1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include "cxgb4.h"
47 #include "t4_regs.h"
48 #include "t4_msg.h"
49 #include "t4fw_api.h"
50 
51 /*
52  * Rx buffer size.  We use largish buffers if possible but settle for single
53  * pages under memory shortage.
54  */
55 #if PAGE_SHIFT >= 16
56 # define FL_PG_ORDER 0
57 #else
58 # define FL_PG_ORDER (16 - PAGE_SHIFT)
59 #endif
60 
61 /* RX_PULL_LEN should be <= RX_COPY_THRES */
62 #define RX_COPY_THRES    256
63 #define RX_PULL_LEN      128
64 
65 /*
66  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
67  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
68  */
69 #define RX_PKT_SKB_LEN   512
70 
71 /*
72  * Max number of Tx descriptors we clean up at a time.  Should be modest as
73  * freeing skbs isn't cheap and it happens while holding locks.  We just need
74  * to free packets faster than they arrive, we eventually catch up and keep
75  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
76  */
77 #define MAX_TX_RECLAIM 16
78 
79 /*
80  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
81  * allocating buffers isn't cheap either.
82  */
83 #define MAX_RX_REFILL 16U
84 
85 /*
86  * Period of the Rx queue check timer.  This timer is infrequent as it has
87  * something to do only when the system experiences severe memory shortage.
88  */
89 #define RX_QCHECK_PERIOD (HZ / 2)
90 
91 /*
92  * Period of the Tx queue check timer.
93  */
94 #define TX_QCHECK_PERIOD (HZ / 2)
95 
96 /* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
97  * (in RX_QCHECK_PERIOD multiples).  If we find one of the SGE Ingress DMA
98  * State Machines in the same state for this amount of time (in HZ) then we'll
99  * issue a warning about a potential hang.  We'll repeat the warning as the
100  * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
101  * the situation clears.  If the situation clears, we'll note that as well.
102  */
103 #define SGE_IDMA_WARN_THRESH (1 * HZ)
104 #define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
105 
106 /*
107  * Max number of Tx descriptors to be reclaimed by the Tx timer.
108  */
109 #define MAX_TIMER_TX_RECLAIM 100
110 
111 /*
112  * Timer index used when backing off due to memory shortage.
113  */
114 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
115 
116 /*
117  * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
118  * attempt to refill it.
119  */
120 #define FL_STARVE_THRES 4
121 
122 /*
123  * Suspend an Ethernet Tx queue with fewer available descriptors than this.
124  * This is the same as calc_tx_descs() for a TSO packet with
125  * nr_frags == MAX_SKB_FRAGS.
126  */
127 #define ETHTXQ_STOP_THRES \
128 	(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
129 
130 /*
131  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
132  * for a full sized WR.
133  */
134 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
135 
136 /*
137  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
138  * into a WR.
139  */
140 #define MAX_IMM_TX_PKT_LEN 128
141 
142 /*
143  * Max size of a WR sent through a control Tx queue.
144  */
145 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
146 
147 struct tx_sw_desc {                /* SW state per Tx descriptor */
148 	struct sk_buff *skb;
149 	struct ulptx_sgl *sgl;
150 };
151 
152 struct rx_sw_desc {                /* SW state per Rx descriptor */
153 	struct page *page;
154 	dma_addr_t dma_addr;
155 };
156 
157 /*
158  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
159  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
160  * We could easily support more but there doesn't seem to be much need for
161  * that ...
162  */
163 #define FL_MTU_SMALL 1500
164 #define FL_MTU_LARGE 9000
165 
166 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
167 					  unsigned int mtu)
168 {
169 	struct sge *s = &adapter->sge;
170 
171 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
172 }
173 
174 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
175 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
176 
177 /*
178  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
179  * these to specify the buffer size as an index into the SGE Free List Buffer
180  * Size register array.  We also use bit 4, when the buffer has been unmapped
181  * for DMA, but this is of course never sent to the hardware and is only used
182  * to prevent double unmappings.  All of the above requires that the Free List
183  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
184  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
185  * Free List Buffer alignment is 32 bytes, this works out for us ...
186  */
187 enum {
188 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
189 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
190 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
191 
192 	/*
193 	 * XXX We shouldn't depend on being able to use these indices.
194 	 * XXX Especially when some other Master PF has initialized the
195 	 * XXX adapter or we use the Firmware Configuration File.  We
196 	 * XXX should really search through the Host Buffer Size register
197 	 * XXX array for the appropriately sized buffer indices.
198 	 */
199 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
200 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
201 
202 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
203 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
204 };
205 
206 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
207 {
208 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
209 }
210 
211 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
212 {
213 	return !(d->dma_addr & RX_UNMAPPED_BUF);
214 }
215 
216 /**
217  *	txq_avail - return the number of available slots in a Tx queue
218  *	@q: the Tx queue
219  *
220  *	Returns the number of descriptors in a Tx queue available to write new
221  *	packets.
222  */
223 static inline unsigned int txq_avail(const struct sge_txq *q)
224 {
225 	return q->size - 1 - q->in_use;
226 }
227 
228 /**
229  *	fl_cap - return the capacity of a free-buffer list
230  *	@fl: the FL
231  *
232  *	Returns the capacity of a free-buffer list.  The capacity is less than
233  *	the size because one descriptor needs to be left unpopulated, otherwise
234  *	HW will think the FL is empty.
235  */
236 static inline unsigned int fl_cap(const struct sge_fl *fl)
237 {
238 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
239 }
240 
241 static inline bool fl_starving(const struct sge_fl *fl)
242 {
243 	return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
244 }
245 
246 static int map_skb(struct device *dev, const struct sk_buff *skb,
247 		   dma_addr_t *addr)
248 {
249 	const skb_frag_t *fp, *end;
250 	const struct skb_shared_info *si;
251 
252 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
253 	if (dma_mapping_error(dev, *addr))
254 		goto out_err;
255 
256 	si = skb_shinfo(skb);
257 	end = &si->frags[si->nr_frags];
258 
259 	for (fp = si->frags; fp < end; fp++) {
260 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
261 					   DMA_TO_DEVICE);
262 		if (dma_mapping_error(dev, *addr))
263 			goto unwind;
264 	}
265 	return 0;
266 
267 unwind:
268 	while (fp-- > si->frags)
269 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
270 
271 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
272 out_err:
273 	return -ENOMEM;
274 }
275 
276 #ifdef CONFIG_NEED_DMA_MAP_STATE
277 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
278 		      const dma_addr_t *addr)
279 {
280 	const skb_frag_t *fp, *end;
281 	const struct skb_shared_info *si;
282 
283 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
284 
285 	si = skb_shinfo(skb);
286 	end = &si->frags[si->nr_frags];
287 	for (fp = si->frags; fp < end; fp++)
288 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
289 }
290 
291 /**
292  *	deferred_unmap_destructor - unmap a packet when it is freed
293  *	@skb: the packet
294  *
295  *	This is the packet destructor used for Tx packets that need to remain
296  *	mapped until they are freed rather than until their Tx descriptors are
297  *	freed.
298  */
299 static void deferred_unmap_destructor(struct sk_buff *skb)
300 {
301 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
302 }
303 #endif
304 
305 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
306 		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
307 {
308 	const struct ulptx_sge_pair *p;
309 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
310 
311 	if (likely(skb_headlen(skb)))
312 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
313 				 DMA_TO_DEVICE);
314 	else {
315 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
316 			       DMA_TO_DEVICE);
317 		nfrags--;
318 	}
319 
320 	/*
321 	 * the complexity below is because of the possibility of a wrap-around
322 	 * in the middle of an SGL
323 	 */
324 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
325 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
326 unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
327 				       ntohl(p->len[0]), DMA_TO_DEVICE);
328 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
329 				       ntohl(p->len[1]), DMA_TO_DEVICE);
330 			p++;
331 		} else if ((u8 *)p == (u8 *)q->stat) {
332 			p = (const struct ulptx_sge_pair *)q->desc;
333 			goto unmap;
334 		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
335 			const __be64 *addr = (const __be64 *)q->desc;
336 
337 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
338 				       ntohl(p->len[0]), DMA_TO_DEVICE);
339 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
340 				       ntohl(p->len[1]), DMA_TO_DEVICE);
341 			p = (const struct ulptx_sge_pair *)&addr[2];
342 		} else {
343 			const __be64 *addr = (const __be64 *)q->desc;
344 
345 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
346 				       ntohl(p->len[0]), DMA_TO_DEVICE);
347 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
348 				       ntohl(p->len[1]), DMA_TO_DEVICE);
349 			p = (const struct ulptx_sge_pair *)&addr[1];
350 		}
351 	}
352 	if (nfrags) {
353 		__be64 addr;
354 
355 		if ((u8 *)p == (u8 *)q->stat)
356 			p = (const struct ulptx_sge_pair *)q->desc;
357 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
358 						       *(const __be64 *)q->desc;
359 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
360 			       DMA_TO_DEVICE);
361 	}
362 }
363 
364 /**
365  *	free_tx_desc - reclaims Tx descriptors and their buffers
366  *	@adapter: the adapter
367  *	@q: the Tx queue to reclaim descriptors from
368  *	@n: the number of descriptors to reclaim
369  *	@unmap: whether the buffers should be unmapped for DMA
370  *
371  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
372  *	Tx buffers.  Called with the Tx queue lock held.
373  */
374 static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
375 			 unsigned int n, bool unmap)
376 {
377 	struct tx_sw_desc *d;
378 	unsigned int cidx = q->cidx;
379 	struct device *dev = adap->pdev_dev;
380 
381 	d = &q->sdesc[cidx];
382 	while (n--) {
383 		if (d->skb) {                       /* an SGL is present */
384 			if (unmap)
385 				unmap_sgl(dev, d->skb, d->sgl, q);
386 			dev_consume_skb_any(d->skb);
387 			d->skb = NULL;
388 		}
389 		++d;
390 		if (++cidx == q->size) {
391 			cidx = 0;
392 			d = q->sdesc;
393 		}
394 	}
395 	q->cidx = cidx;
396 }
397 
398 /*
399  * Return the number of reclaimable descriptors in a Tx queue.
400  */
401 static inline int reclaimable(const struct sge_txq *q)
402 {
403 	int hw_cidx = ntohs(q->stat->cidx);
404 	hw_cidx -= q->cidx;
405 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
406 }
407 
408 /**
409  *	reclaim_completed_tx - reclaims completed Tx descriptors
410  *	@adap: the adapter
411  *	@q: the Tx queue to reclaim completed descriptors from
412  *	@unmap: whether the buffers should be unmapped for DMA
413  *
414  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
415  *	and frees the associated buffers if possible.  Called with the Tx
416  *	queue locked.
417  */
418 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
419 					bool unmap)
420 {
421 	int avail = reclaimable(q);
422 
423 	if (avail) {
424 		/*
425 		 * Limit the amount of clean up work we do at a time to keep
426 		 * the Tx lock hold time O(1).
