may sleep while awaiting command completion
6788  *
6789  *	Sets Rx properties of a virtual interface.
6790  */
6791 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6792 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6793 		  bool sleep_ok)
6794 {
6795 	struct fw_vi_rxmode_cmd c;
6796 
6797 	/* convert to FW values */
6798 	if (mtu < 0)
6799 		mtu = FW_RXMODE_MTU_NO_CHG;
6800 	if (promisc < 0)
6801 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6802 	if (all_multi < 0)
6803 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6804 	if (bcast < 0)
6805 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6806 	if (vlanex < 0)
6807 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6808 
6809 	memset(&c, 0, sizeof(c));
6810 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6811 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6812 				   FW_VI_RXMODE_CMD_VIID_V(viid));
6813 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6814 	c.mtu_to_vlanexen =
6815 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6816 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6817 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6818 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6819 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6820 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6821 }
6822 
6823 /**
6824  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6825  *	@adap: the adapter
6826  *	@mbox: mailbox to use for the FW command
6827  *	@viid: the VI id
6828  *	@free: if true any existing filters for this VI id are first removed
6829  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6830  *	@addr: the MAC address(es)
6831  *	@idx: where to store the index of each allocated filter
6832  *	@hash: pointer to hash address filter bitmap
6833  *	@sleep_ok: call is allowed to sleep
6834  *
6835  *	Allocates an exact-match filter for each of the supplied addresses and
6836  *	sets it to the corresponding address.  If @idx is not %NULL it should
6837  *	have at least @naddr entries, each of which will be set to the index of
6838  *	the filter allocated for the corresponding MAC address.  If a filter
6839  *	could not be allocated for an address its index is set to 0xffff.
6840  *	If @hash is not %NULL addresses that fail to allocate an exact filter
6841  *	are hashed and update the hash filter bitmap pointed at by @hash.
6842  *
6843  *	Returns a negative error number or the number of filters allocated.
6844  */
6845 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6846 		      unsigned int viid, bool free, unsigned int naddr,
6847 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6848 {
6849 	int offset, ret = 0;
6850 	struct fw_vi_mac_cmd c;
6851 	unsigned int nfilters = 0;
6852 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6853 	unsigned int rem = naddr;
6854 
6855 	if (naddr > max_naddr)
6856 		return -EINVAL;
6857 
6858 	for (offset = 0; offset < naddr ; /**/) {
6859 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6860 					 rem : ARRAY_SIZE(c.u.exact));
6861 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6862 						     u.exact[fw_naddr]), 16);
6863 		struct fw_vi_mac_exact *p;
6864 		int i;
6865 
6866 		memset(&c, 0, sizeof(c));
6867 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6868 					   FW_CMD_REQUEST_F |
6869 					   FW_CMD_WRITE_F |
6870 					   FW_CMD_EXEC_V(free) |
6871 					   FW_VI_MAC_CMD_VIID_V(viid));
6872 		c.freemacs_to_len16 =
6873 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6874 				    FW_CMD_LEN16_V(len16));
6875 
6876 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6877 			p->valid_to_idx =
6878 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6879 					    FW_VI_MAC_CMD_IDX_V(
6880 						    FW_VI_MAC_ADD_MAC));
6881 			memcpy(p->macaddr, addr[offset + i],
6882 			       sizeof(p->macaddr));
6883 		}
6884 
6885 		/* It's okay if we run out of space in our MAC address arena.
6886 		 * Some of the addresses we submit may get stored so we need
6887 		 * to run through the reply to see what the results were ...
6888 		 */
6889 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6890 		if (ret && ret != -FW_ENOMEM)
6891 			break;
6892 
6893 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6894 			u16 index = FW_VI_MAC_CMD_IDX_G(
6895 					be16_to_cpu(p->valid_to_idx));
6896 
6897 			if (idx)
6898 				idx[offset + i] = (index >= max_naddr ?
6899 						   0xffff : index);
6900 			if (index < max_naddr)
6901 				nfilters++;
6902 			else if (hash)
6903 				*hash |= (1ULL <<
6904 					  hash_mac_addr(addr[offset + i]));
6905 		}
6906 
6907 		free = false;
6908 		offset += fw_naddr;
6909 		rem -= fw_naddr;
6910 	}
6911 
6912 	if (ret == 0 || ret == -FW_ENOMEM)
6913 		ret = nfilters;
6914 	return ret;
6915 }
6916 
6917 /**
6918  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
6919  *	@adap: the adapter
6920  *	@mbox: mailbox to use for the FW command
6921  *	@viid: the VI id
6922  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6923  *	@addr: the MAC address(es)
6924  *	@sleep_ok: call is allowed to sleep
6925  *
6926  *	Frees the exact-match filter for each of the supplied addresses
6927  *
6928  *	Returns a negative error number or the number of filters freed.
6929  */
6930 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6931 		     unsigned int viid, unsigned int naddr,
6932 		     const u8 **addr, bool sleep_ok)
6933 {
6934 	int offset, ret = 0;
6935 	struct fw_vi_mac_cmd c;
6936 	unsigned int nfilters = 0;
6937 	unsigned int max_naddr = is_t4(adap->params.chip) ?
6938 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
6939 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6940 	unsigned int rem = naddr;
6941 
6942 	if (naddr > max_naddr)
6943 		return -EINVAL;
6944 
6945 	for (offset = 0; offset < (int)naddr ; /**/) {
6946 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6947 					 ? rem
6948 					 : ARRAY_SIZE(c.u.exact));
6949 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6950 						     u.exact[fw_naddr]), 16);
6951 		struct fw_vi_mac_exact *p;
6952 		int i;
6953 
6954 		memset(&c, 0, sizeof(c));
6955 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6956 				     FW_CMD_REQUEST_F |
6957 				     FW_CMD_WRITE_F |
6958 				     FW_CMD_EXEC_V(0) |
6959 				     FW_VI_MAC_CMD_VIID_V(viid));
6960 		c.freemacs_to_len16 =
6961 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6962 					    FW_CMD_LEN16_V(len16));
6963 
6964 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6965 			p->valid_to_idx = cpu_to_be16(
6966 				FW_VI_MAC_CMD_VALID_F |
6967 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6968 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6969 		}
6970 
6971 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6972 		if (ret)
6973 			break;
6974 
6975 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6976 			u16 index = FW_VI_MAC_CMD_IDX_G(
6977 						be16_to_cpu(p->valid_to_idx));
6978 
6979 			if (index < max_naddr)
6980 				nfilters++;
6981 		}
6982 
6983 		offset += fw_naddr;
6984 		rem -= fw_naddr;
6985 	}
6986 
6987 	if (ret == 0)
6988 		ret = nfilters;
6989 	return ret;
6990 }
6991 
6992 /**
6993  *	t4_change_mac - modifies the exact-match filter for a MAC address
6994  *	@adap: the adapter
6995  *	@mbox: mailbox to use for the FW command
6996  *	@viid: the VI id
6997  *	@idx: index of existing filter for old value of MAC address, or -1
6998  *	@addr: the new MAC address value
6999  *	@persist: whether a new MAC allocation should be persistent
7000  *	@add_smt: if true also add the address to the HW SMT
7001  *
7002  *	Modifies an exact-match filter and sets it to the new MAC address.
