1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rearely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boudaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9820, 0x983c, 1383 0x9850, 0x9864, 1384 0x9c00, 0x9c6c, 1385 0x9c80, 0x9cec, 1386 0x9d00, 0x9d6c, 1387 0x9d80, 0x9dec, 1388 0x9e00, 0x9e6c, 1389 0x9e80, 0x9eec, 1390 0x9f00, 0x9f6c, 1391 0x9f80, 0xa020, 1392 0xd004, 0xd004, 1393 0xd010, 0xd03c, 1394 0xdfc0, 0xdfe0, 1395 0xe000, 0x1106c, 1396 0x11074, 0x11088, 1397 0x1109c, 0x1117c, 1398 0x11190, 0x11204, 1399 0x19040, 0x1906c, 1400 0x19078, 0x19080, 1401 0x1908c, 0x190e8, 1402 0x190f0, 0x190f8, 1403 0x19100, 0x19110, 1404 0x19120, 0x19124, 1405 0x19150, 0x19194, 1406 0x1919c, 0x191b0, 1407 0x191d0, 0x191e8, 1408 0x19238, 0x19290, 1409 0x193f8, 0x19428, 1410 0x19430, 0x19444, 1411 0x1944c, 0x1946c, 1412 0x19474, 0x19474, 1413 0x19490, 0x194cc, 1414 0x194f0, 0x194f8, 1415 0x19c00, 0x19c08, 1416 0x19c10, 0x19c60, 1417 0x19c94, 0x19ce4, 1418 0x19cf0, 0x19d40, 1419 0x19d50, 0x19d94, 1420 0x19da0, 0x19de8, 1421 0x19df0, 0x19e10, 1422 0x19e50, 0x19e90, 1423 0x19ea0, 0x19f24, 1424 0x19f34, 0x19f34, 1425 0x19f40, 0x19f50, 1426 0x19f90, 0x19fb4, 1427 0x19fc4, 0x19fe4, 1428 0x1a000, 0x1a004, 1429 0x1a010, 0x1a06c, 1430 0x1a0b0, 0x1a0e4, 1431 0x1a0ec, 0x1a0f8, 1432 0x1a100, 0x1a108, 1433 0x1a114, 0x1a120, 1434 0x1a128, 0x1a130, 1435 0x1a138, 0x1a138, 1436 0x1a190, 0x1a1c4, 1437 0x1a1fc, 0x1a1fc, 1438 0x1e008, 0x1e00c, 1439 0x1e040, 0x1e044, 1440 0x1e04c, 0x1e04c, 1441 0x1e284, 0x1e290, 1442 0x1e2c0, 0x1e2c0, 1443 0x1e2e0, 0x1e2e0, 1444 0x1e300, 0x1e384, 1445 0x1e3c0, 0x1e3c8, 1446 0x1e408, 0x1e40c, 1447 0x1e440, 0x1e444, 1448 0x1e44c, 0x1e44c, 1449 0x1e684, 0x1e690, 1450 0x1e6c0, 0x1e6c0, 1451 0x1e6e0, 0x1e6e0, 1452 0x1e700, 0x1e784, 1453 0x1e7c0, 0x1e7c8, 1454 0x1e808, 0x1e80c, 1455 0x1e840, 0x1e844, 1456 0x1e84c, 0x1e84c, 1457 0x1ea84, 0x1ea90, 1458 0x1eac0, 0x1eac0, 1459 0x1eae0, 0x1eae0, 1460 0x1eb00, 0x1eb84, 1461 0x1ebc0, 0x1ebc8, 1462 0x1ec08, 0x1ec0c, 1463 0x1ec40, 0x1ec44, 1464 0x1ec4c, 0x1ec4c, 1465 0x1ee84, 0x1ee90, 1466 0x1eec0, 0x1eec0, 1467 0x1eee0, 0x1eee0, 1468 0x1ef00, 0x1ef84, 1469 0x1efc0, 0x1efc8, 1470 0x1f008, 0x1f00c, 1471 0x1f040, 0x1f044, 1472 0x1f04c, 0x1f04c, 1473 0x1f284, 0x1f290, 1474 0x1f2c0, 0x1f2c0, 1475 0x1f2e0, 0x1f2e0, 1476 0x1f300, 0x1f384, 1477 0x1f3c0, 0x1f3c8, 1478 0x1f408, 0x1f40c, 1479 0x1f440, 0x1f444, 1480 0x1f44c, 0x1f44c, 1481 0x1f684, 0x1f690, 1482 0x1f6c0, 0x1f6c0, 1483 0x1f6e0, 0x1f6e0, 1484 0x1f700, 0x1f784, 1485 0x1f7c0, 0x1f7c8, 1486 0x1f808, 0x1f80c, 1487 0x1f840, 0x1f844, 1488 0x1f84c, 0x1f84c, 1489 0x1fa84, 0x1fa90, 1490 0x1fac0, 0x1fac0, 1491 0x1fae0, 0x1fae0, 1492 0x1fb00, 0x1fb84, 1493 0x1fbc0, 0x1fbc8, 1494 0x1fc08, 0x1fc0c, 1495 0x1fc40, 0x1fc44, 1496 0x1fc4c, 0x1fc4c, 1497 0x1fe84, 0x1fe90, 1498 0x1fec0, 0x1fec0, 1499 0x1fee0, 0x1fee0, 1500 0x1ff00, 0x1ff84, 1501 0x1ffc0, 0x1ffc8, 1502 0x30000, 0x30030, 1503 0x30100, 0x30144, 1504 0x30190, 0x301a0, 1505 0x301a8, 0x301b8, 1506 0x301c4, 0x301c8, 1507 0x301d0, 0x301d0, 1508 0x30200, 0x30318, 1509 0x30400, 0x304b4, 1510 0x304c0, 0x3052c, 1511 0x30540, 0x3061c, 1512 0x30800, 0x30828, 1513 0x30834, 0x30834, 1514 0x308c0, 0x30908, 1515 0x30910, 0x309ac, 1516 0x30a00, 0x30a14, 1517 0x30a1c, 0x30a2c, 1518 0x30a44, 0x30a50, 1519 0x30a74, 0x30a74, 1520 0x30a7c, 0x30afc, 1521 0x30b08, 0x30c24, 1522 0x30d00, 0x30d00, 1523 0x30d08, 0x30d14, 1524 0x30d1c, 0x30d20, 1525 0x30d3c, 0x30d3c, 1526 0x30d48, 0x30d50, 1527 0x31200, 0x3120c, 1528 0x31220, 0x31220, 1529 0x31240, 0x31240, 1530 0x31600, 0x3160c, 1531 0x31a00, 0x31a1c, 1532 0x31e00, 0x31e20, 1533 0x31e38, 0x31e3c, 1534 0x31e80, 0x31e80, 1535 0x31e88, 0x31ea8, 1536 0x31eb0, 0x31eb4, 1537 0x31ec8, 0x31ed4, 1538 0x31fb8, 0x32004, 1539 0x32200, 0x32200, 1540 0x32208, 0x32240, 1541 0x32248, 0x32280, 1542 0x32288, 0x322c0, 1543 0x322c8, 0x322fc, 1544 0x32600, 0x32630, 1545 0x32a00, 0x32abc, 1546 0x32b00, 0x32b10, 1547 0x32b20, 0x32b30, 1548 0x32b40, 0x32b50, 1549 0x32b60, 0x32b70, 1550 0x33000, 0x33028, 1551 0x33030, 0x33048, 1552 0x33060, 0x33068, 1553 0x33070, 0x3309c, 1554 0x330f0, 0x33128, 1555 0x33130, 0x33148, 1556 0x33160, 0x33168, 1557 0x33170, 0x3319c, 1558 0x331f0, 0x33238, 1559 0x33240, 0x33240, 1560 0x33248, 0x33250, 1561 0x3325c, 0x33264, 1562 0x33270, 0x332b8, 1563 0x332c0, 0x332e4, 1564 0x332f8, 0x33338, 1565 0x33340, 0x33340, 1566 0x33348, 0x33350, 1567 0x3335c, 0x33364, 1568 0x33370, 0x333b8, 1569 0x333c0, 0x333e4, 1570 0x333f8, 0x33428, 1571 0x33430, 0x33448, 1572 0x33460, 0x33468, 1573 0x33470, 0x3349c, 1574 0x334f0, 0x33528, 1575 0x33530, 0x33548, 1576 0x33560, 0x33568, 1577 0x33570, 0x3359c, 1578 0x335f0, 0x33638, 1579 0x33640, 0x33640, 1580 0x33648, 0x33650, 1581 0x3365c, 0x33664, 1582 0x33670, 0x336b8, 1583 0x336c0, 0x336e4, 1584 0x336f8, 0x33738, 1585 0x33740, 0x33740, 1586 0x33748, 0x33750, 1587 0x3375c, 0x33764, 1588 0x33770, 0x337b8, 1589 0x337c0, 0x337e4, 1590 0x337f8, 0x337fc, 1591 0x33814, 0x33814, 1592 0x3382c, 0x3382c, 1593 0x33880, 0x3388c, 1594 0x338e8, 0x338ec, 1595 0x33900, 0x33928, 1596 0x33930, 0x33948, 1597 0x33960, 0x33968, 1598 0x33970, 0x3399c, 1599 0x339f0, 0x33a38, 1600 0x33a40, 0x33a40, 1601 0x33a48, 0x33a50, 1602 0x33a5c, 0x33a64, 1603 0x33a70, 0x33ab8, 1604 0x33ac0, 0x33ae4, 1605 0x33af8, 0x33b10, 1606 0x33b28, 0x33b28, 1607 0x33b3c, 0x33b50, 1608 0x33bf0, 0x33c10, 1609 0x33c28, 0x33c28, 1610 0x33c3c, 0x33c50, 1611 0x33cf0, 0x33cfc, 1612 0x34000, 0x34030, 1613 0x34100, 0x34144, 1614 0x34190, 0x341a0, 1615 0x341a8, 0x341b8, 1616 0x341c4, 0x341c8, 1617 0x341d0, 0x341d0, 1618 0x34200, 0x34318, 1619 0x34400, 0x344b4, 1620 0x344c0, 0x3452c, 1621 0x34540, 0x3461c, 1622 0x34800, 0x34828, 1623 0x34834, 0x34834, 1624 0x348c0, 0x34908, 1625 0x34910, 0x349ac, 1626 0x34a00, 0x34a14, 1627 0x34a1c, 0x34a2c, 1628 0x34a44, 0x34a50, 1629 0x34a74, 0x34a74, 1630 0x34a7c, 0x34afc, 1631 0x34b08, 0x34c24, 1632 0x34d00, 0x34d00, 1633 0x34d08, 0x34d14, 1634 0x34d1c, 0x34d20, 1635 0x34d3c, 0x34d3c, 1636 0x34d48, 0x34d50, 1637 0x35200, 0x3520c, 1638 0x35220, 0x35220, 1639 0x35240, 0x35240, 1640 0x35600, 0x3560c, 1641 0x35a00, 0x35a1c, 1642 0x35e00, 0x35e20, 1643 0x35e38, 0x35e3c, 1644 0x35e80, 0x35e80, 1645 0x35e88, 0x35ea8, 1646 0x35eb0, 0x35eb4, 1647 0x35ec8, 0x35ed4, 1648 0x35fb8, 0x36004, 1649 0x36200, 0x36200, 1650 0x36208, 0x36240, 1651 0x36248, 0x36280, 1652 0x36288, 0x362c0, 1653 0x362c8, 0x362fc, 1654 0x36600, 0x36630, 1655 0x36a00, 0x36abc, 1656 0x36b00, 0x36b10, 1657 0x36b20, 0x36b30, 1658 0x36b40, 0x36b50, 1659 0x36b60, 0x36b70, 1660 0x37000, 0x37028, 1661 0x37030, 0x37048, 1662 0x37060, 0x37068, 1663 0x37070, 0x3709c, 1664 0x370f0, 0x37128, 1665 0x37130, 0x37148, 1666 0x37160, 0x37168, 1667 0x37170, 0x3719c, 1668 0x371f0, 0x37238, 1669 0x37240, 0x37240, 1670 0x37248, 0x37250, 1671 0x3725c, 0x37264, 1672 0x37270, 0x372b8, 1673 0x372c0, 0x372e4, 1674 0x372f8, 0x37338, 1675 0x37340, 0x37340, 1676 0x37348, 0x37350, 1677 0x3735c, 0x37364, 1678 0x37370, 0x373b8, 1679 0x373c0, 0x373e4, 1680 0x373f8, 0x37428, 1681 0x37430, 0x37448, 1682 0x37460, 0x37468, 1683 0x37470, 0x3749c, 1684 0x374f0, 0x37528, 1685 0x37530, 0x37548, 1686 0x37560, 0x37568, 1687 0x37570, 0x3759c, 1688 0x375f0, 0x37638, 1689 0x37640, 0x37640, 1690 0x37648, 0x37650, 1691 0x3765c, 0x37664, 1692 0x37670, 0x376b8, 1693 0x376c0, 0x376e4, 1694 0x376f8, 0x37738, 1695 0x37740, 0x37740, 1696 0x37748, 0x37750, 1697 0x3775c, 0x37764, 1698 0x37770, 0x377b8, 1699 0x377c0, 0x377e4, 1700 0x377f8, 0x377fc, 1701 0x37814, 0x37814, 1702 0x3782c, 0x3782c, 1703 0x37880, 0x3788c, 1704 0x378e8, 0x378ec, 1705 0x37900, 0x37928, 1706 0x37930, 0x37948, 1707 0x37960, 0x37968, 1708 0x37970, 0x3799c, 1709 0x379f0, 0x37a38, 1710 0x37a40, 0x37a40, 1711 0x37a48, 0x37a50, 1712 0x37a5c, 0x37a64, 1713 0x37a70, 0x37ab8, 1714 0x37ac0, 0x37ae4, 1715 0x37af8, 0x37b10, 1716 0x37b28, 0x37b28, 1717 0x37b3c, 0x37b50, 1718 0x37bf0, 0x37c10, 1719 0x37c28, 0x37c28, 1720 0x37c3c, 0x37c50, 1721 0x37cf0, 0x37cfc, 1722 0x38000, 0x38030, 1723 0x38100, 0x38144, 1724 0x38190, 0x381a0, 1725 0x381a8, 0x381b8, 1726 0x381c4, 0x381c8, 1727 0x381d0, 0x381d0, 1728 0x38200, 0x38318, 1729 0x38400, 0x384b4, 1730 0x384c0, 0x3852c, 1731 0x38540, 0x3861c, 1732 0x38800, 0x38828, 1733 0x38834, 0x38834, 1734 0x388c0, 0x38908, 1735 0x38910, 0x389ac, 1736 0x38a00, 0x38a14, 1737 0x38a1c, 0x38a2c, 1738 0x38a44, 0x38a50, 1739 0x38a74, 0x38a74, 1740 0x38a7c, 0x38afc, 1741 0x38b08, 0x38c24, 1742 0x38d00, 0x38d00, 1743 0x38d08, 0x38d14, 1744 0x38d1c, 0x38d20, 1745 0x38d3c, 0x38d3c, 1746 0x38d48, 0x38d50, 1747 0x39200, 0x3920c, 1748 0x39220, 0x39220, 1749 0x39240, 0x39240, 1750 0x39600, 0x3960c, 1751 0x39a00, 0x39a1c, 1752 0x39e00, 0x39e20, 1753 0x39e38, 0x39e3c, 1754 0x39e80, 0x39e80, 1755 0x39e88, 0x39ea8, 1756 0x39eb0, 0x39eb4, 1757 0x39ec8, 0x39ed4, 1758 0x39fb8, 0x3a004, 1759 0x3a200, 0x3a200, 1760 0x3a208, 0x3a240, 1761 0x3a248, 0x3a280, 1762 0x3a288, 0x3a2c0, 1763 0x3a2c8, 0x3a2fc, 1764 0x3a600, 0x3a630, 1765 0x3aa00, 0x3aabc, 1766 0x3ab00, 0x3ab10, 1767 0x3ab20, 0x3ab30, 1768 0x3ab40, 0x3ab50, 1769 0x3ab60, 0x3ab70, 1770 0x3b000, 0x3b028, 1771 0x3b030, 0x3b048, 1772 0x3b060, 0x3b068, 1773 0x3b070, 0x3b09c, 1774 0x3b0f0, 0x3b128, 1775 0x3b130, 0x3b148, 1776 0x3b160, 0x3b168, 1777 0x3b170, 0x3b19c, 1778 0x3b1f0, 0x3b238, 1779 0x3b240, 0x3b240, 1780 0x3b248, 0x3b250, 1781 0x3b25c, 0x3b264, 1782 0x3b270, 0x3b2b8, 1783 0x3b2c0, 0x3b2e4, 1784 0x3b2f8, 0x3b338, 1785 0x3b340, 0x3b340, 1786 0x3b348, 0x3b350, 1787 0x3b35c, 0x3b364, 1788 0x3b370, 0x3b3b8, 1789 0x3b3c0, 0x3b3e4, 1790 0x3b3f8, 0x3b428, 1791 0x3b430, 0x3b448, 1792 0x3b460, 0x3b468, 1793 0x3b470, 0x3b49c, 1794 0x3b4f0, 0x3b528, 1795 0x3b530, 0x3b548, 1796 0x3b560, 0x3b568, 1797 0x3b570, 0x3b59c, 1798 0x3b5f0, 0x3b638, 1799 0x3b640, 0x3b640, 1800 0x3b648, 0x3b650, 1801 0x3b65c, 0x3b664, 1802 0x3b670, 0x3b6b8, 1803 0x3b6c0, 0x3b6e4, 1804 0x3b6f8, 0x3b738, 1805 0x3b740, 0x3b740, 1806 0x3b748, 0x3b750, 1807 0x3b75c, 0x3b764, 1808 0x3b770, 0x3b7b8, 1809 0x3b7c0, 0x3b7e4, 1810 0x3b7f8, 0x3b7fc, 1811 0x3b814, 0x3b814, 1812 0x3b82c, 0x3b82c, 1813 0x3b880, 0x3b88c, 1814 0x3b8e8, 0x3b8ec, 1815 0x3b900, 0x3b928, 1816 0x3b930, 0x3b948, 1817 0x3b960, 0x3b968, 1818 0x3b970, 0x3b99c, 1819 0x3b9f0, 0x3ba38, 1820 0x3ba40, 0x3ba40, 1821 0x3ba48, 0x3ba50, 1822 0x3ba5c, 0x3ba64, 1823 0x3ba70, 0x3bab8, 1824 0x3bac0, 0x3bae4, 1825 0x3baf8, 0x3bb10, 1826 0x3bb28, 0x3bb28, 1827 0x3bb3c, 0x3bb50, 1828 0x3bbf0, 0x3bc10, 1829 0x3bc28, 0x3bc28, 1830 0x3bc3c, 0x3bc50, 1831 0x3bcf0, 0x3bcfc, 1832 0x3c000, 0x3c030, 1833 0x3c100, 0x3c144, 1834 0x3c190, 0x3c1a0, 1835 0x3c1a8, 0x3c1b8, 1836 0x3c1c4, 0x3c1c8, 1837 0x3c1d0, 0x3c1d0, 1838 0x3c200, 0x3c318, 1839 0x3c400, 0x3c4b4, 1840 0x3c4c0, 0x3c52c, 1841 0x3c540, 0x3c61c, 1842 0x3c800, 0x3c828, 1843 0x3c834, 0x3c834, 1844 0x3c8c0, 0x3c908, 1845 0x3c910, 0x3c9ac, 1846 0x3ca00, 0x3ca14, 1847 0x3ca1c, 0x3ca2c, 1848 0x3ca44, 0x3ca50, 1849 0x3ca74, 0x3ca74, 1850 0x3ca7c, 0x3cafc, 1851 0x3cb08, 0x3cc24, 1852 0x3cd00, 0x3cd00, 1853 0x3cd08, 0x3cd14, 1854 0x3cd1c, 0x3cd20, 1855 0x3cd3c, 0x3cd3c, 1856 0x3cd48, 0x3cd50, 1857 0x3d200, 0x3d20c, 1858 0x3d220, 0x3d220, 1859 0x3d240, 0x3d240, 1860 0x3d600, 0x3d60c, 1861 0x3da00, 0x3da1c, 1862 0x3de00, 0x3de20, 1863 0x3de38, 0x3de3c, 1864 0x3de80, 0x3de80, 1865 0x3de88, 0x3dea8, 1866 0x3deb0, 0x3deb4, 1867 0x3dec8, 0x3ded4, 1868 0x3dfb8, 0x3e004, 1869 0x3e200, 0x3e200, 1870 0x3e208, 0x3e240, 1871 0x3e248, 0x3e280, 1872 0x3e288, 0x3e2c0, 1873 0x3e2c8, 0x3e2fc, 1874 0x3e600, 0x3e630, 1875 0x3ea00, 0x3eabc, 1876 0x3eb00, 0x3eb10, 1877 0x3eb20, 0x3eb30, 1878 0x3eb40, 0x3eb50, 1879 0x3eb60, 0x3eb70, 1880 0x3f000, 0x3f028, 1881 0x3f030, 0x3f048, 1882 0x3f060, 0x3f068, 1883 0x3f070, 0x3f09c, 1884 0x3f0f0, 0x3f128, 1885 0x3f130, 0x3f148, 1886 0x3f160, 0x3f168, 1887 0x3f170, 0x3f19c, 1888 0x3f1f0, 0x3f238, 1889 0x3f240, 0x3f240, 1890 0x3f248, 0x3f250, 1891 0x3f25c, 0x3f264, 1892 0x3f270, 0x3f2b8, 1893 0x3f2c0, 0x3f2e4, 1894 0x3f2f8, 0x3f338, 1895 0x3f340, 0x3f340, 1896 0x3f348, 0x3f350, 1897 0x3f35c, 0x3f364, 1898 0x3f370, 0x3f3b8, 1899 0x3f3c0, 0x3f3e4, 1900 0x3f3f8, 0x3f428, 1901 0x3f430, 0x3f448, 1902 0x3f460, 0x3f468, 1903 0x3f470, 0x3f49c, 1904 0x3f4f0, 0x3f528, 1905 0x3f530, 0x3f548, 1906 0x3f560, 0x3f568, 1907 0x3f570, 0x3f59c, 1908 0x3f5f0, 0x3f638, 1909 0x3f640, 0x3f640, 1910 0x3f648, 0x3f650, 1911 0x3f65c, 0x3f664, 1912 0x3f670, 0x3f6b8, 1913 0x3f6c0, 0x3f6e4, 1914 0x3f6f8, 0x3f738, 1915 0x3f740, 0x3f740, 1916 0x3f748, 0x3f750, 1917 0x3f75c, 0x3f764, 1918 0x3f770, 0x3f7b8, 1919 0x3f7c0, 0x3f7e4, 1920 0x3f7f8, 0x3f7fc, 1921 0x3f814, 0x3f814, 1922 0x3f82c, 0x3f82c, 1923 0x3f880, 0x3f88c, 1924 0x3f8e8, 0x3f8ec, 1925 0x3f900, 0x3f928, 1926 0x3f930, 0x3f948, 1927 0x3f960, 0x3f968, 1928 0x3f970, 0x3f99c, 1929 0x3f9f0, 0x3fa38, 1930 0x3fa40, 0x3fa40, 1931 0x3fa48, 0x3fa50, 1932 0x3fa5c, 0x3fa64, 1933 0x3fa70, 0x3fab8, 1934 0x3fac0, 0x3fae4, 1935 0x3faf8, 0x3fb10, 1936 0x3fb28, 0x3fb28, 1937 0x3fb3c, 0x3fb50, 1938 0x3fbf0, 0x3fc10, 1939 0x3fc28, 0x3fc28, 1940 0x3fc3c, 0x3fc50, 1941 0x3fcf0, 0x3fcfc, 1942 0x40000, 0x4000c, 1943 0x40040, 0x40050, 1944 0x40060, 0x40068, 1945 0x4007c, 0x4008c, 1946 0x40094, 0x400b0, 1947 0x400c0, 0x40144, 1948 0x40180, 0x4018c, 1949 0x40200, 0x40254, 1950 0x40260, 0x40264, 1951 0x40270, 0x40288, 1952 0x40290, 0x40298, 1953 0x402ac, 0x402c8, 1954 0x402d0, 0x402e0, 1955 0x402f0, 0x402f0, 1956 0x40300, 0x4033c, 1957 0x403f8, 0x403fc, 1958 0x41304, 0x413c4, 1959 0x41400, 0x4140c, 1960 0x41414, 0x4141c, 1961 0x41480, 0x414d0, 1962 0x44000, 0x44054, 1963 0x4405c, 0x44078, 1964 0x440c0, 0x44174, 1965 0x44180, 0x441ac, 1966 0x441b4, 0x441b8, 1967 0x441c0, 0x44254, 1968 0x4425c, 0x44278, 1969 0x442c0, 0x44374, 1970 0x44380, 0x443ac, 1971 0x443b4, 0x443b8, 1972 0x443c0, 0x44454, 1973 0x4445c, 0x44478, 1974 0x444c0, 0x44574, 1975 0x44580, 0x445ac, 1976 0x445b4, 0x445b8, 1977 0x445c0, 0x44654, 1978 0x4465c, 0x44678, 1979 0x446c0, 0x44774, 1980 0x44780, 0x447ac, 1981 0x447b4, 0x447b8, 1982 0x447c0, 0x44854, 1983 0x4485c, 0x44878, 1984 0x448c0, 0x44974, 1985 0x44980, 0x449ac, 1986 0x449b4, 0x449b8, 1987 0x449c0, 0x449fc, 1988 0x45000, 0x45004, 1989 0x45010, 0x45030, 1990 0x45040, 0x45060, 1991 0x45068, 0x45068, 1992 0x45080, 0x45084, 1993 0x450a0, 0x450b0, 1994 0x45200, 0x45204, 1995 0x45210, 0x45230, 1996 0x45240, 0x45260, 1997 0x45268, 0x45268, 1998 0x45280, 0x45284, 1999 0x452a0, 0x452b0, 2000 0x460c0, 0x460e4, 2001 0x47000, 0x4703c, 2002 0x47044, 0x4708c, 2003 0x47200, 0x47250, 2004 0x47400, 0x47408, 2005 0x47414, 0x47420, 2006 0x47600, 0x47618, 2007 0x47800, 0x47814, 2008 0x48000, 0x4800c, 2009 0x48040, 0x48050, 2010 0x48060, 0x48068, 2011 0x4807c, 0x4808c, 2012 0x48094, 0x480b0, 2013 0x480c0, 0x48144, 2014 0x48180, 0x4818c, 2015 0x48200, 0x48254, 2016 0x48260, 0x48264, 2017 0x48270, 0x48288, 2018 0x48290, 0x48298, 2019 0x482ac, 0x482c8, 2020 0x482d0, 0x482e0, 2021 0x482f0, 0x482f0, 2022 0x48300, 0x4833c, 2023 0x483f8, 0x483fc, 2024 0x49304, 0x493c4, 2025 0x49400, 0x4940c, 2026 0x49414, 0x4941c, 2027 0x49480, 0x494d0, 2028 0x4c000, 0x4c054, 2029 0x4c05c, 0x4c078, 2030 0x4c0c0, 0x4c174, 2031 0x4c180, 0x4c1ac, 2032 0x4c1b4, 0x4c1b8, 2033 0x4c1c0, 0x4c254, 2034 0x4c25c, 0x4c278, 2035 0x4c2c0, 0x4c374, 2036 0x4c380, 0x4c3ac, 2037 0x4c3b4, 0x4c3b8, 2038 0x4c3c0, 0x4c454, 2039 0x4c45c, 0x4c478, 2040 0x4c4c0, 0x4c574, 2041 0x4c580, 0x4c5ac, 2042 0x4c5b4, 0x4c5b8, 2043 0x4c5c0, 0x4c654, 2044 0x4c65c, 0x4c678, 2045 0x4c6c0, 0x4c774, 2046 0x4c780, 0x4c7ac, 2047 0x4c7b4, 0x4c7b8, 2048 0x4c7c0, 0x4c854, 2049 0x4c85c, 0x4c878, 2050 0x4c8c0, 0x4c974, 2051 0x4c980, 0x4c9ac, 2052 0x4c9b4, 0x4c9b8, 2053 0x4c9c0, 0x4c9fc, 2054 0x4d000, 0x4d004, 2055 0x4d010, 0x4d030, 2056 0x4d040, 0x4d060, 2057 0x4d068, 0x4d068, 2058 0x4d080, 0x4d084, 2059 0x4d0a0, 0x4d0b0, 2060 0x4d200, 0x4d204, 2061 0x4d210, 0x4d230, 2062 0x4d240, 0x4d260, 2063 0x4d268, 0x4d268, 2064 0x4d280, 0x4d284, 2065 0x4d2a0, 0x4d2b0, 2066 0x4e0c0, 0x4e0e4, 2067 0x4f000, 0x4f03c, 2068 0x4f044, 0x4f08c, 2069 0x4f200, 0x4f250, 2070 0x4f400, 0x4f408, 2071 0x4f414, 0x4f420, 2072 0x4f600, 0x4f618, 2073 0x4f800, 0x4f814, 2074 0x50000, 0x50084, 2075 0x50090, 0x500cc, 2076 0x50400, 0x50400, 2077 0x50800, 0x50884, 2078 0x50890, 0x508cc, 2079 0x50c00, 0x50c00, 2080 0x51000, 0x5101c, 2081 0x51300, 0x51308, 2082 }; 2083 2084 static const unsigned int t6_reg_ranges[] = { 2085 0x1008, 0x101c, 2086 0x1024, 0x10a8, 2087 0x10b4, 0x10f8, 2088 0x1100, 0x1114, 2089 0x111c, 0x112c, 2090 0x1138, 0x113c, 2091 0x1144, 0x114c, 2092 0x1180, 0x1184, 2093 0x1190, 0x1194, 2094 0x11a0, 0x11a4, 2095 0x11b0, 0x11b4, 2096 0x11fc, 0x1274, 2097 0x1280, 0x133c, 2098 0x1800, 0x18fc, 2099 0x3000, 0x302c, 2100 0x3060, 0x30b0, 2101 0x30b8, 0x30d8, 2102 0x30e0, 0x30fc, 2103 0x3140, 0x357c, 2104 0x35a8, 0x35cc, 2105 0x35ec, 0x35ec, 2106 0x3600, 0x5624, 2107 0x56cc, 0x56ec, 2108 0x56f4, 0x5720, 2109 0x5728, 0x575c, 2110 0x580c, 0x5814, 2111 0x5890, 0x589c, 2112 0x58a4, 0x58ac, 2113 0x58b8, 0x58bc, 2114 0x5940, 0x595c, 2115 0x5980, 0x598c, 2116 0x59b0, 0x59c8, 2117 0x59d0, 0x59dc, 2118 0x59fc, 0x5a18, 2119 0x5a60, 0x5a6c, 2120 0x5a80, 0x5a8c, 2121 0x5a94, 0x5a9c, 2122 0x5b94, 0x5bfc, 2123 0x5c10, 0x5e48, 2124 0x5e50, 0x5e94, 2125 0x5ea0, 0x5eb0, 2126 0x5ec0, 0x5ec0, 2127 0x5ec8, 0x5ed0, 2128 0x5ee0, 0x5ee0, 2129 0x5ef0, 0x5ef0, 2130 0x5f00, 0x5f00, 2131 0x6000, 0x6020, 2132 0x6028, 0x6040, 2133 0x6058, 0x609c, 2134 0x60a8, 0x619c, 2135 0x7700, 0x7798, 2136 0x77c0, 0x7880, 2137 0x78cc, 0x78fc, 2138 0x7b00, 0x7b58, 2139 0x7b60, 0x7b84, 2140 0x7b8c, 0x7c54, 2141 0x7d00, 0x7d38, 2142 0x7d40, 0x7d84, 2143 0x7d8c, 0x7ddc, 2144 0x7de4, 0x7e04, 2145 0x7e10, 0x7e1c, 2146 0x7e24, 0x7e38, 2147 0x7e40, 0x7e44, 2148 0x7e4c, 0x7e78, 2149 0x7e80, 0x7edc, 2150 0x7ee8, 0x7efc, 2151 0x8dc0, 0x8de4, 2152 0x8df8, 0x8e04, 2153 0x8e10, 0x8e84, 2154 0x8ea0, 0x8f88, 2155 0x8fb8, 0x9058, 2156 0x9060, 0x9060, 2157 0x9068, 0x90f8, 2158 0x9100, 0x9124, 2159 0x9400, 0x9470, 2160 0x9600, 0x9600, 2161 0x9608, 0x9638, 2162 0x9640, 0x9704, 2163 0x9710, 0x971c, 2164 0x9800, 0x9808, 2165 0x9820, 0x983c, 2166 0x9850, 0x9864, 2167 0x9c00, 0x9c6c, 2168 0x9c80, 0x9cec, 2169 0x9d00, 0x9d6c, 2170 0x9d80, 0x9dec, 2171 0x9e00, 0x9e6c, 2172 0x9e80, 0x9eec, 2173 0x9f00, 0x9f6c, 2174 0x9f80, 0xa020, 2175 0xd004, 0xd03c, 2176 0xd100, 0xd118, 2177 0xd200, 0xd214, 2178 0xd220, 0xd234, 2179 0xd240, 0xd254, 2180 0xd260, 0xd274, 2181 0xd280, 0xd294, 2182 0xd2a0, 0xd2b4, 2183 0xd2c0, 0xd2d4, 2184 0xd2e0, 0xd2f4, 2185 0xd300, 0xd31c, 2186 0xdfc0, 0xdfe0, 2187 0xe000, 0xf008, 2188 0xf010, 0xf018, 2189 0xf020, 0xf028, 2190 0x11000, 0x11014, 2191 0x11048, 0x1106c, 2192 0x11074, 0x11088, 2193 0x11098, 0x11120, 2194 0x1112c, 0x1117c, 2195 0x11190, 0x112e0, 2196 0x11300, 0x1130c, 2197 0x12000, 0x1206c, 2198 0x19040, 0x1906c, 2199 0x19078, 0x19080, 2200 0x1908c, 0x190e8, 2201 0x190f0, 0x190f8, 2202 0x19100, 0x19110, 2203 0x19120, 0x19124, 2204 0x19150, 0x19194, 2205 0x1919c, 0x191b0, 2206 0x191d0, 0x191e8, 2207 0x19238, 0x19290, 2208 0x192a4, 0x192b0, 2209 0x192bc, 0x192bc, 2210 0x19348, 0x1934c, 2211 0x193f8, 0x19418, 2212 0x19420, 0x19428, 2213 0x19430, 0x19444, 2214 0x1944c, 0x1946c, 2215 0x19474, 0x19474, 2216 0x19490, 0x194cc, 2217 0x194f0, 0x194f8, 2218 0x19c00, 0x19c48, 2219 0x19c50, 0x19c80, 2220 0x19c94, 0x19c98, 2221 0x19ca0, 0x19cbc, 2222 0x19ce4, 0x19ce4, 2223 0x19cf0, 0x19cf8, 2224 0x19d00, 0x19d28, 2225 0x19d50, 0x19d78, 2226 0x19d94, 0x19d98, 2227 0x19da0, 0x19dc8, 2228 0x19df0, 0x19e10, 2229 0x19e50, 0x19e6c, 2230 0x19ea0, 0x19ebc, 2231 0x19ec4, 0x19ef4, 2232 0x19f04, 0x19f2c, 2233 0x19f34, 0x19f34, 2234 0x19f40, 0x19f50, 2235 0x19f90, 0x19fac, 2236 0x19fc4, 0x19fc8, 2237 0x19fd0, 0x19fe4, 2238 0x1a000, 0x1a004, 2239 0x1a010, 0x1a06c, 2240 0x1a0b0, 0x1a0e4, 2241 0x1a0ec, 0x1a0f8, 2242 0x1a100, 0x1a108, 2243 0x1a114, 0x1a120, 2244 0x1a128, 0x1a130, 2245 0x1a138, 0x1a138, 2246 0x1a190, 0x1a1c4, 2247 0x1a1fc, 0x1a1fc, 2248 0x1e008, 0x1e00c, 2249 0x1e040, 0x1e044, 2250 0x1e04c, 0x1e04c, 2251 0x1e284, 0x1e290, 2252 0x1e2c0, 0x1e2c0, 2253 0x1e2e0, 0x1e2e0, 2254 0x1e300, 0x1e384, 2255 0x1e3c0, 0x1e3c8, 2256 0x1e408, 0x1e40c, 2257 0x1e440, 0x1e444, 2258 0x1e44c, 0x1e44c, 2259 0x1e684, 0x1e690, 2260 0x1e6c0, 0x1e6c0, 2261 0x1e6e0, 0x1e6e0, 2262 0x1e700, 0x1e784, 2263 0x1e7c0, 0x1e7c8, 2264 0x1e808, 0x1e80c, 2265 0x1e840, 0x1e844, 2266 0x1e84c, 0x1e84c, 2267 0x1ea84, 0x1ea90, 2268 0x1eac0, 0x1eac0, 2269 0x1eae0, 0x1eae0, 2270 0x1eb00, 0x1eb84, 2271 0x1ebc0, 0x1ebc8, 2272 0x1ec08, 0x1ec0c, 2273 0x1ec40, 0x1ec44, 2274 0x1ec4c, 0x1ec4c, 2275 0x1ee84, 0x1ee90, 2276 0x1eec0, 0x1eec0, 2277 0x1eee0, 0x1eee0, 2278 0x1ef00, 0x1ef84, 2279 0x1efc0, 0x1efc8, 2280 0x1f008, 0x1f00c, 2281 0x1f040, 0x1f044, 2282 0x1f04c, 0x1f04c, 2283 0x1f284, 0x1f290, 2284 0x1f2c0, 0x1f2c0, 2285 0x1f2e0, 0x1f2e0, 2286 0x1f300, 0x1f384, 2287 0x1f3c0, 0x1f3c8, 2288 0x1f408, 0x1f40c, 2289 0x1f440, 0x1f444, 2290 0x1f44c, 0x1f44c, 2291 0x1f684, 0x1f690, 2292 0x1f6c0, 0x1f6c0, 2293 0x1f6e0, 0x1f6e0, 2294 0x1f700, 0x1f784, 2295 0x1f7c0, 0x1f7c8, 2296 0x1f808, 0x1f80c, 2297 0x1f840, 0x1f844, 2298 0x1f84c, 0x1f84c, 2299 0x1fa84, 0x1fa90, 2300 0x1fac0, 0x1fac0, 2301 0x1fae0, 0x1fae0, 2302 0x1fb00, 0x1fb84, 2303 0x1fbc0, 0x1fbc8, 2304 0x1fc08, 0x1fc0c, 2305 0x1fc40, 0x1fc44, 2306 0x1fc4c, 0x1fc4c, 2307 0x1fe84, 0x1fe90, 2308 0x1fec0, 0x1fec0, 2309 0x1fee0, 0x1fee0, 2310 0x1ff00, 0x1ff84, 2311 0x1ffc0, 0x1ffc8, 2312 0x30000, 0x30030, 2313 0x30100, 0x30168, 2314 0x30190, 0x301a0, 2315 0x301a8, 0x301b8, 2316 0x301c4, 0x301c8, 2317 0x301d0, 0x301d0, 2318 0x30200, 0x30320, 2319 0x30400, 0x304b4, 2320 0x304c0, 0x3052c, 2321 0x30540, 0x3061c, 2322 0x30800, 0x308a0, 2323 0x308c0, 0x30908, 2324 0x30910, 0x309b8, 2325 0x30a00, 0x30a04, 2326 0x30a0c, 0x30a14, 2327 0x30a1c, 0x30a2c, 2328 0x30a44, 0x30a50, 2329 0x30a74, 0x30a74, 2330 0x30a7c, 0x30afc, 2331 0x30b08, 0x30c24, 2332 0x30d00, 0x30d14, 2333 0x30d1c, 0x30d3c, 2334 0x30d44, 0x30d4c, 2335 0x30d54, 0x30d74, 2336 0x30d7c, 0x30d7c, 2337 0x30de0, 0x30de0, 2338 0x30e00, 0x30ed4, 2339 0x30f00, 0x30fa4, 2340 0x30fc0, 0x30fc4, 2341 0x31000, 0x31004, 2342 0x31080, 0x310fc, 2343 0x31208, 0x31220, 2344 0x3123c, 0x31254, 2345 0x31300, 0x31300, 2346 0x31308, 0x3131c, 2347 0x31338, 0x3133c, 2348 0x31380, 0x31380, 2349 0x31388, 0x313a8, 2350 0x313b4, 0x313b4, 2351 0x31400, 0x31420, 2352 0x31438, 0x3143c, 2353 0x31480, 0x31480, 2354 0x314a8, 0x314a8, 2355 0x314b0, 0x314b4, 2356 0x314c8, 0x314d4, 2357 0x31a40, 0x31a4c, 2358 0x31af0, 0x31b20, 2359 0x31b38, 0x31b3c, 2360 0x31b80, 0x31b80, 2361 0x31ba8, 0x31ba8, 2362 0x31bb0, 0x31bb4, 2363 0x31bc8, 0x31bd4, 2364 0x32140, 0x3218c, 2365 0x321f0, 0x321f4, 2366 0x32200, 0x32200, 2367 0x32218, 0x32218, 2368 0x32400, 0x32400, 2369 0x32408, 0x3241c, 2370 0x32618, 0x32620, 2371 0x32664, 0x32664, 2372 0x326a8, 0x326a8, 2373 0x326ec, 0x326ec, 2374 0x32a00, 0x32abc, 2375 0x32b00, 0x32b18, 2376 0x32b20, 0x32b38, 2377 0x32b40, 0x32b58, 2378 0x32b60, 0x32b78, 2379 0x32c00, 0x32c00, 2380 0x32c08, 0x32c3c, 2381 0x33000, 0x3302c, 2382 0x33034, 0x33050, 2383 0x33058, 0x33058, 2384 0x33060, 0x3308c, 2385 0x3309c, 0x330ac, 2386 0x330c0, 0x330c0, 2387 0x330c8, 0x330d0, 2388 0x330d8, 0x330e0, 2389 0x330ec, 0x3312c, 2390 0x33134, 0x33150, 2391 0x33158, 0x33158, 2392 0x33160, 0x3318c, 2393 0x3319c, 0x331ac, 2394 0x331c0, 0x331c0, 2395 0x331c8, 0x331d0, 2396 0x331d8, 0x331e0, 2397 0x331ec, 0x33290, 2398 0x33298, 0x332c4, 2399 0x332e4, 0x33390, 2400 0x33398, 0x333c4, 2401 0x333e4, 0x3342c, 2402 0x33434, 0x33450, 2403 0x33458, 0x33458, 2404 0x33460, 0x3348c, 2405 0x3349c, 0x334ac, 2406 0x334c0, 0x334c0, 2407 0x334c8, 0x334d0, 2408 0x334d8, 0x334e0, 2409 0x334ec, 0x3352c, 2410 0x33534, 0x33550, 2411 0x33558, 0x33558, 2412 0x33560, 0x3358c, 2413 0x3359c, 0x335ac, 2414 0x335c0, 0x335c0, 2415 0x335c8, 0x335d0, 2416 0x335d8, 0x335e0, 2417 0x335ec, 0x33690, 2418 0x33698, 0x336c4, 2419 0x336e4, 0x33790, 2420 0x33798, 0x337c4, 2421 0x337e4, 0x337fc, 2422 0x33814, 0x33814, 2423 0x33854, 0x33868, 2424 0x33880, 0x3388c, 2425 0x338c0, 0x338d0, 2426 0x338e8, 0x338ec, 2427 0x33900, 0x3392c, 2428 0x33934, 0x33950, 2429 0x33958, 0x33958, 2430 0x33960, 0x3398c, 2431 0x3399c, 0x339ac, 2432 0x339c0, 0x339c0, 2433 0x339c8, 0x339d0, 2434 0x339d8, 0x339e0, 2435 0x339ec, 0x33a90, 2436 0x33a98, 0x33ac4, 2437 0x33ae4, 0x33b10, 2438 0x33b24, 0x33b28, 2439 0x33b38, 0x33b50, 2440 0x33bf0, 0x33c10, 2441 0x33c24, 0x33c28, 2442 0x33c38, 0x33c50, 2443 0x33cf0, 0x33cfc, 2444 0x34000, 0x34030, 2445 0x34100, 0x34168, 2446 0x34190, 0x341a0, 2447 0x341a8, 0x341b8, 2448 0x341c4, 0x341c8, 2449 0x341d0, 0x341d0, 2450 0x34200, 0x34320, 2451 0x34400, 0x344b4, 2452 0x344c0, 0x3452c, 2453 0x34540, 0x3461c, 2454 0x34800, 0x348a0, 2455 0x348c0, 0x34908, 2456 0x34910, 0x349b8, 2457 0x34a00, 0x34a04, 2458 0x34a0c, 0x34a14, 2459 0x34a1c, 0x34a2c, 2460 0x34a44, 0x34a50, 2461 0x34a74, 0x34a74, 2462 0x34a7c, 0x34afc, 2463 0x34b08, 0x34c24, 2464 0x34d00, 0x34d14, 2465 0x34d1c, 0x34d3c, 2466 0x34d44, 0x34d4c, 2467 0x34d54, 0x34d74, 2468 0x34d7c, 0x34d7c, 2469 0x34de0, 0x34de0, 2470 0x34e00, 0x34ed4, 2471 0x34f00, 0x34fa4, 2472 0x34fc0, 0x34fc4, 2473 0x35000, 0x35004, 2474 0x35080, 0x350fc, 2475 0x35208, 0x35220, 2476 0x3523c, 0x35254, 2477 0x35300, 0x35300, 2478 0x35308, 0x3531c, 2479 0x35338, 0x3533c, 2480 0x35380, 0x35380, 2481 0x35388, 0x353a8, 2482 0x353b4, 0x353b4, 2483 0x35400, 0x35420, 2484 0x35438, 0x3543c, 2485 0x35480, 0x35480, 2486 0x354a8, 0x354a8, 2487 0x354b0, 0x354b4, 2488 0x354c8, 0x354d4, 2489 0x35a40, 0x35a4c, 2490 0x35af0, 0x35b20, 2491 0x35b38, 0x35b3c, 2492 0x35b80, 0x35b80, 2493 0x35ba8, 0x35ba8, 2494 0x35bb0, 0x35bb4, 2495 0x35bc8, 0x35bd4, 2496 0x36140, 0x3618c, 2497 0x361f0, 0x361f4, 2498 0x36200, 0x36200, 2499 0x36218, 0x36218, 2500 0x36400, 0x36400, 2501 0x36408, 0x3641c, 2502 0x36618, 0x36620, 2503 0x36664, 0x36664, 2504 0x366a8, 0x366a8, 2505 0x366ec, 0x366ec, 2506 0x36a00, 0x36abc, 2507 0x36b00, 0x36b18, 2508 0x36b20, 0x36b38, 2509 0x36b40, 0x36b58, 2510 0x36b60, 0x36b78, 2511 0x36c00, 0x36c00, 2512 0x36c08, 0x36c3c, 2513 0x37000, 0x3702c, 2514 0x37034, 0x37050, 2515 0x37058, 0x37058, 2516 0x37060, 0x3708c, 2517 0x3709c, 0x370ac, 2518 0x370c0, 0x370c0, 2519 0x370c8, 0x370d0, 2520 0x370d8, 0x370e0, 2521 0x370ec, 0x3712c, 2522 0x37134, 0x37150, 2523 0x37158, 0x37158, 2524 0x37160, 0x3718c, 2525 0x3719c, 0x371ac, 2526 0x371c0, 0x371c0, 2527 0x371c8, 0x371d0, 2528 0x371d8, 0x371e0, 2529 0x371ec, 0x37290, 2530 0x37298, 0x372c4, 2531 0x372e4, 0x37390, 2532 0x37398, 0x373c4, 2533 0x373e4, 0x3742c, 2534 0x37434, 0x37450, 2535 0x37458, 0x37458, 2536 0x37460, 0x3748c, 2537 0x3749c, 0x374ac, 2538 0x374c0, 0x374c0, 2539 0x374c8, 0x374d0, 2540 0x374d8, 0x374e0, 2541 0x374ec, 0x3752c, 2542 0x37534, 0x37550, 2543 0x37558, 0x37558, 2544 0x37560, 0x3758c, 2545 0x3759c, 0x375ac, 2546 0x375c0, 0x375c0, 2547 0x375c8, 0x375d0, 2548 0x375d8, 0x375e0, 2549 0x375ec, 0x37690, 2550 0x37698, 0x376c4, 2551 0x376e4, 0x37790, 2552 0x37798, 0x377c4, 2553 0x377e4, 0x377fc, 2554 0x37814, 0x37814, 2555 0x37854, 0x37868, 2556 0x37880, 0x3788c, 2557 0x378c0, 0x378d0, 2558 0x378e8, 0x378ec, 2559 0x37900, 0x3792c, 2560 0x37934, 0x37950, 2561 0x37958, 0x37958, 2562 0x37960, 0x3798c, 2563 0x3799c, 0x379ac, 2564 0x379c0, 0x379c0, 2565 0x379c8, 0x379d0, 2566 0x379d8, 0x379e0, 2567 0x379ec, 0x37a90, 2568 0x37a98, 0x37ac4, 2569 0x37ae4, 0x37b10, 2570 0x37b24, 0x37b28, 2571 0x37b38, 0x37b50, 2572 0x37bf0, 0x37c10, 2573 0x37c24, 0x37c28, 2574 0x37c38, 0x37c50, 2575 0x37cf0, 0x37cfc, 2576 0x40040, 0x40040, 2577 0x40080, 0x40084, 2578 0x40100, 0x40100, 2579 0x40140, 0x401bc, 2580 0x40200, 0x40214, 2581 0x40228, 0x40228, 2582 0x40240, 0x40258, 2583 0x40280, 0x40280, 2584 0x40304, 0x40304, 2585 0x40330, 0x4033c, 2586 0x41304, 0x413c8, 2587 0x413d0, 0x413dc, 2588 0x413f0, 0x413f0, 2589 0x41400, 0x4140c, 2590 0x41414, 0x4141c, 2591 0x41480, 0x414d0, 2592 0x44000, 0x4407c, 2593 0x440c0, 0x441ac, 2594 0x441b4, 0x4427c, 2595 0x442c0, 0x443ac, 2596 0x443b4, 0x4447c, 2597 0x444c0, 0x445ac, 2598 0x445b4, 0x4467c, 2599 0x446c0, 0x447ac, 2600 0x447b4, 0x4487c, 2601 0x448c0, 0x449ac, 2602 0x449b4, 0x44a7c, 2603 0x44ac0, 0x44bac, 2604 0x44bb4, 0x44c7c, 2605 0x44cc0, 0x44dac, 2606 0x44db4, 0x44e7c, 2607 0x44ec0, 0x44fac, 2608 0x44fb4, 0x4507c, 2609 0x450c0, 0x451ac, 2610 0x451b4, 0x451fc, 2611 0x45800, 0x45804, 2612 0x45810, 0x45830, 2613 0x45840, 0x45860, 2614 0x45868, 0x45868, 2615 0x45880, 0x45884, 2616 0x458a0, 0x458b0, 2617 0x45a00, 0x45a04, 2618 0x45a10, 0x45a30, 2619 0x45a40, 0x45a60, 2620 0x45a68, 0x45a68, 2621 0x45a80, 0x45a84, 2622 0x45aa0, 0x45ab0, 2623 0x460c0, 0x460e4, 2624 0x47000, 0x4703c, 2625 0x47044, 0x4708c, 2626 0x47200, 0x47250, 2627 0x47400, 0x47408, 2628 0x47414, 0x47420, 2629 0x47600, 0x47618, 2630 0x47800, 0x47814, 2631 0x47820, 0x4782c, 2632 0x50000, 0x50084, 2633 0x50090, 0x500cc, 2634 0x50300, 0x50384, 2635 0x50400, 0x50400, 2636 0x50800, 0x50884, 2637 0x50890, 0x508cc, 2638 0x50b00, 0x50b84, 2639 0x50c00, 0x50c00, 2640 0x51000, 0x51020, 2641 0x51028, 0x510b0, 2642 0x51300, 0x51324, 2643 }; 2644 2645 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2646 const unsigned int *reg_ranges; 2647 int reg_ranges_size, range; 2648 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2649 2650 /* Select the right set of register ranges to dump depending on the 2651 * adapter chip type. 2652 */ 2653 switch (chip_version) { 2654 case CHELSIO_T4: 2655 reg_ranges = t4_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T5: 2660 reg_ranges = t5_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2662 break; 2663 2664 case CHELSIO_T6: 2665 reg_ranges = t6_reg_ranges; 2666 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2667 break; 2668 2669 default: 2670 dev_err(adap->pdev_dev, 2671 "Unsupported chip version %d\n", chip_version); 2672 return; 2673 } 2674 2675 /* Clear the register buffer and insert the appropriate register 2676 * values selected by the above register ranges. 2677 */ 2678 memset(buf, 0, buf_size); 2679 for (range = 0; range < reg_ranges_size; range += 2) { 2680 unsigned int reg = reg_ranges[range]; 2681 unsigned int last_reg = reg_ranges[range + 1]; 2682 u32 *bufp = (u32 *)((char *)buf + reg); 2683 2684 /* Iterate across the register range filling in the register 2685 * buffer but don't write past the end of the register buffer. 2686 */ 2687 while (reg <= last_reg && bufp < buf_end) { 2688 *bufp++ = t4_read_reg(adap, reg); 2689 reg += sizeof(u32); 2690 } 2691 } 2692 } 2693 2694 #define EEPROM_STAT_ADDR 0x7bfc 2695 #define VPD_BASE 0x400 2696 #define VPD_BASE_OLD 0 2697 #define VPD_LEN 1024 2698 #define CHELSIO_VPD_UNIQUE_ID 0x82 2699 2700 /** 2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2702 * @phys_addr: the physical EEPROM address 2703 * @fn: the PCI function number 2704 * @sz: size of function-specific area 2705 * 2706 * Translate a physical EEPROM address to virtual. The first 1K is 2707 * accessed through virtual addresses starting at 31K, the rest is 2708 * accessed through virtual addresses starting at 0. 2709 * 2710 * The mapping is as follows: 2711 * [0..1K) -> [31K..32K) 2712 * [1K..1K+A) -> [31K-A..31K) 2713 * [1K+A..ES) -> [0..ES-A-1K) 2714 * 2715 * where A = @fn * @sz, and ES = EEPROM size. 2716 */ 2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2718 { 2719 fn *= sz; 2720 if (phys_addr < 1024) 2721 return phys_addr + (31 << 10); 2722 if (phys_addr < 1024 + fn) 2723 return 31744 - fn + phys_addr - 1024; 2724 if (phys_addr < EEPROMSIZE) 2725 return phys_addr - 1024 - fn; 2726 return -EINVAL; 2727 } 2728 2729 /** 2730 * t4_seeprom_wp - enable/disable EEPROM write protection 2731 * @adapter: the adapter 2732 * @enable: whether to enable or disable write protection 2733 * 2734 * Enables or disables write protection on the serial EEPROM. 2735 */ 2736 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2737 { 2738 unsigned int v = enable ? 0xc : 0; 2739 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2740 return ret < 0 ? ret : 0; 2741 } 2742 2743 /** 2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2745 * @adapter: adapter to read 2746 * @p: where to store the parameters 2747 * 2748 * Reads card parameters stored in VPD EEPROM. 2749 */ 2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2751 { 2752 int i, ret = 0, addr; 2753 int ec, sn, pn, na; 2754 u8 *vpd, csum; 2755 unsigned int vpdr_len, kw_offset, id_len; 2756 2757 vpd = vmalloc(VPD_LEN); 2758 if (!vpd) 2759 return -ENOMEM; 2760 2761 /* Card information normally starts at VPD_BASE but early cards had 2762 * it at 0. 2763 */ 2764 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 /* The VPD shall have a unique identifier specified by the PCI SIG. 2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2771 * is expected to automatically put this entry at the 2772 * beginning of the VPD. 2773 */ 2774 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2775 2776 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2777 if (ret < 0) 2778 goto out; 2779 2780 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2781 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2782 ret = -EINVAL; 2783 goto out; 2784 } 2785 2786 id_len = pci_vpd_lrdt_size(vpd); 2787 if (id_len > ID_LEN) 2788 id_len = ID_LEN; 2789 2790 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2791 if (i < 0) { 2792 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2793 ret = -EINVAL; 2794 goto out; 2795 } 2796 2797 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2798 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2799 if (vpdr_len + kw_offset > VPD_LEN) { 2800 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2801 ret = -EINVAL; 2802 goto out; 2803 } 2804 2805 #define FIND_VPD_KW(var, name) do { \ 2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2807 if (var < 0) { \ 2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2809 ret = -EINVAL; \ 2810 goto out; \ 2811 } \ 2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2813 } while (0) 2814 2815 FIND_VPD_KW(i, "RV"); 2816 for (csum = 0; i >= 0; i--) 2817 csum += vpd[i]; 2818 2819 if (csum) { 2820 dev_err(adapter->pdev_dev, 2821 "corrupted VPD EEPROM, actual csum %u\n", csum); 2822 ret = -EINVAL; 2823 goto out; 2824 } 2825 2826 FIND_VPD_KW(ec, "EC"); 2827 FIND_VPD_KW(sn, "SN"); 2828 FIND_VPD_KW(pn, "PN"); 2829 FIND_VPD_KW(na, "NA"); 2830 #undef FIND_VPD_KW 2831 2832 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2833 strim(p->id); 2834 memcpy(p->ec, vpd + ec, EC_LEN); 2835 strim(p->ec); 2836 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2837 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2838 strim(p->sn); 2839 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2840 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2841 strim(p->pn); 2842 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2843 strim((char *)p->na); 2844 2845 out: 2846 vfree(vpd); 2847 return ret < 0 ? ret : 0; 2848 } 2849 2850 /** 2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2852 * @adapter: adapter to read 2853 * @p: where to store the parameters 2854 * 2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2856 * Clock. This can only be called after a connection to the firmware 2857 * is established. 2858 */ 2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2860 { 2861 u32 cclk_param, cclk_val; 2862 int ret; 2863 2864 /* Grab the raw VPD parameters. 2865 */ 2866 ret = t4_get_raw_vpd_params(adapter, p); 2867 if (ret) 2868 return ret; 2869 2870 /* Ask firmware for the Core Clock since it knows how to translate the 2871 * Reference Clock ('V2') VPD field into a Core Clock value ... 2872 */ 2873 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2875 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2876 1, &cclk_param, &cclk_val); 2877 2878 if (ret) 2879 return ret; 2880 p->cclk = cclk_val; 2881 2882 return 0; 2883 } 2884 2885 /** 2886 * t4_get_pfres - retrieve VF resource limits 2887 * @adapter: the adapter 2888 * 2889 * Retrieves configured resource limits and capabilities for a physical 2890 * function. The results are stored in @adapter->pfres. 2891 */ 2892 int t4_get_pfres(struct adapter *adapter) 2893 { 2894 struct pf_resources *pfres = &adapter->params.pfres; 2895 struct fw_pfvf_cmd cmd, rpl; 2896 int v; 2897 u32 word; 2898 2899 /* Execute PFVF Read command to get VF resource limits; bail out early 2900 * with error on command failure. 