1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 59 /* 60 * Rx buffer size. We use largish buffers if possible but settle for single 61 * pages under memory shortage. 62 */ 63 #if PAGE_SHIFT >= 16 64 # define FL_PG_ORDER 0 65 #else 66 # define FL_PG_ORDER (16 - PAGE_SHIFT) 67 #endif 68 69 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 70 #define RX_COPY_THRES 256 71 #define RX_PULL_LEN 128 72 73 /* 74 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 75 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 76 */ 77 #define RX_PKT_SKB_LEN 512 78 79 /* 80 * Max number of Tx descriptors we clean up at a time. Should be modest as 81 * freeing skbs isn't cheap and it happens while holding locks. We just need 82 * to free packets faster than they arrive, we eventually catch up and keep 83 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 84 * also match the CIDX Flush Threshold. 85 */ 86 #define MAX_TX_RECLAIM 32 87 88 /* 89 * Max number of Rx buffers we replenish at a time. Again keep this modest, 90 * allocating buffers isn't cheap either. 91 */ 92 #define MAX_RX_REFILL 16U 93 94 /* 95 * Period of the Rx queue check timer. This timer is infrequent as it has 96 * something to do only when the system experiences severe memory shortage. 97 */ 98 #define RX_QCHECK_PERIOD (HZ / 2) 99 100 /* 101 * Period of the Tx queue check timer. 102 */ 103 #define TX_QCHECK_PERIOD (HZ / 2) 104 105 /* 106 * Max number of Tx descriptors to be reclaimed by the Tx timer. 107 */ 108 #define MAX_TIMER_TX_RECLAIM 100 109 110 /* 111 * Timer index used when backing off due to memory shortage. 112 */ 113 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 114 115 /* 116 * Suspension threshold for non-Ethernet Tx queues. We require enough room 117 * for a full sized WR. 118 */ 119 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 120 121 /* 122 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 123 * into a WR. 124 */ 125 #define MAX_IMM_TX_PKT_LEN 256 126 127 /* 128 * Max size of a WR sent through a control Tx queue. 129 */ 130 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 131 132 struct rx_sw_desc { /* SW state per Rx descriptor */ 133 struct page *page; 134 dma_addr_t dma_addr; 135 }; 136 137 /* 138 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 139 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 140 * We could easily support more but there doesn't seem to be much need for 141 * that ... 142 */ 143 #define FL_MTU_SMALL 1500 144 #define FL_MTU_LARGE 9000 145 146 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 147 unsigned int mtu) 148 { 149 struct sge *s = &adapter->sge; 150 151 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 152 } 153 154 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 155 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 156 157 /* 158 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 159 * these to specify the buffer size as an index into the SGE Free List Buffer 160 * Size register array. We also use bit 4, when the buffer has been unmapped 161 * for DMA, but this is of course never sent to the hardware and is only used 162 * to prevent double unmappings. All of the above requires that the Free List 163 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 164 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 165 * Free List Buffer alignment is 32 bytes, this works out for us ... 166 */ 167 enum { 168 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 169 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 170 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 171 172 /* 173 * XXX We shouldn't depend on being able to use these indices. 174 * XXX Especially when some other Master PF has initialized the 175 * XXX adapter or we use the Firmware Configuration File. We 176 * XXX should really search through the Host Buffer Size register 177 * XXX array for the appropriately sized buffer indices. 178 */ 179 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 180 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 181 182 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 183 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 184 }; 185 186 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 187 #define MIN_NAPI_WORK 1 188 189 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 190 { 191 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 192 } 193 194 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 195 { 196 return !(d->dma_addr & RX_UNMAPPED_BUF); 197 } 198 199 /** 200 * txq_avail - return the number of available slots in a Tx queue 201 * @q: the Tx queue 202 * 203 * Returns the number of descriptors in a Tx queue available to write new 204 * packets. 205 */ 206 static inline unsigned int txq_avail(const struct sge_txq *q) 207 { 208 return q->size - 1 - q->in_use; 209 } 210 211 /** 212 * fl_cap - return the capacity of a free-buffer list 213 * @fl: the FL 214 * 215 * Returns the capacity of a free-buffer list. The capacity is less than 216 * the size because one descriptor needs to be left unpopulated, otherwise 217 * HW will think the FL is empty. 218 */ 219 static inline unsigned int fl_cap(const struct sge_fl *fl) 220 { 221 return fl->size - 8; /* 1 descriptor = 8 buffers */ 222 } 223 224 /** 225 * fl_starving - return whether a Free List is starving. 226 * @adapter: pointer to the adapter 227 * @fl: the Free List 228 * 229 * Tests specified Free List to see whether the number of buffers 230 * available to the hardware has falled below our "starvation" 231 * threshold. 232 */ 233 static inline bool fl_starving(const struct adapter *adapter, 234 const struct sge_fl *fl) 235 { 236 const struct sge *s = &adapter->sge; 237 238 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 239 } 240 241 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 242 dma_addr_t *addr) 243 { 244 const skb_frag_t *fp, *end; 245 const struct skb_shared_info *si; 246 247 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 248 if (dma_mapping_error(dev, *addr)) 249 goto out_err; 250 251 si = skb_shinfo(skb); 252 end = &si->frags[si->nr_frags]; 253 254 for (fp = si->frags; fp < end; fp++) { 255 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 256 DMA_TO_DEVICE); 257 if (dma_mapping_error(dev, *addr)) 258 goto unwind; 259 } 260 return 0; 261 262 unwind: 263 while (fp-- > si->frags) 264 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 265 266 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 267 out_err: 268 return -ENOMEM; 269 } 270 EXPORT_SYMBOL(cxgb4_map_skb); 271 272 #ifdef CONFIG_NEED_DMA_MAP_STATE 273 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 274 const dma_addr_t *addr) 275 { 276 const skb_frag_t *fp, *end; 277 const struct skb_shared_info *si; 278 279 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 280 281 si = skb_shinfo(skb); 282 end = &si->frags[si->nr_frags]; 283 for (fp = si->frags; fp < end; fp++) 284 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 285 } 286 287 /** 288 * deferred_unmap_destructor - unmap a packet when it is freed 289 * @skb: the packet 290 * 291 * This is the packet destructor used for Tx packets that need to remain 292 * mapped until they are freed rather than until their Tx descriptors are 293 * freed. 