xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x1274,
2094 		0x1280, 0x133c,
2095 		0x1800, 0x18fc,
2096 		0x3000, 0x302c,
2097 		0x3060, 0x30b0,
2098 		0x30b8, 0x30d8,
2099 		0x30e0, 0x30fc,
2100 		0x3140, 0x357c,
2101 		0x35a8, 0x35cc,
2102 		0x35ec, 0x35ec,
2103 		0x3600, 0x5624,
2104 		0x56cc, 0x56ec,
2105 		0x56f4, 0x5720,
2106 		0x5728, 0x575c,
2107 		0x580c, 0x5814,
2108 		0x5890, 0x589c,
2109 		0x58a4, 0x58ac,
2110 		0x58b8, 0x58bc,
2111 		0x5940, 0x595c,
2112 		0x5980, 0x598c,
2113 		0x59b0, 0x59c8,
2114 		0x59d0, 0x59dc,
2115 		0x59fc, 0x5a18,
2116 		0x5a60, 0x5a6c,
2117 		0x5a80, 0x5a8c,
2118 		0x5a94, 0x5a9c,
2119 		0x5b94, 0x5bfc,
2120 		0x5c10, 0x5e48,
2121 		0x5e50, 0x5e94,
2122 		0x5ea0, 0x5eb0,
2123 		0x5ec0, 0x5ec0,
2124 		0x5ec8, 0x5ed0,
2125 		0x5ee0, 0x5ee0,
2126 		0x5ef0, 0x5ef0,
2127 		0x5f00, 0x5f00,
2128 		0x6000, 0x6020,
2129 		0x6028, 0x6040,
2130 		0x6058, 0x609c,
2131 		0x60a8, 0x619c,
2132 		0x7700, 0x7798,
2133 		0x77c0, 0x7880,
2134 		0x78cc, 0x78fc,
2135 		0x7b00, 0x7b58,
2136 		0x7b60, 0x7b84,
2137 		0x7b8c, 0x7c54,
2138 		0x7d00, 0x7d38,
2139 		0x7d40, 0x7d84,
2140 		0x7d8c, 0x7ddc,
2141 		0x7de4, 0x7e04,
2142 		0x7e10, 0x7e1c,
2143 		0x7e24, 0x7e38,
2144 		0x7e40, 0x7e44,
2145 		0x7e4c, 0x7e78,
2146 		0x7e80, 0x7edc,
2147 		0x7ee8, 0x7efc,
2148 		0x8dc0, 0x8de4,
2149 		0x8df8, 0x8e04,
2150 		0x8e10, 0x8e84,
2151 		0x8ea0, 0x8f88,
2152 		0x8fb8, 0x9058,
2153 		0x9060, 0x9060,
2154 		0x9068, 0x90f8,
2155 		0x9100, 0x9124,
2156 		0x9400, 0x9470,
2157 		0x9600, 0x9600,
2158 		0x9608, 0x9638,
2159 		0x9640, 0x9704,
2160 		0x9710, 0x971c,
2161 		0x9800, 0x9808,
2162 		0x9810, 0x9864,
2163 		0x9c00, 0x9c6c,
2164 		0x9c80, 0x9cec,
2165 		0x9d00, 0x9d6c,
2166 		0x9d80, 0x9dec,
2167 		0x9e00, 0x9e6c,
2168 		0x9e80, 0x9eec,
2169 		0x9f00, 0x9f6c,
2170 		0x9f80, 0xa020,
2171 		0xd000, 0xd03c,
2172 		0xd100, 0xd118,
2173 		0xd200, 0xd214,
2174 		0xd220, 0xd234,
2175 		0xd240, 0xd254,
2176 		0xd260, 0xd274,
2177 		0xd280, 0xd294,
2178 		0xd2a0, 0xd2b4,
2179 		0xd2c0, 0xd2d4,
2180 		0xd2e0, 0xd2f4,
2181 		0xd300, 0xd31c,
2182 		0xdfc0, 0xdfe0,
2183 		0xe000, 0xf008,
2184 		0xf010, 0xf018,
2185 		0xf020, 0xf028,
2186 		0x11000, 0x11014,
2187 		0x11048, 0x1106c,
2188 		0x11074, 0x11088,
2189 		0x11098, 0x11120,
2190 		0x1112c, 0x1117c,
2191 		0x11190, 0x112e0,
2192 		0x11300, 0x1130c,
2193 		0x12000, 0x1206c,
2194 		0x19040, 0x1906c,
2195 		0x19078, 0x19080,
2196 		0x1908c, 0x190e8,
2197 		0x190f0, 0x190f8,
2198 		0x19100, 0x19110,
2199 		0x19120, 0x19124,
2200 		0x19150, 0x19194,
2201 		0x1919c, 0x191b0,
2202 		0x191d0, 0x191e8,
2203 		0x19238, 0x19290,
2204 		0x192a4, 0x192b0,
2205 		0x192bc, 0x192bc,
2206 		0x19348, 0x1934c,
2207 		0x193f8, 0x19418,
2208 		0x19420, 0x19428,
2209 		0x19430, 0x19444,
2210 		0x1944c, 0x1946c,
2211 		0x19474, 0x19474,
2212 		0x19490, 0x194cc,
2213 		0x194f0, 0x194f8,
2214 		0x19c00, 0x19c48,
2215 		0x19c50, 0x19c80,
2216 		0x19c94, 0x19c98,
2217 		0x19ca0, 0x19cbc,
2218 		0x19ce4, 0x19ce4,
2219 		0x19cf0, 0x19cf8,
2220 		0x19d00, 0x19d28,
2221 		0x19d50, 0x19d78,
2222 		0x19d94, 0x19d98,
2223 		0x19da0, 0x19dc8,
2224 		0x19df0, 0x19e10,
2225 		0x19e50, 0x19e6c,
2226 		0x19ea0, 0x19ebc,
2227 		0x19ec4, 0x19ef4,
2228 		0x19f04, 0x19f2c,
2229 		0x19f34, 0x19f34,
2230 		0x19f40, 0x19f50,
2231 		0x19f90, 0x19fac,
2232 		0x19fc4, 0x19fc8,
2233 		0x19fd0, 0x19fe4,
2234 		0x1a000, 0x1a004,
2235 		0x1a010, 0x1a06c,
2236 		0x1a0b0, 0x1a0e4,
2237 		0x1a0ec, 0x1a0f8,
2238 		0x1a100, 0x1a108,
2239 		0x1a114, 0x1a130,
2240 		0x1a138, 0x1a1c4,
2241 		0x1a1fc, 0x1a1fc,
2242 		0x1e008, 0x1e00c,
2243 		0x1e040, 0x1e044,
2244 		0x1e04c, 0x1e04c,
2245 		0x1e284, 0x1e290,
2246 		0x1e2c0, 0x1e2c0,
2247 		0x1e2e0, 0x1e2e0,
2248 		0x1e300, 0x1e384,
2249 		0x1e3c0, 0x1e3c8,
2250 		0x1e408, 0x1e40c,
2251 		0x1e440, 0x1e444,
2252 		0x1e44c, 0x1e44c,
2253 		0x1e684, 0x1e690,
2254 		0x1e6c0, 0x1e6c0,
2255 		0x1e6e0, 0x1e6e0,
2256 		0x1e700, 0x1e784,
2257 		0x1e7c0, 0x1e7c8,
2258 		0x1e808, 0x1e80c,
2259 		0x1e840, 0x1e844,
2260 		0x1e84c, 0x1e84c,
2261 		0x1ea84, 0x1ea90,
2262 		0x1eac0, 0x1eac0,
2263 		0x1eae0, 0x1eae0,
2264 		0x1eb00, 0x1eb84,
2265 		0x1ebc0, 0x1ebc8,
2266 		0x1ec08, 0x1ec0c,
2267 		0x1ec40, 0x1ec44,
2268 		0x1ec4c, 0x1ec4c,
2269 		0x1ee84, 0x1ee90,
2270 		0x1eec0, 0x1eec0,
2271 		0x1eee0, 0x1eee0,
2272 		0x1ef00, 0x1ef84,
2273 		0x1efc0, 0x1efc8,
2274 		0x1f008, 0x1f00c,
2275 		0x1f040, 0x1f044,
2276 		0x1f04c, 0x1f04c,
2277 		0x1f284, 0x1f290,
2278 		0x1f2c0, 0x1f2c0,
2279 		0x1f2e0, 0x1f2e0,
2280 		0x1f300, 0x1f384,
2281 		0x1f3c0, 0x1f3c8,
2282 		0x1f408, 0x1f40c,
2283 		0x1f440, 0x1f444,
2284 		0x1f44c, 0x1f44c,
2285 		0x1f684, 0x1f690,
2286 		0x1f6c0, 0x1f6c0,
2287 		0x1f6e0, 0x1f6e0,
2288 		0x1f700, 0x1f784,
2289 		0x1f7c0, 0x1f7c8,
2290 		0x1f808, 0x1f80c,
2291 		0x1f840, 0x1f844,
2292 		0x1f84c, 0x1f84c,
2293 		0x1fa84, 0x1fa90,
2294 		0x1fac0, 0x1fac0,
2295 		0x1fae0, 0x1fae0,
2296 		0x1fb00, 0x1fb84,
2297 		0x1fbc0, 0x1fbc8,
2298 		0x1fc08, 0x1fc0c,
2299 		0x1fc40, 0x1fc44,
2300 		0x1fc4c, 0x1fc4c,
2301 		0x1fe84, 0x1fe90,
2302 		0x1fec0, 0x1fec0,
2303 		0x1fee0, 0x1fee0,
2304 		0x1ff00, 0x1ff84,
2305 		0x1ffc0, 0x1ffc8,
2306 		0x30000, 0x30030,
2307 		0x30100, 0x30168,
2308 		0x30190, 0x301a0,
2309 		0x301a8, 0x301b8,
2310 		0x301c4, 0x301c8,
2311 		0x301d0, 0x301d0,
2312 		0x30200, 0x30320,
2313 		0x30400, 0x304b4,
2314 		0x304c0, 0x3052c,
2315 		0x30540, 0x3061c,
2316 		0x30800, 0x308a0,
2317 		0x308c0, 0x30908,
2318 		0x30910, 0x309b8,
2319 		0x30a00, 0x30a04,
2320 		0x30a0c, 0x30a14,
2321 		0x30a1c, 0x30a2c,
2322 		0x30a44, 0x30a50,
2323 		0x30a74, 0x30a74,
2324 		0x30a7c, 0x30afc,
2325 		0x30b08, 0x30c24,
2326 		0x30d00, 0x30d14,
2327 		0x30d1c, 0x30d3c,
2328 		0x30d44, 0x30d4c,
2329 		0x30d54, 0x30d74,
2330 		0x30d7c, 0x30d7c,
2331 		0x30de0, 0x30de0,
2332 		0x30e00, 0x30ed4,
2333 		0x30f00, 0x30fa4,
2334 		0x30fc0, 0x30fc4,
2335 		0x31000, 0x31004,
2336 		0x31080, 0x310fc,
2337 		0x31208, 0x31220,
2338 		0x3123c, 0x31254,
2339 		0x31300, 0x31300,
2340 		0x31308, 0x3131c,
2341 		0x31338, 0x3133c,
2342 		0x31380, 0x31380,
2343 		0x31388, 0x313a8,
2344 		0x313b4, 0x313b4,
2345 		0x31400, 0x31420,
2346 		0x31438, 0x3143c,
2347 		0x31480, 0x31480,
2348 		0x314a8, 0x314a8,
2349 		0x314b0, 0x314b4,
2350 		0x314c8, 0x314d4,
2351 		0x31a40, 0x31a4c,
2352 		0x31af0, 0x31b20,
2353 		0x31b38, 0x31b3c,
2354 		0x31b80, 0x31b80,
2355 		0x31ba8, 0x31ba8,
2356 		0x31bb0, 0x31bb4,
2357 		0x31bc8, 0x31bd4,
2358 		0x32140, 0x3218c,
2359 		0x321f0, 0x321f4,
2360 		0x32200, 0x32200,
2361 		0x32218, 0x32218,
2362 		0x32400, 0x32400,
2363 		0x32408, 0x3241c,
2364 		0x32618, 0x32620,
2365 		0x32664, 0x32664,
2366 		0x326a8, 0x326a8,
2367 		0x326ec, 0x326ec,
2368 		0x32a00, 0x32abc,
2369 		0x32b00, 0x32b18,
2370 		0x32b20, 0x32b38,
2371 		0x32b40, 0x32b58,
2372 		0x32b60, 0x32b78,
2373 		0x32c00, 0x32c00,
2374 		0x32c08, 0x32c3c,
2375 		0x33000, 0x3302c,
2376 		0x33034, 0x33050,
2377 		0x33058, 0x33058,
2378 		0x33060, 0x3308c,
2379 		0x3309c, 0x330ac,
2380 		0x330c0, 0x330c0,
2381 		0x330c8, 0x330d0,
2382 		0x330d8, 0x330e0,
2383 		0x330ec, 0x3312c,
2384 		0x33134, 0x33150,
2385 		0x33158, 0x33158,
2386 		0x33160, 0x3318c,
2387 		0x3319c, 0x331ac,
2388 		0x331c0, 0x331c0,
2389 		0x331c8, 0x331d0,
2390 		0x331d8, 0x331e0,
2391 		0x331ec, 0x33290,
2392 		0x33298, 0x332c4,
2393 		0x332e4, 0x33390,
2394 		0x33398, 0x333c4,
2395 		0x333e4, 0x3342c,
2396 		0x33434, 0x33450,
2397 		0x33458, 0x33458,
2398 		0x33460, 0x3348c,
2399 		0x3349c, 0x334ac,
2400 		0x334c0, 0x334c0,
2401 		0x334c8, 0x334d0,
2402 		0x334d8, 0x334e0,
2403 		0x334ec, 0x3352c,
2404 		0x33534, 0x33550,
2405 		0x33558, 0x33558,
2406 		0x33560, 0x3358c,
2407 		0x3359c, 0x335ac,
2408 		0x335c0, 0x335c0,
2409 		0x335c8, 0x335d0,
2410 		0x335d8, 0x335e0,
2411 		0x335ec, 0x33690,
2412 		0x33698, 0x336c4,
2413 		0x336e4, 0x33790,
2414 		0x33798, 0x337c4,
2415 		0x337e4, 0x337fc,
2416 		0x33814, 0x33814,
2417 		0x33854, 0x33868,
2418 		0x33880, 0x3388c,
2419 		0x338c0, 0x338d0,
2420 		0x338e8, 0x338ec,
2421 		0x33900, 0x3392c,
2422 		0x33934, 0x33950,
2423 		0x33958, 0x33958,
2424 		0x33960, 0x3398c,
2425 		0x3399c, 0x339ac,
2426 		0x339c0, 0x339c0,
2427 		0x339c8, 0x339d0,
2428 		0x339d8, 0x339e0,
2429 		0x339ec, 0x33a90,
2430 		0x33a98, 0x33ac4,
2431 		0x33ae4, 0x33b10,
2432 		0x33b24, 0x33b28,
2433 		0x33b38, 0x33b50,
2434 		0x33bf0, 0x33c10,
2435 		0x33c24, 0x33c28,
2436 		0x33c38, 0x33c50,
2437 		0x33cf0, 0x33cfc,
2438 		0x34000, 0x34030,
2439 		0x34100, 0x34168,
2440 		0x34190, 0x341a0,
2441 		0x341a8, 0x341b8,
2442 		0x341c4, 0x341c8,
2443 		0x341d0, 0x341d0,
2444 		0x34200, 0x34320,
2445 		0x34400, 0x344b4,
2446 		0x344c0, 0x3452c,
2447 		0x34540, 0x3461c,
2448 		0x34800, 0x348a0,
2449 		0x348c0, 0x34908,
2450 		0x34910, 0x349b8,
2451 		0x34a00, 0x34a04,
2452 		0x34a0c, 0x34a14,
2453 		0x34a1c, 0x34a2c,
2454 		0x34a44, 0x34a50,
2455 		0x34a74, 0x34a74,
2456 		0x34a7c, 0x34afc,
2457 		0x34b08, 0x34c24,
2458 		0x34d00, 0x34d14,
2459 		0x34d1c, 0x34d3c,
2460 		0x34d44, 0x34d4c,
2461 		0x34d54, 0x34d74,
2462 		0x34d7c, 0x34d7c,
2463 		0x34de0, 0x34de0,
2464 		0x34e00, 0x34ed4,
2465 		0x34f00, 0x34fa4,
2466 		0x34fc0, 0x34fc4,
2467 		0x35000, 0x35004,
2468 		0x35080, 0x350fc,
2469 		0x35208, 0x35220,
2470 		0x3523c, 0x35254,
2471 		0x35300, 0x35300,
2472 		0x35308, 0x3531c,
2473 		0x35338, 0x3533c,
2474 		0x35380, 0x35380,
2475 		0x35388, 0x353a8,
2476 		0x353b4, 0x353b4,
2477 		0x35400, 0x35420,
2478 		0x35438, 0x3543c,
2479 		0x35480, 0x35480,
2480 		0x354a8, 0x354a8,
2481 		0x354b0, 0x354b4,
2482 		0x354c8, 0x354d4,
2483 		0x35a40, 0x35a4c,
2484 		0x35af0, 0x35b20,
2485 		0x35b38, 0x35b3c,
2486 		0x35b80, 0x35b80,
2487 		0x35ba8, 0x35ba8,
2488 		0x35bb0, 0x35bb4,
2489 		0x35bc8, 0x35bd4,
2490 		0x36140, 0x3618c,
2491 		0x361f0, 0x361f4,
2492 		0x36200, 0x36200,
2493 		0x36218, 0x36218,
2494 		0x36400, 0x36400,
2495 		0x36408, 0x3641c,
2496 		0x36618, 0x36620,
2497 		0x36664, 0x36664,
2498 		0x366a8, 0x366a8,
2499 		0x366ec, 0x366ec,
2500 		0x36a00, 0x36abc,
2501 		0x36b00, 0x36b18,
2502 		0x36b20, 0x36b38,
2503 		0x36b40, 0x36b58,
2504 		0x36b60, 0x36b78,
2505 		0x36c00, 0x36c00,
2506 		0x36c08, 0x36c3c,
2507 		0x37000, 0x3702c,
2508 		0x37034, 0x37050,
2509 		0x37058, 0x37058,
2510 		0x37060, 0x3708c,
2511 		0x3709c, 0x370ac,
2512 		0x370c0, 0x370c0,
2513 		0x370c8, 0x370d0,
2514 		0x370d8, 0x370e0,
2515 		0x370ec, 0x3712c,
2516 		0x37134, 0x37150,
2517 		0x37158, 0x37158,
2518 		0x37160, 0x3718c,
2519 		0x3719c, 0x371ac,
2520 		0x371c0, 0x371c0,
2521 		0x371c8, 0x371d0,
2522 		0x371d8, 0x371e0,
2523 		0x371ec, 0x37290,
2524 		0x37298, 0x372c4,
2525 		0x372e4, 0x37390,
2526 		0x37398, 0x373c4,
2527 		0x373e4, 0x3742c,
2528 		0x37434, 0x37450,
2529 		0x37458, 0x37458,
2530 		0x37460, 0x3748c,
2531 		0x3749c, 0x374ac,
2532 		0x374c0, 0x374c0,
2533 		0x374c8, 0x374d0,
2534 		0x374d8, 0x374e0,
2535 		0x374ec, 0x3752c,
2536 		0x37534, 0x37550,
2537 		0x37558, 0x37558,
2538 		0x37560, 0x3758c,
2539 		0x3759c, 0x375ac,
2540 		0x375c0, 0x375c0,
2541 		0x375c8, 0x375d0,
2542 		0x375d8, 0x375e0,
2543 		0x375ec, 0x37690,
2544 		0x37698, 0x376c4,
2545 		0x376e4, 0x37790,
2546 		0x37798, 0x377c4,
2547 		0x377e4, 0x377fc,
2548 		0x37814, 0x37814,
2549 		0x37854, 0x37868,
2550 		0x37880, 0x3788c,
2551 		0x378c0, 0x378d0,
2552 		0x378e8, 0x378ec,
2553 		0x37900, 0x3792c,
2554 		0x37934, 0x37950,
2555 		0x37958, 0x37958,
2556 		0x37960, 0x3798c,
2557 		0x3799c, 0x379ac,
2558 		0x379c0, 0x379c0,
2559 		0x379c8, 0x379d0,
2560 		0x379d8, 0x379e0,
2561 		0x379ec, 0x37a90,
2562 		0x37a98, 0x37ac4,
2563 		0x37ae4, 0x37b10,
2564 		0x37b24, 0x37b28,
2565 		0x37b38, 0x37b50,
2566 		0x37bf0, 0x37c10,
2567 		0x37c24, 0x37c28,
2568 		0x37c38, 0x37c50,
2569 		0x37cf0, 0x37cfc,
2570 		0x40040, 0x40040,
2571 		0x40080, 0x40084,
2572 		0x40100, 0x40100,
2573 		0x40140, 0x401bc,
2574 		0x40200, 0x40214,
2575 		0x40228, 0x40228,
2576 		0x40240, 0x40258,
2577 		0x40280, 0x40280,
2578 		0x40304, 0x40304,
2579 		0x40330, 0x4033c,
2580 		0x41304, 0x413c8,
2581 		0x413d0, 0x413dc,
2582 		0x413f0, 0x413f0,
2583 		0x41400, 0x4140c,
2584 		0x41414, 0x4141c,
2585 		0x41480, 0x414d0,
2586 		0x44000, 0x4407c,
2587 		0x440c0, 0x441ac,
2588 		0x441b4, 0x4427c,
2589 		0x442c0, 0x443ac,
2590 		0x443b4, 0x4447c,
2591 		0x444c0, 0x445ac,
2592 		0x445b4, 0x4467c,
2593 		0x446c0, 0x447ac,
2594 		0x447b4, 0x4487c,
2595 		0x448c0, 0x449ac,
2596 		0x449b4, 0x44a7c,
2597 		0x44ac0, 0x44bac,
2598 		0x44bb4, 0x44c7c,
2599 		0x44cc0, 0x44dac,
2600 		0x44db4, 0x44e7c,
2601 		0x44ec0, 0x44fac,
2602 		0x44fb4, 0x4507c,
2603 		0x450c0, 0x451ac,
2604 		0x451b4, 0x451fc,
2605 		0x45800, 0x45804,
2606 		0x45810, 0x45830,
2607 		0x45840, 0x45860,
2608 		0x45868, 0x45868,
2609 		0x45880, 0x45884,
2610 		0x458a0, 0x458b0,
2611 		0x45a00, 0x45a04,
2612 		0x45a10, 0x45a30,
2613 		0x45a40, 0x45a60,
2614 		0x45a68, 0x45a68,
2615 		0x45a80, 0x45a84,
2616 		0x45aa0, 0x45ab0,
2617 		0x460c0, 0x460e4,
2618 		0x47000, 0x4703c,
2619 		0x47044, 0x4708c,
2620 		0x47200, 0x47250,
2621 		0x47400, 0x47408,
2622 		0x47414, 0x47420,
2623 		0x47600, 0x47618,
2624 		0x47800, 0x47814,
2625 		0x47820, 0x4782c,
2626 		0x50000, 0x50084,
2627 		0x50090, 0x500cc,
2628 		0x50300, 0x50384,
2629 		0x50400, 0x50400,
2630 		0x50800, 0x50884,
2631 		0x50890, 0x508cc,
2632 		0x50b00, 0x50b84,
2633 		0x50c00, 0x50c00,
2634 		0x51000, 0x51020,
2635 		0x51028, 0x510b0,
2636 		0x51300, 0x51324,
2637 	};
2638 
2639 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2640 	const unsigned int *reg_ranges;
2641 	int reg_ranges_size, range;
2642 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2643 
2644 	/* Select the right set of register ranges to dump depending on the
2645 	 * adapter chip type.
2646 	 */
2647 	switch (chip_version) {
2648 	case CHELSIO_T4:
2649 		reg_ranges = t4_reg_ranges;
2650 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2651 		break;
2652 
2653 	case CHELSIO_T5:
2654 		reg_ranges = t5_reg_ranges;
2655 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2656 		break;
2657 
2658 	case CHELSIO_T6:
2659 		reg_ranges = t6_reg_ranges;
2660 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2661 		break;
2662 
2663 	default:
2664 		dev_err(adap->pdev_dev,
2665 			"Unsupported chip version %d\n", chip_version);
2666 		return;
2667 	}
2668 
2669 	/* Clear the register buffer and insert the appropriate register
2670 	 * values selected by the above register ranges.
2671 	 */
2672 	memset(buf, 0, buf_size);
2673 	for (range = 0; range < reg_ranges_size; range += 2) {
2674 		unsigned int reg = reg_ranges[range];
2675 		unsigned int last_reg = reg_ranges[range + 1];
2676 		u32 *bufp = (u32 *)((char *)buf + reg);
2677 
2678 		/* Iterate across the register range filling in the register
2679 		 * buffer but don't write past the end of the register buffer.
2680 		 */
2681 		while (reg <= last_reg && bufp < buf_end) {
2682 			*bufp++ = t4_read_reg(adap, reg);
2683 			reg += sizeof(u32);
2684 		}
2685 	}
2686 }
2687 
2688 #define EEPROM_STAT_ADDR   0x7bfc
2689 #define VPD_BASE           0x400
2690 #define VPD_BASE_OLD       0
2691 #define VPD_LEN            1024
2692 #define CHELSIO_VPD_UNIQUE_ID 0x82
2693 
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713 	fn *= sz;
2714 	if (phys_addr < 1024)
2715 		return phys_addr + (31 << 10);
2716 	if (phys_addr < 1024 + fn)
2717 		return 31744 - fn + phys_addr - 1024;
2718 	if (phys_addr < EEPROMSIZE)
2719 		return phys_addr - 1024 - fn;
2720 	return -EINVAL;
2721 }
2722 
2723 /**
2724  *	t4_seeprom_wp - enable/disable EEPROM write protection
2725  *	@adapter: the adapter
2726  *	@enable: whether to enable or disable write protection
2727  *
2728  *	Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732 	unsigned int v = enable ? 0xc : 0;
2733 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734 	return ret < 0 ? ret : 0;
2735 }
2736 
2737 /**
2738  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *	@adapter: adapter to read
2740  *	@p: where to store the parameters
2741  *
2742  *	Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746 	int i, ret = 0, addr;
2747 	int ec, sn, pn, na;
2748 	u8 *vpd, csum;
2749 	unsigned int vpdr_len, kw_offset, id_len;
2750 
2751 	vpd = vmalloc(VPD_LEN);
2752 	if (!vpd)
2753 		return -ENOMEM;
2754 
2755 	/* Card information normally starts at VPD_BASE but early cards had
2756 	 * it at 0.
2757 	 */
2758 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2759 	if (ret < 0)
2760 		goto out;
2761 
2762 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2763 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2764 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2765 	 * is expected to automatically put this entry at the
2766 	 * beginning of the VPD.
2767 	 */
2768 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2769 
2770 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2771 	if (ret < 0)
2772 		goto out;
2773 
2774 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2775 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2776 		ret = -EINVAL;
2777 		goto out;
2778 	}
2779 
2780 	id_len = pci_vpd_lrdt_size(vpd);
2781 	if (id_len > ID_LEN)
2782 		id_len = ID_LEN;
2783 
2784 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2785 	if (i < 0) {
2786 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2787 		ret = -EINVAL;
2788 		goto out;
2789 	}
2790 
2791 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2792 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2793 	if (vpdr_len + kw_offset > VPD_LEN) {
2794 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2795 		ret = -EINVAL;
2796 		goto out;
2797 	}
2798 
2799 #define FIND_VPD_KW(var, name) do { \
2800 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2801 	if (var < 0) { \
2802 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2803 		ret = -EINVAL; \
2804 		goto out; \
2805 	} \
2806 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2807 } while (0)
2808 
2809 	FIND_VPD_KW(i, "RV");
2810 	for (csum = 0; i >= 0; i--)
2811 		csum += vpd[i];
2812 
2813 	if (csum) {
2814 		dev_err(adapter->pdev_dev,
2815 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2816 		ret = -EINVAL;
2817 		goto out;
2818 	}
2819 
2820 	FIND_VPD_KW(ec, "EC");
2821 	FIND_VPD_KW(sn, "SN");
2822 	FIND_VPD_KW(pn, "PN");
2823 	FIND_VPD_KW(na, "NA");
2824 #undef FIND_VPD_KW
2825 
2826 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2827 	strim(p->id);
2828 	memcpy(p->ec, vpd + ec, EC_LEN);
2829 	strim(p->ec);
2830 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2831 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2832 	strim(p->sn);
2833 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2834 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2835 	strim(p->pn);
2836 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2837 	strim((char *)p->na);
2838 
2839 out:
2840 	vfree(vpd);
2841 	return ret < 0 ? ret : 0;
2842 }
2843 
2844 /**
2845  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2846  *	@adapter: adapter to read
2847  *	@p: where to store the parameters
2848  *
2849  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2850  *	Clock.  This can only be called after a connection to the firmware
2851  *	is established.
2852  */
2853 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2854 {
2855 	u32 cclk_param, cclk_val;
2856 	int ret;
2857 
2858 	/* Grab the raw VPD parameters.
2859 	 */
2860 	ret = t4_get_raw_vpd_params(adapter, p);
2861 	if (ret)
2862 		return ret;
2863 
2864 	/* Ask firmware for the Core Clock since it knows how to translate the
2865 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2866 	 */
2867 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2868 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2869 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2870 			      1, &cclk_param, &cclk_val);
2871 
2872 	if (ret)
2873 		return ret;
2874 	p->cclk = cclk_val;
2875 
2876 	return 0;
2877 }
2878 
2879 /**
2880  *	t4_get_pfres - retrieve VF resource limits
2881  *	@adapter: the adapter
2882  *
2883  *	Retrieves configured resource limits and capabilities for a physical
2884  *	function.  The results are stored in @adapter->pfres.
2885  */
2886 int t4_get_pfres(struct adapter *adapter)
2887 {
2888 	struct pf_resources *pfres = &adapter->params.pfres;
2889 	struct fw_pfvf_cmd cmd, rpl;
2890 	int v;
2891 	u32 word;
2892 
2893 	/* Execute PFVF Read command to get VF resource limits; bail out early
2894 	 * with error on command failure.
2895 	 */
2896 	memset(&cmd, 0, sizeof(cmd));
2897 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2898 				    FW_CMD_REQUEST_F |
2899 				    FW_CMD_READ_F |
2900 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2901 				    FW_PFVF_CMD_VFN_V(0));
2902 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2903 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2904 	if (v != FW_SUCCESS)
2905 		return v;
2906 
2907 	/* Extract PF resource limits and return success.
2908 	 */
2909 	word = be32_to_cpu(rpl.niqflint_niq);
2910 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2911 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2912 
2913 	word = be32_to_cpu(rpl.type_to_neq);
2914 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2915 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2916 
2917 	word = be32_to_cpu(rpl.tc_to_nexactf);
2918 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2919 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2920 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2921 
2922 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2923 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2924 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2925 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2926 
2927 	return 0;
2928 }
2929 
2930 /* serial flash and firmware constants */
2931 enum {
2932 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2933 
2934 	/* flash command opcodes */
2935 	SF_PROG_PAGE    = 2,          /* program page */
2936 	SF_WR_DISABLE   = 4,          /* disable writes */
2937 	SF_RD_STATUS    = 5,          /* read status register */
2938 	SF_WR_ENABLE    = 6,          /* enable writes */
2939 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2940 	SF_RD_ID        = 0x9f,       /* read ID */
2941 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2942 };
2943 
2944 /**
2945  *	sf1_read - read data from the serial flash
2946  *	@adapter: the adapter
2947  *	@byte_cnt: number of bytes to read
2948  *	@cont: whether another operation will be chained
2949  *	@lock: whether to lock SF for PL access only
2950  *	@valp: where to store the read data
2951  *
2952  *	Reads up to 4 bytes of data from the serial flash.  The location of
2953  *	the read needs to be specified prior to calling this by issuing the
2954  *	appropriate commands to the serial flash.