2901 */ 2902 memset(&cmd, 0, sizeof(cmd)); 2903 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2904 FW_CMD_REQUEST_F | 2905 FW_CMD_READ_F | 2906 FW_PFVF_CMD_PFN_V(adapter->pf) | 2907 FW_PFVF_CMD_VFN_V(0)); 2908 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2909 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2910 if (v != FW_SUCCESS) 2911 return v; 2912 2913 /* Extract PF resource limits and return success. 2914 */ 2915 word = be32_to_cpu(rpl.niqflint_niq); 2916 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2917 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2918 2919 word = be32_to_cpu(rpl.type_to_neq); 2920 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2921 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2922 2923 word = be32_to_cpu(rpl.tc_to_nexactf); 2924 pfres->tc = FW_PFVF_CMD_TC_G(word); 2925 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2926 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2927 2928 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2929 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2930 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2931 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2932 2933 return 0; 2934 } 2935 2936 /* serial flash and firmware constants */ 2937 enum { 2938 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2939 2940 /* flash command opcodes */ 2941 SF_PROG_PAGE = 2, /* program page */ 2942 SF_WR_DISABLE = 4, /* disable writes */ 2943 SF_RD_STATUS = 5, /* read status register */ 2944 SF_WR_ENABLE = 6, /* enable writes */ 2945 SF_RD_DATA_FAST = 0xb, /* read flash */ 2946 SF_RD_ID = 0x9f, /* read ID */ 2947 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2948 }; 2949 2950 /** 2951 * sf1_read - read data from the serial flash 2952 * @adapter: the adapter 2953 * @byte_cnt: number of bytes to read 2954 * @cont: whether another operation will be chained 2955 * @lock: whether to lock SF for PL access only 2956 * @valp: where to store the read data 2957 * 2958 * Reads up to 4 bytes of data from the serial flash. The location of 2959 * the read needs to be specified prior to calling this by issuing the 2960 * appropriate commands to the serial flash. 2961 */ 2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2963 int lock, u32 *valp) 2964 { 2965 int ret; 2966 2967 if (!byte_cnt || byte_cnt > 4) 2968 return -EINVAL; 2969 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2970 return -EBUSY; 2971 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2972 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2973 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2974 if (!ret) 2975 *valp = t4_read_reg(adapter, SF_DATA_A); 2976 return ret; 2977 } 2978 2979 /** 2980 * sf1_write - write data to the serial flash 2981 * @adapter: the adapter 2982 * @byte_cnt: number of bytes to write 2983 * @cont: whether another operation will be chained 2984 * @lock: whether to lock SF for PL access only 2985 * @val: value to write 2986 * 2987 * Writes up to 4 bytes of data to the serial flash. The location of 2988 * the write needs to be specified prior to calling this by issuing the 2989 * appropriate commands to the serial flash. 2990 */ 2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2992 int lock, u32 val) 2993 { 2994 if (!byte_cnt || byte_cnt > 4) 2995 return -EINVAL; 2996 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2997 return -EBUSY; 2998 t4_write_reg(adapter, SF_DATA_A, val); 2999 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 3000 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 3001 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 3002 } 3003 3004 /** 3005 * flash_wait_op - wait for a flash operation to complete 3006 * @adapter: the adapter 3007 * @attempts: max number of polls of the status register 3008 * @delay: delay between polls in ms 3009 * 3010 * Wait for a flash operation to complete by polling the status register. 3011 */ 3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3013 { 3014 int ret; 3015 u32 status; 3016 3017 while (1) { 3018 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3019 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3020 return ret; 3021 if (!(status & 1)) 3022 return 0; 3023 if (--attempts == 0) 3024 return -EAGAIN; 3025 if (delay) 3026 msleep(delay); 3027 } 3028 } 3029 3030 /** 3031 * t4_read_flash - read words from serial flash 3032 * @adapter: the adapter 3033 * @addr: the start address for the read 3034 * @nwords: how many 32-bit words to read 3035 * @data: where to store the read data 3036 * @byte_oriented: whether to store data as bytes or as words 3037 * 3038 * Read the specified number of 32-bit words from the serial flash. 3039 * If @byte_oriented is set the read data is stored as a byte array 3040 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3041 * natural endianness. 3042 */ 3043 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3044 unsigned int nwords, u32 *data, int byte_oriented) 3045 { 3046 int ret; 3047 3048 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3049 return -EINVAL; 3050 3051 addr = swab32(addr) | SF_RD_DATA_FAST; 3052 3053 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3054 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3055 return ret; 3056 3057 for ( ; nwords; nwords--, data++) { 3058 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3059 if (nwords == 1) 3060 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3061 if (ret) 3062 return ret; 3063 if (byte_oriented) 3064 *data = (__force __u32)(cpu_to_be32(*data)); 3065 } 3066 return 0; 3067 } 3068 3069 /** 3070 * t4_write_flash - write up to a page of data to the serial flash 3071 * @adapter: the adapter 3072 * @addr: the start address to write 3073 * @n: length of data to write in bytes 3074 * @data: the data to write 3075 * 3076 * Writes up to a page of data (256 bytes) to the serial flash starting 3077 * at the given address. All the data must be written to the same page. 3078 */ 3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3080 unsigned int n, const u8 *data) 3081 { 3082 int ret; 3083 u32 buf[64]; 3084 unsigned int i, c, left, val, offset = addr & 0xff; 3085 3086 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3087 return -EINVAL; 3088 3089 val = swab32(addr) | SF_PROG_PAGE; 3090 3091 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3092 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3093 goto unlock; 3094 3095 for (left = n; left; left -= c) { 3096 c = min(left, 4U); 3097 for (val = 0, i = 0; i < c; ++i) 3098 val = (val << 8) + *data++; 3099 3100 ret = sf1_write(adapter, c, c != left, 1, val); 3101 if (ret) 3102 goto unlock; 3103 } 3104 ret = flash_wait_op(adapter, 8, 1); 3105 if (ret) 3106 goto unlock; 3107 3108 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3109 3110 /* Read the page to verify the write succeeded */ 3111 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3112 if (ret) 3113 return ret; 3114 3115 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3116 dev_err(adapter->pdev_dev, 3117 "failed to correctly write the flash page at %#x\n", 3118 addr); 3119 return -EIO; 3120 } 3121 return 0; 3122 3123 unlock: 3124 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3125 return ret; 3126 } 3127 3128 /** 3129 * t4_get_fw_version - read the firmware version 3130 * @adapter: the adapter 3131 * @vers: where to place the version 3132 * 3133 * Reads the FW version from flash. 3134 */ 3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3136 { 3137 return t4_read_flash(adapter, FLASH_FW_START + 3138 offsetof(struct fw_hdr, fw_ver), 1, 3139 vers, 0); 3140 } 3141 3142 /** 3143 * t4_get_bs_version - read the firmware bootstrap version 3144 * @adapter: the adapter 3145 * @vers: where to place the version 3146 * 3147 * Reads the FW Bootstrap version from flash. 3148 */ 3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3150 { 3151 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3152 offsetof(struct fw_hdr, fw_ver), 1, 3153 vers, 0); 3154 } 3155 3156 /** 3157 * t4_get_tp_version - read the TP microcode version 3158 * @adapter: the adapter 3159 * @vers: where to place the version 3160 * 3161 * Reads the TP microcode version from flash. 3162 */ 3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3164 { 3165 return t4_read_flash(adapter, FLASH_FW_START + 3166 offsetof(struct fw_hdr, tp_microcode_ver), 3167 1, vers, 0); 3168 } 3169 3170 /** 3171 * t4_get_exprom_version - return the Expansion ROM version (if any) 3172 * @adapter: the adapter 3173 * @vers: where to place the version 3174 * 3175 * Reads the Expansion ROM header from FLASH and returns the version 3176 * number (if present) through the @vers return value pointer. We return 3177 * this in the Firmware Version Format since it's convenient. Return 3178 * 0 on success, -ENOENT if no Expansion ROM is present. 3179 */ 3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3181 { 3182 struct exprom_header { 3183 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3184 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3185 } *hdr; 3186 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3187 sizeof(u32))]; 3188 int ret; 3189 3190 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3191 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3192 0); 3193 if (ret) 3194 return ret; 3195 3196 hdr = (struct exprom_header *)exprom_header_buf; 3197 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3198 return -ENOENT; 3199 3200 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3201 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3202 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3203 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3204 return 0; 3205 } 3206 3207 /** 3208 * t4_get_vpd_version - return the VPD version 3209 * @adapter: the adapter 3210 * @vers: where to place the version 3211 * 3212 * Reads the VPD via the Firmware interface (thus this can only be called 3213 * once we're ready to issue Firmware commands). The format of the 3214 * VPD version is adapter specific. Returns 0 on success, an error on 3215 * failure. 3216 * 3217 * Note that early versions of the Firmware didn't include the ability 3218 * to retrieve the VPD version, so we zero-out the return-value parameter 3219 * in that case to avoid leaving it with garbage in it. 3220 * 3221 * Also note that the Firmware will return its cached copy of the VPD 3222 * Revision ID, not the actual Revision ID as written in the Serial 3223 * EEPROM. This is only an issue if a new VPD has been written and the 3224 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3225 * to defer calling this routine till after a FW_RESET_CMD has been issued 3226 * if the Host Driver will be performing a full adapter initialization. 3227 */ 3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3229 { 3230 u32 vpdrev_param; 3231 int ret; 3232 3233 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3234 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3235 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3236 1, &vpdrev_param, vers); 3237 if (ret) 3238 *vers = 0; 3239 return ret; 3240 } 3241 3242 /** 3243 * t4_get_scfg_version - return the Serial Configuration version 3244 * @adapter: the adapter 3245 * @vers: where to place the version 3246 * 3247 * Reads the Serial Configuration Version via the Firmware interface 3248 * (thus this can only be called once we're ready to issue Firmware 3249 * commands). The format of the Serial Configuration version is 3250 * adapter specific. Returns 0 on success, an error on failure. 3251 * 3252 * Note that early versions of the Firmware didn't include the ability 3253 * to retrieve the Serial Configuration version, so we zero-out the 3254 * return-value parameter in that case to avoid leaving it with 3255 * garbage in it. 3256 * 3257 * Also note that the Firmware will return its cached copy of the Serial 3258 * Initialization Revision ID, not the actual Revision ID as written in 3259 * the Serial EEPROM. This is only an issue if a new VPD has been written 3260 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3261 * it's best to defer calling this routine till after a FW_RESET_CMD has 3262 * been issued if the Host Driver will be performing a full adapter 3263 * initialization. 3264 */ 3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3266 { 3267 u32 scfgrev_param; 3268 int ret; 3269 3270 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3271 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3272 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3273 1, &scfgrev_param, vers); 3274 if (ret) 3275 *vers = 0; 3276 return ret; 3277 } 3278 3279 /** 3280 * t4_get_version_info - extract various chip/firmware version information 3281 * @adapter: the adapter 3282 * 3283 * Reads various chip/firmware version numbers and stores them into the 3284 * adapter Adapter Parameters structure. If any of the efforts fails 3285 * the first failure will be returned, but all of the version numbers 3286 * will be read. 3287 */ 3288 int t4_get_version_info(struct adapter *adapter) 3289 { 3290 int ret = 0; 3291 3292 #define FIRST_RET(__getvinfo) \ 3293 do { \ 3294 int __ret = __getvinfo; \ 3295 if (__ret && !ret) \ 3296 ret = __ret; \ 3297 } while (0) 3298 3299 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3300 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3301 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3302 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3303 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3304 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3305 3306 #undef FIRST_RET 3307 return ret; 3308 } 3309 3310 /** 3311 * t4_dump_version_info - dump all of the adapter configuration IDs 3312 * @adapter: the adapter 3313 * 3314 * Dumps all of the various bits of adapter configuration version/revision 3315 * IDs information. This is typically called at some point after 3316 * t4_get_version_info() has been called. 3317 */ 3318 void t4_dump_version_info(struct adapter *adapter) 3319 { 3320 /* Device information */ 3321 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3322 adapter->params.vpd.id, 3323 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3324 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3325 adapter->params.vpd.sn, adapter->params.vpd.pn); 3326 3327 /* Firmware Version */ 3328 if (!adapter->params.fw_vers) 3329 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3330 else 3331 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3332 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3333 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3334 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3335 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3336 3337 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3338 * Firmware, so dev_info() is more appropriate here.) 3339 */ 3340 if (!adapter->params.bs_vers) 3341 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3342 else 3343 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3344 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3345 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3346 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3347 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3348 3349 /* TP Microcode Version */ 3350 if (!adapter->params.tp_vers) 3351 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3352 else 3353 dev_info(adapter->pdev_dev, 3354 "TP Microcode version: %u.%u.%u.%u\n", 3355 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3356 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3357 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3358 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3359 3360 /* Expansion ROM version */ 3361 if (!adapter->params.er_vers) 3362 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3363 else 3364 dev_info(adapter->pdev_dev, 3365 "Expansion ROM version: %u.%u.%u.%u\n", 3366 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3367 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3368 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3369 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3370 3371 /* Serial Configuration version */ 3372 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3373 adapter->params.scfg_vers); 3374 3375 /* VPD Version */ 3376 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3377 adapter->params.vpd_vers); 3378 } 3379 3380 /** 3381 * t4_check_fw_version - check if the FW is supported with this driver 3382 * @adap: the adapter 3383 * 3384 * Checks if an adapter's FW is compatible with the driver. Returns 0 3385 * if there's exact match, a negative error if the version could not be 3386 * read or there's a major version mismatch 3387 */ 3388 int t4_check_fw_version(struct adapter *adap) 3389 { 3390 int i, ret, major, minor, micro; 3391 int exp_major, exp_minor, exp_micro; 3392 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3393 3394 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3395 /* Try multiple times before returning error */ 3396 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3397 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3398 3399 if (ret) 3400 return ret; 3401 3402 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3403 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3404 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3405 3406 switch (chip_version) { 3407 case CHELSIO_T4: 3408 exp_major = T4FW_MIN_VERSION_MAJOR; 3409 exp_minor = T4FW_MIN_VERSION_MINOR; 3410 exp_micro = T4FW_MIN_VERSION_MICRO; 3411 break; 3412 case CHELSIO_T5: 3413 exp_major = T5FW_MIN_VERSION_MAJOR; 3414 exp_minor = T5FW_MIN_VERSION_MINOR; 3415 exp_micro = T5FW_MIN_VERSION_MICRO; 3416 break; 3417 case CHELSIO_T6: 3418 exp_major = T6FW_MIN_VERSION_MAJOR; 3419 exp_minor = T6FW_MIN_VERSION_MINOR; 3420 exp_micro = T6FW_MIN_VERSION_MICRO; 3421 break; 3422 default: 3423 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3424 adap->chip); 3425 return -EINVAL; 3426 } 3427 3428 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3429 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3430 dev_err(adap->pdev_dev, 3431 "Card has firmware version %u.%u.%u, minimum " 3432 "supported firmware is %u.%u.%u.\n", major, minor, 3433 micro, exp_major, exp_minor, exp_micro); 3434 return -EFAULT; 3435 } 3436 return 0; 3437 } 3438 3439 /* Is the given firmware API compatible with the one the driver was compiled 3440 * with? 3441 */ 3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3443 { 3444 3445 /* short circuit if it's the exact same firmware version */ 3446 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3447 return 1; 3448 3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3450 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3451 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3452 return 1; 3453 #undef SAME_INTF 3454 3455 return 0; 3456 } 3457 3458 /* The firmware in the filesystem is usable, but should it be installed? 3459 * This routine explains itself in detail if it indicates the filesystem 3460 * firmware should be installed. 3461 */ 3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3463 int k, int c) 3464 { 3465 const char *reason; 3466 3467 if (!card_fw_usable) { 3468 reason = "incompatible or unusable"; 3469 goto install; 3470 } 3471 3472 if (k > c) { 3473 reason = "older than the version supported with this driver"; 3474 goto install; 3475 } 3476 3477 return 0; 3478 3479 install: 3480 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3481 "installing firmware %u.%u.%u.%u on card.\n", 3482 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3483 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3484 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3485 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3486 3487 return 1; 3488 } 3489 3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3491 const u8 *fw_data, unsigned int fw_size, 3492 struct fw_hdr *card_fw, enum dev_state state, 3493 int *reset) 3494 { 3495 int ret, card_fw_usable, fs_fw_usable; 3496 const struct fw_hdr *fs_fw; 3497 const struct fw_hdr *drv_fw; 3498 3499 drv_fw = &fw_info->fw_hdr; 3500 3501 /* Read the header of the firmware on the card */ 3502 ret = -t4_read_flash(adap, FLASH_FW_START, 3503 sizeof(*card_fw) / sizeof(uint32_t), 3504 (uint32_t *)card_fw, 1); 3505 if (ret == 0) { 3506 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3507 } else { 3508 dev_err(adap->pdev_dev, 3509 "Unable to read card's firmware header: %d\n", ret); 3510 card_fw_usable = 0; 3511 } 3512 3513 if (fw_data != NULL) { 3514 fs_fw = (const void *)fw_data; 3515 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3516 } else { 3517 fs_fw = NULL; 3518 fs_fw_usable = 0; 3519 } 3520 3521 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3522 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3523 /* Common case: the firmware on the card is an exact match and 3524 * the filesystem one is an exact match too, or the filesystem 3525 * one is absent/incompatible. 3526 */ 3527 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3528 should_install_fs_fw(adap, card_fw_usable, 3529 be32_to_cpu(fs_fw->fw_ver), 3530 be32_to_cpu(card_fw->fw_ver))) { 3531 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3532 fw_size, 0); 3533 if (ret != 0) { 3534 dev_err(adap->pdev_dev, 3535 "failed to install firmware: %d\n", ret); 3536 goto bye; 3537 } 3538 3539 /* Installed successfully, update the cached header too. */ 3540 *card_fw = *fs_fw; 3541 card_fw_usable = 1; 3542 *reset = 0; /* already reset as part of load_fw */ 3543 } 3544 3545 if (!card_fw_usable) { 3546 uint32_t d, c, k; 3547 3548 d = be32_to_cpu(drv_fw->fw_ver); 3549 c = be32_to_cpu(card_fw->fw_ver); 3550 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3551 3552 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3553 "chip state %d, " 3554 "driver compiled with %d.%d.%d.%d, " 3555 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3556 state, 3557 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3558 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3559 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3560 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3561 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3562 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3563 ret = EINVAL; 3564 goto bye; 3565 } 3566 3567 /* We're using whatever's on the card and it's known to be good. */ 3568 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3569 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3570 3571 bye: 3572 return ret; 3573 } 3574 3575 /** 3576 * t4_flash_erase_sectors - erase a range of flash sectors 3577 * @adapter: the adapter 3578 * @start: the first sector to erase 3579 * @end: the last sector to erase 3580 * 3581 * Erases the sectors in the given inclusive range. 3582 */ 3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3584 { 3585 int ret = 0; 3586 3587 if (end >= adapter->params.sf_nsec) 3588 return -EINVAL; 3589 3590 while (start <= end) { 3591 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3592 (ret = sf1_write(adapter, 4, 0, 1, 3593 SF_ERASE_SECTOR | (start << 8))) != 0 || 3594 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3595 dev_err(adapter->pdev_dev, 3596 "erase of flash sector %d failed, error %d\n", 3597 start, ret); 3598 break; 3599 } 3600 start++; 3601 } 3602 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3603 return ret; 3604 } 3605 3606 /** 3607 * t4_flash_cfg_addr - return the address of the flash configuration file 3608 * @adapter: the adapter 3609 * 3610 * Return the address within the flash where the Firmware Configuration 3611 * File is stored. 3612 */ 3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3614 { 3615 if (adapter->params.sf_size == 0x100000) 3616 return FLASH_FPGA_CFG_START; 3617 else 3618 return FLASH_CFG_START; 3619 } 3620 3621 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3622 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3623 * and emit an error message for mismatched firmware to save our caller the 3624 * effort ... 3625 */ 3626 static bool t4_fw_matches_chip(const struct adapter *adap, 3627 const struct fw_hdr *hdr) 3628 { 3629 /* The expression below will return FALSE for any unsupported adapter 3630 * which will keep us "honest" in the future ... 3631 */ 3632 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3633 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3634 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3635 return true; 3636 3637 dev_err(adap->pdev_dev, 3638 "FW image (%d) is not suitable for this adapter (%d)\n", 3639 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3640 return false; 3641 } 3642 3643 /** 3644 * t4_load_fw - download firmware 3645 * @adap: the adapter 3646 * @fw_data: the firmware image to write 3647 * @size: image size 3648 * 3649 * Write the supplied firmware image to the card's serial flash. 3650 */ 3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3652 { 3653 u32 csum; 3654 int ret, addr; 3655 unsigned int i; 3656 u8 first_page[SF_PAGE_SIZE]; 3657 const __be32 *p = (const __be32 *)fw_data; 3658 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3659 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3660 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3661 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3662 unsigned int fw_start = FLASH_FW_START; 3663 3664 if (!size) { 3665 dev_err(adap->pdev_dev, "FW image has no data\n"); 3666 return -EINVAL; 3667 } 3668 if (size & 511) { 3669 dev_err(adap->pdev_dev, 3670 "FW image size not multiple of 512 bytes\n"); 3671 return -EINVAL; 3672 } 3673 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3674 dev_err(adap->pdev_dev, 3675 "FW image size differs from size in FW header\n"); 3676 return -EINVAL; 3677 } 3678 if (size > fw_size) { 3679 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3680 fw_size); 3681 return -EFBIG; 3682 } 3683 if (!t4_fw_matches_chip(adap, hdr)) 3684 return -EINVAL; 3685 3686 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3687 csum += be32_to_cpu(p[i]); 3688 3689 if (csum != 0xffffffff) { 3690 dev_err(adap->pdev_dev, 3691 "corrupted firmware image, checksum %#x\n", csum); 3692 return -EINVAL; 3693 } 3694 3695 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3696 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3697 if (ret) 3698 goto out; 3699 3700 /* 3701 * We write the correct version at the end so the driver can see a bad 3702 * version if the FW write fails. Start by writing a copy of the 3703 * first page with a bad version. 3704 */ 3705 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3706 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3707 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3708 if (ret) 3709 goto out; 3710 3711 addr = fw_start; 3712 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3713 addr += SF_PAGE_SIZE; 3714 fw_data += SF_PAGE_SIZE; 3715 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3716 if (ret) 3717 goto out; 3718 } 3719 3720 ret = t4_write_flash(adap, 3721 fw_start + offsetof(struct fw_hdr, fw_ver), 3722 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3723 out: 3724 if (ret) 3725 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3726 ret); 3727 else 3728 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3729 return ret; 3730 } 3731 3732 /** 3733 * t4_phy_fw_ver - return current PHY firmware version 3734 * @adap: the adapter 3735 * @phy_fw_ver: return value buffer for PHY firmware version 3736 * 3737 * Returns the current version of external PHY firmware on the 3738 * adapter. 3739 */ 3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3741 { 3742 u32 param, val; 3743 int ret; 3744 3745 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3746 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3747 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3748 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3749 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3750 ¶m, &val); 3751 if (ret < 0) 3752 return ret; 3753 *phy_fw_ver = val; 3754 return 0; 3755 } 3756 3757 /** 3758 * t4_load_phy_fw - download port PHY firmware 3759 * @adap: the adapter 3760 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3761 * @win_lock: the lock to use to guard the memory copy 3762 * @phy_fw_version: function to check PHY firmware versions 3763 * @phy_fw_data: the PHY firmware image to write 3764 * @phy_fw_size: image size 3765 * 3766 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3767 * @phy_fw_version is supplied, then it will be used to determine if 3768 * it's necessary to perform the transfer by comparing the version 3769 * of any existing adapter PHY firmware with that of the passed in 3770 * PHY firmware image. If @win_lock is non-NULL then it will be used 3771 * around the call to t4_memory_rw() which transfers the PHY firmware 3772 * to the adapter. 3773 * 3774 * A negative error number will be returned if an error occurs. If 3775 * version number support is available and there's no need to upgrade 3776 * the firmware, 0 will be returned. If firmware is successfully 3777 * transferred to the adapter, 1 will be retured. 3778 * 3779 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3780 * a result, a RESET of the adapter would cause that RAM to lose its 3781 * contents. Thus, loading PHY firmware on such adapters must happen 3782 * after any FW_RESET_CMDs ... 3783 */ 3784 int t4_load_phy_fw(struct adapter *adap, 3785 int win, spinlock_t *win_lock, 3786 int (*phy_fw_version)(const u8 *, size_t), 3787 const u8 *phy_fw_data, size_t phy_fw_size) 3788 { 3789 unsigned long mtype = 0, maddr = 0; 3790 u32 param, val; 3791 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3792 int ret; 3793 3794 /* If we have version number support, then check to see if the adapter 3795 * already has up-to-date PHY firmware loaded. 3796 */ 3797 if (phy_fw_version) { 3798 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3799 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3800 if (ret < 0) 3801 return ret; 3802 3803 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3804 CH_WARN(adap, "PHY Firmware already up-to-date, " 3805 "version %#x\n", cur_phy_fw_ver); 3806 return 0; 3807 } 3808 } 3809 3810 /* Ask the firmware where it wants us to copy the PHY firmware image. 3811 * The size of the file requires a special version of the READ coommand 3812 * which will pass the file size via the values field in PARAMS_CMD and 3813 * retrieve the return value from firmware and place it in the same 3814 * buffer values 3815 */ 3816 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3817 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3818 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3819 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3820 val = phy_fw_size; 3821 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3822 ¶m, &val, 1, true); 3823 if (ret < 0) 3824 return ret; 3825 mtype = val >> 8; 3826 maddr = (val & 0xff) << 16; 3827 3828 /* Copy the supplied PHY Firmware image to the adapter memory location 3829 * allocated by the adapter firmware. 3830 */ 3831 if (win_lock) 3832 spin_lock_bh(win_lock); 3833 ret = t4_memory_rw(adap, win, mtype, maddr, 3834 phy_fw_size, (__be32 *)phy_fw_data, 3835 T4_MEMORY_WRITE); 3836 if (win_lock) 3837 spin_unlock_bh(win_lock); 3838 if (ret) 3839 return ret; 3840 3841 /* Tell the firmware that the PHY firmware image has been written to 3842 * RAM and it can now start copying it over to the PHYs. The chip 3843 * firmware will RESET the affected PHYs as part of this operation 3844 * leaving them running the new PHY firmware image. 3845 */ 3846 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3847 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3848 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3849 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3850 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3851 ¶m, &val, 30000); 3852 3853 /* If we have version number support, then check to see that the new 3854 * firmware got loaded properly. 3855 */ 3856 if (phy_fw_version) { 3857 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3858 if (ret < 0) 3859 return ret; 3860 3861 if (cur_phy_fw_ver != new_phy_fw_vers) { 3862 CH_WARN(adap, "PHY Firmware did not update: " 3863 "version on adapter %#x, " 3864 "version flashed %#x\n", 3865 cur_phy_fw_ver, new_phy_fw_vers); 3866 return -ENXIO; 3867 } 3868 } 3869 3870 return 1; 3871 } 3872 3873 /** 3874 * t4_fwcache - firmware cache operation 3875 * @adap: the adapter 3876 * @op : the operation (flush or flush and invalidate) 3877 */ 3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3879 { 3880 struct fw_params_cmd c; 3881 3882 memset(&c, 0, sizeof(c)); 3883 c.op_to_vfn = 3884 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3885 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3886 FW_PARAMS_CMD_PFN_V(adap->pf) | 3887 FW_PARAMS_CMD_VFN_V(0)); 3888 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3889 c.param[0].mnem = 3890 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3891 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3892 c.param[0].val = cpu_to_be32(op); 3893 3894 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3895 } 3896 3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3898 unsigned int *pif_req_wrptr, 3899 unsigned int *pif_rsp_wrptr) 3900 { 3901 int i, j; 3902 u32 cfg, val, req, rsp; 3903 3904 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3905 if (cfg & LADBGEN_F) 3906 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3907 3908 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3909 req = POLADBGWRPTR_G(val); 3910 rsp = PILADBGWRPTR_G(val); 3911 if (pif_req_wrptr) 3912 *pif_req_wrptr = req; 3913 if (pif_rsp_wrptr) 3914 *pif_rsp_wrptr = rsp; 3915 3916 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3917 for (j = 0; j < 6; j++) { 3918 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3919 PILADBGRDPTR_V(rsp)); 3920 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3921 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3922 req++; 3923 rsp++; 3924 } 3925 req = (req + 2) & POLADBGRDPTR_M; 3926 rsp = (rsp + 2) & PILADBGRDPTR_M; 3927 } 3928 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3929 } 3930 3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3932 { 3933 u32 cfg; 3934 int i, j, idx; 3935 3936 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3937 if (cfg & LADBGEN_F) 3938 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3939 3940 for (i = 0; i < CIM_MALA_SIZE; i++) { 3941 for (j = 0; j < 5; j++) { 3942 idx = 8 * i + j; 3943 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3944 PILADBGRDPTR_V(idx)); 3945 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3946 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3947 } 3948 } 3949 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3950 } 3951 3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3953 { 3954 unsigned int i, j; 3955 3956 for (i = 0; i < 8; i++) { 3957 u32 *p = la_buf + i; 3958 3959 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3960 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3961 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3962 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3963 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3964 } 3965 } 3966 3967 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port 3968 * Capabilities which we control with separate controls -- see, for instance, 3969 * Pause Frames and Forward Error Correction. In order to determine what the 3970 * full set of Advertised Port Capabilities are, the base Advertised Port 3971 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised 3972 * Port Capabilities associated with those other controls. See 3973 * t4_link_acaps() for how this is done. 3974 */ 3975 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3976 FW_PORT_CAP32_ANEG) 3977 3978 /** 3979 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3980 * @caps16: a 16-bit Port Capabilities value 3981 * 3982 * Returns the equivalent 32-bit Port Capabilities value. 