1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 #include "cxgb4_tc_mqprio.h" 59 #include "sched.h" 60 61 /* 62 * Rx buffer size. We use largish buffers if possible but settle for single 63 * pages under memory shortage. 64 */ 65 #if PAGE_SHIFT >= 16 66 # define FL_PG_ORDER 0 67 #else 68 # define FL_PG_ORDER (16 - PAGE_SHIFT) 69 #endif 70 71 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 72 #define RX_COPY_THRES 256 73 #define RX_PULL_LEN 128 74 75 /* 76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 78 */ 79 #define RX_PKT_SKB_LEN 512 80 81 /* 82 * Max number of Tx descriptors we clean up at a time. Should be modest as 83 * freeing skbs isn't cheap and it happens while holding locks. We just need 84 * to free packets faster than they arrive, we eventually catch up and keep 85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 86 * also match the CIDX Flush Threshold. 87 */ 88 #define MAX_TX_RECLAIM 32 89 90 /* 91 * Max number of Rx buffers we replenish at a time. Again keep this modest, 92 * allocating buffers isn't cheap either. 93 */ 94 #define MAX_RX_REFILL 16U 95 96 /* 97 * Period of the Rx queue check timer. This timer is infrequent as it has 98 * something to do only when the system experiences severe memory shortage. 99 */ 100 #define RX_QCHECK_PERIOD (HZ / 2) 101 102 /* 103 * Period of the Tx queue check timer. 104 */ 105 #define TX_QCHECK_PERIOD (HZ / 2) 106 107 /* 108 * Max number of Tx descriptors to be reclaimed by the Tx timer. 109 */ 110 #define MAX_TIMER_TX_RECLAIM 100 111 112 /* 113 * Timer index used when backing off due to memory shortage. 114 */ 115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 116 117 /* 118 * Suspension threshold for non-Ethernet Tx queues. We require enough room 119 * for a full sized WR. 120 */ 121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 122 123 /* 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 125 * into a WR. 126 */ 127 #define MAX_IMM_TX_PKT_LEN 256 128 129 /* 130 * Max size of a WR sent through a control Tx queue. 131 */ 132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 133 134 struct rx_sw_desc { /* SW state per Rx descriptor */ 135 struct page *page; 136 dma_addr_t dma_addr; 137 }; 138 139 /* 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 142 * We could easily support more but there doesn't seem to be much need for 143 * that ... 144 */ 145 #define FL_MTU_SMALL 1500 146 #define FL_MTU_LARGE 9000 147 148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 149 unsigned int mtu) 150 { 151 struct sge *s = &adapter->sge; 152 153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 154 } 155 156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 158 159 /* 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 161 * these to specify the buffer size as an index into the SGE Free List Buffer 162 * Size register array. We also use bit 4, when the buffer has been unmapped 163 * for DMA, but this is of course never sent to the hardware and is only used 164 * to prevent double unmappings. All of the above requires that the Free List 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 167 * Free List Buffer alignment is 32 bytes, this works out for us ... 168 */ 169 enum { 170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 173 174 /* 175 * XXX We shouldn't depend on being able to use these indices. 176 * XXX Especially when some other Master PF has initialized the 177 * XXX adapter or we use the Firmware Configuration File. We 178 * XXX should really search through the Host Buffer Size register 179 * XXX array for the appropriately sized buffer indices. 180 */ 181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 183 184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 186 }; 187 188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 189 #define MIN_NAPI_WORK 1 190 191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 192 { 193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 194 } 195 196 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 197 { 198 return !(d->dma_addr & RX_UNMAPPED_BUF); 199 } 200 201 /** 202 * txq_avail - return the number of available slots in a Tx queue 203 * @q: the Tx queue 204 * 205 * Returns the number of descriptors in a Tx queue available to write new 206 * packets. 207 */ 208 static inline unsigned int txq_avail(const struct sge_txq *q) 209 { 210 return q->size - 1 - q->in_use; 211 } 212 213 /** 214 * fl_cap - return the capacity of a free-buffer list 215 * @fl: the FL 216 * 217 * Returns the capacity of a free-buffer list. The capacity is less than 218 * the size because one descriptor needs to be left unpopulated, otherwise 219 * HW will think the FL is empty. 220 */ 221 static inline unsigned int fl_cap(const struct sge_fl *fl) 222 { 223 return fl->size - 8; /* 1 descriptor = 8 buffers */ 224 } 225 226 /** 227 * fl_starving - return whether a Free List is starving. 228 * @adapter: pointer to the adapter 229 * @fl: the Free List 230 * 231 * Tests specified Free List to see whether the number of buffers 232 * available to the hardware has falled below our "starvation" 233 * threshold. 234 */ 235 static inline bool fl_starving(const struct adapter *adapter, 236 const struct sge_fl *fl) 237 { 238 const struct sge *s = &adapter->sge; 239 240 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 241 } 242 243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 244 dma_addr_t *addr) 245 { 246 const skb_frag_t *fp, *end; 247 const struct skb_shared_info *si; 248 249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 250 if (dma_mapping_error(dev, *addr)) 251 goto out_err; 252 253 si = skb_shinfo(skb); 254 end = &si->frags[si->nr_frags]; 255 256 for (fp = si->frags; fp < end; fp++) { 257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto unwind; 261 } 262 return 0; 263 264 unwind: 265 while (fp-- > si->frags) 266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 267 268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 269 out_err: 270 return -ENOMEM; 271 } 272 EXPORT_SYMBOL(cxgb4_map_skb); 273 274 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 275 const dma_addr_t *addr) 276 { 277 const skb_frag_t *fp, *end; 278 const struct skb_shared_info *si; 279 280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 281 282 si = skb_shinfo(skb); 283 end = &si->frags[si->nr_frags]; 284 for (fp = si->frags; fp < end; fp++) 285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 286 } 287 288 #ifdef CONFIG_NEED_DMA_MAP_STATE 289 /** 290 * deferred_unmap_destructor - unmap a packet when it is freed 291 * @skb: the packet 292 * 293 * This is the packet destructor used for Tx packets that need to remain 294 * mapped until they are freed rather than until their Tx descriptors are 295 * freed. 296 */ 297 static void deferred_unmap_destructor(struct sk_buff *skb) 298 { 299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 300 } 301 #endif 302 303 /** 304 * free_tx_desc - reclaims Tx descriptors and their buffers 305 * @adapter: the adapter 306 * @q: the Tx queue to reclaim descriptors from 307 * @n: the number of descriptors to reclaim 308 * @unmap: whether the buffers should be unmapped for DMA 309 * 310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 311 * Tx buffers. Called with the Tx queue lock held. 312 */ 313 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 314 unsigned int n, bool unmap) 315 { 316 unsigned int cidx = q->cidx; 317 struct tx_sw_desc *d; 318 319 d = &q->sdesc[cidx]; 320 while (n--) { 321 if (d->skb) { /* an SGL is present */ 322 if (unmap && d->addr[0]) { 323 unmap_skb(adap->pdev_dev, d->skb, d->addr); 324 memset(d->addr, 0, sizeof(d->addr)); 325 } 326 dev_consume_skb_any(d->skb); 327 d->skb = NULL; 328 } 329 ++d; 330 if (++cidx == q->size) { 331 cidx = 0; 332 d = q->sdesc; 333 } 334 } 335 q->cidx = cidx; 336 } 337 338 /* 339 * Return the number of reclaimable descriptors in a Tx queue. 340 */ 341 static inline int reclaimable(const struct sge_txq *q) 342 { 343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 344 hw_cidx -= q->cidx; 345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 346 } 347 348 /** 349 * reclaim_completed_tx - reclaims completed TX Descriptors 350 * @adap: the adapter 351 * @q: the Tx queue to reclaim completed descriptors from 352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 353 * @unmap: whether the buffers should be unmapped for DMA 354 * 355 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 356 * and frees the associated buffers if possible. If @max == -1, then 357 * we'll use a defaiult maximum. Called with the TX Queue locked. 358 */ 359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 360 int maxreclaim, bool unmap) 361 { 362 int reclaim = reclaimable(q); 363 364 if (reclaim) { 365 /* 366 * Limit the amount of clean up work we do at a time to keep 367 * the Tx lock hold time O(1). 368 */ 369 if (maxreclaim < 0) 370 maxreclaim = MAX_TX_RECLAIM; 371 if (reclaim > maxreclaim) 372 reclaim = maxreclaim; 373 374 free_tx_desc(adap, q, reclaim, unmap); 375 q->in_use -= reclaim; 376 } 377 378 return reclaim; 379 } 380 381 /** 382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 383 * @adap: the adapter 384 * @q: the Tx queue to reclaim completed descriptors from 385 * @unmap: whether the buffers should be unmapped for DMA 386 * 387 * Reclaims Tx descriptors that the SGE has indicated it has processed, 388 * and frees the associated buffers if possible. Called with the Tx 389 * queue locked. 390 */ 391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 392 bool unmap) 393 { 394 (void)reclaim_completed_tx(adap, q, -1, unmap); 395 } 396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 397 398 static inline int get_buf_size(struct adapter *adapter, 399 const struct rx_sw_desc *d) 400 { 401 struct sge *s = &adapter->sge; 402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 403 int buf_size; 404 405 switch (rx_buf_size_idx) { 406 case RX_SMALL_PG_BUF: 407 buf_size = PAGE_SIZE; 408 break; 409 410 case RX_LARGE_PG_BUF: 411 buf_size = PAGE_SIZE << s->fl_pg_order; 412 break; 413 414 case RX_SMALL_MTU_BUF: 415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 416 break; 417 418 case RX_LARGE_MTU_BUF: 419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 420 break; 421 422 default: 423 BUG(); 424 } 425 426 return buf_size; 427 } 428 429 /** 430 * free_rx_bufs - free the Rx buffers on an SGE free list 431 * @adap: the adapter 432 * @q: the SGE free list to free buffers from 433 * @n: how many buffers to free 434 * 435 * Release the next @n buffers on an SGE free-buffer Rx queue. The 436 * buffers must be made inaccessible to HW before calling this function. 437 */ 438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 439 { 440 while (n--) { 441 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 442 443 if (is_buf_mapped(d)) 444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 445 get_buf_size(adap, d), 446 PCI_DMA_FROMDEVICE); 447 put_page(d->page); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453 } 454 455 /** 456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 457 * @adap: the adapter 458 * @q: the SGE free list 459 * 460 * Unmap the current buffer on an SGE free-buffer Rx queue. The 461 * buffer must be made inaccessible to HW before calling this function. 462 * 463 * This is similar to @free_rx_bufs above but does not free the buffer. 464 * Do note that the FL still loses any further access to the buffer. 465 */ 466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 467 { 468 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 469 470 if (is_buf_mapped(d)) 471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 472 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 473 d->page = NULL; 474 if (++q->cidx == q->size) 475 q->cidx = 0; 476 q->avail--; 477 } 478 479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 480 { 481 if (q->pend_cred >= 8) { 482 u32 val = adap->params.arch.sge_fl_db; 483 484 if (is_t4(adap->params.chip)) 485 val |= PIDX_V(q->pend_cred / 8); 486 else 487 val |= PIDX_T5_V(q->pend_cred / 8); 488 489 /* Make sure all memory writes to the Free List queue are 490 * committed before we tell the hardware about them. 491 */ 492 wmb(); 493 494 /* If we don't have access to the new User Doorbell (T5+), use 495 * the old doorbell mechanism; otherwise use the new BAR2 496 * mechanism. 497 */ 498 if (unlikely(q->bar2_addr == NULL)) { 499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 500 val | QID_V(q->cntxt_id)); 501 } else { 502 writel(val | QID_V(q->bar2_qid), 503 q->bar2_addr + SGE_UDB_KDOORBELL); 504 505 /* This Write memory Barrier will force the write to 506 * the User Doorbell area to be flushed. 507 */ 508 wmb(); 509 } 510 q->pend_cred &= 7; 511 } 512 } 513 514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 515 dma_addr_t mapping) 516 { 517 sd->page = pg; 518 sd->dma_addr = mapping; /* includes size low bits */ 519 } 520 521 /** 522 * refill_fl - refill an SGE Rx buffer ring 523 * @adap: the adapter 524 * @q: the ring to refill 525 * @n: the number of new buffers to allocate 526 * @gfp: the gfp flags for the allocations 527 * 528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 529 * allocated with the supplied gfp flags. The caller must assure that 530 * @n does not exceed the queue's capacity. If afterwards the queue is 531 * found critically low mark it as starving in the bitmap of starving FLs. 532 * 533 * Returns the number of buffers allocated. 534 */ 535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 536 gfp_t gfp) 537 { 538 struct sge *s = &adap->sge; 539 struct page *pg; 540 dma_addr_t mapping; 541 unsigned int cred = q->avail; 542 __be64 *d = &q->desc[q->pidx]; 543 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 544 int node; 545 546 #ifdef CONFIG_DEBUG_FS 547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 548 goto out; 549 #endif 550 551 gfp |= __GFP_NOWARN; 552 node = dev_to_node(adap->pdev_dev); 553 554 if (s->fl_pg_order == 0) 555 goto alloc_small_pages; 556 557 /* 558 * Prefer large buffers 559 */ 560 while (n) { 561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 562 if (unlikely(!pg)) { 563 q->large_alloc_failed++; 564 break; /* fall back to single pages */ 565 } 566 567 mapping = dma_map_page(adap->pdev_dev, pg, 0, 568 PAGE_SIZE << s->fl_pg_order, 569 PCI_DMA_FROMDEVICE); 570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 571 __free_pages(pg, s->fl_pg_order); 572 q->mapping_err++; 573 goto out; /* do not try small pages for this error */ 574 } 575 mapping |= RX_LARGE_PG_BUF; 576 *d++ = cpu_to_be64(mapping); 577 578 set_rx_sw_desc(sd, pg, mapping); 579 sd++; 580 581 q->avail++; 582 if (++q->pidx == q->size) { 583 q->pidx = 0; 584 sd = q->sdesc; 585 d = q->desc; 586 } 587 n--; 588 } 589 590 alloc_small_pages: 591 while (n--) { 592 pg = alloc_pages_node(node, gfp, 0); 593 if (unlikely(!pg)) { 594 q->alloc_failed++; 595 break; 596 } 597 598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 599 PCI_DMA_FROMDEVICE); 600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 601 put_page(pg); 602 q->mapping_err++; 603 goto out; 604 } 605 *d++ = cpu_to_be64(mapping); 606 607 set_rx_sw_desc(sd, pg, mapping); 608 sd++; 609 610 q->avail++; 611 if (++q->pidx == q->size) { 612 q->pidx = 0; 613 sd = q->sdesc; 614 d = q->desc; 615 } 616 } 617 618 out: cred = q->avail - cred; 619 q->pend_cred += cred; 620 ring_fl_db(adap, q); 621 622 if (unlikely(fl_starving(adap, q))) { 623 smp_wmb(); 624 q->low++; 625 set_bit(q->cntxt_id - adap->sge.egr_start, 626 adap->sge.starving_fl); 627 } 628 629 return cred; 630 } 631 632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 633 { 634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 635 GFP_ATOMIC); 636 } 637 638 /** 639 * alloc_ring - allocate resources for an SGE descriptor ring 640 * @dev: the PCI device's core device 641 * @nelem: the number of descriptors 642 * @elem_size: the size of each descriptor 643 * @sw_size: the size of the SW state associated with each ring element 644 * @phys: the physical address of the allocated ring 645 * @metadata: address of the array holding the SW state for the ring 646 * @stat_size: extra space in HW ring for status information 647 * @node: preferred node for memory allocations 648 * 649 * Allocates resources for an SGE descriptor ring, such as Tx queues, 650 * free buffer lists, or response queues. Each SGE ring requires 651 * space for its HW descriptors plus, optionally, space for the SW state 652 * associated with each HW entry (the metadata). The function returns 653 * three values: the virtual address for the HW ring (the return value 654 * of the function), the bus address of the HW ring, and the address 655 * of the SW ring. 656 */ 657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 658 size_t sw_size, dma_addr_t *phys, void *metadata, 659 size_t stat_size, int node) 660 { 661 size_t len = nelem * elem_size + stat_size; 662 void *s = NULL; 663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 664 665 if (!p) 666 return NULL; 667 if (sw_size) { 668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 669 670 if (!s) { 671 dma_free_coherent(dev, len, p, *phys); 672 return NULL; 673 } 674 } 675 if (metadata) 676 *(void **)metadata = s; 677 return p; 678 } 679 680 /** 681 * sgl_len - calculates the size of an SGL of the given capacity 682 * @n: the number of SGL entries 683 * 684 * Calculates the number of flits needed for a scatter/gather list that 685 * can hold the given number of entries. 686 */ 687 static inline unsigned int sgl_len(unsigned int n) 688 { 689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 692 * repeated sequences of { Length[i], Length[i+1], Address[i], 693 * Address[i+1] } (this ensures that all addresses are on 64-bit 694 * boundaries). If N is even, then Length[N+1] should be set to 0 and 695 * Address[N+1] is omitted. 696 * 697 * The following calculation incorporates all of the above. It's 698 * somewhat hard to follow but, briefly: the "+2" accounts for the 699 * first two flits which include the DSGL header, Length0 and 700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 702 * finally the "+((n-1)&1)" adds the one remaining flit needed if 703 * (n-1) is odd ... 704 */ 705 n--; 706 return (3 * n) / 2 + (n & 1) + 2; 707 } 708 709 /** 710 * flits_to_desc - returns the num of Tx descriptors for the given flits 711 * @n: the number of flits 712 * 713 * Returns the number of Tx descriptors needed for the supplied number 714 * of flits. 715 */ 716 static inline unsigned int flits_to_desc(unsigned int n) 717 { 718 BUG_ON(n > SGE_MAX_WR_LEN / 8); 719 return DIV_ROUND_UP(n, 8); 720 } 721 722 /** 723 * is_eth_imm - can an Ethernet packet be sent as immediate data? 724 * @skb: the packet 725 * 726 * Returns whether an Ethernet packet is small enough to fit as 727 * immediate data. Return value corresponds to headroom required. 728 */ 729 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 730 { 731 int hdrlen = 0; 732 733 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 734 chip_ver > CHELSIO_T5) { 735 hdrlen = sizeof(struct cpl_tx_tnl_lso); 736 hdrlen += sizeof(struct cpl_tx_pkt_core); 737 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 738 return 0; 739 } else { 740 hdrlen = skb_shinfo(skb)->gso_size ? 