1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/delay.h> 36 #include "cxgb4.h" 37 #include "t4_regs.h" 38 #include "t4_values.h" 39 #include "t4fw_api.h" 40 #include "t4fw_version.h" 41 42 /** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59 { 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73 } 74 75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77 { 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80 } 81 82 /** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94 { 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99 } 100 101 /** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116 { 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122 } 123 124 /** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139 { 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144 } 145 146 /* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153 { 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173 } 174 175 /* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183 static void t4_report_fw_error(struct adapter *adap) 184 { 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203 } 204 205 /* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210 { 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213 } 214 215 /* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218 static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219 { 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227 } 228 229 /** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237 static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240 { 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257 } 258 259 /** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284 { 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rearely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440 } 441 442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444 { 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447 } 448 449 static int t4_edc_err_read(struct adapter *adap, int idx) 450 { 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484 } 485 486 /** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499 { 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541 } 542 543 /** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552 { 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561 } 562 563 /** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575 { 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595 } 596 597 /** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boudaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616 { 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724 } 725 726 /* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732 { 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766 } 767 768 /* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774 { 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799 } 800 801 /* Get the default utility window (win0) used by everyone */ 802 u32 t4_get_util_window(struct adapter *adap) 803 { 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806 } 807 808 /* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813 { 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820 } 821 822 /** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828 unsigned int t4_get_regs_len(struct adapter *adapter) 829 { 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844 } 845 846 /** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857 { 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9820, 0x983c, 1383 0x9850, 0x9864, 1384 0x9c00, 0x9c6c, 1385 0x9c80, 0x9cec, 1386 0x9d00, 0x9d6c, 1387 0x9d80, 0x9dec, 1388 0x9e00, 0x9e6c, 1389 0x9e80, 0x9eec, 1390 0x9f00, 0x9f6c, 1391 0x9f80, 0xa020, 1392 0xd004, 0xd004, 1393 0xd010, 0xd03c, 1394 0xdfc0, 0xdfe0, 1395 0xe000, 0x1106c, 1396 0x11074, 0x11088, 1397 0x1109c, 0x1117c, 1398 0x11190, 0x11204, 1399 0x19040, 0x1906c, 1400 0x19078, 0x19080, 1401 0x1908c, 0x190e8, 1402 0x190f0, 0x190f8, 1403 0x19100, 0x19110, 1404 0x19120, 0x19124, 1405 0x19150, 0x19194, 1406 0x1919c, 0x191b0, 1407 0x191d0, 0x191e8, 1408 0x19238, 0x19290, 1409 0x193f8, 0x19428, 1410 0x19430, 0x19444, 1411 0x1944c, 0x1946c, 1412 0x19474, 0x19474, 1413 0x19490, 0x194cc, 1414 0x194f0, 0x194f8, 1415 0x19c00, 0x19c08, 1416 0x19c10, 0x19c60, 1417 0x19c94, 0x19ce4, 1418 0x19cf0, 0x19d40, 1419 0x19d50, 0x19d94, 1420 0x19da0, 0x19de8, 1421 0x19df0, 0x19e10, 1422 0x19e50, 0x19e90, 1423 0x19ea0, 0x19f24, 1424 0x19f34, 0x19f34, 1425 0x19f40, 0x19f50, 1426 0x19f90, 0x19fb4, 1427 0x19fc4, 0x19fe4, 1428 0x1a000, 0x1a004, 1429 0x1a010, 0x1a06c, 1430 0x1a0b0, 0x1a0e4, 1431 0x1a0ec, 0x1a0f8, 1432 0x1a100, 0x1a108, 1433 0x1a114, 0x1a120, 1434 0x1a128, 0x1a130, 1435 0x1a138, 0x1a138, 1436 0x1a190, 0x1a1c4, 1437 0x1a1fc, 0x1a1fc, 1438 0x1e008, 0x1e00c, 1439 0x1e040, 0x1e044, 1440 0x1e04c, 0x1e04c, 1441 0x1e284, 0x1e290, 1442 0x1e2c0, 0x1e2c0, 1443 0x1e2e0, 0x1e2e0, 1444 0x1e300, 0x1e384, 1445 0x1e3c0, 0x1e3c8, 1446 0x1e408, 0x1e40c, 1447 0x1e440, 0x1e444, 1448 0x1e44c, 0x1e44c, 1449 0x1e684, 0x1e690, 1450 0x1e6c0, 0x1e6c0, 1451 0x1e6e0, 0x1e6e0, 1452 0x1e700, 0x1e784, 1453 0x1e7c0, 0x1e7c8, 1454 0x1e808, 0x1e80c, 1455 0x1e840, 0x1e844, 1456 0x1e84c, 0x1e84c, 1457 0x1ea84, 0x1ea90, 1458 0x1eac0, 0x1eac0, 1459 0x1eae0, 0x1eae0, 1460 0x1eb00, 0x1eb84, 1461 0x1ebc0, 0x1ebc8, 1462 0x1ec08, 0x1ec0c, 1463 0x1ec40, 0x1ec44, 1464 0x1ec4c, 0x1ec4c, 1465 0x1ee84, 0x1ee90, 1466 0x1eec0, 0x1eec0, 1467 0x1eee0, 0x1eee0, 1468 0x1ef00, 0x1ef84, 1469 0x1efc0, 0x1efc8, 1470 0x1f008, 0x1f00c, 1471 0x1f040, 0x1f044, 1472 0x1f04c, 0x1f04c, 1473 0x1f284, 0x1f290, 1474 0x1f2c0, 0x1f2c0, 1475 0x1f2e0, 0x1f2e0, 1476 0x1f300, 0x1f384, 1477 0x1f3c0, 0x1f3c8, 1478 0x1f408, 0x1f40c, 1479 0x1f440, 0x1f444, 1480 0x1f44c, 0x1f44c, 1481 0x1f684, 0x1f690, 1482 0x1f6c0, 0x1f6c0, 1483 0x1f6e0, 0x1f6e0, 1484 0x1f700, 0x1f784, 1485 0x1f7c0, 0x1f7c8, 1486 0x1f808, 0x1f80c, 1487 0x1f840, 0x1f844, 1488 0x1f84c, 0x1f84c, 1489 0x1fa84, 0x1fa90, 1490 0x1fac0, 0x1fac0, 1491 0x1fae0, 0x1fae0, 1492 0x1fb00, 0x1fb84, 1493 0x1fbc0, 0x1fbc8, 1494 0x1fc08, 0x1fc0c, 1495 0x1fc40, 0x1fc44, 1496 0x1fc4c, 0x1fc4c, 1497 0x1fe84, 0x1fe90, 1498 0x1fec0, 0x1fec0, 1499 0x1fee0, 0x1fee0, 1500 0x1ff00, 0x1ff84, 1501 0x1ffc0, 0x1ffc8, 1502 0x30000, 0x30030, 1503 0x30100, 0x30144, 1504 0x30190, 0x301a0, 1505 0x301a8, 0x301b8, 1506 0x301c4, 0x301c8, 1507 0x301d0, 0x301d0, 1508 0x30200, 0x30318, 1509 0x30400, 0x304b4, 1510 0x304c0, 0x3052c, 1511 0x30540, 0x3061c, 1512 0x30800, 0x30828, 1513 0x30834, 0x30834, 1514 0x308c0, 0x30908, 1515 0x30910, 0x309ac, 1516 0x30a00, 0x30a14, 1517 0x30a1c, 0x30a2c, 1518 0x30a44, 0x30a50, 1519 0x30a74, 0x30a74, 1520 0x30a7c, 0x30afc, 1521 0x30b08, 0x30c24, 1522 0x30d00, 0x30d00, 1523 0x30d08, 0x30d14, 1524 0x30d1c, 0x30d20, 1525 0x30d3c, 0x30d3c, 1526 0x30d48, 0x30d50, 1527 0x31200, 0x3120c, 1528 0x31220, 0x31220, 1529 0x31240, 0x31240, 1530 0x31600, 0x3160c, 1531 0x31a00, 0x31a1c, 1532 0x31e00, 0x31e20, 1533 0x31e38, 0x31e3c, 1534 0x31e80, 0x31e80, 1535 0x31e88, 0x31ea8, 1536 0x31eb0, 0x31eb4, 1537 0x31ec8, 0x31ed4, 1538 0x31fb8, 0x32004, 1539 0x32200, 0x32200, 1540 0x32208, 0x32240, 1541 0x32248, 0x32280, 1542 0x32288, 0x322c0, 1543 0x322c8, 0x322fc, 1544 0x32600, 0x32630, 1545 0x32a00, 0x32abc, 1546 0x32b00, 0x32b10, 1547 0x32b20, 0x32b30, 1548 0x32b40, 0x32b50, 1549 0x32b60, 0x32b70, 1550 0x33000, 0x33028, 1551 0x33030, 0x33048, 1552 0x33060, 0x33068, 1553 0x33070, 0x3309c, 1554 0x330f0, 0x33128, 1555 0x33130, 0x33148, 1556 0x33160, 0x33168, 1557 0x33170, 0x3319c, 1558 0x331f0, 0x33238, 1559 0x33240, 0x33240, 1560 0x33248, 0x33250, 1561 0x3325c, 0x33264, 1562 0x33270, 0x332b8, 1563 0x332c0, 0x332e4, 1564 0x332f8, 0x33338, 1565 0x33340, 0x33340, 1566 0x33348, 0x33350, 1567 0x3335c, 0x33364, 1568 0x33370, 0x333b8, 1569 0x333c0, 0x333e4, 1570 0x333f8, 0x33428, 1571 0x33430, 0x33448, 1572 0x33460, 0x33468, 1573 0x33470, 0x3349c, 1574 0x334f0, 0x33528, 1575 0x33530, 0x33548, 1576 0x33560, 0x33568, 1577 0x33570, 0x3359c, 1578 0x335f0, 0x33638, 1579 0x33640, 0x33640, 1580 0x33648, 0x33650, 1581 0x3365c, 0x33664, 1582 0x33670, 0x336b8, 1583 0x336c0, 0x336e4, 1584 0x336f8, 0x33738, 1585 0x33740, 0x33740, 1586 0x33748, 0x33750, 1587 0x3375c, 0x33764, 1588 0x33770, 0x337b8, 1589 0x337c0, 0x337e4, 1590 0x337f8, 0x337fc, 1591 0x33814, 0x33814, 1592 0x3382c, 0x3382c, 1593 0x33880, 0x3388c, 1594 0x338e8, 0x338ec, 1595 0x33900, 0x33928, 1596 0x33930, 0x33948, 1597 0x33960, 0x33968, 1598 0x33970, 0x3399c, 1599 0x339f0, 0x33a38, 1600 0x33a40, 0x33a40, 1601 0x33a48, 0x33a50, 1602 0x33a5c, 0x33a64, 1603 0x33a70, 0x33ab8, 1604 0x33ac0, 0x33ae4, 1605 0x33af8, 0x33b10, 1606 0x33b28, 0x33b28, 1607 0x33b3c, 0x33b50, 1608 0x33bf0, 0x33c10, 1609 0x33c28, 0x33c28, 1610 0x33c3c, 0x33c50, 1611 0x33cf0, 0x33cfc, 1612 0x34000, 0x34030, 1613 0x34100, 0x34144, 1614 0x34190, 0x341a0, 1615 0x341a8, 0x341b8, 1616 0x341c4, 0x341c8, 1617 0x341d0, 0x341d0, 1618 0x34200, 0x34318, 1619 0x34400, 0x344b4, 1620 0x344c0, 0x3452c, 1621 0x34540, 0x3461c, 1622 0x34800, 0x34828, 1623 0x34834, 0x34834, 1624 0x348c0, 0x34908, 1625 0x34910, 0x349ac, 1626 0x34a00, 0x34a14, 1627 0x34a1c, 0x34a2c, 1628 0x34a44, 0x34a50, 1629 0x34a74, 0x34a74, 1630 0x34a7c, 0x34afc, 1631 0x34b08, 0x34c24, 1632 0x34d00, 0x34d00, 1633 0x34d08, 0x34d14, 1634 0x34d1c, 0x34d20, 1635 0x34d3c, 0x34d3c, 1636 0x34d48, 0x34d50, 1637 0x35200, 0x3520c, 1638 0x35220, 0x35220, 1639 0x35240, 0x35240, 1640 0x35600, 0x3560c, 1641 0x35a00, 0x35a1c, 1642 0x35e00, 0x35e20, 1643 0x35e38, 0x35e3c, 1644 0x35e80, 0x35e80, 1645 0x35e88, 0x35ea8, 1646 0x35eb0, 0x35eb4, 1647 0x35ec8, 0x35ed4, 1648 0x35fb8, 0x36004, 1649 0x36200, 0x36200, 1650 0x36208, 0x36240, 1651 0x36248, 0x36280, 1652 0x36288, 0x362c0, 1653 0x362c8, 0x362fc, 1654 0x36600, 0x36630, 1655 0x36a00, 0x36abc, 1656 0x36b00, 0x36b10, 1657 0x36b20, 0x36b30, 1658 0x36b40, 0x36b50, 1659 0x36b60, 0x36b70, 1660 0x37000, 0x37028, 1661 0x37030, 0x37048, 1662 0x37060, 0x37068, 1663 0x37070, 0x3709c, 1664 0x370f0, 0x37128, 1665 0x37130, 0x37148, 1666 0x37160, 0x37168, 1667 0x37170, 0x3719c, 1668 0x371f0, 0x37238, 1669 0x37240, 0x37240, 1670 0x37248, 0x37250, 1671 0x3725c, 0x37264, 1672 0x37270, 0x372b8, 1673 0x372c0, 0x372e4, 1674 0x372f8, 0x37338, 1675 0x37340, 0x37340, 1676 0x37348, 0x37350, 1677 0x3735c, 0x37364, 1678 0x37370, 0x373b8, 1679 0x373c0, 0x373e4, 1680 0x373f8, 0x37428, 1681 0x37430, 0x37448, 1682 0x37460, 0x37468, 1683 0x37470, 0x3749c, 1684 0x374f0, 0x37528, 1685 0x37530, 0x37548, 1686 0x37560, 0x37568, 1687 0x37570, 0x3759c, 1688 0x375f0, 0x37638, 1689 0x37640, 0x37640, 1690 0x37648, 0x37650, 1691 0x3765c, 0x37664, 1692 0x37670, 0x376b8, 1693 0x376c0, 0x376e4, 1694 0x376f8, 0x37738, 1695 0x37740, 0x37740, 1696 0x37748, 0x37750, 1697 0x3775c, 0x37764, 1698 0x37770, 0x377b8, 1699 0x377c0, 0x377e4, 1700 0x377f8, 0x377fc, 1701 0x37814, 0x37814, 1702 0x3782c, 0x3782c, 1703 0x37880, 0x3788c, 1704 0x378e8, 0x378ec, 1705 0x37900, 0x37928, 1706 0x37930, 0x37948, 1707 0x37960, 0x37968, 1708 0x37970, 0x3799c, 1709 0x379f0, 0x37a38, 1710 0x37a40, 0x37a40, 1711 0x37a48, 0x37a50, 1712 0x37a5c, 0x37a64, 1713 0x37a70, 0x37ab8, 1714 0x37ac0, 0x37ae4, 1715 0x37af8, 0x37b10, 1716 0x37b28, 0x37b28, 1717 0x37b3c, 0x37b50, 1718 0x37bf0, 0x37c10, 1719 0x37c28, 0x37c28, 1720 0x37c3c, 0x37c50, 1721 0x37cf0, 0x37cfc, 1722 0x38000, 0x38030, 1723 0x38100, 0x38144, 1724 0x38190, 0x381a0, 1725 0x381a8, 0x381b8, 1726 0x381c4, 0x381c8, 1727 0x381d0, 0x381d0, 1728 0x38200, 0x38318, 1729 0x38400, 0x384b4, 1730 0x384c0, 0x3852c, 1731 0x38540, 0x3861c, 1732 0x38800, 0x38828, 1733 0x38834, 0x38834, 1734 0x388c0, 0x38908, 1735 0x38910, 0x389ac, 1736 0x38a00, 0x38a14, 1737 0x38a1c, 0x38a2c, 1738 0x38a44, 0x38a50, 1739 0x38a74, 0x38a74, 1740 0x38a7c, 0x38afc, 1741 0x38b08, 0x38c24, 1742 0x38d00, 0x38d00, 1743 0x38d08, 0x38d14, 1744 0x38d1c, 0x38d20, 1745 0x38d3c, 0x38d3c, 1746 0x38d48, 0x38d50, 1747 0x39200, 0x3920c, 1748 0x39220, 0x39220, 1749 0x39240, 0x39240, 1750 0x39600, 0x3960c, 1751 0x39a00, 0x39a1c, 1752 0x39e00, 0x39e20, 1753 0x39e38, 0x39e3c, 1754 0x39e80, 0x39e80, 1755 0x39e88, 0x39ea8, 1756 0x39eb0, 0x39eb4, 1757 0x39ec8, 0x39ed4, 1758 0x39fb8, 0x3a004, 1759 0x3a200, 0x3a200, 1760 0x3a208, 0x3a240, 1761 0x3a248, 0x3a280, 1762 0x3a288, 0x3a2c0, 1763 0x3a2c8, 0x3a2fc, 1764 0x3a600, 0x3a630, 1765 0x3aa00, 0x3aabc, 1766 0x3ab00, 0x3ab10, 1767 0x3ab20, 0x3ab30, 1768 0x3ab40, 0x3ab50, 1769 0x3ab60, 0x3ab70, 1770 0x3b000, 0x3b028, 1771 0x3b030, 0x3b048, 1772 0x3b060, 0x3b068, 1773 0x3b070, 0x3b09c, 1774 0x3b0f0, 0x3b128, 1775 0x3b130, 0x3b148, 1776 0x3b160, 0x3b168, 1777 0x3b170, 0x3b19c, 1778 0x3b1f0, 0x3b238, 1779 0x3b240, 0x3b240, 1780 0x3b248, 0x3b250, 1781 0x3b25c, 0x3b264, 1782 0x3b270, 0x3b2b8, 1783 0x3b2c0, 0x3b2e4, 1784 0x3b2f8, 0x3b338, 1785 0x3b340, 0x3b340, 1786 0x3b348, 0x3b350, 1787 0x3b35c, 0x3b364, 1788 0x3b370, 0x3b3b8, 1789 0x3b3c0, 0x3b3e4, 1790 0x3b3f8, 0x3b428, 1791 0x3b430, 0x3b448, 1792 0x3b460, 0x3b468, 1793 0x3b470, 0x3b49c, 1794 0x3b4f0, 0x3b528, 1795 0x3b530, 0x3b548, 1796 0x3b560, 0x3b568, 1797 0x3b570, 0x3b59c, 1798 0x3b5f0, 0x3b638, 1799 0x3b640, 0x3b640, 1800 0x3b648, 0x3b650, 1801 0x3b65c, 0x3b664, 1802 0x3b670, 0x3b6b8, 1803 0x3b6c0, 0x3b6e4, 1804 0x3b6f8, 0x3b738, 1805 0x3b740, 0x3b740, 1806 0x3b748, 0x3b750, 1807 0x3b75c, 0x3b764, 1808 0x3b770, 0x3b7b8, 1809 0x3b7c0, 0x3b7e4, 1810 0x3b7f8, 0x3b7fc, 1811 0x3b814, 0x3b814, 1812 0x3b82c, 0x3b82c, 1813 0x3b880, 0x3b88c, 1814 0x3b8e8, 0x3b8ec, 1815 0x3b900, 0x3b928, 1816 0x3b930, 0x3b948, 1817 0x3b960, 0x3b968, 1818 0x3b970, 0x3b99c, 1819 0x3b9f0, 0x3ba38, 1820 0x3ba40, 0x3ba40, 1821 0x3ba48, 0x3ba50, 1822 0x3ba5c, 0x3ba64, 1823 0x3ba70, 0x3bab8, 1824 0x3bac0, 0x3bae4, 1825 0x3baf8, 0x3bb10, 1826 0x3bb28, 0x3bb28, 1827 0x3bb3c, 0x3bb50, 1828 0x3bbf0, 0x3bc10, 1829 0x3bc28, 0x3bc28, 1830 0x3bc3c, 0x3bc50, 1831 0x3bcf0, 0x3bcfc, 1832 0x3c000, 0x3c030, 1833 0x3c100, 0x3c144, 1834 0x3c190, 0x3c1a0, 1835 0x3c1a8, 0x3c1b8, 1836 0x3c1c4, 0x3c1c8, 1837 0x3c1d0, 0x3c1d0, 1838 0x3c200, 0x3c318, 1839 0x3c400, 0x3c4b4, 1840 0x3c4c0, 0x3c52c, 1841 0x3c540, 0x3c61c, 1842 0x3c800, 0x3c828, 1843 0x3c834, 0x3c834, 1844 0x3c8c0, 0x3c908, 1845 0x3c910, 0x3c9ac, 1846 0x3ca00, 0x3ca14, 1847 0x3ca1c, 0x3ca2c, 1848 0x3ca44, 0x3ca50, 1849 0x3ca74, 0x3ca74, 1850 0x3ca7c, 0x3cafc, 1851 0x3cb08, 0x3cc24, 1852 0x3cd00, 0x3cd00, 1853 0x3cd08, 0x3cd14, 1854 0x3cd1c, 0x3cd20, 1855 0x3cd3c, 0x3cd3c, 1856 0x3cd48, 0x3cd50, 1857 0x3d200, 0x3d20c, 1858 0x3d220, 0x3d220, 1859 0x3d240, 0x3d240, 1860 0x3d600, 0x3d60c, 1861 0x3da00, 0x3da1c, 1862 0x3de00, 0x3de20, 1863 0x3de38, 0x3de3c, 1864 0x3de80, 0x3de80, 1865 0x3de88, 0x3dea8, 1866 0x3deb0, 0x3deb4, 1867 0x3dec8, 0x3ded4, 1868 0x3dfb8, 0x3e004, 1869 0x3e200, 0x3e200, 1870 0x3e208, 0x3e240, 1871 0x3e248, 0x3e280, 1872 0x3e288, 0x3e2c0, 1873 0x3e2c8, 0x3e2fc, 1874 0x3e600, 0x3e630, 1875 0x3ea00, 0x3eabc, 1876 0x3eb00, 0x3eb10, 1877 0x3eb20, 0x3eb30, 1878 0x3eb40, 0x3eb50, 1879 0x3eb60, 0x3eb70, 1880 0x3f000, 0x3f028, 1881 0x3f030, 0x3f048, 1882 0x3f060, 0x3f068, 1883 0x3f070, 0x3f09c, 1884 0x3f0f0, 0x3f128, 1885 0x3f130, 0x3f148, 1886 0x3f160, 0x3f168, 1887 0x3f170, 0x3f19c, 1888 0x3f1f0, 0x3f238, 1889 0x3f240, 0x3f240, 1890 0x3f248, 0x3f250, 1891 0x3f25c, 0x3f264, 1892 0x3f270, 0x3f2b8, 1893 0x3f2c0, 0x3f2e4, 1894 0x3f2f8, 0x3f338, 1895 0x3f340, 0x3f340, 1896 0x3f348, 0x3f350, 1897 0x3f35c, 0x3f364, 1898 0x3f370, 0x3f3b8, 1899 0x3f3c0, 0x3f3e4, 1900 0x3f3f8, 0x3f428, 1901 0x3f430, 0x3f448, 1902 0x3f460, 0x3f468, 1903 0x3f470, 0x3f49c, 1904 0x3f4f0, 0x3f528, 1905 0x3f530, 0x3f548, 1906 0x3f560, 0x3f568, 1907 0x3f570, 0x3f59c, 1908 0x3f5f0, 0x3f638, 1909 0x3f640, 0x3f640, 1910 0x3f648, 0x3f650, 1911 0x3f65c, 0x3f664, 1912 0x3f670, 0x3f6b8, 1913 0x3f6c0, 0x3f6e4, 1914 0x3f6f8, 0x3f738, 1915 0x3f740, 0x3f740, 1916 0x3f748, 0x3f750, 1917 0x3f75c, 0x3f764, 1918 0x3f770, 0x3f7b8, 1919 0x3f7c0, 0x3f7e4, 1920 0x3f7f8, 0x3f7fc, 1921 0x3f814, 0x3f814, 1922 0x3f82c, 0x3f82c, 1923 0x3f880, 0x3f88c, 1924 0x3f8e8, 0x3f8ec, 1925 0x3f900, 0x3f928, 1926 0x3f930, 0x3f948, 1927 0x3f960, 0x3f968, 1928 0x3f970, 0x3f99c, 1929 0x3f9f0, 0x3fa38, 1930 0x3fa40, 0x3fa40, 1931 0x3fa48, 0x3fa50, 1932 0x3fa5c, 0x3fa64, 1933 0x3fa70, 0x3fab8, 1934 0x3fac0, 0x3fae4, 1935 0x3faf8, 0x3fb10, 1936 0x3fb28, 0x3fb28, 1937 0x3fb3c, 0x3fb50, 1938 0x3fbf0, 0x3fc10, 1939 0x3fc28, 0x3fc28, 1940 0x3fc3c, 0x3fc50, 1941 0x3fcf0, 0x3fcfc, 1942 0x40000, 0x4000c, 1943 0x40040, 0x40050, 1944 0x40060, 0x40068, 1945 0x4007c, 0x4008c, 1946 0x40094, 0x400b0, 1947 0x400c0, 0x40144, 1948 0x40180, 0x4018c, 1949 0x40200, 0x40254, 1950 0x40260, 0x40264, 1951 0x40270, 0x40288, 1952 0x40290, 0x40298, 1953 0x402ac, 0x402c8, 1954 0x402d0, 0x402e0, 1955 0x402f0, 0x402f0, 1956 0x40300, 0x4033c, 1957 0x403f8, 0x403fc, 1958 0x41304, 0x413c4, 1959 0x41400, 0x4140c, 1960 0x41414, 0x4141c, 1961 0x41480, 0x414d0, 1962 0x44000, 0x44054, 1963 0x4405c, 0x44078, 1964 0x440c0, 0x44174, 1965 0x44180, 0x441ac, 1966 0x441b4, 0x441b8, 1967 0x441c0, 0x44254, 1968 0x4425c, 0x44278, 1969 0x442c0, 0x44374, 1970 0x44380, 0x443ac, 1971 0x443b4, 0x443b8, 1972 0x443c0, 0x44454, 1973 0x4445c, 0x44478, 1974 0x444c0, 0x44574, 1975 0x44580, 0x445ac, 1976 0x445b4, 0x445b8, 1977 0x445c0, 0x44654, 1978 0x4465c, 0x44678, 1979 0x446c0, 0x44774, 1980 0x44780, 0x447ac, 1981 0x447b4, 0x447b8, 1982 0x447c0, 0x44854, 1983 0x4485c, 0x44878, 1984 0x448c0, 0x44974, 1985 0x44980, 0x449ac, 1986 0x449b4, 0x449b8, 1987 0x449c0, 0x449fc, 1988 0x45000, 0x45004, 1989 0x45010, 0x45030, 1990 0x45040, 0x45060, 1991 0x45068, 0x45068, 1992 0x45080, 0x45084, 1993 0x450a0, 0x450b0, 1994 0x45200, 0x45204, 1995 0x45210, 0x45230, 1996 0x45240, 0x45260, 1997 0x45268, 0x45268, 1998 0x45280, 0x45284, 1999 0x452a0, 0x452b0, 2000 0x460c0, 0x460e4, 2001 0x47000, 0x4703c, 2002 0x47044, 0x4708c, 2003 0x47200, 0x47250, 2004 0x47400, 0x47408, 2005 0x47414, 0x47420, 2006 0x47600, 0x47618, 2007 0x47800, 0x47814, 2008 0x48000, 0x4800c, 2009 0x48040, 0x48050, 2010 0x48060, 0x48068, 2011 0x4807c, 0x4808c, 2012 0x48094, 0x480b0, 2013 0x480c0, 0x48144, 2014 0x48180, 0x4818c, 2015 0x48200, 0x48254, 2016 0x48260, 0x48264, 2017 0x48270, 0x48288, 2018 0x48290, 0x48298, 2019 0x482ac, 0x482c8, 2020 0x482d0, 0x482e0, 2021 0x482f0, 0x482f0, 2022 0x48300, 0x4833c, 2023 0x483f8, 0x483fc, 2024 0x49304, 0x493c4, 2025 0x49400, 0x4940c, 2026 0x49414, 0x4941c, 2027 0x49480, 0x494d0, 2028 0x4c000, 0x4c054, 2029 0x4c05c, 0x4c078, 2030 0x4c0c0, 0x4c174, 2031 0x4c180, 0x4c1ac, 2032 0x4c1b4, 0x4c1b8, 2033 0x4c1c0, 0x4c254, 2034 0x4c25c, 0x4c278, 2035 0x4c2c0, 0x4c374, 2036 0x4c380, 0x4c3ac, 2037 0x4c3b4, 0x4c3b8, 2038 0x4c3c0, 0x4c454, 2039 0x4c45c, 0x4c478, 2040 0x4c4c0, 0x4c574, 2041 0x4c580, 0x4c5ac, 2042 0x4c5b4, 0x4c5b8, 2043 0x4c5c0, 0x4c654, 2044 0x4c65c, 0x4c678, 2045 0x4c6c0, 0x4c774, 2046 0x4c780, 0x4c7ac, 2047 0x4c7b4, 0x4c7b8, 2048 0x4c7c0, 0x4c854, 2049 0x4c85c, 0x4c878, 2050 0x4c8c0, 0x4c974, 2051 0x4c980, 0x4c9ac, 2052 0x4c9b4, 0x4c9b8, 2053 0x4c9c0, 0x4c9fc, 2054 0x4d000, 0x4d004, 2055 0x4d010, 0x4d030, 2056 0x4d040, 0x4d060, 2057 0x4d068, 0x4d068, 2058 0x4d080, 0x4d084, 2059 0x4d0a0, 0x4d0b0, 2060 0x4d200, 0x4d204, 2061 0x4d210, 0x4d230, 2062 0x4d240, 0x4d260, 2063 0x4d268, 0x4d268, 2064 0x4d280, 0x4d284, 2065 0x4d2a0, 0x4d2b0, 2066 0x4e0c0, 0x4e0e4, 2067 0x4f000, 0x4f03c, 2068 0x4f044, 0x4f08c, 2069 0x4f200, 0x4f250, 2070 0x4f400, 0x4f408, 2071 0x4f414, 0x4f420, 2072 0x4f600, 0x4f618, 2073 0x4f800, 0x4f814, 2074 0x50000, 0x50084, 2075 0x50090, 0x500cc, 2076 0x50400, 0x50400, 2077 0x50800, 0x50884, 2078 0x50890, 0x508cc, 2079 0x50c00, 0x50c00, 2080 0x51000, 0x5101c, 2081 0x51300, 0x51308, 2082 }; 2083 2084 static const unsigned int t6_reg_ranges[] = { 2085 0x1008, 0x101c, 2086 0x1024, 0x10a8, 2087 0x10b4, 0x10f8, 2088 0x1100, 0x1114, 2089 0x111c, 0x112c, 2090 0x1138, 0x113c, 2091 0x1144, 0x114c, 2092 0x1180, 0x1184, 2093 0x1190, 0x1194, 2094 0x11a0, 0x11a4, 2095 0x11b0, 0x11b4, 2096 0x11fc, 0x1274, 2097 0x1280, 0x133c, 2098 0x1800, 0x18fc, 2099 0x3000, 0x302c, 2100 0x3060, 0x30b0, 2101 0x30b8, 0x30d8, 2102 0x30e0, 0x30fc, 2103 0x3140, 0x357c, 2104 0x35a8, 0x35cc, 2105 0x35ec, 0x35ec, 2106 0x3600, 0x5624, 2107 0x56cc, 0x56ec, 2108 0x56f4, 0x5720, 2109 0x5728, 0x575c, 2110 0x580c, 0x5814, 2111 0x5890, 0x589c, 2112 0x58a4, 0x58ac, 2113 0x58b8, 0x58bc, 2114 0x5940, 0x595c, 2115 0x5980, 0x598c, 2116 0x59b0, 0x59c8, 2117 0x59d0, 0x59dc, 2118 0x59fc, 0x5a18, 2119 0x5a60, 0x5a6c, 2120 0x5a80, 0x5a8c, 2121 0x5a94, 0x5a9c, 2122 0x5b94, 0x5bfc, 2123 0x5c10, 0x5e48, 2124 0x5e50, 0x5e94, 2125 0x5ea0, 0x5eb0, 2126 0x5ec0, 0x5ec0, 2127 0x5ec8, 0x5ed0, 2128 0x5ee0, 0x5ee0, 2129 0x5ef0, 0x5ef0, 2130 0x5f00, 0x5f00, 2131 0x6000, 0x6020, 2132 0x6028, 0x6040, 2133 0x6058, 0x609c, 2134 0x60a8, 0x619c, 2135 0x7700, 0x7798, 2136 0x77c0, 0x7880, 2137 0x78cc, 0x78fc, 2138 0x7b00, 0x7b58, 2139 0x7b60, 0x7b84, 2140 0x7b8c, 0x7c54, 2141 0x7d00, 0x7d38, 2142 0x7d40, 0x7d84, 2143 0x7d8c, 0x7ddc, 2144 0x7de4, 0x7e04, 2145 0x7e10, 0x7e1c, 2146 0x7e24, 0x7e38, 2147 0x7e40, 0x7e44, 2148 0x7e4c, 0x7e78, 2149 0x7e80, 0x7edc, 2150 0x7ee8, 0x7efc, 2151 0x8dc0, 0x8de4, 2152 0x8df8, 0x8e04, 2153 0x8e10, 0x8e84, 2154 0x8ea0, 0x8f88, 2155 0x8fb8, 0x9058, 2156 0x9060, 0x9060, 2157 0x9068, 0x90f8, 2158 0x9100, 0x9124, 2159 0x9400, 0x9470, 2160 0x9600, 0x9600, 2161 0x9608, 0x9638, 2162 0x9640, 0x9704, 2163 0x9710, 0x971c, 2164 0x9800, 0x9808, 2165 0x9820, 0x983c, 2166 0x9850, 0x9864, 2167 0x9c00, 0x9c6c, 2168 0x9c80, 0x9cec, 2169 0x9d00, 0x9d6c, 2170 0x9d80, 0x9dec, 2171 0x9e00, 0x9e6c, 2172 0x9e80, 0x9eec, 2173 0x9f00, 0x9f6c, 2174 0x9f80, 0xa020, 2175 0xd004, 0xd03c, 2176 0xd100, 0xd118, 2177 0xd200, 0xd214, 2178 0xd220, 0xd234, 2179 0xd240, 0xd254, 2180 0xd260, 0xd274, 2181 0xd280, 0xd294, 2182 0xd2a0, 0xd2b4, 2183 0xd2c0, 0xd2d4, 2184 0xd2e0, 0xd2f4, 2185 0xd300, 0xd31c, 2186 0xdfc0, 0xdfe0, 2187 0xe000, 0xf008, 2188 0xf010, 0xf018, 2189 0xf020, 0xf028, 2190 0x11000, 0x11014, 2191 0x11048, 0x1106c, 2192 0x11074, 0x11088, 2193 0x11098, 0x11120, 2194 0x1112c, 0x1117c, 2195 0x11190, 0x112e0, 2196 0x11300, 0x1130c, 2197 0x12000, 0x1206c, 2198 0x19040, 0x1906c, 2199 0x19078, 0x19080, 2200 0x1908c, 0x190e8, 2201 0x190f0, 0x190f8, 2202 0x19100, 0x19110, 2203 0x19120, 0x19124, 2204 0x19150, 0x19194, 2205 0x1919c, 0x191b0, 2206 0x191d0, 0x191e8, 2207 0x19238, 0x19290, 2208 0x192a4, 0x192b0, 2209 0x192bc, 0x192bc, 2210 0x19348, 0x1934c, 2211 0x193f8, 0x19418, 2212 0x19420, 0x19428, 2213 0x19430, 0x19444, 2214 0x1944c, 0x1946c, 2215 0x19474, 0x19474, 2216 0x19490, 0x194cc, 2217 0x194f0, 0x194f8, 2218 0x19c00, 0x19c48, 2219 0x19c50, 0x19c80, 2220 0x19c94, 0x19c98, 2221 0x19ca0, 0x19cbc, 2222 0x19ce4, 0x19ce4, 2223 0x19cf0, 0x19cf8, 2224 0x19d00, 0x19d28, 2225 0x19d50, 0x19d78, 2226 0x19d94, 0x19d98, 2227 0x19da0, 0x19dc8, 2228 0x19df0, 0x19e10, 2229 0x19e50, 0x19e6c, 2230 0x19ea0, 0x19ebc, 2231 0x19ec4, 0x19ef4, 2232 0x19f04, 0x19f2c, 2233 0x19f34, 0x19f34, 2234 0x19f40, 0x19f50, 2235 0x19f90, 0x19fac, 2236 0x19fc4, 0x19fc8, 2237 0x19fd0, 0x19fe4, 2238 0x1a000, 0x1a004, 2239 0x1a010, 0x1a06c, 2240 0x1a0b0, 0x1a0e4, 2241 0x1a0ec, 0x1a0f8, 2242 0x1a100, 0x1a108, 2243 0x1a114, 0x1a120, 2244 0x1a128, 0x1a130, 2245 0x1a138, 0x1a138, 2246 0x1a190, 0x1a1c4, 2247 0x1a1fc, 0x1a1fc, 2248 0x1e008, 0x1e00c, 2249 0x1e040, 0x1e044, 2250 0x1e04c, 0x1e04c, 2251 0x1e284, 0x1e290, 2252 0x1e2c0, 0x1e2c0, 2253 0x1e2e0, 0x1e2e0, 2254 0x1e300, 0x1e384, 2255 0x1e3c0, 0x1e3c8, 2256 0x1e408, 0x1e40c, 2257 0x1e440, 0x1e444, 2258 0x1e44c, 0x1e44c, 2259 0x1e684, 0x1e690, 2260 0x1e6c0, 0x1e6c0, 2261 0x1e6e0, 0x1e6e0, 2262 0x1e700, 0x1e784, 2263 0x1e7c0, 0x1e7c8, 2264 0x1e808, 0x1e80c, 2265 0x1e840, 0x1e844, 2266 0x1e84c, 0x1e84c, 2267 0x1ea84, 0x1ea90, 2268 0x1eac0, 0x1eac0, 2269 0x1eae0, 0x1eae0, 2270 0x1eb00, 0x1eb84, 2271 0x1ebc0, 0x1ebc8, 2272 0x1ec08, 0x1ec0c, 2273 0x1ec40, 0x1ec44, 2274 0x1ec4c, 0x1ec4c, 2275 0x1ee84, 0x1ee90, 2276 0x1eec0, 0x1eec0, 2277 0x1eee0, 0x1eee0, 2278 0x1ef00, 0x1ef84, 2279 0x1efc0, 0x1efc8, 2280 0x1f008, 0x1f00c, 2281 0x1f040, 0x1f044, 2282 0x1f04c, 0x1f04c, 2283 0x1f284, 0x1f290, 2284 0x1f2c0, 0x1f2c0, 2285 0x1f2e0, 0x1f2e0, 2286 0x1f300, 0x1f384, 2287 0x1f3c0, 0x1f3c8, 2288 0x1f408, 0x1f40c, 2289 0x1f440, 0x1f444, 2290 0x1f44c, 0x1f44c, 2291 0x1f684, 0x1f690, 2292 0x1f6c0, 0x1f6c0, 2293 0x1f6e0, 0x1f6e0, 2294 0x1f700, 0x1f784, 2295 0x1f7c0, 0x1f7c8, 2296 0x1f808, 0x1f80c, 2297 0x1f840, 0x1f844, 2298 0x1f84c, 0x1f84c, 2299 0x1fa84, 0x1fa90, 2300 0x1fac0, 0x1fac0, 2301 0x1fae0, 0x1fae0, 2302 0x1fb00, 0x1fb84, 2303 0x1fbc0, 0x1fbc8, 2304 0x1fc08, 0x1fc0c, 2305 0x1fc40, 0x1fc44, 2306 0x1fc4c, 0x1fc4c, 2307 0x1fe84, 0x1fe90, 2308 0x1fec0, 0x1fec0, 2309 0x1fee0, 0x1fee0, 2310 0x1ff00, 0x1ff84, 2311 0x1ffc0, 0x1ffc8, 2312 0x30000, 0x30030, 2313 0x30100, 0x30168, 2314 0x30190, 0x301a0, 2315 0x301a8, 0x301b8, 2316 0x301c4, 0x301c8, 2317 0x301d0, 0x301d0, 2318 0x30200, 0x30320, 2319 0x30400, 0x304b4, 2320 0x304c0, 0x3052c, 2321 0x30540, 0x3061c, 2322 0x30800, 0x308a0, 2323 0x308c0, 0x30908, 2324 0x30910, 0x309b8, 2325 0x30a00, 0x30a04, 2326 0x30a0c, 0x30a14, 2327 0x30a1c, 0x30a2c, 2328 0x30a44, 0x30a50, 2329 0x30a74, 0x30a74, 2330 0x30a7c, 0x30afc, 2331 0x30b08, 0x30c24, 2332 0x30d00, 0x30d14, 2333 0x30d1c, 0x30d3c, 2334 0x30d44, 0x30d4c, 2335 0x30d54, 0x30d74, 2336 0x30d7c, 0x30d7c, 2337 0x30de0, 0x30de0, 2338 0x30e00, 0x30ed4, 2339 0x30f00, 0x30fa4, 2340 0x30fc0, 0x30fc4, 2341 0x31000, 0x31004, 2342 0x31080, 0x310fc, 2343 0x31208, 0x31220, 2344 0x3123c, 0x31254, 2345 0x31300, 0x31300, 2346 0x31308, 0x3131c, 2347 0x31338, 0x3133c, 2348 0x31380, 0x31380, 2349 0x31388, 0x313a8, 2350 0x313b4, 0x313b4, 2351 0x31400, 0x31420, 2352 0x31438, 0x3143c, 2353 0x31480, 0x31480, 2354 0x314a8, 0x314a8, 2355 0x314b0, 0x314b4, 2356 0x314c8, 0x314d4, 2357 0x31a40, 0x31a4c, 2358 0x31af0, 0x31b20, 2359 0x31b38, 0x31b3c, 2360 0x31b80, 0x31b80, 2361 0x31ba8, 0x31ba8, 2362 0x31bb0, 0x31bb4, 2363 0x31bc8, 0x31bd4, 2364 0x32140, 0x3218c, 2365 0x321f0, 0x321f4, 2366 0x32200, 0x32200, 2367 0x32218, 0x32218, 2368 0x32400, 0x32400, 2369 0x32408, 0x3241c, 2370 0x32618, 0x32620, 2371 0x32664, 0x32664, 2372 0x326a8, 0x326a8, 2373 0x326ec, 0x326ec, 2374 0x32a00, 0x32abc, 2375 0x32b00, 0x32b18, 2376 0x32b20, 0x32b38, 2377 0x32b40, 0x32b58, 2378 0x32b60, 0x32b78, 2379 0x32c00, 0x32c00, 2380 0x32c08, 0x32c3c, 2381 0x33000, 0x3302c, 2382 0x33034, 0x33050, 2383 0x33058, 0x33058, 2384 0x33060, 0x3308c, 2385 0x3309c, 0x330ac, 2386 0x330c0, 0x330c0, 2387 0x330c8, 0x330d0, 2388 0x330d8, 0x330e0, 2389 0x330ec, 0x3312c, 2390 0x33134, 0x33150, 2391 0x33158, 0x33158, 2392 0x33160, 0x3318c, 2393 0x3319c, 0x331ac, 2394 0x331c0, 0x331c0, 2395 0x331c8, 0x331d0, 2396 0x331d8, 0x331e0, 2397 0x331ec, 0x33290, 2398 0x33298, 0x332c4, 2399 0x332e4, 0x33390, 2400 0x33398, 0x333c4, 2401 0x333e4, 0x3342c, 2402 0x33434, 0x33450, 2403 0x33458, 0x33458, 2404 0x33460, 0x3348c, 2405 0x3349c, 0x334ac, 2406 0x334c0, 0x334c0, 2407 0x334c8, 0x334d0, 2408 0x334d8, 0x334e0, 2409 0x334ec, 0x3352c, 2410 0x33534, 0x33550, 2411 0x33558, 0x33558, 2412 0x33560, 0x3358c, 2413 0x3359c, 0x335ac, 2414 0x335c0, 0x335c0, 2415 0x335c8, 0x335d0, 2416 0x335d8, 0x335e0, 2417 0x335ec, 0x33690, 2418 0x33698, 0x336c4, 2419 0x336e4, 0x33790, 2420 0x33798, 0x337c4, 2421 0x337e4, 0x337fc, 2422 0x33814, 0x33814, 2423 0x33854, 0x33868, 2424 0x33880, 0x3388c, 2425 0x338c0, 0x338d0, 2426 0x338e8, 0x338ec, 2427 0x33900, 0x3392c, 2428 0x33934, 0x33950, 2429 0x33958, 0x33958, 2430 0x33960, 0x3398c, 2431 0x3399c, 0x339ac, 2432 0x339c0, 0x339c0, 2433 0x339c8, 0x339d0, 2434 0x339d8, 0x339e0, 2435 0x339ec, 0x33a90, 2436 0x33a98, 0x33ac4, 2437 0x33ae4, 0x33b10, 2438 0x33b24, 0x33b28, 2439 0x33b38, 0x33b50, 2440 0x33bf0, 0x33c10, 2441 0x33c24, 0x33c28, 2442 0x33c38, 0x33c50, 2443 0x33cf0, 0x33cfc, 2444 0x34000, 0x34030, 2445 0x34100, 0x34168, 2446 0x34190, 0x341a0, 2447 0x341a8, 0x341b8, 2448 0x341c4, 0x341c8, 2449 0x341d0, 0x341d0, 2450 0x34200, 0x34320, 2451 0x34400, 0x344b4, 2452 0x344c0, 0x3452c, 2453 0x34540, 0x3461c, 2454 0x34800, 0x348a0, 2455 0x348c0, 0x34908, 2456 0x34910, 0x349b8, 2457 0x34a00, 0x34a04, 2458 0x34a0c, 0x34a14, 2459 0x34a1c, 0x34a2c, 2460 0x34a44, 0x34a50, 2461 0x34a74, 0x34a74, 2462 0x34a7c, 0x34afc, 2463 0x34b08, 0x34c24, 2464 0x34d00, 0x34d14, 2465 0x34d1c, 0x34d3c, 2466 0x34d44, 0x34d4c, 2467 0x34d54, 0x34d74, 2468 0x34d7c, 0x34d7c, 2469 0x34de0, 0x34de0, 2470 0x34e00, 0x34ed4, 2471 0x34f00, 0x34fa4, 2472 0x34fc0, 0x34fc4, 2473 0x35000, 0x35004, 2474 0x35080, 0x350fc, 2475 0x35208, 0x35220, 2476 0x3523c, 0x35254, 2477 0x35300, 0x35300, 2478 0x35308, 0x3531c, 2479 0x35338, 0x3533c, 2480 0x35380, 0x35380, 2481 0x35388, 0x353a8, 2482 0x353b4, 0x353b4, 2483 0x35400, 0x35420, 2484 0x35438, 0x3543c, 2485 0x35480, 0x35480, 2486 0x354a8, 0x354a8, 2487 0x354b0, 0x354b4, 2488 0x354c8, 0x354d4, 2489 0x35a40, 0x35a4c, 2490 0x35af0, 0x35b20, 2491 0x35b38, 0x35b3c, 2492 0x35b80, 0x35b80, 2493 0x35ba8, 0x35ba8, 2494 0x35bb0, 0x35bb4, 2495 0x35bc8, 0x35bd4, 2496 0x36140, 0x3618c, 2497 0x361f0, 0x361f4, 2498 0x36200, 0x36200, 2499 0x36218, 0x36218, 2500 0x36400, 0x36400, 2501 0x36408, 0x3641c, 2502 0x36618, 0x36620, 2503 0x36664, 0x36664, 2504 0x366a8, 0x366a8, 2505 0x366ec, 0x366ec, 2506 0x36a00, 0x36abc, 2507 0x36b00, 0x36b18, 2508 0x36b20, 0x36b38, 2509 0x36b40, 0x36b58, 2510 0x36b60, 0x36b78, 2511 0x36c00, 0x36c00, 2512 0x36c08, 0x36c3c, 2513 0x37000, 0x3702c, 2514 0x37034, 0x37050, 2515 0x37058, 0x37058, 2516 0x37060, 0x3708c, 2517 0x3709c, 0x370ac, 2518 0x370c0, 0x370c0, 2519 0x370c8, 0x370d0, 2520 0x370d8, 0x370e0, 2521 0x370ec, 0x3712c, 2522 0x37134, 0x37150, 2523 0x37158, 0x37158, 2524 0x37160, 0x3718c, 2525 0x3719c, 0x371ac, 2526 0x371c0, 0x371c0, 2527 0x371c8, 0x371d0, 2528 0x371d8, 0x371e0, 2529 0x371ec, 0x37290, 2530 0x37298, 0x372c4, 2531 0x372e4, 0x37390, 2532 0x37398, 0x373c4, 2533 0x373e4, 0x3742c, 2534 0x37434, 0x37450, 2535 0x37458, 0x37458, 2536 0x37460, 0x3748c, 2537 0x3749c, 0x374ac, 2538 0x374c0, 0x374c0, 2539 0x374c8, 0x374d0, 2540 0x374d8, 0x374e0, 2541 0x374ec, 0x3752c, 2542 0x37534, 0x37550, 2543 0x37558, 0x37558, 2544 0x37560, 0x3758c, 2545 0x3759c, 0x375ac, 2546 0x375c0, 0x375c0, 2547 0x375c8, 0x375d0, 2548 0x375d8, 0x375e0, 2549 0x375ec, 0x37690, 2550 0x37698, 0x376c4, 2551 0x376e4, 0x37790, 2552 0x37798, 0x377c4, 2553 0x377e4, 0x377fc, 2554 0x37814, 0x37814, 2555 0x37854, 0x37868, 2556 0x37880, 0x3788c, 2557 0x378c0, 0x378d0, 2558 0x378e8, 0x378ec, 2559 0x37900, 0x3792c, 2560 0x37934, 0x37950, 2561 0x37958, 0x37958, 2562 0x37960, 0x3798c, 2563 0x3799c, 0x379ac, 2564 0x379c0, 0x379c0, 2565 0x379c8, 0x379d0, 2566 0x379d8, 0x379e0, 2567 0x379ec, 0x37a90, 2568 0x37a98, 0x37ac4, 2569 0x37ae4, 0x37b10, 2570 0x37b24, 0x37b28, 2571 0x37b38, 0x37b50, 2572 0x37bf0, 0x37c10, 2573 0x37c24, 0x37c28, 2574 0x37c38, 0x37c50, 2575 0x37cf0, 0x37cfc, 2576 0x40040, 0x40040, 2577 0x40080, 0x40084, 2578 0x40100, 0x40100, 2579 0x40140, 0x401bc, 2580 0x40200, 0x40214, 2581 0x40228, 0x40228, 2582 0x40240, 0x40258, 2583 0x40280, 0x40280, 2584 0x40304, 0x40304, 2585 0x40330, 0x4033c, 2586 0x41304, 0x413c8, 2587 0x413d0, 0x413dc, 2588 0x413f0, 0x413f0, 2589 0x41400, 0x4140c, 2590 0x41414, 0x4141c, 2591 0x41480, 0x414d0, 2592 0x44000, 0x4407c, 2593 0x440c0, 0x441ac, 2594 0x441b4, 0x4427c, 2595 0x442c0, 0x443ac, 2596 0x443b4, 0x4447c, 2597 0x444c0, 0x445ac, 2598 0x445b4, 0x4467c, 2599 0x446c0, 0x447ac, 2600 0x447b4, 0x4487c, 2601 0x448c0, 0x449ac, 2602 0x449b4, 0x44a7c, 2603 0x44ac0, 0x44bac, 2604 0x44bb4, 0x44c7c, 2605 0x44cc0, 0x44dac, 2606 0x44db4, 0x44e7c, 2607 0x44ec0, 0x44fac, 2608 0x44fb4, 0x4507c, 2609 0x450c0, 0x451ac, 2610 0x451b4, 0x451fc, 2611 0x45800, 0x45804, 2612 0x45810, 0x45830, 2613 0x45840, 0x45860, 2614 0x45868, 0x45868, 2615 0x45880, 0x45884, 2616 0x458a0, 0x458b0, 2617 0x45a00, 0x45a04, 2618 0x45a10, 0x45a30, 2619 0x45a40, 0x45a60, 2620 0x45a68, 0x45a68, 2621 0x45a80, 0x45a84, 2622 0x45aa0, 0x45ab0, 2623 0x460c0, 0x460e4, 2624 0x47000, 0x4703c, 2625 0x47044, 0x4708c, 2626 0x47200, 0x47250, 2627 0x47400, 0x47408, 2628 0x47414, 0x47420, 2629 0x47600, 0x47618, 2630 0x47800, 0x47814, 2631 0x47820, 0x4782c, 2632 0x50000, 0x50084, 2633 0x50090, 0x500cc, 2634 0x50300, 0x50384, 2635 0x50400, 0x50400, 2636 0x50800, 0x50884, 2637 0x50890, 0x508cc, 2638 0x50b00, 0x50b84, 2639 0x50c00, 0x50c00, 2640 0x51000, 0x51020, 2641 0x51028, 0x510b0, 2642 0x51300, 0x51324, 2643 }; 2644 2645 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2646 const unsigned int *reg_ranges; 2647 int reg_ranges_size, range; 2648 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2649 2650 /* Select the right set of register ranges to dump depending on the 2651 * adapter chip type. 2652 */ 2653 switch (chip_version) { 2654 case CHELSIO_T4: 2655 reg_ranges = t4_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T5: 2660 reg_ranges = t5_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2662 break; 2663 2664 case CHELSIO_T6: 2665 reg_ranges = t6_reg_ranges; 2666 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2667 break; 2668 2669 default: 2670 dev_err(adap->pdev_dev, 2671 "Unsupported chip version %d\n", chip_version); 2672 return; 2673 } 2674 2675 /* Clear the register buffer and insert the appropriate register 2676 * values selected by the above register ranges. 2677 */ 2678 memset(buf, 0, buf_size); 2679 for (range = 0; range < reg_ranges_size; range += 2) { 2680 unsigned int reg = reg_ranges[range]; 2681 unsigned int last_reg = reg_ranges[range + 1]; 2682 u32 *bufp = (u32 *)((char *)buf + reg); 2683 2684 /* Iterate across the register range filling in the register 2685 * buffer but don't write past the end of the register buffer. 2686 */ 2687 while (reg <= last_reg && bufp < buf_end) { 2688 *bufp++ = t4_read_reg(adap, reg); 2689 reg += sizeof(u32); 2690 } 2691 } 2692 } 2693 2694 #define EEPROM_STAT_ADDR 0x7bfc 2695 #define VPD_BASE 0x400 2696 #define VPD_BASE_OLD 0 2697 #define VPD_LEN 1024 2698 #define CHELSIO_VPD_UNIQUE_ID 0x82 2699 2700 /** 2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2702 * @phys_addr: the physical EEPROM address 2703 * @fn: the PCI function number 2704 * @sz: size of function-specific area 2705 * 2706 * Translate a physical EEPROM address to virtual. The first 1K is 2707 * accessed through virtual addresses starting at 31K, the rest is 2708 * accessed through virtual addresses starting at 0. 2709 * 2710 * The mapping is as follows: 2711 * [0..1K) -> [31K..32K) 2712 * [1K..1K+A) -> [31K-A..31K) 2713 * [1K+A..ES) -> [0..ES-A-1K) 2714 * 2715 * where A = @fn * @sz, and ES = EEPROM size. 2716 */ 2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2718 { 2719 fn *= sz; 2720 if (phys_addr < 1024) 2721 return phys_addr + (31 << 10); 2722 if (phys_addr < 1024 + fn) 2723 return 31744 - fn + phys_addr - 1024; 2724 if (phys_addr < EEPROMSIZE) 2725 return phys_addr - 1024 - fn; 2726 return -EINVAL; 2727 } 2728 2729 /** 2730 * t4_seeprom_wp - enable/disable EEPROM write protection 2731 * @adapter: the adapter 2732 * @enable: whether to enable or disable write protection 2733 * 2734 * Enables or disables write protection on the serial EEPROM. 2735 */ 2736 int t4_seeprom_wp(struct adapter *adapter, bool enable) 2737 { 2738 unsigned int v = enable ? 0xc : 0; 2739 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2740 return ret < 0 ? ret : 0; 2741 } 2742 2743 /** 2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2745 * @adapter: adapter to read 2746 * @p: where to store the parameters 2747 * 2748 * Reads card parameters stored in VPD EEPROM. 2749 */ 2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2751 { 2752 int i, ret = 0, addr; 2753 int ec, sn, pn, na; 2754 u8 *vpd, csum; 2755 unsigned int vpdr_len, kw_offset, id_len; 2756 2757 vpd = vmalloc(VPD_LEN); 2758 if (!vpd) 2759 return -ENOMEM; 2760 2761 /* Card information normally starts at VPD_BASE but early cards had 2762 * it at 0. 