xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x1274,
2094 		0x1280, 0x133c,
2095 		0x1800, 0x18fc,
2096 		0x3000, 0x302c,
2097 		0x3060, 0x30b0,
2098 		0x30b8, 0x30d8,
2099 		0x30e0, 0x30fc,
2100 		0x3140, 0x357c,
2101 		0x35a8, 0x35cc,
2102 		0x35ec, 0x35ec,
2103 		0x3600, 0x5624,
2104 		0x56cc, 0x56ec,
2105 		0x56f4, 0x5720,
2106 		0x5728, 0x575c,
2107 		0x580c, 0x5814,
2108 		0x5890, 0x589c,
2109 		0x58a4, 0x58ac,
2110 		0x58b8, 0x58bc,
2111 		0x5940, 0x595c,
2112 		0x5980, 0x598c,
2113 		0x59b0, 0x59c8,
2114 		0x59d0, 0x59dc,
2115 		0x59fc, 0x5a18,
2116 		0x5a60, 0x5a6c,
2117 		0x5a80, 0x5a8c,
2118 		0x5a94, 0x5a9c,
2119 		0x5b94, 0x5bfc,
2120 		0x5c10, 0x5e48,
2121 		0x5e50, 0x5e94,
2122 		0x5ea0, 0x5eb0,
2123 		0x5ec0, 0x5ec0,
2124 		0x5ec8, 0x5ed0,
2125 		0x5ee0, 0x5ee0,
2126 		0x5ef0, 0x5ef0,
2127 		0x5f00, 0x5f00,
2128 		0x6000, 0x6020,
2129 		0x6028, 0x6040,
2130 		0x6058, 0x609c,
2131 		0x60a8, 0x619c,
2132 		0x7700, 0x7798,
2133 		0x77c0, 0x7880,
2134 		0x78cc, 0x78fc,
2135 		0x7b00, 0x7b58,
2136 		0x7b60, 0x7b84,
2137 		0x7b8c, 0x7c54,
2138 		0x7d00, 0x7d38,
2139 		0x7d40, 0x7d84,
2140 		0x7d8c, 0x7ddc,
2141 		0x7de4, 0x7e04,
2142 		0x7e10, 0x7e1c,
2143 		0x7e24, 0x7e38,
2144 		0x7e40, 0x7e44,
2145 		0x7e4c, 0x7e78,
2146 		0x7e80, 0x7edc,
2147 		0x7ee8, 0x7efc,
2148 		0x8dc0, 0x8de4,
2149 		0x8df8, 0x8e04,
2150 		0x8e10, 0x8e84,
2151 		0x8ea0, 0x8f88,
2152 		0x8fb8, 0x9058,
2153 		0x9060, 0x9060,
2154 		0x9068, 0x90f8,
2155 		0x9100, 0x9124,
2156 		0x9400, 0x9470,
2157 		0x9600, 0x9600,
2158 		0x9608, 0x9638,
2159 		0x9640, 0x9704,
2160 		0x9710, 0x971c,
2161 		0x9800, 0x9808,
2162 		0x9810, 0x9864,
2163 		0x9c00, 0x9c6c,
2164 		0x9c80, 0x9cec,
2165 		0x9d00, 0x9d6c,
2166 		0x9d80, 0x9dec,
2167 		0x9e00, 0x9e6c,
2168 		0x9e80, 0x9eec,
2169 		0x9f00, 0x9f6c,
2170 		0x9f80, 0xa020,
2171 		0xd000, 0xd03c,
2172 		0xd100, 0xd118,
2173 		0xd200, 0xd214,
2174 		0xd220, 0xd234,
2175 		0xd240, 0xd254,
2176 		0xd260, 0xd274,
2177 		0xd280, 0xd294,
2178 		0xd2a0, 0xd2b4,
2179 		0xd2c0, 0xd2d4,
2180 		0xd2e0, 0xd2f4,
2181 		0xd300, 0xd31c,
2182 		0xdfc0, 0xdfe0,
2183 		0xe000, 0xf008,
2184 		0xf010, 0xf018,
2185 		0xf020, 0xf028,
2186 		0x11000, 0x11014,
2187 		0x11048, 0x1106c,
2188 		0x11074, 0x11088,
2189 		0x11098, 0x11120,
2190 		0x1112c, 0x1117c,
2191 		0x11190, 0x112e0,
2192 		0x11300, 0x1130c,
2193 		0x12000, 0x1206c,
2194 		0x19040, 0x1906c,
2195 		0x19078, 0x19080,
2196 		0x1908c, 0x190e8,
2197 		0x190f0, 0x190f8,
2198 		0x19100, 0x19110,
2199 		0x19120, 0x19124,
2200 		0x19150, 0x19194,
2201 		0x1919c, 0x191b0,
2202 		0x191d0, 0x191e8,
2203 		0x19238, 0x19290,
2204 		0x192a4, 0x192b0,
2205 		0x192bc, 0x192bc,
2206 		0x19348, 0x1934c,
2207 		0x193f8, 0x19418,
2208 		0x19420, 0x19428,
2209 		0x19430, 0x19444,
2210 		0x1944c, 0x1946c,
2211 		0x19474, 0x19474,
2212 		0x19490, 0x194cc,
2213 		0x194f0, 0x194f8,
2214 		0x19c00, 0x19c48,
2215 		0x19c50, 0x19c80,
2216 		0x19c94, 0x19c98,
2217 		0x19ca0, 0x19cbc,
2218 		0x19ce4, 0x19ce4,
2219 		0x19cf0, 0x19cf8,
2220 		0x19d00, 0x19d28,
2221 		0x19d50, 0x19d78,
2222 		0x19d94, 0x19d98,
2223 		0x19da0, 0x19dc8,
2224 		0x19df0, 0x19e10,
2225 		0x19e50, 0x19e6c,
2226 		0x19ea0, 0x19ebc,
2227 		0x19ec4, 0x19ef4,
2228 		0x19f04, 0x19f2c,
2229 		0x19f34, 0x19f34,
2230 		0x19f40, 0x19f50,
2231 		0x19f90, 0x19fac,
2232 		0x19fc4, 0x19fc8,
2233 		0x19fd0, 0x19fe4,
2234 		0x1a000, 0x1a004,
2235 		0x1a010, 0x1a06c,
2236 		0x1a0b0, 0x1a0e4,
2237 		0x1a0ec, 0x1a0f8,
2238 		0x1a100, 0x1a108,
2239 		0x1a114, 0x1a130,
2240 		0x1a138, 0x1a1c4,
2241 		0x1a1fc, 0x1a1fc,
2242 		0x1e008, 0x1e00c,
2243 		0x1e040, 0x1e044,
2244 		0x1e04c, 0x1e04c,
2245 		0x1e284, 0x1e290,
2246 		0x1e2c0, 0x1e2c0,
2247 		0x1e2e0, 0x1e2e0,
2248 		0x1e300, 0x1e384,
2249 		0x1e3c0, 0x1e3c8,
2250 		0x1e408, 0x1e40c,
2251 		0x1e440, 0x1e444,
2252 		0x1e44c, 0x1e44c,
2253 		0x1e684, 0x1e690,
2254 		0x1e6c0, 0x1e6c0,
2255 		0x1e6e0, 0x1e6e0,
2256 		0x1e700, 0x1e784,
2257 		0x1e7c0, 0x1e7c8,
2258 		0x1e808, 0x1e80c,
2259 		0x1e840, 0x1e844,
2260 		0x1e84c, 0x1e84c,
2261 		0x1ea84, 0x1ea90,
2262 		0x1eac0, 0x1eac0,
2263 		0x1eae0, 0x1eae0,
2264 		0x1eb00, 0x1eb84,
2265 		0x1ebc0, 0x1ebc8,
2266 		0x1ec08, 0x1ec0c,
2267 		0x1ec40, 0x1ec44,
2268 		0x1ec4c, 0x1ec4c,
2269 		0x1ee84, 0x1ee90,
2270 		0x1eec0, 0x1eec0,
2271 		0x1eee0, 0x1eee0,
2272 		0x1ef00, 0x1ef84,
2273 		0x1efc0, 0x1efc8,
2274 		0x1f008, 0x1f00c,
2275 		0x1f040, 0x1f044,
2276 		0x1f04c, 0x1f04c,
2277 		0x1f284, 0x1f290,
2278 		0x1f2c0, 0x1f2c0,
2279 		0x1f2e0, 0x1f2e0,
2280 		0x1f300, 0x1f384,
2281 		0x1f3c0, 0x1f3c8,
2282 		0x1f408, 0x1f40c,
2283 		0x1f440, 0x1f444,
2284 		0x1f44c, 0x1f44c,
2285 		0x1f684, 0x1f690,
2286 		0x1f6c0, 0x1f6c0,
2287 		0x1f6e0, 0x1f6e0,
2288 		0x1f700, 0x1f784,
2289 		0x1f7c0, 0x1f7c8,
2290 		0x1f808, 0x1f80c,
2291 		0x1f840, 0x1f844,
2292 		0x1f84c, 0x1f84c,
2293 		0x1fa84, 0x1fa90,
2294 		0x1fac0, 0x1fac0,
2295 		0x1fae0, 0x1fae0,
2296 		0x1fb00, 0x1fb84,
2297 		0x1fbc0, 0x1fbc8,
2298 		0x1fc08, 0x1fc0c,
2299 		0x1fc40, 0x1fc44,
2300 		0x1fc4c, 0x1fc4c,
2301 		0x1fe84, 0x1fe90,
2302 		0x1fec0, 0x1fec0,
2303 		0x1fee0, 0x1fee0,
2304 		0x1ff00, 0x1ff84,
2305 		0x1ffc0, 0x1ffc8,
2306 		0x30000, 0x30030,
2307 		0x30100, 0x30168,
2308 		0x30190, 0x301a0,
2309 		0x301a8, 0x301b8,
2310 		0x301c4, 0x301c8,
2311 		0x301d0, 0x301d0,
2312 		0x30200, 0x30320,
2313 		0x30400, 0x304b4,
2314 		0x304c0, 0x3052c,
2315 		0x30540, 0x3061c,
2316 		0x30800, 0x308a0,
2317 		0x308c0, 0x30908,
2318 		0x30910, 0x309b8,
2319 		0x30a00, 0x30a04,
2320 		0x30a0c, 0x30a14,
2321 		0x30a1c, 0x30a2c,
2322 		0x30a44, 0x30a50,
2323 		0x30a74, 0x30a74,
2324 		0x30a7c, 0x30afc,
2325 		0x30b08, 0x30c24,
2326 		0x30d00, 0x30d14,
2327 		0x30d1c, 0x30d3c,
2328 		0x30d44, 0x30d4c,
2329 		0x30d54, 0x30d74,
2330 		0x30d7c, 0x30d7c,
2331 		0x30de0, 0x30de0,
2332 		0x30e00, 0x30ed4,
2333 		0x30f00, 0x30fa4,
2334 		0x30fc0, 0x30fc4,
2335 		0x31000, 0x31004,
2336 		0x31080, 0x310fc,
2337 		0x31208, 0x31220,
2338 		0x3123c, 0x31254,
2339 		0x31300, 0x31300,
2340 		0x31308, 0x3131c,
2341 		0x31338, 0x3133c,
2342 		0x31380, 0x31380,
2343 		0x31388, 0x313a8,
2344 		0x313b4, 0x313b4,
2345 		0x31400, 0x31420,
2346 		0x31438, 0x3143c,
2347 		0x31480, 0x31480,
2348 		0x314a8, 0x314a8,
2349 		0x314b0, 0x314b4,
2350 		0x314c8, 0x314d4,
2351 		0x31a40, 0x31a4c,
2352 		0x31af0, 0x31b20,
2353 		0x31b38, 0x31b3c,
2354 		0x31b80, 0x31b80,
2355 		0x31ba8, 0x31ba8,
2356 		0x31bb0, 0x31bb4,
2357 		0x31bc8, 0x31bd4,
2358 		0x32140, 0x3218c,
2359 		0x321f0, 0x321f4,
2360 		0x32200, 0x32200,
2361 		0x32218, 0x32218,
2362 		0x32400, 0x32400,
2363 		0x32408, 0x3241c,
2364 		0x32618, 0x32620,
2365 		0x32664, 0x32664,
2366 		0x326a8, 0x326a8,
2367 		0x326ec, 0x326ec,
2368 		0x32a00, 0x32abc,
2369 		0x32b00, 0x32b18,
2370 		0x32b20, 0x32b38,
2371 		0x32b40, 0x32b58,
2372 		0x32b60, 0x32b78,
2373 		0x32c00, 0x32c00,
2374 		0x32c08, 0x32c3c,
2375 		0x33000, 0x3302c,
2376 		0x33034, 0x33050,
2377 		0x33058, 0x33058,
2378 		0x33060, 0x3308c,
2379 		0x3309c, 0x330ac,
2380 		0x330c0, 0x330c0,
2381 		0x330c8, 0x330d0,
2382 		0x330d8, 0x330e0,
2383 		0x330ec, 0x3312c,
2384 		0x33134, 0x33150,
2385 		0x33158, 0x33158,
2386 		0x33160, 0x3318c,
2387 		0x3319c, 0x331ac,
2388 		0x331c0, 0x331c0,
2389 		0x331c8, 0x331d0,
2390 		0x331d8, 0x331e0,
2391 		0x331ec, 0x33290,
2392 		0x33298, 0x332c4,
2393 		0x332e4, 0x33390,
2394 		0x33398, 0x333c4,
2395 		0x333e4, 0x3342c,
2396 		0x33434, 0x33450,
2397 		0x33458, 0x33458,
2398 		0x33460, 0x3348c,
2399 		0x3349c, 0x334ac,
2400 		0x334c0, 0x334c0,
2401 		0x334c8, 0x334d0,
2402 		0x334d8, 0x334e0,
2403 		0x334ec, 0x3352c,
2404 		0x33534, 0x33550,
2405 		0x33558, 0x33558,
2406 		0x33560, 0x3358c,
2407 		0x3359c, 0x335ac,
2408 		0x335c0, 0x335c0,
2409 		0x335c8, 0x335d0,
2410 		0x335d8, 0x335e0,
2411 		0x335ec, 0x33690,
2412 		0x33698, 0x336c4,
2413 		0x336e4, 0x33790,
2414 		0x33798, 0x337c4,
2415 		0x337e4, 0x337fc,
2416 		0x33814, 0x33814,
2417 		0x33854, 0x33868,
2418 		0x33880, 0x3388c,
2419 		0x338c0, 0x338d0,
2420 		0x338e8, 0x338ec,
2421 		0x33900, 0x3392c,
2422 		0x33934, 0x33950,
2423 		0x33958, 0x33958,
2424 		0x33960, 0x3398c,
2425 		0x3399c, 0x339ac,
2426 		0x339c0, 0x339c0,
2427 		0x339c8, 0x339d0,
2428 		0x339d8, 0x339e0,
2429 		0x339ec, 0x33a90,
2430 		0x33a98, 0x33ac4,
2431 		0x33ae4, 0x33b10,
2432 		0x33b24, 0x33b28,
2433 		0x33b38, 0x33b50,
2434 		0x33bf0, 0x33c10,
2435 		0x33c24, 0x33c28,
2436 		0x33c38, 0x33c50,
2437 		0x33cf0, 0x33cfc,
2438 		0x34000, 0x34030,
2439 		0x34100, 0x34168,
2440 		0x34190, 0x341a0,
2441 		0x341a8, 0x341b8,
2442 		0x341c4, 0x341c8,
2443 		0x341d0, 0x341d0,
2444 		0x34200, 0x34320,
2445 		0x34400, 0x344b4,
2446 		0x344c0, 0x3452c,
2447 		0x34540, 0x3461c,
2448 		0x34800, 0x348a0,
2449 		0x348c0, 0x34908,
2450 		0x34910, 0x349b8,
2451 		0x34a00, 0x34a04,
2452 		0x34a0c, 0x34a14,
2453 		0x34a1c, 0x34a2c,
2454 		0x34a44, 0x34a50,
2455 		0x34a74, 0x34a74,
2456 		0x34a7c, 0x34afc,
2457 		0x34b08, 0x34c24,
2458 		0x34d00, 0x34d14,
2459 		0x34d1c, 0x34d3c,
2460 		0x34d44, 0x34d4c,
2461 		0x34d54, 0x34d74,
2462 		0x34d7c, 0x34d7c,
2463 		0x34de0, 0x34de0,
2464 		0x34e00, 0x34ed4,
2465 		0x34f00, 0x34fa4,
2466 		0x34fc0, 0x34fc4,
2467 		0x35000, 0x35004,
2468 		0x35080, 0x350fc,
2469 		0x35208, 0x35220,
2470 		0x3523c, 0x35254,
2471 		0x35300, 0x35300,
2472 		0x35308, 0x3531c,
2473 		0x35338, 0x3533c,
2474 		0x35380, 0x35380,
2475 		0x35388, 0x353a8,
2476 		0x353b4, 0x353b4,
2477 		0x35400, 0x35420,
2478 		0x35438, 0x3543c,
2479 		0x35480, 0x35480,
2480 		0x354a8, 0x354a8,
2481 		0x354b0, 0x354b4,
2482 		0x354c8, 0x354d4,
2483 		0x35a40, 0x35a4c,
2484 		0x35af0, 0x35b20,
2485 		0x35b38, 0x35b3c,
2486 		0x35b80, 0x35b80,
2487 		0x35ba8, 0x35ba8,
2488 		0x35bb0, 0x35bb4,
2489 		0x35bc8, 0x35bd4,
2490 		0x36140, 0x3618c,
2491 		0x361f0, 0x361f4,
2492 		0x36200, 0x36200,
2493 		0x36218, 0x36218,
2494 		0x36400, 0x36400,
2495 		0x36408, 0x3641c,
2496 		0x36618, 0x36620,
2497 		0x36664, 0x36664,
2498 		0x366a8, 0x366a8,
2499 		0x366ec, 0x366ec,
2500 		0x36a00, 0x36abc,
2501 		0x36b00, 0x36b18,
2502 		0x36b20, 0x36b38,
2503 		0x36b40, 0x36b58,
2504 		0x36b60, 0x36b78,
2505 		0x36c00, 0x36c00,
2506 		0x36c08, 0x36c3c,
2507 		0x37000, 0x3702c,
2508 		0x37034, 0x37050,
2509 		0x37058, 0x37058,
2510 		0x37060, 0x3708c,
2511 		0x3709c, 0x370ac,
2512 		0x370c0, 0x370c0,
2513 		0x370c8, 0x370d0,
2514 		0x370d8, 0x370e0,
2515 		0x370ec, 0x3712c,
2516 		0x37134, 0x37150,
2517 		0x37158, 0x37158,
2518 		0x37160, 0x3718c,
2519 		0x3719c, 0x371ac,
2520 		0x371c0, 0x371c0,
2521 		0x371c8, 0x371d0,
2522 		0x371d8, 0x371e0,
2523 		0x371ec, 0x37290,
2524 		0x37298, 0x372c4,
2525 		0x372e4, 0x37390,
2526 		0x37398, 0x373c4,
2527 		0x373e4, 0x3742c,
2528 		0x37434, 0x37450,
2529 		0x37458, 0x37458,
2530 		0x37460, 0x3748c,
2531 		0x3749c, 0x374ac,
2532 		0x374c0, 0x374c0,
2533 		0x374c8, 0x374d0,
2534 		0x374d8, 0x374e0,
2535 		0x374ec, 0x3752c,
2536 		0x37534, 0x37550,
2537 		0x37558, 0x37558,
2538 		0x37560, 0x3758c,
2539 		0x3759c, 0x375ac,
2540 		0x375c0, 0x375c0,
2541 		0x375c8, 0x375d0,
2542 		0x375d8, 0x375e0,
2543 		0x375ec, 0x37690,
2544 		0x37698, 0x376c4,
2545 		0x376e4, 0x37790,
2546 		0x37798, 0x377c4,
2547 		0x377e4, 0x377fc,
2548 		0x37814, 0x37814,
2549 		0x37854, 0x37868,
2550 		0x37880, 0x3788c,
2551 		0x378c0, 0x378d0,
2552 		0x378e8, 0x378ec,
2553 		0x37900, 0x3792c,
2554 		0x37934, 0x37950,
2555 		0x37958, 0x37958,
2556 		0x37960, 0x3798c,
2557 		0x3799c, 0x379ac,
2558 		0x379c0, 0x379c0,
2559 		0x379c8, 0x379d0,
2560 		0x379d8, 0x379e0,
2561 		0x379ec, 0x37a90,
2562 		0x37a98, 0x37ac4,
2563 		0x37ae4, 0x37b10,
2564 		0x37b24, 0x37b28,
2565 		0x37b38, 0x37b50,
2566 		0x37bf0, 0x37c10,
2567 		0x37c24, 0x37c28,
2568 		0x37c38, 0x37c50,
2569 		0x37cf0, 0x37cfc,
2570 		0x40040, 0x40040,
2571 		0x40080, 0x40084,
2572 		0x40100, 0x40100,
2573 		0x40140, 0x401bc,
2574 		0x40200, 0x40214,
2575 		0x40228, 0x40228,
2576 		0x40240, 0x40258,
2577 		0x40280, 0x40280,
2578 		0x40304, 0x40304,
2579 		0x40330, 0x4033c,
2580 		0x41304, 0x413c8,
2581 		0x413d0, 0x413dc,
2582 		0x413f0, 0x413f0,
2583 		0x41400, 0x4140c,
2584 		0x41414, 0x4141c,
2585 		0x41480, 0x414d0,
2586 		0x44000, 0x4407c,
2587 		0x440c0, 0x441ac,
2588 		0x441b4, 0x4427c,
2589 		0x442c0, 0x443ac,
2590 		0x443b4, 0x4447c,
2591 		0x444c0, 0x445ac,
2592 		0x445b4, 0x4467c,
2593 		0x446c0, 0x447ac,
2594 		0x447b4, 0x4487c,
2595 		0x448c0, 0x449ac,
2596 		0x449b4, 0x44a7c,
2597 		0x44ac0, 0x44bac,
2598 		0x44bb4, 0x44c7c,
2599 		0x44cc0, 0x44dac,
2600 		0x44db4, 0x44e7c,
2601 		0x44ec0, 0x44fac,
2602 		0x44fb4, 0x4507c,
2603 		0x450c0, 0x451ac,
2604 		0x451b4, 0x451fc,
2605 		0x45800, 0x45804,
2606 		0x45810, 0x45830,
2607 		0x45840, 0x45860,
2608 		0x45868, 0x45868,
2609 		0x45880, 0x45884,
2610 		0x458a0, 0x458b0,
2611 		0x45a00, 0x45a04,
2612 		0x45a10, 0x45a30,
2613 		0x45a40, 0x45a60,
2614 		0x45a68, 0x45a68,
2615 		0x45a80, 0x45a84,
2616 		0x45aa0, 0x45ab0,
2617 		0x460c0, 0x460e4,
2618 		0x47000, 0x4703c,
2619 		0x47044, 0x4708c,
2620 		0x47200, 0x47250,
2621 		0x47400, 0x47408,
2622 		0x47414, 0x47420,
2623 		0x47600, 0x47618,
2624 		0x47800, 0x47814,
2625 		0x47820, 0x4782c,
2626 		0x50000, 0x50084,
2627 		0x50090, 0x500cc,
2628 		0x50300, 0x50384,
2629 		0x50400, 0x50400,
2630 		0x50800, 0x50884,
2631 		0x50890, 0x508cc,
2632 		0x50b00, 0x50b84,
2633 		0x50c00, 0x50c00,
2634 		0x51000, 0x51020,
2635 		0x51028, 0x510b0,
2636 		0x51300, 0x51324,
2637 	};
2638 
2639 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2640 	const unsigned int *reg_ranges;
2641 	int reg_ranges_size, range;
2642 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2643 
2644 	/* Select the right set of register ranges to dump depending on the
2645 	 * adapter chip type.
2646 	 */
2647 	switch (chip_version) {
2648 	case CHELSIO_T4:
2649 		reg_ranges = t4_reg_ranges;
2650 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2651 		break;
2652 
2653 	case CHELSIO_T5:
2654 		reg_ranges = t5_reg_ranges;
2655 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2656 		break;
2657 
2658 	case CHELSIO_T6:
2659 		reg_ranges = t6_reg_ranges;
2660 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2661 		break;
2662 
2663 	default:
2664 		dev_err(adap->pdev_dev,
2665 			"Unsupported chip version %d\n", chip_version);
2666 		return;
2667 	}
2668 
2669 	/* Clear the register buffer and insert the appropriate register
2670 	 * values selected by the above register ranges.
2671 	 */
2672 	memset(buf, 0, buf_size);
2673 	for (range = 0; range < reg_ranges_size; range += 2) {
2674 		unsigned int reg = reg_ranges[range];
2675 		unsigned int last_reg = reg_ranges[range + 1];
2676 		u32 *bufp = (u32 *)((char *)buf + reg);
2677 
2678 		/* Iterate across the register range filling in the register
2679 		 * buffer but don't write past the end of the register buffer.
2680 		 */
2681 		while (reg <= last_reg && bufp < buf_end) {
2682 			*bufp++ = t4_read_reg(adap, reg);
2683 			reg += sizeof(u32);
2684 		}
2685 	}
2686 }
2687 
2688 #define EEPROM_STAT_ADDR   0x7bfc
2689 #define VPD_BASE           0x400
2690 #define VPD_BASE_OLD       0
2691 #define VPD_LEN            1024
2692 #define CHELSIO_VPD_UNIQUE_ID 0x82
2693 
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713 	fn *= sz;
2714 	if (phys_addr < 1024)
2715 		return phys_addr + (31 << 10);
2716 	if (phys_addr < 1024 + fn)
2717 		return 31744 - fn + phys_addr - 1024;
2718 	if (phys_addr < EEPROMSIZE)
2719 		return phys_addr - 1024 - fn;
2720 	return -EINVAL;
2721 }
2722 
2723 /**
2724  *	t4_seeprom_wp - enable/disable EEPROM write protection
2725  *	@adapter: the adapter
2726  *	@enable: whether to enable or disable write protection
2727  *
2728  *	Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732 	unsigned int v = enable ? 0xc : 0;
2733 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734 	return ret < 0 ? ret : 0;
2735 }
2736 
2737 /**
2738  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *	@adapter: adapter to read
2740  *	@p: where to store the parameters
2741  *
2742  *	Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746 	int i, ret = 0, addr;
2747 	int ec, sn, pn, na;
2748 	u8 *vpd, csum;
2749 	unsigned int vpdr_len, kw_offset, id_len;
2750 
2751 	vpd = vmalloc(VPD_LEN);
2752 	if (!vpd)
2753 		return -ENOMEM;
2754 
2755 	/* Card information normally starts at VPD_BASE but early cards had
2756 	 * it at 0.
2757 	 */
2758 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2759 	if (ret < 0)
2760 		goto out;
2761 
2762 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2763 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2764 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2765 	 * is expected to automatically put this entry at the
2766 	 * beginning of the VPD.
2767 	 */
2768 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2769 
2770 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2771 	if (ret < 0)
2772 		goto out;
2773 
2774 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2775 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2776 		ret = -EINVAL;
2777 		goto out;
2778 	}
2779 
2780 	id_len = pci_vpd_lrdt_size(vpd);
2781 	if (id_len > ID_LEN)
2782 		id_len = ID_LEN;
2783 
2784 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2785 	if (i < 0) {
2786 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2787 		ret = -EINVAL;
2788 		goto out;
2789 	}
2790 
2791 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2792 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2793 	if (vpdr_len + kw_offset > VPD_LEN) {
2794 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2795 		ret = -EINVAL;
2796 		goto out;
2797 	}
2798 
2799 #define FIND_VPD_KW(var, name) do { \
2800 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2801 	if (var < 0) { \
2802 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2803 		ret = -EINVAL; \
2804 		goto out; \
2805 	} \
2806 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2807 } while (0)
2808 
2809 	FIND_VPD_KW(i, "RV");
2810 	for (csum = 0; i >= 0; i--)
2811 		csum += vpd[i];
2812 
2813 	if (csum) {
2814 		dev_err(adapter->pdev_dev,
2815 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2816 		ret = -EINVAL;
2817 		goto out;
2818 	}
2819 
2820 	FIND_VPD_KW(ec, "EC");
2821 	FIND_VPD_KW(sn, "SN");
2822 	FIND_VPD_KW(pn, "PN");
2823 	FIND_VPD_KW(na, "NA");
2824 #undef FIND_VPD_KW
2825 
2826 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2827 	strim(p->id);
2828 	memcpy(p->ec, vpd + ec, EC_LEN);
2829 	strim(p->ec);
2830 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2831 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2832 	strim(p->sn);
2833 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2834 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2835 	strim(p->pn);
2836 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2837 	strim((char *)p->na);
2838 
2839 out:
2840 	vfree(vpd);
2841 	return ret < 0 ? ret : 0;
2842 }
2843 
2844 /**
2845  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2846  *	@adapter: adapter to read
2847  *	@p: where to store the parameters
2848  *
2849  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2850  *	Clock.  This can only be called after a connection to the firmware
2851  *	is established.
2852  */
2853 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2854 {
2855 	u32 cclk_param, cclk_val;
2856 	int ret;
2857 
2858 	/* Grab the raw VPD parameters.
2859 	 */
2860 	ret = t4_get_raw_vpd_params(adapter, p);
2861 	if (ret)
2862 		return ret;
2863 
2864 	/* Ask firmware for the Core Clock since it knows how to translate the
2865 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2866 	 */
2867 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2868 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2869 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2870 			      1, &cclk_param, &cclk_val);
2871 
2872 	if (ret)
2873 		return ret;
2874 	p->cclk = cclk_val;
2875 
2876 	return 0;
2877 }
2878 
2879 /**
2880  *	t4_get_pfres - retrieve VF resource limits
2881  *	@adapter: the adapter
2882  *
2883  *	Retrieves configured resource limits and capabilities for a physical
2884  *	function.  The results are stored in @adapter->pfres.
2885  */
2886 int t4_get_pfres(struct adapter *adapter)
2887 {
2888 	struct pf_resources *pfres = &adapter->params.pfres;
2889 	struct fw_pfvf_cmd cmd, rpl;
2890 	int v;
2891 	u32 word;
2892 
2893 	/* Execute PFVF Read command to get VF resource limits; bail out early
2894 	 * with error on command failure.
2895 	 */
2896 	memset(&cmd, 0, sizeof(cmd));
2897 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2898 				    FW_CMD_REQUEST_F |
2899 				    FW_CMD_READ_F |
2900 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2901 				    FW_PFVF_CMD_VFN_V(0));
2902 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2903 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2904 	if (v != FW_SUCCESS)
2905 		return v;
2906 
2907 	/* Extract PF resource limits and return success.
2908 	 */
2909 	word = be32_to_cpu(rpl.niqflint_niq);
2910 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2911 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2912 
2913 	word = be32_to_cpu(rpl.type_to_neq);
2914 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2915 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2916 
2917 	word = be32_to_cpu(rpl.tc_to_nexactf);
2918 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2919 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2920 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2921 
2922 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2923 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2924 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2925 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2926 
2927 	return 0;
2928 }
2929 
2930 /* serial flash and firmware constants */
2931 enum {
2932 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2933 
2934 	/* flash command opcodes */
2935 	SF_PROG_PAGE    = 2,          /* program page */
2936 	SF_WR_DISABLE   = 4,          /* disable writes */
2937 	SF_RD_STATUS    = 5,          /* read status register */
2938 	SF_WR_ENABLE    = 6,          /* enable writes */
2939 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2940 	SF_RD_ID        = 0x9f,       /* read ID */
2941 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2942 };
2943 
2944 /**
2945  *	sf1_read - read data from the serial flash
2946  *	@adapter: the adapter
2947  *	@byte_cnt: number of bytes to read
2948  *	@cont: whether another operation will be chained
2949  *	@lock: whether to lock SF for PL access only
2950  *	@valp: where to store the read data
2951  *
2952  *	Reads up to 4 bytes of data from the serial flash.  The location of
2953  *	the read needs to be specified prior to calling this by issuing the
2954  *	appropriate commands to the serial flash.