741 sizeof(struct cpl_tx_pkt_lso_core) : 0; 742 hdrlen += sizeof(struct cpl_tx_pkt); 743 } 744 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 745 return hdrlen; 746 return 0; 747 } 748 749 /** 750 * calc_tx_flits - calculate the number of flits for a packet Tx WR 751 * @skb: the packet 752 * 753 * Returns the number of flits needed for a Tx WR for the given Ethernet 754 * packet, including the needed WR and CPL headers. 755 */ 756 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 757 unsigned int chip_ver) 758 { 759 unsigned int flits; 760 int hdrlen = is_eth_imm(skb, chip_ver); 761 762 /* If the skb is small enough, we can pump it out as a work request 763 * with only immediate data. In that case we just have to have the 764 * TX Packet header plus the skb data in the Work Request. 765 */ 766 767 if (hdrlen) 768 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 769 770 /* Otherwise, we're going to have to construct a Scatter gather list 771 * of the skb body and fragments. We also include the flits necessary 772 * for the TX Packet Work Request and CPL. We always have a firmware 773 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 774 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 775 * message or, if we're doing a Large Send Offload, an LSO CPL message 776 * with an embedded TX Packet Write CPL message. 777 */ 778 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 779 if (skb_shinfo(skb)->gso_size) { 780 if (skb->encapsulation && chip_ver > CHELSIO_T5) { 781 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 782 sizeof(struct cpl_tx_tnl_lso); 783 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 784 u32 pkt_hdrlen; 785 786 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data, 787 skb_headlen(skb)); 788 hdrlen = sizeof(struct fw_eth_tx_eo_wr) + 789 round_up(pkt_hdrlen, 16); 790 } else { 791 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 792 sizeof(struct cpl_tx_pkt_lso_core); 793 } 794 795 hdrlen += sizeof(struct cpl_tx_pkt_core); 796 flits += (hdrlen / sizeof(__be64)); 797 } else { 798 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 799 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 800 } 801 return flits; 802 } 803 804 /** 805 * calc_tx_descs - calculate the number of Tx descriptors for a packet 806 * @skb: the packet 807 * 808 * Returns the number of Tx descriptors needed for the given Ethernet 809 * packet, including the needed WR and CPL headers. 810 */ 811 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 812 unsigned int chip_ver) 813 { 814 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 815 } 816 817 /** 818 * cxgb4_write_sgl - populate a scatter/gather list for a packet 819 * @skb: the packet 820 * @q: the Tx queue we are writing into 821 * @sgl: starting location for writing the SGL 822 * @end: points right after the end of the SGL 823 * @start: start offset into skb main-body data to include in the SGL 824 * @addr: the list of bus addresses for the SGL elements 825 * 826 * Generates a gather list for the buffers that make up a packet. 827 * The caller must provide adequate space for the SGL that will be written. 828 * The SGL includes all of the packet's page fragments and the data in its 829 * main body except for the first @start bytes. @sgl must be 16-byte 830 * aligned and within a Tx descriptor with available space. @end points 831 * right after the end of the SGL but does not account for any potential 832 * wrap around, i.e., @end > @sgl. 833 */ 834 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 835 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 836 const dma_addr_t *addr) 837 { 838 unsigned int i, len; 839 struct ulptx_sge_pair *to; 840 const struct skb_shared_info *si = skb_shinfo(skb); 841 unsigned int nfrags = si->nr_frags; 842 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 843 844 len = skb_headlen(skb) - start; 845 if (likely(len)) { 846 sgl->len0 = htonl(len); 847 sgl->addr0 = cpu_to_be64(addr[0] + start); 848 nfrags++; 849 } else { 850 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 851 sgl->addr0 = cpu_to_be64(addr[1]); 852 } 853 854 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 855 ULPTX_NSGE_V(nfrags)); 856 if (likely(--nfrags == 0)) 857 return; 858 /* 859 * Most of the complexity below deals with the possibility we hit the 860 * end of the queue in the middle of writing the SGL. For this case 861 * only we create the SGL in a temporary buffer and then copy it. 862 */ 863 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 864 865 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 866 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 867 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 868 to->addr[0] = cpu_to_be64(addr[i]); 869 to->addr[1] = cpu_to_be64(addr[++i]); 870 } 871 if (nfrags) { 872 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 873 to->len[1] = cpu_to_be32(0); 874 to->addr[0] = cpu_to_be64(addr[i + 1]); 875 } 876 if (unlikely((u8 *)end > (u8 *)q->stat)) { 877 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 878 879 if (likely(part0)) 880 memcpy(sgl->sge, buf, part0); 881 part1 = (u8 *)end - (u8 *)q->stat; 882 memcpy(q->desc, (u8 *)buf + part0, part1); 883 end = (void *)q->desc + part1; 884 } 885 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 886 *end = 0; 887 } 888 EXPORT_SYMBOL(cxgb4_write_sgl); 889 890 /* This function copies 64 byte coalesced work request to 891 * memory mapped BAR2 space. For coalesced WR SGE fetches 892 * data from the FIFO instead of from Host. 893 */ 894 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 895 { 896 int count = 8; 897 898 while (count) { 899 writeq(*src, dst); 900 src++; 901 dst++; 902 count--; 903 } 904 } 905 906 /** 907 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 908 * @adap: the adapter 909 * @q: the Tx queue 910 * @n: number of new descriptors to give to HW 911 * 912 * Ring the doorbel for a Tx queue. 913 */ 914 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 915 { 916 /* Make sure that all writes to the TX Descriptors are committed 917 * before we tell the hardware about them. 918 */ 919 wmb(); 920 921 /* If we don't have access to the new User Doorbell (T5+), use the old 922 * doorbell mechanism; otherwise use the new BAR2 mechanism. 923 */ 924 if (unlikely(q->bar2_addr == NULL)) { 925 u32 val = PIDX_V(n); 926 unsigned long flags; 927 928 /* For T4 we need to participate in the Doorbell Recovery 929 * mechanism. 930 */ 931 spin_lock_irqsave(&q->db_lock, flags); 932 if (!q->db_disabled) 933 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 934 QID_V(q->cntxt_id) | val); 935 else 936 q->db_pidx_inc += n; 937 q->db_pidx = q->pidx; 938 spin_unlock_irqrestore(&q->db_lock, flags); 939 } else { 940 u32 val = PIDX_T5_V(n); 941 942 /* T4 and later chips share the same PIDX field offset within 943 * the doorbell, but T5 and later shrank the field in order to 944 * gain a bit for Doorbell Priority. The field was absurdly 945 * large in the first place (14 bits) so we just use the T5 946 * and later limits and warn if a Queue ID is too large. 947 */ 948 WARN_ON(val & DBPRIO_F); 949 950 /* If we're only writing a single TX Descriptor and we can use 951 * Inferred QID registers, we can use the Write Combining 952 * Gather Buffer; otherwise we use the simple doorbell. 953 */ 954 if (n == 1 && q->bar2_qid == 0) { 955 int index = (q->pidx 956 ? (q->pidx - 1) 957 : (q->size - 1)); 958 u64 *wr = (u64 *)&q->desc[index]; 959 960 cxgb_pio_copy((u64 __iomem *) 961 (q->bar2_addr + SGE_UDB_WCDOORBELL), 962 wr); 963 } else { 964 writel(val | QID_V(q->bar2_qid), 965 q->bar2_addr + SGE_UDB_KDOORBELL); 966 } 967 968 /* This Write Memory Barrier will force the write to the User 969 * Doorbell area to be flushed. This is needed to prevent 970 * writes on different CPUs for the same queue from hitting 971 * the adapter out of order. This is required when some Work 972 * Requests take the Write Combine Gather Buffer path (user 973 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 974 * take the traditional path where we simply increment the 975 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 976 * hardware DMA read the actual Work Request. 977 */ 978 wmb(); 979 } 980 } 981 EXPORT_SYMBOL(cxgb4_ring_tx_db); 982 983 /** 984 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 985 * @skb: the packet 986 * @q: the Tx queue where the packet will be inlined 987 * @pos: starting position in the Tx queue where to inline the packet 988 * 989 * Inline a packet's contents directly into Tx descriptors, starting at 990 * the given position within the Tx DMA ring. 991 * Most of the complexity of this operation is dealing with wrap arounds 992 * in the middle of the packet we want to inline. 993 */ 994 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 995 const struct sge_txq *q, void *pos) 996 { 997 int left = (void *)q->stat - pos; 998 u64 *p; 999 1000 if (likely(skb->len <= left)) { 1001 if (likely(!skb->data_len)) 1002 skb_copy_from_linear_data(skb, pos, skb->len); 1003 else 1004 skb_copy_bits(skb, 0, pos, skb->len); 1005 pos += skb->len; 1006 } else { 1007 skb_copy_bits(skb, 0, pos, left); 1008 skb_copy_bits(skb, left, q->desc, skb->len - left); 1009 pos = (void *)q->desc + (skb->len - left); 1010 } 1011 1012 /* 0-pad to multiple of 16 */ 1013 p = PTR_ALIGN(pos, 8); 1014 if ((uintptr_t)p & 8) 1015 *p = 0; 1016 } 1017 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1018 1019 static void *inline_tx_skb_header(const struct sk_buff *skb, 1020 const struct sge_txq *q, void *pos, 1021 int length) 1022 { 1023 u64 *p; 1024 int left = (void *)q->stat - pos; 1025 1026 if (likely(length <= left)) { 1027 memcpy(pos, skb->data, length); 1028 pos += length; 1029 } else { 1030 memcpy(pos, skb->data, left); 1031 memcpy(q->desc, skb->data + left, length - left); 1032 pos = (void *)q->desc + (length - left); 1033 } 1034 /* 0-pad to multiple of 16 */ 1035 p = PTR_ALIGN(pos, 8); 1036 if ((uintptr_t)p & 8) { 1037 *p = 0; 1038 return p + 1; 1039 } 1040 return p; 1041 } 1042 1043 /* 1044 * Figure out what HW csum a packet wants and return the appropriate control 1045 * bits. 1046 */ 1047 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1048 { 1049 int csum_type; 1050 bool inner_hdr_csum = false; 1051 u16 proto, ver; 1052 1053 if (skb->encapsulation && 1054 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1055 inner_hdr_csum = true; 1056 1057 if (inner_hdr_csum) { 1058 ver = inner_ip_hdr(skb)->version; 1059 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1060 inner_ipv6_hdr(skb)->nexthdr; 1061 } else { 1062 ver = ip_hdr(skb)->version; 1063 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1064 ipv6_hdr(skb)->nexthdr; 1065 } 1066 1067 if (ver == 4) { 1068 if (proto == IPPROTO_TCP) 1069 csum_type = TX_CSUM_TCPIP; 1070 else if (proto == IPPROTO_UDP) 1071 csum_type = TX_CSUM_UDPIP; 1072 else { 1073 nocsum: /* 1074 * unknown protocol, disable HW csum 1075 * and hope a bad packet is detected 1076 */ 1077 return TXPKT_L4CSUM_DIS_F; 1078 } 1079 } else { 1080 /* 1081 * this doesn't work with extension headers 1082 */ 1083 if (proto == IPPROTO_TCP) 1084 csum_type = TX_CSUM_TCPIP6; 1085 else if (proto == IPPROTO_UDP) 1086 csum_type = TX_CSUM_UDPIP6; 1087 else 1088 goto nocsum; 1089 } 1090 1091 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1092 int eth_hdr_len, l4_len; 1093 u64 hdr_len; 1094 1095 if (inner_hdr_csum) { 1096 /* This allows checksum offload for all encapsulated 1097 * packets like GRE etc.. 1098 */ 1099 l4_len = skb_inner_network_header_len(skb); 1100 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1101 } else { 1102 l4_len = skb_network_header_len(skb); 1103 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1104 } 1105 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1106 1107 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1108 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1109 else 1110 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1111 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1112 } else { 1113 int start = skb_transport_offset(skb); 1114 1115 return TXPKT_CSUM_TYPE_V(csum_type) | 1116 TXPKT_CSUM_START_V(start) | 1117 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1118 } 1119 } 1120 1121 static void eth_txq_stop(struct sge_eth_txq *q) 1122 { 1123 netif_tx_stop_queue(q->txq); 1124 q->q.stops++; 1125 } 1126 1127 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1128 { 1129 q->in_use += n; 1130 q->pidx += n; 1131 if (q->pidx >= q->size) 1132 q->pidx -= q->size; 1133 } 1134 1135 #ifdef CONFIG_CHELSIO_T4_FCOE 1136 static inline int 1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1138 const struct port_info *pi, u64 *cntrl) 1139 { 1140 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1141 1142 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1143 return 0; 1144 1145 if (skb->protocol != htons(ETH_P_FCOE)) 1146 return 0; 1147 1148 skb_reset_mac_header(skb); 1149 skb->mac_len = sizeof(struct ethhdr); 1150 1151 skb_set_network_header(skb, skb->mac_len); 1152 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1153 1154 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1155 return -ENOTSUPP; 1156 1157 /* FC CRC offload */ 1158 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1159 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1160 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1161 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1162 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1163 return 0; 1164 } 1165 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1166 1167 /* Returns tunnel type if hardware supports offloading of the same. 1168 * It is called only for T5 and onwards. 1169 */ 1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1171 { 1172 u8 l4_hdr = 0; 1173 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1174 struct port_info *pi = netdev_priv(skb->dev); 1175 struct adapter *adapter = pi->adapter; 1176 1177 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1178 skb->inner_protocol != htons(ETH_P_TEB)) 1179 return tnl_type; 1180 1181 switch (vlan_get_protocol(skb)) { 1182 case htons(ETH_P_IP): 1183 l4_hdr = ip_hdr(skb)->protocol; 1184 break; 1185 case htons(ETH_P_IPV6): 1186 l4_hdr = ipv6_hdr(skb)->nexthdr; 1187 break; 1188 default: 1189 return tnl_type; 1190 } 1191 1192 switch (l4_hdr) { 1193 case IPPROTO_UDP: 1194 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1195 tnl_type = TX_TNL_TYPE_VXLAN; 1196 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1197 tnl_type = TX_TNL_TYPE_GENEVE; 1198 break; 1199 default: 1200 return tnl_type; 1201 } 1202 1203 return tnl_type; 1204 } 1205 1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1207 struct cpl_tx_tnl_lso *tnl_lso, 1208 enum cpl_tx_tnl_lso_type tnl_type) 1209 { 1210 u32 val; 1211 int in_eth_xtra_len; 1212 int l3hdr_len = skb_network_header_len(skb); 1213 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1214 const struct skb_shared_info *ssi = skb_shinfo(skb); 1215 bool v6 = (ip_hdr(skb)->version == 6); 1216 1217 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1218 CPL_TX_TNL_LSO_FIRST_F | 1219 CPL_TX_TNL_LSO_LAST_F | 1220 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1221 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1222 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1223 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1224 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1225 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1226 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1227 1228 tnl_lso->IpIdOffsetOut = 0; 1229 1230 /* Get the tunnel header length */ 1231 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1232 in_eth_xtra_len = skb_inner_network_header(skb) - 1233 skb_inner_mac_header(skb) - ETH_HLEN; 1234 1235 switch (tnl_type) { 1236 case TX_TNL_TYPE_VXLAN: 1237 case TX_TNL_TYPE_GENEVE: 1238 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1239 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1240 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1241 break; 1242 default: 1243 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1244 break; 1245 } 1246 1247 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1248 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1249 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1250 1251 tnl_lso->r1 = 0; 1252 1253 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1254 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1255 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1256 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1257 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1258 1259 tnl_lso->IpIdOffset = htons(0); 1260 1261 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1262 tnl_lso->TCPSeqOffset = htonl(0); 1263 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1264 } 1265 1266 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb, 1267 struct cpl_tx_pkt_lso_core *lso) 1268 { 1269 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1270 int l3hdr_len = skb_network_header_len(skb); 1271 const struct skb_shared_info *ssi; 1272 bool ipv6 = false; 1273 1274 ssi = skb_shinfo(skb); 1275 if (ssi->gso_type & SKB_GSO_TCPV6) 1276 ipv6 = true; 1277 1278 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1279 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1280 LSO_IPV6_V(ipv6) | 1281 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1282 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1283 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1284 lso->ipid_ofst = htons(0); 1285 lso->mss = htons(ssi->gso_size); 1286 lso->seqno_offset = htonl(0); 1287 if (is_t4(adap->params.chip)) 1288 lso->len = htonl(skb->len); 1289 else 1290 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1291 1292 return (void *)(lso + 1); 1293 } 1294 1295 /** 1296 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1297 * @adap: the adapter 1298 * @eq: the Ethernet TX Queue 1299 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1300 * 1301 * We're typically called here to update the state of an Ethernet TX 1302 * Queue with respect to the hardware's progress in consuming the TX 1303 * Work Requests that we've put on that Egress Queue. This happens 1304 * when we get Egress Queue Update messages and also prophylactically 1305 * in regular timer-based Ethernet TX Queue maintenance. 1306 */ 1307 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1308 int maxreclaim) 1309 { 1310 struct sge_txq *q = &eq->q; 1311 unsigned int reclaimed; 1312 1313 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1314 return 0; 1315 1316 /* Reclaim pending completed TX Descriptors. */ 1317 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1318 1319 /* If the TX Queue is currently stopped and there's now more than half 1320 * the queue available, restart it. Otherwise bail out since the rest 1321 * of what we want do here is with the possibility of shipping any 1322 * currently buffered Coalesced TX Work Request. 