2955  */
2956 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957 		    int lock, u32 *valp)
2958 {
2959 	int ret;
2960 
2961 	if (!byte_cnt || byte_cnt > 4)
2962 		return -EINVAL;
2963 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2964 		return -EBUSY;
2965 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2966 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2967 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2968 	if (!ret)
2969 		*valp = t4_read_reg(adapter, SF_DATA_A);
2970 	return ret;
2971 }
2972 
2973 /**
2974  *	sf1_write - write data to the serial flash
2975  *	@adapter: the adapter
2976  *	@byte_cnt: number of bytes to write
2977  *	@cont: whether another operation will be chained
2978  *	@lock: whether to lock SF for PL access only
2979  *	@val: value to write
2980  *
2981  *	Writes up to 4 bytes of data to the serial flash.  The location of
2982  *	the write needs to be specified prior to calling this by issuing the
2983  *	appropriate commands to the serial flash.
2984  */
2985 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2986 		     int lock, u32 val)
2987 {
2988 	if (!byte_cnt || byte_cnt > 4)
2989 		return -EINVAL;
2990 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2991 		return -EBUSY;
2992 	t4_write_reg(adapter, SF_DATA_A, val);
2993 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2994 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2995 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2996 }
2997 
2998 /**
2999  *	flash_wait_op - wait for a flash operation to complete
3000  *	@adapter: the adapter
3001  *	@attempts: max number of polls of the status register
3002  *	@delay: delay between polls in ms
3003  *
3004  *	Wait for a flash operation to complete by polling the status register.
3005  */
3006 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3007 {
3008 	int ret;
3009 	u32 status;
3010 
3011 	while (1) {
3012 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3013 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3014 			return ret;
3015 		if (!(status & 1))
3016 			return 0;
3017 		if (--attempts == 0)
3018 			return -EAGAIN;
3019 		if (delay)
3020 			msleep(delay);
3021 	}
3022 }
3023 
3024 /**
3025  *	t4_read_flash - read words from serial flash
3026  *	@adapter: the adapter
3027  *	@addr: the start address for the read
3028  *	@nwords: how many 32-bit words to read
3029  *	@data: where to store the read data
3030  *	@byte_oriented: whether to store data as bytes or as words
3031  *
3032  *	Read the specified number of 32-bit words from the serial flash.
3033  *	If @byte_oriented is set the read data is stored as a byte array
3034  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3035  *	natural endianness.
3036  */
3037 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3038 		  unsigned int nwords, u32 *data, int byte_oriented)
3039 {
3040 	int ret;
3041 
3042 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3043 		return -EINVAL;
3044 
3045 	addr = swab32(addr) | SF_RD_DATA_FAST;
3046 
3047 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3048 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3049 		return ret;
3050 
3051 	for ( ; nwords; nwords--, data++) {
3052 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3053 		if (nwords == 1)
3054 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3055 		if (ret)
3056 			return ret;
3057 		if (byte_oriented)
3058 			*data = (__force __u32)(cpu_to_be32(*data));
3059 	}
3060 	return 0;
3061 }
3062 
3063 /**
3064  *	t4_write_flash - write up to a page of data to the serial flash
3065  *	@adapter: the adapter
3066  *	@addr: the start address to write
3067  *	@n: length of data to write in bytes
3068  *	@data: the data to write
3069  *
3070  *	Writes up to a page of data (256 bytes) to the serial flash starting
3071  *	at the given address.  All the data must be written to the same page.
3072  */
3073 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3074 			  unsigned int n, const u8 *data)
3075 {
3076 	int ret;
3077 	u32 buf[64];
3078 	unsigned int i, c, left, val, offset = addr & 0xff;
3079 
3080 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3081 		return -EINVAL;
3082 
3083 	val = swab32(addr) | SF_PROG_PAGE;
3084 
3085 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3086 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3087 		goto unlock;
3088 
3089 	for (left = n; left; left -= c) {
3090 		c = min(left, 4U);
3091 		for (val = 0, i = 0; i < c; ++i)
3092 			val = (val << 8) + *data++;
3093 
3094 		ret = sf1_write(adapter, c, c != left, 1, val);
3095 		if (ret)
3096 			goto unlock;
3097 	}
3098 	ret = flash_wait_op(adapter, 8, 1);
3099 	if (ret)
3100 		goto unlock;
3101 
3102 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3103 
3104 	/* Read the page to verify the write succeeded */
3105 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3106 	if (ret)
3107 		return ret;
3108 
3109 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3110 		dev_err(adapter->pdev_dev,
3111 			"failed to correctly write the flash page at %#x\n",
3112 			addr);
3113 		return -EIO;
3114 	}
3115 	return 0;
3116 
3117 unlock:
3118 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3119 	return ret;
3120 }
3121 
3122 /**
3123  *	t4_get_fw_version - read the firmware version
3124  *	@adapter: the adapter
3125  *	@vers: where to place the version
3126  *
3127  *	Reads the FW version from flash.
3128  */
3129 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3130 {
3131 	return t4_read_flash(adapter, FLASH_FW_START +
3132 			     offsetof(struct fw_hdr, fw_ver), 1,
3133 			     vers, 0);
3134 }
3135 
3136 /**
3137  *	t4_get_bs_version - read the firmware bootstrap version
3138  *	@adapter: the adapter
3139  *	@vers: where to place the version
3140  *
3141  *	Reads the FW Bootstrap version from flash.
3142  */
3143 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3144 {
3145 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3146 			     offsetof(struct fw_hdr, fw_ver), 1,
3147 			     vers, 0);
3148 }
3149 
3150 /**
3151  *	t4_get_tp_version - read the TP microcode version
3152  *	@adapter: the adapter
3153  *	@vers: where to place the version
3154  *
3155  *	Reads the TP microcode version from flash.
3156  */
3157 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3158 {
3159 	return t4_read_flash(adapter, FLASH_FW_START +
3160 			     offsetof(struct fw_hdr, tp_microcode_ver),
3161 			     1, vers, 0);
3162 }
3163 
3164 /**
3165  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3166  *	@adap: the adapter
3167  *	@vers: where to place the version
3168  *
3169  *	Reads the Expansion ROM header from FLASH and returns the version
3170  *	number (if present) through the @vers return value pointer.  We return
3171  *	this in the Firmware Version Format since it's convenient.  Return
3172  *	0 on success, -ENOENT if no Expansion ROM is present.
3173  */
3174 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3175 {
3176 	struct exprom_header {
3177 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3178 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3179 	} *hdr;
3180 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3181 					   sizeof(u32))];
3182 	int ret;
3183 
3184 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3185 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3186 			    0);
3187 	if (ret)
3188 		return ret;
3189 
3190 	hdr = (struct exprom_header *)exprom_header_buf;
3191 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3192 		return -ENOENT;
3193 
3194 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3195 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3196 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3197 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3198 	return 0;
3199 }
3200 
3201 /**
3202  *      t4_get_vpd_version - return the VPD version
3203  *      @adapter: the adapter
3204  *      @vers: where to place the version
3205  *
3206  *      Reads the VPD via the Firmware interface (thus this can only be called
3207  *      once we're ready to issue Firmware commands).  The format of the
3208  *      VPD version is adapter specific.  Returns 0 on success, an error on
3209  *      failure.
3210  *
3211  *      Note that early versions of the Firmware didn't include the ability
3212  *      to retrieve the VPD version, so we zero-out the return-value parameter
3213  *      in that case to avoid leaving it with garbage in it.
3214  *
3215  *      Also note that the Firmware will return its cached copy of the VPD
3216  *      Revision ID, not the actual Revision ID as written in the Serial
3217  *      EEPROM.  This is only an issue if a new VPD has been written and the
3218  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3219  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3220  *      if the Host Driver will be performing a full adapter initialization.
3221  */
3222 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3223 {
3224 	u32 vpdrev_param;
3225 	int ret;
3226 
3227 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3228 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3229 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3230 			      1, &vpdrev_param, vers);
3231 	if (ret)
3232 		*vers = 0;
3233 	return ret;
3234 }
3235 
3236 /**
3237  *      t4_get_scfg_version - return the Serial Configuration version
3238  *      @adapter: the adapter
3239  *      @vers: where to place the version
3240  *
3241  *      Reads the Serial Configuration Version via the Firmware interface
3242  *      (thus this can only be called once we're ready to issue Firmware
3243  *      commands).  The format of the Serial Configuration version is
3244  *      adapter specific.  Returns 0 on success, an error on failure.
3245  *
3246  *      Note that early versions of the Firmware didn't include the ability
3247  *      to retrieve the Serial Configuration version, so we zero-out the
3248  *      return-value parameter in that case to avoid leaving it with
3249  *      garbage in it.
3250  *
3251  *      Also note that the Firmware will return its cached copy of the Serial
3252  *      Initialization Revision ID, not the actual Revision ID as written in
3253  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3254  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3255  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3256  *      been issued if the Host Driver will be performing a full adapter
3257  *      initialization.
3258  */
3259 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3260 {
3261 	u32 scfgrev_param;
3262 	int ret;
3263 
3264 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3265 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3266 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3267 			      1, &scfgrev_param, vers);
3268 	if (ret)
3269 		*vers = 0;
3270 	return ret;
3271 }
3272 
3273 /**
3274  *      t4_get_version_info - extract various chip/firmware version information
3275  *      @adapter: the adapter
3276  *
3277  *      Reads various chip/firmware version numbers and stores them into the
3278  *      adapter Adapter Parameters structure.  If any of the efforts fails
3279  *      the first failure will be returned, but all of the version numbers
3280  *      will be read.
3281  */
3282 int t4_get_version_info(struct adapter *adapter)
3283 {
3284 	int ret = 0;
3285 
3286 	#define FIRST_RET(__getvinfo) \
3287 	do { \
3288 		int __ret = __getvinfo; \
3289 		if (__ret && !ret) \
3290 			ret = __ret; \
3291 	} while (0)
3292 
3293 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3294 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3295 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3296 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3297 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3298 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3299 
3300 	#undef FIRST_RET
3301 	return ret;
3302 }
3303 
3304 /**
3305  *      t4_dump_version_info - dump all of the adapter configuration IDs
3306  *      @adapter: the adapter
3307  *
3308  *      Dumps all of the various bits of adapter configuration version/revision
3309  *      IDs information.  This is typically called at some point after
3310  *      t4_get_version_info() has been called.
3311  */
3312 void t4_dump_version_info(struct adapter *adapter)
3313 {
3314 	/* Device information */
3315 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3316 		 adapter->params.vpd.id,
3317 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3318 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3319 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3320 
3321 	/* Firmware Version */
3322 	if (!adapter->params.fw_vers)
3323 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3324 	else
3325 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3326 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3327 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3328 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3329 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3330 
3331 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3332 	 * Firmware, so dev_info() is more appropriate here.)
3333 	 */
3334 	if (!adapter->params.bs_vers)
3335 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3336 	else
3337 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3338 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3339 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3340 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3341 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3342 
3343 	/* TP Microcode Version */
3344 	if (!adapter->params.tp_vers)
3345 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3346 	else
3347 		dev_info(adapter->pdev_dev,
3348 			 "TP Microcode version: %u.%u.%u.%u\n",
3349 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3350 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3351 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3352 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3353 
3354 	/* Expansion ROM version */
3355 	if (!adapter->params.er_vers)
3356 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3357 	else
3358 		dev_info(adapter->pdev_dev,
3359 			 "Expansion ROM version: %u.%u.%u.%u\n",
3360 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3361 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3362 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3363 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3364 
3365 	/* Serial Configuration version */
3366 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3367 		 adapter->params.scfg_vers);
3368 
3369 	/* VPD Version */
3370 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3371 		 adapter->params.vpd_vers);
3372 }
3373 
3374 /**
3375  *	t4_check_fw_version - check if the FW is supported with this driver
3376  *	@adap: the adapter
3377  *
3378  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3379  *	if there's exact match, a negative error if the version could not be
3380  *	read or there's a major version mismatch
3381  */
3382 int t4_check_fw_version(struct adapter *adap)
3383 {
3384 	int i, ret, major, minor, micro;
3385 	int exp_major, exp_minor, exp_micro;
3386 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3387 
3388 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3389 	/* Try multiple times before returning error */
3390 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3391 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3392 
3393 	if (ret)
3394 		return ret;
3395 
3396 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3397 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3398 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3399 
3400 	switch (chip_version) {
3401 	case CHELSIO_T4:
3402 		exp_major = T4FW_MIN_VERSION_MAJOR;
3403 		exp_minor = T4FW_MIN_VERSION_MINOR;
3404 		exp_micro = T4FW_MIN_VERSION_MICRO;
3405 		break;
3406 	case CHELSIO_T5:
3407 		exp_major = T5FW_MIN_VERSION_MAJOR;
3408 		exp_minor = T5FW_MIN_VERSION_MINOR;
3409 		exp_micro = T5FW_MIN_VERSION_MICRO;
3410 		break;
3411 	case CHELSIO_T6:
3412 		exp_major = T6FW_MIN_VERSION_MAJOR;
3413 		exp_minor = T6FW_MIN_VERSION_MINOR;
3414 		exp_micro = T6FW_MIN_VERSION_MICRO;
3415 		break;
3416 	default:
3417 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3418 			adap->chip);
3419 		return -EINVAL;
3420 	}
3421 
3422 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3423 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3424 		dev_err(adap->pdev_dev,
3425 			"Card has firmware version %u.%u.%u, minimum "
3426 			"supported firmware is %u.%u.%u.\n", major, minor,
3427 			micro, exp_major, exp_minor, exp_micro);
3428 		return -EFAULT;
3429 	}
3430 	return 0;
3431 }
3432 
3433 /* Is the given firmware API compatible with the one the driver was compiled
3434  * with?
3435  */
3436 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3437 {
3438 
3439 	/* short circuit if it's the exact same firmware version */
3440 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3441 		return 1;
3442 
3443 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3444 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3445 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3446 		return 1;
3447 #undef SAME_INTF
3448 
3449 	return 0;
3450 }
3451 
3452 /* The firmware in the filesystem is usable, but should it be installed?
3453  * This routine explains itself in detail if it indicates the filesystem
3454  * firmware should be installed.
3455  */
3456 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3457 				int k, int c)
3458 {
3459 	const char *reason;
3460 
3461 	if (!card_fw_usable) {
3462 		reason = "incompatible or unusable";
3463 		goto install;
3464 	}
3465 
3466 	if (k > c) {
3467 		reason = "older than the version supported with this driver";
3468 		goto install;
3469 	}
3470 
3471 	return 0;
3472 
3473 install:
3474 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3475 		"installing firmware %u.%u.%u.%u on card.\n",
3476 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3477 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3478 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3479 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3480 
3481 	return 1;
3482 }
3483 
3484 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3485 	       const u8 *fw_data, unsigned int fw_size,
3486 	       struct fw_hdr *card_fw, enum dev_state state,
3487 	       int *reset)
3488 {
3489 	int ret, card_fw_usable, fs_fw_usable;
3490 	const struct fw_hdr *fs_fw;
3491 	const struct fw_hdr *drv_fw;
3492 
3493 	drv_fw = &fw_info->fw_hdr;
3494 
3495 	/* Read the header of the firmware on the card */
3496 	ret = t4_read_flash(adap, FLASH_FW_START,
3497 			    sizeof(*card_fw) / sizeof(uint32_t),
3498 			    (uint32_t *)card_fw, 1);
3499 	if (ret == 0) {
3500 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3501 	} else {
3502 		dev_err(adap->pdev_dev,
3503 			"Unable to read card's firmware header: %d\n", ret);
3504 		card_fw_usable = 0;
3505 	}
3506 
3507 	if (fw_data != NULL) {
3508 		fs_fw = (const void *)fw_data;
3509 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3510 	} else {
3511 		fs_fw = NULL;
3512 		fs_fw_usable = 0;
3513 	}
3514 
3515 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3516 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3517 		/* Common case: the firmware on the card is an exact match and
3518 		 * the filesystem one is an exact match too, or the filesystem
3519 		 * one is absent/incompatible.
3520 		 */
3521 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3522 		   should_install_fs_fw(adap, card_fw_usable,
3523 					be32_to_cpu(fs_fw->fw_ver),
3524 					be32_to_cpu(card_fw->fw_ver))) {
3525 		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3526 				    fw_size, 0);
3527 		if (ret != 0) {
3528 			dev_err(adap->pdev_dev,
3529 				"failed to install firmware: %d\n", ret);
3530 			goto bye;
3531 		}
3532 
3533 		/* Installed successfully, update the cached header too. */
3534 		*card_fw = *fs_fw;
3535 		card_fw_usable = 1;
3536 		*reset = 0;	/* already reset as part of load_fw */
3537 	}
3538 
3539 	if (!card_fw_usable) {
3540 		uint32_t d, c, k;
3541 
3542 		d = be32_to_cpu(drv_fw->fw_ver);
3543 		c = be32_to_cpu(card_fw->fw_ver);
3544 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3545 
3546 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3547 			"chip state %d, "
3548 			"driver compiled with %d.%d.%d.%d, "
3549 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3550 			state,
3551 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3552 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3553 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3554 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3555 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3556 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3557 		ret = -EINVAL;
3558 		goto bye;
3559 	}
3560 
3561 	/* We're using whatever's on the card and it's known to be good. */
3562 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3563 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3564 
3565 bye:
3566 	return ret;
3567 }
3568 
3569 /**
3570  *	t4_flash_erase_sectors - erase a range of flash sectors
3571  *	@adapter: the adapter
3572  *	@start: the first sector to erase
3573  *	@end: the last sector to erase
3574  *
3575  *	Erases the sectors in the given inclusive range.
3576  */
3577 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3578 {
3579 	int ret = 0;
3580 
3581 	if (end >= adapter->params.sf_nsec)
3582 		return -EINVAL;
3583 
3584 	while (start <= end) {
3585 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3586 		    (ret = sf1_write(adapter, 4, 0, 1,
3587 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3588 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3589 			dev_err(adapter->pdev_dev,
3590 				"erase of flash sector %d failed, error %d\n",
3591 				start, ret);
3592 			break;
3593 		}
3594 		start++;
3595 	}
3596 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3597 	return ret;
3598 }
3599 
3600 /**
3601  *	t4_flash_cfg_addr - return the address of the flash configuration file
3602  *	@adapter: the adapter
3603  *
3604  *	Return the address within the flash where the Firmware Configuration
3605  *	File is stored.
3606  */
3607 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3608 {
3609 	if (adapter->params.sf_size == 0x100000)
3610 		return FLASH_FPGA_CFG_START;
3611 	else
3612 		return FLASH_CFG_START;
3613 }
3614 
3615 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3616  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3617  * and emit an error message for mismatched firmware to save our caller the
3618  * effort ...
3619  */
3620 static bool t4_fw_matches_chip(const struct adapter *adap,
3621 			       const struct fw_hdr *hdr)
3622 {
3623 	/* The expression below will return FALSE for any unsupported adapter
3624 	 * which will keep us "honest" in the future ...
3625 	 */
3626 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3627 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3628 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3629 		return true;
3630 
3631 	dev_err(adap->pdev_dev,
3632 		"FW image (%d) is not suitable for this adapter (%d)\n",
3633 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3634 	return false;
3635 }
3636 
3637 /**
3638  *	t4_load_fw - download firmware
3639  *	@adap: the adapter
3640  *	@fw_data: the firmware image to write
3641  *	@size: image size
3642  *
3643  *	Write the supplied firmware image to the card's serial flash.
3644  */
3645 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3646 {
3647 	u32 csum;
3648 	int ret, addr;
3649 	unsigned int i;
3650 	u8 first_page[SF_PAGE_SIZE];
3651 	const __be32 *p = (const __be32 *)fw_data;
3652 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3653 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3654 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3655 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3656 	unsigned int fw_start = FLASH_FW_START;
3657 
3658 	if (!size) {
3659 		dev_err(adap->pdev_dev, "FW image has no data\n");
3660 		return -EINVAL;
3661 	}
3662 	if (size & 511) {
3663 		dev_err(adap->pdev_dev,
3664 			"FW image size not multiple of 512 bytes\n");
3665 		return -EINVAL;
3666 	}
3667 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3668 		dev_err(adap->pdev_dev,
3669 			"FW image size differs from size in FW header\n");
3670 		return -EINVAL;
3671 	}
3672 	if (size > fw_size) {
3673 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3674 			fw_size);
3675 		return -EFBIG;
3676 	}
3677 	if (!t4_fw_matches_chip(adap, hdr))
3678 		return -EINVAL;
3679 
3680 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3681 		csum += be32_to_cpu(p[i]);
3682 
3683 	if (csum != 0xffffffff) {
3684 		dev_err(adap->pdev_dev,
3685 			"corrupted firmware image, checksum %#x\n", csum);
3686 		return -EINVAL;
3687 	}
3688 
3689 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3690 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3691 	if (ret)
3692 		goto out;
3693 
3694 	/*
3695 	 * We write the correct version at the end so the driver can see a bad
3696 	 * version if the FW write fails.  Start by writing a copy of the
3697 	 * first page with a bad version.
3698 	 */
3699 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3700 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3701 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3702 	if (ret)
3703 		goto out;
3704 
3705 	addr = fw_start;
3706 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3707 		addr += SF_PAGE_SIZE;
3708 		fw_data += SF_PAGE_SIZE;
3709 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3710 		if (ret)
3711 			goto out;
3712 	}
3713 
3714 	ret = t4_write_flash(adap,
3715 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3716 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3717 out:
3718 	if (ret)
3719 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3720 			ret);
3721 	else
3722 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3723 	return ret;
3724 }
3725 
3726 /**
3727  *	t4_phy_fw_ver - return current PHY firmware version
3728  *	@adap: the adapter
3729  *	@phy_fw_ver: return value buffer for PHY firmware version
3730  *
3731  *	Returns the current version of external PHY firmware on the
3732  *	adapter.
3733  */
3734 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3735 {
3736 	u32 param, val;
3737 	int ret;
3738 
3739 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3740 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3741 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3742 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3743 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3744 			      &param, &val);
3745 	if (ret)
3746 		return ret;
3747 	*phy_fw_ver = val;
3748 	return 0;
3749 }
3750 
3751 /**
3752  *	t4_load_phy_fw - download port PHY firmware
3753  *	@adap: the adapter
3754  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3755  *	@phy_fw_version: function to check PHY firmware versions
3756  *	@phy_fw_data: the PHY firmware image to write
3757  *	@phy_fw_size: image size
3758  *
3759  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3760  *	@phy_fw_version is supplied, then it will be used to determine if
3761  *	it's necessary to perform the transfer by comparing the version
3762  *	of any existing adapter PHY firmware with that of the passed in
3763  *	PHY firmware image.
3764  *
3765  *	A negative error number will be returned if an error occurs.  If
3766  *	version number support is available and there's no need to upgrade
3767  *	the firmware, 0 will be returned.  If firmware is successfully
3768  *	transferred to the adapter, 1 will be returned.
3769  *
3770  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3771  *	a result, a RESET of the adapter would cause that RAM to lose its
3772  *	contents.  Thus, loading PHY firmware on such adapters must happen
3773  *	after any FW_RESET_CMDs ...
3774  */
3775 int t4_load_phy_fw(struct adapter *adap, int win,
3776 		   int (*phy_fw_version)(const u8 *, size_t),
3777 		   const u8 *phy_fw_data, size_t phy_fw_size)
3778 {
3779 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3780 	unsigned long mtype = 0, maddr = 0;
3781 	u32 param, val;
3782 	int ret;
3783 
3784 	/* If we have version number support, then check to see if the adapter
3785 	 * already has up-to-date PHY firmware loaded.
3786 	 */
3787 	if (phy_fw_version) {
3788 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3789 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3790 		if (ret < 0)
3791 			return ret;
3792 
3793 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3794 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3795 				"version %#x\n", cur_phy_fw_ver);
3796 			return 0;
3797 		}
3798 	}
3799 
3800 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3801 	 * The size of the file requires a special version of the READ command
3802 	 * which will pass the file size via the values field in PARAMS_CMD and
3803 	 * retrieve the return value from firmware and place it in the same
3804 	 * buffer values
3805 	 */
3806 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3807 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3808 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3809 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3810 	val = phy_fw_size;
3811 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3812 				 &param, &val, 1, true);
3813 	if (ret < 0)
3814 		return ret;
3815 	mtype = val >> 8;
3816 	maddr = (val & 0xff) << 16;
3817 
3818 	/* Copy the supplied PHY Firmware image to the adapter memory location
3819 	 * allocated by the adapter firmware.
3820 	 */
3821 	ret = t4_memory_rw(adap, win, mtype, maddr,
3822 			   phy_fw_size, (__be32 *)phy_fw_data,
3823 			   T4_MEMORY_WRITE);
3824 	if (ret)
3825 		return ret;
3826 
3827 	/* Tell the firmware that the PHY firmware image has been written to
3828 	 * RAM and it can now start copying it over to the PHYs.  The chip
3829 	 * firmware will RESET the affected PHYs as part of this operation
3830 	 * leaving them running the new PHY firmware image.
3831 	 */
3832 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3833 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3834 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3835 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3836 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3837 				    &param, &val, 30000);
3838 
3839 	/* If we have version number support, then check to see that the new
3840 	 * firmware got loaded properly.
3841 	 */
3842 	if (phy_fw_version) {
3843 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3844 		if (ret < 0)
3845 			return ret;
3846 
3847 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3848 			CH_WARN(adap, "PHY Firmware did not update: "
3849 				"version on adapter %#x, "
3850 				"version flashed %#x\n",
3851 				cur_phy_fw_ver, new_phy_fw_vers);
3852 			return -ENXIO;
3853 		}
3854 	}
3855 
3856 	return 1;
3857 }
3858 
3859 /**
3860  *	t4_fwcache - firmware cache operation
3861  *	@adap: the adapter
3862  *	@op  : the operation (flush or flush and invalidate)
3863  */
3864 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3865 {
3866 	struct fw_params_cmd c;
3867 
3868 	memset(&c, 0, sizeof(c));
3869 	c.op_to_vfn =
3870 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3871 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3872 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3873 			    FW_PARAMS_CMD_VFN_V(0));
3874 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3875 	c.param[0].mnem =
3876 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3877 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3878 	c.param[0].val = cpu_to_be32(op);
3879 
3880 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3881 }
3882 
3883 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3884 			unsigned int *pif_req_wrptr,
3885 			unsigned int *pif_rsp_wrptr)
3886 {
3887 	int i, j;
3888 	u32 cfg, val, req, rsp;
3889 
3890 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3891 	if (cfg & LADBGEN_F)
3892 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3893 
3894 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3895 	req = POLADBGWRPTR_G(val);
3896 	rsp = PILADBGWRPTR_G(val);
3897 	if (pif_req_wrptr)
3898 		*pif_req_wrptr = req;
3899 	if (pif_rsp_wrptr)
3900 		*pif_rsp_wrptr = rsp;
3901 
3902 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3903 		for (j = 0; j < 6; j++) {
3904 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3905 				     PILADBGRDPTR_V(rsp));
3906 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3907 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3908 			req++;
3909 			rsp++;
3910 		}
3911 		req = (req + 2) & POLADBGRDPTR_M;
3912 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3913 	}
3914 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3915 }
3916 
3917 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3918 {
3919 	u32 cfg;
3920 	int i, j, idx;
3921 
3922 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3923 	if (cfg & LADBGEN_F)
3924 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3925 
3926 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3927 		for (j = 0; j < 5; j++) {
3928 			idx = 8 * i + j;
3929 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3930 				     PILADBGRDPTR_V(idx));
3931 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3932 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3933 		}
3934 	}
3935 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3936 }
3937 
3938 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3939 {
3940 	unsigned int i, j;
3941 
3942 	for (i = 0; i < 8; i++) {
3943 		u32 *p = la_buf + i;
3944 
3945 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3946 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3947 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3948 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3949 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3950 	}
3951 }
3952 
3953 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3954  * Capabilities which we control with separate controls -- see, for instance,
3955  * Pause Frames and Forward Error Correction.  In order to determine what the
3956  * full set of Advertised Port Capabilities are, the base Advertised Port
3957  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3958  * Port Capabilities associated with those other controls.  See
3959  * t4_link_acaps() for how this is done.
3960  */
3961 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3962 		     FW_PORT_CAP32_ANEG)
3963 
3964 /**
3965  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3966  *	@caps16: a 16-bit Port Capabilities value
3967  *
3968  *	Returns the equivalent 32-bit Port Capabilities value.
3969  */
3970 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3971 {
3972 	fw_port_cap32_t caps32 = 0;
3973 
3974 	#define CAP16_TO_CAP32(__cap) \
3975 		do { \
3976 			if (caps16 & FW_PORT_CAP_##__cap) \
3977 				caps32 |= FW_PORT_CAP32_##__cap; \
3978 		} while (0)
3979 
3980 	CAP16_TO_CAP32(SPEED_100M);
3981 	CAP16_TO_CAP32(SPEED_1G);
3982 	CAP16_TO_CAP32(SPEED_25G);
3983 	CAP16_TO_CAP32(SPEED_10G);
3984 	CAP16_TO_CAP32(SPEED_40G);
3985 	CAP16_TO_CAP32(SPEED_100G);
3986 	CAP16_TO_CAP32(FC_RX);
3987 	CAP16_TO_CAP32(FC_TX);
3988 	CAP16_TO_CAP32(ANEG);
3989 	CAP16_TO_CAP32(FORCE_PAUSE);
3990 	CAP16_TO_CAP32(MDIAUTO);
3991 	CAP16_TO_CAP32(MDISTRAIGHT);
3992 	CAP16_TO_CAP32(FEC_RS);
3993 	CAP16_TO_CAP32(FEC_BASER_RS);
3994 	CAP16_TO_CAP32(802_3_PAUSE);
3995 	CAP16_TO_CAP32(802_3_ASM_DIR);
3996 
3997 	#undef CAP16_TO_CAP32
3998 
3999 	return caps32;
4000 }
4001 
4002 /**
4003  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4004  *	@caps32: a 32-bit Port Capabilities value
4005  *
4006  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4007  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4008  *	Port Capabilities and some fields/values may not make it.
4009  */
4010 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4011 {
4012 	fw_port_cap16_t caps16 = 0;
4013 
4014 	#define CAP32_TO_CAP16(__cap) \
4015 		do { \
4016 			if (caps32 & FW_PORT_CAP32_##__cap) \
4017 				caps16 |= FW_PORT_CAP_##__cap; \
4018 		} while (0)
4019 
4020 	CAP32_TO_CAP16(SPEED_100M);
4021 	CAP32_TO_CAP16(SPEED_1G);
4022 	CAP32_TO_CAP16(SPEED_10G);
4023 	CAP32_TO_CAP16(SPEED_25G);
4024 	CAP32_TO_CAP16(SPEED_40G);
4025 	CAP32_TO_CAP16(SPEED_100G);
4026 	CAP32_TO_CAP16(FC_RX);
4027 	CAP32_TO_CAP16(FC_TX);
4028 	CAP32_TO_CAP16(802_3_PAUSE);
4029 	CAP32_TO_CAP16(802_3_ASM_DIR);
4030 	CAP32_TO_CAP16(ANEG);
4031 	CAP32_TO_CAP16(FORCE_PAUSE);
4032 	CAP32_TO_CAP16(MDIAUTO);
4033 	CAP32_TO_CAP16(MDISTRAIGHT);
4034 	CAP32_TO_CAP16(FEC_RS);
4035 	CAP32_TO_CAP16(FEC_BASER_RS);
4036 
4037 	#undef CAP32_TO_CAP16
4038 
4039 	return caps16;
4040 }
4041 
4042 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4043 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4044 {
4045 	enum cc_pause cc_pause = 0;
4046 
4047 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4048 		cc_pause |= PAUSE_RX;
4049 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4050 		cc_pause |= PAUSE_TX;
4051 
4052 	return cc_pause;
4053 }
4054 
4055 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4056 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4057 {
4058 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4059 	 * commands, etc.
4060 	 */
4061 	fw_port_cap32_t fw_pause = 0;
4062 
4063 	if (cc_pause & PAUSE_RX)
4064 		fw_pause |= FW_PORT_CAP32_FC_RX;
4065 	if (cc_pause & PAUSE_TX)
4066 		fw_pause |= FW_PORT_CAP32_FC_TX;
4067 	if (!(cc_pause & PAUSE_AUTONEG))
4068 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4069 
4070 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4071 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4072 	 * Note that these bits are ignored in L1 Configure commands.