2955  */
2956 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957 		    int lock, u32 *valp)
2958 {
2959 	int ret;
2960 
2961 	if (!byte_cnt || byte_cnt > 4)
2962 		return -EINVAL;
2963 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2964 		return -EBUSY;
2965 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2966 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2967 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2968 	if (!ret)
2969 		*valp = t4_read_reg(adapter, SF_DATA_A);
2970 	return ret;
2971 }
2972 
2973 /**
2974  *	sf1_write - write data to the serial flash
2975  *	@adapter: the adapter
2976  *	@byte_cnt: number of bytes to write
2977  *	@cont: whether another operation will be chained
2978  *	@lock: whether to lock SF for PL access only
2979  *	@val: value to write
2980  *
2981  *	Writes up to 4 bytes of data to the serial flash.  The location of
2982  *	the write needs to be specified prior to calling this by issuing the
2983  *	appropriate commands to the serial flash.
2984  */
2985 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2986 		     int lock, u32 val)
2987 {
2988 	if (!byte_cnt || byte_cnt > 4)
2989 		return -EINVAL;
2990 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2991 		return -EBUSY;
2992 	t4_write_reg(adapter, SF_DATA_A, val);
2993 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2994 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2995 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2996 }
2997 
2998 /**
2999  *	flash_wait_op - wait for a flash operation to complete
3000  *	@adapter: the adapter
3001  *	@attempts: max number of polls of the status register
3002  *	@delay: delay between polls in ms
3003  *
3004  *	Wait for a flash operation to complete by polling the status register.
3005  */
3006 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3007 {
3008 	int ret;
3009 	u32 status;
3010 
3011 	while (1) {
3012 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3013 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3014 			return ret;
3015 		if (!(status & 1))
3016 			return 0;
3017 		if (--attempts == 0)
3018 			return -EAGAIN;
3019 		if (delay)
3020 			msleep(delay);
3021 	}
3022 }
3023 
3024 /**
3025  *	t4_read_flash - read words from serial flash
3026  *	@adapter: the adapter
3027  *	@addr: the start address for the read
3028  *	@nwords: how many 32-bit words to read
3029  *	@data: where to store the read data
3030  *	@byte_oriented: whether to store data as bytes or as words
3031  *
3032  *	Read the specified number of 32-bit words from the serial flash.
3033  *	If @byte_oriented is set the read data is stored as a byte array
3034  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3035  *	natural endianness.
3036  */
3037 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3038 		  unsigned int nwords, u32 *data, int byte_oriented)
3039 {
3040 	int ret;
3041 
3042 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3043 		return -EINVAL;
3044 
3045 	addr = swab32(addr) | SF_RD_DATA_FAST;
3046 
3047 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3048 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3049 		return ret;
3050 
3051 	for ( ; nwords; nwords--, data++) {
3052 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3053 		if (nwords == 1)
3054 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3055 		if (ret)
3056 			return ret;
3057 		if (byte_oriented)
3058 			*data = (__force __u32)(cpu_to_be32(*data));
3059 	}
3060 	return 0;
3061 }
3062 
3063 /**
3064  *	t4_write_flash - write up to a page of data to the serial flash
3065  *	@adapter: the adapter
3066  *	@addr: the start address to write
3067  *	@n: length of data to write in bytes
3068  *	@data: the data to write
3069  *
3070  *	Writes up to a page of data (256 bytes) to the serial flash starting
3071  *	at the given address.  All the data must be written to the same page.
3072  */
3073 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3074 			  unsigned int n, const u8 *data)
3075 {
3076 	int ret;
3077 	u32 buf[64];
3078 	unsigned int i, c, left, val, offset = addr & 0xff;
3079 
3080 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3081 		return -EINVAL;
3082 
3083 	val = swab32(addr) | SF_PROG_PAGE;
3084 
3085 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3086 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3087 		goto unlock;
3088 
3089 	for (left = n; left; left -= c) {
3090 		c = min(left, 4U);
3091 		for (val = 0, i = 0; i < c; ++i)
3092 			val = (val << 8) + *data++;
3093 
3094 		ret = sf1_write(adapter, c, c != left, 1, val);
3095 		if (ret)
3096 			goto unlock;
3097 	}
3098 	ret = flash_wait_op(adapter, 8, 1);
3099 	if (ret)
3100 		goto unlock;
3101 
3102 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3103 
3104 	/* Read the page to verify the write succeeded */
3105 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3106 	if (ret)
3107 		return ret;
3108 
3109 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3110 		dev_err(adapter->pdev_dev,
3111 			"failed to correctly write the flash page at %#x\n",
3112 			addr);
3113 		return -EIO;
3114 	}
3115 	return 0;
3116 
3117 unlock:
3118 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3119 	return ret;
3120 }
3121 
3122 /**
3123  *	t4_get_fw_version - read the firmware version
3124  *	@adapter: the adapter
3125  *	@vers: where to place the version
3126  *
3127  *	Reads the FW version from flash.
3128  */
3129 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3130 {
3131 	return t4_read_flash(adapter, FLASH_FW_START +
3132 			     offsetof(struct fw_hdr, fw_ver), 1,
3133 			     vers, 0);
3134 }
3135 
3136 /**
3137  *	t4_get_bs_version - read the firmware bootstrap version
3138  *	@adapter: the adapter
3139  *	@vers: where to place the version
3140  *
3141  *	Reads the FW Bootstrap version from flash.
3142  */
3143 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3144 {
3145 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3146 			     offsetof(struct fw_hdr, fw_ver), 1,
3147 			     vers, 0);
3148 }
3149 
3150 /**
3151  *	t4_get_tp_version - read the TP microcode version
3152  *	@adapter: the adapter
3153  *	@vers: where to place the version
3154  *
3155  *	Reads the TP microcode version from flash.
3156  */
3157 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3158 {
3159 	return t4_read_flash(adapter, FLASH_FW_START +
3160 			     offsetof(struct fw_hdr, tp_microcode_ver),
3161 			     1, vers, 0);
3162 }
3163 
3164 /**
3165  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3166  *	@adap: the adapter
3167  *	@vers: where to place the version
3168  *
3169  *	Reads the Expansion ROM header from FLASH and returns the version
3170  *	number (if present) through the @vers return value pointer.  We return
3171  *	this in the Firmware Version Format since it's convenient.  Return
3172  *	0 on success, -ENOENT if no Expansion ROM is present.
3173  */
3174 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3175 {
3176 	struct exprom_header {
3177 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3178 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3179 	} *hdr;
3180 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3181 					   sizeof(u32))];
3182 	int ret;
3183 
3184 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3185 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3186 			    0);
3187 	if (ret)
3188 		return ret;
3189 
3190 	hdr = (struct exprom_header *)exprom_header_buf;
3191 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3192 		return -ENOENT;
3193 
3194 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3195 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3196 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3197 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3198 	return 0;
3199 }
3200 
3201 /**
3202  *      t4_get_vpd_version - return the VPD version
3203  *      @adapter: the adapter
3204  *      @vers: where to place the version
3205  *
3206  *      Reads the VPD via the Firmware interface (thus this can only be called
3207  *      once we're ready to issue Firmware commands).  The format of the
3208  *      VPD version is adapter specific.  Returns 0 on success, an error on
3209  *      failure.
3210  *
3211  *      Note that early versions of the Firmware didn't include the ability
3212  *      to retrieve the VPD version, so we zero-out the return-value parameter
3213  *      in that case to avoid leaving it with garbage in it.
3214  *
3215  *      Also note that the Firmware will return its cached copy of the VPD
3216  *      Revision ID, not the actual Revision ID as written in the Serial
3217  *      EEPROM.  This is only an issue if a new VPD has been written and the
3218  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3219  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3220  *      if the Host Driver will be performing a full adapter initialization.
3221  */
3222 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3223 {
3224 	u32 vpdrev_param;
3225 	int ret;
3226 
3227 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3228 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3229 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3230 			      1, &vpdrev_param, vers);
3231 	if (ret)
3232 		*vers = 0;
3233 	return ret;
3234 }
3235 
3236 /**
3237  *      t4_get_scfg_version - return the Serial Configuration version
3238  *      @adapter: the adapter
3239  *      @vers: where to place the version
3240  *
3241  *      Reads the Serial Configuration Version via the Firmware interface
3242  *      (thus this can only be called once we're ready to issue Firmware
3243  *      commands).  The format of the Serial Configuration version is
3244  *      adapter specific.  Returns 0 on success, an error on failure.
3245  *
3246  *      Note that early versions of the Firmware didn't include the ability
3247  *      to retrieve the Serial Configuration version, so we zero-out the
3248  *      return-value parameter in that case to avoid leaving it with
3249  *      garbage in it.
3250  *
3251  *      Also note that the Firmware will return its cached copy of the Serial
3252  *      Initialization Revision ID, not the actual Revision ID as written in
3253  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3254  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3255  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3256  *      been issued if the Host Driver will be performing a full adapter
3257  *      initialization.
3258  */
3259 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3260 {
3261 	u32 scfgrev_param;
3262 	int ret;
3263 
3264 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3265 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3266 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3267 			      1, &scfgrev_param, vers);
3268 	if (ret)
3269 		*vers = 0;
3270 	return ret;
3271 }
3272 
3273 /**
3274  *      t4_get_version_info - extract various chip/firmware version information
3275  *      @adapter: the adapter
3276  *
3277  *      Reads various chip/firmware version numbers and stores them into the
3278  *      adapter Adapter Parameters structure.  If any of the efforts fails
3279  *      the first failure will be returned, but all of the version numbers
3280  *      will be read.
3281  */
3282 int t4_get_version_info(struct adapter *adapter)
3283 {
3284 	int ret = 0;
3285 
3286 	#define FIRST_RET(__getvinfo) \
3287 	do { \
3288 		int __ret = __getvinfo; \
3289 		if (__ret && !ret) \
3290 			ret = __ret; \
3291 	} while (0)
3292 
3293 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3294 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3295 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3296 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3297 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3298 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3299 
3300 	#undef FIRST_RET
3301 	return ret;
3302 }
3303 
3304 /**
3305  *      t4_dump_version_info - dump all of the adapter configuration IDs
3306  *      @adapter: the adapter
3307  *
3308  *      Dumps all of the various bits of adapter configuration version/revision
3309  *      IDs information.  This is typically called at some point after
3310  *      t4_get_version_info() has been called.
3311  */
3312 void t4_dump_version_info(struct adapter *adapter)
3313 {
3314 	/* Device information */
3315 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3316 		 adapter->params.vpd.id,
3317 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3318 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3319 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3320 
3321 	/* Firmware Version */
3322 	if (!adapter->params.fw_vers)
3323 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3324 	else
3325 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3326 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3327 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3328 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3329 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3330 
3331 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3332 	 * Firmware, so dev_info() is more appropriate here.)
3333 	 */
3334 	if (!adapter->params.bs_vers)
3335 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3336 	else
3337 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3338 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3339 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3340 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3341 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3342 
3343 	/* TP Microcode Version */
3344 	if (!adapter->params.tp_vers)
3345 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3346 	else
3347 		dev_info(adapter->pdev_dev,
3348 			 "TP Microcode version: %u.%u.%u.%u\n",
3349 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3350 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3351 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3352 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3353 
3354 	/* Expansion ROM version */
3355 	if (!adapter->params.er_vers)
3356 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3357 	else
3358 		dev_info(adapter->pdev_dev,
3359 			 "Expansion ROM version: %u.%u.%u.%u\n",
3360 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3361 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3362 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3363 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3364 
3365 	/* Serial Configuration version */
3366 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3367 		 adapter->params.scfg_vers);
3368 
3369 	/* VPD Version */
3370 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3371 		 adapter->params.vpd_vers);
3372 }
3373 
3374 /**
3375  *	t4_check_fw_version - check if the FW is supported with this driver
3376  *	@adap: the adapter
3377  *
3378  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3379  *	if there's exact match, a negative error if the version could not be
3380  *	read or there's a major version mismatch
3381  */
3382 int t4_check_fw_version(struct adapter *adap)
3383 {
3384 	int i, ret, major, minor, micro;
3385 	int exp_major, exp_minor, exp_micro;
3386 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3387 
3388 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3389 	/* Try multiple times before returning error */
3390 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3391 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3392 
3393 	if (ret)
3394 		return ret;
3395 
3396 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3397 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3398 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3399 
3400 	switch (chip_version) {
3401 	case CHELSIO_T4:
3402 		exp_major = T4FW_MIN_VERSION_MAJOR;
3403 		exp_minor = T4FW_MIN_VERSION_MINOR;
3404 		exp_micro = T4FW_MIN_VERSION_MICRO;
3405 		break;
3406 	case CHELSIO_T5:
3407 		exp_major = T5FW_MIN_VERSION_MAJOR;
3408 		exp_minor = T5FW_MIN_VERSION_MINOR;
3409 		exp_micro = T5FW_MIN_VERSION_MICRO;
3410 		break;
3411 	case CHELSIO_T6:
3412 		exp_major = T6FW_MIN_VERSION_MAJOR;
3413 		exp_minor = T6FW_MIN_VERSION_MINOR;
3414 		exp_micro = T6FW_MIN_VERSION_MICRO;
3415 		break;
3416 	default:
3417 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3418 			adap->chip);
3419 		return -EINVAL;
3420 	}
3421 
3422 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3423 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3424 		dev_err(adap->pdev_dev,
3425 			"Card has firmware version %u.%u.%u, minimum "
3426 			"supported firmware is %u.%u.%u.\n", major, minor,
3427 			micro, exp_major, exp_minor, exp_micro);
3428 		return -EFAULT;
3429 	}
3430 	return 0;
3431 }
3432 
3433 /* Is the given firmware API compatible with the one the driver was compiled
3434  * with?
3435  */
3436 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3437 {
3438 
3439 	/* short circuit if it's the exact same firmware version */
3440 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3441 		return 1;
3442 
3443 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3444 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3445 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3446 		return 1;
3447 #undef SAME_INTF
3448 
3449 	return 0;
3450 }
3451 
3452 /* The firmware in the filesystem is usable, but should it be installed?
3453  * This routine explains itself in detail if it indicates the filesystem
3454  * firmware should be installed.
3455  */
3456 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3457 				int k, int c)
3458 {
3459 	const char *reason;
3460 
3461 	if (!card_fw_usable) {
3462 		reason = "incompatible or unusable";
3463 		goto install;
3464 	}
3465 
3466 	if (k > c) {
3467 		reason = "older than the version supported with this driver";
3468 		goto install;
3469 	}
3470 
3471 	return 0;
3472 
3473 install:
3474 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3475 		"installing firmware %u.%u.%u.%u on card.\n",
3476 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3477 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3478 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3479 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3480 
3481 	return 1;
3482 }
3483 
3484 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3485 	       const u8 *fw_data, unsigned int fw_size,
3486 	       struct fw_hdr *card_fw, enum dev_state state,
3487 	       int *reset)
3488 {
3489 	int ret, card_fw_usable, fs_fw_usable;
3490 	const struct fw_hdr *fs_fw;
3491 	const struct fw_hdr *drv_fw;
3492 
3493 	drv_fw = &fw_info->fw_hdr;
3494 
3495 	/* Read the header of the firmware on the card */
3496 	ret = t4_read_flash(adap, FLASH_FW_START,
3497 			    sizeof(*card_fw) / sizeof(uint32_t),
3498 			    (uint32_t *)card_fw, 1);
3499 	if (ret == 0) {
3500 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3501 	} else {
3502 		dev_err(adap->pdev_dev,
3503 			"Unable to read card's firmware header: %d\n", ret);
3504 		card_fw_usable = 0;
3505 	}
3506 
3507 	if (fw_data != NULL) {
3508 		fs_fw = (const void *)fw_data;
3509 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3510 	} else {
3511 		fs_fw = NULL;
3512 		fs_fw_usable = 0;
3513 	}
3514 
3515 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3516 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3517 		/* Common case: the firmware on the card is an exact match and
3518 		 * the filesystem one is an exact match too, or the filesystem
3519 		 * one is absent/incompatible.
3520 		 */
3521 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3522 		   should_install_fs_fw(adap, card_fw_usable,
3523 					be32_to_cpu(fs_fw->fw_ver),
3524 					be32_to_cpu(card_fw->fw_ver))) {
3525 		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3526 				    fw_size, 0);
3527 		if (ret != 0) {
3528 			dev_err(adap->pdev_dev,
3529 				"failed to install firmware: %d\n", ret);
3530 			goto bye;
3531 		}
3532 
3533 		/* Installed successfully, update the cached header too. */
3534 		*card_fw = *fs_fw;
3535 		card_fw_usable = 1;
3536 		*reset = 0;	/* already reset as part of load_fw */
3537 	}
3538 
3539 	if (!card_fw_usable) {
3540 		uint32_t d, c, k;
3541 
3542 		d = be32_to_cpu(drv_fw->fw_ver);
3543 		c = be32_to_cpu(card_fw->fw_ver);
3544 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3545 
3546 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3547 			"chip state %d, "
3548 			"driver compiled with %d.%d.%d.%d, "
3549 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3550 			state,
3551 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3552 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3553 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3554 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3555 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3556 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3557 		ret = -EINVAL;
3558 		goto bye;
3559 	}
3560 
3561 	/* We're using whatever's on the card and it's known to be good. */
3562 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3563 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3564 
3565 bye:
3566 	return ret;
3567 }
3568 
3569 /**
3570  *	t4_flash_erase_sectors - erase a range of flash sectors
3571  *	@adapter: the adapter
3572  *	@start: the first sector to erase
3573  *	@end: the last sector to erase
3574  *
3575  *	Erases the sectors in the given inclusive range.
3576  */
3577 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3578 {
3579 	int ret = 0;
3580 
3581 	if (end >= adapter->params.sf_nsec)
3582 		return -EINVAL;
3583 
3584 	while (start <= end) {
3585 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3586 		    (ret = sf1_write(adapter, 4, 0, 1,
3587 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3588 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3589 			dev_err(adapter->pdev_dev,
3590 				"erase of flash sector %d failed, error %d\n",
3591 				start, ret);
3592 			break;
3593 		}
3594 		start++;
3595 	}
3596 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3597 	return ret;
3598 }
3599 
3600 /**
3601  *	t4_flash_cfg_addr - return the address of the flash configuration file
3602  *	@adapter: the adapter
3603  *
3604  *	Return the address within the flash where the Firmware Configuration
3605  *	File is stored.
3606  */
3607 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3608 {
3609 	if (adapter->params.sf_size == 0x100000)
3610 		return FLASH_FPGA_CFG_START;
3611 	else
3612 		return FLASH_CFG_START;
3613 }
3614 
3615 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3616  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3617  * and emit an error message for mismatched firmware to save our caller the
3618  * effort ...
3619  */
3620 static bool t4_fw_matches_chip(const struct adapter *adap,
3621 			       const struct fw_hdr *hdr)
3622 {
3623 	/* The expression below will return FALSE for any unsupported adapter
3624 	 * which will keep us "honest" in the future ...
3625 	 */
3626 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3627 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3628 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3629 		return true;
3630 
3631 	dev_err(adap->pdev_dev,
3632 		"FW image (%d) is not suitable for this adapter (%d)\n",
3633 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3634 	return false;
3635 }
3636 
3637 /**
3638  *	t4_load_fw - download firmware
3639  *	@adap: the adapter
3640  *	@fw_data: the firmware image to write
3641  *	@size: image size
3642  *
3643  *	Write the supplied firmware image to the card's serial flash.
3644  */
3645 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3646 {
3647 	u32 csum;
3648 	int ret, addr;
3649 	unsigned int i;
3650 	u8 first_page[SF_PAGE_SIZE];
3651 	const __be32 *p = (const __be32 *)fw_data;
3652 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3653 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3654 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3655 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3656 	unsigned int fw_start = FLASH_FW_START;
3657 
3658 	if (!size) {
3659 		dev_err(adap->pdev_dev, "FW image has no data\n");
3660 		return -EINVAL;
3661 	}
3662 	if (size & 511) {
3663 		dev_err(adap->pdev_dev,
3664 			"FW image size not multiple of 512 bytes\n");
3665 		return -EINVAL;
3666 	}
3667 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3668 		dev_err(adap->pdev_dev,
3669 			"FW image size differs from size in FW header\n");
3670 		return -EINVAL;
3671 	}
3672 	if (size > fw_size) {
3673 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3674 			fw_size);
3675 		return -EFBIG;
3676 	}
3677 	if (!t4_fw_matches_chip(adap, hdr))
3678 		return -EINVAL;
3679 
3680 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3681 		csum += be32_to_cpu(p[i]);
3682 
3683 	if (csum != 0xffffffff) {
3684 		dev_err(adap->pdev_dev,
3685 			"corrupted firmware image, checksum %#x\n", csum);
3686 		return -EINVAL;
3687 	}
3688 
3689 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3690 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3691 	if (ret)
3692 		goto out;
3693 
3694 	/*
3695 	 * We write the correct version at the end so the driver can see a bad
3696 	 * version if the FW write fails.  Start by writing a copy of the
3697 	 * first page with a bad version.
3698 	 */
3699 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3700 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3701 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3702 	if (ret)
3703 		goto out;
3704 
3705 	addr = fw_start;
3706 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3707 		addr += SF_PAGE_SIZE;
3708 		fw_data += SF_PAGE_SIZE;
3709 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3710 		if (ret)
3711 			goto out;
3712 	}
3713 
3714 	ret = t4_write_flash(adap,
3715 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3716 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3717 out:
3718 	if (ret)
3719 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3720 			ret);
3721 	else
3722 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3723 	return ret;
3724 }
3725 
3726 /**
3727  *	t4_phy_fw_ver - return current PHY firmware version
3728  *	@adap: the adapter
3729  *	@phy_fw_ver: return value buffer for PHY firmware version
3730  *
3731  *	Returns the current version of external PHY firmware on the
3732  *	adapter.
3733  */
3734 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3735 {
3736 	u32 param, val;
3737 	int ret;
3738 
3739 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3740 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3741 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3742 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3743 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3744 			      &param, &val);
3745 	if (ret)
3746 		return ret;
3747 	*phy_fw_ver = val;
3748 	return 0;
3749 }
3750 
3751 /**
3752  *	t4_load_phy_fw - download port PHY firmware
3753  *	@adap: the adapter
3754  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3755  *	@phy_fw_version: function to check PHY firmware versions
3756  *	@phy_fw_data: the PHY firmware image to write
3757  *	@phy_fw_size: image size
3758  *
3759  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3760  *	@phy_fw_version is supplied, then it will be used to determine if
3761  *	it's necessary to perform the transfer by comparing the version
3762  *	of any existing adapter PHY firmware with that of the passed in
3763  *	PHY firmware image.
3764  *
3765  *	A negative error number will be returned if an error occurs.  If
3766  *	version number support is available and there's no need to upgrade
3767  *	the firmware, 0 will be returned.  If firmware is successfully
3768  *	transferred to the adapter, 1 will be returned.
3769  *
3770  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3771  *	a result, a RESET of the adapter would cause that RAM to lose its
3772  *	contents.  Thus, loading PHY firmware on such adapters must happen
3773  *	after any FW_RESET_CMDs ...
3774  */
3775 int t4_load_phy_fw(struct adapter *adap, int win,
3776 		   int (*phy_fw_version)(const u8 *, size_t),
3777 		   const u8 *phy_fw_data, size_t phy_fw_size)
3778 {
3779 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3780 	unsigned long mtype = 0, maddr = 0;
3781 	u32 param, val;
3782 	int ret;
3783 
3784 	/* If we have version number support, then check to see if the adapter
3785 	 * already has up-to-date PHY firmware loaded.
3786 	 */
3787 	if (phy_fw_version) {
3788 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3789 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3790 		if (ret < 0)
3791 			return ret;
3792 
3793 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3794 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3795 				"version %#x\n", cur_phy_fw_ver);
3796 			return 0;
3797 		}
3798 	}
3799 
3800 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3801 	 * The size of the file requires a special version of the READ command
3802 	 * which will pass the file size via the values field in PARAMS_CMD and
3803 	 * retrieve the return value from firmware and place it in the same
3804 	 * buffer values
3805 	 */
3806 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3807 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3808 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3809 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3810 	val = phy_fw_size;
3811 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3812 				 &param, &val, 1, true);
3813 	if (ret < 0)
3814 		return ret;
3815 	mtype = val >> 8;
3816 	maddr = (val & 0xff) << 16;
3817 
3818 	/* Copy the supplied PHY Firmware image to the adapter memory location
3819 	 * allocated by the adapter firmware.
3820 	 */
3821 	ret = t4_memory_rw(adap, win, mtype, maddr,
3822 			   phy_fw_size, (__be32 *)phy_fw_data,
3823 			   T4_MEMORY_WRITE);
3824 	if (ret)
3825 		return ret;
3826 
3827 	/* Tell the firmware that the PHY firmware image has been written to
3828 	 * RAM and it can now start copying it over to the PHYs.  The chip
3829 	 * firmware will RESET the affected PHYs as part of this operation
3830 	 * leaving them running the new PHY firmware image.
3831 	 */
3832 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3833 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3834 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3835 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3836 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3837 				    &param, &val, 30000);
3838 
3839 	/* If we have version number support, then check to see that the new
3840 	 * firmware got loaded properly.
3841 	 */
3842 	if (phy_fw_version) {
3843 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3844 		if (ret < 0)
3845 			return ret;
3846 
3847 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3848 			CH_WARN(adap, "PHY Firmware did not update: "
3849 				"version on adapter %#x, "
3850 				"version flashed %#x\n",
3851 				cur_phy_fw_ver, new_phy_fw_vers);
3852 			return -ENXIO;
3853 		}
3854 	}
3855 
3856 	return 1;
3857 }
3858 
3859 /**
3860  *	t4_fwcache - firmware cache operation
3861  *	@adap: the adapter
3862  *	@op  : the operation (flush or flush and invalidate)
3863  */
3864 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3865 {
3866 	struct fw_params_cmd c;
3867 
3868 	memset(&c, 0, sizeof(c));
3869 	c.op_to_vfn =
3870 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3871 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3872 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3873 			    FW_PARAMS_CMD_VFN_V(0));
3874 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3875 	c.param[0].mnem =
3876 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3877 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3878 	c.param[0].val = cpu_to_be32(op);
3879 
3880 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3881 }
3882 
3883 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3884 			unsigned int *pif_req_wrptr,
3885 			unsigned int *pif_rsp_wrptr)
3886 {
3887 	int i, j;
3888 	u32 cfg, val, req, rsp;
3889 
3890 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3891 	if (cfg & LADBGEN_F)
3892 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3893 
3894 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3895 	req = POLADBGWRPTR_G(val);
3896 	rsp = PILADBGWRPTR_G(val);
3897 	if (pif_req_wrptr)
3898 		*pif_req_wrptr = req;
3899 	if (pif_rsp_wrptr)
3900 		*pif_rsp_wrptr = rsp;
3901 
3902 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3903 		for (j = 0; j < 6; j++) {
3904 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3905 				     PILADBGRDPTR_V(rsp));
3906 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3907 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3908 			req++;
3909 			rsp++;
3910 		}
3911 		req = (req + 2) & POLADBGRDPTR_M;
3912 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3913 	}
3914 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3915 }
3916 
3917 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3918 {
3919 	u32 cfg;
3920 	int i, j, idx;
3921 
3922 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3923 	if (cfg & LADBGEN_F)
3924 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3925 
3926 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3927 		for (j = 0; j < 5; j++) {
3928 			idx = 8 * i + j;
3929 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3930 				     PILADBGRDPTR_V(idx));
3931 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3932 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3933 		}
3934 	}
3935 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3936 }
3937 
3938 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3939 {
3940 	unsigned int i, j;
3941 
3942 	for (i = 0; i < 8; i++) {
3943 		u32 *p = la_buf + i;
3944 
3945 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3946 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3947 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3948 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3949 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3950 	}
3951 }
3952 
3953 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3954  * Capabilities which we control with separate controls -- see, for instance,
3955  * Pause Frames and Forward Error Correction.  In order to determine what the
3956  * full set of Advertised Port Capabilities are, the base Advertised Port
3957  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3958  * Port Capabilities associated with those other controls.  See
3959  * t4_link_acaps() for how this is done.
3960  */
3961 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3962 		     FW_PORT_CAP32_ANEG)
3963 
3964 /**
3965  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3966  *	@caps16: a 16-bit Port Capabilities value
3967  *
3968  *	Returns the equivalent 32-bit Port Capabilities value.
3969  */
3970 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3971 {
3972 	fw_port_cap32_t caps32 = 0;
3973 
3974 	#define CAP16_TO_CAP32(__cap) \
3975 		do { \
3976 			if (caps16 & FW_PORT_CAP_##__cap) \
3977 				caps32 |= FW_PORT_CAP32_##__cap; \
3978 		} while (0)
3979 
3980 	CAP16_TO_CAP32(SPEED_100M);
3981 	CAP16_TO_CAP32(SPEED_1G);
3982 	CAP16_TO_CAP32(SPEED_25G);
3983 	CAP16_TO_CAP32(SPEED_10G);
3984 	CAP16_TO_CAP32(SPEED_40G);
3985 	CAP16_TO_CAP32(SPEED_100G);
3986 	CAP16_TO_CAP32(FC_RX);
3987 	CAP16_TO_CAP32(FC_TX);
3988 	CAP16_TO_CAP32(ANEG);
3989 	CAP16_TO_CAP32(FORCE_PAUSE);
3990 	CAP16_TO_CAP32(MDIAUTO);
3991 	CAP16_TO_CAP32(MDISTRAIGHT);
3992 	CAP16_TO_CAP32(FEC_RS);
3993 	CAP16_TO_CAP32(FEC_BASER_RS);
3994 	CAP16_TO_CAP32(802_3_PAUSE);
3995 	CAP16_TO_CAP32(802_3_ASM_DIR);
3996 
3997 	#undef CAP16_TO_CAP32
3998 
3999 	return caps32;
4000 }
4001 
4002 /**
4003  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4004  *	@caps32: a 32-bit Port Capabilities value
4005  *
4006  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4007  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4008  *	Port Capabilities and some fields/values may not make it.
4009  */
4010 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4011 {
4012 	fw_port_cap16_t caps16 = 0;
4013 
4014 	#define CAP32_TO_CAP16(__cap) \
4015 		do { \
4016 			if (caps32 & FW_PORT_CAP32_##__cap) \
4017 				caps16 |= FW_PORT_CAP_##__cap; \
4018 		} while (0)
4019 
4020 	CAP32_TO_CAP16(SPEED_100M);
4021 	CAP32_TO_CAP16(SPEED_1G);
4022 	CAP32_TO_CAP16(SPEED_10G);
4023 	CAP32_TO_CAP16(SPEED_25G);
4024 	CAP32_TO_CAP16(SPEED_40G);
4025 	CAP32_TO_CAP16(SPEED_100G);
4026 	CAP32_TO_CAP16(FC_RX);
4027 	CAP32_TO_CAP16(FC_TX);
4028 	CAP32_TO_CAP16(802_3_PAUSE);
4029 	CAP32_TO_CAP16(802_3_ASM_DIR);
4030 	CAP32_TO_CAP16(ANEG);
4031 	CAP32_TO_CAP16(FORCE_PAUSE);
4032 	CAP32_TO_CAP16(MDIAUTO);
4033 	CAP32_TO_CAP16(MDISTRAIGHT);
4034 	CAP32_TO_CAP16(FEC_RS);
4035 	CAP32_TO_CAP16(FEC_BASER_RS);
4036 
4037 	#undef CAP32_TO_CAP16
4038 
4039 	return caps16;
4040 }
4041 
4042 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4043 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4044 {
4045 	enum cc_pause cc_pause = 0;
4046 
4047 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4048 		cc_pause |= PAUSE_RX;
4049 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4050 		cc_pause |= PAUSE_TX;
4051 
4052 	return cc_pause;
4053 }
4054 
4055 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4056 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4057 {
4058 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4059 	 * commands, etc.
4060 	 */
4061 	fw_port_cap32_t fw_pause = 0;
4062 
4063 	if (cc_pause & PAUSE_RX)
4064 		fw_pause |= FW_PORT_CAP32_FC_RX;
4065 	if (cc_pause & PAUSE_TX)
4066 		fw_pause |= FW_PORT_CAP32_FC_TX;
4067 	if (!(cc_pause & PAUSE_AUTONEG))
4068 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4069 
4070 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4071 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4072 	 * Note that these bits are ignored in L1 Configure commands.