2763 */ 2764 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); 2765 if (ret < 0) 2766 goto out; 2767 2768 /* The VPD shall have a unique identifier specified by the PCI SIG. 2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 2771 * is expected to automatically put this entry at the 2772 * beginning of the VPD. 2773 */ 2774 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 2775 2776 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2777 if (ret < 0) 2778 goto out; 2779 2780 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { 2781 dev_err(adapter->pdev_dev, "missing VPD ID string\n"); 2782 ret = -EINVAL; 2783 goto out; 2784 } 2785 2786 id_len = pci_vpd_lrdt_size(vpd); 2787 if (id_len > ID_LEN) 2788 id_len = ID_LEN; 2789 2790 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); 2791 if (i < 0) { 2792 dev_err(adapter->pdev_dev, "missing VPD-R section\n"); 2793 ret = -EINVAL; 2794 goto out; 2795 } 2796 2797 vpdr_len = pci_vpd_lrdt_size(&vpd[i]); 2798 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; 2799 if (vpdr_len + kw_offset > VPD_LEN) { 2800 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); 2801 ret = -EINVAL; 2802 goto out; 2803 } 2804 2805 #define FIND_VPD_KW(var, name) do { \ 2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ 2807 if (var < 0) { \ 2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ 2809 ret = -EINVAL; \ 2810 goto out; \ 2811 } \ 2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \ 2813 } while (0) 2814 2815 FIND_VPD_KW(i, "RV"); 2816 for (csum = 0; i >= 0; i--) 2817 csum += vpd[i]; 2818 2819 if (csum) { 2820 dev_err(adapter->pdev_dev, 2821 "corrupted VPD EEPROM, actual csum %u\n", csum); 2822 ret = -EINVAL; 2823 goto out; 2824 } 2825 2826 FIND_VPD_KW(ec, "EC"); 2827 FIND_VPD_KW(sn, "SN"); 2828 FIND_VPD_KW(pn, "PN"); 2829 FIND_VPD_KW(na, "NA"); 2830 #undef FIND_VPD_KW 2831 2832 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); 2833 strim(p->id); 2834 memcpy(p->ec, vpd + ec, EC_LEN); 2835 strim(p->ec); 2836 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); 2837 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 2838 strim(p->sn); 2839 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); 2840 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 2841 strim(p->pn); 2842 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 2843 strim((char *)p->na); 2844 2845 out: 2846 vfree(vpd); 2847 return ret < 0 ? ret : 0; 2848 } 2849 2850 /** 2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2852 * @adapter: adapter to read 2853 * @p: where to store the parameters 2854 * 2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2856 * Clock. This can only be called after a connection to the firmware 2857 * is established. 2858 */ 2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2860 { 2861 u32 cclk_param, cclk_val; 2862 int ret; 2863 2864 /* Grab the raw VPD parameters. 2865 */ 2866 ret = t4_get_raw_vpd_params(adapter, p); 2867 if (ret) 2868 return ret; 2869 2870 /* Ask firmware for the Core Clock since it knows how to translate the 2871 * Reference Clock ('V2') VPD field into a Core Clock value ... 2872 */ 2873 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2875 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2876 1, &cclk_param, &cclk_val); 2877 2878 if (ret) 2879 return ret; 2880 p->cclk = cclk_val; 2881 2882 return 0; 2883 } 2884 2885 /** 2886 * t4_get_pfres - retrieve VF resource limits 2887 * @adapter: the adapter 2888 * 2889 * Retrieves configured resource limits and capabilities for a physical 2890 * function. The results are stored in @adapter->pfres. 2891 */ 2892 int t4_get_pfres(struct adapter *adapter) 2893 { 2894 struct pf_resources *pfres = &adapter->params.pfres; 2895 struct fw_pfvf_cmd cmd, rpl; 2896 int v; 2897 u32 word; 2898 2899 /* Execute PFVF Read command to get VF resource limits; bail out early 2900 * with error on command failure. 2901 */ 2902 memset(&cmd, 0, sizeof(cmd)); 2903 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2904 FW_CMD_REQUEST_F | 2905 FW_CMD_READ_F | 2906 FW_PFVF_CMD_PFN_V(adapter->pf) | 2907 FW_PFVF_CMD_VFN_V(0)); 2908 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2909 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2910 if (v != FW_SUCCESS) 2911 return v; 2912 2913 /* Extract PF resource limits and return success. 2914 */ 2915 word = be32_to_cpu(rpl.niqflint_niq); 2916 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2917 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2918 2919 word = be32_to_cpu(rpl.type_to_neq); 2920 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2921 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2922 2923 word = be32_to_cpu(rpl.tc_to_nexactf); 2924 pfres->tc = FW_PFVF_CMD_TC_G(word); 2925 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2926 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2927 2928 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2929 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2930 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2931 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2932 2933 return 0; 2934 } 2935 2936 /* serial flash and firmware constants */ 2937 enum { 2938 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2939 2940 /* flash command opcodes */ 2941 SF_PROG_PAGE = 2, /* program page */ 2942 SF_WR_DISABLE = 4, /* disable writes */ 2943 SF_RD_STATUS = 5, /* read status register */ 2944 SF_WR_ENABLE = 6, /* enable writes */ 2945 SF_RD_DATA_FAST = 0xb, /* read flash */ 2946 SF_RD_ID = 0x9f, /* read ID */ 2947 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2948 }; 2949 2950 /** 2951 * sf1_read - read data from the serial flash 2952 * @adapter: the adapter 2953 * @byte_cnt: number of bytes to read 2954 * @cont: whether another operation will be chained 2955 * @lock: whether to lock SF for PL access only 2956 * @valp: where to store the read data 2957 * 2958 * Reads up to 4 bytes of data from the serial flash. The location of 2959 * the read needs to be specified prior to calling this by issuing the 2960 * appropriate commands to the serial flash. 2961 */ 2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2963 int lock, u32 *valp) 2964 { 2965 int ret; 2966 2967 if (!byte_cnt || byte_cnt > 4) 2968 return -EINVAL; 2969 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2970 return -EBUSY; 2971 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2972 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2973 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2974 if (!ret) 2975 *valp = t4_read_reg(adapter, SF_DATA_A); 2976 return ret; 2977 } 2978 2979 /** 2980 * sf1_write - write data to the serial flash 2981 * @adapter: the adapter 2982 * @byte_cnt: number of bytes to write 2983 * @cont: whether another operation will be chained 2984 * @lock: whether to lock SF for PL access only 2985 * @val: value to write 2986 * 2987 * Writes up to 4 bytes of data to the serial flash. The location of 2988 * the write needs to be specified prior to calling this by issuing the 2989 * appropriate commands to the serial flash. 2990 */ 2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2992 int lock, u32 val) 2993 { 2994 if (!byte_cnt || byte_cnt > 4) 2995 return -EINVAL; 2996 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2997 return -EBUSY; 2998 t4_write_reg(adapter, SF_DATA_A, val); 2999 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 3000 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 3001 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 3002 } 3003 3004 /** 3005 * flash_wait_op - wait for a flash operation to complete 3006 * @adapter: the adapter 3007 * @attempts: max number of polls of the status register 3008 * @delay: delay between polls in ms 3009 * 3010 * Wait for a flash operation to complete by polling the status register. 3011 */ 3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3013 { 3014 int ret; 3015 u32 status; 3016 3017 while (1) { 3018 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3019 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3020 return ret; 3021 if (!(status & 1)) 3022 return 0; 3023 if (--attempts == 0) 3024 return -EAGAIN; 3025 if (delay) 3026 msleep(delay); 3027 } 3028 } 3029 3030 /** 3031 * t4_read_flash - read words from serial flash 3032 * @adapter: the adapter 3033 * @addr: the start address for the read 3034 * @nwords: how many 32-bit words to read 3035 * @data: where to store the read data 3036 * @byte_oriented: whether to store data as bytes or as words 3037 * 3038 * Read the specified number of 32-bit words from the serial flash. 3039 * If @byte_oriented is set the read data is stored as a byte array 3040 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3041 * natural endianness. 3042 */ 3043 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3044 unsigned int nwords, u32 *data, int byte_oriented) 3045 { 3046 int ret; 3047 3048 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3049 return -EINVAL; 3050 3051 addr = swab32(addr) | SF_RD_DATA_FAST; 3052 3053 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3054 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3055 return ret; 3056 3057 for ( ; nwords; nwords--, data++) { 3058 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3059 if (nwords == 1) 3060 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3061 if (ret) 3062 return ret; 3063 if (byte_oriented) 3064 *data = (__force __u32)(cpu_to_be32(*data)); 3065 } 3066 return 0; 3067 } 3068 3069 /** 3070 * t4_write_flash - write up to a page of data to the serial flash 3071 * @adapter: the adapter 3072 * @addr: the start address to write 3073 * @n: length of data to write in bytes 3074 * @data: the data to write 3075 * 3076 * Writes up to a page of data (256 bytes) to the serial flash starting 3077 * at the given address. All the data must be written to the same page. 3078 */ 3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3080 unsigned int n, const u8 *data) 3081 { 3082 int ret; 3083 u32 buf[64]; 3084 unsigned int i, c, left, val, offset = addr & 0xff; 3085 3086 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3087 return -EINVAL; 3088 3089 val = swab32(addr) | SF_PROG_PAGE; 3090 3091 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3092 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3093 goto unlock; 3094 3095 for (left = n; left; left -= c) { 3096 c = min(left, 4U); 3097 for (val = 0, i = 0; i < c; ++i) 3098 val = (val << 8) + *data++; 3099 3100 ret = sf1_write(adapter, c, c != left, 1, val); 3101 if (ret) 3102 goto unlock; 3103 } 3104 ret = flash_wait_op(adapter, 8, 1); 3105 if (ret) 3106 goto unlock; 3107 3108 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3109 3110 /* Read the page to verify the write succeeded */ 3111 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); 3112 if (ret) 3113 return ret; 3114 3115 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3116 dev_err(adapter->pdev_dev, 3117 "failed to correctly write the flash page at %#x\n", 3118 addr); 3119 return -EIO; 3120 } 3121 return 0; 3122 3123 unlock: 3124 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3125 return ret; 3126 } 3127 3128 /** 3129 * t4_get_fw_version - read the firmware version 3130 * @adapter: the adapter 3131 * @vers: where to place the version 3132 * 3133 * Reads the FW version from flash. 3134 */ 3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3136 { 3137 return t4_read_flash(adapter, FLASH_FW_START + 3138 offsetof(struct fw_hdr, fw_ver), 1, 3139 vers, 0); 3140 } 3141 3142 /** 3143 * t4_get_bs_version - read the firmware bootstrap version 3144 * @adapter: the adapter 3145 * @vers: where to place the version 3146 * 3147 * Reads the FW Bootstrap version from flash. 3148 */ 3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3150 { 3151 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3152 offsetof(struct fw_hdr, fw_ver), 1, 3153 vers, 0); 3154 } 3155 3156 /** 3157 * t4_get_tp_version - read the TP microcode version 3158 * @adapter: the adapter 3159 * @vers: where to place the version 3160 * 3161 * Reads the TP microcode version from flash. 3162 */ 3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3164 { 3165 return t4_read_flash(adapter, FLASH_FW_START + 3166 offsetof(struct fw_hdr, tp_microcode_ver), 3167 1, vers, 0); 3168 } 3169 3170 /** 3171 * t4_get_exprom_version - return the Expansion ROM version (if any) 3172 * @adapter: the adapter 3173 * @vers: where to place the version 3174 * 3175 * Reads the Expansion ROM header from FLASH and returns the version 3176 * number (if present) through the @vers return value pointer. We return 3177 * this in the Firmware Version Format since it's convenient. Return 3178 * 0 on success, -ENOENT if no Expansion ROM is present. 3179 */ 3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3181 { 3182 struct exprom_header { 3183 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3184 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3185 } *hdr; 3186 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3187 sizeof(u32))]; 3188 int ret; 3189 3190 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3191 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3192 0); 3193 if (ret) 3194 return ret; 3195 3196 hdr = (struct exprom_header *)exprom_header_buf; 3197 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3198 return -ENOENT; 3199 3200 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3201 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3202 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3203 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3204 return 0; 3205 } 3206 3207 /** 3208 * t4_get_vpd_version - return the VPD version 3209 * @adapter: the adapter 3210 * @vers: where to place the version 3211 * 3212 * Reads the VPD via the Firmware interface (thus this can only be called 3213 * once we're ready to issue Firmware commands). The format of the 3214 * VPD version is adapter specific. Returns 0 on success, an error on 3215 * failure. 3216 * 3217 * Note that early versions of the Firmware didn't include the ability 3218 * to retrieve the VPD version, so we zero-out the return-value parameter 3219 * in that case to avoid leaving it with garbage in it. 3220 * 3221 * Also note that the Firmware will return its cached copy of the VPD 3222 * Revision ID, not the actual Revision ID as written in the Serial 3223 * EEPROM. This is only an issue if a new VPD has been written and the 3224 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3225 * to defer calling this routine till after a FW_RESET_CMD has been issued 3226 * if the Host Driver will be performing a full adapter initialization. 3227 */ 3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3229 { 3230 u32 vpdrev_param; 3231 int ret; 3232 3233 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3234 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3235 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3236 1, &vpdrev_param, vers); 3237 if (ret) 3238 *vers = 0; 3239 return ret; 3240 } 3241 3242 /** 3243 * t4_get_scfg_version - return the Serial Configuration version 3244 * @adapter: the adapter 3245 * @vers: where to place the version 3246 * 3247 * Reads the Serial Configuration Version via the Firmware interface 3248 * (thus this can only be called once we're ready to issue Firmware 3249 * commands). The format of the Serial Configuration version is 3250 * adapter specific. Returns 0 on success, an error on failure. 3251 * 3252 * Note that early versions of the Firmware didn't include the ability 3253 * to retrieve the Serial Configuration version, so we zero-out the 3254 * return-value parameter in that case to avoid leaving it with 3255 * garbage in it. 3256 * 3257 * Also note that the Firmware will return its cached copy of the Serial 3258 * Initialization Revision ID, not the actual Revision ID as written in 3259 * the Serial EEPROM. This is only an issue if a new VPD has been written 3260 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3261 * it's best to defer calling this routine till after a FW_RESET_CMD has 3262 * been issued if the Host Driver will be performing a full adapter 3263 * initialization. 3264 */ 3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3266 { 3267 u32 scfgrev_param; 3268 int ret; 3269 3270 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3271 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3272 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3273 1, &scfgrev_param, vers); 3274 if (ret) 3275 *vers = 0; 3276 return ret; 3277 } 3278 3279 /** 3280 * t4_get_version_info - extract various chip/firmware version information 3281 * @adapter: the adapter 3282 * 3283 * Reads various chip/firmware version numbers and stores them into the 3284 * adapter Adapter Parameters structure. If any of the efforts fails 3285 * the first failure will be returned, but all of the version numbers 3286 * will be read. 3287 */ 3288 int t4_get_version_info(struct adapter *adapter) 3289 { 3290 int ret = 0; 3291 3292 #define FIRST_RET(__getvinfo) \ 3293 do { \ 3294 int __ret = __getvinfo; \ 3295 if (__ret && !ret) \ 3296 ret = __ret; \ 3297 } while (0) 3298 3299 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3300 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3301 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3302 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3303 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3304 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3305 3306 #undef FIRST_RET 3307 return ret; 3308 } 3309 3310 /** 3311 * t4_dump_version_info - dump all of the adapter configuration IDs 3312 * @adapter: the adapter 3313 * 3314 * Dumps all of the various bits of adapter configuration version/revision 3315 * IDs information. This is typically called at some point after 3316 * t4_get_version_info() has been called. 3317 */ 3318 void t4_dump_version_info(struct adapter *adapter) 3319 { 3320 /* Device information */ 3321 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3322 adapter->params.vpd.id, 3323 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3324 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3325 adapter->params.vpd.sn, adapter->params.vpd.pn); 3326 3327 /* Firmware Version */ 3328 if (!adapter->params.fw_vers) 3329 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3330 else 3331 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3332 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3333 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3334 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3335 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3336 3337 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3338 * Firmware, so dev_info() is more appropriate here.) 3339 */ 3340 if (!adapter->params.bs_vers) 3341 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3342 else 3343 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3344 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3345 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3346 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3347 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3348 3349 /* TP Microcode Version */ 3350 if (!adapter->params.tp_vers) 3351 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3352 else 3353 dev_info(adapter->pdev_dev, 3354 "TP Microcode version: %u.%u.%u.%u\n", 3355 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3356 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3357 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3358 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3359 3360 /* Expansion ROM version */ 3361 if (!adapter->params.er_vers) 3362 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3363 else 3364 dev_info(adapter->pdev_dev, 3365 "Expansion ROM version: %u.%u.%u.%u\n", 3366 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3367 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3368 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3369 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3370 3371 /* Serial Configuration version */ 3372 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3373 adapter->params.scfg_vers); 3374 3375 /* VPD Version */ 3376 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3377 adapter->params.vpd_vers); 3378 } 3379 3380 /** 3381 * t4_check_fw_version - check if the FW is supported with this driver 3382 * @adap: the adapter 3383 * 3384 * Checks if an adapter's FW is compatible with the driver. Returns 0 3385 * if there's exact match, a negative error if the version could not be 3386 * read or there's a major version mismatch 3387 */ 3388 int t4_check_fw_version(struct adapter *adap) 3389 { 3390 int i, ret, major, minor, micro; 3391 int exp_major, exp_minor, exp_micro; 3392 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3393 3394 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3395 /* Try multiple times before returning error */ 3396 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3397 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3398 3399 if (ret) 3400 return ret; 3401 3402 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3403 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3404 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3405 3406 switch (chip_version) { 3407 case CHELSIO_T4: 3408 exp_major = T4FW_MIN_VERSION_MAJOR; 3409 exp_minor = T4FW_MIN_VERSION_MINOR; 3410 exp_micro = T4FW_MIN_VERSION_MICRO; 3411 break; 3412 case CHELSIO_T5: 3413 exp_major = T5FW_MIN_VERSION_MAJOR; 3414 exp_minor = T5FW_MIN_VERSION_MINOR; 3415 exp_micro = T5FW_MIN_VERSION_MICRO; 3416 break; 3417 case CHELSIO_T6: 3418 exp_major = T6FW_MIN_VERSION_MAJOR; 3419 exp_minor = T6FW_MIN_VERSION_MINOR; 3420 exp_micro = T6FW_MIN_VERSION_MICRO; 3421 break; 3422 default: 3423 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3424 adap->chip); 3425 return -EINVAL; 3426 } 3427 3428 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3429 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3430 dev_err(adap->pdev_dev, 3431 "Card has firmware version %u.%u.%u, minimum " 3432 "supported firmware is %u.%u.%u.\n", major, minor, 3433 micro, exp_major, exp_minor, exp_micro); 3434 return -EFAULT; 3435 } 3436 return 0; 3437 } 3438 3439 /* Is the given firmware API compatible with the one the driver was compiled 3440 * with? 3441 */ 3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3443 { 3444 3445 /* short circuit if it's the exact same firmware version */ 3446 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3447 return 1; 3448 3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3450 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3451 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3452 return 1; 3453 #undef SAME_INTF 3454 3455 return 0; 3456 } 3457 3458 /* The firmware in the filesystem is usable, but should it be installed? 3459 * This routine explains itself in detail if it indicates the filesystem 3460 * firmware should be installed. 3461 */ 3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3463 int k, int c) 3464 { 3465 const char *reason; 3466 3467 if (!card_fw_usable) { 3468 reason = "incompatible or unusable"; 3469 goto install; 3470 } 3471 3472 if (k > c) { 3473 reason = "older than the version supported with this driver"; 3474 goto install; 3475 } 3476 3477 return 0; 3478 3479 install: 3480 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3481 "installing firmware %u.%u.%u.%u on card.\n", 3482 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3483 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3484 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3485 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3486 3487 return 1; 3488 } 3489 3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3491 const u8 *fw_data, unsigned int fw_size, 3492 struct fw_hdr *card_fw, enum dev_state state, 3493 int *reset) 3494 { 3495 int ret, card_fw_usable, fs_fw_usable; 3496 const struct fw_hdr *fs_fw; 3497 const struct fw_hdr *drv_fw; 3498 3499 drv_fw = &fw_info->fw_hdr; 3500 3501 /* Read the header of the firmware on the card */ 3502 ret = -t4_read_flash(adap, FLASH_FW_START, 3503 sizeof(*card_fw) / sizeof(uint32_t), 3504 (uint32_t *)card_fw, 1); 3505 if (ret == 0) { 3506 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3507 } else { 3508 dev_err(adap->pdev_dev, 3509 "Unable to read card's firmware header: %d\n", ret); 3510 card_fw_usable = 0; 3511 } 3512 3513 if (fw_data != NULL) { 3514 fs_fw = (const void *)fw_data; 3515 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3516 } else { 3517 fs_fw = NULL; 3518 fs_fw_usable = 0; 3519 } 3520 3521 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3522 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3523 /* Common case: the firmware on the card is an exact match and 3524 * the filesystem one is an exact match too, or the filesystem 3525 * one is absent/incompatible. 3526 */ 3527 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3528 should_install_fs_fw(adap, card_fw_usable, 3529 be32_to_cpu(fs_fw->fw_ver), 3530 be32_to_cpu(card_fw->fw_ver))) { 3531 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, 3532 fw_size, 0); 3533 if (ret != 0) { 3534 dev_err(adap->pdev_dev, 3535 "failed to install firmware: %d\n", ret); 3536 goto bye; 3537 } 3538 3539 /* Installed successfully, update the cached header too. */ 3540 *card_fw = *fs_fw; 3541 card_fw_usable = 1; 3542 *reset = 0; /* already reset as part of load_fw */ 3543 } 3544 3545 if (!card_fw_usable) { 3546 uint32_t d, c, k; 3547 3548 d = be32_to_cpu(drv_fw->fw_ver); 3549 c = be32_to_cpu(card_fw->fw_ver); 3550 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3551 3552 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3553 "chip state %d, " 3554 "driver compiled with %d.%d.%d.%d, " 3555 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3556 state, 3557 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3558 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3559 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3560 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3561 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3562 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3563 ret = EINVAL; 3564 goto bye; 3565 } 3566 3567 /* We're using whatever's on the card and it's known to be good. */ 3568 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3569 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3570 3571 bye: 3572 return ret; 3573 } 3574 3575 /** 3576 * t4_flash_erase_sectors - erase a range of flash sectors 3577 * @adapter: the adapter 3578 * @start: the first sector to erase 3579 * @end: the last sector to erase 3580 * 3581 * Erases the sectors in the given inclusive range. 3582 */ 3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3584 { 3585 int ret = 0; 3586 3587 if (end >= adapter->params.sf_nsec) 3588 return -EINVAL; 3589 3590 while (start <= end) { 3591 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3592 (ret = sf1_write(adapter, 4, 0, 1, 3593 SF_ERASE_SECTOR | (start << 8))) != 0 || 3594 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3595 dev_err(adapter->pdev_dev, 3596 "erase of flash sector %d failed, error %d\n", 3597 start, ret); 3598 break; 3599 } 3600 start++; 3601 } 3602 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3603 return ret; 3604 } 3605 3606 /** 3607 * t4_flash_cfg_addr - return the address of the flash configuration file 3608 * @adapter: the adapter 3609 * 3610 * Return the address within the flash where the Firmware Configuration 3611 * File is stored. 3612 */ 3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3614 { 3615 if (adapter->params.sf_size == 0x100000) 3616 return FLASH_FPGA_CFG_START; 3617 else 3618 return FLASH_CFG_START; 3619 } 3620 3621 /* Return TRUE if the specified firmware matches the adapter. I.e. T4 3622 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3623 * and emit an error message for mismatched firmware to save our caller the 3624 * effort ... 3625 */ 3626 static bool t4_fw_matches_chip(const struct adapter *adap, 3627 const struct fw_hdr *hdr) 3628 { 3629 /* The expression below will return FALSE for any unsupported adapter 3630 * which will keep us "honest" in the future ... 3631 */ 3632 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3633 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3634 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3635 return true; 3636 3637 dev_err(adap->pdev_dev, 3638 "FW image (%d) is not suitable for this adapter (%d)\n", 3639 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3640 return false; 3641 } 3642 3643 /** 3644 * t4_load_fw - download firmware 3645 * @adap: the adapter 3646 * @fw_data: the firmware image to write 3647 * @size: image size 3648 * 3649 * Write the supplied firmware image to the card's serial flash. 3650 */ 3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3652 { 3653 u32 csum; 3654 int ret, addr; 3655 unsigned int i; 3656 u8 first_page[SF_PAGE_SIZE]; 3657 const __be32 *p = (const __be32 *)fw_data; 3658 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3659 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3660 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3661 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3662 unsigned int fw_start = FLASH_FW_START; 3663 3664 if (!size) { 3665 dev_err(adap->pdev_dev, "FW image has no data\n"); 3666 return -EINVAL; 3667 } 3668 if (size & 511) { 3669 dev_err(adap->pdev_dev, 3670 "FW image size not multiple of 512 bytes\n"); 3671 return -EINVAL; 3672 } 3673 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3674 dev_err(adap->pdev_dev, 3675 "FW image size differs from size in FW header\n"); 3676 return -EINVAL; 3677 } 3678 if (size > fw_size) { 3679 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3680 fw_size); 3681 return -EFBIG; 3682 } 3683 if (!t4_fw_matches_chip(adap, hdr)) 3684 return -EINVAL; 3685 3686 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3687 csum += be32_to_cpu(p[i]); 3688 3689 if (csum != 0xffffffff) { 3690 dev_err(adap->pdev_dev, 3691 "corrupted firmware image, checksum %#x\n", csum); 3692 return -EINVAL; 3693 } 3694 3695 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3696 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3697 if (ret) 3698 goto out; 3699 3700 /* 3701 * We write the correct version at the end so the driver can see a bad 3702 * version if the FW write fails. Start by writing a copy of the 3703 * first page with a bad version. 3704 */ 3705 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3706 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3707 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page); 3708 if (ret) 3709 goto out; 3710 3711 addr = fw_start; 3712 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3713 addr += SF_PAGE_SIZE; 3714 fw_data += SF_PAGE_SIZE; 3715 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); 3716 if (ret) 3717 goto out; 3718 } 3719 3720 ret = t4_write_flash(adap, 3721 fw_start + offsetof(struct fw_hdr, fw_ver), 3722 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); 3723 out: 3724 if (ret) 3725 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3726 ret); 3727 else 3728 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3729 return ret; 3730 } 3731 3732 /** 3733 * t4_phy_fw_ver - return current PHY firmware version 3734 * @adap: the adapter 3735 * @phy_fw_ver: return value buffer for PHY firmware version 3736 * 3737 * Returns the current version of external PHY firmware on the 3738 * adapter. 3739 */ 3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3741 { 3742 u32 param, val; 3743 int ret; 3744 3745 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3746 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3747 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3748 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3749 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3750 ¶m, &val); 3751 if (ret < 0) 3752 return ret; 3753 *phy_fw_ver = val; 3754 return 0; 3755 } 3756 3757 /** 3758 * t4_load_phy_fw - download port PHY firmware 3759 * @adap: the adapter 3760 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3761 * @win_lock: the lock to use to guard the memory copy 3762 * @phy_fw_version: function to check PHY firmware versions 3763 * @phy_fw_data: the PHY firmware image to write 3764 * @phy_fw_size: image size 3765 * 3766 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3767 * @phy_fw_version is supplied, then it will be used to determine if 3768 * it's necessary to perform the transfer by comparing the version 3769 * of any existing adapter PHY firmware with that of the passed in 3770 * PHY firmware image. If @win_lock is non-NULL then it will be used 3771 * around the call to t4_memory_rw() which transfers the PHY firmware 3772 * to the adapter. 3773 * 3774 * A negative error number will be returned if an error occurs. If 3775 * version number support is available and there's no need to upgrade 3776 * the firmware, 0 will be returned. If firmware is successfully 3777 * transferred to the adapter, 1 will be retured. 3778 * 3779 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3780 * a result, a RESET of the adapter would cause that RAM to lose its 3781 * contents. Thus, loading PHY firmware on such adapters must happen 3782 * after any FW_RESET_CMDs ... 3783 */ 3784 int t4_load_phy_fw(struct adapter *adap, 3785 int win, spinlock_t *win_lock, 3786 int (*phy_fw_version)(const u8 *, size_t), 3787 const u8 *phy_fw_data, size_t phy_fw_size) 3788 { 3789 unsigned long mtype = 0, maddr = 0; 3790 u32 param, val; 3791 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3792 int ret; 3793 3794 /* If we have version number support, then check to see if the adapter 3795 * already has up-to-date PHY firmware loaded. 3796 */ 3797 if (phy_fw_version) { 3798 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3799 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3800 if (ret < 0) 3801 return ret; 3802 3803 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3804 CH_WARN(adap, "PHY Firmware already up-to-date, " 3805 "version %#x\n", cur_phy_fw_ver); 3806 return 0; 3807 } 3808 } 3809 3810 /* Ask the firmware where it wants us to copy the PHY firmware image. 3811 * The size of the file requires a special version of the READ coommand 3812 * which will pass the file size via the values field in PARAMS_CMD and 3813 * retrieve the return value from firmware and place it in the same 3814 * buffer values 3815 */ 3816 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3817 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3818 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3819 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3820 val = phy_fw_size; 3821 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3822 ¶m, &val, 1, true); 3823 if (ret < 0) 3824 return ret; 3825 mtype = val >> 8; 3826 maddr = (val & 0xff) << 16; 3827 3828 /* Copy the supplied PHY Firmware image to the adapter memory location 3829 * allocated by the adapter firmware. 3830 */ 3831 if (win_lock) 3832 spin_lock_bh(win_lock); 3833 ret = t4_memory_rw(adap, win, mtype, maddr, 3834 phy_fw_size, (__be32 *)phy_fw_data, 3835 T4_MEMORY_WRITE); 3836 if (win_lock) 3837 spin_unlock_bh(win_lock); 3838 if (ret) 3839 return ret; 3840 3841 /* Tell the firmware that the PHY firmware image has been written to 3842 * RAM and it can now start copying it over to the PHYs. The chip 3843 * firmware will RESET the affected PHYs as part of this operation 3844 * leaving them running the new PHY firmware image. 3845 */ 3846 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3847 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3848 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3849 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3850 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3851 ¶m, &val, 30000); 3852 3853 /* If we have version number support, then check to see that the new 3854 * firmware got loaded properly. 