427 		 */
428 		if (avail > MAX_TX_RECLAIM)
429 			avail = MAX_TX_RECLAIM;
430 
431 		free_tx_desc(adap, q, avail, unmap);
432 		q->in_use -= avail;
433 	}
434 }
435 
436 static inline int get_buf_size(struct adapter *adapter,
437 			       const struct rx_sw_desc *d)
438 {
439 	struct sge *s = &adapter->sge;
440 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
441 	int buf_size;
442 
443 	switch (rx_buf_size_idx) {
444 	case RX_SMALL_PG_BUF:
445 		buf_size = PAGE_SIZE;
446 		break;
447 
448 	case RX_LARGE_PG_BUF:
449 		buf_size = PAGE_SIZE << s->fl_pg_order;
450 		break;
451 
452 	case RX_SMALL_MTU_BUF:
453 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
454 		break;
455 
456 	case RX_LARGE_MTU_BUF:
457 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
458 		break;
459 
460 	default:
461 		BUG_ON(1);
462 	}
463 
464 	return buf_size;
465 }
466 
467 /**
468  *	free_rx_bufs - free the Rx buffers on an SGE free list
469  *	@adap: the adapter
470  *	@q: the SGE free list to free buffers from
471  *	@n: how many buffers to free
472  *
473  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
474  *	buffers must be made inaccessible to HW before calling this function.
475  */
476 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
477 {
478 	while (n--) {
479 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
480 
481 		if (is_buf_mapped(d))
482 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
483 				       get_buf_size(adap, d),
484 				       PCI_DMA_FROMDEVICE);
485 		put_page(d->page);
486 		d->page = NULL;
487 		if (++q->cidx == q->size)
488 			q->cidx = 0;
489 		q->avail--;
490 	}
491 }
492 
493 /**
494  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
495  *	@adap: the adapter
496  *	@q: the SGE free list
497  *
498  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
499  *	buffer must be made inaccessible to HW before calling this function.
500  *
501  *	This is similar to @free_rx_bufs above but does not free the buffer.
502  *	Do note that the FL still loses any further access to the buffer.
503  */
504 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
505 {
506 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
507 
508 	if (is_buf_mapped(d))
509 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
510 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
511 	d->page = NULL;
512 	if (++q->cidx == q->size)
513 		q->cidx = 0;
514 	q->avail--;
515 }
516 
517 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
518 {
519 	u32 val;
520 	if (q->pend_cred >= 8) {
521 		val = PIDX(q->pend_cred / 8);
522 		if (!is_t4(adap->params.chip))
523 			val |= DBTYPE(1);
524 		wmb();
525 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO(1) |
526 			     QID(q->cntxt_id) | val);
527 		q->pend_cred &= 7;
528 	}
529 }
530 
531 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
532 				  dma_addr_t mapping)
533 {
534 	sd->page = pg;
535 	sd->dma_addr = mapping;      /* includes size low bits */
536 }
537 
538 /**
539  *	refill_fl - refill an SGE Rx buffer ring
540  *	@adap: the adapter
541  *	@q: the ring to refill
542  *	@n: the number of new buffers to allocate
543  *	@gfp: the gfp flags for the allocations
544  *
545  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
546  *	allocated with the supplied gfp flags.  The caller must assure that
547  *	@n does not exceed the queue's capacity.  If afterwards the queue is
548  *	found critically low mark it as starving in the bitmap of starving FLs.
549  *
550  *	Returns the number of buffers allocated.
551  */
552 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
553 			      gfp_t gfp)
554 {
555 	struct sge *s = &adap->sge;
556 	struct page *pg;
557 	dma_addr_t mapping;
558 	unsigned int cred = q->avail;
559 	__be64 *d = &q->desc[q->pidx];
560 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
561 
562 	gfp |= __GFP_NOWARN | __GFP_COLD;
563 
564 	if (s->fl_pg_order == 0)
565 		goto alloc_small_pages;
566 
567 	/*
568 	 * Prefer large buffers
569 	 */
570 	while (n) {
571 		pg = alloc_pages(gfp | __GFP_COMP, s->fl_pg_order);
572 		if (unlikely(!pg)) {
573 			q->large_alloc_failed++;
574 			break;       /* fall back to single pages */
575 		}
576 
577 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
578 				       PAGE_SIZE << s->fl_pg_order,
579 				       PCI_DMA_FROMDEVICE);
580 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
581 			__free_pages(pg, s->fl_pg_order);
582 			goto out;   /* do not try small pages for this error */
583 		}
584 		mapping |= RX_LARGE_PG_BUF;
585 		*d++ = cpu_to_be64(mapping);
586 
587 		set_rx_sw_desc(sd, pg, mapping);
588 		sd++;
589 
590 		q->avail++;
591 		if (++q->pidx == q->size) {
592 			q->pidx = 0;
593 			sd = q->sdesc;
594 			d = q->desc;
595 		}
596 		n--;
597 	}
598 
599 alloc_small_pages:
600 	while (n--) {
601 		pg = __skb_alloc_page(gfp, NULL);
602 		if (unlikely(!pg)) {
603 			q->alloc_failed++;
604 			break;
605 		}
606 
607 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
608 				       PCI_DMA_FROMDEVICE);
609 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
610 			put_page(pg);
611 			goto out;
612 		}
613 		*d++ = cpu_to_be64(mapping);
614 
615 		set_rx_sw_desc(sd, pg, mapping);
616 		sd++;
617 
618 		q->avail++;
619 		if (++q->pidx == q->size) {
620 			q->pidx = 0;
621 			sd = q->sdesc;
622 			d = q->desc;
623 		}
624 	}
625 
626 out:	cred = q->avail - cred;
627 	q->pend_cred += cred;
628 	ring_fl_db(adap, q);
629 
630 	if (unlikely(fl_starving(q))) {
631 		smp_wmb();
632 		set_bit(q->cntxt_id - adap->sge.egr_start,
633 			adap->sge.starving_fl);
634 	}
635 
636 	return cred;
637 }
638 
639 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
640 {
641 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
642 		  GFP_ATOMIC);
643 }
644 
645 /**
646  *	alloc_ring - allocate resources for an SGE descriptor ring
647  *	@dev: the PCI device's core device
648  *	@nelem: the number of descriptors
649  *	@elem_size: the size of each descriptor
650  *	@sw_size: the size of the SW state associated with each ring element
651  *	@phys: the physical address of the allocated ring
652  *	@metadata: address of the array holding the SW state for the ring
653  *	@stat_size: extra space in HW ring for status information
654  *	@node: preferred node for memory allocations
655  *
656  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
657  *	free buffer lists, or response queues.  Each SGE ring requires
658  *	space for its HW descriptors plus, optionally, space for the SW state
659  *	associated with each HW entry (the metadata).  The function returns
660  *	three values: the virtual address for the HW ring (the return value
661  *	of the function), the bus address of the HW ring, and the address
662  *	of the SW ring.
663  */
664 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
665 			size_t sw_size, dma_addr_t *phys, void *metadata,
666 			size_t stat_size, int node)
667 {
668 	size_t len = nelem * elem_size + stat_size;
669 	void *s = NULL;
670 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
671 
672 	if (!p)
673 		return NULL;
674 	if (sw_size) {
675 		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
676 
677 		if (!s) {
678 			dma_free_coherent(dev, len, p, *phys);
679 			return NULL;
680 		}
681 	}
682 	if (metadata)
683 		*(void **)metadata = s;
684 	memset(p, 0, len);
685 	return p;
686 }
687 
688 /**
689  *	sgl_len - calculates the size of an SGL of the given capacity
690  *	@n: the number of SGL entries
691  *
692  *	Calculates the number of flits needed for a scatter/gather list that
693  *	can hold the given number of entries.
694  */
695 static inline unsigned int sgl_len(unsigned int n)
696 {
697 	n--;
698 	return (3 * n) / 2 + (n & 1) + 2;
699 }
700 
701 /**
702  *	flits_to_desc - returns the num of Tx descriptors for the given flits
703  *	@n: the number of flits
704  *
705  *	Returns the number of Tx descriptors needed for the supplied number
706  *	of flits.
707  */
708 static inline unsigned int flits_to_desc(unsigned int n)
709 {
710 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
711 	return DIV_ROUND_UP(n, 8);
712 }
713 
714 /**
715  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
716  *	@skb: the packet
717  *
718  *	Returns whether an Ethernet packet is small enough to fit as
719  *	immediate data. Return value corresponds to headroom required.
720  */
721 static inline int is_eth_imm(const struct sk_buff *skb)
722 {
723 	int hdrlen = skb_shinfo(skb)->gso_size ?
724 			sizeof(struct cpl_tx_pkt_lso_core) : 0;
725 
726 	hdrlen += sizeof(struct cpl_tx_pkt);
727 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
728 		return hdrlen;
729 	return 0;
730 }
731 
732 /**
733  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
734  *	@skb: the packet
735  *
736  *	Returns the number of flits needed for a Tx WR for the given Ethernet
737  *	packet, including the needed WR and CPL headers.
738  */
739 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
740 {
741 	unsigned int flits;
742 	int hdrlen = is_eth_imm(skb);
743 
744 	if (hdrlen)
745 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
746 
747 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
748 	if (skb_shinfo(skb)->gso_size)
749 		flits += 2;
750 	return flits;
751 }
752 
753 /**
754  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
755  *	@skb: the packet
756  *
757  *	Returns the number of Tx descriptors needed for the given Ethernet
758  *	packet, including the needed WR and CPL headers.
759  */
760 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
761 {
762 	return flits_to_desc(calc_tx_flits(skb));
763 }
764 
765 /**
766  *	write_sgl - populate a scatter/gather list for a packet
767  *	@skb: the packet
768  *	@q: the Tx queue we are writing into
769  *	@sgl: starting location for writing the SGL
770  *	@end: points right after the end of the SGL
771  *	@start: start offset into skb main-body data to include in the SGL
772  *	@addr: the list of bus addresses for the SGL elements
773  *
774  *	Generates a gather list for the buffers that make up a packet.
775  *	The caller must provide adequate space for the SGL that will be written.
776  *	The SGL includes all of the packet's page fragments and the data in its
777  *	main body except for the first @start bytes.  @sgl must be 16-byte
778  *	aligned and within a Tx descriptor with available space.  @end points
779  *	right after the end of the SGL but does not account for any potential
780  *	wrap around, i.e., @end > @sgl.
781  */
782 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
783 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
784 		      const dma_addr_t *addr)
785 {
786 	unsigned int i, len;
787 	struct ulptx_sge_pair *to;
788 	const struct skb_shared_info *si = skb_shinfo(skb);
789 	unsigned int nfrags = si->nr_frags;
790 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
791 
792 	len = skb_headlen(skb) - start;
793 	if (likely(len)) {
794 		sgl->len0 = htonl(len);
795 		sgl->addr0 = cpu_to_be64(addr[0] + start);
796 		nfrags++;
797 	} else {
798 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
799 		sgl->addr0 = cpu_to_be64(addr[1]);
800 	}
801 
802 	sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
803 	if (likely(--nfrags == 0))
804 		return;
805 	/*
806 	 * Most of the complexity below deals with the possibility we hit the
807 	 * end of the queue in the middle of writing the SGL.  For this case
808 	 * only we create the SGL in a temporary buffer and then copy it.