4073 	 */
4074 	if (cc_pause & PAUSE_RX) {
4075 		if (cc_pause & PAUSE_TX)
4076 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4077 		else
4078 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4079 				    FW_PORT_CAP32_802_3_PAUSE;
4080 	} else if (cc_pause & PAUSE_TX) {
4081 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4082 	}
4083 
4084 	return fw_pause;
4085 }
4086 
4087 /* Translate Firmware Forward Error Correction specification to Common Code */
4088 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4089 {
4090 	enum cc_fec cc_fec = 0;
4091 
4092 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4093 		cc_fec |= FEC_RS;
4094 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4095 		cc_fec |= FEC_BASER_RS;
4096 
4097 	return cc_fec;
4098 }
4099 
4100 /* Translate Common Code Forward Error Correction specification to Firmware */
4101 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4102 {
4103 	fw_port_cap32_t fw_fec = 0;
4104 
4105 	if (cc_fec & FEC_RS)
4106 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4107 	if (cc_fec & FEC_BASER_RS)
4108 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4109 
4110 	return fw_fec;
4111 }
4112 
4113 /**
4114  *	t4_link_acaps - compute Link Advertised Port Capabilities
4115  *	@adapter: the adapter
4116  *	@port: the Port ID
4117  *	@lc: the Port's Link Configuration
4118  *
4119  *	Synthesize the Advertised Port Capabilities we'll be using based on
4120  *	the base Advertised Port Capabilities (which have been filtered by
4121  *	ADVERT_MASK) plus the individual controls for things like Pause
4122  *	Frames, Forward Error Correction, MDI, etc.
4123  */
4124 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4125 			      struct link_config *lc)
4126 {
4127 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4128 	unsigned int fw_mdi;
4129 	char cc_fec;
4130 
4131 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4132 
4133 	/* Convert driver coding of Pause Frame Flow Control settings into the
4134 	 * Firmware's API.
4135 	 */
4136 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4137 
4138 	/* Convert Common Code Forward Error Control settings into the
4139 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4140 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4141 	 * sent us as part of its IEEE 802.3-based interpretation of
4142 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4143 	 * use whatever is in the current Requested FEC settings.
4144 	 */
4145 	if (lc->requested_fec & FEC_AUTO)
4146 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4147 	else
4148 		cc_fec = lc->requested_fec;
4149 	fw_fec = cc_to_fwcap_fec(cc_fec);
4150 
4151 	/* Figure out what our Requested Port Capabilities are going to be.
4152 	 * Note parallel structure in t4_handle_get_port_info() and
4153 	 * init_link_config().
4154 	 */
4155 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4156 		acaps = lc->acaps | fw_fc | fw_fec;
4157 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4158 		lc->fec = cc_fec;
4159 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4160 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4161 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4162 		lc->fec = cc_fec;
4163 	} else {
4164 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4165 	}
4166 
4167 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4168 	 * the Physical Port Capabilities.  We can check that here and provide
4169 	 * moderately useful feedback in the system log.
4170 	 *
4171 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4172 	 * we need to exclude this from this check in order to maintain
4173 	 * compatibility ...
4174 	 */
4175 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4176 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4177 			acaps, lc->pcaps);
4178 		return -EINVAL;
4179 	}
4180 
4181 	return acaps;
4182 }
4183 
4184 /**
4185  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4186  *	@adapter: the adapter
4187  *	@mbox: the Firmware Mailbox to use
4188  *	@port: the Port ID
4189  *	@lc: the Port's Link Configuration
4190  *	@sleep_ok: if true we may sleep while awaiting command completion
4191  *	@timeout: time to wait for command to finish before timing out
4192  *		(negative implies @sleep_ok=false)
4193  *
4194  *	Set up a port's MAC and PHY according to a desired link configuration.
4195  *	- If the PHY can auto-negotiate first decide what to advertise, then
4196  *	  enable/disable auto-negotiation as desired, and reset.
4197  *	- If the PHY does not auto-negotiate just reset it.
4198  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4199  *	  otherwise do it later based on the outcome of auto-negotiation.
4200  */
4201 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4202 		       unsigned int port, struct link_config *lc,
4203 		       u8 sleep_ok, int timeout)
4204 {
4205 	unsigned int fw_caps = adapter->params.fw_caps_support;
4206 	struct fw_port_cmd cmd;
4207 	fw_port_cap32_t rcap;
4208 	int ret;
4209 
4210 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4211 	    lc->autoneg == AUTONEG_ENABLE) {
4212 		return -EINVAL;
4213 	}
4214 
4215 	/* Compute our Requested Port Capabilities and send that on to the
4216 	 * Firmware.
4217 	 */
4218 	rcap = t4_link_acaps(adapter, port, lc);
4219 	memset(&cmd, 0, sizeof(cmd));
4220 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4221 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4222 				       FW_PORT_CMD_PORTID_V(port));
4223 	cmd.action_to_len16 =
4224 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4225 						 ? FW_PORT_ACTION_L1_CFG
4226 						 : FW_PORT_ACTION_L1_CFG32) |
4227 						 FW_LEN16(cmd));
4228 	if (fw_caps == FW_CAPS16)
4229 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4230 	else
4231 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4232 
4233 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4234 				      sleep_ok, timeout);
4235 
4236 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4237 	 * the Physical Port Capabilities, some combinations of features may
4238 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4239 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4240 	 * request, flag that here.
4241 	 */
4242 	if (ret) {
4243 		dev_err(adapter->pdev_dev,
4244 			"Requested Port Capabilities %#x rejected, error %d\n",
4245 			rcap, -ret);
4246 		return ret;
4247 	}
4248 	return 0;
4249 }
4250 
4251 /**
4252  *	t4_restart_aneg - restart autonegotiation
4253  *	@adap: the adapter
4254  *	@mbox: mbox to use for the FW command
4255  *	@port: the port id
4256  *
4257  *	Restarts autonegotiation for the selected port.
4258  */
4259 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4260 {
4261 	unsigned int fw_caps = adap->params.fw_caps_support;
4262 	struct fw_port_cmd c;
4263 
4264 	memset(&c, 0, sizeof(c));
4265 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4266 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4267 				     FW_PORT_CMD_PORTID_V(port));
4268 	c.action_to_len16 =
4269 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4270 						 ? FW_PORT_ACTION_L1_CFG
4271 						 : FW_PORT_ACTION_L1_CFG32) |
4272 			    FW_LEN16(c));
4273 	if (fw_caps == FW_CAPS16)
4274 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4275 	else
4276 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4277 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4278 }
4279 
4280 typedef void (*int_handler_t)(struct adapter *adap);
4281 
4282 struct intr_info {
4283 	unsigned int mask;       /* bits to check in interrupt status */
4284 	const char *msg;         /* message to print or NULL */
4285 	short stat_idx;          /* stat counter to increment or -1 */
4286 	unsigned short fatal;    /* whether the condition reported is fatal */
4287 	int_handler_t int_handler; /* platform-specific int handler */
4288 };
4289 
4290 /**
4291  *	t4_handle_intr_status - table driven interrupt handler
4292  *	@adapter: the adapter that generated the interrupt
4293  *	@reg: the interrupt status register to process
4294  *	@acts: table of interrupt actions
4295  *
4296  *	A table driven interrupt handler that applies a set of masks to an
4297  *	interrupt status word and performs the corresponding actions if the
4298  *	interrupts described by the mask have occurred.  The actions include
4299  *	optionally emitting a warning or alert message.  The table is terminated
4300  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4301  *	conditions.
4302  */
4303 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4304 				 const struct intr_info *acts)
4305 {
4306 	int fatal = 0;
4307 	unsigned int mask = 0;
4308 	unsigned int status = t4_read_reg(adapter, reg);
4309 
4310 	for ( ; acts->mask; ++acts) {
4311 		if (!(status & acts->mask))
4312 			continue;
4313 		if (acts->fatal) {
4314 			fatal++;
4315 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4316 				  status & acts->mask);
4317 		} else if (acts->msg && printk_ratelimit())
4318 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4319 				 status & acts->mask);
4320 		if (acts->int_handler)
4321 			acts->int_handler(adapter);
4322 		mask |= acts->mask;
4323 	}
4324 	status &= mask;
4325 	if (status)                           /* clear processed interrupts */
4326 		t4_write_reg(adapter, reg, status);
4327 	return fatal;
4328 }
4329 
4330 /*
4331  * Interrupt handler for the PCIE module.
4332  */
4333 static void pcie_intr_handler(struct adapter *adapter)
4334 {
4335 	static const struct intr_info sysbus_intr_info[] = {
4336 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4337 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4338 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4339 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4340 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4341 		{ 0 }
4342 	};
4343 	static const struct intr_info pcie_port_intr_info[] = {
4344 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4345 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4346 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4347 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4348 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4349 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4350 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4351 		{ RDPE_F, "Rx data parity error", -1, 1 },
4352 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4353 		{ 0 }
4354 	};
4355 	static const struct intr_info pcie_intr_info[] = {
4356 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4357 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4358 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4359 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4360 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4361 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4362 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4363 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4364 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4365 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4366 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4367 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4368 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4369 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4370 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4371 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4372 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4373 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4374 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4375 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4376 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4377 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4378 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4379 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4380 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4381 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4382 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4383 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4384 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4385 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4386 		  -1, 0 },
4387 		{ 0 }
4388 	};
4389 
4390 	static struct intr_info t5_pcie_intr_info[] = {
4391 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4392 		  -1, 1 },
4393 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4394 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4395 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4396 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4397 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4398 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4399 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4400 		  -1, 1 },
4401 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4402 		  -1, 1 },
4403 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4404 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4405 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4406 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4407 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4408 		  -1, 1 },
4409 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4410 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4411 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4412 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4413 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4414 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4415 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4416 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4417 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4418 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4419 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4420 		  -1, 1 },
4421 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4422 		  -1, 1 },
4423 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4424 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4425 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4426 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4427 		{ 0 }
4428 	};
4429 
4430 	int fat;
4431 
4432 	if (is_t4(adapter->params.chip))
4433 		fat = t4_handle_intr_status(adapter,
4434 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4435 				sysbus_intr_info) +
4436 			t4_handle_intr_status(adapter,
4437 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4438 					pcie_port_intr_info) +
4439 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4440 					      pcie_intr_info);
4441 	else
4442 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4443 					    t5_pcie_intr_info);
4444 
4445 	if (fat)
4446 		t4_fatal_err(adapter);
4447 }
4448 
4449 /*
4450  * TP interrupt handler.
4451  */
4452 static void tp_intr_handler(struct adapter *adapter)
4453 {
4454 	static const struct intr_info tp_intr_info[] = {
4455 		{ 0x3fffffff, "TP parity error", -1, 1 },
4456 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4457 		{ 0 }
4458 	};
4459 
4460 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4461 		t4_fatal_err(adapter);
4462 }
4463 
4464 /*
4465  * SGE interrupt handler.
4466  */
4467 static void sge_intr_handler(struct adapter *adapter)
4468 {
4469 	u32 v = 0, perr;
4470 	u32 err;
4471 
4472 	static const struct intr_info sge_intr_info[] = {
4473 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4474 		  "SGE received CPL exceeding IQE size", -1, 1 },
4475 		{ ERR_INVALID_CIDX_INC_F,
4476 		  "SGE GTS CIDX increment too large", -1, 0 },
4477 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4478 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4479 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4480 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4481 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4482 		  0 },
4483 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4484 		  0 },
4485 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4486 		  0 },
4487 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4488 		  0 },
4489 		{ ERR_ING_CTXT_PRIO_F,
4490 		  "SGE too many priority ingress contexts", -1, 0 },
4491 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4492 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4493 		{ 0 }
4494 	};
4495 
4496 	static struct intr_info t4t5_sge_intr_info[] = {
4497 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4498 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4499 		{ ERR_EGR_CTXT_PRIO_F,
4500 		  "SGE too many priority egress contexts", -1, 0 },
4501 		{ 0 }
4502 	};
4503 
4504 	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4505 	if (perr) {
4506 		v |= perr;
4507 		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4508 			  perr);
4509 	}
4510 
4511 	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4512 	if (perr) {
4513 		v |= perr;
4514 		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4515 			  perr);
4516 	}
4517 
4518 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4519 		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4520 		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4521 		perr &= ~ERR_T_RXCRC_F;
4522 		if (perr) {
4523 			v |= perr;
4524 			dev_alert(adapter->pdev_dev,
4525 				  "SGE Cause5 Parity Error %#x\n", perr);
4526 		}
4527 	}
4528 
4529 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4530 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4531 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4532 					   t4t5_sge_intr_info);
4533 
4534 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4535 	if (err & ERROR_QID_VALID_F) {
4536 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4537 			ERROR_QID_G(err));
4538 		if (err & UNCAPTURED_ERROR_F)
4539 			dev_err(adapter->pdev_dev,
4540 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4541 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4542 			     UNCAPTURED_ERROR_F);
4543 	}
4544 
4545 	if (v != 0)
4546 		t4_fatal_err(adapter);
4547 }
4548 
4549 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4550 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4551 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4552 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4553 
4554 /*
4555  * CIM interrupt handler.
4556  */
4557 static void cim_intr_handler(struct adapter *adapter)
4558 {
4559 	static const struct intr_info cim_intr_info[] = {
4560 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4561 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4562 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4563 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4564 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4565 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4566 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4567 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4568 		{ 0 }
4569 	};
4570 	static const struct intr_info cim_upintr_info[] = {
4571 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4572 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4573 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4574 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4575 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4576 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4577 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4578 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4579 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4580 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4581 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4582 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4583 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4584 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4585 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4586 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4587 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4588 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4589 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4590 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4591 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4592 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4593 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4594 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4595 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4596 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4597 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4598 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4599 		{ 0 }
4600 	};
4601 
4602 	u32 val, fw_err;
4603 	int fat;
4604 
4605 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4606 	if (fw_err & PCIE_FW_ERR_F)
4607 		t4_report_fw_error(adapter);
4608 
4609 	/* When the Firmware detects an internal error which normally
4610 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4611 	 * in order to make sure the Host sees the Firmware Crash.  So
4612 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4613 	 * ignore the Timer0 interrupt.
4614 	 */
4615 
4616 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4617 	if (val & TIMER0INT_F)
4618 		if (!(fw_err & PCIE_FW_ERR_F) ||
4619 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4620 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4621 				     TIMER0INT_F);
4622 
4623 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4624 				    cim_intr_info) +
4625 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4626 				    cim_upintr_info);
4627 	if (fat)
4628 		t4_fatal_err(adapter);
4629 }
4630 
4631 /*
4632  * ULP RX interrupt handler.
4633  */
4634 static void ulprx_intr_handler(struct adapter *adapter)
4635 {
4636 	static const struct intr_info ulprx_intr_info[] = {
4637 		{ 0x1800000, "ULPRX context error", -1, 1 },
4638 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4639 		{ 0 }
4640 	};
4641 
4642 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4643 		t4_fatal_err(adapter);
4644 }
4645 
4646 /*
4647  * ULP TX interrupt handler.
4648  */
4649 static void ulptx_intr_handler(struct adapter *adapter)
4650 {
4651 	static const struct intr_info ulptx_intr_info[] = {
4652 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4653 		  0 },
4654 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4655 		  0 },
4656 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4657 		  0 },
4658 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4659 		  0 },
4660 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4661 		{ 0 }
4662 	};
4663 
4664 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4665 		t4_fatal_err(adapter);
4666 }
4667 
4668 /*
4669  * PM TX interrupt handler.
4670  */
4671 static void pmtx_intr_handler(struct adapter *adapter)
4672 {
4673 	static const struct intr_info pmtx_intr_info[] = {
4674 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4675 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4676 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4677 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4678 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4679 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4680 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4681 		  -1, 1 },
4682 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4683 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4684 		{ 0 }
4685 	};
4686 
4687 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4688 		t4_fatal_err(adapter);
4689 }
4690 
4691 /*
4692  * PM RX interrupt handler.
4693  */
4694 static void pmrx_intr_handler(struct adapter *adapter)
4695 {
4696 	static const struct intr_info pmrx_intr_info[] = {
4697 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4698 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4699 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4700 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4701 		  -1, 1 },
4702 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4703 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4704 		{ 0 }
4705 	};
4706 
4707 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4708 		t4_fatal_err(adapter);
4709 }
4710 
4711 /*
4712  * CPL switch interrupt handler.
4713  */
4714 static void cplsw_intr_handler(struct adapter *adapter)
4715 {
4716 	static const struct intr_info cplsw_intr_info[] = {
4717 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4718 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4719 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4720 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4721 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4722 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4723 		{ 0 }
4724 	};
4725 
4726 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4727 		t4_fatal_err(adapter);
4728 }
4729 
4730 /*
4731  * LE interrupt handler.
4732  */
4733 static void le_intr_handler(struct adapter *adap)
4734 {
4735 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4736 	static const struct intr_info le_intr_info[] = {
4737 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4738 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4739 		{ PARITYERR_F, "LE parity error", -1, 1 },
4740 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4741 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4742 		{ 0 }
4743 	};
4744 
4745 	static struct intr_info t6_le_intr_info[] = {
4746 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4747 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4748 		{ CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4749 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4750 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4751 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4752 		{ HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4753 		{ 0 }
4754 	};
4755 
4756 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4757 				  (chip <= CHELSIO_T5) ?
4758 				  le_intr_info : t6_le_intr_info))
4759 		t4_fatal_err(adap);
4760 }
4761 
4762 /*
4763  * MPS interrupt handler.
4764  */
4765 static void mps_intr_handler(struct adapter *adapter)
4766 {
4767 	static const struct intr_info mps_rx_intr_info[] = {
4768 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4769 		{ 0 }
4770 	};
4771 	static const struct intr_info mps_tx_intr_info[] = {
4772 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4773 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4774 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4775 		  -1, 1 },
4776 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4777 		  -1, 1 },
4778 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4779 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4780 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4781 		{ 0 }
4782 	};
4783 	static const struct intr_info t6_mps_tx_intr_info[] = {
4784 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4785 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4786 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4787 		  -1, 1 },
4788 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4789 		  -1, 1 },
4790 		/* MPS Tx Bubble is normal for T6 */
4791 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4792 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4793 		{ 0 }
4794 	};
4795 	static const struct intr_info mps_trc_intr_info[] = {
4796 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4797 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4798 		  -1, 1 },
4799 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4800 		{ 0 }
4801 	};
4802 	static const struct intr_info mps_stat_sram_intr_info[] = {
4803 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4804 		{ 0 }
4805 	};
4806 	static const struct intr_info mps_stat_tx_intr_info[] = {
4807 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4808 		{ 0 }
4809 	};
4810 	static const struct intr_info mps_stat_rx_intr_info[] = {
4811 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4812 		{ 0 }
4813 	};
4814 	static const struct intr_info mps_cls_intr_info[] = {
4815 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4816 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4817 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4818 		{ 0 }
4819 	};
4820 
4821 	int fat;
4822 
4823 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4824 				    mps_rx_intr_info) +
4825 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4826 				    is_t6(adapter->params.chip)
4827 				    ? t6_mps_tx_intr_info
4828 				    : mps_tx_intr_info) +
4829 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4830 				    mps_trc_intr_info) +
4831 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4832 				    mps_stat_sram_intr_info) +
4833 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4834 				    mps_stat_tx_intr_info) +
4835 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4836 				    mps_stat_rx_intr_info) +
4837 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4838 				    mps_cls_intr_info);
4839 
4840 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4841 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4842 	if (fat)
4843 		t4_fatal_err(adapter);
4844 }
4845 
4846 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4847 		      ECC_UE_INT_CAUSE_F)
4848 
4849 /*
4850  * EDC/MC interrupt handler.
4851  */
4852 static void mem_intr_handler(struct adapter *adapter, int idx)
4853 {
4854 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4855 
4856 	unsigned int addr, cnt_addr, v;
4857 
4858 	if (idx <= MEM_EDC1) {
4859 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4860 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4861 	} else if (idx == MEM_MC) {
4862 		if (is_t4(adapter->params.chip)) {
4863 			addr = MC_INT_CAUSE_A;
4864 			cnt_addr = MC_ECC_STATUS_A;
4865 		} else {
4866 			addr = MC_P_INT_CAUSE_A;
4867 			cnt_addr = MC_P_ECC_STATUS_A;
4868 		}
4869 	} else {
4870 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4871 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4872 	}
4873 
4874 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4875 	if (v & PERR_INT_CAUSE_F)
4876 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4877 			  name[idx]);
4878 	if (v & ECC_CE_INT_CAUSE_F) {
4879 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4880 
4881 		t4_edc_err_read(adapter, idx);
4882 
4883 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4884 		if (printk_ratelimit())
4885 			dev_warn(adapter->pdev_dev,
4886 				 "%u %s correctable ECC data error%s\n",
4887 				 cnt, name[idx], cnt > 1 ? "s" : "");
4888 	}
4889 	if (v & ECC_UE_INT_CAUSE_F)
4890 		dev_alert(adapter->pdev_dev,
4891 			  "%s uncorrectable ECC data error\n", name[idx]);
4892 
4893 	t4_write_reg(adapter, addr, v);
4894 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4895 		t4_fatal_err(adapter);
4896 }
4897 
4898 /*
4899  * MA interrupt handler.
4900  */
4901 static void ma_intr_handler(struct adapter *adap)
4902 {
4903 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4904 
4905 	if (status & MEM_PERR_INT_CAUSE_F) {
4906 		dev_alert(adap->pdev_dev,
4907 			  "MA parity error, parity status %#x\n",
4908 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4909 		if (is_t5(adap->params.chip))
4910 			dev_alert(adap->pdev_dev,
4911 				  "MA parity error, parity status %#x\n",
4912 				  t4_read_reg(adap,
4913 					      MA_PARITY_ERROR_STATUS2_A));
4914 	}
4915 	if (status & MEM_WRAP_INT_CAUSE_F) {
4916 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4917 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4918 			  "client %u to address %#x\n",
4919 			  MEM_WRAP_CLIENT_NUM_G(v),
4920 			  MEM_WRAP_ADDRESS_G(v) << 4);
4921 	}
4922 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4923 	t4_fatal_err(adap);
4924 }
4925 
4926 /*
4927  * SMB interrupt handler.
4928  */
4929 static void smb_intr_handler(struct adapter *adap)
4930 {
4931 	static const struct intr_info smb_intr_info[] = {
4932 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4933 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4934 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4935 		{ 0 }
4936 	};
4937 
4938 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4939 		t4_fatal_err(adap);
4940 }
4941 
4942 /*
4943  * NC-SI interrupt handler.
4944  */
4945 static void ncsi_intr_handler(struct adapter *adap)
4946 {
4947 	static const struct intr_info ncsi_intr_info[] = {
4948 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4949 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4950 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4951 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4952 		{ 0 }
4953 	};
4954 
4955 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4956 		t4_fatal_err(adap);
4957 }
4958 
4959 /*
4960  * XGMAC interrupt handler.
4961  */
4962 static void xgmac_intr_handler(struct adapter *adap, int port)
4963 {
4964 	u32 v, int_cause_reg;
4965 
4966 	if (is_t4(adap->params.chip))
4967 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4968 	else
4969 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4970 
4971 	v = t4_read_reg(adap, int_cause_reg);
4972 
4973 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4974 	if (!v)
4975 		return;
4976 
4977 	if (v & TXFIFO_PRTY_ERR_F)
4978 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4979 			  port);
4980 	if (v & RXFIFO_PRTY_ERR_F)
4981 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4982 			  port);
4983 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4984 	t4_fatal_err(adap);
4985 }
4986 
4987 /*
4988  * PL interrupt handler.
4989  */
4990 static void pl_intr_handler(struct adapter *adap)
4991 {
4992 	static const struct intr_info pl_intr_info[] = {
4993 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4994 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4995 		{ 0 }
4996 	};
4997 
4998 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4999 		t4_fatal_err(adap);
5000 }
5001 
5002 #define PF_INTR_MASK (PFSW_F)
5003 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5004 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5005 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5006 
5007 /**
5008  *	t4_slow_intr_handler - control path interrupt handler
5009  *	@adapter: the adapter
5010  *
5011  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5012  *	The designation 'slow' is because it involves register reads, while
5013  *	data interrupts typically don't involve any MMIOs.
5014  */
5015 int t4_slow_intr_handler(struct adapter *adapter)
5016 {
5017 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5018 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5019 	 * easiest just to mask that case here.
5020 	 */
5021 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5022 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5023 	u32 cause = raw_cause & enable;
5024 
5025 	if (!(cause & GLBL_INTR_MASK))
5026 		return 0;
5027 	if (cause & CIM_F)
5028 		cim_intr_handler(adapter);
5029 	if (cause & MPS_F)
5030 		mps_intr_handler(adapter);
5031 	if (cause & NCSI_F)
5032 		ncsi_intr_handler(adapter);
5033 	if (cause & PL_F)
5034 		pl_intr_handler(adapter);
5035 	if (cause & SMB_F)
5036 		smb_intr_handler(adapter);
5037 	if (cause & XGMAC0_F)
5038 		xgmac_intr_handler(adapter, 0);
5039 	if (cause & XGMAC1_F)
5040 		xgmac_intr_handler(adapter, 1);
5041 	if (cause & XGMAC_KR0_F)
5042 		xgmac_intr_handler(adapter, 2);
5043 	if (cause & XGMAC_KR1_F)
5044 		xgmac_intr_handler(adapter, 3);
5045 	if (cause & PCIE_F)
5046 		pcie_intr_handler(adapter);
5047 	if (cause & MC_F)
5048 		mem_intr_handler(adapter, MEM_MC);
5049 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5050 		mem_intr_handler(adapter, MEM_MC1);
5051 	if (cause & EDC0_F)
5052 		mem_intr_handler(adapter, MEM_EDC0);
5053 	if (cause & EDC1_F)
5054 		mem_intr_handler(adapter, MEM_EDC1);
5055 	if (cause & LE_F)
5056 		le_intr_handler(adapter);
5057 	if (cause & TP_F)
5058 		tp_intr_handler(adapter);
5059 	if (cause & MA_F)
5060 		ma_intr_handler(adapter);
5061 	if (cause & PM_TX_F)
5062 		pmtx_intr_handler(adapter);
5063 	if (cause & PM_RX_F)
5064 		pmrx_intr_handler(adapter);
5065 	if (cause & ULP_RX_F)
5066 		ulprx_intr_handler(adapter);
5067 	if (cause & CPL_SWITCH_F)
5068 		cplsw_intr_handler(adapter);
5069 	if (cause & SGE_F)
5070 		sge_intr_handler(adapter);
5071 	if (cause & ULP_TX_F)
5072 		ulptx_intr_handler(adapter);
5073 
5074 	/* Clear the interrupts just processed for which we are the master. */
5075 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5076 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5077 	return 1;
5078 }
5079 
5080 /**
5081  *	t4_intr_enable - enable interrupts
5082  *	@adapter: the adapter whose interrupts should be enabled
5083  *
5084  *	Enable PF-specific interrupts for the calling function and the top-level
5085  *	interrupt concentrator for global interrupts.  Interrupts are already
5086  *	enabled at each module,	here we just enable the roots of the interrupt
5087  *	hierarchies.
5088  *
5089  *	Note: this function should be called only when the driver manages
5090  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5091  *	function at a time should be doing this.
5092  */
5093 void t4_intr_enable(struct adapter *adapter)
5094 {
5095 	u32 val = 0;
5096 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5097 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5098 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5099 
5100 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5101 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5102 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5103 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5104 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5105 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5106 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5107 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5108 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5109 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5110 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5111 }
5112 
5113 /**
5114  *	t4_intr_disable - disable interrupts
5115  *	@adapter: the adapter whose interrupts should be disabled
5116  *
5117  *	Disable interrupts.  We only disable the top-level interrupt
5118  *	concentrators.  The caller must be a PCI function managing global
5119  *	interrupts.
5120  */
5121 void t4_intr_disable(struct adapter *adapter)
5122 {
5123 	u32 whoami, pf;
5124 
5125 	if (pci_channel_offline(adapter->pdev))
5126 		return;
5127 
5128 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5129 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5130 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5131 
5132 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5133 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5134 }
5135 
5136 unsigned int t4_chip_rss_size(struct adapter *adap)
5137 {
5138 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5139 		return RSS_NENTRIES;
5140 	else
5141 		return T6_RSS_NENTRIES;
5142 }
5143 
5144 /**
5145  *	t4_config_rss_range - configure a portion of the RSS mapping table
5146  *	@adapter: the adapter
5147  *	@mbox: mbox to use for the FW command
5148  *	@viid: virtual interface whose RSS subtable is to be written
5149  *	@start: start entry in the table to write
5150  *	@n: how many table entries to write
5151  *	@rspq: values for the response queue lookup table
5152  *	@nrspq: number of values in @rspq
5153  *
5154  *	Programs the selected part of the VI's RSS mapping table with the
5155  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5156  *	until the full table range is populated.
5157  *
5158  *	The caller must ensure the values in @rspq are in the range allowed for
5159  *	@viid.
5160  */
5161 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5162 			int start, int n, const u16 *rspq, unsigned int nrspq)
5163 {
5164 	int ret;
5165 	const u16 *rsp = rspq;
5166 	const u16 *rsp_end = rspq + nrspq;
5167 	struct fw_rss_ind_tbl_cmd cmd;
5168 
5169 	memset(&cmd, 0, sizeof(cmd));
5170 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5171 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5172 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5173 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5174 
5175 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5176 	while (n > 0) {
5177 		int nq = min(n, 32);
5178 		__be32 *qp = &cmd.iq0_to_iq2;
5179 
5180 		cmd.niqid = cpu_to_be16(nq);
5181 		cmd.startidx = cpu_to_be16(start);
5182 
5183 		start += nq;
5184 		n -= nq;
5185 
5186 		while (nq > 0) {
5187 			unsigned int v;
5188 
5189 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5190 			if (++rsp >= rsp_end)
5191 				rsp = rspq;
5192 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5193 			if (++rsp >= rsp_end)
5194 				rsp = rspq;
5195 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5196 			if (++rsp >= rsp_end)
5197 				rsp = rspq;
5198 
5199 			*qp++ = cpu_to_be32(v);
5200 			nq -= 3;
5201 		}
5202 
5203 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5204 		if (ret)
5205 			return ret;
5206 	}
5207 	return 0;
5208 }
5209 
5210 /**
5211  *	t4_config_glbl_rss - configure the global RSS mode
5212  *	@adapter: the adapter
5213  *	@mbox: mbox to use for the FW command
5214  *	@mode: global RSS mode
5215  *	@flags: mode-specific flags
5216  *
5217  *	Sets the global RSS mode.
5218  */
5219 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5220 		       unsigned int flags)
5221 {
5222 	struct fw_rss_glb_config_cmd c;
5223 
5224 	memset(&c, 0, sizeof(c));
5225 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5226 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5227 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5228 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5229 		c.u.manual.mode_pkd =
5230 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5231 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5232 		c.u.basicvirtual.mode_pkd =
5233 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5234 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5235 	} else
5236 		return -EINVAL;
5237 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5238 }
5239 
5240 /**
5241  *	t4_config_vi_rss - configure per VI RSS settings
5242  *	@adapter: the adapter
5243  *	@mbox: mbox to use for the FW command
5244  *	@viid: the VI id
5245  *	@flags: RSS flags
5246  *	@defq: id of the default RSS queue for the VI.
5247  *
5248  *	Configures VI-specific RSS properties.
5249  */
5250 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5251 		     unsigned int flags, unsigned int defq)
5252 {
5253 	struct fw_rss_vi_config_cmd c;
5254 
5255 	memset(&c, 0, sizeof(c));
5256 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5257 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5258 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5259 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5260 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5261 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5262 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5263 }
5264 
5265 /* Read an RSS table row */
5266 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5267 {
5268 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5269 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5270 				   5, 0, val);
5271 }
5272 
5273 /**
5274  *	t4_read_rss - read the contents of the RSS mapping table
5275  *	@adapter: the adapter
5276  *	@map: holds the contents of the RSS mapping table
5277  *
5278  *	Reads the contents of the RSS hash->queue mapping table.