294 */ 295 static void deferred_unmap_destructor(struct sk_buff *skb) 296 { 297 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 298 } 299 #endif 300 301 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 302 const struct ulptx_sgl *sgl, const struct sge_txq *q) 303 { 304 const struct ulptx_sge_pair *p; 305 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 306 307 if (likely(skb_headlen(skb))) 308 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 309 DMA_TO_DEVICE); 310 else { 311 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 312 DMA_TO_DEVICE); 313 nfrags--; 314 } 315 316 /* 317 * the complexity below is because of the possibility of a wrap-around 318 * in the middle of an SGL 319 */ 320 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 321 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 322 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 323 ntohl(p->len[0]), DMA_TO_DEVICE); 324 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 325 ntohl(p->len[1]), DMA_TO_DEVICE); 326 p++; 327 } else if ((u8 *)p == (u8 *)q->stat) { 328 p = (const struct ulptx_sge_pair *)q->desc; 329 goto unmap; 330 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 331 const __be64 *addr = (const __be64 *)q->desc; 332 333 dma_unmap_page(dev, be64_to_cpu(addr[0]), 334 ntohl(p->len[0]), DMA_TO_DEVICE); 335 dma_unmap_page(dev, be64_to_cpu(addr[1]), 336 ntohl(p->len[1]), DMA_TO_DEVICE); 337 p = (const struct ulptx_sge_pair *)&addr[2]; 338 } else { 339 const __be64 *addr = (const __be64 *)q->desc; 340 341 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 342 ntohl(p->len[0]), DMA_TO_DEVICE); 343 dma_unmap_page(dev, be64_to_cpu(addr[0]), 344 ntohl(p->len[1]), DMA_TO_DEVICE); 345 p = (const struct ulptx_sge_pair *)&addr[1]; 346 } 347 } 348 if (nfrags) { 349 __be64 addr; 350 351 if ((u8 *)p == (u8 *)q->stat) 352 p = (const struct ulptx_sge_pair *)q->desc; 353 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 354 *(const __be64 *)q->desc; 355 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 356 DMA_TO_DEVICE); 357 } 358 } 359 360 /** 361 * free_tx_desc - reclaims Tx descriptors and their buffers 362 * @adapter: the adapter 363 * @q: the Tx queue to reclaim descriptors from 364 * @n: the number of descriptors to reclaim 365 * @unmap: whether the buffers should be unmapped for DMA 366 * 367 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 368 * Tx buffers. Called with the Tx queue lock held. 369 */ 370 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 371 unsigned int n, bool unmap) 372 { 373 struct tx_sw_desc *d; 374 unsigned int cidx = q->cidx; 375 struct device *dev = adap->pdev_dev; 376 377 d = &q->sdesc[cidx]; 378 while (n--) { 379 if (d->skb) { /* an SGL is present */ 380 if (unmap) 381 unmap_sgl(dev, d->skb, d->sgl, q); 382 dev_consume_skb_any(d->skb); 383 d->skb = NULL; 384 } 385 ++d; 386 if (++cidx == q->size) { 387 cidx = 0; 388 d = q->sdesc; 389 } 390 } 391 q->cidx = cidx; 392 } 393 394 /* 395 * Return the number of reclaimable descriptors in a Tx queue. 396 */ 397 static inline int reclaimable(const struct sge_txq *q) 398 { 399 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 400 hw_cidx -= q->cidx; 401 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 402 } 403 404 /** 405 * reclaim_completed_tx - reclaims completed TX Descriptors 406 * @adap: the adapter 407 * @q: the Tx queue to reclaim completed descriptors from 408 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 409 * @unmap: whether the buffers should be unmapped for DMA 410 * 411 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 412 * and frees the associated buffers if possible. If @max == -1, then 413 * we'll use a defaiult maximum. Called with the TX Queue locked. 414 */ 415 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 416 int maxreclaim, bool unmap) 417 { 418 int reclaim = reclaimable(q); 419 420 if (reclaim) { 421 /* 422 * Limit the amount of clean up work we do at a time to keep 423 * the Tx lock hold time O(1). 424 */ 425 if (maxreclaim < 0) 426 maxreclaim = MAX_TX_RECLAIM; 427 if (reclaim > maxreclaim) 428 reclaim = maxreclaim; 429 430 free_tx_desc(adap, q, reclaim, unmap); 431 q->in_use -= reclaim; 432 } 433 434 return reclaim; 435 } 436 437 /** 438 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 439 * @adap: the adapter 440 * @q: the Tx queue to reclaim completed descriptors from 441 * @unmap: whether the buffers should be unmapped for DMA 442 * 443 * Reclaims Tx descriptors that the SGE has indicated it has processed, 444 * and frees the associated buffers if possible. Called with the Tx 445 * queue locked. 446 */ 447 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 448 bool unmap) 449 { 450 (void)reclaim_completed_tx(adap, q, -1, unmap); 451 } 452 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 453 454 static inline int get_buf_size(struct adapter *adapter, 455 const struct rx_sw_desc *d) 456 { 457 struct sge *s = &adapter->sge; 458 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 459 int buf_size; 460 461 switch (rx_buf_size_idx) { 462 case RX_SMALL_PG_BUF: 463 buf_size = PAGE_SIZE; 464 break; 465 466 case RX_LARGE_PG_BUF: 467 buf_size = PAGE_SIZE << s->fl_pg_order; 468 break; 469 470 case RX_SMALL_MTU_BUF: 471 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 472 break; 473 474 case RX_LARGE_MTU_BUF: 475 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 476 break; 477 478 default: 479 BUG(); 480 } 481 482 return buf_size; 483 } 484 485 /** 486 * free_rx_bufs - free the Rx buffers on an SGE free list 487 * @adap: the adapter 488 * @q: the SGE free list to free buffers from 489 * @n: how many buffers to free 490 * 491 * Release the next @n buffers on an SGE free-buffer Rx queue. The 492 * buffers must be made inaccessible to HW before calling this function. 493 */ 494 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 495 { 496 while (n--) { 497 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 498 499 if (is_buf_mapped(d)) 500 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 501 get_buf_size(adap, d), 502 PCI_DMA_FROMDEVICE); 503 put_page(d->page); 504 d->page = NULL; 505 if (++q->cidx == q->size) 506 q->cidx = 0; 507 q->avail--; 508 } 509 } 510 511 /** 512 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 513 * @adap: the adapter 514 * @q: the SGE free list 515 * 516 * Unmap the current buffer on an SGE free-buffer Rx queue. The 517 * buffer must be made inaccessible to HW before calling this function. 518 * 519 * This is similar to @free_rx_bufs above but does not free the buffer. 520 * Do note that the FL still loses any further access to the buffer. 521 */ 522 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 523 { 524 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 525 526 if (is_buf_mapped(d)) 527 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 528 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 529 d->page = NULL; 530 if (++q->cidx == q->size) 531 q->cidx = 0; 532 q->avail--; 533 } 534 535 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 536 { 537 if (q->pend_cred >= 8) { 538 u32 val = adap->params.arch.sge_fl_db; 539 540 if (is_t4(adap->params.chip)) 541 val |= PIDX_V(q->pend_cred / 8); 542 else 543 val |= PIDX_T5_V(q->pend_cred / 8); 544 545 /* Make sure all memory writes to the Free List queue are 546 * committed before we tell the hardware about them. 547 */ 548 wmb(); 549 550 /* If we don't have access to the new User Doorbell (T5+), use 551 * the old doorbell mechanism; otherwise use the new BAR2 552 * mechanism. 553 */ 554 if (unlikely(q->bar2_addr == NULL)) { 555 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 556 val | QID_V(q->cntxt_id)); 557 } else { 558 writel(val | QID_V(q->bar2_qid), 559 q->bar2_addr + SGE_UDB_KDOORBELL); 560 561 /* This Write memory Barrier will force the write to 562 * the User Doorbell area to be flushed. 563 */ 564 wmb(); 565 } 566 q->pend_cred &= 7; 567 } 568 } 569 570 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 571 dma_addr_t mapping) 572 { 573 sd->page = pg; 574 sd->dma_addr = mapping; /* includes size low bits */ 575 } 576 577 /** 578 * refill_fl - refill an SGE Rx buffer ring 579 * @adap: the adapter 580 * @q: the ring to refill 581 * @n: the number of new buffers to allocate 582 * @gfp: the gfp flags for the allocations 583 * 584 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 585 * allocated with the supplied gfp flags. The caller must assure that 586 * @n does not exceed the queue's capacity. If afterwards the queue is 587 * found critically low mark it as starving in the bitmap of starving FLs. 588 * 589 * Returns the number of buffers allocated. 