809 	 */
810 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
811 
812 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
813 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
814 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
815 		to->addr[0] = cpu_to_be64(addr[i]);
816 		to->addr[1] = cpu_to_be64(addr[++i]);
817 	}
818 	if (nfrags) {
819 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
820 		to->len[1] = cpu_to_be32(0);
821 		to->addr[0] = cpu_to_be64(addr[i + 1]);
822 	}
823 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
824 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
825 
826 		if (likely(part0))
827 			memcpy(sgl->sge, buf, part0);
828 		part1 = (u8 *)end - (u8 *)q->stat;
829 		memcpy(q->desc, (u8 *)buf + part0, part1);
830 		end = (void *)q->desc + part1;
831 	}
832 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
833 		*end = 0;
834 }
835 
836 /* This function copies 64 byte coalesced work request to
837  * memory mapped BAR2 space(user space writes).
838  * For coalesced WR SGE, fetches data from the FIFO instead of from Host.
839  */
840 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
841 {
842 	int count = 8;
843 
844 	while (count) {
845 		writeq(*src, dst);
846 		src++;
847 		dst++;
848 		count--;
849 	}
850 }
851 
852 /**
853  *	ring_tx_db - check and potentially ring a Tx queue's doorbell
854  *	@adap: the adapter
855  *	@q: the Tx queue
856  *	@n: number of new descriptors to give to HW
857  *
858  *	Ring the doorbel for a Tx queue.
859  */
860 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
861 {
862 	unsigned int *wr, index;
863 	unsigned long flags;
864 
865 	wmb();            /* write descriptors before telling HW */
866 	spin_lock_irqsave(&q->db_lock, flags);
867 	if (!q->db_disabled) {
868 		if (is_t4(adap->params.chip)) {
869 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
870 				     QID(q->cntxt_id) | PIDX(n));
871 		} else {
872 			if (n == 1) {
873 				index = q->pidx ? (q->pidx - 1) : (q->size - 1);
874 				wr = (unsigned int *)&q->desc[index];
875 				cxgb_pio_copy((u64 __iomem *)
876 					      (adap->bar2 + q->udb + 64),
877 					      (u64 *)wr);
878 			} else
879 				writel(n,  adap->bar2 + q->udb + 8);
880 			wmb();
881 		}
882 	} else
883 		q->db_pidx_inc += n;
884 	q->db_pidx = q->pidx;
885 	spin_unlock_irqrestore(&q->db_lock, flags);
886 }
887 
888 /**
889  *	inline_tx_skb - inline a packet's data into Tx descriptors
890  *	@skb: the packet
891  *	@q: the Tx queue where the packet will be inlined
892  *	@pos: starting position in the Tx queue where to inline the packet
893  *
894  *	Inline a packet's contents directly into Tx descriptors, starting at
895  *	the given position within the Tx DMA ring.
896  *	Most of the complexity of this operation is dealing with wrap arounds
897  *	in the middle of the packet we want to inline.
898  */
899 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
900 			  void *pos)
901 {
902 	u64 *p;
903 	int left = (void *)q->stat - pos;
904 
905 	if (likely(skb->len <= left)) {
906 		if (likely(!skb->data_len))
907 			skb_copy_from_linear_data(skb, pos, skb->len);
908 		else
909 			skb_copy_bits(skb, 0, pos, skb->len);
910 		pos += skb->len;
911 	} else {
912 		skb_copy_bits(skb, 0, pos, left);
913 		skb_copy_bits(skb, left, q->desc, skb->len - left);
914 		pos = (void *)q->desc + (skb->len - left);
915 	}
916 
917 	/* 0-pad to multiple of 16 */
918 	p = PTR_ALIGN(pos, 8);
919 	if ((uintptr_t)p & 8)
920 		*p = 0;
921 }
922 
923 /*
924  * Figure out what HW csum a packet wants and return the appropriate control
925  * bits.
926  */
927 static u64 hwcsum(const struct sk_buff *skb)
928 {
929 	int csum_type;
930 	const struct iphdr *iph = ip_hdr(skb);
931 
932 	if (iph->version == 4) {
933 		if (iph->protocol == IPPROTO_TCP)
934 			csum_type = TX_CSUM_TCPIP;
935 		else if (iph->protocol == IPPROTO_UDP)
936 			csum_type = TX_CSUM_UDPIP;
937 		else {
938 nocsum:			/*
939 			 * unknown protocol, disable HW csum
940 			 * and hope a bad packet is detected
941 			 */
942 			return TXPKT_L4CSUM_DIS;
943 		}
944 	} else {
945 		/*
946 		 * this doesn't work with extension headers
947 		 */
948 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
949 
950 		if (ip6h->nexthdr == IPPROTO_TCP)
951 			csum_type = TX_CSUM_TCPIP6;
952 		else if (ip6h->nexthdr == IPPROTO_UDP)
953 			csum_type = TX_CSUM_UDPIP6;
954 		else
955 			goto nocsum;
956 	}
957 
958 	if (likely(csum_type >= TX_CSUM_TCPIP))
959 		return TXPKT_CSUM_TYPE(csum_type) |
960 			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
961 			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
962 	else {
963 		int start = skb_transport_offset(skb);
964 
965 		return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
966 			TXPKT_CSUM_LOC(start + skb->csum_offset);
967 	}
968 }
969 
970 static void eth_txq_stop(struct sge_eth_txq *q)
971 {
972 	netif_tx_stop_queue(q->txq);
973 	q->q.stops++;
974 }
975 
976 static inline void txq_advance(struct sge_txq *q, unsigned int n)
977 {
978 	q->in_use += n;
979 	q->pidx += n;
980 	if (q->pidx >= q->size)
981 		q->pidx -= q->size;
982 }
983 
984 /**
985  *	t4_eth_xmit - add a packet to an Ethernet Tx queue
986  *	@skb: the packet
987  *	@dev: the egress net device
988  *
989  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
990  */
991 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
992 {
993 	int len;
994 	u32 wr_mid;
995 	u64 cntrl, *end;
996 	int qidx, credits;
997 	unsigned int flits, ndesc;
998 	struct adapter *adap;
999 	struct sge_eth_txq *q;
1000 	const struct port_info *pi;
1001 	struct fw_eth_tx_pkt_wr *wr;
1002 	struct cpl_tx_pkt_core *cpl;
1003 	const struct skb_shared_info *ssi;
1004 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1005 	bool immediate = false;
1006 
1007 	/*
1008 	 * The chip min packet length is 10 octets but play safe and reject
1009 	 * anything shorter than an Ethernet header.
1010 	 */
1011 	if (unlikely(skb->len < ETH_HLEN)) {
1012 out_free:	dev_kfree_skb_any(skb);
1013 		return NETDEV_TX_OK;
1014 	}
1015 
1016 	pi = netdev_priv(dev);
1017 	adap = pi->adapter;
1018 	qidx = skb_get_queue_mapping(skb);
1019 	q = &adap->sge.ethtxq[qidx + pi->first_qset];
1020 
1021 	reclaim_completed_tx(adap, &q->q, true);
1022 
1023 	flits = calc_tx_flits(skb);
1024 	ndesc = flits_to_desc(flits);
1025 	credits = txq_avail(&q->q) - ndesc;
1026 
1027 	if (unlikely(credits < 0)) {
1028 		eth_txq_stop(q);
1029 		dev_err(adap->pdev_dev,
1030 			"%s: Tx ring %u full while queue awake!\n",
1031 			dev->name, qidx);
1032 		return NETDEV_TX_BUSY;
1033 	}
1034 
1035 	if (is_eth_imm(skb))
1036 		immediate = true;
1037 
1038 	if (!immediate &&
1039 	    unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1040 		q->mapping_err++;
1041 		goto out_free;
1042 	}
1043 
1044 	wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1045 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1046 		eth_txq_stop(q);
1047 		wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
1048 	}
1049 
1050 	wr = (void *)&q->q.desc[q->q.pidx];
1051 	wr->equiq_to_len16 = htonl(wr_mid);
1052 	wr->r3 = cpu_to_be64(0);
1053 	end = (u64 *)wr + flits;
1054 
1055 	len = immediate ? skb->len : 0;
1056 	ssi = skb_shinfo(skb);
1057 	if (ssi->gso_size) {
1058 		struct cpl_tx_pkt_lso *lso = (void *)wr;
1059 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1060 		int l3hdr_len = skb_network_header_len(skb);
1061 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1062 
1063 		len += sizeof(*lso);
1064 		wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1065 				       FW_WR_IMMDLEN(len));
1066 		lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1067 					LSO_FIRST_SLICE | LSO_LAST_SLICE |
1068 					LSO_IPV6(v6) |
1069 					LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1070 					LSO_IPHDR_LEN(l3hdr_len / 4) |
1071 					LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1072 		lso->c.ipid_ofst = htons(0);
1073 		lso->c.mss = htons(ssi->gso_size);
1074 		lso->c.seqno_offset = htonl(0);
1075 		lso->c.len = htonl(skb->len);
1076 		cpl = (void *)(lso + 1);
1077 		cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1078 			TXPKT_IPHDR_LEN(l3hdr_len) |
1079 			TXPKT_ETHHDR_LEN(eth_xtra_len);
1080 		q->tso++;
1081 		q->tx_cso += ssi->gso_segs;
1082 	} else {
1083 		len += sizeof(*cpl);
1084 		wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1085 				       FW_WR_IMMDLEN(len));
1086 		cpl = (void *)(wr + 1);
1087 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1088 			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1089 			q->tx_cso++;
1090 		} else
1091 			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1092 	}
1093 
1094 	if (vlan_tx_tag_present(skb)) {
1095 		q->vlan_ins++;
1096 		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1097 	}
1098 
1099 	cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1100 			   TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
1101 	cpl->pack = htons(0);
1102 	cpl->len = htons(skb->len);
1103 	cpl->ctrl1 = cpu_to_be64(cntrl);
1104 
1105 	if (immediate) {
1106 		inline_tx_skb(skb, &q->q, cpl + 1);
1107 		dev_consume_skb_any(skb);
1108 	} else {
1109 		int last_desc;
1110 
1111 		write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1112 			  addr);
1113 		skb_orphan(skb);
1114 
1115 		last_desc = q->q.pidx + ndesc - 1;
1116 		if (last_desc >= q->q.size)
1117 			last_desc -= q->q.size;
1118 		q->q.sdesc[last_desc].skb = skb;
1119 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1120 	}
1121 
1122 	txq_advance(&q->q, ndesc);
1123 
1124 	ring_tx_db(adap, &q->q, ndesc);
1125 	return NETDEV_TX_OK;
1126 }
1127 
1128 /**
1129  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1130  *	@q: the SGE control Tx queue
1131  *
1132  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1133  *	that send only immediate data (presently just the control queues) and
1134  *	thus do not have any sk_buffs to release.
1135  */
1136 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1137 {
1138 	int hw_cidx = ntohs(q->stat->cidx);
1139 	int reclaim = hw_cidx - q->cidx;
1140 
1141 	if (reclaim < 0)
1142 		reclaim += q->size;
1143 
1144 	q->in_use -= reclaim;
1145 	q->cidx = hw_cidx;
1146 }
1147 
1148 /**
1149  *	is_imm - check whether a packet can be sent as immediate data
1150  *	@skb: the packet
1151  *
1152  *	Returns true if a packet can be sent as a WR with immediate data.