3855 */ 3856 if (phy_fw_version) { 3857 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3858 if (ret < 0) 3859 return ret; 3860 3861 if (cur_phy_fw_ver != new_phy_fw_vers) { 3862 CH_WARN(adap, "PHY Firmware did not update: " 3863 "version on adapter %#x, " 3864 "version flashed %#x\n", 3865 cur_phy_fw_ver, new_phy_fw_vers); 3866 return -ENXIO; 3867 } 3868 } 3869 3870 return 1; 3871 } 3872 3873 /** 3874 * t4_fwcache - firmware cache operation 3875 * @adap: the adapter 3876 * @op : the operation (flush or flush and invalidate) 3877 */ 3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3879 { 3880 struct fw_params_cmd c; 3881 3882 memset(&c, 0, sizeof(c)); 3883 c.op_to_vfn = 3884 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3885 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3886 FW_PARAMS_CMD_PFN_V(adap->pf) | 3887 FW_PARAMS_CMD_VFN_V(0)); 3888 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3889 c.param[0].mnem = 3890 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3891 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3892 c.param[0].val = cpu_to_be32(op); 3893 3894 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3895 } 3896 3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3898 unsigned int *pif_req_wrptr, 3899 unsigned int *pif_rsp_wrptr) 3900 { 3901 int i, j; 3902 u32 cfg, val, req, rsp; 3903 3904 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3905 if (cfg & LADBGEN_F) 3906 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3907 3908 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3909 req = POLADBGWRPTR_G(val); 3910 rsp = PILADBGWRPTR_G(val); 3911 if (pif_req_wrptr) 3912 *pif_req_wrptr = req; 3913 if (pif_rsp_wrptr) 3914 *pif_rsp_wrptr = rsp; 3915 3916 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3917 for (j = 0; j < 6; j++) { 3918 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3919 PILADBGRDPTR_V(rsp)); 3920 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3921 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3922 req++; 3923 rsp++; 3924 } 3925 req = (req + 2) & POLADBGRDPTR_M; 3926 rsp = (rsp + 2) & PILADBGRDPTR_M; 3927 } 3928 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3929 } 3930 3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3932 { 3933 u32 cfg; 3934 int i, j, idx; 3935 3936 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3937 if (cfg & LADBGEN_F) 3938 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3939 3940 for (i = 0; i < CIM_MALA_SIZE; i++) { 3941 for (j = 0; j < 5; j++) { 3942 idx = 8 * i + j; 3943 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3944 PILADBGRDPTR_V(idx)); 3945 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3946 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3947 } 3948 } 3949 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3950 } 3951 3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3953 { 3954 unsigned int i, j; 3955 3956 for (i = 0; i < 8; i++) { 3957 u32 *p = la_buf + i; 3958 3959 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3960 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3961 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3962 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3963 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3964 } 3965 } 3966 3967 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3968 FW_PORT_CAP32_ANEG) 3969 3970 /** 3971 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3972 * @caps16: a 16-bit Port Capabilities value 3973 * 3974 * Returns the equivalent 32-bit Port Capabilities value. 3975 */ 3976 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3977 { 3978 fw_port_cap32_t caps32 = 0; 3979 3980 #define CAP16_TO_CAP32(__cap) \ 3981 do { \ 3982 if (caps16 & FW_PORT_CAP_##__cap) \ 3983 caps32 |= FW_PORT_CAP32_##__cap; \ 3984 } while (0) 3985 3986 CAP16_TO_CAP32(SPEED_100M); 3987 CAP16_TO_CAP32(SPEED_1G); 3988 CAP16_TO_CAP32(SPEED_25G); 3989 CAP16_TO_CAP32(SPEED_10G); 3990 CAP16_TO_CAP32(SPEED_40G); 3991 CAP16_TO_CAP32(SPEED_100G); 3992 CAP16_TO_CAP32(FC_RX); 3993 CAP16_TO_CAP32(FC_TX); 3994 CAP16_TO_CAP32(ANEG); 3995 CAP16_TO_CAP32(FORCE_PAUSE); 3996 CAP16_TO_CAP32(MDIAUTO); 3997 CAP16_TO_CAP32(MDISTRAIGHT); 3998 CAP16_TO_CAP32(FEC_RS); 3999 CAP16_TO_CAP32(FEC_BASER_RS); 4000 CAP16_TO_CAP32(802_3_PAUSE); 4001 CAP16_TO_CAP32(802_3_ASM_DIR); 4002 4003 #undef CAP16_TO_CAP32 4004 4005 return caps32; 4006 } 4007 4008 /** 4009 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 4010 * @caps32: a 32-bit Port Capabilities value 4011 * 4012 * Returns the equivalent 16-bit Port Capabilities value. Note that 4013 * not all 32-bit Port Capabilities can be represented in the 16-bit 4014 * Port Capabilities and some fields/values may not make it. 4015 */ 4016 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 4017 { 4018 fw_port_cap16_t caps16 = 0; 4019 4020 #define CAP32_TO_CAP16(__cap) \ 4021 do { \ 4022 if (caps32 & FW_PORT_CAP32_##__cap) \ 4023 caps16 |= FW_PORT_CAP_##__cap; \ 4024 } while (0) 4025 4026 CAP32_TO_CAP16(SPEED_100M); 4027 CAP32_TO_CAP16(SPEED_1G); 4028 CAP32_TO_CAP16(SPEED_10G); 4029 CAP32_TO_CAP16(SPEED_25G); 4030 CAP32_TO_CAP16(SPEED_40G); 4031 CAP32_TO_CAP16(SPEED_100G); 4032 CAP32_TO_CAP16(FC_RX); 4033 CAP32_TO_CAP16(FC_TX); 4034 CAP32_TO_CAP16(802_3_PAUSE); 4035 CAP32_TO_CAP16(802_3_ASM_DIR); 4036 CAP32_TO_CAP16(ANEG); 4037 CAP32_TO_CAP16(FORCE_PAUSE); 4038 CAP32_TO_CAP16(MDIAUTO); 4039 CAP32_TO_CAP16(MDISTRAIGHT); 4040 CAP32_TO_CAP16(FEC_RS); 4041 CAP32_TO_CAP16(FEC_BASER_RS); 4042 4043 #undef CAP32_TO_CAP16 4044 4045 return caps16; 4046 } 4047 4048 /* Translate Firmware Port Capabilities Pause specification to Common Code */ 4049 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4050 { 4051 enum cc_pause cc_pause = 0; 4052 4053 if (fw_pause & FW_PORT_CAP32_FC_RX) 4054 cc_pause |= PAUSE_RX; 4055 if (fw_pause & FW_PORT_CAP32_FC_TX) 4056 cc_pause |= PAUSE_TX; 4057 4058 return cc_pause; 4059 } 4060 4061 /* Translate Common Code Pause specification into Firmware Port Capabilities */ 4062 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4063 { 4064 fw_port_cap32_t fw_pause = 0; 4065 4066 if (cc_pause & PAUSE_RX) 4067 fw_pause |= FW_PORT_CAP32_FC_RX; 4068 if (cc_pause & PAUSE_TX) 4069 fw_pause |= FW_PORT_CAP32_FC_TX; 4070 if (!(cc_pause & PAUSE_AUTONEG)) 4071 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4072 4073 return fw_pause; 4074 } 4075 4076 /* Translate Firmware Forward Error Correction specification to Common Code */ 4077 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4078 { 4079 enum cc_fec cc_fec = 0; 4080 4081 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4082 cc_fec |= FEC_RS; 4083 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4084 cc_fec |= FEC_BASER_RS; 4085 4086 return cc_fec; 4087 } 4088 4089 /* Translate Common Code Forward Error Correction specification to Firmware */ 4090 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4091 { 4092 fw_port_cap32_t fw_fec = 0; 4093 4094 if (cc_fec & FEC_RS) 4095 fw_fec |= FW_PORT_CAP32_FEC_RS; 4096 if (cc_fec & FEC_BASER_RS) 4097 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4098 4099 return fw_fec; 4100 } 4101 4102 /** 4103 * t4_link_l1cfg - apply link configuration to MAC/PHY 4104 * @adapter: the adapter 4105 * @mbox: the Firmware Mailbox to use 4106 * @port: the Port ID 4107 * @lc: the Port's Link Configuration 4108 * @sleep_ok: if true we may sleep while awaiting command completion 4109 * @timeout: time to wait for command to finish before timing out 4110 * (negative implies @sleep_ok=false) 4111 * 4112 * Set up a port's MAC and PHY according to a desired link configuration. 4113 * - If the PHY can auto-negotiate first decide what to advertise, then 4114 * enable/disable auto-negotiation as desired, and reset. 4115 * - If the PHY does not auto-negotiate just reset it. 4116 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4117 * otherwise do it later based on the outcome of auto-negotiation. 4118 */ 4119 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4120 unsigned int port, struct link_config *lc, 4121 bool sleep_ok, int timeout) 4122 { 4123 unsigned int fw_caps = adapter->params.fw_caps_support; 4124 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap; 4125 struct fw_port_cmd cmd; 4126 unsigned int fw_mdi; 4127 int ret; 4128 4129 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4130 4131 /* Convert driver coding of Pause Frame Flow Control settings into the 4132 * Firmware's API. 4133 */ 4134 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4135 4136 /* Convert Common Code Forward Error Control settings into the 4137 * Firmware's API. If the current Requested FEC has "Automatic" 4138 * (IEEE 802.3) specified, then we use whatever the Firmware 4139 * sent us as part of it's IEEE 802.3-based interpratation of 4140 * the Transceiver Module EPROM FEC parameters. Otherwise we 4141 * use whatever is in the current Requested FEC settings. 4142 */ 4143 if (lc->requested_fec & FEC_AUTO) 4144 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4145 else 4146 cc_fec = lc->requested_fec; 4147 fw_fec = cc_to_fwcap_fec(cc_fec); 4148 4149 /* Figure out what our Requested Port Capabilities are going to be. 4150 * Note parallel structure in t4_handle_get_port_info() and 4151 * init_link_config(). 4152 */ 4153 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4154 if (lc->autoneg == AUTONEG_ENABLE) 4155 return -EINVAL; 4156 4157 rcap = lc->acaps | fw_fc | fw_fec; 4158 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4159 lc->fec = cc_fec; 4160 } else if (lc->autoneg == AUTONEG_DISABLE) { 4161 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4162 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4163 lc->fec = cc_fec; 4164 } else { 4165 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi; 4166 } 4167 4168 /* Some Requested Port Capabilities are trivially wrong if they exceed 4169 * the Physical Port Capabilities. We can check that here and provide 4170 * moderately useful feedback in the system log. 4171 * 4172 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4173 * we need to exclude this from this check in order to maintain 4174 * compatibility ... 4175 */ 4176 if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4177 dev_err(adapter->pdev_dev, 4178 "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4179 rcap, lc->pcaps); 4180 return -EINVAL; 4181 } 4182 4183 /* And send that on to the Firmware ... 4184 */ 4185 memset(&cmd, 0, sizeof(cmd)); 4186 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4187 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4188 FW_PORT_CMD_PORTID_V(port)); 4189 cmd.action_to_len16 = 4190 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4191 ? FW_PORT_ACTION_L1_CFG 4192 : FW_PORT_ACTION_L1_CFG32) | 4193 FW_LEN16(cmd)); 4194 if (fw_caps == FW_CAPS16) 4195 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4196 else 4197 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4198 4199 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4200 sleep_ok, timeout); 4201 4202 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4203 * the Physical Port Capabilities, some combinations of features may 4204 * still not be leagal. For example, 40Gb/s and Reed-Solomon Forward 4205 * Error Correction. So if the Firmware rejects the L1 Configure 4206 * request, flag that here. 4207 */ 4208 if (ret) { 4209 dev_err(adapter->pdev_dev, 4210 "Requested Port Capabilities %#x rejected, error %d\n", 4211 rcap, -ret); 4212 return ret; 4213 } 4214 return ret; 4215 } 4216 4217 /** 4218 * t4_restart_aneg - restart autonegotiation 4219 * @adap: the adapter 4220 * @mbox: mbox to use for the FW command 4221 * @port: the port id 4222 * 4223 * Restarts autonegotiation for the selected port. 4224 */ 4225 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4226 { 4227 unsigned int fw_caps = adap->params.fw_caps_support; 4228 struct fw_port_cmd c; 4229 4230 memset(&c, 0, sizeof(c)); 4231 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4232 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4233 FW_PORT_CMD_PORTID_V(port)); 4234 c.action_to_len16 = 4235 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4236 ? FW_PORT_ACTION_L1_CFG 4237 : FW_PORT_ACTION_L1_CFG32) | 4238 FW_LEN16(c)); 4239 if (fw_caps == FW_CAPS16) 4240 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4241 else 4242 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4243 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4244 } 4245 4246 typedef void (*int_handler_t)(struct adapter *adap); 4247 4248 struct intr_info { 4249 unsigned int mask; /* bits to check in interrupt status */ 4250 const char *msg; /* message to print or NULL */ 4251 short stat_idx; /* stat counter to increment or -1 */ 4252 unsigned short fatal; /* whether the condition reported is fatal */ 4253 int_handler_t int_handler; /* platform-specific int handler */ 4254 }; 4255 4256 /** 4257 * t4_handle_intr_status - table driven interrupt handler 4258 * @adapter: the adapter that generated the interrupt 4259 * @reg: the interrupt status register to process 4260 * @acts: table of interrupt actions 4261 * 4262 * A table driven interrupt handler that applies a set of masks to an 4263 * interrupt status word and performs the corresponding actions if the 4264 * interrupts described by the mask have occurred. The actions include 4265 * optionally emitting a warning or alert message. The table is terminated 4266 * by an entry specifying mask 0. Returns the number of fatal interrupt 4267 * conditions. 4268 */ 4269 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4270 const struct intr_info *acts) 4271 { 4272 int fatal = 0; 4273 unsigned int mask = 0; 4274 unsigned int status = t4_read_reg(adapter, reg); 4275 4276 for ( ; acts->mask; ++acts) { 4277 if (!(status & acts->mask)) 4278 continue; 4279 if (acts->fatal) { 4280 fatal++; 4281 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4282 status & acts->mask); 4283 } else if (acts->msg && printk_ratelimit()) 4284 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4285 status & acts->mask); 4286 if (acts->int_handler) 4287 acts->int_handler(adapter); 4288 mask |= acts->mask; 4289 } 4290 status &= mask; 4291 if (status) /* clear processed interrupts */ 4292 t4_write_reg(adapter, reg, status); 4293 return fatal; 4294 } 4295 4296 /* 4297 * Interrupt handler for the PCIE module. 4298 */ 4299 static void pcie_intr_handler(struct adapter *adapter) 4300 { 4301 static const struct intr_info sysbus_intr_info[] = { 4302 { RNPP_F, "RXNP array parity error", -1, 1 }, 4303 { RPCP_F, "RXPC array parity error", -1, 1 }, 4304 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4305 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4306 { RFTP_F, "RXFT array parity error", -1, 1 }, 4307 { 0 } 4308 }; 4309 static const struct intr_info pcie_port_intr_info[] = { 4310 { TPCP_F, "TXPC array parity error", -1, 1 }, 4311 { TNPP_F, "TXNP array parity error", -1, 1 }, 4312 { TFTP_F, "TXFT array parity error", -1, 1 }, 4313 { TCAP_F, "TXCA array parity error", -1, 1 }, 4314 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4315 { RCAP_F, "RXCA array parity error", -1, 1 }, 4316 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4317 { RDPE_F, "Rx data parity error", -1, 1 }, 4318 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4319 { 0 } 4320 }; 4321 static const struct intr_info pcie_intr_info[] = { 4322 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4323 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4324 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4325 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4326 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4327 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4328 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4329 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4330 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4331 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4332 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4333 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4334 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4335 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4336 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4337 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4338 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4339 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4340 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4341 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4342 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4343 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4344 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4345 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4346 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4347 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4348 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4349 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4350 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4351 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4352 -1, 0 }, 4353 { 0 } 4354 }; 4355 4356 static struct intr_info t5_pcie_intr_info[] = { 4357 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4358 -1, 1 }, 4359 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4360 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4361 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4362 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4363 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4364 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4365 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4366 -1, 1 }, 4367 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4368 -1, 1 }, 4369 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4370 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4371 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4372 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4373 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4374 -1, 1 }, 4375 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4376 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4377 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4378 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4379 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4380 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4381 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4382 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4383 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4384 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4385 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4386 -1, 1 }, 4387 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4388 -1, 1 }, 4389 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4390 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4391 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4392 { READRSPERR_F, "Outbound read error", -1, 0 }, 4393 { 0 } 4394 }; 4395 4396 int fat; 4397 4398 if (is_t4(adapter->params.chip)) 4399 fat = t4_handle_intr_status(adapter, 4400 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4401 sysbus_intr_info) + 4402 t4_handle_intr_status(adapter, 4403 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4404 pcie_port_intr_info) + 4405 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4406 pcie_intr_info); 4407 else 4408 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4409 t5_pcie_intr_info); 4410 4411 if (fat) 4412 t4_fatal_err(adapter); 4413 } 4414 4415 /* 4416 * TP interrupt handler. 4417 */ 4418 static void tp_intr_handler(struct adapter *adapter) 4419 { 4420 static const struct intr_info tp_intr_info[] = { 4421 { 0x3fffffff, "TP parity error", -1, 1 }, 4422 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4423 { 0 } 4424 }; 4425 4426 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4427 t4_fatal_err(adapter); 4428 } 4429 4430 /* 4431 * SGE interrupt handler. 4432 */ 4433 static void sge_intr_handler(struct adapter *adapter) 4434 { 4435 u64 v; 4436 u32 err; 4437 4438 static const struct intr_info sge_intr_info[] = { 4439 { ERR_CPL_EXCEED_IQE_SIZE_F, 4440 "SGE received CPL exceeding IQE size", -1, 1 }, 4441 { ERR_INVALID_CIDX_INC_F, 4442 "SGE GTS CIDX increment too large", -1, 0 }, 4443 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4444 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4445 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4446 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4447 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4448 0 }, 4449 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4450 0 }, 4451 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4452 0 }, 4453 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4454 0 }, 4455 { ERR_ING_CTXT_PRIO_F, 4456 "SGE too many priority ingress contexts", -1, 0 }, 4457 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4458 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4459 { 0 } 4460 }; 4461 4462 static struct intr_info t4t5_sge_intr_info[] = { 4463 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4464 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4465 { ERR_EGR_CTXT_PRIO_F, 4466 "SGE too many priority egress contexts", -1, 0 }, 4467 { 0 } 4468 }; 4469 4470 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) | 4471 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32); 4472 if (v) { 4473 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", 4474 (unsigned long long)v); 4475 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v); 4476 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32); 4477 } 4478 4479 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4480 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4481 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4482 t4t5_sge_intr_info); 4483 4484 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4485 if (err & ERROR_QID_VALID_F) { 4486 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4487 ERROR_QID_G(err)); 4488 if (err & UNCAPTURED_ERROR_F) 4489 dev_err(adapter->pdev_dev, 4490 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4491 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4492 UNCAPTURED_ERROR_F); 4493 } 4494 4495 if (v != 0) 4496 t4_fatal_err(adapter); 4497 } 4498 4499 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4500 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4501 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4502 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4503 4504 /* 4505 * CIM interrupt handler. 4506 */ 4507 static void cim_intr_handler(struct adapter *adapter) 4508 { 4509 static const struct intr_info cim_intr_info[] = { 4510 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4511 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4512 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4513 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4514 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4515 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4516 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4517 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4518 { 0 } 4519 }; 4520 static const struct intr_info cim_upintr_info[] = { 4521 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4522 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4523 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4524 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4525 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4526 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4527 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4528 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4529 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4530 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4531 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4532 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4533 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4534 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4535 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4536 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4537 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4538 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4539 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4540 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4541 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4542 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4543 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4544 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4545 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4546 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4547 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4548 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4549 { 0 } 4550 }; 4551 4552 u32 val, fw_err; 4553 int fat; 4554 4555 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4556 if (fw_err & PCIE_FW_ERR_F) 4557 t4_report_fw_error(adapter); 4558 4559 /* When the Firmware detects an internal error which normally 4560 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4561 * in order to make sure the Host sees the Firmware Crash. So 4562 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4563 * ignore the Timer0 interrupt. 4564 */ 4565 4566 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4567 if (val & TIMER0INT_F) 4568 if (!(fw_err & PCIE_FW_ERR_F) || 4569 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4570 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4571 TIMER0INT_F); 4572 4573 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4574 cim_intr_info) + 4575 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4576 cim_upintr_info); 4577 if (fat) 4578 t4_fatal_err(adapter); 4579 } 4580 4581 /* 4582 * ULP RX interrupt handler. 4583 */ 4584 static void ulprx_intr_handler(struct adapter *adapter) 4585 { 4586 static const struct intr_info ulprx_intr_info[] = { 4587 { 0x1800000, "ULPRX context error", -1, 1 }, 4588 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4589 { 0 } 4590 }; 4591 4592 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4593 t4_fatal_err(adapter); 4594 } 4595 4596 /* 4597 * ULP TX interrupt handler. 4598 */ 4599 static void ulptx_intr_handler(struct adapter *adapter) 4600 { 4601 static const struct intr_info ulptx_intr_info[] = { 4602 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4603 0 }, 4604 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4605 0 }, 4606 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4607 0 }, 4608 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4609 0 }, 4610 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4611 { 0 } 4612 }; 4613 4614 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4615 t4_fatal_err(adapter); 4616 } 4617 4618 /* 4619 * PM TX interrupt handler. 4620 */ 4621 static void pmtx_intr_handler(struct adapter *adapter) 4622 { 4623 static const struct intr_info pmtx_intr_info[] = { 4624 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4625 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4626 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4627 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4628 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4629 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4630 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4631 -1, 1 }, 4632 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4633 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4634 { 0 } 4635 }; 4636 4637 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4638 t4_fatal_err(adapter); 4639 } 4640 4641 /* 4642 * PM RX interrupt handler. 4643 */ 4644 static void pmrx_intr_handler(struct adapter *adapter) 4645 { 4646 static const struct intr_info pmrx_intr_info[] = { 4647 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4648 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4649 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4650 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4651 -1, 1 }, 4652 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4653 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4654 { 0 } 4655 }; 4656 4657 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4658 t4_fatal_err(adapter); 4659 } 4660 4661 /* 4662 * CPL switch interrupt handler. 4663 */ 4664 static void cplsw_intr_handler(struct adapter *adapter) 4665 { 4666 static const struct intr_info cplsw_intr_info[] = { 4667 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4668 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4669 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4670 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4671 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4672 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4673 { 0 } 4674 }; 4675 4676 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4677 t4_fatal_err(adapter); 4678 } 4679 4680 /* 4681 * LE interrupt handler. 4682 */ 4683 static void le_intr_handler(struct adapter *adap) 4684 { 4685 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4686 static const struct intr_info le_intr_info[] = { 4687 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4688 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4689 { PARITYERR_F, "LE parity error", -1, 1 }, 4690 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4691 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4692 { 0 } 4693 }; 4694 4695 static struct intr_info t6_le_intr_info[] = { 4696 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4697 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4698 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4699 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4700 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4701 { 0 } 4702 }; 4703 4704 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4705 (chip <= CHELSIO_T5) ? 4706 le_intr_info : t6_le_intr_info)) 4707 t4_fatal_err(adap); 4708 } 4709 4710 /* 4711 * MPS interrupt handler. 4712 */ 4713 static void mps_intr_handler(struct adapter *adapter) 4714 { 4715 static const struct intr_info mps_rx_intr_info[] = { 4716 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4717 { 0 } 4718 }; 4719 static const struct intr_info mps_tx_intr_info[] = { 4720 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4721 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4722 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4723 -1, 1 }, 4724 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4725 -1, 1 }, 4726 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4727 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4728 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4729 { 0 } 4730 }; 4731 static const struct intr_info t6_mps_tx_intr_info[] = { 4732 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4733 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4734 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4735 -1, 1 }, 4736 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4737 -1, 1 }, 4738 /* MPS Tx Bubble is normal for T6 */ 4739 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4740 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4741 { 0 } 4742 }; 4743 static const struct intr_info mps_trc_intr_info[] = { 4744 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4745 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4746 -1, 1 }, 4747 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4748 { 0 } 4749 }; 4750 static const struct intr_info mps_stat_sram_intr_info[] = { 4751 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4752 { 0 } 4753 }; 4754 static const struct intr_info mps_stat_tx_intr_info[] = { 4755 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4756 { 0 } 4757 }; 4758 static const struct intr_info mps_stat_rx_intr_info[] = { 4759 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4760 { 0 } 4761 }; 4762 static const struct intr_info mps_cls_intr_info[] = { 4763 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4764 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4765 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4766 { 0 } 4767 }; 4768 4769 int fat; 4770 4771 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4772 mps_rx_intr_info) + 4773 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4774 is_t6(adapter->params.chip) 4775 ? t6_mps_tx_intr_info 4776 : mps_tx_intr_info) + 4777 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4778 mps_trc_intr_info) + 4779 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4780 mps_stat_sram_intr_info) + 4781 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4782 mps_stat_tx_intr_info) + 4783 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4784 mps_stat_rx_intr_info) + 4785 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4786 mps_cls_intr_info); 4787 4788 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4789 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4790 if (fat) 4791 t4_fatal_err(adapter); 4792 } 4793 4794 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4795 ECC_UE_INT_CAUSE_F) 4796 4797 /* 4798 * EDC/MC interrupt handler. 4799 */ 4800 static void mem_intr_handler(struct adapter *adapter, int idx) 4801 { 4802 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4803 4804 unsigned int addr, cnt_addr, v; 4805 4806 if (idx <= MEM_EDC1) { 4807 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4808 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4809 } else if (idx == MEM_MC) { 4810 if (is_t4(adapter->params.chip)) { 4811 addr = MC_INT_CAUSE_A; 4812 cnt_addr = MC_ECC_STATUS_A; 4813 } else { 4814 addr = MC_P_INT_CAUSE_A; 4815 cnt_addr = MC_P_ECC_STATUS_A; 4816 } 4817 } else { 4818 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4819 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4820 } 4821 4822 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4823 if (v & PERR_INT_CAUSE_F) 4824 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4825 name[idx]); 4826 if (v & ECC_CE_INT_CAUSE_F) { 4827 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4828 4829 t4_edc_err_read(adapter, idx); 4830 4831 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4832 if (printk_ratelimit()) 4833 dev_warn(adapter->pdev_dev, 4834 "%u %s correctable ECC data error%s\n", 4835 cnt, name[idx], cnt > 1 ? "s" : ""); 4836 } 4837 if (v & ECC_UE_INT_CAUSE_F) 4838 dev_alert(adapter->pdev_dev, 4839 "%s uncorrectable ECC data error\n", name[idx]); 4840 4841 t4_write_reg(adapter, addr, v); 4842 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4843 t4_fatal_err(adapter); 4844 } 4845 4846 /* 4847 * MA interrupt handler. 4848 */ 4849 static void ma_intr_handler(struct adapter *adap) 4850 { 4851 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4852 4853 if (status & MEM_PERR_INT_CAUSE_F) { 4854 dev_alert(adap->pdev_dev, 4855 "MA parity error, parity status %#x\n", 4856 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4857 if (is_t5(adap->params.chip)) 4858 dev_alert(adap->pdev_dev, 4859 "MA parity error, parity status %#x\n", 4860 t4_read_reg(adap, 4861 MA_PARITY_ERROR_STATUS2_A)); 4862 } 4863 if (status & MEM_WRAP_INT_CAUSE_F) { 4864 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4865 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4866 "client %u to address %#x\n", 4867 MEM_WRAP_CLIENT_NUM_G(v), 4868 MEM_WRAP_ADDRESS_G(v) << 4); 4869 } 4870 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4871 t4_fatal_err(adap); 4872 } 4873 4874 /* 4875 * SMB interrupt handler. 4876 */ 4877 static void smb_intr_handler(struct adapter *adap) 4878 { 4879 static const struct intr_info smb_intr_info[] = { 4880 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4881 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4882 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4883 { 0 } 4884 }; 4885 4886 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4887 t4_fatal_err(adap); 4888 } 4889 4890 /* 4891 * NC-SI interrupt handler. 4892 */ 4893 static void ncsi_intr_handler(struct adapter *adap) 4894 { 4895 static const struct intr_info ncsi_intr_info[] = { 4896 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4897 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4898 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4899 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4900 { 0 } 4901 }; 4902 4903 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4904 t4_fatal_err(adap); 4905 } 4906 4907 /* 4908 * XGMAC interrupt handler. 4909 */ 4910 static void xgmac_intr_handler(struct adapter *adap, int port) 4911 { 4912 u32 v, int_cause_reg; 4913 4914 if (is_t4(adap->params.chip)) 4915 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4916 else 4917 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4918 4919 v = t4_read_reg(adap, int_cause_reg); 4920 4921 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4922 if (!v) 4923 return; 4924 4925 if (v & TXFIFO_PRTY_ERR_F) 4926 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4927 port); 4928 if (v & RXFIFO_PRTY_ERR_F) 4929 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4930 port); 4931 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4932 t4_fatal_err(adap); 4933 } 4934 4935 /* 4936 * PL interrupt handler. 