3983 */ 3984 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3985 { 3986 fw_port_cap32_t caps32 = 0; 3987 3988 #define CAP16_TO_CAP32(__cap) \ 3989 do { \ 3990 if (caps16 & FW_PORT_CAP_##__cap) \ 3991 caps32 |= FW_PORT_CAP32_##__cap; \ 3992 } while (0) 3993 3994 CAP16_TO_CAP32(SPEED_100M); 3995 CAP16_TO_CAP32(SPEED_1G); 3996 CAP16_TO_CAP32(SPEED_25G); 3997 CAP16_TO_CAP32(SPEED_10G); 3998 CAP16_TO_CAP32(SPEED_40G); 3999 CAP16_TO_CAP32(SPEED_100G); 4000 CAP16_TO_CAP32(FC_RX); 4001 CAP16_TO_CAP32(FC_TX); 4002 CAP16_TO_CAP32(ANEG); 4003 CAP16_TO_CAP32(FORCE_PAUSE); 4004 CAP16_TO_CAP32(MDIAUTO); 4005 CAP16_TO_CAP32(MDISTRAIGHT); 4006 CAP16_TO_CAP32(FEC_RS); 4007 CAP16_TO_CAP32(FEC_BASER_RS); 4008 CAP16_TO_CAP32(802_3_PAUSE); 4009 CAP16_TO_CAP32(802_3_ASM_DIR); 4010 4011 #undef CAP16_TO_CAP32 4012 4013 return caps32; 4014 } 4015 4016 /** 4017 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 4018 * @caps32: a 32-bit Port Capabilities value 4019 * 4020 * Returns the equivalent 16-bit Port Capabilities value. Note that 4021 * not all 32-bit Port Capabilities can be represented in the 16-bit 4022 * Port Capabilities and some fields/values may not make it. 4023 */ 4024 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4025 { 4026 fw_port_cap16_t caps16 = 0; 4027 4028 #define CAP32_TO_CAP16(__cap) \ 4029 do { \ 4030 if (caps32 & FW_PORT_CAP32_##__cap) \ 4031 caps16 |= FW_PORT_CAP_##__cap; \ 4032 } while (0) 4033 4034 CAP32_TO_CAP16(SPEED_100M); 4035 CAP32_TO_CAP16(SPEED_1G); 4036 CAP32_TO_CAP16(SPEED_10G); 4037 CAP32_TO_CAP16(SPEED_25G); 4038 CAP32_TO_CAP16(SPEED_40G); 4039 CAP32_TO_CAP16(SPEED_100G); 4040 CAP32_TO_CAP16(FC_RX); 4041 CAP32_TO_CAP16(FC_TX); 4042 CAP32_TO_CAP16(802_3_PAUSE); 4043 CAP32_TO_CAP16(802_3_ASM_DIR); 4044 CAP32_TO_CAP16(ANEG); 4045 CAP32_TO_CAP16(FORCE_PAUSE); 4046 CAP32_TO_CAP16(MDIAUTO); 4047 CAP32_TO_CAP16(MDISTRAIGHT); 4048 CAP32_TO_CAP16(FEC_RS); 4049 CAP32_TO_CAP16(FEC_BASER_RS); 4050 4051 #undef CAP32_TO_CAP16 4052 4053 return caps16; 4054 } 4055 4056 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4057 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4058 { 4059 enum cc_pause cc_pause = 0; 4060 4061 if (fw_pause & FW_PORT_CAP32_FC_RX) 4062 cc_pause |= PAUSE_RX; 4063 if (fw_pause & FW_PORT_CAP32_FC_TX) 4064 cc_pause |= PAUSE_TX; 4065 4066 return cc_pause; 4067 } 4068 4069 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4070 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4071 { 4072 /* Translate orthogonal RX/TX Pause Controls for L1 Configure 4073 * commands, etc. 4074 */ 4075 fw_port_cap32_t fw_pause = 0; 4076 4077 if (cc_pause & PAUSE_RX) 4078 fw_pause |= FW_PORT_CAP32_FC_RX; 4079 if (cc_pause & PAUSE_TX) 4080 fw_pause |= FW_PORT_CAP32_FC_TX; 4081 if (!(cc_pause & PAUSE_AUTONEG)) 4082 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4083 4084 /* Translate orthogonal Pause controls into IEEE 802.3 Pause, 4085 * Asymetrical Pause for use in reporting to upper layer OS code, etc. 4086 * Note that these bits are ignored in L1 Configure commands. 4087 */ 4088 if (cc_pause & PAUSE_RX) { 4089 if (cc_pause & PAUSE_TX) 4090 fw_pause |= FW_PORT_CAP32_802_3_PAUSE; 4091 else 4092 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4093 } else if (cc_pause & PAUSE_TX) { 4094 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4095 } 4096 4097 return fw_pause; 4098 } 4099 4100 /* Translate Firmware Forward Error Correction specification to Common Code */ 4101 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4102 { 4103 enum cc_fec cc_fec = 0; 4104 4105 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4106 cc_fec |= FEC_RS; 4107 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4108 cc_fec |= FEC_BASER_RS; 4109 4110 return cc_fec; 4111 } 4112 4113 /* Translate Common Code Forward Error Correction specification to Firmware */ 4114 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4115 { 4116 fw_port_cap32_t fw_fec = 0; 4117 4118 if (cc_fec & FEC_RS) 4119 fw_fec |= FW_PORT_CAP32_FEC_RS; 4120 if (cc_fec & FEC_BASER_RS) 4121 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4122 4123 return fw_fec; 4124 } 4125 4126 /** 4127 * t4_link_acaps - compute Link Advertised Port Capabilities 4128 * @adapter: the adapter 4129 * @port: the Port ID 4130 * @lc: the Port's Link Configuration 4131 * 4132 * Synthesize the Advertised Port Capabilities we'll be using based on 4133 * the base Advertised Port Capabilities (which have been filtered by 4134 * ADVERT_MASK) plus the individual controls for things like Pause 4135 * Frames, Forward Error Correction, MDI, etc. 4136 */ 4137 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, 4138 struct link_config *lc) 4139 { 4140 fw_port_cap32_t fw_fc, fw_fec, acaps; 4141 unsigned int fw_mdi; 4142 char cc_fec; 4143 4144 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4145 4146 /* Convert driver coding of Pause Frame Flow Control settings into the 4147 * Firmware's API. 4148 */ 4149 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4150 4151 /* Convert Common Code Forward Error Control settings into the 4152 * Firmware's API. If the current Requested FEC has "Automatic" 4153 * (IEEE 802.3) specified, then we use whatever the Firmware 4154 * sent us as part of it's IEEE 802.3-based interpratation of 4155 * the Transceiver Module EPROM FEC parameters. Otherwise we 4156 * use whatever is in the current Requested FEC settings. 4157 */ 4158 if (lc->requested_fec & FEC_AUTO) 4159 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4160 else 4161 cc_fec = lc->requested_fec; 4162 fw_fec = cc_to_fwcap_fec(cc_fec); 4163 4164 /* Figure out what our Requested Port Capabilities are going to be. 4165 * Note parallel structure in t4_handle_get_port_info() and 4166 * init_link_config(). 4167 */ 4168 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4169 acaps = lc->acaps | fw_fc | fw_fec; 4170 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4171 lc->fec = cc_fec; 4172 } else if (lc->autoneg == AUTONEG_DISABLE) { 4173 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4174 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4175 lc->fec = cc_fec; 4176 } else { 4177 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; 4178 } 4179 4180 /* Some Requested Port Capabilities are trivially wrong if they exceed 4181 * the Physical Port Capabilities. We can check that here and provide 4182 * moderately useful feedback in the system log. 4183 * 4184 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4185 * we need to exclude this from this check in order to maintain 4186 * compatibility ... 4187 */ 4188 if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4189 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4190 acaps, lc->pcaps); 4191 return -EINVAL; 4192 } 4193 4194 return acaps; 4195 } 4196 4197 /** 4198 * t4_link_l1cfg_core - apply link configuration to MAC/PHY 4199 * @adapter: the adapter 4200 * @mbox: the Firmware Mailbox to use 4201 * @port: the Port ID 4202 * @lc: the Port's Link Configuration 4203 * @sleep_ok: if true we may sleep while awaiting command completion 4204 * @timeout: time to wait for command to finish before timing out 4205 * (negative implies @sleep_ok=false) 4206 * 4207 * Set up a port's MAC and PHY according to a desired link configuration. 4208 * - If the PHY can auto-negotiate first decide what to advertise, then 4209 * enable/disable auto-negotiation as desired, and reset. 4210 * - If the PHY does not auto-negotiate just reset it. 4211 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4212 * otherwise do it later based on the outcome of auto-negotiation. 4213 */ 4214 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4215 unsigned int port, struct link_config *lc, 4216 u8 sleep_ok, int timeout) 4217 { 4218 unsigned int fw_caps = adapter->params.fw_caps_support; 4219 struct fw_port_cmd cmd; 4220 fw_port_cap32_t rcap; 4221 int ret; 4222 4223 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && 4224 lc->autoneg == AUTONEG_ENABLE) { 4225 return -EINVAL; 4226 } 4227 4228 /* Compute our Requested Port Capabilities and send that on to the 4229 * Firmware. 4230 */ 4231 rcap = t4_link_acaps(adapter, port, lc); 4232 memset(&cmd, 0, sizeof(cmd)); 4233 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4234 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4235 FW_PORT_CMD_PORTID_V(port)); 4236 cmd.action_to_len16 = 4237 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4238 ? FW_PORT_ACTION_L1_CFG 4239 : FW_PORT_ACTION_L1_CFG32) | 4240 FW_LEN16(cmd)); 4241 if (fw_caps == FW_CAPS16) 4242 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4243 else 4244 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4245 4246 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4247 sleep_ok, timeout); 4248 4249 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4250 * the Physical Port Capabilities, some combinations of features may 4251 * still not be leagal. For example, 40Gb/s and Reed-Solomon Forward 4252 * Error Correction. So if the Firmware rejects the L1 Configure 4253 * request, flag that here. 4254 */ 4255 if (ret) { 4256 dev_err(adapter->pdev_dev, 4257 "Requested Port Capabilities %#x rejected, error %d\n", 4258 rcap, -ret); 4259 return ret; 4260 } 4261 return 0; 4262 } 4263 4264 /** 4265 * t4_restart_aneg - restart autonegotiation 4266 * @adap: the adapter 4267 * @mbox: mbox to use for the FW command 4268 * @port: the port id 4269 * 4270 * Restarts autonegotiation for the selected port. 4271 */ 4272 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4273 { 4274 unsigned int fw_caps = adap->params.fw_caps_support; 4275 struct fw_port_cmd c; 4276 4277 memset(&c, 0, sizeof(c)); 4278 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4279 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4280 FW_PORT_CMD_PORTID_V(port)); 4281 c.action_to_len16 = 4282 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4283 ? FW_PORT_ACTION_L1_CFG 4284 : FW_PORT_ACTION_L1_CFG32) | 4285 FW_LEN16(c)); 4286 if (fw_caps == FW_CAPS16) 4287 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4288 else 4289 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4290 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4291 } 4292 4293 typedef void (*int_handler_t)(struct adapter *adap); 4294 4295 struct intr_info { 4296 unsigned int mask; /* bits to check in interrupt status */ 4297 const char *msg; /* message to print or NULL */ 4298 short stat_idx; /* stat counter to increment or -1 */ 4299 unsigned short fatal; /* whether the condition reported is fatal */ 4300 int_handler_t int_handler; /* platform-specific int handler */ 4301 }; 4302 4303 /** 4304 * t4_handle_intr_status - table driven interrupt handler 4305 * @adapter: the adapter that generated the interrupt 4306 * @reg: the interrupt status register to process 4307 * @acts: table of interrupt actions 4308 * 4309 * A table driven interrupt handler that applies a set of masks to an 4310 * interrupt status word and performs the corresponding actions if the 4311 * interrupts described by the mask have occurred. The actions include 4312 * optionally emitting a warning or alert message. The table is terminated 4313 * by an entry specifying mask 0. Returns the number of fatal interrupt 4314 * conditions. 4315 */ 4316 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4317 const struct intr_info *acts) 4318 { 4319 int fatal = 0; 4320 unsigned int mask = 0; 4321 unsigned int status = t4_read_reg(adapter, reg); 4322 4323 for ( ; acts->mask; ++acts) { 4324 if (!(status & acts->mask)) 4325 continue; 4326 if (acts->fatal) { 4327 fatal++; 4328 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4329 status & acts->mask); 4330 } else if (acts->msg && printk_ratelimit()) 4331 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4332 status & acts->mask); 4333 if (acts->int_handler) 4334 acts->int_handler(adapter); 4335 mask |= acts->mask; 4336 } 4337 status &= mask; 4338 if (status) /* clear processed interrupts */ 4339 t4_write_reg(adapter, reg, status); 4340 return fatal; 4341 } 4342 4343 /* 4344 * Interrupt handler for the PCIE module. 4345 */ 4346 static void pcie_intr_handler(struct adapter *adapter) 4347 { 4348 static const struct intr_info sysbus_intr_info[] = { 4349 { RNPP_F, "RXNP array parity error", -1, 1 }, 4350 { RPCP_F, "RXPC array parity error", -1, 1 }, 4351 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4352 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4353 { RFTP_F, "RXFT array parity error", -1, 1 }, 4354 { 0 } 4355 }; 4356 static const struct intr_info pcie_port_intr_info[] = { 4357 { TPCP_F, "TXPC array parity error", -1, 1 }, 4358 { TNPP_F, "TXNP array parity error", -1, 1 }, 4359 { TFTP_F, "TXFT array parity error", -1, 1 }, 4360 { TCAP_F, "TXCA array parity error", -1, 1 }, 4361 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4362 { RCAP_F, "RXCA array parity error", -1, 1 }, 4363 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4364 { RDPE_F, "Rx data parity error", -1, 1 }, 4365 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4366 { 0 } 4367 }; 4368 static const struct intr_info pcie_intr_info[] = { 4369 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4370 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4371 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4372 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4373 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4374 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4375 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4376 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4377 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4378 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4379 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4380 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4381 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4382 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4383 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4384 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4385 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4386 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4387 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4388 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4389 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4390 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4391 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4392 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4393 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4394 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4395 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4396 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4397 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4398 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4399 -1, 0 }, 4400 { 0 } 4401 }; 4402 4403 static struct intr_info t5_pcie_intr_info[] = { 4404 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4405 -1, 1 }, 4406 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4407 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4408 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4409 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4410 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4411 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4412 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4413 -1, 1 }, 4414 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4415 -1, 1 }, 4416 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4417 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4418 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4419 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4420 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4421 -1, 1 }, 4422 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4423 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4424 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4425 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4426 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4427 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4428 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4429 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4430 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4431 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4432 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4433 -1, 1 }, 4434 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4435 -1, 1 }, 4436 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4437 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4438 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4439 { READRSPERR_F, "Outbound read error", -1, 0 }, 4440 { 0 } 4441 }; 4442 4443 int fat; 4444 4445 if (is_t4(adapter->params.chip)) 4446 fat = t4_handle_intr_status(adapter, 4447 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4448 sysbus_intr_info) + 4449 t4_handle_intr_status(adapter, 4450 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4451 pcie_port_intr_info) + 4452 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4453 pcie_intr_info); 4454 else 4455 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4456 t5_pcie_intr_info); 4457 4458 if (fat) 4459 t4_fatal_err(adapter); 4460 } 4461 4462 /* 4463 * TP interrupt handler. 4464 */ 4465 static void tp_intr_handler(struct adapter *adapter) 4466 { 4467 static const struct intr_info tp_intr_info[] = { 4468 { 0x3fffffff, "TP parity error", -1, 1 }, 4469 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4470 { 0 } 4471 }; 4472 4473 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4474 t4_fatal_err(adapter); 4475 } 4476 4477 /* 4478 * SGE interrupt handler. 4479 */ 4480 static void sge_intr_handler(struct adapter *adapter) 4481 { 4482 u64 v; 4483 u32 err; 4484 4485 static const struct intr_info sge_intr_info[] = { 4486 { ERR_CPL_EXCEED_IQE_SIZE_F, 4487 "SGE received CPL exceeding IQE size", -1, 1 }, 4488 { ERR_INVALID_CIDX_INC_F, 4489 "SGE GTS CIDX increment too large", -1, 0 }, 4490 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4491 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4492 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4493 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4494 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4495 0 }, 4496 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4497 0 }, 4498 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4499 0 }, 4500 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4501 0 }, 4502 { ERR_ING_CTXT_PRIO_F, 4503 "SGE too many priority ingress contexts", -1, 0 }, 4504 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4505 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4506 { 0 } 4507 }; 4508 4509 static struct intr_info t4t5_sge_intr_info[] = { 4510 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4511 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4512 { ERR_EGR_CTXT_PRIO_F, 4513 "SGE too many priority egress contexts", -1, 0 }, 4514 { 0 } 4515 }; 4516 4517 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4518 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4519 if (v) { 4520 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4521 (unsigned long long)v); 4522 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4523 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4524 } 4525 4526 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4527 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4528 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4529 t4t5_sge_intr_info); 4530 4531 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4532 if (err & ERROR_QID_VALID_F) { 4533 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4534 ERROR_QID_G(err)); 4535 if (err & UNCAPTURED_ERROR_F) 4536 dev_err(adapter->pdev_dev, 4537 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4538 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4539 UNCAPTURED_ERROR_F); 4540 } 4541 4542 if (v != 0) 4543 t4_fatal_err(adapter); 4544 } 4545 4546 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4547 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4548 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4549 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4550 4551 /* 4552 * CIM interrupt handler. 4553 */ 4554 static void cim_intr_handler(struct adapter *adapter) 4555 { 4556 static const struct intr_info cim_intr_info[] = { 4557 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4558 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4559 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4560 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4561 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4562 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4563 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4564 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4565 { 0 } 4566 }; 4567 static const struct intr_info cim_upintr_info[] = { 4568 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4569 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4570 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4571 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4572 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4573 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4574 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4575 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4576 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4577 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4578 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4579 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4580 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4581 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4582 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4583 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4584 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4585 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4586 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4587 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4588 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4589 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4590 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4591 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4592 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4593 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4594 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4595 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4596 { 0 } 4597 }; 4598 4599 u32 val, fw_err; 4600 int fat; 4601 4602 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4603 if (fw_err & PCIE_FW_ERR_F) 4604 t4_report_fw_error(adapter); 4605 4606 /* When the Firmware detects an internal error which normally 4607 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4608 * in order to make sure the Host sees the Firmware Crash. So 4609 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4610 * ignore the Timer0 interrupt. 4611 */ 4612 4613 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4614 if (val & TIMER0INT_F) 4615 if (!(fw_err & PCIE_FW_ERR_F) || 4616 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4617 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4618 TIMER0INT_F); 4619 4620 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4621 cim_intr_info) + 4622 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4623 cim_upintr_info); 4624 if (fat) 4625 t4_fatal_err(adapter); 4626 } 4627 4628 /* 4629 * ULP RX interrupt handler. 4630 */ 4631 static void ulprx_intr_handler(struct adapter *adapter) 4632 { 4633 static const struct intr_info ulprx_intr_info[] = { 4634 { 0x1800000, "ULPRX context error", -1, 1 }, 4635 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4636 { 0 } 4637 }; 4638 4639 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4640 t4_fatal_err(adapter); 4641 } 4642 4643 /* 4644 * ULP TX interrupt handler. 4645 */ 4646 static void ulptx_intr_handler(struct adapter *adapter) 4647 { 4648 static const struct intr_info ulptx_intr_info[] = { 4649 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4650 0 }, 4651 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4652 0 }, 4653 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4654 0 }, 4655 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4656 0 }, 4657 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4658 { 0 } 4659 }; 4660 4661 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4662 t4_fatal_err(adapter); 4663 } 4664 4665 /* 4666 * PM TX interrupt handler. 4667 */ 4668 static void pmtx_intr_handler(struct adapter *adapter) 4669 { 4670 static const struct intr_info pmtx_intr_info[] = { 4671 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4672 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4673 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4674 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4675 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4676 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4677 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4678 -1, 1 }, 4679 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4680 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4681 { 0 } 4682 }; 4683 4684 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4685 t4_fatal_err(adapter); 4686 } 4687 4688 /* 4689 * PM RX interrupt handler. 4690 */ 4691 static void pmrx_intr_handler(struct adapter *adapter) 4692 { 4693 static const struct intr_info pmrx_intr_info[] = { 4694 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4695 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4696 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4697 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4698 -1, 1 }, 4699 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4700 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4701 { 0 } 4702 }; 4703 4704 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4705 t4_fatal_err(adapter); 4706 } 4707 4708 /* 4709 * CPL switch interrupt handler. 4710 */ 4711 static void cplsw_intr_handler(struct adapter *adapter) 4712 { 4713 static const struct intr_info cplsw_intr_info[] = { 4714 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4715 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4716 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4717 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4718 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4719 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4720 { 0 } 4721 }; 4722 4723 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4724 t4_fatal_err(adapter); 4725 } 4726 4727 /* 4728 * LE interrupt handler. 4729 */ 4730 static void le_intr_handler(struct adapter *adap) 4731 { 4732 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4733 static const struct intr_info le_intr_info[] = { 4734 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4735 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4736 { PARITYERR_F, "LE parity error", -1, 1 }, 4737 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4738 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4739 { 0 } 4740 }; 4741 4742 static struct intr_info t6_le_intr_info[] = { 4743 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4744 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4745 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4746 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4747 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4748 { 0 } 4749 }; 4750 4751 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4752 (chip <= CHELSIO_T5) ? 4753 le_intr_info : t6_le_intr_info)) 4754 t4_fatal_err(adap); 4755 } 4756 4757 /* 4758 * MPS interrupt handler. 4759 */ 4760 static void mps_intr_handler(struct adapter *adapter) 4761 { 4762 static const struct intr_info mps_rx_intr_info[] = { 4763 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4764 { 0 } 4765 }; 4766 static const struct intr_info mps_tx_intr_info[] = { 4767 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4768 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4769 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4770 -1, 1 }, 4771 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4772 -1, 1 }, 4773 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4774 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4775 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4776 { 0 } 4777 }; 4778 static const struct intr_info t6_mps_tx_intr_info[] = { 4779 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4780 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4781 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4782 -1, 1 }, 4783 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4784 -1, 1 }, 4785 /* MPS Tx Bubble is normal for T6 */ 4786 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4787 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4788 { 0 } 4789 }; 4790 static const struct intr_info mps_trc_intr_info[] = { 4791 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4792 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4793 -1, 1 }, 4794 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4795 { 0 } 4796 }; 4797 static const struct intr_info mps_stat_sram_intr_info[] = { 4798 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4799 { 0 } 4800 }; 4801 static const struct intr_info mps_stat_tx_intr_info[] = { 4802 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4803 { 0 } 4804 }; 4805 static const struct intr_info mps_stat_rx_intr_info[] = { 4806 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4807 { 0 } 4808 }; 4809 static const struct intr_info mps_cls_intr_info[] = { 4810 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4811 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4812 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4813 { 0 } 4814 }; 4815 4816 int fat; 4817 4818 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4819 mps_rx_intr_info) + 4820 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4821 is_t6(adapter->params.chip) 4822 ? t6_mps_tx_intr_info 4823 : mps_tx_intr_info) + 4824 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4825 mps_trc_intr_info) + 4826 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4827 mps_stat_sram_intr_info) + 4828 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4829 mps_stat_tx_intr_info) + 4830 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4831 mps_stat_rx_intr_info) + 4832 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4833 mps_cls_intr_info); 4834 4835 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4836 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4837 if (fat) 4838 t4_fatal_err(adapter); 4839 } 4840 4841 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4842 ECC_UE_INT_CAUSE_F) 4843 4844 /* 4845 * EDC/MC interrupt handler. 4846 */ 4847 static void mem_intr_handler(struct adapter *adapter, int idx) 4848 { 4849 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4850 4851 unsigned int addr, cnt_addr, v; 4852 4853 if (idx <= MEM_EDC1) { 4854 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4855 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4856 } else if (idx == MEM_MC) { 4857 if (is_t4(adapter->params.chip)) { 4858 addr = MC_INT_CAUSE_A; 4859 cnt_addr = MC_ECC_STATUS_A; 4860 } else { 4861 addr = MC_P_INT_CAUSE_A; 4862 cnt_addr = MC_P_ECC_STATUS_A; 4863 } 4864 } else { 4865 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4866 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4867 } 4868 4869 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4870 if (v & PERR_INT_CAUSE_F) 4871 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4872 name[idx]); 4873 if (v & ECC_CE_INT_CAUSE_F) { 4874 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4875 4876 t4_edc_err_read(adapter, idx); 4877 4878 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4879 if (printk_ratelimit()) 4880 dev_warn(adapter->pdev_dev, 4881 "%u %s correctable ECC data error%s\n", 4882 cnt, name[idx], cnt > 1 ? "s" : ""); 4883 } 4884 if (v & ECC_UE_INT_CAUSE_F) 4885 dev_alert(adapter->pdev_dev, 4886 "%s uncorrectable ECC data error\n", name[idx]); 4887 4888 t4_write_reg(adapter, addr, v); 4889 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4890 t4_fatal_err(adapter); 4891 } 4892 4893 /* 4894 * MA interrupt handler. 4895 */ 4896 static void ma_intr_handler(struct adapter *adap) 4897 { 4898 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4899 4900 if (status & MEM_PERR_INT_CAUSE_F) { 4901 dev_alert(adap->pdev_dev, 4902 "MA parity error, parity status %#x\n", 4903 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4904 if (is_t5(adap->params.chip)) 4905 dev_alert(adap->pdev_dev, 4906 "MA parity error, parity status %#x\n", 4907 t4_read_reg(adap, 4908 MA_PARITY_ERROR_STATUS2_A)); 4909 } 4910 if (status & MEM_WRAP_INT_CAUSE_F) { 4911 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4912 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4913 "client %u to address %#x\n", 4914 MEM_WRAP_CLIENT_NUM_G(v), 4915 MEM_WRAP_ADDRESS_G(v) << 4); 4916 } 4917 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4918 t4_fatal_err(adap); 4919 } 4920 4921 /* 4922 * SMB interrupt handler. 4923 */ 4924 static void smb_intr_handler(struct adapter *adap) 4925 { 4926 static const struct intr_info smb_intr_info[] = { 4927 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4928 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4929 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4930 { 0 } 4931 }; 4932 4933 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4934 t4_fatal_err(adap); 4935 } 4936 4937 /* 4938 * NC-SI interrupt handler. 4939 */ 4940 static void ncsi_intr_handler(struct adapter *adap) 4941 { 4942 static const struct intr_info ncsi_intr_info[] = { 4943 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4944 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4945 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4946 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4947 { 0 } 4948 }; 4949 4950 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4951 t4_fatal_err(adap); 4952 } 4953 4954 /* 4955 * XGMAC interrupt handler. 4956 */ 4957 static void xgmac_intr_handler(struct adapter *adap, int port) 4958 { 4959 u32 v, int_cause_reg; 4960 4961 if (is_t4(adap->params.chip)) 4962 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4963 else 4964 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4965 4966 v = t4_read_reg(adap, int_cause_reg); 4967 4968 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4969 if (!v) 4970 return; 4971 4972 if (v & TXFIFO_PRTY_ERR_F) 4973 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4974 port); 4975 if (v & RXFIFO_PRTY_ERR_F) 4976 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4977 port); 4978 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4979 t4_fatal_err(adap); 4980 } 4981 4982 /* 4983 * PL interrupt handler. 4984 */ 4985 static void pl_intr_handler(struct adapter *adap) 4986 { 4987 static const struct intr_info pl_intr_info[] = { 4988 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4989 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4990 { 0 } 4991 }; 4992 4993 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4994 t4_fatal_err(adap); 4995 } 4996 4997 #define PF_INTR_MASK (PFSW_F) 4998 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4999 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 5000 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 5001 5002 /** 5003 * t4_slow_intr_handler - control path interrupt handler 5004 * @adapter: the adapter 5005 * 5006 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5007 * The designation 'slow' is because it involves register reads, while 5008 * data interrupts typically don't involve any MMIOs. 5009 */ 5010 int t4_slow_intr_handler(struct adapter *adapter) 5011 { 5012 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 5013 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 5014 * easiest just to mask that case here. 5015 */ 5016 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 5017 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 5018 u32 cause = raw_cause & enable; 5019 5020 if (!