5279  */
5280 int t4_read_rss(struct adapter *adapter, u16 *map)
5281 {
5282 	int i, ret, nentries;
5283 	u32 val;
5284 
5285 	nentries = t4_chip_rss_size(adapter);
5286 	for (i = 0; i < nentries / 2; ++i) {
5287 		ret = rd_rss_row(adapter, i, &val);
5288 		if (ret)
5289 			return ret;
5290 		*map++ = LKPTBLQUEUE0_G(val);
5291 		*map++ = LKPTBLQUEUE1_G(val);
5292 	}
5293 	return 0;
5294 }
5295 
5296 static unsigned int t4_use_ldst(struct adapter *adap)
5297 {
5298 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5299 }
5300 
5301 /**
5302  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5303  * @adap: the adapter
5304  * @cmd: TP fw ldst address space type
5305  * @vals: where the indirect register values are stored/written
5306  * @nregs: how many indirect registers to read/write
5307  * @start_index: index of first indirect register to read/write
5308  * @rw: Read (1) or Write (0)
5309  * @sleep_ok: if true we may sleep while awaiting command completion
5310  *
5311  * Access TP indirect registers through LDST
5312  */
5313 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5314 			    unsigned int nregs, unsigned int start_index,
5315 			    unsigned int rw, bool sleep_ok)
5316 {
5317 	int ret = 0;
5318 	unsigned int i;
5319 	struct fw_ldst_cmd c;
5320 
5321 	for (i = 0; i < nregs; i++) {
5322 		memset(&c, 0, sizeof(c));
5323 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5324 						FW_CMD_REQUEST_F |
5325 						(rw ? FW_CMD_READ_F :
5326 						      FW_CMD_WRITE_F) |
5327 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5328 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5329 
5330 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5331 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5332 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5333 				      sleep_ok);
5334 		if (ret)
5335 			return ret;
5336 
5337 		if (rw)
5338 			vals[i] = be32_to_cpu(c.u.addrval.val);
5339 	}
5340 	return 0;
5341 }
5342 
5343 /**
5344  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5345  * @adap: the adapter
5346  * @reg_addr: Address Register
5347  * @reg_data: Data register
5348  * @buff: where the indirect register values are stored/written
5349  * @nregs: how many indirect registers to read/write
5350  * @start_index: index of first indirect register to read/write
5351  * @rw: READ(1) or WRITE(0)
5352  * @sleep_ok: if true we may sleep while awaiting command completion
5353  *
5354  * Read/Write TP indirect registers through LDST if possible.
5355  * Else, use backdoor access
5356  **/
5357 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5358 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5359 			      bool sleep_ok)
5360 {
5361 	int rc = -EINVAL;
5362 	int cmd;
5363 
5364 	switch (reg_addr) {
5365 	case TP_PIO_ADDR_A:
5366 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5367 		break;
5368 	case TP_TM_PIO_ADDR_A:
5369 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5370 		break;
5371 	case TP_MIB_INDEX_A:
5372 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5373 		break;
5374 	default:
5375 		goto indirect_access;
5376 	}
5377 
5378 	if (t4_use_ldst(adap))
5379 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5380 				      sleep_ok);
5381 
5382 indirect_access:
5383 
5384 	if (rc) {
5385 		if (rw)
5386 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5387 					 start_index);
5388 		else
5389 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5390 					  start_index);
5391 	}
5392 }
5393 
5394 /**
5395  * t4_tp_pio_read - Read TP PIO registers
5396  * @adap: the adapter
5397  * @buff: where the indirect register values are written
5398  * @nregs: how many indirect registers to read
5399  * @start_index: index of first indirect register to read
5400  * @sleep_ok: if true we may sleep while awaiting command completion
5401  *
5402  * Read TP PIO Registers
5403  **/
5404 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5405 		    u32 start_index, bool sleep_ok)
5406 {
5407 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5408 			  start_index, 1, sleep_ok);
5409 }
5410 
5411 /**
5412  * t4_tp_pio_write - Write TP PIO registers
5413  * @adap: the adapter
5414  * @buff: where the indirect register values are stored
5415  * @nregs: how many indirect registers to write
5416  * @start_index: index of first indirect register to write
5417  * @sleep_ok: if true we may sleep while awaiting command completion
5418  *
5419  * Write TP PIO Registers
5420  **/
5421 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5422 			    u32 start_index, bool sleep_ok)
5423 {
5424 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5425 			  start_index, 0, sleep_ok);
5426 }
5427 
5428 /**
5429  * t4_tp_tm_pio_read - Read TP TM PIO registers
5430  * @adap: the adapter
5431  * @buff: where the indirect register values are written
5432  * @nregs: how many indirect registers to read
5433  * @start_index: index of first indirect register to read
5434  * @sleep_ok: if true we may sleep while awaiting command completion
5435  *
5436  * Read TP TM PIO Registers
5437  **/
5438 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5439 		       u32 start_index, bool sleep_ok)
5440 {
5441 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5442 			  nregs, start_index, 1, sleep_ok);
5443 }
5444 
5445 /**
5446  * t4_tp_mib_read - Read TP MIB registers
5447  * @adap: the adapter
5448  * @buff: where the indirect register values are written
5449  * @nregs: how many indirect registers to read
5450  * @start_index: index of first indirect register to read
5451  * @sleep_ok: if true we may sleep while awaiting command completion
5452  *
5453  * Read TP MIB Registers
5454  **/
5455 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5456 		    bool sleep_ok)
5457 {
5458 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5459 			  start_index, 1, sleep_ok);
5460 }
5461 
5462 /**
5463  *	t4_read_rss_key - read the global RSS key
5464  *	@adap: the adapter
5465  *	@key: 10-entry array holding the 320-bit RSS key
5466  *      @sleep_ok: if true we may sleep while awaiting command completion
5467  *
5468  *	Reads the global 320-bit RSS key.
5469  */
5470 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5471 {
5472 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5473 }
5474 
5475 /**
5476  *	t4_write_rss_key - program one of the RSS keys
5477  *	@adap: the adapter
5478  *	@key: 10-entry array holding the 320-bit RSS key
5479  *	@idx: which RSS key to write
5480  *      @sleep_ok: if true we may sleep while awaiting command completion
5481  *
5482  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5483  *	0..15 the corresponding entry in the RSS key table is written,
5484  *	otherwise the global RSS key is written.
5485  */
5486 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5487 		      bool sleep_ok)
5488 {
5489 	u8 rss_key_addr_cnt = 16;
5490 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5491 
5492 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5493 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5494 	 * as index[5:4](upper 2) into key table
5495 	 */
5496 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5497 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5498 		rss_key_addr_cnt = 32;
5499 
5500 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5501 
5502 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5503 		if (rss_key_addr_cnt > 16)
5504 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5505 				     KEYWRADDRX_V(idx >> 4) |
5506 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5507 		else
5508 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5509 				     KEYWRADDR_V(idx) | KEYWREN_F);
5510 	}
5511 }
5512 
5513 /**
5514  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5515  *	@adapter: the adapter
5516  *	@index: the entry in the PF RSS table to read
5517  *	@valp: where to store the returned value
5518  *      @sleep_ok: if true we may sleep while awaiting command completion
5519  *
5520  *	Reads the PF RSS Configuration Table at the specified index and returns
5521  *	the value found there.
5522  */
5523 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5524 			   u32 *valp, bool sleep_ok)
5525 {
5526 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5527 }
5528 
5529 /**
5530  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5531  *	@adapter: the adapter
5532  *	@index: the entry in the VF RSS table to read
5533  *	@vfl: where to store the returned VFL
5534  *	@vfh: where to store the returned VFH
5535  *      @sleep_ok: if true we may sleep while awaiting command completion
5536  *
5537  *	Reads the VF RSS Configuration Table at the specified index and returns
5538  *	the (VFL, VFH) values found there.
5539  */
5540 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5541 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5542 {
5543 	u32 vrt, mask, data;
5544 
5545 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5546 		mask = VFWRADDR_V(VFWRADDR_M);
5547 		data = VFWRADDR_V(index);
5548 	} else {
5549 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5550 		 data = T6_VFWRADDR_V(index);
5551 	}
5552 
5553 	/* Request that the index'th VF Table values be read into VFL/VFH.
5554 	 */
5555 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5556 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5557 	vrt |= data | VFRDEN_F;
5558 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5559 
5560 	/* Grab the VFL/VFH values ...
5561 	 */
5562 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5563 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5564 }
5565 
5566 /**
5567  *	t4_read_rss_pf_map - read PF RSS Map
5568  *	@adapter: the adapter
5569  *      @sleep_ok: if true we may sleep while awaiting command completion
5570  *
5571  *	Reads the PF RSS Map register and returns its value.
5572  */
5573 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5574 {
5575 	u32 pfmap;
5576 
5577 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5578 	return pfmap;
5579 }
5580 
5581 /**
5582  *	t4_read_rss_pf_mask - read PF RSS Mask
5583  *	@adapter: the adapter
5584  *      @sleep_ok: if true we may sleep while awaiting command completion
5585  *
5586  *	Reads the PF RSS Mask register and returns its value.
5587  */
5588 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5589 {
5590 	u32 pfmask;
5591 
5592 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5593 	return pfmask;
5594 }
5595 
5596 /**
5597  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5598  *	@adap: the adapter
5599  *	@v4: holds the TCP/IP counter values
5600  *	@v6: holds the TCP/IPv6 counter values
5601  *      @sleep_ok: if true we may sleep while awaiting command completion
5602  *
5603  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5604  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5605  */
5606 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5607 			 struct tp_tcp_stats *v6, bool sleep_ok)
5608 {
5609 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5610 
5611 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5612 #define STAT(x)     val[STAT_IDX(x)]
5613 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5614 
5615 	if (v4) {
5616 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5617 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5618 		v4->tcp_out_rsts = STAT(OUT_RST);
5619 		v4->tcp_in_segs  = STAT64(IN_SEG);
5620 		v4->tcp_out_segs = STAT64(OUT_SEG);
5621 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5622 	}
5623 	if (v6) {
5624 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5625 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5626 		v6->tcp_out_rsts = STAT(OUT_RST);
5627 		v6->tcp_in_segs  = STAT64(IN_SEG);
5628 		v6->tcp_out_segs = STAT64(OUT_SEG);
5629 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5630 	}
5631 #undef STAT64
5632 #undef STAT
5633 #undef STAT_IDX
5634 }
5635 
5636 /**
5637  *	t4_tp_get_err_stats - read TP's error MIB counters
5638  *	@adap: the adapter
5639  *	@st: holds the counter values
5640  *      @sleep_ok: if true we may sleep while awaiting command completion
5641  *
5642  *	Returns the values of TP's error counters.
5643  */
5644 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5645 			 bool sleep_ok)
5646 {
5647 	int nchan = adap->params.arch.nchan;
5648 
5649 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5650 		       sleep_ok);
5651 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5652 		       sleep_ok);
5653 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5654 		       sleep_ok);
5655 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5656 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5657 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5658 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5659 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5660 		       sleep_ok);
5661 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5662 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5663 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5664 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5665 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5666 		       sleep_ok);
5667 }
5668 
5669 /**
5670  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5671  *	@adap: the adapter
5672  *	@st: holds the counter values
5673  *      @sleep_ok: if true we may sleep while awaiting command completion
5674  *
5675  *	Returns the values of TP's CPL counters.
5676  */
5677 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5678 			 bool sleep_ok)
5679 {
5680 	int nchan = adap->params.arch.nchan;
5681 
5682 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5683 
5684 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5685 }
5686 
5687 /**
5688  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5689  *	@adap: the adapter
5690  *	@st: holds the counter values
5691  *      @sleep_ok: if true we may sleep while awaiting command completion
5692  *
5693  *	Returns the values of TP's RDMA counters.
5694  */
5695 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5696 			  bool sleep_ok)
5697 {
5698 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5699 		       sleep_ok);
5700 }
5701 
5702 /**
5703  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5704  *	@adap: the adapter
5705  *	@idx: the port index
5706  *	@st: holds the counter values
5707  *      @sleep_ok: if true we may sleep while awaiting command completion
5708  *
5709  *	Returns the values of TP's FCoE counters for the selected port.
5710  */
5711 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5712 		       struct tp_fcoe_stats *st, bool sleep_ok)
5713 {
5714 	u32 val[2];
5715 
5716 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5717 		       sleep_ok);
5718 
5719 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5720 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5721 
5722 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5723 		       sleep_ok);
5724 
5725 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5726 }
5727 
5728 /**
5729  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5730  *	@adap: the adapter
5731  *	@st: holds the counter values
5732  *      @sleep_ok: if true we may sleep while awaiting command completion
5733  *
5734  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5735  */
5736 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5737 		      bool sleep_ok)
5738 {
5739 	u32 val[4];
5740 
5741 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5742 	st->frames = val[0];
5743 	st->drops = val[1];
5744 	st->octets = ((u64)val[2] << 32) | val[3];
5745 }
5746 
5747 /**
5748  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5749  *	@adap: the adapter
5750  *	@mtus: where to store the MTU values
5751  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5752  *
5753  *	Reads the HW path MTU table.
5754  */
5755 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5756 {
5757 	u32 v;
5758 	int i;
5759 
5760 	for (i = 0; i < NMTUS; ++i) {
5761 		t4_write_reg(adap, TP_MTU_TABLE_A,
5762 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5763 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5764 		mtus[i] = MTUVALUE_G(v);
5765 		if (mtu_log)
5766 			mtu_log[i] = MTUWIDTH_G(v);
5767 	}
5768 }
5769 
5770 /**
5771  *	t4_read_cong_tbl - reads the congestion control table
5772  *	@adap: the adapter
5773  *	@incr: where to store the alpha values
5774  *
5775  *	Reads the additive increments programmed into the HW congestion
5776  *	control table.
5777  */
5778 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5779 {
5780 	unsigned int mtu, w;
5781 
5782 	for (mtu = 0; mtu < NMTUS; ++mtu)
5783 		for (w = 0; w < NCCTRL_WIN; ++w) {
5784 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5785 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5786 			incr[mtu][w] = (u16)t4_read_reg(adap,
5787 						TP_CCTRL_TABLE_A) & 0x1fff;
5788 		}
5789 }
5790 
5791 /**
5792  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5793  *	@adap: the adapter
5794  *	@addr: the indirect TP register address
5795  *	@mask: specifies the field within the register to modify
5796  *	@val: new value for the field
5797  *
5798  *	Sets a field of an indirect TP register to the given value.
5799  */
5800 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5801 			    unsigned int mask, unsigned int val)
5802 {
5803 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5804 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5805 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5806 }
5807 
5808 /**
5809  *	init_cong_ctrl - initialize congestion control parameters
5810  *	@a: the alpha values for congestion control
5811  *	@b: the beta values for congestion control
5812  *
5813  *	Initialize the congestion control parameters.
5814  */
5815 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5816 {
5817 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5818 	a[9] = 2;
5819 	a[10] = 3;
5820 	a[11] = 4;
5821 	a[12] = 5;
5822 	a[13] = 6;
5823 	a[14] = 7;
5824 	a[15] = 8;
5825 	a[16] = 9;
5826 	a[17] = 10;
5827 	a[18] = 14;
5828 	a[19] = 17;
5829 	a[20] = 21;
5830 	a[21] = 25;
5831 	a[22] = 30;
5832 	a[23] = 35;
5833 	a[24] = 45;
5834 	a[25] = 60;
5835 	a[26] = 80;
5836 	a[27] = 100;
5837 	a[28] = 200;
5838 	a[29] = 300;
5839 	a[30] = 400;
5840 	a[31] = 500;
5841 
5842 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5843 	b[9] = b[10] = 1;
5844 	b[11] = b[12] = 2;
5845 	b[13] = b[14] = b[15] = b[16] = 3;
5846 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5847 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5848 	b[28] = b[29] = 6;
5849 	b[30] = b[31] = 7;
5850 }
5851 
5852 /* The minimum additive increment value for the congestion control table */
5853 #define CC_MIN_INCR 2U
5854 
5855 /**
5856  *	t4_load_mtus - write the MTU and congestion control HW tables
5857  *	@adap: the adapter
5858  *	@mtus: the values for the MTU table
5859  *	@alpha: the values for the congestion control alpha parameter
5860  *	@beta: the values for the congestion control beta parameter
5861  *
5862  *	Write the HW MTU table with the supplied MTUs and the high-speed
5863  *	congestion control table with the supplied alpha, beta, and MTUs.
5864  *	We write the two tables together because the additive increments
5865  *	depend on the MTUs.
5866  */
5867 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5868 		  const unsigned short *alpha, const unsigned short *beta)
5869 {
5870 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5871 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5872 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5873 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5874 	};
5875 
5876 	unsigned int i, w;
5877 
5878 	for (i = 0; i < NMTUS; ++i) {
5879 		unsigned int mtu = mtus[i];
5880 		unsigned int log2 = fls(mtu);
5881 
5882 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5883 			log2--;
5884 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5885 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5886 
5887 		for (w = 0; w < NCCTRL_WIN; ++w) {
5888 			unsigned int inc;
5889 
5890 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5891 				  CC_MIN_INCR);
5892 
5893 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5894 				     (w << 16) | (beta[w] << 13) | inc);
5895 		}
5896 	}
5897 }
5898 
5899 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5900  * clocks.  The formula is
5901  *
5902  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5903  *
5904  * which is equivalent to
5905  *
5906  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5907  */
5908 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5909 {
5910 	u64 v = bytes256 * adap->params.vpd.cclk;
5911 
5912 	return v * 62 + v / 2;
5913 }
5914 
5915 /**
5916  *	t4_get_chan_txrate - get the current per channel Tx rates
5917  *	@adap: the adapter
5918  *	@nic_rate: rates for NIC traffic
5919  *	@ofld_rate: rates for offloaded traffic
5920  *
5921  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5922  *	for each channel.
5923  */
5924 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5925 {
5926 	u32 v;
5927 
5928 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5929 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5930 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5931 	if (adap->params.arch.nchan == NCHAN) {
5932 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5933 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5934 	}
5935 
5936 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5937 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5938 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5939 	if (adap->params.arch.nchan == NCHAN) {
5940 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5941 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5942 	}
5943 }
5944 
5945 /**
5946  *	t4_set_trace_filter - configure one of the tracing filters
5947  *	@adap: the adapter
5948  *	@tp: the desired trace filter parameters
5949  *	@idx: which filter to configure
5950  *	@enable: whether to enable or disable the filter
5951  *
5952  *	Configures one of the tracing filters available in HW.  If @enable is
5953  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5954  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5955  */
5956 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5957 			int idx, int enable)
5958 {
5959 	int i, ofst = idx * 4;
5960 	u32 data_reg, mask_reg, cfg;
5961 
5962 	if (!enable) {
5963 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5964 		return 0;
5965 	}
5966 
5967 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5968 	if (cfg & TRCMULTIFILTER_F) {
5969 		/* If multiple tracers are enabled, then maximum
5970 		 * capture size is 2.5KB (FIFO size of a single channel)
5971 		 * minus 2 flits for CPL_TRACE_PKT header.
5972 		 */
5973 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5974 			return -EINVAL;
5975 	} else {
5976 		/* If multiple tracers are disabled, to avoid deadlocks
5977 		 * maximum packet capture size of 9600 bytes is recommended.
5978 		 * Also in this mode, only trace0 can be enabled and running.
5979 		 */
5980 		if (tp->snap_len > 9600 || idx)
5981 			return -EINVAL;
5982 	}
5983 
5984 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5985 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5986 	    tp->min_len > TFMINPKTSIZE_M)
5987 		return -EINVAL;
5988 
5989 	/* stop the tracer we'll be changing */
5990 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5991 
5992 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5993 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5994 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5995 
5996 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5997 		t4_write_reg(adap, data_reg, tp->data[i]);
5998 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5999 	}
6000 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
6001 		     TFCAPTUREMAX_V(tp->snap_len) |
6002 		     TFMINPKTSIZE_V(tp->min_len));
6003 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6004 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6005 		     (is_t4(adap->params.chip) ?
6006 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6007 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6008 		     T5_TFINVERTMATCH_V(tp->invert)));
6009 
6010 	return 0;
6011 }
6012 
6013 /**
6014  *	t4_get_trace_filter - query one of the tracing filters
6015  *	@adap: the adapter
6016  *	@tp: the current trace filter parameters
6017  *	@idx: which trace filter to query
6018  *	@enabled: non-zero if the filter is enabled
6019  *
6020  *	Returns the current settings of one of the HW tracing filters.
6021  */
6022 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6023 			 int *enabled)
6024 {
6025 	u32 ctla, ctlb;
6026 	int i, ofst = idx * 4;
6027 	u32 data_reg, mask_reg;
6028 
6029 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6030 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6031 
6032 	if (is_t4(adap->params.chip)) {
6033 		*enabled = !!(ctla & TFEN_F);
6034 		tp->port =  TFPORT_G(ctla);
6035 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6036 	} else {
6037 		*enabled = !!(ctla & T5_TFEN_F);
6038 		tp->port = T5_TFPORT_G(ctla);
6039 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6040 	}
6041 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6042 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6043 	tp->skip_ofst = TFOFFSET_G(ctla);
6044 	tp->skip_len = TFLENGTH_G(ctla);
6045 
6046 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6047 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6048 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6049 
6050 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6051 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6052 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6053 	}
6054 }
6055 
6056 /**
6057  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6058  *	@adap: the adapter
6059  *	@cnt: where to store the count statistics
6060  *	@cycles: where to store the cycle statistics
6061  *
6062  *	Returns performance statistics from PMTX.
6063  */
6064 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6065 {
6066 	int i;
6067 	u32 data[2];
6068 
6069 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6070 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6071 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6072 		if (is_t4(adap->params.chip)) {
6073 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6074 		} else {
6075 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6076 					 PM_TX_DBG_DATA_A, data, 2,
6077 					 PM_TX_DBG_STAT_MSB_A);
6078 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6079 		}
6080 	}
6081 }
6082 
6083 /**
6084  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6085  *	@adap: the adapter
6086  *	@cnt: where to store the count statistics
6087  *	@cycles: where to store the cycle statistics
6088  *
6089  *	Returns performance statistics from PMRX.
6090  */
6091 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6092 {
6093 	int i;
6094 	u32 data[2];
6095 
6096 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6097 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6098 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6099 		if (is_t4(adap->params.chip)) {
6100 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6101 		} else {
6102 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6103 					 PM_RX_DBG_DATA_A, data, 2,
6104 					 PM_RX_DBG_STAT_MSB_A);
6105 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6106 		}
6107 	}
6108 }
6109 
6110 /**
6111  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6112  *	@adapter: the adapter
6113  *	@pidx: the port index
6114  *
6115  *	Computes and returns a bitmap indicating which MPS buffer groups are
6116  *	associated with the given Port.  Bit i is set if buffer group i is
6117  *	used by the Port.
6118  */
6119 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6120 					      int pidx)
6121 {
6122 	unsigned int chip_version, nports;
6123 
6124 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6125 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6126 
6127 	switch (chip_version) {
6128 	case CHELSIO_T4:
6129 	case CHELSIO_T5:
6130 		switch (nports) {
6131 		case 1: return 0xf;
6132 		case 2: return 3 << (2 * pidx);
6133 		case 4: return 1 << pidx;
6134 		}
6135 		break;
6136 
6137 	case CHELSIO_T6:
6138 		switch (nports) {
6139 		case 2: return 1 << (2 * pidx);
6140 		}
6141 		break;
6142 	}
6143 
6144 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6145 		chip_version, nports);
6146 
6147 	return 0;
6148 }
6149 
6150 /**
6151  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6152  *	@adapter: the adapter
6153  *	@pidx: the port index
6154  *
6155  *	Returns a bitmap indicating which MPS buffer groups are associated
6156  *	with the given Port.  Bit i is set if buffer group i is used by the
6157  *	Port.
6158  */
6159 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6160 {
6161 	u8 *mps_bg_map;
6162 	unsigned int nports;
6163 
6164 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6165 	if (pidx >= nports) {
6166 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6167 			pidx, nports);
6168 		return 0;
6169 	}
6170 
6171 	/* If we've already retrieved/computed this, just return the result.
6172 	 */
6173 	mps_bg_map = adapter->params.mps_bg_map;
6174 	if (mps_bg_map[pidx])
6175 		return mps_bg_map[pidx];
6176 
6177 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6178 	 * If we're talking to such Firmware, let it tell us.  If the new
6179 	 * API isn't supported, revert back to old hardcoded way.  The value
6180 	 * obtained from Firmware is encoded in below format:
6181 	 *
6182 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6183 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6184 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6185 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6186 	 */
6187 	if (adapter->flags & CXGB4_FW_OK) {
6188 		u32 param, val;
6189 		int ret;
6190 
6191 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6192 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6193 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6194 					 0, 1, &param, &val);
6195 		if (!ret) {
6196 			int p;
6197 
6198 			/* Store the BG Map for all of the Ports in order to
6199 			 * avoid more calls to the Firmware in the future.
6200 			 */
6201 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6202 				mps_bg_map[p] = val & 0xff;
6203 
6204 			return mps_bg_map[pidx];
6205 		}
6206 	}
6207 
6208 	/* Either we're not talking to the Firmware or we're dealing with
6209 	 * older Firmware which doesn't support the new API to get the MPS
6210 	 * Buffer Group Map.  Fall back to computing it ourselves.
6211 	 */
6212 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6213 	return mps_bg_map[pidx];
6214 }
6215 
6216 /**
6217  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6218  *      @adapter: the adapter
6219  *      @pidx: the port index
6220  */
6221 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6222 {
6223 	unsigned int nports;
6224 	u32 param, val = 0;
6225 	int ret;
6226 
6227 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6228 	if (pidx >= nports) {
6229 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6230 			pidx, nports);
6231 		return 0;
6232 	}
6233 
6234 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6235 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6236 	 */
6237 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6238 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6239 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6240 				 0, 1, &param, &val);
6241 	if (!ret)
6242 		return (val >> (8 * pidx)) & 0xff;
6243 
6244 	return 0;
6245 }
6246 
6247 /**
6248  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6249  *	@adap: the adapter
6250  *	@pidx: the port index
6251  *
6252  *	Returns a bitmap indicating which TP Ingress Channels are associated
6253  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6254  *	the Port.
6255  */
6256 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6257 {
6258 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6259 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6260 
6261 	if (pidx >= nports) {
6262 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6263 			 pidx, nports);
6264 		return 0;
6265 	}
6266 
6267 	switch (chip_version) {
6268 	case CHELSIO_T4:
6269 	case CHELSIO_T5:
6270 		/* Note that this happens to be the same values as the MPS
6271 		 * Buffer Group Map for these Chips.  But we replicate the code
6272 		 * here because they're really separate concepts.
6273 		 */
6274 		switch (nports) {
6275 		case 1: return 0xf;
6276 		case 2: return 3 << (2 * pidx);
6277 		case 4: return 1 << pidx;
6278 		}
6279 		break;
6280 
6281 	case CHELSIO_T6:
6282 		switch (nports) {
6283 		case 1:
6284 		case 2: return 1 << pidx;
6285 		}
6286 		break;
6287 	}
6288 
6289 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6290 		chip_version, nports);
6291 	return 0;
6292 }
6293 
6294 /**
6295  *      t4_get_port_type_description - return Port Type string description
6296  *      @port_type: firmware Port Type enumeration
6297  */
6298 const char *t4_get_port_type_description(enum fw_port_type port_type)
6299 {
6300 	static const char *const port_type_description[] = {
6301 		"Fiber_XFI",
6302 		"Fiber_XAUI",
6303 		"BT_SGMII",
6304 		"BT_XFI",
6305 		"BT_XAUI",
6306 		"KX4",
6307 		"CX4",
6308 		"KX",
6309 		"KR",
6310 		"SFP",
6311 		"BP_AP",
6312 		"BP4_AP",
6313 		"QSFP_10G",
6314 		"QSA",
6315 		"QSFP",
6316 		"BP40_BA",
6317 		"KR4_100G",
6318 		"CR4_QSFP",
6319 		"CR_QSFP",
6320 		"CR2_QSFP",
6321 		"SFP28",
6322 		"KR_SFP28",
6323 		"KR_XLAUI"
6324 	};
6325 
6326 	if (port_type < ARRAY_SIZE(port_type_description))
6327 		return port_type_description[port_type];
6328 	return "UNKNOWN";
6329 }
6330 
6331 /**
6332  *      t4_get_port_stats_offset - collect port stats relative to a previous
6333  *                                 snapshot
6334  *      @adap: The adapter
6335  *      @idx: The port
6336  *      @stats: Current stats to fill
6337  *      @offset: Previous stats snapshot
6338  */
6339 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6340 			      struct port_stats *stats,
6341 			      struct port_stats *offset)
6342 {
6343 	u64 *s, *o;
6344 	int i;
6345 
6346 	t4_get_port_stats(adap, idx, stats);
6347 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6348 			i < (sizeof(struct port_stats) / sizeof(u64));
6349 			i++, s++, o++)
6350 		*s -= *o;
6351 }
6352 
6353 /**
6354  *	t4_get_port_stats - collect port statistics
6355  *	@adap: the adapter
6356  *	@idx: the port index
6357  *	@p: the stats structure to fill
6358  *
6359  *	Collect statistics related to the given port from HW.
6360  */
6361 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6362 {
6363 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6364 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6365 
6366 #define GET_STAT(name) \
6367 	t4_read_reg64(adap, \
6368 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6369 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6370 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6371 
6372 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6373 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6374 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6375 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6376 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6377 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6378 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6379 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6380 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6381 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6382 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6383 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6384 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6385 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6386 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6387 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6388 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6389 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6390 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6391 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6392 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6393 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6394 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6395 
6396 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6397 		if (stat_ctl & COUNTPAUSESTATTX_F)
6398 			p->tx_frames_64 -= p->tx_pause;
6399 		if (stat_ctl & COUNTPAUSEMCTX_F)
6400 			p->tx_mcast_frames -= p->tx_pause;
6401 	}
6402 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6403 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6404 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6405 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6406 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6407 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6408 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6409 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6410 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6411 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6412 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6413 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6414 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6415 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6416 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6417 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6418 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6419 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6420 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6421 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6422 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6423 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6424 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6425 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6426 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6427 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6428 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6429 
6430 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6431 		if (stat_ctl & COUNTPAUSESTATRX_F)
6432 			p->rx_frames_64 -= p->rx_pause;
6433 		if (stat_ctl & COUNTPAUSEMCRX_F)
6434 			p->rx_mcast_frames -= p->rx_pause;
6435 	}
6436 
6437 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6438 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6439 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6440 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6441 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6442 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6443 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6444 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6445 
6446 #undef GET_STAT
6447 #undef GET_STAT_COM
6448 }
6449 
6450 /**
6451  *	t4_get_lb_stats - collect loopback port statistics
6452  *	@adap: the adapter
6453  *	@idx: the loopback port index
6454  *	@p: the stats structure to fill
6455  *
6456  *	Return HW statistics for the given loopback port.
6457  */
6458 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6459 {
6460 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6461 
6462 #define GET_STAT(name) \
6463 	t4_read_reg64(adap, \
6464 	(is_t4(adap->params.chip) ? \
6465 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6466 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6467 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6468 
6469 	p->octets           = GET_STAT(BYTES);
6470 	p->frames           = GET_STAT(FRAMES);
6471 	p->bcast_frames     = GET_STAT(BCAST);
6472 	p->mcast_frames     = GET_STAT(MCAST);
6473 	p->ucast_frames     = GET_STAT(UCAST);
6474 	p->error_frames     = GET_STAT(ERROR);
6475 
6476 	p->frames_64        = GET_STAT(64B);
6477 	p->frames_65_127    = GET_STAT(65B_127B);
6478 	p->frames_128_255   = GET_STAT(128B_255B);
6479 	p->frames_256_511   = GET_STAT(256B_511B);
6480 	p->frames_512_1023  = GET_STAT(512B_1023B);
6481 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6482 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6483 	p->drop             = GET_STAT(DROP_FRAMES);
6484 
6485 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6486 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6487 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6488 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6489 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6490 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6491 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6492 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6493 
6494 #undef GET_STAT
6495 #undef GET_STAT_COM
6496 }
6497 
6498 /*     t4_mk_filtdelwr - create a delete filter WR
6499  *     @ftid: the filter ID
6500  *     @wr: the filter work request to populate
6501  *     @qid: ingress queue to receive the delete notification
6502  *
6503  *     Creates a filter work request to delete the supplied filter.  If @qid is
6504  *     negative the delete notification is suppressed.