4937 */ 4938 static void pl_intr_handler(struct adapter *adap) 4939 { 4940 static const struct intr_info pl_intr_info[] = { 4941 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4942 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4943 { 0 } 4944 }; 4945 4946 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4947 t4_fatal_err(adap); 4948 } 4949 4950 #define PF_INTR_MASK (PFSW_F) 4951 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4952 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4953 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4954 4955 /** 4956 * t4_slow_intr_handler - control path interrupt handler 4957 * @adapter: the adapter 4958 * 4959 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4960 * The designation 'slow' is because it involves register reads, while 4961 * data interrupts typically don't involve any MMIOs. 4962 */ 4963 int t4_slow_intr_handler(struct adapter *adapter) 4964 { 4965 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 4966 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 4967 * easiest just to mask that case here. 4968 */ 4969 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 4970 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 4971 u32 cause = raw_cause & enable; 4972 4973 if (!(cause & GLBL_INTR_MASK)) 4974 return 0; 4975 if (cause & CIM_F) 4976 cim_intr_handler(adapter); 4977 if (cause & MPS_F) 4978 mps_intr_handler(adapter); 4979 if (cause & NCSI_F) 4980 ncsi_intr_handler(adapter); 4981 if (cause & PL_F) 4982 pl_intr_handler(adapter); 4983 if (cause & SMB_F) 4984 smb_intr_handler(adapter); 4985 if (cause & XGMAC0_F) 4986 xgmac_intr_handler(adapter, 0); 4987 if (cause & XGMAC1_F) 4988 xgmac_intr_handler(adapter, 1); 4989 if (cause & XGMAC_KR0_F) 4990 xgmac_intr_handler(adapter, 2); 4991 if (cause & XGMAC_KR1_F) 4992 xgmac_intr_handler(adapter, 3); 4993 if (cause & PCIE_F) 4994 pcie_intr_handler(adapter); 4995 if (cause & MC_F) 4996 mem_intr_handler(adapter, MEM_MC); 4997 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 4998 mem_intr_handler(adapter, MEM_MC1); 4999 if (cause & EDC0_F) 5000 mem_intr_handler(adapter, MEM_EDC0); 5001 if (cause & EDC1_F) 5002 mem_intr_handler(adapter, MEM_EDC1); 5003 if (cause & LE_F) 5004 le_intr_handler(adapter); 5005 if (cause & TP_F) 5006 tp_intr_handler(adapter); 5007 if (cause & MA_F) 5008 ma_intr_handler(adapter); 5009 if (cause & PM_TX_F) 5010 pmtx_intr_handler(adapter); 5011 if (cause & PM_RX_F) 5012 pmrx_intr_handler(adapter); 5013 if (cause & ULP_RX_F) 5014 ulprx_intr_handler(adapter); 5015 if (cause & CPL_SWITCH_F) 5016 cplsw_intr_handler(adapter); 5017 if (cause & SGE_F) 5018 sge_intr_handler(adapter); 5019 if (cause & ULP_TX_F) 5020 ulptx_intr_handler(adapter); 5021 5022 /* Clear the interrupts just processed for which we are the master. */ 5023 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5024 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5025 return 1; 5026 } 5027 5028 /** 5029 * t4_intr_enable - enable interrupts 5030 * @adapter: the adapter whose interrupts should be enabled 5031 * 5032 * Enable PF-specific interrupts for the calling function and the top-level 5033 * interrupt concentrator for global interrupts. Interrupts are already 5034 * enabled at each module, here we just enable the roots of the interrupt 5035 * hierarchies. 5036 * 5037 * Note: this function should be called only when the driver manages 5038 * non PF-specific interrupts from the various HW modules. Only one PCI 5039 * function at a time should be doing this. 5040 */ 5041 void t4_intr_enable(struct adapter *adapter) 5042 { 5043 u32 val = 0; 5044 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5045 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5046 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5047 5048 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5049 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5050 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5051 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5052 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5053 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5054 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5055 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5056 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5057 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5058 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5059 } 5060 5061 /** 5062 * t4_intr_disable - disable interrupts 5063 * @adapter: the adapter whose interrupts should be disabled 5064 * 5065 * Disable interrupts. We only disable the top-level interrupt 5066 * concentrators. The caller must be a PCI function managing global 5067 * interrupts. 5068 */ 5069 void t4_intr_disable(struct adapter *adapter) 5070 { 5071 u32 whoami, pf; 5072 5073 if (pci_channel_offline(adapter->pdev)) 5074 return; 5075 5076 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5077 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5078 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5079 5080 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5081 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5082 } 5083 5084 unsigned int t4_chip_rss_size(struct adapter *adap) 5085 { 5086 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5087 return RSS_NENTRIES; 5088 else 5089 return T6_RSS_NENTRIES; 5090 } 5091 5092 /** 5093 * t4_config_rss_range - configure a portion of the RSS mapping table 5094 * @adapter: the adapter 5095 * @mbox: mbox to use for the FW command 5096 * @viid: virtual interface whose RSS subtable is to be written 5097 * @start: start entry in the table to write 5098 * @n: how many table entries to write 5099 * @rspq: values for the response queue lookup table 5100 * @nrspq: number of values in @rspq 5101 * 5102 * Programs the selected part of the VI's RSS mapping table with the 5103 * provided values. If @nrspq < @n the supplied values are used repeatedly 5104 * until the full table range is populated. 5105 * 5106 * The caller must ensure the values in @rspq are in the range allowed for 5107 * @viid. 5108 */ 5109 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5110 int start, int n, const u16 *rspq, unsigned int nrspq) 5111 { 5112 int ret; 5113 const u16 *rsp = rspq; 5114 const u16 *rsp_end = rspq + nrspq; 5115 struct fw_rss_ind_tbl_cmd cmd; 5116 5117 memset(&cmd, 0, sizeof(cmd)); 5118 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5119 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5120 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5121 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5122 5123 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5124 while (n > 0) { 5125 int nq = min(n, 32); 5126 __be32 *qp = &cmd.iq0_to_iq2; 5127 5128 cmd.niqid = cpu_to_be16(nq); 5129 cmd.startidx = cpu_to_be16(start); 5130 5131 start += nq; 5132 n -= nq; 5133 5134 while (nq > 0) { 5135 unsigned int v; 5136 5137 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5138 if (++rsp >= rsp_end) 5139 rsp = rspq; 5140 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5141 if (++rsp >= rsp_end) 5142 rsp = rspq; 5143 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5144 if (++rsp >= rsp_end) 5145 rsp = rspq; 5146 5147 *qp++ = cpu_to_be32(v); 5148 nq -= 3; 5149 } 5150 5151 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5152 if (ret) 5153 return ret; 5154 } 5155 return 0; 5156 } 5157 5158 /** 5159 * t4_config_glbl_rss - configure the global RSS mode 5160 * @adapter: the adapter 5161 * @mbox: mbox to use for the FW command 5162 * @mode: global RSS mode 5163 * @flags: mode-specific flags 5164 * 5165 * Sets the global RSS mode. 5166 */ 5167 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5168 unsigned int flags) 5169 { 5170 struct fw_rss_glb_config_cmd c; 5171 5172 memset(&c, 0, sizeof(c)); 5173 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5174 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5175 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5176 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5177 c.u.manual.mode_pkd = 5178 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5179 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5180 c.u.basicvirtual.mode_pkd = 5181 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5182 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5183 } else 5184 return -EINVAL; 5185 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5186 } 5187 5188 /** 5189 * t4_config_vi_rss - configure per VI RSS settings 5190 * @adapter: the adapter 5191 * @mbox: mbox to use for the FW command 5192 * @viid: the VI id 5193 * @flags: RSS flags 5194 * @defq: id of the default RSS queue for the VI. 5195 * 5196 * Configures VI-specific RSS properties. 5197 */ 5198 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5199 unsigned int flags, unsigned int defq) 5200 { 5201 struct fw_rss_vi_config_cmd c; 5202 5203 memset(&c, 0, sizeof(c)); 5204 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5205 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5206 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5207 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5208 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5209 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5210 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5211 } 5212 5213 /* Read an RSS table row */ 5214 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5215 { 5216 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5217 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5218 5, 0, val); 5219 } 5220 5221 /** 5222 * t4_read_rss - read the contents of the RSS mapping table 5223 * @adapter: the adapter 5224 * @map: holds the contents of the RSS mapping table 5225 * 5226 * Reads the contents of the RSS hash->queue mapping table. 5227 */ 5228 int t4_read_rss(struct adapter *adapter, u16 *map) 5229 { 5230 int i, ret, nentries; 5231 u32 val; 5232 5233 nentries = t4_chip_rss_size(adapter); 5234 for (i = 0; i < nentries / 2; ++i) { 5235 ret = rd_rss_row(adapter, i, &val); 5236 if (ret) 5237 return ret; 5238 *map++ = LKPTBLQUEUE0_G(val); 5239 *map++ = LKPTBLQUEUE1_G(val); 5240 } 5241 return 0; 5242 } 5243 5244 static unsigned int t4_use_ldst(struct adapter *adap) 5245 { 5246 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5247 } 5248 5249 /** 5250 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5251 * @adap: the adapter 5252 * @cmd: TP fw ldst address space type 5253 * @vals: where the indirect register values are stored/written 5254 * @nregs: how many indirect registers to read/write 5255 * @start_idx: index of first indirect register to read/write 5256 * @rw: Read (1) or Write (0) 5257 * @sleep_ok: if true we may sleep while awaiting command completion 5258 * 5259 * Access TP indirect registers through LDST 5260 */ 5261 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5262 unsigned int nregs, unsigned int start_index, 5263 unsigned int rw, bool sleep_ok) 5264 { 5265 int ret = 0; 5266 unsigned int i; 5267 struct fw_ldst_cmd c; 5268 5269 for (i = 0; i < nregs; i++) { 5270 memset(&c, 0, sizeof(c)); 5271 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5272 FW_CMD_REQUEST_F | 5273 (rw ? FW_CMD_READ_F : 5274 FW_CMD_WRITE_F) | 5275 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5276 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5277 5278 c.u.addrval.addr = cpu_to_be32(start_index + i); 5279 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5280 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5281 sleep_ok); 5282 if (ret) 5283 return ret; 5284 5285 if (rw) 5286 vals[i] = be32_to_cpu(c.u.addrval.val); 5287 } 5288 return 0; 5289 } 5290 5291 /** 5292 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5293 * @adap: the adapter 5294 * @reg_addr: Address Register 5295 * @reg_data: Data register 5296 * @buff: where the indirect register values are stored/written 5297 * @nregs: how many indirect registers to read/write 5298 * @start_index: index of first indirect register to read/write 5299 * @rw: READ(1) or WRITE(0) 5300 * @sleep_ok: if true we may sleep while awaiting command completion 5301 * 5302 * Read/Write TP indirect registers through LDST if possible. 5303 * Else, use backdoor access 5304 **/ 5305 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5306 u32 *buff, u32 nregs, u32 start_index, int rw, 5307 bool sleep_ok) 5308 { 5309 int rc = -EINVAL; 5310 int cmd; 5311 5312 switch (reg_addr) { 5313 case TP_PIO_ADDR_A: 5314 cmd = FW_LDST_ADDRSPC_TP_PIO; 5315 break; 5316 case TP_TM_PIO_ADDR_A: 5317 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5318 break; 5319 case TP_MIB_INDEX_A: 5320 cmd = FW_LDST_ADDRSPC_TP_MIB; 5321 break; 5322 default: 5323 goto indirect_access; 5324 } 5325 5326 if (t4_use_ldst(adap)) 5327 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5328 sleep_ok); 5329 5330 indirect_access: 5331 5332 if (rc) { 5333 if (rw) 5334 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5335 start_index); 5336 else 5337 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5338 start_index); 5339 } 5340 } 5341 5342 /** 5343 * t4_tp_pio_read - Read TP PIO registers 5344 * @adap: the adapter 5345 * @buff: where the indirect register values are written 5346 * @nregs: how many indirect registers to read 5347 * @start_index: index of first indirect register to read 5348 * @sleep_ok: if true we may sleep while awaiting command completion 5349 * 5350 * Read TP PIO Registers 5351 **/ 5352 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5353 u32 start_index, bool sleep_ok) 5354 { 5355 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5356 start_index, 1, sleep_ok); 5357 } 5358 5359 /** 5360 * t4_tp_pio_write - Write TP PIO registers 5361 * @adap: the adapter 5362 * @buff: where the indirect register values are stored 5363 * @nregs: how many indirect registers to write 5364 * @start_index: index of first indirect register to write 5365 * @sleep_ok: if true we may sleep while awaiting command completion 5366 * 5367 * Write TP PIO Registers 5368 **/ 5369 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5370 u32 start_index, bool sleep_ok) 5371 { 5372 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5373 start_index, 0, sleep_ok); 5374 } 5375 5376 /** 5377 * t4_tp_tm_pio_read - Read TP TM PIO registers 5378 * @adap: the adapter 5379 * @buff: where the indirect register values are written 5380 * @nregs: how many indirect registers to read 5381 * @start_index: index of first indirect register to read 5382 * @sleep_ok: if true we may sleep while awaiting command completion 5383 * 5384 * Read TP TM PIO Registers 5385 **/ 5386 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5387 u32 start_index, bool sleep_ok) 5388 { 5389 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5390 nregs, start_index, 1, sleep_ok); 5391 } 5392 5393 /** 5394 * t4_tp_mib_read - Read TP MIB registers 5395 * @adap: the adapter 5396 * @buff: where the indirect register values are written 5397 * @nregs: how many indirect registers to read 5398 * @start_index: index of first indirect register to read 5399 * @sleep_ok: if true we may sleep while awaiting command completion 5400 * 5401 * Read TP MIB Registers 5402 **/ 5403 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5404 bool sleep_ok) 5405 { 5406 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5407 start_index, 1, sleep_ok); 5408 } 5409 5410 /** 5411 * t4_read_rss_key - read the global RSS key 5412 * @adap: the adapter 5413 * @key: 10-entry array holding the 320-bit RSS key 5414 * @sleep_ok: if true we may sleep while awaiting command completion 5415 * 5416 * Reads the global 320-bit RSS key. 5417 */ 5418 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5419 { 5420 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5421 } 5422 5423 /** 5424 * t4_write_rss_key - program one of the RSS keys 5425 * @adap: the adapter 5426 * @key: 10-entry array holding the 320-bit RSS key 5427 * @idx: which RSS key to write 5428 * @sleep_ok: if true we may sleep while awaiting command completion 5429 * 5430 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5431 * 0..15 the corresponding entry in the RSS key table is written, 5432 * otherwise the global RSS key is written. 5433 */ 5434 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5435 bool sleep_ok) 5436 { 5437 u8 rss_key_addr_cnt = 16; 5438 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5439 5440 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5441 * allows access to key addresses 16-63 by using KeyWrAddrX 5442 * as index[5:4](upper 2) into key table 5443 */ 5444 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5445 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5446 rss_key_addr_cnt = 32; 5447 5448 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5449 5450 if (idx >= 0 && idx < rss_key_addr_cnt) { 5451 if (rss_key_addr_cnt > 16) 5452 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5453 KEYWRADDRX_V(idx >> 4) | 5454 T6_VFWRADDR_V(idx) | KEYWREN_F); 5455 else 5456 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5457 KEYWRADDR_V(idx) | KEYWREN_F); 5458 } 5459 } 5460 5461 /** 5462 * t4_read_rss_pf_config - read PF RSS Configuration Table 5463 * @adapter: the adapter 5464 * @index: the entry in the PF RSS table to read 5465 * @valp: where to store the returned value 5466 * @sleep_ok: if true we may sleep while awaiting command completion 5467 * 5468 * Reads the PF RSS Configuration Table at the specified index and returns 5469 * the value found there. 5470 */ 5471 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5472 u32 *valp, bool sleep_ok) 5473 { 5474 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5475 } 5476 5477 /** 5478 * t4_read_rss_vf_config - read VF RSS Configuration Table 5479 * @adapter: the adapter 5480 * @index: the entry in the VF RSS table to read 5481 * @vfl: where to store the returned VFL 5482 * @vfh: where to store the returned VFH 5483 * @sleep_ok: if true we may sleep while awaiting command completion 5484 * 5485 * Reads the VF RSS Configuration Table at the specified index and returns 5486 * the (VFL, VFH) values found there. 5487 */ 5488 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5489 u32 *vfl, u32 *vfh, bool sleep_ok) 5490 { 5491 u32 vrt, mask, data; 5492 5493 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5494 mask = VFWRADDR_V(VFWRADDR_M); 5495 data = VFWRADDR_V(index); 5496 } else { 5497 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5498 data = T6_VFWRADDR_V(index); 5499 } 5500 5501 /* Request that the index'th VF Table values be read into VFL/VFH. 5502 */ 5503 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5504 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5505 vrt |= data | VFRDEN_F; 5506 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5507 5508 /* Grab the VFL/VFH values ... 5509 */ 5510 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5511 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5512 } 5513 5514 /** 5515 * t4_read_rss_pf_map - read PF RSS Map 5516 * @adapter: the adapter 5517 * @sleep_ok: if true we may sleep while awaiting command completion 5518 * 5519 * Reads the PF RSS Map register and returns its value. 5520 */ 5521 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5522 { 5523 u32 pfmap; 5524 5525 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5526 return pfmap; 5527 } 5528 5529 /** 5530 * t4_read_rss_pf_mask - read PF RSS Mask 5531 * @adapter: the adapter 5532 * @sleep_ok: if true we may sleep while awaiting command completion 5533 * 5534 * Reads the PF RSS Mask register and returns its value. 5535 */ 5536 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5537 { 5538 u32 pfmask; 5539 5540 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5541 return pfmask; 5542 } 5543 5544 /** 5545 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5546 * @adap: the adapter 5547 * @v4: holds the TCP/IP counter values 5548 * @v6: holds the TCP/IPv6 counter values 5549 * @sleep_ok: if true we may sleep while awaiting command completion 5550 * 5551 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5552 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5553 */ 5554 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5555 struct tp_tcp_stats *v6, bool sleep_ok) 5556 { 5557 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5558 5559 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5560 #define STAT(x) val[STAT_IDX(x)] 5561 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5562 5563 if (v4) { 5564 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5565 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5566 v4->tcp_out_rsts = STAT(OUT_RST); 5567 v4->tcp_in_segs = STAT64(IN_SEG); 5568 v4->tcp_out_segs = STAT64(OUT_SEG); 5569 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5570 } 5571 if (v6) { 5572 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5573 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5574 v6->tcp_out_rsts = STAT(OUT_RST); 5575 v6->tcp_in_segs = STAT64(IN_SEG); 5576 v6->tcp_out_segs = STAT64(OUT_SEG); 5577 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5578 } 5579 #undef STAT64 5580 #undef STAT 5581 #undef STAT_IDX 5582 } 5583 5584 /** 5585 * t4_tp_get_err_stats - read TP's error MIB counters 5586 * @adap: the adapter 5587 * @st: holds the counter values 5588 * @sleep_ok: if true we may sleep while awaiting command completion 5589 * 5590 * Returns the values of TP's error counters. 5591 */ 5592 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5593 bool sleep_ok) 5594 { 5595 int nchan = adap->params.arch.nchan; 5596 5597 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5598 sleep_ok); 5599 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5600 sleep_ok); 5601 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5602 sleep_ok); 5603 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5604 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5605 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5606 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5607 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5608 sleep_ok); 5609 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5610 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5611 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5612 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5613 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5614 sleep_ok); 5615 } 5616 5617 /** 5618 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5619 * @adap: the adapter 5620 * @st: holds the counter values 5621 * @sleep_ok: if true we may sleep while awaiting command completion 5622 * 5623 * Returns the values of TP's CPL counters. 5624 */ 5625 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5626 bool sleep_ok) 5627 { 5628 int nchan = adap->params.arch.nchan; 5629 5630 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5631 5632 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5633 } 5634 5635 /** 5636 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5637 * @adap: the adapter 5638 * @st: holds the counter values 5639 * @sleep_ok: if true we may sleep while awaiting command completion 5640 * 5641 * Returns the values of TP's RDMA counters. 5642 */ 5643 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5644 bool sleep_ok) 5645 { 5646 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5647 sleep_ok); 5648 } 5649 5650 /** 5651 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5652 * @adap: the adapter 5653 * @idx: the port index 5654 * @st: holds the counter values 5655 * @sleep_ok: if true we may sleep while awaiting command completion 5656 * 5657 * Returns the values of TP's FCoE counters for the selected port. 5658 */ 5659 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5660 struct tp_fcoe_stats *st, bool sleep_ok) 5661 { 5662 u32 val[2]; 5663 5664 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5665 sleep_ok); 5666 5667 t4_tp_mib_read(adap, &st->frames_drop, 1, 5668 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5669 5670 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5671 sleep_ok); 5672 5673 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5674 } 5675 5676 /** 5677 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5678 * @adap: the adapter 5679 * @st: holds the counter values 5680 * @sleep_ok: if true we may sleep while awaiting command completion 5681 * 5682 * Returns the values of TP's counters for non-TCP directly-placed packets. 5683 */ 5684 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5685 bool sleep_ok) 5686 { 5687 u32 val[4]; 5688 5689 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5690 st->frames = val[0]; 5691 st->drops = val[1]; 5692 st->octets = ((u64)val[2] << 32) | val[3]; 5693 } 5694 5695 /** 5696 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5697 * @adap: the adapter 5698 * @mtus: where to store the MTU values 5699 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5700 * 5701 * Reads the HW path MTU table. 5702 */ 5703 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5704 { 5705 u32 v; 5706 int i; 5707 5708 for (i = 0; i < NMTUS; ++i) { 5709 t4_write_reg(adap, TP_MTU_TABLE_A, 5710 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5711 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5712 mtus[i] = MTUVALUE_G(v); 5713 if (mtu_log) 5714 mtu_log[i] = MTUWIDTH_G(v); 5715 } 5716 } 5717 5718 /** 5719 * t4_read_cong_tbl - reads the congestion control table 5720 * @adap: the adapter 5721 * @incr: where to store the alpha values 5722 * 5723 * Reads the additive increments programmed into the HW congestion 5724 * control table. 5725 */ 5726 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5727 { 5728 unsigned int mtu, w; 5729 5730 for (mtu = 0; mtu < NMTUS; ++mtu) 5731 for (w = 0; w < NCCTRL_WIN; ++w) { 5732 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5733 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5734 incr[mtu][w] = (u16)t4_read_reg(adap, 5735 TP_CCTRL_TABLE_A) & 0x1fff; 5736 } 5737 } 5738 5739 /** 5740 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5741 * @adap: the adapter 5742 * @addr: the indirect TP register address 5743 * @mask: specifies the field within the register to modify 5744 * @val: new value for the field 5745 * 5746 * Sets a field of an indirect TP register to the given value. 5747 */ 5748 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5749 unsigned int mask, unsigned int val) 5750 { 5751 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5752 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5753 t4_write_reg(adap, TP_PIO_DATA_A, val); 5754 } 5755 5756 /** 5757 * init_cong_ctrl - initialize congestion control parameters 5758 * @a: the alpha values for congestion control 5759 * @b: the beta values for congestion control 5760 * 5761 * Initialize the congestion control parameters. 5762 */ 5763 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5764 { 5765 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5766 a[9] = 2; 5767 a[10] = 3; 5768 a[11] = 4; 5769 a[12] = 5; 5770 a[13] = 6; 5771 a[14] = 7; 5772 a[15] = 8; 5773 a[16] = 9; 5774 a[17] = 10; 5775 a[18] = 14; 5776 a[19] = 17; 5777 a[20] = 21; 5778 a[21] = 25; 5779 a[22] = 30; 5780 a[23] = 35; 5781 a[24] = 45; 5782 a[25] = 60; 5783 a[26] = 80; 5784 a[27] = 100; 5785 a[28] = 200; 5786 a[29] = 300; 5787 a[30] = 400; 5788 a[31] = 500; 5789 5790 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5791 b[9] = b[10] = 1; 5792 b[11] = b[12] = 2; 5793 b[13] = b[14] = b[15] = b[16] = 3; 5794 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5795 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5796 b[28] = b[29] = 6; 5797 b[30] = b[31] = 7; 5798 } 5799 5800 /* The minimum additive increment value for the congestion control table */ 5801 #define CC_MIN_INCR 2U 5802 5803 /** 5804 * t4_load_mtus - write the MTU and congestion control HW tables 5805 * @adap: the adapter 5806 * @mtus: the values for the MTU table 5807 * @alpha: the values for the congestion control alpha parameter 5808 * @beta: the values for the congestion control beta parameter 5809 * 5810 * Write the HW MTU table with the supplied MTUs and the high-speed 5811 * congestion control table with the supplied alpha, beta, and MTUs. 5812 * We write the two tables together because the additive increments 5813 * depend on the MTUs. 5814 */ 5815 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5816 const unsigned short *alpha, const unsigned short *beta) 5817 { 5818 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5819 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5820 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5821 28672, 40960, 57344, 81920, 114688, 163840, 229376 5822 }; 5823 5824 unsigned int i, w; 5825 5826 for (i = 0; i < NMTUS; ++i) { 5827 unsigned int mtu = mtus[i]; 5828 unsigned int log2 = fls(mtu); 5829 5830 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5831 log2--; 5832 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5833 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5834 5835 for (w = 0; w < NCCTRL_WIN; ++w) { 5836 unsigned int inc; 5837 5838 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5839 CC_MIN_INCR); 5840 5841 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5842 (w << 16) | (beta[w] << 13) | inc); 5843 } 5844 } 5845 } 5846 5847 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5848 * clocks. The formula is 5849 * 5850 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5851 * 5852 * which is equivalent to 5853 * 5854 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5855 */ 5856 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5857 { 5858 u64 v = bytes256 * adap->params.vpd.cclk; 5859 5860 return v * 62 + v / 2; 5861 } 5862 5863 /** 5864 * t4_get_chan_txrate - get the current per channel Tx rates 5865 * @adap: the adapter 5866 * @nic_rate: rates for NIC traffic 5867 * @ofld_rate: rates for offloaded traffic 5868 * 5869 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5870 * for each channel. 5871 */ 5872 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5873 { 5874 u32 v; 5875 5876 v = t4_read_reg(adap, TP_TX_TRATE_A); 5877 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5878 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5879 if (adap->params.arch.nchan == NCHAN) { 5880 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5881 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5882 } 5883 5884 v = t4_read_reg(adap, TP_TX_ORATE_A); 5885 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5886 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5887 if (adap->params.arch.nchan == NCHAN) { 5888 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5889 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5890 } 5891 } 5892 5893 /** 5894 * t4_set_trace_filter - configure one of the tracing filters 5895 * @adap: the adapter 5896 * @tp: the desired trace filter parameters 5897 * @idx: which filter to configure 5898 * @enable: whether to enable or disable the filter 5899 * 5900 * Configures one of the tracing filters available in HW. If @enable is 5901 * %0 @tp is not examined and may be %NULL. The user is responsible to 5902 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5903 */ 5904 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5905 int idx, int enable) 5906 { 5907 int i, ofst = idx * 4; 5908 u32 data_reg, mask_reg, cfg; 5909 5910 if (!enable) { 5911 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5912 return 0; 5913 } 5914 5915 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5916 if (cfg & TRCMULTIFILTER_F) { 5917 /* If multiple tracers are enabled, then maximum 5918 * capture size is 2.5KB (FIFO size of a single channel) 5919 * minus 2 flits for CPL_TRACE_PKT header. 5920 */ 5921 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5922 return -EINVAL; 5923 } else { 5924 /* If multiple tracers are disabled, to avoid deadlocks 5925 * maximum packet capture size of 9600 bytes is recommended. 5926 * Also in this mode, only trace0 can be enabled and running. 5927 */ 5928 if (tp->snap_len > 9600 || idx) 5929 return -EINVAL; 5930 } 5931 5932 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5933 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5934 tp->min_len > TFMINPKTSIZE_M) 5935 return -EINVAL; 5936 5937 /* stop the tracer we'll be changing */ 5938 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5939 5940 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5941 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5942 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5943 5944 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5945 t4_write_reg(adap, data_reg, tp->data[i]); 5946 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5947 } 5948 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5949 TFCAPTUREMAX_V(tp->snap_len) | 5950 TFMINPKTSIZE_V(tp->min_len)); 5951 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5952 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5953 (is_t4(adap->params.chip) ? 5954 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5955 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5956 T5_TFINVERTMATCH_V(tp->invert))); 5957 5958 return 0; 5959 } 5960 5961 /** 5962 * t4_get_trace_filter - query one of the tracing filters 5963 * @adap: the adapter 5964 * @tp: the current trace filter parameters 5965 * @idx: which trace filter to query 5966 * @enabled: non-zero if the filter is enabled 5967 * 5968 * Returns the current settings of one of the HW tracing filters. 5969 */ 5970 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 5971 int *enabled) 5972 { 5973 u32 ctla, ctlb; 5974 int i, ofst = idx * 4; 5975 u32 data_reg, mask_reg; 5976 5977 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 5978 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 5979 5980 if (is_t4(adap->params.chip)) { 5981 *enabled = !!(ctla & TFEN_F); 5982 tp->port = TFPORT_G(ctla); 5983 tp->invert = !!(ctla & TFINVERTMATCH_F); 5984 } else { 5985 *enabled = !!(ctla & T5_TFEN_F); 5986 tp->port = T5_TFPORT_G(ctla); 5987 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 5988 } 5989 tp->snap_len = TFCAPTUREMAX_G(ctlb); 5990 tp->min_len = TFMINPKTSIZE_G(ctlb); 5991 tp->skip_ofst = TFOFFSET_G(ctla); 5992 tp->skip_len = TFLENGTH_G(ctla); 5993 5994 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 5995 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 5996 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 5997 5998 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5999 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6000 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6001 } 6002 } 6003 6004 /** 6005 * t4_pmtx_get_stats - returns the HW stats from PMTX 6006 * @adap: the adapter 6007 * @cnt: where to store the count statistics 6008 * @cycles: where to store the cycle statistics 6009 * 6010 * Returns performance statistics from PMTX. 6011 */ 6012 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6013 { 6014 int i; 6015 u32 data[2]; 6016 6017 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6018 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6019 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6020 if (is_t4(adap->params.chip)) { 6021 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6022 } else { 6023 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6024 PM_TX_DBG_DATA_A, data, 2, 6025 PM_TX_DBG_STAT_MSB_A); 6026 cycles[i] = (((u64)data[0] << 32) | data[1]); 6027 } 6028 } 6029 } 6030 6031 /** 6032 * t4_pmrx_get_stats - returns the HW stats from PMRX 6033 * @adap: the adapter 6034 * @cnt: where to store the count statistics 6035 * @cycles: where to store the cycle statistics 6036 * 6037 * Returns performance statistics from PMRX. 6038 */ 6039 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6040 { 6041 int i; 6042 u32 data[2]; 6043 6044 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6045 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6046 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6047 if (is_t4(adap->params.chip)) { 6048 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6049 } else { 6050 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6051 PM_RX_DBG_DATA_A, data, 2, 6052 PM_RX_DBG_STAT_MSB_A); 6053 cycles[i] = (((u64)data[0] << 32) | data[1]); 6054 } 6055 } 6056 } 6057 6058 /** 6059 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6060 * @adap: the adapter 6061 * @pidx: the port index 6062 * 6063 * Computes and returns a bitmap indicating which MPS buffer groups are 6064 * associated with the given Port. Bit i is set if buffer group i is 6065 * used by the Port. 6066 */ 6067 static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6068 int pidx) 6069 { 6070 unsigned int chip_version, nports; 6071 6072 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6073 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6074 6075 switch (chip_version) { 6076 case CHELSIO_T4: 6077 case CHELSIO_T5: 6078 switch (nports) { 6079 case 1: return 0xf; 6080 case 2: return 3 << (2 * pidx); 6081 case 4: return 1 << pidx; 6082 } 6083 break; 6084 6085 case CHELSIO_T6: 6086 switch (nports) { 6087 case 2: return 1 << (2 * pidx); 6088 } 6089 break; 6090 } 6091 6092 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6093 chip_version, nports); 6094 6095 return 0; 6096 } 6097 6098 /** 6099 * t4_get_mps_bg_map - return the buffer groups associated with a port 6100 * @adapter: the adapter 6101 * @pidx: the port index 6102 * 6103 * Returns a bitmap indicating which MPS buffer groups are associated 6104 * with the given Port. Bit i is set if buffer group i is used by the 6105 * Port. 6106 */ 6107 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6108 { 6109 u8 *mps_bg_map; 6110 unsigned int nports; 6111 6112 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6113 if (pidx >= nports) { 6114 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6115 pidx, nports); 6116 return 0; 6117 } 6118 6119 /* If we've already retrieved/computed this, just return the result. 