(cause & GLBL_INTR_MASK)) 5021 return 0; 5022 if (cause & CIM_F) 5023 cim_intr_handler(adapter); 5024 if (cause & MPS_F) 5025 mps_intr_handler(adapter); 5026 if (cause & NCSI_F) 5027 ncsi_intr_handler(adapter); 5028 if (cause & PL_F) 5029 pl_intr_handler(adapter); 5030 if (cause & SMB_F) 5031 smb_intr_handler(adapter); 5032 if (cause & XGMAC0_F) 5033 xgmac_intr_handler(adapter, 0); 5034 if (cause & XGMAC1_F) 5035 xgmac_intr_handler(adapter, 1); 5036 if (cause & XGMAC_KR0_F) 5037 xgmac_intr_handler(adapter, 2); 5038 if (cause & XGMAC_KR1_F) 5039 xgmac_intr_handler(adapter, 3); 5040 if (cause & PCIE_F) 5041 pcie_intr_handler(adapter); 5042 if (cause & MC_F) 5043 mem_intr_handler(adapter, MEM_MC); 5044 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 5045 mem_intr_handler(adapter, MEM_MC1); 5046 if (cause & EDC0_F) 5047 mem_intr_handler(adapter, MEM_EDC0); 5048 if (cause & EDC1_F) 5049 mem_intr_handler(adapter, MEM_EDC1); 5050 if (cause & LE_F) 5051 le_intr_handler(adapter); 5052 if (cause & TP_F) 5053 tp_intr_handler(adapter); 5054 if (cause & MA_F) 5055 ma_intr_handler(adapter); 5056 if (cause & PM_TX_F) 5057 pmtx_intr_handler(adapter); 5058 if (cause & PM_RX_F) 5059 pmrx_intr_handler(adapter); 5060 if (cause & ULP_RX_F) 5061 ulprx_intr_handler(adapter); 5062 if (cause & CPL_SWITCH_F) 5063 cplsw_intr_handler(adapter); 5064 if (cause & SGE_F) 5065 sge_intr_handler(adapter); 5066 if (cause & ULP_TX_F) 5067 ulptx_intr_handler(adapter); 5068 5069 /* Clear the interrupts just processed for which we are the master. */ 5070 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5071 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5072 return 1; 5073 } 5074 5075 /** 5076 * t4_intr_enable - enable interrupts 5077 * @adapter: the adapter whose interrupts should be enabled 5078 * 5079 * Enable PF-specific interrupts for the calling function and the top-level 5080 * interrupt concentrator for global interrupts. Interrupts are already 5081 * enabled at each module, here we just enable the roots of the interrupt 5082 * hierarchies. 5083 * 5084 * Note: this function should be called only when the driver manages 5085 * non PF-specific interrupts from the various HW modules. Only one PCI 5086 * function at a time should be doing this. 5087 */ 5088 void t4_intr_enable(struct adapter *adapter) 5089 { 5090 u32 val = 0; 5091 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5092 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5093 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5094 5095 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5096 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5097 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5098 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5099 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5100 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5101 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5102 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5103 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5104 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5105 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5106 } 5107 5108 /** 5109 * t4_intr_disable - disable interrupts 5110 * @adapter: the adapter whose interrupts should be disabled 5111 * 5112 * Disable interrupts. We only disable the top-level interrupt 5113 * concentrators. The caller must be a PCI function managing global 5114 * interrupts. 5115 */ 5116 void t4_intr_disable(struct adapter *adapter) 5117 { 5118 u32 whoami, pf; 5119 5120 if (pci_channel_offline(adapter->pdev)) 5121 return; 5122 5123 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5124 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5125 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5126 5127 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5128 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5129 } 5130 5131 unsigned int t4_chip_rss_size(struct adapter *adap) 5132 { 5133 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5134 return RSS_NENTRIES; 5135 else 5136 return T6_RSS_NENTRIES; 5137 } 5138 5139 /** 5140 * t4_config_rss_range - configure a portion of the RSS mapping table 5141 * @adapter: the adapter 5142 * @mbox: mbox to use for the FW command 5143 * @viid: virtual interface whose RSS subtable is to be written 5144 * @start: start entry in the table to write 5145 * @n: how many table entries to write 5146 * @rspq: values for the response queue lookup table 5147 * @nrspq: number of values in @rspq 5148 * 5149 * Programs the selected part of the VI's RSS mapping table with the 5150 * provided values. If @nrspq < @n the supplied values are used repeatedly 5151 * until the full table range is populated. 5152 * 5153 * The caller must ensure the values in @rspq are in the range allowed for 5154 * @viid. 5155 */ 5156 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5157 int start, int n, const u16 *rspq, unsigned int nrspq) 5158 { 5159 int ret; 5160 const u16 *rsp = rspq; 5161 const u16 *rsp_end = rspq + nrspq; 5162 struct fw_rss_ind_tbl_cmd cmd; 5163 5164 memset(&cmd, 0, sizeof(cmd)); 5165 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5166 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5167 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5168 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5169 5170 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5171 while (n > 0) { 5172 int nq = min(n, 32); 5173 __be32 *qp = &cmd.iq0_to_iq2; 5174 5175 cmd.niqid = cpu_to_be16(nq); 5176 cmd.startidx = cpu_to_be16(start); 5177 5178 start += nq; 5179 n -= nq; 5180 5181 while (nq > 0) { 5182 unsigned int v; 5183 5184 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5185 if (++rsp >= rsp_end) 5186 rsp = rspq; 5187 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5188 if (++rsp >= rsp_end) 5189 rsp = rspq; 5190 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5191 if (++rsp >= rsp_end) 5192 rsp = rspq; 5193 5194 *qp++ = cpu_to_be32(v); 5195 nq -= 3; 5196 } 5197 5198 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5199 if (ret) 5200 return ret; 5201 } 5202 return 0; 5203 } 5204 5205 /** 5206 * t4_config_glbl_rss - configure the global RSS mode 5207 * @adapter: the adapter 5208 * @mbox: mbox to use for the FW command 5209 * @mode: global RSS mode 5210 * @flags: mode-specific flags 5211 * 5212 * Sets the global RSS mode. 5213 */ 5214 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5215 unsigned int flags) 5216 { 5217 struct fw_rss_glb_config_cmd c; 5218 5219 memset(&c, 0, sizeof(c)); 5220 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5221 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5222 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5223 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5224 c.u.manual.mode_pkd = 5225 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5226 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5227 c.u.basicvirtual.mode_pkd = 5228 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5229 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5230 } else 5231 return -EINVAL; 5232 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5233 } 5234 5235 /** 5236 * t4_config_vi_rss - configure per VI RSS settings 5237 * @adapter: the adapter 5238 * @mbox: mbox to use for the FW command 5239 * @viid: the VI id 5240 * @flags: RSS flags 5241 * @defq: id of the default RSS queue for the VI. 5242 * 5243 * Configures VI-specific RSS properties. 5244 */ 5245 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5246 unsigned int flags, unsigned int defq) 5247 { 5248 struct fw_rss_vi_config_cmd c; 5249 5250 memset(&c, 0, sizeof(c)); 5251 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5252 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5253 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5254 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5255 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5256 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5257 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5258 } 5259 5260 /* Read an RSS table row */ 5261 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5262 { 5263 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5264 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5265 5, 0, val); 5266 } 5267 5268 /** 5269 * t4_read_rss - read the contents of the RSS mapping table 5270 * @adapter: the adapter 5271 * @map: holds the contents of the RSS mapping table 5272 * 5273 * Reads the contents of the RSS hash->queue mapping table. 5274 */ 5275 int t4_read_rss(struct adapter *adapter, u16 *map) 5276 { 5277 int i, ret, nentries; 5278 u32 val; 5279 5280 nentries = t4_chip_rss_size(adapter); 5281 for (i = 0; i < nentries / 2; ++i) { 5282 ret = rd_rss_row(adapter, i, &val); 5283 if (ret) 5284 return ret; 5285 *map++ = LKPTBLQUEUE0_G(val); 5286 *map++ = LKPTBLQUEUE1_G(val); 5287 } 5288 return 0; 5289 } 5290 5291 static unsigned int t4_use_ldst(struct adapter *adap) 5292 { 5293 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5294 } 5295 5296 /** 5297 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5298 * @adap: the adapter 5299 * @cmd: TP fw ldst address space type 5300 * @vals: where the indirect register values are stored/written 5301 * @nregs: how many indirect registers to read/write 5302 * @start_idx: index of first indirect register to read/write 5303 * @rw: Read (1) or Write (0) 5304 * @sleep_ok: if true we may sleep while awaiting command completion 5305 * 5306 * Access TP indirect registers through LDST 5307 */ 5308 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5309 unsigned int nregs, unsigned int start_index, 5310 unsigned int rw, bool sleep_ok) 5311 { 5312 int ret = 0; 5313 unsigned int i; 5314 struct fw_ldst_cmd c; 5315 5316 for (i = 0; i < nregs; i++) { 5317 memset(&c, 0, sizeof(c)); 5318 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5319 FW_CMD_REQUEST_F | 5320 (rw ? FW_CMD_READ_F : 5321 FW_CMD_WRITE_F) | 5322 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5323 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5324 5325 c.u.addrval.addr = cpu_to_be32(start_index + i); 5326 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5327 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5328 sleep_ok); 5329 if (ret) 5330 return ret; 5331 5332 if (rw) 5333 vals[i] = be32_to_cpu(c.u.addrval.val); 5334 } 5335 return 0; 5336 } 5337 5338 /** 5339 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5340 * @adap: the adapter 5341 * @reg_addr: Address Register 5342 * @reg_data: Data register 5343 * @buff: where the indirect register values are stored/written 5344 * @nregs: how many indirect registers to read/write 5345 * @start_index: index of first indirect register to read/write 5346 * @rw: READ(1) or WRITE(0) 5347 * @sleep_ok: if true we may sleep while awaiting command completion 5348 * 5349 * Read/Write TP indirect registers through LDST if possible. 5350 * Else, use backdoor access 5351 **/ 5352 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5353 u32 *buff, u32 nregs, u32 start_index, int rw, 5354 bool sleep_ok) 5355 { 5356 int rc = -EINVAL; 5357 int cmd; 5358 5359 switch (reg_addr) { 5360 case TP_PIO_ADDR_A: 5361 cmd = FW_LDST_ADDRSPC_TP_PIO; 5362 break; 5363 case TP_TM_PIO_ADDR_A: 5364 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5365 break; 5366 case TP_MIB_INDEX_A: 5367 cmd = FW_LDST_ADDRSPC_TP_MIB; 5368 break; 5369 default: 5370 goto indirect_access; 5371 } 5372 5373 if (t4_use_ldst(adap)) 5374 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5375 sleep_ok); 5376 5377 indirect_access: 5378 5379 if (rc) { 5380 if (rw) 5381 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5382 start_index); 5383 else 5384 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5385 start_index); 5386 } 5387 } 5388 5389 /** 5390 * t4_tp_pio_read - Read TP PIO registers 5391 * @adap: the adapter 5392 * @buff: where the indirect register values are written 5393 * @nregs: how many indirect registers to read 5394 * @start_index: index of first indirect register to read 5395 * @sleep_ok: if true we may sleep while awaiting command completion 5396 * 5397 * Read TP PIO Registers 5398 **/ 5399 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5400 u32 start_index, bool sleep_ok) 5401 { 5402 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5403 start_index, 1, sleep_ok); 5404 } 5405 5406 /** 5407 * t4_tp_pio_write - Write TP PIO registers 5408 * @adap: the adapter 5409 * @buff: where the indirect register values are stored 5410 * @nregs: how many indirect registers to write 5411 * @start_index: index of first indirect register to write 5412 * @sleep_ok: if true we may sleep while awaiting command completion 5413 * 5414 * Write TP PIO Registers 5415 **/ 5416 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5417 u32 start_index, bool sleep_ok) 5418 { 5419 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5420 start_index, 0, sleep_ok); 5421 } 5422 5423 /** 5424 * t4_tp_tm_pio_read - Read TP TM PIO registers 5425 * @adap: the adapter 5426 * @buff: where the indirect register values are written 5427 * @nregs: how many indirect registers to read 5428 * @start_index: index of first indirect register to read 5429 * @sleep_ok: if true we may sleep while awaiting command completion 5430 * 5431 * Read TP TM PIO Registers 5432 **/ 5433 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5434 u32 start_index, bool sleep_ok) 5435 { 5436 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5437 nregs, start_index, 1, sleep_ok); 5438 } 5439 5440 /** 5441 * t4_tp_mib_read - Read TP MIB registers 5442 * @adap: the adapter 5443 * @buff: where the indirect register values are written 5444 * @nregs: how many indirect registers to read 5445 * @start_index: index of first indirect register to read 5446 * @sleep_ok: if true we may sleep while awaiting command completion 5447 * 5448 * Read TP MIB Registers 5449 **/ 5450 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5451 bool sleep_ok) 5452 { 5453 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5454 start_index, 1, sleep_ok); 5455 } 5456 5457 /** 5458 * t4_read_rss_key - read the global RSS key 5459 * @adap: the adapter 5460 * @key: 10-entry array holding the 320-bit RSS key 5461 * @sleep_ok: if true we may sleep while awaiting command completion 5462 * 5463 * Reads the global 320-bit RSS key. 5464 */ 5465 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5466 { 5467 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5468 } 5469 5470 /** 5471 * t4_write_rss_key - program one of the RSS keys 5472 * @adap: the adapter 5473 * @key: 10-entry array holding the 320-bit RSS key 5474 * @idx: which RSS key to write 5475 * @sleep_ok: if true we may sleep while awaiting command completion 5476 * 5477 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5478 * 0..15 the corresponding entry in the RSS key table is written, 5479 * otherwise the global RSS key is written. 5480 */ 5481 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5482 bool sleep_ok) 5483 { 5484 u8 rss_key_addr_cnt = 16; 5485 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5486 5487 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5488 * allows access to key addresses 16-63 by using KeyWrAddrX 5489 * as index[5:4](upper 2) into key table 5490 */ 5491 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5492 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5493 rss_key_addr_cnt = 32; 5494 5495 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5496 5497 if (idx >= 0 && idx < rss_key_addr_cnt) { 5498 if (rss_key_addr_cnt > 16) 5499 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5500 KEYWRADDRX_V(idx >> 4) | 5501 T6_VFWRADDR_V(idx) | KEYWREN_F); 5502 else 5503 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5504 KEYWRADDR_V(idx) | KEYWREN_F); 5505 } 5506 } 5507 5508 /** 5509 * t4_read_rss_pf_config - read PF RSS Configuration Table 5510 * @adapter: the adapter 5511 * @index: the entry in the PF RSS table to read 5512 * @valp: where to store the returned value 5513 * @sleep_ok: if true we may sleep while awaiting command completion 5514 * 5515 * Reads the PF RSS Configuration Table at the specified index and returns 5516 * the value found there. 5517 */ 5518 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5519 u32 *valp, bool sleep_ok) 5520 { 5521 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5522 } 5523 5524 /** 5525 * t4_read_rss_vf_config - read VF RSS Configuration Table 5526 * @adapter: the adapter 5527 * @index: the entry in the VF RSS table to read 5528 * @vfl: where to store the returned VFL 5529 * @vfh: where to store the returned VFH 5530 * @sleep_ok: if true we may sleep while awaiting command completion 5531 * 5532 * Reads the VF RSS Configuration Table at the specified index and returns 5533 * the (VFL, VFH) values found there. 5534 */ 5535 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5536 u32 *vfl, u32 *vfh, bool sleep_ok) 5537 { 5538 u32 vrt, mask, data; 5539 5540 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5541 mask = VFWRADDR_V(VFWRADDR_M); 5542 data = VFWRADDR_V(index); 5543 } else { 5544 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5545 data = T6_VFWRADDR_V(index); 5546 } 5547 5548 /* Request that the index'th VF Table values be read into VFL/VFH. 5549 */ 5550 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5551 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5552 vrt |= data | VFRDEN_F; 5553 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5554 5555 /* Grab the VFL/VFH values ... 5556 */ 5557 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5558 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5559 } 5560 5561 /** 5562 * t4_read_rss_pf_map - read PF RSS Map 5563 * @adapter: the adapter 5564 * @sleep_ok: if true we may sleep while awaiting command completion 5565 * 5566 * Reads the PF RSS Map register and returns its value. 5567 */ 5568 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5569 { 5570 u32 pfmap; 5571 5572 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5573 return pfmap; 5574 } 5575 5576 /** 5577 * t4_read_rss_pf_mask - read PF RSS Mask 5578 * @adapter: the adapter 5579 * @sleep_ok: if true we may sleep while awaiting command completion 5580 * 5581 * Reads the PF RSS Mask register and returns its value. 5582 */ 5583 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5584 { 5585 u32 pfmask; 5586 5587 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5588 return pfmask; 5589 } 5590 5591 /** 5592 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5593 * @adap: the adapter 5594 * @v4: holds the TCP/IP counter values 5595 * @v6: holds the TCP/IPv6 counter values 5596 * @sleep_ok: if true we may sleep while awaiting command completion 5597 * 5598 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5599 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5600 */ 5601 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5602 struct tp_tcp_stats *v6, bool sleep_ok) 5603 { 5604 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5605 5606 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5607 #define STAT(x) val[STAT_IDX(x)] 5608 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5609 5610 if (v4) { 5611 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5612 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5613 v4->tcp_out_rsts = STAT(OUT_RST); 5614 v4->tcp_in_segs = STAT64(IN_SEG); 5615 v4->tcp_out_segs = STAT64(OUT_SEG); 5616 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5617 } 5618 if (v6) { 5619 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5620 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5621 v6->tcp_out_rsts = STAT(OUT_RST); 5622 v6->tcp_in_segs = STAT64(IN_SEG); 5623 v6->tcp_out_segs = STAT64(OUT_SEG); 5624 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5625 } 5626 #undef STAT64 5627 #undef STAT 5628 #undef STAT_IDX 5629 } 5630 5631 /** 5632 * t4_tp_get_err_stats - read TP's error MIB counters 5633 * @adap: the adapter 5634 * @st: holds the counter values 5635 * @sleep_ok: if true we may sleep while awaiting command completion 5636 * 5637 * Returns the values of TP's error counters. 5638 */ 5639 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5640 bool sleep_ok) 5641 { 5642 int nchan = adap->params.arch.nchan; 5643 5644 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5645 sleep_ok); 5646 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5647 sleep_ok); 5648 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5649 sleep_ok); 5650 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5651 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5652 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5653 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5654 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5655 sleep_ok); 5656 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5657 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5658 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5659 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5660 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5661 sleep_ok); 5662 } 5663 5664 /** 5665 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5666 * @adap: the adapter 5667 * @st: holds the counter values 5668 * @sleep_ok: if true we may sleep while awaiting command completion 5669 * 5670 * Returns the values of TP's CPL counters. 5671 */ 5672 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5673 bool sleep_ok) 5674 { 5675 int nchan = adap->params.arch.nchan; 5676 5677 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5678 5679 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5680 } 5681 5682 /** 5683 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5684 * @adap: the adapter 5685 * @st: holds the counter values 5686 * @sleep_ok: if true we may sleep while awaiting command completion 5687 * 5688 * Returns the values of TP's RDMA counters. 5689 */ 5690 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5691 bool sleep_ok) 5692 { 5693 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5694 sleep_ok); 5695 } 5696 5697 /** 5698 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5699 * @adap: the adapter 5700 * @idx: the port index 5701 * @st: holds the counter values 5702 * @sleep_ok: if true we may sleep while awaiting command completion 5703 * 5704 * Returns the values of TP's FCoE counters for the selected port. 5705 */ 5706 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5707 struct tp_fcoe_stats *st, bool sleep_ok) 5708 { 5709 u32 val[2]; 5710 5711 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5712 sleep_ok); 5713 5714 t4_tp_mib_read(adap, &st->frames_drop, 1, 5715 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5716 5717 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5718 sleep_ok); 5719 5720 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5721 } 5722 5723 /** 5724 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5725 * @adap: the adapter 5726 * @st: holds the counter values 5727 * @sleep_ok: if true we may sleep while awaiting command completion 5728 * 5729 * Returns the values of TP's counters for non-TCP directly-placed packets. 5730 */ 5731 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5732 bool sleep_ok) 5733 { 5734 u32 val[4]; 5735 5736 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5737 st->frames = val[0]; 5738 st->drops = val[1]; 5739 st->octets = ((u64)val[2] << 32) | val[3]; 5740 } 5741 5742 /** 5743 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5744 * @adap: the adapter 5745 * @mtus: where to store the MTU values 5746 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5747 * 5748 * Reads the HW path MTU table. 5749 */ 5750 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5751 { 5752 u32 v; 5753 int i; 5754 5755 for (i = 0; i < NMTUS; ++i) { 5756 t4_write_reg(adap, TP_MTU_TABLE_A, 5757 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5758 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5759 mtus[i] = MTUVALUE_G(v); 5760 if (mtu_log) 5761 mtu_log[i] = MTUWIDTH_G(v); 5762 } 5763 } 5764 5765 /** 5766 * t4_read_cong_tbl - reads the congestion control table 5767 * @adap: the adapter 5768 * @incr: where to store the alpha values 5769 * 5770 * Reads the additive increments programmed into the HW congestion 5771 * control table. 5772 */ 5773 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5774 { 5775 unsigned int mtu, w; 5776 5777 for (mtu = 0; mtu < NMTUS; ++mtu) 5778 for (w = 0; w < NCCTRL_WIN; ++w) { 5779 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5780 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5781 incr[mtu][w] = (u16)t4_read_reg(adap, 5782 TP_CCTRL_TABLE_A) & 0x1fff; 5783 } 5784 } 5785 5786 /** 5787 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5788 * @adap: the adapter 5789 * @addr: the indirect TP register address 5790 * @mask: specifies the field within the register to modify 5791 * @val: new value for the field 5792 * 5793 * Sets a field of an indirect TP register to the given value. 5794 */ 5795 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5796 unsigned int mask, unsigned int val) 5797 { 5798 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5799 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5800 t4_write_reg(adap, TP_PIO_DATA_A, val); 5801 } 5802 5803 /** 5804 * init_cong_ctrl - initialize congestion control parameters 5805 * @a: the alpha values for congestion control 5806 * @b: the beta values for congestion control 5807 * 5808 * Initialize the congestion control parameters. 5809 */ 5810 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5811 { 5812 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5813 a[9] = 2; 5814 a[10] = 3; 5815 a[11] = 4; 5816 a[12] = 5; 5817 a[13] = 6; 5818 a[14] = 7; 5819 a[15] = 8; 5820 a[16] = 9; 5821 a[17] = 10; 5822 a[18] = 14; 5823 a[19] = 17; 5824 a[20] = 21; 5825 a[21] = 25; 5826 a[22] = 30; 5827 a[23] = 35; 5828 a[24] = 45; 5829 a[25] = 60; 5830 a[26] = 80; 5831 a[27] = 100; 5832 a[28] = 200; 5833 a[29] = 300; 5834 a[30] = 400; 5835 a[31] = 500; 5836 5837 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5838 b[9] = b[10] = 1; 5839 b[11] = b[12] = 2; 5840 b[13] = b[14] = b[15] = b[16] = 3; 5841 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5842 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5843 b[28] = b[29] = 6; 5844 b[30] = b[31] = 7; 5845 } 5846 5847 /* The minimum additive increment value for the congestion control table */ 5848 #define CC_MIN_INCR 2U 5849 5850 /** 5851 * t4_load_mtus - write the MTU and congestion control HW tables 5852 * @adap: the adapter 5853 * @mtus: the values for the MTU table 5854 * @alpha: the values for the congestion control alpha parameter 5855 * @beta: the values for the congestion control beta parameter 5856 * 5857 * Write the HW MTU table with the supplied MTUs and the high-speed 5858 * congestion control table with the supplied alpha, beta, and MTUs. 5859 * We write the two tables together because the additive increments 5860 * depend on the MTUs. 5861 */ 5862 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5863 const unsigned short *alpha, const unsigned short *beta) 5864 { 5865 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5866 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5867 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5868 28672, 40960, 57344, 81920, 114688, 163840, 229376 5869 }; 5870 5871 unsigned int i, w; 5872 5873 for (i = 0; i < NMTUS; ++i) { 5874 unsigned int mtu = mtus[i]; 5875 unsigned int log2 = fls(mtu); 5876 5877 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5878 log2--; 5879 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5880 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5881 5882 for (w = 0; w < NCCTRL_WIN; ++w) { 5883 unsigned int inc; 5884 5885 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5886 CC_MIN_INCR); 5887 5888 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5889 (w << 16) | (beta[w] << 13) | inc); 5890 } 5891 } 5892 } 5893 5894 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5895 * clocks. The formula is 5896 * 5897 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5898 * 5899 * which is equivalent to 5900 * 5901 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5902 */ 5903 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5904 { 5905 u64 v = bytes256 * adap->params.vpd.cclk; 5906 5907 return v * 62 + v / 2; 5908 } 5909 5910 /** 5911 * t4_get_chan_txrate - get the current per channel Tx rates 5912 * @adap: the adapter 5913 * @nic_rate: rates for NIC traffic 5914 * @ofld_rate: rates for offloaded traffic 5915 * 5916 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5917 * for each channel. 5918 */ 5919 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5920 { 5921 u32 v; 5922 5923 v = t4_read_reg(adap, TP_TX_TRATE_A); 5924 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5925 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5926 if (adap->params.arch.nchan == NCHAN) { 5927 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5928 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5929 } 5930 5931 v = t4_read_reg(adap, TP_TX_ORATE_A); 5932 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5933 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5934 if (adap->params.arch.nchan == NCHAN) { 5935 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5936 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5937 } 5938 } 5939 5940 /** 5941 * t4_set_trace_filter - configure one of the tracing filters 5942 * @adap: the adapter 5943 * @tp: the desired trace filter parameters 5944 * @idx: which filter to configure 5945 * @enable: whether to enable or disable the filter 5946 * 5947 * Configures one of the tracing filters available in HW. If @enable is 5948 * %0 @tp is not examined and may be %NULL. The user is responsible to 5949 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5950 */ 5951 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5952 int idx, int enable) 5953 { 5954 int i, ofst = idx * 4; 5955 u32 data_reg, mask_reg, cfg; 5956 5957 if (!enable) { 5958 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5959 return 0; 5960 } 5961 5962 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5963 if (cfg & TRCMULTIFILTER_F) { 5964 /* If multiple tracers are enabled, then maximum 5965 * capture size is 2.5KB (FIFO size of a single channel) 5966 * minus 2 flits for CPL_TRACE_PKT header. 5967 */ 5968 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5969 return -EINVAL; 5970 } else { 5971 /* If multiple tracers are disabled, to avoid deadlocks 5972 * maximum packet capture size of 9600 bytes is recommended. 5973 * Also in this mode, only trace0 can be enabled and running. 5974 */ 5975 if (tp->snap_len > 9600 || idx) 5976 return -EINVAL; 5977 } 5978 5979 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5980 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5981 tp->min_len > TFMINPKTSIZE_M) 5982 return -EINVAL; 5983 5984 /* stop the tracer we'll be changing */ 5985 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5986 5987 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5988 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5989 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5990 5991 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5992 t4_write_reg(adap, data_reg, tp->data[i]); 5993 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5994 } 5995 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5996 TFCAPTUREMAX_V(tp->snap_len) | 5997 TFMINPKTSIZE_V(tp->min_len)); 5998 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5999 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 6000 (is_t4(adap->params.chip) ? 6001 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 6002 T5_TFPORT_V(tp->port) | T5_TFEN_F | 6003 T5_TFINVERTMATCH_V(tp->invert))); 6004 6005 return 0; 6006 } 6007 6008 /** 6009 * t4_get_trace_filter - query one of the tracing filters 6010 * @adap: the adapter 6011 * @tp: the current trace filter parameters 6012 * @idx: which trace filter to query 6013 * @enabled: non-zero if the filter is enabled 6014 * 6015 * Returns the current settings of one of the HW tracing filters. 6016 */ 6017 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6018 int *enabled) 6019 { 6020 u32 ctla, ctlb; 6021 int i, ofst = idx * 4; 6022 u32 data_reg, mask_reg; 6023 6024 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 6025 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 6026 6027 if (is_t4(adap->params.chip)) { 6028 *enabled = !!(ctla & TFEN_F); 6029 tp->port = TFPORT_G(ctla); 6030 tp->invert = !!(ctla & TFINVERTMATCH_F); 6031 } else { 6032 *enabled = !!(ctla & T5_TFEN_F); 6033 tp->port = T5_TFPORT_G(ctla); 6034 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 6035 } 6036 tp->snap_len = TFCAPTUREMAX_G(ctlb); 6037 tp->min_len = TFMINPKTSIZE_G(ctlb); 6038 tp->skip_ofst = TFOFFSET_G(ctla); 6039 tp->skip_len = TFLENGTH_G(ctla); 6040 6041 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 6042 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 6043 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 6044 6045 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6046 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6047 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6048 } 6049 } 6050 6051 /** 6052 * t4_pmtx_get_stats - returns the HW stats from PMTX 6053 * @adap: the adapter 6054 * @cnt: where to store the count statistics 6055 * @cycles: where to store the cycle statistics 6056 * 6057 * Returns performance statistics from PMTX. 6058 */ 6059 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6060 { 6061 int i; 6062 u32 data[2]; 6063 6064 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6065 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6066 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6067 if (is_t4(adap->params.chip)) { 6068 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6069 } else { 6070 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6071 PM_TX_DBG_DATA_A, data, 2, 6072 PM_TX_DBG_STAT_MSB_A); 6073 cycles[i] = (((u64)data[0] << 32) | data[1]); 6074 } 6075 } 6076 } 6077 6078 /** 6079 * t4_pmrx_get_stats - returns the HW stats from PMRX 6080 * @adap: the adapter 6081 * @cnt: where to store the count statistics 6082 * @cycles: where to store the cycle statistics 6083 * 6084 * Returns performance statistics from PMRX. 6085 */ 6086 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6087 { 6088 int i; 6089 u32 data[2]; 6090 6091 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6092 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6093 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6094 if (is_t4(adap->params.chip)) { 6095 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6096 } else { 6097 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6098 PM_RX_DBG_DATA_A, data, 2, 6099 PM_RX_DBG_STAT_MSB_A); 6100 cycles[i] = (((u64)data[0] << 32) | data[1]); 6101 } 6102 } 6103 } 6104 6105 /** 6106 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6107 * @adap: the adapter 6108 * @pidx: the port index 6109 * 6110 * Computes and returns a bitmap indicating which MPS buffer groups are 6111 * associated with the given Port. Bit i is set if buffer group i is 6112 * used by the Port. 6113 */ 6114 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6115 int pidx) 6116 { 6117 unsigned int chip_version, nports; 6118 6119 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6120 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6121 6122 switch (chip_version) { 6123 case CHELSIO_T4: 6124 case CHELSIO_T5: 6125 switch (nports) { 6126 case 1: return 0xf; 6127 case 2: return 3 << (2 * pidx); 6128 case 4: return 1 << pidx; 6129 } 6130 break; 6131 6132 case CHELSIO_T6: 6133 switch (nports) { 6134 case 2: return 1 << (2 * pidx); 6135 } 6136 break; 6137 } 6138 6139 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6140 chip_version, nports); 6141 6142 return 0; 6143 } 6144 6145 /** 6146 * t4_get_mps_bg_map - return the buffer groups associated with a port 6147 * @adapter: the adapter 6148 * @pidx: the port index 6149 * 6150 * Returns a bitmap indicating which MPS buffer groups are associated 6151 * with the given Port. Bit i is set if buffer group i is used by the 6152 * Port. 6153 */ 6154 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6155 { 6156 u8 *mps_bg_map; 6157 unsigned int nports; 6158 6159 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6160 if (pidx >= nports) { 6161 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6162 pidx, nports); 6163 return 0; 6164 } 6165 6166 /* If we've already retrieved/computed this, just return the result. 