6505  */
6506 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6507 {
6508 	memset(wr, 0, sizeof(*wr));
6509 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6510 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6511 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6512 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6513 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6514 	if (qid >= 0)
6515 		wr->rx_chan_rx_rpl_iq =
6516 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6517 }
6518 
6519 #define INIT_CMD(var, cmd, rd_wr) do { \
6520 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6521 					FW_CMD_REQUEST_F | \
6522 					FW_CMD_##rd_wr##_F); \
6523 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6524 } while (0)
6525 
6526 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6527 			  u32 addr, u32 val)
6528 {
6529 	u32 ldst_addrspace;
6530 	struct fw_ldst_cmd c;
6531 
6532 	memset(&c, 0, sizeof(c));
6533 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6534 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6535 					FW_CMD_REQUEST_F |
6536 					FW_CMD_WRITE_F |
6537 					ldst_addrspace);
6538 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6539 	c.u.addrval.addr = cpu_to_be32(addr);
6540 	c.u.addrval.val = cpu_to_be32(val);
6541 
6542 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6543 }
6544 
6545 /**
6546  *	t4_mdio_rd - read a PHY register through MDIO
6547  *	@adap: the adapter
6548  *	@mbox: mailbox to use for the FW command
6549  *	@phy_addr: the PHY address
6550  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6551  *	@reg: the register to read
6552  *	@valp: where to store the value
6553  *
6554  *	Issues a FW command through the given mailbox to read a PHY register.
6555  */
6556 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6557 	       unsigned int mmd, unsigned int reg, u16 *valp)
6558 {
6559 	int ret;
6560 	u32 ldst_addrspace;
6561 	struct fw_ldst_cmd c;
6562 
6563 	memset(&c, 0, sizeof(c));
6564 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6565 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6566 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6567 					ldst_addrspace);
6568 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6569 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6570 					 FW_LDST_CMD_MMD_V(mmd));
6571 	c.u.mdio.raddr = cpu_to_be16(reg);
6572 
6573 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6574 	if (ret == 0)
6575 		*valp = be16_to_cpu(c.u.mdio.rval);
6576 	return ret;
6577 }
6578 
6579 /**
6580  *	t4_mdio_wr - write a PHY register through MDIO
6581  *	@adap: the adapter
6582  *	@mbox: mailbox to use for the FW command
6583  *	@phy_addr: the PHY address
6584  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6585  *	@reg: the register to write
6586  *	@val: value to write
6587  *
6588  *	Issues a FW command through the given mailbox to write a PHY register.
6589  */
6590 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6591 	       unsigned int mmd, unsigned int reg, u16 val)
6592 {
6593 	u32 ldst_addrspace;
6594 	struct fw_ldst_cmd c;
6595 
6596 	memset(&c, 0, sizeof(c));
6597 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6598 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6599 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6600 					ldst_addrspace);
6601 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6602 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6603 					 FW_LDST_CMD_MMD_V(mmd));
6604 	c.u.mdio.raddr = cpu_to_be16(reg);
6605 	c.u.mdio.rval = cpu_to_be16(val);
6606 
6607 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6608 }
6609 
6610 /**
6611  *	t4_sge_decode_idma_state - decode the idma state
6612  *	@adapter: the adapter
6613  *	@state: the state idma is stuck in
6614  */
6615 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6616 {
6617 	static const char * const t4_decode[] = {
6618 		"IDMA_IDLE",
6619 		"IDMA_PUSH_MORE_CPL_FIFO",
6620 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6621 		"Not used",
6622 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6623 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6624 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6625 		"IDMA_SEND_FIFO_TO_IMSG",
6626 		"IDMA_FL_REQ_DATA_FL_PREP",
6627 		"IDMA_FL_REQ_DATA_FL",
6628 		"IDMA_FL_DROP",
6629 		"IDMA_FL_H_REQ_HEADER_FL",
6630 		"IDMA_FL_H_SEND_PCIEHDR",
6631 		"IDMA_FL_H_PUSH_CPL_FIFO",
6632 		"IDMA_FL_H_SEND_CPL",
6633 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6634 		"IDMA_FL_H_SEND_IP_HDR",
6635 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6636 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6637 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6638 		"IDMA_FL_D_SEND_PCIEHDR",
6639 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6640 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6641 		"IDMA_FL_SEND_PCIEHDR",
6642 		"IDMA_FL_PUSH_CPL_FIFO",
6643 		"IDMA_FL_SEND_CPL",
6644 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6645 		"IDMA_FL_SEND_PAYLOAD",
6646 		"IDMA_FL_REQ_NEXT_DATA_FL",
6647 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6648 		"IDMA_FL_SEND_PADDING",
6649 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6650 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6651 		"IDMA_FL_REQ_DATAFL_DONE",
6652 		"IDMA_FL_REQ_HEADERFL_DONE",
6653 	};
6654 	static const char * const t5_decode[] = {
6655 		"IDMA_IDLE",
6656 		"IDMA_ALMOST_IDLE",
6657 		"IDMA_PUSH_MORE_CPL_FIFO",
6658 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6659 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6660 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6661 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6662 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6663 		"IDMA_SEND_FIFO_TO_IMSG",
6664 		"IDMA_FL_REQ_DATA_FL",
6665 		"IDMA_FL_DROP",
6666 		"IDMA_FL_DROP_SEND_INC",
6667 		"IDMA_FL_H_REQ_HEADER_FL",
6668 		"IDMA_FL_H_SEND_PCIEHDR",
6669 		"IDMA_FL_H_PUSH_CPL_FIFO",
6670 		"IDMA_FL_H_SEND_CPL",
6671 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6672 		"IDMA_FL_H_SEND_IP_HDR",
6673 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6674 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6675 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6676 		"IDMA_FL_D_SEND_PCIEHDR",
6677 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6678 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6679 		"IDMA_FL_SEND_PCIEHDR",
6680 		"IDMA_FL_PUSH_CPL_FIFO",
6681 		"IDMA_FL_SEND_CPL",
6682 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6683 		"IDMA_FL_SEND_PAYLOAD",
6684 		"IDMA_FL_REQ_NEXT_DATA_FL",
6685 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6686 		"IDMA_FL_SEND_PADDING",
6687 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6688 	};
6689 	static const char * const t6_decode[] = {
6690 		"IDMA_IDLE",
6691 		"IDMA_PUSH_MORE_CPL_FIFO",
6692 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6693 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6694 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6695 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6696 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6697 		"IDMA_FL_REQ_DATA_FL",
6698 		"IDMA_FL_DROP",
6699 		"IDMA_FL_DROP_SEND_INC",
6700 		"IDMA_FL_H_REQ_HEADER_FL",
6701 		"IDMA_FL_H_SEND_PCIEHDR",
6702 		"IDMA_FL_H_PUSH_CPL_FIFO",
6703 		"IDMA_FL_H_SEND_CPL",
6704 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6705 		"IDMA_FL_H_SEND_IP_HDR",
6706 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6707 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6708 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6709 		"IDMA_FL_D_SEND_PCIEHDR",
6710 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6711 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6712 		"IDMA_FL_SEND_PCIEHDR",
6713 		"IDMA_FL_PUSH_CPL_FIFO",
6714 		"IDMA_FL_SEND_CPL",
6715 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6716 		"IDMA_FL_SEND_PAYLOAD",
6717 		"IDMA_FL_REQ_NEXT_DATA_FL",
6718 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6719 		"IDMA_FL_SEND_PADDING",
6720 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6721 	};
6722 	static const u32 sge_regs[] = {
6723 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6724 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6725 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6726 	};
6727 	const char **sge_idma_decode;
6728 	int sge_idma_decode_nstates;
6729 	int i;
6730 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6731 
6732 	/* Select the right set of decode strings to dump depending on the
6733 	 * adapter chip type.
6734 	 */
6735 	switch (chip_version) {
6736 	case CHELSIO_T4:
6737 		sge_idma_decode = (const char **)t4_decode;
6738 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6739 		break;
6740 
6741 	case CHELSIO_T5:
6742 		sge_idma_decode = (const char **)t5_decode;
6743 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6744 		break;
6745 
6746 	case CHELSIO_T6:
6747 		sge_idma_decode = (const char **)t6_decode;
6748 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6749 		break;
6750 
6751 	default:
6752 		dev_err(adapter->pdev_dev,
6753 			"Unsupported chip version %d\n", chip_version);
6754 		return;
6755 	}
6756 
6757 	if (is_t4(adapter->params.chip)) {
6758 		sge_idma_decode = (const char **)t4_decode;
6759 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6760 	} else {
6761 		sge_idma_decode = (const char **)t5_decode;
6762 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6763 	}
6764 
6765 	if (state < sge_idma_decode_nstates)
6766 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6767 	else
6768 		CH_WARN(adapter, "idma state %d unknown\n", state);
6769 
6770 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6771 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6772 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6773 }
6774 
6775 /**
6776  *      t4_sge_ctxt_flush - flush the SGE context cache
6777  *      @adap: the adapter
6778  *      @mbox: mailbox to use for the FW command
6779  *      @ctxt_type: Egress or Ingress
6780  *
6781  *      Issues a FW command through the given mailbox to flush the
6782  *      SGE context cache.
6783  */
6784 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6785 {
6786 	int ret;
6787 	u32 ldst_addrspace;
6788 	struct fw_ldst_cmd c;
6789 
6790 	memset(&c, 0, sizeof(c));
6791 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6792 						 FW_LDST_ADDRSPC_SGE_EGRC :
6793 						 FW_LDST_ADDRSPC_SGE_INGC);
6794 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6795 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6796 					ldst_addrspace);
6797 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6798 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6799 
6800 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6801 	return ret;
6802 }
6803 
6804 /**
6805  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6806  *	@adap: the adapter
6807  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6808  *	@dbqtimers: SGE Doorbell Queue Timer table
6809  *
6810  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6811  *	Returns 0 on success (Firmware and Hardware support this feature),
6812  *	an error on failure.
6813  */
6814 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6815 			  u16 *dbqtimers)
6816 {
6817 	int ret, dbqtimerix;
6818 
6819 	ret = 0;
6820 	dbqtimerix = 0;
6821 	while (dbqtimerix < ndbqtimers) {
6822 		int nparams, param;
6823 		u32 params[7], vals[7];
6824 
6825 		nparams = ndbqtimers - dbqtimerix;
6826 		if (nparams > ARRAY_SIZE(params))
6827 			nparams = ARRAY_SIZE(params);
6828 
6829 		for (param = 0; param < nparams; param++)
6830 			params[param] =
6831 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6832 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6833 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6834 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6835 				      nparams, params, vals);
6836 		if (ret)
6837 			break;
6838 
6839 		for (param = 0; param < nparams; param++)
6840 			dbqtimers[dbqtimerix++] = vals[param];
6841 	}
6842 	return ret;
6843 }
6844 
6845 /**
6846  *      t4_fw_hello - establish communication with FW
6847  *      @adap: the adapter
6848  *      @mbox: mailbox to use for the FW command
6849  *      @evt_mbox: mailbox to receive async FW events
6850  *      @master: specifies the caller's willingness to be the device master
6851  *	@state: returns the current device state (if non-NULL)
6852  *
6853  *	Issues a command to establish communication with FW.  Returns either
6854  *	an error (negative integer) or the mailbox of the Master PF.
6855  */
6856 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6857 		enum dev_master master, enum dev_state *state)
6858 {
6859 	int ret;
6860 	struct fw_hello_cmd c;
6861 	u32 v;
6862 	unsigned int master_mbox;
6863 	int retries = FW_CMD_HELLO_RETRIES;
6864 
6865 retry:
6866 	memset(&c, 0, sizeof(c));
6867 	INIT_CMD(c, HELLO, WRITE);
6868 	c.err_to_clearinit = cpu_to_be32(
6869 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6870 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6871 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6872 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6873 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6874 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6875 		FW_HELLO_CMD_CLEARINIT_F);
6876 
6877 	/*
6878 	 * Issue the HELLO command to the firmware.  If it's not successful
6879 	 * but indicates that we got a "busy" or "timeout" condition, retry
6880 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6881 	 * retry limit, check to see if the firmware left us any error
6882 	 * information and report that if so.
6883 	 */
6884 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6885 	if (ret < 0) {
6886 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6887 			goto retry;
6888 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6889 			t4_report_fw_error(adap);
6890 		return ret;
6891 	}
6892 
6893 	v = be32_to_cpu(c.err_to_clearinit);
6894 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6895 	if (state) {
6896 		if (v & FW_HELLO_CMD_ERR_F)
6897 			*state = DEV_STATE_ERR;
6898 		else if (v & FW_HELLO_CMD_INIT_F)
6899 			*state = DEV_STATE_INIT;
6900 		else
6901 			*state = DEV_STATE_UNINIT;
6902 	}
6903 
6904 	/*
6905 	 * If we're not the Master PF then we need to wait around for the
6906 	 * Master PF Driver to finish setting up the adapter.
6907 	 *
6908 	 * Note that we also do this wait if we're a non-Master-capable PF and
6909 	 * there is no current Master PF; a Master PF may show up momentarily
6910 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6911 	 * OS loads lots of different drivers rapidly at the same time).  In
6912 	 * this case, the Master PF returned by the firmware will be
6913 	 * PCIE_FW_MASTER_M so the test below will work ...
6914 	 */
6915 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6916 	    master_mbox != mbox) {
6917 		int waiting = FW_CMD_HELLO_TIMEOUT;
6918 
6919 		/*
6920 		 * Wait for the firmware to either indicate an error or
6921 		 * initialized state.  If we see either of these we bail out
6922 		 * and report the issue to the caller.  If we exhaust the
6923 		 * "hello timeout" and we haven't exhausted our retries, try
6924 		 * again.  Otherwise bail with a timeout error.
6925 		 */
6926 		for (;;) {
6927 			u32 pcie_fw;
6928 
6929 			msleep(50);
6930 			waiting -= 50;
6931 
6932 			/*
6933 			 * If neither Error nor Initialized are indicated
6934 			 * by the firmware keep waiting till we exhaust our
6935 			 * timeout ... and then retry if we haven't exhausted
6936 			 * our retries ...
6937 			 */
6938 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6939 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6940 				if (waiting <= 0) {
6941 					if (retries-- > 0)
6942 						goto retry;
6943 
6944 					return -ETIMEDOUT;
6945 				}
6946 				continue;
6947 			}
6948 
6949 			/*
6950 			 * We either have an Error or Initialized condition
6951 			 * report errors preferentially.
6952 			 */
6953 			if (state) {
6954 				if (pcie_fw & PCIE_FW_ERR_F)
6955 					*state = DEV_STATE_ERR;
6956 				else if (pcie_fw & PCIE_FW_INIT_F)
6957 					*state = DEV_STATE_INIT;
6958 			}
6959 
6960 			/*
6961 			 * If we arrived before a Master PF was selected and
6962 			 * there's not a valid Master PF, grab its identity
6963 			 * for our caller.
6964 			 */
6965 			if (master_mbox == PCIE_FW_MASTER_M &&
6966 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6967 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6968 			break;
6969 		}
6970 	}
6971 
6972 	return master_mbox;
6973 }
6974 
6975 /**
6976  *	t4_fw_bye - end communication with FW
6977  *	@adap: the adapter
6978  *	@mbox: mailbox to use for the FW command
6979  *
6980  *	Issues a command to terminate communication with FW.
6981  */
6982 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6983 {
6984 	struct fw_bye_cmd c;
6985 
6986 	memset(&c, 0, sizeof(c));
6987 	INIT_CMD(c, BYE, WRITE);
6988 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6989 }
6990 
6991 /**
6992  *	t4_init_cmd - ask FW to initialize the device
6993  *	@adap: the adapter
6994  *	@mbox: mailbox to use for the FW command
6995  *
6996  *	Issues a command to FW to partially initialize the device.  This
6997  *	performs initialization that generally doesn't depend on user input.
6998  */
6999 int t4_early_init(struct adapter *adap, unsigned int mbox)
7000 {
7001 	struct fw_initialize_cmd c;
7002 
7003 	memset(&c, 0, sizeof(c));
7004 	INIT_CMD(c, INITIALIZE, WRITE);
7005 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7006 }
7007 
7008 /**
7009  *	t4_fw_reset - issue a reset to FW
7010  *	@adap: the adapter
7011  *	@mbox: mailbox to use for the FW command
7012  *	@reset: specifies the type of reset to perform
7013  *
7014  *	Issues a reset command of the specified type to FW.
7015  */
7016 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7017 {
7018 	struct fw_reset_cmd c;
7019 
7020 	memset(&c, 0, sizeof(c));
7021 	INIT_CMD(c, RESET, WRITE);
7022 	c.val = cpu_to_be32(reset);
7023 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7024 }
7025 
7026 /**
7027  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7028  *	@adap: the adapter
7029  *	@mbox: mailbox to use for the FW RESET command (if desired)
7030  *	@force: force uP into RESET even if FW RESET command fails
7031  *
7032  *	Issues a RESET command to firmware (if desired) with a HALT indication
7033  *	and then puts the microprocessor into RESET state.  The RESET command
7034  *	will only be issued if a legitimate mailbox is provided (mbox <=
7035  *	PCIE_FW_MASTER_M).
7036  *
7037  *	This is generally used in order for the host to safely manipulate the
7038  *	adapter without fear of conflicting with whatever the firmware might
7039  *	be doing.  The only way out of this state is to RESTART the firmware
7040  *	...
7041  */
7042 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7043 {
7044 	int ret = 0;
7045 
7046 	/*
7047 	 * If a legitimate mailbox is provided, issue a RESET command
7048 	 * with a HALT indication.
7049 	 */
7050 	if (mbox <= PCIE_FW_MASTER_M) {
7051 		struct fw_reset_cmd c;
7052 
7053 		memset(&c, 0, sizeof(c));
7054 		INIT_CMD(c, RESET, WRITE);
7055 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7056 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7057 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7058 	}
7059 
7060 	/*
7061 	 * Normally we won't complete the operation if the firmware RESET
7062 	 * command fails but if our caller insists we'll go ahead and put the
7063 	 * uP into RESET.  This can be useful if the firmware is hung or even
7064 	 * missing ...  We'll have to take the risk of putting the uP into
7065 	 * RESET without the cooperation of firmware in that case.
7066 	 *
7067 	 * We also force the firmware's HALT flag to be on in case we bypassed
7068 	 * the firmware RESET command above or we're dealing with old firmware
7069 	 * which doesn't have the HALT capability.  This will serve as a flag
7070 	 * for the incoming firmware to know that it's coming out of a HALT
7071 	 * rather than a RESET ... if it's new enough to understand that ...
7072 	 */
7073 	if (ret == 0 || force) {
7074 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7075 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7076 				 PCIE_FW_HALT_F);
7077 	}
7078 
7079 	/*
7080 	 * And we always return the result of the firmware RESET command
7081 	 * even when we force the uP into RESET ...
7082 	 */
7083 	return ret;
7084 }
7085 
7086 /**
7087  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7088  *	@adap: the adapter
7089  *	@mbox: mailbox to use for the FW command
7090  *	@reset: if we want to do a RESET to restart things
7091  *
7092  *	Restart firmware previously halted by t4_fw_halt().  On successful
7093  *	return the previous PF Master remains as the new PF Master and there
7094  *	is no need to issue a new HELLO command, etc.
7095  *
7096  *	We do this in two ways:
7097  *
7098  *	 1. If we're dealing with newer firmware we'll simply want to take
7099  *	    the chip's microprocessor out of RESET.  This will cause the
7100  *	    firmware to start up from its start vector.  And then we'll loop
7101  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7102  *	    reset to 0) or we timeout.
7103  *
7104  *	 2. If we're dealing with older firmware then we'll need to RESET
7105  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7106  *	    flag and automatically RESET itself on startup.
7107  */
7108 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7109 {
7110 	if (reset) {
7111 		/*
7112 		 * Since we're directing the RESET instead of the firmware
7113 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7114 		 * bit.
7115 		 */
7116 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7117 
7118 		/*
7119 		 * If we've been given a valid mailbox, first try to get the
7120 		 * firmware to do the RESET.  If that works, great and we can
7121 		 * return success.  Otherwise, if we haven't been given a
7122 		 * valid mailbox or the RESET command failed, fall back to
7123 		 * hitting the chip with a hammer.
7124 		 */
7125 		if (mbox <= PCIE_FW_MASTER_M) {
7126 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7127 			msleep(100);
7128 			if (t4_fw_reset(adap, mbox,
7129 					PIORST_F | PIORSTMODE_F) == 0)
7130 				return 0;
7131 		}
7132 
7133 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7134 		msleep(2000);
7135 	} else {
7136 		int ms;
7137 
7138 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7139 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7140 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7141 				return 0;
7142 			msleep(100);
7143 			ms += 100;
7144 		}
7145 		return -ETIMEDOUT;
7146 	}
7147 	return 0;
7148 }
7149 
7150 /**
7151  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7152  *	@adap: the adapter
7153  *	@mbox: mailbox to use for the FW RESET command (if desired)
7154  *	@fw_data: the firmware image to write
7155  *	@size: image size
7156  *	@force: force upgrade even if firmware doesn't cooperate
7157  *
7158  *	Perform all of the steps necessary for upgrading an adapter's
7159  *	firmware image.  Normally this requires the cooperation of the
7160  *	existing firmware in order to halt all existing activities
7161  *	but if an invalid mailbox token is passed in we skip that step
7162  *	(though we'll still put the adapter microprocessor into RESET in
7163  *	that case).
7164  *
7165  *	On successful return the new firmware will have been loaded and
7166  *	the adapter will have been fully RESET losing all previous setup
7167  *	state.  On unsuccessful return the adapter may be completely hosed ...
7168  *	positive errno indicates that the adapter is ~probably~ intact, a
7169  *	negative errno indicates that things are looking bad ...
7170  */
7171 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7172 		  const u8 *fw_data, unsigned int size, int force)
7173 {
7174 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7175 	int reset, ret;
7176 
7177 	if (!t4_fw_matches_chip(adap, fw_hdr))
7178 		return -EINVAL;
7179 
7180 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7181 	 * set wont be sent when we are flashing FW.
7182 	 */
7183 	adap->flags &= ~CXGB4_FW_OK;
7184 
7185 	ret = t4_fw_halt(adap, mbox, force);
7186 	if (ret < 0 && !force)
7187 		goto out;
7188 
7189 	ret = t4_load_fw(adap, fw_data, size);
7190 	if (ret < 0)
7191 		goto out;
7192 
7193 	/*
7194 	 * If there was a Firmware Configuration File stored in FLASH,
7195 	 * there's a good chance that it won't be compatible with the new
7196 	 * Firmware.  In order to prevent difficult to diagnose adapter
7197 	 * initialization issues, we clear out the Firmware Configuration File
7198 	 * portion of the FLASH .  The user will need to re-FLASH a new
7199 	 * Firmware Configuration File which is compatible with the new
7200 	 * Firmware if that's desired.
7201 	 */
7202 	(void)t4_load_cfg(adap, NULL, 0);
7203 
7204 	/*
7205 	 * Older versions of the firmware don't understand the new
7206 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7207 	 * restart.  So for newly loaded older firmware we'll have to do the
7208 	 * RESET for it so it starts up on a clean slate.  We can tell if
7209 	 * the newly loaded firmware will handle this right by checking
7210 	 * its header flags to see if it advertises the capability.
7211 	 */
7212 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7213 	ret = t4_fw_restart(adap, mbox, reset);
7214 
7215 	/* Grab potentially new Firmware Device Log parameters so we can see
7216 	 * how healthy the new Firmware is.  It's okay to contact the new
7217 	 * Firmware for these parameters even though, as far as it's
7218 	 * concerned, we've never said "HELLO" to it ...
7219 	 */
7220 	(void)t4_init_devlog_params(adap);
7221 out:
7222 	adap->flags |= CXGB4_FW_OK;
7223 	return ret;
7224 }
7225 
7226 /**
7227  *	t4_fl_pkt_align - return the fl packet alignment
7228  *	@adap: the adapter
7229  *
7230  *	T4 has a single field to specify the packing and padding boundary.
7231  *	T5 onwards has separate fields for this and hence the alignment for
7232  *	next packet offset is maximum of these two.
7233  *
7234  */
7235 int t4_fl_pkt_align(struct adapter *adap)
7236 {
7237 	u32 sge_control, sge_control2;
7238 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7239 
7240 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7241 
7242 	/* T4 uses a single control field to specify both the PCIe Padding and
7243 	 * Packing Boundary.  T5 introduced the ability to specify these
7244 	 * separately.  The actual Ingress Packet Data alignment boundary
7245 	 * within Packed Buffer Mode is the maximum of these two
7246 	 * specifications.  (Note that it makes no real practical sense to
7247 	 * have the Padding Boundary be larger than the Packing Boundary but you
7248 	 * could set the chip up that way and, in fact, legacy T4 code would
7249 	 * end doing this because it would initialize the Padding Boundary and
7250 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7251 	 * Padding Boundary values in T6 starts from 8B,
7252 	 * where as it is 32B for T4 and T5.
7253 	 */
7254 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7255 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7256 	else
7257 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7258 
7259 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7260 
7261 	fl_align = ingpadboundary;
7262 	if (!is_t4(adap->params.chip)) {
7263 		/* T5 has a weird interpretation of one of the PCIe Packing
7264 		 * Boundary values.  No idea why ...
7265 		 */
7266 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7267 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7268 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7269 			ingpackboundary = 16;
7270 		else
7271 			ingpackboundary = 1 << (ingpackboundary +
7272 						INGPACKBOUNDARY_SHIFT_X);
7273 
7274 		fl_align = max(ingpadboundary, ingpackboundary);
7275 	}
7276 	return fl_align;
7277 }
7278 
7279 /**
7280  *	t4_fixup_host_params - fix up host-dependent parameters
7281  *	@adap: the adapter
7282  *	@page_size: the host's Base Page Size
7283  *	@cache_line_size: the host's Cache Line Size
7284  *
7285  *	Various registers in T4 contain values which are dependent on the
7286  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7287  *	those registers with the appropriate values as passed in ...
7288  */
7289 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7290 			 unsigned int cache_line_size)
7291 {
7292 	unsigned int page_shift = fls(page_size) - 1;
7293 	unsigned int sge_hps = page_shift - 10;
7294 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7295 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7296 	unsigned int fl_align_log = fls(fl_align) - 1;
7297 
7298 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7299 		     HOSTPAGESIZEPF0_V(sge_hps) |
7300 		     HOSTPAGESIZEPF1_V(sge_hps) |
7301 		     HOSTPAGESIZEPF2_V(sge_hps) |
7302 		     HOSTPAGESIZEPF3_V(sge_hps) |
7303 		     HOSTPAGESIZEPF4_V(sge_hps) |
7304 		     HOSTPAGESIZEPF5_V(sge_hps) |
7305 		     HOSTPAGESIZEPF6_V(sge_hps) |
7306 		     HOSTPAGESIZEPF7_V(sge_hps));
7307 
7308 	if (is_t4(adap->params.chip)) {
7309 		t4_set_reg_field(adap, SGE_CONTROL_A,
7310 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7311 				 EGRSTATUSPAGESIZE_F,
7312 				 INGPADBOUNDARY_V(fl_align_log -
7313 						  INGPADBOUNDARY_SHIFT_X) |
7314 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7315 	} else {
7316 		unsigned int pack_align;
7317 		unsigned int ingpad, ingpack;
7318 
7319 		/* T5 introduced the separation of the Free List Padding and
7320 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7321 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7322 		 * Bandwidth, and use a Packing Boundary which is large enough
7323 		 * to avoid false sharing between CPUs, etc.
7324 		 *
7325 		 * For the PCI Link, the smaller the Padding Boundary the
7326 		 * better.  For the Memory Controller, a smaller Padding
7327 		 * Boundary is better until we cross under the Memory Line
7328 		 * Size (the minimum unit of transfer to/from Memory).  If we
7329 		 * have a Padding Boundary which is smaller than the Memory
7330 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7331 		 * Memory Controller which is never good.
7332 		 */
7333 
7334 		/* We want the Packing Boundary to be based on the Cache Line
7335 		 * Size in order to help avoid False Sharing performance
7336 		 * issues between CPUs, etc.  We also want the Packing
7337 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7338 		 * get best performance when the Packing Boundary is a
7339 		 * multiple of the Maximum Payload Size.
7340 		 */
7341 		pack_align = fl_align;
7342 		if (pci_is_pcie(adap->pdev)) {
7343 			unsigned int mps, mps_log;
7344 			u16 devctl;
7345 
7346 			/* The PCIe Device Control Maximum Payload Size field
7347 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7348 			 * 128 bytes.
7349 			 */
7350 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7351 						  &devctl);
7352 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7353 			mps = 1 << mps_log;
7354 			if (mps > pack_align)
7355 				pack_align = mps;
7356 		}
7357 
7358 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7359 		 * value for the Packing Boundary.  This corresponds to 16
7360 		 * bytes instead of the expected 32 bytes.  So if we want 32
7361 		 * bytes, the best we can really do is 64 bytes ...
7362 		 */
7363 		if (pack_align <= 16) {
7364 			ingpack = INGPACKBOUNDARY_16B_X;
7365 			fl_align = 16;
7366 		} else if (pack_align == 32) {
7367 			ingpack = INGPACKBOUNDARY_64B_X;
7368 			fl_align = 64;
7369 		} else {
7370 			unsigned int pack_align_log = fls(pack_align) - 1;
7371 
7372 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7373 			fl_align = pack_align;
7374 		}
7375 
7376 		/* Use the smallest Ingress Padding which isn't smaller than
7377 		 * the Memory Controller Read/Write Size.  We'll take that as
7378 		 * being 8 bytes since we don't know of any system with a
7379 		 * wider Memory Controller Bus Width.
7380 		 */
7381 		if (is_t5(adap->params.chip))
7382 			ingpad = INGPADBOUNDARY_32B_X;
7383 		else
7384 			ingpad = T6_INGPADBOUNDARY_8B_X;
7385 
7386 		t4_set_reg_field(adap, SGE_CONTROL_A,
7387 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7388 				 EGRSTATUSPAGESIZE_F,
7389 				 INGPADBOUNDARY_V(ingpad) |
7390 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7391 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7392 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7393 				 INGPACKBOUNDARY_V(ingpack));
7394 	}
7395 	/*
7396 	 * Adjust various SGE Free List Host Buffer Sizes.
7397 	 *
7398 	 * This is something of a crock since we're using fixed indices into
7399 	 * the array which are also known by the sge.c code and the T4
7400 	 * Firmware Configuration File.  We need to come up with a much better
7401 	 * approach to managing this array.  For now, the first four entries
7402 	 * are:
7403 	 *
7404 	 *   0: Host Page Size
7405 	 *   1: 64KB
7406 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7407 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7408 	 *
7409 	 * For the single-MTU buffers in unpacked mode we need to include
7410 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7411 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7412 	 * Padding boundary.  All of these are accommodated in the Factory
7413 	 * Default Firmware Configuration File but we need to adjust it for
7414 	 * this host's cache line size.
7415 	 */
7416 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7417 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7418 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7419 		     & ~(fl_align-1));
7420 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7421 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7422 		     & ~(fl_align-1));
7423 
7424 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7425 
7426 	return 0;
7427 }
7428 
7429 /**
7430  *	t4_fw_initialize - ask FW to initialize the device
7431  *	@adap: the adapter
7432  *	@mbox: mailbox to use for the FW command
7433  *
7434  *	Issues a command to FW to partially initialize the device.  This
7435  *	performs initialization that generally doesn't depend on user input.
7436  */
7437 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7438 {
7439 	struct fw_initialize_cmd c;
7440 
7441 	memset(&c, 0, sizeof(c));
7442 	INIT_CMD(c, INITIALIZE, WRITE);
7443 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7444 }
7445 
7446 /**
7447  *	t4_query_params_rw - query FW or device parameters
7448  *	@adap: the adapter
7449  *	@mbox: mailbox to use for the FW command
7450  *	@pf: the PF
7451  *	@vf: the VF
7452  *	@nparams: the number of parameters
7453  *	@params: the parameter names
7454  *	@val: the parameter values
7455  *	@rw: Write and read flag
7456  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7457  *
7458  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7459  *	queried at once.