4073 	 */
4074 	if (cc_pause & PAUSE_RX) {
4075 		if (cc_pause & PAUSE_TX)
4076 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4077 		else
4078 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4079 				    FW_PORT_CAP32_802_3_PAUSE;
4080 	} else if (cc_pause & PAUSE_TX) {
4081 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4082 	}
4083 
4084 	return fw_pause;
4085 }
4086 
4087 /* Translate Firmware Forward Error Correction specification to Common Code */
4088 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4089 {
4090 	enum cc_fec cc_fec = 0;
4091 
4092 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4093 		cc_fec |= FEC_RS;
4094 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4095 		cc_fec |= FEC_BASER_RS;
4096 
4097 	return cc_fec;
4098 }
4099 
4100 /* Translate Common Code Forward Error Correction specification to Firmware */
4101 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4102 {
4103 	fw_port_cap32_t fw_fec = 0;
4104 
4105 	if (cc_fec & FEC_RS)
4106 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4107 	if (cc_fec & FEC_BASER_RS)
4108 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4109 
4110 	return fw_fec;
4111 }
4112 
4113 /**
4114  *	t4_link_acaps - compute Link Advertised Port Capabilities
4115  *	@adapter: the adapter
4116  *	@port: the Port ID
4117  *	@lc: the Port's Link Configuration
4118  *
4119  *	Synthesize the Advertised Port Capabilities we'll be using based on
4120  *	the base Advertised Port Capabilities (which have been filtered by
4121  *	ADVERT_MASK) plus the individual controls for things like Pause
4122  *	Frames, Forward Error Correction, MDI, etc.
4123  */
4124 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4125 			      struct link_config *lc)
4126 {
4127 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4128 	unsigned int fw_mdi;
4129 	char cc_fec;
4130 
4131 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4132 
4133 	/* Convert driver coding of Pause Frame Flow Control settings into the
4134 	 * Firmware's API.
4135 	 */
4136 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4137 
4138 	/* Convert Common Code Forward Error Control settings into the
4139 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4140 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4141 	 * sent us as part of its IEEE 802.3-based interpretation of
4142 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4143 	 * use whatever is in the current Requested FEC settings.
4144 	 */
4145 	if (lc->requested_fec & FEC_AUTO)
4146 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4147 	else
4148 		cc_fec = lc->requested_fec;
4149 	fw_fec = cc_to_fwcap_fec(cc_fec);
4150 
4151 	/* Figure out what our Requested Port Capabilities are going to be.
4152 	 * Note parallel structure in t4_handle_get_port_info() and
4153 	 * init_link_config().
4154 	 */
4155 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4156 		acaps = lc->acaps | fw_fc | fw_fec;
4157 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4158 		lc->fec = cc_fec;
4159 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4160 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4161 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4162 		lc->fec = cc_fec;
4163 	} else {
4164 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4165 	}
4166 
4167 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4168 	 * the Physical Port Capabilities.  We can check that here and provide
4169 	 * moderately useful feedback in the system log.
4170 	 *
4171 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4172 	 * we need to exclude this from this check in order to maintain
4173 	 * compatibility ...
4174 	 */
4175 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4176 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4177 			acaps, lc->pcaps);
4178 		return -EINVAL;
4179 	}
4180 
4181 	return acaps;
4182 }
4183 
4184 /**
4185  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4186  *	@adapter: the adapter
4187  *	@mbox: the Firmware Mailbox to use
4188  *	@port: the Port ID
4189  *	@lc: the Port's Link Configuration
4190  *	@sleep_ok: if true we may sleep while awaiting command completion
4191  *	@timeout: time to wait for command to finish before timing out
4192  *		(negative implies @sleep_ok=false)
4193  *
4194  *	Set up a port's MAC and PHY according to a desired link configuration.
4195  *	- If the PHY can auto-negotiate first decide what to advertise, then
4196  *	  enable/disable auto-negotiation as desired, and reset.
4197  *	- If the PHY does not auto-negotiate just reset it.
4198  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4199  *	  otherwise do it later based on the outcome of auto-negotiation.
4200  */
4201 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4202 		       unsigned int port, struct link_config *lc,
4203 		       u8 sleep_ok, int timeout)
4204 {
4205 	unsigned int fw_caps = adapter->params.fw_caps_support;
4206 	struct fw_port_cmd cmd;
4207 	fw_port_cap32_t rcap;
4208 	int ret;
4209 
4210 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4211 	    lc->autoneg == AUTONEG_ENABLE) {
4212 		return -EINVAL;
4213 	}
4214 
4215 	/* Compute our Requested Port Capabilities and send that on to the
4216 	 * Firmware.
4217 	 */
4218 	rcap = t4_link_acaps(adapter, port, lc);
4219 	memset(&cmd, 0, sizeof(cmd));
4220 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4221 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4222 				       FW_PORT_CMD_PORTID_V(port));
4223 	cmd.action_to_len16 =
4224 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4225 						 ? FW_PORT_ACTION_L1_CFG
4226 						 : FW_PORT_ACTION_L1_CFG32) |
4227 						 FW_LEN16(cmd));
4228 	if (fw_caps == FW_CAPS16)
4229 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4230 	else
4231 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4232 
4233 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4234 				      sleep_ok, timeout);
4235 
4236 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4237 	 * the Physical Port Capabilities, some combinations of features may
4238 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4239 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4240 	 * request, flag that here.
4241 	 */
4242 	if (ret) {
4243 		dev_err(adapter->pdev_dev,
4244 			"Requested Port Capabilities %#x rejected, error %d\n",
4245 			rcap, -ret);
4246 		return ret;
4247 	}
4248 	return 0;
4249 }
4250 
4251 /**
4252  *	t4_restart_aneg - restart autonegotiation
4253  *	@adap: the adapter
4254  *	@mbox: mbox to use for the FW command
4255  *	@port: the port id
4256  *
4257  *	Restarts autonegotiation for the selected port.
4258  */
4259 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4260 {
4261 	unsigned int fw_caps = adap->params.fw_caps_support;
4262 	struct fw_port_cmd c;
4263 
4264 	memset(&c, 0, sizeof(c));
4265 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4266 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4267 				     FW_PORT_CMD_PORTID_V(port));
4268 	c.action_to_len16 =
4269 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4270 						 ? FW_PORT_ACTION_L1_CFG
4271 						 : FW_PORT_ACTION_L1_CFG32) |
4272 			    FW_LEN16(c));
4273 	if (fw_caps == FW_CAPS16)
4274 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4275 	else
4276 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4277 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4278 }
4279 
4280 typedef void (*int_handler_t)(struct adapter *adap);
4281 
4282 struct intr_info {
4283 	unsigned int mask;       /* bits to check in interrupt status */
4284 	const char *msg;         /* message to print or NULL */
4285 	short stat_idx;          /* stat counter to increment or -1 */
4286 	unsigned short fatal;    /* whether the condition reported is fatal */
4287 	int_handler_t int_handler; /* platform-specific int handler */
4288 };
4289 
4290 /**
4291  *	t4_handle_intr_status - table driven interrupt handler
4292  *	@adapter: the adapter that generated the interrupt
4293  *	@reg: the interrupt status register to process
4294  *	@acts: table of interrupt actions
4295  *
4296  *	A table driven interrupt handler that applies a set of masks to an
4297  *	interrupt status word and performs the corresponding actions if the
4298  *	interrupts described by the mask have occurred.  The actions include
4299  *	optionally emitting a warning or alert message.  The table is terminated
4300  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4301  *	conditions.
4302  */
4303 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4304 				 const struct intr_info *acts)
4305 {
4306 	int fatal = 0;
4307 	unsigned int mask = 0;
4308 	unsigned int status = t4_read_reg(adapter, reg);
4309 
4310 	for ( ; acts->mask; ++acts) {
4311 		if (!(status & acts->mask))
4312 			continue;
4313 		if (acts->fatal) {
4314 			fatal++;
4315 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4316 				  status & acts->mask);
4317 		} else if (acts->msg && printk_ratelimit())
4318 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4319 				 status & acts->mask);
4320 		if (acts->int_handler)
4321 			acts->int_handler(adapter);
4322 		mask |= acts->mask;
4323 	}
4324 	status &= mask;
4325 	if (status)                           /* clear processed interrupts */
4326 		t4_write_reg(adapter, reg, status);
4327 	return fatal;
4328 }
4329 
4330 /*
4331  * Interrupt handler for the PCIE module.
4332  */
4333 static void pcie_intr_handler(struct adapter *adapter)
4334 {
4335 	static const struct intr_info sysbus_intr_info[] = {
4336 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4337 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4338 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4339 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4340 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4341 		{ 0 }
4342 	};
4343 	static const struct intr_info pcie_port_intr_info[] = {
4344 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4345 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4346 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4347 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4348 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4349 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4350 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4351 		{ RDPE_F, "Rx data parity error", -1, 1 },
4352 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4353 		{ 0 }
4354 	};
4355 	static const struct intr_info pcie_intr_info[] = {
4356 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4357 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4358 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4359 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4360 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4361 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4362 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4363 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4364 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4365 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4366 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4367 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4368 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4369 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4370 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4371 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4372 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4373 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4374 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4375 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4376 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4377 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4378 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4379 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4380 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4381 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4382 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4383 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4384 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4385 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4386 		  -1, 0 },
4387 		{ 0 }
4388 	};
4389 
4390 	static struct intr_info t5_pcie_intr_info[] = {
4391 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4392 		  -1, 1 },
4393 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4394 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4395 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4396 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4397 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4398 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4399 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4400 		  -1, 1 },
4401 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4402 		  -1, 1 },
4403 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4404 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4405 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4406 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4407 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4408 		  -1, 1 },
4409 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4410 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4411 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4412 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4413 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4414 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4415 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4416 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4417 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4418 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4419 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4420 		  -1, 1 },
4421 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4422 		  -1, 1 },
4423 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4424 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4425 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4426 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4427 		{ 0 }
4428 	};
4429 
4430 	int fat;
4431 
4432 	if (is_t4(adapter->params.chip))
4433 		fat = t4_handle_intr_status(adapter,
4434 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4435 				sysbus_intr_info) +
4436 			t4_handle_intr_status(adapter,
4437 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4438 					pcie_port_intr_info) +
4439 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4440 					      pcie_intr_info);
4441 	else
4442 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4443 					    t5_pcie_intr_info);
4444 
4445 	if (fat)
4446 		t4_fatal_err(adapter);
4447 }
4448 
4449 /*
4450  * TP interrupt handler.
4451  */
4452 static void tp_intr_handler(struct adapter *adapter)
4453 {
4454 	static const struct intr_info tp_intr_info[] = {
4455 		{ 0x3fffffff, "TP parity error", -1, 1 },
4456 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4457 		{ 0 }
4458 	};
4459 
4460 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4461 		t4_fatal_err(adapter);
4462 }
4463 
4464 /*
4465  * SGE interrupt handler.
4466  */
4467 static void sge_intr_handler(struct adapter *adapter)
4468 {
4469 	u32 v = 0, perr;
4470 	u32 err;
4471 
4472 	static const struct intr_info sge_intr_info[] = {
4473 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4474 		  "SGE received CPL exceeding IQE size", -1, 1 },
4475 		{ ERR_INVALID_CIDX_INC_F,
4476 		  "SGE GTS CIDX increment too large", -1, 0 },
4477 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4478 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4479 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4480 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4481 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4482 		  0 },
4483 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4484 		  0 },
4485 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4486 		  0 },
4487 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4488 		  0 },
4489 		{ ERR_ING_CTXT_PRIO_F,
4490 		  "SGE too many priority ingress contexts", -1, 0 },
4491 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4492 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4493 		{ 0 }
4494 	};
4495 
4496 	static struct intr_info t4t5_sge_intr_info[] = {
4497 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4498 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4499 		{ ERR_EGR_CTXT_PRIO_F,
4500 		  "SGE too many priority egress contexts", -1, 0 },
4501 		{ 0 }
4502 	};
4503 
4504 	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4505 	if (perr) {
4506 		v |= perr;
4507 		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4508 			  perr);
4509 	}
4510 
4511 	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4512 	if (perr) {
4513 		v |= perr;
4514 		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4515 			  perr);
4516 	}
4517 
4518 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4519 		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4520 		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4521 		perr &= ~ERR_T_RXCRC_F;
4522 		if (perr) {
4523 			v |= perr;
4524 			dev_alert(adapter->pdev_dev,
4525 				  "SGE Cause5 Parity Error %#x\n", perr);
4526 		}
4527 	}
4528 
4529 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4530 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4531 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4532 					   t4t5_sge_intr_info);
4533 
4534 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4535 	if (err & ERROR_QID_VALID_F) {
4536 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4537 			ERROR_QID_G(err));
4538 		if (err & UNCAPTURED_ERROR_F)
4539 			dev_err(adapter->pdev_dev,
4540 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4541 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4542 			     UNCAPTURED_ERROR_F);
4543 	}
4544 
4545 	if (v != 0)
4546 		t4_fatal_err(adapter);
4547 }
4548 
4549 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4550 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4551 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4552 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4553 
4554 /*
4555  * CIM interrupt handler.
4556  */
4557 static void cim_intr_handler(struct adapter *adapter)
4558 {
4559 	static const struct intr_info cim_intr_info[] = {
4560 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4561 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4562 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4563 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4564 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4565 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4566 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4567 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4568 		{ 0 }
4569 	};
4570 	static const struct intr_info cim_upintr_info[] = {
4571 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4572 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4573 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4574 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4575 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4576 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4577 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4578 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4579 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4580 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4581 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4582 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4583 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4584 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4585 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4586 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4587 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4588 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4589 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4590 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4591 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4592 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4593 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4594 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4595 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4596 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4597 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4598 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4599 		{ 0 }
4600 	};
4601 
4602 	u32 val, fw_err;
4603 	int fat;
4604 
4605 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4606 	if (fw_err & PCIE_FW_ERR_F)
4607 		t4_report_fw_error(adapter);
4608 
4609 	/* When the Firmware detects an internal error which normally
4610 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4611 	 * in order to make sure the Host sees the Firmware Crash.  So
4612 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4613 	 * ignore the Timer0 interrupt.
4614 	 */
4615 
4616 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4617 	if (val & TIMER0INT_F)
4618 		if (!(fw_err & PCIE_FW_ERR_F) ||
4619 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4620 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4621 				     TIMER0INT_F);
4622 
4623 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4624 				    cim_intr_info) +
4625 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4626 				    cim_upintr_info);
4627 	if (fat)
4628 		t4_fatal_err(adapter);
4629 }
4630 
4631 /*
4632  * ULP RX interrupt handler.
4633  */
4634 static void ulprx_intr_handler(struct adapter *adapter)
4635 {
4636 	static const struct intr_info ulprx_intr_info[] = {
4637 		{ 0x1800000, "ULPRX context error", -1, 1 },
4638 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4639 		{ 0 }
4640 	};
4641 
4642 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4643 		t4_fatal_err(adapter);
4644 }
4645 
4646 /*
4647  * ULP TX interrupt handler.
4648  */
4649 static void ulptx_intr_handler(struct adapter *adapter)
4650 {
4651 	static const struct intr_info ulptx_intr_info[] = {
4652 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4653 		  0 },
4654 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4655 		  0 },
4656 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4657 		  0 },
4658 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4659 		  0 },
4660 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4661 		{ 0 }
4662 	};
4663 
4664 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4665 		t4_fatal_err(adapter);
4666 }
4667 
4668 /*
4669  * PM TX interrupt handler.
4670  */
4671 static void pmtx_intr_handler(struct adapter *adapter)
4672 {
4673 	static const struct intr_info pmtx_intr_info[] = {
4674 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4675 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4676 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4677 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4678 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4679 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4680 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4681 		  -1, 1 },
4682 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4683 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4684 		{ 0 }
4685 	};
4686 
4687 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4688 		t4_fatal_err(adapter);
4689 }
4690 
4691 /*
4692  * PM RX interrupt handler.
4693  */
4694 static void pmrx_intr_handler(struct adapter *adapter)
4695 {
4696 	static const struct intr_info pmrx_intr_info[] = {
4697 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4698 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4699 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4700 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4701 		  -1, 1 },
4702 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4703 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4704 		{ 0 }
4705 	};
4706 
4707 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4708 		t4_fatal_err(adapter);
4709 }
4710 
4711 /*
4712  * CPL switch interrupt handler.
4713  */
4714 static void cplsw_intr_handler(struct adapter *adapter)
4715 {
4716 	static const struct intr_info cplsw_intr_info[] = {
4717 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4718 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4719 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4720 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4721 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4722 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4723 		{ 0 }
4724 	};
4725 
4726 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4727 		t4_fatal_err(adapter);
4728 }
4729 
4730 /*
4731  * LE interrupt handler.
4732  */
4733 static void le_intr_handler(struct adapter *adap)
4734 {
4735 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4736 	static const struct intr_info le_intr_info[] = {
4737 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4738 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4739 		{ PARITYERR_F, "LE parity error", -1, 1 },
4740 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4741 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4742 		{ 0 }
4743 	};
4744 
4745 	static struct intr_info t6_le_intr_info[] = {
4746 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4747 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4748 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4749 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4750 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4751 		{ 0 }
4752 	};
4753 
4754 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4755 				  (chip <= CHELSIO_T5) ?
4756 				  le_intr_info : t6_le_intr_info))
4757 		t4_fatal_err(adap);
4758 }
4759 
4760 /*
4761  * MPS interrupt handler.
4762  */
4763 static void mps_intr_handler(struct adapter *adapter)
4764 {
4765 	static const struct intr_info mps_rx_intr_info[] = {
4766 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4767 		{ 0 }
4768 	};
4769 	static const struct intr_info mps_tx_intr_info[] = {
4770 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4771 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4772 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4773 		  -1, 1 },
4774 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4775 		  -1, 1 },
4776 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4777 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4778 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4779 		{ 0 }
4780 	};
4781 	static const struct intr_info t6_mps_tx_intr_info[] = {
4782 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4783 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4784 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4785 		  -1, 1 },
4786 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4787 		  -1, 1 },
4788 		/* MPS Tx Bubble is normal for T6 */
4789 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4790 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4791 		{ 0 }
4792 	};
4793 	static const struct intr_info mps_trc_intr_info[] = {
4794 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4795 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4796 		  -1, 1 },
4797 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4798 		{ 0 }
4799 	};
4800 	static const struct intr_info mps_stat_sram_intr_info[] = {
4801 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4802 		{ 0 }
4803 	};
4804 	static const struct intr_info mps_stat_tx_intr_info[] = {
4805 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4806 		{ 0 }
4807 	};
4808 	static const struct intr_info mps_stat_rx_intr_info[] = {
4809 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4810 		{ 0 }
4811 	};
4812 	static const struct intr_info mps_cls_intr_info[] = {
4813 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4814 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4815 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4816 		{ 0 }
4817 	};
4818 
4819 	int fat;
4820 
4821 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4822 				    mps_rx_intr_info) +
4823 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4824 				    is_t6(adapter->params.chip)
4825 				    ? t6_mps_tx_intr_info
4826 				    : mps_tx_intr_info) +
4827 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4828 				    mps_trc_intr_info) +
4829 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4830 				    mps_stat_sram_intr_info) +
4831 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4832 				    mps_stat_tx_intr_info) +
4833 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4834 				    mps_stat_rx_intr_info) +
4835 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4836 				    mps_cls_intr_info);
4837 
4838 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4839 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4840 	if (fat)
4841 		t4_fatal_err(adapter);
4842 }
4843 
4844 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4845 		      ECC_UE_INT_CAUSE_F)
4846 
4847 /*
4848  * EDC/MC interrupt handler.
4849  */
4850 static void mem_intr_handler(struct adapter *adapter, int idx)
4851 {
4852 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4853 
4854 	unsigned int addr, cnt_addr, v;
4855 
4856 	if (idx <= MEM_EDC1) {
4857 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4858 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4859 	} else if (idx == MEM_MC) {
4860 		if (is_t4(adapter->params.chip)) {
4861 			addr = MC_INT_CAUSE_A;
4862 			cnt_addr = MC_ECC_STATUS_A;
4863 		} else {
4864 			addr = MC_P_INT_CAUSE_A;
4865 			cnt_addr = MC_P_ECC_STATUS_A;
4866 		}
4867 	} else {
4868 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4869 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4870 	}
4871 
4872 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4873 	if (v & PERR_INT_CAUSE_F)
4874 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4875 			  name[idx]);
4876 	if (v & ECC_CE_INT_CAUSE_F) {
4877 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4878 
4879 		t4_edc_err_read(adapter, idx);
4880 
4881 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4882 		if (printk_ratelimit())
4883 			dev_warn(adapter->pdev_dev,
4884 				 "%u %s correctable ECC data error%s\n",
4885 				 cnt, name[idx], cnt > 1 ? "s" : "");
4886 	}
4887 	if (v & ECC_UE_INT_CAUSE_F)
4888 		dev_alert(adapter->pdev_dev,
4889 			  "%s uncorrectable ECC data error\n", name[idx]);
4890 
4891 	t4_write_reg(adapter, addr, v);
4892 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4893 		t4_fatal_err(adapter);
4894 }
4895 
4896 /*
4897  * MA interrupt handler.
4898  */
4899 static void ma_intr_handler(struct adapter *adap)
4900 {
4901 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4902 
4903 	if (status & MEM_PERR_INT_CAUSE_F) {
4904 		dev_alert(adap->pdev_dev,
4905 			  "MA parity error, parity status %#x\n",
4906 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4907 		if (is_t5(adap->params.chip))
4908 			dev_alert(adap->pdev_dev,
4909 				  "MA parity error, parity status %#x\n",
4910 				  t4_read_reg(adap,
4911 					      MA_PARITY_ERROR_STATUS2_A));
4912 	}
4913 	if (status & MEM_WRAP_INT_CAUSE_F) {
4914 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4915 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4916 			  "client %u to address %#x\n",
4917 			  MEM_WRAP_CLIENT_NUM_G(v),
4918 			  MEM_WRAP_ADDRESS_G(v) << 4);
4919 	}
4920 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4921 	t4_fatal_err(adap);
4922 }
4923 
4924 /*
4925  * SMB interrupt handler.
4926  */
4927 static void smb_intr_handler(struct adapter *adap)
4928 {
4929 	static const struct intr_info smb_intr_info[] = {
4930 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4931 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4932 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4933 		{ 0 }
4934 	};
4935 
4936 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4937 		t4_fatal_err(adap);
4938 }
4939 
4940 /*
4941  * NC-SI interrupt handler.
4942  */
4943 static void ncsi_intr_handler(struct adapter *adap)
4944 {
4945 	static const struct intr_info ncsi_intr_info[] = {
4946 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4947 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4948 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4949 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4950 		{ 0 }
4951 	};
4952 
4953 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4954 		t4_fatal_err(adap);
4955 }
4956 
4957 /*
4958  * XGMAC interrupt handler.
4959  */
4960 static void xgmac_intr_handler(struct adapter *adap, int port)
4961 {
4962 	u32 v, int_cause_reg;
4963 
4964 	if (is_t4(adap->params.chip))
4965 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4966 	else
4967 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4968 
4969 	v = t4_read_reg(adap, int_cause_reg);
4970 
4971 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4972 	if (!v)
4973 		return;
4974 
4975 	if (v & TXFIFO_PRTY_ERR_F)
4976 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4977 			  port);
4978 	if (v & RXFIFO_PRTY_ERR_F)
4979 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4980 			  port);
4981 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4982 	t4_fatal_err(adap);
4983 }
4984 
4985 /*
4986  * PL interrupt handler.
4987  */
4988 static void pl_intr_handler(struct adapter *adap)
4989 {
4990 	static const struct intr_info pl_intr_info[] = {
4991 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4992 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4993 		{ 0 }
4994 	};
4995 
4996 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4997 		t4_fatal_err(adap);
4998 }
4999 
5000 #define PF_INTR_MASK (PFSW_F)
5001 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5002 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5003 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5004 
5005 /**
5006  *	t4_slow_intr_handler - control path interrupt handler
5007  *	@adapter: the adapter
5008  *
5009  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5010  *	The designation 'slow' is because it involves register reads, while
5011  *	data interrupts typically don't involve any MMIOs.
5012  */
5013 int t4_slow_intr_handler(struct adapter *adapter)
5014 {
5015 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5016 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5017 	 * easiest just to mask that case here.
5018 	 */
5019 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5020 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5021 	u32 cause = raw_cause & enable;
5022 
5023 	if (!(cause & GLBL_INTR_MASK))
5024 		return 0;
5025 	if (cause & CIM_F)
5026 		cim_intr_handler(adapter);
5027 	if (cause & MPS_F)
5028 		mps_intr_handler(adapter);
5029 	if (cause & NCSI_F)
5030 		ncsi_intr_handler(adapter);
5031 	if (cause & PL_F)
5032 		pl_intr_handler(adapter);
5033 	if (cause & SMB_F)
5034 		smb_intr_handler(adapter);
5035 	if (cause & XGMAC0_F)
5036 		xgmac_intr_handler(adapter, 0);
5037 	if (cause & XGMAC1_F)
5038 		xgmac_intr_handler(adapter, 1);
5039 	if (cause & XGMAC_KR0_F)
5040 		xgmac_intr_handler(adapter, 2);
5041 	if (cause & XGMAC_KR1_F)
5042 		xgmac_intr_handler(adapter, 3);
5043 	if (cause & PCIE_F)
5044 		pcie_intr_handler(adapter);
5045 	if (cause & MC_F)
5046 		mem_intr_handler(adapter, MEM_MC);
5047 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5048 		mem_intr_handler(adapter, MEM_MC1);
5049 	if (cause & EDC0_F)
5050 		mem_intr_handler(adapter, MEM_EDC0);
5051 	if (cause & EDC1_F)
5052 		mem_intr_handler(adapter, MEM_EDC1);
5053 	if (cause & LE_F)
5054 		le_intr_handler(adapter);
5055 	if (cause & TP_F)
5056 		tp_intr_handler(adapter);
5057 	if (cause & MA_F)
5058 		ma_intr_handler(adapter);
5059 	if (cause & PM_TX_F)
5060 		pmtx_intr_handler(adapter);
5061 	if (cause & PM_RX_F)
5062 		pmrx_intr_handler(adapter);
5063 	if (cause & ULP_RX_F)
5064 		ulprx_intr_handler(adapter);
5065 	if (cause & CPL_SWITCH_F)
5066 		cplsw_intr_handler(adapter);
5067 	if (cause & SGE_F)
5068 		sge_intr_handler(adapter);
5069 	if (cause & ULP_TX_F)
5070 		ulptx_intr_handler(adapter);
5071 
5072 	/* Clear the interrupts just processed for which we are the master. */
5073 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5074 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5075 	return 1;
5076 }
5077 
5078 /**
5079  *	t4_intr_enable - enable interrupts
5080  *	@adapter: the adapter whose interrupts should be enabled
5081  *
5082  *	Enable PF-specific interrupts for the calling function and the top-level
5083  *	interrupt concentrator for global interrupts.  Interrupts are already
5084  *	enabled at each module,	here we just enable the roots of the interrupt
5085  *	hierarchies.
5086  *
5087  *	Note: this function should be called only when the driver manages
5088  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5089  *	function at a time should be doing this.
5090  */
5091 void t4_intr_enable(struct adapter *adapter)
5092 {
5093 	u32 val = 0;
5094 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5095 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5096 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5097 
5098 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5099 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5100 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5101 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5102 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5103 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5104 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5105 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5106 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5107 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5108 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5109 }
5110 
5111 /**
5112  *	t4_intr_disable - disable interrupts
5113  *	@adapter: the adapter whose interrupts should be disabled
5114  *
5115  *	Disable interrupts.  We only disable the top-level interrupt
5116  *	concentrators.  The caller must be a PCI function managing global
5117  *	interrupts.
5118  */
5119 void t4_intr_disable(struct adapter *adapter)
5120 {
5121 	u32 whoami, pf;
5122 
5123 	if (pci_channel_offline(adapter->pdev))
5124 		return;
5125 
5126 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5127 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5128 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5129 
5130 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5131 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5132 }
5133 
5134 unsigned int t4_chip_rss_size(struct adapter *adap)
5135 {
5136 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5137 		return RSS_NENTRIES;
5138 	else
5139 		return T6_RSS_NENTRIES;
5140 }
5141 
5142 /**
5143  *	t4_config_rss_range - configure a portion of the RSS mapping table
5144  *	@adapter: the adapter
5145  *	@mbox: mbox to use for the FW command
5146  *	@viid: virtual interface whose RSS subtable is to be written
5147  *	@start: start entry in the table to write
5148  *	@n: how many table entries to write
5149  *	@rspq: values for the response queue lookup table
5150  *	@nrspq: number of values in @rspq
5151  *
5152  *	Programs the selected part of the VI's RSS mapping table with the
5153  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5154  *	until the full table range is populated.
5155  *
5156  *	The caller must ensure the values in @rspq are in the range allowed for
5157  *	@viid.
5158  */
5159 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5160 			int start, int n, const u16 *rspq, unsigned int nrspq)
5161 {
5162 	int ret;
5163 	const u16 *rsp = rspq;
5164 	const u16 *rsp_end = rspq + nrspq;
5165 	struct fw_rss_ind_tbl_cmd cmd;
5166 
5167 	memset(&cmd, 0, sizeof(cmd));
5168 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5169 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5170 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5171 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5172 
5173 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5174 	while (n > 0) {
5175 		int nq = min(n, 32);
5176 		__be32 *qp = &cmd.iq0_to_iq2;
5177 
5178 		cmd.niqid = cpu_to_be16(nq);
5179 		cmd.startidx = cpu_to_be16(start);
5180 
5181 		start += nq;
5182 		n -= nq;
5183 
5184 		while (nq > 0) {
5185 			unsigned int v;
5186 
5187 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5188 			if (++rsp >= rsp_end)
5189 				rsp = rspq;
5190 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5191 			if (++rsp >= rsp_end)
5192 				rsp = rspq;
5193 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5194 			if (++rsp >= rsp_end)
5195 				rsp = rspq;
5196 
5197 			*qp++ = cpu_to_be32(v);
5198 			nq -= 3;
5199 		}
5200 
5201 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5202 		if (ret)
5203 			return ret;
5204 	}
5205 	return 0;
5206 }
5207 
5208 /**
5209  *	t4_config_glbl_rss - configure the global RSS mode
5210  *	@adapter: the adapter
5211  *	@mbox: mbox to use for the FW command
5212  *	@mode: global RSS mode
5213  *	@flags: mode-specific flags
5214  *
5215  *	Sets the global RSS mode.
5216  */
5217 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5218 		       unsigned int flags)
5219 {
5220 	struct fw_rss_glb_config_cmd c;
5221 
5222 	memset(&c, 0, sizeof(c));
5223 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5224 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5225 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5226 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5227 		c.u.manual.mode_pkd =
5228 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5229 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5230 		c.u.basicvirtual.mode_pkd =
5231 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5232 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5233 	} else
5234 		return -EINVAL;
5235 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5236 }
5237 
5238 /**
5239  *	t4_config_vi_rss - configure per VI RSS settings
5240  *	@adapter: the adapter
5241  *	@mbox: mbox to use for the FW command
5242  *	@viid: the VI id
5243  *	@flags: RSS flags
5244  *	@defq: id of the default RSS queue for the VI.
5245  *
5246  *	Configures VI-specific RSS properties.
5247  */
5248 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5249 		     unsigned int flags, unsigned int defq)
5250 {
5251 	struct fw_rss_vi_config_cmd c;
5252 
5253 	memset(&c, 0, sizeof(c));
5254 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5255 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5256 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5257 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5258 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5259 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5260 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5261 }
5262 
5263 /* Read an RSS table row */
5264 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5265 {
5266 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5267 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5268 				   5, 0, val);
5269 }
5270 
5271 /**
5272  *	t4_read_rss - read the contents of the RSS mapping table
5273  *	@adapter: the adapter
5274  *	@map: holds the contents of the RSS mapping table
5275  *
5276  *	Reads the contents of the RSS hash->queue mapping table.