6167 */ 6168 mps_bg_map = adapter->params.mps_bg_map; 6169 if (mps_bg_map[pidx]) 6170 return mps_bg_map[pidx]; 6171 6172 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6173 * If we're talking to such Firmware, let it tell us. If the new 6174 * API isn't supported, revert back to old hardcoded way. The value 6175 * obtained from Firmware is encoded in below format: 6176 * 6177 * val = (( MPSBGMAP[Port 3] << 24 ) | 6178 * ( MPSBGMAP[Port 2] << 16 ) | 6179 * ( MPSBGMAP[Port 1] << 8 ) | 6180 * ( MPSBGMAP[Port 0] << 0 )) 6181 */ 6182 if (adapter->flags & CXGB4_FW_OK) { 6183 u32 param, val; 6184 int ret; 6185 6186 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6187 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6188 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6189 0, 1, ¶m, &val); 6190 if (!ret) { 6191 int p; 6192 6193 /* Store the BG Map for all of the Ports in order to 6194 * avoid more calls to the Firmware in the future. 6195 */ 6196 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6197 mps_bg_map[p] = val & 0xff; 6198 6199 return mps_bg_map[pidx]; 6200 } 6201 } 6202 6203 /* Either we're not talking to the Firmware or we're dealing with 6204 * older Firmware which doesn't support the new API to get the MPS 6205 * Buffer Group Map. Fall back to computing it ourselves. 6206 */ 6207 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6208 return mps_bg_map[pidx]; 6209 } 6210 6211 /** 6212 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6213 * @adapter: the adapter 6214 * @pidx: the port index 6215 * 6216 * Returns a bitmap indicating which TP Ingress Channels are associated 6217 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6218 * the Port. 6219 */ 6220 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6221 { 6222 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6223 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6224 6225 if (pidx >= nports) { 6226 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6227 pidx, nports); 6228 return 0; 6229 } 6230 6231 switch (chip_version) { 6232 case CHELSIO_T4: 6233 case CHELSIO_T5: 6234 /* Note that this happens to be the same values as the MPS 6235 * Buffer Group Map for these Chips. But we replicate the code 6236 * here because they're really separate concepts. 6237 */ 6238 switch (nports) { 6239 case 1: return 0xf; 6240 case 2: return 3 << (2 * pidx); 6241 case 4: return 1 << pidx; 6242 } 6243 break; 6244 6245 case CHELSIO_T6: 6246 switch (nports) { 6247 case 1: 6248 case 2: return 1 << pidx; 6249 } 6250 break; 6251 } 6252 6253 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6254 chip_version, nports); 6255 return 0; 6256 } 6257 6258 /** 6259 * t4_get_port_type_description - return Port Type string description 6260 * @port_type: firmware Port Type enumeration 6261 */ 6262 const char *t4_get_port_type_description(enum fw_port_type port_type) 6263 { 6264 static const char *const port_type_description[] = { 6265 "Fiber_XFI", 6266 "Fiber_XAUI", 6267 "BT_SGMII", 6268 "BT_XFI", 6269 "BT_XAUI", 6270 "KX4", 6271 "CX4", 6272 "KX", 6273 "KR", 6274 "SFP", 6275 "BP_AP", 6276 "BP4_AP", 6277 "QSFP_10G", 6278 "QSA", 6279 "QSFP", 6280 "BP40_BA", 6281 "KR4_100G", 6282 "CR4_QSFP", 6283 "CR_QSFP", 6284 "CR2_QSFP", 6285 "SFP28", 6286 "KR_SFP28", 6287 "KR_XLAUI" 6288 }; 6289 6290 if (port_type < ARRAY_SIZE(port_type_description)) 6291 return port_type_description[port_type]; 6292 return "UNKNOWN"; 6293 } 6294 6295 /** 6296 * t4_get_port_stats_offset - collect port stats relative to a previous 6297 * snapshot 6298 * @adap: The adapter 6299 * @idx: The port 6300 * @stats: Current stats to fill 6301 * @offset: Previous stats snapshot 6302 */ 6303 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6304 struct port_stats *stats, 6305 struct port_stats *offset) 6306 { 6307 u64 *s, *o; 6308 int i; 6309 6310 t4_get_port_stats(adap, idx, stats); 6311 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6312 i < (sizeof(struct port_stats) / sizeof(u64)); 6313 i++, s++, o++) 6314 *s -= *o; 6315 } 6316 6317 /** 6318 * t4_get_port_stats - collect port statistics 6319 * @adap: the adapter 6320 * @idx: the port index 6321 * @p: the stats structure to fill 6322 * 6323 * Collect statistics related to the given port from HW. 6324 */ 6325 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6326 { 6327 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6328 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6329 6330 #define GET_STAT(name) \ 6331 t4_read_reg64(adap, \ 6332 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6333 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6334 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6335 6336 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6337 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6338 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6339 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6340 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6341 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6342 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6343 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6344 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6345 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6346 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6347 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6348 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6349 p->tx_drop = GET_STAT(TX_PORT_DROP); 6350 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6351 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6352 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6353 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6354 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6355 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6356 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6357 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6358 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6359 6360 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6361 if (stat_ctl & COUNTPAUSESTATTX_F) 6362 p->tx_frames_64 -= p->tx_pause; 6363 if (stat_ctl & COUNTPAUSEMCTX_F) 6364 p->tx_mcast_frames -= p->tx_pause; 6365 } 6366 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6367 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6368 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6369 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6370 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6371 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6372 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6373 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6374 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6375 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6376 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6377 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6378 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6379 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6380 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6381 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6382 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6383 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6384 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6385 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6386 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6387 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6388 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6389 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6390 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6391 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6392 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6393 6394 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6395 if (stat_ctl & COUNTPAUSESTATRX_F) 6396 p->rx_frames_64 -= p->rx_pause; 6397 if (stat_ctl & COUNTPAUSEMCRX_F) 6398 p->rx_mcast_frames -= p->rx_pause; 6399 } 6400 6401 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6402 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6403 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6404 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6405 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6406 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6407 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6408 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6409 6410 #undef GET_STAT 6411 #undef GET_STAT_COM 6412 } 6413 6414 /** 6415 * t4_get_lb_stats - collect loopback port statistics 6416 * @adap: the adapter 6417 * @idx: the loopback port index 6418 * @p: the stats structure to fill 6419 * 6420 * Return HW statistics for the given loopback port. 6421 */ 6422 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6423 { 6424 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6425 6426 #define GET_STAT(name) \ 6427 t4_read_reg64(adap, \ 6428 (is_t4(adap->params.chip) ? \ 6429 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6430 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6431 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6432 6433 p->octets = GET_STAT(BYTES); 6434 p->frames = GET_STAT(FRAMES); 6435 p->bcast_frames = GET_STAT(BCAST); 6436 p->mcast_frames = GET_STAT(MCAST); 6437 p->ucast_frames = GET_STAT(UCAST); 6438 p->error_frames = GET_STAT(ERROR); 6439 6440 p->frames_64 = GET_STAT(64B); 6441 p->frames_65_127 = GET_STAT(65B_127B); 6442 p->frames_128_255 = GET_STAT(128B_255B); 6443 p->frames_256_511 = GET_STAT(256B_511B); 6444 p->frames_512_1023 = GET_STAT(512B_1023B); 6445 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6446 p->frames_1519_max = GET_STAT(1519B_MAX); 6447 p->drop = GET_STAT(DROP_FRAMES); 6448 6449 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6450 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6451 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6452 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6453 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6454 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6455 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6456 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6457 6458 #undef GET_STAT 6459 #undef GET_STAT_COM 6460 } 6461 6462 /* t4_mk_filtdelwr - create a delete filter WR 6463 * @ftid: the filter ID 6464 * @wr: the filter work request to populate 6465 * @qid: ingress queue to receive the delete notification 6466 * 6467 * Creates a filter work request to delete the supplied filter. If @qid is 6468 * negative the delete notification is suppressed. 6469 */ 6470 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6471 { 6472 memset(wr, 0, sizeof(*wr)); 6473 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6474 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6475 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6476 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6477 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6478 if (qid >= 0) 6479 wr->rx_chan_rx_rpl_iq = 6480 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6481 } 6482 6483 #define INIT_CMD(var, cmd, rd_wr) do { \ 6484 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6485 FW_CMD_REQUEST_F | \ 6486 FW_CMD_##rd_wr##_F); \ 6487 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6488 } while (0) 6489 6490 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6491 u32 addr, u32 val) 6492 { 6493 u32 ldst_addrspace; 6494 struct fw_ldst_cmd c; 6495 6496 memset(&c, 0, sizeof(c)); 6497 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6498 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6499 FW_CMD_REQUEST_F | 6500 FW_CMD_WRITE_F | 6501 ldst_addrspace); 6502 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6503 c.u.addrval.addr = cpu_to_be32(addr); 6504 c.u.addrval.val = cpu_to_be32(val); 6505 6506 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6507 } 6508 6509 /** 6510 * t4_mdio_rd - read a PHY register through MDIO 6511 * @adap: the adapter 6512 * @mbox: mailbox to use for the FW command 6513 * @phy_addr: the PHY address 6514 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6515 * @reg: the register to read 6516 * @valp: where to store the value 6517 * 6518 * Issues a FW command through the given mailbox to read a PHY register. 6519 */ 6520 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6521 unsigned int mmd, unsigned int reg, u16 *valp) 6522 { 6523 int ret; 6524 u32 ldst_addrspace; 6525 struct fw_ldst_cmd c; 6526 6527 memset(&c, 0, sizeof(c)); 6528 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6529 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6530 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6531 ldst_addrspace); 6532 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6533 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6534 FW_LDST_CMD_MMD_V(mmd)); 6535 c.u.mdio.raddr = cpu_to_be16(reg); 6536 6537 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6538 if (ret == 0) 6539 *valp = be16_to_cpu(c.u.mdio.rval); 6540 return ret; 6541 } 6542 6543 /** 6544 * t4_mdio_wr - write a PHY register through MDIO 6545 * @adap: the adapter 6546 * @mbox: mailbox to use for the FW command 6547 * @phy_addr: the PHY address 6548 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6549 * @reg: the register to write 6550 * @valp: value to write 6551 * 6552 * Issues a FW command through the given mailbox to write a PHY register. 6553 */ 6554 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6555 unsigned int mmd, unsigned int reg, u16 val) 6556 { 6557 u32 ldst_addrspace; 6558 struct fw_ldst_cmd c; 6559 6560 memset(&c, 0, sizeof(c)); 6561 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6562 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6563 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6564 ldst_addrspace); 6565 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6566 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6567 FW_LDST_CMD_MMD_V(mmd)); 6568 c.u.mdio.raddr = cpu_to_be16(reg); 6569 c.u.mdio.rval = cpu_to_be16(val); 6570 6571 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6572 } 6573 6574 /** 6575 * t4_sge_decode_idma_state - decode the idma state 6576 * @adap: the adapter 6577 * @state: the state idma is stuck in 6578 */ 6579 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6580 { 6581 static const char * const t4_decode[] = { 6582 "IDMA_IDLE", 6583 "IDMA_PUSH_MORE_CPL_FIFO", 6584 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6585 "Not used", 6586 "IDMA_PHYSADDR_SEND_PCIEHDR", 6587 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6588 "IDMA_PHYSADDR_SEND_PAYLOAD", 6589 "IDMA_SEND_FIFO_TO_IMSG", 6590 "IDMA_FL_REQ_DATA_FL_PREP", 6591 "IDMA_FL_REQ_DATA_FL", 6592 "IDMA_FL_DROP", 6593 "IDMA_FL_H_REQ_HEADER_FL", 6594 "IDMA_FL_H_SEND_PCIEHDR", 6595 "IDMA_FL_H_PUSH_CPL_FIFO", 6596 "IDMA_FL_H_SEND_CPL", 6597 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6598 "IDMA_FL_H_SEND_IP_HDR", 6599 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6600 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6601 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6602 "IDMA_FL_D_SEND_PCIEHDR", 6603 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6604 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6605 "IDMA_FL_SEND_PCIEHDR", 6606 "IDMA_FL_PUSH_CPL_FIFO", 6607 "IDMA_FL_SEND_CPL", 6608 "IDMA_FL_SEND_PAYLOAD_FIRST", 6609 "IDMA_FL_SEND_PAYLOAD", 6610 "IDMA_FL_REQ_NEXT_DATA_FL", 6611 "IDMA_FL_SEND_NEXT_PCIEHDR", 6612 "IDMA_FL_SEND_PADDING", 6613 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6614 "IDMA_FL_SEND_FIFO_TO_IMSG", 6615 "IDMA_FL_REQ_DATAFL_DONE", 6616 "IDMA_FL_REQ_HEADERFL_DONE", 6617 }; 6618 static const char * const t5_decode[] = { 6619 "IDMA_IDLE", 6620 "IDMA_ALMOST_IDLE", 6621 "IDMA_PUSH_MORE_CPL_FIFO", 6622 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6623 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6624 "IDMA_PHYSADDR_SEND_PCIEHDR", 6625 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6626 "IDMA_PHYSADDR_SEND_PAYLOAD", 6627 "IDMA_SEND_FIFO_TO_IMSG", 6628 "IDMA_FL_REQ_DATA_FL", 6629 "IDMA_FL_DROP", 6630 "IDMA_FL_DROP_SEND_INC", 6631 "IDMA_FL_H_REQ_HEADER_FL", 6632 "IDMA_FL_H_SEND_PCIEHDR", 6633 "IDMA_FL_H_PUSH_CPL_FIFO", 6634 "IDMA_FL_H_SEND_CPL", 6635 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6636 "IDMA_FL_H_SEND_IP_HDR", 6637 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6638 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6639 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6640 "IDMA_FL_D_SEND_PCIEHDR", 6641 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6642 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6643 "IDMA_FL_SEND_PCIEHDR", 6644 "IDMA_FL_PUSH_CPL_FIFO", 6645 "IDMA_FL_SEND_CPL", 6646 "IDMA_FL_SEND_PAYLOAD_FIRST", 6647 "IDMA_FL_SEND_PAYLOAD", 6648 "IDMA_FL_REQ_NEXT_DATA_FL", 6649 "IDMA_FL_SEND_NEXT_PCIEHDR", 6650 "IDMA_FL_SEND_PADDING", 6651 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6652 }; 6653 static const char * const t6_decode[] = { 6654 "IDMA_IDLE", 6655 "IDMA_PUSH_MORE_CPL_FIFO", 6656 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6657 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6658 "IDMA_PHYSADDR_SEND_PCIEHDR", 6659 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6660 "IDMA_PHYSADDR_SEND_PAYLOAD", 6661 "IDMA_FL_REQ_DATA_FL", 6662 "IDMA_FL_DROP", 6663 "IDMA_FL_DROP_SEND_INC", 6664 "IDMA_FL_H_REQ_HEADER_FL", 6665 "IDMA_FL_H_SEND_PCIEHDR", 6666 "IDMA_FL_H_PUSH_CPL_FIFO", 6667 "IDMA_FL_H_SEND_CPL", 6668 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6669 "IDMA_FL_H_SEND_IP_HDR", 6670 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6671 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6672 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6673 "IDMA_FL_D_SEND_PCIEHDR", 6674 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6675 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6676 "IDMA_FL_SEND_PCIEHDR", 6677 "IDMA_FL_PUSH_CPL_FIFO", 6678 "IDMA_FL_SEND_CPL", 6679 "IDMA_FL_SEND_PAYLOAD_FIRST", 6680 "IDMA_FL_SEND_PAYLOAD", 6681 "IDMA_FL_REQ_NEXT_DATA_FL", 6682 "IDMA_FL_SEND_NEXT_PCIEHDR", 6683 "IDMA_FL_SEND_PADDING", 6684 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6685 }; 6686 static const u32 sge_regs[] = { 6687 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6688 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6689 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6690 }; 6691 const char **sge_idma_decode; 6692 int sge_idma_decode_nstates; 6693 int i; 6694 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6695 6696 /* Select the right set of decode strings to dump depending on the 6697 * adapter chip type. 6698 */ 6699 switch (chip_version) { 6700 case CHELSIO_T4: 6701 sge_idma_decode = (const char **)t4_decode; 6702 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6703 break; 6704 6705 case CHELSIO_T5: 6706 sge_idma_decode = (const char **)t5_decode; 6707 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6708 break; 6709 6710 case CHELSIO_T6: 6711 sge_idma_decode = (const char **)t6_decode; 6712 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6713 break; 6714 6715 default: 6716 dev_err(adapter->pdev_dev, 6717 "Unsupported chip version %d\n", chip_version); 6718 return; 6719 } 6720 6721 if (is_t4(adapter->params.chip)) { 6722 sge_idma_decode = (const char **)t4_decode; 6723 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6724 } else { 6725 sge_idma_decode = (const char **)t5_decode; 6726 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6727 } 6728 6729 if (state < sge_idma_decode_nstates) 6730 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6731 else 6732 CH_WARN(adapter, "idma state %d unknown\n", state); 6733 6734 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6735 CH_WARN(adapter, "SGE register %#x value %#x\n", 6736 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6737 } 6738 6739 /** 6740 * t4_sge_ctxt_flush - flush the SGE context cache 6741 * @adap: the adapter 6742 * @mbox: mailbox to use for the FW command 6743 * @ctx_type: Egress or Ingress 6744 * 6745 * Issues a FW command through the given mailbox to flush the 6746 * SGE context cache. 6747 */ 6748 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6749 { 6750 int ret; 6751 u32 ldst_addrspace; 6752 struct fw_ldst_cmd c; 6753 6754 memset(&c, 0, sizeof(c)); 6755 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6756 FW_LDST_ADDRSPC_SGE_EGRC : 6757 FW_LDST_ADDRSPC_SGE_INGC); 6758 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6759 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6760 ldst_addrspace); 6761 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6762 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6763 6764 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6765 return ret; 6766 } 6767 6768 /** 6769 * t4_read_sge_dbqtimers - reag SGE Doorbell Queue Timer values 6770 * @adap - the adapter 6771 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6772 * @dbqtimers: SGE Doorbell Queue Timer table 6773 * 6774 * Reads the SGE Doorbell Queue Timer values into the provided table. 6775 * Returns 0 on success (Firmware and Hardware support this feature), 6776 * an error on failure. 6777 */ 6778 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6779 u16 *dbqtimers) 6780 { 6781 int ret, dbqtimerix; 6782 6783 ret = 0; 6784 dbqtimerix = 0; 6785 while (dbqtimerix < ndbqtimers) { 6786 int nparams, param; 6787 u32 params[7], vals[7]; 6788 6789 nparams = ndbqtimers - dbqtimerix; 6790 if (nparams > ARRAY_SIZE(params)) 6791 nparams = ARRAY_SIZE(params); 6792 6793 for (param = 0; param < nparams; param++) 6794 params[param] = 6795 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6796 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6797 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6798 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6799 nparams, params, vals); 6800 if (ret) 6801 break; 6802 6803 for (param = 0; param < nparams; param++) 6804 dbqtimers[dbqtimerix++] = vals[param]; 6805 } 6806 return ret; 6807 } 6808 6809 /** 6810 * t4_fw_hello - establish communication with FW 6811 * @adap: the adapter 6812 * @mbox: mailbox to use for the FW command 6813 * @evt_mbox: mailbox to receive async FW events 6814 * @master: specifies the caller's willingness to be the device master 6815 * @state: returns the current device state (if non-NULL) 6816 * 6817 * Issues a command to establish communication with FW. Returns either 6818 * an error (negative integer) or the mailbox of the Master PF. 6819 */ 6820 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6821 enum dev_master master, enum dev_state *state) 6822 { 6823 int ret; 6824 struct fw_hello_cmd c; 6825 u32 v; 6826 unsigned int master_mbox; 6827 int retries = FW_CMD_HELLO_RETRIES; 6828 6829 retry: 6830 memset(&c, 0, sizeof(c)); 6831 INIT_CMD(c, HELLO, WRITE); 6832 c.err_to_clearinit = cpu_to_be32( 6833 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6834 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6835 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6836 mbox : FW_HELLO_CMD_MBMASTER_M) | 6837 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6838 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6839 FW_HELLO_CMD_CLEARINIT_F); 6840 6841 /* 6842 * Issue the HELLO command to the firmware. If it's not successful 6843 * but indicates that we got a "busy" or "timeout" condition, retry 6844 * the HELLO until we exhaust our retry limit. If we do exceed our 6845 * retry limit, check to see if the firmware left us any error 6846 * information and report that if so. 6847 */ 6848 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6849 if (ret < 0) { 6850 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6851 goto retry; 6852 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6853 t4_report_fw_error(adap); 6854 return ret; 6855 } 6856 6857 v = be32_to_cpu(c.err_to_clearinit); 6858 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6859 if (state) { 6860 if (v & FW_HELLO_CMD_ERR_F) 6861 *state = DEV_STATE_ERR; 6862 else if (v & FW_HELLO_CMD_INIT_F) 6863 *state = DEV_STATE_INIT; 6864 else 6865 *state = DEV_STATE_UNINIT; 6866 } 6867 6868 /* 6869 * If we're not the Master PF then we need to wait around for the 6870 * Master PF Driver to finish setting up the adapter. 6871 * 6872 * Note that we also do this wait if we're a non-Master-capable PF and 6873 * there is no current Master PF; a Master PF may show up momentarily 6874 * and we wouldn't want to fail pointlessly. (This can happen when an 6875 * OS loads lots of different drivers rapidly at the same time). In 6876 * this case, the Master PF returned by the firmware will be 6877 * PCIE_FW_MASTER_M so the test below will work ... 6878 */ 6879 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6880 master_mbox != mbox) { 6881 int waiting = FW_CMD_HELLO_TIMEOUT; 6882 6883 /* 6884 * Wait for the firmware to either indicate an error or 6885 * initialized state. If we see either of these we bail out 6886 * and report the issue to the caller. If we exhaust the 6887 * "hello timeout" and we haven't exhausted our retries, try 6888 * again. Otherwise bail with a timeout error. 6889 */ 6890 for (;;) { 6891 u32 pcie_fw; 6892 6893 msleep(50); 6894 waiting -= 50; 6895 6896 /* 6897 * If neither Error nor Initialialized are indicated 6898 * by the firmware keep waiting till we exaust our 6899 * timeout ... and then retry if we haven't exhausted 6900 * our retries ... 6901 */ 6902 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6903 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6904 if (waiting <= 0) { 6905 if (retries-- > 0) 6906 goto retry; 6907 6908 return -ETIMEDOUT; 6909 } 6910 continue; 6911 } 6912 6913 /* 6914 * We either have an Error or Initialized condition 6915 * report errors preferentially. 6916 */ 6917 if (state) { 6918 if (pcie_fw & PCIE_FW_ERR_F) 6919 *state = DEV_STATE_ERR; 6920 else if (pcie_fw & PCIE_FW_INIT_F) 6921 *state = DEV_STATE_INIT; 6922 } 6923 6924 /* 6925 * If we arrived before a Master PF was selected and 6926 * there's not a valid Master PF, grab its identity 6927 * for our caller. 6928 */ 6929 if (master_mbox == PCIE_FW_MASTER_M && 6930 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6931 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6932 break; 6933 } 6934 } 6935 6936 return master_mbox; 6937 } 6938 6939 /** 6940 * t4_fw_bye - end communication with FW 6941 * @adap: the adapter 6942 * @mbox: mailbox to use for the FW command 6943 * 6944 * Issues a command to terminate communication with FW. 6945 */ 6946 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6947 { 6948 struct fw_bye_cmd c; 6949 6950 memset(&c, 0, sizeof(c)); 6951 INIT_CMD(c, BYE, WRITE); 6952 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6953 } 6954 6955 /** 6956 * t4_init_cmd - ask FW to initialize the device 6957 * @adap: the adapter 6958 * @mbox: mailbox to use for the FW command 6959 * 6960 * Issues a command to FW to partially initialize the device. This 6961 * performs initialization that generally doesn't depend on user input. 6962 */ 6963 int t4_early_init(struct adapter *adap, unsigned int mbox) 6964 { 6965 struct fw_initialize_cmd c; 6966 6967 memset(&c, 0, sizeof(c)); 6968 INIT_CMD(c, INITIALIZE, WRITE); 6969 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6970 } 6971 6972 /** 6973 * t4_fw_reset - issue a reset to FW 6974 * @adap: the adapter 6975 * @mbox: mailbox to use for the FW command 6976 * @reset: specifies the type of reset to perform 6977 * 6978 * Issues a reset command of the specified type to FW. 6979 */ 6980 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6981 { 6982 struct fw_reset_cmd c; 6983 6984 memset(&c, 0, sizeof(c)); 6985 INIT_CMD(c, RESET, WRITE); 6986 c.val = cpu_to_be32(reset); 6987 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6988 } 6989 6990 /** 6991 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6992 * @adap: the adapter 6993 * @mbox: mailbox to use for the FW RESET command (if desired) 6994 * @force: force uP into RESET even if FW RESET command fails 6995 * 6996 * Issues a RESET command to firmware (if desired) with a HALT indication 6997 * and then puts the microprocessor into RESET state. The RESET command 6998 * will only be issued if a legitimate mailbox is provided (mbox <= 6999 * PCIE_FW_MASTER_M). 7000 * 7001 * This is generally used in order for the host to safely manipulate the 7002 * adapter without fear of conflicting with whatever the firmware might 7003 * be doing. The only way out of this state is to RESTART the firmware 7004 * ... 7005 */ 7006 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7007 { 7008 int ret = 0; 7009 7010 /* 7011 * If a legitimate mailbox is provided, issue a RESET command 7012 * with a HALT indication. 7013 */ 7014 if (mbox <= PCIE_FW_MASTER_M) { 7015 struct fw_reset_cmd c; 7016 7017 memset(&c, 0, sizeof(c)); 7018 INIT_CMD(c, RESET, WRITE); 7019 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 7020 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 7021 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7022 } 7023 7024 /* 7025 * Normally we won't complete the operation if the firmware RESET 7026 * command fails but if our caller insists we'll go ahead and put the 7027 * uP into RESET. This can be useful if the firmware is hung or even 7028 * missing ... We'll have to take the risk of putting the uP into 7029 * RESET without the cooperation of firmware in that case. 7030 * 7031 * We also force the firmware's HALT flag to be on in case we bypassed 7032 * the firmware RESET command above or we're dealing with old firmware 7033 * which doesn't have the HALT capability. This will serve as a flag 7034 * for the incoming firmware to know that it's coming out of a HALT 7035 * rather than a RESET ... if it's new enough to understand that ... 7036 */ 7037 if (ret == 0 || force) { 7038 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 7039 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 7040 PCIE_FW_HALT_F); 7041 } 7042 7043 /* 7044 * And we always return the result of the firmware RESET command 7045 * even when we force the uP into RESET ... 7046 */ 7047 return ret; 7048 } 7049 7050 /** 7051 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7052 * @adap: the adapter 7053 * @reset: if we want to do a RESET to restart things 7054 * 7055 * Restart firmware previously halted by t4_fw_halt(). On successful 7056 * return the previous PF Master remains as the new PF Master and there 7057 * is no need to issue a new HELLO command, etc. 7058 * 7059 * We do this in two ways: 7060 * 7061 * 1. If we're dealing with newer firmware we'll simply want to take 7062 * the chip's microprocessor out of RESET. This will cause the 7063 * firmware to start up from its start vector. And then we'll loop 7064 * until the firmware indicates it's started again (PCIE_FW.HALT 7065 * reset to 0) or we timeout. 7066 * 7067 * 2. If we're dealing with older firmware then we'll need to RESET 7068 * the chip since older firmware won't recognize the PCIE_FW.HALT 7069 * flag and automatically RESET itself on startup. 7070 */ 7071 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7072 { 7073 if (reset) { 7074 /* 7075 * Since we're directing the RESET instead of the firmware 7076 * doing it automatically, we need to clear the PCIE_FW.HALT 7077 * bit. 7078 */ 7079 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7080 7081 /* 7082 * If we've been given a valid mailbox, first try to get the 7083 * firmware to do the RESET. If that works, great and we can 7084 * return success. Otherwise, if we haven't been given a 7085 * valid mailbox or the RESET command failed, fall back to 7086 * hitting the chip with a hammer. 7087 */ 7088 if (mbox <= PCIE_FW_MASTER_M) { 7089 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7090 msleep(100); 7091 if (t4_fw_reset(adap, mbox, 7092 PIORST_F | PIORSTMODE_F) == 0) 7093 return 0; 7094 } 7095 7096 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7097 msleep(2000); 7098 } else { 7099 int ms; 7100 7101 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7102 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7103 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7104 return 0; 7105 msleep(100); 7106 ms += 100; 7107 } 7108 return -ETIMEDOUT; 7109 } 7110 return 0; 7111 } 7112 7113 /** 7114 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7115 * @adap: the adapter 7116 * @mbox: mailbox to use for the FW RESET command (if desired) 7117 * @fw_data: the firmware image to write 7118 * @size: image size 7119 * @force: force upgrade even if firmware doesn't cooperate 7120 * 7121 * Perform all of the steps necessary for upgrading an adapter's 7122 * firmware image. Normally this requires the cooperation of the 7123 * existing firmware in order to halt all existing activities 7124 * but if an invalid mailbox token is passed in we skip that step 7125 * (though we'll still put the adapter microprocessor into RESET in 7126 * that case). 7127 * 7128 * On successful return the new firmware will have been loaded and 7129 * the adapter will have been fully RESET losing all previous setup 7130 * state. On unsuccessful return the adapter may be completely hosed ... 7131 * positive errno indicates that the adapter is ~probably~ intact, a 7132 * negative errno indicates that things are looking bad ... 7133 */ 7134 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7135 const u8 *fw_data, unsigned int size, int force) 7136 { 7137 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7138 int reset, ret; 7139 7140 if (!t4_fw_matches_chip(adap, fw_hdr)) 7141 return -EINVAL; 7142 7143 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7144 * set wont be sent when we are flashing FW. 7145 */ 7146 adap->flags &= ~CXGB4_FW_OK; 7147 7148 ret = t4_fw_halt(adap, mbox, force); 7149 if (ret < 0 && !force) 7150 goto out; 7151 7152 ret = t4_load_fw(adap, fw_data, size); 7153 if (ret < 0) 7154 goto out; 7155 7156 /* 7157 * If there was a Firmware Configuration File stored in FLASH, 7158 * there's a good chance that it won't be compatible with the new 7159 * Firmware. In order to prevent difficult to diagnose adapter 7160 * initialization issues, we clear out the Firmware Configuration File 7161 * portion of the FLASH . The user will need to re-FLASH a new 7162 * Firmware Configuration File which is compatible with the new 7163 * Firmware if that's desired. 7164 */ 7165 (void)t4_load_cfg(adap, NULL, 0); 7166 7167 /* 7168 * Older versions of the firmware don't understand the new 7169 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7170 * restart. So for newly loaded older firmware we'll have to do the 7171 * RESET for it so it starts up on a clean slate. We can tell if 7172 * the newly loaded firmware will handle this right by checking 7173 * its header flags to see if it advertises the capability. 7174 */ 7175 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7176 ret = t4_fw_restart(adap, mbox, reset); 7177 7178 /* Grab potentially new Firmware Device Log parameters so we can see 7179 * how healthy the new Firmware is. It's okay to contact the new 7180 * Firmware for these parameters even though, as far as it's 7181 * concerned, we've never said "HELLO" to it ... 