7460  */
7461 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7462 		       unsigned int vf, unsigned int nparams, const u32 *params,
7463 		       u32 *val, int rw, bool sleep_ok)
7464 {
7465 	int i, ret;
7466 	struct fw_params_cmd c;
7467 	__be32 *p = &c.param[0].mnem;
7468 
7469 	if (nparams > 7)
7470 		return -EINVAL;
7471 
7472 	memset(&c, 0, sizeof(c));
7473 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7474 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7475 				  FW_PARAMS_CMD_PFN_V(pf) |
7476 				  FW_PARAMS_CMD_VFN_V(vf));
7477 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7478 
7479 	for (i = 0; i < nparams; i++) {
7480 		*p++ = cpu_to_be32(*params++);
7481 		if (rw)
7482 			*p = cpu_to_be32(*(val + i));
7483 		p++;
7484 	}
7485 
7486 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7487 	if (ret == 0)
7488 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7489 			*val++ = be32_to_cpu(*p);
7490 	return ret;
7491 }
7492 
7493 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7494 		    unsigned int vf, unsigned int nparams, const u32 *params,
7495 		    u32 *val)
7496 {
7497 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7498 				  true);
7499 }
7500 
7501 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7502 		       unsigned int vf, unsigned int nparams, const u32 *params,
7503 		       u32 *val)
7504 {
7505 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7506 				  false);
7507 }
7508 
7509 /**
7510  *      t4_set_params_timeout - sets FW or device parameters
7511  *      @adap: the adapter
7512  *      @mbox: mailbox to use for the FW command
7513  *      @pf: the PF
7514  *      @vf: the VF
7515  *      @nparams: the number of parameters
7516  *      @params: the parameter names
7517  *      @val: the parameter values
7518  *      @timeout: the timeout time
7519  *
7520  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7521  *      specified at once.
7522  */
7523 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7524 			  unsigned int pf, unsigned int vf,
7525 			  unsigned int nparams, const u32 *params,
7526 			  const u32 *val, int timeout)
7527 {
7528 	struct fw_params_cmd c;
7529 	__be32 *p = &c.param[0].mnem;
7530 
7531 	if (nparams > 7)
7532 		return -EINVAL;
7533 
7534 	memset(&c, 0, sizeof(c));
7535 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7536 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7537 				  FW_PARAMS_CMD_PFN_V(pf) |
7538 				  FW_PARAMS_CMD_VFN_V(vf));
7539 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7540 
7541 	while (nparams--) {
7542 		*p++ = cpu_to_be32(*params++);
7543 		*p++ = cpu_to_be32(*val++);
7544 	}
7545 
7546 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7547 }
7548 
7549 /**
7550  *	t4_set_params - sets FW or device parameters
7551  *	@adap: the adapter
7552  *	@mbox: mailbox to use for the FW command
7553  *	@pf: the PF
7554  *	@vf: the VF
7555  *	@nparams: the number of parameters
7556  *	@params: the parameter names
7557  *	@val: the parameter values
7558  *
7559  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7560  *	specified at once.
7561  */
7562 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7563 		  unsigned int vf, unsigned int nparams, const u32 *params,
7564 		  const u32 *val)
7565 {
7566 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7567 				     FW_CMD_MAX_TIMEOUT);
7568 }
7569 
7570 /**
7571  *	t4_cfg_pfvf - configure PF/VF resource limits
7572  *	@adap: the adapter
7573  *	@mbox: mailbox to use for the FW command
7574  *	@pf: the PF being configured
7575  *	@vf: the VF being configured
7576  *	@txq: the max number of egress queues
7577  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7578  *	@rxqi: the max number of interrupt-capable ingress queues
7579  *	@rxq: the max number of interruptless ingress queues
7580  *	@tc: the PCI traffic class
7581  *	@vi: the max number of virtual interfaces
7582  *	@cmask: the channel access rights mask for the PF/VF
7583  *	@pmask: the port access rights mask for the PF/VF
7584  *	@nexact: the maximum number of exact MPS filters
7585  *	@rcaps: read capabilities
7586  *	@wxcaps: write/execute capabilities
7587  *
7588  *	Configures resource limits and capabilities for a physical or virtual
7589  *	function.
7590  */
7591 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7592 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7593 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7594 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7595 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7596 {
7597 	struct fw_pfvf_cmd c;
7598 
7599 	memset(&c, 0, sizeof(c));
7600 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7601 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7602 				  FW_PFVF_CMD_VFN_V(vf));
7603 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7604 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7605 				     FW_PFVF_CMD_NIQ_V(rxq));
7606 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7607 				    FW_PFVF_CMD_PMASK_V(pmask) |
7608 				    FW_PFVF_CMD_NEQ_V(txq));
7609 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7610 				      FW_PFVF_CMD_NVI_V(vi) |
7611 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7612 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7613 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7614 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7615 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7616 }
7617 
7618 /**
7619  *	t4_alloc_vi - allocate a virtual interface
7620  *	@adap: the adapter
7621  *	@mbox: mailbox to use for the FW command
7622  *	@port: physical port associated with the VI
7623  *	@pf: the PF owning the VI
7624  *	@vf: the VF owning the VI
7625  *	@nmac: number of MAC addresses needed (1 to 5)
7626  *	@mac: the MAC addresses of the VI
7627  *	@rss_size: size of RSS table slice associated with this VI
7628  *	@vivld: the destination to store the VI Valid value.
7629  *	@vin: the destination to store the VIN value.
7630  *
7631  *	Allocates a virtual interface for the given physical port.  If @mac is
7632  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7633  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7634  *	stored consecutively so the space needed is @nmac * 6 bytes.
7635  *	Returns a negative error number or the non-negative VI id.
7636  */
7637 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7638 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7639 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7640 {
7641 	int ret;
7642 	struct fw_vi_cmd c;
7643 
7644 	memset(&c, 0, sizeof(c));
7645 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7646 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7647 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7648 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7649 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7650 	c.nmac = nmac - 1;
7651 
7652 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7653 	if (ret)
7654 		return ret;
7655 
7656 	if (mac) {
7657 		memcpy(mac, c.mac, sizeof(c.mac));
7658 		switch (nmac) {
7659 		case 5:
7660 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7661 			fallthrough;
7662 		case 4:
7663 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7664 			fallthrough;
7665 		case 3:
7666 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7667 			fallthrough;
7668 		case 2:
7669 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7670 		}
7671 	}
7672 	if (rss_size)
7673 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7674 
7675 	if (vivld)
7676 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7677 
7678 	if (vin)
7679 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7680 
7681 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7682 }
7683 
7684 /**
7685  *	t4_free_vi - free a virtual interface
7686  *	@adap: the adapter
7687  *	@mbox: mailbox to use for the FW command
7688  *	@pf: the PF owning the VI
7689  *	@vf: the VF owning the VI
7690  *	@viid: virtual interface identifiler
7691  *
7692  *	Free a previously allocated virtual interface.
7693  */
7694 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7695 	       unsigned int vf, unsigned int viid)
7696 {
7697 	struct fw_vi_cmd c;
7698 
7699 	memset(&c, 0, sizeof(c));
7700 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7701 				  FW_CMD_REQUEST_F |
7702 				  FW_CMD_EXEC_F |
7703 				  FW_VI_CMD_PFN_V(pf) |
7704 				  FW_VI_CMD_VFN_V(vf));
7705 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7706 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7707 
7708 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7709 }
7710 
7711 /**
7712  *	t4_set_rxmode - set Rx properties of a virtual interface
7713  *	@adap: the adapter
7714  *	@mbox: mailbox to use for the FW command
7715  *	@viid: the VI id
7716  *	@viid_mirror: the mirror VI id
7717  *	@mtu: the new MTU or -1
7718  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7719  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7720  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7721  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7722  *	@sleep_ok: if true we may sleep while awaiting command completion
7723  *
7724  *	Sets Rx properties of a virtual interface.
7725  */
7726 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7727 		  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7728 		  int bcast, int vlanex, bool sleep_ok)
7729 {
7730 	struct fw_vi_rxmode_cmd c, c_mirror;
7731 	int ret;
7732 
7733 	/* convert to FW values */
7734 	if (mtu < 0)
7735 		mtu = FW_RXMODE_MTU_NO_CHG;
7736 	if (promisc < 0)
7737 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7738 	if (all_multi < 0)
7739 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7740 	if (bcast < 0)
7741 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7742 	if (vlanex < 0)
7743 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7744 
7745 	memset(&c, 0, sizeof(c));
7746 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7747 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7748 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7749 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7750 	c.mtu_to_vlanexen =
7751 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7752 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7753 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7754 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7755 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7756 
7757 	if (viid_mirror) {
7758 		memcpy(&c_mirror, &c, sizeof(c_mirror));
7759 		c_mirror.op_to_viid =
7760 			cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7761 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7762 				    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7763 	}
7764 
7765 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7766 	if (ret)
7767 		return ret;
7768 
7769 	if (viid_mirror)
7770 		ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7771 				      NULL, sleep_ok);
7772 
7773 	return ret;
7774 }
7775 
7776 /**
7777  *      t4_free_encap_mac_filt - frees MPS entry at given index
7778  *      @adap: the adapter
7779  *      @viid: the VI id
7780  *      @idx: index of MPS entry to be freed
7781  *      @sleep_ok: call is allowed to sleep
7782  *
7783  *      Frees the MPS entry at supplied index
7784  *
7785  *      Returns a negative error number or zero on success
7786  */
7787 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7788 			   int idx, bool sleep_ok)
7789 {
7790 	struct fw_vi_mac_exact *p;
7791 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7792 	struct fw_vi_mac_cmd c;
7793 	int ret = 0;
7794 	u32 exact;
7795 
7796 	memset(&c, 0, sizeof(c));
7797 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7798 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7799 				   FW_CMD_EXEC_V(0) |
7800 				   FW_VI_MAC_CMD_VIID_V(viid));
7801 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7802 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7803 					  exact |
7804 					  FW_CMD_LEN16_V(1));
7805 	p = c.u.exact;
7806 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7807 				      FW_VI_MAC_CMD_IDX_V(idx));
7808 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7809 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7810 	return ret;
7811 }
7812 
7813 /**
7814  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7815  *	@adap: the adapter
7816  *	@viid: the VI id
7817  *	@addr: the MAC address
7818  *	@mask: the mask
7819  *	@idx: index of the entry in mps tcam
7820  *	@lookup_type: MAC address for inner (1) or outer (0) header
7821  *	@port_id: the port index
7822  *	@sleep_ok: call is allowed to sleep
7823  *
7824  *	Removes the mac entry at the specified index using raw mac interface.
7825  *
7826  *	Returns a negative error number on failure.
7827  */
7828 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7829 			 const u8 *addr, const u8 *mask, unsigned int idx,
7830 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7831 {
7832 	struct fw_vi_mac_cmd c;
7833 	struct fw_vi_mac_raw *p = &c.u.raw;
7834 	u32 val;
7835 
7836 	memset(&c, 0, sizeof(c));
7837 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7838 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7839 				   FW_CMD_EXEC_V(0) |
7840 				   FW_VI_MAC_CMD_VIID_V(viid));
7841 	val = FW_CMD_LEN16_V(1) |
7842 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7843 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7844 					  FW_CMD_LEN16_V(val));
7845 
7846 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7847 				     FW_VI_MAC_ID_BASED_FREE);
7848 
7849 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7850 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7851 				   DATAPORTNUM_V(port_id));
7852 	/* Lookup mask and port mask */
7853 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7854 				    DATAPORTNUM_V(DATAPORTNUM_M));
7855 
7856 	/* Copy the address and the mask */
7857 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7858 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7859 
7860 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7861 }
7862 
7863 /**
7864  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7865  *      @adap: the adapter
7866  *      @viid: the VI id
7867  *      @addr: the MAC address
7868  *      @mask: the mask
7869  *      @vni: the VNI id for the tunnel protocol
7870  *      @vni_mask: mask for the VNI id
7871  *      @dip_hit: to enable DIP match for the MPS entry
7872  *      @lookup_type: MAC address for inner (1) or outer (0) header
7873  *      @sleep_ok: call is allowed to sleep
7874  *
7875  *      Allocates an MPS entry with specified MAC address and VNI value.
7876  *
7877  *      Returns a negative error number or the allocated index for this mac.
7878  */
7879 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7880 			    const u8 *addr, const u8 *mask, unsigned int vni,
7881 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7882 			    bool sleep_ok)
7883 {
7884 	struct fw_vi_mac_cmd c;
7885 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7886 	int ret = 0;
7887 	u32 val;
7888 
7889 	memset(&c, 0, sizeof(c));
7890 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7891 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7892 				   FW_VI_MAC_CMD_VIID_V(viid));
7893 	val = FW_CMD_LEN16_V(1) |
7894 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7895 	c.freemacs_to_len16 = cpu_to_be32(val);
7896 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7897 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7898 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7899 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7900 
7901 	p->lookup_type_to_vni =
7902 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7903 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7904 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7905 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7906 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7907 	if (ret == 0)
7908 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7909 	return ret;
7910 }
7911 
7912 /**
7913  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7914  *	@adap: the adapter
7915  *	@viid: the VI id
7916  *	@addr: the MAC address
7917  *	@mask: the mask
7918  *	@idx: index at which to add this entry
7919  *	@lookup_type: MAC address for inner (1) or outer (0) header
7920  *	@port_id: the port index
7921  *	@sleep_ok: call is allowed to sleep
7922  *
7923  *	Adds the mac entry at the specified index using raw mac interface.
7924  *
7925  *	Returns a negative error number or the allocated index for this mac.
7926  */
7927 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7928 			  const u8 *addr, const u8 *mask, unsigned int idx,
7929 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7930 {
7931 	int ret = 0;
7932 	struct fw_vi_mac_cmd c;
7933 	struct fw_vi_mac_raw *p = &c.u.raw;
7934 	u32 val;
7935 
7936 	memset(&c, 0, sizeof(c));
7937 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7938 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7939 				   FW_VI_MAC_CMD_VIID_V(viid));
7940 	val = FW_CMD_LEN16_V(1) |
7941 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7942 	c.freemacs_to_len16 = cpu_to_be32(val);
7943 
7944 	/* Specify that this is an inner mac address */
7945 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7946 
7947 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7948 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7949 				   DATAPORTNUM_V(port_id));
7950 	/* Lookup mask and port mask */
7951 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7952 				    DATAPORTNUM_V(DATAPORTNUM_M));
7953 
7954 	/* Copy the address and the mask */
7955 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7956 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7957 
7958 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7959 	if (ret == 0) {
7960 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7961 		if (ret != idx)
7962 			ret = -ENOMEM;
7963 	}
7964 
7965 	return ret;
7966 }
7967 
7968 /**
7969  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7970  *	@adap: the adapter
7971  *	@mbox: mailbox to use for the FW command
7972  *	@viid: the VI id
7973  *	@free: if true any existing filters for this VI id are first removed
7974  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7975  *	@addr: the MAC address(es)
7976  *	@idx: where to store the index of each allocated filter
7977  *	@hash: pointer to hash address filter bitmap
7978  *	@sleep_ok: call is allowed to sleep
7979  *
7980  *	Allocates an exact-match filter for each of the supplied addresses and
7981  *	sets it to the corresponding address.  If @idx is not %NULL it should
7982  *	have at least @naddr entries, each of which will be set to the index of
7983  *	the filter allocated for the corresponding MAC address.  If a filter
7984  *	could not be allocated for an address its index is set to 0xffff.
7985  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7986  *	are hashed and update the hash filter bitmap pointed at by @hash.
7987  *
7988  *	Returns a negative error number or the number of filters allocated.
7989  */
7990 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7991 		      unsigned int viid, bool free, unsigned int naddr,
7992 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7993 {
7994 	int offset, ret = 0;
7995 	struct fw_vi_mac_cmd c;
7996 	unsigned int nfilters = 0;
7997 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7998 	unsigned int rem = naddr;
7999 
8000 	if (naddr > max_naddr)
8001 		return -EINVAL;
8002 
8003 	for (offset = 0; offset < naddr ; /**/) {
8004 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
8005 					 rem : ARRAY_SIZE(c.u.exact));
8006 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8007 						     u.exact[fw_naddr]), 16);
8008 		struct fw_vi_mac_exact *p;
8009 		int i;
8010 
8011 		memset(&c, 0, sizeof(c));
8012 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8013 					   FW_CMD_REQUEST_F |
8014 					   FW_CMD_WRITE_F |
8015 					   FW_CMD_EXEC_V(free) |
8016 					   FW_VI_MAC_CMD_VIID_V(viid));
8017 		c.freemacs_to_len16 =
8018 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8019 				    FW_CMD_LEN16_V(len16));
8020 
8021 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8022 			p->valid_to_idx =
8023 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8024 					    FW_VI_MAC_CMD_IDX_V(
8025 						    FW_VI_MAC_ADD_MAC));
8026 			memcpy(p->macaddr, addr[offset + i],
8027 			       sizeof(p->macaddr));
8028 		}
8029 
8030 		/* It's okay if we run out of space in our MAC address arena.
8031 		 * Some of the addresses we submit may get stored so we need
8032 		 * to run through the reply to see what the results were ...
8033 		 */
8034 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8035 		if (ret && ret != -FW_ENOMEM)
8036 			break;
8037 
8038 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8039 			u16 index = FW_VI_MAC_CMD_IDX_G(
8040 					be16_to_cpu(p->valid_to_idx));
8041 
8042 			if (idx)
8043 				idx[offset + i] = (index >= max_naddr ?
8044 						   0xffff : index);
8045 			if (index < max_naddr)
8046 				nfilters++;
8047 			else if (hash)
8048 				*hash |= (1ULL <<
8049 					  hash_mac_addr(addr[offset + i]));
8050 		}
8051 
8052 		free = false;
8053 		offset += fw_naddr;
8054 		rem -= fw_naddr;
8055 	}
8056 
8057 	if (ret == 0 || ret == -FW_ENOMEM)
8058 		ret = nfilters;
8059 	return ret;
8060 }
8061 
8062 /**
8063  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8064  *	@adap: the adapter
8065  *	@mbox: mailbox to use for the FW command
8066  *	@viid: the VI id
8067  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8068  *	@addr: the MAC address(es)
8069  *	@sleep_ok: call is allowed to sleep
8070  *
8071  *	Frees the exact-match filter for each of the supplied addresses
8072  *
8073  *	Returns a negative error number or the number of filters freed.
8074  */
8075 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8076 		     unsigned int viid, unsigned int naddr,
8077 		     const u8 **addr, bool sleep_ok)
8078 {
8079 	int offset, ret = 0;
8080 	struct fw_vi_mac_cmd c;
8081 	unsigned int nfilters = 0;
8082 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8083 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8084 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8085 	unsigned int rem = naddr;
8086 
8087 	if (naddr > max_naddr)
8088 		return -EINVAL;
8089 
8090 	for (offset = 0; offset < (int)naddr ; /**/) {
8091 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8092 					 ? rem
8093 					 : ARRAY_SIZE(c.u.exact));
8094 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8095 						     u.exact[fw_naddr]), 16);
8096 		struct fw_vi_mac_exact *p;
8097 		int i;
8098 
8099 		memset(&c, 0, sizeof(c));
8100 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8101 				     FW_CMD_REQUEST_F |
8102 				     FW_CMD_WRITE_F |
8103 				     FW_CMD_EXEC_V(0) |
8104 				     FW_VI_MAC_CMD_VIID_V(viid));
8105 		c.freemacs_to_len16 =
8106 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8107 					    FW_CMD_LEN16_V(len16));
8108 
8109 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8110 			p->valid_to_idx = cpu_to_be16(
8111 				FW_VI_MAC_CMD_VALID_F |
8112 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8113 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8114 		}
8115 
8116 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8117 		if (ret)
8118 			break;
8119 
8120 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8121 			u16 index = FW_VI_MAC_CMD_IDX_G(
8122 						be16_to_cpu(p->valid_to_idx));
8123 
8124 			if (index < max_naddr)
8125 				nfilters++;
8126 		}
8127 
8128 		offset += fw_naddr;
8129 		rem -= fw_naddr;
8130 	}
8131 
8132 	if (ret == 0)
8133 		ret = nfilters;
8134 	return ret;
8135 }
8136 
8137 /**
8138  *	t4_change_mac - modifies the exact-match filter for a MAC address
8139  *	@adap: the adapter
8140  *	@mbox: mailbox to use for the FW command
8141  *	@viid: the VI id
8142  *	@idx: index of existing filter for old value of MAC address, or -1
8143  *	@addr: the new MAC address value
8144  *	@persist: whether a new MAC allocation should be persistent
8145  *	@smt_idx: the destination to store the new SMT index.
8146  *
8147  *	Modifies an exact-match filter and sets it to the new MAC address.
8148  *	Note that in general it is not possible to modify the value of a given
8149  *	filter so the generic way to modify an address filter is to free the one
8150  *	being used by the old address value and allocate a new filter for the
8151  *	new address value.  @idx can be -1 if the address is a new addition.
8152  *
8153  *	Returns a negative error number or the index of the filter with the new
8154  *	MAC value.
8155  */
8156 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8157 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8158 {
8159 	int ret, mode;
8160 	struct fw_vi_mac_cmd c;
8161 	struct fw_vi_mac_exact *p = c.u.exact;
8162 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8163 
8164 	if (idx < 0)                             /* new allocation */
8165 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8166 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8167 
8168 	memset(&c, 0, sizeof(c));
8169 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8170 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8171 				   FW_VI_MAC_CMD_VIID_V(viid));
8172 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8173 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8174 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8175 				      FW_VI_MAC_CMD_IDX_V(idx));
8176 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8177 
8178 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8179 	if (ret == 0) {
8180 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8181 		if (ret >= max_mac_addr)
8182 			ret = -ENOMEM;
8183 		if (smt_idx) {
8184 			if (adap->params.viid_smt_extn_support) {
8185 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8186 						    (be32_to_cpu(c.op_to_viid));
8187 			} else {
8188 				/* In T4/T5, SMT contains 256 SMAC entries
8189 				 * organized in 128 rows of 2 entries each.
8190 				 * In T6, SMT contains 256 SMAC entries in
8191 				 * 256 rows.
8192 				 */
8193 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8194 								     CHELSIO_T5)
8195 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8196 				else
8197 					*smt_idx = (viid & FW_VIID_VIN_M);
8198 			}
8199 		}
8200 	}
8201 	return ret;
8202 }
8203 
8204 /**
8205  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8206  *	@adap: the adapter
8207  *	@mbox: mailbox to use for the FW command
8208  *	@viid: the VI id
8209  *	@ucast: whether the hash filter should also match unicast addresses
8210  *	@vec: the value to be written to the hash filter
8211  *	@sleep_ok: call is allowed to sleep
8212  *
8213  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8214  */
8215 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8216 		     bool ucast, u64 vec, bool sleep_ok)
8217 {
8218 	struct fw_vi_mac_cmd c;
8219 
8220 	memset(&c, 0, sizeof(c));
8221 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8222 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8223 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8224 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8225 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8226 					  FW_CMD_LEN16_V(1));
8227 	c.u.hash.hashvec = cpu_to_be64(vec);
8228 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8229 }
8230 
8231 /**
8232  *      t4_enable_vi_params - enable/disable a virtual interface
8233  *      @adap: the adapter
8234  *      @mbox: mailbox to use for the FW command
8235  *      @viid: the VI id
8236  *      @rx_en: 1=enable Rx, 0=disable Rx
8237  *      @tx_en: 1=enable Tx, 0=disable Tx
8238  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8239  *
8240  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8241  *      only makes sense when enabling a Virtual Interface ...
8242  */
8243 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8244 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8245 {
8246 	struct fw_vi_enable_cmd c;
8247 
8248 	memset(&c, 0, sizeof(c));
8249 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8250 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8251 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8252 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8253 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8254 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8255 				     FW_LEN16(c));
8256 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8257 }
8258 
8259 /**
8260  *	t4_enable_vi - enable/disable a virtual interface
8261  *	@adap: the adapter
8262  *	@mbox: mailbox to use for the FW command
8263  *	@viid: the VI id
8264  *	@rx_en: 1=enable Rx, 0=disable Rx
8265  *	@tx_en: 1=enable Tx, 0=disable Tx
8266  *
8267  *	Enables/disables a virtual interface.
8268  */
8269 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8270 		 bool rx_en, bool tx_en)
8271 {
8272 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8273 }
8274 
8275 /**
8276  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8277  *      @adap: the adapter
8278  *      @mbox: mailbox to use for the FW command
8279  *      @pi: the Port Information structure
8280  *      @rx_en: 1=enable Rx, 0=disable Rx
8281  *      @tx_en: 1=enable Tx, 0=disable Tx
8282  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8283  *
8284  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8285  *	Enable only makes sense when enabling a Virtual Interface ...
8286  *	If the Virtual Interface enable/disable operation is successful,
8287  *	we notify the OS-specific code of a potential Link Status change
8288  *	via the OS Contract API t4_os_link_changed().
8289  */
8290 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8291 			struct port_info *pi,
8292 			bool rx_en, bool tx_en, bool dcb_en)
8293 {
8294 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8295 				      rx_en, tx_en, dcb_en);
8296 	if (ret)
8297 		return ret;
8298 	t4_os_link_changed(adap, pi->port_id,
8299 			   rx_en && tx_en && pi->link_cfg.link_ok);
8300 	return 0;
8301 }
8302 
8303 /**
8304  *	t4_identify_port - identify a VI's port by blinking its LED
8305  *	@adap: the adapter
8306  *	@mbox: mailbox to use for the FW command
8307  *	@viid: the VI id
8308  *	@nblinks: how many times to blink LED at 2.5 Hz
8309  *
8310  *	Identifies a VI's port by blinking its LED.
8311  */
8312 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8313 		     unsigned int nblinks)
8314 {
8315 	struct fw_vi_enable_cmd c;
8316 
8317 	memset(&c, 0, sizeof(c));
8318 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8319 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8320 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8321 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8322 	c.blinkdur = cpu_to_be16(nblinks);
8323 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8324 }
8325 
8326 /**
8327  *	t4_iq_stop - stop an ingress queue and its FLs
8328  *	@adap: the adapter
8329  *	@mbox: mailbox to use for the FW command
8330  *	@pf: the PF owning the queues
8331  *	@vf: the VF owning the queues
8332  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8333  *	@iqid: ingress queue id
8334  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8335  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8336  *
8337  *	Stops an ingress queue and its associated FLs, if any.  This causes
8338  *	any current or future data/messages destined for these queues to be
8339  *	tossed.
8340  */
8341 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8342 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8343 	       unsigned int fl0id, unsigned int fl1id)
8344 {
8345 	struct fw_iq_cmd c;
8346 
8347 	memset(&c, 0, sizeof(c));
8348 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8349 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8350 				  FW_IQ_CMD_VFN_V(vf));
8351 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8352 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8353 	c.iqid = cpu_to_be16(iqid);
8354 	c.fl0id = cpu_to_be16(fl0id);
8355 	c.fl1id = cpu_to_be16(fl1id);
8356 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8357 }
8358 
8359 /**
8360  *	t4_iq_free - free an ingress queue and its FLs
8361  *	@adap: the adapter
8362  *	@mbox: mailbox to use for the FW command
8363  *	@pf: the PF owning the queues
8364  *	@vf: the VF owning the queues
8365  *	@iqtype: the ingress queue type
8366  *	@iqid: ingress queue id
8367  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8368  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8369  *
8370  *	Frees an ingress queue and its associated FLs, if any.
8371  */
8372 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8373 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8374 	       unsigned int fl0id, unsigned int fl1id)
8375 {
8376 	struct fw_iq_cmd c;
8377 
8378 	memset(&c, 0, sizeof(c));
8379 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8380 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8381 				  FW_IQ_CMD_VFN_V(vf));
8382 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8383 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8384 	c.iqid = cpu_to_be16(iqid);
8385 	c.fl0id = cpu_to_be16(fl0id);
8386 	c.fl1id = cpu_to_be16(fl1id);
8387 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8388 }
8389 
8390 /**
8391  *	t4_eth_eq_free - free an Ethernet egress queue
8392  *	@adap: the adapter
8393  *	@mbox: mailbox to use for the FW command
8394  *	@pf: the PF owning the queue
8395  *	@vf: the VF owning the queue
8396  *	@eqid: egress queue id
8397  *
8398  *	Frees an Ethernet egress queue.
8399  */
8400 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8401 		   unsigned int vf, unsigned int eqid)
8402 {
8403 	struct fw_eq_eth_cmd c;
8404 
8405 	memset(&c, 0, sizeof(c));
8406 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8407 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8408 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8409 				  FW_EQ_ETH_CMD_VFN_V(vf));
8410 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8411 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8412 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8413 }
8414 
8415 /**
8416  *	t4_ctrl_eq_free - free a control egress queue
8417  *	@adap: the adapter
8418  *	@mbox: mailbox to use for the FW command
8419  *	@pf: the PF owning the queue
8420  *	@vf: the VF owning the queue
8421  *	@eqid: egress queue id
8422  *
8423  *	Frees a control egress queue.
8424  */
8425 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8426 		    unsigned int vf, unsigned int eqid)
8427 {
8428 	struct fw_eq_ctrl_cmd c;
8429 
8430 	memset(&c, 0, sizeof(c));
8431 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8432 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8433 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8434 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8435 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8436 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8437 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8438 }
8439 
8440 /**
8441  *	t4_ofld_eq_free - free an offload egress queue
8442  *	@adap: the adapter
8443  *	@mbox: mailbox to use for the FW command
8444  *	@pf: the PF owning the queue
8445  *	@vf: the VF owning the queue
8446  *	@eqid: egress queue id
8447  *
8448  *	Frees a control egress queue.
8449  */
8450 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8451 		    unsigned int vf, unsigned int eqid)
8452 {
8453 	struct fw_eq_ofld_cmd c;
8454 
8455 	memset(&c, 0, sizeof(c));
8456 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8457 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8458 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8459 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8460 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8461 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8462 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8463 }
8464 
8465 /**
8466  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8467  *	@link_down_rc: Link Down Reason Code
8468  *
8469  *	Returns a string representation of the Link Down Reason Code.
8470  */
8471 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8472 {
8473 	static const char * const reason[] = {
8474 		"Link Down",
8475 		"Remote Fault",
8476 		"Auto-negotiation Failure",
8477 		"Reserved",
8478 		"Insufficient Airflow",
8479 		"Unable To Determine Reason",
8480 		"No RX Signal Detected",
8481 		"Reserved",
8482 	};
8483 
8484 	if (link_down_rc >= ARRAY_SIZE(reason))
8485 		return "Bad Reason Code";
8486 
8487 	return reason[link_down_rc];
8488 }
8489 
8490 /* Return the highest speed set in the port capabilities, in Mb/s. */
8491 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8492 {
8493 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8494 		do { \
8495 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8496 				return __speed; \
8497 		} while (0)
8498 
8499 	TEST_SPEED_RETURN(400G, 400000);
8500 	TEST_SPEED_RETURN(200G, 200000);
8501 	TEST_SPEED_RETURN(100G, 100000);
8502 	TEST_SPEED_RETURN(50G,   50000);
8503 	TEST_SPEED_RETURN(40G,   40000);
8504 	TEST_SPEED_RETURN(25G,   25000);
8505 	TEST_SPEED_RETURN(10G,   10000);
8506 	TEST_SPEED_RETURN(1G,     1000);
8507 	TEST_SPEED_RETURN(100M,    100);
8508 
8509 	#undef TEST_SPEED_RETURN
8510 
8511 	return 0;
8512 }
8513 
8514 /**
8515  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8516  *	@acaps: advertised Port Capabilities
8517  *
8518  *	Get the highest speed for the port from the advertised Port
8519  *	Capabilities.  It will be either the highest speed from the list of
8520  *	speeds or whatever user has set using ethtool.
8521  */
8522 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8523 {
8524 	#define TEST_SPEED_RETURN(__caps_speed) \
8525 		do { \
8526 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8527 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8528 		} while (0)
8529 
8530 	TEST_SPEED_RETURN(400G);
8531 	TEST_SPEED_RETURN(200G);
8532 	TEST_SPEED_RETURN(100G);
8533 	TEST_SPEED_RETURN(50G);
8534 	TEST_SPEED_RETURN(40G);
8535 	TEST_SPEED_RETURN(25G);
8536 	TEST_SPEED_RETURN(10G);
8537 	TEST_SPEED_RETURN(1G);
8538 	TEST_SPEED_RETURN(100M);
8539 
8540 	#undef TEST_SPEED_RETURN
8541 
8542 	return 0;
8543 }
8544 
8545 /**
8546  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8547  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8548  *
8549  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8550  *	32-bit Port Capabilities value.