1153  */
1154 static inline int is_imm(const struct sk_buff *skb)
1155 {
1156 	return skb->len <= MAX_CTRL_WR_LEN;
1157 }
1158 
1159 /**
1160  *	ctrlq_check_stop - check if a control queue is full and should stop
1161  *	@q: the queue
1162  *	@wr: most recent WR written to the queue
1163  *
1164  *	Check if a control queue has become full and should be stopped.
1165  *	We clean up control queue descriptors very lazily, only when we are out.
1166  *	If the queue is still full after reclaiming any completed descriptors
1167  *	we suspend it and have the last WR wake it up.
1168  */
1169 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1170 {
1171 	reclaim_completed_tx_imm(&q->q);
1172 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1173 		wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1174 		q->q.stops++;
1175 		q->full = 1;
1176 	}
1177 }
1178 
1179 /**
1180  *	ctrl_xmit - send a packet through an SGE control Tx queue
1181  *	@q: the control queue
1182  *	@skb: the packet
1183  *
1184  *	Send a packet through an SGE control Tx queue.  Packets sent through
1185  *	a control queue must fit entirely as immediate data.
1186  */
1187 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1188 {
1189 	unsigned int ndesc;
1190 	struct fw_wr_hdr *wr;
1191 
1192 	if (unlikely(!is_imm(skb))) {
1193 		WARN_ON(1);
1194 		dev_kfree_skb(skb);
1195 		return NET_XMIT_DROP;
1196 	}
1197 
1198 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1199 	spin_lock(&q->sendq.lock);
1200 
1201 	if (unlikely(q->full)) {
1202 		skb->priority = ndesc;                  /* save for restart */
1203 		__skb_queue_tail(&q->sendq, skb);
1204 		spin_unlock(&q->sendq.lock);
1205 		return NET_XMIT_CN;
1206 	}
1207 
1208 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1209 	inline_tx_skb(skb, &q->q, wr);
1210 
1211 	txq_advance(&q->q, ndesc);
1212 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1213 		ctrlq_check_stop(q, wr);
1214 
1215 	ring_tx_db(q->adap, &q->q, ndesc);
1216 	spin_unlock(&q->sendq.lock);
1217 
1218 	kfree_skb(skb);
1219 	return NET_XMIT_SUCCESS;
1220 }
1221 
1222 /**
1223  *	restart_ctrlq - restart a suspended control queue
1224  *	@data: the control queue to restart
1225  *
1226  *	Resumes transmission on a suspended Tx control queue.
1227  */
1228 static void restart_ctrlq(unsigned long data)
1229 {
1230 	struct sk_buff *skb;
1231 	unsigned int written = 0;
1232 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1233 
1234 	spin_lock(&q->sendq.lock);
1235 	reclaim_completed_tx_imm(&q->q);
1236 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1237 
1238 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1239 		struct fw_wr_hdr *wr;
1240 		unsigned int ndesc = skb->priority;     /* previously saved */
1241 
1242 		/*
1243 		 * Write descriptors and free skbs outside the lock to limit
1244 		 * wait times.  q->full is still set so new skbs will be queued.
1245 		 */
1246 		spin_unlock(&q->sendq.lock);
1247 
1248 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1249 		inline_tx_skb(skb, &q->q, wr);
1250 		kfree_skb(skb);
1251 
1252 		written += ndesc;
1253 		txq_advance(&q->q, ndesc);
1254 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1255 			unsigned long old = q->q.stops;
1256 
1257 			ctrlq_check_stop(q, wr);
1258 			if (q->q.stops != old) {          /* suspended anew */
1259 				spin_lock(&q->sendq.lock);
1260 				goto ringdb;
1261 			}
1262 		}
1263 		if (written > 16) {
1264 			ring_tx_db(q->adap, &q->q, written);
1265 			written = 0;
1266 		}
1267 		spin_lock(&q->sendq.lock);
1268 	}
1269 	q->full = 0;
1270 ringdb: if (written)
1271 		ring_tx_db(q->adap, &q->q, written);
1272 	spin_unlock(&q->sendq.lock);
1273 }
1274 
1275 /**
1276  *	t4_mgmt_tx - send a management message
1277  *	@adap: the adapter
1278  *	@skb: the packet containing the management message
1279  *
1280  *	Send a management message through control queue 0.
1281  */
1282 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1283 {
1284 	int ret;
1285 
1286 	local_bh_disable();
1287 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1288 	local_bh_enable();
1289 	return ret;
1290 }
1291 
1292 /**
1293  *	is_ofld_imm - check whether a packet can be sent as immediate data
1294  *	@skb: the packet
1295  *
1296  *	Returns true if a packet can be sent as an offload WR with immediate
1297  *	data.  We currently use the same limit as for Ethernet packets.
1298  */
1299 static inline int is_ofld_imm(const struct sk_buff *skb)
1300 {
1301 	return skb->len <= MAX_IMM_TX_PKT_LEN;
1302 }
1303 
1304 /**
1305  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
1306  *	@skb: the packet
1307  *
1308  *	Returns the number of flits needed for the given offload packet.
1309  *	These packets are already fully constructed and no additional headers
1310  *	will be added.
1311  */
1312 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1313 {
1314 	unsigned int flits, cnt;
1315 
1316 	if (is_ofld_imm(skb))
1317 		return DIV_ROUND_UP(skb->len, 8);
1318 
1319 	flits = skb_transport_offset(skb) / 8U;   /* headers */
1320 	cnt = skb_shinfo(skb)->nr_frags;
1321 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1322 		cnt++;
1323 	return flits + sgl_len(cnt);
1324 }
1325 
1326 /**
1327  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1328  *	@adap: the adapter
1329  *	@q: the queue to stop
1330  *
1331  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1332  *	inability to map packets.  A periodic timer attempts to restart
1333  *	queues so marked.
1334  */
1335 static void txq_stop_maperr(struct sge_ofld_txq *q)
1336 {
1337 	q->mapping_err++;
1338 	q->q.stops++;
1339 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1340 		q->adap->sge.txq_maperr);
1341 }
1342 
1343 /**
1344  *	ofldtxq_stop - stop an offload Tx queue that has become full
1345  *	@q: the queue to stop
1346  *	@skb: the packet causing the queue to become full
1347  *
1348  *	Stops an offload Tx queue that has become full and modifies the packet
1349  *	being written to request a wakeup.
1350  */
1351 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1352 {
1353 	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1354 
1355 	wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1356 	q->q.stops++;
1357 	q->full = 1;
1358 }
1359 
1360 /**
1361  *	service_ofldq - restart a suspended offload queue
1362  *	@q: the offload queue
1363  *
1364  *	Services an offload Tx queue by moving packets from its packet queue
1365  *	to the HW Tx ring.  The function starts and ends with the queue locked.
1366  */
1367 static void service_ofldq(struct sge_ofld_txq *q)
1368 {
1369 	u64 *pos;
1370 	int credits;
1371 	struct sk_buff *skb;
1372 	unsigned int written = 0;
1373 	unsigned int flits, ndesc;
1374 
1375 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1376 		/*
1377 		 * We drop the lock but leave skb on sendq, thus retaining
1378 		 * exclusive access to the state of the queue.
1379 		 */
1380 		spin_unlock(&q->sendq.lock);
1381 
1382 		reclaim_completed_tx(q->adap, &q->q, false);
1383 
1384 		flits = skb->priority;                /* previously saved */
1385 		ndesc = flits_to_desc(flits);
1386 		credits = txq_avail(&q->q) - ndesc;
1387 		BUG_ON(credits < 0);
1388 		if (unlikely(credits < TXQ_STOP_THRES))
1389 			ofldtxq_stop(q, skb);
1390 
1391 		pos = (u64 *)&q->q.desc[q->q.pidx];
1392 		if (is_ofld_imm(skb))
1393 			inline_tx_skb(skb, &q->q, pos);
1394 		else if (map_skb(q->adap->pdev_dev, skb,
1395 				 (dma_addr_t *)skb->head)) {
1396 			txq_stop_maperr(q);
1397 			spin_lock(&q->sendq.lock);
1398 			break;
1399 		} else {
1400 			int last_desc, hdr_len = skb_transport_offset(skb);
1401 
1402 			memcpy(pos, skb->data, hdr_len);
1403 			write_sgl(skb, &q->q, (void *)pos + hdr_len,
1404 				  pos + flits, hdr_len,
1405 				  (dma_addr_t *)skb->head);
1406 #ifdef CONFIG_NEED_DMA_MAP_STATE
1407 			skb->dev = q->adap->port[0];
1408 			skb->destructor = deferred_unmap_destructor;
1409 #endif
1410 			last_desc = q->q.pidx + ndesc - 1;
1411 			if (last_desc >= q->q.size)
1412 				last_desc -= q->q.size;
1413 			q->q.sdesc[last_desc].skb = skb;
1414 		}
1415 
1416 		txq_advance(&q->q, ndesc);
1417 		written += ndesc;
1418 		if (unlikely(written > 32)) {
1419 			ring_tx_db(q->adap, &q->q, written);
1420 			written = 0;
1421 		}
1422 
1423 		spin_lock(&q->sendq.lock);
1424 		__skb_unlink(skb, &q->sendq);
1425 		if (is_ofld_imm(skb))
1426 			kfree_skb(skb);
1427 	}
1428 	if (likely(written))
1429 		ring_tx_db(q->adap, &q->q, written);
1430 }
1431 
1432 /**
1433  *	ofld_xmit - send a packet through an offload queue
1434  *	@q: the Tx offload queue
1435  *	@skb: the packet
1436  *
1437  *	Send an offload packet through an SGE offload queue.
1438  */
1439 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1440 {
1441 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1442 	spin_lock(&q->sendq.lock);
1443 	__skb_queue_tail(&q->sendq, skb);
1444 	if (q->sendq.qlen == 1)
1445 		service_ofldq(q);
1446 	spin_unlock(&q->sendq.lock);
1447 	return NET_XMIT_SUCCESS;
1448 }
1449 
1450 /**
1451  *	restart_ofldq - restart a suspended offload queue
1452  *	@data: the offload queue to restart
1453  *
1454  *	Resumes transmission on a suspended Tx offload queue.
1455  */
1456 static void restart_ofldq(unsigned long data)
1457 {
1458 	struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1459 
1460 	spin_lock(&q->sendq.lock);
1461 	q->full = 0;            /* the queue actually is completely empty now */
1462 	service_ofldq(q);
1463 	spin_unlock(&q->sendq.lock);
1464 }
1465 
1466 /**
1467  *	skb_txq - return the Tx queue an offload packet should use
1468  *	@skb: the packet
1469  *
1470  *	Returns the Tx queue an offload packet should use as indicated by bits
1471  *	1-15 in the packet's queue_mapping.