5277  */
5278 int t4_read_rss(struct adapter *adapter, u16 *map)
5279 {
5280 	int i, ret, nentries;
5281 	u32 val;
5282 
5283 	nentries = t4_chip_rss_size(adapter);
5284 	for (i = 0; i < nentries / 2; ++i) {
5285 		ret = rd_rss_row(adapter, i, &val);
5286 		if (ret)
5287 			return ret;
5288 		*map++ = LKPTBLQUEUE0_G(val);
5289 		*map++ = LKPTBLQUEUE1_G(val);
5290 	}
5291 	return 0;
5292 }
5293 
5294 static unsigned int t4_use_ldst(struct adapter *adap)
5295 {
5296 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5297 }
5298 
5299 /**
5300  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5301  * @adap: the adapter
5302  * @cmd: TP fw ldst address space type
5303  * @vals: where the indirect register values are stored/written
5304  * @nregs: how many indirect registers to read/write
5305  * @start_index: index of first indirect register to read/write
5306  * @rw: Read (1) or Write (0)
5307  * @sleep_ok: if true we may sleep while awaiting command completion
5308  *
5309  * Access TP indirect registers through LDST
5310  */
5311 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5312 			    unsigned int nregs, unsigned int start_index,
5313 			    unsigned int rw, bool sleep_ok)
5314 {
5315 	int ret = 0;
5316 	unsigned int i;
5317 	struct fw_ldst_cmd c;
5318 
5319 	for (i = 0; i < nregs; i++) {
5320 		memset(&c, 0, sizeof(c));
5321 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5322 						FW_CMD_REQUEST_F |
5323 						(rw ? FW_CMD_READ_F :
5324 						      FW_CMD_WRITE_F) |
5325 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5326 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5327 
5328 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5329 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5330 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5331 				      sleep_ok);
5332 		if (ret)
5333 			return ret;
5334 
5335 		if (rw)
5336 			vals[i] = be32_to_cpu(c.u.addrval.val);
5337 	}
5338 	return 0;
5339 }
5340 
5341 /**
5342  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5343  * @adap: the adapter
5344  * @reg_addr: Address Register
5345  * @reg_data: Data register
5346  * @buff: where the indirect register values are stored/written
5347  * @nregs: how many indirect registers to read/write
5348  * @start_index: index of first indirect register to read/write
5349  * @rw: READ(1) or WRITE(0)
5350  * @sleep_ok: if true we may sleep while awaiting command completion
5351  *
5352  * Read/Write TP indirect registers through LDST if possible.
5353  * Else, use backdoor access
5354  **/
5355 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5356 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5357 			      bool sleep_ok)
5358 {
5359 	int rc = -EINVAL;
5360 	int cmd;
5361 
5362 	switch (reg_addr) {
5363 	case TP_PIO_ADDR_A:
5364 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5365 		break;
5366 	case TP_TM_PIO_ADDR_A:
5367 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5368 		break;
5369 	case TP_MIB_INDEX_A:
5370 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5371 		break;
5372 	default:
5373 		goto indirect_access;
5374 	}
5375 
5376 	if (t4_use_ldst(adap))
5377 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5378 				      sleep_ok);
5379 
5380 indirect_access:
5381 
5382 	if (rc) {
5383 		if (rw)
5384 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5385 					 start_index);
5386 		else
5387 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5388 					  start_index);
5389 	}
5390 }
5391 
5392 /**
5393  * t4_tp_pio_read - Read TP PIO registers
5394  * @adap: the adapter
5395  * @buff: where the indirect register values are written
5396  * @nregs: how many indirect registers to read
5397  * @start_index: index of first indirect register to read
5398  * @sleep_ok: if true we may sleep while awaiting command completion
5399  *
5400  * Read TP PIO Registers
5401  **/
5402 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5403 		    u32 start_index, bool sleep_ok)
5404 {
5405 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5406 			  start_index, 1, sleep_ok);
5407 }
5408 
5409 /**
5410  * t4_tp_pio_write - Write TP PIO registers
5411  * @adap: the adapter
5412  * @buff: where the indirect register values are stored
5413  * @nregs: how many indirect registers to write
5414  * @start_index: index of first indirect register to write
5415  * @sleep_ok: if true we may sleep while awaiting command completion
5416  *
5417  * Write TP PIO Registers
5418  **/
5419 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5420 			    u32 start_index, bool sleep_ok)
5421 {
5422 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5423 			  start_index, 0, sleep_ok);
5424 }
5425 
5426 /**
5427  * t4_tp_tm_pio_read - Read TP TM PIO registers
5428  * @adap: the adapter
5429  * @buff: where the indirect register values are written
5430  * @nregs: how many indirect registers to read
5431  * @start_index: index of first indirect register to read
5432  * @sleep_ok: if true we may sleep while awaiting command completion
5433  *
5434  * Read TP TM PIO Registers
5435  **/
5436 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5437 		       u32 start_index, bool sleep_ok)
5438 {
5439 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5440 			  nregs, start_index, 1, sleep_ok);
5441 }
5442 
5443 /**
5444  * t4_tp_mib_read - Read TP MIB registers
5445  * @adap: the adapter
5446  * @buff: where the indirect register values are written
5447  * @nregs: how many indirect registers to read
5448  * @start_index: index of first indirect register to read
5449  * @sleep_ok: if true we may sleep while awaiting command completion
5450  *
5451  * Read TP MIB Registers
5452  **/
5453 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5454 		    bool sleep_ok)
5455 {
5456 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5457 			  start_index, 1, sleep_ok);
5458 }
5459 
5460 /**
5461  *	t4_read_rss_key - read the global RSS key
5462  *	@adap: the adapter
5463  *	@key: 10-entry array holding the 320-bit RSS key
5464  *      @sleep_ok: if true we may sleep while awaiting command completion
5465  *
5466  *	Reads the global 320-bit RSS key.
5467  */
5468 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5469 {
5470 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5471 }
5472 
5473 /**
5474  *	t4_write_rss_key - program one of the RSS keys
5475  *	@adap: the adapter
5476  *	@key: 10-entry array holding the 320-bit RSS key
5477  *	@idx: which RSS key to write
5478  *      @sleep_ok: if true we may sleep while awaiting command completion
5479  *
5480  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5481  *	0..15 the corresponding entry in the RSS key table is written,
5482  *	otherwise the global RSS key is written.
5483  */
5484 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5485 		      bool sleep_ok)
5486 {
5487 	u8 rss_key_addr_cnt = 16;
5488 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5489 
5490 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5491 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5492 	 * as index[5:4](upper 2) into key table
5493 	 */
5494 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5495 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5496 		rss_key_addr_cnt = 32;
5497 
5498 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5499 
5500 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5501 		if (rss_key_addr_cnt > 16)
5502 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5503 				     KEYWRADDRX_V(idx >> 4) |
5504 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5505 		else
5506 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5507 				     KEYWRADDR_V(idx) | KEYWREN_F);
5508 	}
5509 }
5510 
5511 /**
5512  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5513  *	@adapter: the adapter
5514  *	@index: the entry in the PF RSS table to read
5515  *	@valp: where to store the returned value
5516  *      @sleep_ok: if true we may sleep while awaiting command completion
5517  *
5518  *	Reads the PF RSS Configuration Table at the specified index and returns
5519  *	the value found there.
5520  */
5521 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5522 			   u32 *valp, bool sleep_ok)
5523 {
5524 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5525 }
5526 
5527 /**
5528  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5529  *	@adapter: the adapter
5530  *	@index: the entry in the VF RSS table to read
5531  *	@vfl: where to store the returned VFL
5532  *	@vfh: where to store the returned VFH
5533  *      @sleep_ok: if true we may sleep while awaiting command completion
5534  *
5535  *	Reads the VF RSS Configuration Table at the specified index and returns
5536  *	the (VFL, VFH) values found there.
5537  */
5538 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5539 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5540 {
5541 	u32 vrt, mask, data;
5542 
5543 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5544 		mask = VFWRADDR_V(VFWRADDR_M);
5545 		data = VFWRADDR_V(index);
5546 	} else {
5547 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5548 		 data = T6_VFWRADDR_V(index);
5549 	}
5550 
5551 	/* Request that the index'th VF Table values be read into VFL/VFH.
5552 	 */
5553 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5554 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5555 	vrt |= data | VFRDEN_F;
5556 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5557 
5558 	/* Grab the VFL/VFH values ...
5559 	 */
5560 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5561 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5562 }
5563 
5564 /**
5565  *	t4_read_rss_pf_map - read PF RSS Map
5566  *	@adapter: the adapter
5567  *      @sleep_ok: if true we may sleep while awaiting command completion
5568  *
5569  *	Reads the PF RSS Map register and returns its value.
5570  */
5571 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5572 {
5573 	u32 pfmap;
5574 
5575 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5576 	return pfmap;
5577 }
5578 
5579 /**
5580  *	t4_read_rss_pf_mask - read PF RSS Mask
5581  *	@adapter: the adapter
5582  *      @sleep_ok: if true we may sleep while awaiting command completion
5583  *
5584  *	Reads the PF RSS Mask register and returns its value.
5585  */
5586 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5587 {
5588 	u32 pfmask;
5589 
5590 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5591 	return pfmask;
5592 }
5593 
5594 /**
5595  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5596  *	@adap: the adapter
5597  *	@v4: holds the TCP/IP counter values
5598  *	@v6: holds the TCP/IPv6 counter values
5599  *      @sleep_ok: if true we may sleep while awaiting command completion
5600  *
5601  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5602  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5603  */
5604 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5605 			 struct tp_tcp_stats *v6, bool sleep_ok)
5606 {
5607 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5608 
5609 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5610 #define STAT(x)     val[STAT_IDX(x)]
5611 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5612 
5613 	if (v4) {
5614 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5615 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5616 		v4->tcp_out_rsts = STAT(OUT_RST);
5617 		v4->tcp_in_segs  = STAT64(IN_SEG);
5618 		v4->tcp_out_segs = STAT64(OUT_SEG);
5619 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5620 	}
5621 	if (v6) {
5622 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5623 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5624 		v6->tcp_out_rsts = STAT(OUT_RST);
5625 		v6->tcp_in_segs  = STAT64(IN_SEG);
5626 		v6->tcp_out_segs = STAT64(OUT_SEG);
5627 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5628 	}
5629 #undef STAT64
5630 #undef STAT
5631 #undef STAT_IDX
5632 }
5633 
5634 /**
5635  *	t4_tp_get_err_stats - read TP's error MIB counters
5636  *	@adap: the adapter
5637  *	@st: holds the counter values
5638  *      @sleep_ok: if true we may sleep while awaiting command completion
5639  *
5640  *	Returns the values of TP's error counters.
5641  */
5642 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5643 			 bool sleep_ok)
5644 {
5645 	int nchan = adap->params.arch.nchan;
5646 
5647 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5648 		       sleep_ok);
5649 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5650 		       sleep_ok);
5651 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5652 		       sleep_ok);
5653 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5654 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5655 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5656 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5657 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5658 		       sleep_ok);
5659 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5660 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5661 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5662 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5663 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5664 		       sleep_ok);
5665 }
5666 
5667 /**
5668  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5669  *	@adap: the adapter
5670  *	@st: holds the counter values
5671  *      @sleep_ok: if true we may sleep while awaiting command completion
5672  *
5673  *	Returns the values of TP's CPL counters.
5674  */
5675 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5676 			 bool sleep_ok)
5677 {
5678 	int nchan = adap->params.arch.nchan;
5679 
5680 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5681 
5682 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5683 }
5684 
5685 /**
5686  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5687  *	@adap: the adapter
5688  *	@st: holds the counter values
5689  *      @sleep_ok: if true we may sleep while awaiting command completion
5690  *
5691  *	Returns the values of TP's RDMA counters.
5692  */
5693 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5694 			  bool sleep_ok)
5695 {
5696 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5697 		       sleep_ok);
5698 }
5699 
5700 /**
5701  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5702  *	@adap: the adapter
5703  *	@idx: the port index
5704  *	@st: holds the counter values
5705  *      @sleep_ok: if true we may sleep while awaiting command completion
5706  *
5707  *	Returns the values of TP's FCoE counters for the selected port.
5708  */
5709 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5710 		       struct tp_fcoe_stats *st, bool sleep_ok)
5711 {
5712 	u32 val[2];
5713 
5714 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5715 		       sleep_ok);
5716 
5717 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5718 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5719 
5720 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5721 		       sleep_ok);
5722 
5723 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5724 }
5725 
5726 /**
5727  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5728  *	@adap: the adapter
5729  *	@st: holds the counter values
5730  *      @sleep_ok: if true we may sleep while awaiting command completion
5731  *
5732  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5733  */
5734 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5735 		      bool sleep_ok)
5736 {
5737 	u32 val[4];
5738 
5739 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5740 	st->frames = val[0];
5741 	st->drops = val[1];
5742 	st->octets = ((u64)val[2] << 32) | val[3];
5743 }
5744 
5745 /**
5746  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5747  *	@adap: the adapter
5748  *	@mtus: where to store the MTU values
5749  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5750  *
5751  *	Reads the HW path MTU table.
5752  */
5753 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5754 {
5755 	u32 v;
5756 	int i;
5757 
5758 	for (i = 0; i < NMTUS; ++i) {
5759 		t4_write_reg(adap, TP_MTU_TABLE_A,
5760 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5761 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5762 		mtus[i] = MTUVALUE_G(v);
5763 		if (mtu_log)
5764 			mtu_log[i] = MTUWIDTH_G(v);
5765 	}
5766 }
5767 
5768 /**
5769  *	t4_read_cong_tbl - reads the congestion control table
5770  *	@adap: the adapter
5771  *	@incr: where to store the alpha values
5772  *
5773  *	Reads the additive increments programmed into the HW congestion
5774  *	control table.
5775  */
5776 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5777 {
5778 	unsigned int mtu, w;
5779 
5780 	for (mtu = 0; mtu < NMTUS; ++mtu)
5781 		for (w = 0; w < NCCTRL_WIN; ++w) {
5782 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5783 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5784 			incr[mtu][w] = (u16)t4_read_reg(adap,
5785 						TP_CCTRL_TABLE_A) & 0x1fff;
5786 		}
5787 }
5788 
5789 /**
5790  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5791  *	@adap: the adapter
5792  *	@addr: the indirect TP register address
5793  *	@mask: specifies the field within the register to modify
5794  *	@val: new value for the field
5795  *
5796  *	Sets a field of an indirect TP register to the given value.
5797  */
5798 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5799 			    unsigned int mask, unsigned int val)
5800 {
5801 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5802 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5803 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5804 }
5805 
5806 /**
5807  *	init_cong_ctrl - initialize congestion control parameters
5808  *	@a: the alpha values for congestion control
5809  *	@b: the beta values for congestion control
5810  *
5811  *	Initialize the congestion control parameters.
5812  */
5813 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5814 {
5815 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5816 	a[9] = 2;
5817 	a[10] = 3;
5818 	a[11] = 4;
5819 	a[12] = 5;
5820 	a[13] = 6;
5821 	a[14] = 7;
5822 	a[15] = 8;
5823 	a[16] = 9;
5824 	a[17] = 10;
5825 	a[18] = 14;
5826 	a[19] = 17;
5827 	a[20] = 21;
5828 	a[21] = 25;
5829 	a[22] = 30;
5830 	a[23] = 35;
5831 	a[24] = 45;
5832 	a[25] = 60;
5833 	a[26] = 80;
5834 	a[27] = 100;
5835 	a[28] = 200;
5836 	a[29] = 300;
5837 	a[30] = 400;
5838 	a[31] = 500;
5839 
5840 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5841 	b[9] = b[10] = 1;
5842 	b[11] = b[12] = 2;
5843 	b[13] = b[14] = b[15] = b[16] = 3;
5844 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5845 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5846 	b[28] = b[29] = 6;
5847 	b[30] = b[31] = 7;
5848 }
5849 
5850 /* The minimum additive increment value for the congestion control table */
5851 #define CC_MIN_INCR 2U
5852 
5853 /**
5854  *	t4_load_mtus - write the MTU and congestion control HW tables
5855  *	@adap: the adapter
5856  *	@mtus: the values for the MTU table
5857  *	@alpha: the values for the congestion control alpha parameter
5858  *	@beta: the values for the congestion control beta parameter
5859  *
5860  *	Write the HW MTU table with the supplied MTUs and the high-speed
5861  *	congestion control table with the supplied alpha, beta, and MTUs.
5862  *	We write the two tables together because the additive increments
5863  *	depend on the MTUs.
5864  */
5865 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5866 		  const unsigned short *alpha, const unsigned short *beta)
5867 {
5868 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5869 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5870 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5871 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5872 	};
5873 
5874 	unsigned int i, w;
5875 
5876 	for (i = 0; i < NMTUS; ++i) {
5877 		unsigned int mtu = mtus[i];
5878 		unsigned int log2 = fls(mtu);
5879 
5880 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5881 			log2--;
5882 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5883 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5884 
5885 		for (w = 0; w < NCCTRL_WIN; ++w) {
5886 			unsigned int inc;
5887 
5888 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5889 				  CC_MIN_INCR);
5890 
5891 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5892 				     (w << 16) | (beta[w] << 13) | inc);
5893 		}
5894 	}
5895 }
5896 
5897 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5898  * clocks.  The formula is
5899  *
5900  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5901  *
5902  * which is equivalent to
5903  *
5904  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5905  */
5906 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5907 {
5908 	u64 v = bytes256 * adap->params.vpd.cclk;
5909 
5910 	return v * 62 + v / 2;
5911 }
5912 
5913 /**
5914  *	t4_get_chan_txrate - get the current per channel Tx rates
5915  *	@adap: the adapter
5916  *	@nic_rate: rates for NIC traffic
5917  *	@ofld_rate: rates for offloaded traffic
5918  *
5919  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5920  *	for each channel.
5921  */
5922 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5923 {
5924 	u32 v;
5925 
5926 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5927 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5928 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5929 	if (adap->params.arch.nchan == NCHAN) {
5930 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5931 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5932 	}
5933 
5934 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5935 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5936 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5937 	if (adap->params.arch.nchan == NCHAN) {
5938 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5939 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5940 	}
5941 }
5942 
5943 /**
5944  *	t4_set_trace_filter - configure one of the tracing filters
5945  *	@adap: the adapter
5946  *	@tp: the desired trace filter parameters
5947  *	@idx: which filter to configure
5948  *	@enable: whether to enable or disable the filter
5949  *
5950  *	Configures one of the tracing filters available in HW.  If @enable is
5951  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5952  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5953  */
5954 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5955 			int idx, int enable)
5956 {
5957 	int i, ofst = idx * 4;
5958 	u32 data_reg, mask_reg, cfg;
5959 
5960 	if (!enable) {
5961 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5962 		return 0;
5963 	}
5964 
5965 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5966 	if (cfg & TRCMULTIFILTER_F) {
5967 		/* If multiple tracers are enabled, then maximum
5968 		 * capture size is 2.5KB (FIFO size of a single channel)
5969 		 * minus 2 flits for CPL_TRACE_PKT header.
5970 		 */
5971 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5972 			return -EINVAL;
5973 	} else {
5974 		/* If multiple tracers are disabled, to avoid deadlocks
5975 		 * maximum packet capture size of 9600 bytes is recommended.
5976 		 * Also in this mode, only trace0 can be enabled and running.
5977 		 */
5978 		if (tp->snap_len > 9600 || idx)
5979 			return -EINVAL;
5980 	}
5981 
5982 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5983 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5984 	    tp->min_len > TFMINPKTSIZE_M)
5985 		return -EINVAL;
5986 
5987 	/* stop the tracer we'll be changing */
5988 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5989 
5990 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5991 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5992 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5993 
5994 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5995 		t4_write_reg(adap, data_reg, tp->data[i]);
5996 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5997 	}
5998 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5999 		     TFCAPTUREMAX_V(tp->snap_len) |
6000 		     TFMINPKTSIZE_V(tp->min_len));
6001 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6002 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6003 		     (is_t4(adap->params.chip) ?
6004 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6005 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6006 		     T5_TFINVERTMATCH_V(tp->invert)));
6007 
6008 	return 0;
6009 }
6010 
6011 /**
6012  *	t4_get_trace_filter - query one of the tracing filters
6013  *	@adap: the adapter
6014  *	@tp: the current trace filter parameters
6015  *	@idx: which trace filter to query
6016  *	@enabled: non-zero if the filter is enabled
6017  *
6018  *	Returns the current settings of one of the HW tracing filters.
6019  */
6020 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6021 			 int *enabled)
6022 {
6023 	u32 ctla, ctlb;
6024 	int i, ofst = idx * 4;
6025 	u32 data_reg, mask_reg;
6026 
6027 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6028 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6029 
6030 	if (is_t4(adap->params.chip)) {
6031 		*enabled = !!(ctla & TFEN_F);
6032 		tp->port =  TFPORT_G(ctla);
6033 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6034 	} else {
6035 		*enabled = !!(ctla & T5_TFEN_F);
6036 		tp->port = T5_TFPORT_G(ctla);
6037 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6038 	}
6039 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6040 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6041 	tp->skip_ofst = TFOFFSET_G(ctla);
6042 	tp->skip_len = TFLENGTH_G(ctla);
6043 
6044 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6045 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6046 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6047 
6048 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6049 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6050 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6051 	}
6052 }
6053 
6054 /**
6055  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6056  *	@adap: the adapter
6057  *	@cnt: where to store the count statistics
6058  *	@cycles: where to store the cycle statistics
6059  *
6060  *	Returns performance statistics from PMTX.
6061  */
6062 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6063 {
6064 	int i;
6065 	u32 data[2];
6066 
6067 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6068 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6069 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6070 		if (is_t4(adap->params.chip)) {
6071 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6072 		} else {
6073 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6074 					 PM_TX_DBG_DATA_A, data, 2,
6075 					 PM_TX_DBG_STAT_MSB_A);
6076 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6077 		}
6078 	}
6079 }
6080 
6081 /**
6082  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6083  *	@adap: the adapter
6084  *	@cnt: where to store the count statistics
6085  *	@cycles: where to store the cycle statistics
6086  *
6087  *	Returns performance statistics from PMRX.
6088  */
6089 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6090 {
6091 	int i;
6092 	u32 data[2];
6093 
6094 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6095 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6096 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6097 		if (is_t4(adap->params.chip)) {
6098 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6099 		} else {
6100 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6101 					 PM_RX_DBG_DATA_A, data, 2,
6102 					 PM_RX_DBG_STAT_MSB_A);
6103 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6104 		}
6105 	}
6106 }
6107 
6108 /**
6109  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6110  *	@adapter: the adapter
6111  *	@pidx: the port index
6112  *
6113  *	Computes and returns a bitmap indicating which MPS buffer groups are
6114  *	associated with the given Port.  Bit i is set if buffer group i is
6115  *	used by the Port.
6116  */
6117 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6118 					      int pidx)
6119 {
6120 	unsigned int chip_version, nports;
6121 
6122 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6123 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6124 
6125 	switch (chip_version) {
6126 	case CHELSIO_T4:
6127 	case CHELSIO_T5:
6128 		switch (nports) {
6129 		case 1: return 0xf;
6130 		case 2: return 3 << (2 * pidx);
6131 		case 4: return 1 << pidx;
6132 		}
6133 		break;
6134 
6135 	case CHELSIO_T6:
6136 		switch (nports) {
6137 		case 2: return 1 << (2 * pidx);
6138 		}
6139 		break;
6140 	}
6141 
6142 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6143 		chip_version, nports);
6144 
6145 	return 0;
6146 }
6147 
6148 /**
6149  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6150  *	@adapter: the adapter
6151  *	@pidx: the port index
6152  *
6153  *	Returns a bitmap indicating which MPS buffer groups are associated
6154  *	with the given Port.  Bit i is set if buffer group i is used by the
6155  *	Port.
6156  */
6157 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6158 {
6159 	u8 *mps_bg_map;
6160 	unsigned int nports;
6161 
6162 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6163 	if (pidx >= nports) {
6164 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6165 			pidx, nports);
6166 		return 0;
6167 	}
6168 
6169 	/* If we've already retrieved/computed this, just return the result.
6170 	 */
6171 	mps_bg_map = adapter->params.mps_bg_map;
6172 	if (mps_bg_map[pidx])
6173 		return mps_bg_map[pidx];
6174 
6175 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6176 	 * If we're talking to such Firmware, let it tell us.  If the new
6177 	 * API isn't supported, revert back to old hardcoded way.  The value
6178 	 * obtained from Firmware is encoded in below format:
6179 	 *
6180 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6181 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6182 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6183 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6184 	 */
6185 	if (adapter->flags & CXGB4_FW_OK) {
6186 		u32 param, val;
6187 		int ret;
6188 
6189 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6190 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6191 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6192 					 0, 1, &param, &val);
6193 		if (!ret) {
6194 			int p;
6195 
6196 			/* Store the BG Map for all of the Ports in order to
6197 			 * avoid more calls to the Firmware in the future.
6198 			 */
6199 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6200 				mps_bg_map[p] = val & 0xff;
6201 
6202 			return mps_bg_map[pidx];
6203 		}
6204 	}
6205 
6206 	/* Either we're not talking to the Firmware or we're dealing with
6207 	 * older Firmware which doesn't support the new API to get the MPS
6208 	 * Buffer Group Map.  Fall back to computing it ourselves.
6209 	 */
6210 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6211 	return mps_bg_map[pidx];
6212 }
6213 
6214 /**
6215  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6216  *      @adapter: the adapter
6217  *      @pidx: the port index
6218  */
6219 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6220 {
6221 	unsigned int nports;
6222 	u32 param, val = 0;
6223 	int ret;
6224 
6225 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6226 	if (pidx >= nports) {
6227 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6228 			pidx, nports);
6229 		return 0;
6230 	}
6231 
6232 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6233 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6234 	 */
6235 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6236 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6237 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6238 				 0, 1, &param, &val);
6239 	if (!ret)
6240 		return (val >> (8 * pidx)) & 0xff;
6241 
6242 	return 0;
6243 }
6244 
6245 /**
6246  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6247  *	@adap: the adapter
6248  *	@pidx: the port index
6249  *
6250  *	Returns a bitmap indicating which TP Ingress Channels are associated
6251  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6252  *	the Port.
6253  */
6254 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6255 {
6256 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6257 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6258 
6259 	if (pidx >= nports) {
6260 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6261 			 pidx, nports);
6262 		return 0;
6263 	}
6264 
6265 	switch (chip_version) {
6266 	case CHELSIO_T4:
6267 	case CHELSIO_T5:
6268 		/* Note that this happens to be the same values as the MPS
6269 		 * Buffer Group Map for these Chips.  But we replicate the code
6270 		 * here because they're really separate concepts.
6271 		 */
6272 		switch (nports) {
6273 		case 1: return 0xf;
6274 		case 2: return 3 << (2 * pidx);
6275 		case 4: return 1 << pidx;
6276 		}
6277 		break;
6278 
6279 	case CHELSIO_T6:
6280 		switch (nports) {
6281 		case 1:
6282 		case 2: return 1 << pidx;
6283 		}
6284 		break;
6285 	}
6286 
6287 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6288 		chip_version, nports);
6289 	return 0;
6290 }
6291 
6292 /**
6293  *      t4_get_port_type_description - return Port Type string description
6294  *      @port_type: firmware Port Type enumeration
6295  */
6296 const char *t4_get_port_type_description(enum fw_port_type port_type)
6297 {
6298 	static const char *const port_type_description[] = {
6299 		"Fiber_XFI",
6300 		"Fiber_XAUI",
6301 		"BT_SGMII",
6302 		"BT_XFI",
6303 		"BT_XAUI",
6304 		"KX4",
6305 		"CX4",
6306 		"KX",
6307 		"KR",
6308 		"SFP",
6309 		"BP_AP",
6310 		"BP4_AP",
6311 		"QSFP_10G",
6312 		"QSA",
6313 		"QSFP",
6314 		"BP40_BA",
6315 		"KR4_100G",
6316 		"CR4_QSFP",
6317 		"CR_QSFP",
6318 		"CR2_QSFP",
6319 		"SFP28",
6320 		"KR_SFP28",
6321 		"KR_XLAUI"
6322 	};
6323 
6324 	if (port_type < ARRAY_SIZE(port_type_description))
6325 		return port_type_description[port_type];
6326 	return "UNKNOWN";
6327 }
6328 
6329 /**
6330  *      t4_get_port_stats_offset - collect port stats relative to a previous
6331  *                                 snapshot
6332  *      @adap: The adapter
6333  *      @idx: The port
6334  *      @stats: Current stats to fill
6335  *      @offset: Previous stats snapshot
6336  */
6337 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6338 			      struct port_stats *stats,
6339 			      struct port_stats *offset)
6340 {
6341 	u64 *s, *o;
6342 	int i;
6343 
6344 	t4_get_port_stats(adap, idx, stats);
6345 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6346 			i < (sizeof(struct port_stats) / sizeof(u64));
6347 			i++, s++, o++)
6348 		*s -= *o;
6349 }
6350 
6351 /**
6352  *	t4_get_port_stats - collect port statistics
6353  *	@adap: the adapter
6354  *	@idx: the port index
6355  *	@p: the stats structure to fill
6356  *
6357  *	Collect statistics related to the given port from HW.
6358  */
6359 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6360 {
6361 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6362 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6363 
6364 #define GET_STAT(name) \
6365 	t4_read_reg64(adap, \
6366 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6367 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6368 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6369 
6370 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6371 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6372 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6373 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6374 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6375 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6376 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6377 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6378 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6379 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6380 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6381 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6382 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6383 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6384 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6385 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6386 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6387 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6388 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6389 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6390 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6391 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6392 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6393 
6394 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6395 		if (stat_ctl & COUNTPAUSESTATTX_F)
6396 			p->tx_frames_64 -= p->tx_pause;
6397 		if (stat_ctl & COUNTPAUSEMCTX_F)
6398 			p->tx_mcast_frames -= p->tx_pause;
6399 	}
6400 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6401 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6402 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6403 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6404 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6405 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6406 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6407 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6408 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6409 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6410 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6411 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6412 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6413 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6414 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6415 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6416 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6417 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6418 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6419 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6420 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6421 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6422 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6423 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6424 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6425 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6426 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6427 
6428 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6429 		if (stat_ctl & COUNTPAUSESTATRX_F)
6430 			p->rx_frames_64 -= p->rx_pause;
6431 		if (stat_ctl & COUNTPAUSEMCRX_F)
6432 			p->rx_mcast_frames -= p->rx_pause;
6433 	}
6434 
6435 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6436 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6437 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6438 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6439 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6440 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6441 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6442 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6443 
6444 #undef GET_STAT
6445 #undef GET_STAT_COM
6446 }
6447 
6448 /**
6449  *	t4_get_lb_stats - collect loopback port statistics
6450  *	@adap: the adapter
6451  *	@idx: the loopback port index
6452  *	@p: the stats structure to fill
6453  *
6454  *	Return HW statistics for the given loopback port.
6455  */
6456 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6457 {
6458 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6459 
6460 #define GET_STAT(name) \
6461 	t4_read_reg64(adap, \
6462 	(is_t4(adap->params.chip) ? \
6463 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6464 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6465 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6466 
6467 	p->octets           = GET_STAT(BYTES);
6468 	p->frames           = GET_STAT(FRAMES);
6469 	p->bcast_frames     = GET_STAT(BCAST);
6470 	p->mcast_frames     = GET_STAT(MCAST);
6471 	p->ucast_frames     = GET_STAT(UCAST);
6472 	p->error_frames     = GET_STAT(ERROR);
6473 
6474 	p->frames_64        = GET_STAT(64B);
6475 	p->frames_65_127    = GET_STAT(65B_127B);
6476 	p->frames_128_255   = GET_STAT(128B_255B);
6477 	p->frames_256_511   = GET_STAT(256B_511B);
6478 	p->frames_512_1023  = GET_STAT(512B_1023B);
6479 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6480 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6481 	p->drop             = GET_STAT(DROP_FRAMES);
6482 
6483 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6484 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6485 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6486 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6487 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6488 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6489 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6490 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6491 
6492 #undef GET_STAT
6493 #undef GET_STAT_COM
6494 }
6495 
6496 /*     t4_mk_filtdelwr - create a delete filter WR
6497  *     @ftid: the filter ID
6498  *     @wr: the filter work request to populate
6499  *     @qid: ingress queue to receive the delete notification
6500  *
6501  *     Creates a filter work request to delete the supplied filter.  If @qid is
6502  *     negative the delete notification is suppressed.