1323 */ 1324 if (netif_tx_queue_stopped(eq->txq) && txq_avail(q) > (q->size / 2)) { 1325 netif_tx_wake_queue(eq->txq); 1326 eq->q.restarts++; 1327 } 1328 1329 __netif_tx_unlock(eq->txq); 1330 return reclaimed; 1331 } 1332 1333 static inline int cxgb4_validate_skb(struct sk_buff *skb, 1334 struct net_device *dev, 1335 u32 min_pkt_len) 1336 { 1337 u32 max_pkt_len; 1338 1339 /* The chip min packet length is 10 octets but some firmware 1340 * commands have a minimum packet length requirement. So, play 1341 * safe and reject anything shorter than @min_pkt_len. 1342 */ 1343 if (unlikely(skb->len < min_pkt_len)) 1344 return -EINVAL; 1345 1346 /* Discard the packet if the length is greater than mtu */ 1347 max_pkt_len = ETH_HLEN + dev->mtu; 1348 1349 if (skb_vlan_tagged(skb)) 1350 max_pkt_len += VLAN_HLEN; 1351 1352 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1353 return -EINVAL; 1354 1355 return 0; 1356 } 1357 1358 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 1359 u32 hdr_len) 1360 { 1361 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; 1362 wr->u.udpseg.ethlen = skb_network_offset(skb); 1363 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 1364 wr->u.udpseg.udplen = sizeof(struct udphdr); 1365 wr->u.udpseg.rtplen = 0; 1366 wr->u.udpseg.r4 = 0; 1367 if (skb_shinfo(skb)->gso_size) 1368 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); 1369 else 1370 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len); 1371 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; 1372 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len); 1373 1374 return (void *)(wr + 1); 1375 } 1376 1377 /** 1378 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1379 * @skb: the packet 1380 * @dev: the egress net device 1381 * 1382 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1383 */ 1384 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1385 { 1386 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1387 bool ptp_enabled = is_ptp_enabled(skb, dev); 1388 unsigned int last_desc, flits, ndesc; 1389 u32 wr_mid, ctrl0, op, sgl_off = 0; 1390 const struct skb_shared_info *ssi; 1391 int len, qidx, credits, ret, left; 1392 struct tx_sw_desc *sgl_sdesc; 1393 struct fw_eth_tx_eo_wr *eowr; 1394 struct fw_eth_tx_pkt_wr *wr; 1395 struct cpl_tx_pkt_core *cpl; 1396 const struct port_info *pi; 1397 bool immediate = false; 1398 u64 cntrl, *end, *sgl; 1399 struct sge_eth_txq *q; 1400 unsigned int chip_ver; 1401 struct adapter *adap; 1402 1403 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 1404 if (ret) 1405 goto out_free; 1406 1407 pi = netdev_priv(dev); 1408 adap = pi->adapter; 1409 ssi = skb_shinfo(skb); 1410 #ifdef CONFIG_CHELSIO_IPSEC_INLINE 1411 if (xfrm_offload(skb) && !ssi->gso_size) 1412 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1413 #endif /* CHELSIO_IPSEC_INLINE */ 1414 1415 qidx = skb_get_queue_mapping(skb); 1416 if (ptp_enabled) { 1417 spin_lock(&adap->ptp_lock); 1418 if (!(adap->ptp_tx_skb)) { 1419 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1420 adap->ptp_tx_skb = skb_get(skb); 1421 } else { 1422 spin_unlock(&adap->ptp_lock); 1423 goto out_free; 1424 } 1425 q = &adap->sge.ptptxq; 1426 } else { 1427 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1428 } 1429 skb_tx_timestamp(skb); 1430 1431 reclaim_completed_tx(adap, &q->q, -1, true); 1432 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1433 1434 #ifdef CONFIG_CHELSIO_T4_FCOE 1435 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1436 if (unlikely(ret == -ENOTSUPP)) { 1437 if (ptp_enabled) 1438 spin_unlock(&adap->ptp_lock); 1439 goto out_free; 1440 } 1441 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1442 1443 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1444 flits = calc_tx_flits(skb, chip_ver); 1445 ndesc = flits_to_desc(flits); 1446 credits = txq_avail(&q->q) - ndesc; 1447 1448 if (unlikely(credits < 0)) { 1449 eth_txq_stop(q); 1450 dev_err(adap->pdev_dev, 1451 "%s: Tx ring %u full while queue awake!\n", 1452 dev->name, qidx); 1453 if (ptp_enabled) 1454 spin_unlock(&adap->ptp_lock); 1455 return NETDEV_TX_BUSY; 1456 } 1457 1458 if (is_eth_imm(skb, chip_ver)) 1459 immediate = true; 1460 1461 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1462 tnl_type = cxgb_encap_offload_supported(skb); 1463 1464 last_desc = q->q.pidx + ndesc - 1; 1465 if (last_desc >= q->q.size) 1466 last_desc -= q->q.size; 1467 sgl_sdesc = &q->q.sdesc[last_desc]; 1468 1469 if (!immediate && 1470 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) { 1471 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1472 q->mapping_err++; 1473 if (ptp_enabled) 1474 spin_unlock(&adap->ptp_lock); 1475 goto out_free; 1476 } 1477 1478 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1479 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1480 /* After we're done injecting the Work Request for this 1481 * packet, we'll be below our "stop threshold" so stop the TX 1482 * Queue now and schedule a request for an SGE Egress Queue 1483 * Update message. The queue will get started later on when 1484 * the firmware processes this Work Request and sends us an 1485 * Egress Queue Status Update message indicating that space 1486 * has opened up. 1487 */ 1488 eth_txq_stop(q); 1489 1490 /* If we're using the SGE Doorbell Queue Timer facility, we 1491 * don't need to ask the Firmware to send us Egress Queue CIDX 1492 * Updates: the Hardware will do this automatically. And 1493 * since we send the Ingress Queue CIDX Updates to the 1494 * corresponding Ethernet Response Queue, we'll get them very 1495 * quickly. 1496 */ 1497 if (!q->dbqt) 1498 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1499 } 1500 1501 wr = (void *)&q->q.desc[q->q.pidx]; 1502 eowr = (void *)&q->q.desc[q->q.pidx]; 1503 wr->equiq_to_len16 = htonl(wr_mid); 1504 wr->r3 = cpu_to_be64(0); 1505 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 1506 end = (u64 *)eowr + flits; 1507 else 1508 end = (u64 *)wr + flits; 1509 1510 len = immediate ? skb->len : 0; 1511 len += sizeof(*cpl); 1512 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) { 1513 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1514 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1515 1516 if (tnl_type) 1517 len += sizeof(*tnl_lso); 1518 else 1519 len += sizeof(*lso); 1520 1521 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1522 FW_WR_IMMDLEN_V(len)); 1523 if (tnl_type) { 1524 struct iphdr *iph = ip_hdr(skb); 1525 1526 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1527 cpl = (void *)(tnl_lso + 1); 1528 /* Driver is expected to compute partial checksum that 1529 * does not include the IP Total Length. 1530 */ 1531 if (iph->version == 4) { 1532 iph->check = 0; 1533 iph->tot_len = 0; 1534 iph->check = (u16)(~ip_fast_csum((u8 *)iph, 1535 iph->ihl)); 1536 } 1537 if (skb->ip_summed == CHECKSUM_PARTIAL) 1538 cntrl = hwcsum(adap->params.chip, skb); 1539 } else { 1540 cpl = write_tso_wr(adap, skb, lso); 1541 cntrl = hwcsum(adap->params.chip, skb); 1542 } 1543 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1544 q->tso++; 1545 q->tx_cso += ssi->gso_segs; 1546 } else if (ssi->gso_size) { 1547 u64 *start; 1548 u32 hdrlen; 1549 1550 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 1551 len += hdrlen; 1552 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 1553 FW_ETH_TX_EO_WR_IMMDLEN_V(len)); 1554 cpl = write_eo_udp_wr(skb, eowr, hdrlen); 1555 cntrl = hwcsum(adap->params.chip, skb); 1556 1557 start = (u64 *)(cpl + 1); 1558 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start, 1559 hdrlen); 1560 if (unlikely(start > sgl)) { 1561 left = (u8 *)end - (u8 *)q->q.stat; 1562 end = (void *)q->q.desc + left; 1563 } 1564 sgl_off = hdrlen; 1565 q->uso++; 1566 q->tx_cso += ssi->gso_segs; 1567 } else { 1568 if (ptp_enabled) 1569 op = FW_PTP_TX_PKT_WR; 1570 else 1571 op = FW_ETH_TX_PKT_WR; 1572 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1573 FW_WR_IMMDLEN_V(len)); 1574 cpl = (void *)(wr + 1); 1575 sgl = (u64 *)(cpl + 1); 1576 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1577 cntrl = hwcsum(adap->params.chip, skb) | 1578 TXPKT_IPCSUM_DIS_F; 1579 q->tx_cso++; 1580 } 1581 } 1582 1583 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1584 /* If current position is already at the end of the 1585 * txq, reset the current to point to start of the queue 1586 * and update the end ptr as well. 1587 */ 1588 left = (u8 *)end - (u8 *)q->q.stat; 1589 end = (void *)q->q.desc + left; 1590 sgl = (void *)q->q.desc; 1591 } 1592 1593 if (skb_vlan_tag_present(skb)) { 1594 q->vlan_ins++; 1595 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1596 #ifdef CONFIG_CHELSIO_T4_FCOE 1597 if (skb->protocol == htons(ETH_P_FCOE)) 1598 cntrl |= TXPKT_VLAN_V( 1599 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1600 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1601 } 1602 1603 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1604 TXPKT_PF_V(adap->pf); 1605 if (ptp_enabled) 1606 ctrl0 |= TXPKT_TSTAMP_F; 1607 #ifdef CONFIG_CHELSIO_T4_DCB 1608 if (is_t4(adap->params.chip)) 1609 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1610 else 1611 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1612 #endif 1613 cpl->ctrl0 = htonl(ctrl0); 1614 cpl->pack = htons(0); 1615 cpl->len = htons(skb->len); 1616 cpl->ctrl1 = cpu_to_be64(cntrl); 1617 1618 if (immediate) { 1619 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1620 dev_consume_skb_any(skb); 1621 } else { 1622 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off, 1623 sgl_sdesc->addr); 1624 skb_orphan(skb); 1625 sgl_sdesc->skb = skb; 1626 } 1627 1628 txq_advance(&q->q, ndesc); 1629 1630 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1631 if (ptp_enabled) 1632 spin_unlock(&adap->ptp_lock); 1633 return NETDEV_TX_OK; 1634 1635 out_free: 1636 dev_kfree_skb_any(skb); 1637 return NETDEV_TX_OK; 1638 } 1639 1640 /* Constants ... */ 1641 enum { 1642 /* Egress Queue sizes, producer and consumer indices are all in units 1643 * of Egress Context Units bytes. Note that as far as the hardware is 1644 * concerned, the free list is an Egress Queue (the host produces free 1645 * buffers which the hardware consumes) and free list entries are 1646 * 64-bit PCI DMA addresses. 1647 */ 1648 EQ_UNIT = SGE_EQ_IDXSIZE, 1649 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1650 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1651 1652 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1653 sizeof(struct cpl_tx_pkt_lso_core) + 1654 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1655 }; 1656 1657 /** 1658 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1659 * @skb: the packet 1660 * 1661 * Returns whether an Ethernet packet is small enough to fit completely as 1662 * immediate data. 1663 */ 1664 static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1665 { 1666 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1667 * which does not accommodate immediate data. We could dike out all 1668 * of the support code for immediate data but that would tie our hands 1669 * too much if we ever want to enhace the firmware. It would also 1670 * create more differences between the PF and VF Drivers. 1671 */ 1672 return false; 1673 } 1674 1675 /** 1676 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1677 * @skb: the packet 1678 * 1679 * Returns the number of flits needed for a TX Work Request for the 1680 * given Ethernet packet, including the needed WR and CPL headers. 1681 */ 1682 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1683 { 1684 unsigned int flits; 1685 1686 /* If the skb is small enough, we can pump it out as a work request 1687 * with only immediate data. In that case we just have to have the 1688 * TX Packet header plus the skb data in the Work Request. 1689 */ 1690 if (t4vf_is_eth_imm(skb)) 1691 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1692 sizeof(__be64)); 1693 1694 /* Otherwise, we're going to have to construct a Scatter gather list 1695 * of the skb body and fragments. We also include the flits necessary 1696 * for the TX Packet Work Request and CPL. We always have a firmware 1697 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1698 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1699 * message or, if we're doing a Large Send Offload, an LSO CPL message 1700 * with an embedded TX Packet Write CPL message. 1701 */ 1702 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1703 if (skb_shinfo(skb)->gso_size) 1704 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1705 sizeof(struct cpl_tx_pkt_lso_core) + 1706 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1707 else 1708 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1709 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1710 return flits; 1711 } 1712 1713 /** 1714 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1715 * @skb: the packet 1716 * @dev: the egress net device 1717 * 1718 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1719 */ 1720 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1721 struct net_device *dev) 1722 { 1723 unsigned int last_desc, flits, ndesc; 1724 const struct skb_shared_info *ssi; 1725 struct fw_eth_tx_pkt_vm_wr *wr; 1726 struct tx_sw_desc *sgl_sdesc; 1727 struct cpl_tx_pkt_core *cpl; 1728 const struct port_info *pi; 1729 struct sge_eth_txq *txq; 1730 struct adapter *adapter; 1731 int qidx, credits, ret; 1732 size_t fw_hdr_copy_len; 1733 u64 cntrl, *end; 1734 u32 wr_mid; 1735 1736 /* The chip minimum packet length is 10 octets but the firmware 1737 * command that we are using requires that we copy the Ethernet header 1738 * (including the VLAN tag) into the header so we reject anything 1739 * smaller than that ... 1740 */ 1741 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + 1742 sizeof(wr->ethtype) + sizeof(wr->vlantci); 1743 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len); 1744 if (ret) 1745 goto out_free; 1746 1747 /* Figure out which TX Queue we're going to use. */ 1748 pi = netdev_priv(dev); 1749 adapter = pi->adapter; 1750 qidx = skb_get_queue_mapping(skb); 1751 WARN_ON(qidx >= pi->nqsets); 1752 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1753 1754 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1755 * transfers have completed. 1756 */ 1757 reclaim_completed_tx(adapter, &txq->q, -1, true); 1758 1759 /* Calculate the number of flits and TX Descriptors we're going to 1760 * need along with how many TX Descriptors will be left over after 1761 * we inject our Work Request. 1762 */ 1763 flits = t4vf_calc_tx_flits(skb); 1764 ndesc = flits_to_desc(flits); 1765 credits = txq_avail(&txq->q) - ndesc; 1766 1767 if (unlikely(credits < 0)) { 1768 /* Not enough room for this packet's Work Request. Stop the 1769 * TX Queue and return a "busy" condition. The queue will get 1770 * started later on when the firmware informs us that space 1771 * has opened up. 1772 */ 1773 eth_txq_stop(txq); 1774 dev_err(adapter->pdev_dev, 1775 "%s: TX ring %u full while queue awake!\n", 1776 dev->name, qidx); 1777 return NETDEV_TX_BUSY; 1778 } 1779 1780 last_desc = txq->q.pidx + ndesc - 1; 1781 if (last_desc >= txq->q.size) 1782 last_desc -= txq->q.size; 1783 sgl_sdesc = &txq->q.sdesc[last_desc]; 1784 1785 if (!t4vf_is_eth_imm(skb) && 1786 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, 1787 sgl_sdesc->addr) < 0)) { 1788 /* We need to map the skb into PCI DMA space (because it can't 1789 * be in-lined directly into the Work Request) and the mapping 1790 * operation failed. Record the error and drop the packet. 1791 */ 1792 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1793 txq->mapping_err++; 1794 goto out_free; 1795 } 1796 1797 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1798 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1799 /* After we're done injecting the Work Request for this 1800 * packet, we'll be below our "stop threshold" so stop the TX 1801 * Queue now and schedule a request for an SGE Egress Queue 1802 * Update message. The queue will get started later on when 1803 * the firmware processes this Work Request and sends us an 1804 * Egress Queue Status Update message indicating that space 1805 * has opened up. 1806 */ 1807 eth_txq_stop(txq); 1808 1809 /* If we're using the SGE Doorbell Queue Timer facility, we 1810 * don't need to ask the Firmware to send us Egress Queue CIDX 1811 * Updates: the Hardware will do this automatically. And 1812 * since we send the Ingress Queue CIDX Updates to the 1813 * corresponding Ethernet Response Queue, we'll get them very 1814 * quickly. 1815 */ 1816 if (!txq->dbqt) 1817 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1818 } 1819 1820 /* Start filling in our Work Request. Note that we do _not_ handle 1821 * the WR Header wrapping around the TX Descriptor Ring. If our 1822 * maximum header size ever exceeds one TX Descriptor, we'll need to 1823 * do something else here. 1824 */ 1825 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1826 wr = (void *)&txq->q.desc[txq->q.pidx]; 1827 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1828 wr->r3[0] = cpu_to_be32(0); 1829 wr->r3[1] = cpu_to_be32(0); 1830 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1831 end = (u64 *)wr + flits; 1832 1833 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1834 * message with an encapsulated TX Packet CPL message. Otherwise we 1835 * just use a TX Packet CPL message. 1836 */ 1837 ssi = skb_shinfo(skb); 1838 if (ssi->gso_size) { 1839 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1840 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1841 int l3hdr_len = skb_network_header_len(skb); 1842 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1843 1844 wr->op_immdlen = 1845 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1846 FW_WR_IMMDLEN_V(sizeof(*lso) + 1847 sizeof(*cpl))); 1848 /* Fill in the LSO CPL message. */ 1849 lso->lso_ctrl = 1850 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1851 LSO_FIRST_SLICE_F | 1852 LSO_LAST_SLICE_F | 1853 LSO_IPV6_V(v6) | 1854 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1855 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1856 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1857 lso->ipid_ofst = cpu_to_be16(0); 1858 lso->mss = cpu_to_be16(ssi->gso_size); 1859 lso->seqno_offset = cpu_to_be32(0); 1860 if (is_t4(adapter->params.chip)) 1861 lso->len = cpu_to_be32(skb->len); 1862 else 1863 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1864 1865 /* Set up TX Packet CPL pointer, control word and perform 1866 * accounting. 1867 */ 1868 cpl = (void *)(lso + 1); 1869 1870 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 1871 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1872 else 1873 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1874 1875 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1876 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1877 TXPKT_IPHDR_LEN_V(l3hdr_len); 1878 txq->tso++; 1879 txq->tx_cso += ssi->gso_segs; 1880 } else { 1881 int len; 1882 1883 len = (t4vf_is_eth_imm(skb) 1884 ? skb->len + sizeof(*cpl) 1885 : sizeof(*cpl)); 1886 wr->op_immdlen = 1887 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1888 FW_WR_IMMDLEN_V(len)); 1889 1890 /* Set up TX Packet CPL pointer, control word and perform 1891 * accounting. 1892 */ 1893 cpl = (void *)(wr + 1); 1894 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1895 cntrl = hwcsum(adapter->params.chip, skb) | 1896 TXPKT_IPCSUM_DIS_F; 1897 txq->tx_cso++; 1898 } else { 1899 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1900 } 1901 } 1902 1903 /* If there's a VLAN tag present, add that to the list of things to 1904 * do in this Work Request. 