6120 */ 6121 mps_bg_map = adapter->params.mps_bg_map; 6122 if (mps_bg_map[pidx]) 6123 return mps_bg_map[pidx]; 6124 6125 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6126 * If we're talking to such Firmware, let it tell us. If the new 6127 * API isn't supported, revert back to old hardcoded way. The value 6128 * obtained from Firmware is encoded in below format: 6129 * 6130 * val = (( MPSBGMAP[Port 3] << 24 ) | 6131 * ( MPSBGMAP[Port 2] << 16 ) | 6132 * ( MPSBGMAP[Port 1] << 8 ) | 6133 * ( MPSBGMAP[Port 0] << 0 )) 6134 */ 6135 if (adapter->flags & CXGB4_FW_OK) { 6136 u32 param, val; 6137 int ret; 6138 6139 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6140 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6141 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6142 0, 1, ¶m, &val); 6143 if (!ret) { 6144 int p; 6145 6146 /* Store the BG Map for all of the Ports in order to 6147 * avoid more calls to the Firmware in the future. 6148 */ 6149 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6150 mps_bg_map[p] = val & 0xff; 6151 6152 return mps_bg_map[pidx]; 6153 } 6154 } 6155 6156 /* Either we're not talking to the Firmware or we're dealing with 6157 * older Firmware which doesn't support the new API to get the MPS 6158 * Buffer Group Map. Fall back to computing it ourselves. 6159 */ 6160 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6161 return mps_bg_map[pidx]; 6162 } 6163 6164 /** 6165 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6166 * @adapter: the adapter 6167 * @pidx: the port index 6168 * 6169 * Returns a bitmap indicating which TP Ingress Channels are associated 6170 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6171 * the Port. 6172 */ 6173 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6174 { 6175 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6176 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6177 6178 if (pidx >= nports) { 6179 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6180 pidx, nports); 6181 return 0; 6182 } 6183 6184 switch (chip_version) { 6185 case CHELSIO_T4: 6186 case CHELSIO_T5: 6187 /* Note that this happens to be the same values as the MPS 6188 * Buffer Group Map for these Chips. But we replicate the code 6189 * here because they're really separate concepts. 6190 */ 6191 switch (nports) { 6192 case 1: return 0xf; 6193 case 2: return 3 << (2 * pidx); 6194 case 4: return 1 << pidx; 6195 } 6196 break; 6197 6198 case CHELSIO_T6: 6199 switch (nports) { 6200 case 1: 6201 case 2: return 1 << pidx; 6202 } 6203 break; 6204 } 6205 6206 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6207 chip_version, nports); 6208 return 0; 6209 } 6210 6211 /** 6212 * t4_get_port_type_description - return Port Type string description 6213 * @port_type: firmware Port Type enumeration 6214 */ 6215 const char *t4_get_port_type_description(enum fw_port_type port_type) 6216 { 6217 static const char *const port_type_description[] = { 6218 "Fiber_XFI", 6219 "Fiber_XAUI", 6220 "BT_SGMII", 6221 "BT_XFI", 6222 "BT_XAUI", 6223 "KX4", 6224 "CX4", 6225 "KX", 6226 "KR", 6227 "SFP", 6228 "BP_AP", 6229 "BP4_AP", 6230 "QSFP_10G", 6231 "QSA", 6232 "QSFP", 6233 "BP40_BA", 6234 "KR4_100G", 6235 "CR4_QSFP", 6236 "CR_QSFP", 6237 "CR2_QSFP", 6238 "SFP28", 6239 "KR_SFP28", 6240 "KR_XLAUI" 6241 }; 6242 6243 if (port_type < ARRAY_SIZE(port_type_description)) 6244 return port_type_description[port_type]; 6245 return "UNKNOWN"; 6246 } 6247 6248 /** 6249 * t4_get_port_stats_offset - collect port stats relative to a previous 6250 * snapshot 6251 * @adap: The adapter 6252 * @idx: The port 6253 * @stats: Current stats to fill 6254 * @offset: Previous stats snapshot 6255 */ 6256 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6257 struct port_stats *stats, 6258 struct port_stats *offset) 6259 { 6260 u64 *s, *o; 6261 int i; 6262 6263 t4_get_port_stats(adap, idx, stats); 6264 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6265 i < (sizeof(struct port_stats) / sizeof(u64)); 6266 i++, s++, o++) 6267 *s -= *o; 6268 } 6269 6270 /** 6271 * t4_get_port_stats - collect port statistics 6272 * @adap: the adapter 6273 * @idx: the port index 6274 * @p: the stats structure to fill 6275 * 6276 * Collect statistics related to the given port from HW. 6277 */ 6278 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6279 { 6280 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6281 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6282 6283 #define GET_STAT(name) \ 6284 t4_read_reg64(adap, \ 6285 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6286 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6287 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6288 6289 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6290 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6291 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6292 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6293 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6294 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6295 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6296 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6297 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6298 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6299 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6300 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6301 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6302 p->tx_drop = GET_STAT(TX_PORT_DROP); 6303 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6304 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6305 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6306 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6307 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6308 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6309 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6310 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6311 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6312 6313 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6314 if (stat_ctl & COUNTPAUSESTATTX_F) 6315 p->tx_frames_64 -= p->tx_pause; 6316 if (stat_ctl & COUNTPAUSEMCTX_F) 6317 p->tx_mcast_frames -= p->tx_pause; 6318 } 6319 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6320 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6321 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6322 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6323 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6324 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6325 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6326 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6327 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6328 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6329 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6330 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6331 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6332 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6333 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6334 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6335 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6336 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6337 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6338 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6339 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6340 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6341 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6342 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6343 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6344 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6345 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6346 6347 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6348 if (stat_ctl & COUNTPAUSESTATRX_F) 6349 p->rx_frames_64 -= p->rx_pause; 6350 if (stat_ctl & COUNTPAUSEMCRX_F) 6351 p->rx_mcast_frames -= p->rx_pause; 6352 } 6353 6354 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6355 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6356 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6357 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6358 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6359 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6360 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6361 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6362 6363 #undef GET_STAT 6364 #undef GET_STAT_COM 6365 } 6366 6367 /** 6368 * t4_get_lb_stats - collect loopback port statistics 6369 * @adap: the adapter 6370 * @idx: the loopback port index 6371 * @p: the stats structure to fill 6372 * 6373 * Return HW statistics for the given loopback port. 6374 */ 6375 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6376 { 6377 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6378 6379 #define GET_STAT(name) \ 6380 t4_read_reg64(adap, \ 6381 (is_t4(adap->params.chip) ? \ 6382 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6383 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6384 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6385 6386 p->octets = GET_STAT(BYTES); 6387 p->frames = GET_STAT(FRAMES); 6388 p->bcast_frames = GET_STAT(BCAST); 6389 p->mcast_frames = GET_STAT(MCAST); 6390 p->ucast_frames = GET_STAT(UCAST); 6391 p->error_frames = GET_STAT(ERROR); 6392 6393 p->frames_64 = GET_STAT(64B); 6394 p->frames_65_127 = GET_STAT(65B_127B); 6395 p->frames_128_255 = GET_STAT(128B_255B); 6396 p->frames_256_511 = GET_STAT(256B_511B); 6397 p->frames_512_1023 = GET_STAT(512B_1023B); 6398 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6399 p->frames_1519_max = GET_STAT(1519B_MAX); 6400 p->drop = GET_STAT(DROP_FRAMES); 6401 6402 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6403 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6404 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6405 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6406 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6407 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6408 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6409 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6410 6411 #undef GET_STAT 6412 #undef GET_STAT_COM 6413 } 6414 6415 /* t4_mk_filtdelwr - create a delete filter WR 6416 * @ftid: the filter ID 6417 * @wr: the filter work request to populate 6418 * @qid: ingress queue to receive the delete notification 6419 * 6420 * Creates a filter work request to delete the supplied filter. If @qid is 6421 * negative the delete notification is suppressed. 6422 */ 6423 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6424 { 6425 memset(wr, 0, sizeof(*wr)); 6426 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6427 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6428 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6429 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6430 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6431 if (qid >= 0) 6432 wr->rx_chan_rx_rpl_iq = 6433 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6434 } 6435 6436 #define INIT_CMD(var, cmd, rd_wr) do { \ 6437 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6438 FW_CMD_REQUEST_F | \ 6439 FW_CMD_##rd_wr##_F); \ 6440 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6441 } while (0) 6442 6443 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6444 u32 addr, u32 val) 6445 { 6446 u32 ldst_addrspace; 6447 struct fw_ldst_cmd c; 6448 6449 memset(&c, 0, sizeof(c)); 6450 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6451 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6452 FW_CMD_REQUEST_F | 6453 FW_CMD_WRITE_F | 6454 ldst_addrspace); 6455 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6456 c.u.addrval.addr = cpu_to_be32(addr); 6457 c.u.addrval.val = cpu_to_be32(val); 6458 6459 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6460 } 6461 6462 /** 6463 * t4_mdio_rd - read a PHY register through MDIO 6464 * @adap: the adapter 6465 * @mbox: mailbox to use for the FW command 6466 * @phy_addr: the PHY address 6467 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6468 * @reg: the register to read 6469 * @valp: where to store the value 6470 * 6471 * Issues a FW command through the given mailbox to read a PHY register. 6472 */ 6473 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6474 unsigned int mmd, unsigned int reg, u16 *valp) 6475 { 6476 int ret; 6477 u32 ldst_addrspace; 6478 struct fw_ldst_cmd c; 6479 6480 memset(&c, 0, sizeof(c)); 6481 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6482 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6483 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6484 ldst_addrspace); 6485 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6486 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6487 FW_LDST_CMD_MMD_V(mmd)); 6488 c.u.mdio.raddr = cpu_to_be16(reg); 6489 6490 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6491 if (ret == 0) 6492 *valp = be16_to_cpu(c.u.mdio.rval); 6493 return ret; 6494 } 6495 6496 /** 6497 * t4_mdio_wr - write a PHY register through MDIO 6498 * @adap: the adapter 6499 * @mbox: mailbox to use for the FW command 6500 * @phy_addr: the PHY address 6501 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6502 * @reg: the register to write 6503 * @valp: value to write 6504 * 6505 * Issues a FW command through the given mailbox to write a PHY register. 6506 */ 6507 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6508 unsigned int mmd, unsigned int reg, u16 val) 6509 { 6510 u32 ldst_addrspace; 6511 struct fw_ldst_cmd c; 6512 6513 memset(&c, 0, sizeof(c)); 6514 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6515 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6516 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6517 ldst_addrspace); 6518 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6519 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6520 FW_LDST_CMD_MMD_V(mmd)); 6521 c.u.mdio.raddr = cpu_to_be16(reg); 6522 c.u.mdio.rval = cpu_to_be16(val); 6523 6524 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6525 } 6526 6527 /** 6528 * t4_sge_decode_idma_state - decode the idma state 6529 * @adap: the adapter 6530 * @state: the state idma is stuck in 6531 */ 6532 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6533 { 6534 static const char * const t4_decode[] = { 6535 "IDMA_IDLE", 6536 "IDMA_PUSH_MORE_CPL_FIFO", 6537 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6538 "Not used", 6539 "IDMA_PHYSADDR_SEND_PCIEHDR", 6540 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6541 "IDMA_PHYSADDR_SEND_PAYLOAD", 6542 "IDMA_SEND_FIFO_TO_IMSG", 6543 "IDMA_FL_REQ_DATA_FL_PREP", 6544 "IDMA_FL_REQ_DATA_FL", 6545 "IDMA_FL_DROP", 6546 "IDMA_FL_H_REQ_HEADER_FL", 6547 "IDMA_FL_H_SEND_PCIEHDR", 6548 "IDMA_FL_H_PUSH_CPL_FIFO", 6549 "IDMA_FL_H_SEND_CPL", 6550 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6551 "IDMA_FL_H_SEND_IP_HDR", 6552 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6553 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6554 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6555 "IDMA_FL_D_SEND_PCIEHDR", 6556 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6557 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6558 "IDMA_FL_SEND_PCIEHDR", 6559 "IDMA_FL_PUSH_CPL_FIFO", 6560 "IDMA_FL_SEND_CPL", 6561 "IDMA_FL_SEND_PAYLOAD_FIRST", 6562 "IDMA_FL_SEND_PAYLOAD", 6563 "IDMA_FL_REQ_NEXT_DATA_FL", 6564 "IDMA_FL_SEND_NEXT_PCIEHDR", 6565 "IDMA_FL_SEND_PADDING", 6566 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6567 "IDMA_FL_SEND_FIFO_TO_IMSG", 6568 "IDMA_FL_REQ_DATAFL_DONE", 6569 "IDMA_FL_REQ_HEADERFL_DONE", 6570 }; 6571 static const char * const t5_decode[] = { 6572 "IDMA_IDLE", 6573 "IDMA_ALMOST_IDLE", 6574 "IDMA_PUSH_MORE_CPL_FIFO", 6575 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6576 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6577 "IDMA_PHYSADDR_SEND_PCIEHDR", 6578 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6579 "IDMA_PHYSADDR_SEND_PAYLOAD", 6580 "IDMA_SEND_FIFO_TO_IMSG", 6581 "IDMA_FL_REQ_DATA_FL", 6582 "IDMA_FL_DROP", 6583 "IDMA_FL_DROP_SEND_INC", 6584 "IDMA_FL_H_REQ_HEADER_FL", 6585 "IDMA_FL_H_SEND_PCIEHDR", 6586 "IDMA_FL_H_PUSH_CPL_FIFO", 6587 "IDMA_FL_H_SEND_CPL", 6588 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6589 "IDMA_FL_H_SEND_IP_HDR", 6590 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6591 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6592 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6593 "IDMA_FL_D_SEND_PCIEHDR", 6594 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6595 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6596 "IDMA_FL_SEND_PCIEHDR", 6597 "IDMA_FL_PUSH_CPL_FIFO", 6598 "IDMA_FL_SEND_CPL", 6599 "IDMA_FL_SEND_PAYLOAD_FIRST", 6600 "IDMA_FL_SEND_PAYLOAD", 6601 "IDMA_FL_REQ_NEXT_DATA_FL", 6602 "IDMA_FL_SEND_NEXT_PCIEHDR", 6603 "IDMA_FL_SEND_PADDING", 6604 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6605 }; 6606 static const char * const t6_decode[] = { 6607 "IDMA_IDLE", 6608 "IDMA_PUSH_MORE_CPL_FIFO", 6609 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6610 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6611 "IDMA_PHYSADDR_SEND_PCIEHDR", 6612 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6613 "IDMA_PHYSADDR_SEND_PAYLOAD", 6614 "IDMA_FL_REQ_DATA_FL", 6615 "IDMA_FL_DROP", 6616 "IDMA_FL_DROP_SEND_INC", 6617 "IDMA_FL_H_REQ_HEADER_FL", 6618 "IDMA_FL_H_SEND_PCIEHDR", 6619 "IDMA_FL_H_PUSH_CPL_FIFO", 6620 "IDMA_FL_H_SEND_CPL", 6621 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6622 "IDMA_FL_H_SEND_IP_HDR", 6623 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6624 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6625 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6626 "IDMA_FL_D_SEND_PCIEHDR", 6627 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6628 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6629 "IDMA_FL_SEND_PCIEHDR", 6630 "IDMA_FL_PUSH_CPL_FIFO", 6631 "IDMA_FL_SEND_CPL", 6632 "IDMA_FL_SEND_PAYLOAD_FIRST", 6633 "IDMA_FL_SEND_PAYLOAD", 6634 "IDMA_FL_REQ_NEXT_DATA_FL", 6635 "IDMA_FL_SEND_NEXT_PCIEHDR", 6636 "IDMA_FL_SEND_PADDING", 6637 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6638 }; 6639 static const u32 sge_regs[] = { 6640 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6641 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6642 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6643 }; 6644 const char **sge_idma_decode; 6645 int sge_idma_decode_nstates; 6646 int i; 6647 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6648 6649 /* Select the right set of decode strings to dump depending on the 6650 * adapter chip type. 6651 */ 6652 switch (chip_version) { 6653 case CHELSIO_T4: 6654 sge_idma_decode = (const char **)t4_decode; 6655 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6656 break; 6657 6658 case CHELSIO_T5: 6659 sge_idma_decode = (const char **)t5_decode; 6660 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6661 break; 6662 6663 case CHELSIO_T6: 6664 sge_idma_decode = (const char **)t6_decode; 6665 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6666 break; 6667 6668 default: 6669 dev_err(adapter->pdev_dev, 6670 "Unsupported chip version %d\n", chip_version); 6671 return; 6672 } 6673 6674 if (is_t4(adapter->params.chip)) { 6675 sge_idma_decode = (const char **)t4_decode; 6676 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6677 } else { 6678 sge_idma_decode = (const char **)t5_decode; 6679 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6680 } 6681 6682 if (state < sge_idma_decode_nstates) 6683 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6684 else 6685 CH_WARN(adapter, "idma state %d unknown\n", state); 6686 6687 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6688 CH_WARN(adapter, "SGE register %#x value %#x\n", 6689 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6690 } 6691 6692 /** 6693 * t4_sge_ctxt_flush - flush the SGE context cache 6694 * @adap: the adapter 6695 * @mbox: mailbox to use for the FW command 6696 * @ctx_type: Egress or Ingress 6697 * 6698 * Issues a FW command through the given mailbox to flush the 6699 * SGE context cache. 6700 */ 6701 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6702 { 6703 int ret; 6704 u32 ldst_addrspace; 6705 struct fw_ldst_cmd c; 6706 6707 memset(&c, 0, sizeof(c)); 6708 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6709 FW_LDST_ADDRSPC_SGE_EGRC : 6710 FW_LDST_ADDRSPC_SGE_INGC); 6711 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6712 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6713 ldst_addrspace); 6714 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6715 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6716 6717 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6718 return ret; 6719 } 6720 6721 /** 6722 * t4_read_sge_dbqtimers - reag SGE Doorbell Queue Timer values 6723 * @adap - the adapter 6724 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6725 * @dbqtimers: SGE Doorbell Queue Timer table 6726 * 6727 * Reads the SGE Doorbell Queue Timer values into the provided table. 6728 * Returns 0 on success (Firmware and Hardware support this feature), 6729 * an error on failure. 6730 */ 6731 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6732 u16 *dbqtimers) 6733 { 6734 int ret, dbqtimerix; 6735 6736 ret = 0; 6737 dbqtimerix = 0; 6738 while (dbqtimerix < ndbqtimers) { 6739 int nparams, param; 6740 u32 params[7], vals[7]; 6741 6742 nparams = ndbqtimers - dbqtimerix; 6743 if (nparams > ARRAY_SIZE(params)) 6744 nparams = ARRAY_SIZE(params); 6745 6746 for (param = 0; param < nparams; param++) 6747 params[param] = 6748 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6749 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6750 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6751 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6752 nparams, params, vals); 6753 if (ret) 6754 break; 6755 6756 for (param = 0; param < nparams; param++) 6757 dbqtimers[dbqtimerix++] = vals[param]; 6758 } 6759 return ret; 6760 } 6761 6762 /** 6763 * t4_fw_hello - establish communication with FW 6764 * @adap: the adapter 6765 * @mbox: mailbox to use for the FW command 6766 * @evt_mbox: mailbox to receive async FW events 6767 * @master: specifies the caller's willingness to be the device master 6768 * @state: returns the current device state (if non-NULL) 6769 * 6770 * Issues a command to establish communication with FW. Returns either 6771 * an error (negative integer) or the mailbox of the Master PF. 6772 */ 6773 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6774 enum dev_master master, enum dev_state *state) 6775 { 6776 int ret; 6777 struct fw_hello_cmd c; 6778 u32 v; 6779 unsigned int master_mbox; 6780 int retries = FW_CMD_HELLO_RETRIES; 6781 6782 retry: 6783 memset(&c, 0, sizeof(c)); 6784 INIT_CMD(c, HELLO, WRITE); 6785 c.err_to_clearinit = cpu_to_be32( 6786 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6787 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6788 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6789 mbox : FW_HELLO_CMD_MBMASTER_M) | 6790 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6791 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6792 FW_HELLO_CMD_CLEARINIT_F); 6793 6794 /* 6795 * Issue the HELLO command to the firmware. If it's not successful 6796 * but indicates that we got a "busy" or "timeout" condition, retry 6797 * the HELLO until we exhaust our retry limit. If we do exceed our 6798 * retry limit, check to see if the firmware left us any error 6799 * information and report that if so. 6800 */ 6801 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6802 if (ret < 0) { 6803 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6804 goto retry; 6805 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6806 t4_report_fw_error(adap); 6807 return ret; 6808 } 6809 6810 v = be32_to_cpu(c.err_to_clearinit); 6811 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6812 if (state) { 6813 if (v & FW_HELLO_CMD_ERR_F) 6814 *state = DEV_STATE_ERR; 6815 else if (v & FW_HELLO_CMD_INIT_F) 6816 *state = DEV_STATE_INIT; 6817 else 6818 *state = DEV_STATE_UNINIT; 6819 } 6820 6821 /* 6822 * If we're not the Master PF then we need to wait around for the 6823 * Master PF Driver to finish setting up the adapter. 6824 * 6825 * Note that we also do this wait if we're a non-Master-capable PF and 6826 * there is no current Master PF; a Master PF may show up momentarily 6827 * and we wouldn't want to fail pointlessly. (This can happen when an 6828 * OS loads lots of different drivers rapidly at the same time). In 6829 * this case, the Master PF returned by the firmware will be 6830 * PCIE_FW_MASTER_M so the test below will work ... 6831 */ 6832 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6833 master_mbox != mbox) { 6834 int waiting = FW_CMD_HELLO_TIMEOUT; 6835 6836 /* 6837 * Wait for the firmware to either indicate an error or 6838 * initialized state. If we see either of these we bail out 6839 * and report the issue to the caller. If we exhaust the 6840 * "hello timeout" and we haven't exhausted our retries, try 6841 * again. Otherwise bail with a timeout error. 6842 */ 6843 for (;;) { 6844 u32 pcie_fw; 6845 6846 msleep(50); 6847 waiting -= 50; 6848 6849 /* 6850 * If neither Error nor Initialialized are indicated 6851 * by the firmware keep waiting till we exaust our 6852 * timeout ... and then retry if we haven't exhausted 6853 * our retries ... 6854 */ 6855 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6856 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6857 if (waiting <= 0) { 6858 if (retries-- > 0) 6859 goto retry; 6860 6861 return -ETIMEDOUT; 6862 } 6863 continue; 6864 } 6865 6866 /* 6867 * We either have an Error or Initialized condition 6868 * report errors preferentially. 6869 */ 6870 if (state) { 6871 if (pcie_fw & PCIE_FW_ERR_F) 6872 *state = DEV_STATE_ERR; 6873 else if (pcie_fw & PCIE_FW_INIT_F) 6874 *state = DEV_STATE_INIT; 6875 } 6876 6877 /* 6878 * If we arrived before a Master PF was selected and 6879 * there's not a valid Master PF, grab its identity 6880 * for our caller. 6881 */ 6882 if (master_mbox == PCIE_FW_MASTER_M && 6883 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6884 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6885 break; 6886 } 6887 } 6888 6889 return master_mbox; 6890 } 6891 6892 /** 6893 * t4_fw_bye - end communication with FW 6894 * @adap: the adapter 6895 * @mbox: mailbox to use for the FW command 6896 * 6897 * Issues a command to terminate communication with FW. 6898 */ 6899 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6900 { 6901 struct fw_bye_cmd c; 6902 6903 memset(&c, 0, sizeof(c)); 6904 INIT_CMD(c, BYE, WRITE); 6905 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6906 } 6907 6908 /** 6909 * t4_init_cmd - ask FW to initialize the device 6910 * @adap: the adapter 6911 * @mbox: mailbox to use for the FW command 6912 * 6913 * Issues a command to FW to partially initialize the device. This 6914 * performs initialization that generally doesn't depend on user input. 6915 */ 6916 int t4_early_init(struct adapter *adap, unsigned int mbox) 6917 { 6918 struct fw_initialize_cmd c; 6919 6920 memset(&c, 0, sizeof(c)); 6921 INIT_CMD(c, INITIALIZE, WRITE); 6922 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6923 } 6924 6925 /** 6926 * t4_fw_reset - issue a reset to FW 6927 * @adap: the adapter 6928 * @mbox: mailbox to use for the FW command 6929 * @reset: specifies the type of reset to perform 6930 * 6931 * Issues a reset command of the specified type to FW. 6932 */ 6933 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6934 { 6935 struct fw_reset_cmd c; 6936 6937 memset(&c, 0, sizeof(c)); 6938 INIT_CMD(c, RESET, WRITE); 6939 c.val = cpu_to_be32(reset); 6940 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6941 } 6942 6943 /** 6944 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 6945 * @adap: the adapter 6946 * @mbox: mailbox to use for the FW RESET command (if desired) 6947 * @force: force uP into RESET even if FW RESET command fails 6948 * 6949 * Issues a RESET command to firmware (if desired) with a HALT indication 6950 * and then puts the microprocessor into RESET state. The RESET command 6951 * will only be issued if a legitimate mailbox is provided (mbox <= 6952 * PCIE_FW_MASTER_M). 6953 * 6954 * This is generally used in order for the host to safely manipulate the 6955 * adapter without fear of conflicting with whatever the firmware might 6956 * be doing. The only way out of this state is to RESTART the firmware 6957 * ... 6958 */ 6959 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 6960 { 6961 int ret = 0; 6962 6963 /* 6964 * If a legitimate mailbox is provided, issue a RESET command 6965 * with a HALT indication. 6966 */ 6967 if (mbox <= PCIE_FW_MASTER_M) { 6968 struct fw_reset_cmd c; 6969 6970 memset(&c, 0, sizeof(c)); 6971 INIT_CMD(c, RESET, WRITE); 6972 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 6973 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 6974 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6975 } 6976 6977 /* 6978 * Normally we won't complete the operation if the firmware RESET 6979 * command fails but if our caller insists we'll go ahead and put the 6980 * uP into RESET. This can be useful if the firmware is hung or even 6981 * missing ... We'll have to take the risk of putting the uP into 6982 * RESET without the cooperation of firmware in that case. 6983 * 6984 * We also force the firmware's HALT flag to be on in case we bypassed 6985 * the firmware RESET command above or we're dealing with old firmware 6986 * which doesn't have the HALT capability. This will serve as a flag 6987 * for the incoming firmware to know that it's coming out of a HALT 6988 * rather than a RESET ... if it's new enough to understand that ... 6989 */ 6990 if (ret == 0 || force) { 6991 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 6992 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 6993 PCIE_FW_HALT_F); 6994 } 6995 6996 /* 6997 * And we always return the result of the firmware RESET command 6998 * even when we force the uP into RESET ... 6999 */ 7000 return ret; 7001 } 7002 7003 /** 7004 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7005 * @adap: the adapter 7006 * @reset: if we want to do a RESET to restart things 7007 * 7008 * Restart firmware previously halted by t4_fw_halt(). On successful 7009 * return the previous PF Master remains as the new PF Master and there 7010 * is no need to issue a new HELLO command, etc. 7011 * 7012 * We do this in two ways: 7013 * 7014 * 1. If we're dealing with newer firmware we'll simply want to take 7015 * the chip's microprocessor out of RESET. This will cause the 7016 * firmware to start up from its start vector. And then we'll loop 7017 * until the firmware indicates it's started again (PCIE_FW.HALT 7018 * reset to 0) or we timeout. 7019 * 7020 * 2. If we're dealing with older firmware then we'll need to RESET 7021 * the chip since older firmware won't recognize the PCIE_FW.HALT 7022 * flag and automatically RESET itself on startup. 7023 */ 7024 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7025 { 7026 if (reset) { 7027 /* 7028 * Since we're directing the RESET instead of the firmware 7029 * doing it automatically, we need to clear the PCIE_FW.HALT 7030 * bit. 7031 */ 7032 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7033 7034 /* 7035 * If we've been given a valid mailbox, first try to get the 7036 * firmware to do the RESET. If that works, great and we can 7037 * return success. Otherwise, if we haven't been given a 7038 * valid mailbox or the RESET command failed, fall back to 7039 * hitting the chip with a hammer. 7040 */ 7041 if (mbox <= PCIE_FW_MASTER_M) { 7042 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7043 msleep(100); 7044 if (t4_fw_reset(adap, mbox, 7045 PIORST_F | PIORSTMODE_F) == 0) 7046 return 0; 7047 } 7048 7049 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7050 msleep(2000); 7051 } else { 7052 int ms; 7053 7054 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7055 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7056 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7057 return 0; 7058 msleep(100); 7059 ms += 100; 7060 } 7061 return -ETIMEDOUT; 7062 } 7063 return 0; 7064 } 7065 7066 /** 7067 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7068 * @adap: the adapter 7069 * @mbox: mailbox to use for the FW RESET command (if desired) 7070 * @fw_data: the firmware image to write 7071 * @size: image size 7072 * @force: force upgrade even if firmware doesn't cooperate 7073 * 7074 * Perform all of the steps necessary for upgrading an adapter's 7075 * firmware image. Normally this requires the cooperation of the 7076 * existing firmware in order to halt all existing activities 7077 * but if an invalid mailbox token is passed in we skip that step 7078 * (though we'll still put the adapter microprocessor into RESET in 7079 * that case). 7080 * 7081 * On successful return the new firmware will have been loaded and 7082 * the adapter will have been fully RESET losing all previous setup 7083 * state. On unsuccessful return the adapter may be completely hosed ... 7084 * positive errno indicates that the adapter is ~probably~ intact, a 7085 * negative errno indicates that things are looking bad ... 7086 */ 7087 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7088 const u8 *fw_data, unsigned int size, int force) 7089 { 7090 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7091 int reset, ret; 7092 7093 if (!t4_fw_matches_chip(adap, fw_hdr)) 7094 return -EINVAL; 7095 7096 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7097 * set wont be sent when we are flashing FW. 7098 */ 7099 adap->flags &= ~CXGB4_FW_OK; 7100 7101 ret = t4_fw_halt(adap, mbox, force); 7102 if (ret < 0 && !force) 7103 goto out; 7104 7105 ret = t4_load_fw(adap, fw_data, size); 7106 if (ret < 0) 7107 goto out; 7108 7109 /* 7110 * If there was a Firmware Configuration File stored in FLASH, 7111 * there's a good chance that it won't be compatible with the new 7112 * Firmware. In order to prevent difficult to diagnose adapter 7113 * initialization issues, we clear out the Firmware Configuration File 7114 * portion of the FLASH . The user will need to re-FLASH a new 7115 * Firmware Configuration File which is compatible with the new 7116 * Firmware if that's desired. 