590 */ 591 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 592 gfp_t gfp) 593 { 594 struct sge *s = &adap->sge; 595 struct page *pg; 596 dma_addr_t mapping; 597 unsigned int cred = q->avail; 598 __be64 *d = &q->desc[q->pidx]; 599 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 600 int node; 601 602 #ifdef CONFIG_DEBUG_FS 603 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 604 goto out; 605 #endif 606 607 gfp |= __GFP_NOWARN; 608 node = dev_to_node(adap->pdev_dev); 609 610 if (s->fl_pg_order == 0) 611 goto alloc_small_pages; 612 613 /* 614 * Prefer large buffers 615 */ 616 while (n) { 617 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 618 if (unlikely(!pg)) { 619 q->large_alloc_failed++; 620 break; /* fall back to single pages */ 621 } 622 623 mapping = dma_map_page(adap->pdev_dev, pg, 0, 624 PAGE_SIZE << s->fl_pg_order, 625 PCI_DMA_FROMDEVICE); 626 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 627 __free_pages(pg, s->fl_pg_order); 628 q->mapping_err++; 629 goto out; /* do not try small pages for this error */ 630 } 631 mapping |= RX_LARGE_PG_BUF; 632 *d++ = cpu_to_be64(mapping); 633 634 set_rx_sw_desc(sd, pg, mapping); 635 sd++; 636 637 q->avail++; 638 if (++q->pidx == q->size) { 639 q->pidx = 0; 640 sd = q->sdesc; 641 d = q->desc; 642 } 643 n--; 644 } 645 646 alloc_small_pages: 647 while (n--) { 648 pg = alloc_pages_node(node, gfp, 0); 649 if (unlikely(!pg)) { 650 q->alloc_failed++; 651 break; 652 } 653 654 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 655 PCI_DMA_FROMDEVICE); 656 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 657 put_page(pg); 658 q->mapping_err++; 659 goto out; 660 } 661 *d++ = cpu_to_be64(mapping); 662 663 set_rx_sw_desc(sd, pg, mapping); 664 sd++; 665 666 q->avail++; 667 if (++q->pidx == q->size) { 668 q->pidx = 0; 669 sd = q->sdesc; 670 d = q->desc; 671 } 672 } 673 674 out: cred = q->avail - cred; 675 q->pend_cred += cred; 676 ring_fl_db(adap, q); 677 678 if (unlikely(fl_starving(adap, q))) { 679 smp_wmb(); 680 q->low++; 681 set_bit(q->cntxt_id - adap->sge.egr_start, 682 adap->sge.starving_fl); 683 } 684 685 return cred; 686 } 687 688 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 689 { 690 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 691 GFP_ATOMIC); 692 } 693 694 /** 695 * alloc_ring - allocate resources for an SGE descriptor ring 696 * @dev: the PCI device's core device 697 * @nelem: the number of descriptors 698 * @elem_size: the size of each descriptor 699 * @sw_size: the size of the SW state associated with each ring element 700 * @phys: the physical address of the allocated ring 701 * @metadata: address of the array holding the SW state for the ring 702 * @stat_size: extra space in HW ring for status information 703 * @node: preferred node for memory allocations 704 * 705 * Allocates resources for an SGE descriptor ring, such as Tx queues, 706 * free buffer lists, or response queues. Each SGE ring requires 707 * space for its HW descriptors plus, optionally, space for the SW state 708 * associated with each HW entry (the metadata). The function returns 709 * three values: the virtual address for the HW ring (the return value 710 * of the function), the bus address of the HW ring, and the address 711 * of the SW ring. 712 */ 713 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 714 size_t sw_size, dma_addr_t *phys, void *metadata, 715 size_t stat_size, int node) 716 { 717 size_t len = nelem * elem_size + stat_size; 718 void *s = NULL; 719 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 720 721 if (!p) 722 return NULL; 723 if (sw_size) { 724 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 725 726 if (!s) { 727 dma_free_coherent(dev, len, p, *phys); 728 return NULL; 729 } 730 } 731 if (metadata) 732 *(void **)metadata = s; 733 return p; 734 } 735 736 /** 737 * sgl_len - calculates the size of an SGL of the given capacity 738 * @n: the number of SGL entries 739 * 740 * Calculates the number of flits needed for a scatter/gather list that 741 * can hold the given number of entries. 742 */ 743 static inline unsigned int sgl_len(unsigned int n) 744 { 745 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 746 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 747 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 748 * repeated sequences of { Length[i], Length[i+1], Address[i], 749 * Address[i+1] } (this ensures that all addresses are on 64-bit 750 * boundaries). If N is even, then Length[N+1] should be set to 0 and 751 * Address[N+1] is omitted. 752 * 753 * The following calculation incorporates all of the above. It's 754 * somewhat hard to follow but, briefly: the "+2" accounts for the 755 * first two flits which include the DSGL header, Length0 and 756 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 757 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 758 * finally the "+((n-1)&1)" adds the one remaining flit needed if 759 * (n-1) is odd ... 760 */ 761 n--; 762 return (3 * n) / 2 + (n & 1) + 2; 763 } 764 765 /** 766 * flits_to_desc - returns the num of Tx descriptors for the given flits 767 * @n: the number of flits 768 * 769 * Returns the number of Tx descriptors needed for the supplied number 770 * of flits. 771 */ 772 static inline unsigned int flits_to_desc(unsigned int n) 773 { 774 BUG_ON(n > SGE_MAX_WR_LEN / 8); 775 return DIV_ROUND_UP(n, 8); 776 } 777 778 /** 779 * is_eth_imm - can an Ethernet packet be sent as immediate data? 780 * @skb: the packet 781 * 782 * Returns whether an Ethernet packet is small enough to fit as 783 * immediate data. Return value corresponds to headroom required. 784 */ 785 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 786 { 787 int hdrlen = 0; 788 789 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 790 chip_ver > CHELSIO_T5) { 791 hdrlen = sizeof(struct cpl_tx_tnl_lso); 792 hdrlen += sizeof(struct cpl_tx_pkt_core); 793 } else { 794 hdrlen = skb_shinfo(skb)->gso_size ? 795 sizeof(struct cpl_tx_pkt_lso_core) : 0; 796 hdrlen += sizeof(struct cpl_tx_pkt); 797 } 798 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 799 return hdrlen; 800 return 0; 801 } 802 803 /** 804 * calc_tx_flits - calculate the number of flits for a packet Tx WR 805 * @skb: the packet 806 * 807 * Returns the number of flits needed for a Tx WR for the given Ethernet 808 * packet, including the needed WR and CPL headers. 809 */ 810 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 811 unsigned int chip_ver) 812 { 813 unsigned int flits; 814 int hdrlen = is_eth_imm(skb, chip_ver); 815 816 /* If the skb is small enough, we can pump it out as a work request 817 * with only immediate data. In that case we just have to have the 818 * TX Packet header plus the skb data in the Work Request. 819 */ 820 821 if (hdrlen) 822 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 823 824 /* Otherwise, we're going to have to construct a Scatter gather list 825 * of the skb body and fragments. We also include the flits necessary 826 * for the TX Packet Work Request and CPL. We always have a firmware 827 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 828 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 829 * message or, if we're doing a Large Send Offload, an LSO CPL message 830 * with an embedded TX Packet Write CPL message. 831 */ 832 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 833 if (skb_shinfo(skb)->gso_size) { 834 if (skb->encapsulation && chip_ver > CHELSIO_T5) 835 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 836 sizeof(struct cpl_tx_tnl_lso); 837 else 838 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 839 sizeof(struct cpl_tx_pkt_lso_core); 840 841 hdrlen += sizeof(struct cpl_tx_pkt_core); 842 flits += (hdrlen / sizeof(__be64)); 843 } else { 844 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 845 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 846 } 847 return flits; 848 } 849 850 /** 851 * calc_tx_descs - calculate the number of Tx descriptors for a packet 852 * @skb: the packet 853 * 854 * Returns the number of Tx descriptors needed for the given Ethernet 855 * packet, including the needed WR and CPL headers. 856 */ 857 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 858 unsigned int chip_ver) 859 { 860 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 861 } 862 863 /** 864 * cxgb4_write_sgl - populate a scatter/gather list for a packet 865 * @skb: the packet 866 * @q: the Tx queue we are writing into 867 * @sgl: starting location for writing the SGL 868 * @end: points right after the end of the SGL 869 * @start: start offset into skb main-body data to include in the SGL 870 * @addr: the list of bus addresses for the SGL elements 871 * 872 * Generates a gather list for the buffers that make up a packet. 873 * The caller must provide adequate space for the SGL that will be written. 