1905 */ 1906 if (skb_vlan_tag_present(skb)) { 1907 txq->vlan_ins++; 1908 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1909 } 1910 1911 /* Fill in the TX Packet CPL message header. */ 1912 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 1913 TXPKT_INTF_V(pi->port_id) | 1914 TXPKT_PF_V(0)); 1915 cpl->pack = cpu_to_be16(0); 1916 cpl->len = cpu_to_be16(skb->len); 1917 cpl->ctrl1 = cpu_to_be64(cntrl); 1918 1919 /* Fill in the body of the TX Packet CPL message with either in-lined 1920 * data or a Scatter/Gather List. 1921 */ 1922 if (t4vf_is_eth_imm(skb)) { 1923 /* In-line the packet's data and free the skb since we don't 1924 * need it any longer. 1925 */ 1926 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 1927 dev_consume_skb_any(skb); 1928 } else { 1929 /* Write the skb's Scatter/Gather list into the TX Packet CPL 1930 * message and retain a pointer to the skb so we can free it 1931 * later when its DMA completes. (We store the skb pointer 1932 * in the Software Descriptor corresponding to the last TX 1933 * Descriptor used by the Work Request.) 1934 * 1935 * The retained skb will be freed when the corresponding TX 1936 * Descriptors are reclaimed after their DMAs complete. 1937 * However, this could take quite a while since, in general, 1938 * the hardware is set up to be lazy about sending DMA 1939 * completion notifications to us and we mostly perform TX 1940 * reclaims in the transmit routine. 1941 * 1942 * This is good for performamce but means that we rely on new 1943 * TX packets arriving to run the destructors of completed 1944 * packets, which open up space in their sockets' send queues. 1945 * Sometimes we do not get such new packets causing TX to 1946 * stall. A single UDP transmitter is a good example of this 1947 * situation. We have a clean up timer that periodically 1948 * reclaims completed packets but it doesn't run often enough 1949 * (nor do we want it to) to prevent lengthy stalls. A 1950 * solution to this problem is to run the destructor early, 1951 * after the packet is queued but before it's DMAd. A con is 1952 * that we lie to socket memory accounting, but the amount of 1953 * extra memory is reasonable (limited by the number of TX 1954 * descriptors), the packets do actually get freed quickly by 1955 * new packets almost always, and for protocols like TCP that 1956 * wait for acks to really free up the data the extra memory 1957 * is even less. On the positive side we run the destructors 1958 * on the sending CPU rather than on a potentially different 1959 * completing CPU, usually a good thing. 1960 * 1961 * Run the destructor before telling the DMA engine about the 1962 * packet to make sure it doesn't complete and get freed 1963 * prematurely. 1964 */ 1965 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 1966 struct sge_txq *tq = &txq->q; 1967 1968 /* If the Work Request header was an exact multiple of our TX 1969 * Descriptor length, then it's possible that the starting SGL 1970 * pointer lines up exactly with the end of our TX Descriptor 1971 * ring. If that's the case, wrap around to the beginning 1972 * here ... 1973 */ 1974 if (unlikely((void *)sgl == (void *)tq->stat)) { 1975 sgl = (void *)tq->desc; 1976 end = (void *)((void *)tq->desc + 1977 ((void *)end - (void *)tq->stat)); 1978 } 1979 1980 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr); 1981 skb_orphan(skb); 1982 sgl_sdesc->skb = skb; 1983 } 1984 1985 /* Advance our internal TX Queue state, tell the hardware about 1986 * the new TX descriptors and return success. 1987 */ 1988 txq_advance(&txq->q, ndesc); 1989 1990 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 1991 return NETDEV_TX_OK; 1992 1993 out_free: 1994 /* An error of some sort happened. Free the TX skb and tell the 1995 * OS that we've "dealt" with the packet ... 1996 */ 1997 dev_kfree_skb_any(skb); 1998 return NETDEV_TX_OK; 1999 } 2000 2001 /** 2002 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 2003 * @q: the SGE control Tx queue 2004 * 2005 * This is a variant of cxgb4_reclaim_completed_tx() that is used 2006 * for Tx queues that send only immediate data (presently just 2007 * the control queues) and thus do not have any sk_buffs to release. 2008 */ 2009 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 2010 { 2011 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 2012 int reclaim = hw_cidx - q->cidx; 2013 2014 if (reclaim < 0) 2015 reclaim += q->size; 2016 2017 q->in_use -= reclaim; 2018 q->cidx = hw_cidx; 2019 } 2020 2021 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max) 2022 { 2023 u32 val = *idx + n; 2024 2025 if (val >= max) 2026 val -= max; 2027 2028 *idx = val; 2029 } 2030 2031 void cxgb4_eosw_txq_free_desc(struct adapter *adap, 2032 struct sge_eosw_txq *eosw_txq, u32 ndesc) 2033 { 2034 struct tx_sw_desc *d; 2035 2036 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2037 while (ndesc--) { 2038 if (d->skb) { 2039 if (d->addr[0]) { 2040 unmap_skb(adap->pdev_dev, d->skb, d->addr); 2041 memset(d->addr, 0, sizeof(d->addr)); 2042 } 2043 dev_consume_skb_any(d->skb); 2044 d->skb = NULL; 2045 } 2046 eosw_txq_advance_index(&eosw_txq->last_cidx, 1, 2047 eosw_txq->ndesc); 2048 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2049 } 2050 } 2051 2052 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n) 2053 { 2054 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc); 2055 eosw_txq->inuse += n; 2056 } 2057 2058 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq, 2059 struct sk_buff *skb) 2060 { 2061 if (eosw_txq->inuse == eosw_txq->ndesc) 2062 return -ENOMEM; 2063 2064 eosw_txq->desc[eosw_txq->pidx].skb = skb; 2065 return 0; 2066 } 2067 2068 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq) 2069 { 2070 return eosw_txq->desc[eosw_txq->last_pidx].skb; 2071 } 2072 2073 static inline u8 ethofld_calc_tx_flits(struct adapter *adap, 2074 struct sk_buff *skb, u32 hdr_len) 2075 { 2076 u8 flits, nsgl = 0; 2077 u32 wrlen; 2078 2079 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core); 2080 if (skb_shinfo(skb)->gso_size && 2081 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2082 wrlen += sizeof(struct cpl_tx_pkt_lso_core); 2083 2084 wrlen += roundup(hdr_len, 16); 2085 2086 /* Packet headers + WR + CPLs */ 2087 flits = DIV_ROUND_UP(wrlen, 8); 2088 2089 if (skb_shinfo(skb)->nr_frags > 0) { 2090 if (skb_headlen(skb) - hdr_len) 2091 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1); 2092 else 2093 nsgl = sgl_len(skb_shinfo(skb)->nr_frags); 2094 } else if (skb->len - hdr_len) { 2095 nsgl = sgl_len(1); 2096 } 2097 2098 return flits + nsgl; 2099 } 2100 2101 static inline void *write_eo_wr(struct adapter *adap, 2102 struct sge_eosw_txq *eosw_txq, 2103 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 2104 u32 hdr_len, u32 wrlen) 2105 { 2106 const struct skb_shared_info *ssi = skb_shinfo(skb); 2107 struct cpl_tx_pkt_core *cpl; 2108 u32 immd_len, wrlen16; 2109 bool compl = false; 2110 u8 ver, proto; 2111 2112 ver = ip_hdr(skb)->version; 2113 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol; 2114 2115 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2116 immd_len = sizeof(struct cpl_tx_pkt_core); 2117 if (skb_shinfo(skb)->gso_size && 2118 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2119 immd_len += sizeof(struct cpl_tx_pkt_lso_core); 2120 immd_len += hdr_len; 2121 2122 if (!eosw_txq->ncompl || 2123 eosw_txq->last_compl >= adap->params.ofldq_wr_cred / 2) { 2124 compl = true; 2125 eosw_txq->ncompl++; 2126 eosw_txq->last_compl = 0; 2127 } 2128 2129 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 2130 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) | 2131 FW_WR_COMPL_V(compl)); 2132 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) | 2133 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2134 wr->r3 = 0; 2135 if (proto == IPPROTO_UDP) { 2136 cpl = write_eo_udp_wr(skb, wr, hdr_len); 2137 } else { 2138 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 2139 wr->u.tcpseg.ethlen = skb_network_offset(skb); 2140 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 2141 wr->u.tcpseg.tcplen = tcp_hdrlen(skb); 2142 wr->u.tcpseg.tsclk_tsoff = 0; 2143 wr->u.tcpseg.r4 = 0; 2144 wr->u.tcpseg.r5 = 0; 2145 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len); 2146 2147 if (ssi->gso_size) { 2148 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2149 2150 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size); 2151 cpl = write_tso_wr(adap, skb, lso); 2152 } else { 2153 wr->u.tcpseg.mss = cpu_to_be16(0xffff); 2154 cpl = (void *)(wr + 1); 2155 } 2156 } 2157 2158 eosw_txq->cred -= wrlen16; 2159 eosw_txq->last_compl += wrlen16; 2160 return cpl; 2161 } 2162 2163 static void ethofld_hard_xmit(struct net_device *dev, 2164 struct sge_eosw_txq *eosw_txq) 2165 { 2166 struct port_info *pi = netdev2pinfo(dev); 2167 struct adapter *adap = netdev2adap(dev); 2168 u32 wrlen, wrlen16, hdr_len, data_len; 2169 enum sge_eosw_state next_state; 2170 u64 cntrl, *start, *end, *sgl; 2171 struct sge_eohw_txq *eohw_txq; 2172 struct cpl_tx_pkt_core *cpl; 2173 struct fw_eth_tx_eo_wr *wr; 2174 bool skip_eotx_wr = false; 2175 struct tx_sw_desc *d; 2176 struct sk_buff *skb; 2177 u8 flits, ndesc; 2178 int left; 2179 2180 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid]; 2181 spin_lock(&eohw_txq->lock); 2182 reclaim_completed_tx_imm(&eohw_txq->q); 2183 2184 d = &eosw_txq->desc[eosw_txq->last_pidx]; 2185 skb = d->skb; 2186 skb_tx_timestamp(skb); 2187 2188 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx]; 2189 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE && 2190 eosw_txq->last_pidx == eosw_txq->flowc_idx)) { 2191 hdr_len = skb->len; 2192 data_len = 0; 2193 flits = DIV_ROUND_UP(hdr_len, 8); 2194 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND) 2195 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY; 2196 else 2197 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY; 2198 skip_eotx_wr = true; 2199 } else { 2200 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 2201 data_len = skb->len - hdr_len; 2202 flits = ethofld_calc_tx_flits(adap, skb, hdr_len); 2203 } 2204 ndesc = flits_to_desc(flits); 2205 wrlen = flits * 8; 2206 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2207 2208 /* If there are no CPL credits, then wait for credits 2209 * to come back and retry again 2210 */ 2211 if (unlikely(wrlen16 > eosw_txq->cred)) 2212 goto out_unlock; 2213 2214 if (unlikely(skip_eotx_wr)) { 2215 start = (u64 *)wr; 2216 eosw_txq->state = next_state; 2217 goto write_wr_headers; 2218 } 2219 2220 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen); 2221 cntrl = hwcsum(adap->params.chip, skb); 2222 if (skb_vlan_tag_present(skb)) 2223 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2224 2225 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2226 TXPKT_INTF_V(pi->tx_chan) | 2227 TXPKT_PF_V(adap->pf)); 2228 cpl->pack = 0; 2229 cpl->len = cpu_to_be16(skb->len); 2230 cpl->ctrl1 = cpu_to_be64(cntrl); 2231 2232 start = (u64 *)(cpl + 1); 2233 2234 write_wr_headers: 2235 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start, 2236 hdr_len); 2237 if (data_len) { 2238 if (unlikely(cxgb4_map_skb(adap->pdev_dev, skb, d->addr))) { 2239 memset(d->addr, 0, sizeof(d->addr)); 2240 eohw_txq->mapping_err++; 2241 goto out_unlock; 2242 } 2243 2244 end = (u64 *)wr + flits; 2245 if (unlikely(start > sgl)) { 2246 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2247 end = (void *)eohw_txq->q.desc + left; 2248 } 2249 2250 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) { 2251 /* If current position is already at the end of the 2252 * txq, reset the current to point to start of the queue 2253 * and update the end ptr as well. 2254 */ 2255 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2256 2257 end = (void *)eohw_txq->q.desc + left; 2258 sgl = (void *)eohw_txq->q.desc; 2259 } 2260 2261 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len, 2262 d->addr); 2263 } 2264 2265 if (skb_shinfo(skb)->gso_size) { 2266 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 2267 eohw_txq->uso++; 2268 else 2269 eohw_txq->tso++; 2270 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs; 2271 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2272 eohw_txq->tx_cso++; 2273 } 2274 2275 if (skb_vlan_tag_present(skb)) 2276 eohw_txq->vlan_ins++; 2277 2278 txq_advance(&eohw_txq->q, ndesc); 2279 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc); 2280 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc); 2281 2282 out_unlock: 2283 spin_unlock(&eohw_txq->lock); 2284 } 2285 2286 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq) 2287 { 2288 struct sk_buff *skb; 2289 int pktcount; 2290 2291 switch (eosw_txq->state) { 2292 case CXGB4_EO_STATE_ACTIVE: 2293 case CXGB4_EO_STATE_FLOWC_OPEN_SEND: 2294 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND: 2295 pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2296 if (pktcount < 0) 2297 pktcount += eosw_txq->ndesc; 2298 break; 2299 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY: 2300 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY: 2301 case CXGB4_EO_STATE_CLOSED: 2302 default: 2303 return; 2304 } 2305 2306 while (pktcount--) { 2307 skb = eosw_txq_peek(eosw_txq); 2308 if (!skb) { 2309 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, 2310 eosw_txq->ndesc); 2311 continue; 2312 } 2313 2314 ethofld_hard_xmit(dev, eosw_txq); 2315 } 2316 } 2317 2318 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb, 2319 struct net_device *dev) 2320 { 2321 struct cxgb4_tc_port_mqprio *tc_port_mqprio; 2322 struct port_info *pi = netdev2pinfo(dev); 2323 struct adapter *adap = netdev2adap(dev); 2324 struct sge_eosw_txq *eosw_txq; 2325 u32 qid; 2326 int ret; 2327 2328 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 2329 if (ret) 2330 goto out_free; 2331 2332 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id]; 2333 qid = skb_get_queue_mapping(skb) - pi->nqsets; 2334 eosw_txq = &tc_port_mqprio->eosw_txq[qid]; 2335 spin_lock_bh(&eosw_txq->lock); 2336 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2337 goto out_unlock; 2338 2339 ret = eosw_txq_enqueue(eosw_txq, skb); 2340 if (ret) 2341 goto out_unlock; 2342 2343 /* SKB is queued for processing until credits are available. 2344 * So, call the destructor now and we'll free the skb later 2345 * after it has been successfully transmitted. 2346 */ 2347 skb_orphan(skb); 2348 2349 eosw_txq_advance(eosw_txq, 1); 2350 ethofld_xmit(dev, eosw_txq); 2351 spin_unlock_bh(&eosw_txq->lock); 2352 return NETDEV_TX_OK; 2353 2354 out_unlock: 2355 spin_unlock_bh(&eosw_txq->lock); 2356 out_free: 2357 dev_kfree_skb_any(skb); 2358 return NETDEV_TX_OK; 2359 } 2360 2361 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 2362 { 2363 struct port_info *pi = netdev_priv(dev); 2364 u16 qid = skb_get_queue_mapping(skb); 2365 2366 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 2367 return cxgb4_vf_eth_xmit(skb, dev); 2368 2369 if (unlikely(qid >= pi->nqsets)) 2370 return cxgb4_ethofld_xmit(skb, dev); 2371 2372 return cxgb4_eth_xmit(skb, dev); 2373 } 2374 2375 /** 2376 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc. 2377 * @dev - netdevice 2378 * @eotid - ETHOFLD tid to bind/unbind 2379 * @tc - traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid 2380 * 2381 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class. 2382 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from 2383 * a traffic class. 2384 */ 2385 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc) 2386 { 2387 struct port_info *pi = netdev2pinfo(dev); 2388 struct adapter *adap = netdev2adap(dev); 2389 enum sge_eosw_state next_state; 2390 struct sge_eosw_txq *eosw_txq; 2391 u32 len, len16, nparams = 6; 2392 struct fw_flowc_wr *flowc; 2393 struct eotid_entry *entry; 2394 struct sge_ofld_rxq *rxq; 2395 struct sk_buff *skb; 2396 int ret = 0; 2397 2398 len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams; 2399 len16 = DIV_ROUND_UP(len, 16); 2400 2401 entry = cxgb4_lookup_eotid(&adap->tids, eotid); 2402 if (!entry) 2403 return -ENOMEM; 2404 2405 eosw_txq = (struct sge_eosw_txq *)entry->data; 2406 if (!eosw_txq) 2407 return -ENOMEM; 2408 2409 skb = alloc_skb(len, GFP_KERNEL); 2410 if (!skb) 2411 return -ENOMEM; 2412 2413 spin_lock_bh(&eosw_txq->lock); 2414 if (tc != FW_SCHED_CLS_NONE) { 2415 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED) 2416 goto out_unlock; 2417 2418 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND; 2419 } else { 2420 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2421 goto out_unlock; 2422 2423 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND; 2424 } 2425 2426 flowc = __skb_put(skb, len); 2427 memset(flowc, 0, len); 2428 2429 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid]; 2430 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) | 2431 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2432 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 2433 FW_FLOWC_WR_NPARAMS_V(nparams) | 2434 FW_WR_COMPL_V(1)); 2435 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 2436 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf)); 2437 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 2438 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan); 2439 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 2440 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan); 2441 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 2442 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id); 2443 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 2444 flowc->mnemval[4].val = cpu_to_be32(tc); 2445 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE; 2446 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ? 2447 FW_FLOWC_MNEM_EOSTATE_CLOSING : 2448 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 2449 2450 eosw_txq->cred -= len16; 2451 eosw_txq->ncompl++; 2452 eosw_txq->last_compl = 0; 2453 2454 ret = eosw_txq_enqueue(eosw_txq, skb); 2455 if (ret) { 2456 dev_consume_skb_any(skb); 2457 goto out_unlock; 2458 } 2459 2460 eosw_txq->state = next_state; 2461 eosw_txq->flowc_idx = eosw_txq->pidx; 2462 eosw_txq_advance(eosw_txq, 1); 2463 ethofld_xmit(dev, eosw_txq); 2464 2465 out_unlock: 2466 spin_unlock_bh(&eosw_txq->lock); 2467 return ret; 2468 } 2469 2470 /** 2471 * is_imm - check whether a packet can be sent as immediate data 2472 * @skb: the packet 2473 * 2474 * Returns true if a packet can be sent as a WR with immediate data. 2475 */ 2476 static inline int is_imm(const struct sk_buff *skb) 2477 { 2478 return skb->len <= MAX_CTRL_WR_LEN; 2479 } 2480 2481 /** 2482 * ctrlq_check_stop - check if a control queue is full and should stop 2483 * @q: the queue 2484 * @wr: most recent WR written to the queue 2485 * 2486 * Check if a control queue has become full and should be stopped. 