7117 */ 7118 (void)t4_load_cfg(adap, NULL, 0); 7119 7120 /* 7121 * Older versions of the firmware don't understand the new 7122 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7123 * restart. So for newly loaded older firmware we'll have to do the 7124 * RESET for it so it starts up on a clean slate. We can tell if 7125 * the newly loaded firmware will handle this right by checking 7126 * its header flags to see if it advertises the capability. 7127 */ 7128 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7129 ret = t4_fw_restart(adap, mbox, reset); 7130 7131 /* Grab potentially new Firmware Device Log parameters so we can see 7132 * how healthy the new Firmware is. It's okay to contact the new 7133 * Firmware for these parameters even though, as far as it's 7134 * concerned, we've never said "HELLO" to it ... 7135 */ 7136 (void)t4_init_devlog_params(adap); 7137 out: 7138 adap->flags |= CXGB4_FW_OK; 7139 return ret; 7140 } 7141 7142 /** 7143 * t4_fl_pkt_align - return the fl packet alignment 7144 * @adap: the adapter 7145 * 7146 * T4 has a single field to specify the packing and padding boundary. 7147 * T5 onwards has separate fields for this and hence the alignment for 7148 * next packet offset is maximum of these two. 7149 * 7150 */ 7151 int t4_fl_pkt_align(struct adapter *adap) 7152 { 7153 u32 sge_control, sge_control2; 7154 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7155 7156 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7157 7158 /* T4 uses a single control field to specify both the PCIe Padding and 7159 * Packing Boundary. T5 introduced the ability to specify these 7160 * separately. The actual Ingress Packet Data alignment boundary 7161 * within Packed Buffer Mode is the maximum of these two 7162 * specifications. (Note that it makes no real practical sense to 7163 * have the Pading Boudary be larger than the Packing Boundary but you 7164 * could set the chip up that way and, in fact, legacy T4 code would 7165 * end doing this because it would initialize the Padding Boundary and 7166 * leave the Packing Boundary initialized to 0 (16 bytes).) 7167 * Padding Boundary values in T6 starts from 8B, 7168 * where as it is 32B for T4 and T5. 7169 */ 7170 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7171 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7172 else 7173 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7174 7175 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7176 7177 fl_align = ingpadboundary; 7178 if (!is_t4(adap->params.chip)) { 7179 /* T5 has a weird interpretation of one of the PCIe Packing 7180 * Boundary values. No idea why ... 7181 */ 7182 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7183 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7184 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7185 ingpackboundary = 16; 7186 else 7187 ingpackboundary = 1 << (ingpackboundary + 7188 INGPACKBOUNDARY_SHIFT_X); 7189 7190 fl_align = max(ingpadboundary, ingpackboundary); 7191 } 7192 return fl_align; 7193 } 7194 7195 /** 7196 * t4_fixup_host_params - fix up host-dependent parameters 7197 * @adap: the adapter 7198 * @page_size: the host's Base Page Size 7199 * @cache_line_size: the host's Cache Line Size 7200 * 7201 * Various registers in T4 contain values which are dependent on the 7202 * host's Base Page and Cache Line Sizes. This function will fix all of 7203 * those registers with the appropriate values as passed in ... 7204 */ 7205 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7206 unsigned int cache_line_size) 7207 { 7208 unsigned int page_shift = fls(page_size) - 1; 7209 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7210 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7211 unsigned int fl_align_log = fls(fl_align) - 1; 7212 7213 if (is_t4(adap->params.chip)) { 7214 t4_set_reg_field(adap, SGE_CONTROL_A, 7215 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7216 EGRSTATUSPAGESIZE_F, 7217 INGPADBOUNDARY_V(fl_align_log - 7218 INGPADBOUNDARY_SHIFT_X) | 7219 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7220 } else { 7221 unsigned int pack_align; 7222 unsigned int ingpad, ingpack; 7223 unsigned int pcie_cap; 7224 7225 /* T5 introduced the separation of the Free List Padding and 7226 * Packing Boundaries. Thus, we can select a smaller Padding 7227 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7228 * Bandwidth, and use a Packing Boundary which is large enough 7229 * to avoid false sharing between CPUs, etc. 7230 * 7231 * For the PCI Link, the smaller the Padding Boundary the 7232 * better. For the Memory Controller, a smaller Padding 7233 * Boundary is better until we cross under the Memory Line 7234 * Size (the minimum unit of transfer to/from Memory). If we 7235 * have a Padding Boundary which is smaller than the Memory 7236 * Line Size, that'll involve a Read-Modify-Write cycle on the 7237 * Memory Controller which is never good. 7238 */ 7239 7240 /* We want the Packing Boundary to be based on the Cache Line 7241 * Size in order to help avoid False Sharing performance 7242 * issues between CPUs, etc. We also want the Packing 7243 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7244 * get best performance when the Packing Boundary is a 7245 * multiple of the Maximum Payload Size. 7246 */ 7247 pack_align = fl_align; 7248 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP); 7249 if (pcie_cap) { 7250 unsigned int mps, mps_log; 7251 u16 devctl; 7252 7253 /* The PCIe Device Control Maximum Payload Size field 7254 * [bits 7:5] encodes sizes as powers of 2 starting at 7255 * 128 bytes. 7256 */ 7257 pci_read_config_word(adap->pdev, 7258 pcie_cap + PCI_EXP_DEVCTL, 7259 &devctl); 7260 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7261 mps = 1 << mps_log; 7262 if (mps > pack_align) 7263 pack_align = mps; 7264 } 7265 7266 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7267 * value for the Packing Boundary. This corresponds to 16 7268 * bytes instead of the expected 32 bytes. So if we want 32 7269 * bytes, the best we can really do is 64 bytes ... 7270 */ 7271 if (pack_align <= 16) { 7272 ingpack = INGPACKBOUNDARY_16B_X; 7273 fl_align = 16; 7274 } else if (pack_align == 32) { 7275 ingpack = INGPACKBOUNDARY_64B_X; 7276 fl_align = 64; 7277 } else { 7278 unsigned int pack_align_log = fls(pack_align) - 1; 7279 7280 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7281 fl_align = pack_align; 7282 } 7283 7284 /* Use the smallest Ingress Padding which isn't smaller than 7285 * the Memory Controller Read/Write Size. We'll take that as 7286 * being 8 bytes since we don't know of any system with a 7287 * wider Memory Controller Bus Width. 7288 */ 7289 if (is_t5(adap->params.chip)) 7290 ingpad = INGPADBOUNDARY_32B_X; 7291 else 7292 ingpad = T6_INGPADBOUNDARY_8B_X; 7293 7294 t4_set_reg_field(adap, SGE_CONTROL_A, 7295 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7296 EGRSTATUSPAGESIZE_F, 7297 INGPADBOUNDARY_V(ingpad) | 7298 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7299 t4_set_reg_field(adap, SGE_CONTROL2_A, 7300 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7301 INGPACKBOUNDARY_V(ingpack)); 7302 } 7303 /* 7304 * Adjust various SGE Free List Host Buffer Sizes. 7305 * 7306 * This is something of a crock since we're using fixed indices into 7307 * the array which are also known by the sge.c code and the T4 7308 * Firmware Configuration File. We need to come up with a much better 7309 * approach to managing this array. For now, the first four entries 7310 * are: 7311 * 7312 * 0: Host Page Size 7313 * 1: 64KB 7314 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7315 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7316 * 7317 * For the single-MTU buffers in unpacked mode we need to include 7318 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7319 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7320 * Padding boundary. All of these are accommodated in the Factory 7321 * Default Firmware Configuration File but we need to adjust it for 7322 * this host's cache line size. 7323 */ 7324 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7325 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7326 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7327 & ~(fl_align-1)); 7328 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7329 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7330 & ~(fl_align-1)); 7331 7332 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7333 7334 return 0; 7335 } 7336 7337 /** 7338 * t4_fw_initialize - ask FW to initialize the device 7339 * @adap: the adapter 7340 * @mbox: mailbox to use for the FW command 7341 * 7342 * Issues a command to FW to partially initialize the device. This 7343 * performs initialization that generally doesn't depend on user input. 7344 */ 7345 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7346 { 7347 struct fw_initialize_cmd c; 7348 7349 memset(&c, 0, sizeof(c)); 7350 INIT_CMD(c, INITIALIZE, WRITE); 7351 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7352 } 7353 7354 /** 7355 * t4_query_params_rw - query FW or device parameters 7356 * @adap: the adapter 7357 * @mbox: mailbox to use for the FW command 7358 * @pf: the PF 7359 * @vf: the VF 7360 * @nparams: the number of parameters 7361 * @params: the parameter names 7362 * @val: the parameter values 7363 * @rw: Write and read flag 7364 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7365 * 7366 * Reads the value of FW or device parameters. Up to 7 parameters can be 7367 * queried at once. 7368 */ 7369 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7370 unsigned int vf, unsigned int nparams, const u32 *params, 7371 u32 *val, int rw, bool sleep_ok) 7372 { 7373 int i, ret; 7374 struct fw_params_cmd c; 7375 __be32 *p = &c.param[0].mnem; 7376 7377 if (nparams > 7) 7378 return -EINVAL; 7379 7380 memset(&c, 0, sizeof(c)); 7381 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7382 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7383 FW_PARAMS_CMD_PFN_V(pf) | 7384 FW_PARAMS_CMD_VFN_V(vf)); 7385 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7386 7387 for (i = 0; i < nparams; i++) { 7388 *p++ = cpu_to_be32(*params++); 7389 if (rw) 7390 *p = cpu_to_be32(*(val + i)); 7391 p++; 7392 } 7393 7394 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7395 if (ret == 0) 7396 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7397 *val++ = be32_to_cpu(*p); 7398 return ret; 7399 } 7400 7401 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7402 unsigned int vf, unsigned int nparams, const u32 *params, 7403 u32 *val) 7404 { 7405 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7406 true); 7407 } 7408 7409 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7410 unsigned int vf, unsigned int nparams, const u32 *params, 7411 u32 *val) 7412 { 7413 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7414 false); 7415 } 7416 7417 /** 7418 * t4_set_params_timeout - sets FW or device parameters 7419 * @adap: the adapter 7420 * @mbox: mailbox to use for the FW command 7421 * @pf: the PF 7422 * @vf: the VF 7423 * @nparams: the number of parameters 7424 * @params: the parameter names 7425 * @val: the parameter values 7426 * @timeout: the timeout time 7427 * 7428 * Sets the value of FW or device parameters. Up to 7 parameters can be 7429 * specified at once. 7430 */ 7431 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7432 unsigned int pf, unsigned int vf, 7433 unsigned int nparams, const u32 *params, 7434 const u32 *val, int timeout) 7435 { 7436 struct fw_params_cmd c; 7437 __be32 *p = &c.param[0].mnem; 7438 7439 if (nparams > 7) 7440 return -EINVAL; 7441 7442 memset(&c, 0, sizeof(c)); 7443 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7444 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7445 FW_PARAMS_CMD_PFN_V(pf) | 7446 FW_PARAMS_CMD_VFN_V(vf)); 7447 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7448 7449 while (nparams--) { 7450 *p++ = cpu_to_be32(*params++); 7451 *p++ = cpu_to_be32(*val++); 7452 } 7453 7454 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7455 } 7456 7457 /** 7458 * t4_set_params - sets FW or device parameters 7459 * @adap: the adapter 7460 * @mbox: mailbox to use for the FW command 7461 * @pf: the PF 7462 * @vf: the VF 7463 * @nparams: the number of parameters 7464 * @params: the parameter names 7465 * @val: the parameter values 7466 * 7467 * Sets the value of FW or device parameters. Up to 7 parameters can be 7468 * specified at once. 7469 */ 7470 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7471 unsigned int vf, unsigned int nparams, const u32 *params, 7472 const u32 *val) 7473 { 7474 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7475 FW_CMD_MAX_TIMEOUT); 7476 } 7477 7478 /** 7479 * t4_cfg_pfvf - configure PF/VF resource limits 7480 * @adap: the adapter 7481 * @mbox: mailbox to use for the FW command 7482 * @pf: the PF being configured 7483 * @vf: the VF being configured 7484 * @txq: the max number of egress queues 7485 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7486 * @rxqi: the max number of interrupt-capable ingress queues 7487 * @rxq: the max number of interruptless ingress queues 7488 * @tc: the PCI traffic class 7489 * @vi: the max number of virtual interfaces 7490 * @cmask: the channel access rights mask for the PF/VF 7491 * @pmask: the port access rights mask for the PF/VF 7492 * @nexact: the maximum number of exact MPS filters 7493 * @rcaps: read capabilities 7494 * @wxcaps: write/execute capabilities 7495 * 7496 * Configures resource limits and capabilities for a physical or virtual 7497 * function. 7498 */ 7499 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7500 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7501 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7502 unsigned int vi, unsigned int cmask, unsigned int pmask, 7503 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7504 { 7505 struct fw_pfvf_cmd c; 7506 7507 memset(&c, 0, sizeof(c)); 7508 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7509 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7510 FW_PFVF_CMD_VFN_V(vf)); 7511 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7512 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7513 FW_PFVF_CMD_NIQ_V(rxq)); 7514 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7515 FW_PFVF_CMD_PMASK_V(pmask) | 7516 FW_PFVF_CMD_NEQ_V(txq)); 7517 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7518 FW_PFVF_CMD_NVI_V(vi) | 7519 FW_PFVF_CMD_NEXACTF_V(nexact)); 7520 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7521 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7522 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7523 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7524 } 7525 7526 /** 7527 * t4_alloc_vi - allocate a virtual interface 7528 * @adap: the adapter 7529 * @mbox: mailbox to use for the FW command 7530 * @port: physical port associated with the VI 7531 * @pf: the PF owning the VI 7532 * @vf: the VF owning the VI 7533 * @nmac: number of MAC addresses needed (1 to 5) 7534 * @mac: the MAC addresses of the VI 7535 * @rss_size: size of RSS table slice associated with this VI 7536 * 7537 * Allocates a virtual interface for the given physical port. If @mac is 7538 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7539 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7540 * stored consecutively so the space needed is @nmac * 6 bytes. 7541 * Returns a negative error number or the non-negative VI id. 7542 */ 7543 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7544 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7545 unsigned int *rss_size, u8 *vivld, u8 *vin) 7546 { 7547 int ret; 7548 struct fw_vi_cmd c; 7549 7550 memset(&c, 0, sizeof(c)); 7551 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7552 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7553 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7554 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7555 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7556 c.nmac = nmac - 1; 7557 7558 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7559 if (ret) 7560 return ret; 7561 7562 if (mac) { 7563 memcpy(mac, c.mac, sizeof(c.mac)); 7564 switch (nmac) { 7565 case 5: 7566 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7567 /* Fall through */ 7568 case 4: 7569 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7570 /* Fall through */ 7571 case 3: 7572 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7573 /* Fall through */ 7574 case 2: 7575 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7576 } 7577 } 7578 if (rss_size) 7579 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7580 7581 if (vivld) 7582 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7583 7584 if (vin) 7585 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7586 7587 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7588 } 7589 7590 /** 7591 * t4_free_vi - free a virtual interface 7592 * @adap: the adapter 7593 * @mbox: mailbox to use for the FW command 7594 * @pf: the PF owning the VI 7595 * @vf: the VF owning the VI 7596 * @viid: virtual interface identifiler 7597 * 7598 * Free a previously allocated virtual interface. 7599 */ 7600 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7601 unsigned int vf, unsigned int viid) 7602 { 7603 struct fw_vi_cmd c; 7604 7605 memset(&c, 0, sizeof(c)); 7606 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7607 FW_CMD_REQUEST_F | 7608 FW_CMD_EXEC_F | 7609 FW_VI_CMD_PFN_V(pf) | 7610 FW_VI_CMD_VFN_V(vf)); 7611 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7612 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7613 7614 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7615 } 7616 7617 /** 7618 * t4_set_rxmode - set Rx properties of a virtual interface 7619 * @adap: the adapter 7620 * @mbox: mailbox to use for the FW command 7621 * @viid: the VI id 7622 * @mtu: the new MTU or -1 7623 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7624 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7625 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7626 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7627 * @sleep_ok: if true we may sleep while awaiting command completion 7628 * 7629 * Sets Rx properties of a virtual interface. 7630 */ 7631 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7632 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7633 bool sleep_ok) 7634 { 7635 struct fw_vi_rxmode_cmd c; 7636 7637 /* convert to FW values */ 7638 if (mtu < 0) 7639 mtu = FW_RXMODE_MTU_NO_CHG; 7640 if (promisc < 0) 7641 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7642 if (all_multi < 0) 7643 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7644 if (bcast < 0) 7645 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7646 if (vlanex < 0) 7647 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7648 7649 memset(&c, 0, sizeof(c)); 7650 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7651 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7652 FW_VI_RXMODE_CMD_VIID_V(viid)); 7653 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7654 c.mtu_to_vlanexen = 7655 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7656 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7657 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7658 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7659 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7660 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7661 } 7662 7663 /** 7664 * t4_free_encap_mac_filt - frees MPS entry at given index 7665 * @adap: the adapter 7666 * @viid: the VI id 7667 * @idx: index of MPS entry to be freed 7668 * @sleep_ok: call is allowed to sleep 7669 * 7670 * Frees the MPS entry at supplied index 7671 * 7672 * Returns a negative error number or zero on success 7673 */ 7674 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7675 int idx, bool sleep_ok) 7676 { 7677 struct fw_vi_mac_exact *p; 7678 u8 addr[] = {0, 0, 0, 0, 0, 0}; 7679 struct fw_vi_mac_cmd c; 7680 int ret = 0; 7681 u32 exact; 7682 7683 memset(&c, 0, sizeof(c)); 7684 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7685 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7686 FW_CMD_EXEC_V(0) | 7687 FW_VI_MAC_CMD_VIID_V(viid)); 7688 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7689 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7690 exact | 7691 FW_CMD_LEN16_V(1)); 7692 p = c.u.exact; 7693 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7694 FW_VI_MAC_CMD_IDX_V(idx)); 7695 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7696 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7697 return ret; 7698 } 7699 7700 /** 7701 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7702 * @adap: the adapter 7703 * @viid: the VI id 7704 * @addr: the MAC address 7705 * @mask: the mask 7706 * @idx: index of the entry in mps tcam 7707 * @lookup_type: MAC address for inner (1) or outer (0) header 7708 * @port_id: the port index 7709 * @sleep_ok: call is allowed to sleep 7710 * 7711 * Removes the mac entry at the specified index using raw mac interface. 7712 * 7713 * Returns a negative error number on failure. 7714 */ 7715 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7716 const u8 *addr, const u8 *mask, unsigned int idx, 7717 u8 lookup_type, u8 port_id, bool sleep_ok) 7718 { 7719 struct fw_vi_mac_cmd c; 7720 struct fw_vi_mac_raw *p = &c.u.raw; 7721 u32 val; 7722 7723 memset(&c, 0, sizeof(c)); 7724 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7725 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7726 FW_CMD_EXEC_V(0) | 7727 FW_VI_MAC_CMD_VIID_V(viid)); 7728 val = FW_CMD_LEN16_V(1) | 7729 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7730 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7731 FW_CMD_LEN16_V(val)); 7732 7733 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7734 FW_VI_MAC_ID_BASED_FREE); 7735 7736 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7737 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7738 DATAPORTNUM_V(port_id)); 7739 /* Lookup mask and port mask */ 7740 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7741 DATAPORTNUM_V(DATAPORTNUM_M)); 7742 7743 /* Copy the address and the mask */ 7744 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7745 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7746 7747 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7748 } 7749 7750 /** 7751 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7752 * @adap: the adapter 7753 * @viid: the VI id 7754 * @mac: the MAC address 7755 * @mask: the mask 7756 * @vni: the VNI id for the tunnel protocol 7757 * @vni_mask: mask for the VNI id 7758 * @dip_hit: to enable DIP match for the MPS entry 7759 * @lookup_type: MAC address for inner (1) or outer (0) header 7760 * @sleep_ok: call is allowed to sleep 7761 * 7762 * Allocates an MPS entry with specified MAC address and VNI value. 7763 * 7764 * Returns a negative error number or the allocated index for this mac. 7765 */ 7766 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7767 const u8 *addr, const u8 *mask, unsigned int vni, 7768 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7769 bool sleep_ok) 7770 { 7771 struct fw_vi_mac_cmd c; 7772 struct fw_vi_mac_vni *p = c.u.exact_vni; 7773 int ret = 0; 7774 u32 val; 7775 7776 memset(&c, 0, sizeof(c)); 7777 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7778 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7779 FW_VI_MAC_CMD_VIID_V(viid)); 7780 val = FW_CMD_LEN16_V(1) | 7781 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7782 c.freemacs_to_len16 = cpu_to_be32(val); 7783 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7784 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7785 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7786 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7787 7788 p->lookup_type_to_vni = 7789 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7790 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7791 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7792 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7793 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7794 if (ret == 0) 7795 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7796 return ret; 7797 } 7798 7799 /** 7800 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7801 * @adap: the adapter 7802 * @viid: the VI id 7803 * @mac: the MAC address 7804 * @mask: the mask 7805 * @idx: index at which to add this entry 7806 * @port_id: the port index 7807 * @lookup_type: MAC address for inner (1) or outer (0) header 7808 * @sleep_ok: call is allowed to sleep 7809 * 7810 * Adds the mac entry at the specified index using raw mac interface. 7811 * 7812 * Returns a negative error number or the allocated index for this mac. 7813 */ 7814 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7815 const u8 *addr, const u8 *mask, unsigned int idx, 7816 u8 lookup_type, u8 port_id, bool sleep_ok) 7817 { 7818 int ret = 0; 7819 struct fw_vi_mac_cmd c; 7820 struct fw_vi_mac_raw *p = &c.u.raw; 7821 u32 val; 7822 7823 memset(&c, 0, sizeof(c)); 7824 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7825 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7826 FW_VI_MAC_CMD_VIID_V(viid)); 7827 val = FW_CMD_LEN16_V(1) | 7828 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7829 c.freemacs_to_len16 = cpu_to_be32(val); 7830 7831 /* Specify that this is an inner mac address */ 7832 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7833 7834 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7835 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7836 DATAPORTNUM_V(port_id)); 7837 /* Lookup mask and port mask */ 7838 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7839 DATAPORTNUM_V(DATAPORTNUM_M)); 7840 7841 /* Copy the address and the mask */ 7842 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7843 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7844 7845 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7846 if (ret == 0) { 7847 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7848 if (ret != idx) 7849 ret = -ENOMEM; 7850 } 7851 7852 return ret; 7853 } 7854 7855 /** 7856 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7857 * @adap: the adapter 7858 * @mbox: mailbox to use for the FW command 7859 * @viid: the VI id 7860 * @free: if true any existing filters for this VI id are first removed 7861 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7862 * @addr: the MAC address(es) 7863 * @idx: where to store the index of each allocated filter 7864 * @hash: pointer to hash address filter bitmap 7865 * @sleep_ok: call is allowed to sleep 7866 * 7867 * Allocates an exact-match filter for each of the supplied addresses and 7868 * sets it to the corresponding address. If @idx is not %NULL it should 7869 * have at least @naddr entries, each of which will be set to the index of 7870 * the filter allocated for the corresponding MAC address. If a filter 7871 * could not be allocated for an address its index is set to 0xffff. 7872 * If @hash is not %NULL addresses that fail to allocate an exact filter 7873 * are hashed and update the hash filter bitmap pointed at by @hash. 7874 * 7875 * Returns a negative error number or the number of filters allocated. 7876 */ 7877 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7878 unsigned int viid, bool free, unsigned int naddr, 7879 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7880 { 7881 int offset, ret = 0; 7882 struct fw_vi_mac_cmd c; 7883 unsigned int nfilters = 0; 7884 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7885 unsigned int rem = naddr; 7886 7887 if (naddr > max_naddr) 7888 return -EINVAL; 7889 7890 for (offset = 0; offset < naddr ; /**/) { 7891 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7892 rem : ARRAY_SIZE(c.u.exact)); 7893 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7894 u.exact[fw_naddr]), 16); 7895 struct fw_vi_mac_exact *p; 7896 int i; 7897 7898 memset(&c, 0, sizeof(c)); 7899 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7900 FW_CMD_REQUEST_F | 7901 FW_CMD_WRITE_F | 7902 FW_CMD_EXEC_V(free) | 7903 FW_VI_MAC_CMD_VIID_V(viid)); 7904 c.freemacs_to_len16 = 7905 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7906 FW_CMD_LEN16_V(len16)); 7907 7908 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7909 p->valid_to_idx = 7910 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7911 FW_VI_MAC_CMD_IDX_V( 7912 FW_VI_MAC_ADD_MAC)); 7913 memcpy(p->macaddr, addr[offset + i], 7914 sizeof(p->macaddr)); 7915 } 7916 7917 /* It's okay if we run out of space in our MAC address arena. 7918 * Some of the addresses we submit may get stored so we need 7919 * to run through the reply to see what the results were ... 7920 */ 7921 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7922 if (ret && ret != -FW_ENOMEM) 7923 break; 7924 7925 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7926 u16 index = FW_VI_MAC_CMD_IDX_G( 7927 be16_to_cpu(p->valid_to_idx)); 7928 7929 if (idx) 7930 idx[offset + i] = (index >= max_naddr ? 7931 0xffff : index); 7932 if (index < max_naddr) 7933 nfilters++; 7934 else if (hash) 7935 *hash |= (1ULL << 7936 hash_mac_addr(addr[offset + i])); 7937 } 7938 7939 free = false; 7940 offset += fw_naddr; 7941 rem -= fw_naddr; 7942 } 7943 7944 if (ret == 0 || ret == -FW_ENOMEM) 7945 ret = nfilters; 7946 return ret; 7947 } 7948 7949 /** 7950 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 7951 * @adap: the adapter 7952 * @mbox: mailbox to use for the FW command 7953 * @viid: the VI id 7954 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7955 * @addr: the MAC address(es) 7956 * @sleep_ok: call is allowed to sleep 7957 * 7958 * Frees the exact-match filter for each of the supplied addresses 7959 * 7960 * Returns a negative error number or the number of filters freed. 7961 */ 7962 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 7963 unsigned int viid, unsigned int naddr, 7964 const u8 **addr, bool sleep_ok) 7965 { 7966 int offset, ret = 0; 7967 struct fw_vi_mac_cmd c; 7968 unsigned int nfilters = 0; 7969 unsigned int max_naddr = is_t4(adap->params.chip) ? 7970 NUM_MPS_CLS_SRAM_L_INSTANCES : 7971 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 7972 unsigned int rem = naddr; 7973 7974 if (naddr > max_naddr) 7975 return -EINVAL; 7976 7977 for (offset = 0; offset < (int)naddr ; /**/) { 7978 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7979 ? rem 7980 : ARRAY_SIZE(c.u.exact)); 7981 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7982 u.exact[fw_naddr]), 16); 7983 struct fw_vi_mac_exact *p; 7984 int i; 7985 7986 memset(&c, 0, sizeof(c)); 7987 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7988 FW_CMD_REQUEST_F | 7989 FW_CMD_WRITE_F | 7990 FW_CMD_EXEC_V(0) | 7991 FW_VI_MAC_CMD_VIID_V(viid)); 7992 c.freemacs_to_len16 = 7993 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7994 FW_CMD_LEN16_V(len16)); 7995 7996 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 7997 p->valid_to_idx = cpu_to_be16( 7998 FW_VI_MAC_CMD_VALID_F | 7999 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8000 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8001 } 8002 8003 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8004 if (ret) 8005 break; 8006 8007 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8008 u16 index = FW_VI_MAC_CMD_IDX_G( 8009 be16_to_cpu(p->valid_to_idx)); 8010 8011 if (index < max_naddr) 8012 nfilters++; 8013 } 8014 8015 offset += fw_naddr; 8016 rem -= fw_naddr; 8017 } 8018 8019 if (ret == 0) 8020 ret = nfilters; 8021 return ret; 8022 } 8023 8024 /** 8025 * t4_change_mac - modifies the exact-match filter for a MAC address 8026 * @adap: the adapter 8027 * @mbox: mailbox to use for the FW command 8028 * @viid: the VI id 8029 * @idx: index of existing filter for old value of MAC address, or -1 8030 * @addr: the new MAC address value 8031 * @persist: whether a new MAC allocation should be persistent 8032 * @add_smt: if true also add the address to the HW SMT 8033 * 8034 * Modifies an exact-match filter and sets it to the new MAC address. 8035 * Note that in general it is not possible to modify the value of a given 8036 * filter so the generic way to modify an address filter is to free the one 8037 * being used by the old address value and allocate a new filter for the 8038 * new address value. @idx can be -1 if the address is a new addition. 8039 * 8040 * Returns a negative error number or the index of the filter with the new 8041 * MAC value. 8042 */ 8043 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8044 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8045 { 8046 int ret, mode; 8047 struct fw_vi_mac_cmd c; 8048 struct fw_vi_mac_exact *p = c.u.exact; 8049 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8050 8051 if (idx < 0) /* new allocation */ 8052 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8053 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8054 8055 memset(&c, 0, sizeof(c)); 8056 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8057 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8058 FW_VI_MAC_CMD_VIID_V(viid)); 8059 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8060 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8061 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8062 FW_VI_MAC_CMD_IDX_V(idx)); 8063 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8064 8065 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8066 if (ret == 0) { 8067 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8068 if (ret >= max_mac_addr) 8069 ret = -ENOMEM; 8070 if (smt_idx) { 8071 if (adap->params.viid_smt_extn_support) { 8072 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8073 (be32_to_cpu(c.op_to_viid)); 8074 } else { 8075 /* In T4/T5, SMT contains 256 SMAC entries 8076 * organized in 128 rows of 2 entries each. 8077 * In T6, SMT contains 256 SMAC entries in 8078 * 256 rows. 8079 */ 8080 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8081 CHELSIO_T5) 8082 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8083 else 8084 *smt_idx = (viid & FW_VIID_VIN_M); 8085 } 8086 } 8087 } 8088 return ret; 8089 } 8090 8091 /** 8092 * t4_set_addr_hash - program the MAC inexact-match hash filter 8093 * @adap: the adapter 8094 * @mbox: mailbox to use for the FW command 8095 * @viid: the VI id 8096 * @ucast: whether the hash filter should also match unicast addresses 8097 * @vec: the value to be written to the hash filter 8098 * @sleep_ok: call is allowed to sleep 8099 * 8100 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8101 */ 8102 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8103 bool ucast, u64 vec, bool sleep_ok) 8104 { 8105 struct fw_vi_mac_cmd c; 8106 8107 memset(&c, 0, sizeof(c)); 8108 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8109 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8110 FW_VI_ENABLE_CMD_VIID_V(viid)); 8111 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8112 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8113 FW_CMD_LEN16_V(1)); 8114 c.u.hash.hashvec = cpu_to_be64(vec); 8115 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8116 } 8117 8118 /** 8119 * t4_enable_vi_params - enable/disable a virtual interface 8120 * @adap: the adapter 8121 * @mbox: mailbox to use for the FW command 8122 * @viid: the VI id 8123 * @rx_en: 1=enable Rx, 0=disable Rx 8124 * @tx_en: 1=enable Tx, 0=disable Tx 8125 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8126 * 8127 * Enables/disables a virtual interface. Note that setting DCB Enable 8128 * only makes sense when enabling a Virtual Interface ... 8129 */ 8130 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8131 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8132 { 8133 struct fw_vi_enable_cmd c; 8134 8135 memset(&c, 0, sizeof(c)); 8136 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8137 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8138 FW_VI_ENABLE_CMD_VIID_V(viid)); 8139 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8140 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8141 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8142 FW_LEN16(c)); 8143 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8144 } 8145 8146 /** 8147 * t4_enable_vi - enable/disable a virtual interface 8148 * @adap: the adapter 8149 * @mbox: mailbox to use for the FW command 8150 * @viid: the VI id 8151 * @rx_en: 1=enable Rx, 0=disable Rx 8152 * @tx_en: 1=enable Tx, 0=disable Tx 8153 * 8154 * Enables/disables a virtual interface. 