874 * The SGL includes all of the packet's page fragments and the data in its 875 * main body except for the first @start bytes. @sgl must be 16-byte 876 * aligned and within a Tx descriptor with available space. @end points 877 * right after the end of the SGL but does not account for any potential 878 * wrap around, i.e., @end > @sgl. 879 */ 880 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 881 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 882 const dma_addr_t *addr) 883 { 884 unsigned int i, len; 885 struct ulptx_sge_pair *to; 886 const struct skb_shared_info *si = skb_shinfo(skb); 887 unsigned int nfrags = si->nr_frags; 888 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 889 890 len = skb_headlen(skb) - start; 891 if (likely(len)) { 892 sgl->len0 = htonl(len); 893 sgl->addr0 = cpu_to_be64(addr[0] + start); 894 nfrags++; 895 } else { 896 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 897 sgl->addr0 = cpu_to_be64(addr[1]); 898 } 899 900 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 901 ULPTX_NSGE_V(nfrags)); 902 if (likely(--nfrags == 0)) 903 return; 904 /* 905 * Most of the complexity below deals with the possibility we hit the 906 * end of the queue in the middle of writing the SGL. For this case 907 * only we create the SGL in a temporary buffer and then copy it. 908 */ 909 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 910 911 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 912 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 913 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 914 to->addr[0] = cpu_to_be64(addr[i]); 915 to->addr[1] = cpu_to_be64(addr[++i]); 916 } 917 if (nfrags) { 918 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 919 to->len[1] = cpu_to_be32(0); 920 to->addr[0] = cpu_to_be64(addr[i + 1]); 921 } 922 if (unlikely((u8 *)end > (u8 *)q->stat)) { 923 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 924 925 if (likely(part0)) 926 memcpy(sgl->sge, buf, part0); 927 part1 = (u8 *)end - (u8 *)q->stat; 928 memcpy(q->desc, (u8 *)buf + part0, part1); 929 end = (void *)q->desc + part1; 930 } 931 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 932 *end = 0; 933 } 934 EXPORT_SYMBOL(cxgb4_write_sgl); 935 936 /* This function copies 64 byte coalesced work request to 937 * memory mapped BAR2 space. For coalesced WR SGE fetches 938 * data from the FIFO instead of from Host. 939 */ 940 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 941 { 942 int count = 8; 943 944 while (count) { 945 writeq(*src, dst); 946 src++; 947 dst++; 948 count--; 949 } 950 } 951 952 /** 953 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 954 * @adap: the adapter 955 * @q: the Tx queue 956 * @n: number of new descriptors to give to HW 957 * 958 * Ring the doorbel for a Tx queue. 959 */ 960 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 961 { 962 /* Make sure that all writes to the TX Descriptors are committed 963 * before we tell the hardware about them. 964 */ 965 wmb(); 966 967 /* If we don't have access to the new User Doorbell (T5+), use the old 968 * doorbell mechanism; otherwise use the new BAR2 mechanism. 969 */ 970 if (unlikely(q->bar2_addr == NULL)) { 971 u32 val = PIDX_V(n); 972 unsigned long flags; 973 974 /* For T4 we need to participate in the Doorbell Recovery 975 * mechanism. 976 */ 977 spin_lock_irqsave(&q->db_lock, flags); 978 if (!q->db_disabled) 979 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 980 QID_V(q->cntxt_id) | val); 981 else 982 q->db_pidx_inc += n; 983 q->db_pidx = q->pidx; 984 spin_unlock_irqrestore(&q->db_lock, flags); 985 } else { 986 u32 val = PIDX_T5_V(n); 987 988 /* T4 and later chips share the same PIDX field offset within 989 * the doorbell, but T5 and later shrank the field in order to 990 * gain a bit for Doorbell Priority. The field was absurdly 991 * large in the first place (14 bits) so we just use the T5 992 * and later limits and warn if a Queue ID is too large. 993 */ 994 WARN_ON(val & DBPRIO_F); 995 996 /* If we're only writing a single TX Descriptor and we can use 997 * Inferred QID registers, we can use the Write Combining 998 * Gather Buffer; otherwise we use the simple doorbell. 999 */ 1000 if (n == 1 && q->bar2_qid == 0) { 1001 int index = (q->pidx 1002 ? (q->pidx - 1) 1003 : (q->size - 1)); 1004 u64 *wr = (u64 *)&q->desc[index]; 1005 1006 cxgb_pio_copy((u64 __iomem *) 1007 (q->bar2_addr + SGE_UDB_WCDOORBELL), 1008 wr); 1009 } else { 1010 writel(val | QID_V(q->bar2_qid), 1011 q->bar2_addr + SGE_UDB_KDOORBELL); 1012 } 1013 1014 /* This Write Memory Barrier will force the write to the User 1015 * Doorbell area to be flushed. This is needed to prevent 1016 * writes on different CPUs for the same queue from hitting 1017 * the adapter out of order. This is required when some Work 1018 * Requests take the Write Combine Gather Buffer path (user 1019 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 1020 * take the traditional path where we simply increment the 1021 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1022 * hardware DMA read the actual Work Request. 1023 */ 1024 wmb(); 1025 } 1026 } 1027 EXPORT_SYMBOL(cxgb4_ring_tx_db); 1028 1029 /** 1030 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 1031 * @skb: the packet 1032 * @q: the Tx queue where the packet will be inlined 1033 * @pos: starting position in the Tx queue where to inline the packet 1034 * 1035 * Inline a packet's contents directly into Tx descriptors, starting at 1036 * the given position within the Tx DMA ring. 1037 * Most of the complexity of this operation is dealing with wrap arounds 1038 * in the middle of the packet we want to inline. 1039 */ 1040 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 1041 const struct sge_txq *q, void *pos) 1042 { 1043 int left = (void *)q->stat - pos; 1044 u64 *p; 1045 1046 if (likely(skb->len <= left)) { 1047 if (likely(!skb->data_len)) 1048 skb_copy_from_linear_data(skb, pos, skb->len); 1049 else 1050 skb_copy_bits(skb, 0, pos, skb->len); 1051 pos += skb->len; 1052 } else { 1053 skb_copy_bits(skb, 0, pos, left); 1054 skb_copy_bits(skb, left, q->desc, skb->len - left); 1055 pos = (void *)q->desc + (skb->len - left); 1056 } 1057 1058 /* 0-pad to multiple of 16 */ 1059 p = PTR_ALIGN(pos, 8); 1060 if ((uintptr_t)p & 8) 1061 *p = 0; 1062 } 1063 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1064 1065 static void *inline_tx_skb_header(const struct sk_buff *skb, 1066 const struct sge_txq *q, void *pos, 1067 int length) 1068 { 1069 u64 *p; 1070 int left = (void *)q->stat - pos; 1071 1072 if (likely(length <= left)) { 1073 memcpy(pos, skb->data, length); 1074 pos += length; 1075 } else { 1076 memcpy(pos, skb->data, left); 1077 memcpy(q->desc, skb->data + left, length - left); 1078 pos = (void *)q->desc + (length - left); 1079 } 1080 /* 0-pad to multiple of 16 */ 1081 p = PTR_ALIGN(pos, 8); 1082 if ((uintptr_t)p & 8) { 1083 *p = 0; 1084 return p + 1; 1085 } 1086 return p; 1087 } 1088 1089 /* 1090 * Figure out what HW csum a packet wants and return the appropriate control 1091 * bits. 1092 */ 1093 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1094 { 1095 int csum_type; 1096 bool inner_hdr_csum = false; 1097 u16 proto, ver; 1098 1099 if (skb->encapsulation && 1100 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1101 inner_hdr_csum = true; 1102 1103 if (inner_hdr_csum) { 1104 ver = inner_ip_hdr(skb)->version; 1105 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1106 inner_ipv6_hdr(skb)->nexthdr; 1107 } else { 1108 ver = ip_hdr(skb)->version; 1109 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1110 ipv6_hdr(skb)->nexthdr; 1111 } 1112 1113 if (ver == 4) { 1114 if (proto == IPPROTO_TCP) 1115 csum_type = TX_CSUM_TCPIP; 1116 else if (proto == IPPROTO_UDP) 1117 csum_type = TX_CSUM_UDPIP; 1118 else { 1119 nocsum: /* 1120 * unknown protocol, disable HW csum 1121 * and hope a bad packet is detected 1122 */ 1123 return TXPKT_L4CSUM_DIS_F; 1124 } 1125 } else { 1126 /* 1127 * this doesn't work with extension headers 1128 */ 1129 if (proto == IPPROTO_TCP) 1130 csum_type = TX_CSUM_TCPIP6; 1131 else if (proto == IPPROTO_UDP) 1132 csum_type = TX_CSUM_UDPIP6; 1133 else 1134 goto nocsum; 1135 } 1136 1137 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1138 int eth_hdr_len, l4_len; 1139 u64 hdr_len; 1140 1141 if (inner_hdr_csum) { 1142 /* This allows checksum offload for all encapsulated 1143 * packets like GRE etc.. 1144 */ 1145 l4_len = skb_inner_network_header_len(skb); 1146 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1147 } else { 1148 l4_len = skb_network_header_len(skb); 1149 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1150 } 1151 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1152 1153 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1154 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1155 else 1156 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1157 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1158 } else { 1159 int start = skb_transport_offset(skb); 