2487 * We clean up control queue descriptors very lazily, only when we are out. 2488 * If the queue is still full after reclaiming any completed descriptors 2489 * we suspend it and have the last WR wake it up. 2490 */ 2491 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2492 { 2493 reclaim_completed_tx_imm(&q->q); 2494 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2495 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2496 q->q.stops++; 2497 q->full = 1; 2498 } 2499 } 2500 2501 /** 2502 * ctrl_xmit - send a packet through an SGE control Tx queue 2503 * @q: the control queue 2504 * @skb: the packet 2505 * 2506 * Send a packet through an SGE control Tx queue. Packets sent through 2507 * a control queue must fit entirely as immediate data. 2508 */ 2509 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2510 { 2511 unsigned int ndesc; 2512 struct fw_wr_hdr *wr; 2513 2514 if (unlikely(!is_imm(skb))) { 2515 WARN_ON(1); 2516 dev_kfree_skb(skb); 2517 return NET_XMIT_DROP; 2518 } 2519 2520 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2521 spin_lock(&q->sendq.lock); 2522 2523 if (unlikely(q->full)) { 2524 skb->priority = ndesc; /* save for restart */ 2525 __skb_queue_tail(&q->sendq, skb); 2526 spin_unlock(&q->sendq.lock); 2527 return NET_XMIT_CN; 2528 } 2529 2530 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2531 cxgb4_inline_tx_skb(skb, &q->q, wr); 2532 2533 txq_advance(&q->q, ndesc); 2534 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2535 ctrlq_check_stop(q, wr); 2536 2537 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2538 spin_unlock(&q->sendq.lock); 2539 2540 kfree_skb(skb); 2541 return NET_XMIT_SUCCESS; 2542 } 2543 2544 /** 2545 * restart_ctrlq - restart a suspended control queue 2546 * @data: the control queue to restart 2547 * 2548 * Resumes transmission on a suspended Tx control queue. 2549 */ 2550 static void restart_ctrlq(unsigned long data) 2551 { 2552 struct sk_buff *skb; 2553 unsigned int written = 0; 2554 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 2555 2556 spin_lock(&q->sendq.lock); 2557 reclaim_completed_tx_imm(&q->q); 2558 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2559 2560 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2561 struct fw_wr_hdr *wr; 2562 unsigned int ndesc = skb->priority; /* previously saved */ 2563 2564 written += ndesc; 2565 /* Write descriptors and free skbs outside the lock to limit 2566 * wait times. q->full is still set so new skbs will be queued. 2567 */ 2568 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2569 txq_advance(&q->q, ndesc); 2570 spin_unlock(&q->sendq.lock); 2571 2572 cxgb4_inline_tx_skb(skb, &q->q, wr); 2573 kfree_skb(skb); 2574 2575 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2576 unsigned long old = q->q.stops; 2577 2578 ctrlq_check_stop(q, wr); 2579 if (q->q.stops != old) { /* suspended anew */ 2580 spin_lock(&q->sendq.lock); 2581 goto ringdb; 2582 } 2583 } 2584 if (written > 16) { 2585 cxgb4_ring_tx_db(q->adap, &q->q, written); 2586 written = 0; 2587 } 2588 spin_lock(&q->sendq.lock); 2589 } 2590 q->full = 0; 2591 ringdb: 2592 if (written) 2593 cxgb4_ring_tx_db(q->adap, &q->q, written); 2594 spin_unlock(&q->sendq.lock); 2595 } 2596 2597 /** 2598 * t4_mgmt_tx - send a management message 2599 * @adap: the adapter 2600 * @skb: the packet containing the management message 2601 * 2602 * Send a management message through control queue 0. 2603 */ 2604 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2605 { 2606 int ret; 2607 2608 local_bh_disable(); 2609 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2610 local_bh_enable(); 2611 return ret; 2612 } 2613 2614 /** 2615 * is_ofld_imm - check whether a packet can be sent as immediate data 2616 * @skb: the packet 2617 * 2618 * Returns true if a packet can be sent as an offload WR with immediate 2619 * data. We currently use the same limit as for Ethernet packets. 2620 */ 2621 static inline int is_ofld_imm(const struct sk_buff *skb) 2622 { 2623 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2624 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2625 2626 if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2627 return skb->len <= SGE_MAX_WR_LEN; 2628 else 2629 return skb->len <= MAX_IMM_TX_PKT_LEN; 2630 } 2631 2632 /** 2633 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2634 * @skb: the packet 2635 * 2636 * Returns the number of flits needed for the given offload packet. 2637 * These packets are already fully constructed and no additional headers 2638 * will be added. 2639 */ 2640 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2641 { 2642 unsigned int flits, cnt; 2643 2644 if (is_ofld_imm(skb)) 2645 return DIV_ROUND_UP(skb->len, 8); 2646 2647 flits = skb_transport_offset(skb) / 8U; /* headers */ 2648 cnt = skb_shinfo(skb)->nr_frags; 2649 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2650 cnt++; 2651 return flits + sgl_len(cnt); 2652 } 2653 2654 /** 2655 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2656 * @adap: the adapter 2657 * @q: the queue to stop 2658 * 2659 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2660 * inability to map packets. A periodic timer attempts to restart 2661 * queues so marked. 2662 */ 2663 static void txq_stop_maperr(struct sge_uld_txq *q) 2664 { 2665 q->mapping_err++; 2666 q->q.stops++; 2667 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2668 q->adap->sge.txq_maperr); 2669 } 2670 2671 /** 2672 * ofldtxq_stop - stop an offload Tx queue that has become full 2673 * @q: the queue to stop 2674 * @wr: the Work Request causing the queue to become full 2675 * 2676 * Stops an offload Tx queue that has become full and modifies the packet 2677 * being written to request a wakeup. 2678 */ 2679 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2680 { 2681 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2682 q->q.stops++; 2683 q->full = 1; 2684 } 2685 2686 /** 2687 * service_ofldq - service/restart a suspended offload queue 2688 * @q: the offload queue 2689 * 2690 * Services an offload Tx queue by moving packets from its Pending Send 2691 * Queue to the Hardware TX ring. The function starts and ends with the 2692 * Send Queue locked, but drops the lock while putting the skb at the 2693 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2694 * allows more skbs to be added to the Send Queue by other threads. 2695 * The packet being processed at the head of the Pending Send Queue is 2696 * left on the queue in case we experience DMA Mapping errors, etc. 2697 * and need to give up and restart later. 2698 * 2699 * service_ofldq() can be thought of as a task which opportunistically 2700 * uses other threads execution contexts. We use the Offload Queue 2701 * boolean "service_ofldq_running" to make sure that only one instance 2702 * is ever running at a time ... 2703 */ 2704 static void service_ofldq(struct sge_uld_txq *q) 2705 { 2706 u64 *pos, *before, *end; 2707 int credits; 2708 struct sk_buff *skb; 2709 struct sge_txq *txq; 2710 unsigned int left; 2711 unsigned int written = 0; 2712 unsigned int flits, ndesc; 2713 2714 /* If another thread is currently in service_ofldq() processing the 2715 * Pending Send Queue then there's nothing to do. Otherwise, flag 2716 * that we're doing the work and continue. Examining/modifying 2717 * the Offload Queue boolean "service_ofldq_running" must be done 2718 * while holding the Pending Send Queue Lock. 2719 */ 2720 if (q->service_ofldq_running) 2721 return; 2722 q->service_ofldq_running = true; 2723 2724 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2725 /* We drop the lock while we're working with the skb at the 2726 * head of the Pending Send Queue. This allows more skbs to 2727 * be added to the Pending Send Queue while we're working on 2728 * this one. We don't need to lock to guard the TX Ring 2729 * updates because only one thread of execution is ever 2730 * allowed into service_ofldq() at a time. 2731 */ 2732 spin_unlock(&q->sendq.lock); 2733 2734 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2735 2736 flits = skb->priority; /* previously saved */ 2737 ndesc = flits_to_desc(flits); 2738 credits = txq_avail(&q->q) - ndesc; 2739 BUG_ON(credits < 0); 2740 if (unlikely(credits < TXQ_STOP_THRES)) 2741 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2742 2743 pos = (u64 *)&q->q.desc[q->q.pidx]; 2744 if (is_ofld_imm(skb)) 2745 cxgb4_inline_tx_skb(skb, &q->q, pos); 2746 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2747 (dma_addr_t *)skb->head)) { 2748 txq_stop_maperr(q); 2749 spin_lock(&q->sendq.lock); 2750 break; 2751 } else { 2752 int last_desc, hdr_len = skb_transport_offset(skb); 2753 2754 /* The WR headers may not fit within one descriptor. 2755 * So we need to deal with wrap-around here. 2756 */ 2757 before = (u64 *)pos; 2758 end = (u64 *)pos + flits; 2759 txq = &q->q; 2760 pos = (void *)inline_tx_skb_header(skb, &q->q, 2761 (void *)pos, 2762 hdr_len); 2763 if (before > (u64 *)pos) { 2764 left = (u8 *)end - (u8 *)txq->stat; 2765 end = (void *)txq->desc + left; 2766 } 2767 2768 /* If current position is already at the end of the 2769 * ofld queue, reset the current to point to 2770 * start of the queue and update the end ptr as well. 2771 */ 2772 if (pos == (u64 *)txq->stat) { 2773 left = (u8 *)end - (u8 *)txq->stat; 2774 end = (void *)txq->desc + left; 2775 pos = (void *)txq->desc; 2776 } 2777 2778 cxgb4_write_sgl(skb, &q->q, (void *)pos, 2779 end, hdr_len, 2780 (dma_addr_t *)skb->head); 2781 #ifdef CONFIG_NEED_DMA_MAP_STATE 2782 skb->dev = q->adap->port[0]; 2783 skb->destructor = deferred_unmap_destructor; 2784 #endif 2785 last_desc = q->q.pidx + ndesc - 1; 2786 if (last_desc >= q->q.size) 2787 last_desc -= q->q.size; 2788 q->q.sdesc[last_desc].skb = skb; 2789 } 2790 2791 txq_advance(&q->q, ndesc); 2792 written += ndesc; 2793 if (unlikely(written > 32)) { 2794 cxgb4_ring_tx_db(q->adap, &q->q, written); 2795 written = 0; 2796 } 2797 2798 /* Reacquire the Pending Send Queue Lock so we can unlink the 2799 * skb we've just successfully transferred to the TX Ring and 2800 * loop for the next skb which may be at the head of the 2801 * Pending Send Queue. 2802 */ 2803 spin_lock(&q->sendq.lock); 2804 __skb_unlink(skb, &q->sendq); 2805 if (is_ofld_imm(skb)) 2806 kfree_skb(skb); 2807 } 2808 if (likely(written)) 2809 cxgb4_ring_tx_db(q->adap, &q->q, written); 2810 2811 /*Indicate that no thread is processing the Pending Send Queue 2812 * currently. 2813 */ 2814 q->service_ofldq_running = false; 2815 } 2816 2817 /** 2818 * ofld_xmit - send a packet through an offload queue 2819 * @q: the Tx offload queue 2820 * @skb: the packet 2821 * 2822 * Send an offload packet through an SGE offload queue. 2823 */ 2824 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 2825 { 2826 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 2827 spin_lock(&q->sendq.lock); 2828 2829 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 2830 * that results in this new skb being the only one on the queue, start 2831 * servicing it. If there are other skbs already on the list, then 2832 * either the queue is currently being processed or it's been stopped 2833 * for some reason and it'll be restarted at a later time. Restart 2834 * paths are triggered by events like experiencing a DMA Mapping Error 2835 * or filling the Hardware TX Ring. 2836 */ 2837 __skb_queue_tail(&q->sendq, skb); 2838 if (q->sendq.qlen == 1) 2839 service_ofldq(q); 2840 2841 spin_unlock(&q->sendq.lock); 2842 return NET_XMIT_SUCCESS; 2843 } 2844 2845 /** 2846 * restart_ofldq - restart a suspended offload queue 2847 * @data: the offload queue to restart 2848 * 2849 * Resumes transmission on a suspended Tx offload queue. 2850 */ 2851 static void restart_ofldq(unsigned long data) 2852 { 2853 struct sge_uld_txq *q = (struct sge_uld_txq *)data; 2854 2855 spin_lock(&q->sendq.lock); 2856 q->full = 0; /* the queue actually is completely empty now */ 2857 service_ofldq(q); 2858 spin_unlock(&q->sendq.lock); 2859 } 2860 2861 /** 2862 * skb_txq - return the Tx queue an offload packet should use 2863 * @skb: the packet 2864 * 2865 * Returns the Tx queue an offload packet should use as indicated by bits 2866 * 1-15 in the packet's queue_mapping. 2867 */ 2868 static inline unsigned int skb_txq(const struct sk_buff *skb) 2869 { 2870 return skb->queue_mapping >> 1; 2871 } 2872 2873 /** 2874 * is_ctrl_pkt - return whether an offload packet is a control packet 2875 * @skb: the packet 2876 * 2877 * Returns whether an offload packet should use an OFLD or a CTRL 2878 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 2879 */ 2880 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 2881 { 2882 return skb->queue_mapping & 1; 2883 } 2884 2885 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 2886 unsigned int tx_uld_type) 2887 { 2888 struct sge_uld_txq_info *txq_info; 2889 struct sge_uld_txq *txq; 2890 unsigned int idx = skb_txq(skb); 2891 2892 if (unlikely(is_ctrl_pkt(skb))) { 2893 /* Single ctrl queue is a requirement for LE workaround path */ 2894 if (adap->tids.nsftids) 2895 idx = 0; 2896 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 2897 } 2898 2899 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 2900 if (unlikely(!txq_info)) { 2901 WARN_ON(true); 2902 return NET_XMIT_DROP; 2903 } 2904 2905 txq = &txq_info->uldtxq[idx]; 2906 return ofld_xmit(txq, skb); 2907 } 2908 2909 /** 2910 * t4_ofld_send - send an offload packet 2911 * @adap: the adapter 2912 * @skb: the packet 2913 * 2914 * Sends an offload packet. We use the packet queue_mapping to select the 2915 * appropriate Tx queue as follows: bit 0 indicates whether the packet 2916 * should be sent as regular or control, bits 1-15 select the queue. 2917 */ 2918 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 2919 { 2920 int ret; 2921 2922 local_bh_disable(); 2923 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 2924 local_bh_enable(); 2925 return ret; 2926 } 2927 2928 /** 2929 * cxgb4_ofld_send - send an offload packet 2930 * @dev: the net device 2931 * @skb: the packet 2932 * 2933 * Sends an offload packet. This is an exported version of @t4_ofld_send, 2934 * intended for ULDs. 2935 */ 2936 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 2937 { 2938 return t4_ofld_send(netdev2adap(dev), skb); 2939 } 2940 EXPORT_SYMBOL(cxgb4_ofld_send); 2941 2942 static void *inline_tx_header(const void *src, 2943 const struct sge_txq *q, 2944 void *pos, int length) 2945 { 2946 int left = (void *)q->stat - pos; 2947 u64 *p; 2948 2949 if (likely(length <= left)) { 2950 memcpy(pos, src, length); 2951 pos += length; 2952 } else { 2953 memcpy(pos, src, left); 2954 memcpy(q->desc, src + left, length - left); 2955 pos = (void *)q->desc + (length - left); 2956 } 2957 /* 0-pad to multiple of 16 */ 2958 p = PTR_ALIGN(pos, 8); 2959 if ((uintptr_t)p & 8) { 2960 *p = 0; 2961 return p + 1; 2962 } 2963 return p; 2964 } 2965 2966 /** 2967 * ofld_xmit_direct - copy a WR into offload queue 2968 * @q: the Tx offload queue 2969 * @src: location of WR 2970 * @len: WR length 2971 * 2972 * Copy an immediate WR into an uncontended SGE offload queue. 2973 */ 2974 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 2975 unsigned int len) 2976 { 2977 unsigned int ndesc; 2978 int credits; 2979 u64 *pos; 2980 2981 /* Use the lower limit as the cut-off */ 2982 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 2983 WARN_ON(1); 2984 return NET_XMIT_DROP; 2985 } 2986 2987 /* Don't return NET_XMIT_CN here as the current 2988 * implementation doesn't queue the request 2989 * using an skb when the following conditions not met 2990 */ 2991 if (!spin_trylock(&q->sendq.lock)) 2992 return NET_XMIT_DROP; 2993 2994 if (q->full || !skb_queue_empty(&q->sendq) || 2995 q->service_ofldq_running) { 2996 spin_unlock(&q->sendq.lock); 2997 return NET_XMIT_DROP; 2998 } 2999 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 3000 credits = txq_avail(&q->q) - ndesc; 3001 pos = (u64 *)&q->q.desc[q->q.pidx]; 3002 3003 /* ofldtxq_stop modifies WR header in-situ */ 3004 inline_tx_header(src, &q->q, pos, len); 3005 if (unlikely(credits < TXQ_STOP_THRES)) 3006 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 3007 txq_advance(&q->q, ndesc); 3008 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 3009 3010 spin_unlock(&q->sendq.lock); 3011 return NET_XMIT_SUCCESS; 3012 } 3013 3014 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 3015 const void *src, unsigned int len) 3016 { 3017 struct sge_uld_txq_info *txq_info; 3018 struct sge_uld_txq *txq; 3019 struct adapter *adap; 3020 int ret; 3021 3022 adap = netdev2adap(dev); 3023 3024 local_bh_disable(); 3025 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3026 if (unlikely(!txq_info)) { 3027 WARN_ON(true); 3028 local_bh_enable(); 3029 return NET_XMIT_DROP; 3030 } 3031 txq = &txq_info->uldtxq[idx]; 3032 3033 ret = ofld_xmit_direct(txq, src, len); 3034 local_bh_enable(); 3035 return net_xmit_eval(ret); 3036 } 3037 EXPORT_SYMBOL(cxgb4_immdata_send); 3038 3039 /** 3040 * t4_crypto_send - send crypto packet 3041 * @adap: the adapter 3042 * @skb: the packet 3043 * 3044 * Sends crypto packet. We use the packet queue_mapping to select the 3045 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3046 * should be sent as regular or control, bits 1-15 select the queue. 3047 */ 3048 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 3049 { 3050 int ret; 3051 3052 local_bh_disable(); 3053 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 3054 local_bh_enable(); 3055 return ret; 3056 } 3057 3058 /** 3059 * cxgb4_crypto_send - send crypto packet 3060 * @dev: the net device 3061 * @skb: the packet 3062 * 3063 * Sends crypto packet. This is an exported version of @t4_crypto_send, 3064 * intended for ULDs. 3065 */ 3066 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 3067 { 3068 return t4_crypto_send(netdev2adap(dev), skb); 3069 } 3070 EXPORT_SYMBOL(cxgb4_crypto_send); 3071 3072 static inline void copy_frags(struct sk_buff *skb, 3073 const struct pkt_gl *gl, unsigned int offset) 3074 { 3075 int i; 3076 3077 /* usually there's just one frag */ 3078 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 3079 gl->frags[0].offset + offset, 3080 gl->frags[0].size - offset); 3081 skb_shinfo(skb)->nr_frags = gl->nfrags; 3082 for (i = 1; i < gl->nfrags; i++) 3083 __skb_fill_page_desc(skb, i, gl->frags[i].page, 3084 gl->frags[i].offset, 3085 gl->frags[i].size); 3086 3087 /* get a reference to the last page, we don't own it */ 3088 get_page(gl->frags[gl->nfrags - 1].page); 3089 } 3090 3091 /** 3092 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 3093 * @gl: the gather list 3094 * @skb_len: size of sk_buff main body if it carries fragments 3095 * @pull_len: amount of data to move to the sk_buff's main body 3096 * 3097 * Builds an sk_buff from the given packet gather list. Returns the 3098 * sk_buff or %NULL if sk_buff allocation failed. 3099 */ 3100 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 3101 unsigned int skb_len, unsigned int pull_len) 3102 { 3103 struct sk_buff *skb; 3104 3105 /* 3106 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 3107 * size, which is expected since buffers are at least PAGE_SIZEd. 3108 * In this case packets up to RX_COPY_THRES have only one fragment. 