7182 */ 7183 (void)t4_init_devlog_params(adap); 7184 out: 7185 adap->flags |= CXGB4_FW_OK; 7186 return ret; 7187 } 7188 7189 /** 7190 * t4_fl_pkt_align - return the fl packet alignment 7191 * @adap: the adapter 7192 * 7193 * T4 has a single field to specify the packing and padding boundary. 7194 * T5 onwards has separate fields for this and hence the alignment for 7195 * next packet offset is maximum of these two. 7196 * 7197 */ 7198 int t4_fl_pkt_align(struct adapter *adap) 7199 { 7200 u32 sge_control, sge_control2; 7201 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7202 7203 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7204 7205 /* T4 uses a single control field to specify both the PCIe Padding and 7206 * Packing Boundary. T5 introduced the ability to specify these 7207 * separately. The actual Ingress Packet Data alignment boundary 7208 * within Packed Buffer Mode is the maximum of these two 7209 * specifications. (Note that it makes no real practical sense to 7210 * have the Pading Boudary be larger than the Packing Boundary but you 7211 * could set the chip up that way and, in fact, legacy T4 code would 7212 * end doing this because it would initialize the Padding Boundary and 7213 * leave the Packing Boundary initialized to 0 (16 bytes).) 7214 * Padding Boundary values in T6 starts from 8B, 7215 * where as it is 32B for T4 and T5. 7216 */ 7217 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7218 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7219 else 7220 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7221 7222 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7223 7224 fl_align = ingpadboundary; 7225 if (!is_t4(adap->params.chip)) { 7226 /* T5 has a weird interpretation of one of the PCIe Packing 7227 * Boundary values. No idea why ... 7228 */ 7229 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7230 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7231 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7232 ingpackboundary = 16; 7233 else 7234 ingpackboundary = 1 << (ingpackboundary + 7235 INGPACKBOUNDARY_SHIFT_X); 7236 7237 fl_align = max(ingpadboundary, ingpackboundary); 7238 } 7239 return fl_align; 7240 } 7241 7242 /** 7243 * t4_fixup_host_params - fix up host-dependent parameters 7244 * @adap: the adapter 7245 * @page_size: the host's Base Page Size 7246 * @cache_line_size: the host's Cache Line Size 7247 * 7248 * Various registers in T4 contain values which are dependent on the 7249 * host's Base Page and Cache Line Sizes. This function will fix all of 7250 * those registers with the appropriate values as passed in ... 7251 */ 7252 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7253 unsigned int cache_line_size) 7254 { 7255 unsigned int page_shift = fls(page_size) - 1; 7256 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7257 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7258 unsigned int fl_align_log = fls(fl_align) - 1; 7259 7260 if (is_t4(adap->params.chip)) { 7261 t4_set_reg_field(adap, SGE_CONTROL_A, 7262 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7263 EGRSTATUSPAGESIZE_F, 7264 INGPADBOUNDARY_V(fl_align_log - 7265 INGPADBOUNDARY_SHIFT_X) | 7266 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7267 } else { 7268 unsigned int pack_align; 7269 unsigned int ingpad, ingpack; 7270 unsigned int pcie_cap; 7271 7272 /* T5 introduced the separation of the Free List Padding and 7273 * Packing Boundaries. Thus, we can select a smaller Padding 7274 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7275 * Bandwidth, and use a Packing Boundary which is large enough 7276 * to avoid false sharing between CPUs, etc. 7277 * 7278 * For the PCI Link, the smaller the Padding Boundary the 7279 * better. For the Memory Controller, a smaller Padding 7280 * Boundary is better until we cross under the Memory Line 7281 * Size (the minimum unit of transfer to/from Memory). If we 7282 * have a Padding Boundary which is smaller than the Memory 7283 * Line Size, that'll involve a Read-Modify-Write cycle on the 7284 * Memory Controller which is never good. 7285 */ 7286 7287 /* We want the Packing Boundary to be based on the Cache Line 7288 * Size in order to help avoid False Sharing performance 7289 * issues between CPUs, etc. We also want the Packing 7290 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7291 * get best performance when the Packing Boundary is a 7292 * multiple of the Maximum Payload Size. 7293 */ 7294 pack_align = fl_align; 7295 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7296 if (pcie_cap) { 7297 unsigned int mps, mps_log; 7298 u16 devctl; 7299 7300 /* The PCIe Device Control Maximum Payload Size field 7301 * [bits 7:5] encodes sizes as powers of 2 starting at 7302 * 128 bytes. 7303 */ 7304 pci_read_config_word(adap->pdev, 7305 pcie_cap + PCI_EXP_DEVCTL, 7306 &devctl); 7307 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7308 mps = 1 << mps_log; 7309 if (mps > pack_align) 7310 pack_align = mps; 7311 } 7312 7313 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7314 * value for the Packing Boundary. This corresponds to 16 7315 * bytes instead of the expected 32 bytes. So if we want 32 7316 * bytes, the best we can really do is 64 bytes ... 7317 */ 7318 if (pack_align <= 16) { 7319 ingpack = INGPACKBOUNDARY_16B_X; 7320 fl_align = 16; 7321 } else if (pack_align == 32) { 7322 ingpack = INGPACKBOUNDARY_64B_X; 7323 fl_align = 64; 7324 } else { 7325 unsigned int pack_align_log = fls(pack_align) - 1; 7326 7327 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7328 fl_align = pack_align; 7329 } 7330 7331 /* Use the smallest Ingress Padding which isn't smaller than 7332 * the Memory Controller Read/Write Size. We'll take that as 7333 * being 8 bytes since we don't know of any system with a 7334 * wider Memory Controller Bus Width. 7335 */ 7336 if (is_t5(adap->params.chip)) 7337 ingpad = INGPADBOUNDARY_32B_X; 7338 else 7339 ingpad = T6_INGPADBOUNDARY_8B_X; 7340 7341 t4_set_reg_field(adap, SGE_CONTROL_A, 7342 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7343 EGRSTATUSPAGESIZE_F, 7344 INGPADBOUNDARY_V(ingpad) | 7345 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7346 t4_set_reg_field(adap, SGE_CONTROL2_A, 7347 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7348 INGPACKBOUNDARY_V(ingpack)); 7349 } 7350 /* 7351 * Adjust various SGE Free List Host Buffer Sizes. 7352 * 7353 * This is something of a crock since we're using fixed indices into 7354 * the array which are also known by the sge.c code and the T4 7355 * Firmware Configuration File. We need to come up with a much better 7356 * approach to managing this array. For now, the first four entries 7357 * are: 7358 * 7359 * 0: Host Page Size 7360 * 1: 64KB 7361 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7362 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7363 * 7364 * For the single-MTU buffers in unpacked mode we need to include 7365 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7366 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7367 * Padding boundary. All of these are accommodated in the Factory 7368 * Default Firmware Configuration File but we need to adjust it for 7369 * this host's cache line size. 7370 */ 7371 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7372 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7373 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7374 & ~(fl_align-1)); 7375 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7376 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7377 & ~(fl_align-1)); 7378 7379 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7380 7381 return 0; 7382 } 7383 7384 /** 7385 * t4_fw_initialize - ask FW to initialize the device 7386 * @adap: the adapter 7387 * @mbox: mailbox to use for the FW command 7388 * 7389 * Issues a command to FW to partially initialize the device. This 7390 * performs initialization that generally doesn't depend on user input. 7391 */ 7392 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7393 { 7394 struct fw_initialize_cmd c; 7395 7396 memset(&c, 0, sizeof(c)); 7397 INIT_CMD(c, INITIALIZE, WRITE); 7398 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7399 } 7400 7401 /** 7402 * t4_query_params_rw - query FW or device parameters 7403 * @adap: the adapter 7404 * @mbox: mailbox to use for the FW command 7405 * @pf: the PF 7406 * @vf: the VF 7407 * @nparams: the number of parameters 7408 * @params: the parameter names 7409 * @val: the parameter values 7410 * @rw: Write and read flag 7411 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7412 * 7413 * Reads the value of FW or device parameters. Up to 7 parameters can be 7414 * queried at once. 7415 */ 7416 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7417 unsigned int vf, unsigned int nparams, const u32 *params, 7418 u32 *val, int rw, bool sleep_ok) 7419 { 7420 int i, ret; 7421 struct fw_params_cmd c; 7422 __be32 *p = &c.param[0].mnem; 7423 7424 if (nparams > 7) 7425 return -EINVAL; 7426 7427 memset(&c, 0, sizeof(c)); 7428 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7429 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7430 FW_PARAMS_CMD_PFN_V(pf) | 7431 FW_PARAMS_CMD_VFN_V(vf)); 7432 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7433 7434 for (i = 0; i < nparams; i++) { 7435 *p++ = cpu_to_be32(*params++); 7436 if (rw) 7437 *p = cpu_to_be32(*(val + i)); 7438 p++; 7439 } 7440 7441 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7442 if (ret == 0) 7443 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7444 *val++ = be32_to_cpu(*p); 7445 return ret; 7446 } 7447 7448 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7449 unsigned int vf, unsigned int nparams, const u32 *params, 7450 u32 *val) 7451 { 7452 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7453 true); 7454 } 7455 7456 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7457 unsigned int vf, unsigned int nparams, const u32 *params, 7458 u32 *val) 7459 { 7460 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7461 false); 7462 } 7463 7464 /** 7465 * t4_set_params_timeout - sets FW or device parameters 7466 * @adap: the adapter 7467 * @mbox: mailbox to use for the FW command 7468 * @pf: the PF 7469 * @vf: the VF 7470 * @nparams: the number of parameters 7471 * @params: the parameter names 7472 * @val: the parameter values 7473 * @timeout: the timeout time 7474 * 7475 * Sets the value of FW or device parameters. Up to 7 parameters can be 7476 * specified at once. 7477 */ 7478 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7479 unsigned int pf, unsigned int vf, 7480 unsigned int nparams, const u32 *params, 7481 const u32 *val, int timeout) 7482 { 7483 struct fw_params_cmd c; 7484 __be32 *p = &c.param[0].mnem; 7485 7486 if (nparams > 7) 7487 return -EINVAL; 7488 7489 memset(&c, 0, sizeof(c)); 7490 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7491 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7492 FW_PARAMS_CMD_PFN_V(pf) | 7493 FW_PARAMS_CMD_VFN_V(vf)); 7494 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7495 7496 while (nparams--) { 7497 *p++ = cpu_to_be32(*params++); 7498 *p++ = cpu_to_be32(*val++); 7499 } 7500 7501 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7502 } 7503 7504 /** 7505 * t4_set_params - sets FW or device parameters 7506 * @adap: the adapter 7507 * @mbox: mailbox to use for the FW command 7508 * @pf: the PF 7509 * @vf: the VF 7510 * @nparams: the number of parameters 7511 * @params: the parameter names 7512 * @val: the parameter values 7513 * 7514 * Sets the value of FW or device parameters. Up to 7 parameters can be 7515 * specified at once. 7516 */ 7517 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7518 unsigned int vf, unsigned int nparams, const u32 *params, 7519 const u32 *val) 7520 { 7521 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7522 FW_CMD_MAX_TIMEOUT); 7523 } 7524 7525 /** 7526 * t4_cfg_pfvf - configure PF/VF resource limits 7527 * @adap: the adapter 7528 * @mbox: mailbox to use for the FW command 7529 * @pf: the PF being configured 7530 * @vf: the VF being configured 7531 * @txq: the max number of egress queues 7532 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7533 * @rxqi: the max number of interrupt-capable ingress queues 7534 * @rxq: the max number of interruptless ingress queues 7535 * @tc: the PCI traffic class 7536 * @vi: the max number of virtual interfaces 7537 * @cmask: the channel access rights mask for the PF/VF 7538 * @pmask: the port access rights mask for the PF/VF 7539 * @nexact: the maximum number of exact MPS filters 7540 * @rcaps: read capabilities 7541 * @wxcaps: write/execute capabilities 7542 * 7543 * Configures resource limits and capabilities for a physical or virtual 7544 * function. 7545 */ 7546 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7547 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7548 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7549 unsigned int vi, unsigned int cmask, unsigned int pmask, 7550 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7551 { 7552 struct fw_pfvf_cmd c; 7553 7554 memset(&c, 0, sizeof(c)); 7555 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7556 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7557 FW_PFVF_CMD_VFN_V(vf)); 7558 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7559 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7560 FW_PFVF_CMD_NIQ_V(rxq)); 7561 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7562 FW_PFVF_CMD_PMASK_V(pmask) | 7563 FW_PFVF_CMD_NEQ_V(txq)); 7564 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7565 FW_PFVF_CMD_NVI_V(vi) | 7566 FW_PFVF_CMD_NEXACTF_V(nexact)); 7567 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7568 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7569 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7570 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7571 } 7572 7573 /** 7574 * t4_alloc_vi - allocate a virtual interface 7575 * @adap: the adapter 7576 * @mbox: mailbox to use for the FW command 7577 * @port: physical port associated with the VI 7578 * @pf: the PF owning the VI 7579 * @vf: the VF owning the VI 7580 * @nmac: number of MAC addresses needed (1 to 5) 7581 * @mac: the MAC addresses of the VI 7582 * @rss_size: size of RSS table slice associated with this VI 7583 * 7584 * Allocates a virtual interface for the given physical port. If @mac is 7585 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7586 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7587 * stored consecutively so the space needed is @nmac * 6 bytes. 7588 * Returns a negative error number or the non-negative VI id. 7589 */ 7590 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7591 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7592 unsigned int *rss_size, u8 *vivld, u8 *vin) 7593 { 7594 int ret; 7595 struct fw_vi_cmd c; 7596 7597 memset(&c, 0, sizeof(c)); 7598 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7599 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7600 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7601 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7602 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7603 c.nmac = nmac - 1; 7604 7605 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7606 if (ret) 7607 return ret; 7608 7609 if (mac) { 7610 memcpy(mac, c.mac, sizeof(c.mac)); 7611 switch (nmac) { 7612 case 5: 7613 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7614 /* Fall through */ 7615 case 4: 7616 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7617 /* Fall through */ 7618 case 3: 7619 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7620 /* Fall through */ 7621 case 2: 7622 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7623 } 7624 } 7625 if (rss_size) 7626 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7627 7628 if (vivld) 7629 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7630 7631 if (vin) 7632 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7633 7634 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7635 } 7636 7637 /** 7638 * t4_free_vi - free a virtual interface 7639 * @adap: the adapter 7640 * @mbox: mailbox to use for the FW command 7641 * @pf: the PF owning the VI 7642 * @vf: the VF owning the VI 7643 * @viid: virtual interface identifiler 7644 * 7645 * Free a previously allocated virtual interface. 7646 */ 7647 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7648 unsigned int vf, unsigned int viid) 7649 { 7650 struct fw_vi_cmd c; 7651 7652 memset(&c, 0, sizeof(c)); 7653 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7654 FW_CMD_REQUEST_F | 7655 FW_CMD_EXEC_F | 7656 FW_VI_CMD_PFN_V(pf) | 7657 FW_VI_CMD_VFN_V(vf)); 7658 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7659 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7660 7661 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7662 } 7663 7664 /** 7665 * t4_set_rxmode - set Rx properties of a virtual interface 7666 * @adap: the adapter 7667 * @mbox: mailbox to use for the FW command 7668 * @viid: the VI id 7669 * @mtu: the new MTU or -1 7670 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7671 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7672 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7673 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7674 * @sleep_ok: if true we may sleep while awaiting command completion 7675 * 7676 * Sets Rx properties of a virtual interface. 7677 */ 7678 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7679 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7680 bool sleep_ok) 7681 { 7682 struct fw_vi_rxmode_cmd c; 7683 7684 /* convert to FW values */ 7685 if (mtu < 0) 7686 mtu = FW_RXMODE_MTU_NO_CHG; 7687 if (promisc < 0) 7688 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7689 if (all_multi < 0) 7690 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7691 if (bcast < 0) 7692 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7693 if (vlanex < 0) 7694 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7695 7696 memset(&c, 0, sizeof(c)); 7697 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7698 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7699 FW_VI_RXMODE_CMD_VIID_V(viid)); 7700 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7701 c.mtu_to_vlanexen = 7702 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7703 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7704 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7705 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7706 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7707 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7708 } 7709 7710 /** 7711 * t4_free_encap_mac_filt - frees MPS entry at given index 7712 * @adap: the adapter 7713 * @viid: the VI id 7714 * @idx: index of MPS entry to be freed 7715 * @sleep_ok: call is allowed to sleep 7716 * 7717 * Frees the MPS entry at supplied index 7718 * 7719 * Returns a negative error number or zero on success 7720 */ 7721 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7722 int idx, bool sleep_ok) 7723 { 7724 struct fw_vi_mac_exact *p; 7725 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7726 struct fw_vi_mac_cmd c; 7727 int ret = 0; 7728 u32 exact; 7729 7730 memset(&c, 0, sizeof(c)); 7731 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7732 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7733 FW_CMD_EXEC_V(0) | 7734 FW_VI_MAC_CMD_VIID_V(viid)); 7735 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7736 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7737 exact | 7738 FW_CMD_LEN16_V(1)); 7739 p = c.u.exact; 7740 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7741 FW_VI_MAC_CMD_IDX_V(idx)); 7742 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7743 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7744 return ret; 7745 } 7746 7747 /** 7748 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7749 * @adap: the adapter 7750 * @viid: the VI id 7751 * @addr: the MAC address 7752 * @mask: the mask 7753 * @idx: index of the entry in mps tcam 7754 * @lookup_type: MAC address for inner (1) or outer (0) header 7755 * @port_id: the port index 7756 * @sleep_ok: call is allowed to sleep 7757 * 7758 * Removes the mac entry at the specified index using raw mac interface. 7759 * 7760 * Returns a negative error number on failure. 7761 */ 7762 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7763 const u8 *addr, const u8 *mask, unsigned int idx, 7764 u8 lookup_type, u8 port_id, bool sleep_ok) 7765 { 7766 struct fw_vi_mac_cmd c; 7767 struct fw_vi_mac_raw *p = &c.u.raw; 7768 u32 val; 7769 7770 memset(&c, 0, sizeof(c)); 7771 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7772 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7773 FW_CMD_EXEC_V(0) | 7774 FW_VI_MAC_CMD_VIID_V(viid)); 7775 val = FW_CMD_LEN16_V(1) | 7776 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7777 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7778 FW_CMD_LEN16_V(val)); 7779 7780 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7781 FW_VI_MAC_ID_BASED_FREE); 7782 7783 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7784 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7785 DATAPORTNUM_V(port_id)); 7786 /* Lookup mask and port mask */ 7787 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7788 DATAPORTNUM_V(DATAPORTNUM_M)); 7789 7790 /* Copy the address and the mask */ 7791 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7792 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7793 7794 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7795 } 7796 7797 /** 7798 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7799 * @adap: the adapter 7800 * @viid: the VI id 7801 * @mac: the MAC address 7802 * @mask: the mask 7803 * @vni: the VNI id for the tunnel protocol 7804 * @vni_mask: mask for the VNI id 7805 * @dip_hit: to enable DIP match for the MPS entry 7806 * @lookup_type: MAC address for inner (1) or outer (0) header 7807 * @sleep_ok: call is allowed to sleep 7808 * 7809 * Allocates an MPS entry with specified MAC address and VNI value. 7810 * 7811 * Returns a negative error number or the allocated index for this mac. 7812 */ 7813 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7814 const u8 *addr, const u8 *mask, unsigned int vni, 7815 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7816 bool sleep_ok) 7817 { 7818 struct fw_vi_mac_cmd c; 7819 struct fw_vi_mac_vni *p = c.u.exact_vni; 7820 int ret = 0; 7821 u32 val; 7822 7823 memset(&c, 0, sizeof(c)); 7824 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7825 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7826 FW_VI_MAC_CMD_VIID_V(viid)); 7827 val = FW_CMD_LEN16_V(1) | 7828 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7829 c.freemacs_to_len16 = cpu_to_be32(val); 7830 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7831 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7832 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7833 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7834 7835 p->lookup_type_to_vni = 7836 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7837 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7838 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7839 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7840 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7841 if (ret == 0) 7842 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7843 return ret; 7844 } 7845 7846 /** 7847 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7848 * @adap: the adapter 7849 * @viid: the VI id 7850 * @mac: the MAC address 7851 * @mask: the mask 7852 * @idx: index at which to add this entry 7853 * @port_id: the port index 7854 * @lookup_type: MAC address for inner (1) or outer (0) header 7855 * @sleep_ok: call is allowed to sleep 7856 * 7857 * Adds the mac entry at the specified index using raw mac interface. 7858 * 7859 * Returns a negative error number or the allocated index for this mac. 7860 */ 7861 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7862 const u8 *addr, const u8 *mask, unsigned int idx, 7863 u8 lookup_type, u8 port_id, bool sleep_ok) 7864 { 7865 int ret = 0; 7866 struct fw_vi_mac_cmd c; 7867 struct fw_vi_mac_raw *p = &c.u.raw; 7868 u32 val; 7869 7870 memset(&c, 0, sizeof(c)); 7871 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7872 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7873 FW_VI_MAC_CMD_VIID_V(viid)); 7874 val = FW_CMD_LEN16_V(1) | 7875 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7876 c.freemacs_to_len16 = cpu_to_be32(val); 7877 7878 /* Specify that this is an inner mac address */ 7879 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7880 7881 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7882 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7883 DATAPORTNUM_V(port_id)); 7884 /* Lookup mask and port mask */ 7885 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7886 DATAPORTNUM_V(DATAPORTNUM_M)); 7887 7888 /* Copy the address and the mask */ 7889 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7890 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7891 7892 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7893 if (ret == 0) { 7894 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7895 if (ret != idx) 7896 ret = -ENOMEM; 7897 } 7898 7899 return ret; 7900 } 7901 7902 /** 7903 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7904 * @adap: the adapter 7905 * @mbox: mailbox to use for the FW command 7906 * @viid: the VI id 7907 * @free: if true any existing filters for this VI id are first removed 7908 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7909 * @addr: the MAC address(es) 7910 * @idx: where to store the index of each allocated filter 7911 * @hash: pointer to hash address filter bitmap 7912 * @sleep_ok: call is allowed to sleep 7913 * 7914 * Allocates an exact-match filter for each of the supplied addresses and 7915 * sets it to the corresponding address. If @idx is not %NULL it should 7916 * have at least @naddr entries, each of which will be set to the index of 7917 * the filter allocated for the corresponding MAC address. If a filter 7918 * could not be allocated for an address its index is set to 0xffff. 7919 * If @hash is not %NULL addresses that fail to allocate an exact filter 7920 * are hashed and update the hash filter bitmap pointed at by @hash. 7921 * 7922 * Returns a negative error number or the number of filters allocated. 7923 */ 7924 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7925 unsigned int viid, bool free, unsigned int naddr, 7926 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7927 { 7928 int offset, ret = 0; 7929 struct fw_vi_mac_cmd c; 7930 unsigned int nfilters = 0; 7931 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7932 unsigned int rem = naddr; 7933 7934 if (naddr > max_naddr) 7935 return -EINVAL; 7936 7937 for (offset = 0; offset < naddr ; /**/) { 7938 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7939 rem : ARRAY_SIZE(c.u.exact)); 7940 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7941 u.exact[fw_naddr]), 16); 7942 struct fw_vi_mac_exact *p; 7943 int i; 7944 7945 memset(&c, 0, sizeof(c)); 7946 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7947 FW_CMD_REQUEST_F | 7948 FW_CMD_WRITE_F | 7949 FW_CMD_EXEC_V(free) | 7950 FW_VI_MAC_CMD_VIID_V(viid)); 7951 c.freemacs_to_len16 = 7952 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7953 FW_CMD_LEN16_V(len16)); 7954 7955 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7956 p->valid_to_idx = 7957 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7958 FW_VI_MAC_CMD_IDX_V( 7959 FW_VI_MAC_ADD_MAC)); 7960 memcpy(p->macaddr, addr[offset + i], 7961 sizeof(p->macaddr)); 7962 } 7963 7964 /* It's okay if we run out of space in our MAC address arena. 7965 * Some of the addresses we submit may get stored so we need 7966 * to run through the reply to see what the results were ... 7967 */ 7968 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7969 if (ret && ret != -FW_ENOMEM) 7970 break; 7971 7972 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7973 u16 index = FW_VI_MAC_CMD_IDX_G( 7974 be16_to_cpu(p->valid_to_idx)); 7975 7976 if (idx) 7977 idx[offset + i] = (index >= max_naddr ? 7978 0xffff : index); 7979 if (index < max_naddr) 7980 nfilters++; 7981 else if (hash) 7982 *hash |= (1ULL << 7983 hash_mac_addr(addr[offset + i])); 7984 } 7985 7986 free = false; 7987 offset += fw_naddr; 7988 rem -= fw_naddr; 7989 } 7990 7991 if (ret == 0 || ret == -FW_ENOMEM) 7992 ret = nfilters; 7993 return ret; 7994 } 7995 7996 /** 7997 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7998 * @adap: the adapter 7999 * @mbox: mailbox to use for the FW command 8000 * @viid: the VI id 8001 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8002 * @addr: the MAC address(es) 8003 * @sleep_ok: call is allowed to sleep 8004 * 8005 * Frees the exact-match filter for each of the supplied addresses 8006 * 8007 * Returns a negative error number or the number of filters freed. 8008 */ 8009 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8010 unsigned int viid, unsigned int naddr, 8011 const u8 **addr, bool sleep_ok) 8012 { 8013 int offset, ret = 0; 8014 struct fw_vi_mac_cmd c; 8015 unsigned int nfilters = 0; 8016 unsigned int max_naddr = is_t4(adap->params.chip) ? 8017 NUM_MPS_CLS_SRAM_L_INSTANCES : 8018 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8019 unsigned int rem = naddr; 8020 8021 if (naddr > max_naddr) 8022 return -EINVAL; 8023 8024 for (offset = 0; offset < (int)naddr ; /**/) { 8025 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8026 ? rem 8027 : ARRAY_SIZE(c.u.exact)); 8028 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8029 u.exact[fw_naddr]), 16); 8030 struct fw_vi_mac_exact *p; 8031 int i; 8032 8033 memset(&c, 0, sizeof(c)); 8034 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8035 FW_CMD_REQUEST_F | 8036 FW_CMD_WRITE_F | 8037 FW_CMD_EXEC_V(0) | 8038 FW_VI_MAC_CMD_VIID_V(viid)); 8039 c.freemacs_to_len16 = 8040 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 8041 FW_CMD_LEN16_V(len16)); 8042 8043 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8044 p->valid_to_idx = cpu_to_be16( 8045 FW_VI_MAC_CMD_VALID_F | 8046 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8047 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8048 } 8049 8050 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8051 if (ret) 8052 break; 8053 8054 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8055 u16 index = FW_VI_MAC_CMD_IDX_G( 8056 be16_to_cpu(p->valid_to_idx)); 8057 8058 if (index < max_naddr) 8059 nfilters++; 8060 } 8061 8062 offset += fw_naddr; 8063 rem -= fw_naddr; 8064 } 8065 8066 if (ret == 0) 8067 ret = nfilters; 8068 return ret; 8069 } 8070 8071 /** 8072 * t4_change_mac - modifies the exact-match filter for a MAC address 8073 * @adap: the adapter 8074 * @mbox: mailbox to use for the FW command 8075 * @viid: the VI id 8076 * @idx: index of existing filter for old value of MAC address, or -1 8077 * @addr: the new MAC address value 8078 * @persist: whether a new MAC allocation should be persistent 8079 * @add_smt: if true also add the address to the HW SMT 8080 * 8081 * Modifies an exact-match filter and sets it to the new MAC address. 8082 * Note that in general it is not possible to modify the value of a given 8083 * filter so the generic way to modify an address filter is to free the one 8084 * being used by the old address value and allocate a new filter for the 8085 * new address value. @idx can be -1 if the address is a new addition. 8086 * 8087 * Returns a negative error number or the index of the filter with the new 8088 * MAC value. 8089 */ 8090 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8091 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8092 { 8093 int ret, mode; 8094 struct fw_vi_mac_cmd c; 8095 struct fw_vi_mac_exact *p = c.u.exact; 8096 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8097 8098 if (idx < 0) /* new allocation */ 8099 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8100 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8101 8102 memset(&c, 0, sizeof(c)); 8103 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8104 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8105 FW_VI_MAC_CMD_VIID_V(viid)); 8106 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8107 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8108 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8109 FW_VI_MAC_CMD_IDX_V(idx)); 8110 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8111 8112 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8113 if (ret == 0) { 8114 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8115 if (ret >= max_mac_addr) 8116 ret = -ENOMEM; 8117 if (smt_idx) { 8118 if (adap->params.viid_smt_extn_support) { 8119 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8120 (be32_to_cpu(c.op_to_viid)); 8121 } else { 8122 /* In T4/T5, SMT contains 256 SMAC entries 8123 * organized in 128 rows of 2 entries each. 8124 * In T6, SMT contains 256 SMAC entries in 8125 * 256 rows. 8126 */ 8127 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8128 CHELSIO_T5) 8129 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8130 else 8131 *smt_idx = (viid & FW_VIID_VIN_M); 8132 } 8133 } 8134 } 8135 return ret; 8136 } 8137 8138 /** 8139 * t4_set_addr_hash - program the MAC inexact-match hash filter 8140 * @adap: the adapter 8141 * @mbox: mailbox to use for the FW command 8142 * @viid: the VI id 8143 * @ucast: whether the hash filter should also match unicast addresses 8144 * @vec: the value to be written to the hash filter 8145 * @sleep_ok: call is allowed to sleep 8146 * 8147 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8148 */ 8149 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8150 bool ucast, u64 vec, bool sleep_ok) 8151 { 8152 struct fw_vi_mac_cmd c; 8153 8154 memset(&c, 0, sizeof(c)); 8155 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8156 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8157 FW_VI_ENABLE_CMD_VIID_V(viid)); 8158 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8159 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8160 FW_CMD_LEN16_V(1)); 8161 c.u.hash.hashvec = cpu_to_be64(vec); 8162 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8163 } 8164 8165 /** 8166 * t4_enable_vi_params - enable/disable a virtual interface 8167 * @adap: the adapter 8168 * @mbox: mailbox to use for the FW command 8169 * @viid: the VI id 8170 * @rx_en: 1=enable Rx, 0=disable Rx 8171 * @tx_en: 1=enable Tx, 0=disable Tx 8172 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8173 * 8174 * Enables/disables a virtual interface. Note that setting DCB Enable 8175 * only makes sense when enabling a Virtual Interface ... 8176 */ 8177 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8178 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8179 { 8180 struct fw_vi_enable_cmd c; 8181 8182 memset(&c, 0, sizeof(c)); 8183 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8184 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8185 FW_VI_ENABLE_CMD_VIID_V(viid)); 8186 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8187 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8188 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8189 FW_LEN16(c)); 8190 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8191 } 8192 8193 /** 8194 * t4_enable_vi - enable/disable a virtual interface 8195 * @adap: the adapter 8196 * @mbox: mailbox to use for the FW command 8197 * @viid: the VI id 8198 * @rx_en: 1=enable Rx, 0=disable Rx 8199 * @tx_en: 1=enable Tx, 0=disable Tx 8200 * 8201 * Enables/disables a virtual interface. 8202 */ 8203 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8204 bool rx_en, bool tx_en) 8205 { 8206 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8207 } 8208 8209 /** 8210 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8211 * @adap: the adapter 8212 * @mbox: mailbox to use for the FW command 8213 * @pi: the Port Information structure 8214 * @rx_en: 1=enable Rx, 0=disable Rx 8215 * @tx_en: 1=enable Tx, 0=disable Tx 8216 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8217 * 8218 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8219 * Enable only makes sense when enabling a Virtual Interface ... 