1472  */
1473 static inline unsigned int skb_txq(const struct sk_buff *skb)
1474 {
1475 	return skb->queue_mapping >> 1;
1476 }
1477 
1478 /**
1479  *	is_ctrl_pkt - return whether an offload packet is a control packet
1480  *	@skb: the packet
1481  *
1482  *	Returns whether an offload packet should use an OFLD or a CTRL
1483  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
1484  */
1485 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1486 {
1487 	return skb->queue_mapping & 1;
1488 }
1489 
1490 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1491 {
1492 	unsigned int idx = skb_txq(skb);
1493 
1494 	if (unlikely(is_ctrl_pkt(skb))) {
1495 		/* Single ctrl queue is a requirement for LE workaround path */
1496 		if (adap->tids.nsftids)
1497 			idx = 0;
1498 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1499 	}
1500 	return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1501 }
1502 
1503 /**
1504  *	t4_ofld_send - send an offload packet
1505  *	@adap: the adapter
1506  *	@skb: the packet
1507  *
1508  *	Sends an offload packet.  We use the packet queue_mapping to select the
1509  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1510  *	should be sent as regular or control, bits 1-15 select the queue.
1511  */
1512 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1513 {
1514 	int ret;
1515 
1516 	local_bh_disable();
1517 	ret = ofld_send(adap, skb);
1518 	local_bh_enable();
1519 	return ret;
1520 }
1521 
1522 /**
1523  *	cxgb4_ofld_send - send an offload packet
1524  *	@dev: the net device
1525  *	@skb: the packet
1526  *
1527  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
1528  *	intended for ULDs.
1529  */
1530 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1531 {
1532 	return t4_ofld_send(netdev2adap(dev), skb);
1533 }
1534 EXPORT_SYMBOL(cxgb4_ofld_send);
1535 
1536 static inline void copy_frags(struct sk_buff *skb,
1537 			      const struct pkt_gl *gl, unsigned int offset)
1538 {
1539 	int i;
1540 
1541 	/* usually there's just one frag */
1542 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1543 			     gl->frags[0].offset + offset,
1544 			     gl->frags[0].size - offset);
1545 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1546 	for (i = 1; i < gl->nfrags; i++)
1547 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1548 				     gl->frags[i].offset,
1549 				     gl->frags[i].size);
1550 
1551 	/* get a reference to the last page, we don't own it */
1552 	get_page(gl->frags[gl->nfrags - 1].page);
1553 }
1554 
1555 /**
1556  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1557  *	@gl: the gather list
1558  *	@skb_len: size of sk_buff main body if it carries fragments
1559  *	@pull_len: amount of data to move to the sk_buff's main body
1560  *
1561  *	Builds an sk_buff from the given packet gather list.  Returns the
1562  *	sk_buff or %NULL if sk_buff allocation failed.
1563  */
1564 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1565 				   unsigned int skb_len, unsigned int pull_len)
1566 {
1567 	struct sk_buff *skb;
1568 
1569 	/*
1570 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1571 	 * size, which is expected since buffers are at least PAGE_SIZEd.
1572 	 * In this case packets up to RX_COPY_THRES have only one fragment.
1573 	 */
1574 	if (gl->tot_len <= RX_COPY_THRES) {
1575 		skb = dev_alloc_skb(gl->tot_len);
1576 		if (unlikely(!skb))
1577 			goto out;
1578 		__skb_put(skb, gl->tot_len);
1579 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1580 	} else {
1581 		skb = dev_alloc_skb(skb_len);
1582 		if (unlikely(!skb))
1583 			goto out;
1584 		__skb_put(skb, pull_len);
1585 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1586 
1587 		copy_frags(skb, gl, pull_len);
1588 		skb->len = gl->tot_len;
1589 		skb->data_len = skb->len - pull_len;
1590 		skb->truesize += skb->data_len;
1591 	}
1592 out:	return skb;
1593 }
1594 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1595 
1596 /**
1597  *	t4_pktgl_free - free a packet gather list
1598  *	@gl: the gather list
1599  *
1600  *	Releases the pages of a packet gather list.  We do not own the last
1601  *	page on the list and do not free it.
1602  */
1603 static void t4_pktgl_free(const struct pkt_gl *gl)
1604 {
1605 	int n;
1606 	const struct page_frag *p;
1607 
1608 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1609 		put_page(p->page);
1610 }
1611 
1612 /*
1613  * Process an MPS trace packet.  Give it an unused protocol number so it won't
1614  * be delivered to anyone and send it to the stack for capture.
1615  */
1616 static noinline int handle_trace_pkt(struct adapter *adap,
1617 				     const struct pkt_gl *gl)
1618 {
1619 	struct sk_buff *skb;
1620 
1621 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1622 	if (unlikely(!skb)) {
1623 		t4_pktgl_free(gl);
1624 		return 0;
1625 	}
1626 
1627 	if (is_t4(adap->params.chip))
1628 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
1629 	else
1630 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1631 
1632 	skb_reset_mac_header(skb);
1633 	skb->protocol = htons(0xffff);
1634 	skb->dev = adap->port[0];
1635 	netif_receive_skb(skb);
1636 	return 0;
1637 }
1638 
1639 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1640 		   const struct cpl_rx_pkt *pkt)
1641 {
1642 	struct adapter *adapter = rxq->rspq.adap;
1643 	struct sge *s = &adapter->sge;
1644 	int ret;
1645 	struct sk_buff *skb;
1646 
1647 	skb = napi_get_frags(&rxq->rspq.napi);
1648 	if (unlikely(!skb)) {
1649 		t4_pktgl_free(gl);
1650 		rxq->stats.rx_drops++;
1651 		return;
1652 	}
1653 
1654 	copy_frags(skb, gl, s->pktshift);
1655 	skb->len = gl->tot_len - s->pktshift;
1656 	skb->data_len = skb->len;
1657 	skb->truesize += skb->data_len;
1658 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1659 	skb_record_rx_queue(skb, rxq->rspq.idx);
1660 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1661 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1662 			     PKT_HASH_TYPE_L3);
1663 
1664 	if (unlikely(pkt->vlan_ex)) {
1665 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1666 		rxq->stats.vlan_ex++;
1667 	}
1668 	ret = napi_gro_frags(&rxq->rspq.napi);
1669 	if (ret == GRO_HELD)
1670 		rxq->stats.lro_pkts++;
1671 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1672 		rxq->stats.lro_merged++;
1673 	rxq->stats.pkts++;
1674 	rxq->stats.rx_cso++;
1675 }
1676 
1677 /**
1678  *	t4_ethrx_handler - process an ingress ethernet packet
1679  *	@q: the response queue that received the packet
1680  *	@rsp: the response queue descriptor holding the RX_PKT message
1681  *	@si: the gather list of packet fragments
1682  *
1683  *	Process an ingress ethernet packet and deliver it to the stack.
1684  */
1685 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1686 		     const struct pkt_gl *si)
1687 {
1688 	bool csum_ok;
1689 	struct sk_buff *skb;
1690 	const struct cpl_rx_pkt *pkt;
1691 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1692 	struct sge *s = &q->adap->sge;
1693 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
1694 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
1695 
1696 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
1697 		return handle_trace_pkt(q->adap, si);
1698 
1699 	pkt = (const struct cpl_rx_pkt *)rsp;
1700 	csum_ok = pkt->csum_calc && !pkt->err_vec &&
1701 		  (q->netdev->features & NETIF_F_RXCSUM);
1702 	if ((pkt->l2info & htonl(RXF_TCP)) &&
1703 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1704 		do_gro(rxq, si, pkt);
1705 		return 0;
1706 	}
1707 
1708 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1709 	if (unlikely(!skb)) {
1710 		t4_pktgl_free(si);
1711 		rxq->stats.rx_drops++;
1712 		return 0;
1713 	}
1714 
1715 	__skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
1716 	skb->protocol = eth_type_trans(skb, q->netdev);
1717 	skb_record_rx_queue(skb, q->idx);
1718 	if (skb->dev->features & NETIF_F_RXHASH)
1719 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1720 			     PKT_HASH_TYPE_L3);
1721 
1722 	rxq->stats.pkts++;
1723 
1724 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
1725 		if (!pkt->ip_frag) {
1726 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1727 			rxq->stats.rx_cso++;
1728 		} else if (pkt->l2info & htonl(RXF_IP)) {
1729 			__sum16 c = (__force __sum16)pkt->csum;
1730 			skb->csum = csum_unfold(c);
1731 			skb->ip_summed = CHECKSUM_COMPLETE;
1732 			rxq->stats.rx_cso++;
1733 		}
1734 	} else
1735 		skb_checksum_none_assert(skb);
1736 
1737 	if (unlikely(pkt->vlan_ex)) {
1738 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1739 		rxq->stats.vlan_ex++;
1740 	}
1741 	netif_receive_skb(skb);
1742 	return 0;
1743 }
1744 
1745 /**
1746  *	restore_rx_bufs - put back a packet's Rx buffers
1747  *	@si: the packet gather list
1748  *	@q: the SGE free list
1749  *	@frags: number of FL buffers to restore
1750  *
1751  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
1752  *	have already been unmapped and are left unmapped, we mark them so to
1753  *	prevent further unmapping attempts.
1754  *
1755  *	This function undoes a series of @unmap_rx_buf calls when we find out
1756  *	that the current packet can't be processed right away afterall and we
1757  *	need to come back to it later.  This is a very rare event and there's
1758  *	no effort to make this particularly efficient.
1759  */
1760 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1761 			    int frags)
1762 {
1763 	struct rx_sw_desc *d;
1764 
1765 	while (frags--) {
1766 		if (q->cidx == 0)
1767 			q->cidx = q->size - 1;
1768 		else
1769 			q->cidx--;
1770 		d = &q->sdesc[q->cidx];
1771 		d->page = si->frags[frags].page;
1772 		d->dma_addr |= RX_UNMAPPED_BUF;
1773 		q->avail++;
1774 	}
1775 }
1776 
1777 /**
1778  *	is_new_response - check if a response is newly written
1779  *	@r: the response descriptor
1780  *	@q: the response queue
1781  *
1782  *	Returns true if a response descriptor contains a yet unprocessed
1783  *	response.
1784  */
1785 static inline bool is_new_response(const struct rsp_ctrl *r,
1786 				   const struct sge_rspq *q)
1787 {
1788 	return RSPD_GEN(r->type_gen) == q->gen;
1789 }
1790 
1791 /**
1792  *	rspq_next - advance to the next entry in a response queue
1793  *	@q: the queue
1794  *
1795  *	Updates the state of a response queue to advance it to the next entry.
1796  */
1797 static inline void rspq_next(struct sge_rspq *q)
1798 {
1799 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1800 	if (unlikely(++q->cidx == q->size)) {
1801 		q->cidx = 0;
1802 		q->gen ^= 1;
1803 		q->cur_desc = q->desc;
1804 	}
1805 }
1806 
1807 /**
1808  *	process_responses - process responses from an SGE response queue
1809  *	@q: the ingress queue to process
1810  *	@budget: how many responses can be processed in this round
1811  *
1812  *	Process responses from an SGE response queue up to the supplied budget.
1813  *	Responses include received packets as well as control messages from FW
1814  *	or HW.
1815  *
1816  *	Additionally choose the interrupt holdoff time for the next interrupt
1817  *	on this queue.  If the system is under memory shortage use a fairly
1818  *	long delay to help recovery.