6503  */
6504 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6505 {
6506 	memset(wr, 0, sizeof(*wr));
6507 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6508 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6509 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6510 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6511 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6512 	if (qid >= 0)
6513 		wr->rx_chan_rx_rpl_iq =
6514 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6515 }
6516 
6517 #define INIT_CMD(var, cmd, rd_wr) do { \
6518 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6519 					FW_CMD_REQUEST_F | \
6520 					FW_CMD_##rd_wr##_F); \
6521 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6522 } while (0)
6523 
6524 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6525 			  u32 addr, u32 val)
6526 {
6527 	u32 ldst_addrspace;
6528 	struct fw_ldst_cmd c;
6529 
6530 	memset(&c, 0, sizeof(c));
6531 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6532 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6533 					FW_CMD_REQUEST_F |
6534 					FW_CMD_WRITE_F |
6535 					ldst_addrspace);
6536 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6537 	c.u.addrval.addr = cpu_to_be32(addr);
6538 	c.u.addrval.val = cpu_to_be32(val);
6539 
6540 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6541 }
6542 
6543 /**
6544  *	t4_mdio_rd - read a PHY register through MDIO
6545  *	@adap: the adapter
6546  *	@mbox: mailbox to use for the FW command
6547  *	@phy_addr: the PHY address
6548  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6549  *	@reg: the register to read
6550  *	@valp: where to store the value
6551  *
6552  *	Issues a FW command through the given mailbox to read a PHY register.
6553  */
6554 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6555 	       unsigned int mmd, unsigned int reg, u16 *valp)
6556 {
6557 	int ret;
6558 	u32 ldst_addrspace;
6559 	struct fw_ldst_cmd c;
6560 
6561 	memset(&c, 0, sizeof(c));
6562 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6563 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6564 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6565 					ldst_addrspace);
6566 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6567 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6568 					 FW_LDST_CMD_MMD_V(mmd));
6569 	c.u.mdio.raddr = cpu_to_be16(reg);
6570 
6571 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6572 	if (ret == 0)
6573 		*valp = be16_to_cpu(c.u.mdio.rval);
6574 	return ret;
6575 }
6576 
6577 /**
6578  *	t4_mdio_wr - write a PHY register through MDIO
6579  *	@adap: the adapter
6580  *	@mbox: mailbox to use for the FW command
6581  *	@phy_addr: the PHY address
6582  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6583  *	@reg: the register to write
6584  *	@val: value to write
6585  *
6586  *	Issues a FW command through the given mailbox to write a PHY register.
6587  */
6588 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6589 	       unsigned int mmd, unsigned int reg, u16 val)
6590 {
6591 	u32 ldst_addrspace;
6592 	struct fw_ldst_cmd c;
6593 
6594 	memset(&c, 0, sizeof(c));
6595 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6596 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6597 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6598 					ldst_addrspace);
6599 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6600 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6601 					 FW_LDST_CMD_MMD_V(mmd));
6602 	c.u.mdio.raddr = cpu_to_be16(reg);
6603 	c.u.mdio.rval = cpu_to_be16(val);
6604 
6605 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6606 }
6607 
6608 /**
6609  *	t4_sge_decode_idma_state - decode the idma state
6610  *	@adapter: the adapter
6611  *	@state: the state idma is stuck in
6612  */
6613 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6614 {
6615 	static const char * const t4_decode[] = {
6616 		"IDMA_IDLE",
6617 		"IDMA_PUSH_MORE_CPL_FIFO",
6618 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6619 		"Not used",
6620 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6621 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6622 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6623 		"IDMA_SEND_FIFO_TO_IMSG",
6624 		"IDMA_FL_REQ_DATA_FL_PREP",
6625 		"IDMA_FL_REQ_DATA_FL",
6626 		"IDMA_FL_DROP",
6627 		"IDMA_FL_H_REQ_HEADER_FL",
6628 		"IDMA_FL_H_SEND_PCIEHDR",
6629 		"IDMA_FL_H_PUSH_CPL_FIFO",
6630 		"IDMA_FL_H_SEND_CPL",
6631 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6632 		"IDMA_FL_H_SEND_IP_HDR",
6633 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6634 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6635 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6636 		"IDMA_FL_D_SEND_PCIEHDR",
6637 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6638 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6639 		"IDMA_FL_SEND_PCIEHDR",
6640 		"IDMA_FL_PUSH_CPL_FIFO",
6641 		"IDMA_FL_SEND_CPL",
6642 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6643 		"IDMA_FL_SEND_PAYLOAD",
6644 		"IDMA_FL_REQ_NEXT_DATA_FL",
6645 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6646 		"IDMA_FL_SEND_PADDING",
6647 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6648 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6649 		"IDMA_FL_REQ_DATAFL_DONE",
6650 		"IDMA_FL_REQ_HEADERFL_DONE",
6651 	};
6652 	static const char * const t5_decode[] = {
6653 		"IDMA_IDLE",
6654 		"IDMA_ALMOST_IDLE",
6655 		"IDMA_PUSH_MORE_CPL_FIFO",
6656 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6657 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6658 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6659 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6660 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6661 		"IDMA_SEND_FIFO_TO_IMSG",
6662 		"IDMA_FL_REQ_DATA_FL",
6663 		"IDMA_FL_DROP",
6664 		"IDMA_FL_DROP_SEND_INC",
6665 		"IDMA_FL_H_REQ_HEADER_FL",
6666 		"IDMA_FL_H_SEND_PCIEHDR",
6667 		"IDMA_FL_H_PUSH_CPL_FIFO",
6668 		"IDMA_FL_H_SEND_CPL",
6669 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6670 		"IDMA_FL_H_SEND_IP_HDR",
6671 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6672 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6673 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6674 		"IDMA_FL_D_SEND_PCIEHDR",
6675 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6676 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6677 		"IDMA_FL_SEND_PCIEHDR",
6678 		"IDMA_FL_PUSH_CPL_FIFO",
6679 		"IDMA_FL_SEND_CPL",
6680 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6681 		"IDMA_FL_SEND_PAYLOAD",
6682 		"IDMA_FL_REQ_NEXT_DATA_FL",
6683 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6684 		"IDMA_FL_SEND_PADDING",
6685 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6686 	};
6687 	static const char * const t6_decode[] = {
6688 		"IDMA_IDLE",
6689 		"IDMA_PUSH_MORE_CPL_FIFO",
6690 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6691 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6692 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6693 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6694 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6695 		"IDMA_FL_REQ_DATA_FL",
6696 		"IDMA_FL_DROP",
6697 		"IDMA_FL_DROP_SEND_INC",
6698 		"IDMA_FL_H_REQ_HEADER_FL",
6699 		"IDMA_FL_H_SEND_PCIEHDR",
6700 		"IDMA_FL_H_PUSH_CPL_FIFO",
6701 		"IDMA_FL_H_SEND_CPL",
6702 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6703 		"IDMA_FL_H_SEND_IP_HDR",
6704 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6705 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6706 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6707 		"IDMA_FL_D_SEND_PCIEHDR",
6708 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6709 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6710 		"IDMA_FL_SEND_PCIEHDR",
6711 		"IDMA_FL_PUSH_CPL_FIFO",
6712 		"IDMA_FL_SEND_CPL",
6713 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6714 		"IDMA_FL_SEND_PAYLOAD",
6715 		"IDMA_FL_REQ_NEXT_DATA_FL",
6716 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6717 		"IDMA_FL_SEND_PADDING",
6718 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6719 	};
6720 	static const u32 sge_regs[] = {
6721 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6722 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6723 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6724 	};
6725 	const char **sge_idma_decode;
6726 	int sge_idma_decode_nstates;
6727 	int i;
6728 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6729 
6730 	/* Select the right set of decode strings to dump depending on the
6731 	 * adapter chip type.
6732 	 */
6733 	switch (chip_version) {
6734 	case CHELSIO_T4:
6735 		sge_idma_decode = (const char **)t4_decode;
6736 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6737 		break;
6738 
6739 	case CHELSIO_T5:
6740 		sge_idma_decode = (const char **)t5_decode;
6741 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6742 		break;
6743 
6744 	case CHELSIO_T6:
6745 		sge_idma_decode = (const char **)t6_decode;
6746 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6747 		break;
6748 
6749 	default:
6750 		dev_err(adapter->pdev_dev,
6751 			"Unsupported chip version %d\n", chip_version);
6752 		return;
6753 	}
6754 
6755 	if (is_t4(adapter->params.chip)) {
6756 		sge_idma_decode = (const char **)t4_decode;
6757 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6758 	} else {
6759 		sge_idma_decode = (const char **)t5_decode;
6760 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6761 	}
6762 
6763 	if (state < sge_idma_decode_nstates)
6764 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6765 	else
6766 		CH_WARN(adapter, "idma state %d unknown\n", state);
6767 
6768 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6769 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6770 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6771 }
6772 
6773 /**
6774  *      t4_sge_ctxt_flush - flush the SGE context cache
6775  *      @adap: the adapter
6776  *      @mbox: mailbox to use for the FW command
6777  *      @ctxt_type: Egress or Ingress
6778  *
6779  *      Issues a FW command through the given mailbox to flush the
6780  *      SGE context cache.
6781  */
6782 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6783 {
6784 	int ret;
6785 	u32 ldst_addrspace;
6786 	struct fw_ldst_cmd c;
6787 
6788 	memset(&c, 0, sizeof(c));
6789 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6790 						 FW_LDST_ADDRSPC_SGE_EGRC :
6791 						 FW_LDST_ADDRSPC_SGE_INGC);
6792 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6793 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6794 					ldst_addrspace);
6795 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6796 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6797 
6798 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6799 	return ret;
6800 }
6801 
6802 /**
6803  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6804  *	@adap: the adapter
6805  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6806  *	@dbqtimers: SGE Doorbell Queue Timer table
6807  *
6808  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6809  *	Returns 0 on success (Firmware and Hardware support this feature),
6810  *	an error on failure.
6811  */
6812 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6813 			  u16 *dbqtimers)
6814 {
6815 	int ret, dbqtimerix;
6816 
6817 	ret = 0;
6818 	dbqtimerix = 0;
6819 	while (dbqtimerix < ndbqtimers) {
6820 		int nparams, param;
6821 		u32 params[7], vals[7];
6822 
6823 		nparams = ndbqtimers - dbqtimerix;
6824 		if (nparams > ARRAY_SIZE(params))
6825 			nparams = ARRAY_SIZE(params);
6826 
6827 		for (param = 0; param < nparams; param++)
6828 			params[param] =
6829 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6830 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6831 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6832 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6833 				      nparams, params, vals);
6834 		if (ret)
6835 			break;
6836 
6837 		for (param = 0; param < nparams; param++)
6838 			dbqtimers[dbqtimerix++] = vals[param];
6839 	}
6840 	return ret;
6841 }
6842 
6843 /**
6844  *      t4_fw_hello - establish communication with FW
6845  *      @adap: the adapter
6846  *      @mbox: mailbox to use for the FW command
6847  *      @evt_mbox: mailbox to receive async FW events
6848  *      @master: specifies the caller's willingness to be the device master
6849  *	@state: returns the current device state (if non-NULL)
6850  *
6851  *	Issues a command to establish communication with FW.  Returns either
6852  *	an error (negative integer) or the mailbox of the Master PF.
6853  */
6854 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6855 		enum dev_master master, enum dev_state *state)
6856 {
6857 	int ret;
6858 	struct fw_hello_cmd c;
6859 	u32 v;
6860 	unsigned int master_mbox;
6861 	int retries = FW_CMD_HELLO_RETRIES;
6862 
6863 retry:
6864 	memset(&c, 0, sizeof(c));
6865 	INIT_CMD(c, HELLO, WRITE);
6866 	c.err_to_clearinit = cpu_to_be32(
6867 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6868 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6869 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6870 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6871 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6872 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6873 		FW_HELLO_CMD_CLEARINIT_F);
6874 
6875 	/*
6876 	 * Issue the HELLO command to the firmware.  If it's not successful
6877 	 * but indicates that we got a "busy" or "timeout" condition, retry
6878 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6879 	 * retry limit, check to see if the firmware left us any error
6880 	 * information and report that if so.
6881 	 */
6882 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6883 	if (ret < 0) {
6884 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6885 			goto retry;
6886 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6887 			t4_report_fw_error(adap);
6888 		return ret;
6889 	}
6890 
6891 	v = be32_to_cpu(c.err_to_clearinit);
6892 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6893 	if (state) {
6894 		if (v & FW_HELLO_CMD_ERR_F)
6895 			*state = DEV_STATE_ERR;
6896 		else if (v & FW_HELLO_CMD_INIT_F)
6897 			*state = DEV_STATE_INIT;
6898 		else
6899 			*state = DEV_STATE_UNINIT;
6900 	}
6901 
6902 	/*
6903 	 * If we're not the Master PF then we need to wait around for the
6904 	 * Master PF Driver to finish setting up the adapter.
6905 	 *
6906 	 * Note that we also do this wait if we're a non-Master-capable PF and
6907 	 * there is no current Master PF; a Master PF may show up momentarily
6908 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6909 	 * OS loads lots of different drivers rapidly at the same time).  In
6910 	 * this case, the Master PF returned by the firmware will be
6911 	 * PCIE_FW_MASTER_M so the test below will work ...
6912 	 */
6913 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6914 	    master_mbox != mbox) {
6915 		int waiting = FW_CMD_HELLO_TIMEOUT;
6916 
6917 		/*
6918 		 * Wait for the firmware to either indicate an error or
6919 		 * initialized state.  If we see either of these we bail out
6920 		 * and report the issue to the caller.  If we exhaust the
6921 		 * "hello timeout" and we haven't exhausted our retries, try
6922 		 * again.  Otherwise bail with a timeout error.
6923 		 */
6924 		for (;;) {
6925 			u32 pcie_fw;
6926 
6927 			msleep(50);
6928 			waiting -= 50;
6929 
6930 			/*
6931 			 * If neither Error nor Initialized are indicated
6932 			 * by the firmware keep waiting till we exhaust our
6933 			 * timeout ... and then retry if we haven't exhausted
6934 			 * our retries ...
6935 			 */
6936 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6937 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6938 				if (waiting <= 0) {
6939 					if (retries-- > 0)
6940 						goto retry;
6941 
6942 					return -ETIMEDOUT;
6943 				}
6944 				continue;
6945 			}
6946 
6947 			/*
6948 			 * We either have an Error or Initialized condition
6949 			 * report errors preferentially.
6950 			 */
6951 			if (state) {
6952 				if (pcie_fw & PCIE_FW_ERR_F)
6953 					*state = DEV_STATE_ERR;
6954 				else if (pcie_fw & PCIE_FW_INIT_F)
6955 					*state = DEV_STATE_INIT;
6956 			}
6957 
6958 			/*
6959 			 * If we arrived before a Master PF was selected and
6960 			 * there's not a valid Master PF, grab its identity
6961 			 * for our caller.
6962 			 */
6963 			if (master_mbox == PCIE_FW_MASTER_M &&
6964 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6965 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6966 			break;
6967 		}
6968 	}
6969 
6970 	return master_mbox;
6971 }
6972 
6973 /**
6974  *	t4_fw_bye - end communication with FW
6975  *	@adap: the adapter
6976  *	@mbox: mailbox to use for the FW command
6977  *
6978  *	Issues a command to terminate communication with FW.
6979  */
6980 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6981 {
6982 	struct fw_bye_cmd c;
6983 
6984 	memset(&c, 0, sizeof(c));
6985 	INIT_CMD(c, BYE, WRITE);
6986 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6987 }
6988 
6989 /**
6990  *	t4_init_cmd - ask FW to initialize the device
6991  *	@adap: the adapter
6992  *	@mbox: mailbox to use for the FW command
6993  *
6994  *	Issues a command to FW to partially initialize the device.  This
6995  *	performs initialization that generally doesn't depend on user input.
6996  */
6997 int t4_early_init(struct adapter *adap, unsigned int mbox)
6998 {
6999 	struct fw_initialize_cmd c;
7000 
7001 	memset(&c, 0, sizeof(c));
7002 	INIT_CMD(c, INITIALIZE, WRITE);
7003 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7004 }
7005 
7006 /**
7007  *	t4_fw_reset - issue a reset to FW
7008  *	@adap: the adapter
7009  *	@mbox: mailbox to use for the FW command
7010  *	@reset: specifies the type of reset to perform
7011  *
7012  *	Issues a reset command of the specified type to FW.
7013  */
7014 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7015 {
7016 	struct fw_reset_cmd c;
7017 
7018 	memset(&c, 0, sizeof(c));
7019 	INIT_CMD(c, RESET, WRITE);
7020 	c.val = cpu_to_be32(reset);
7021 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7022 }
7023 
7024 /**
7025  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7026  *	@adap: the adapter
7027  *	@mbox: mailbox to use for the FW RESET command (if desired)
7028  *	@force: force uP into RESET even if FW RESET command fails
7029  *
7030  *	Issues a RESET command to firmware (if desired) with a HALT indication
7031  *	and then puts the microprocessor into RESET state.  The RESET command
7032  *	will only be issued if a legitimate mailbox is provided (mbox <=
7033  *	PCIE_FW_MASTER_M).
7034  *
7035  *	This is generally used in order for the host to safely manipulate the
7036  *	adapter without fear of conflicting with whatever the firmware might
7037  *	be doing.  The only way out of this state is to RESTART the firmware
7038  *	...
7039  */
7040 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7041 {
7042 	int ret = 0;
7043 
7044 	/*
7045 	 * If a legitimate mailbox is provided, issue a RESET command
7046 	 * with a HALT indication.
7047 	 */
7048 	if (mbox <= PCIE_FW_MASTER_M) {
7049 		struct fw_reset_cmd c;
7050 
7051 		memset(&c, 0, sizeof(c));
7052 		INIT_CMD(c, RESET, WRITE);
7053 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7054 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7055 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7056 	}
7057 
7058 	/*
7059 	 * Normally we won't complete the operation if the firmware RESET
7060 	 * command fails but if our caller insists we'll go ahead and put the
7061 	 * uP into RESET.  This can be useful if the firmware is hung or even
7062 	 * missing ...  We'll have to take the risk of putting the uP into
7063 	 * RESET without the cooperation of firmware in that case.
7064 	 *
7065 	 * We also force the firmware's HALT flag to be on in case we bypassed
7066 	 * the firmware RESET command above or we're dealing with old firmware
7067 	 * which doesn't have the HALT capability.  This will serve as a flag
7068 	 * for the incoming firmware to know that it's coming out of a HALT
7069 	 * rather than a RESET ... if it's new enough to understand that ...
7070 	 */
7071 	if (ret == 0 || force) {
7072 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7073 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7074 				 PCIE_FW_HALT_F);
7075 	}
7076 
7077 	/*
7078 	 * And we always return the result of the firmware RESET command
7079 	 * even when we force the uP into RESET ...
7080 	 */
7081 	return ret;
7082 }
7083 
7084 /**
7085  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7086  *	@adap: the adapter
7087  *	@mbox: mailbox to use for the FW command
7088  *	@reset: if we want to do a RESET to restart things
7089  *
7090  *	Restart firmware previously halted by t4_fw_halt().  On successful
7091  *	return the previous PF Master remains as the new PF Master and there
7092  *	is no need to issue a new HELLO command, etc.
7093  *
7094  *	We do this in two ways:
7095  *
7096  *	 1. If we're dealing with newer firmware we'll simply want to take
7097  *	    the chip's microprocessor out of RESET.  This will cause the
7098  *	    firmware to start up from its start vector.  And then we'll loop
7099  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7100  *	    reset to 0) or we timeout.
7101  *
7102  *	 2. If we're dealing with older firmware then we'll need to RESET
7103  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7104  *	    flag and automatically RESET itself on startup.
7105  */
7106 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7107 {
7108 	if (reset) {
7109 		/*
7110 		 * Since we're directing the RESET instead of the firmware
7111 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7112 		 * bit.
7113 		 */
7114 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7115 
7116 		/*
7117 		 * If we've been given a valid mailbox, first try to get the
7118 		 * firmware to do the RESET.  If that works, great and we can
7119 		 * return success.  Otherwise, if we haven't been given a
7120 		 * valid mailbox or the RESET command failed, fall back to
7121 		 * hitting the chip with a hammer.
7122 		 */
7123 		if (mbox <= PCIE_FW_MASTER_M) {
7124 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7125 			msleep(100);
7126 			if (t4_fw_reset(adap, mbox,
7127 					PIORST_F | PIORSTMODE_F) == 0)
7128 				return 0;
7129 		}
7130 
7131 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7132 		msleep(2000);
7133 	} else {
7134 		int ms;
7135 
7136 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7137 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7138 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7139 				return 0;
7140 			msleep(100);
7141 			ms += 100;
7142 		}
7143 		return -ETIMEDOUT;
7144 	}
7145 	return 0;
7146 }
7147 
7148 /**
7149  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7150  *	@adap: the adapter
7151  *	@mbox: mailbox to use for the FW RESET command (if desired)
7152  *	@fw_data: the firmware image to write
7153  *	@size: image size
7154  *	@force: force upgrade even if firmware doesn't cooperate
7155  *
7156  *	Perform all of the steps necessary for upgrading an adapter's
7157  *	firmware image.  Normally this requires the cooperation of the
7158  *	existing firmware in order to halt all existing activities
7159  *	but if an invalid mailbox token is passed in we skip that step
7160  *	(though we'll still put the adapter microprocessor into RESET in
7161  *	that case).
7162  *
7163  *	On successful return the new firmware will have been loaded and
7164  *	the adapter will have been fully RESET losing all previous setup
7165  *	state.  On unsuccessful return the adapter may be completely hosed ...
7166  *	positive errno indicates that the adapter is ~probably~ intact, a
7167  *	negative errno indicates that things are looking bad ...
7168  */
7169 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7170 		  const u8 *fw_data, unsigned int size, int force)
7171 {
7172 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7173 	int reset, ret;
7174 
7175 	if (!t4_fw_matches_chip(adap, fw_hdr))
7176 		return -EINVAL;
7177 
7178 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7179 	 * set wont be sent when we are flashing FW.
7180 	 */
7181 	adap->flags &= ~CXGB4_FW_OK;
7182 
7183 	ret = t4_fw_halt(adap, mbox, force);
7184 	if (ret < 0 && !force)
7185 		goto out;
7186 
7187 	ret = t4_load_fw(adap, fw_data, size);
7188 	if (ret < 0)
7189 		goto out;
7190 
7191 	/*
7192 	 * If there was a Firmware Configuration File stored in FLASH,
7193 	 * there's a good chance that it won't be compatible with the new
7194 	 * Firmware.  In order to prevent difficult to diagnose adapter
7195 	 * initialization issues, we clear out the Firmware Configuration File
7196 	 * portion of the FLASH .  The user will need to re-FLASH a new
7197 	 * Firmware Configuration File which is compatible with the new
7198 	 * Firmware if that's desired.
7199 	 */
7200 	(void)t4_load_cfg(adap, NULL, 0);
7201 
7202 	/*
7203 	 * Older versions of the firmware don't understand the new
7204 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7205 	 * restart.  So for newly loaded older firmware we'll have to do the
7206 	 * RESET for it so it starts up on a clean slate.  We can tell if
7207 	 * the newly loaded firmware will handle this right by checking
7208 	 * its header flags to see if it advertises the capability.
7209 	 */
7210 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7211 	ret = t4_fw_restart(adap, mbox, reset);
7212 
7213 	/* Grab potentially new Firmware Device Log parameters so we can see
7214 	 * how healthy the new Firmware is.  It's okay to contact the new
7215 	 * Firmware for these parameters even though, as far as it's
7216 	 * concerned, we've never said "HELLO" to it ...
7217 	 */
7218 	(void)t4_init_devlog_params(adap);
7219 out:
7220 	adap->flags |= CXGB4_FW_OK;
7221 	return ret;
7222 }
7223 
7224 /**
7225  *	t4_fl_pkt_align - return the fl packet alignment
7226  *	@adap: the adapter
7227  *
7228  *	T4 has a single field to specify the packing and padding boundary.
7229  *	T5 onwards has separate fields for this and hence the alignment for
7230  *	next packet offset is maximum of these two.
7231  *
7232  */
7233 int t4_fl_pkt_align(struct adapter *adap)
7234 {
7235 	u32 sge_control, sge_control2;
7236 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7237 
7238 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7239 
7240 	/* T4 uses a single control field to specify both the PCIe Padding and
7241 	 * Packing Boundary.  T5 introduced the ability to specify these
7242 	 * separately.  The actual Ingress Packet Data alignment boundary
7243 	 * within Packed Buffer Mode is the maximum of these two
7244 	 * specifications.  (Note that it makes no real practical sense to
7245 	 * have the Padding Boundary be larger than the Packing Boundary but you
7246 	 * could set the chip up that way and, in fact, legacy T4 code would
7247 	 * end doing this because it would initialize the Padding Boundary and
7248 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7249 	 * Padding Boundary values in T6 starts from 8B,
7250 	 * where as it is 32B for T4 and T5.
7251 	 */
7252 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7253 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7254 	else
7255 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7256 
7257 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7258 
7259 	fl_align = ingpadboundary;
7260 	if (!is_t4(adap->params.chip)) {
7261 		/* T5 has a weird interpretation of one of the PCIe Packing
7262 		 * Boundary values.  No idea why ...
7263 		 */
7264 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7265 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7266 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7267 			ingpackboundary = 16;
7268 		else
7269 			ingpackboundary = 1 << (ingpackboundary +
7270 						INGPACKBOUNDARY_SHIFT_X);
7271 
7272 		fl_align = max(ingpadboundary, ingpackboundary);
7273 	}
7274 	return fl_align;
7275 }
7276 
7277 /**
7278  *	t4_fixup_host_params - fix up host-dependent parameters
7279  *	@adap: the adapter
7280  *	@page_size: the host's Base Page Size
7281  *	@cache_line_size: the host's Cache Line Size
7282  *
7283  *	Various registers in T4 contain values which are dependent on the
7284  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7285  *	those registers with the appropriate values as passed in ...
7286  */
7287 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7288 			 unsigned int cache_line_size)
7289 {
7290 	unsigned int page_shift = fls(page_size) - 1;
7291 	unsigned int sge_hps = page_shift - 10;
7292 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7293 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7294 	unsigned int fl_align_log = fls(fl_align) - 1;
7295 
7296 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7297 		     HOSTPAGESIZEPF0_V(sge_hps) |
7298 		     HOSTPAGESIZEPF1_V(sge_hps) |
7299 		     HOSTPAGESIZEPF2_V(sge_hps) |
7300 		     HOSTPAGESIZEPF3_V(sge_hps) |
7301 		     HOSTPAGESIZEPF4_V(sge_hps) |
7302 		     HOSTPAGESIZEPF5_V(sge_hps) |
7303 		     HOSTPAGESIZEPF6_V(sge_hps) |
7304 		     HOSTPAGESIZEPF7_V(sge_hps));
7305 
7306 	if (is_t4(adap->params.chip)) {
7307 		t4_set_reg_field(adap, SGE_CONTROL_A,
7308 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7309 				 EGRSTATUSPAGESIZE_F,
7310 				 INGPADBOUNDARY_V(fl_align_log -
7311 						  INGPADBOUNDARY_SHIFT_X) |
7312 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7313 	} else {
7314 		unsigned int pack_align;
7315 		unsigned int ingpad, ingpack;
7316 
7317 		/* T5 introduced the separation of the Free List Padding and
7318 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7319 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7320 		 * Bandwidth, and use a Packing Boundary which is large enough
7321 		 * to avoid false sharing between CPUs, etc.
7322 		 *
7323 		 * For the PCI Link, the smaller the Padding Boundary the
7324 		 * better.  For the Memory Controller, a smaller Padding
7325 		 * Boundary is better until we cross under the Memory Line
7326 		 * Size (the minimum unit of transfer to/from Memory).  If we
7327 		 * have a Padding Boundary which is smaller than the Memory
7328 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7329 		 * Memory Controller which is never good.
7330 		 */
7331 
7332 		/* We want the Packing Boundary to be based on the Cache Line
7333 		 * Size in order to help avoid False Sharing performance
7334 		 * issues between CPUs, etc.  We also want the Packing
7335 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7336 		 * get best performance when the Packing Boundary is a
7337 		 * multiple of the Maximum Payload Size.
7338 		 */
7339 		pack_align = fl_align;
7340 		if (pci_is_pcie(adap->pdev)) {
7341 			unsigned int mps, mps_log;
7342 			u16 devctl;
7343 
7344 			/* The PCIe Device Control Maximum Payload Size field
7345 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7346 			 * 128 bytes.
7347 			 */
7348 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7349 						  &devctl);
7350 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7351 			mps = 1 << mps_log;
7352 			if (mps > pack_align)
7353 				pack_align = mps;
7354 		}
7355 
7356 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7357 		 * value for the Packing Boundary.  This corresponds to 16
7358 		 * bytes instead of the expected 32 bytes.  So if we want 32
7359 		 * bytes, the best we can really do is 64 bytes ...
7360 		 */
7361 		if (pack_align <= 16) {
7362 			ingpack = INGPACKBOUNDARY_16B_X;
7363 			fl_align = 16;
7364 		} else if (pack_align == 32) {
7365 			ingpack = INGPACKBOUNDARY_64B_X;
7366 			fl_align = 64;
7367 		} else {
7368 			unsigned int pack_align_log = fls(pack_align) - 1;
7369 
7370 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7371 			fl_align = pack_align;
7372 		}
7373 
7374 		/* Use the smallest Ingress Padding which isn't smaller than
7375 		 * the Memory Controller Read/Write Size.  We'll take that as
7376 		 * being 8 bytes since we don't know of any system with a
7377 		 * wider Memory Controller Bus Width.
7378 		 */
7379 		if (is_t5(adap->params.chip))
7380 			ingpad = INGPADBOUNDARY_32B_X;
7381 		else
7382 			ingpad = T6_INGPADBOUNDARY_8B_X;
7383 
7384 		t4_set_reg_field(adap, SGE_CONTROL_A,
7385 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7386 				 EGRSTATUSPAGESIZE_F,
7387 				 INGPADBOUNDARY_V(ingpad) |
7388 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7389 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7390 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7391 				 INGPACKBOUNDARY_V(ingpack));
7392 	}
7393 	/*
7394 	 * Adjust various SGE Free List Host Buffer Sizes.
7395 	 *
7396 	 * This is something of a crock since we're using fixed indices into
7397 	 * the array which are also known by the sge.c code and the T4
7398 	 * Firmware Configuration File.  We need to come up with a much better
7399 	 * approach to managing this array.  For now, the first four entries
7400 	 * are:
7401 	 *
7402 	 *   0: Host Page Size
7403 	 *   1: 64KB
7404 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7405 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7406 	 *
7407 	 * For the single-MTU buffers in unpacked mode we need to include
7408 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7409 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7410 	 * Padding boundary.  All of these are accommodated in the Factory
7411 	 * Default Firmware Configuration File but we need to adjust it for
7412 	 * this host's cache line size.
7413 	 */
7414 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7415 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7416 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7417 		     & ~(fl_align-1));
7418 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7419 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7420 		     & ~(fl_align-1));
7421 
7422 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7423 
7424 	return 0;
7425 }
7426 
7427 /**
7428  *	t4_fw_initialize - ask FW to initialize the device
7429  *	@adap: the adapter
7430  *	@mbox: mailbox to use for the FW command
7431  *
7432  *	Issues a command to FW to partially initialize the device.  This
7433  *	performs initialization that generally doesn't depend on user input.
7434  */
7435 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7436 {
7437 	struct fw_initialize_cmd c;
7438 
7439 	memset(&c, 0, sizeof(c));
7440 	INIT_CMD(c, INITIALIZE, WRITE);
7441 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7442 }
7443 
7444 /**
7445  *	t4_query_params_rw - query FW or device parameters
7446  *	@adap: the adapter
7447  *	@mbox: mailbox to use for the FW command
7448  *	@pf: the PF
7449  *	@vf: the VF
7450  *	@nparams: the number of parameters
7451  *	@params: the parameter names
7452  *	@val: the parameter values
7453  *	@rw: Write and read flag
7454  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7455  *
7456  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7457  *	queried at once.