8220 * If the Virtual Interface enable/disable operation is successful, 8221 * we notify the OS-specific code of a potential Link Status change 8222 * via the OS Contract API t4_os_link_changed(). 8223 */ 8224 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8225 struct port_info *pi, 8226 bool rx_en, bool tx_en, bool dcb_en) 8227 { 8228 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8229 rx_en, tx_en, dcb_en); 8230 if (ret) 8231 return ret; 8232 t4_os_link_changed(adap, pi->port_id, 8233 rx_en && tx_en && pi->link_cfg.link_ok); 8234 return 0; 8235 } 8236 8237 /** 8238 * t4_identify_port - identify a VI's port by blinking its LED 8239 * @adap: the adapter 8240 * @mbox: mailbox to use for the FW command 8241 * @viid: the VI id 8242 * @nblinks: how many times to blink LED at 2.5 Hz 8243 * 8244 * Identifies a VI's port by blinking its LED. 8245 */ 8246 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8247 unsigned int nblinks) 8248 { 8249 struct fw_vi_enable_cmd c; 8250 8251 memset(&c, 0, sizeof(c)); 8252 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8253 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8254 FW_VI_ENABLE_CMD_VIID_V(viid)); 8255 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8256 c.blinkdur = cpu_to_be16(nblinks); 8257 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8258 } 8259 8260 /** 8261 * t4_iq_stop - stop an ingress queue and its FLs 8262 * @adap: the adapter 8263 * @mbox: mailbox to use for the FW command 8264 * @pf: the PF owning the queues 8265 * @vf: the VF owning the queues 8266 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8267 * @iqid: ingress queue id 8268 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8269 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8270 * 8271 * Stops an ingress queue and its associated FLs, if any. This causes 8272 * any current or future data/messages destined for these queues to be 8273 * tossed. 8274 */ 8275 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8276 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8277 unsigned int fl0id, unsigned int fl1id) 8278 { 8279 struct fw_iq_cmd c; 8280 8281 memset(&c, 0, sizeof(c)); 8282 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8283 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8284 FW_IQ_CMD_VFN_V(vf)); 8285 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8286 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8287 c.iqid = cpu_to_be16(iqid); 8288 c.fl0id = cpu_to_be16(fl0id); 8289 c.fl1id = cpu_to_be16(fl1id); 8290 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8291 } 8292 8293 /** 8294 * t4_iq_free - free an ingress queue and its FLs 8295 * @adap: the adapter 8296 * @mbox: mailbox to use for the FW command 8297 * @pf: the PF owning the queues 8298 * @vf: the VF owning the queues 8299 * @iqtype: the ingress queue type 8300 * @iqid: ingress queue id 8301 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8302 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8303 * 8304 * Frees an ingress queue and its associated FLs, if any. 8305 */ 8306 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8307 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8308 unsigned int fl0id, unsigned int fl1id) 8309 { 8310 struct fw_iq_cmd c; 8311 8312 memset(&c, 0, sizeof(c)); 8313 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8314 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8315 FW_IQ_CMD_VFN_V(vf)); 8316 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8317 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8318 c.iqid = cpu_to_be16(iqid); 8319 c.fl0id = cpu_to_be16(fl0id); 8320 c.fl1id = cpu_to_be16(fl1id); 8321 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8322 } 8323 8324 /** 8325 * t4_eth_eq_free - free an Ethernet egress queue 8326 * @adap: the adapter 8327 * @mbox: mailbox to use for the FW command 8328 * @pf: the PF owning the queue 8329 * @vf: the VF owning the queue 8330 * @eqid: egress queue id 8331 * 8332 * Frees an Ethernet egress queue. 8333 */ 8334 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8335 unsigned int vf, unsigned int eqid) 8336 { 8337 struct fw_eq_eth_cmd c; 8338 8339 memset(&c, 0, sizeof(c)); 8340 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8341 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8342 FW_EQ_ETH_CMD_PFN_V(pf) | 8343 FW_EQ_ETH_CMD_VFN_V(vf)); 8344 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8345 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8346 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8347 } 8348 8349 /** 8350 * t4_ctrl_eq_free - free a control egress queue 8351 * @adap: the adapter 8352 * @mbox: mailbox to use for the FW command 8353 * @pf: the PF owning the queue 8354 * @vf: the VF owning the queue 8355 * @eqid: egress queue id 8356 * 8357 * Frees a control egress queue. 8358 */ 8359 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8360 unsigned int vf, unsigned int eqid) 8361 { 8362 struct fw_eq_ctrl_cmd c; 8363 8364 memset(&c, 0, sizeof(c)); 8365 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8366 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8367 FW_EQ_CTRL_CMD_PFN_V(pf) | 8368 FW_EQ_CTRL_CMD_VFN_V(vf)); 8369 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8370 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8371 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8372 } 8373 8374 /** 8375 * t4_ofld_eq_free - free an offload egress queue 8376 * @adap: the adapter 8377 * @mbox: mailbox to use for the FW command 8378 * @pf: the PF owning the queue 8379 * @vf: the VF owning the queue 8380 * @eqid: egress queue id 8381 * 8382 * Frees a control egress queue. 8383 */ 8384 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8385 unsigned int vf, unsigned int eqid) 8386 { 8387 struct fw_eq_ofld_cmd c; 8388 8389 memset(&c, 0, sizeof(c)); 8390 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8391 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8392 FW_EQ_OFLD_CMD_PFN_V(pf) | 8393 FW_EQ_OFLD_CMD_VFN_V(vf)); 8394 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8395 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8396 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8397 } 8398 8399 /** 8400 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8401 * @adap: the adapter 8402 * @link_down_rc: Link Down Reason Code 8403 * 8404 * Returns a string representation of the Link Down Reason Code. 8405 */ 8406 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8407 { 8408 static const char * const reason[] = { 8409 "Link Down", 8410 "Remote Fault", 8411 "Auto-negotiation Failure", 8412 "Reserved", 8413 "Insufficient Airflow", 8414 "Unable To Determine Reason", 8415 "No RX Signal Detected", 8416 "Reserved", 8417 }; 8418 8419 if (link_down_rc >= ARRAY_SIZE(reason)) 8420 return "Bad Reason Code"; 8421 8422 return reason[link_down_rc]; 8423 } 8424 8425 /** 8426 * Return the highest speed set in the port capabilities, in Mb/s. 8427 */ 8428 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8429 { 8430 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8431 do { \ 8432 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8433 return __speed; \ 8434 } while (0) 8435 8436 TEST_SPEED_RETURN(400G, 400000); 8437 TEST_SPEED_RETURN(200G, 200000); 8438 TEST_SPEED_RETURN(100G, 100000); 8439 TEST_SPEED_RETURN(50G, 50000); 8440 TEST_SPEED_RETURN(40G, 40000); 8441 TEST_SPEED_RETURN(25G, 25000); 8442 TEST_SPEED_RETURN(10G, 10000); 8443 TEST_SPEED_RETURN(1G, 1000); 8444 TEST_SPEED_RETURN(100M, 100); 8445 8446 #undef TEST_SPEED_RETURN 8447 8448 return 0; 8449 } 8450 8451 /** 8452 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8453 * @acaps: advertised Port Capabilities 8454 * 8455 * Get the highest speed for the port from the advertised Port 8456 * Capabilities. It will be either the highest speed from the list of 8457 * speeds or whatever user has set using ethtool. 8458 */ 8459 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8460 { 8461 #define TEST_SPEED_RETURN(__caps_speed) \ 8462 do { \ 8463 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8464 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8465 } while (0) 8466 8467 TEST_SPEED_RETURN(400G); 8468 TEST_SPEED_RETURN(200G); 8469 TEST_SPEED_RETURN(100G); 8470 TEST_SPEED_RETURN(50G); 8471 TEST_SPEED_RETURN(40G); 8472 TEST_SPEED_RETURN(25G); 8473 TEST_SPEED_RETURN(10G); 8474 TEST_SPEED_RETURN(1G); 8475 TEST_SPEED_RETURN(100M); 8476 8477 #undef TEST_SPEED_RETURN 8478 8479 return 0; 8480 } 8481 8482 /** 8483 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8484 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8485 * 8486 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8487 * 32-bit Port Capabilities value. 8488 */ 8489 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8490 { 8491 fw_port_cap32_t linkattr = 0; 8492 8493 /* Unfortunately the format of the Link Status in the old 8494 * 16-bit Port Information message isn't the same as the 8495 * 16-bit Port Capabilities bitfield used everywhere else ... 8496 */ 8497 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8498 linkattr |= FW_PORT_CAP32_FC_RX; 8499 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8500 linkattr |= FW_PORT_CAP32_FC_TX; 8501 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8502 linkattr |= FW_PORT_CAP32_SPEED_100M; 8503 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8504 linkattr |= FW_PORT_CAP32_SPEED_1G; 8505 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8506 linkattr |= FW_PORT_CAP32_SPEED_10G; 8507 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8508 linkattr |= FW_PORT_CAP32_SPEED_25G; 8509 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8510 linkattr |= FW_PORT_CAP32_SPEED_40G; 8511 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8512 linkattr |= FW_PORT_CAP32_SPEED_100G; 8513 8514 return linkattr; 8515 } 8516 8517 /** 8518 * t4_handle_get_port_info - process a FW reply message 8519 * @pi: the port info 8520 * @rpl: start of the FW message 8521 * 8522 * Processes a GET_PORT_INFO FW reply message. 8523 */ 8524 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8525 { 8526 const struct fw_port_cmd *cmd = (const void *)rpl; 8527 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8528 struct adapter *adapter = pi->adapter; 8529 struct link_config *lc = &pi->link_cfg; 8530 int link_ok, linkdnrc; 8531 enum fw_port_type port_type; 8532 enum fw_port_module_type mod_type; 8533 unsigned int speed, fc, fec; 8534 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8535 8536 /* Extract the various fields from the Port Information message. 8537 */ 8538 switch (action) { 8539 case FW_PORT_ACTION_GET_PORT_INFO: { 8540 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8541 8542 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8543 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8544 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8545 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8546 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8547 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8548 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8549 linkattr = lstatus_to_fwcap(lstatus); 8550 break; 8551 } 8552 8553 case FW_PORT_ACTION_GET_PORT_INFO32: { 8554 u32 lstatus32; 8555 8556 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8557 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8558 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8559 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8560 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8561 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8562 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8563 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8564 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8565 break; 8566 } 8567 8568 default: 8569 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8570 be32_to_cpu(cmd->action_to_len16)); 8571 return; 8572 } 8573 8574 fec = fwcap_to_cc_fec(acaps); 8575 fc = fwcap_to_cc_pause(linkattr); 8576 speed = fwcap_to_speed(linkattr); 8577 8578 /* Reset state for communicating new Transceiver Module status and 8579 * whether the OS-dependent layer wants us to redo the current 8580 * "sticky" L1 Configure Link Parameters. 8581 */ 8582 lc->new_module = false; 8583 lc->redo_l1cfg = false; 8584 8585 if (mod_type != pi->mod_type) { 8586 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8587 * various fundamental Port Capabilities which used to be 8588 * immutable can now change radically. We can now have 8589 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8590 * all change based on what Transceiver Module is inserted. 8591 * So we need to record the Physical "Port" Capabilities on 8592 * every Transceiver Module change. 8593 */ 8594 lc->pcaps = pcaps; 8595 8596 /* When a new Transceiver Module is inserted, the Firmware 8597 * will examine its i2c EPROM to determine its type and 8598 * general operating parameters including things like Forward 8599 * Error Control, etc. Various IEEE 802.3 standards dictate 8600 * how to interpret these i2c values to determine default 8601 * "sutomatic" settings. We record these for future use when 8602 * the user explicitly requests these standards-based values. 8603 */ 8604 lc->def_acaps = acaps; 8605 8606 /* Some versions of the early T6 Firmware "cheated" when 8607 * handling different Transceiver Modules by changing the 8608 * underlaying Port Type reported to the Host Drivers. As 8609 * such we need to capture whatever Port Type the Firmware 8610 * sends us and record it in case it's different from what we 8611 * were told earlier. Unfortunately, since Firmware is 8612 * forever, we'll need to keep this code here forever, but in 8613 * later T6 Firmware it should just be an assignment of the 8614 * same value already recorded. 8615 */ 8616 pi->port_type = port_type; 8617 8618 /* Record new Module Type information. 8619 */ 8620 pi->mod_type = mod_type; 8621 8622 /* Let the OS-dependent layer know if we have a new 8623 * Transceiver Module inserted. 8624 */ 8625 lc->new_module = t4_is_inserted_mod_type(mod_type); 8626 8627 t4_os_portmod_changed(adapter, pi->port_id); 8628 } 8629 8630 if (link_ok != lc->link_ok || speed != lc->speed || 8631 fc != lc->fc || fec != lc->fec) { /* something changed */ 8632 if (!link_ok && lc->link_ok) { 8633 lc->link_down_rc = linkdnrc; 8634 dev_warn_ratelimited(adapter->pdev_dev, 8635 "Port %d link down, reason: %s\n", 8636 pi->tx_chan, 8637 t4_link_down_rc_str(linkdnrc)); 8638 } 8639 lc->link_ok = link_ok; 8640 lc->speed = speed; 8641 lc->fc = fc; 8642 lc->fec = fec; 8643 8644 lc->lpacaps = lpacaps; 8645 lc->acaps = acaps & ADVERT_MASK; 8646 8647 /* If we're not physically capable of Auto-Negotiation, note 8648 * this as Auto-Negotiation disabled. Otherwise, we track 8649 * what Auto-Negotiation settings we have. Note parallel 8650 * structure in t4_link_l1cfg_core() and init_link_config(). 8651 */ 8652 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8653 lc->autoneg = AUTONEG_DISABLE; 8654 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8655 lc->autoneg = AUTONEG_ENABLE; 8656 } else { 8657 /* When Autoneg is disabled, user needs to set 8658 * single speed. 8659 * Similar to cxgb4_ethtool.c: set_link_ksettings 8660 */ 8661 lc->acaps = 0; 8662 lc->speed_caps = fwcap_to_fwspeed(acaps); 8663 lc->autoneg = AUTONEG_DISABLE; 8664 } 8665 8666 t4_os_link_changed(adapter, pi->port_id, link_ok); 8667 } 8668 8669 /* If we have a new Transceiver Module and the OS-dependent code has 8670 * told us that it wants us to redo whatever "sticky" L1 Configuration 8671 * Link Parameters are set, do that now. 8672 */ 8673 if (lc->new_module && lc->redo_l1cfg) { 8674 struct link_config old_lc; 8675 int ret; 8676 8677 /* Save the current L1 Configuration and restore it if an 8678 * error occurs. We probably should fix the l1_cfg*() 8679 * routines not to change the link_config when an error 8680 * occurs ... 8681 */ 8682 old_lc = *lc; 8683 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8684 if (ret) { 8685 *lc = old_lc; 8686 dev_warn(adapter->pdev_dev, 8687 "Attempt to update new Transceiver Module settings failed\n"); 8688 } 8689 } 8690 lc->new_module = false; 8691 lc->redo_l1cfg = false; 8692 } 8693 8694 /** 8695 * t4_update_port_info - retrieve and update port information if changed 8696 * @pi: the port_info 8697 * 8698 * We issue a Get Port Information Command to the Firmware and, if 8699 * successful, we check to see if anything is different from what we 8700 * last recorded and update things accordingly. 8701 */ 8702 int t4_update_port_info(struct port_info *pi) 8703 { 8704 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8705 struct fw_port_cmd port_cmd; 8706 int ret; 8707 8708 memset(&port_cmd, 0, sizeof(port_cmd)); 8709 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8710 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8711 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8712 port_cmd.action_to_len16 = cpu_to_be32( 8713 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8714 ? FW_PORT_ACTION_GET_PORT_INFO 8715 : FW_PORT_ACTION_GET_PORT_INFO32) | 8716 FW_LEN16(port_cmd)); 8717 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8718 &port_cmd, sizeof(port_cmd), &port_cmd); 8719 if (ret) 8720 return ret; 8721 8722 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8723 return 0; 8724 } 8725 8726 /** 8727 * t4_get_link_params - retrieve basic link parameters for given port 8728 * @pi: the port 8729 * @link_okp: value return pointer for link up/down 8730 * @speedp: value return pointer for speed (Mb/s) 8731 * @mtup: value return pointer for mtu 8732 * 8733 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8734 * and MTU for a specified port. A negative error is returned on 8735 * failure; 0 on success. 8736 */ 8737 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8738 unsigned int *speedp, unsigned int *mtup) 8739 { 8740 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8741 struct fw_port_cmd port_cmd; 8742 unsigned int action, link_ok, mtu; 8743 fw_port_cap32_t linkattr; 8744 int ret; 8745 8746 memset(&port_cmd, 0, sizeof(port_cmd)); 8747 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8748 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8749 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8750 action = (fw_caps == FW_CAPS16 8751 ? FW_PORT_ACTION_GET_PORT_INFO 8752 : FW_PORT_ACTION_GET_PORT_INFO32); 8753 port_cmd.action_to_len16 = cpu_to_be32( 8754 FW_PORT_CMD_ACTION_V(action) | 8755 FW_LEN16(port_cmd)); 8756 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8757 &port_cmd, sizeof(port_cmd), &port_cmd); 8758 if (ret) 8759 return ret; 8760 8761 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8762 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8763 8764 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8765 linkattr = lstatus_to_fwcap(lstatus); 8766 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8767 } else { 8768 u32 lstatus32 = 8769 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8770 8771 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8772 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8773 mtu = FW_PORT_CMD_MTU32_G( 8774 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8775 } 8776 8777 *link_okp = link_ok; 8778 *speedp = fwcap_to_speed(linkattr); 8779 *mtup = mtu; 8780 8781 return 0; 8782 } 8783 8784 /** 8785 * t4_handle_fw_rpl - process a FW reply message 8786 * @adap: the adapter 8787 * @rpl: start of the FW message 8788 * 8789 * Processes a FW message, such as link state change messages. 8790 */ 8791 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8792 { 8793 u8 opcode = *(const u8 *)rpl; 8794 8795 /* This might be a port command ... this simplifies the following 8796 * conditionals ... We can get away with pre-dereferencing 8797 * action_to_len16 because it's in the first 16 bytes and all messages 8798 * will be at least that long. 8799 */ 8800 const struct fw_port_cmd *p = (const void *)rpl; 8801 unsigned int action = 8802 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8803 8804 if (opcode == FW_PORT_CMD && 8805 (action == FW_PORT_ACTION_GET_PORT_INFO || 8806 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8807 int i; 8808 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8809 struct port_info *pi = NULL; 8810 8811 for_each_port(adap, i) { 8812 pi = adap2pinfo(adap, i); 8813 if (pi->tx_chan == chan) 8814 break; 8815 } 8816 8817 t4_handle_get_port_info(pi, rpl); 8818 } else { 8819 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8820 opcode); 8821 return -EINVAL; 8822 } 8823 return 0; 8824 } 8825 8826 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8827 { 8828 u16 val; 8829 8830 if (pci_is_pcie(adapter->pdev)) { 8831 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8832 p->speed = val & PCI_EXP_LNKSTA_CLS; 8833 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8834 } 8835 } 8836 8837 /** 8838 * init_link_config - initialize a link's SW state 8839 * @lc: pointer to structure holding the link state 8840 * @pcaps: link Port Capabilities 8841 * @acaps: link current Advertised Port Capabilities 8842 * 8843 * Initializes the SW state maintained for each link, including the link's 8844 * capabilities and default speed/flow-control/autonegotiation settings. 8845 */ 8846 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8847 fw_port_cap32_t acaps) 8848 { 8849 lc->pcaps = pcaps; 8850 lc->def_acaps = acaps; 8851 lc->lpacaps = 0; 8852 lc->speed_caps = 0; 8853 lc->speed = 0; 8854 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8855 8856 /* For Forward Error Control, we default to whatever the Firmware 8857 * tells us the Link is currently advertising. 8858 */ 8859 lc->requested_fec = FEC_AUTO; 8860 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8861 8862 /* If the Port is capable of Auto-Negtotiation, initialize it as 8863 * "enabled" and copy over all of the Physical Port Capabilities 8864 * to the Advertised Port Capabilities. Otherwise mark it as 8865 * Auto-Negotiate disabled and select the highest supported speed 8866 * for the link. Note parallel structure in t4_link_l1cfg_core() 8867 * and t4_handle_get_port_info(). 8868 */ 8869 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8870 lc->acaps = lc->pcaps & ADVERT_MASK; 8871 lc->autoneg = AUTONEG_ENABLE; 8872 lc->requested_fc |= PAUSE_AUTONEG; 8873 } else { 8874 lc->acaps = 0; 8875 lc->autoneg = AUTONEG_DISABLE; 8876 lc->speed_caps = fwcap_to_fwspeed(acaps); 8877 } 8878 } 8879 8880 #define CIM_PF_NOACCESS 0xeeeeeeee 8881 8882 int t4_wait_dev_ready(void __iomem *regs) 8883 { 8884 u32 whoami; 8885 8886 whoami = readl(regs + PL_WHOAMI_A); 8887 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8888 return 0; 8889 8890 msleep(500); 8891 whoami = readl(regs + PL_WHOAMI_A); 8892 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8893 } 8894 8895 struct flash_desc { 8896 u32 vendor_and_model_id; 8897 u32 size_mb; 8898 }; 8899 8900 static int t4_get_flash_params(struct adapter *adap) 8901 { 8902 /* Table for non-Numonix supported flash parts. Numonix parts are left 8903 * to the preexisting code. All flash parts have 64KB sectors. 8904 */ 8905 static struct flash_desc supported_flash[] = { 8906 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8907 }; 8908 8909 unsigned int part, manufacturer; 8910 unsigned int density, size = 0; 8911 u32 flashid = 0; 8912 int ret; 8913 8914 /* Issue a Read ID Command to the Flash part. We decode supported 8915 * Flash parts and their sizes from this. There's a newer Query 8916 * Command which can retrieve detailed geometry information but many 8917 * Flash parts don't support it. 8918 */ 8919 8920 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8921 if (!ret) 8922 ret = sf1_read(adap, 3, 0, 1, &flashid); 8923 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8924 if (ret) 8925 return ret; 8926 8927 /* Check to see if it's one of our non-standard supported Flash parts. 8928 */ 8929 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8930 if (supported_flash[part].vendor_and_model_id == flashid) { 8931 adap->params.sf_size = supported_flash[part].size_mb; 8932 adap->params.sf_nsec = 8933 adap->params.sf_size / SF_SEC_SIZE; 8934 goto found; 8935 } 8936 8937 /* Decode Flash part size. The code below looks repetative with 8938 * common encodings, but that's not guaranteed in the JEDEC 8939 * specification for the Read JADEC ID command. The only thing that 8940 * we're guaranteed by the JADEC specification is where the 8941 * Manufacturer ID is in the returned result. After that each 8942 * Manufacturer ~could~ encode things completely differently. 8943 * Note, all Flash parts must have 64KB sectors. 8944 */ 8945 manufacturer = flashid & 0xff; 8946 switch (manufacturer) { 8947 case 0x20: { /* Micron/Numonix */ 8948 /* This Density -> Size decoding table is taken from Micron 8949 * Data Sheets. 8950 */ 8951 density = (flashid >> 16) & 0xff; 8952 switch (density) { 8953 case 0x14: /* 1MB */ 8954 size = 1 << 20; 8955 break; 8956 case 0x15: /* 2MB */ 8957 size = 1 << 21; 8958 break; 8959 case 0x16: /* 4MB */ 8960 size = 1 << 22; 8961 break; 8962 case 0x17: /* 8MB */ 8963 size = 1 << 23; 8964 break; 8965 case 0x18: /* 16MB */ 8966 size = 1 << 24; 8967 break; 8968 case 0x19: /* 32MB */ 8969 size = 1 << 25; 8970 break; 8971 case 0x20: /* 64MB */ 8972 size = 1 << 26; 8973 break; 8974 case 0x21: /* 128MB */ 8975 size = 1 << 27; 8976 break; 8977 case 0x22: /* 256MB */ 8978 size = 1 << 28; 8979 break; 8980 } 8981 break; 8982 } 8983 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 8984 /* This Density -> Size decoding table is taken from ISSI 8985 * Data Sheets. 8986 */ 8987 density = (flashid >> 16) & 0xff; 8988 switch (density) { 8989 case 0x16: /* 32 MB */ 8990 size = 1 << 25; 8991 break; 8992 case 0x17: /* 64MB */ 8993 size = 1 << 26; 8994 break; 8995 } 8996 break; 8997 } 8998 case 0xc2: { /* Macronix */ 8999 /* This Density -> Size decoding table is taken from Macronix 9000 * Data Sheets. 9001 */ 9002 density = (flashid >> 16) & 0xff; 9003 switch (density) { 9004 case 0x17: /* 8MB */ 9005 size = 1 << 23; 9006 break; 9007 case 0x18: /* 16MB */ 9008 size = 1 << 24; 9009 break; 9010 } 9011 break; 9012 } 9013 case 0xef: { /* Winbond */ 9014 /* This Density -> Size decoding table is taken from Winbond 9015 * Data Sheets. 9016 */ 9017 density = (flashid >> 16) & 0xff; 9018 switch (density) { 9019 case 0x17: /* 8MB */ 9020 size = 1 << 23; 9021 break; 9022 case 0x18: /* 16MB */ 9023 size = 1 << 24; 9024 break; 9025 } 9026 break; 9027 } 9028 } 9029 9030 /* If we didn't recognize the FLASH part, that's no real issue: the 9031 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9032 * use a FLASH part which is at least 4MB in size and has 64KB 9033 * sectors. The unrecognized FLASH part is likely to be much larger 9034 * than 4MB, but that's all we really need. 9035 */ 9036 if (size == 0) { 9037 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 9038 flashid); 9039 size = 1 << 22; 9040 } 9041 9042 /* Store decoded Flash size and fall through into vetting code. */ 9043 adap->params.sf_size = size; 9044 adap->params.sf_nsec = size / SF_SEC_SIZE; 9045 9046 found: 9047 if (adap->params.sf_size < FLASH_MIN_SIZE) 9048 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9049 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9050 return 0; 9051 } 9052 9053 /** 9054 * t4_prep_adapter - prepare SW and HW for operation 9055 * @adapter: the adapter 9056 * @reset: if true perform a HW reset 9057 * 9058 * Initialize adapter SW state for the various HW modules, set initial 9059 * values for some adapter tunables, take PHYs out of reset, and 9060 * initialize the MDIO interface. 9061 */ 9062 int t4_prep_adapter(struct adapter *adapter) 9063 { 9064 int ret, ver; 9065 uint16_t device_id; 9066 u32 pl_rev; 9067 9068 get_pci_mode(adapter, &adapter->params.pci); 9069 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9070 9071 ret = t4_get_flash_params(adapter); 9072 if (ret < 0) { 9073 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9074 return ret; 9075 } 9076 9077 /* Retrieve adapter's device ID 9078 */ 9079 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9080 ver = device_id >> 12; 9081 adapter->params.chip = 0; 9082 switch (ver) { 9083 case CHELSIO_T4: 9084 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9085 adapter->params.arch.sge_fl_db = DBPRIO_F; 9086 adapter->params.arch.mps_tcam_size = 9087 NUM_MPS_CLS_SRAM_L_INSTANCES; 9088 adapter->params.arch.mps_rplc_size = 128; 9089 adapter->params.arch.nchan = NCHAN; 9090 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9091 adapter->params.arch.vfcount = 128; 9092 /* Congestion map is for 4 channels so that 9093 * MPS can have 4 priority per port. 9094 */ 9095 adapter->params.arch.cng_ch_bits_log = 2; 9096 break; 9097 case CHELSIO_T5: 9098 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9099 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9100 adapter->params.arch.mps_tcam_size = 9101 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9102 adapter->params.arch.mps_rplc_size = 128; 9103 adapter->params.arch.nchan = NCHAN; 9104 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9105 adapter->params.arch.vfcount = 128; 9106 adapter->params.arch.cng_ch_bits_log = 2; 9107 break; 9108 case CHELSIO_T6: 9109 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9110 adapter->params.arch.sge_fl_db = 0; 9111 adapter->params.arch.mps_tcam_size = 9112 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9113 adapter->params.arch.mps_rplc_size = 256; 9114 adapter->params.arch.nchan = 2; 9115 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9116 adapter->params.arch.vfcount = 256; 9117 /* Congestion map will be for 2 channels so that 9118 * MPS can have 8 priority per port. 9119 */ 9120 adapter->params.arch.cng_ch_bits_log = 3; 9121 break; 9122 default: 9123 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9124 device_id); 9125 return -EINVAL; 9126 } 9127 9128 adapter->params.cim_la_size = CIMLA_SIZE; 9129 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9130 9131 /* 9132 * Default port for debugging in case we can't reach FW. 9133 */ 9134 adapter->params.nports = 1; 9135 adapter->params.portvec = 1; 9136 adapter->params.vpd.cclk = 50000; 9137 9138 /* Set PCIe completion timeout to 4 seconds. */ 9139 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9140 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9141 return 0; 9142 } 9143 9144 /** 9145 * t4_shutdown_adapter - shut down adapter, host & wire 9146 * @adapter: the adapter 9147 * 9148 * Perform an emergency shutdown of the adapter and stop it from 9149 * continuing any further communication on the ports or DMA to the 9150 * host. This is typically used when the adapter and/or firmware 9151 * have crashed and we want to prevent any further accidental 9152 * communication with the rest of the world. This will also force 9153 * the port Link Status to go down -- if register writes work -- 9154 * which should help our peers figure out that we're down. 9155 */ 9156 int t4_shutdown_adapter(struct adapter *adapter) 9157 { 9158 int port; 9159 9160 t4_intr_disable(adapter); 9161 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9162 for_each_port(adapter, port) { 9163 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9164 PORT_REG(port, XGMAC_PORT_CFG_A) : 9165 T5_PORT_REG(port, MAC_PORT_CFG_A); 9166 9167 t4_write_reg(adapter, a_port_cfg, 9168 t4_read_reg(adapter, a_port_cfg) 9169 & ~SIGNAL_DET_V(1)); 9170 } 9171 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9172 9173 return 0; 9174 } 9175 9176 /** 9177 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9178 * @adapter: the adapter 9179 * @qid: the Queue ID 9180 * @qtype: the Ingress or Egress type for @qid 9181 * @user: true if this request is for a user mode queue 9182 * @pbar2_qoffset: BAR2 Queue Offset 9183 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9184 * 9185 * Returns the BAR2 SGE Queue Registers information associated with the 9186 * indicated Absolute Queue ID. These are passed back in return value 9187 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9188 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9189 * 9190 * This may return an error which indicates that BAR2 SGE Queue 9191 * registers aren't available. If an error is not returned, then the 9192 * following values are returned: 9193 * 9194 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9195 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9196 * 9197 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9198 * require the "Inferred Queue ID" ability may be used. E.g. the 9199 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9200 * then these "Inferred Queue ID" register may not be used. 9201 */ 9202 int t4_bar2_sge_qregs(struct adapter *adapter, 9203 unsigned int qid, 9204 enum t4_bar2_qtype qtype, 9205 int user, 9206 u64 *pbar2_qoffset, 9207 unsigned int *pbar2_qid) 9208 { 9209 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9210 u64 bar2_page_offset, bar2_qoffset; 9211 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9212 9213 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9214 if (!user && is_t4(adapter->params.chip)) 9215 return -EINVAL; 9216 9217 /* Get our SGE Page Size parameters. 9218 */ 9219 page_shift = adapter->params.sge.hps + 10; 9220 page_size = 1 << page_shift; 9221 9222 /* Get the right Queues per Page parameters for our Queue. 9223 */ 9224 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9225 ? adapter->params.sge.eq_qpp 9226 : adapter->params.sge.iq_qpp); 9227 qpp_mask = (1 << qpp_shift) - 1; 9228 9229 /* Calculate the basics of the BAR2 SGE Queue register area: 9230 * o The BAR2 page the Queue registers will be in. 9231 * o The BAR2 Queue ID. 9232 * o The BAR2 Queue ID Offset into the BAR2 page. 9233 */ 9234 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9235 bar2_qid = qid & qpp_mask; 9236 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9237 9238 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9239 * hardware will infer the Absolute Queue ID simply from the writes to 9240 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9241 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9242 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9243 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9244 * from the BAR2 Page and BAR2 Queue ID. 9245 * 9246 * One important censequence of this is that some BAR2 SGE registers 9247 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9248 * there. But other registers synthesize the SGE Queue ID purely 9249 * from the writes to the registers -- the Write Combined Doorbell 9250 * Buffer is a good example. These BAR2 SGE Registers are only 9251 * available for those BAR2 SGE Register areas where the SGE Absolute 9252 * Queue ID can be inferred from simple writes. 9253 */ 9254 bar2_qoffset = bar2_page_offset; 9255 bar2_qinferred = (bar2_qid_offset < page_size); 9256 if (bar2_qinferred) { 9257 bar2_qoffset += bar2_qid_offset; 9258 bar2_qid = 0; 9259 } 9260 9261 *pbar2_qoffset = bar2_qoffset; 9262 *pbar2_qid = bar2_qid; 9263 return 0; 9264 } 9265 9266 /** 9267 * t4_init_devlog_params - initialize adapter->params.devlog 9268 * @adap: the adapter 9269 * 9270 * Initialize various fields of the adapter's Firmware Device Log 9271 * Parameters structure. 9272 */ 9273 int t4_init_devlog_params(struct adapter *adap) 9274 { 9275 struct devlog_params *dparams = &adap->params.devlog; 9276 u32 pf_dparams; 9277 unsigned int devlog_meminfo; 9278 struct fw_devlog_cmd devlog_cmd; 9279 int ret; 9280 9281 /* If we're dealing with newer firmware, the Device Log Paramerters 9282 * are stored in a designated register which allows us to access the 9283 * Device Log even if we can't talk to the firmware. 