1160 1161 return TXPKT_CSUM_TYPE_V(csum_type) | 1162 TXPKT_CSUM_START_V(start) | 1163 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1164 } 1165 } 1166 1167 static void eth_txq_stop(struct sge_eth_txq *q) 1168 { 1169 netif_tx_stop_queue(q->txq); 1170 q->q.stops++; 1171 } 1172 1173 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1174 { 1175 q->in_use += n; 1176 q->pidx += n; 1177 if (q->pidx >= q->size) 1178 q->pidx -= q->size; 1179 } 1180 1181 #ifdef CONFIG_CHELSIO_T4_FCOE 1182 static inline int 1183 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1184 const struct port_info *pi, u64 *cntrl) 1185 { 1186 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1187 1188 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1189 return 0; 1190 1191 if (skb->protocol != htons(ETH_P_FCOE)) 1192 return 0; 1193 1194 skb_reset_mac_header(skb); 1195 skb->mac_len = sizeof(struct ethhdr); 1196 1197 skb_set_network_header(skb, skb->mac_len); 1198 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1199 1200 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1201 return -ENOTSUPP; 1202 1203 /* FC CRC offload */ 1204 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1205 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1206 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1207 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1208 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1209 return 0; 1210 } 1211 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1212 1213 /* Returns tunnel type if hardware supports offloading of the same. 1214 * It is called only for T5 and onwards. 1215 */ 1216 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1217 { 1218 u8 l4_hdr = 0; 1219 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1220 struct port_info *pi = netdev_priv(skb->dev); 1221 struct adapter *adapter = pi->adapter; 1222 1223 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1224 skb->inner_protocol != htons(ETH_P_TEB)) 1225 return tnl_type; 1226 1227 switch (vlan_get_protocol(skb)) { 1228 case htons(ETH_P_IP): 1229 l4_hdr = ip_hdr(skb)->protocol; 1230 break; 1231 case htons(ETH_P_IPV6): 1232 l4_hdr = ipv6_hdr(skb)->nexthdr; 1233 break; 1234 default: 1235 return tnl_type; 1236 } 1237 1238 switch (l4_hdr) { 1239 case IPPROTO_UDP: 1240 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1241 tnl_type = TX_TNL_TYPE_VXLAN; 1242 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1243 tnl_type = TX_TNL_TYPE_GENEVE; 1244 break; 1245 default: 1246 return tnl_type; 1247 } 1248 1249 return tnl_type; 1250 } 1251 1252 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1253 struct cpl_tx_tnl_lso *tnl_lso, 1254 enum cpl_tx_tnl_lso_type tnl_type) 1255 { 1256 u32 val; 1257 int in_eth_xtra_len; 1258 int l3hdr_len = skb_network_header_len(skb); 1259 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1260 const struct skb_shared_info *ssi = skb_shinfo(skb); 1261 bool v6 = (ip_hdr(skb)->version == 6); 1262 1263 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1264 CPL_TX_TNL_LSO_FIRST_F | 1265 CPL_TX_TNL_LSO_LAST_F | 1266 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1267 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1268 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1269 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1270 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1271 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1272 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1273 1274 tnl_lso->IpIdOffsetOut = 0; 1275 1276 /* Get the tunnel header length */ 1277 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1278 in_eth_xtra_len = skb_inner_network_header(skb) - 1279 skb_inner_mac_header(skb) - ETH_HLEN; 1280 1281 switch (tnl_type) { 1282 case TX_TNL_TYPE_VXLAN: 1283 case TX_TNL_TYPE_GENEVE: 1284 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1285 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1286 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1287 break; 1288 default: 1289 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1290 break; 1291 } 1292 1293 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1294 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1295 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1296 1297 tnl_lso->r1 = 0; 1298 1299 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1300 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1301 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1302 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1303 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1304 1305 tnl_lso->IpIdOffset = htons(0); 1306 1307 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1308 tnl_lso->TCPSeqOffset = htonl(0); 1309 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1310 } 1311 1312 /** 1313 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1314 * @adap: the adapter 1315 * @eq: the Ethernet TX Queue 1316 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1317 * 1318 * We're typically called here to update the state of an Ethernet TX 1319 * Queue with respect to the hardware's progress in consuming the TX 1320 * Work Requests that we've put on that Egress Queue. This happens 1321 * when we get Egress Queue Update messages and also prophylactically 1322 * in regular timer-based Ethernet TX Queue maintenance. 1323 */ 1324 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1325 int maxreclaim) 1326 { 1327 struct sge_txq *q = &eq->q; 1328 unsigned int reclaimed; 1329 1330 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1331 return 0; 1332 1333 /* Reclaim pending completed TX Descriptors. */ 1334 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1335 1336 /* If the TX Queue is currently stopped and there's now more than half 1337 * the queue available, restart it. Otherwise bail out since the rest 1338 * of what we want do here is with the possibility of shipping any 1339 * currently buffered Coalesced TX Work Request. 1340 */ 1341 if (netif_tx_queue_stopped(eq->txq) && txq_avail(q) > (q->size / 2)) { 1342 netif_tx_wake_queue(eq->txq); 1343 eq->q.restarts++; 1344 } 1345 1346 __netif_tx_unlock(eq->txq); 1347 return reclaimed; 1348 } 1349 1350 /** 1351 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1352 * @skb: the packet 1353 * @dev: the egress net device 1354 * 1355 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1356 */ 1357 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1358 { 1359 u32 wr_mid, ctrl0, op; 1360 u64 cntrl, *end, *sgl; 1361 int qidx, credits; 1362 unsigned int flits, ndesc; 1363 struct adapter *adap; 1364 struct sge_eth_txq *q; 1365 const struct port_info *pi; 1366 struct fw_eth_tx_pkt_wr *wr; 1367 struct cpl_tx_pkt_core *cpl; 1368 const struct skb_shared_info *ssi; 1369 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1370 bool immediate = false; 1371 int len, max_pkt_len; 1372 bool ptp_enabled = is_ptp_enabled(skb, dev); 1373 unsigned int chip_ver; 1374 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1375 1376 #ifdef CONFIG_CHELSIO_T4_FCOE 1377 int err; 1378 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1379 1380 /* 1381 * The chip min packet length is 10 octets but play safe and reject 1382 * anything shorter than an Ethernet header. 1383 */ 1384 if (unlikely(skb->len < ETH_HLEN)) { 1385 out_free: dev_kfree_skb_any(skb); 1386 return NETDEV_TX_OK; 1387 } 1388 1389 /* Discard the packet if the length is greater than mtu */ 1390 max_pkt_len = ETH_HLEN + dev->mtu; 1391 if (skb_vlan_tagged(skb)) 1392 max_pkt_len += VLAN_HLEN; 1393 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1394 goto out_free; 1395 1396 pi = netdev_priv(dev); 1397 adap = pi->adapter; 1398 ssi = skb_shinfo(skb); 1399 #ifdef CONFIG_CHELSIO_IPSEC_INLINE 1400 if (xfrm_offload(skb) && !ssi->gso_size) 1401 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1402 #endif /* CHELSIO_IPSEC_INLINE */ 1403 1404 qidx = skb_get_queue_mapping(skb); 1405 if (ptp_enabled) { 1406 spin_lock(&adap->ptp_lock); 1407 if (!