1819  */
1820 static int process_responses(struct sge_rspq *q, int budget)
1821 {
1822 	int ret, rsp_type;
1823 	int budget_left = budget;
1824 	const struct rsp_ctrl *rc;
1825 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1826 	struct adapter *adapter = q->adap;
1827 	struct sge *s = &adapter->sge;
1828 
1829 	while (likely(budget_left)) {
1830 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1831 		if (!is_new_response(rc, q))
1832 			break;
1833 
1834 		rmb();
1835 		rsp_type = RSPD_TYPE(rc->type_gen);
1836 		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1837 			struct page_frag *fp;
1838 			struct pkt_gl si;
1839 			const struct rx_sw_desc *rsd;
1840 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1841 
1842 			if (len & RSPD_NEWBUF) {
1843 				if (likely(q->offset > 0)) {
1844 					free_rx_bufs(q->adap, &rxq->fl, 1);
1845 					q->offset = 0;
1846 				}
1847 				len = RSPD_LEN(len);
1848 			}
1849 			si.tot_len = len;
1850 
1851 			/* gather packet fragments */
1852 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
1853 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1854 				bufsz = get_buf_size(adapter, rsd);
1855 				fp->page = rsd->page;
1856 				fp->offset = q->offset;
1857 				fp->size = min(bufsz, len);
1858 				len -= fp->size;
1859 				if (!len)
1860 					break;
1861 				unmap_rx_buf(q->adap, &rxq->fl);
1862 			}
1863 
1864 			/*
1865 			 * Last buffer remains mapped so explicitly make it
1866 			 * coherent for CPU access.
1867 			 */
1868 			dma_sync_single_for_cpu(q->adap->pdev_dev,
1869 						get_buf_addr(rsd),
1870 						fp->size, DMA_FROM_DEVICE);
1871 
1872 			si.va = page_address(si.frags[0].page) +
1873 				si.frags[0].offset;
1874 			prefetch(si.va);
1875 
1876 			si.nfrags = frags + 1;
1877 			ret = q->handler(q, q->cur_desc, &si);
1878 			if (likely(ret == 0))
1879 				q->offset += ALIGN(fp->size, s->fl_align);
1880 			else
1881 				restore_rx_bufs(&si, &rxq->fl, frags);
1882 		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
1883 			ret = q->handler(q, q->cur_desc, NULL);
1884 		} else {
1885 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1886 		}
1887 
1888 		if (unlikely(ret)) {
1889 			/* couldn't process descriptor, back off for recovery */
1890 			q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1891 			break;
1892 		}
1893 
1894 		rspq_next(q);
1895 		budget_left--;
1896 	}
1897 
1898 	if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1899 		__refill_fl(q->adap, &rxq->fl);
1900 	return budget - budget_left;
1901 }
1902 
1903 /**
1904  *	napi_rx_handler - the NAPI handler for Rx processing
1905  *	@napi: the napi instance
1906  *	@budget: how many packets we can process in this round
1907  *
1908  *	Handler for new data events when using NAPI.  This does not need any
1909  *	locking or protection from interrupts as data interrupts are off at
1910  *	this point and other adapter interrupts do not interfere (the latter
1911  *	in not a concern at all with MSI-X as non-data interrupts then have
1912  *	a separate handler).
1913  */
1914 static int napi_rx_handler(struct napi_struct *napi, int budget)
1915 {
1916 	unsigned int params;
1917 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1918 	int work_done = process_responses(q, budget);
1919 
1920 	if (likely(work_done < budget)) {
1921 		napi_complete(napi);
1922 		params = q->next_intr_params;
1923 		q->next_intr_params = q->intr_params;
1924 	} else
1925 		params = QINTR_TIMER_IDX(7);
1926 
1927 	t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
1928 		     INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
1929 	return work_done;
1930 }
1931 
1932 /*
1933  * The MSI-X interrupt handler for an SGE response queue.
1934  */
1935 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
1936 {
1937 	struct sge_rspq *q = cookie;
1938 
1939 	napi_schedule(&q->napi);
1940 	return IRQ_HANDLED;
1941 }
1942 
1943 /*
1944  * Process the indirect interrupt entries in the interrupt queue and kick off
1945  * NAPI for each queue that has generated an entry.
1946  */
1947 static unsigned int process_intrq(struct adapter *adap)
1948 {
1949 	unsigned int credits;
1950 	const struct rsp_ctrl *rc;
1951 	struct sge_rspq *q = &adap->sge.intrq;
1952 
1953 	spin_lock(&adap->sge.intrq_lock);
1954 	for (credits = 0; ; credits++) {
1955 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1956 		if (!is_new_response(rc, q))
1957 			break;
1958 
1959 		rmb();
1960 		if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
1961 			unsigned int qid = ntohl(rc->pldbuflen_qid);
1962 
1963 			qid -= adap->sge.ingr_start;
1964 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
1965 		}
1966 
1967 		rspq_next(q);
1968 	}
1969 
1970 	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
1971 		     INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
1972 	spin_unlock(&adap->sge.intrq_lock);
1973 	return credits;
1974 }
1975 
1976 /*
1977  * The MSI interrupt handler, which handles data events from SGE response queues
1978  * as well as error and other async events as they all use the same MSI vector.
1979  */
1980 static irqreturn_t t4_intr_msi(int irq, void *cookie)
1981 {
1982 	struct adapter *adap = cookie;
1983 
1984 	t4_slow_intr_handler(adap);
1985 	process_intrq(adap);
1986 	return IRQ_HANDLED;
1987 }
1988 
1989 /*
1990  * Interrupt handler for legacy INTx interrupts.
1991  * Handles data events from SGE response queues as well as error and other
1992  * async events as they all use the same interrupt line.
1993  */
1994 static irqreturn_t t4_intr_intx(int irq, void *cookie)
1995 {
1996 	struct adapter *adap = cookie;
1997 
1998 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
1999 	if (t4_slow_intr_handler(adap) | process_intrq(adap))
2000 		return IRQ_HANDLED;
2001 	return IRQ_NONE;             /* probably shared interrupt */
2002 }
2003 
2004 /**
2005  *	t4_intr_handler - select the top-level interrupt handler
2006  *	@adap: the adapter
2007  *
2008  *	Selects the top-level interrupt handler based on the type of interrupts
2009  *	(MSI-X, MSI, or INTx).
2010  */
2011 irq_handler_t t4_intr_handler(struct adapter *adap)
2012 {
2013 	if (adap->flags & USING_MSIX)
2014 		return t4_sge_intr_msix;
2015 	if (adap->flags & USING_MSI)
2016 		return t4_intr_msi;
2017 	return t4_intr_intx;
2018 }
2019 
2020 static void sge_rx_timer_cb(unsigned long data)
2021 {
2022 	unsigned long m;
2023 	unsigned int i, idma_same_state_cnt[2];
2024 	struct adapter *adap = (struct adapter *)data;
2025 	struct sge *s = &adap->sge;
2026 
2027 	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
2028 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2029 			struct sge_eth_rxq *rxq;
2030 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2031 			struct sge_fl *fl = s->egr_map[id];
2032 
2033 			clear_bit(id, s->starving_fl);
2034 			smp_mb__after_atomic();
2035 
2036 			if (fl_starving(fl)) {
2037 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2038 				if (napi_reschedule(&rxq->rspq.napi))
2039 					fl->starving++;
2040 				else
2041 					set_bit(id, s->starving_fl);
2042 			}
2043 		}
2044 
2045 	t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
2046 	idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
2047 	idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2048 
2049 	for (i = 0; i < 2; i++) {
2050 		u32 debug0, debug11;
2051 
2052 		/* If the Ingress DMA Same State Counter ("timer") is less
2053 		 * than 1s, then we can reset our synthesized Stall Timer and
2054 		 * continue.  If we have previously emitted warnings about a
2055 		 * potential stalled Ingress Queue, issue a note indicating
2056 		 * that the Ingress Queue has resumed forward progress.
2057 		 */
2058 		if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
2059 			if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
2060 				CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
2061 					i, s->idma_qid[i],
2062 					s->idma_stalled[i]/HZ);
2063 			s->idma_stalled[i] = 0;
2064 			continue;
2065 		}
2066 
2067 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
2068 		 * domain.  The first time we get here it'll be because we
2069 		 * passed the 1s Threshold; each additional time it'll be
2070 		 * because the RX Timer Callback is being fired on its regular
2071 		 * schedule.
2072 		 *
2073 		 * If the stall is below our Potential Hung Ingress Queue
2074 		 * Warning Threshold, continue.
2075 		 */
2076 		if (s->idma_stalled[i] == 0)
2077 			s->idma_stalled[i] = HZ;
2078 		else
2079 			s->idma_stalled[i] += RX_QCHECK_PERIOD;
2080 
2081 		if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
2082 			continue;
2083 
2084 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
2085 		if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
2086 			continue;
2087 
2088 		/* Read and save the SGE IDMA State and Queue ID information.
2089 		 * We do this every time in case it changes across time ...