7458  */
7459 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7460 		       unsigned int vf, unsigned int nparams, const u32 *params,
7461 		       u32 *val, int rw, bool sleep_ok)
7462 {
7463 	int i, ret;
7464 	struct fw_params_cmd c;
7465 	__be32 *p = &c.param[0].mnem;
7466 
7467 	if (nparams > 7)
7468 		return -EINVAL;
7469 
7470 	memset(&c, 0, sizeof(c));
7471 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7472 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7473 				  FW_PARAMS_CMD_PFN_V(pf) |
7474 				  FW_PARAMS_CMD_VFN_V(vf));
7475 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7476 
7477 	for (i = 0; i < nparams; i++) {
7478 		*p++ = cpu_to_be32(*params++);
7479 		if (rw)
7480 			*p = cpu_to_be32(*(val + i));
7481 		p++;
7482 	}
7483 
7484 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7485 	if (ret == 0)
7486 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7487 			*val++ = be32_to_cpu(*p);
7488 	return ret;
7489 }
7490 
7491 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7492 		    unsigned int vf, unsigned int nparams, const u32 *params,
7493 		    u32 *val)
7494 {
7495 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7496 				  true);
7497 }
7498 
7499 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7500 		       unsigned int vf, unsigned int nparams, const u32 *params,
7501 		       u32 *val)
7502 {
7503 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7504 				  false);
7505 }
7506 
7507 /**
7508  *      t4_set_params_timeout - sets FW or device parameters
7509  *      @adap: the adapter
7510  *      @mbox: mailbox to use for the FW command
7511  *      @pf: the PF
7512  *      @vf: the VF
7513  *      @nparams: the number of parameters
7514  *      @params: the parameter names
7515  *      @val: the parameter values
7516  *      @timeout: the timeout time
7517  *
7518  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7519  *      specified at once.
7520  */
7521 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7522 			  unsigned int pf, unsigned int vf,
7523 			  unsigned int nparams, const u32 *params,
7524 			  const u32 *val, int timeout)
7525 {
7526 	struct fw_params_cmd c;
7527 	__be32 *p = &c.param[0].mnem;
7528 
7529 	if (nparams > 7)
7530 		return -EINVAL;
7531 
7532 	memset(&c, 0, sizeof(c));
7533 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7534 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7535 				  FW_PARAMS_CMD_PFN_V(pf) |
7536 				  FW_PARAMS_CMD_VFN_V(vf));
7537 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7538 
7539 	while (nparams--) {
7540 		*p++ = cpu_to_be32(*params++);
7541 		*p++ = cpu_to_be32(*val++);
7542 	}
7543 
7544 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7545 }
7546 
7547 /**
7548  *	t4_set_params - sets FW or device parameters
7549  *	@adap: the adapter
7550  *	@mbox: mailbox to use for the FW command
7551  *	@pf: the PF
7552  *	@vf: the VF
7553  *	@nparams: the number of parameters
7554  *	@params: the parameter names
7555  *	@val: the parameter values
7556  *
7557  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7558  *	specified at once.
7559  */
7560 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7561 		  unsigned int vf, unsigned int nparams, const u32 *params,
7562 		  const u32 *val)
7563 {
7564 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7565 				     FW_CMD_MAX_TIMEOUT);
7566 }
7567 
7568 /**
7569  *	t4_cfg_pfvf - configure PF/VF resource limits
7570  *	@adap: the adapter
7571  *	@mbox: mailbox to use for the FW command
7572  *	@pf: the PF being configured
7573  *	@vf: the VF being configured
7574  *	@txq: the max number of egress queues
7575  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7576  *	@rxqi: the max number of interrupt-capable ingress queues
7577  *	@rxq: the max number of interruptless ingress queues
7578  *	@tc: the PCI traffic class
7579  *	@vi: the max number of virtual interfaces
7580  *	@cmask: the channel access rights mask for the PF/VF
7581  *	@pmask: the port access rights mask for the PF/VF
7582  *	@nexact: the maximum number of exact MPS filters
7583  *	@rcaps: read capabilities
7584  *	@wxcaps: write/execute capabilities
7585  *
7586  *	Configures resource limits and capabilities for a physical or virtual
7587  *	function.
7588  */
7589 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7590 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7591 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7592 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7593 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7594 {
7595 	struct fw_pfvf_cmd c;
7596 
7597 	memset(&c, 0, sizeof(c));
7598 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7599 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7600 				  FW_PFVF_CMD_VFN_V(vf));
7601 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7602 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7603 				     FW_PFVF_CMD_NIQ_V(rxq));
7604 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7605 				    FW_PFVF_CMD_PMASK_V(pmask) |
7606 				    FW_PFVF_CMD_NEQ_V(txq));
7607 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7608 				      FW_PFVF_CMD_NVI_V(vi) |
7609 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7610 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7611 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7612 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7613 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7614 }
7615 
7616 /**
7617  *	t4_alloc_vi - allocate a virtual interface
7618  *	@adap: the adapter
7619  *	@mbox: mailbox to use for the FW command
7620  *	@port: physical port associated with the VI
7621  *	@pf: the PF owning the VI
7622  *	@vf: the VF owning the VI
7623  *	@nmac: number of MAC addresses needed (1 to 5)
7624  *	@mac: the MAC addresses of the VI
7625  *	@rss_size: size of RSS table slice associated with this VI
7626  *	@vivld: the destination to store the VI Valid value.
7627  *	@vin: the destination to store the VIN value.
7628  *
7629  *	Allocates a virtual interface for the given physical port.  If @mac is
7630  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7631  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7632  *	stored consecutively so the space needed is @nmac * 6 bytes.
7633  *	Returns a negative error number or the non-negative VI id.
7634  */
7635 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7636 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7637 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7638 {
7639 	int ret;
7640 	struct fw_vi_cmd c;
7641 
7642 	memset(&c, 0, sizeof(c));
7643 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7644 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7645 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7646 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7647 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7648 	c.nmac = nmac - 1;
7649 
7650 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7651 	if (ret)
7652 		return ret;
7653 
7654 	if (mac) {
7655 		memcpy(mac, c.mac, sizeof(c.mac));
7656 		switch (nmac) {
7657 		case 5:
7658 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7659 			/* Fall through */
7660 		case 4:
7661 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7662 			/* Fall through */
7663 		case 3:
7664 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7665 			/* Fall through */
7666 		case 2:
7667 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7668 		}
7669 	}
7670 	if (rss_size)
7671 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7672 
7673 	if (vivld)
7674 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7675 
7676 	if (vin)
7677 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7678 
7679 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7680 }
7681 
7682 /**
7683  *	t4_free_vi - free a virtual interface
7684  *	@adap: the adapter
7685  *	@mbox: mailbox to use for the FW command
7686  *	@pf: the PF owning the VI
7687  *	@vf: the VF owning the VI
7688  *	@viid: virtual interface identifiler
7689  *
7690  *	Free a previously allocated virtual interface.
7691  */
7692 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7693 	       unsigned int vf, unsigned int viid)
7694 {
7695 	struct fw_vi_cmd c;
7696 
7697 	memset(&c, 0, sizeof(c));
7698 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7699 				  FW_CMD_REQUEST_F |
7700 				  FW_CMD_EXEC_F |
7701 				  FW_VI_CMD_PFN_V(pf) |
7702 				  FW_VI_CMD_VFN_V(vf));
7703 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7704 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7705 
7706 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7707 }
7708 
7709 /**
7710  *	t4_set_rxmode - set Rx properties of a virtual interface
7711  *	@adap: the adapter
7712  *	@mbox: mailbox to use for the FW command
7713  *	@viid: the VI id
7714  *	@viid_mirror: the mirror VI id
7715  *	@mtu: the new MTU or -1
7716  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7717  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7718  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7719  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7720  *	@sleep_ok: if true we may sleep while awaiting command completion
7721  *
7722  *	Sets Rx properties of a virtual interface.
7723  */
7724 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7725 		  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7726 		  int bcast, int vlanex, bool sleep_ok)
7727 {
7728 	struct fw_vi_rxmode_cmd c, c_mirror;
7729 	int ret;
7730 
7731 	/* convert to FW values */
7732 	if (mtu < 0)
7733 		mtu = FW_RXMODE_MTU_NO_CHG;
7734 	if (promisc < 0)
7735 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7736 	if (all_multi < 0)
7737 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7738 	if (bcast < 0)
7739 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7740 	if (vlanex < 0)
7741 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7742 
7743 	memset(&c, 0, sizeof(c));
7744 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7745 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7746 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7747 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7748 	c.mtu_to_vlanexen =
7749 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7750 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7751 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7752 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7753 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7754 
7755 	if (viid_mirror) {
7756 		memcpy(&c_mirror, &c, sizeof(c_mirror));
7757 		c_mirror.op_to_viid =
7758 			cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7759 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7760 				    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7761 	}
7762 
7763 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7764 	if (ret)
7765 		return ret;
7766 
7767 	if (viid_mirror)
7768 		ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7769 				      NULL, sleep_ok);
7770 
7771 	return ret;
7772 }
7773 
7774 /**
7775  *      t4_free_encap_mac_filt - frees MPS entry at given index
7776  *      @adap: the adapter
7777  *      @viid: the VI id
7778  *      @idx: index of MPS entry to be freed
7779  *      @sleep_ok: call is allowed to sleep
7780  *
7781  *      Frees the MPS entry at supplied index
7782  *
7783  *      Returns a negative error number or zero on success
7784  */
7785 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7786 			   int idx, bool sleep_ok)
7787 {
7788 	struct fw_vi_mac_exact *p;
7789 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7790 	struct fw_vi_mac_cmd c;
7791 	int ret = 0;
7792 	u32 exact;
7793 
7794 	memset(&c, 0, sizeof(c));
7795 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7796 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7797 				   FW_CMD_EXEC_V(0) |
7798 				   FW_VI_MAC_CMD_VIID_V(viid));
7799 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7800 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7801 					  exact |
7802 					  FW_CMD_LEN16_V(1));
7803 	p = c.u.exact;
7804 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7805 				      FW_VI_MAC_CMD_IDX_V(idx));
7806 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7807 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7808 	return ret;
7809 }
7810 
7811 /**
7812  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7813  *	@adap: the adapter
7814  *	@viid: the VI id
7815  *	@addr: the MAC address
7816  *	@mask: the mask
7817  *	@idx: index of the entry in mps tcam
7818  *	@lookup_type: MAC address for inner (1) or outer (0) header
7819  *	@port_id: the port index
7820  *	@sleep_ok: call is allowed to sleep
7821  *
7822  *	Removes the mac entry at the specified index using raw mac interface.
7823  *
7824  *	Returns a negative error number on failure.
7825  */
7826 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7827 			 const u8 *addr, const u8 *mask, unsigned int idx,
7828 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7829 {
7830 	struct fw_vi_mac_cmd c;
7831 	struct fw_vi_mac_raw *p = &c.u.raw;
7832 	u32 val;
7833 
7834 	memset(&c, 0, sizeof(c));
7835 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7836 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7837 				   FW_CMD_EXEC_V(0) |
7838 				   FW_VI_MAC_CMD_VIID_V(viid));
7839 	val = FW_CMD_LEN16_V(1) |
7840 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7841 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7842 					  FW_CMD_LEN16_V(val));
7843 
7844 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7845 				     FW_VI_MAC_ID_BASED_FREE);
7846 
7847 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7848 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7849 				   DATAPORTNUM_V(port_id));
7850 	/* Lookup mask and port mask */
7851 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7852 				    DATAPORTNUM_V(DATAPORTNUM_M));
7853 
7854 	/* Copy the address and the mask */
7855 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7856 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7857 
7858 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7859 }
7860 
7861 /**
7862  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7863  *      @adap: the adapter
7864  *      @viid: the VI id
7865  *      @addr: the MAC address
7866  *      @mask: the mask
7867  *      @vni: the VNI id for the tunnel protocol
7868  *      @vni_mask: mask for the VNI id
7869  *      @dip_hit: to enable DIP match for the MPS entry
7870  *      @lookup_type: MAC address for inner (1) or outer (0) header
7871  *      @sleep_ok: call is allowed to sleep
7872  *
7873  *      Allocates an MPS entry with specified MAC address and VNI value.
7874  *
7875  *      Returns a negative error number or the allocated index for this mac.
7876  */
7877 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7878 			    const u8 *addr, const u8 *mask, unsigned int vni,
7879 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7880 			    bool sleep_ok)
7881 {
7882 	struct fw_vi_mac_cmd c;
7883 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7884 	int ret = 0;
7885 	u32 val;
7886 
7887 	memset(&c, 0, sizeof(c));
7888 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7889 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7890 				   FW_VI_MAC_CMD_VIID_V(viid));
7891 	val = FW_CMD_LEN16_V(1) |
7892 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7893 	c.freemacs_to_len16 = cpu_to_be32(val);
7894 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7895 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7896 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7897 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7898 
7899 	p->lookup_type_to_vni =
7900 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7901 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7902 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7903 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7904 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7905 	if (ret == 0)
7906 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7907 	return ret;
7908 }
7909 
7910 /**
7911  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7912  *	@adap: the adapter
7913  *	@viid: the VI id
7914  *	@addr: the MAC address
7915  *	@mask: the mask
7916  *	@idx: index at which to add this entry
7917  *	@lookup_type: MAC address for inner (1) or outer (0) header
7918  *	@port_id: the port index
7919  *	@sleep_ok: call is allowed to sleep
7920  *
7921  *	Adds the mac entry at the specified index using raw mac interface.
7922  *
7923  *	Returns a negative error number or the allocated index for this mac.
7924  */
7925 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7926 			  const u8 *addr, const u8 *mask, unsigned int idx,
7927 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7928 {
7929 	int ret = 0;
7930 	struct fw_vi_mac_cmd c;
7931 	struct fw_vi_mac_raw *p = &c.u.raw;
7932 	u32 val;
7933 
7934 	memset(&c, 0, sizeof(c));
7935 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7936 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7937 				   FW_VI_MAC_CMD_VIID_V(viid));
7938 	val = FW_CMD_LEN16_V(1) |
7939 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7940 	c.freemacs_to_len16 = cpu_to_be32(val);
7941 
7942 	/* Specify that this is an inner mac address */
7943 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7944 
7945 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7946 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7947 				   DATAPORTNUM_V(port_id));
7948 	/* Lookup mask and port mask */
7949 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7950 				    DATAPORTNUM_V(DATAPORTNUM_M));
7951 
7952 	/* Copy the address and the mask */
7953 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7954 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7955 
7956 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7957 	if (ret == 0) {
7958 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7959 		if (ret != idx)
7960 			ret = -ENOMEM;
7961 	}
7962 
7963 	return ret;
7964 }
7965 
7966 /**
7967  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7968  *	@adap: the adapter
7969  *	@mbox: mailbox to use for the FW command
7970  *	@viid: the VI id
7971  *	@free: if true any existing filters for this VI id are first removed
7972  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7973  *	@addr: the MAC address(es)
7974  *	@idx: where to store the index of each allocated filter
7975  *	@hash: pointer to hash address filter bitmap
7976  *	@sleep_ok: call is allowed to sleep
7977  *
7978  *	Allocates an exact-match filter for each of the supplied addresses and
7979  *	sets it to the corresponding address.  If @idx is not %NULL it should
7980  *	have at least @naddr entries, each of which will be set to the index of
7981  *	the filter allocated for the corresponding MAC address.  If a filter
7982  *	could not be allocated for an address its index is set to 0xffff.
7983  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7984  *	are hashed and update the hash filter bitmap pointed at by @hash.
7985  *
7986  *	Returns a negative error number or the number of filters allocated.
7987  */
7988 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7989 		      unsigned int viid, bool free, unsigned int naddr,
7990 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7991 {
7992 	int offset, ret = 0;
7993 	struct fw_vi_mac_cmd c;
7994 	unsigned int nfilters = 0;
7995 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7996 	unsigned int rem = naddr;
7997 
7998 	if (naddr > max_naddr)
7999 		return -EINVAL;
8000 
8001 	for (offset = 0; offset < naddr ; /**/) {
8002 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
8003 					 rem : ARRAY_SIZE(c.u.exact));
8004 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8005 						     u.exact[fw_naddr]), 16);
8006 		struct fw_vi_mac_exact *p;
8007 		int i;
8008 
8009 		memset(&c, 0, sizeof(c));
8010 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8011 					   FW_CMD_REQUEST_F |
8012 					   FW_CMD_WRITE_F |
8013 					   FW_CMD_EXEC_V(free) |
8014 					   FW_VI_MAC_CMD_VIID_V(viid));
8015 		c.freemacs_to_len16 =
8016 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8017 				    FW_CMD_LEN16_V(len16));
8018 
8019 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8020 			p->valid_to_idx =
8021 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8022 					    FW_VI_MAC_CMD_IDX_V(
8023 						    FW_VI_MAC_ADD_MAC));
8024 			memcpy(p->macaddr, addr[offset + i],
8025 			       sizeof(p->macaddr));
8026 		}
8027 
8028 		/* It's okay if we run out of space in our MAC address arena.
8029 		 * Some of the addresses we submit may get stored so we need
8030 		 * to run through the reply to see what the results were ...
8031 		 */
8032 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8033 		if (ret && ret != -FW_ENOMEM)
8034 			break;
8035 
8036 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8037 			u16 index = FW_VI_MAC_CMD_IDX_G(
8038 					be16_to_cpu(p->valid_to_idx));
8039 
8040 			if (idx)
8041 				idx[offset + i] = (index >= max_naddr ?
8042 						   0xffff : index);
8043 			if (index < max_naddr)
8044 				nfilters++;
8045 			else if (hash)
8046 				*hash |= (1ULL <<
8047 					  hash_mac_addr(addr[offset + i]));
8048 		}
8049 
8050 		free = false;
8051 		offset += fw_naddr;
8052 		rem -= fw_naddr;
8053 	}
8054 
8055 	if (ret == 0 || ret == -FW_ENOMEM)
8056 		ret = nfilters;
8057 	return ret;
8058 }
8059 
8060 /**
8061  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8062  *	@adap: the adapter
8063  *	@mbox: mailbox to use for the FW command
8064  *	@viid: the VI id
8065  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8066  *	@addr: the MAC address(es)
8067  *	@sleep_ok: call is allowed to sleep
8068  *
8069  *	Frees the exact-match filter for each of the supplied addresses
8070  *
8071  *	Returns a negative error number or the number of filters freed.
8072  */
8073 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8074 		     unsigned int viid, unsigned int naddr,
8075 		     const u8 **addr, bool sleep_ok)
8076 {
8077 	int offset, ret = 0;
8078 	struct fw_vi_mac_cmd c;
8079 	unsigned int nfilters = 0;
8080 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8081 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8082 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8083 	unsigned int rem = naddr;
8084 
8085 	if (naddr > max_naddr)
8086 		return -EINVAL;
8087 
8088 	for (offset = 0; offset < (int)naddr ; /**/) {
8089 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8090 					 ? rem
8091 					 : ARRAY_SIZE(c.u.exact));
8092 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8093 						     u.exact[fw_naddr]), 16);
8094 		struct fw_vi_mac_exact *p;
8095 		int i;
8096 
8097 		memset(&c, 0, sizeof(c));
8098 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8099 				     FW_CMD_REQUEST_F |
8100 				     FW_CMD_WRITE_F |
8101 				     FW_CMD_EXEC_V(0) |
8102 				     FW_VI_MAC_CMD_VIID_V(viid));
8103 		c.freemacs_to_len16 =
8104 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8105 					    FW_CMD_LEN16_V(len16));
8106 
8107 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8108 			p->valid_to_idx = cpu_to_be16(
8109 				FW_VI_MAC_CMD_VALID_F |
8110 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8111 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8112 		}
8113 
8114 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8115 		if (ret)
8116 			break;
8117 
8118 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8119 			u16 index = FW_VI_MAC_CMD_IDX_G(
8120 						be16_to_cpu(p->valid_to_idx));
8121 
8122 			if (index < max_naddr)
8123 				nfilters++;
8124 		}
8125 
8126 		offset += fw_naddr;
8127 		rem -= fw_naddr;
8128 	}
8129 
8130 	if (ret == 0)
8131 		ret = nfilters;
8132 	return ret;
8133 }
8134 
8135 /**
8136  *	t4_change_mac - modifies the exact-match filter for a MAC address
8137  *	@adap: the adapter
8138  *	@mbox: mailbox to use for the FW command
8139  *	@viid: the VI id
8140  *	@idx: index of existing filter for old value of MAC address, or -1
8141  *	@addr: the new MAC address value
8142  *	@persist: whether a new MAC allocation should be persistent
8143  *	@smt_idx: the destination to store the new SMT index.
8144  *
8145  *	Modifies an exact-match filter and sets it to the new MAC address.
8146  *	Note that in general it is not possible to modify the value of a given
8147  *	filter so the generic way to modify an address filter is to free the one
8148  *	being used by the old address value and allocate a new filter for the
8149  *	new address value.  @idx can be -1 if the address is a new addition.
8150  *
8151  *	Returns a negative error number or the index of the filter with the new
8152  *	MAC value.
8153  */
8154 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8155 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8156 {
8157 	int ret, mode;
8158 	struct fw_vi_mac_cmd c;
8159 	struct fw_vi_mac_exact *p = c.u.exact;
8160 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8161 
8162 	if (idx < 0)                             /* new allocation */
8163 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8164 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8165 
8166 	memset(&c, 0, sizeof(c));
8167 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8168 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8169 				   FW_VI_MAC_CMD_VIID_V(viid));
8170 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8171 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8172 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8173 				      FW_VI_MAC_CMD_IDX_V(idx));
8174 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8175 
8176 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8177 	if (ret == 0) {
8178 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8179 		if (ret >= max_mac_addr)
8180 			ret = -ENOMEM;
8181 		if (smt_idx) {
8182 			if (adap->params.viid_smt_extn_support) {
8183 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8184 						    (be32_to_cpu(c.op_to_viid));
8185 			} else {
8186 				/* In T4/T5, SMT contains 256 SMAC entries
8187 				 * organized in 128 rows of 2 entries each.
8188 				 * In T6, SMT contains 256 SMAC entries in
8189 				 * 256 rows.
8190 				 */
8191 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8192 								     CHELSIO_T5)
8193 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8194 				else
8195 					*smt_idx = (viid & FW_VIID_VIN_M);
8196 			}
8197 		}
8198 	}
8199 	return ret;
8200 }
8201 
8202 /**
8203  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8204  *	@adap: the adapter
8205  *	@mbox: mailbox to use for the FW command
8206  *	@viid: the VI id
8207  *	@ucast: whether the hash filter should also match unicast addresses
8208  *	@vec: the value to be written to the hash filter
8209  *	@sleep_ok: call is allowed to sleep
8210  *
8211  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8212  */
8213 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8214 		     bool ucast, u64 vec, bool sleep_ok)
8215 {
8216 	struct fw_vi_mac_cmd c;
8217 
8218 	memset(&c, 0, sizeof(c));
8219 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8220 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8221 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8222 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8223 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8224 					  FW_CMD_LEN16_V(1));
8225 	c.u.hash.hashvec = cpu_to_be64(vec);
8226 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8227 }
8228 
8229 /**
8230  *      t4_enable_vi_params - enable/disable a virtual interface
8231  *      @adap: the adapter
8232  *      @mbox: mailbox to use for the FW command
8233  *      @viid: the VI id
8234  *      @rx_en: 1=enable Rx, 0=disable Rx
8235  *      @tx_en: 1=enable Tx, 0=disable Tx
8236  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8237  *
8238  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8239  *      only makes sense when enabling a Virtual Interface ...
8240  */
8241 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8242 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8243 {
8244 	struct fw_vi_enable_cmd c;
8245 
8246 	memset(&c, 0, sizeof(c));
8247 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8248 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8249 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8250 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8251 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8252 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8253 				     FW_LEN16(c));
8254 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8255 }
8256 
8257 /**
8258  *	t4_enable_vi - enable/disable a virtual interface
8259  *	@adap: the adapter
8260  *	@mbox: mailbox to use for the FW command
8261  *	@viid: the VI id
8262  *	@rx_en: 1=enable Rx, 0=disable Rx
8263  *	@tx_en: 1=enable Tx, 0=disable Tx
8264  *
8265  *	Enables/disables a virtual interface.
8266  */
8267 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8268 		 bool rx_en, bool tx_en)
8269 {
8270 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8271 }
8272 
8273 /**
8274  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8275  *      @adap: the adapter
8276  *      @mbox: mailbox to use for the FW command
8277  *      @pi: the Port Information structure
8278  *      @rx_en: 1=enable Rx, 0=disable Rx
8279  *      @tx_en: 1=enable Tx, 0=disable Tx
8280  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8281  *
8282  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8283  *	Enable only makes sense when enabling a Virtual Interface ...
8284  *	If the Virtual Interface enable/disable operation is successful,
8285  *	we notify the OS-specific code of a potential Link Status change
8286  *	via the OS Contract API t4_os_link_changed().
8287  */
8288 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8289 			struct port_info *pi,
8290 			bool rx_en, bool tx_en, bool dcb_en)
8291 {
8292 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8293 				      rx_en, tx_en, dcb_en);
8294 	if (ret)
8295 		return ret;
8296 	t4_os_link_changed(adap, pi->port_id,
8297 			   rx_en && tx_en && pi->link_cfg.link_ok);
8298 	return 0;
8299 }
8300 
8301 /**
8302  *	t4_identify_port - identify a VI's port by blinking its LED
8303  *	@adap: the adapter
8304  *	@mbox: mailbox to use for the FW command
8305  *	@viid: the VI id
8306  *	@nblinks: how many times to blink LED at 2.5 Hz
8307  *
8308  *	Identifies a VI's port by blinking its LED.
8309  */
8310 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8311 		     unsigned int nblinks)
8312 {
8313 	struct fw_vi_enable_cmd c;
8314 
8315 	memset(&c, 0, sizeof(c));
8316 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8317 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8318 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8319 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8320 	c.blinkdur = cpu_to_be16(nblinks);
8321 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8322 }
8323 
8324 /**
8325  *	t4_iq_stop - stop an ingress queue and its FLs
8326  *	@adap: the adapter
8327  *	@mbox: mailbox to use for the FW command
8328  *	@pf: the PF owning the queues
8329  *	@vf: the VF owning the queues
8330  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8331  *	@iqid: ingress queue id
8332  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8333  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8334  *
8335  *	Stops an ingress queue and its associated FLs, if any.  This causes
8336  *	any current or future data/messages destined for these queues to be
8337  *	tossed.
8338  */
8339 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8340 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8341 	       unsigned int fl0id, unsigned int fl1id)
8342 {
8343 	struct fw_iq_cmd c;
8344 
8345 	memset(&c, 0, sizeof(c));
8346 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8347 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8348 				  FW_IQ_CMD_VFN_V(vf));
8349 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8350 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8351 	c.iqid = cpu_to_be16(iqid);
8352 	c.fl0id = cpu_to_be16(fl0id);
8353 	c.fl1id = cpu_to_be16(fl1id);
8354 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8355 }
8356 
8357 /**
8358  *	t4_iq_free - free an ingress queue and its FLs
8359  *	@adap: the adapter
8360  *	@mbox: mailbox to use for the FW command
8361  *	@pf: the PF owning the queues
8362  *	@vf: the VF owning the queues
8363  *	@iqtype: the ingress queue type
8364  *	@iqid: ingress queue id
8365  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8366  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8367  *
8368  *	Frees an ingress queue and its associated FLs, if any.
8369  */
8370 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8371 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8372 	       unsigned int fl0id, unsigned int fl1id)
8373 {
8374 	struct fw_iq_cmd c;
8375 
8376 	memset(&c, 0, sizeof(c));
8377 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8378 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8379 				  FW_IQ_CMD_VFN_V(vf));
8380 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8381 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8382 	c.iqid = cpu_to_be16(iqid);
8383 	c.fl0id = cpu_to_be16(fl0id);
8384 	c.fl1id = cpu_to_be16(fl1id);
8385 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8386 }
8387 
8388 /**
8389  *	t4_eth_eq_free - free an Ethernet egress queue
8390  *	@adap: the adapter
8391  *	@mbox: mailbox to use for the FW command
8392  *	@pf: the PF owning the queue
8393  *	@vf: the VF owning the queue
8394  *	@eqid: egress queue id
8395  *
8396  *	Frees an Ethernet egress queue.
8397  */
8398 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8399 		   unsigned int vf, unsigned int eqid)
8400 {
8401 	struct fw_eq_eth_cmd c;
8402 
8403 	memset(&c, 0, sizeof(c));
8404 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8405 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8406 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8407 				  FW_EQ_ETH_CMD_VFN_V(vf));
8408 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8409 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8410 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8411 }
8412 
8413 /**
8414  *	t4_ctrl_eq_free - free a control egress queue
8415  *	@adap: the adapter
8416  *	@mbox: mailbox to use for the FW command
8417  *	@pf: the PF owning the queue
8418  *	@vf: the VF owning the queue
8419  *	@eqid: egress queue id
8420  *
8421  *	Frees a control egress queue.
8422  */
8423 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8424 		    unsigned int vf, unsigned int eqid)
8425 {
8426 	struct fw_eq_ctrl_cmd c;
8427 
8428 	memset(&c, 0, sizeof(c));
8429 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8430 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8431 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8432 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8433 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8434 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8435 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8436 }
8437 
8438 /**
8439  *	t4_ofld_eq_free - free an offload egress queue
8440  *	@adap: the adapter
8441  *	@mbox: mailbox to use for the FW command
8442  *	@pf: the PF owning the queue
8443  *	@vf: the VF owning the queue
8444  *	@eqid: egress queue id
8445  *
8446  *	Frees a control egress queue.
8447  */
8448 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8449 		    unsigned int vf, unsigned int eqid)
8450 {
8451 	struct fw_eq_ofld_cmd c;
8452 
8453 	memset(&c, 0, sizeof(c));
8454 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8455 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8456 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8457 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8458 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8459 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8460 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8461 }
8462 
8463 /**
8464  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8465  *	@link_down_rc: Link Down Reason Code
8466  *
8467  *	Returns a string representation of the Link Down Reason Code.
8468  */
8469 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8470 {
8471 	static const char * const reason[] = {
8472 		"Link Down",
8473 		"Remote Fault",
8474 		"Auto-negotiation Failure",
8475 		"Reserved",
8476 		"Insufficient Airflow",
8477 		"Unable To Determine Reason",
8478 		"No RX Signal Detected",
8479 		"Reserved",
8480 	};
8481 
8482 	if (link_down_rc >= ARRAY_SIZE(reason))
8483 		return "Bad Reason Code";
8484 
8485 	return reason[link_down_rc];
8486 }
8487 
8488 /* Return the highest speed set in the port capabilities, in Mb/s. */
8489 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8490 {
8491 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8492 		do { \
8493 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8494 				return __speed; \
8495 		} while (0)
8496 
8497 	TEST_SPEED_RETURN(400G, 400000);
8498 	TEST_SPEED_RETURN(200G, 200000);
8499 	TEST_SPEED_RETURN(100G, 100000);
8500 	TEST_SPEED_RETURN(50G,   50000);
8501 	TEST_SPEED_RETURN(40G,   40000);
8502 	TEST_SPEED_RETURN(25G,   25000);
8503 	TEST_SPEED_RETURN(10G,   10000);
8504 	TEST_SPEED_RETURN(1G,     1000);
8505 	TEST_SPEED_RETURN(100M,    100);
8506 
8507 	#undef TEST_SPEED_RETURN
8508 
8509 	return 0;
8510 }
8511 
8512 /**
8513  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8514  *	@acaps: advertised Port Capabilities
8515  *
8516  *	Get the highest speed for the port from the advertised Port
8517  *	Capabilities.  It will be either the highest speed from the list of
8518  *	speeds or whatever user has set using ethtool.
8519  */
8520 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8521 {
8522 	#define TEST_SPEED_RETURN(__caps_speed) \
8523 		do { \
8524 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8525 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8526 		} while (0)
8527 
8528 	TEST_SPEED_RETURN(400G);
8529 	TEST_SPEED_RETURN(200G);
8530 	TEST_SPEED_RETURN(100G);
8531 	TEST_SPEED_RETURN(50G);
8532 	TEST_SPEED_RETURN(40G);
8533 	TEST_SPEED_RETURN(25G);
8534 	TEST_SPEED_RETURN(10G);
8535 	TEST_SPEED_RETURN(1G);
8536 	TEST_SPEED_RETURN(100M);
8537 
8538 	#undef TEST_SPEED_RETURN
8539 
8540 	return 0;
8541 }
8542 
8543 /**
8544  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8545  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8546  *
8547  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8548  *	32-bit Port Capabilities value.
8549  */
8550 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8551 {
8552 	fw_port_cap32_t linkattr = 0;
8553 
8554 	/* Unfortunately the format of the Link Status in the old
8555 	 * 16-bit Port Information message isn't the same as the
8556 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8557 	 */
8558 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8559 		linkattr |= FW_PORT_CAP32_FC_RX;
8560 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8561 		linkattr |= FW_PORT_CAP32_FC_TX;
8562 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8563 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8564 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8565 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8566 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8567 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8568 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8569 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8570 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8571 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8572 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8573 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8574 
8575 	return linkattr;
8576 }
8577 
8578 /**
8579  *	t4_handle_get_port_info - process a FW reply message
8580  *	@pi: the port info
8581  *	@rpl: start of the FW message
8582  *
8583  *	Processes a GET_PORT_INFO FW reply message.