(adap->ptp_tx_skb)) { 1408 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1409 adap->ptp_tx_skb = skb_get(skb); 1410 } else { 1411 spin_unlock(&adap->ptp_lock); 1412 goto out_free; 1413 } 1414 q = &adap->sge.ptptxq; 1415 } else { 1416 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1417 } 1418 skb_tx_timestamp(skb); 1419 1420 reclaim_completed_tx(adap, &q->q, -1, true); 1421 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1422 1423 #ifdef CONFIG_CHELSIO_T4_FCOE 1424 err = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1425 if (unlikely(err == -ENOTSUPP)) { 1426 if (ptp_enabled) 1427 spin_unlock(&adap->ptp_lock); 1428 goto out_free; 1429 } 1430 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1431 1432 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1433 flits = calc_tx_flits(skb, chip_ver); 1434 ndesc = flits_to_desc(flits); 1435 credits = txq_avail(&q->q) - ndesc; 1436 1437 if (unlikely(credits < 0)) { 1438 eth_txq_stop(q); 1439 dev_err(adap->pdev_dev, 1440 "%s: Tx ring %u full while queue awake!\n", 1441 dev->name, qidx); 1442 if (ptp_enabled) 1443 spin_unlock(&adap->ptp_lock); 1444 return NETDEV_TX_BUSY; 1445 } 1446 1447 if (is_eth_imm(skb, chip_ver)) 1448 immediate = true; 1449 1450 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1451 tnl_type = cxgb_encap_offload_supported(skb); 1452 1453 if (!immediate && 1454 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) { 1455 q->mapping_err++; 1456 if (ptp_enabled) 1457 spin_unlock(&adap->ptp_lock); 1458 goto out_free; 1459 } 1460 1461 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1462 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1463 /* After we're done injecting the Work Request for this 1464 * packet, we'll be below our "stop threshold" so stop the TX 1465 * Queue now and schedule a request for an SGE Egress Queue 1466 * Update message. The queue will get started later on when 1467 * the firmware processes this Work Request and sends us an 1468 * Egress Queue Status Update message indicating that space 1469 * has opened up. 1470 */ 1471 eth_txq_stop(q); 1472 1473 /* If we're using the SGE Doorbell Queue Timer facility, we 1474 * don't need to ask the Firmware to send us Egress Queue CIDX 1475 * Updates: the Hardware will do this automatically. And 1476 * since we send the Ingress Queue CIDX Updates to the 1477 * corresponding Ethernet Response Queue, we'll get them very 1478 * quickly. 1479 */ 1480 if (!q->dbqt) 1481 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1482 } 1483 1484 wr = (void *)&q->q.desc[q->q.pidx]; 1485 wr->equiq_to_len16 = htonl(wr_mid); 1486 wr->r3 = cpu_to_be64(0); 1487 end = (u64 *)wr + flits; 1488 1489 len = immediate ? skb->len : 0; 1490 len += sizeof(*cpl); 1491 if (ssi->gso_size) { 1492 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1493 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1494 int l3hdr_len = skb_network_header_len(skb); 1495 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1496 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1497 1498 if (tnl_type) 1499 len += sizeof(*tnl_lso); 1500 else 1501 len += sizeof(*lso); 1502 1503 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1504 FW_WR_IMMDLEN_V(len)); 1505 if (tnl_type) { 1506 struct iphdr *iph = ip_hdr(skb); 1507 1508 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1509 cpl = (void *)(tnl_lso + 1); 1510 /* Driver is expected to compute partial checksum that 1511 * does not include the IP Total Length. 1512 */ 1513 if (iph->version == 4) { 1514 iph->check = 0; 1515 iph->tot_len = 0; 1516 iph->check = (u16)(~ip_fast_csum((u8 *)iph, 1517 iph->ihl)); 1518 } 1519 if (skb->ip_summed == CHECKSUM_PARTIAL) 1520 cntrl = hwcsum(adap->params.chip, skb); 1521 } else { 1522 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1523 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1524 LSO_IPV6_V(v6) | 1525 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1526 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1527 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1528 lso->ipid_ofst = htons(0); 1529 lso->mss = htons(ssi->gso_size); 1530 lso->seqno_offset = htonl(0); 1531 if (is_t4(adap->params.chip)) 1532 lso->len = htonl(skb->len); 1533 else 1534 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1535 cpl = (void *)(lso + 1); 1536 1537 if (CHELSIO_CHIP_VERSION(adap->params.chip) 1538 <= CHELSIO_T5) 1539 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1540 else 1541 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1542 1543 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1544 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1545 TXPKT_IPHDR_LEN_V(l3hdr_len); 1546 } 1547 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1548 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1549 /* If current position is already at the end of the 1550 * txq, reset the current to point to start of the queue 1551 * and update the end ptr as well. 1552 */ 1553 if (sgl == (u64 *)q->q.stat) { 1554 int left = (u8 *)end - (u8 *)q->q.stat; 1555 1556 end = (void *)q->q.desc + left; 1557 sgl = (void *)q->q.desc; 1558 } 1559 } 1560 q->tso++; 1561 q->tx_cso += ssi->gso_segs; 1562 } else { 1563 if (ptp_enabled) 1564 op = FW_PTP_TX_PKT_WR; 1565 else 1566 op = FW_ETH_TX_PKT_WR; 1567 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1568 FW_WR_IMMDLEN_V(len)); 1569 cpl = (void *)(wr + 1); 1570 sgl = (u64 *)(cpl + 1); 1571 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1572 cntrl = hwcsum(adap->params.chip, skb) | 1573 TXPKT_IPCSUM_DIS_F; 1574 q->tx_cso++; 1575 } 1576 } 1577 1578 if (skb_vlan_tag_present(skb)) { 1579 q->vlan_ins++; 1580 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1581 #ifdef CONFIG_CHELSIO_T4_FCOE 1582 if (skb->protocol == htons(ETH_P_FCOE)) 1583 cntrl |= TXPKT_VLAN_V( 1584 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1585 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1586 } 1587 1588 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1589 TXPKT_PF_V(adap->pf); 1590 if (ptp_enabled) 1591 ctrl0 |= TXPKT_TSTAMP_F; 1592 #ifdef CONFIG_CHELSIO_T4_DCB 1593 if (is_t4(adap->params.chip)) 1594 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1595 else 1596 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1597 #endif 1598 cpl->ctrl0 = htonl(ctrl0); 1599 cpl->pack = htons(0); 1600 cpl->len = htons(skb->len); 1601 cpl->ctrl1 = cpu_to_be64(cntrl); 1602 1603 if (immediate) { 1604 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1605 dev_consume_skb_any(skb); 1606 } else { 1607 int last_desc; 1608 1609 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, addr); 1610 skb_orphan(skb); 1611 1612 last_desc = q->q.pidx + ndesc - 1; 1613 if (last_desc >= q->q.size) 1614 last_desc -= q->q.size; 1615 q->q.sdesc[last_desc].skb = skb; 1616 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)sgl; 1617 } 1618 1619 txq_advance(&q->q, ndesc); 1620 1621 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1622 if (ptp_enabled) 1623 spin_unlock(&adap->ptp_lock); 1624 return NETDEV_TX_OK; 1625 } 1626 1627 /* Constants ... */ 1628 enum { 1629 /* Egress Queue sizes, producer and consumer indices are all in units 1630 * of Egress Context Units bytes. Note that as far as the hardware is 1631 * concerned, the free list is an Egress Queue (the host produces free 1632 * buffers which the hardware consumes) and free list entries are 1633 * 64-bit PCI DMA addresses. 1634 */ 1635 EQ_UNIT = SGE_EQ_IDXSIZE, 1636 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1637 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1638 1639 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1640 sizeof(struct cpl_tx_pkt_lso_core) + 1641 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1642 }; 1643 1644 /** 1645 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1646 * @skb: the packet 1647 * 1648 * Returns whether an Ethernet packet is small enough to fit completely as 1649 * immediate data. 1650 */ 1651 static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1652 { 1653 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1654 * which does not accommodate immediate data. We could dike out all 1655 * of the support code for immediate data but that would tie our hands 1656 * too much if we ever want to enhace the firmware. It would also 1657 * create more differences between the PF and VF Drivers. 1658 */ 1659 return false; 1660 } 1661 1662 /** 1663 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1664 * @skb: the packet 1665 * 1666 * Returns the number of flits needed for a TX Work Request for the 1667 * given Ethernet packet, including the needed WR and CPL headers. 1668 */ 1669 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1670 { 1671 unsigned int flits; 1672 1673 /* If the skb is small enough, we can pump it out as a work request 1674 * with only immediate data. In that case we just have to have the 1675 * TX Packet header plus the skb data in the Work Request. 