7003  *	Note that in general it is not possible to modify the value of a given
7004  *	filter so the generic way to modify an address filter is to free the one
7005  *	being used by the old address value and allocate a new filter for the
7006  *	new address value.  @idx can be -1 if the address is a new addition.
7007  *
7008  *	Returns a negative error number or the index of the filter with the new
7009  *	MAC value.
7010  */
7011 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7012 		  int idx, const u8 *addr, bool persist, bool add_smt)
7013 {
7014 	int ret, mode;
7015 	struct fw_vi_mac_cmd c;
7016 	struct fw_vi_mac_exact *p = c.u.exact;
7017 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7018 
7019 	if (idx < 0)                             /* new allocation */
7020 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7021 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7022 
7023 	memset(&c, 0, sizeof(c));
7024 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7025 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7026 				   FW_VI_MAC_CMD_VIID_V(viid));
7027 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7028 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7029 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7030 				      FW_VI_MAC_CMD_IDX_V(idx));
7031 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7032 
7033 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7034 	if (ret == 0) {
7035 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7036 		if (ret >= max_mac_addr)
7037 			ret = -ENOMEM;
7038 	}
7039 	return ret;
7040 }
7041 
7042 /**
7043  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7044  *	@adap: the adapter
7045  *	@mbox: mailbox to use for the FW command
7046  *	@viid: the VI id
7047  *	@ucast: whether the hash filter should also match unicast addresses
7048  *	@vec: the value to be written to the hash filter
7049  *	@sleep_ok: call is allowed to sleep
7050  *
7051  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7052  */
7053 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7054 		     bool ucast, u64 vec, bool sleep_ok)
7055 {
7056 	struct fw_vi_mac_cmd c;
7057 
7058 	memset(&c, 0, sizeof(c));
7059 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7060 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7061 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7062 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7063 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7064 					  FW_CMD_LEN16_V(1));
7065 	c.u.hash.hashvec = cpu_to_be64(vec);
7066 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7067 }
7068 
7069 /**
7070  *      t4_enable_vi_params - enable/disable a virtual interface
7071  *      @adap: the adapter
7072  *      @mbox: mailbox to use for the FW command
7073  *      @viid: the VI id
7074  *      @rx_en: 1=enable Rx, 0=disable Rx
7075  *      @tx_en: 1=enable Tx, 0=disable Tx
7076  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7077  *
7078  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7079  *      only makes sense when enabling a Virtual Interface ...
7080  */
7081 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7082 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7083 {
7084 	struct fw_vi_enable_cmd c;
7085 
7086 	memset(&c, 0, sizeof(c));
7087 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7088 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7089 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7090 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7091 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7092 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7093 				     FW_LEN16(c));
7094 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7095 }
7096 
7097 /**
7098  *	t4_enable_vi - enable/disable a virtual interface
7099  *	@adap: the adapter
7100  *	@mbox: mailbox to use for the FW command
7101  *	@viid: the VI id
7102  *	@rx_en: 1=enable Rx, 0=disable Rx
7103  *	@tx_en: 1=enable Tx, 0=disable Tx
7104  *
7105  *	Enables/disables a virtual interface.
7106  */
7107 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7108 		 bool rx_en, bool tx_en)
7109 {
7110 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7111 }
7112 
7113 /**
7114  *	t4_identify_port - identify a VI's port by blinking its LED
7115  *	@adap: the adapter
7116  *	@mbox: mailbox to use for the FW command
7117  *	@viid: the VI id
7118  *	@nblinks: how many times to blink LED at 2.5 Hz
7119  *
7120  *	Identifies a VI's port by blinking its LED.
7121  */
7122 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7123 		     unsigned int nblinks)
7124 {
7125 	struct fw_vi_enable_cmd c;
7126 
7127 	memset(&c, 0, sizeof(c));
7128 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7129 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7130 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7131 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7132 	c.blinkdur = cpu_to_be16(nblinks);
7133 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7134 }
7135 
7136 /**
7137  *	t4_iq_stop - stop an ingress queue and its FLs
7138  *	@adap: the adapter
7139  *	@mbox: mailbox to use for the FW command
7140  *	@pf: the PF owning the queues
7141  *	@vf: the VF owning the queues
7142  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7143  *	@iqid: ingress queue id
7144  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7145  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7146  *
7147  *	Stops an ingress queue and its associated FLs, if any.  This causes
7148  *	any current or future data/messages destined for these queues to be
7149  *	tossed.
7150  */
7151 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7152 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7153 	       unsigned int fl0id, unsigned int fl1id)
7154 {
7155 	struct fw_iq_cmd c;
7156 
7157 	memset(&c, 0, sizeof(c));
7158 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7159 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7160 				  FW_IQ_CMD_VFN_V(vf));
7161 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7162 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7163 	c.iqid = cpu_to_be16(iqid);
7164 	c.fl0id = cpu_to_be16(fl0id);
7165 	c.fl1id = cpu_to_be16(fl1id);
7166 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7167 }
7168 
7169 /**
7170  *	t4_iq_free - free an ingress queue and its FLs
7171  *	@adap: the adapter
7172  *	@mbox: mailbox to use for the FW command
7173  *	@pf: the PF owning the queues
7174  *	@vf: the VF owning the queues
7175  *	@iqtype: the ingress queue type
7176  *	@iqid: ingress queue id
7177  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7178  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7179  *
7180  *	Frees an ingress queue and its associated FLs, if any.
7181  */
7182 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7183 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7184 	       unsigned int fl0id, unsigned int fl1id)
7185 {
7186 	struct fw_iq_cmd c;
7187 
7188 	memset(&c, 0, sizeof(c));
7189 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7190 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7191 				  FW_IQ_CMD_VFN_V(vf));
7192 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7193 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7194 	c.iqid = cpu_to_be16(iqid);
7195 	c.fl0id = cpu_to_be16(fl0id);
7196 	c.fl1id = cpu_to_be16(fl1id);
7197 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7198 }
7199 
7200 /**
7201  *	t4_eth_eq_free - free an Ethernet egress queue
7202  *	@adap: the adapter
7203  *	@mbox: mailbox to use for the FW command
7204  *	@pf: the PF owning the queue
7205  *	@vf: the VF owning the queue
7206  *	@eqid: egress queue id
7207  *
7208  *	Frees an Ethernet egress queue.