2090 		 */
2091 		t4_write_reg(adap, SGE_DEBUG_INDEX, 0);
2092 		debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2093 		s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
2094 
2095 		t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
2096 		debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2097 		s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
2098 
2099 		CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
2100 			i, s->idma_qid[i], s->idma_state[i],
2101 			s->idma_stalled[i]/HZ, debug0, debug11);
2102 		t4_sge_decode_idma_state(adap, s->idma_state[i]);
2103 	}
2104 
2105 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2106 }
2107 
2108 static void sge_tx_timer_cb(unsigned long data)
2109 {
2110 	unsigned long m;
2111 	unsigned int i, budget;
2112 	struct adapter *adap = (struct adapter *)data;
2113 	struct sge *s = &adap->sge;
2114 
2115 	for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
2116 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
2117 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2118 			struct sge_ofld_txq *txq = s->egr_map[id];
2119 
2120 			clear_bit(id, s->txq_maperr);
2121 			tasklet_schedule(&txq->qresume_tsk);
2122 		}
2123 
2124 	budget = MAX_TIMER_TX_RECLAIM;
2125 	i = s->ethtxq_rover;
2126 	do {
2127 		struct sge_eth_txq *q = &s->ethtxq[i];
2128 
2129 		if (q->q.in_use &&
2130 		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2131 		    __netif_tx_trylock(q->txq)) {
2132 			int avail = reclaimable(&q->q);
2133 
2134 			if (avail) {
2135 				if (avail > budget)
2136 					avail = budget;
2137 
2138 				free_tx_desc(adap, &q->q, avail, true);
2139 				q->q.in_use -= avail;
2140 				budget -= avail;
2141 			}
2142 			__netif_tx_unlock(q->txq);
2143 		}
2144 
2145 		if (++i >= s->ethqsets)
2146 			i = 0;
2147 	} while (budget && i != s->ethtxq_rover);
2148 	s->ethtxq_rover = i;
2149 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2150 }
2151 
2152 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2153 		     struct net_device *dev, int intr_idx,
2154 		     struct sge_fl *fl, rspq_handler_t hnd)
2155 {
2156 	int ret, flsz = 0;
2157 	struct fw_iq_cmd c;
2158 	struct sge *s = &adap->sge;
2159 	struct port_info *pi = netdev_priv(dev);
2160 
2161 	/* Size needs to be multiple of 16, including status entry. */
2162 	iq->size = roundup(iq->size, 16);
2163 
2164 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2165 			      &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2166 	if (!iq->desc)
2167 		return -ENOMEM;
2168 
2169 	memset(&c, 0, sizeof(c));
2170 	c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
2171 			    FW_CMD_WRITE | FW_CMD_EXEC |
2172 			    FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
2173 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
2174 				 FW_LEN16(c));
2175 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2176 		FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
2177 		FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
2178 		FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
2179 							-intr_idx - 1));
2180 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2181 		FW_IQ_CMD_IQGTSMODE |
2182 		FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
2183 		FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
2184 	c.iqsize = htons(iq->size);
2185 	c.iqaddr = cpu_to_be64(iq->phys_addr);
2186 
2187 	if (fl) {
2188 		fl->size = roundup(fl->size, 8);
2189 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2190 				      sizeof(struct rx_sw_desc), &fl->addr,
2191 				      &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2192 		if (!fl->desc)
2193 			goto fl_nomem;
2194 
2195 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2196 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN(1) |
2197 					    FW_IQ_CMD_FL0FETCHRO(1) |
2198 					    FW_IQ_CMD_FL0DATARO(1) |
2199 					    FW_IQ_CMD_FL0PADEN(1));
2200 		c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
2201 				FW_IQ_CMD_FL0FBMAX(3));
2202 		c.fl0size = htons(flsz);
2203 		c.fl0addr = cpu_to_be64(fl->addr);
2204 	}
2205 
2206 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2207 	if (ret)
2208 		goto err;
2209 
2210 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2211 	iq->cur_desc = iq->desc;
2212 	iq->cidx = 0;
2213 	iq->gen = 1;
2214 	iq->next_intr_params = iq->intr_params;
2215 	iq->cntxt_id = ntohs(c.iqid);
2216 	iq->abs_id = ntohs(c.physiqid);
2217 	iq->size--;                           /* subtract status entry */
2218 	iq->netdev = dev;
2219 	iq->handler = hnd;
2220 
2221 	/* set offset to -1 to distinguish ingress queues without FL */
2222 	iq->offset = fl ? 0 : -1;
2223 
2224 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2225 
2226 	if (fl) {
2227 		fl->cntxt_id = ntohs(c.fl0id);
2228 		fl->avail = fl->pend_cred = 0;
2229 		fl->pidx = fl->cidx = 0;
2230 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2231 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2232 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2233 	}
2234 	return 0;
2235 
2236 fl_nomem:
2237 	ret = -ENOMEM;
2238 err:
2239 	if (iq->desc) {
2240 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2241 				  iq->desc, iq->phys_addr);
2242 		iq->desc = NULL;
2243 	}
2244 	if (fl && fl->desc) {
2245 		kfree(fl->sdesc);
2246 		fl->sdesc = NULL;
2247 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2248 				  fl->desc, fl->addr);
2249 		fl->desc = NULL;
2250 	}
2251 	return ret;
2252 }
2253 
2254 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2255 {
2256 	q->cntxt_id = id;
2257 	if (!is_t4(adap->params.chip)) {
2258 		unsigned int s_qpp;
2259 		unsigned short udb_density;
2260 		unsigned long qpshift;
2261 		int page;
2262 
2263 		s_qpp = QUEUESPERPAGEPF1 * adap->fn;
2264 		udb_density = 1 << QUEUESPERPAGEPF0_GET((t4_read_reg(adap,
2265 				SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp));
2266 		qpshift = PAGE_SHIFT - ilog2(udb_density);
2267 		q->udb = q->cntxt_id << qpshift;
2268 		q->udb &= PAGE_MASK;
2269 		page = q->udb / PAGE_SIZE;
2270 		q->udb += (q->cntxt_id - (page * udb_density)) * 128;
2271 	}
2272 
2273 	q->in_use = 0;
2274 	q->cidx = q->pidx = 0;
2275 	q->stops = q->restarts = 0;
2276 	q->stat = (void *)&q->desc[q->size];
2277 	spin_lock_init(&q->db_lock);
2278 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
2279 }
2280 
2281 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2282 			 struct net_device *dev, struct netdev_queue *netdevq,
2283 			 unsigned int iqid)
2284 {
2285 	int ret, nentries;
2286 	struct fw_eq_eth_cmd c;
2287 	struct sge *s = &adap->sge;
2288 	struct port_info *pi = netdev_priv(dev);
2289 
2290 	/* Add status entries */
2291 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2292 
2293 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2294 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2295 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2296 			netdev_queue_numa_node_read(netdevq));
2297 	if (!txq->q.desc)
2298 		return -ENOMEM;
2299 
2300 	memset(&c, 0, sizeof(c));
2301 	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2302 			    FW_CMD_WRITE | FW_CMD_EXEC |
2303 			    FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
2304 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
2305 				 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2306 	c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
2307 	c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2308 				   FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
2309 				   FW_EQ_ETH_CMD_FETCHRO(1) |
2310 				   FW_EQ_ETH_CMD_IQID(iqid));
2311 	c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2312 				  FW_EQ_ETH_CMD_FBMAX(3) |
2313 				  FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2314 				  FW_EQ_ETH_CMD_EQSIZE(nentries));
2315 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2316 
2317 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2318 	if (ret) {
2319 		kfree(txq->q.sdesc);
2320 		txq->q.sdesc = NULL;
2321 		dma_free_coherent(adap->pdev_dev,
2322 				  nentries * sizeof(struct tx_desc),
2323 				  txq->q.desc, txq->q.phys_addr);
2324 		txq->q.desc = NULL;
2325 		return ret;
2326 	}
2327 
2328 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2329 	txq->txq = netdevq;
2330 	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2331 	txq->mapping_err = 0;
2332 	return 0;
2333 }
2334 
2335 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2336 			  struct net_device *dev, unsigned int iqid,
2337 			  unsigned int cmplqid)
2338 {
2339 	int ret, nentries;
2340 	struct fw_eq_ctrl_cmd c;
2341 	struct sge *s = &adap->sge;
2342 	struct port_info *pi = netdev_priv(dev);
2343 
2344 	/* Add status entries */
2345 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2346 
2347 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2348 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2349 				 NULL, 0, NUMA_NO_NODE);
2350 	if (!txq->q.desc)
2351 		return -ENOMEM;
2352 
2353 	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2354 			    FW_CMD_WRITE | FW_CMD_EXEC |
2355 			    FW_EQ_CTRL_CMD_PFN(adap->fn) |
2356 			    FW_EQ_CTRL_CMD_VFN(0));
2357 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
2358 				 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2359 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
2360 	c.physeqid_pkd = htonl(0);
2361 	c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2362 				   FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
2363 				   FW_EQ_CTRL_CMD_FETCHRO |
2364 				   FW_EQ_CTRL_CMD_IQID(iqid));
2365 	c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2366 				  FW_EQ_CTRL_CMD_FBMAX(3) |
2367 				  FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2368 				  FW_EQ_CTRL_CMD_EQSIZE(nentries));
2369 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2370 
2371 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2372 	if (ret) {
2373 		dma_free_coherent(adap->pdev_dev,
2374 				  nentries * sizeof(struct tx_desc),
2375 				  txq->q.desc, txq->q.phys_addr);
2376 		txq->q.desc = NULL;
2377 		return ret;
2378 	}
2379 
2380 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
2381 	txq->adap = adap;
2382 	skb_queue_head_init(&txq->sendq);
2383 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2384 	txq->full = 0;
2385 	return 0;
2386 }
2387 
2388 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2389 			  struct net_device *dev, unsigned int iqid)
2390 {
2391 	int ret, nentries;
2392 	struct fw_eq_ofld_cmd c;
2393 	struct sge *s = &adap->sge;
2394 	struct port_info *pi = netdev_priv(dev);
2395 
2396 	/* Add status entries */
2397 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2398 
2399 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2400 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2401 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2402 			NUMA_NO_NODE);
2403 	if (!txq->q.desc)
2404 		return -ENOMEM;
2405 
2406 	memset(&c, 0, sizeof(c));
2407 	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2408 			    FW_CMD_WRITE | FW_CMD_EXEC |
2409 			    FW_EQ_OFLD_CMD_PFN(adap->fn) |
2410 			    FW_EQ_OFLD_CMD_VFN(0));
2411 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
2412 				 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2413 	c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2414 				   FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
2415 				   FW_EQ_OFLD_CMD_FETCHRO(1) |
2416 				   FW_EQ_OFLD_CMD_IQID(iqid));
2417 	c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2418 				  FW_EQ_OFLD_CMD_FBMAX(3) |
2419 				  FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2420 				  FW_EQ_OFLD_CMD_EQSIZE(nentries));
2421 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2422 
2423 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2424 	if (ret) {
2425 		kfree(txq->q.sdesc);
2426 		txq->q.sdesc = NULL;
2427 		dma_free_coherent(adap->pdev_dev,
2428 				  nentries * sizeof(struct tx_desc),
2429 				  txq->q.desc, txq->q.phys_addr);
2430 		txq->q.desc = NULL;
2431 		return ret;
2432 	}
2433 
2434 	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2435 	txq->adap = adap;
2436 	skb_queue_head_init(&txq->sendq);
2437 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2438 	txq->full = 0;
2439 	txq->mapping_err = 0;
2440 	return 0;
2441 }
2442 
2443 static void free_txq(struct adapter *adap, struct sge_txq *q)
2444 {
2445 	struct sge *s = &adap->sge;
2446 
2447 	dma_free_coherent(adap->pdev_dev,
2448 			  q->size * sizeof(struct tx_desc) + s->stat_len,
2449 			  q->desc, q->phys_addr);
2450 	q->cntxt_id = 0;
2451 	q->sdesc = NULL;
2452 	q->desc = NULL;
2453 }
2454 
2455 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2456 			 struct sge_fl *fl)
2457 {
2458 	struct sge *s = &adap->sge;
2459 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2460 
2461 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2462 	t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2463 		   rq->cntxt_id, fl_id, 0xffff);
2464 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2465 			  rq->desc, rq->phys_addr);
2466 	netif_napi_del(&rq->napi);
2467 	rq->netdev = NULL;
2468 	rq->cntxt_id = rq->abs_id = 0;
2469 	rq->desc = NULL;
2470 
2471 	if (fl) {
2472 		free_rx_bufs(adap, fl, fl->avail);
2473 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2474 				  fl->desc, fl->addr);
2475 		kfree(fl->sdesc);
2476 		fl->sdesc = NULL;
2477 		fl->cntxt_id = 0;
2478 		fl->desc = NULL;
2479 	}
2480 }
2481 
2482 /**
2483  *	t4_free_sge_resources - free SGE resources
2484  *	@adap: the adapter
2485  *
2486  *	Frees resources used by the SGE queue sets.