3109 */ 3110 if (gl->tot_len <= RX_COPY_THRES) { 3111 skb = dev_alloc_skb(gl->tot_len); 3112 if (unlikely(!skb)) 3113 goto out; 3114 __skb_put(skb, gl->tot_len); 3115 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 3116 } else { 3117 skb = dev_alloc_skb(skb_len); 3118 if (unlikely(!skb)) 3119 goto out; 3120 __skb_put(skb, pull_len); 3121 skb_copy_to_linear_data(skb, gl->va, pull_len); 3122 3123 copy_frags(skb, gl, pull_len); 3124 skb->len = gl->tot_len; 3125 skb->data_len = skb->len - pull_len; 3126 skb->truesize += skb->data_len; 3127 } 3128 out: return skb; 3129 } 3130 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 3131 3132 /** 3133 * t4_pktgl_free - free a packet gather list 3134 * @gl: the gather list 3135 * 3136 * Releases the pages of a packet gather list. We do not own the last 3137 * page on the list and do not free it. 3138 */ 3139 static void t4_pktgl_free(const struct pkt_gl *gl) 3140 { 3141 int n; 3142 const struct page_frag *p; 3143 3144 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 3145 put_page(p->page); 3146 } 3147 3148 /* 3149 * Process an MPS trace packet. Give it an unused protocol number so it won't 3150 * be delivered to anyone and send it to the stack for capture. 3151 */ 3152 static noinline int handle_trace_pkt(struct adapter *adap, 3153 const struct pkt_gl *gl) 3154 { 3155 struct sk_buff *skb; 3156 3157 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 3158 if (unlikely(!skb)) { 3159 t4_pktgl_free(gl); 3160 return 0; 3161 } 3162 3163 if (is_t4(adap->params.chip)) 3164 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 3165 else 3166 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 3167 3168 skb_reset_mac_header(skb); 3169 skb->protocol = htons(0xffff); 3170 skb->dev = adap->port[0]; 3171 netif_receive_skb(skb); 3172 return 0; 3173 } 3174 3175 /** 3176 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 3177 * @adap: the adapter 3178 * @hwtstamps: time stamp structure to update 3179 * @sgetstamp: 60bit iqe timestamp 3180 * 3181 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 3182 * which is in Core Clock ticks into ktime_t and assign it 3183 **/ 3184 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 3185 struct skb_shared_hwtstamps *hwtstamps, 3186 u64 sgetstamp) 3187 { 3188 u64 ns; 3189 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 3190 3191 ns = div_u64(tmp, adap->params.vpd.cclk); 3192 3193 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3194 hwtstamps->hwtstamp = ns_to_ktime(ns); 3195 } 3196 3197 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 3198 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 3199 { 3200 struct adapter *adapter = rxq->rspq.adap; 3201 struct sge *s = &adapter->sge; 3202 struct port_info *pi; 3203 int ret; 3204 struct sk_buff *skb; 3205 3206 skb = napi_get_frags(&rxq->rspq.napi); 3207 if (unlikely(!skb)) { 3208 t4_pktgl_free(gl); 3209 rxq->stats.rx_drops++; 3210 return; 3211 } 3212 3213 copy_frags(skb, gl, s->pktshift); 3214 if (tnl_hdr_len) 3215 skb->csum_level = 1; 3216 skb->len = gl->tot_len - s->pktshift; 3217 skb->data_len = skb->len; 3218 skb->truesize += skb->data_len; 3219 skb->ip_summed = CHECKSUM_UNNECESSARY; 3220 skb_record_rx_queue(skb, rxq->rspq.idx); 3221 pi = netdev_priv(skb->dev); 3222 if (pi->rxtstamp) 3223 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 3224 gl->sgetstamp); 3225 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 3226 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3227 PKT_HASH_TYPE_L3); 3228 3229 if (unlikely(pkt->vlan_ex)) { 3230 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3231 rxq->stats.vlan_ex++; 3232 } 3233 ret = napi_gro_frags(&rxq->rspq.napi); 3234 if (ret == GRO_HELD) 3235 rxq->stats.lro_pkts++; 3236 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 3237 rxq->stats.lro_merged++; 3238 rxq->stats.pkts++; 3239 rxq->stats.rx_cso++; 3240 } 3241 3242 enum { 3243 RX_NON_PTP_PKT = 0, 3244 RX_PTP_PKT_SUC = 1, 3245 RX_PTP_PKT_ERR = 2 3246 }; 3247 3248 /** 3249 * t4_systim_to_hwstamp - read hardware time stamp 3250 * @adap: the adapter 3251 * @skb: the packet 3252 * 3253 * Read Time Stamp from MPS packet and insert in skb which 3254 * is forwarded to PTP application 3255 */ 3256 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 3257 struct sk_buff *skb) 3258 { 3259 struct skb_shared_hwtstamps *hwtstamps; 3260 struct cpl_rx_mps_pkt *cpl = NULL; 3261 unsigned char *data; 3262 int offset; 3263 3264 cpl = (struct cpl_rx_mps_pkt *)skb->data; 3265 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 3266 X_CPL_RX_MPS_PKT_TYPE_PTP)) 3267 return RX_PTP_PKT_ERR; 3268 3269 data = skb->data + sizeof(*cpl); 3270 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 3271 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 3272 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 3273 return RX_PTP_PKT_ERR; 3274 3275 hwtstamps = skb_hwtstamps(skb); 3276 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3277 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data))); 3278 3279 return RX_PTP_PKT_SUC; 3280 } 3281 3282 /** 3283 * t4_rx_hststamp - Recv PTP Event Message 3284 * @adap: the adapter 3285 * @rsp: the response queue descriptor holding the RX_PKT message 3286 * @skb: the packet 3287 * 3288 * PTP enabled and MPS packet, read HW timestamp 3289 */ 3290 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 3291 struct sge_eth_rxq *rxq, struct sk_buff *skb) 3292 { 3293 int ret; 3294 3295 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 3296 !is_t4(adapter->params.chip))) { 3297 ret = t4_systim_to_hwstamp(adapter, skb); 3298 if (ret == RX_PTP_PKT_ERR) { 3299 kfree_skb(skb); 3300 rxq->stats.rx_drops++; 3301 } 3302 return ret; 3303 } 3304 return RX_NON_PTP_PKT; 3305 } 3306 3307 /** 3308 * t4_tx_hststamp - Loopback PTP Transmit Event Message 3309 * @adap: the adapter 3310 * @skb: the packet 3311 * @dev: the ingress net device 3312 * 3313 * Read hardware timestamp for the loopback PTP Tx event message 3314 */ 3315 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 3316 struct net_device *dev) 3317 { 3318 struct port_info *pi = netdev_priv(dev); 3319 3320 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 3321 cxgb4_ptp_read_hwstamp(adapter, pi); 3322 kfree_skb(skb); 3323 return 0; 3324 } 3325 return 1; 3326 } 3327 3328 /** 3329 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 3330 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 3331 * @rsp: Response Entry pointer into Response Queue 3332 * @gl: Gather List pointer 3333 * 3334 * For adapters which support the SGE Doorbell Queue Timer facility, 3335 * we configure the Ethernet TX Queues to send CIDX Updates to the 3336 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 3337 * messages. This adds a small load to PCIe Link RX bandwidth and, 3338 * potentially, higher CPU Interrupt load, but allows us to respond 3339 * much more quickly to the CIDX Updates. This is important for 3340 * Upper Layer Software which isn't willing to have a large amount 3341 * of TX Data outstanding before receiving DMA Completions. 3342 */ 3343 static void t4_tx_completion_handler(struct sge_rspq *rspq, 3344 const __be64 *rsp, 3345 const struct pkt_gl *gl) 3346 { 3347 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3348 struct port_info *pi = netdev_priv(rspq->netdev); 3349 struct adapter *adapter = rspq->adap; 3350 struct sge *s = &adapter->sge; 3351 struct sge_eth_txq *txq; 3352 3353 /* skip RSS header */ 3354 rsp++; 3355 3356 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 3357 */ 3358 if (unlikely(opcode == CPL_FW4_MSG && 3359 ((const struct cpl_fw4_msg *)rsp)->type == 3360 FW_TYPE_RSSCPL)) { 3361 rsp++; 3362 opcode = ((const struct rss_header *)rsp)->opcode; 3363 rsp++; 3364 } 3365 3366 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 3367 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 3368 __func__, opcode); 3369 return; 3370 } 3371 3372 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 3373 3374 /* We've got the Hardware Consumer Index Update in the Egress Update 3375 * message. If we're using the SGE Doorbell Queue Timer mechanism, 3376 * these Egress Update messages will be our sole CIDX Updates we get 3377 * since we don't want to chew up PCIe bandwidth for both Ingress 3378 * Messages and Status Page writes. However, The code which manages 3379 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value 3380 * stored in the Status Page at the end of the TX Queue. It's easiest 3381 * to simply copy the CIDX Update value from the Egress Update message 3382 * to the Status Page. Also note that no Endian issues need to be 3383 * considered here since both are Big Endian and we're just copying 3384 * bytes consistently ... 3385 */ 3386 if (txq->dbqt) { 3387 struct cpl_sge_egr_update *egr; 3388 3389 egr = (struct cpl_sge_egr_update *)rsp; 3390 WRITE_ONCE(txq->q.stat->cidx, egr->cidx); 3391 } 3392 3393 t4_sge_eth_txq_egress_update(adapter, txq, -1); 3394 } 3395 3396 /** 3397 * t4_ethrx_handler - process an ingress ethernet packet 3398 * @q: the response queue that received the packet 3399 * @rsp: the response queue descriptor holding the RX_PKT message 3400 * @si: the gather list of packet fragments 3401 * 3402 * Process an ingress ethernet packet and deliver it to the stack. 3403 */ 3404 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 3405 const struct pkt_gl *si) 3406 { 3407 bool csum_ok; 3408 struct sk_buff *skb; 3409 const struct cpl_rx_pkt *pkt; 3410 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3411 struct adapter *adapter = q->adap; 3412 struct sge *s = &q->adap->sge; 3413 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 3414 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 3415 u16 err_vec, tnl_hdr_len = 0; 3416 struct port_info *pi; 3417 int ret = 0; 3418 3419 /* If we're looking at TX Queue CIDX Update, handle that separately 3420 * and return. 3421 */ 3422 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 3423 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 3424 t4_tx_completion_handler(q, rsp, si); 3425 return 0; 3426 } 3427 3428 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 3429 return handle_trace_pkt(q->adap, si); 3430 3431 pkt = (const struct cpl_rx_pkt *)rsp; 3432 /* Compressed error vector is enabled for T6 only */ 3433 if (q->adap->params.tp.rx_pkt_encap) { 3434 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 3435 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 3436 } else { 3437 err_vec = be16_to_cpu(pkt->err_vec); 3438 } 3439 3440 csum_ok = pkt->csum_calc && !err_vec && 3441 (q->netdev->features & NETIF_F_RXCSUM); 3442 3443 if (err_vec) 3444 rxq->stats.bad_rx_pkts++; 3445 3446 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3447 tnl_hdr_len) && 3448 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3449 do_gro(rxq, si, pkt, tnl_hdr_len); 3450 return 0; 3451 } 3452 3453 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3454 if (unlikely(!skb)) { 3455 t4_pktgl_free(si); 3456 rxq->stats.rx_drops++; 3457 return 0; 3458 } 3459 pi = netdev_priv(q->netdev); 3460 3461 /* Handle PTP Event Rx packet */ 3462 if (unlikely(pi->ptp_enable)) { 3463 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3464 if (ret == RX_PTP_PKT_ERR) 3465 return 0; 3466 } 3467 if (likely(!ret)) 3468 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3469 3470 /* Handle the PTP Event Tx Loopback packet */ 3471 if (unlikely(pi->ptp_enable && !ret && 3472 (pkt->l2info & htonl(RXF_UDP_F)) && 3473 cxgb4_ptp_is_ptp_rx(skb))) { 3474 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3475 return 0; 3476 } 3477 3478 skb->protocol = eth_type_trans(skb, q->netdev); 3479 skb_record_rx_queue(skb, q->idx); 3480 if (skb->dev->features & NETIF_F_RXHASH) 3481 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3482 PKT_HASH_TYPE_L3); 3483 3484 rxq->stats.pkts++; 3485 3486 if (pi->rxtstamp) 3487 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3488 si->sgetstamp); 3489 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3490 if (!pkt->ip_frag) { 3491 skb->ip_summed = CHECKSUM_UNNECESSARY; 3492 rxq->stats.rx_cso++; 3493 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3494 __sum16 c = (__force __sum16)pkt->csum; 3495 skb->csum = csum_unfold(c); 3496 3497 if (tnl_hdr_len) { 3498 skb->ip_summed = CHECKSUM_UNNECESSARY; 3499 skb->csum_level = 1; 3500 } else { 3501 skb->ip_summed = CHECKSUM_COMPLETE; 3502 } 3503 rxq->stats.rx_cso++; 3504 } 3505 } else { 3506 skb_checksum_none_assert(skb); 3507 #ifdef CONFIG_CHELSIO_T4_FCOE 3508 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3509 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3510 3511 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3512 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3513 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3514 if (q->adap->params.tp.rx_pkt_encap) 3515 csum_ok = err_vec & 3516 T6_COMPR_RXERR_SUM_F; 3517 else 3518 csum_ok = err_vec & RXERR_CSUM_F; 3519 if (!csum_ok) 3520 skb->ip_summed = CHECKSUM_UNNECESSARY; 3521 } 3522 } 3523 3524 #undef CPL_RX_PKT_FLAGS 3525 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3526 } 3527 3528 if (unlikely(pkt->vlan_ex)) { 3529 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3530 rxq->stats.vlan_ex++; 3531 } 3532 skb_mark_napi_id(skb, &q->napi); 3533 netif_receive_skb(skb); 3534 return 0; 3535 } 3536 3537 /** 3538 * restore_rx_bufs - put back a packet's Rx buffers 3539 * @si: the packet gather list 3540 * @q: the SGE free list 3541 * @frags: number of FL buffers to restore 3542 * 3543 * Puts back on an FL the Rx buffers associated with @si. The buffers 3544 * have already been unmapped and are left unmapped, we mark them so to 3545 * prevent further unmapping attempts. 3546 * 3547 * This function undoes a series of @unmap_rx_buf calls when we find out 3548 * that the current packet can't be processed right away afterall and we 3549 * need to come back to it later. This is a very rare event and there's 3550 * no effort to make this particularly efficient. 3551 */ 3552 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3553 int frags) 3554 { 3555 struct rx_sw_desc *d; 3556 3557 while (frags--) { 3558 if (q->cidx == 0) 3559 q->cidx = q->size - 1; 3560 else 3561 q->cidx--; 3562 d = &q->sdesc[q->cidx]; 3563 d->page = si->frags[frags].page; 3564 d->dma_addr |= RX_UNMAPPED_BUF; 3565 q->avail++; 3566 } 3567 } 3568 3569 /** 3570 * is_new_response - check if a response is newly written 3571 * @r: the response descriptor 3572 * @q: the response queue 3573 * 3574 * Returns true if a response descriptor contains a yet unprocessed 3575 * response. 3576 */ 3577 static inline bool is_new_response(const struct rsp_ctrl *r, 3578 const struct sge_rspq *q) 3579 { 3580 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3581 } 3582 3583 /** 3584 * rspq_next - advance to the next entry in a response queue 3585 * @q: the queue 3586 * 3587 * Updates the state of a response queue to advance it to the next entry. 3588 */ 3589 static inline void rspq_next(struct sge_rspq *q) 3590 { 3591 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3592 if (unlikely(++q->cidx == q->size)) { 3593 q->cidx = 0; 3594 q->gen ^= 1; 3595 q->cur_desc = q->desc; 3596 } 3597 } 3598 3599 /** 3600 * process_responses - process responses from an SGE response queue 3601 * @q: the ingress queue to process 3602 * @budget: how many responses can be processed in this round 3603 * 3604 * Process responses from an SGE response queue up to the supplied budget. 3605 * Responses include received packets as well as control messages from FW 3606 * or HW. 3607 * 3608 * Additionally choose the interrupt holdoff time for the next interrupt 3609 * on this queue. If the system is under memory shortage use a fairly 3610 * long delay to help recovery. 3611 */ 3612 static int process_responses(struct sge_rspq *q, int budget) 3613 { 3614 int ret, rsp_type; 3615 int budget_left = budget; 3616 const struct rsp_ctrl *rc; 3617 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3618 struct adapter *adapter = q->adap; 3619 struct sge *s = &adapter->sge; 3620 3621 while (likely(budget_left)) { 3622 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3623 if (!is_new_response(rc, q)) { 3624 if (q->flush_handler) 3625 q->flush_handler(q); 3626 break; 3627 } 3628 3629 dma_rmb(); 3630 rsp_type = RSPD_TYPE_G(rc->type_gen); 3631 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3632 struct page_frag *fp; 3633 struct pkt_gl si; 3634 const struct rx_sw_desc *rsd; 3635 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3636 3637 if (len & RSPD_NEWBUF_F) { 3638 if (likely(q->offset > 0)) { 3639 free_rx_bufs(q->adap, &rxq->fl, 1); 3640 q->offset = 0; 3641 } 3642 len = RSPD_LEN_G(len); 3643 } 3644 si.tot_len = len; 3645 3646 /* gather packet fragments */ 3647 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3648 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3649 bufsz = get_buf_size(adapter, rsd); 3650 fp->page = rsd->page; 3651 fp->offset = q->offset; 3652 fp->size = min(bufsz, len); 3653 len -= fp->size; 3654 if (!len) 3655 break; 3656 unmap_rx_buf(q->adap, &rxq->fl); 3657 } 3658 3659 si.sgetstamp = SGE_TIMESTAMP_G( 3660 be64_to_cpu(rc->last_flit)); 3661 /* 3662 * Last buffer remains mapped so explicitly make it 3663 * coherent for CPU access. 3664 */ 3665 dma_sync_single_for_cpu(q->adap->pdev_dev, 3666 get_buf_addr(rsd), 3667 fp->size, DMA_FROM_DEVICE); 3668 3669 si.va = page_address(si.frags[0].page) + 3670 si.frags[0].offset; 3671 prefetch(si.va); 3672 3673 si.nfrags = frags + 1; 3674 ret = q->handler(q, q->cur_desc, &si); 3675 if (likely(ret == 0)) 3676 q->offset += ALIGN(fp->size, s->fl_align); 3677 else 3678 restore_rx_bufs(&si, &rxq->fl, frags); 3679 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3680 ret = q->handler(q, q->cur_desc, NULL); 3681 } else { 3682 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3683 } 3684 3685 if (unlikely(ret)) { 3686 /* couldn't process descriptor, back off for recovery */ 3687 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3688 break; 3689 } 3690 3691 rspq_next(q); 3692 budget_left--; 3693 } 3694 3695 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3696 __refill_fl(q->adap, &rxq->fl); 3697 return budget - budget_left; 3698 } 3699 3700 /** 3701 * napi_rx_handler - the NAPI handler for Rx processing 3702 * @napi: the napi instance 3703 * @budget: how many packets we can process in this round 3704 * 3705 * Handler for new data events when using NAPI. This does not need any 3706 * locking or protection from interrupts as data interrupts are off at 3707 * this point and other adapter interrupts do not interfere (the latter 3708 * in not a concern at all with MSI-X as non-data interrupts then have 3709 * a separate handler). 