7209  */
7210 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7211 		   unsigned int vf, unsigned int eqid)
7212 {
7213 	struct fw_eq_eth_cmd c;
7214 
7215 	memset(&c, 0, sizeof(c));
7216 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7217 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7218 				  FW_EQ_ETH_CMD_PFN_V(pf) |
7219 				  FW_EQ_ETH_CMD_VFN_V(vf));
7220 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7221 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7222 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7223 }
7224 
7225 /**
7226  *	t4_ctrl_eq_free - free a control egress queue
7227  *	@adap: the adapter
7228  *	@mbox: mailbox to use for the FW command
7229  *	@pf: the PF owning the queue
7230  *	@vf: the VF owning the queue
7231  *	@eqid: egress queue id
7232  *
7233  *	Frees a control egress queue.
7234  */
7235 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7236 		    unsigned int vf, unsigned int eqid)
7237 {
7238 	struct fw_eq_ctrl_cmd c;
7239 
7240 	memset(&c, 0, sizeof(c));
7241 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7242 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7243 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7244 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7245 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7246 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7247 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7248 }
7249 
7250 /**
7251  *	t4_ofld_eq_free - free an offload egress queue
7252  *	@adap: the adapter
7253  *	@mbox: mailbox to use for the FW command
7254  *	@pf: the PF owning the queue
7255  *	@vf: the VF owning the queue
7256  *	@eqid: egress queue id
7257  *
7258  *	Frees a control egress queue.
7259  */
7260 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7261 		    unsigned int vf, unsigned int eqid)
7262 {
7263 	struct fw_eq_ofld_cmd c;
7264 
7265 	memset(&c, 0, sizeof(c));
7266 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7267 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7268 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7269 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7270 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7271 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7272 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7273 }
7274 
7275 /**
7276  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7277  *	@adap: the adapter
7278  *	@link_down_rc: Link Down Reason Code
7279  *
7280  *	Returns a string representation of the Link Down Reason Code.
7281  */
7282 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7283 {
7284 	static const char * const reason[] = {
7285 		"Link Down",
7286 		"Remote Fault",
7287 		"Auto-negotiation Failure",
7288 		"Reserved",
7289 		"Insufficient Airflow",
7290 		"Unable To Determine Reason",
7291 		"No RX Signal Detected",
7292 		"Reserved",
7293 	};
7294 
7295 	if (link_down_rc >= ARRAY_SIZE(reason))
7296 		return "Bad Reason Code";
7297 
7298 	return reason[link_down_rc];
7299 }
7300 
7301 /**
7302  *	t4_handle_get_port_info - process a FW reply message
7303  *	@pi: the port info
7304  *	@rpl: start of the FW message
7305  *
7306  *	Processes a GET_PORT_INFO FW reply message.
7307  */
7308 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7309 {
7310 	const struct fw_port_cmd *p = (const void *)rpl;
7311 	struct adapter *adap = pi->adapter;
7312 
7313 	/* link/module state change message */
7314 	int speed = 0, fc = 0;
7315 	struct link_config *lc;
7316 	u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7317 	int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7318 	u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7319 
7320 	if (stat & FW_PORT_CMD_RXPAUSE_F)
7321 		fc |= PAUSE_RX;
7322 	if (stat & FW_PORT_CMD_TXPAUSE_F)
7323 		fc |= PAUSE_TX;
7324 	if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7325 		speed = 100;
7326 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7327 		speed = 1000;
7328 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7329 		speed = 10000;
7330 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7331 		speed = 25000;
7332 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7333 		speed = 40000;
7334 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7335 		speed = 100000;
7336 
7337 	lc = &pi->link_cfg;
7338 
7339 	if (mod != pi->mod_type) {
7340 		pi->mod_type = mod;
7341 		t4_os_portmod_changed(adap, pi->port_id);
7342 	}
7343 	if (link_ok != lc->link_ok || speed != lc->speed ||
7344 	    fc != lc->fc) {	/* something changed */
7345 		if (!link_ok && lc->link_ok) {
7346 			unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7347 
7348 			lc->link_down_rc = rc;
7349 			dev_warn(adap->pdev_dev,
7350 				 "Port %d link down, reason: %s\n",
7351 				 pi->port_id, t4_link_down_rc_str(rc));
7352 		}
7353 		lc->link_ok = link_ok;
7354 		lc->speed = speed;
7355 		lc->fc = fc;
7356 		lc->supported = be16_to_cpu(p->u.info.pcap);
7357 		lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
7358 		t4_os_link_changed(adap, pi->port_id, link_ok);
7359 	}
7360 }
7361 
7362 /**
7363  *      t4_handle_fw_rpl - process a FW reply message
7364  *      @adap: the adapter
7365  *      @rpl: start of the FW message
7366  *
7367  *      Processes a FW message, such as link state change messages.
7368  */
7369 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7370 {
7371 	u8 opcode = *(const u8 *)rpl;
7372 
7373 	/* This might be a port command ... this simplifies the following
7374 	 * conditionals ...  We can get away with pre-dereferencing
7375 	 * action_to_len16 because it's in the first 16 bytes and all messages
7376 	 * will be at least that long.
7377 	 */
7378 	const struct fw_port_cmd *p = (const void *)rpl;
7379 	unsigned int action =
7380 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7381 
7382 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7383 		int i;
7384 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7385 		struct port_info *pi = NULL;
7386 
7387 		for_each_port(adap, i) {
7388 			pi = adap2pinfo(adap, i);
7389 			if (pi->tx_chan == chan)
7390 				break;
7391 		}
7392 
7393 		t4_handle_get_port_info(pi, rpl);
7394 	} else {
7395 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7396 		return -EINVAL;
7397 	}
7398 	return 0;
7399 }
7400 
7401 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7402 {
7403 	u16 val;
7404 
7405 	if (pci_is_pcie(adapter->pdev)) {
7406 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7407 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7408 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7409 	}
7410 }
7411 
7412 /**
7413  *	init_link_config - initialize a link's SW state
7414  *	@lc: structure holding the link state
7415  *	@caps: link capabilities
7416  *
7417  *	Initializes the SW state maintained for each link, including the link's
7418  *	capabilities and default speed/flow-control/autonegotiation settings.
7419  */
7420 static void init_link_config(struct link_config *lc, unsigned int pcaps,
7421 			     unsigned int acaps)
7422 {
7423 	lc->supported = pcaps;
7424 	lc->lp_advertising = 0;
7425 	lc->requested_speed = 0;
7426 	lc->speed = 0;
7427 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7428 	lc->auto_fec = 0;
7429 
7430 	/* For Forward Error Control, we default to whatever the Firmware
7431 	 * tells us the Link is currently advertising.