8584  */
8585 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8586 {
8587 	const struct fw_port_cmd *cmd = (const void *)rpl;
8588 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8589 	struct link_config *lc = &pi->link_cfg;
8590 	struct adapter *adapter = pi->adapter;
8591 	unsigned int speed, fc, fec, adv_fc;
8592 	enum fw_port_module_type mod_type;
8593 	int action, link_ok, linkdnrc;
8594 	enum fw_port_type port_type;
8595 
8596 	/* Extract the various fields from the Port Information message.
8597 	 */
8598 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8599 	switch (action) {
8600 	case FW_PORT_ACTION_GET_PORT_INFO: {
8601 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8602 
8603 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8604 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8605 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8606 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8607 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8608 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8609 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8610 		linkattr = lstatus_to_fwcap(lstatus);
8611 		break;
8612 	}
8613 
8614 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8615 		u32 lstatus32;
8616 
8617 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8618 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8619 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8620 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8621 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8622 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8623 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8624 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8625 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8626 		break;
8627 	}
8628 
8629 	default:
8630 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8631 			be32_to_cpu(cmd->action_to_len16));
8632 		return;
8633 	}
8634 
8635 	fec = fwcap_to_cc_fec(acaps);
8636 	adv_fc = fwcap_to_cc_pause(acaps);
8637 	fc = fwcap_to_cc_pause(linkattr);
8638 	speed = fwcap_to_speed(linkattr);
8639 
8640 	/* Reset state for communicating new Transceiver Module status and
8641 	 * whether the OS-dependent layer wants us to redo the current
8642 	 * "sticky" L1 Configure Link Parameters.
8643 	 */
8644 	lc->new_module = false;
8645 	lc->redo_l1cfg = false;
8646 
8647 	if (mod_type != pi->mod_type) {
8648 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8649 		 * various fundamental Port Capabilities which used to be
8650 		 * immutable can now change radically.  We can now have
8651 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8652 		 * all change based on what Transceiver Module is inserted.
8653 		 * So we need to record the Physical "Port" Capabilities on
8654 		 * every Transceiver Module change.
8655 		 */
8656 		lc->pcaps = pcaps;
8657 
8658 		/* When a new Transceiver Module is inserted, the Firmware
8659 		 * will examine its i2c EPROM to determine its type and
8660 		 * general operating parameters including things like Forward
8661 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8662 		 * how to interpret these i2c values to determine default
8663 		 * "sutomatic" settings.  We record these for future use when
8664 		 * the user explicitly requests these standards-based values.
8665 		 */
8666 		lc->def_acaps = acaps;
8667 
8668 		/* Some versions of the early T6 Firmware "cheated" when
8669 		 * handling different Transceiver Modules by changing the
8670 		 * underlaying Port Type reported to the Host Drivers.  As
8671 		 * such we need to capture whatever Port Type the Firmware
8672 		 * sends us and record it in case it's different from what we
8673 		 * were told earlier.  Unfortunately, since Firmware is
8674 		 * forever, we'll need to keep this code here forever, but in
8675 		 * later T6 Firmware it should just be an assignment of the
8676 		 * same value already recorded.
8677 		 */
8678 		pi->port_type = port_type;
8679 
8680 		/* Record new Module Type information.
8681 		 */
8682 		pi->mod_type = mod_type;
8683 
8684 		/* Let the OS-dependent layer know if we have a new
8685 		 * Transceiver Module inserted.
8686 		 */
8687 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8688 
8689 		t4_os_portmod_changed(adapter, pi->port_id);
8690 	}
8691 
8692 	if (link_ok != lc->link_ok || speed != lc->speed ||
8693 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8694 	    fec != lc->fec) {
8695 		/* something changed */
8696 		if (!link_ok && lc->link_ok) {
8697 			lc->link_down_rc = linkdnrc;
8698 			dev_warn_ratelimited(adapter->pdev_dev,
8699 					     "Port %d link down, reason: %s\n",
8700 					     pi->tx_chan,
8701 					     t4_link_down_rc_str(linkdnrc));
8702 		}
8703 		lc->link_ok = link_ok;
8704 		lc->speed = speed;
8705 		lc->advertised_fc = adv_fc;
8706 		lc->fc = fc;
8707 		lc->fec = fec;
8708 
8709 		lc->lpacaps = lpacaps;
8710 		lc->acaps = acaps & ADVERT_MASK;
8711 
8712 		/* If we're not physically capable of Auto-Negotiation, note
8713 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8714 		 * what Auto-Negotiation settings we have.  Note parallel
8715 		 * structure in t4_link_l1cfg_core() and init_link_config().
8716 		 */
8717 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8718 			lc->autoneg = AUTONEG_DISABLE;
8719 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8720 			lc->autoneg = AUTONEG_ENABLE;
8721 		} else {
8722 			/* When Autoneg is disabled, user needs to set
8723 			 * single speed.
8724 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8725 			 */
8726 			lc->acaps = 0;
8727 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8728 			lc->autoneg = AUTONEG_DISABLE;
8729 		}
8730 
8731 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8732 	}
8733 
8734 	/* If we have a new Transceiver Module and the OS-dependent code has
8735 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8736 	 * Link Parameters are set, do that now.
8737 	 */
8738 	if (lc->new_module && lc->redo_l1cfg) {
8739 		struct link_config old_lc;
8740 		int ret;
8741 
8742 		/* Save the current L1 Configuration and restore it if an
8743 		 * error occurs.  We probably should fix the l1_cfg*()
8744 		 * routines not to change the link_config when an error
8745 		 * occurs ...
8746 		 */
8747 		old_lc = *lc;
8748 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8749 		if (ret) {
8750 			*lc = old_lc;
8751 			dev_warn(adapter->pdev_dev,
8752 				 "Attempt to update new Transceiver Module settings failed\n");
8753 		}
8754 	}
8755 	lc->new_module = false;
8756 	lc->redo_l1cfg = false;
8757 }
8758 
8759 /**
8760  *	t4_update_port_info - retrieve and update port information if changed
8761  *	@pi: the port_info
8762  *
8763  *	We issue a Get Port Information Command to the Firmware and, if
8764  *	successful, we check to see if anything is different from what we
8765  *	last recorded and update things accordingly.
8766  */
8767 int t4_update_port_info(struct port_info *pi)
8768 {
8769 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8770 	struct fw_port_cmd port_cmd;
8771 	int ret;
8772 
8773 	memset(&port_cmd, 0, sizeof(port_cmd));
8774 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8775 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8776 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8777 	port_cmd.action_to_len16 = cpu_to_be32(
8778 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8779 				     ? FW_PORT_ACTION_GET_PORT_INFO
8780 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8781 		FW_LEN16(port_cmd));
8782 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8783 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8784 	if (ret)
8785 		return ret;
8786 
8787 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8788 	return 0;
8789 }
8790 
8791 /**
8792  *	t4_get_link_params - retrieve basic link parameters for given port
8793  *	@pi: the port
8794  *	@link_okp: value return pointer for link up/down
8795  *	@speedp: value return pointer for speed (Mb/s)
8796  *	@mtup: value return pointer for mtu
8797  *
8798  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8799  *	and MTU for a specified port.  A negative error is returned on
8800  *	failure; 0 on success.
8801  */
8802 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8803 		       unsigned int *speedp, unsigned int *mtup)
8804 {
8805 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8806 	unsigned int action, link_ok, mtu;
8807 	struct fw_port_cmd port_cmd;
8808 	fw_port_cap32_t linkattr;
8809 	int ret;
8810 
8811 	memset(&port_cmd, 0, sizeof(port_cmd));
8812 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8813 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8814 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8815 	action = (fw_caps == FW_CAPS16
8816 		  ? FW_PORT_ACTION_GET_PORT_INFO
8817 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8818 	port_cmd.action_to_len16 = cpu_to_be32(
8819 		FW_PORT_CMD_ACTION_V(action) |
8820 		FW_LEN16(port_cmd));
8821 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8822 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8823 	if (ret)
8824 		return ret;
8825 
8826 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8827 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8828 
8829 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8830 		linkattr = lstatus_to_fwcap(lstatus);
8831 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8832 	} else {
8833 		u32 lstatus32 =
8834 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8835 
8836 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8837 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8838 		mtu = FW_PORT_CMD_MTU32_G(
8839 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8840 	}
8841 
8842 	if (link_okp)
8843 		*link_okp = link_ok;
8844 	if (speedp)
8845 		*speedp = fwcap_to_speed(linkattr);
8846 	if (mtup)
8847 		*mtup = mtu;
8848 
8849 	return 0;
8850 }
8851 
8852 /**
8853  *      t4_handle_fw_rpl - process a FW reply message
8854  *      @adap: the adapter
8855  *      @rpl: start of the FW message
8856  *
8857  *      Processes a FW message, such as link state change messages.
8858  */
8859 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8860 {
8861 	u8 opcode = *(const u8 *)rpl;
8862 
8863 	/* This might be a port command ... this simplifies the following
8864 	 * conditionals ...  We can get away with pre-dereferencing
8865 	 * action_to_len16 because it's in the first 16 bytes and all messages
8866 	 * will be at least that long.
8867 	 */
8868 	const struct fw_port_cmd *p = (const void *)rpl;
8869 	unsigned int action =
8870 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8871 
8872 	if (opcode == FW_PORT_CMD &&
8873 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8874 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8875 		int i;
8876 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8877 		struct port_info *pi = NULL;
8878 
8879 		for_each_port(adap, i) {
8880 			pi = adap2pinfo(adap, i);
8881 			if (pi->tx_chan == chan)
8882 				break;
8883 		}
8884 
8885 		t4_handle_get_port_info(pi, rpl);
8886 	} else {
8887 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8888 			 opcode);
8889 		return -EINVAL;
8890 	}
8891 	return 0;
8892 }
8893 
8894 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8895 {
8896 	u16 val;
8897 
8898 	if (pci_is_pcie(adapter->pdev)) {
8899 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8900 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8901 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8902 	}
8903 }
8904 
8905 /**
8906  *	init_link_config - initialize a link's SW state
8907  *	@lc: pointer to structure holding the link state
8908  *	@pcaps: link Port Capabilities
8909  *	@acaps: link current Advertised Port Capabilities
8910  *
8911  *	Initializes the SW state maintained for each link, including the link's
8912  *	capabilities and default speed/flow-control/autonegotiation settings.
8913  */
8914 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8915 			     fw_port_cap32_t acaps)
8916 {
8917 	lc->pcaps = pcaps;
8918 	lc->def_acaps = acaps;
8919 	lc->lpacaps = 0;
8920 	lc->speed_caps = 0;
8921 	lc->speed = 0;
8922 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8923 
8924 	/* For Forward Error Control, we default to whatever the Firmware
8925 	 * tells us the Link is currently advertising.
8926 	 */
8927 	lc->requested_fec = FEC_AUTO;
8928 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8929 
8930 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8931 	 * "enabled" and copy over all of the Physical Port Capabilities
8932 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8933 	 * Auto-Negotiate disabled and select the highest supported speed
8934 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8935 	 * and t4_handle_get_port_info().
8936 	 */
8937 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8938 		lc->acaps = lc->pcaps & ADVERT_MASK;
8939 		lc->autoneg = AUTONEG_ENABLE;
8940 		lc->requested_fc |= PAUSE_AUTONEG;
8941 	} else {
8942 		lc->acaps = 0;
8943 		lc->autoneg = AUTONEG_DISABLE;
8944 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8945 	}
8946 }
8947 
8948 #define CIM_PF_NOACCESS 0xeeeeeeee
8949 
8950 int t4_wait_dev_ready(void __iomem *regs)
8951 {
8952 	u32 whoami;
8953 
8954 	whoami = readl(regs + PL_WHOAMI_A);
8955 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8956 		return 0;
8957 
8958 	msleep(500);
8959 	whoami = readl(regs + PL_WHOAMI_A);
8960 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8961 }
8962 
8963 struct flash_desc {
8964 	u32 vendor_and_model_id;
8965 	u32 size_mb;
8966 };
8967 
8968 static int t4_get_flash_params(struct adapter *adap)
8969 {
8970 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8971 	 * to the preexisting code.  All flash parts have 64KB sectors.
8972 	 */
8973 	static struct flash_desc supported_flash[] = {
8974 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8975 	};
8976 
8977 	unsigned int part, manufacturer;
8978 	unsigned int density, size = 0;
8979 	u32 flashid = 0;
8980 	int ret;
8981 
8982 	/* Issue a Read ID Command to the Flash part.  We decode supported
8983 	 * Flash parts and their sizes from this.  There's a newer Query
8984 	 * Command which can retrieve detailed geometry information but many
8985 	 * Flash parts don't support it.
8986 	 */
8987 
8988 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8989 	if (!ret)
8990 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8991 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8992 	if (ret)
8993 		return ret;
8994 
8995 	/* Check to see if it's one of our non-standard supported Flash parts.
8996 	 */
8997 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8998 		if (supported_flash[part].vendor_and_model_id == flashid) {
8999 			adap->params.sf_size = supported_flash[part].size_mb;
9000 			adap->params.sf_nsec =
9001 				adap->params.sf_size / SF_SEC_SIZE;
9002 			goto found;
9003 		}
9004 
9005 	/* Decode Flash part size.  The code below looks repetitive with
9006 	 * common encodings, but that's not guaranteed in the JEDEC
9007 	 * specification for the Read JEDEC ID command.  The only thing that
9008 	 * we're guaranteed by the JEDEC specification is where the
9009 	 * Manufacturer ID is in the returned result.  After that each
9010 	 * Manufacturer ~could~ encode things completely differently.
9011 	 * Note, all Flash parts must have 64KB sectors.
9012 	 */
9013 	manufacturer = flashid & 0xff;
9014 	switch (manufacturer) {
9015 	case 0x20: { /* Micron/Numonix */
9016 		/* This Density -> Size decoding table is taken from Micron
9017 		 * Data Sheets.
9018 		 */
9019 		density = (flashid >> 16) & 0xff;
9020 		switch (density) {
9021 		case 0x14: /* 1MB */
9022 			size = 1 << 20;
9023 			break;
9024 		case 0x15: /* 2MB */
9025 			size = 1 << 21;
9026 			break;
9027 		case 0x16: /* 4MB */
9028 			size = 1 << 22;
9029 			break;
9030 		case 0x17: /* 8MB */
9031 			size = 1 << 23;
9032 			break;
9033 		case 0x18: /* 16MB */
9034 			size = 1 << 24;
9035 			break;
9036 		case 0x19: /* 32MB */
9037 			size = 1 << 25;
9038 			break;
9039 		case 0x20: /* 64MB */
9040 			size = 1 << 26;
9041 			break;
9042 		case 0x21: /* 128MB */
9043 			size = 1 << 27;
9044 			break;
9045 		case 0x22: /* 256MB */
9046 			size = 1 << 28;
9047 			break;
9048 		}
9049 		break;
9050 	}
9051 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9052 		/* This Density -> Size decoding table is taken from ISSI
9053 		 * Data Sheets.
9054 		 */
9055 		density = (flashid >> 16) & 0xff;
9056 		switch (density) {
9057 		case 0x16: /* 32 MB */
9058 			size = 1 << 25;
9059 			break;
9060 		case 0x17: /* 64MB */
9061 			size = 1 << 26;
9062 			break;
9063 		}
9064 		break;
9065 	}
9066 	case 0xc2: { /* Macronix */
9067 		/* This Density -> Size decoding table is taken from Macronix
9068 		 * Data Sheets.
9069 		 */
9070 		density = (flashid >> 16) & 0xff;
9071 		switch (density) {
9072 		case 0x17: /* 8MB */
9073 			size = 1 << 23;
9074 			break;
9075 		case 0x18: /* 16MB */
9076 			size = 1 << 24;
9077 			break;
9078 		}
9079 		break;
9080 	}
9081 	case 0xef: { /* Winbond */
9082 		/* This Density -> Size decoding table is taken from Winbond
9083 		 * Data Sheets.
9084 		 */
9085 		density = (flashid >> 16) & 0xff;
9086 		switch (density) {
9087 		case 0x17: /* 8MB */
9088 			size = 1 << 23;
9089 			break;
9090 		case 0x18: /* 16MB */
9091 			size = 1 << 24;
9092 			break;
9093 		}
9094 		break;
9095 	}
9096 	}
9097 
9098 	/* If we didn't recognize the FLASH part, that's no real issue: the
9099 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9100 	 * use a FLASH part which is at least 4MB in size and has 64KB
9101 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9102 	 * than 4MB, but that's all we really need.
9103 	 */
9104 	if (size == 0) {
9105 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9106 			 flashid);
9107 		size = 1 << 22;
9108 	}
9109 
9110 	/* Store decoded Flash size and fall through into vetting code. */
9111 	adap->params.sf_size = size;
9112 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9113 
9114 found:
9115 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9116 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9117 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9118 	return 0;
9119 }
9120 
9121 /**
9122  *	t4_prep_adapter - prepare SW and HW for operation
9123  *	@adapter: the adapter
9124  *
9125  *	Initialize adapter SW state for the various HW modules, set initial
9126  *	values for some adapter tunables, take PHYs out of reset, and
9127  *	initialize the MDIO interface.
9128  */
9129 int t4_prep_adapter(struct adapter *adapter)
9130 {
9131 	int ret, ver;
9132 	uint16_t device_id;
9133 	u32 pl_rev;
9134 
9135 	get_pci_mode(adapter, &adapter->params.pci);
9136 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9137 
9138 	ret = t4_get_flash_params(adapter);
9139 	if (ret < 0) {
9140 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9141 		return ret;
9142 	}
9143 
9144 	/* Retrieve adapter's device ID
9145 	 */
9146 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9147 	ver = device_id >> 12;
9148 	adapter->params.chip = 0;
9149 	switch (ver) {
9150 	case CHELSIO_T4:
9151 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9152 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9153 		adapter->params.arch.mps_tcam_size =
9154 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9155 		adapter->params.arch.mps_rplc_size = 128;
9156 		adapter->params.arch.nchan = NCHAN;
9157 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9158 		adapter->params.arch.vfcount = 128;
9159 		/* Congestion map is for 4 channels so that
9160 		 * MPS can have 4 priority per port.
9161 		 */
9162 		adapter->params.arch.cng_ch_bits_log = 2;
9163 		break;
9164 	case CHELSIO_T5:
9165 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9166 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9167 		adapter->params.arch.mps_tcam_size =
9168 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9169 		adapter->params.arch.mps_rplc_size = 128;
9170 		adapter->params.arch.nchan = NCHAN;
9171 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9172 		adapter->params.arch.vfcount = 128;
9173 		adapter->params.arch.cng_ch_bits_log = 2;
9174 		break;
9175 	case CHELSIO_T6:
9176 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9177 		adapter->params.arch.sge_fl_db = 0;
9178 		adapter->params.arch.mps_tcam_size =
9179 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9180 		adapter->params.arch.mps_rplc_size = 256;
9181 		adapter->params.arch.nchan = 2;
9182 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9183 		adapter->params.arch.vfcount = 256;
9184 		/* Congestion map will be for 2 channels so that
9185 		 * MPS can have 8 priority per port.
9186 		 */
9187 		adapter->params.arch.cng_ch_bits_log = 3;
9188 		break;
9189 	default:
9190 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9191 			device_id);
9192 		return -EINVAL;
9193 	}
9194 
9195 	adapter->params.cim_la_size = CIMLA_SIZE;
9196 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9197 
9198 	/*
9199 	 * Default port for debugging in case we can't reach FW.
9200 	 */
9201 	adapter->params.nports = 1;
9202 	adapter->params.portvec = 1;
9203 	adapter->params.vpd.cclk = 50000;
9204 
9205 	/* Set PCIe completion timeout to 4 seconds. */
9206 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9207 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9208 	return 0;
9209 }
9210 
9211 /**
9212  *	t4_shutdown_adapter - shut down adapter, host & wire
9213  *	@adapter: the adapter
9214  *
9215  *	Perform an emergency shutdown of the adapter and stop it from
9216  *	continuing any further communication on the ports or DMA to the
9217  *	host.  This is typically used when the adapter and/or firmware
9218  *	have crashed and we want to prevent any further accidental
9219  *	communication with the rest of the world.  This will also force
9220  *	the port Link Status to go down -- if register writes work --
9221  *	which should help our peers figure out that we're down.
9222  */
9223 int t4_shutdown_adapter(struct adapter *adapter)
9224 {
9225 	int port;
9226 
9227 	t4_intr_disable(adapter);
9228 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9229 	for_each_port(adapter, port) {
9230 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9231 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9232 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9233 
9234 		t4_write_reg(adapter, a_port_cfg,
9235 			     t4_read_reg(adapter, a_port_cfg)
9236 			     & ~SIGNAL_DET_V(1));
9237 	}
9238 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9239 
9240 	return 0;
9241 }
9242 
9243 /**
9244  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9245  *	@adapter: the adapter
9246  *	@qid: the Queue ID
9247  *	@qtype: the Ingress or Egress type for @qid
9248  *	@user: true if this request is for a user mode queue
9249  *	@pbar2_qoffset: BAR2 Queue Offset
9250  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9251  *
9252  *	Returns the BAR2 SGE Queue Registers information associated with the
9253  *	indicated Absolute Queue ID.  These are passed back in return value
9254  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9255  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9256  *
9257  *	This may return an error which indicates that BAR2 SGE Queue
9258  *	registers aren't available.  If an error is not returned, then the
9259  *	following values are returned:
9260  *
9261  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9262  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9263  *
9264  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9265  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9266  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9267  *	then these "Inferred Queue ID" register may not be used.
9268  */
9269 int t4_bar2_sge_qregs(struct adapter *adapter,
9270 		      unsigned int qid,
9271 		      enum t4_bar2_qtype qtype,
9272 		      int user,
9273 		      u64 *pbar2_qoffset,
9274 		      unsigned int *pbar2_qid)
9275 {
9276 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9277 	u64 bar2_page_offset, bar2_qoffset;
9278 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9279 
9280 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9281 	if (!user && is_t4(adapter->params.chip))
9282 		return -EINVAL;
9283 
9284 	/* Get our SGE Page Size parameters.
9285 	 */
9286 	page_shift = adapter->params.sge.hps + 10;
9287 	page_size = 1 << page_shift;
9288 
9289 	/* Get the right Queues per Page parameters for our Queue.
9290 	 */
9291 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9292 		     ? adapter->params.sge.eq_qpp
9293 		     : adapter->params.sge.iq_qpp);
9294 	qpp_mask = (1 << qpp_shift) - 1;
9295 
9296 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9297 	 *  o The BAR2 page the Queue registers will be in.
9298 	 *  o The BAR2 Queue ID.
9299 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9300 	 */
9301 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9302 	bar2_qid = qid & qpp_mask;
9303 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9304 
9305 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9306 	 * hardware will infer the Absolute Queue ID simply from the writes to
9307 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9308 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9309 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9310 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9311 	 * from the BAR2 Page and BAR2 Queue ID.
9312 	 *
9313 	 * One important censequence of this is that some BAR2 SGE registers
9314 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9315 	 * there.  But other registers synthesize the SGE Queue ID purely
9316 	 * from the writes to the registers -- the Write Combined Doorbell
9317 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9318 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9319 	 * Queue ID can be inferred from simple writes.
9320 	 */
9321 	bar2_qoffset = bar2_page_offset;
9322 	bar2_qinferred = (bar2_qid_offset < page_size);
9323 	if (bar2_qinferred) {
9324 		bar2_qoffset += bar2_qid_offset;
9325 		bar2_qid = 0;
9326 	}
9327 
9328 	*pbar2_qoffset = bar2_qoffset;
9329 	*pbar2_qid = bar2_qid;
9330 	return 0;
9331 }
9332 
9333 /**
9334  *	t4_init_devlog_params - initialize adapter->params.devlog
9335  *	@adap: the adapter
9336  *
9337  *	Initialize various fields of the adapter's Firmware Device Log
9338  *	Parameters structure.
9339  */
9340 int t4_init_devlog_params(struct adapter *adap)
9341 {
9342 	struct devlog_params *dparams = &adap->params.devlog;
9343 	u32 pf_dparams;
9344 	unsigned int devlog_meminfo;
9345 	struct fw_devlog_cmd devlog_cmd;
9346 	int ret;
9347 
9348 	/* If we're dealing with newer firmware, the Device Log Parameters
9349 	 * are stored in a designated register which allows us to access the
9350 	 * Device Log even if we can't talk to the firmware.
9351 	 */
9352 	pf_dparams =
9353 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9354 	if (pf_dparams) {
9355 		unsigned int nentries, nentries128;
9356 
9357 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9358 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9359 
9360 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9361 		nentries = (nentries128 + 1) * 128;
9362 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9363 
9364 		return 0;
9365 	}
9366 
9367 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9368 	 */
9369 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9370 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9371 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9372 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9373 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9374 			 &devlog_cmd);
9375 	if (ret)
9376 		return ret;
9377 
9378 	devlog_meminfo =
9379 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9380 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9381 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9382 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9383 
9384 	return 0;
9385 }
9386 
9387 /**
9388  *	t4_init_sge_params - initialize adap->params.sge
9389  *	@adapter: the adapter
9390  *
9391  *	Initialize various fields of the adapter's SGE Parameters structure.
9392  */
9393 int t4_init_sge_params(struct adapter *adapter)
9394 {
9395 	struct sge_params *sge_params = &adapter->params.sge;
9396 	u32 hps, qpp;
9397 	unsigned int s_hps, s_qpp;
9398 
9399 	/* Extract the SGE Page Size for our PF.
9400 	 */
9401 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9402 	s_hps = (HOSTPAGESIZEPF0_S +
9403 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9404 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9405 
9406 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9407 	 */
9408 	s_qpp = (QUEUESPERPAGEPF0_S +
9409 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9410 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9411 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9412 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9413 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9414 
9415 	return 0;
9416 }
9417 
9418 /**
9419  *      t4_init_tp_params - initialize adap->params.tp
9420  *      @adap: the adapter
9421  *      @sleep_ok: if true we may sleep while awaiting command completion
9422  *
9423  *      Initialize various fields of the adapter's TP Parameters structure.
9424  */
9425 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9426 {
9427 	u32 param, val, v;
9428 	int chan, ret;
9429 
9430 
9431 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9432 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9433 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9434 
9435 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9436 	for (chan = 0; chan < NCHAN; chan++)
9437 		adap->params.tp.tx_modq[chan] = chan;
9438 
9439 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9440 	 * Configuration.
9441 	 */
9442 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9443 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9444 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9445 
9446 	/* Read current value */
9447 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9448 			      &param, &val);
9449 	if (ret == 0) {
9450 		dev_info(adap->pdev_dev,
9451 			 "Current filter mode/mask 0x%x:0x%x\n",
9452 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9453 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9454 		adap->params.tp.vlan_pri_map =
9455 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9456 		adap->params.tp.filter_mask =
9457 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9458 	} else {
9459 		dev_info(adap->pdev_dev,
9460 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9461 
9462 		/* Incase of older-fw (which doesn't expose the api
9463 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9464 		 * the fw api) combination, fall-back to older method of reading
9465 		 * the filter mode from indirect-register
9466 		 */
9467 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9468 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9469 
9470 		/* With the older-fw and newer-driver combination we might run
9471 		 * into an issue when user wants to use hash filter region but
9472 		 * the filter_mask is zero, in this case filter_mask validation
9473 		 * is tough. To avoid that we set the filter_mask same as filter
9474 		 * mode, which will behave exactly as the older way of ignoring
9475 		 * the filter mask validation.
9476 		 */
9477 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9478 	}
9479 
9480 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9481 		       TP_INGRESS_CONFIG_A, sleep_ok);
9482 
9483 	/* For T6, cache the adapter's compressed error vector
9484 	 * and passing outer header info for encapsulated packets.
9485 	 */
9486 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9487 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9488 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9489 	}
9490 
9491 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9492 	 * shift positions of several elements of the Compressed Filter Tuple
9493 	 * for this adapter which we need frequently ...
9494 	 */
9495 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9496 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9497 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9498 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9499 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9500 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9501 							       PROTOCOL_F);
9502 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9503 								ETHERTYPE_F);
9504 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9505 							       MACMATCH_F);
9506 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9507 								MPSHITTYPE_F);
9508 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9509 							   FRAGMENTATION_F);
9510 
9511 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9512 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9513 	 */
9514 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9515 		adap->params.tp.vnic_shift = -1;
9516 
9517 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9518 	adap->params.tp.hash_filter_mask = v;
9519 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9520 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9521 	return 0;
9522 }
9523 
9524 /**
9525  *      t4_filter_field_shift - calculate filter field shift
9526  *      @adap: the adapter
9527  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9528  *
9529  *      Return the shift position of a filter field within the Compressed
9530  *      Filter Tuple.  The filter field is specified via its selection bit
9531  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9532  */
9533 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9534 {
9535 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9536 	unsigned int sel;
9537 	int field_shift;
9538 
9539 	if ((filter_mode & filter_sel) == 0)
9540 		return -1;
9541 
9542 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9543 		switch (filter_mode & sel) {
9544 		case FCOE_F:
9545 			field_shift += FT_FCOE_W;
9546 			break;
9547 		case PORT_F:
9548 			field_shift += FT_PORT_W;
9549 			break;
9550 		case VNIC_ID_F:
9551 			field_shift += FT_VNIC_ID_W;
9552 			break;
9553 		case VLAN_F:
9554 			field_shift += FT_VLAN_W;
9555 			break;
9556 		case TOS_F:
9557 			field_shift += FT_TOS_W;
9558 			break;
9559 		case PROTOCOL_F:
9560 			field_shift += FT_PROTOCOL_W;
9561 			break;
9562 		case ETHERTYPE_F:
9563 			field_shift += FT_ETHERTYPE_W;
9564 			break;
9565 		case MACMATCH_F:
9566 			field_shift += FT_MACMATCH_W;
9567 			break;
9568 		case MPSHITTYPE_F:
9569 			field_shift += FT_MPSHITTYPE_W;
9570 			break;
9571 		case FRAGMENTATION_F:
9572 			field_shift += FT_FRAGMENTATION_W;
9573 			break;
9574 		}
9575 	}
9576 	return field_shift;
9577 }
9578 
9579 int t4_init_rss_mode(struct adapter *adap, int mbox)
9580 {
9581 	int i, ret;
9582 	struct fw_rss_vi_config_cmd rvc;
9583 
9584 	memset(&rvc, 0, sizeof(rvc));
9585 
9586 	for_each_port(adap, i) {
9587 		struct port_info *p = adap2pinfo(adap, i);
9588 
9589 		rvc.op_to_viid =
9590 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9591 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9592 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9593 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9594 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9595 		if (ret)
9596 			return ret;
9597 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9598 	}
9599 	return 0;
9600 }
9601 
9602 /**
9603  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9604  *	@pi: the port_info
9605  *	@mbox: mailbox to use for the FW command
9606  *	@port: physical port associated with the VI
9607  *	@pf: the PF owning the VI
9608  *	@vf: the VF owning the VI
9609  *	@mac: the MAC address of the VI
9610  *
9611  *	Allocates a virtual interface for the given physical port.  If @mac is
9612  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9613  *	@mac should be large enough to hold an Ethernet address.
9614  *	Returns < 0 on error.
9615  */
9616 int t4_init_portinfo(struct port_info *pi, int mbox,
9617 		     int port, int pf, int vf, u8 mac[])
9618 {
9619 	struct adapter *adapter = pi->adapter;
9620 	unsigned int fw_caps = adapter->params.fw_caps_support;
9621 	struct fw_port_cmd cmd;
9622 	unsigned int rss_size;
9623 	enum fw_port_type port_type;
9624 	int mdio_addr;
9625 	fw_port_cap32_t pcaps, acaps;
9626 	u8 vivld = 0, vin = 0;
9627 	int ret;
9628 
9629 	/* If we haven't yet determined whether we're talking to Firmware
9630 	 * which knows the new 32-bit Port Capabilities, it's time to find
9631 	 * out now.  This will also tell new Firmware to send us Port Status
9632 	 * Updates using the new 32-bit Port Capabilities version of the
9633 	 * Port Information message.