9284 */ 9285 pf_dparams = 9286 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9287 if (pf_dparams) { 9288 unsigned int nentries, nentries128; 9289 9290 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9291 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9292 9293 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9294 nentries = (nentries128 + 1) * 128; 9295 dparams->size = nentries * sizeof(struct fw_devlog_e); 9296 9297 return 0; 9298 } 9299 9300 /* Otherwise, ask the firmware for it's Device Log Parameters. 9301 */ 9302 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9303 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9304 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9305 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9306 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9307 &devlog_cmd); 9308 if (ret) 9309 return ret; 9310 9311 devlog_meminfo = 9312 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9313 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9314 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9315 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9316 9317 return 0; 9318 } 9319 9320 /** 9321 * t4_init_sge_params - initialize adap->params.sge 9322 * @adapter: the adapter 9323 * 9324 * Initialize various fields of the adapter's SGE Parameters structure. 9325 */ 9326 int t4_init_sge_params(struct adapter *adapter) 9327 { 9328 struct sge_params *sge_params = &adapter->params.sge; 9329 u32 hps, qpp; 9330 unsigned int s_hps, s_qpp; 9331 9332 /* Extract the SGE Page Size for our PF. 9333 */ 9334 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9335 s_hps = (HOSTPAGESIZEPF0_S + 9336 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9337 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9338 9339 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9340 */ 9341 s_qpp = (QUEUESPERPAGEPF0_S + 9342 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9343 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9344 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9345 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9346 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9347 9348 return 0; 9349 } 9350 9351 /** 9352 * t4_init_tp_params - initialize adap->params.tp 9353 * @adap: the adapter 9354 * @sleep_ok: if true we may sleep while awaiting command completion 9355 * 9356 * Initialize various fields of the adapter's TP Parameters structure. 9357 */ 9358 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9359 { 9360 int chan; 9361 u32 v; 9362 9363 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9364 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9365 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9366 9367 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9368 for (chan = 0; chan < NCHAN; chan++) 9369 adap->params.tp.tx_modq[chan] = chan; 9370 9371 /* Cache the adapter's Compressed Filter Mode and global Incress 9372 * Configuration. 9373 */ 9374 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9375 TP_VLAN_PRI_MAP_A, sleep_ok); 9376 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9377 TP_INGRESS_CONFIG_A, sleep_ok); 9378 9379 /* For T6, cache the adapter's compressed error vector 9380 * and passing outer header info for encapsulated packets. 9381 */ 9382 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9383 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9384 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9385 } 9386 9387 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9388 * shift positions of several elements of the Compressed Filter Tuple 9389 * for this adapter which we need frequently ... 9390 */ 9391 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9392 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9393 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9394 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9395 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9396 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9397 PROTOCOL_F); 9398 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9399 ETHERTYPE_F); 9400 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9401 MACMATCH_F); 9402 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9403 MPSHITTYPE_F); 9404 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9405 FRAGMENTATION_F); 9406 9407 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9408 * represents the presence of an Outer VLAN instead of a VNIC ID. 9409 */ 9410 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9411 adap->params.tp.vnic_shift = -1; 9412 9413 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9414 adap->params.tp.hash_filter_mask = v; 9415 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9416 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9417 return 0; 9418 } 9419 9420 /** 9421 * t4_filter_field_shift - calculate filter field shift 9422 * @adap: the adapter 9423 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9424 * 9425 * Return the shift position of a filter field within the Compressed 9426 * Filter Tuple. The filter field is specified via its selection bit 9427 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9428 */ 9429 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9430 { 9431 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9432 unsigned int sel; 9433 int field_shift; 9434 9435 if ((filter_mode & filter_sel) == 0) 9436 return -1; 9437 9438 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9439 switch (filter_mode & sel) { 9440 case FCOE_F: 9441 field_shift += FT_FCOE_W; 9442 break; 9443 case PORT_F: 9444 field_shift += FT_PORT_W; 9445 break; 9446 case VNIC_ID_F: 9447 field_shift += FT_VNIC_ID_W; 9448 break; 9449 case VLAN_F: 9450 field_shift += FT_VLAN_W; 9451 break; 9452 case TOS_F: 9453 field_shift += FT_TOS_W; 9454 break; 9455 case PROTOCOL_F: 9456 field_shift += FT_PROTOCOL_W; 9457 break; 9458 case ETHERTYPE_F: 9459 field_shift += FT_ETHERTYPE_W; 9460 break; 9461 case MACMATCH_F: 9462 field_shift += FT_MACMATCH_W; 9463 break; 9464 case MPSHITTYPE_F: 9465 field_shift += FT_MPSHITTYPE_W; 9466 break; 9467 case FRAGMENTATION_F: 9468 field_shift += FT_FRAGMENTATION_W; 9469 break; 9470 } 9471 } 9472 return field_shift; 9473 } 9474 9475 int t4_init_rss_mode(struct adapter *adap, int mbox) 9476 { 9477 int i, ret; 9478 struct fw_rss_vi_config_cmd rvc; 9479 9480 memset(&rvc, 0, sizeof(rvc)); 9481 9482 for_each_port(adap, i) { 9483 struct port_info *p = adap2pinfo(adap, i); 9484 9485 rvc.op_to_viid = 9486 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9487 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9488 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9489 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9490 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9491 if (ret) 9492 return ret; 9493 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9494 } 9495 return 0; 9496 } 9497 9498 /** 9499 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9500 * @pi: the port_info 9501 * @mbox: mailbox to use for the FW command 9502 * @port: physical port associated with the VI 9503 * @pf: the PF owning the VI 9504 * @vf: the VF owning the VI 9505 * @mac: the MAC address of the VI 9506 * 9507 * Allocates a virtual interface for the given physical port. If @mac is 9508 * not %NULL it contains the MAC address of the VI as assigned by FW. 9509 * @mac should be large enough to hold an Ethernet address. 9510 * Returns < 0 on error. 9511 */ 9512 int t4_init_portinfo(struct port_info *pi, int mbox, 9513 int port, int pf, int vf, u8 mac[]) 9514 { 9515 struct adapter *adapter = pi->adapter; 9516 unsigned int fw_caps = adapter->params.fw_caps_support; 9517 struct fw_port_cmd cmd; 9518 unsigned int rss_size; 9519 enum fw_port_type port_type; 9520 int mdio_addr; 9521 fw_port_cap32_t pcaps, acaps; 9522 u8 vivld = 0, vin = 0; 9523 int ret; 9524 9525 /* If we haven't yet determined whether we're talking to Firmware 9526 * which knows the new 32-bit Port Capabilities, it's time to find 9527 * out now. This will also tell new Firmware to send us Port Status 9528 * Updates using the new 32-bit Port Capabilities version of the 9529 * Port Information message. 9530 */ 9531 if (fw_caps == FW_CAPS_UNKNOWN) { 9532 u32 param, val; 9533 9534 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9535 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9536 val = 1; 9537 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9538 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9539 adapter->params.fw_caps_support = fw_caps; 9540 } 9541 9542 memset(&cmd, 0, sizeof(cmd)); 9543 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9544 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9545 FW_PORT_CMD_PORTID_V(port)); 9546 cmd.action_to_len16 = cpu_to_be32( 9547 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9548 ? FW_PORT_ACTION_GET_PORT_INFO 9549 : FW_PORT_ACTION_GET_PORT_INFO32) | 9550 FW_LEN16(cmd)); 9551 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9552 if (ret) 9553 return ret; 9554 9555 /* Extract the various fields from the Port Information message. 9556 */ 9557 if (fw_caps == FW_CAPS16) { 9558 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9559 9560 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9561 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9562 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9563 : -1); 9564 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9565 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9566 } else { 9567 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9568 9569 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9570 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9571 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9572 : -1); 9573 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9574 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9575 } 9576 9577 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9578 &vivld, &vin); 9579 if (ret < 0) 9580 return ret; 9581 9582 pi->viid = ret; 9583 pi->tx_chan = port; 9584 pi->lport = port; 9585 pi->rss_size = rss_size; 9586 9587 /* If fw supports returning the VIN as part of FW_VI_CMD, 9588 * save the returned values. 9589 */ 9590 if (adapter->params.viid_smt_extn_support) { 9591 pi->vivld = vivld; 9592 pi->vin = vin; 9593 } else { 9594 /* Retrieve the values from VIID */ 9595 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9596 pi->vin = FW_VIID_VIN_G(pi->viid); 9597 } 9598 9599 pi->port_type = port_type; 9600 pi->mdio_addr = mdio_addr; 9601 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9602 9603 init_link_config(&pi->link_cfg, pcaps, acaps); 9604 return 0; 9605 } 9606 9607 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9608 { 9609 u8 addr[6]; 9610 int ret, i, j = 0; 9611 9612 for_each_port(adap, i) { 9613 struct port_info *pi = adap2pinfo(adap, i); 9614 9615 while ((adap->params.portvec & (1 << j)) == 0) 9616 j++; 9617 9618 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9619 if (ret) 9620 return ret; 9621 9622 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9623 j++; 9624 } 9625 return 0; 9626 } 9627 9628 /** 9629 * t4_read_cimq_cfg - read CIM queue configuration 9630 * @adap: the adapter 9631 * @base: holds the queue base addresses in bytes 9632 * @size: holds the queue sizes in bytes 9633 * @thres: holds the queue full thresholds in bytes 9634 * 9635 * Returns the current configuration of the CIM queues, starting with 9636 * the IBQs, then the OBQs. 9637 */ 9638 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9639 { 9640 unsigned int i, v; 9641 int cim_num_obq = is_t4(adap->params.chip) ? 9642 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9643 9644 for (i = 0; i < CIM_NUM_IBQ; i++) { 9645 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9646 QUENUMSELECT_V(i)); 9647 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9648 /* value is in 256-byte units */ 9649 *base++ = CIMQBASE_G(v) * 256; 9650 *size++ = CIMQSIZE_G(v) * 256; 9651 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9652 } 9653 for (i = 0; i < cim_num_obq; i++) { 9654 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9655 QUENUMSELECT_V(i)); 9656 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9657 /* value is in 256-byte units */ 9658 *base++ = CIMQBASE_G(v) * 256; 9659 *size++ = CIMQSIZE_G(v) * 256; 9660 } 9661 } 9662 9663 /** 9664 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9665 * @adap: the adapter 9666 * @qid: the queue index 9667 * @data: where to store the queue contents 9668 * @n: capacity of @data in 32-bit words 9669 * 9670 * Reads the contents of the selected CIM queue starting at address 0 up 9671 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9672 * error and the number of 32-bit words actually read on success. 9673 */ 9674 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9675 { 9676 int i, err, attempts; 9677 unsigned int addr; 9678 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9679 9680 if (qid > 5 || (n & 3)) 9681 return -EINVAL; 9682 9683 addr = qid * nwords; 9684 if (n > nwords) 9685 n = nwords; 9686 9687 /* It might take 3-10ms before the IBQ debug read access is allowed. 9688 * Wait for 1 Sec with a delay of 1 usec. 9689 */ 9690 attempts = 1000000; 9691 9692 for (i = 0; i < n; i++, addr++) { 9693 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9694 IBQDBGEN_F); 9695 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9696 attempts, 1); 9697 if (err) 9698 return err; 9699 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9700 } 9701 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9702 return i; 9703 } 9704 9705 /** 9706 * t4_read_cim_obq - read the contents of a CIM outbound queue 9707 * @adap: the adapter 9708 * @qid: the queue index 9709 * @data: where to store the queue contents 9710 * @n: capacity of @data in 32-bit words 9711 * 9712 * Reads the contents of the selected CIM queue starting at address 0 up 9713 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9714 * error and the number of 32-bit words actually read on success. 9715 */ 9716 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9717 { 9718 int i, err; 9719 unsigned int addr, v, nwords; 9720 int cim_num_obq = is_t4(adap->params.chip) ? 9721 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9722 9723 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9724 return -EINVAL; 9725 9726 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9727 QUENUMSELECT_V(qid)); 9728 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9729 9730 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9731 nwords = CIMQSIZE_G(v) * 64; /* same */ 9732 if (n > nwords) 9733 n = nwords; 9734 9735 for (i = 0; i < n; i++, addr++) { 9736 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9737 OBQDBGEN_F); 9738 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9739 2, 1); 9740 if (err) 9741 return err; 9742 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9743 } 9744 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9745 return i; 9746 } 9747 9748 /** 9749 * t4_cim_read - read a block from CIM internal address space 9750 * @adap: the adapter 9751 * @addr: the start address within the CIM address space 9752 * @n: number of words to read 9753 * @valp: where to store the result 9754 * 9755 * Reads a block of 4-byte words from the CIM intenal address space. 9756 */ 9757 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9758 unsigned int *valp) 9759 { 9760 int ret = 0; 9761 9762 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9763 return -EBUSY; 9764 9765 for ( ; !ret && n--; addr += 4) { 9766 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9767 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9768 0, 5, 2); 9769 if (!ret) 9770 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9771 } 9772 return ret; 9773 } 9774 9775 /** 9776 * t4_cim_write - write a block into CIM internal address space 9777 * @adap: the adapter 9778 * @addr: the start address within the CIM address space 9779 * @n: number of words to write 9780 * @valp: set of values to write 9781 * 9782 * Writes a block of 4-byte words into the CIM intenal address space. 9783 */ 9784 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9785 const unsigned int *valp) 9786 { 9787 int ret = 0; 9788 9789 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9790 return -EBUSY; 9791 9792 for ( ; !ret && n--; addr += 4) { 9793 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9794 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9795 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9796 0, 5, 2); 9797 } 9798 return ret; 9799 } 9800 9801 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9802 unsigned int val) 9803 { 9804 return t4_cim_write(adap, addr, 1, &val); 9805 } 9806 9807 /** 9808 * t4_cim_read_la - read CIM LA capture buffer 9809 * @adap: the adapter 9810 * @la_buf: where to store the LA data 9811 * @wrptr: the HW write pointer within the capture buffer 9812 * 9813 * Reads the contents of the CIM LA buffer with the most recent entry at 9814 * the end of the returned data and with the entry at @wrptr first. 9815 * We try to leave the LA in the running state we find it in. 9816 */ 9817 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9818 { 9819 int i, ret; 9820 unsigned int cfg, val, idx; 9821 9822 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9823 if (ret) 9824 return ret; 9825 9826 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9827 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9828 if (ret) 9829 return ret; 9830 } 9831 9832 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9833 if (ret) 9834 goto restart; 9835 9836 idx = UPDBGLAWRPTR_G(val); 9837 if (wrptr) 9838 *wrptr = idx; 9839 9840 for (i = 0; i < adap->params.cim_la_size; i++) { 9841 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9842 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9843 if (ret) 9844 break; 9845 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9846 if (ret) 9847 break; 9848 if (val & UPDBGLARDEN_F) { 9849 ret = -ETIMEDOUT; 9850 break; 9851 } 9852 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9853 if (ret) 9854 break; 9855 9856 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9857 * identify the 32-bit portion of the full 312-bit data 9858 */ 9859 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9860 idx = (idx & 0xff0) + 0x10; 9861 else 9862 idx++; 9863 /* address can't exceed 0xfff */ 9864 idx &= UPDBGLARDPTR_M; 9865 } 9866 restart: 9867 if (cfg & UPDBGLAEN_F) { 9868 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9869 cfg & ~UPDBGLARDEN_F); 9870 if (!ret) 9871 ret = r; 9872 } 9873 return ret; 9874 } 9875 9876 /** 9877 * t4_tp_read_la - read TP LA capture buffer 9878 * @adap: the adapter 9879 * @la_buf: where to store the LA data 9880 * @wrptr: the HW write pointer within the capture buffer 9881 * 9882 * Reads the contents of the TP LA buffer with the most recent entry at 9883 * the end of the returned data and with the entry at @wrptr first. 9884 * We leave the LA in the running state we find it in. 9885 */ 9886 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9887 { 9888 bool last_incomplete; 9889 unsigned int i, cfg, val, idx; 9890 9891 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9892 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9893 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9894 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9895 9896 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9897 idx = DBGLAWPTR_G(val); 9898 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9899 if (last_incomplete) 9900 idx = (idx + 1) & DBGLARPTR_M; 9901 if (wrptr) 9902 *wrptr = idx; 9903 9904 val &= 0xffff; 9905 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9906 val |= adap->params.tp.la_mask; 9907 9908 for (i = 0; i < TPLA_SIZE; i++) { 9909 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9910 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9911 idx = (idx + 1) & DBGLARPTR_M; 9912 } 9913 9914 /* Wipe out last entry if it isn't valid */ 9915 if (last_incomplete) 9916 la_buf[TPLA_SIZE - 1] = ~0ULL; 9917 9918 if (cfg & DBGLAENABLE_F) /* restore running state */ 9919 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9920 cfg | adap->params.tp.la_mask); 9921 } 9922 9923 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9924 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9925 * state for more than the Warning Threshold then we'll issue a warning about 9926 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9927 * appears to be hung every Warning Repeat second till the situation clears. 9928 * If the situation clears, we'll note that as well. 9929 */ 9930 #define SGE_IDMA_WARN_THRESH 1 9931 #define SGE_IDMA_WARN_REPEAT 300 9932 9933 /** 9934 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9935 * @adapter: the adapter 9936 * @idma: the adapter IDMA Monitor state 9937 * 9938 * Initialize the state of an SGE Ingress DMA Monitor. 9939 */ 9940 void t4_idma_monitor_init(struct adapter *adapter, 9941 struct sge_idma_monitor_state *idma) 9942 { 9943 /* Initialize the state variables for detecting an SGE Ingress DMA 9944 * hang. The SGE has internal counters which count up on each clock 9945 * tick whenever the SGE finds its Ingress DMA State Engines in the 9946 * same state they were on the previous clock tick. The clock used is 9947 * the Core Clock so we have a limit on the maximum "time" they can 9948 * record; typically a very small number of seconds. For instance, 9949 * with a 600MHz Core Clock, we can only count up to a bit more than 9950 * 7s. So we'll synthesize a larger counter in order to not run the 9951 * risk of having the "timers" overflow and give us the flexibility to 9952 * maintain a Hung SGE State Machine of our own which operates across 9953 * a longer time frame. 9954 */ 9955 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9956 idma->idma_stalled[0] = 0; 9957 idma->idma_stalled[1] = 0; 9958 } 9959 9960 /** 9961 * t4_idma_monitor - monitor SGE Ingress DMA state 9962 * @adapter: the adapter 9963 * @idma: the adapter IDMA Monitor state 9964 * @hz: number of ticks/second 9965 * @ticks: number of ticks since the last IDMA Monitor call 9966 */ 9967 void t4_idma_monitor(struct adapter *adapter, 9968 struct sge_idma_monitor_state *idma, 9969 int hz, int ticks) 9970 { 9971 int i, idma_same_state_cnt[2]; 9972 9973 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9974 * are counters inside the SGE which count up on each clock when the 9975 * SGE finds its Ingress DMA State Engines in the same states they 9976 * were in the previous clock. The counters will peg out at 9977 * 0xffffffff without wrapping around so once they pass the 1s 9978 * threshold they'll stay above that till the IDMA state changes. 9979 */ 9980 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9981 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9982 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9983 9984 for (i = 0; i < 2; i++) { 9985 u32 debug0, debug11; 9986 9987 /* If the Ingress DMA Same State Counter ("timer") is less 9988 * than 1s, then we can reset our synthesized Stall Timer and 9989 * continue. If we have previously emitted warnings about a 9990 * potential stalled Ingress Queue, issue a note indicating 9991 * that the Ingress Queue has resumed forward progress. 9992 */ 9993 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9994 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9995 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9996 "resumed after %d seconds\n", 9997 i, idma->idma_qid[i], 9998 idma->idma_stalled[i] / hz); 9999 idma->idma_stalled[i] = 0; 10000 continue; 10001 } 10002 10003 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10004 * domain. The first time we get here it'll be because we 10005 * passed the 1s Threshold; each additional time it'll be 10006 * because the RX Timer Callback is being fired on its regular 10007 * schedule. 10008 * 10009 * If the stall is below our Potential Hung Ingress Queue 10010 * Warning Threshold, continue. 10011 */ 10012 if (idma->idma_stalled[i] == 0) { 10013 idma->idma_stalled[i] = hz; 10014 idma->idma_warn[i] = 0; 10015 } else { 10016 idma->idma_stalled[i] += ticks; 10017 idma->idma_warn[i] -= ticks; 10018 } 10019 10020 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 10021 continue; 10022 10023 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10024 */ 10025 if (idma->idma_warn[i] > 0) 10026 continue; 10027 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 10028 10029 /* Read and save the SGE IDMA State and Queue ID information. 10030 * We do this every time in case it changes across time ... 10031 * can't be too careful ... 10032 */ 10033 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 10034 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10035 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10036 10037 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 10038 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10039 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10040 10041 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 10042 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10043 i, idma->idma_qid[i], idma->idma_state[i], 10044 idma->idma_stalled[i] / hz, 10045 debug0, debug11); 10046 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10047 } 10048 } 10049 10050 /** 10051 * t4_load_cfg - download config file 10052 * @adap: the adapter 10053 * @cfg_data: the cfg text file to write 10054 * @size: text file size 10055 * 10056 * Write the supplied config text file to the card's serial flash. 10057 */ 10058 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10059 { 10060 int ret, i, n, cfg_addr; 10061 unsigned int addr; 10062 unsigned int flash_cfg_start_sec; 10063 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10064 10065 cfg_addr = t4_flash_cfg_addr(adap); 10066 if (cfg_addr < 0) 10067 return cfg_addr; 10068 10069 addr = cfg_addr; 10070 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10071 10072 if (size > FLASH_CFG_MAX_SIZE) { 10073 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10074 FLASH_CFG_MAX_SIZE); 10075 return -EFBIG; 10076 } 10077 10078 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10079 sf_sec_size); 10080 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10081 flash_cfg_start_sec + i - 1); 10082 /* If size == 0 then we're simply erasing the FLASH sectors associated 10083 * with the on-adapter Firmware Configuration File. 10084 */ 10085 if (ret || size == 0) 10086 goto out; 10087 10088 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10089 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10090 if ((size - i) < SF_PAGE_SIZE) 10091 n = size - i; 10092 else 10093 n = SF_PAGE_SIZE; 10094 ret = t4_write_flash(adap, addr, n, cfg_data); 10095 if (ret) 10096 goto out; 10097 10098 addr += SF_PAGE_SIZE; 10099 cfg_data += SF_PAGE_SIZE; 10100 } 10101 10102 out: 10103 if (ret) 10104 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10105 (size == 0 ? "clear" : "download"), ret); 10106 return ret; 10107 } 10108 10109 /** 10110 * t4_set_vf_mac - Set MAC address for the specified VF 10111 * @adapter: The adapter 10112 * @vf: one of the VFs instantiated by the specified PF 10113 * @naddr: the number of MAC addresses 10114 * @addr: the MAC address(es) to be set to the specified VF 10115 */ 10116 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10117 unsigned int naddr, u8 *addr) 10118 { 10119 struct fw_acl_mac_cmd cmd; 10120 10121 memset(&cmd, 0, sizeof(cmd)); 10122 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10123 FW_CMD_REQUEST_F | 10124 FW_CMD_WRITE_F | 10125 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10126 FW_ACL_MAC_CMD_VFN_V(vf)); 10127 10128 /* Note: Do not enable the ACL */ 10129 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10130 cmd.nmac = naddr; 10131 10132 switch (adapter->pf) { 10133 case 3: 10134 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10135 break; 10136 case 2: 10137 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10138 break; 10139 case 1: 10140 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10141 break; 10142 case 0: 10143 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10144 break; 10145 } 10146 10147 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10148 } 10149 10150 /** 10151 * t4_read_pace_tbl - read the pace table 10152 * @adap: the adapter 10153 * @pace_vals: holds the returned values 10154 * 10155 * Returns the values of TP's pace table in microseconds. 10156 */ 10157 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10158 { 10159 unsigned int i, v; 10160 10161 for (i = 0; i < NTX_SCHED; i++) { 10162 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10163 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10164 pace_vals[i] = dack_ticks_to_usec(adap, v); 10165 } 10166 } 10167 10168 /** 10169 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10170 * @adap: the adapter 10171 * @sched: the scheduler index 10172 * @kbps: the byte rate in Kbps 10173 * @ipg: the interpacket delay in tenths of nanoseconds 10174 * @sleep_ok: if true we may sleep while awaiting command completion 10175 * 10176 * Return the current configuration of a HW Tx scheduler. 10177 */ 10178 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10179 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10180 { 10181 unsigned int v, addr, bpt, cpt; 10182 10183 if (kbps) { 10184 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10185 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10186 if (sched & 1) 10187 v >>= 16; 10188 bpt = (v >> 8) & 0xff; 10189 cpt = v & 0xff; 10190 if (!cpt) { 10191 *kbps = 0; /* scheduler disabled */ 10192 } else { 10193 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10194 *kbps = (v * bpt) / 125; 10195 } 10196 } 10197 if (ipg) { 10198 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10199 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10200 if (sched & 1) 10201 v >>= 16; 10202 v &= 0xffff; 10203 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10204 } 10205 } 10206 10207 /* t4_sge_ctxt_rd - read an SGE context through FW 10208 * @adap: the adapter 10209 * @mbox: mailbox to use for the FW command 10210 * @cid: the context id 10211 * @ctype: the context type 10212 * @data: where to store the context data 10213 * 10214 * Issues a FW command through the given mailbox to read an SGE context. 10215 */ 10216 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10217 enum ctxt_type ctype, u32 *data) 10218 { 10219 struct fw_ldst_cmd c; 10220 int ret; 10221 10222 if (ctype == CTXT_FLM) 10223 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10224 else 10225 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10226 10227 memset(&c, 0, sizeof(c)); 10228 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10229 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10230 FW_LDST_CMD_ADDRSPACE_V(ret)); 10231 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10232 c.u.idctxt.physid = cpu_to_be32(cid); 10233 10234 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10235 if (ret == 0) { 10236 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10237 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10238 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10239 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10240 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10241 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10242 } 10243 return ret; 10244 } 10245 10246 /** 10247 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10248 * @adap: the adapter 10249 * @cid: the context id 10250 * @ctype: the context type 10251 * @data: where to store the context data 10252 * 10253 * Reads an SGE context directly, bypassing FW. This is only for 10254 * debugging when FW is unavailable. 10255 */ 10256 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10257 enum ctxt_type ctype, u32 *data) 10258 { 10259 int i, ret; 10260 10261 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10262 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10263 if (!ret) 10264 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10265 *data++ = t4_read_reg(adap, i); 10266 return ret; 10267 } 10268 10269 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10270 int rateunit, int ratemode, int channel, int class, 10271 int minrate, int maxrate, int weight, int pktsize) 10272 { 10273 struct fw_sched_cmd cmd; 10274 10275 memset(&cmd, 0, sizeof(cmd)); 10276 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10277 FW_CMD_REQUEST_F | 10278 FW_CMD_WRITE_F); 10279 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10280 10281 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10282 cmd.u.params.type = type; 10283 cmd.u.params.level = level; 10284 cmd.u.params.mode = mode; 10285 cmd.u.params.ch = channel; 10286 cmd.u.params.cl = class; 10287 cmd.u.params.unit = rateunit; 10288 cmd.u.params.rate = ratemode; 10289 cmd.u.params.min = cpu_to_be32(minrate); 10290 cmd.u.params.max = cpu_to_be32(maxrate); 10291 cmd.u.params.weight = cpu_to_be16(weight); 10292 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10293 10294 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10295 NULL, 1); 10296 } 10297 10298 /** 10299 * t4_i2c_rd - read I2C data from adapter 10300 * @adap: the adapter 10301 * @port: Port number if per-port device; <0 if not 10302 * @devid: per-port device ID or absolute device ID 10303 * @offset: byte offset into device I2C space 10304 * @len: byte length of I2C space data 10305 * @buf: buffer in which to return I2C data 10306 * 10307 * Reads the I2C data from the indicated device and location. 10308 */ 10309 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10310 unsigned int devid, unsigned int offset, 10311 unsigned int len, u8 *buf) 10312 { 10313 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10314 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10315 int ret = 0; 10316 10317 if (len > I2C_PAGE_SIZE) 10318 return -EINVAL; 10319 10320 /* Dont allow reads that spans multiple pages */ 10321 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10322 return -EINVAL; 10323 10324 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10325 ldst_cmd.op_to_addrspace = 10326 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10327 FW_CMD_REQUEST_F | 10328 FW_CMD_READ_F | 10329 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10330 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10331 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10332 ldst_cmd.u.i2c.did = devid; 10333 10334 while (len > 0) { 10335 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10336 10337 ldst_cmd.u.i2c.boffset = offset; 10338 ldst_cmd.u.i2c.blen = i2c_len; 10339 10340 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10341 &ldst_rpl); 10342 if (ret) 10343 break; 10344 10345 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10346 offset += i2c_len; 10347 buf += i2c_len; 10348 len -= i2c_len; 10349 } 10350 10351 return ret; 10352 } 10353 10354 /** 10355 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10356 * @adapter: the adapter 10357 * @mbox: mailbox to use for the FW command 10358 * @vf: one of the VFs instantiated by the specified PF 10359 * @vlan: The vlanid to be set 10360 */ 10361 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10362 u16 vlan) 10363 { 10364 struct fw_acl_vlan_cmd vlan_cmd; 10365 unsigned int enable; 10366 10367 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10368 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10369 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10370 FW_CMD_REQUEST_F | 10371 FW_CMD_WRITE_F | 10372 FW_CMD_EXEC_F | 10373 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10374 FW_ACL_VLAN_CMD_VFN_V(vf)); 10375 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10376 /* Drop all packets that donot match vlan id */ 10377 vlan_cmd.dropnovlan_fm = (enable 10378 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10379 FW_ACL_VLAN_CMD_FM_F) : 0); 10380 if (enable != 0) { 10381 vlan_cmd.nvlan = 1; 10382 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10383 } 10384 10385 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10386 } 10387