7432 	 */
7433 	if (acaps & FW_PORT_CAP_FEC_RS)
7434 		lc->auto_fec |= FEC_RS;
7435 	if (acaps & FW_PORT_CAP_FEC_BASER_RS)
7436 		lc->auto_fec |= FEC_BASER_RS;
7437 	lc->requested_fec = FEC_AUTO;
7438 	lc->fec = lc->auto_fec;
7439 
7440 	if (lc->supported & FW_PORT_CAP_ANEG) {
7441 		lc->advertising = lc->supported & ADVERT_MASK;
7442 		lc->autoneg = AUTONEG_ENABLE;
7443 		lc->requested_fc |= PAUSE_AUTONEG;
7444 	} else {
7445 		lc->advertising = 0;
7446 		lc->autoneg = AUTONEG_DISABLE;
7447 	}
7448 }
7449 
7450 #define CIM_PF_NOACCESS 0xeeeeeeee
7451 
7452 int t4_wait_dev_ready(void __iomem *regs)
7453 {
7454 	u32 whoami;
7455 
7456 	whoami = readl(regs + PL_WHOAMI_A);
7457 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7458 		return 0;
7459 
7460 	msleep(500);
7461 	whoami = readl(regs + PL_WHOAMI_A);
7462 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7463 }
7464 
7465 struct flash_desc {
7466 	u32 vendor_and_model_id;
7467 	u32 size_mb;
7468 };
7469 
7470 static int get_flash_params(struct adapter *adap)
7471 {
7472 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
7473 	 * to the preexisting code.  All flash parts have 64KB sectors.
7474 	 */
7475 	static struct flash_desc supported_flash[] = {
7476 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7477 	};
7478 
7479 	int ret;
7480 	u32 info;
7481 
7482 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7483 	if (!ret)
7484 		ret = sf1_read(adap, 3, 0, 1, &info);
7485 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7486 	if (ret)
7487 		return ret;
7488 
7489 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7490 		if (supported_flash[ret].vendor_and_model_id == info) {
7491 			adap->params.sf_size = supported_flash[ret].size_mb;
7492 			adap->params.sf_nsec =
7493 				adap->params.sf_size / SF_SEC_SIZE;
7494 			return 0;
7495 		}
7496 
7497 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7498 		return -EINVAL;
7499 	info >>= 16;                           /* log2 of size */
7500 	if (info >= 0x14 && info < 0x18)
7501 		adap->params.sf_nsec = 1 << (info - 16);
7502 	else if (info == 0x18)
7503 		adap->params.sf_nsec = 64;
7504 	else
7505 		return -EINVAL;
7506 	adap->params.sf_size = 1 << info;
7507 	adap->params.sf_fw_start =
7508 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7509 
7510 	if (adap->params.sf_size < FLASH_MIN_SIZE)
7511 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7512 			 adap->params.sf_size, FLASH_MIN_SIZE);
7513 	return 0;
7514 }
7515 
7516 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7517 {
7518 	u16 val;
7519 	u32 pcie_cap;
7520 
7521 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7522 	if (pcie_cap) {
7523 		pci_read_config_word(adapter->pdev,
7524 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
7525 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7526 		val |= range;
7527 		pci_write_config_word(adapter->pdev,
7528 				      pcie_cap + PCI_EXP_DEVCTL2, val);
7529 	}
7530 }
7531 
7532 /**
7533  *	t4_prep_adapter - prepare SW and HW for operation
7534  *	@adapter: the adapter
7535  *	@reset: if true perform a HW reset
7536  *
7537  *	Initialize adapter SW state for the various HW modules, set initial
7538  *	values for some adapter tunables, take PHYs out of reset, and
7539  *	initialize the MDIO interface.
7540  */
7541 int t4_prep_adapter(struct adapter *adapter)
7542 {
7543 	int ret, ver;
7544 	uint16_t device_id;
7545 	u32 pl_rev;
7546 
7547 	get_pci_mode(adapter, &adapter->params.pci);
7548 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7549 
7550 	ret = get_flash_params(adapter);
7551 	if (ret < 0) {
7552 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7553 		return ret;
7554 	}
7555 
7556 	/* Retrieve adapter's device ID
7557 	 */
7558 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7559 	ver = device_id >> 12;
7560 	adapter->params.chip = 0;
7561 	switch (ver) {
7562 	case CHELSIO_T4:
7563 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7564 		adapter->params.arch.sge_fl_db = DBPRIO_F;
7565 		adapter->params.arch.mps_tcam_size =
7566 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
7567 		adapter->params.arch.mps_rplc_size = 128;
7568 		adapter->params.arch.nchan = NCHAN;
7569 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7570 		adapter->params.arch.vfcount = 128;
7571 		/* Congestion map is for 4 channels so that
7572 		 * MPS can have 4 priority per port.
7573 		 */
7574 		adapter->params.arch.cng_ch_bits_log = 2;
7575 		break;
7576 	case CHELSIO_T5:
7577 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7578 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7579 		adapter->params.arch.mps_tcam_size =
7580 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7581 		adapter->params.arch.mps_rplc_size = 128;
7582 		adapter->params.arch.nchan = NCHAN;
7583 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7584 		adapter->params.arch.vfcount = 128;
7585 		adapter->params.arch.cng_ch_bits_log = 2;
7586 		break;
7587 	case CHELSIO_T6:
7588 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7589 		adapter->params.arch.sge_fl_db = 0;
7590 		adapter->params.arch.mps_tcam_size =
7591 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7592 		adapter->params.arch.mps_rplc_size = 256;
7593 		adapter->params.arch.nchan = 2;
7594 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7595 		adapter->params.arch.vfcount = 256;
7596 		/* Congestion map will be for 2 channels so that
7597 		 * MPS can have 8 priority per port.
7598 		 */
7599 		adapter->params.arch.cng_ch_bits_log = 3;
7600 		break;
7601 	default:
7602 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7603 			device_id);
7604 		return -EINVAL;
7605 	}
7606 
7607 	adapter->params.cim_la_size = CIMLA_SIZE;
7608 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7609 
7610 	/*
7611 	 * Default port for debugging in case we can't reach FW.
7612 	 */
7613 	adapter->params.nports = 1;
7614 	adapter->params.portvec = 1;
7615 	adapter->params.vpd.cclk = 50000;
7616 
7617 	/* Set pci completion timeout value to 4 seconds. */
7618 	set_pcie_completion_timeout(adapter, 0xd);
7619 	return 0;
7620 }
7621 
7622 /**
7623  *	t4_shutdown_adapter - shut down adapter, host & wire
7624  *	@adapter: the adapter
7625  *
7626  *	Perform an emergency shutdown of the adapter and stop it from
7627  *	continuing any further communication on the ports or DMA to the
7628  *	host.  This is typically used when the adapter and/or firmware
7629  *	have crashed and we want to prevent any further accidental
7630  *	communication with the rest of the world.  This will also force
7631  *	the port Link Status to go down -- if register writes work --
7632  *	which should help our peers figure out that we're down.