8155 */ 8156 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8157 bool rx_en, bool tx_en) 8158 { 8159 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8160 } 8161 8162 /** 8163 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8164 * @adap: the adapter 8165 * @mbox: mailbox to use for the FW command 8166 * @pi: the Port Information structure 8167 * @rx_en: 1=enable Rx, 0=disable Rx 8168 * @tx_en: 1=enable Tx, 0=disable Tx 8169 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8170 * 8171 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8172 * Enable only makes sense when enabling a Virtual Interface ... 8173 * If the Virtual Interface enable/disable operation is successful, 8174 * we notify the OS-specific code of a potential Link Status change 8175 * via the OS Contract API t4_os_link_changed(). 8176 */ 8177 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8178 struct port_info *pi, 8179 bool rx_en, bool tx_en, bool dcb_en) 8180 { 8181 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8182 rx_en, tx_en, dcb_en); 8183 if (ret) 8184 return ret; 8185 t4_os_link_changed(adap, pi->port_id, 8186 rx_en && tx_en && pi->link_cfg.link_ok); 8187 return 0; 8188 } 8189 8190 /** 8191 * t4_identify_port - identify a VI's port by blinking its LED 8192 * @adap: the adapter 8193 * @mbox: mailbox to use for the FW command 8194 * @viid: the VI id 8195 * @nblinks: how many times to blink LED at 2.5 Hz 8196 * 8197 * Identifies a VI's port by blinking its LED. 8198 */ 8199 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8200 unsigned int nblinks) 8201 { 8202 struct fw_vi_enable_cmd c; 8203 8204 memset(&c, 0, sizeof(c)); 8205 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8206 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8207 FW_VI_ENABLE_CMD_VIID_V(viid)); 8208 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8209 c.blinkdur = cpu_to_be16(nblinks); 8210 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8211 } 8212 8213 /** 8214 * t4_iq_stop - stop an ingress queue and its FLs 8215 * @adap: the adapter 8216 * @mbox: mailbox to use for the FW command 8217 * @pf: the PF owning the queues 8218 * @vf: the VF owning the queues 8219 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8220 * @iqid: ingress queue id 8221 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8222 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8223 * 8224 * Stops an ingress queue and its associated FLs, if any. This causes 8225 * any current or future data/messages destined for these queues to be 8226 * tossed. 8227 */ 8228 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8229 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8230 unsigned int fl0id, unsigned int fl1id) 8231 { 8232 struct fw_iq_cmd c; 8233 8234 memset(&c, 0, sizeof(c)); 8235 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8236 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8237 FW_IQ_CMD_VFN_V(vf)); 8238 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8239 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8240 c.iqid = cpu_to_be16(iqid); 8241 c.fl0id = cpu_to_be16(fl0id); 8242 c.fl1id = cpu_to_be16(fl1id); 8243 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8244 } 8245 8246 /** 8247 * t4_iq_free - free an ingress queue and its FLs 8248 * @adap: the adapter 8249 * @mbox: mailbox to use for the FW command 8250 * @pf: the PF owning the queues 8251 * @vf: the VF owning the queues 8252 * @iqtype: the ingress queue type 8253 * @iqid: ingress queue id 8254 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8255 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8256 * 8257 * Frees an ingress queue and its associated FLs, if any. 8258 */ 8259 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8260 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8261 unsigned int fl0id, unsigned int fl1id) 8262 { 8263 struct fw_iq_cmd c; 8264 8265 memset(&c, 0, sizeof(c)); 8266 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8267 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8268 FW_IQ_CMD_VFN_V(vf)); 8269 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8270 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8271 c.iqid = cpu_to_be16(iqid); 8272 c.fl0id = cpu_to_be16(fl0id); 8273 c.fl1id = cpu_to_be16(fl1id); 8274 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8275 } 8276 8277 /** 8278 * t4_eth_eq_free - free an Ethernet egress queue 8279 * @adap: the adapter 8280 * @mbox: mailbox to use for the FW command 8281 * @pf: the PF owning the queue 8282 * @vf: the VF owning the queue 8283 * @eqid: egress queue id 8284 * 8285 * Frees an Ethernet egress queue. 8286 */ 8287 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8288 unsigned int vf, unsigned int eqid) 8289 { 8290 struct fw_eq_eth_cmd c; 8291 8292 memset(&c, 0, sizeof(c)); 8293 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8294 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8295 FW_EQ_ETH_CMD_PFN_V(pf) | 8296 FW_EQ_ETH_CMD_VFN_V(vf)); 8297 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8298 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8299 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8300 } 8301 8302 /** 8303 * t4_ctrl_eq_free - free a control egress queue 8304 * @adap: the adapter 8305 * @mbox: mailbox to use for the FW command 8306 * @pf: the PF owning the queue 8307 * @vf: the VF owning the queue 8308 * @eqid: egress queue id 8309 * 8310 * Frees a control egress queue. 8311 */ 8312 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8313 unsigned int vf, unsigned int eqid) 8314 { 8315 struct fw_eq_ctrl_cmd c; 8316 8317 memset(&c, 0, sizeof(c)); 8318 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8319 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8320 FW_EQ_CTRL_CMD_PFN_V(pf) | 8321 FW_EQ_CTRL_CMD_VFN_V(vf)); 8322 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8323 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8324 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8325 } 8326 8327 /** 8328 * t4_ofld_eq_free - free an offload egress queue 8329 * @adap: the adapter 8330 * @mbox: mailbox to use for the FW command 8331 * @pf: the PF owning the queue 8332 * @vf: the VF owning the queue 8333 * @eqid: egress queue id 8334 * 8335 * Frees a control egress queue. 8336 */ 8337 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8338 unsigned int vf, unsigned int eqid) 8339 { 8340 struct fw_eq_ofld_cmd c; 8341 8342 memset(&c, 0, sizeof(c)); 8343 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8344 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8345 FW_EQ_OFLD_CMD_PFN_V(pf) | 8346 FW_EQ_OFLD_CMD_VFN_V(vf)); 8347 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8348 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8349 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8350 } 8351 8352 /** 8353 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8354 * @adap: the adapter 8355 * @link_down_rc: Link Down Reason Code 8356 * 8357 * Returns a string representation of the Link Down Reason Code. 8358 */ 8359 static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8360 { 8361 static const char * const reason[] = { 8362 "Link Down", 8363 "Remote Fault", 8364 "Auto-negotiation Failure", 8365 "Reserved", 8366 "Insufficient Airflow", 8367 "Unable To Determine Reason", 8368 "No RX Signal Detected", 8369 "Reserved", 8370 }; 8371 8372 if (link_down_rc >= ARRAY_SIZE(reason)) 8373 return "Bad Reason Code"; 8374 8375 return reason[link_down_rc]; 8376 } 8377 8378 /** 8379 * Return the highest speed set in the port capabilities, in Mb/s. 8380 */ 8381 static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8382 { 8383 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8384 do { \ 8385 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8386 return __speed; \ 8387 } while (0) 8388 8389 TEST_SPEED_RETURN(400G, 400000); 8390 TEST_SPEED_RETURN(200G, 200000); 8391 TEST_SPEED_RETURN(100G, 100000); 8392 TEST_SPEED_RETURN(50G, 50000); 8393 TEST_SPEED_RETURN(40G, 40000); 8394 TEST_SPEED_RETURN(25G, 25000); 8395 TEST_SPEED_RETURN(10G, 10000); 8396 TEST_SPEED_RETURN(1G, 1000); 8397 TEST_SPEED_RETURN(100M, 100); 8398 8399 #undef TEST_SPEED_RETURN 8400 8401 return 0; 8402 } 8403 8404 /** 8405 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8406 * @acaps: advertised Port Capabilities 8407 * 8408 * Get the highest speed for the port from the advertised Port 8409 * Capabilities. It will be either the highest speed from the list of 8410 * speeds or whatever user has set using ethtool. 8411 */ 8412 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8413 { 8414 #define TEST_SPEED_RETURN(__caps_speed) \ 8415 do { \ 8416 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8417 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8418 } while (0) 8419 8420 TEST_SPEED_RETURN(400G); 8421 TEST_SPEED_RETURN(200G); 8422 TEST_SPEED_RETURN(100G); 8423 TEST_SPEED_RETURN(50G); 8424 TEST_SPEED_RETURN(40G); 8425 TEST_SPEED_RETURN(25G); 8426 TEST_SPEED_RETURN(10G); 8427 TEST_SPEED_RETURN(1G); 8428 TEST_SPEED_RETURN(100M); 8429 8430 #undef TEST_SPEED_RETURN 8431 8432 return 0; 8433 } 8434 8435 /** 8436 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8437 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8438 * 8439 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8440 * 32-bit Port Capabilities value. 8441 */ 8442 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8443 { 8444 fw_port_cap32_t linkattr = 0; 8445 8446 /* Unfortunately the format of the Link Status in the old 8447 * 16-bit Port Information message isn't the same as the 8448 * 16-bit Port Capabilities bitfield used everywhere else ... 8449 */ 8450 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8451 linkattr |= FW_PORT_CAP32_FC_RX; 8452 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8453 linkattr |= FW_PORT_CAP32_FC_TX; 8454 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8455 linkattr |= FW_PORT_CAP32_SPEED_100M; 8456 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8457 linkattr |= FW_PORT_CAP32_SPEED_1G; 8458 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8459 linkattr |= FW_PORT_CAP32_SPEED_10G; 8460 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8461 linkattr |= FW_PORT_CAP32_SPEED_25G; 8462 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8463 linkattr |= FW_PORT_CAP32_SPEED_40G; 8464 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8465 linkattr |= FW_PORT_CAP32_SPEED_100G; 8466 8467 return linkattr; 8468 } 8469 8470 /** 8471 * t4_handle_get_port_info - process a FW reply message 8472 * @pi: the port info 8473 * @rpl: start of the FW message 8474 * 8475 * Processes a GET_PORT_INFO FW reply message. 8476 */ 8477 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8478 { 8479 const struct fw_port_cmd *cmd = (const void *)rpl; 8480 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8481 struct adapter *adapter = pi->adapter; 8482 struct link_config *lc = &pi->link_cfg; 8483 int link_ok, linkdnrc; 8484 enum fw_port_type port_type; 8485 enum fw_port_module_type mod_type; 8486 unsigned int speed, fc, fec; 8487 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8488 8489 /* Extract the various fields from the Port Information message. 8490 */ 8491 switch (action) { 8492 case FW_PORT_ACTION_GET_PORT_INFO: { 8493 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8494 8495 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8496 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8497 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8498 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8499 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8500 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8501 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8502 linkattr = lstatus_to_fwcap(lstatus); 8503 break; 8504 } 8505 8506 case FW_PORT_ACTION_GET_PORT_INFO32: { 8507 u32 lstatus32; 8508 8509 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8510 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8511 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8512 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8513 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8514 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8515 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8516 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8517 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8518 break; 8519 } 8520 8521 default: 8522 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8523 be32_to_cpu(cmd->action_to_len16)); 8524 return; 8525 } 8526 8527 fec = fwcap_to_cc_fec(acaps); 8528 fc = fwcap_to_cc_pause(linkattr); 8529 speed = fwcap_to_speed(linkattr); 8530 8531 /* Reset state for communicating new Transceiver Module status and 8532 * whether the OS-dependent layer wants us to redo the current 8533 * "sticky" L1 Configure Link Parameters. 8534 */ 8535 lc->new_module = false; 8536 lc->redo_l1cfg = false; 8537 8538 if (mod_type != pi->mod_type) { 8539 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8540 * various fundamental Port Capabilities which used to be 8541 * immutable can now change radically. We can now have 8542 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8543 * all change based on what Transceiver Module is inserted. 8544 * So we need to record the Physical "Port" Capabilities on 8545 * every Transceiver Module change. 8546 */ 8547 lc->pcaps = pcaps; 8548 8549 /* When a new Transceiver Module is inserted, the Firmware 8550 * will examine its i2c EPROM to determine its type and 8551 * general operating parameters including things like Forward 8552 * Error Control, etc. Various IEEE 802.3 standards dictate 8553 * how to interpret these i2c values to determine default 8554 * "sutomatic" settings. We record these for future use when 8555 * the user explicitly requests these standards-based values. 8556 */ 8557 lc->def_acaps = acaps; 8558 8559 /* Some versions of the early T6 Firmware "cheated" when 8560 * handling different Transceiver Modules by changing the 8561 * underlaying Port Type reported to the Host Drivers. As 8562 * such we need to capture whatever Port Type the Firmware 8563 * sends us and record it in case it's different from what we 8564 * were told earlier. Unfortunately, since Firmware is 8565 * forever, we'll need to keep this code here forever, but in 8566 * later T6 Firmware it should just be an assignment of the 8567 * same value already recorded. 8568 */ 8569 pi->port_type = port_type; 8570 8571 /* Record new Module Type information. 8572 */ 8573 pi->mod_type = mod_type; 8574 8575 /* Let the OS-dependent layer know if we have a new 8576 * Transceiver Module inserted. 8577 */ 8578 lc->new_module = t4_is_inserted_mod_type(mod_type); 8579 8580 t4_os_portmod_changed(adapter, pi->port_id); 8581 } 8582 8583 if (link_ok != lc->link_ok || speed != lc->speed || 8584 fc != lc->fc || fec != lc->fec) { /* something changed */ 8585 if (!link_ok && lc->link_ok) { 8586 lc->link_down_rc = linkdnrc; 8587 dev_warn_ratelimited(adapter->pdev_dev, 8588 "Port %d link down, reason: %s\n", 8589 pi->tx_chan, 8590 t4_link_down_rc_str(linkdnrc)); 8591 } 8592 lc->link_ok = link_ok; 8593 lc->speed = speed; 8594 lc->fc = fc; 8595 lc->fec = fec; 8596 8597 lc->lpacaps = lpacaps; 8598 lc->acaps = acaps & ADVERT_MASK; 8599 8600 /* If we're not physically capable of Auto-Negotiation, note 8601 * this as Auto-Negotiation disabled. Otherwise, we track 8602 * what Auto-Negotiation settings we have. Note parallel 8603 * structure in t4_link_l1cfg_core() and init_link_config(). 8604 */ 8605 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8606 lc->autoneg = AUTONEG_DISABLE; 8607 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8608 lc->autoneg = AUTONEG_ENABLE; 8609 } else { 8610 /* When Autoneg is disabled, user needs to set 8611 * single speed. 8612 * Similar to cxgb4_ethtool.c: set_link_ksettings 8613 */ 8614 lc->acaps = 0; 8615 lc->speed_caps = fwcap_to_fwspeed(acaps); 8616 lc->autoneg = AUTONEG_DISABLE; 8617 } 8618 8619 t4_os_link_changed(adapter, pi->port_id, link_ok); 8620 } 8621 8622 /* If we have a new Transceiver Module and the OS-dependent code has 8623 * told us that it wants us to redo whatever "sticky" L1 Configuration 8624 * Link Parameters are set, do that now. 8625 */ 8626 if (lc->new_module && lc->redo_l1cfg) { 8627 struct link_config old_lc; 8628 int ret; 8629 8630 /* Save the current L1 Configuration and restore it if an 8631 * error occurs. We probably should fix the l1_cfg*() 8632 * routines not to change the link_config when an error 8633 * occurs ... 8634 */ 8635 old_lc = *lc; 8636 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8637 if (ret) { 8638 *lc = old_lc; 8639 dev_warn(adapter->pdev_dev, 8640 "Attempt to update new Transceiver Module settings failed\n"); 8641 } 8642 } 8643 lc->new_module = false; 8644 lc->redo_l1cfg = false; 8645 } 8646 8647 /** 8648 * t4_update_port_info - retrieve and update port information if changed 8649 * @pi: the port_info 8650 * 8651 * We issue a Get Port Information Command to the Firmware and, if 8652 * successful, we check to see if anything is different from what we 8653 * last recorded and update things accordingly. 8654 */ 8655 int t4_update_port_info(struct port_info *pi) 8656 { 8657 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8658 struct fw_port_cmd port_cmd; 8659 int ret; 8660 8661 memset(&port_cmd, 0, sizeof(port_cmd)); 8662 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8663 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8664 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8665 port_cmd.action_to_len16 = cpu_to_be32( 8666 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8667 ? FW_PORT_ACTION_GET_PORT_INFO 8668 : FW_PORT_ACTION_GET_PORT_INFO32) | 8669 FW_LEN16(port_cmd)); 8670 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8671 &port_cmd, sizeof(port_cmd), &port_cmd); 8672 if (ret) 8673 return ret; 8674 8675 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8676 return 0; 8677 } 8678 8679 /** 8680 * t4_get_link_params - retrieve basic link parameters for given port 8681 * @pi: the port 8682 * @link_okp: value return pointer for link up/down 8683 * @speedp: value return pointer for speed (Mb/s) 8684 * @mtup: value return pointer for mtu 8685 * 8686 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8687 * and MTU for a specified port. A negative error is returned on 8688 * failure; 0 on success. 8689 */ 8690 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8691 unsigned int *speedp, unsigned int *mtup) 8692 { 8693 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8694 struct fw_port_cmd port_cmd; 8695 unsigned int action, link_ok, mtu; 8696 fw_port_cap32_t linkattr; 8697 int ret; 8698 8699 memset(&port_cmd, 0, sizeof(port_cmd)); 8700 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8701 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8702 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8703 action = (fw_caps == FW_CAPS16 8704 ? FW_PORT_ACTION_GET_PORT_INFO 8705 : FW_PORT_ACTION_GET_PORT_INFO32); 8706 port_cmd.action_to_len16 = cpu_to_be32( 8707 FW_PORT_CMD_ACTION_V(action) | 8708 FW_LEN16(port_cmd)); 8709 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8710 &port_cmd, sizeof(port_cmd), &port_cmd); 8711 if (ret) 8712 return ret; 8713 8714 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8715 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8716 8717 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8718 linkattr = lstatus_to_fwcap(lstatus); 8719 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8720 } else { 8721 u32 lstatus32 = 8722 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8723 8724 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8725 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8726 mtu = FW_PORT_CMD_MTU32_G( 8727 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8728 } 8729 8730 *link_okp = link_ok; 8731 *speedp = fwcap_to_speed(linkattr); 8732 *mtup = mtu; 8733 8734 return 0; 8735 } 8736 8737 /** 8738 * t4_handle_fw_rpl - process a FW reply message 8739 * @adap: the adapter 8740 * @rpl: start of the FW message 8741 * 8742 * Processes a FW message, such as link state change messages. 8743 */ 8744 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8745 { 8746 u8 opcode = *(const u8 *)rpl; 8747 8748 /* This might be a port command ... this simplifies the following 8749 * conditionals ... We can get away with pre-dereferencing 8750 * action_to_len16 because it's in the first 16 bytes and all messages 8751 * will be at least that long. 8752 */ 8753 const struct fw_port_cmd *p = (const void *)rpl; 8754 unsigned int action = 8755 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8756 8757 if (opcode == FW_PORT_CMD && 8758 (action == FW_PORT_ACTION_GET_PORT_INFO || 8759 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8760 int i; 8761 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8762 struct port_info *pi = NULL; 8763 8764 for_each_port(adap, i) { 8765 pi = adap2pinfo(adap, i); 8766 if (pi->tx_chan == chan) 8767 break; 8768 } 8769 8770 t4_handle_get_port_info(pi, rpl); 8771 } else { 8772 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8773 opcode); 8774 return -EINVAL; 8775 } 8776 return 0; 8777 } 8778 8779 static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8780 { 8781 u16 val; 8782 8783 if (pci_is_pcie(adapter->pdev)) { 8784 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8785 p->speed = val & PCI_EXP_LNKSTA_CLS; 8786 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8787 } 8788 } 8789 8790 /** 8791 * init_link_config - initialize a link's SW state 8792 * @lc: pointer to structure holding the link state 8793 * @pcaps: link Port Capabilities 8794 * @acaps: link current Advertised Port Capabilities 8795 * 8796 * Initializes the SW state maintained for each link, including the link's 8797 * capabilities and default speed/flow-control/autonegotiation settings. 8798 */ 8799 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8800 fw_port_cap32_t acaps) 8801 { 8802 lc->pcaps = pcaps; 8803 lc->def_acaps = acaps; 8804 lc->lpacaps = 0; 8805 lc->speed_caps = 0; 8806 lc->speed = 0; 8807 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8808 8809 /* For Forward Error Control, we default to whatever the Firmware 8810 * tells us the Link is currently advertising. 8811 */ 8812 lc->requested_fec = FEC_AUTO; 8813 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8814 8815 /* If the Port is capable of Auto-Negtotiation, initialize it as 8816 * "enabled" and copy over all of the Physical Port Capabilities 8817 * to the Advertised Port Capabilities. Otherwise mark it as 8818 * Auto-Negotiate disabled and select the highest supported speed 8819 * for the link. Note parallel structure in t4_link_l1cfg_core() 8820 * and t4_handle_get_port_info(). 8821 */ 8822 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8823 lc->acaps = lc->pcaps & ADVERT_MASK; 8824 lc->autoneg = AUTONEG_ENABLE; 8825 lc->requested_fc |= PAUSE_AUTONEG; 8826 } else { 8827 lc->acaps = 0; 8828 lc->autoneg = AUTONEG_DISABLE; 8829 lc->speed_caps = fwcap_to_fwspeed(acaps); 8830 } 8831 } 8832 8833 #define CIM_PF_NOACCESS 0xeeeeeeee 8834 8835 int t4_wait_dev_ready(void __iomem *regs) 8836 { 8837 u32 whoami; 8838 8839 whoami = readl(regs + PL_WHOAMI_A); 8840 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8841 return 0; 8842 8843 msleep(500); 8844 whoami = readl(regs + PL_WHOAMI_A); 8845 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8846 } 8847 8848 struct flash_desc { 8849 u32 vendor_and_model_id; 8850 u32 size_mb; 8851 }; 8852 8853 static int t4_get_flash_params(struct adapter *adap) 8854 { 8855 /* Table for non-Numonix supported flash parts. Numonix parts are left 8856 * to the preexisting code. All flash parts have 64KB sectors. 8857 */ 8858 static struct flash_desc supported_flash[] = { 8859 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8860 }; 8861 8862 unsigned int part, manufacturer; 8863 unsigned int density, size = 0; 8864 u32 flashid = 0; 8865 int ret; 8866 8867 /* Issue a Read ID Command to the Flash part. We decode supported 8868 * Flash parts and their sizes from this. There's a newer Query 8869 * Command which can retrieve detailed geometry information but many 8870 * Flash parts don't support it. 8871 */ 8872 8873 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8874 if (!ret) 8875 ret = sf1_read(adap, 3, 0, 1, &flashid); 8876 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8877 if (ret) 8878 return ret; 8879 8880 /* Check to see if it's one of our non-standard supported Flash parts. 8881 */ 8882 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8883 if (supported_flash[part].vendor_and_model_id == flashid) { 8884 adap->params.sf_size = supported_flash[part].size_mb; 8885 adap->params.sf_nsec = 8886 adap->params.sf_size / SF_SEC_SIZE; 8887 goto found; 8888 } 8889 8890 /* Decode Flash part size. The code below looks repetative with 8891 * common encodings, but that's not guaranteed in the JEDEC 8892 * specification for the Read JADEC ID command. The only thing that 8893 * we're guaranteed by the JADEC specification is where the 8894 * Manufacturer ID is in the returned result. After that each 8895 * Manufacturer ~could~ encode things completely differently. 8896 * Note, all Flash parts must have 64KB sectors. 8897 */ 8898 manufacturer = flashid & 0xff; 8899 switch (manufacturer) { 8900 case 0x20: { /* Micron/Numonix */ 8901 /* This Density -> Size decoding table is taken from Micron 8902 * Data Sheets. 8903 */ 8904 density = (flashid >> 16) & 0xff; 8905 switch (density) { 8906 case 0x14: /* 1MB */ 8907 size = 1 << 20; 8908 break; 8909 case 0x15: /* 2MB */ 8910 size = 1 << 21; 8911 break; 8912 case 0x16: /* 4MB */ 8913 size = 1 << 22; 8914 break; 8915 case 0x17: /* 8MB */ 8916 size = 1 << 23; 8917 break; 8918 case 0x18: /* 16MB */ 8919 size = 1 << 24; 8920 break; 8921 case 0x19: /* 32MB */ 8922 size = 1 << 25; 8923 break; 8924 case 0x20: /* 64MB */ 8925 size = 1 << 26; 8926 break; 8927 case 0x21: /* 128MB */ 8928 size = 1 << 27; 8929 break; 8930 case 0x22: /* 256MB */ 8931 size = 1 << 28; 8932 break; 8933 } 8934 break; 8935 } 8936 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 8937 /* This Density -> Size decoding table is taken from ISSI 8938 * Data Sheets. 8939 */ 8940 density = (flashid >> 16) & 0xff; 8941 switch (density) { 8942 case 0x16: /* 32 MB */ 8943 size = 1 << 25; 8944 break; 8945 case 0x17: /* 64MB */ 8946 size = 1 << 26; 8947 break; 8948 } 8949 break; 8950 } 8951 case 0xc2: { /* Macronix */ 8952 /* This Density -> Size decoding table is taken from Macronix 8953 * Data Sheets. 8954 */ 8955 density = (flashid >> 16) & 0xff; 8956 switch (density) { 8957 case 0x17: /* 8MB */ 8958 size = 1 << 23; 8959 break; 8960 case 0x18: /* 16MB */ 8961 size = 1 << 24; 8962 break; 8963 } 8964 break; 8965 } 8966 case 0xef: { /* Winbond */ 8967 /* This Density -> Size decoding table is taken from Winbond 8968 * Data Sheets. 8969 */ 8970 density = (flashid >> 16) & 0xff; 8971 switch (density) { 8972 case 0x17: /* 8MB */ 8973 size = 1 << 23; 8974 break; 8975 case 0x18: /* 16MB */ 8976 size = 1 << 24; 8977 break; 8978 } 8979 break; 8980 } 8981 } 8982 8983 /* If we didn't recognize the FLASH part, that's no real issue: the 8984 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 8985 * use a FLASH part which is at least 4MB in size and has 64KB 8986 * sectors. The unrecognized FLASH part is likely to be much larger 8987 * than 4MB, but that's all we really need. 8988 */ 8989 if (size == 0) { 8990 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 8991 flashid); 8992 size = 1 << 22; 8993 } 8994 8995 /* Store decoded Flash size and fall through into vetting code. */ 8996 adap->params.sf_size = size; 8997 adap->params.sf_nsec = size / SF_SEC_SIZE; 8998 8999 found: 9000 if (adap->params.sf_size < FLASH_MIN_SIZE) 9001 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9002 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9003 return 0; 9004 } 9005 9006 /** 9007 * t4_prep_adapter - prepare SW and HW for operation 9008 * @adapter: the adapter 9009 * @reset: if true perform a HW reset 9010 * 9011 * Initialize adapter SW state for the various HW modules, set initial 9012 * values for some adapter tunables, take PHYs out of reset, and 9013 * initialize the MDIO interface. 9014 */ 9015 int t4_prep_adapter(struct adapter *adapter) 9016 { 9017 int ret, ver; 9018 uint16_t device_id; 9019 u32 pl_rev; 9020 9021 get_pci_mode(adapter, &adapter->params.pci); 9022 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9023 9024 ret = t4_get_flash_params(adapter); 9025 if (ret < 0) { 9026 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9027 return ret; 9028 } 9029 9030 /* Retrieve adapter's device ID 9031 */ 9032 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9033 ver = device_id >> 12; 9034 adapter->params.chip = 0; 9035 switch (ver) { 9036 case CHELSIO_T4: 9037 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9038 adapter->params.arch.sge_fl_db = DBPRIO_F; 9039 adapter->params.arch.mps_tcam_size = 9040 NUM_MPS_CLS_SRAM_L_INSTANCES; 9041 adapter->params.arch.mps_rplc_size = 128; 9042 adapter->params.arch.nchan = NCHAN; 9043 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9044 adapter->params.arch.vfcount = 128; 9045 /* Congestion map is for 4 channels so that 9046 * MPS can have 4 priority per port. 9047 */ 9048 adapter->params.arch.cng_ch_bits_log = 2; 9049 break; 9050 case CHELSIO_T5: 9051 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9052 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9053 adapter->params.arch.mps_tcam_size = 9054 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9055 adapter->params.arch.mps_rplc_size = 128; 9056 adapter->params.arch.nchan = NCHAN; 9057 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9058 adapter->params.arch.vfcount = 128; 9059 adapter->params.arch.cng_ch_bits_log = 2; 9060 break; 9061 case CHELSIO_T6: 9062 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9063 adapter->params.arch.sge_fl_db = 0; 9064 adapter->params.arch.mps_tcam_size = 9065 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9066 adapter->params.arch.mps_rplc_size = 256; 9067 adapter->params.arch.nchan = 2; 9068 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9069 adapter->params.arch.vfcount = 256; 9070 /* Congestion map will be for 2 channels so that 9071 * MPS can have 8 priority per port. 9072 */ 9073 adapter->params.arch.cng_ch_bits_log = 3; 9074 break; 9075 default: 9076 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9077 device_id); 9078 return -EINVAL; 9079 } 9080 9081 adapter->params.cim_la_size = CIMLA_SIZE; 9082 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9083 9084 /* 9085 * Default port for debugging in case we can't reach FW. 9086 */ 9087 adapter->params.nports = 1; 9088 adapter->params.portvec = 1; 9089 adapter->params.vpd.cclk = 50000; 9090 9091 /* Set PCIe completion timeout to 4 seconds. */ 9092 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9093 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9094 return 0; 9095 } 9096 9097 /** 9098 * t4_shutdown_adapter - shut down adapter, host & wire 9099 * @adapter: the adapter 9100 * 9101 * Perform an emergency shutdown of the adapter and stop it from 9102 * continuing any further communication on the ports or DMA to the 9103 * host. This is typically used when the adapter and/or firmware 9104 * have crashed and we want to prevent any further accidental 9105 * communication with the rest of the world. This will also force 9106 * the port Link Status to go down -- if register writes work -- 9107 * which should help our peers figure out that we're down. 9108 */ 9109 int t4_shutdown_adapter(struct adapter *adapter) 9110 { 9111 int port; 9112 9113 t4_intr_disable(adapter); 9114 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9115 for_each_port(adapter, port) { 9116 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9117 PORT_REG(port, XGMAC_PORT_CFG_A) : 9118 T5_PORT_REG(port, MAC_PORT_CFG_A); 9119 9120 t4_write_reg(adapter, a_port_cfg, 9121 t4_read_reg(adapter, a_port_cfg) 9122 & ~SIGNAL_DET_V(1)); 9123 } 9124 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9125 9126 return 0; 9127 } 9128 9129 /** 9130 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9131 * @adapter: the adapter 9132 * @qid: the Queue ID 9133 * @qtype: the Ingress or Egress type for @qid 9134 * @user: true if this request is for a user mode queue 9135 * @pbar2_qoffset: BAR2 Queue Offset 9136 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9137 * 9138 * Returns the BAR2 SGE Queue Registers information associated with the 9139 * indicated Absolute Queue ID. These are passed back in return value 9140 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9141 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9142 * 9143 * This may return an error which indicates that BAR2 SGE Queue 9144 * registers aren't available. If an error is not returned, then the 9145 * following values are returned: 9146 * 9147 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9148 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9149 * 9150 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9151 * require the "Inferred Queue ID" ability may be used. E.g. the 9152 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9153 * then these "Inferred Queue ID" register may not be used. 9154 */ 9155 int t4_bar2_sge_qregs(struct adapter *adapter, 9156 unsigned int qid, 9157 enum t4_bar2_qtype qtype, 9158 int user, 9159 u64 *pbar2_qoffset, 9160 unsigned int *pbar2_qid) 9161 { 9162 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9163 u64 bar2_page_offset, bar2_qoffset; 9164 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9165 9166 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9167 if (!user && is_t4(adapter->params.chip)) 9168 return -EINVAL; 9169 9170 /* Get our SGE Page Size parameters. 9171 */ 9172 page_shift = adapter->params.sge.hps + 10; 9173 page_size = 1 << page_shift; 9174 9175 /* Get the right Queues per Page parameters for our Queue. 9176 */ 9177 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9178 ? adapter->params.sge.eq_qpp 9179 : adapter->params.sge.iq_qpp); 9180 qpp_mask = (1 << qpp_shift) - 1; 9181 9182 /* Calculate the basics of the BAR2 SGE Queue register area: 9183 * o The BAR2 page the Queue registers will be in. 9184 * o The BAR2 Queue ID. 9185 * o The BAR2 Queue ID Offset into the BAR2 page. 9186 */ 9187 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9188 bar2_qid = qid & qpp_mask; 9189 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9190 9191 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9192 * hardware will infer the Absolute Queue ID simply from the writes to 9193 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9194 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9195 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9196 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9197 * from the BAR2 Page and BAR2 Queue ID. 9198 * 9199 * One important censequence of this is that some BAR2 SGE registers 9200 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9201 * there. But other registers synthesize the SGE Queue ID purely 9202 * from the writes to the registers -- the Write Combined Doorbell 9203 * Buffer is a good example. These BAR2 SGE Registers are only 9204 * available for those BAR2 SGE Register areas where the SGE Absolute 9205 * Queue ID can be inferred from simple writes. 9206 */ 9207 bar2_qoffset = bar2_page_offset; 9208 bar2_qinferred = (bar2_qid_offset < page_size); 9209 if (bar2_qinferred) { 9210 bar2_qoffset += bar2_qid_offset; 9211 bar2_qid = 0; 9212 } 9213 9214 *pbar2_qoffset = bar2_qoffset; 9215 *pbar2_qid = bar2_qid; 9216 return 0; 9217 } 9218 9219 /** 9220 * t4_init_devlog_params - initialize adapter->params.devlog 9221 * @adap: the adapter 9222 * 9223 * Initialize various fields of the adapter's Firmware Device Log 9224 * Parameters structure. 9225 */ 9226 int t4_init_devlog_params(struct adapter *adap) 9227 { 9228 struct devlog_params *dparams = &adap->params.devlog; 9229 u32 pf_dparams; 9230 unsigned int devlog_meminfo; 9231 struct fw_devlog_cmd devlog_cmd; 9232 int ret; 9233 9234 /* If we're dealing with newer firmware, the Device Log Paramerters 9235 * are stored in a designated register which allows us to access the 9236 * Device Log even if we can't talk to the firmware. 