8551  */
8552 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8553 {
8554 	fw_port_cap32_t linkattr = 0;
8555 
8556 	/* Unfortunately the format of the Link Status in the old
8557 	 * 16-bit Port Information message isn't the same as the
8558 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8559 	 */
8560 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8561 		linkattr |= FW_PORT_CAP32_FC_RX;
8562 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8563 		linkattr |= FW_PORT_CAP32_FC_TX;
8564 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8565 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8566 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8567 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8568 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8569 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8570 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8571 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8572 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8573 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8574 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8575 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8576 
8577 	return linkattr;
8578 }
8579 
8580 /**
8581  *	t4_handle_get_port_info - process a FW reply message
8582  *	@pi: the port info
8583  *	@rpl: start of the FW message
8584  *
8585  *	Processes a GET_PORT_INFO FW reply message.
8586  */
8587 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8588 {
8589 	const struct fw_port_cmd *cmd = (const void *)rpl;
8590 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8591 	struct link_config *lc = &pi->link_cfg;
8592 	struct adapter *adapter = pi->adapter;
8593 	unsigned int speed, fc, fec, adv_fc;
8594 	enum fw_port_module_type mod_type;
8595 	int action, link_ok, linkdnrc;
8596 	enum fw_port_type port_type;
8597 
8598 	/* Extract the various fields from the Port Information message.
8599 	 */
8600 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8601 	switch (action) {
8602 	case FW_PORT_ACTION_GET_PORT_INFO: {
8603 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8604 
8605 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8606 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8607 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8608 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8609 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8610 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8611 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8612 		linkattr = lstatus_to_fwcap(lstatus);
8613 		break;
8614 	}
8615 
8616 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8617 		u32 lstatus32;
8618 
8619 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8620 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8621 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8622 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8623 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8624 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8625 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8626 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8627 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8628 		break;
8629 	}
8630 
8631 	default:
8632 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8633 			be32_to_cpu(cmd->action_to_len16));
8634 		return;
8635 	}
8636 
8637 	fec = fwcap_to_cc_fec(acaps);
8638 	adv_fc = fwcap_to_cc_pause(acaps);
8639 	fc = fwcap_to_cc_pause(linkattr);
8640 	speed = fwcap_to_speed(linkattr);
8641 
8642 	/* Reset state for communicating new Transceiver Module status and
8643 	 * whether the OS-dependent layer wants us to redo the current
8644 	 * "sticky" L1 Configure Link Parameters.
8645 	 */
8646 	lc->new_module = false;
8647 	lc->redo_l1cfg = false;
8648 
8649 	if (mod_type != pi->mod_type) {
8650 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8651 		 * various fundamental Port Capabilities which used to be
8652 		 * immutable can now change radically.  We can now have
8653 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8654 		 * all change based on what Transceiver Module is inserted.
8655 		 * So we need to record the Physical "Port" Capabilities on
8656 		 * every Transceiver Module change.
8657 		 */
8658 		lc->pcaps = pcaps;
8659 
8660 		/* When a new Transceiver Module is inserted, the Firmware
8661 		 * will examine its i2c EPROM to determine its type and
8662 		 * general operating parameters including things like Forward
8663 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8664 		 * how to interpret these i2c values to determine default
8665 		 * "sutomatic" settings.  We record these for future use when
8666 		 * the user explicitly requests these standards-based values.
8667 		 */
8668 		lc->def_acaps = acaps;
8669 
8670 		/* Some versions of the early T6 Firmware "cheated" when
8671 		 * handling different Transceiver Modules by changing the
8672 		 * underlaying Port Type reported to the Host Drivers.  As
8673 		 * such we need to capture whatever Port Type the Firmware
8674 		 * sends us and record it in case it's different from what we
8675 		 * were told earlier.  Unfortunately, since Firmware is
8676 		 * forever, we'll need to keep this code here forever, but in
8677 		 * later T6 Firmware it should just be an assignment of the
8678 		 * same value already recorded.
8679 		 */
8680 		pi->port_type = port_type;
8681 
8682 		/* Record new Module Type information.
8683 		 */
8684 		pi->mod_type = mod_type;
8685 
8686 		/* Let the OS-dependent layer know if we have a new
8687 		 * Transceiver Module inserted.
8688 		 */
8689 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8690 
8691 		t4_os_portmod_changed(adapter, pi->port_id);
8692 	}
8693 
8694 	if (link_ok != lc->link_ok || speed != lc->speed ||
8695 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8696 	    fec != lc->fec) {
8697 		/* something changed */
8698 		if (!link_ok && lc->link_ok) {
8699 			lc->link_down_rc = linkdnrc;
8700 			dev_warn_ratelimited(adapter->pdev_dev,
8701 					     "Port %d link down, reason: %s\n",
8702 					     pi->tx_chan,
8703 					     t4_link_down_rc_str(linkdnrc));
8704 		}
8705 		lc->link_ok = link_ok;
8706 		lc->speed = speed;
8707 		lc->advertised_fc = adv_fc;
8708 		lc->fc = fc;
8709 		lc->fec = fec;
8710 
8711 		lc->lpacaps = lpacaps;
8712 		lc->acaps = acaps & ADVERT_MASK;
8713 
8714 		/* If we're not physically capable of Auto-Negotiation, note
8715 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8716 		 * what Auto-Negotiation settings we have.  Note parallel
8717 		 * structure in t4_link_l1cfg_core() and init_link_config().
8718 		 */
8719 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8720 			lc->autoneg = AUTONEG_DISABLE;
8721 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8722 			lc->autoneg = AUTONEG_ENABLE;
8723 		} else {
8724 			/* When Autoneg is disabled, user needs to set
8725 			 * single speed.
8726 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8727 			 */
8728 			lc->acaps = 0;
8729 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8730 			lc->autoneg = AUTONEG_DISABLE;
8731 		}
8732 
8733 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8734 	}
8735 
8736 	/* If we have a new Transceiver Module and the OS-dependent code has
8737 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8738 	 * Link Parameters are set, do that now.
8739 	 */
8740 	if (lc->new_module && lc->redo_l1cfg) {
8741 		struct link_config old_lc;
8742 		int ret;
8743 
8744 		/* Save the current L1 Configuration and restore it if an
8745 		 * error occurs.  We probably should fix the l1_cfg*()
8746 		 * routines not to change the link_config when an error
8747 		 * occurs ...
8748 		 */
8749 		old_lc = *lc;
8750 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8751 		if (ret) {
8752 			*lc = old_lc;
8753 			dev_warn(adapter->pdev_dev,
8754 				 "Attempt to update new Transceiver Module settings failed\n");
8755 		}
8756 	}
8757 	lc->new_module = false;
8758 	lc->redo_l1cfg = false;
8759 }
8760 
8761 /**
8762  *	t4_update_port_info - retrieve and update port information if changed
8763  *	@pi: the port_info
8764  *
8765  *	We issue a Get Port Information Command to the Firmware and, if
8766  *	successful, we check to see if anything is different from what we
8767  *	last recorded and update things accordingly.
8768  */
8769 int t4_update_port_info(struct port_info *pi)
8770 {
8771 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8772 	struct fw_port_cmd port_cmd;
8773 	int ret;
8774 
8775 	memset(&port_cmd, 0, sizeof(port_cmd));
8776 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8777 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8778 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8779 	port_cmd.action_to_len16 = cpu_to_be32(
8780 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8781 				     ? FW_PORT_ACTION_GET_PORT_INFO
8782 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8783 		FW_LEN16(port_cmd));
8784 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8785 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8786 	if (ret)
8787 		return ret;
8788 
8789 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8790 	return 0;
8791 }
8792 
8793 /**
8794  *	t4_get_link_params - retrieve basic link parameters for given port
8795  *	@pi: the port
8796  *	@link_okp: value return pointer for link up/down
8797  *	@speedp: value return pointer for speed (Mb/s)
8798  *	@mtup: value return pointer for mtu
8799  *
8800  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8801  *	and MTU for a specified port.  A negative error is returned on
8802  *	failure; 0 on success.
8803  */
8804 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8805 		       unsigned int *speedp, unsigned int *mtup)
8806 {
8807 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8808 	unsigned int action, link_ok, mtu;
8809 	struct fw_port_cmd port_cmd;
8810 	fw_port_cap32_t linkattr;
8811 	int ret;
8812 
8813 	memset(&port_cmd, 0, sizeof(port_cmd));
8814 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8815 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8816 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8817 	action = (fw_caps == FW_CAPS16
8818 		  ? FW_PORT_ACTION_GET_PORT_INFO
8819 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8820 	port_cmd.action_to_len16 = cpu_to_be32(
8821 		FW_PORT_CMD_ACTION_V(action) |
8822 		FW_LEN16(port_cmd));
8823 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8824 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8825 	if (ret)
8826 		return ret;
8827 
8828 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8829 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8830 
8831 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8832 		linkattr = lstatus_to_fwcap(lstatus);
8833 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8834 	} else {
8835 		u32 lstatus32 =
8836 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8837 
8838 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8839 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8840 		mtu = FW_PORT_CMD_MTU32_G(
8841 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8842 	}
8843 
8844 	if (link_okp)
8845 		*link_okp = link_ok;
8846 	if (speedp)
8847 		*speedp = fwcap_to_speed(linkattr);
8848 	if (mtup)
8849 		*mtup = mtu;
8850 
8851 	return 0;
8852 }
8853 
8854 /**
8855  *      t4_handle_fw_rpl - process a FW reply message
8856  *      @adap: the adapter
8857  *      @rpl: start of the FW message
8858  *
8859  *      Processes a FW message, such as link state change messages.
8860  */
8861 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8862 {
8863 	u8 opcode = *(const u8 *)rpl;
8864 
8865 	/* This might be a port command ... this simplifies the following
8866 	 * conditionals ...  We can get away with pre-dereferencing
8867 	 * action_to_len16 because it's in the first 16 bytes and all messages
8868 	 * will be at least that long.
8869 	 */
8870 	const struct fw_port_cmd *p = (const void *)rpl;
8871 	unsigned int action =
8872 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8873 
8874 	if (opcode == FW_PORT_CMD &&
8875 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8876 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8877 		int i;
8878 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8879 		struct port_info *pi = NULL;
8880 
8881 		for_each_port(adap, i) {
8882 			pi = adap2pinfo(adap, i);
8883 			if (pi->tx_chan == chan)
8884 				break;
8885 		}
8886 
8887 		t4_handle_get_port_info(pi, rpl);
8888 	} else {
8889 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8890 			 opcode);
8891 		return -EINVAL;
8892 	}
8893 	return 0;
8894 }
8895 
8896 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8897 {
8898 	u16 val;
8899 
8900 	if (pci_is_pcie(adapter->pdev)) {
8901 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8902 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8903 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8904 	}
8905 }
8906 
8907 /**
8908  *	init_link_config - initialize a link's SW state
8909  *	@lc: pointer to structure holding the link state
8910  *	@pcaps: link Port Capabilities
8911  *	@acaps: link current Advertised Port Capabilities
8912  *
8913  *	Initializes the SW state maintained for each link, including the link's
8914  *	capabilities and default speed/flow-control/autonegotiation settings.
8915  */
8916 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8917 			     fw_port_cap32_t acaps)
8918 {
8919 	lc->pcaps = pcaps;
8920 	lc->def_acaps = acaps;
8921 	lc->lpacaps = 0;
8922 	lc->speed_caps = 0;
8923 	lc->speed = 0;
8924 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8925 
8926 	/* For Forward Error Control, we default to whatever the Firmware
8927 	 * tells us the Link is currently advertising.
8928 	 */
8929 	lc->requested_fec = FEC_AUTO;
8930 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8931 
8932 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8933 	 * "enabled" and copy over all of the Physical Port Capabilities
8934 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8935 	 * Auto-Negotiate disabled and select the highest supported speed
8936 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8937 	 * and t4_handle_get_port_info().
8938 	 */
8939 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8940 		lc->acaps = lc->pcaps & ADVERT_MASK;
8941 		lc->autoneg = AUTONEG_ENABLE;
8942 		lc->requested_fc |= PAUSE_AUTONEG;
8943 	} else {
8944 		lc->acaps = 0;
8945 		lc->autoneg = AUTONEG_DISABLE;
8946 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8947 	}
8948 }
8949 
8950 #define CIM_PF_NOACCESS 0xeeeeeeee
8951 
8952 int t4_wait_dev_ready(void __iomem *regs)
8953 {
8954 	u32 whoami;
8955 
8956 	whoami = readl(regs + PL_WHOAMI_A);
8957 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8958 		return 0;
8959 
8960 	msleep(500);
8961 	whoami = readl(regs + PL_WHOAMI_A);
8962 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8963 }
8964 
8965 struct flash_desc {
8966 	u32 vendor_and_model_id;
8967 	u32 size_mb;
8968 };
8969 
8970 static int t4_get_flash_params(struct adapter *adap)
8971 {
8972 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8973 	 * to the preexisting code.  All flash parts have 64KB sectors.
8974 	 */
8975 	static struct flash_desc supported_flash[] = {
8976 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8977 	};
8978 
8979 	unsigned int part, manufacturer;
8980 	unsigned int density, size = 0;
8981 	u32 flashid = 0;
8982 	int ret;
8983 
8984 	/* Issue a Read ID Command to the Flash part.  We decode supported
8985 	 * Flash parts and their sizes from this.  There's a newer Query
8986 	 * Command which can retrieve detailed geometry information but many
8987 	 * Flash parts don't support it.
8988 	 */
8989 
8990 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8991 	if (!ret)
8992 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8993 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8994 	if (ret)
8995 		return ret;
8996 
8997 	/* Check to see if it's one of our non-standard supported Flash parts.
8998 	 */
8999 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9000 		if (supported_flash[part].vendor_and_model_id == flashid) {
9001 			adap->params.sf_size = supported_flash[part].size_mb;
9002 			adap->params.sf_nsec =
9003 				adap->params.sf_size / SF_SEC_SIZE;
9004 			goto found;
9005 		}
9006 
9007 	/* Decode Flash part size.  The code below looks repetitive with
9008 	 * common encodings, but that's not guaranteed in the JEDEC
9009 	 * specification for the Read JEDEC ID command.  The only thing that
9010 	 * we're guaranteed by the JEDEC specification is where the
9011 	 * Manufacturer ID is in the returned result.  After that each
9012 	 * Manufacturer ~could~ encode things completely differently.
9013 	 * Note, all Flash parts must have 64KB sectors.
9014 	 */
9015 	manufacturer = flashid & 0xff;
9016 	switch (manufacturer) {
9017 	case 0x20: { /* Micron/Numonix */
9018 		/* This Density -> Size decoding table is taken from Micron
9019 		 * Data Sheets.
9020 		 */
9021 		density = (flashid >> 16) & 0xff;
9022 		switch (density) {
9023 		case 0x14: /* 1MB */
9024 			size = 1 << 20;
9025 			break;
9026 		case 0x15: /* 2MB */
9027 			size = 1 << 21;
9028 			break;
9029 		case 0x16: /* 4MB */
9030 			size = 1 << 22;
9031 			break;
9032 		case 0x17: /* 8MB */
9033 			size = 1 << 23;
9034 			break;
9035 		case 0x18: /* 16MB */
9036 			size = 1 << 24;
9037 			break;
9038 		case 0x19: /* 32MB */
9039 			size = 1 << 25;
9040 			break;
9041 		case 0x20: /* 64MB */
9042 			size = 1 << 26;
9043 			break;
9044 		case 0x21: /* 128MB */
9045 			size = 1 << 27;
9046 			break;
9047 		case 0x22: /* 256MB */
9048 			size = 1 << 28;
9049 			break;
9050 		}
9051 		break;
9052 	}
9053 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9054 		/* This Density -> Size decoding table is taken from ISSI
9055 		 * Data Sheets.
9056 		 */
9057 		density = (flashid >> 16) & 0xff;
9058 		switch (density) {
9059 		case 0x16: /* 32 MB */
9060 			size = 1 << 25;
9061 			break;
9062 		case 0x17: /* 64MB */
9063 			size = 1 << 26;
9064 			break;
9065 		}
9066 		break;
9067 	}
9068 	case 0xc2: { /* Macronix */
9069 		/* This Density -> Size decoding table is taken from Macronix
9070 		 * Data Sheets.
9071 		 */
9072 		density = (flashid >> 16) & 0xff;
9073 		switch (density) {
9074 		case 0x17: /* 8MB */
9075 			size = 1 << 23;
9076 			break;
9077 		case 0x18: /* 16MB */
9078 			size = 1 << 24;
9079 			break;
9080 		}
9081 		break;
9082 	}
9083 	case 0xef: { /* Winbond */
9084 		/* This Density -> Size decoding table is taken from Winbond
9085 		 * Data Sheets.
9086 		 */
9087 		density = (flashid >> 16) & 0xff;
9088 		switch (density) {
9089 		case 0x17: /* 8MB */
9090 			size = 1 << 23;
9091 			break;
9092 		case 0x18: /* 16MB */
9093 			size = 1 << 24;
9094 			break;
9095 		}
9096 		break;
9097 	}
9098 	}
9099 
9100 	/* If we didn't recognize the FLASH part, that's no real issue: the
9101 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9102 	 * use a FLASH part which is at least 4MB in size and has 64KB
9103 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9104 	 * than 4MB, but that's all we really need.
9105 	 */
9106 	if (size == 0) {
9107 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9108 			 flashid);
9109 		size = 1 << 22;
9110 	}
9111 
9112 	/* Store decoded Flash size and fall through into vetting code. */
9113 	adap->params.sf_size = size;
9114 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9115 
9116 found:
9117 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9118 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9119 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9120 	return 0;
9121 }
9122 
9123 /**
9124  *	t4_prep_adapter - prepare SW and HW for operation
9125  *	@adapter: the adapter
9126  *
9127  *	Initialize adapter SW state for the various HW modules, set initial
9128  *	values for some adapter tunables, take PHYs out of reset, and
9129  *	initialize the MDIO interface.
9130  */
9131 int t4_prep_adapter(struct adapter *adapter)
9132 {
9133 	int ret, ver;
9134 	uint16_t device_id;
9135 	u32 pl_rev;
9136 
9137 	get_pci_mode(adapter, &adapter->params.pci);
9138 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9139 
9140 	ret = t4_get_flash_params(adapter);
9141 	if (ret < 0) {
9142 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9143 		return ret;
9144 	}
9145 
9146 	/* Retrieve adapter's device ID
9147 	 */
9148 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9149 	ver = device_id >> 12;
9150 	adapter->params.chip = 0;
9151 	switch (ver) {
9152 	case CHELSIO_T4:
9153 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9154 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9155 		adapter->params.arch.mps_tcam_size =
9156 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9157 		adapter->params.arch.mps_rplc_size = 128;
9158 		adapter->params.arch.nchan = NCHAN;
9159 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9160 		adapter->params.arch.vfcount = 128;
9161 		/* Congestion map is for 4 channels so that
9162 		 * MPS can have 4 priority per port.
9163 		 */
9164 		adapter->params.arch.cng_ch_bits_log = 2;
9165 		break;
9166 	case CHELSIO_T5:
9167 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9168 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9169 		adapter->params.arch.mps_tcam_size =
9170 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9171 		adapter->params.arch.mps_rplc_size = 128;
9172 		adapter->params.arch.nchan = NCHAN;
9173 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9174 		adapter->params.arch.vfcount = 128;
9175 		adapter->params.arch.cng_ch_bits_log = 2;
9176 		break;
9177 	case CHELSIO_T6:
9178 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9179 		adapter->params.arch.sge_fl_db = 0;
9180 		adapter->params.arch.mps_tcam_size =
9181 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9182 		adapter->params.arch.mps_rplc_size = 256;
9183 		adapter->params.arch.nchan = 2;
9184 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9185 		adapter->params.arch.vfcount = 256;
9186 		/* Congestion map will be for 2 channels so that
9187 		 * MPS can have 8 priority per port.
9188 		 */
9189 		adapter->params.arch.cng_ch_bits_log = 3;
9190 		break;
9191 	default:
9192 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9193 			device_id);
9194 		return -EINVAL;
9195 	}
9196 
9197 	adapter->params.cim_la_size = CIMLA_SIZE;
9198 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9199 
9200 	/*
9201 	 * Default port for debugging in case we can't reach FW.
9202 	 */
9203 	adapter->params.nports = 1;
9204 	adapter->params.portvec = 1;
9205 	adapter->params.vpd.cclk = 50000;
9206 
9207 	/* Set PCIe completion timeout to 4 seconds. */
9208 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9209 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9210 	return 0;
9211 }
9212 
9213 /**
9214  *	t4_shutdown_adapter - shut down adapter, host & wire
9215  *	@adapter: the adapter
9216  *
9217  *	Perform an emergency shutdown of the adapter and stop it from
9218  *	continuing any further communication on the ports or DMA to the
9219  *	host.  This is typically used when the adapter and/or firmware
9220  *	have crashed and we want to prevent any further accidental
9221  *	communication with the rest of the world.  This will also force
9222  *	the port Link Status to go down -- if register writes work --
9223  *	which should help our peers figure out that we're down.
9224  */
9225 int t4_shutdown_adapter(struct adapter *adapter)
9226 {
9227 	int port;
9228 
9229 	t4_intr_disable(adapter);
9230 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9231 	for_each_port(adapter, port) {
9232 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9233 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9234 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9235 
9236 		t4_write_reg(adapter, a_port_cfg,
9237 			     t4_read_reg(adapter, a_port_cfg)
9238 			     & ~SIGNAL_DET_V(1));
9239 	}
9240 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9241 
9242 	return 0;
9243 }
9244 
9245 /**
9246  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9247  *	@adapter: the adapter
9248  *	@qid: the Queue ID
9249  *	@qtype: the Ingress or Egress type for @qid
9250  *	@user: true if this request is for a user mode queue
9251  *	@pbar2_qoffset: BAR2 Queue Offset
9252  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9253  *
9254  *	Returns the BAR2 SGE Queue Registers information associated with the
9255  *	indicated Absolute Queue ID.  These are passed back in return value
9256  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9257  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9258  *
9259  *	This may return an error which indicates that BAR2 SGE Queue
9260  *	registers aren't available.  If an error is not returned, then the
9261  *	following values are returned:
9262  *
9263  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9264  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9265  *
9266  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9267  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9268  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9269  *	then these "Inferred Queue ID" register may not be used.
9270  */
9271 int t4_bar2_sge_qregs(struct adapter *adapter,
9272 		      unsigned int qid,
9273 		      enum t4_bar2_qtype qtype,
9274 		      int user,
9275 		      u64 *pbar2_qoffset,
9276 		      unsigned int *pbar2_qid)
9277 {
9278 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9279 	u64 bar2_page_offset, bar2_qoffset;
9280 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9281 
9282 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9283 	if (!user && is_t4(adapter->params.chip))
9284 		return -EINVAL;
9285 
9286 	/* Get our SGE Page Size parameters.
9287 	 */
9288 	page_shift = adapter->params.sge.hps + 10;
9289 	page_size = 1 << page_shift;
9290 
9291 	/* Get the right Queues per Page parameters for our Queue.
9292 	 */
9293 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9294 		     ? adapter->params.sge.eq_qpp
9295 		     : adapter->params.sge.iq_qpp);
9296 	qpp_mask = (1 << qpp_shift) - 1;
9297 
9298 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9299 	 *  o The BAR2 page the Queue registers will be in.
9300 	 *  o The BAR2 Queue ID.
9301 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9302 	 */
9303 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9304 	bar2_qid = qid & qpp_mask;
9305 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9306 
9307 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9308 	 * hardware will infer the Absolute Queue ID simply from the writes to
9309 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9310 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9311 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9312 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9313 	 * from the BAR2 Page and BAR2 Queue ID.
9314 	 *
9315 	 * One important censequence of this is that some BAR2 SGE registers
9316 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9317 	 * there.  But other registers synthesize the SGE Queue ID purely
9318 	 * from the writes to the registers -- the Write Combined Doorbell
9319 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9320 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9321 	 * Queue ID can be inferred from simple writes.
9322 	 */
9323 	bar2_qoffset = bar2_page_offset;
9324 	bar2_qinferred = (bar2_qid_offset < page_size);
9325 	if (bar2_qinferred) {
9326 		bar2_qoffset += bar2_qid_offset;
9327 		bar2_qid = 0;
9328 	}
9329 
9330 	*pbar2_qoffset = bar2_qoffset;
9331 	*pbar2_qid = bar2_qid;
9332 	return 0;
9333 }
9334 
9335 /**
9336  *	t4_init_devlog_params - initialize adapter->params.devlog
9337  *	@adap: the adapter
9338  *
9339  *	Initialize various fields of the adapter's Firmware Device Log
9340  *	Parameters structure.
9341  */
9342 int t4_init_devlog_params(struct adapter *adap)
9343 {
9344 	struct devlog_params *dparams = &adap->params.devlog;
9345 	u32 pf_dparams;
9346 	unsigned int devlog_meminfo;
9347 	struct fw_devlog_cmd devlog_cmd;
9348 	int ret;
9349 
9350 	/* If we're dealing with newer firmware, the Device Log Parameters
9351 	 * are stored in a designated register which allows us to access the
9352 	 * Device Log even if we can't talk to the firmware.
9353 	 */
9354 	pf_dparams =
9355 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9356 	if (pf_dparams) {
9357 		unsigned int nentries, nentries128;
9358 
9359 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9360 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9361 
9362 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9363 		nentries = (nentries128 + 1) * 128;
9364 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9365 
9366 		return 0;
9367 	}
9368 
9369 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9370 	 */
9371 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9372 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9373 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9374 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9375 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9376 			 &devlog_cmd);
9377 	if (ret)
9378 		return ret;
9379 
9380 	devlog_meminfo =
9381 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9382 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9383 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9384 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9385 
9386 	return 0;
9387 }
9388 
9389 /**
9390  *	t4_init_sge_params - initialize adap->params.sge
9391  *	@adapter: the adapter
9392  *
9393  *	Initialize various fields of the adapter's SGE Parameters structure.
9394  */
9395 int t4_init_sge_params(struct adapter *adapter)
9396 {
9397 	struct sge_params *sge_params = &adapter->params.sge;
9398 	u32 hps, qpp;
9399 	unsigned int s_hps, s_qpp;
9400 
9401 	/* Extract the SGE Page Size for our PF.
9402 	 */
9403 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9404 	s_hps = (HOSTPAGESIZEPF0_S +
9405 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9406 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9407 
9408 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9409 	 */
9410 	s_qpp = (QUEUESPERPAGEPF0_S +
9411 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9412 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9413 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9414 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9415 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9416 
9417 	return 0;
9418 }
9419 
9420 /**
9421  *      t4_init_tp_params - initialize adap->params.tp
9422  *      @adap: the adapter
9423  *      @sleep_ok: if true we may sleep while awaiting command completion
9424  *
9425  *      Initialize various fields of the adapter's TP Parameters structure.
9426  */
9427 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9428 {
9429 	u32 param, val, v;
9430 	int chan, ret;
9431 
9432 
9433 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9434 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9435 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9436 
9437 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9438 	for (chan = 0; chan < NCHAN; chan++)
9439 		adap->params.tp.tx_modq[chan] = chan;
9440 
9441 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9442 	 * Configuration.
9443 	 */
9444 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9445 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9446 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9447 
9448 	/* Read current value */
9449 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9450 			      &param, &val);
9451 	if (ret == 0) {
9452 		dev_info(adap->pdev_dev,
9453 			 "Current filter mode/mask 0x%x:0x%x\n",
9454 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9455 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9456 		adap->params.tp.vlan_pri_map =
9457 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9458 		adap->params.tp.filter_mask =
9459 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9460 	} else {
9461 		dev_info(adap->pdev_dev,
9462 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9463 
9464 		/* Incase of older-fw (which doesn't expose the api
9465 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9466 		 * the fw api) combination, fall-back to older method of reading
9467 		 * the filter mode from indirect-register
9468 		 */
9469 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9470 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9471 
9472 		/* With the older-fw and newer-driver combination we might run
9473 		 * into an issue when user wants to use hash filter region but
9474 		 * the filter_mask is zero, in this case filter_mask validation
9475 		 * is tough. To avoid that we set the filter_mask same as filter
9476 		 * mode, which will behave exactly as the older way of ignoring
9477 		 * the filter mask validation.
9478 		 */
9479 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9480 	}
9481 
9482 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9483 		       TP_INGRESS_CONFIG_A, sleep_ok);
9484 
9485 	/* For T6, cache the adapter's compressed error vector
9486 	 * and passing outer header info for encapsulated packets.
9487 	 */
9488 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9489 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9490 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9491 	}
9492 
9493 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9494 	 * shift positions of several elements of the Compressed Filter Tuple
9495 	 * for this adapter which we need frequently ...
9496 	 */
9497 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9498 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9499 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9500 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9501 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9502 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9503 							       PROTOCOL_F);
9504 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9505 								ETHERTYPE_F);
9506 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9507 							       MACMATCH_F);
9508 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9509 								MPSHITTYPE_F);
9510 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9511 							   FRAGMENTATION_F);
9512 
9513 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9514 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9515 	 */
9516 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9517 		adap->params.tp.vnic_shift = -1;
9518 
9519 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9520 	adap->params.tp.hash_filter_mask = v;
9521 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9522 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9523 	return 0;
9524 }
9525 
9526 /**
9527  *      t4_filter_field_shift - calculate filter field shift
9528  *      @adap: the adapter
9529  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9530  *
9531  *      Return the shift position of a filter field within the Compressed
9532  *      Filter Tuple.  The filter field is specified via its selection bit
9533  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9534  */
9535 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9536 {
9537 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9538 	unsigned int sel;
9539 	int field_shift;
9540 
9541 	if ((filter_mode & filter_sel) == 0)
9542 		return -1;
9543 
9544 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9545 		switch (filter_mode & sel) {
9546 		case FCOE_F:
9547 			field_shift += FT_FCOE_W;
9548 			break;
9549 		case PORT_F:
9550 			field_shift += FT_PORT_W;
9551 			break;
9552 		case VNIC_ID_F:
9553 			field_shift += FT_VNIC_ID_W;
9554 			break;
9555 		case VLAN_F:
9556 			field_shift += FT_VLAN_W;
9557 			break;
9558 		case TOS_F:
9559 			field_shift += FT_TOS_W;
9560 			break;
9561 		case PROTOCOL_F:
9562 			field_shift += FT_PROTOCOL_W;
9563 			break;
9564 		case ETHERTYPE_F:
9565 			field_shift += FT_ETHERTYPE_W;
9566 			break;
9567 		case MACMATCH_F:
9568 			field_shift += FT_MACMATCH_W;
9569 			break;
9570 		case MPSHITTYPE_F:
9571 			field_shift += FT_MPSHITTYPE_W;
9572 			break;
9573 		case FRAGMENTATION_F:
9574 			field_shift += FT_FRAGMENTATION_W;
9575 			break;
9576 		}
9577 	}
9578 	return field_shift;
9579 }
9580 
9581 int t4_init_rss_mode(struct adapter *adap, int mbox)
9582 {
9583 	int i, ret;
9584 	struct fw_rss_vi_config_cmd rvc;
9585 
9586 	memset(&rvc, 0, sizeof(rvc));
9587 
9588 	for_each_port(adap, i) {
9589 		struct port_info *p = adap2pinfo(adap, i);
9590 
9591 		rvc.op_to_viid =
9592 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9593 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9594 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9595 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9596 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9597 		if (ret)
9598 			return ret;
9599 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9600 	}
9601 	return 0;
9602 }
9603 
9604 /**
9605  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9606  *	@pi: the port_info
9607  *	@mbox: mailbox to use for the FW command
9608  *	@port: physical port associated with the VI
9609  *	@pf: the PF owning the VI
9610  *	@vf: the VF owning the VI
9611  *	@mac: the MAC address of the VI
9612  *
9613  *	Allocates a virtual interface for the given physical port.  If @mac is
9614  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9615  *	@mac should be large enough to hold an Ethernet address.
9616  *	Returns < 0 on error.
9617  */
9618 int t4_init_portinfo(struct port_info *pi, int mbox,
9619 		     int port, int pf, int vf, u8 mac[])
9620 {
9621 	struct adapter *adapter = pi->adapter;
9622 	unsigned int fw_caps = adapter->params.fw_caps_support;
9623 	struct fw_port_cmd cmd;
9624 	unsigned int rss_size;
9625 	enum fw_port_type port_type;
9626 	int mdio_addr;
9627 	fw_port_cap32_t pcaps, acaps;
9628 	u8 vivld = 0, vin = 0;
9629 	int ret;
9630 
9631 	/* If we haven't yet determined whether we're talking to Firmware
9632 	 * which knows the new 32-bit Port Capabilities, it's time to find
9633 	 * out now.  This will also tell new Firmware to send us Port Status
9634 	 * Updates using the new 32-bit Port Capabilities version of the
9635 	 * Port Information message.