7633  */
7634 int t4_shutdown_adapter(struct adapter *adapter)
7635 {
7636 	int port;
7637 
7638 	t4_intr_disable(adapter);
7639 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
7640 	for_each_port(adapter, port) {
7641 		u32 a_port_cfg = PORT_REG(port,
7642 					  is_t4(adapter->params.chip)
7643 					  ? XGMAC_PORT_CFG_A
7644 					  : MAC_PORT_CFG_A);
7645 
7646 		t4_write_reg(adapter, a_port_cfg,
7647 			     t4_read_reg(adapter, a_port_cfg)
7648 			     & ~SIGNAL_DET_V(1));
7649 	}
7650 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
7651 
7652 	return 0;
7653 }
7654 
7655 /**
7656  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7657  *	@adapter: the adapter
7658  *	@qid: the Queue ID
7659  *	@qtype: the Ingress or Egress type for @qid
7660  *	@user: true if this request is for a user mode queue
7661  *	@pbar2_qoffset: BAR2 Queue Offset
7662  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7663  *
7664  *	Returns the BAR2 SGE Queue Registers information associated with the
7665  *	indicated Absolute Queue ID.  These are passed back in return value
7666  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7667  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7668  *
7669  *	This may return an error which indicates that BAR2 SGE Queue
7670  *	registers aren't available.  If an error is not returned, then the
7671  *	following values are returned:
7672  *
7673  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7674  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7675  *
7676  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7677  *	require the "Inferred Queue ID" ability may be used.  E.g. the
7678  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7679  *	then these "Inferred Queue ID" register may not be used.
7680  */
7681 int t4_bar2_sge_qregs(struct adapter *adapter,
7682 		      unsigned int qid,
7683 		      enum t4_bar2_qtype qtype,
7684 		      int user,
7685 		      u64 *pbar2_qoffset,
7686 		      unsigned int *pbar2_qid)
7687 {
7688 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7689 	u64 bar2_page_offset, bar2_qoffset;
7690 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7691 
7692 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7693 	if (!user && is_t4(adapter->params.chip))
7694 		return -EINVAL;
7695 
7696 	/* Get our SGE Page Size parameters.
7697 	 */
7698 	page_shift = adapter->params.sge.hps + 10;
7699 	page_size = 1 << page_shift;
7700 
7701 	/* Get the right Queues per Page parameters for our Queue.
7702 	 */
7703 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7704 		     ? adapter->params.sge.eq_qpp
7705 		     : adapter->params.sge.iq_qpp);
7706 	qpp_mask = (1 << qpp_shift) - 1;
7707 
7708 	/*  Calculate the basics of the BAR2 SGE Queue register area:
7709 	 *  o The BAR2 page the Queue registers will be in.
7710 	 *  o The BAR2 Queue ID.
7711 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
7712 	 */
7713 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7714 	bar2_qid = qid & qpp_mask;
7715 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7716 
7717 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
7718 	 * hardware will infer the Absolute Queue ID simply from the writes to
7719 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7720 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7721 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7722 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7723 	 * from the BAR2 Page and BAR2 Queue ID.
7724 	 *
7725 	 * One important censequence of this is that some BAR2 SGE registers
7726 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7727 	 * there.  But other registers synthesize the SGE Queue ID purely
7728 	 * from the writes to the registers -- the Write Combined Doorbell
7729 	 * Buffer is a good example.  These BAR2 SGE Registers are only
7730 	 * available for those BAR2 SGE Register areas where the SGE Absolute
7731 	 * Queue ID can be inferred from simple writes.
7732 	 */
7733 	bar2_qoffset = bar2_page_offset;
7734 	bar2_qinferred = (bar2_qid_offset < page_size);
7735 	if (bar2_qinferred) {
7736 		bar2_qoffset += bar2_qid_offset;
7737 		bar2_qid = 0;
7738 	}
7739 
7740 	*pbar2_qoffset = bar2_qoffset;
7741 	*pbar2_qid = bar2_qid;
7742 	return 0;
7743 }
7744 
7745 /**
7746  *	t4_init_devlog_params - initialize adapter->params.devlog
7747  *	@adap: the adapter
7748  *
7749  *	Initialize various fields of the adapter's Firmware Device Log
7750  *	Parameters structure.
7751  */
7752 int t4_init_devlog_params(struct adapter *adap)
7753 {
7754 	struct devlog_params *dparams = &adap->params.devlog;
7755 	u32 pf_dparams;
7756 	unsigned int devlog_meminfo;
7757 	struct fw_devlog_cmd devlog_cmd;
7758 	int ret;
7759 
7760 	/* If we're dealing with newer firmware, the Device Log Paramerters
7761 	 * are stored in a designated register which allows us to access the
7762 	 * Device Log even if we can't talk to the firmware.
7763 	 */
7764 	pf_dparams =
7765 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7766 	if (pf_dparams) {
7767 		unsigned int nentries, nentries128;
7768 
7769 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7770 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7771 
7772 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7773 		nentries = (nentries128 + 1) * 128;
7774 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7775 
7776 		return 0;
7777 	}
7778 
7779 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7780 	 */
7781 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7782 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7783 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
7784 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7785 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7786 			 &devlog_cmd);
7787 	if (ret)
7788 		return ret;
7789 
7790 	devlog_meminfo =
7791 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7792 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7793 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7794 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7795 
7796 	return 0;
7797 }
7798 
7799 /**
7800  *	t4_init_sge_params - initialize adap->params.sge
7801  *	@adapter: the adapter
7802  *
7803  *	Initialize various fields of the adapter's SGE Parameters structure.
7804  */
7805 int t4_init_sge_params(struct adapter *adapter)
7806 {
7807 	struct sge_params *sge_params = &adapter->params.sge;
7808 	u32 hps, qpp;
7809 	unsigned int s_hps, s_qpp;
7810 
7811 	/* Extract the SGE Page Size for our PF.
7812 	 */
7813 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7814 	s_hps = (HOSTPAGESIZEPF0_S +
7815 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7816 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7817 
7818 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7819 	 */
7820 	s_qpp = (QUEUESPERPAGEPF0_S +
7821 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7822 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7823 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7824 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7825 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7826 
7827 	return 0;
7828 }
7829 
7830 /**
7831  *      t4_init_tp_params - initialize adap->params.tp
7832  *      @adap: the adapter
7833  *
7834  *      Initialize various fields of the adapter's TP Parameters structure.
7835  */
7836 int t4_init_tp_params(struct adapter *adap)
7837 {
7838 	int chan;
7839 	u32 v;
7840 
7841 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7842 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
7843 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7844 
7845 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7846 	for (chan = 0; chan < NCHAN; chan++)
7847 		adap->params.tp.tx_modq[chan] = chan;
7848 
7849 	/* Cache the adapter's Compressed Filter Mode and global Incress
7850 	 * Configuration.