1676 */ 1677 if (t4vf_is_eth_imm(skb)) 1678 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1679 sizeof(__be64)); 1680 1681 /* Otherwise, we're going to have to construct a Scatter gather list 1682 * of the skb body and fragments. We also include the flits necessary 1683 * for the TX Packet Work Request and CPL. We always have a firmware 1684 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1685 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1686 * message or, if we're doing a Large Send Offload, an LSO CPL message 1687 * with an embedded TX Packet Write CPL message. 1688 */ 1689 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1690 if (skb_shinfo(skb)->gso_size) 1691 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1692 sizeof(struct cpl_tx_pkt_lso_core) + 1693 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1694 else 1695 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1696 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1697 return flits; 1698 } 1699 1700 /** 1701 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1702 * @skb: the packet 1703 * @dev: the egress net device 1704 * 1705 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1706 */ 1707 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1708 struct net_device *dev) 1709 { 1710 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1711 const struct skb_shared_info *ssi; 1712 struct fw_eth_tx_pkt_vm_wr *wr; 1713 int qidx, credits, max_pkt_len; 1714 struct cpl_tx_pkt_core *cpl; 1715 const struct port_info *pi; 1716 unsigned int flits, ndesc; 1717 struct sge_eth_txq *txq; 1718 struct adapter *adapter; 1719 u64 cntrl, *end; 1720 u32 wr_mid; 1721 const size_t fw_hdr_copy_len = sizeof(wr->ethmacdst) + 1722 sizeof(wr->ethmacsrc) + 1723 sizeof(wr->ethtype) + 1724 sizeof(wr->vlantci); 1725 1726 /* The chip minimum packet length is 10 octets but the firmware 1727 * command that we are using requires that we copy the Ethernet header 1728 * (including the VLAN tag) into the header so we reject anything 1729 * smaller than that ... 1730 */ 1731 if (unlikely(skb->len < fw_hdr_copy_len)) 1732 goto out_free; 1733 1734 /* Discard the packet if the length is greater than mtu */ 1735 max_pkt_len = ETH_HLEN + dev->mtu; 1736 if (skb_vlan_tag_present(skb)) 1737 max_pkt_len += VLAN_HLEN; 1738 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1739 goto out_free; 1740 1741 /* Figure out which TX Queue we're going to use. */ 1742 pi = netdev_priv(dev); 1743 adapter = pi->adapter; 1744 qidx = skb_get_queue_mapping(skb); 1745 WARN_ON(qidx >= pi->nqsets); 1746 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1747 1748 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1749 * transfers have completed. 1750 */ 1751 reclaim_completed_tx(adapter, &txq->q, -1, true); 1752 1753 /* Calculate the number of flits and TX Descriptors we're going to 1754 * need along with how many TX Descriptors will be left over after 1755 * we inject our Work Request. 1756 */ 1757 flits = t4vf_calc_tx_flits(skb); 1758 ndesc = flits_to_desc(flits); 1759 credits = txq_avail(&txq->q) - ndesc; 1760 1761 if (unlikely(credits < 0)) { 1762 /* Not enough room for this packet's Work Request. Stop the 1763 * TX Queue and return a "busy" condition. The queue will get 1764 * started later on when the firmware informs us that space 1765 * has opened up. 1766 */ 1767 eth_txq_stop(txq); 1768 dev_err(adapter->pdev_dev, 1769 "%s: TX ring %u full while queue awake!\n", 1770 dev->name, qidx); 1771 return NETDEV_TX_BUSY; 1772 } 1773 1774 if (!t4vf_is_eth_imm(skb) && 1775 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, addr) < 0)) { 1776 /* We need to map the skb into PCI DMA space (because it can't 1777 * be in-lined directly into the Work Request) and the mapping 1778 * operation failed. Record the error and drop the packet. 1779 */ 1780 txq->mapping_err++; 1781 goto out_free; 1782 } 1783 1784 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1785 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1786 /* After we're done injecting the Work Request for this 1787 * packet, we'll be below our "stop threshold" so stop the TX 1788 * Queue now and schedule a request for an SGE Egress Queue 1789 * Update message. The queue will get started later on when 1790 * the firmware processes this Work Request and sends us an 1791 * Egress Queue Status Update message indicating that space 1792 * has opened up. 1793 */ 1794 eth_txq_stop(txq); 1795 1796 /* If we're using the SGE Doorbell Queue Timer facility, we 1797 * don't need to ask the Firmware to send us Egress Queue CIDX 1798 * Updates: the Hardware will do this automatically. And 1799 * since we send the Ingress Queue CIDX Updates to the 1800 * corresponding Ethernet Response Queue, we'll get them very 1801 * quickly. 1802 */ 1803 if (!txq->dbqt) 1804 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1805 } 1806 1807 /* Start filling in our Work Request. Note that we do _not_ handle 1808 * the WR Header wrapping around the TX Descriptor Ring. If our 1809 * maximum header size ever exceeds one TX Descriptor, we'll need to 1810 * do something else here. 1811 */ 1812 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1813 wr = (void *)&txq->q.desc[txq->q.pidx]; 1814 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1815 wr->r3[0] = cpu_to_be32(0); 1816 wr->r3[1] = cpu_to_be32(0); 1817 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1818 end = (u64 *)wr + flits; 1819 1820 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1821 * message with an encapsulated TX Packet CPL message. Otherwise we 1822 * just use a TX Packet CPL message. 1823 */ 1824 ssi = skb_shinfo(skb); 1825 if (ssi->gso_size) { 1826 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1827 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1828 int l3hdr_len = skb_network_header_len(skb); 1829 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1830 1831 wr->op_immdlen = 1832 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1833 FW_WR_IMMDLEN_V(sizeof(*lso) + 1834 sizeof(*cpl))); 1835 /* Fill in the LSO CPL message. */ 1836 lso->lso_ctrl = 1837 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1838 LSO_FIRST_SLICE_F | 1839 LSO_LAST_SLICE_F | 1840 LSO_IPV6_V(v6) | 1841 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1842 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1843 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1844 lso->ipid_ofst = cpu_to_be16(0); 1845 lso->mss = cpu_to_be16(ssi->gso_size); 1846 lso->seqno_offset = cpu_to_be32(0); 1847 if (is_t4(adapter->params.chip)) 1848 lso->len = cpu_to_be32(skb->len); 1849 else 1850 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1851 1852 /* Set up TX Packet CPL pointer, control word and perform 1853 * accounting. 1854 */ 1855 cpl = (void *)(lso + 1); 1856 1857 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 1858 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1859 else 1860 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1861 1862 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1863 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1864 TXPKT_IPHDR_LEN_V(l3hdr_len); 1865 txq->tso++; 1866 txq->tx_cso += ssi->gso_segs; 1867 } else { 1868 int len; 1869 1870 len = (t4vf_is_eth_imm(skb) 1871 ? skb->len + sizeof(*cpl) 1872 : sizeof(*cpl)); 1873 wr->op_immdlen = 1874 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1875 FW_WR_IMMDLEN_V(len)); 1876 1877 /* Set up TX Packet CPL pointer, control word and perform 1878 * accounting. 1879 */ 1880 cpl = (void *)(wr + 1); 1881 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1882 cntrl = hwcsum(adapter->params.chip, skb) | 1883 TXPKT_IPCSUM_DIS_F; 1884 txq->tx_cso++; 1885 } else { 1886 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1887 } 1888 } 1889 1890 /* If there's a VLAN tag present, add that to the list of things to 1891 * do in this Work Request. 1892 */ 1893 if (skb_vlan_tag_present(skb)) { 1894 txq->vlan_ins++; 1895 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1896 } 1897 1898 /* Fill in the TX Packet CPL message header. */ 1899 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 1900 TXPKT_INTF_V(pi->port_id) | 1901 TXPKT_PF_V(0)); 1902 cpl->pack = cpu_to_be16(0); 1903 cpl->len = cpu_to_be16(skb->len); 1904 cpl->ctrl1 = cpu_to_be64(cntrl); 1905 1906 /* Fill in the body of the TX Packet CPL message with either in-lined 1907 * data or a Scatter/Gather List. 1908 */ 1909 if (t4vf_is_eth_imm(skb)) { 1910 /* In-line the packet's data and free the skb since we don't 1911 * need it any longer. 