2487  */
2488 void t4_free_sge_resources(struct adapter *adap)
2489 {
2490 	int i;
2491 	struct sge_eth_rxq *eq = adap->sge.ethrxq;
2492 	struct sge_eth_txq *etq = adap->sge.ethtxq;
2493 	struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
2494 
2495 	/* clean up Ethernet Tx/Rx queues */
2496 	for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2497 		if (eq->rspq.desc)
2498 			free_rspq_fl(adap, &eq->rspq, &eq->fl);
2499 		if (etq->q.desc) {
2500 			t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2501 				       etq->q.cntxt_id);
2502 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2503 			kfree(etq->q.sdesc);
2504 			free_txq(adap, &etq->q);
2505 		}
2506 	}
2507 
2508 	/* clean up RDMA and iSCSI Rx queues */
2509 	for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
2510 		if (oq->rspq.desc)
2511 			free_rspq_fl(adap, &oq->rspq, &oq->fl);
2512 	}
2513 	for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
2514 		if (oq->rspq.desc)
2515 			free_rspq_fl(adap, &oq->rspq, &oq->fl);
2516 	}
2517 	for (i = 0, oq = adap->sge.rdmaciq; i < adap->sge.rdmaciqs; i++, oq++) {
2518 		if (oq->rspq.desc)
2519 			free_rspq_fl(adap, &oq->rspq, &oq->fl);
2520 	}
2521 
2522 	/* clean up offload Tx queues */
2523 	for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2524 		struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2525 
2526 		if (q->q.desc) {
2527 			tasklet_kill(&q->qresume_tsk);
2528 			t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2529 					q->q.cntxt_id);
2530 			free_tx_desc(adap, &q->q, q->q.in_use, false);
2531 			kfree(q->q.sdesc);
2532 			__skb_queue_purge(&q->sendq);
2533 			free_txq(adap, &q->q);
2534 		}
2535 	}
2536 
2537 	/* clean up control Tx queues */
2538 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2539 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2540 
2541 		if (cq->q.desc) {
2542 			tasklet_kill(&cq->qresume_tsk);
2543 			t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2544 					cq->q.cntxt_id);
2545 			__skb_queue_purge(&cq->sendq);
2546 			free_txq(adap, &cq->q);
2547 		}
2548 	}
2549 
2550 	if (adap->sge.fw_evtq.desc)
2551 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2552 
2553 	if (adap->sge.intrq.desc)
2554 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
2555 
2556 	/* clear the reverse egress queue map */
2557 	memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2558 }
2559 
2560 void t4_sge_start(struct adapter *adap)
2561 {
2562 	adap->sge.ethtxq_rover = 0;
2563 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2564 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2565 }
2566 
2567 /**
2568  *	t4_sge_stop - disable SGE operation
2569  *	@adap: the adapter
2570  *
2571  *	Stop tasklets and timers associated with the DMA engine.  Note that
2572  *	this is effective only if measures have been taken to disable any HW
2573  *	events that may restart them.
2574  */
2575 void t4_sge_stop(struct adapter *adap)
2576 {
2577 	int i;
2578 	struct sge *s = &adap->sge;
2579 
2580 	if (in_interrupt())  /* actions below require waiting */
2581 		return;
2582 
2583 	if (s->rx_timer.function)
2584 		del_timer_sync(&s->rx_timer);
2585 	if (s->tx_timer.function)
2586 		del_timer_sync(&s->tx_timer);
2587 
2588 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2589 		struct sge_ofld_txq *q = &s->ofldtxq[i];
2590 
2591 		if (q->q.desc)
2592 			tasklet_kill(&q->qresume_tsk);
2593 	}
2594 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2595 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
2596 
2597 		if (cq->q.desc)
2598 			tasklet_kill(&cq->qresume_tsk);
2599 	}
2600 }
2601 
2602 /**
2603  *	t4_sge_init - initialize SGE
2604  *	@adap: the adapter
2605  *
2606  *	Performs SGE initialization needed every time after a chip reset.
2607  *	We do not initialize any of the queues here, instead the driver
2608  *	top-level must request them individually.
2609  *
2610  *	Called in two different modes:
2611  *
2612  *	 1. Perform actual hardware initialization and record hard-coded
2613  *	    parameters which were used.  This gets used when we're the
2614  *	    Master PF and the Firmware Configuration File support didn't
2615  *	    work for some reason.
2616  *
2617  *	 2. We're not the Master PF or initialization was performed with
2618  *	    a Firmware Configuration File.  In this case we need to grab
2619  *	    any of the SGE operating parameters that we need to have in
2620  *	    order to do our job and make sure we can live with them ...
2621  */
2622 
2623 static int t4_sge_init_soft(struct adapter *adap)
2624 {
2625 	struct sge *s = &adap->sge;
2626 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2627 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2628 	u32 ingress_rx_threshold;
2629 
2630 	/*
2631 	 * Verify that CPL messages are going to the Ingress Queue for
2632 	 * process_responses() and that only packet data is going to the
2633 	 * Free Lists.
2634 	 */
2635 	if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) !=
2636 	    RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2637 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2638 		return -EINVAL;
2639 	}
2640 
2641 	/*
2642 	 * Validate the Host Buffer Register Array indices that we want to
2643 	 * use ...
2644 	 *
2645 	 * XXX Note that we should really read through the Host Buffer Size
2646 	 * XXX register array and find the indices of the Buffer Sizes which
2647 	 * XXX meet our needs!
2648 	 */
2649 	#define READ_FL_BUF(x) \
2650 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))
2651 
2652 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2653 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2654 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2655 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2656 
2657 	/* We only bother using the Large Page logic if the Large Page Buffer
2658 	 * is larger than our Page Size Buffer.
2659 	 */
2660 	if (fl_large_pg <= fl_small_pg)
2661 		fl_large_pg = 0;
2662 
2663 	#undef READ_FL_BUF
2664 
2665 	/* The Page Size Buffer must be exactly equal to our Page Size and the
2666 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2667 	 */
2668 	if (fl_small_pg != PAGE_SIZE ||
2669 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
2670 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2671 			fl_small_pg, fl_large_pg);
2672 		return -EINVAL;
2673 	}
2674 	if (fl_large_pg)
2675 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2676 
2677 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2678 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2679 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2680 			fl_small_mtu, fl_large_mtu);
2681 		return -EINVAL;
2682 	}
2683 
2684 	/*
2685 	 * Retrieve our RX interrupt holdoff timer values and counter
2686 	 * threshold values from the SGE parameters.
2687 	 */
2688 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
2689 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
2690 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
2691 	s->timer_val[0] = core_ticks_to_us(adap,
2692 		TIMERVALUE0_GET(timer_value_0_and_1));
2693 	s->timer_val[1] = core_ticks_to_us(adap,
2694 		TIMERVALUE1_GET(timer_value_0_and_1));
2695 	s->timer_val[2] = core_ticks_to_us(adap,
2696 		TIMERVALUE2_GET(timer_value_2_and_3));
2697 	s->timer_val[3] = core_ticks_to_us(adap,
2698 		TIMERVALUE3_GET(timer_value_2_and_3));
2699 	s->timer_val[4] = core_ticks_to_us(adap,
2700 		TIMERVALUE4_GET(timer_value_4_and_5));
2701 	s->timer_val[5] = core_ticks_to_us(adap,
2702 		TIMERVALUE5_GET(timer_value_4_and_5));
2703 
2704 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD);
2705 	s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
2706 	s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
2707 	s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
2708 	s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);
2709 
2710 	return 0;
2711 }
2712 
2713 static int t4_sge_init_hard(struct adapter *adap)
2714 {
2715 	struct sge *s = &adap->sge;
2716 
2717 	/*
2718 	 * Set up our basic SGE mode to deliver CPL messages to our Ingress
2719 	 * Queue and Packet Date to the Free List.
2720 	 */
2721 	t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK,
2722 			 RXPKTCPLMODE_MASK);
2723 
2724 	/*
2725 	 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2726 	 * and generate an interrupt when this occurs so we can recover.
2727 	 */
2728 	if (is_t4(adap->params.chip)) {
2729 		t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2730 				 V_HP_INT_THRESH(M_HP_INT_THRESH) |
2731 				 V_LP_INT_THRESH(M_LP_INT_THRESH),
2732 				 V_HP_INT_THRESH(dbfifo_int_thresh) |
2733 				 V_LP_INT_THRESH(dbfifo_int_thresh));
2734 	} else {
2735 		t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2736 				 V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5),
2737 				 V_LP_INT_THRESH_T5(dbfifo_int_thresh));
2738 		t4_set_reg_field(adap, SGE_DBFIFO_STATUS2,
2739 				 V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5),
2740 				 V_HP_INT_THRESH_T5(dbfifo_int_thresh));
2741 	}
2742 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
2743 			F_ENABLE_DROP);
2744 
2745 	/*
2746 	 * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
2747 	 * t4_fixup_host_params().
2748 	 */
2749 	s->fl_pg_order = FL_PG_ORDER;
2750 	if (s->fl_pg_order)
2751 		t4_write_reg(adap,
2752 			     SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
2753 			     PAGE_SIZE << FL_PG_ORDER);
2754 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
2755 		     FL_MTU_SMALL_BUFSIZE(adap));
2756 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
2757 		     FL_MTU_LARGE_BUFSIZE(adap));
2758 
2759 	/*
2760 	 * Note that the SGE Ingress Packet Count Interrupt Threshold and
2761 	 * Timer Holdoff values must be supplied by our caller.
2762 	 */
2763 	t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2764 		     THRESHOLD_0(s->counter_val[0]) |
2765 		     THRESHOLD_1(s->counter_val[1]) |
2766 		     THRESHOLD_2(s->counter_val[2]) |
2767 		     THRESHOLD_3(s->counter_val[3]));
2768 	t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2769 		     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2770 		     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2771 	t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
2772 		     TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
2773 		     TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
2774 	t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
2775 		     TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
2776 		     TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
2777 
2778 	return 0;
2779 }
2780 
2781 int t4_sge_init(struct adapter *adap)
2782 {
2783 	struct sge *s = &adap->sge;
2784 	u32 sge_control, sge_conm_ctrl;
2785 	int ret, egress_threshold;
2786 
2787 	/*
2788 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
2789 	 * t4_fixup_host_params().
2790 	 */
2791 	sge_control = t4_read_reg(adap, SGE_CONTROL);
2792 	s->pktshift = PKTSHIFT_GET(sge_control);
2793 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64;
2794 	s->fl_align = 1 << (INGPADBOUNDARY_GET(sge_control) +
2795 			    X_INGPADBOUNDARY_SHIFT);
2796 
2797 	if (adap->flags & USING_SOFT_PARAMS)
2798 		ret = t4_sge_init_soft(adap);
2799 	else
2800 		ret = t4_sge_init_hard(adap);
2801 	if (ret < 0)
2802 		return ret;
2803 
2804 	/*
2805 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
2806 	 * timer will attempt to refill it.  This needs to be larger than the
2807 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2808 	 * stuck waiting for new packets while the SGE is waiting for us to
2809 	 * give it more Free List entries.  (Note that the SGE's Egress
2810 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
2811 	 * there was only a single field to control this.  For T5 there's the
2812 	 * original field which now only applies to Unpacked Mode Free List
2813 	 * buffers and a new field which only applies to Packed Mode Free List
2814 	 * buffers.
2815 	 */
2816 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL);
2817 	if (is_t4(adap->params.chip))
2818 		egress_threshold = EGRTHRESHOLD_GET(sge_conm_ctrl);
2819 	else
2820 		egress_threshold = EGRTHRESHOLDPACKING_GET(sge_conm_ctrl);
2821 	s->fl_starve_thres = 2*egress_threshold + 1;
2822 
2823 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2824 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2825 	s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000;  /* 1 s */
2826 	s->idma_stalled[0] = 0;
2827 	s->idma_stalled[1] = 0;
2828 	spin_lock_init(&s->intrq_lock);
2829 
2830 	return 0;
2831 }
2832