7851 	 */
7852 	if (t4_use_ldst(adap)) {
7853 		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7854 				TP_VLAN_PRI_MAP_A, 1);
7855 		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7856 				TP_INGRESS_CONFIG_A, 1);
7857 	} else {
7858 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7859 				 &adap->params.tp.vlan_pri_map, 1,
7860 				 TP_VLAN_PRI_MAP_A);
7861 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7862 				 &adap->params.tp.ingress_config, 1,
7863 				 TP_INGRESS_CONFIG_A);
7864 	}
7865 	/* For T6, cache the adapter's compressed error vector
7866 	 * and passing outer header info for encapsulated packets.
7867 	 */
7868 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
7869 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
7870 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
7871 	}
7872 
7873 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7874 	 * shift positions of several elements of the Compressed Filter Tuple
7875 	 * for this adapter which we need frequently ...
7876 	 */
7877 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7878 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7879 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7880 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7881 							       PROTOCOL_F);
7882 
7883 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7884 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7885 	 */
7886 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7887 		adap->params.tp.vnic_shift = -1;
7888 
7889 	return 0;
7890 }
7891 
7892 /**
7893  *      t4_filter_field_shift - calculate filter field shift
7894  *      @adap: the adapter
7895  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7896  *
7897  *      Return the shift position of a filter field within the Compressed
7898  *      Filter Tuple.  The filter field is specified via its selection bit
7899  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7900  */
7901 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7902 {
7903 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7904 	unsigned int sel;
7905 	int field_shift;
7906 
7907 	if ((filter_mode & filter_sel) == 0)
7908 		return -1;
7909 
7910 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7911 		switch (filter_mode & sel) {
7912 		case FCOE_F:
7913 			field_shift += FT_FCOE_W;
7914 			break;
7915 		case PORT_F:
7916 			field_shift += FT_PORT_W;
7917 			break;
7918 		case VNIC_ID_F:
7919 			field_shift += FT_VNIC_ID_W;
7920 			break;
7921 		case VLAN_F:
7922 			field_shift += FT_VLAN_W;
7923 			break;
7924 		case TOS_F:
7925 			field_shift += FT_TOS_W;
7926 			break;
7927 		case PROTOCOL_F:
7928 			field_shift += FT_PROTOCOL_W;
7929 			break;
7930 		case ETHERTYPE_F:
7931 			field_shift += FT_ETHERTYPE_W;
7932 			break;
7933 		case MACMATCH_F:
7934 			field_shift += FT_MACMATCH_W;
7935 			break;
7936 		case MPSHITTYPE_F:
7937 			field_shift += FT_MPSHITTYPE_W;
7938 			break;
7939 		case FRAGMENTATION_F:
7940 			field_shift += FT_FRAGMENTATION_W;
7941 			break;
7942 		}
7943 	}
7944 	return field_shift;
7945 }
7946 
7947 int t4_init_rss_mode(struct adapter *adap, int mbox)
7948 {
7949 	int i, ret;
7950 	struct fw_rss_vi_config_cmd rvc;
7951 
7952 	memset(&rvc, 0, sizeof(rvc));
7953 
7954 	for_each_port(adap, i) {
7955 		struct port_info *p = adap2pinfo(adap, i);
7956 
7957 		rvc.op_to_viid =
7958 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7959 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7960 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7961 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7962 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7963 		if (ret)
7964 			return ret;
7965 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7966 	}
7967 	return 0;
7968 }
7969 
7970 /**
7971  *	t4_init_portinfo - allocate a virtual interface amd initialize port_info
7972  *	@pi: the port_info
7973  *	@mbox: mailbox to use for the FW command
7974  *	@port: physical port associated with the VI
7975  *	@pf: the PF owning the VI
7976  *	@vf: the VF owning the VI
7977  *	@mac: the MAC address of the VI
7978  *
7979  *	Allocates a virtual interface for the given physical port.  If @mac is
7980  *	not %NULL it contains the MAC address of the VI as assigned by FW.
7981  *	@mac should be large enough to hold an Ethernet address.
7982  *	Returns < 0 on error.
7983  */
7984 int t4_init_portinfo(struct port_info *pi, int mbox,
7985 		     int port, int pf, int vf, u8 mac[])
7986 {
7987 	int ret;
7988 	struct fw_port_cmd c;
7989 	unsigned int rss_size;
7990 
7991 	memset(&c, 0, sizeof(c));
7992 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7993 				     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7994 				     FW_PORT_CMD_PORTID_V(port));
7995 	c.action_to_len16 = cpu_to_be32(
7996 		FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7997 		FW_LEN16(c));
7998 	ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
7999 	if (ret)
8000 		return ret;
8001 
8002 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
8003 	if (ret < 0)
8004 		return ret;
8005 
8006 	pi->viid = ret;
8007 	pi->tx_chan = port;
8008 	pi->lport = port;
8009 	pi->rss_size = rss_size;
8010 
8011 	ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8012 	pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
8013 		FW_PORT_CMD_MDIOADDR_G(ret) : -1;
8014 	pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
8015 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
8016 
8017 	init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap),
8018 			 be16_to_cpu(c.u.info.acap));
8019 	return 0;
8020 }
8021 
8022 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
8023 {
8024 	u8 addr[6];
8025 	int ret, i, j = 0;
8026 
8027 	for_each_port(adap, i) {
8028 		struct port_info *pi = adap2pinfo(adap, i);
8029 
8030 		while ((adap->params.portvec & (1 << j)) == 0)
8031 			j++;
8032 
8033 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
8034 		if (ret)
8035 			return ret;
8036 
8037 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
8038 		j++;
8039 	}
8040 	return 0;
8041 }
8042 
8043 /**
8044  *	t4_read_cimq_cfg - read CIM queue configuration
8045  *	@adap: the adapter
8046  *	@base: holds the queue base addresses in bytes
8047  *	@size: holds the queue sizes in bytes
8048  *	@thres: holds the queue full thresholds in bytes
8049  *
8050  *	Returns the current configuration of the CIM queues, starting with
8051  *	the IBQs, then the OBQs.
8052  */
8053 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8054 {
8055 	unsigned int i, v;
8056 	int cim_num_obq = is_t4(adap->params.chip) ?