9634 	 */
9635 	if (fw_caps == FW_CAPS_UNKNOWN) {
9636 		u32 param, val;
9637 
9638 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9639 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9640 		val = 1;
9641 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9642 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9643 		adapter->params.fw_caps_support = fw_caps;
9644 	}
9645 
9646 	memset(&cmd, 0, sizeof(cmd));
9647 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9648 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9649 				       FW_PORT_CMD_PORTID_V(port));
9650 	cmd.action_to_len16 = cpu_to_be32(
9651 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9652 				     ? FW_PORT_ACTION_GET_PORT_INFO
9653 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9654 		FW_LEN16(cmd));
9655 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9656 	if (ret)
9657 		return ret;
9658 
9659 	/* Extract the various fields from the Port Information message.
9660 	 */
9661 	if (fw_caps == FW_CAPS16) {
9662 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9663 
9664 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9665 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9666 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9667 			     : -1);
9668 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9669 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9670 	} else {
9671 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9672 
9673 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9674 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9675 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9676 			     : -1);
9677 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9678 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9679 	}
9680 
9681 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9682 			  &vivld, &vin);
9683 	if (ret < 0)
9684 		return ret;
9685 
9686 	pi->viid = ret;
9687 	pi->tx_chan = port;
9688 	pi->lport = port;
9689 	pi->rss_size = rss_size;
9690 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9691 
9692 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9693 	 * save the returned values.
9694 	 */
9695 	if (adapter->params.viid_smt_extn_support) {
9696 		pi->vivld = vivld;
9697 		pi->vin = vin;
9698 	} else {
9699 		/* Retrieve the values from VIID */
9700 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9701 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9702 	}
9703 
9704 	pi->port_type = port_type;
9705 	pi->mdio_addr = mdio_addr;
9706 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9707 
9708 	init_link_config(&pi->link_cfg, pcaps, acaps);
9709 	return 0;
9710 }
9711 
9712 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9713 {
9714 	u8 addr[6];
9715 	int ret, i, j = 0;
9716 
9717 	for_each_port(adap, i) {
9718 		struct port_info *pi = adap2pinfo(adap, i);
9719 
9720 		while ((adap->params.portvec & (1 << j)) == 0)
9721 			j++;
9722 
9723 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9724 		if (ret)
9725 			return ret;
9726 
9727 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9728 		j++;
9729 	}
9730 	return 0;
9731 }
9732 
9733 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9734 			u16 *mirror_viid)
9735 {
9736 	int ret;
9737 
9738 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9739 			  NULL, NULL);
9740 	if (ret < 0)
9741 		return ret;
9742 
9743 	if (mirror_viid)
9744 		*mirror_viid = ret;
9745 
9746 	return 0;
9747 }
9748 
9749 /**
9750  *	t4_read_cimq_cfg - read CIM queue configuration
9751  *	@adap: the adapter
9752  *	@base: holds the queue base addresses in bytes
9753  *	@size: holds the queue sizes in bytes
9754  *	@thres: holds the queue full thresholds in bytes
9755  *
9756  *	Returns the current configuration of the CIM queues, starting with
9757  *	the IBQs, then the OBQs.
9758  */
9759 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9760 {
9761 	unsigned int i, v;
9762 	int cim_num_obq = is_t4(adap->params.chip) ?
9763 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9764 
9765 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9766 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9767 			     QUENUMSELECT_V(i));
9768 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9769 		/* value is in 256-byte units */
9770 		*base++ = CIMQBASE_G(v) * 256;
9771 		*size++ = CIMQSIZE_G(v) * 256;
9772 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9773 	}
9774 	for (i = 0; i < cim_num_obq; i++) {
9775 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9776 			     QUENUMSELECT_V(i));
9777 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9778 		/* value is in 256-byte units */
9779 		*base++ = CIMQBASE_G(v) * 256;
9780 		*size++ = CIMQSIZE_G(v) * 256;
9781 	}
9782 }
9783 
9784 /**
9785  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9786  *	@adap: the adapter
9787  *	@qid: the queue index
9788  *	@data: where to store the queue contents
9789  *	@n: capacity of @data in 32-bit words
9790  *
9791  *	Reads the contents of the selected CIM queue starting at address 0 up
9792  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9793  *	error and the number of 32-bit words actually read on success.
9794  */
9795 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9796 {
9797 	int i, err, attempts;
9798 	unsigned int addr;
9799 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9800 
9801 	if (qid > 5 || (n & 3))
9802 		return -EINVAL;
9803 
9804 	addr = qid * nwords;
9805 	if (n > nwords)
9806 		n = nwords;
9807 
9808 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9809 	 * Wait for 1 Sec with a delay of 1 usec.
9810 	 */
9811 	attempts = 1000000;
9812 
9813 	for (i = 0; i < n; i++, addr++) {
9814 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9815 			     IBQDBGEN_F);
9816 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9817 				      attempts, 1);
9818 		if (err)
9819 			return err;
9820 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9821 	}
9822 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9823 	return i;
9824 }
9825 
9826 /**
9827  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9828  *	@adap: the adapter
9829  *	@qid: the queue index
9830  *	@data: where to store the queue contents
9831  *	@n: capacity of @data in 32-bit words
9832  *
9833  *	Reads the contents of the selected CIM queue starting at address 0 up
9834  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9835  *	error and the number of 32-bit words actually read on success.
9836  */
9837 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9838 {
9839 	int i, err;
9840 	unsigned int addr, v, nwords;
9841 	int cim_num_obq = is_t4(adap->params.chip) ?
9842 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9843 
9844 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9845 		return -EINVAL;
9846 
9847 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9848 		     QUENUMSELECT_V(qid));
9849 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9850 
9851 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9852 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9853 	if (n > nwords)
9854 		n = nwords;
9855 
9856 	for (i = 0; i < n; i++, addr++) {
9857 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9858 			     OBQDBGEN_F);
9859 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9860 				      2, 1);
9861 		if (err)
9862 			return err;
9863 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9864 	}
9865 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9866 	return i;
9867 }
9868 
9869 /**
9870  *	t4_cim_read - read a block from CIM internal address space
9871  *	@adap: the adapter
9872  *	@addr: the start address within the CIM address space
9873  *	@n: number of words to read
9874  *	@valp: where to store the result
9875  *
9876  *	Reads a block of 4-byte words from the CIM intenal address space.
9877  */
9878 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9879 		unsigned int *valp)
9880 {
9881 	int ret = 0;
9882 
9883 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9884 		return -EBUSY;
9885 
9886 	for ( ; !ret && n--; addr += 4) {
9887 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9888 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9889 				      0, 5, 2);
9890 		if (!ret)
9891 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9892 	}
9893 	return ret;
9894 }
9895 
9896 /**
9897  *	t4_cim_write - write a block into CIM internal address space
9898  *	@adap: the adapter
9899  *	@addr: the start address within the CIM address space
9900  *	@n: number of words to write
9901  *	@valp: set of values to write
9902  *
9903  *	Writes a block of 4-byte words into the CIM intenal address space.
9904  */
9905 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9906 		 const unsigned int *valp)
9907 {
9908 	int ret = 0;
9909 
9910 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9911 		return -EBUSY;
9912 
9913 	for ( ; !ret && n--; addr += 4) {
9914 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9915 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9916 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9917 				      0, 5, 2);
9918 	}
9919 	return ret;
9920 }
9921 
9922 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9923 			 unsigned int val)
9924 {
9925 	return t4_cim_write(adap, addr, 1, &val);
9926 }
9927 
9928 /**
9929  *	t4_cim_read_la - read CIM LA capture buffer
9930  *	@adap: the adapter
9931  *	@la_buf: where to store the LA data
9932  *	@wrptr: the HW write pointer within the capture buffer
9933  *
9934  *	Reads the contents of the CIM LA buffer with the most recent entry at
9935  *	the end	of the returned data and with the entry at @wrptr first.
9936  *	We try to leave the LA in the running state we find it in.
9937  */
9938 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9939 {
9940 	int i, ret;
9941 	unsigned int cfg, val, idx;
9942 
9943 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9944 	if (ret)
9945 		return ret;
9946 
9947 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9948 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9949 		if (ret)
9950 			return ret;
9951 	}
9952 
9953 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9954 	if (ret)
9955 		goto restart;
9956 
9957 	idx = UPDBGLAWRPTR_G(val);
9958 	if (wrptr)
9959 		*wrptr = idx;
9960 
9961 	for (i = 0; i < adap->params.cim_la_size; i++) {
9962 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9963 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9964 		if (ret)
9965 			break;
9966 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9967 		if (ret)
9968 			break;
9969 		if (val & UPDBGLARDEN_F) {
9970 			ret = -ETIMEDOUT;
9971 			break;
9972 		}
9973 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9974 		if (ret)
9975 			break;
9976 
9977 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9978 		 * identify the 32-bit portion of the full 312-bit data
9979 		 */
9980 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9981 			idx = (idx & 0xff0) + 0x10;
9982 		else
9983 			idx++;
9984 		/* address can't exceed 0xfff */
9985 		idx &= UPDBGLARDPTR_M;
9986 	}
9987 restart:
9988 	if (cfg & UPDBGLAEN_F) {
9989 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9990 				      cfg & ~UPDBGLARDEN_F);
9991 		if (!ret)
9992 			ret = r;
9993 	}
9994 	return ret;
9995 }
9996 
9997 /**
9998  *	t4_tp_read_la - read TP LA capture buffer
9999  *	@adap: the adapter
10000  *	@la_buf: where to store the LA data
10001  *	@wrptr: the HW write pointer within the capture buffer
10002  *
10003  *	Reads the contents of the TP LA buffer with the most recent entry at
10004  *	the end	of the returned data and with the entry at @wrptr first.
10005  *	We leave the LA in the running state we find it in.
10006  */
10007 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10008 {
10009 	bool last_incomplete;
10010 	unsigned int i, cfg, val, idx;
10011 
10012 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10013 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
10014 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10015 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10016 
10017 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10018 	idx = DBGLAWPTR_G(val);
10019 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10020 	if (last_incomplete)
10021 		idx = (idx + 1) & DBGLARPTR_M;
10022 	if (wrptr)
10023 		*wrptr = idx;
10024 
10025 	val &= 0xffff;
10026 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10027 	val |= adap->params.tp.la_mask;
10028 
10029 	for (i = 0; i < TPLA_SIZE; i++) {
10030 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10031 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10032 		idx = (idx + 1) & DBGLARPTR_M;
10033 	}
10034 
10035 	/* Wipe out last entry if it isn't valid */
10036 	if (last_incomplete)
10037 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10038 
10039 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10040 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10041 			     cfg | adap->params.tp.la_mask);
10042 }
10043 
10044 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10045  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10046  * state for more than the Warning Threshold then we'll issue a warning about
10047  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10048  * appears to be hung every Warning Repeat second till the situation clears.
10049  * If the situation clears, we'll note that as well.
10050  */
10051 #define SGE_IDMA_WARN_THRESH 1
10052 #define SGE_IDMA_WARN_REPEAT 300
10053 
10054 /**
10055  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10056  *	@adapter: the adapter
10057  *	@idma: the adapter IDMA Monitor state
10058  *
10059  *	Initialize the state of an SGE Ingress DMA Monitor.
10060  */
10061 void t4_idma_monitor_init(struct adapter *adapter,
10062 			  struct sge_idma_monitor_state *idma)
10063 {
10064 	/* Initialize the state variables for detecting an SGE Ingress DMA
10065 	 * hang.  The SGE has internal counters which count up on each clock
10066 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10067 	 * same state they were on the previous clock tick.  The clock used is
10068 	 * the Core Clock so we have a limit on the maximum "time" they can
10069 	 * record; typically a very small number of seconds.  For instance,
10070 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10071 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10072 	 * risk of having the "timers" overflow and give us the flexibility to
10073 	 * maintain a Hung SGE State Machine of our own which operates across
10074 	 * a longer time frame.
10075 	 */
10076 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10077 	idma->idma_stalled[0] = 0;
10078 	idma->idma_stalled[1] = 0;
10079 }
10080 
10081 /**
10082  *	t4_idma_monitor - monitor SGE Ingress DMA state
10083  *	@adapter: the adapter
10084  *	@idma: the adapter IDMA Monitor state
10085  *	@hz: number of ticks/second
10086  *	@ticks: number of ticks since the last IDMA Monitor call
10087  */
10088 void t4_idma_monitor(struct adapter *adapter,
10089 		     struct sge_idma_monitor_state *idma,
10090 		     int hz, int ticks)
10091 {
10092 	int i, idma_same_state_cnt[2];
10093 
10094 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10095 	  * are counters inside the SGE which count up on each clock when the
10096 	  * SGE finds its Ingress DMA State Engines in the same states they
10097 	  * were in the previous clock.  The counters will peg out at
10098 	  * 0xffffffff without wrapping around so once they pass the 1s
10099 	  * threshold they'll stay above that till the IDMA state changes.
10100 	  */
10101 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10102 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10103 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10104 
10105 	for (i = 0; i < 2; i++) {
10106 		u32 debug0, debug11;
10107 
10108 		/* If the Ingress DMA Same State Counter ("timer") is less
10109 		 * than 1s, then we can reset our synthesized Stall Timer and
10110 		 * continue.  If we have previously emitted warnings about a
10111 		 * potential stalled Ingress Queue, issue a note indicating
10112 		 * that the Ingress Queue has resumed forward progress.
10113 		 */
10114 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10115 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10116 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10117 					 "resumed after %d seconds\n",
10118 					 i, idma->idma_qid[i],
10119 					 idma->idma_stalled[i] / hz);
10120 			idma->idma_stalled[i] = 0;
10121 			continue;
10122 		}
10123 
10124 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10125 		 * domain.  The first time we get here it'll be because we
10126 		 * passed the 1s Threshold; each additional time it'll be
10127 		 * because the RX Timer Callback is being fired on its regular
10128 		 * schedule.
10129 		 *
10130 		 * If the stall is below our Potential Hung Ingress Queue
10131 		 * Warning Threshold, continue.
10132 		 */
10133 		if (idma->idma_stalled[i] == 0) {
10134 			idma->idma_stalled[i] = hz;
10135 			idma->idma_warn[i] = 0;
10136 		} else {
10137 			idma->idma_stalled[i] += ticks;
10138 			idma->idma_warn[i] -= ticks;
10139 		}
10140 
10141 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10142 			continue;
10143 
10144 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10145 		 */
10146 		if (idma->idma_warn[i] > 0)
10147 			continue;
10148 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10149 
10150 		/* Read and save the SGE IDMA State and Queue ID information.
10151 		 * We do this every time in case it changes across time ...
10152 		 * can't be too careful ...
10153 		 */
10154 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10155 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10156 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10157 
10158 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10159 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10160 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10161 
10162 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10163 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10164 			 i, idma->idma_qid[i], idma->idma_state[i],
10165 			 idma->idma_stalled[i] / hz,
10166 			 debug0, debug11);
10167 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10168 	}
10169 }
10170 
10171 /**
10172  *	t4_load_cfg - download config file
10173  *	@adap: the adapter
10174  *	@cfg_data: the cfg text file to write
10175  *	@size: text file size
10176  *
10177  *	Write the supplied config text file to the card's serial flash.
10178  */
10179 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10180 {
10181 	int ret, i, n, cfg_addr;
10182 	unsigned int addr;
10183 	unsigned int flash_cfg_start_sec;
10184 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10185 
10186 	cfg_addr = t4_flash_cfg_addr(adap);
10187 	if (cfg_addr < 0)
10188 		return cfg_addr;
10189 
10190 	addr = cfg_addr;
10191 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10192 
10193 	if (size > FLASH_CFG_MAX_SIZE) {
10194 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10195 			FLASH_CFG_MAX_SIZE);
10196 		return -EFBIG;
10197 	}
10198 
10199 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10200 			 sf_sec_size);
10201 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10202 				     flash_cfg_start_sec + i - 1);
10203 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10204 	 * with the on-adapter Firmware Configuration File.
10205 	 */
10206 	if (ret || size == 0)
10207 		goto out;
10208 
10209 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10210 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10211 		if ((size - i) <  SF_PAGE_SIZE)
10212 			n = size - i;
10213 		else
10214 			n = SF_PAGE_SIZE;
10215 		ret = t4_write_flash(adap, addr, n, cfg_data);
10216 		if (ret)
10217 			goto out;
10218 
10219 		addr += SF_PAGE_SIZE;
10220 		cfg_data += SF_PAGE_SIZE;
10221 	}
10222 
10223 out:
10224 	if (ret)
10225 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10226 			(size == 0 ? "clear" : "download"), ret);
10227 	return ret;
10228 }
10229 
10230 /**
10231  *	t4_set_vf_mac - Set MAC address for the specified VF
10232  *	@adapter: The adapter
10233  *	@vf: one of the VFs instantiated by the specified PF
10234  *	@naddr: the number of MAC addresses
10235  *	@addr: the MAC address(es) to be set to the specified VF
10236  */
10237 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10238 		      unsigned int naddr, u8 *addr)
10239 {
10240 	struct fw_acl_mac_cmd cmd;
10241 
10242 	memset(&cmd, 0, sizeof(cmd));
10243 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10244 				    FW_CMD_REQUEST_F |
10245 				    FW_CMD_WRITE_F |
10246 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10247 				    FW_ACL_MAC_CMD_VFN_V(vf));
10248 
10249 	/* Note: Do not enable the ACL */
10250 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10251 	cmd.nmac = naddr;
10252 
10253 	switch (adapter->pf) {
10254 	case 3:
10255 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10256 		break;
10257 	case 2:
10258 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10259 		break;
10260 	case 1:
10261 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10262 		break;
10263 	case 0:
10264 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10265 		break;
10266 	}
10267 
10268 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10269 }
10270 
10271 /**
10272  * t4_read_pace_tbl - read the pace table
10273  * @adap: the adapter
10274  * @pace_vals: holds the returned values
10275  *
10276  * Returns the values of TP's pace table in microseconds.
10277  */
10278 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10279 {
10280 	unsigned int i, v;
10281 
10282 	for (i = 0; i < NTX_SCHED; i++) {
10283 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10284 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10285 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10286 	}
10287 }
10288 
10289 /**
10290  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10291  * @adap: the adapter
10292  * @sched: the scheduler index
10293  * @kbps: the byte rate in Kbps
10294  * @ipg: the interpacket delay in tenths of nanoseconds
10295  * @sleep_ok: if true we may sleep while awaiting command completion
10296  *
10297  * Return the current configuration of a HW Tx scheduler.
10298  */
10299 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10300 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10301 {
10302 	unsigned int v, addr, bpt, cpt;
10303 
10304 	if (kbps) {
10305 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10306 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10307 		if (sched & 1)
10308 			v >>= 16;
10309 		bpt = (v >> 8) & 0xff;
10310 		cpt = v & 0xff;
10311 		if (!cpt) {
10312 			*kbps = 0;	/* scheduler disabled */
10313 		} else {
10314 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10315 			*kbps = (v * bpt) / 125;
10316 		}
10317 	}
10318 	if (ipg) {
10319 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10320 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10321 		if (sched & 1)
10322 			v >>= 16;
10323 		v &= 0xffff;
10324 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10325 	}
10326 }
10327 
10328 /* t4_sge_ctxt_rd - read an SGE context through FW
10329  * @adap: the adapter
10330  * @mbox: mailbox to use for the FW command
10331  * @cid: the context id
10332  * @ctype: the context type
10333  * @data: where to store the context data
10334  *
10335  * Issues a FW command through the given mailbox to read an SGE context.
10336  */
10337 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10338 		   enum ctxt_type ctype, u32 *data)
10339 {
10340 	struct fw_ldst_cmd c;
10341 	int ret;
10342 
10343 	if (ctype == CTXT_FLM)
10344 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10345 	else
10346 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10347 
10348 	memset(&c, 0, sizeof(c));
10349 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10350 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10351 					FW_LDST_CMD_ADDRSPACE_V(ret));
10352 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10353 	c.u.idctxt.physid = cpu_to_be32(cid);
10354 
10355 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10356 	if (ret == 0) {
10357 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10358 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10359 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10360 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10361 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10362 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10363 	}
10364 	return ret;
10365 }
10366 
10367 /**
10368  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10369  * @adap: the adapter
10370  * @cid: the context id
10371  * @ctype: the context type
10372  * @data: where to store the context data
10373  *
10374  * Reads an SGE context directly, bypassing FW.  This is only for
10375  * debugging when FW is unavailable.
10376  */
10377 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10378 		      enum ctxt_type ctype, u32 *data)
10379 {
10380 	int i, ret;
10381 
10382 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10383 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10384 	if (!ret)
10385 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10386 			*data++ = t4_read_reg(adap, i);
10387 	return ret;
10388 }
10389 
10390 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10391 		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10392 		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10393 		    u16 burstsize)
10394 {
10395 	struct fw_sched_cmd cmd;
10396 
10397 	memset(&cmd, 0, sizeof(cmd));
10398 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10399 				      FW_CMD_REQUEST_F |
10400 				      FW_CMD_WRITE_F);
10401 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10402 
10403 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10404 	cmd.u.params.type = type;
10405 	cmd.u.params.level = level;
10406 	cmd.u.params.mode = mode;
10407 	cmd.u.params.ch = channel;
10408 	cmd.u.params.cl = class;
10409 	cmd.u.params.unit = rateunit;
10410 	cmd.u.params.rate = ratemode;
10411 	cmd.u.params.min = cpu_to_be32(minrate);
10412 	cmd.u.params.max = cpu_to_be32(maxrate);
10413 	cmd.u.params.weight = cpu_to_be16(weight);
10414 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10415 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10416 
10417 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10418 			       NULL, 1);
10419 }
10420 
10421 /**
10422  *	t4_i2c_rd - read I2C data from adapter
10423  *	@adap: the adapter
10424  *	@mbox: mailbox to use for the FW command
10425  *	@port: Port number if per-port device; <0 if not
10426  *	@devid: per-port device ID or absolute device ID
10427  *	@offset: byte offset into device I2C space
10428  *	@len: byte length of I2C space data
10429  *	@buf: buffer in which to return I2C data
10430  *
10431  *	Reads the I2C data from the indicated device and location.
10432  */
10433 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10434 	      unsigned int devid, unsigned int offset,
10435 	      unsigned int len, u8 *buf)
10436 {
10437 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10438 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10439 	int ret = 0;
10440 
10441 	if (len > I2C_PAGE_SIZE)
10442 		return -EINVAL;
10443 
10444 	/* Dont allow reads that spans multiple pages */
10445 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10446 		return -EINVAL;
10447 
10448 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10449 	ldst_cmd.op_to_addrspace =
10450 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10451 			    FW_CMD_REQUEST_F |
10452 			    FW_CMD_READ_F |
10453 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10454 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10455 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10456 	ldst_cmd.u.i2c.did = devid;
10457 
10458 	while (len > 0) {
10459 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10460 
10461 		ldst_cmd.u.i2c.boffset = offset;
10462 		ldst_cmd.u.i2c.blen = i2c_len;
10463 
10464 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10465 				 &ldst_rpl);
10466 		if (ret)
10467 			break;
10468 
10469 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10470 		offset += i2c_len;
10471 		buf += i2c_len;
10472 		len -= i2c_len;
10473 	}
10474 
10475 	return ret;
10476 }
10477 
10478 /**
10479  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10480  *      @adap: the adapter
10481  *      @mbox: mailbox to use for the FW command
10482  *      @vf: one of the VFs instantiated by the specified PF
10483  *      @vlan: The vlanid to be set
10484  */
10485 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10486 		    u16 vlan)
10487 {
10488 	struct fw_acl_vlan_cmd vlan_cmd;
10489 	unsigned int enable;
10490 
10491 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10492 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10493 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10494 					 FW_CMD_REQUEST_F |
10495 					 FW_CMD_WRITE_F |
10496 					 FW_CMD_EXEC_F |
10497 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10498 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10499 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10500 	/* Drop all packets that donot match vlan id */
10501 	vlan_cmd.dropnovlan_fm = (enable
10502 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10503 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10504 	if (enable != 0) {
10505 		vlan_cmd.nvlan = 1;
10506 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10507 	}
10508 
10509 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10510 }
10511 
10512 /**
10513  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10514  *	@device_id: the device ID to write.
10515  *	@boot_data: the boot image to modify.
10516  *
10517  *	Write the supplied device ID to the boot BIOS image.
10518  */
10519 static void modify_device_id(int device_id, u8 *boot_data)
10520 {
10521 	struct cxgb4_pcir_data *pcir_header;
10522 	struct legacy_pci_rom_hdr *header;
10523 	u8 *cur_header = boot_data;
10524 	u16 pcir_offset;
10525 
10526 	 /* Loop through all chained images and change the device ID's */
10527 	do {
10528 		header = (struct legacy_pci_rom_hdr *)cur_header;
10529 		pcir_offset = le16_to_cpu(header->pcir_offset);
10530 		pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10531 			      pcir_offset);
10532 
10533 		/**
10534 		 * Only modify the Device ID if code type is Legacy or HP.
10535 		 * 0x00: Okay to modify
10536 		 * 0x01: FCODE. Do not modify
10537 		 * 0x03: Okay to modify
10538 		 * 0x04-0xFF: Do not modify
10539 		 */
10540 		if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10541 			u8 csum = 0;
10542 			int i;
10543 
10544 			/**
10545 			 * Modify Device ID to match current adatper
10546 			 */
10547 			pcir_header->device_id = cpu_to_le16(device_id);
10548 
10549 			/**
10550 			 * Set checksum temporarily to 0.
10551 			 * We will recalculate it later.
10552 			 */
10553 			header->cksum = 0x0;
10554 
10555 			/**
10556 			 * Calculate and update checksum
10557 			 */
10558 			for (i = 0; i < (header->size512 * 512); i++)
10559 				csum += cur_header[i];
10560 
10561 			/**
10562 			 * Invert summed value to create the checksum
10563 			 * Writing new checksum value directly to the boot data
10564 			 */
10565 			cur_header[7] = -csum;
10566 
10567 		} else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10568 			/**
10569 			 * Modify Device ID to match current adatper
10570 			 */
10571 			pcir_header->device_id = cpu_to_le16(device_id);
10572 		}
10573 
10574 		/**
10575 		 * Move header pointer up to the next image in the ROM.
10576 		 */
10577 		cur_header += header->size512 * 512;
10578 	} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10579 }
10580 
10581 /**
10582  *	t4_load_boot - download boot flash
10583  *	@adap: the adapter
10584  *	@boot_data: the boot image to write
10585  *	@boot_addr: offset in flash to write boot_data
10586  *	@size: image size
10587  *
10588  *	Write the supplied boot image to the card's serial flash.
10589  *	The boot image has the following sections: a 28-byte header and the
10590  *	boot image.
10591  */
10592 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10593 		 unsigned int boot_addr, unsigned int size)
10594 {
10595 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10596 	unsigned int boot_sector = (boot_addr * 1024);
10597 	struct cxgb4_pci_exp_rom_header *header;
10598 	struct cxgb4_pcir_data *pcir_header;
10599 	int pcir_offset;
10600 	unsigned int i;
10601 	u16 device_id;
10602 	int ret, addr;
10603 
10604 	/**
10605 	 * Make sure the boot image does not encroach on the firmware region
10606 	 */
10607 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10608 		dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10609 		return -EFBIG;
10610 	}
10611 
10612 	/* Get boot header */
10613 	header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10614 	pcir_offset = le16_to_cpu(header->pcir_offset);
10615 	/* PCIR Data Structure */
10616 	pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10617 
10618 	/**
10619 	 * Perform some primitive sanity testing to avoid accidentally
10620 	 * writing garbage over the boot sectors.  We ought to check for
10621 	 * more but it's not worth it for now ...
10622 	 */
10623 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10624 		dev_err(adap->pdev_dev, "boot image too small/large\n");
10625 		return -EFBIG;
10626 	}
10627 
10628 	if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10629 		dev_err(adap->pdev_dev, "Boot image missing signature\n");
10630 		return -EINVAL;
10631 	}
10632 
10633 	/* Check PCI header signature */
10634 	if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10635 		dev_err(adap->pdev_dev, "PCI header missing signature\n");
10636 		return -EINVAL;
10637 	}
10638 
10639 	/* Check Vendor ID matches Chelsio ID*/
10640 	if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10641 		dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10642 		return -EINVAL;
10643 	}
10644 
10645 	/**
10646 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10647 	 * and Boot configuration data sections. These 3 boot sections span
10648 	 * sectors 0 to 7 in flash and live right before the FW image location.
10649 	 */
10650 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10651 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10652 				     (boot_sector >> 16) + i - 1);
10653 
10654 	/**
10655 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10656 	 * with the on-adapter option ROM file
10657 	 */
10658 	if (ret || size == 0)
10659 		goto out;
10660 	/* Retrieve adapter's device ID */
10661 	pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10662        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10663 	device_id = device_id & 0xf0ff;
10664 
10665 	 /* Check PCIE Device ID */
10666 	if (le16_to_cpu(pcir_header->device_id) != device_id) {
10667 		/**
10668 		 * Change the device ID in the Boot BIOS image to match
10669 		 * the Device ID of the current adapter.
10670 		 */
10671 		modify_device_id(device_id, boot_data);
10672 	}
10673 
10674 	/**
10675 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10676 	 * we finish copying the rest of the boot image. This will ensure
10677 	 * that the BIOS boot header will only be written if the boot image
10678 	 * was written in full.
10679 	 */
10680 	addr = boot_sector;
10681 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10682 		addr += SF_PAGE_SIZE;
10683 		boot_data += SF_PAGE_SIZE;
10684 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data);
10685 		if (ret)
10686 			goto out;
10687 	}
10688 
10689 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10690 			     (const u8 *)header);
10691 
10692 out:
10693 	if (ret)
10694 		dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10695 			ret);
10696 	return ret;
10697 }
10698 
10699 /**
10700  *	t4_flash_bootcfg_addr - return the address of the flash
10701  *	optionrom configuration
10702  *	@adapter: the adapter
10703  *
10704  *	Return the address within the flash where the OptionROM Configuration
10705  *	is stored, or an error if the device FLASH is too small to contain
10706  *	a OptionROM Configuration.
10707  */
10708 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10709 {
10710 	/**
10711 	 * If the device FLASH isn't large enough to hold a Firmware
10712 	 * Configuration File, return an error.
10713 	 */
10714 	if (adapter->params.sf_size <
10715 	    FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10716 		return -ENOSPC;
10717 
10718 	return FLASH_BOOTCFG_START;
10719 }
10720 
10721 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10722 {
10723 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10724 	struct cxgb4_bootcfg_data *header;
10725 	unsigned int flash_cfg_start_sec;
10726 	unsigned int addr, npad;
10727 	int ret, i, n, cfg_addr;
10728 
10729 	cfg_addr = t4_flash_bootcfg_addr(adap);
10730 	if (cfg_addr < 0)
10731 		return cfg_addr;
10732 
10733 	addr = cfg_addr;
10734 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10735 
10736 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10737 		dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10738 			FLASH_BOOTCFG_MAX_SIZE);
10739 		return -EFBIG;
10740 	}
10741 
10742 	header = (struct cxgb4_bootcfg_data *)cfg_data;
10743 	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10744 		dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10745 		ret = -EINVAL;
10746 		goto out;
10747 	}
10748 
10749 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10750 			 sf_sec_size);
10751 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10752 				     flash_cfg_start_sec + i - 1);
10753 
10754 	/**
10755 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10756 	 * with the on-adapter OptionROM Configuration File.
10757 	 */
10758 	if (ret || size == 0)
10759 		goto out;
10760 
10761 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10762 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10763 		n = min_t(u32, size - i, SF_PAGE_SIZE);
10764 
10765 		ret = t4_write_flash(adap, addr, n, cfg_data);
10766 		if (ret)
10767 			goto out;
10768 
10769 		addr += SF_PAGE_SIZE;
10770 		cfg_data += SF_PAGE_SIZE;
10771 	}
10772 
10773 	npad = ((size + 4 - 1) & ~3) - size;
10774 	for (i = 0; i < npad; i++) {
10775 		u8 data = 0;
10776 
10777 		ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data);
10778 		if (ret)
10779 			goto out;
10780 	}
10781 
10782 out:
10783 	if (ret)
10784 		dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10785 			(size == 0 ? "clear" : "download"), ret);
10786 	return ret;
10787 }
10788