9237 */ 9238 pf_dparams = 9239 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9240 if (pf_dparams) { 9241 unsigned int nentries, nentries128; 9242 9243 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9244 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9245 9246 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9247 nentries = (nentries128 + 1) * 128; 9248 dparams->size = nentries * sizeof(struct fw_devlog_e); 9249 9250 return 0; 9251 } 9252 9253 /* Otherwise, ask the firmware for it's Device Log Parameters. 9254 */ 9255 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9256 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9257 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9258 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9259 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9260 &devlog_cmd); 9261 if (ret) 9262 return ret; 9263 9264 devlog_meminfo = 9265 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9266 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9267 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9268 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9269 9270 return 0; 9271 } 9272 9273 /** 9274 * t4_init_sge_params - initialize adap->params.sge 9275 * @adapter: the adapter 9276 * 9277 * Initialize various fields of the adapter's SGE Parameters structure. 9278 */ 9279 int t4_init_sge_params(struct adapter *adapter) 9280 { 9281 struct sge_params *sge_params = &adapter->params.sge; 9282 u32 hps, qpp; 9283 unsigned int s_hps, s_qpp; 9284 9285 /* Extract the SGE Page Size for our PF. 9286 */ 9287 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9288 s_hps = (HOSTPAGESIZEPF0_S + 9289 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9290 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9291 9292 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9293 */ 9294 s_qpp = (QUEUESPERPAGEPF0_S + 9295 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9296 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9297 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9298 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9299 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9300 9301 return 0; 9302 } 9303 9304 /** 9305 * t4_init_tp_params - initialize adap->params.tp 9306 * @adap: the adapter 9307 * @sleep_ok: if true we may sleep while awaiting command completion 9308 * 9309 * Initialize various fields of the adapter's TP Parameters structure. 9310 */ 9311 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9312 { 9313 int chan; 9314 u32 v; 9315 9316 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9317 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9318 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9319 9320 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9321 for (chan = 0; chan < NCHAN; chan++) 9322 adap->params.tp.tx_modq[chan] = chan; 9323 9324 /* Cache the adapter's Compressed Filter Mode and global Incress 9325 * Configuration. 9326 */ 9327 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9328 TP_VLAN_PRI_MAP_A, sleep_ok); 9329 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9330 TP_INGRESS_CONFIG_A, sleep_ok); 9331 9332 /* For T6, cache the adapter's compressed error vector 9333 * and passing outer header info for encapsulated packets. 9334 */ 9335 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9336 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9337 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9338 } 9339 9340 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9341 * shift positions of several elements of the Compressed Filter Tuple 9342 * for this adapter which we need frequently ... 9343 */ 9344 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9345 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9346 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9347 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9348 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9349 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9350 PROTOCOL_F); 9351 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9352 ETHERTYPE_F); 9353 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9354 MACMATCH_F); 9355 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9356 MPSHITTYPE_F); 9357 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9358 FRAGMENTATION_F); 9359 9360 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9361 * represents the presence of an Outer VLAN instead of a VNIC ID. 9362 */ 9363 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9364 adap->params.tp.vnic_shift = -1; 9365 9366 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9367 adap->params.tp.hash_filter_mask = v; 9368 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9369 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9370 return 0; 9371 } 9372 9373 /** 9374 * t4_filter_field_shift - calculate filter field shift 9375 * @adap: the adapter 9376 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9377 * 9378 * Return the shift position of a filter field within the Compressed 9379 * Filter Tuple. The filter field is specified via its selection bit 9380 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9381 */ 9382 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9383 { 9384 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9385 unsigned int sel; 9386 int field_shift; 9387 9388 if ((filter_mode & filter_sel) == 0) 9389 return -1; 9390 9391 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9392 switch (filter_mode & sel) { 9393 case FCOE_F: 9394 field_shift += FT_FCOE_W; 9395 break; 9396 case PORT_F: 9397 field_shift += FT_PORT_W; 9398 break; 9399 case VNIC_ID_F: 9400 field_shift += FT_VNIC_ID_W; 9401 break; 9402 case VLAN_F: 9403 field_shift += FT_VLAN_W; 9404 break; 9405 case TOS_F: 9406 field_shift += FT_TOS_W; 9407 break; 9408 case PROTOCOL_F: 9409 field_shift += FT_PROTOCOL_W; 9410 break; 9411 case ETHERTYPE_F: 9412 field_shift += FT_ETHERTYPE_W; 9413 break; 9414 case MACMATCH_F: 9415 field_shift += FT_MACMATCH_W; 9416 break; 9417 case MPSHITTYPE_F: 9418 field_shift += FT_MPSHITTYPE_W; 9419 break; 9420 case FRAGMENTATION_F: 9421 field_shift += FT_FRAGMENTATION_W; 9422 break; 9423 } 9424 } 9425 return field_shift; 9426 } 9427 9428 int t4_init_rss_mode(struct adapter *adap, int mbox) 9429 { 9430 int i, ret; 9431 struct fw_rss_vi_config_cmd rvc; 9432 9433 memset(&rvc, 0, sizeof(rvc)); 9434 9435 for_each_port(adap, i) { 9436 struct port_info *p = adap2pinfo(adap, i); 9437 9438 rvc.op_to_viid = 9439 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9440 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9441 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9442 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9443 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9444 if (ret) 9445 return ret; 9446 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9447 } 9448 return 0; 9449 } 9450 9451 /** 9452 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9453 * @pi: the port_info 9454 * @mbox: mailbox to use for the FW command 9455 * @port: physical port associated with the VI 9456 * @pf: the PF owning the VI 9457 * @vf: the VF owning the VI 9458 * @mac: the MAC address of the VI 9459 * 9460 * Allocates a virtual interface for the given physical port. If @mac is 9461 * not %NULL it contains the MAC address of the VI as assigned by FW. 9462 * @mac should be large enough to hold an Ethernet address. 9463 * Returns < 0 on error. 9464 */ 9465 int t4_init_portinfo(struct port_info *pi, int mbox, 9466 int port, int pf, int vf, u8 mac[]) 9467 { 9468 struct adapter *adapter = pi->adapter; 9469 unsigned int fw_caps = adapter->params.fw_caps_support; 9470 struct fw_port_cmd cmd; 9471 unsigned int rss_size; 9472 enum fw_port_type port_type; 9473 int mdio_addr; 9474 fw_port_cap32_t pcaps, acaps; 9475 u8 vivld = 0, vin = 0; 9476 int ret; 9477 9478 /* If we haven't yet determined whether we're talking to Firmware 9479 * which knows the new 32-bit Port Capabilities, it's time to find 9480 * out now. This will also tell new Firmware to send us Port Status 9481 * Updates using the new 32-bit Port Capabilities version of the 9482 * Port Information message. 9483 */ 9484 if (fw_caps == FW_CAPS_UNKNOWN) { 9485 u32 param, val; 9486 9487 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9488 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9489 val = 1; 9490 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9491 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9492 adapter->params.fw_caps_support = fw_caps; 9493 } 9494 9495 memset(&cmd, 0, sizeof(cmd)); 9496 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9497 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9498 FW_PORT_CMD_PORTID_V(port)); 9499 cmd.action_to_len16 = cpu_to_be32( 9500 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9501 ? FW_PORT_ACTION_GET_PORT_INFO 9502 : FW_PORT_ACTION_GET_PORT_INFO32) | 9503 FW_LEN16(cmd)); 9504 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9505 if (ret) 9506 return ret; 9507 9508 /* Extract the various fields from the Port Information message. 9509 */ 9510 if (fw_caps == FW_CAPS16) { 9511 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9512 9513 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9514 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9515 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9516 : -1); 9517 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9518 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9519 } else { 9520 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9521 9522 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9523 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9524 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9525 : -1); 9526 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9527 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9528 } 9529 9530 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9531 &vivld, &vin); 9532 if (ret < 0) 9533 return ret; 9534 9535 pi->viid = ret; 9536 pi->tx_chan = port; 9537 pi->lport = port; 9538 pi->rss_size = rss_size; 9539 9540 /* If fw supports returning the VIN as part of FW_VI_CMD, 9541 * save the returned values. 9542 */ 9543 if (adapter->params.viid_smt_extn_support) { 9544 pi->vivld = vivld; 9545 pi->vin = vin; 9546 } else { 9547 /* Retrieve the values from VIID */ 9548 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9549 pi->vin = FW_VIID_VIN_G(pi->viid); 9550 } 9551 9552 pi->port_type = port_type; 9553 pi->mdio_addr = mdio_addr; 9554 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9555 9556 init_link_config(&pi->link_cfg, pcaps, acaps); 9557 return 0; 9558 } 9559 9560 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9561 { 9562 u8 addr[6]; 9563 int ret, i, j = 0; 9564 9565 for_each_port(adap, i) { 9566 struct port_info *pi = adap2pinfo(adap, i); 9567 9568 while ((adap->params.portvec & (1 << j)) == 0) 9569 j++; 9570 9571 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9572 if (ret) 9573 return ret; 9574 9575 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); 9576 j++; 9577 } 9578 return 0; 9579 } 9580 9581 /** 9582 * t4_read_cimq_cfg - read CIM queue configuration 9583 * @adap: the adapter 9584 * @base: holds the queue base addresses in bytes 9585 * @size: holds the queue sizes in bytes 9586 * @thres: holds the queue full thresholds in bytes 9587 * 9588 * Returns the current configuration of the CIM queues, starting with 9589 * the IBQs, then the OBQs. 9590 */ 9591 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9592 { 9593 unsigned int i, v; 9594 int cim_num_obq = is_t4(adap->params.chip) ? 9595 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9596 9597 for (i = 0; i < CIM_NUM_IBQ; i++) { 9598 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9599 QUENUMSELECT_V(i)); 9600 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9601 /* value is in 256-byte units */ 9602 *base++ = CIMQBASE_G(v) * 256; 9603 *size++ = CIMQSIZE_G(v) * 256; 9604 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9605 } 9606 for (i = 0; i < cim_num_obq; i++) { 9607 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9608 QUENUMSELECT_V(i)); 9609 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9610 /* value is in 256-byte units */ 9611 *base++ = CIMQBASE_G(v) * 256; 9612 *size++ = CIMQSIZE_G(v) * 256; 9613 } 9614 } 9615 9616 /** 9617 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9618 * @adap: the adapter 9619 * @qid: the queue index 9620 * @data: where to store the queue contents 9621 * @n: capacity of @data in 32-bit words 9622 * 9623 * Reads the contents of the selected CIM queue starting at address 0 up 9624 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9625 * error and the number of 32-bit words actually read on success. 9626 */ 9627 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9628 { 9629 int i, err, attempts; 9630 unsigned int addr; 9631 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9632 9633 if (qid > 5 || (n & 3)) 9634 return -EINVAL; 9635 9636 addr = qid * nwords; 9637 if (n > nwords) 9638 n = nwords; 9639 9640 /* It might take 3-10ms before the IBQ debug read access is allowed. 9641 * Wait for 1 Sec with a delay of 1 usec. 9642 */ 9643 attempts = 1000000; 9644 9645 for (i = 0; i < n; i++, addr++) { 9646 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9647 IBQDBGEN_F); 9648 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9649 attempts, 1); 9650 if (err) 9651 return err; 9652 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9653 } 9654 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9655 return i; 9656 } 9657 9658 /** 9659 * t4_read_cim_obq - read the contents of a CIM outbound queue 9660 * @adap: the adapter 9661 * @qid: the queue index 9662 * @data: where to store the queue contents 9663 * @n: capacity of @data in 32-bit words 9664 * 9665 * Reads the contents of the selected CIM queue starting at address 0 up 9666 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9667 * error and the number of 32-bit words actually read on success. 9668 */ 9669 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9670 { 9671 int i, err; 9672 unsigned int addr, v, nwords; 9673 int cim_num_obq = is_t4(adap->params.chip) ? 9674 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9675 9676 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9677 return -EINVAL; 9678 9679 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9680 QUENUMSELECT_V(qid)); 9681 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9682 9683 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9684 nwords = CIMQSIZE_G(v) * 64; /* same */ 9685 if (n > nwords) 9686 n = nwords; 9687 9688 for (i = 0; i < n; i++, addr++) { 9689 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9690 OBQDBGEN_F); 9691 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9692 2, 1); 9693 if (err) 9694 return err; 9695 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9696 } 9697 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9698 return i; 9699 } 9700 9701 /** 9702 * t4_cim_read - read a block from CIM internal address space 9703 * @adap: the adapter 9704 * @addr: the start address within the CIM address space 9705 * @n: number of words to read 9706 * @valp: where to store the result 9707 * 9708 * Reads a block of 4-byte words from the CIM intenal address space. 9709 */ 9710 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9711 unsigned int *valp) 9712 { 9713 int ret = 0; 9714 9715 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9716 return -EBUSY; 9717 9718 for ( ; !ret && n--; addr += 4) { 9719 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9720 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9721 0, 5, 2); 9722 if (!ret) 9723 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9724 } 9725 return ret; 9726 } 9727 9728 /** 9729 * t4_cim_write - write a block into CIM internal address space 9730 * @adap: the adapter 9731 * @addr: the start address within the CIM address space 9732 * @n: number of words to write 9733 * @valp: set of values to write 9734 * 9735 * Writes a block of 4-byte words into the CIM intenal address space. 9736 */ 9737 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9738 const unsigned int *valp) 9739 { 9740 int ret = 0; 9741 9742 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9743 return -EBUSY; 9744 9745 for ( ; !ret && n--; addr += 4) { 9746 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9747 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9748 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9749 0, 5, 2); 9750 } 9751 return ret; 9752 } 9753 9754 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9755 unsigned int val) 9756 { 9757 return t4_cim_write(adap, addr, 1, &val); 9758 } 9759 9760 /** 9761 * t4_cim_read_la - read CIM LA capture buffer 9762 * @adap: the adapter 9763 * @la_buf: where to store the LA data 9764 * @wrptr: the HW write pointer within the capture buffer 9765 * 9766 * Reads the contents of the CIM LA buffer with the most recent entry at 9767 * the end of the returned data and with the entry at @wrptr first. 9768 * We try to leave the LA in the running state we find it in. 9769 */ 9770 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9771 { 9772 int i, ret; 9773 unsigned int cfg, val, idx; 9774 9775 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9776 if (ret) 9777 return ret; 9778 9779 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9780 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9781 if (ret) 9782 return ret; 9783 } 9784 9785 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9786 if (ret) 9787 goto restart; 9788 9789 idx = UPDBGLAWRPTR_G(val); 9790 if (wrptr) 9791 *wrptr = idx; 9792 9793 for (i = 0; i < adap->params.cim_la_size; i++) { 9794 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9795 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9796 if (ret) 9797 break; 9798 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9799 if (ret) 9800 break; 9801 if (val & UPDBGLARDEN_F) { 9802 ret = -ETIMEDOUT; 9803 break; 9804 } 9805 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9806 if (ret) 9807 break; 9808 9809 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9810 * identify the 32-bit portion of the full 312-bit data 9811 */ 9812 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9813 idx = (idx & 0xff0) + 0x10; 9814 else 9815 idx++; 9816 /* address can't exceed 0xfff */ 9817 idx &= UPDBGLARDPTR_M; 9818 } 9819 restart: 9820 if (cfg & UPDBGLAEN_F) { 9821 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9822 cfg & ~UPDBGLARDEN_F); 9823 if (!ret) 9824 ret = r; 9825 } 9826 return ret; 9827 } 9828 9829 /** 9830 * t4_tp_read_la - read TP LA capture buffer 9831 * @adap: the adapter 9832 * @la_buf: where to store the LA data 9833 * @wrptr: the HW write pointer within the capture buffer 9834 * 9835 * Reads the contents of the TP LA buffer with the most recent entry at 9836 * the end of the returned data and with the entry at @wrptr first. 9837 * We leave the LA in the running state we find it in. 9838 */ 9839 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9840 { 9841 bool last_incomplete; 9842 unsigned int i, cfg, val, idx; 9843 9844 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9845 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9846 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9847 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9848 9849 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 9850 idx = DBGLAWPTR_G(val); 9851 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 9852 if (last_incomplete) 9853 idx = (idx + 1) & DBGLARPTR_M; 9854 if (wrptr) 9855 *wrptr = idx; 9856 9857 val &= 0xffff; 9858 val &= ~DBGLARPTR_V(DBGLARPTR_M); 9859 val |= adap->params.tp.la_mask; 9860 9861 for (i = 0; i < TPLA_SIZE; i++) { 9862 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 9863 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 9864 idx = (idx + 1) & DBGLARPTR_M; 9865 } 9866 9867 /* Wipe out last entry if it isn't valid */ 9868 if (last_incomplete) 9869 la_buf[TPLA_SIZE - 1] = ~0ULL; 9870 9871 if (cfg & DBGLAENABLE_F) /* restore running state */ 9872 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9873 cfg | adap->params.tp.la_mask); 9874 } 9875 9876 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9877 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9878 * state for more than the Warning Threshold then we'll issue a warning about 9879 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9880 * appears to be hung every Warning Repeat second till the situation clears. 9881 * If the situation clears, we'll note that as well. 9882 */ 9883 #define SGE_IDMA_WARN_THRESH 1 9884 #define SGE_IDMA_WARN_REPEAT 300 9885 9886 /** 9887 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9888 * @adapter: the adapter 9889 * @idma: the adapter IDMA Monitor state 9890 * 9891 * Initialize the state of an SGE Ingress DMA Monitor. 9892 */ 9893 void t4_idma_monitor_init(struct adapter *adapter, 9894 struct sge_idma_monitor_state *idma) 9895 { 9896 /* Initialize the state variables for detecting an SGE Ingress DMA 9897 * hang. The SGE has internal counters which count up on each clock 9898 * tick whenever the SGE finds its Ingress DMA State Engines in the 9899 * same state they were on the previous clock tick. The clock used is 9900 * the Core Clock so we have a limit on the maximum "time" they can 9901 * record; typically a very small number of seconds. For instance, 9902 * with a 600MHz Core Clock, we can only count up to a bit more than 9903 * 7s. So we'll synthesize a larger counter in order to not run the 9904 * risk of having the "timers" overflow and give us the flexibility to 9905 * maintain a Hung SGE State Machine of our own which operates across 9906 * a longer time frame. 9907 */ 9908 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9909 idma->idma_stalled[0] = 0; 9910 idma->idma_stalled[1] = 0; 9911 } 9912 9913 /** 9914 * t4_idma_monitor - monitor SGE Ingress DMA state 9915 * @adapter: the adapter 9916 * @idma: the adapter IDMA Monitor state 9917 * @hz: number of ticks/second 9918 * @ticks: number of ticks since the last IDMA Monitor call 9919 */ 9920 void t4_idma_monitor(struct adapter *adapter, 9921 struct sge_idma_monitor_state *idma, 9922 int hz, int ticks) 9923 { 9924 int i, idma_same_state_cnt[2]; 9925 9926 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9927 * are counters inside the SGE which count up on each clock when the 9928 * SGE finds its Ingress DMA State Engines in the same states they 9929 * were in the previous clock. The counters will peg out at 9930 * 0xffffffff without wrapping around so once they pass the 1s 9931 * threshold they'll stay above that till the IDMA state changes. 9932 */ 9933 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 9934 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 9935 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9936 9937 for (i = 0; i < 2; i++) { 9938 u32 debug0, debug11; 9939 9940 /* If the Ingress DMA Same State Counter ("timer") is less 9941 * than 1s, then we can reset our synthesized Stall Timer and 9942 * continue. If we have previously emitted warnings about a 9943 * potential stalled Ingress Queue, issue a note indicating 9944 * that the Ingress Queue has resumed forward progress. 9945 */ 9946 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9947 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 9948 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 9949 "resumed after %d seconds\n", 9950 i, idma->idma_qid[i], 9951 idma->idma_stalled[i] / hz); 9952 idma->idma_stalled[i] = 0; 9953 continue; 9954 } 9955 9956 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9957 * domain. The first time we get here it'll be because we 9958 * passed the 1s Threshold; each additional time it'll be 9959 * because the RX Timer Callback is being fired on its regular 9960 * schedule. 9961 * 9962 * If the stall is below our Potential Hung Ingress Queue 9963 * Warning Threshold, continue. 9964 */ 9965 if (idma->idma_stalled[i] == 0) { 9966 idma->idma_stalled[i] = hz; 9967 idma->idma_warn[i] = 0; 9968 } else { 9969 idma->idma_stalled[i] += ticks; 9970 idma->idma_warn[i] -= ticks; 9971 } 9972 9973 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 9974 continue; 9975 9976 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9977 */ 9978 if (idma->idma_warn[i] > 0) 9979 continue; 9980 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 9981 9982 /* Read and save the SGE IDMA State and Queue ID information. 9983 * We do this every time in case it changes across time ... 9984 * can't be too careful ... 9985 */ 9986 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 9987 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9988 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9989 9990 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 9991 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 9992 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9993 9994 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 9995 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9996 i, idma->idma_qid[i], idma->idma_state[i], 9997 idma->idma_stalled[i] / hz, 9998 debug0, debug11); 9999 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10000 } 10001 } 10002 10003 /** 10004 * t4_load_cfg - download config file 10005 * @adap: the adapter 10006 * @cfg_data: the cfg text file to write 10007 * @size: text file size 10008 * 10009 * Write the supplied config text file to the card's serial flash. 10010 */ 10011 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10012 { 10013 int ret, i, n, cfg_addr; 10014 unsigned int addr; 10015 unsigned int flash_cfg_start_sec; 10016 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10017 10018 cfg_addr = t4_flash_cfg_addr(adap); 10019 if (cfg_addr < 0) 10020 return cfg_addr; 10021 10022 addr = cfg_addr; 10023 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10024 10025 if (size > FLASH_CFG_MAX_SIZE) { 10026 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10027 FLASH_CFG_MAX_SIZE); 10028 return -EFBIG; 10029 } 10030 10031 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10032 sf_sec_size); 10033 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10034 flash_cfg_start_sec + i - 1); 10035 /* If size == 0 then we're simply erasing the FLASH sectors associated 10036 * with the on-adapter Firmware Configuration File. 10037 */ 10038 if (ret || size == 0) 10039 goto out; 10040 10041 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10042 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10043 if ((size - i) < SF_PAGE_SIZE) 10044 n = size - i; 10045 else 10046 n = SF_PAGE_SIZE; 10047 ret = t4_write_flash(adap, addr, n, cfg_data); 10048 if (ret) 10049 goto out; 10050 10051 addr += SF_PAGE_SIZE; 10052 cfg_data += SF_PAGE_SIZE; 10053 } 10054 10055 out: 10056 if (ret) 10057 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10058 (size == 0 ? "clear" : "download"), ret); 10059 return ret; 10060 } 10061 10062 /** 10063 * t4_set_vf_mac - Set MAC address for the specified VF 10064 * @adapter: The adapter 10065 * @vf: one of the VFs instantiated by the specified PF 10066 * @naddr: the number of MAC addresses 10067 * @addr: the MAC address(es) to be set to the specified VF 10068 */ 10069 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10070 unsigned int naddr, u8 *addr) 10071 { 10072 struct fw_acl_mac_cmd cmd; 10073 10074 memset(&cmd, 0, sizeof(cmd)); 10075 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10076 FW_CMD_REQUEST_F | 10077 FW_CMD_WRITE_F | 10078 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10079 FW_ACL_MAC_CMD_VFN_V(vf)); 10080 10081 /* Note: Do not enable the ACL */ 10082 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10083 cmd.nmac = naddr; 10084 10085 switch (adapter->pf) { 10086 case 3: 10087 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10088 break; 10089 case 2: 10090 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10091 break; 10092 case 1: 10093 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10094 break; 10095 case 0: 10096 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10097 break; 10098 } 10099 10100 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10101 } 10102 10103 /** 10104 * t4_read_pace_tbl - read the pace table 10105 * @adap: the adapter 10106 * @pace_vals: holds the returned values 10107 * 10108 * Returns the values of TP's pace table in microseconds. 10109 */ 10110 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10111 { 10112 unsigned int i, v; 10113 10114 for (i = 0; i < NTX_SCHED; i++) { 10115 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10116 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10117 pace_vals[i] = dack_ticks_to_usec(adap, v); 10118 } 10119 } 10120 10121 /** 10122 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10123 * @adap: the adapter 10124 * @sched: the scheduler index 10125 * @kbps: the byte rate in Kbps 10126 * @ipg: the interpacket delay in tenths of nanoseconds 10127 * @sleep_ok: if true we may sleep while awaiting command completion 10128 * 10129 * Return the current configuration of a HW Tx scheduler. 10130 */ 10131 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10132 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10133 { 10134 unsigned int v, addr, bpt, cpt; 10135 10136 if (kbps) { 10137 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10138 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10139 if (sched & 1) 10140 v >>= 16; 10141 bpt = (v >> 8) & 0xff; 10142 cpt = v & 0xff; 10143 if (!cpt) { 10144 *kbps = 0; /* scheduler disabled */ 10145 } else { 10146 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10147 *kbps = (v * bpt) / 125; 10148 } 10149 } 10150 if (ipg) { 10151 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10152 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10153 if (sched & 1) 10154 v >>= 16; 10155 v &= 0xffff; 10156 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10157 } 10158 } 10159 10160 /* t4_sge_ctxt_rd - read an SGE context through FW 10161 * @adap: the adapter 10162 * @mbox: mailbox to use for the FW command 10163 * @cid: the context id 10164 * @ctype: the context type 10165 * @data: where to store the context data 10166 * 10167 * Issues a FW command through the given mailbox to read an SGE context. 10168 */ 10169 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10170 enum ctxt_type ctype, u32 *data) 10171 { 10172 struct fw_ldst_cmd c; 10173 int ret; 10174 10175 if (ctype == CTXT_FLM) 10176 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10177 else 10178 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10179 10180 memset(&c, 0, sizeof(c)); 10181 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10182 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10183 FW_LDST_CMD_ADDRSPACE_V(ret)); 10184 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10185 c.u.idctxt.physid = cpu_to_be32(cid); 10186 10187 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10188 if (ret == 0) { 10189 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10190 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10191 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10192 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10193 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10194 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10195 } 10196 return ret; 10197 } 10198 10199 /** 10200 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10201 * @adap: the adapter 10202 * @cid: the context id 10203 * @ctype: the context type 10204 * @data: where to store the context data 10205 * 10206 * Reads an SGE context directly, bypassing FW. This is only for 10207 * debugging when FW is unavailable. 10208 */ 10209 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10210 enum ctxt_type ctype, u32 *data) 10211 { 10212 int i, ret; 10213 10214 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10215 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10216 if (!ret) 10217 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10218 *data++ = t4_read_reg(adap, i); 10219 return ret; 10220 } 10221 10222 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10223 int rateunit, int ratemode, int channel, int class, 10224 int minrate, int maxrate, int weight, int pktsize) 10225 { 10226 struct fw_sched_cmd cmd; 10227 10228 memset(&cmd, 0, sizeof(cmd)); 10229 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10230 FW_CMD_REQUEST_F | 10231 FW_CMD_WRITE_F); 10232 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10233 10234 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10235 cmd.u.params.type = type; 10236 cmd.u.params.level = level; 10237 cmd.u.params.mode = mode; 10238 cmd.u.params.ch = channel; 10239 cmd.u.params.cl = class; 10240 cmd.u.params.unit = rateunit; 10241 cmd.u.params.rate = ratemode; 10242 cmd.u.params.min = cpu_to_be32(minrate); 10243 cmd.u.params.max = cpu_to_be32(maxrate); 10244 cmd.u.params.weight = cpu_to_be16(weight); 10245 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10246 10247 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10248 NULL, 1); 10249 } 10250 10251 /** 10252 * t4_i2c_rd - read I2C data from adapter 10253 * @adap: the adapter 10254 * @port: Port number if per-port device; <0 if not 10255 * @devid: per-port device ID or absolute device ID 10256 * @offset: byte offset into device I2C space 10257 * @len: byte length of I2C space data 10258 * @buf: buffer in which to return I2C data 10259 * 10260 * Reads the I2C data from the indicated device and location. 10261 */ 10262 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10263 unsigned int devid, unsigned int offset, 10264 unsigned int len, u8 *buf) 10265 { 10266 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10267 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10268 int ret = 0; 10269 10270 if (len > I2C_PAGE_SIZE) 10271 return -EINVAL; 10272 10273 /* Dont allow reads that spans multiple pages */ 10274 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10275 return -EINVAL; 10276 10277 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10278 ldst_cmd.op_to_addrspace = 10279 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10280 FW_CMD_REQUEST_F | 10281 FW_CMD_READ_F | 10282 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10283 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10284 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10285 ldst_cmd.u.i2c.did = devid; 10286 10287 while (len > 0) { 10288 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10289 10290 ldst_cmd.u.i2c.boffset = offset; 10291 ldst_cmd.u.i2c.blen = i2c_len; 10292 10293 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10294 &ldst_rpl); 10295 if (ret) 10296 break; 10297 10298 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10299 offset += i2c_len; 10300 buf += i2c_len; 10301 len -= i2c_len; 10302 } 10303 10304 return ret; 10305 } 10306 10307 /** 10308 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10309 * @adapter: the adapter 10310 * @mbox: mailbox to use for the FW command 10311 * @vf: one of the VFs instantiated by the specified PF 10312 * @vlan: The vlanid to be set 10313 */ 10314 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10315 u16 vlan) 10316 { 10317 struct fw_acl_vlan_cmd vlan_cmd; 10318 unsigned int enable; 10319 10320 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10321 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10322 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10323 FW_CMD_REQUEST_F | 10324 FW_CMD_WRITE_F | 10325 FW_CMD_EXEC_F | 10326 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10327 FW_ACL_VLAN_CMD_VFN_V(vf)); 10328 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10329 /* Drop all packets that donot match vlan id */ 10330 vlan_cmd.dropnovlan_fm = (enable 10331 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10332 FW_ACL_VLAN_CMD_FM_F) : 0); 10333 if (enable != 0) { 10334 vlan_cmd.nvlan = 1; 10335 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10336 } 10337 10338 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10339 } 10340