8057 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8058 
8059 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8060 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
8061 			     QUENUMSELECT_V(i));
8062 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8063 		/* value is in 256-byte units */
8064 		*base++ = CIMQBASE_G(v) * 256;
8065 		*size++ = CIMQSIZE_G(v) * 256;
8066 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
8067 	}
8068 	for (i = 0; i < cim_num_obq; i++) {
8069 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8070 			     QUENUMSELECT_V(i));
8071 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8072 		/* value is in 256-byte units */
8073 		*base++ = CIMQBASE_G(v) * 256;
8074 		*size++ = CIMQSIZE_G(v) * 256;
8075 	}
8076 }
8077 
8078 /**
8079  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8080  *	@adap: the adapter
8081  *	@qid: the queue index
8082  *	@data: where to store the queue contents
8083  *	@n: capacity of @data in 32-bit words
8084  *
8085  *	Reads the contents of the selected CIM queue starting at address 0 up
8086  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8087  *	error and the number of 32-bit words actually read on success.
8088  */
8089 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8090 {
8091 	int i, err, attempts;
8092 	unsigned int addr;
8093 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8094 
8095 	if (qid > 5 || (n & 3))
8096 		return -EINVAL;
8097 
8098 	addr = qid * nwords;
8099 	if (n > nwords)
8100 		n = nwords;
8101 
8102 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8103 	 * Wait for 1 Sec with a delay of 1 usec.
8104 	 */
8105 	attempts = 1000000;
8106 
8107 	for (i = 0; i < n; i++, addr++) {
8108 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
8109 			     IBQDBGEN_F);
8110 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
8111 				      attempts, 1);
8112 		if (err)
8113 			return err;
8114 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
8115 	}
8116 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
8117 	return i;
8118 }
8119 
8120 /**
8121  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8122  *	@adap: the adapter
8123  *	@qid: the queue index
8124  *	@data: where to store the queue contents
8125  *	@n: capacity of @data in 32-bit words
8126  *
8127  *	Reads the contents of the selected CIM queue starting at address 0 up
8128  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8129  *	error and the number of 32-bit words actually read on success.
8130  */
8131 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8132 {
8133 	int i, err;
8134 	unsigned int addr, v, nwords;
8135 	int cim_num_obq = is_t4(adap->params.chip) ?
8136 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8137 
8138 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8139 		return -EINVAL;
8140 
8141 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8142 		     QUENUMSELECT_V(qid));
8143 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8144 
8145 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
8146 	nwords = CIMQSIZE_G(v) * 64;  /* same */
8147 	if (n > nwords)
8148 		n = nwords;
8149 
8150 	for (i = 0; i < n; i++, addr++) {
8151 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
8152 			     OBQDBGEN_F);
8153 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
8154 				      2, 1);
8155 		if (err)
8156 			return err;
8157 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
8158 	}
8159 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
8160 	return i;
8161 }
8162 
8163 /**
8164  *	t4_cim_read - read a block from CIM internal address space
8165  *	@adap: the adapter
8166  *	@addr: the start address within the CIM address space
8167  *	@n: number of words to read
8168  *	@valp: where to store the result
8169  *
8170  *	Reads a block of 4-byte words from the CIM intenal address space.
8171  */
8172 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8173 		unsigned int *valp)
8174 {
8175 	int ret = 0;
8176 
8177 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8178 		return -EBUSY;
8179 
8180 	for ( ; !ret && n--; addr += 4) {
8181 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
8182 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8183 				      0, 5, 2);
8184 		if (!ret)
8185 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8186 	}
8187 	return ret;
8188 }
8189 
8190 /**
8191  *	t4_cim_write - write a block into CIM internal address space
8192  *	@adap: the adapter
8193  *	@addr: the start address within the CIM address space
8194  *	@n: number of words to write
8195  *	@valp: set of values to write
8196  *
8197  *	Writes a block of 4-byte words into the CIM intenal address space.
8198  */
8199 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8200 		 const unsigned int *valp)
8201 {
8202 	int ret = 0;
8203 
8204 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8205 		return -EBUSY;
8206 
8207 	for ( ; !ret && n--; addr += 4) {
8208 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8209 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8210 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8211 				      0, 5, 2);
8212 	}
8213 	return ret;
8214 }
8215 
8216 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8217 			 unsigned int val)
8218 {
8219 	return t4_cim_write(adap, addr, 1, &val);
8220 }
8221 
8222 /**
8223  *	t4_cim_read_la - read CIM LA capture buffer
8224  *	@adap: the adapter
8225  *	@la_buf: where to store the LA data
8226  *	@wrptr: the HW write pointer within the capture buffer
8227  *
8228  *	Reads the contents of the CIM LA buffer with the most recent entry at
8229  *	the end	of the returned data and with the entry at @wrptr first.
8230  *	We try to leave the LA in the running state we find it in.
8231  */
8232 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8233 {
8234 	int i, ret;
8235 	unsigned int cfg, val, idx;
8236 
8237 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8238 	if (ret)
8239 		return ret;
8240 
8241 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
8242 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8243 		if (ret)
8244 			return ret;
8245 	}
8246 
8247 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8248 	if (ret)
8249 		goto restart;
8250 
8251 	idx = UPDBGLAWRPTR_G(val);
8252 	if (wrptr)
8253 		*wrptr = idx;
8254 
8255 	for (i = 0; i < adap->params.cim_la_size; i++) {
8256 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8257 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8258 		if (ret)
8259 			break;
8260 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8261 		if (ret)
8262 			break;
8263 		if (val & UPDBGLARDEN_F) {
8264 			ret = -ETIMEDOUT;
8265 			break;
8266 		}
8267 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8268 		if (ret)
8269 			break;
8270 		idx = (idx + 1) & UPDBGLARDPTR_M;
8271 	}
8272 restart:
8273 	if (cfg & UPDBGLAEN_F) {
8274 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8275 				      cfg & ~UPDBGLARDEN_F);
8276 		if (!ret)
8277 			ret = r;
8278 	}
8279 	return ret;
8280 }
8281 
8282 /**
8283  *	t4_tp_read_la - read TP LA capture buffer
8284  *	@adap: the adapter
8285  *	@la_buf: where to store the LA data
8286  *	@wrptr: the HW write pointer within the capture buffer
8287  *
8288  *	Reads the contents of the TP LA buffer with the most recent entry at
8289  *	the end	of the returned data and with the entry at @wrptr first.
8290  *	We leave the LA in the running state we find it in.
8291  */
8292 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8293 {
8294 	bool last_incomplete;
8295 	unsigned int i, cfg, val, idx;
8296 
8297 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8298 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
8299 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8300 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8301 
8302 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8303 	idx = DBGLAWPTR_G(val);
8304 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8305 	if (last_incomplete)
8306 		idx = (idx + 1) & DBGLARPTR_M;
8307 	if (wrptr)
8308 		*wrptr = idx;
8309 
8310 	val &= 0xffff;
8311 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
8312 	val |= adap->params.tp.la_mask;
8313 
8314 	for (i = 0; i < TPLA_SIZE; i++) {
8315 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8316 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8317 		idx = (idx + 1) & DBGLARPTR_M;
8318 	}
8319 
8320 	/* Wipe out last entry if it isn't valid */
8321 	if (last_incomplete)
8322 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8323 
8324 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
8325 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8326 			     cfg | adap->params.tp.la_mask);
8327 }
8328 
8329 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8330  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8331  * state for more than the Warning Threshold then we'll issue a warning about
8332  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8333  * appears to be hung every Warning Repeat second till the situation clears.