9636 	 */
9637 	if (fw_caps == FW_CAPS_UNKNOWN) {
9638 		u32 param, val;
9639 
9640 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9641 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9642 		val = 1;
9643 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9644 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9645 		adapter->params.fw_caps_support = fw_caps;
9646 	}
9647 
9648 	memset(&cmd, 0, sizeof(cmd));
9649 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9650 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9651 				       FW_PORT_CMD_PORTID_V(port));
9652 	cmd.action_to_len16 = cpu_to_be32(
9653 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9654 				     ? FW_PORT_ACTION_GET_PORT_INFO
9655 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9656 		FW_LEN16(cmd));
9657 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9658 	if (ret)
9659 		return ret;
9660 
9661 	/* Extract the various fields from the Port Information message.
9662 	 */
9663 	if (fw_caps == FW_CAPS16) {
9664 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9665 
9666 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9667 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9668 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9669 			     : -1);
9670 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9671 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9672 	} else {
9673 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9674 
9675 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9676 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9677 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9678 			     : -1);
9679 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9680 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9681 	}
9682 
9683 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9684 			  &vivld, &vin);
9685 	if (ret < 0)
9686 		return ret;
9687 
9688 	pi->viid = ret;
9689 	pi->tx_chan = port;
9690 	pi->lport = port;
9691 	pi->rss_size = rss_size;
9692 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9693 
9694 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9695 	 * save the returned values.
9696 	 */
9697 	if (adapter->params.viid_smt_extn_support) {
9698 		pi->vivld = vivld;
9699 		pi->vin = vin;
9700 	} else {
9701 		/* Retrieve the values from VIID */
9702 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9703 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9704 	}
9705 
9706 	pi->port_type = port_type;
9707 	pi->mdio_addr = mdio_addr;
9708 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9709 
9710 	init_link_config(&pi->link_cfg, pcaps, acaps);
9711 	return 0;
9712 }
9713 
9714 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9715 {
9716 	u8 addr[6];
9717 	int ret, i, j = 0;
9718 
9719 	for_each_port(adap, i) {
9720 		struct port_info *pi = adap2pinfo(adap, i);
9721 
9722 		while ((adap->params.portvec & (1 << j)) == 0)
9723 			j++;
9724 
9725 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9726 		if (ret)
9727 			return ret;
9728 
9729 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9730 		j++;
9731 	}
9732 	return 0;
9733 }
9734 
9735 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9736 			u16 *mirror_viid)
9737 {
9738 	int ret;
9739 
9740 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9741 			  NULL, NULL);
9742 	if (ret < 0)
9743 		return ret;
9744 
9745 	if (mirror_viid)
9746 		*mirror_viid = ret;
9747 
9748 	return 0;
9749 }
9750 
9751 /**
9752  *	t4_read_cimq_cfg - read CIM queue configuration
9753  *	@adap: the adapter
9754  *	@base: holds the queue base addresses in bytes
9755  *	@size: holds the queue sizes in bytes
9756  *	@thres: holds the queue full thresholds in bytes
9757  *
9758  *	Returns the current configuration of the CIM queues, starting with
9759  *	the IBQs, then the OBQs.
9760  */
9761 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9762 {
9763 	unsigned int i, v;
9764 	int cim_num_obq = is_t4(adap->params.chip) ?
9765 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9766 
9767 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9768 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9769 			     QUENUMSELECT_V(i));
9770 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9771 		/* value is in 256-byte units */
9772 		*base++ = CIMQBASE_G(v) * 256;
9773 		*size++ = CIMQSIZE_G(v) * 256;
9774 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9775 	}
9776 	for (i = 0; i < cim_num_obq; i++) {
9777 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9778 			     QUENUMSELECT_V(i));
9779 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9780 		/* value is in 256-byte units */
9781 		*base++ = CIMQBASE_G(v) * 256;
9782 		*size++ = CIMQSIZE_G(v) * 256;
9783 	}
9784 }
9785 
9786 /**
9787  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9788  *	@adap: the adapter
9789  *	@qid: the queue index
9790  *	@data: where to store the queue contents
9791  *	@n: capacity of @data in 32-bit words
9792  *
9793  *	Reads the contents of the selected CIM queue starting at address 0 up
9794  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9795  *	error and the number of 32-bit words actually read on success.
9796  */
9797 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9798 {
9799 	int i, err, attempts;
9800 	unsigned int addr;
9801 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9802 
9803 	if (qid > 5 || (n & 3))
9804 		return -EINVAL;
9805 
9806 	addr = qid * nwords;
9807 	if (n > nwords)
9808 		n = nwords;
9809 
9810 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9811 	 * Wait for 1 Sec with a delay of 1 usec.
9812 	 */
9813 	attempts = 1000000;
9814 
9815 	for (i = 0; i < n; i++, addr++) {
9816 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9817 			     IBQDBGEN_F);
9818 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9819 				      attempts, 1);
9820 		if (err)
9821 			return err;
9822 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9823 	}
9824 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9825 	return i;
9826 }
9827 
9828 /**
9829  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9830  *	@adap: the adapter
9831  *	@qid: the queue index
9832  *	@data: where to store the queue contents
9833  *	@n: capacity of @data in 32-bit words
9834  *
9835  *	Reads the contents of the selected CIM queue starting at address 0 up
9836  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9837  *	error and the number of 32-bit words actually read on success.
9838  */
9839 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9840 {
9841 	int i, err;
9842 	unsigned int addr, v, nwords;
9843 	int cim_num_obq = is_t4(adap->params.chip) ?
9844 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9845 
9846 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9847 		return -EINVAL;
9848 
9849 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9850 		     QUENUMSELECT_V(qid));
9851 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9852 
9853 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9854 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9855 	if (n > nwords)
9856 		n = nwords;
9857 
9858 	for (i = 0; i < n; i++, addr++) {
9859 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9860 			     OBQDBGEN_F);
9861 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9862 				      2, 1);
9863 		if (err)
9864 			return err;
9865 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9866 	}
9867 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9868 	return i;
9869 }
9870 
9871 /**
9872  *	t4_cim_read - read a block from CIM internal address space
9873  *	@adap: the adapter
9874  *	@addr: the start address within the CIM address space
9875  *	@n: number of words to read
9876  *	@valp: where to store the result
9877  *
9878  *	Reads a block of 4-byte words from the CIM intenal address space.
9879  */
9880 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9881 		unsigned int *valp)
9882 {
9883 	int ret = 0;
9884 
9885 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9886 		return -EBUSY;
9887 
9888 	for ( ; !ret && n--; addr += 4) {
9889 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9890 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9891 				      0, 5, 2);
9892 		if (!ret)
9893 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9894 	}
9895 	return ret;
9896 }
9897 
9898 /**
9899  *	t4_cim_write - write a block into CIM internal address space
9900  *	@adap: the adapter
9901  *	@addr: the start address within the CIM address space
9902  *	@n: number of words to write
9903  *	@valp: set of values to write
9904  *
9905  *	Writes a block of 4-byte words into the CIM intenal address space.
9906  */
9907 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9908 		 const unsigned int *valp)
9909 {
9910 	int ret = 0;
9911 
9912 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9913 		return -EBUSY;
9914 
9915 	for ( ; !ret && n--; addr += 4) {
9916 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9917 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9918 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9919 				      0, 5, 2);
9920 	}
9921 	return ret;
9922 }
9923 
9924 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9925 			 unsigned int val)
9926 {
9927 	return t4_cim_write(adap, addr, 1, &val);
9928 }
9929 
9930 /**
9931  *	t4_cim_read_la - read CIM LA capture buffer
9932  *	@adap: the adapter
9933  *	@la_buf: where to store the LA data
9934  *	@wrptr: the HW write pointer within the capture buffer
9935  *
9936  *	Reads the contents of the CIM LA buffer with the most recent entry at
9937  *	the end	of the returned data and with the entry at @wrptr first.
9938  *	We try to leave the LA in the running state we find it in.
9939  */
9940 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9941 {
9942 	int i, ret;
9943 	unsigned int cfg, val, idx;
9944 
9945 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9946 	if (ret)
9947 		return ret;
9948 
9949 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9950 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9951 		if (ret)
9952 			return ret;
9953 	}
9954 
9955 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9956 	if (ret)
9957 		goto restart;
9958 
9959 	idx = UPDBGLAWRPTR_G(val);
9960 	if (wrptr)
9961 		*wrptr = idx;
9962 
9963 	for (i = 0; i < adap->params.cim_la_size; i++) {
9964 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9965 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9966 		if (ret)
9967 			break;
9968 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9969 		if (ret)
9970 			break;
9971 		if (val & UPDBGLARDEN_F) {
9972 			ret = -ETIMEDOUT;
9973 			break;
9974 		}
9975 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9976 		if (ret)
9977 			break;
9978 
9979 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9980 		 * identify the 32-bit portion of the full 312-bit data
9981 		 */
9982 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9983 			idx = (idx & 0xff0) + 0x10;
9984 		else
9985 			idx++;
9986 		/* address can't exceed 0xfff */
9987 		idx &= UPDBGLARDPTR_M;
9988 	}
9989 restart:
9990 	if (cfg & UPDBGLAEN_F) {
9991 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9992 				      cfg & ~UPDBGLARDEN_F);
9993 		if (!ret)
9994 			ret = r;
9995 	}
9996 	return ret;
9997 }
9998 
9999 /**
10000  *	t4_tp_read_la - read TP LA capture buffer
10001  *	@adap: the adapter
10002  *	@la_buf: where to store the LA data
10003  *	@wrptr: the HW write pointer within the capture buffer
10004  *
10005  *	Reads the contents of the TP LA buffer with the most recent entry at
10006  *	the end	of the returned data and with the entry at @wrptr first.
10007  *	We leave the LA in the running state we find it in.
10008  */
10009 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10010 {
10011 	bool last_incomplete;
10012 	unsigned int i, cfg, val, idx;
10013 
10014 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10015 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
10016 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10017 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10018 
10019 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10020 	idx = DBGLAWPTR_G(val);
10021 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10022 	if (last_incomplete)
10023 		idx = (idx + 1) & DBGLARPTR_M;
10024 	if (wrptr)
10025 		*wrptr = idx;
10026 
10027 	val &= 0xffff;
10028 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10029 	val |= adap->params.tp.la_mask;
10030 
10031 	for (i = 0; i < TPLA_SIZE; i++) {
10032 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10033 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10034 		idx = (idx + 1) & DBGLARPTR_M;
10035 	}
10036 
10037 	/* Wipe out last entry if it isn't valid */
10038 	if (last_incomplete)
10039 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10040 
10041 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10042 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10043 			     cfg | adap->params.tp.la_mask);
10044 }
10045 
10046 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10047  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10048  * state for more than the Warning Threshold then we'll issue a warning about
10049  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10050  * appears to be hung every Warning Repeat second till the situation clears.
10051  * If the situation clears, we'll note that as well.
10052  */
10053 #define SGE_IDMA_WARN_THRESH 1
10054 #define SGE_IDMA_WARN_REPEAT 300
10055 
10056 /**
10057  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10058  *	@adapter: the adapter
10059  *	@idma: the adapter IDMA Monitor state
10060  *
10061  *	Initialize the state of an SGE Ingress DMA Monitor.
10062  */
10063 void t4_idma_monitor_init(struct adapter *adapter,
10064 			  struct sge_idma_monitor_state *idma)
10065 {
10066 	/* Initialize the state variables for detecting an SGE Ingress DMA
10067 	 * hang.  The SGE has internal counters which count up on each clock
10068 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10069 	 * same state they were on the previous clock tick.  The clock used is
10070 	 * the Core Clock so we have a limit on the maximum "time" they can
10071 	 * record; typically a very small number of seconds.  For instance,
10072 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10073 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10074 	 * risk of having the "timers" overflow and give us the flexibility to
10075 	 * maintain a Hung SGE State Machine of our own which operates across
10076 	 * a longer time frame.
10077 	 */
10078 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10079 	idma->idma_stalled[0] = 0;
10080 	idma->idma_stalled[1] = 0;
10081 }
10082 
10083 /**
10084  *	t4_idma_monitor - monitor SGE Ingress DMA state
10085  *	@adapter: the adapter
10086  *	@idma: the adapter IDMA Monitor state
10087  *	@hz: number of ticks/second
10088  *	@ticks: number of ticks since the last IDMA Monitor call
10089  */
10090 void t4_idma_monitor(struct adapter *adapter,
10091 		     struct sge_idma_monitor_state *idma,
10092 		     int hz, int ticks)
10093 {
10094 	int i, idma_same_state_cnt[2];
10095 
10096 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10097 	  * are counters inside the SGE which count up on each clock when the
10098 	  * SGE finds its Ingress DMA State Engines in the same states they
10099 	  * were in the previous clock.  The counters will peg out at
10100 	  * 0xffffffff without wrapping around so once they pass the 1s
10101 	  * threshold they'll stay above that till the IDMA state changes.
10102 	  */
10103 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10104 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10105 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10106 
10107 	for (i = 0; i < 2; i++) {
10108 		u32 debug0, debug11;
10109 
10110 		/* If the Ingress DMA Same State Counter ("timer") is less
10111 		 * than 1s, then we can reset our synthesized Stall Timer and
10112 		 * continue.  If we have previously emitted warnings about a
10113 		 * potential stalled Ingress Queue, issue a note indicating
10114 		 * that the Ingress Queue has resumed forward progress.
10115 		 */
10116 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10117 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10118 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10119 					 "resumed after %d seconds\n",
10120 					 i, idma->idma_qid[i],
10121 					 idma->idma_stalled[i] / hz);
10122 			idma->idma_stalled[i] = 0;
10123 			continue;
10124 		}
10125 
10126 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10127 		 * domain.  The first time we get here it'll be because we
10128 		 * passed the 1s Threshold; each additional time it'll be
10129 		 * because the RX Timer Callback is being fired on its regular
10130 		 * schedule.
10131 		 *
10132 		 * If the stall is below our Potential Hung Ingress Queue
10133 		 * Warning Threshold, continue.
10134 		 */
10135 		if (idma->idma_stalled[i] == 0) {
10136 			idma->idma_stalled[i] = hz;
10137 			idma->idma_warn[i] = 0;
10138 		} else {
10139 			idma->idma_stalled[i] += ticks;
10140 			idma->idma_warn[i] -= ticks;
10141 		}
10142 
10143 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10144 			continue;
10145 
10146 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10147 		 */
10148 		if (idma->idma_warn[i] > 0)
10149 			continue;
10150 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10151 
10152 		/* Read and save the SGE IDMA State and Queue ID information.
10153 		 * We do this every time in case it changes across time ...
10154 		 * can't be too careful ...
10155 		 */
10156 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10157 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10158 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10159 
10160 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10161 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10162 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10163 
10164 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10165 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10166 			 i, idma->idma_qid[i], idma->idma_state[i],
10167 			 idma->idma_stalled[i] / hz,
10168 			 debug0, debug11);
10169 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10170 	}
10171 }
10172 
10173 /**
10174  *	t4_load_cfg - download config file
10175  *	@adap: the adapter
10176  *	@cfg_data: the cfg text file to write
10177  *	@size: text file size
10178  *
10179  *	Write the supplied config text file to the card's serial flash.
10180  */
10181 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10182 {
10183 	int ret, i, n, cfg_addr;
10184 	unsigned int addr;
10185 	unsigned int flash_cfg_start_sec;
10186 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10187 
10188 	cfg_addr = t4_flash_cfg_addr(adap);
10189 	if (cfg_addr < 0)
10190 		return cfg_addr;
10191 
10192 	addr = cfg_addr;
10193 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10194 
10195 	if (size > FLASH_CFG_MAX_SIZE) {
10196 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10197 			FLASH_CFG_MAX_SIZE);
10198 		return -EFBIG;
10199 	}
10200 
10201 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10202 			 sf_sec_size);
10203 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10204 				     flash_cfg_start_sec + i - 1);
10205 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10206 	 * with the on-adapter Firmware Configuration File.
10207 	 */
10208 	if (ret || size == 0)
10209 		goto out;
10210 
10211 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10212 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10213 		if ((size - i) <  SF_PAGE_SIZE)
10214 			n = size - i;
10215 		else
10216 			n = SF_PAGE_SIZE;
10217 		ret = t4_write_flash(adap, addr, n, cfg_data);
10218 		if (ret)
10219 			goto out;
10220 
10221 		addr += SF_PAGE_SIZE;
10222 		cfg_data += SF_PAGE_SIZE;
10223 	}
10224 
10225 out:
10226 	if (ret)
10227 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10228 			(size == 0 ? "clear" : "download"), ret);
10229 	return ret;
10230 }
10231 
10232 /**
10233  *	t4_set_vf_mac - Set MAC address for the specified VF
10234  *	@adapter: The adapter
10235  *	@vf: one of the VFs instantiated by the specified PF
10236  *	@naddr: the number of MAC addresses
10237  *	@addr: the MAC address(es) to be set to the specified VF
10238  */
10239 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10240 		      unsigned int naddr, u8 *addr)
10241 {
10242 	struct fw_acl_mac_cmd cmd;
10243 
10244 	memset(&cmd, 0, sizeof(cmd));
10245 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10246 				    FW_CMD_REQUEST_F |
10247 				    FW_CMD_WRITE_F |
10248 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10249 				    FW_ACL_MAC_CMD_VFN_V(vf));
10250 
10251 	/* Note: Do not enable the ACL */
10252 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10253 	cmd.nmac = naddr;
10254 
10255 	switch (adapter->pf) {
10256 	case 3:
10257 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10258 		break;
10259 	case 2:
10260 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10261 		break;
10262 	case 1:
10263 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10264 		break;
10265 	case 0:
10266 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10267 		break;
10268 	}
10269 
10270 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10271 }
10272 
10273 /**
10274  * t4_read_pace_tbl - read the pace table
10275  * @adap: the adapter
10276  * @pace_vals: holds the returned values
10277  *
10278  * Returns the values of TP's pace table in microseconds.
10279  */
10280 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10281 {
10282 	unsigned int i, v;
10283 
10284 	for (i = 0; i < NTX_SCHED; i++) {
10285 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10286 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10287 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10288 	}
10289 }
10290 
10291 /**
10292  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10293  * @adap: the adapter
10294  * @sched: the scheduler index
10295  * @kbps: the byte rate in Kbps
10296  * @ipg: the interpacket delay in tenths of nanoseconds
10297  * @sleep_ok: if true we may sleep while awaiting command completion
10298  *
10299  * Return the current configuration of a HW Tx scheduler.
10300  */
10301 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10302 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10303 {
10304 	unsigned int v, addr, bpt, cpt;
10305 
10306 	if (kbps) {
10307 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10308 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10309 		if (sched & 1)
10310 			v >>= 16;
10311 		bpt = (v >> 8) & 0xff;
10312 		cpt = v & 0xff;
10313 		if (!cpt) {
10314 			*kbps = 0;	/* scheduler disabled */
10315 		} else {
10316 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10317 			*kbps = (v * bpt) / 125;
10318 		}
10319 	}
10320 	if (ipg) {
10321 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10322 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10323 		if (sched & 1)
10324 			v >>= 16;
10325 		v &= 0xffff;
10326 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10327 	}
10328 }
10329 
10330 /* t4_sge_ctxt_rd - read an SGE context through FW
10331  * @adap: the adapter
10332  * @mbox: mailbox to use for the FW command
10333  * @cid: the context id
10334  * @ctype: the context type
10335  * @data: where to store the context data
10336  *
10337  * Issues a FW command through the given mailbox to read an SGE context.
10338  */
10339 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10340 		   enum ctxt_type ctype, u32 *data)
10341 {
10342 	struct fw_ldst_cmd c;
10343 	int ret;
10344 
10345 	if (ctype == CTXT_FLM)
10346 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10347 	else
10348 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10349 
10350 	memset(&c, 0, sizeof(c));
10351 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10352 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10353 					FW_LDST_CMD_ADDRSPACE_V(ret));
10354 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10355 	c.u.idctxt.physid = cpu_to_be32(cid);
10356 
10357 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10358 	if (ret == 0) {
10359 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10360 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10361 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10362 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10363 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10364 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10365 	}
10366 	return ret;
10367 }
10368 
10369 /**
10370  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10371  * @adap: the adapter
10372  * @cid: the context id
10373  * @ctype: the context type
10374  * @data: where to store the context data
10375  *
10376  * Reads an SGE context directly, bypassing FW.  This is only for
10377  * debugging when FW is unavailable.
10378  */
10379 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10380 		      enum ctxt_type ctype, u32 *data)
10381 {
10382 	int i, ret;
10383 
10384 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10385 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10386 	if (!ret)
10387 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10388 			*data++ = t4_read_reg(adap, i);
10389 	return ret;
10390 }
10391 
10392 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10393 		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10394 		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10395 		    u16 burstsize)
10396 {
10397 	struct fw_sched_cmd cmd;
10398 
10399 	memset(&cmd, 0, sizeof(cmd));
10400 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10401 				      FW_CMD_REQUEST_F |
10402 				      FW_CMD_WRITE_F);
10403 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10404 
10405 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10406 	cmd.u.params.type = type;
10407 	cmd.u.params.level = level;
10408 	cmd.u.params.mode = mode;
10409 	cmd.u.params.ch = channel;
10410 	cmd.u.params.cl = class;
10411 	cmd.u.params.unit = rateunit;
10412 	cmd.u.params.rate = ratemode;
10413 	cmd.u.params.min = cpu_to_be32(minrate);
10414 	cmd.u.params.max = cpu_to_be32(maxrate);
10415 	cmd.u.params.weight = cpu_to_be16(weight);
10416 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10417 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10418 
10419 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10420 			       NULL, 1);
10421 }
10422 
10423 /**
10424  *	t4_i2c_rd - read I2C data from adapter
10425  *	@adap: the adapter
10426  *	@mbox: mailbox to use for the FW command
10427  *	@port: Port number if per-port device; <0 if not
10428  *	@devid: per-port device ID or absolute device ID
10429  *	@offset: byte offset into device I2C space
10430  *	@len: byte length of I2C space data
10431  *	@buf: buffer in which to return I2C data
10432  *
10433  *	Reads the I2C data from the indicated device and location.
10434  */
10435 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10436 	      unsigned int devid, unsigned int offset,
10437 	      unsigned int len, u8 *buf)
10438 {
10439 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10440 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10441 	int ret = 0;
10442 
10443 	if (len > I2C_PAGE_SIZE)
10444 		return -EINVAL;
10445 
10446 	/* Dont allow reads that spans multiple pages */
10447 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10448 		return -EINVAL;
10449 
10450 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10451 	ldst_cmd.op_to_addrspace =
10452 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10453 			    FW_CMD_REQUEST_F |
10454 			    FW_CMD_READ_F |
10455 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10456 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10457 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10458 	ldst_cmd.u.i2c.did = devid;
10459 
10460 	while (len > 0) {
10461 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10462 
10463 		ldst_cmd.u.i2c.boffset = offset;
10464 		ldst_cmd.u.i2c.blen = i2c_len;
10465 
10466 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10467 				 &ldst_rpl);
10468 		if (ret)
10469 			break;
10470 
10471 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10472 		offset += i2c_len;
10473 		buf += i2c_len;
10474 		len -= i2c_len;
10475 	}
10476 
10477 	return ret;
10478 }
10479 
10480 /**
10481  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10482  *      @adap: the adapter
10483  *      @mbox: mailbox to use for the FW command
10484  *      @vf: one of the VFs instantiated by the specified PF
10485  *      @vlan: The vlanid to be set
10486  */
10487 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10488 		    u16 vlan)
10489 {
10490 	struct fw_acl_vlan_cmd vlan_cmd;
10491 	unsigned int enable;
10492 
10493 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10494 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10495 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10496 					 FW_CMD_REQUEST_F |
10497 					 FW_CMD_WRITE_F |
10498 					 FW_CMD_EXEC_F |
10499 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10500 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10501 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10502 	/* Drop all packets that donot match vlan id */
10503 	vlan_cmd.dropnovlan_fm = (enable
10504 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10505 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10506 	if (enable != 0) {
10507 		vlan_cmd.nvlan = 1;
10508 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10509 	}
10510 
10511 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10512 }
10513 
10514 /**
10515  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10516  *	@device_id: the device ID to write.
10517  *	@boot_data: the boot image to modify.
10518  *
10519  *	Write the supplied device ID to the boot BIOS image.
10520  */
10521 static void modify_device_id(int device_id, u8 *boot_data)
10522 {
10523 	struct cxgb4_pcir_data *pcir_header;
10524 	struct legacy_pci_rom_hdr *header;
10525 	u8 *cur_header = boot_data;
10526 	u16 pcir_offset;
10527 
10528 	 /* Loop through all chained images and change the device ID's */
10529 	do {
10530 		header = (struct legacy_pci_rom_hdr *)cur_header;
10531 		pcir_offset = le16_to_cpu(header->pcir_offset);
10532 		pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10533 			      pcir_offset);
10534 
10535 		/**
10536 		 * Only modify the Device ID if code type is Legacy or HP.
10537 		 * 0x00: Okay to modify
10538 		 * 0x01: FCODE. Do not modify
10539 		 * 0x03: Okay to modify
10540 		 * 0x04-0xFF: Do not modify
10541 		 */
10542 		if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10543 			u8 csum = 0;
10544 			int i;
10545 
10546 			/**
10547 			 * Modify Device ID to match current adatper
10548 			 */
10549 			pcir_header->device_id = cpu_to_le16(device_id);
10550 
10551 			/**
10552 			 * Set checksum temporarily to 0.
10553 			 * We will recalculate it later.
10554 			 */
10555 			header->cksum = 0x0;
10556 
10557 			/**
10558 			 * Calculate and update checksum
10559 			 */
10560 			for (i = 0; i < (header->size512 * 512); i++)
10561 				csum += cur_header[i];
10562 
10563 			/**
10564 			 * Invert summed value to create the checksum
10565 			 * Writing new checksum value directly to the boot data
10566 			 */
10567 			cur_header[7] = -csum;
10568 
10569 		} else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10570 			/**
10571 			 * Modify Device ID to match current adatper
10572 			 */
10573 			pcir_header->device_id = cpu_to_le16(device_id);
10574 		}
10575 
10576 		/**
10577 		 * Move header pointer up to the next image in the ROM.
10578 		 */
10579 		cur_header += header->size512 * 512;
10580 	} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10581 }
10582 
10583 /**
10584  *	t4_load_boot - download boot flash
10585  *	@adap: the adapter
10586  *	@boot_data: the boot image to write
10587  *	@boot_addr: offset in flash to write boot_data
10588  *	@size: image size
10589  *
10590  *	Write the supplied boot image to the card's serial flash.
10591  *	The boot image has the following sections: a 28-byte header and the
10592  *	boot image.
10593  */
10594 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10595 		 unsigned int boot_addr, unsigned int size)
10596 {
10597 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10598 	unsigned int boot_sector = (boot_addr * 1024);
10599 	struct cxgb4_pci_exp_rom_header *header;
10600 	struct cxgb4_pcir_data *pcir_header;
10601 	int pcir_offset;
10602 	unsigned int i;
10603 	u16 device_id;
10604 	int ret, addr;
10605 
10606 	/**
10607 	 * Make sure the boot image does not encroach on the firmware region
10608 	 */
10609 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10610 		dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10611 		return -EFBIG;
10612 	}
10613 
10614 	/* Get boot header */
10615 	header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10616 	pcir_offset = le16_to_cpu(header->pcir_offset);
10617 	/* PCIR Data Structure */
10618 	pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10619 
10620 	/**
10621 	 * Perform some primitive sanity testing to avoid accidentally
10622 	 * writing garbage over the boot sectors.  We ought to check for
10623 	 * more but it's not worth it for now ...
10624 	 */
10625 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10626 		dev_err(adap->pdev_dev, "boot image too small/large\n");
10627 		return -EFBIG;
10628 	}
10629 
10630 	if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10631 		dev_err(adap->pdev_dev, "Boot image missing signature\n");
10632 		return -EINVAL;
10633 	}
10634 
10635 	/* Check PCI header signature */
10636 	if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10637 		dev_err(adap->pdev_dev, "PCI header missing signature\n");
10638 		return -EINVAL;
10639 	}
10640 
10641 	/* Check Vendor ID matches Chelsio ID*/
10642 	if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10643 		dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10644 		return -EINVAL;
10645 	}
10646 
10647 	/**
10648 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10649 	 * and Boot configuration data sections. These 3 boot sections span
10650 	 * sectors 0 to 7 in flash and live right before the FW image location.
10651 	 */
10652 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10653 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10654 				     (boot_sector >> 16) + i - 1);
10655 
10656 	/**
10657 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10658 	 * with the on-adapter option ROM file
10659 	 */
10660 	if (ret || size == 0)
10661 		goto out;
10662 	/* Retrieve adapter's device ID */
10663 	pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10664        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10665 	device_id = device_id & 0xf0ff;
10666 
10667 	 /* Check PCIE Device ID */
10668 	if (le16_to_cpu(pcir_header->device_id) != device_id) {
10669 		/**
10670 		 * Change the device ID in the Boot BIOS image to match
10671 		 * the Device ID of the current adapter.
10672 		 */
10673 		modify_device_id(device_id, boot_data);
10674 	}
10675 
10676 	/**
10677 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10678 	 * we finish copying the rest of the boot image. This will ensure
10679 	 * that the BIOS boot header will only be written if the boot image
10680 	 * was written in full.
10681 	 */
10682 	addr = boot_sector;
10683 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10684 		addr += SF_PAGE_SIZE;
10685 		boot_data += SF_PAGE_SIZE;
10686 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data);
10687 		if (ret)
10688 			goto out;
10689 	}
10690 
10691 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10692 			     (const u8 *)header);
10693 
10694 out:
10695 	if (ret)
10696 		dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10697 			ret);
10698 	return ret;
10699 }
10700 
10701 /**
10702  *	t4_flash_bootcfg_addr - return the address of the flash
10703  *	optionrom configuration
10704  *	@adapter: the adapter
10705  *
10706  *	Return the address within the flash where the OptionROM Configuration
10707  *	is stored, or an error if the device FLASH is too small to contain
10708  *	a OptionROM Configuration.
10709  */
10710 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10711 {
10712 	/**
10713 	 * If the device FLASH isn't large enough to hold a Firmware
10714 	 * Configuration File, return an error.
10715 	 */
10716 	if (adapter->params.sf_size <
10717 	    FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10718 		return -ENOSPC;
10719 
10720 	return FLASH_BOOTCFG_START;
10721 }
10722 
10723 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10724 {
10725 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10726 	struct cxgb4_bootcfg_data *header;
10727 	unsigned int flash_cfg_start_sec;
10728 	unsigned int addr, npad;
10729 	int ret, i, n, cfg_addr;
10730 
10731 	cfg_addr = t4_flash_bootcfg_addr(adap);
10732 	if (cfg_addr < 0)
10733 		return cfg_addr;
10734 
10735 	addr = cfg_addr;
10736 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10737 
10738 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10739 		dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10740 			FLASH_BOOTCFG_MAX_SIZE);
10741 		return -EFBIG;
10742 	}
10743 
10744 	header = (struct cxgb4_bootcfg_data *)cfg_data;
10745 	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10746 		dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10747 		ret = -EINVAL;
10748 		goto out;
10749 	}
10750 
10751 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10752 			 sf_sec_size);
10753 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10754 				     flash_cfg_start_sec + i - 1);
10755 
10756 	/**
10757 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10758 	 * with the on-adapter OptionROM Configuration File.
10759 	 */
10760 	if (ret || size == 0)
10761 		goto out;
10762 
10763 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10764 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10765 		n = min_t(u32, size - i, SF_PAGE_SIZE);
10766 
10767 		ret = t4_write_flash(adap, addr, n, cfg_data);
10768 		if (ret)
10769 			goto out;
10770 
10771 		addr += SF_PAGE_SIZE;
10772 		cfg_data += SF_PAGE_SIZE;
10773 	}
10774 
10775 	npad = ((size + 4 - 1) & ~3) - size;
10776 	for (i = 0; i < npad; i++) {
10777 		u8 data = 0;
10778 
10779 		ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data);
10780 		if (ret)
10781 			goto out;
10782 	}
10783 
10784 out:
10785 	if (ret)
10786 		dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10787 			(size == 0 ? "clear" : "download"), ret);
10788 	return ret;
10789 }
10790