3710 */ 3711 static int napi_rx_handler(struct napi_struct *napi, int budget) 3712 { 3713 unsigned int params; 3714 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3715 int work_done; 3716 u32 val; 3717 3718 work_done = process_responses(q, budget); 3719 if (likely(work_done < budget)) { 3720 int timer_index; 3721 3722 napi_complete_done(napi, work_done); 3723 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 3724 3725 if (q->adaptive_rx) { 3726 if (work_done > max(timer_pkt_quota[timer_index], 3727 MIN_NAPI_WORK)) 3728 timer_index = (timer_index + 1); 3729 else 3730 timer_index = timer_index - 1; 3731 3732 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 3733 q->next_intr_params = 3734 QINTR_TIMER_IDX_V(timer_index) | 3735 QINTR_CNT_EN_V(0); 3736 params = q->next_intr_params; 3737 } else { 3738 params = q->next_intr_params; 3739 q->next_intr_params = q->intr_params; 3740 } 3741 } else 3742 params = QINTR_TIMER_IDX_V(7); 3743 3744 val = CIDXINC_V(work_done) | SEINTARM_V(params); 3745 3746 /* If we don't have access to the new User GTS (T5+), use the old 3747 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3748 */ 3749 if (unlikely(q->bar2_addr == NULL)) { 3750 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 3751 val | INGRESSQID_V((u32)q->cntxt_id)); 3752 } else { 3753 writel(val | INGRESSQID_V(q->bar2_qid), 3754 q->bar2_addr + SGE_UDB_GTS); 3755 wmb(); 3756 } 3757 return work_done; 3758 } 3759 3760 void cxgb4_ethofld_restart(unsigned long data) 3761 { 3762 struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data; 3763 int pktcount; 3764 3765 spin_lock(&eosw_txq->lock); 3766 pktcount = eosw_txq->cidx - eosw_txq->last_cidx; 3767 if (pktcount < 0) 3768 pktcount += eosw_txq->ndesc; 3769 3770 if (pktcount) { 3771 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev), 3772 eosw_txq, pktcount); 3773 eosw_txq->inuse -= pktcount; 3774 } 3775 3776 /* There may be some packets waiting for completions. So, 3777 * attempt to send these packets now. 3778 */ 3779 ethofld_xmit(eosw_txq->netdev, eosw_txq); 3780 spin_unlock(&eosw_txq->lock); 3781 } 3782 3783 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions 3784 * @q: the response queue that received the packet 3785 * @rsp: the response queue descriptor holding the CPL message 3786 * @si: the gather list of packet fragments 3787 * 3788 * Process a ETHOFLD Tx completion. Increment the cidx here, but 3789 * free up the descriptors in a tasklet later. 3790 */ 3791 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp, 3792 const struct pkt_gl *si) 3793 { 3794 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3795 3796 /* skip RSS header */ 3797 rsp++; 3798 3799 if (opcode == CPL_FW4_ACK) { 3800 const struct cpl_fw4_ack *cpl; 3801 struct sge_eosw_txq *eosw_txq; 3802 struct eotid_entry *entry; 3803 struct sk_buff *skb; 3804 u32 hdr_len, eotid; 3805 u8 flits, wrlen16; 3806 int credits; 3807 3808 cpl = (const struct cpl_fw4_ack *)rsp; 3809 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) - 3810 q->adap->tids.eotid_base; 3811 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid); 3812 if (!entry) 3813 goto out_done; 3814 3815 eosw_txq = (struct sge_eosw_txq *)entry->data; 3816 if (!eosw_txq) 3817 goto out_done; 3818 3819 spin_lock(&eosw_txq->lock); 3820 credits = cpl->credits; 3821 while (credits > 0) { 3822 skb = eosw_txq->desc[eosw_txq->cidx].skb; 3823 if (!skb) 3824 break; 3825 3826 if (unlikely((eosw_txq->state == 3827 CXGB4_EO_STATE_FLOWC_OPEN_REPLY || 3828 eosw_txq->state == 3829 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) && 3830 eosw_txq->cidx == eosw_txq->flowc_idx)) { 3831 flits = DIV_ROUND_UP(skb->len, 8); 3832 if (eosw_txq->state == 3833 CXGB4_EO_STATE_FLOWC_OPEN_REPLY) 3834 eosw_txq->state = CXGB4_EO_STATE_ACTIVE; 3835 else 3836 eosw_txq->state = CXGB4_EO_STATE_CLOSED; 3837 complete(&eosw_txq->completion); 3838 } else { 3839 hdr_len = eth_get_headlen(eosw_txq->netdev, 3840 skb->data, 3841 skb_headlen(skb)); 3842 flits = ethofld_calc_tx_flits(q->adap, skb, 3843 hdr_len); 3844 } 3845 eosw_txq_advance_index(&eosw_txq->cidx, 1, 3846 eosw_txq->ndesc); 3847 wrlen16 = DIV_ROUND_UP(flits * 8, 16); 3848 credits -= wrlen16; 3849 } 3850 3851 eosw_txq->cred += cpl->credits; 3852 eosw_txq->ncompl--; 3853 3854 spin_unlock(&eosw_txq->lock); 3855 3856 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx, 3857 * if there were packets waiting for completion. 3858 */ 3859 tasklet_schedule(&eosw_txq->qresume_tsk); 3860 } 3861 3862 out_done: 3863 return 0; 3864 } 3865 3866 /* 3867 * The MSI-X interrupt handler for an SGE response queue. 3868 */ 3869 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 3870 { 3871 struct sge_rspq *q = cookie; 3872 3873 napi_schedule(&q->napi); 3874 return IRQ_HANDLED; 3875 } 3876 3877 /* 3878 * Process the indirect interrupt entries in the interrupt queue and kick off 3879 * NAPI for each queue that has generated an entry. 3880 */ 3881 static unsigned int process_intrq(struct adapter *adap) 3882 { 3883 unsigned int credits; 3884 const struct rsp_ctrl *rc; 3885 struct sge_rspq *q = &adap->sge.intrq; 3886 u32 val; 3887 3888 spin_lock(&adap->sge.intrq_lock); 3889 for (credits = 0; ; credits++) { 3890 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3891 if (!is_new_response(rc, q)) 3892 break; 3893 3894 dma_rmb(); 3895 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 3896 unsigned int qid = ntohl(rc->pldbuflen_qid); 3897 3898 qid -= adap->sge.ingr_start; 3899 napi_schedule(&adap->sge.ingr_map[qid]->napi); 3900 } 3901 3902 rspq_next(q); 3903 } 3904 3905 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 3906 3907 /* If we don't have access to the new User GTS (T5+), use the old 3908 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3909 */ 3910 if (unlikely(q->bar2_addr == NULL)) { 3911 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 3912 val | INGRESSQID_V(q->cntxt_id)); 3913 } else { 3914 writel(val | INGRESSQID_V(q->bar2_qid), 3915 q->bar2_addr + SGE_UDB_GTS); 3916 wmb(); 3917 } 3918 spin_unlock(&adap->sge.intrq_lock); 3919 return credits; 3920 } 3921 3922 /* 3923 * The MSI interrupt handler, which handles data events from SGE response queues 3924 * as well as error and other async events as they all use the same MSI vector. 3925 */ 3926 static irqreturn_t t4_intr_msi(int irq, void *cookie) 3927 { 3928 struct adapter *adap = cookie; 3929 3930 if (adap->flags & CXGB4_MASTER_PF) 3931 t4_slow_intr_handler(adap); 3932 process_intrq(adap); 3933 return IRQ_HANDLED; 3934 } 3935 3936 /* 3937 * Interrupt handler for legacy INTx interrupts. 3938 * Handles data events from SGE response queues as well as error and other 3939 * async events as they all use the same interrupt line. 3940 */ 3941 static irqreturn_t t4_intr_intx(int irq, void *cookie) 3942 { 3943 struct adapter *adap = cookie; 3944 3945 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 3946 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 3947 process_intrq(adap)) 3948 return IRQ_HANDLED; 3949 return IRQ_NONE; /* probably shared interrupt */ 3950 } 3951 3952 /** 3953 * t4_intr_handler - select the top-level interrupt handler 3954 * @adap: the adapter 3955 * 3956 * Selects the top-level interrupt handler based on the type of interrupts 3957 * (MSI-X, MSI, or INTx). 3958 */ 3959 irq_handler_t t4_intr_handler(struct adapter *adap) 3960 { 3961 if (adap->flags & CXGB4_USING_MSIX) 3962 return t4_sge_intr_msix; 3963 if (adap->flags & CXGB4_USING_MSI) 3964 return t4_intr_msi; 3965 return t4_intr_intx; 3966 } 3967 3968 static void sge_rx_timer_cb(struct timer_list *t) 3969 { 3970 unsigned long m; 3971 unsigned int i; 3972 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 3973 struct sge *s = &adap->sge; 3974 3975 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 3976 for (m = s->starving_fl[i]; m; m &= m - 1) { 3977 struct sge_eth_rxq *rxq; 3978 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 3979 struct sge_fl *fl = s->egr_map[id]; 3980 3981 clear_bit(id, s->starving_fl); 3982 smp_mb__after_atomic(); 3983 3984 if (fl_starving(adap, fl)) { 3985 rxq = container_of(fl, struct sge_eth_rxq, fl); 3986 if (napi_reschedule(&rxq->rspq.napi)) 3987 fl->starving++; 3988 else 3989 set_bit(id, s->starving_fl); 3990 } 3991 } 3992 /* The remainder of the SGE RX Timer Callback routine is dedicated to 3993 * global Master PF activities like checking for chip ingress stalls, 3994 * etc. 3995 */ 3996 if (!(adap->flags & CXGB4_MASTER_PF)) 3997 goto done; 3998 3999 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 4000 4001 done: 4002 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 4003 } 4004 4005 static void sge_tx_timer_cb(struct timer_list *t) 4006 { 4007 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 4008 struct sge *s = &adap->sge; 4009 unsigned long m, period; 4010 unsigned int i, budget; 4011 4012 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4013 for (m = s->txq_maperr[i]; m; m &= m - 1) { 4014 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 4015 struct sge_uld_txq *txq = s->egr_map[id]; 4016 4017 clear_bit(id, s->txq_maperr); 4018 tasklet_schedule(&txq->qresume_tsk); 4019 } 4020 4021 if (!is_t4(adap->params.chip)) { 4022 struct sge_eth_txq *q = &s->ptptxq; 4023 int avail; 4024 4025 spin_lock(&adap->ptp_lock); 4026 avail = reclaimable(&q->q); 4027 4028 if (avail) { 4029 free_tx_desc(adap, &q->q, avail, false); 4030 q->q.in_use -= avail; 4031 } 4032 spin_unlock(&adap->ptp_lock); 4033 } 4034 4035 budget = MAX_TIMER_TX_RECLAIM; 4036 i = s->ethtxq_rover; 4037 do { 4038 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 4039 budget); 4040 if (!budget) 4041 break; 4042 4043 if (++i >= s->ethqsets) 4044 i = 0; 4045 } while (i != s->ethtxq_rover); 4046 s->ethtxq_rover = i; 4047 4048 if (budget == 0) { 4049 /* If we found too many reclaimable packets schedule a timer 4050 * in the near future to continue where we left off. 4051 */ 4052 period = 2; 4053 } else { 4054 /* We reclaimed all reclaimable TX Descriptors, so reschedule 4055 * at the normal period. 4056 */ 4057 period = TX_QCHECK_PERIOD; 4058 } 4059 4060 mod_timer(&s->tx_timer, jiffies + period); 4061 } 4062 4063 /** 4064 * bar2_address - return the BAR2 address for an SGE Queue's Registers 4065 * @adapter: the adapter 4066 * @qid: the SGE Queue ID 4067 * @qtype: the SGE Queue Type (Egress or Ingress) 4068 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 4069 * 4070 * Returns the BAR2 address for the SGE Queue Registers associated with 4071 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 4072 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 4073 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 4074 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 4075 */ 4076 static void __iomem *bar2_address(struct adapter *adapter, 4077 unsigned int qid, 4078 enum t4_bar2_qtype qtype, 4079 unsigned int *pbar2_qid) 4080 { 4081 u64 bar2_qoffset; 4082 int ret; 4083 4084 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 4085 &bar2_qoffset, pbar2_qid); 4086 if (ret) 4087 return NULL; 4088 4089 return adapter->bar2 + bar2_qoffset; 4090 } 4091 4092 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 4093 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 4094 */ 4095 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 4096 struct net_device *dev, int intr_idx, 4097 struct sge_fl *fl, rspq_handler_t hnd, 4098 rspq_flush_handler_t flush_hnd, int cong) 4099 { 4100 int ret, flsz = 0; 4101 struct fw_iq_cmd c; 4102 struct sge *s = &adap->sge; 4103 struct port_info *pi = netdev_priv(dev); 4104 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 4105 4106 /* Size needs to be multiple of 16, including status entry. */ 4107 iq->size = roundup(iq->size, 16); 4108 4109 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 4110 &iq->phys_addr, NULL, 0, 4111 dev_to_node(adap->pdev_dev)); 4112 if (!iq->desc) 4113 return -ENOMEM; 4114 4115 memset(&c, 0, sizeof(c)); 4116 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4117 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4118 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 4119 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 4120 FW_LEN16(c)); 4121 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 4122 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 4123 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 4124 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 4125 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 4126 -intr_idx - 1)); 4127 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 4128 FW_IQ_CMD_IQGTSMODE_F | 4129 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 4130 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 4131 c.iqsize = htons(iq->size); 4132 c.iqaddr = cpu_to_be64(iq->phys_addr); 4133 if (cong >= 0) 4134 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 4135 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 4136 : FW_IQ_IQTYPE_OFLD)); 4137 4138 if (fl) { 4139 unsigned int chip_ver = 4140 CHELSIO_CHIP_VERSION(adap->params.chip); 4141 4142 /* Allocate the ring for the hardware free list (with space 4143 * for its status page) along with the associated software 4144 * descriptor ring. The free list size needs to be a multiple 4145 * of the Egress Queue Unit and at least 2 Egress Units larger 4146 * than the SGE's Egress Congrestion Threshold 4147 * (fl_starve_thres - 1). 4148 */ 4149 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 4150 fl->size = s->fl_starve_thres - 1 + 2 * 8; 4151 fl->size = roundup(fl->size, 8); 4152 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 4153 sizeof(struct rx_sw_desc), &fl->addr, 4154 &fl->sdesc, s->stat_len, 4155 dev_to_node(adap->pdev_dev)); 4156 if (!fl->desc) 4157 goto fl_nomem; 4158 4159 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 4160 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 4161 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 4162 FW_IQ_CMD_FL0DATARO_V(relaxed) | 4163 FW_IQ_CMD_FL0PADEN_F); 4164 if (cong >= 0) 4165 c.iqns_to_fl0congen |= 4166 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 4167 FW_IQ_CMD_FL0CONGCIF_F | 4168 FW_IQ_CMD_FL0CONGEN_F); 4169 /* In T6, for egress queue type FL there is internal overhead 4170 * of 16B for header going into FLM module. Hence the maximum 4171 * allowed burst size is 448 bytes. For T4/T5, the hardware 4172 * doesn't coalesce fetch requests if more than 64 bytes of 4173 * Free List pointers are provided, so we use a 128-byte Fetch 4174 * Burst Minimum there (T6 implements coalescing so we can use 4175 * the smaller 64-byte value there). 4176 */ 4177 c.fl0dcaen_to_fl0cidxfthresh = 4178 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 4179 FETCHBURSTMIN_128B_X : 4180 FETCHBURSTMIN_64B_T6_X) | 4181 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 4182 FETCHBURSTMAX_512B_X : 4183 FETCHBURSTMAX_256B_X)); 4184 c.fl0size = htons(flsz); 4185 c.fl0addr = cpu_to_be64(fl->addr); 4186 } 4187 4188 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4189 if (ret) 4190 goto err; 4191 4192 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 4193 iq->cur_desc = iq->desc; 4194 iq->cidx = 0; 4195 iq->gen = 1; 4196 iq->next_intr_params = iq->intr_params; 4197 iq->cntxt_id = ntohs(c.iqid); 4198 iq->abs_id = ntohs(c.physiqid); 4199 iq->bar2_addr = bar2_address(adap, 4200 iq->cntxt_id, 4201 T4_BAR2_QTYPE_INGRESS, 4202 &iq->bar2_qid); 4203 iq->size--; /* subtract status entry */ 4204 iq->netdev = dev; 4205 iq->handler = hnd; 4206 iq->flush_handler = flush_hnd; 4207 4208 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 4209 skb_queue_head_init(&iq->lro_mgr.lroq); 4210 4211 /* set offset to -1 to distinguish ingress queues without FL */ 4212 iq->offset = fl ? 0 : -1; 4213 4214 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 4215 4216 if (fl) { 4217 fl->cntxt_id = ntohs(c.fl0id); 4218 fl->avail = fl->pend_cred = 0; 4219 fl->pidx = fl->cidx = 0; 4220 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 4221 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 4222 4223 /* Note, we must initialize the BAR2 Free List User Doorbell 4224 * information before refilling the Free List! 4225 */ 4226 fl->bar2_addr = bar2_address(adap, 4227 fl->cntxt_id, 4228 T4_BAR2_QTYPE_EGRESS, 4229 &fl->bar2_qid); 4230 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 4231 } 4232 4233 /* For T5 and later we attempt to set up the Congestion Manager values 4234 * of the new RX Ethernet Queue. This should really be handled by 4235 * firmware because it's more complex than any host driver wants to 4236 * get involved with and it's different per chip and this is almost 4237 * certainly wrong. Firmware would be wrong as well, but it would be 4238 * a lot easier to fix in one place ... For now we do something very 4239 * simple (and hopefully less wrong). 4240 */ 4241 if (!is_t4(adap->params.chip) && cong >= 0) { 4242 u32 param, val, ch_map = 0; 4243 int i; 4244 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 4245 4246 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4247 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 4248 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 4249 if (cong == 0) { 4250 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 4251 } else { 4252 val = 4253 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 4254 for (i = 0; i < 4; i++) { 4255 if (cong & (1 << i)) 4256 ch_map |= 1 << (i << cng_ch_bits_log); 4257 } 4258 val |= CONMCTXT_CNGCHMAP_V(ch_map); 4259 } 4260 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 4261 ¶m, &val); 4262 if (ret) 4263 dev_warn(adap->pdev_dev, "Failed to set Congestion" 4264 " Manager Context for Ingress Queue %d: %d\n", 4265 iq->cntxt_id, -ret); 4266 } 4267 4268 return 0; 4269 4270 fl_nomem: 4271 ret = -ENOMEM; 4272 err: 4273 if (iq->desc) { 4274 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 4275 iq->desc, iq->phys_addr); 4276 iq->desc = NULL; 4277 } 4278 if (fl && fl->desc) { 4279 kfree(fl->sdesc); 4280 fl->sdesc = NULL; 4281 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 4282 fl->desc, fl->addr); 4283 fl->desc = NULL; 4284 } 4285 return ret; 4286 } 4287 4288 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 4289 { 4290 q->cntxt_id = id; 4291 q->bar2_addr = bar2_address(adap, 4292 q->cntxt_id, 4293 T4_BAR2_QTYPE_EGRESS, 4294 &q->bar2_qid); 4295 q->in_use = 0; 4296 q->cidx = q->pidx = 0; 4297 q->stops = q->restarts = 0; 4298 q->stat = (void *)&q->desc[q->size]; 4299 spin_lock_init(&q->db_lock); 4300 adap->sge.egr_map[id - adap->sge.egr_start] = q; 4301 } 4302 4303 /** 4304 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 4305 * @adap: the adapter 4306 * @txq: the SGE Ethernet TX Queue to initialize 4307 * @dev: the Linux Network Device 4308 * @netdevq: the corresponding Linux TX Queue 4309 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 4310 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 4311 */ 4312 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 4313 struct net_device *dev, struct netdev_queue *netdevq, 4314 unsigned int iqid, u8 dbqt) 4315 { 4316 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4317 struct port_info *pi = netdev_priv(dev); 4318 struct sge *s = &adap->sge; 4319 struct fw_eq_eth_cmd c; 4320 int ret, nentries; 4321 4322 /* Add status entries */ 4323 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4324 4325 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 4326 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 4327 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 4328 netdev_queue_numa_node_read(netdevq)); 4329 if (!txq->q.desc) 4330 return -ENOMEM; 4331 4332 memset(&c, 0, sizeof(c)); 4333 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4334 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4335 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 4336 FW_EQ_ETH_CMD_VFN_V(0)); 4337 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 4338 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 4339 4340 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 4341 * mechanism, we use Ingress Queue messages for Hardware Consumer 4342 * Index Updates on the TX Queue. Otherwise we have the Hardware 4343 * write the CIDX Updates into the Status Page at the end of the 4344 * TX Queue. 