8334  * If the situation clears, we'll note that as well.
8335  */
8336 #define SGE_IDMA_WARN_THRESH 1
8337 #define SGE_IDMA_WARN_REPEAT 300
8338 
8339 /**
8340  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8341  *	@adapter: the adapter
8342  *	@idma: the adapter IDMA Monitor state
8343  *
8344  *	Initialize the state of an SGE Ingress DMA Monitor.
8345  */
8346 void t4_idma_monitor_init(struct adapter *adapter,
8347 			  struct sge_idma_monitor_state *idma)
8348 {
8349 	/* Initialize the state variables for detecting an SGE Ingress DMA
8350 	 * hang.  The SGE has internal counters which count up on each clock
8351 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8352 	 * same state they were on the previous clock tick.  The clock used is
8353 	 * the Core Clock so we have a limit on the maximum "time" they can
8354 	 * record; typically a very small number of seconds.  For instance,
8355 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8356 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8357 	 * risk of having the "timers" overflow and give us the flexibility to
8358 	 * maintain a Hung SGE State Machine of our own which operates across
8359 	 * a longer time frame.
8360 	 */
8361 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8362 	idma->idma_stalled[0] = 0;
8363 	idma->idma_stalled[1] = 0;
8364 }
8365 
8366 /**
8367  *	t4_idma_monitor - monitor SGE Ingress DMA state
8368  *	@adapter: the adapter
8369  *	@idma: the adapter IDMA Monitor state
8370  *	@hz: number of ticks/second
8371  *	@ticks: number of ticks since the last IDMA Monitor call
8372  */
8373 void t4_idma_monitor(struct adapter *adapter,
8374 		     struct sge_idma_monitor_state *idma,
8375 		     int hz, int ticks)
8376 {
8377 	int i, idma_same_state_cnt[2];
8378 
8379 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8380 	  * are counters inside the SGE which count up on each clock when the
8381 	  * SGE finds its Ingress DMA State Engines in the same states they
8382 	  * were in the previous clock.  The counters will peg out at
8383 	  * 0xffffffff without wrapping around so once they pass the 1s
8384 	  * threshold they'll stay above that till the IDMA state changes.
8385 	  */
8386 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8387 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8388 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8389 
8390 	for (i = 0; i < 2; i++) {
8391 		u32 debug0, debug11;
8392 
8393 		/* If the Ingress DMA Same State Counter ("timer") is less
8394 		 * than 1s, then we can reset our synthesized Stall Timer and
8395 		 * continue.  If we have previously emitted warnings about a
8396 		 * potential stalled Ingress Queue, issue a note indicating
8397 		 * that the Ingress Queue has resumed forward progress.
8398 		 */
8399 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8400 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8401 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8402 					 "resumed after %d seconds\n",
8403 					 i, idma->idma_qid[i],
8404 					 idma->idma_stalled[i] / hz);
8405 			idma->idma_stalled[i] = 0;
8406 			continue;
8407 		}
8408 
8409 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8410 		 * domain.  The first time we get here it'll be because we
8411 		 * passed the 1s Threshold; each additional time it'll be
8412 		 * because the RX Timer Callback is being fired on its regular
8413 		 * schedule.
8414 		 *
8415 		 * If the stall is below our Potential Hung Ingress Queue
8416 		 * Warning Threshold, continue.
8417 		 */
8418 		if (idma->idma_stalled[i] == 0) {
8419 			idma->idma_stalled[i] = hz;
8420 			idma->idma_warn[i] = 0;
8421 		} else {
8422 			idma->idma_stalled[i] += ticks;
8423 			idma->idma_warn[i] -= ticks;
8424 		}
8425 
8426 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8427 			continue;
8428 
8429 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8430 		 */
8431 		if (idma->idma_warn[i] > 0)
8432 			continue;
8433 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8434 
8435 		/* Read and save the SGE IDMA State and Queue ID information.
8436 		 * We do this every time in case it changes across time ...
8437 		 * can't be too careful ...
8438 		 */
8439 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8440 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8441 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8442 
8443 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8444 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8445 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8446 
8447 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8448 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8449 			 i, idma->idma_qid[i], idma->idma_state[i],
8450 			 idma->idma_stalled[i] / hz,
8451 			 debug0, debug11);
8452 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8453 	}
8454 }
8455 
8456 /**
8457  *	t4_set_vf_mac - Set MAC address for the specified VF
8458  *	@adapter: The adapter
8459  *	@vf: one of the VFs instantiated by the specified PF
8460  *	@naddr: the number of MAC addresses
8461  *	@addr: the MAC address(es) to be set to the specified VF
8462  */
8463 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
8464 		      unsigned int naddr, u8 *addr)
8465 {
8466 	struct fw_acl_mac_cmd cmd;
8467 
8468 	memset(&cmd, 0, sizeof(cmd));
8469 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
8470 				    FW_CMD_REQUEST_F |
8471 				    FW_CMD_WRITE_F |
8472 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
8473 				    FW_ACL_MAC_CMD_VFN_V(vf));
8474 
8475 	/* Note: Do not enable the ACL */
8476 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
8477 	cmd.nmac = naddr;
8478 
8479 	switch (adapter->pf) {
8480 	case 3:
8481 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
8482 		break;
8483 	case 2:
8484 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
8485 		break;
8486 	case 1:
8487 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
8488 		break;
8489 	case 0:
8490 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
8491 		break;
8492 	}
8493 
8494 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
8495 }
8496 
8497 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
8498 		    int rateunit, int ratemode, int channel, int class,
8499 		    int minrate, int maxrate, int weight, int pktsize)
8500 {
8501 	struct fw_sched_cmd cmd;
8502 
8503 	memset(&cmd, 0, sizeof(cmd));
8504 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
8505 				      FW_CMD_REQUEST_F |
8506 				      FW_CMD_WRITE_F);
8507 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
8508 
8509 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
8510 	cmd.u.params.type = type;
8511 	cmd.u.params.level = level;
8512 	cmd.u.params.mode = mode;
8513 	cmd.u.params.ch = channel;
8514 	cmd.u.params.cl = class;
8515 	cmd.u.params.unit = rateunit;
8516 	cmd.u.params.rate = ratemode;
8517 	cmd.u.params.min = cpu_to_be32(minrate);
8518 	cmd.u.params.max = cpu_to_be32(maxrate);
8519 	cmd.u.params.weight = cpu_to_be16(weight);
8520 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
8521 
8522 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
8523 			       NULL, 1);
8524 }
8525