4345 */ 4346 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 4347 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 4348 4349 c.fetchszm_to_iqid = 4350 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4351 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 4352 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 4353 4354 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 4355 c.dcaen_to_eqsize = 4356 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4357 ? FETCHBURSTMIN_64B_X 4358 : FETCHBURSTMIN_64B_T6_X) | 4359 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4360 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4361 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 4362 4363 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4364 4365 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 4366 * currently configured Timer Index. THis can be changed later via an 4367 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 4368 * Doorbell Queue mode is currently automatically enabled in the 4369 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 4370 */ 4371 if (dbqt) 4372 c.timeren_timerix = 4373 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 4374 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 4375 4376 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4377 if (ret) { 4378 kfree(txq->q.sdesc); 4379 txq->q.sdesc = NULL; 4380 dma_free_coherent(adap->pdev_dev, 4381 nentries * sizeof(struct tx_desc), 4382 txq->q.desc, txq->q.phys_addr); 4383 txq->q.desc = NULL; 4384 return ret; 4385 } 4386 4387 txq->q.q_type = CXGB4_TXQ_ETH; 4388 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 4389 txq->txq = netdevq; 4390 txq->tso = 0; 4391 txq->uso = 0; 4392 txq->tx_cso = 0; 4393 txq->vlan_ins = 0; 4394 txq->mapping_err = 0; 4395 txq->dbqt = dbqt; 4396 4397 return 0; 4398 } 4399 4400 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 4401 struct net_device *dev, unsigned int iqid, 4402 unsigned int cmplqid) 4403 { 4404 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4405 struct port_info *pi = netdev_priv(dev); 4406 struct sge *s = &adap->sge; 4407 struct fw_eq_ctrl_cmd c; 4408 int ret, nentries; 4409 4410 /* Add status entries */ 4411 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4412 4413 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 4414 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 4415 NULL, 0, dev_to_node(adap->pdev_dev)); 4416 if (!txq->q.desc) 4417 return -ENOMEM; 4418 4419 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4420 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4421 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 4422 FW_EQ_CTRL_CMD_VFN_V(0)); 4423 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 4424 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 4425 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 4426 c.physeqid_pkd = htonl(0); 4427 c.fetchszm_to_iqid = 4428 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4429 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 4430 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 4431 c.dcaen_to_eqsize = 4432 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4433 ? FETCHBURSTMIN_64B_X 4434 : FETCHBURSTMIN_64B_T6_X) | 4435 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4436 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4437 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 4438 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4439 4440 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4441 if (ret) { 4442 dma_free_coherent(adap->pdev_dev, 4443 nentries * sizeof(struct tx_desc), 4444 txq->q.desc, txq->q.phys_addr); 4445 txq->q.desc = NULL; 4446 return ret; 4447 } 4448 4449 txq->q.q_type = CXGB4_TXQ_CTRL; 4450 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 4451 txq->adap = adap; 4452 skb_queue_head_init(&txq->sendq); 4453 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 4454 txq->full = 0; 4455 return 0; 4456 } 4457 4458 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 4459 unsigned int cmplqid) 4460 { 4461 u32 param, val; 4462 4463 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4464 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 4465 FW_PARAMS_PARAM_YZ_V(eqid)); 4466 val = cmplqid; 4467 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 4468 } 4469 4470 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q, 4471 struct net_device *dev, u32 cmd, u32 iqid) 4472 { 4473 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4474 struct port_info *pi = netdev_priv(dev); 4475 struct sge *s = &adap->sge; 4476 struct fw_eq_ofld_cmd c; 4477 u32 fb_min, nentries; 4478 int ret; 4479 4480 /* Add status entries */ 4481 nentries = q->size + s->stat_len / sizeof(struct tx_desc); 4482 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc), 4483 sizeof(struct tx_sw_desc), &q->phys_addr, 4484 &q->sdesc, s->stat_len, NUMA_NO_NODE); 4485 if (!q->desc) 4486 return -ENOMEM; 4487 4488 if (chip_ver <= CHELSIO_T5) 4489 fb_min = FETCHBURSTMIN_64B_X; 4490 else 4491 fb_min = FETCHBURSTMIN_64B_T6_X; 4492 4493 memset(&c, 0, sizeof(c)); 4494 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 4495 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4496 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 4497 FW_EQ_OFLD_CMD_VFN_V(0)); 4498 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 4499 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 4500 c.fetchszm_to_iqid = 4501 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4502 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 4503 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 4504 c.dcaen_to_eqsize = 4505 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) | 4506 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4507 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4508 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 4509 c.eqaddr = cpu_to_be64(q->phys_addr); 4510 4511 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4512 if (ret) { 4513 kfree(q->sdesc); 4514 q->sdesc = NULL; 4515 dma_free_coherent(adap->pdev_dev, 4516 nentries * sizeof(struct tx_desc), 4517 q->desc, q->phys_addr); 4518 q->desc = NULL; 4519 return ret; 4520 } 4521 4522 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 4523 return 0; 4524 } 4525 4526 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 4527 struct net_device *dev, unsigned int iqid, 4528 unsigned int uld_type) 4529 { 4530 u32 cmd = FW_EQ_OFLD_CMD; 4531 int ret; 4532 4533 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 4534 cmd = FW_EQ_CTRL_CMD; 4535 4536 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid); 4537 if (ret) 4538 return ret; 4539 4540 txq->q.q_type = CXGB4_TXQ_ULD; 4541 txq->adap = adap; 4542 skb_queue_head_init(&txq->sendq); 4543 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 4544 txq->full = 0; 4545 txq->mapping_err = 0; 4546 return 0; 4547 } 4548 4549 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq, 4550 struct net_device *dev, u32 iqid) 4551 { 4552 int ret; 4553 4554 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid); 4555 if (ret) 4556 return ret; 4557 4558 txq->q.q_type = CXGB4_TXQ_ULD; 4559 spin_lock_init(&txq->lock); 4560 txq->adap = adap; 4561 txq->tso = 0; 4562 txq->uso = 0; 4563 txq->tx_cso = 0; 4564 txq->vlan_ins = 0; 4565 txq->mapping_err = 0; 4566 return 0; 4567 } 4568 4569 void free_txq(struct adapter *adap, struct sge_txq *q) 4570 { 4571 struct sge *s = &adap->sge; 4572 4573 dma_free_coherent(adap->pdev_dev, 4574 q->size * sizeof(struct tx_desc) + s->stat_len, 4575 q->desc, q->phys_addr); 4576 q->cntxt_id = 0; 4577 q->sdesc = NULL; 4578 q->desc = NULL; 4579 } 4580 4581 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 4582 struct sge_fl *fl) 4583 { 4584 struct sge *s = &adap->sge; 4585 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4586 4587 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4588 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4589 rq->cntxt_id, fl_id, 0xffff); 4590 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4591 rq->desc, rq->phys_addr); 4592 netif_napi_del(&rq->napi); 4593 rq->netdev = NULL; 4594 rq->cntxt_id = rq->abs_id = 0; 4595 rq->desc = NULL; 4596 4597 if (fl) { 4598 free_rx_bufs(adap, fl, fl->avail); 4599 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4600 fl->desc, fl->addr); 4601 kfree(fl->sdesc); 4602 fl->sdesc = NULL; 4603 fl->cntxt_id = 0; 4604 fl->desc = NULL; 4605 } 4606 } 4607 4608 /** 4609 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 4610 * @adap: the adapter 4611 * @n: number of queues 4612 * @q: pointer to first queue 4613 * 4614 * Release the resources of a consecutive block of offload Rx queues. 4615 */ 4616 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 4617 { 4618 for ( ; n; n--, q++) 4619 if (q->rspq.desc) 4620 free_rspq_fl(adap, &q->rspq, 4621 q->fl.size ? &q->fl : NULL); 4622 } 4623 4624 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq) 4625 { 4626 if (txq->q.desc) { 4627 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 4628 txq->q.cntxt_id); 4629 free_tx_desc(adap, &txq->q, txq->q.in_use, false); 4630 kfree(txq->q.sdesc); 4631 free_txq(adap, &txq->q); 4632 } 4633 } 4634 4635 /** 4636 * t4_free_sge_resources - free SGE resources 4637 * @adap: the adapter 4638 * 4639 * Frees resources used by the SGE queue sets. 4640 */ 4641 void t4_free_sge_resources(struct adapter *adap) 4642 { 4643 int i; 4644 struct sge_eth_rxq *eq; 4645 struct sge_eth_txq *etq; 4646 4647 /* stop all Rx queues in order to start them draining */ 4648 for (i = 0; i < adap->sge.ethqsets; i++) { 4649 eq = &adap->sge.ethrxq[i]; 4650 if (eq->rspq.desc) 4651 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4652 FW_IQ_TYPE_FL_INT_CAP, 4653 eq->rspq.cntxt_id, 4654 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4655 0xffff); 4656 } 4657 4658 /* clean up Ethernet Tx/Rx queues */ 4659 for (i = 0; i < adap->sge.ethqsets; i++) { 4660 eq = &adap->sge.ethrxq[i]; 4661 if (eq->rspq.desc) 4662 free_rspq_fl(adap, &eq->rspq, 4663 eq->fl.size ? &eq->fl : NULL); 4664 if (eq->msix) { 4665 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx); 4666 eq->msix = NULL; 4667 } 4668 4669 etq = &adap->sge.ethtxq[i]; 4670 if (etq->q.desc) { 4671 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4672 etq->q.cntxt_id); 4673 __netif_tx_lock_bh(etq->txq); 4674 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4675 __netif_tx_unlock_bh(etq->txq); 4676 kfree(etq->q.sdesc); 4677 free_txq(adap, &etq->q); 4678 } 4679 } 4680 4681 /* clean up control Tx queues */ 4682 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4683 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4684 4685 if (cq->q.desc) { 4686 tasklet_kill(&cq->qresume_tsk); 4687 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4688 cq->q.cntxt_id); 4689 __skb_queue_purge(&cq->sendq); 4690 free_txq(adap, &cq->q); 4691 } 4692 } 4693 4694 if (adap->sge.fw_evtq.desc) { 4695 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4696 if (adap->sge.fwevtq_msix_idx >= 0) 4697 cxgb4_free_msix_idx_in_bmap(adap, 4698 adap->sge.fwevtq_msix_idx); 4699 } 4700 4701 if (adap->sge.nd_msix_idx >= 0) 4702 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx); 4703 4704 if (adap->sge.intrq.desc) 4705 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4706 4707 if (!is_t4(adap->params.chip)) { 4708 etq = &adap->sge.ptptxq; 4709 if (etq->q.desc) { 4710 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4711 etq->q.cntxt_id); 4712 spin_lock_bh(&adap->ptp_lock); 4713 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4714 spin_unlock_bh(&adap->ptp_lock); 4715 kfree(etq->q.sdesc); 4716 free_txq(adap, &etq->q); 4717 } 4718 } 4719 4720 /* clear the reverse egress queue map */ 4721 memset(adap->sge.egr_map, 0, 4722 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 4723 } 4724 4725 void t4_sge_start(struct adapter *adap) 4726 { 4727 adap->sge.ethtxq_rover = 0; 4728 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 4729 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 4730 } 4731 4732 /** 4733 * t4_sge_stop - disable SGE operation 4734 * @adap: the adapter 4735 * 4736 * Stop tasklets and timers associated with the DMA engine. Note that 4737 * this is effective only if measures have been taken to disable any HW 4738 * events that may restart them. 4739 */ 4740 void t4_sge_stop(struct adapter *adap) 4741 { 4742 int i; 4743 struct sge *s = &adap->sge; 4744 4745 if (in_interrupt()) /* actions below require waiting */ 4746 return; 4747 4748 if (s->rx_timer.function) 4749 del_timer_sync(&s->rx_timer); 4750 if (s->tx_timer.function) 4751 del_timer_sync(&s->tx_timer); 4752 4753 if (is_offload(adap)) { 4754 struct sge_uld_txq_info *txq_info; 4755 4756 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 4757 if (txq_info) { 4758 struct sge_uld_txq *txq = txq_info->uldtxq; 4759 4760 for_each_ofldtxq(&adap->sge, i) { 4761 if (txq->q.desc) 4762 tasklet_kill(&txq->qresume_tsk); 4763 } 4764 } 4765 } 4766 4767 if (is_pci_uld(adap)) { 4768 struct sge_uld_txq_info *txq_info; 4769 4770 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 4771 if (txq_info) { 4772 struct sge_uld_txq *txq = txq_info->uldtxq; 4773 4774 for_each_ofldtxq(&adap->sge, i) { 4775 if (txq->q.desc) 4776 tasklet_kill(&txq->qresume_tsk); 4777 } 4778 } 4779 } 4780 4781 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 4782 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 4783 4784 if (cq->q.desc) 4785 tasklet_kill(&cq->qresume_tsk); 4786 } 4787 } 4788 4789 /** 4790 * t4_sge_init_soft - grab core SGE values needed by SGE code 4791 * @adap: the adapter 4792 * 4793 * We need to grab the SGE operating parameters that we need to have 4794 * in order to do our job and make sure we can live with them. 4795 */ 4796 4797 static int t4_sge_init_soft(struct adapter *adap) 4798 { 4799 struct sge *s = &adap->sge; 4800 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 4801 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 4802 u32 ingress_rx_threshold; 4803 4804 /* 4805 * Verify that CPL messages are going to the Ingress Queue for 4806 * process_responses() and that only packet data is going to the 4807 * Free Lists. 4808 */ 4809 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 4810 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 4811 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 4812 return -EINVAL; 4813 } 4814 4815 /* 4816 * Validate the Host Buffer Register Array indices that we want to 4817 * use ... 4818 * 4819 * XXX Note that we should really read through the Host Buffer Size 4820 * XXX register array and find the indices of the Buffer Sizes which 4821 * XXX meet our needs! 4822 */ 4823 #define READ_FL_BUF(x) \ 4824 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 4825 4826 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 4827 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 4828 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 4829 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 4830 4831 /* We only bother using the Large Page logic if the Large Page Buffer 4832 * is larger than our Page Size Buffer. 4833 */ 4834 if (fl_large_pg <= fl_small_pg) 4835 fl_large_pg = 0; 4836 4837 #undef READ_FL_BUF 4838 4839 /* The Page Size Buffer must be exactly equal to our Page Size and the 4840 * Large Page Size Buffer should be 0 (per above) or a power of 2. 4841 */ 4842 if (fl_small_pg != PAGE_SIZE || 4843 (fl_large_pg & (fl_large_pg-1)) != 0) { 4844 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 4845 fl_small_pg, fl_large_pg); 4846 return -EINVAL; 4847 } 4848 if (fl_large_pg) 4849 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 4850 4851 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 4852 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 4853 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 4854 fl_small_mtu, fl_large_mtu); 4855 return -EINVAL; 4856 } 4857 4858 /* 4859 * Retrieve our RX interrupt holdoff timer values and counter 4860 * threshold values from the SGE parameters. 4861 */ 4862 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 4863 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 4864 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 4865 s->timer_val[0] = core_ticks_to_us(adap, 4866 TIMERVALUE0_G(timer_value_0_and_1)); 4867 s->timer_val[1] = core_ticks_to_us(adap, 4868 TIMERVALUE1_G(timer_value_0_and_1)); 4869 s->timer_val[2] = core_ticks_to_us(adap, 4870 TIMERVALUE2_G(timer_value_2_and_3)); 4871 s->timer_val[3] = core_ticks_to_us(adap, 4872 TIMERVALUE3_G(timer_value_2_and_3)); 4873 s->timer_val[4] = core_ticks_to_us(adap, 4874 TIMERVALUE4_G(timer_value_4_and_5)); 4875 s->timer_val[5] = core_ticks_to_us(adap, 4876 TIMERVALUE5_G(timer_value_4_and_5)); 4877 4878 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 4879 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 4880 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 4881 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 4882 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 4883 4884 return 0; 4885 } 4886 4887 /** 4888 * t4_sge_init - initialize SGE 4889 * @adap: the adapter 4890 * 4891 * Perform low-level SGE code initialization needed every time after a 4892 * chip reset. 4893 */ 4894 int t4_sge_init(struct adapter *adap) 4895 { 4896 struct sge *s = &adap->sge; 4897 u32 sge_control, sge_conm_ctrl; 4898 int ret, egress_threshold; 4899 4900 /* 4901 * Ingress Padding Boundary and Egress Status Page Size are set up by 4902 * t4_fixup_host_params(). 4903 */ 4904 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 4905 s->pktshift = PKTSHIFT_G(sge_control); 4906 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 4907 4908 s->fl_align = t4_fl_pkt_align(adap); 4909 ret = t4_sge_init_soft(adap); 4910 if (ret < 0) 4911 return ret; 4912 4913 /* 4914 * A FL with <= fl_starve_thres buffers is starving and a periodic 4915 * timer will attempt to refill it. This needs to be larger than the 4916 * SGE's Egress Congestion Threshold. If it isn't, then we can get 4917 * stuck waiting for new packets while the SGE is waiting for us to 4918 * give it more Free List entries. (Note that the SGE's Egress 4919 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 4920 * there was only a single field to control this. For T5 there's the 4921 * original field which now only applies to Unpacked Mode Free List 4922 * buffers and a new field which only applies to Packed Mode Free List 4923 * buffers. 4924 */ 4925 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 4926 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 4927 case CHELSIO_T4: 4928 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 4929 break; 4930 case CHELSIO_T5: 4931 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 4932 break; 4933 case CHELSIO_T6: 4934 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 4935 break; 4936 default: 4937 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 4938 CHELSIO_CHIP_VERSION(adap->params.chip)); 4939 return -EINVAL; 4940 } 4941 s->fl_starve_thres = 2*egress_threshold + 1; 4942 4943 t4_idma_monitor_init(adap, &s->idma_monitor); 4944 4945 /* Set up timers used for recuring callbacks to process RX and TX 4946 * administrative tasks. 4947 */ 4948 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 4949 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 4950 4951 spin_lock_init(&s->intrq_lock); 4952 4953 return 0; 4954 } 4955