1912 */ 1913 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 1914 dev_consume_skb_any(skb); 1915 } else { 1916 /* Write the skb's Scatter/Gather list into the TX Packet CPL 1917 * message and retain a pointer to the skb so we can free it 1918 * later when its DMA completes. (We store the skb pointer 1919 * in the Software Descriptor corresponding to the last TX 1920 * Descriptor used by the Work Request.) 1921 * 1922 * The retained skb will be freed when the corresponding TX 1923 * Descriptors are reclaimed after their DMAs complete. 1924 * However, this could take quite a while since, in general, 1925 * the hardware is set up to be lazy about sending DMA 1926 * completion notifications to us and we mostly perform TX 1927 * reclaims in the transmit routine. 1928 * 1929 * This is good for performamce but means that we rely on new 1930 * TX packets arriving to run the destructors of completed 1931 * packets, which open up space in their sockets' send queues. 1932 * Sometimes we do not get such new packets causing TX to 1933 * stall. A single UDP transmitter is a good example of this 1934 * situation. We have a clean up timer that periodically 1935 * reclaims completed packets but it doesn't run often enough 1936 * (nor do we want it to) to prevent lengthy stalls. A 1937 * solution to this problem is to run the destructor early, 1938 * after the packet is queued but before it's DMAd. A con is 1939 * that we lie to socket memory accounting, but the amount of 1940 * extra memory is reasonable (limited by the number of TX 1941 * descriptors), the packets do actually get freed quickly by 1942 * new packets almost always, and for protocols like TCP that 1943 * wait for acks to really free up the data the extra memory 1944 * is even less. On the positive side we run the destructors 1945 * on the sending CPU rather than on a potentially different 1946 * completing CPU, usually a good thing. 1947 * 1948 * Run the destructor before telling the DMA engine about the 1949 * packet to make sure it doesn't complete and get freed 1950 * prematurely. 1951 */ 1952 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 1953 struct sge_txq *tq = &txq->q; 1954 int last_desc; 1955 1956 /* If the Work Request header was an exact multiple of our TX 1957 * Descriptor length, then it's possible that the starting SGL 1958 * pointer lines up exactly with the end of our TX Descriptor 1959 * ring. If that's the case, wrap around to the beginning 1960 * here ... 1961 */ 1962 if (unlikely((void *)sgl == (void *)tq->stat)) { 1963 sgl = (void *)tq->desc; 1964 end = (void *)((void *)tq->desc + 1965 ((void *)end - (void *)tq->stat)); 1966 } 1967 1968 cxgb4_write_sgl(skb, tq, sgl, end, 0, addr); 1969 skb_orphan(skb); 1970 1971 last_desc = tq->pidx + ndesc - 1; 1972 if (last_desc >= tq->size) 1973 last_desc -= tq->size; 1974 tq->sdesc[last_desc].skb = skb; 1975 tq->sdesc[last_desc].sgl = sgl; 1976 } 1977 1978 /* Advance our internal TX Queue state, tell the hardware about 1979 * the new TX descriptors and return success. 1980 */ 1981 txq_advance(&txq->q, ndesc); 1982 1983 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 1984 return NETDEV_TX_OK; 1985 1986 out_free: 1987 /* An error of some sort happened. Free the TX skb and tell the 1988 * OS that we've "dealt" with the packet ... 1989 */ 1990 dev_kfree_skb_any(skb); 1991 return NETDEV_TX_OK; 1992 } 1993 1994 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 1995 { 1996 struct port_info *pi = netdev_priv(dev); 1997 1998 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 1999 return cxgb4_vf_eth_xmit(skb, dev); 2000 2001 return cxgb4_eth_xmit(skb, dev); 2002 } 2003 2004 /** 2005 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 2006 * @q: the SGE control Tx queue 2007 * 2008 * This is a variant of cxgb4_reclaim_completed_tx() that is used 2009 * for Tx queues that send only immediate data (presently just 2010 * the control queues) and thus do not have any sk_buffs to release. 2011 */ 2012 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 2013 { 2014 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 2015 int reclaim = hw_cidx - q->cidx; 2016 2017 if (reclaim < 0) 2018 reclaim += q->size; 2019 2020 q->in_use -= reclaim; 2021 q->cidx = hw_cidx; 2022 } 2023 2024 /** 2025 * is_imm - check whether a packet can be sent as immediate data 2026 * @skb: the packet 2027 * 2028 * Returns true if a packet can be sent as a WR with immediate data. 2029 */ 2030 static inline int is_imm(const struct sk_buff *skb) 2031 { 2032 return skb->len <= MAX_CTRL_WR_LEN; 2033 } 2034 2035 /** 2036 * ctrlq_check_stop - check if a control queue is full and should stop 2037 * @q: the queue 2038 * @wr: most recent WR written to the queue 2039 * 2040 * Check if a control queue has become full and should be stopped. 2041 * We clean up control queue descriptors very lazily, only when we are out. 2042 * If the queue is still full after reclaiming any completed descriptors 2043 * we suspend it and have the last WR wake it up. 2044 */ 2045 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2046 { 2047 reclaim_completed_tx_imm(&q->q); 2048 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2049 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2050 q->q.stops++; 2051 q->full = 1; 2052 } 2053 } 2054 2055 /** 2056 * ctrl_xmit - send a packet through an SGE control Tx queue 2057 * @q: the control queue 2058 * @skb: the packet 2059 * 2060 * Send a packet through an SGE control Tx queue. Packets sent through 2061 * a control queue must fit entirely as immediate data. 2062 */ 2063 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2064 { 2065 unsigned int ndesc; 2066 struct fw_wr_hdr *wr; 2067 2068 if (unlikely(!is_imm(skb))) { 2069 WARN_ON(1); 2070 dev_kfree_skb(skb); 2071 return NET_XMIT_DROP; 2072 } 2073 2074 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2075 spin_lock(&q->sendq.lock); 2076 2077 if (unlikely(q->full)) { 2078 skb->priority = ndesc; /* save for restart */ 2079 __skb_queue_tail(&q->sendq, skb); 2080 spin_unlock(&q->sendq.lock); 2081 return NET_XMIT_CN; 2082 } 2083 2084 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2085 cxgb4_inline_tx_skb(skb, &q->q, wr); 2086 2087 txq_advance(&q->q, ndesc); 2088 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2089 ctrlq_check_stop(q, wr); 2090 2091 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2092 spin_unlock(&q->sendq.lock); 2093 2094 kfree_skb(skb); 2095 return NET_XMIT_SUCCESS; 2096 } 2097 2098 /** 2099 * restart_ctrlq - restart a suspended control queue 2100 * @data: the control queue to restart 2101 * 2102 * Resumes transmission on a suspended Tx control queue. 2103 */ 2104 static void restart_ctrlq(unsigned long data) 2105 { 2106 struct sk_buff *skb; 2107 unsigned int written = 0; 2108 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 2109 2110 spin_lock(&q->sendq.lock); 2111 reclaim_completed_tx_imm(&q->q); 2112 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2113 2114 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2115 struct fw_wr_hdr *wr; 2116 unsigned int ndesc = skb->priority; /* previously saved */ 2117 2118 written += ndesc; 2119 /* Write descriptors and free skbs outside the lock to limit 2120 * wait times. q->full is still set so new skbs will be queued. 2121 */ 2122 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2123 txq_advance(&q->q, ndesc); 2124 spin_unlock(&q->sendq.lock); 2125 2126 cxgb4_inline_tx_skb(skb, &q->q, wr); 2127 kfree_skb(skb); 2128 2129 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2130 unsigned long old = q->q.stops; 2131 2132 ctrlq_check_stop(q, wr); 2133 if (q->q.stops != old) { /* suspended anew */ 2134 spin_lock(&q->sendq.lock); 2135 goto ringdb; 2136 } 2137 } 2138 if (written > 16) { 2139 cxgb4_ring_tx_db(q->adap, &q->q, written); 2140 written = 0; 2141 } 2142 spin_lock(&q->sendq.lock); 2143 } 2144 q->full = 0; 2145 ringdb: 2146 if (written) 2147 cxgb4_ring_tx_db(q->adap, &q->q, written); 2148 spin_unlock(&q->sendq.lock); 2149 } 2150 2151 /** 2152 * t4_mgmt_tx - send a management message 2153 * @adap: the adapter 2154 * @skb: the packet containing the management message 2155 * 2156 * Send a management message through control queue 0. 2157 */ 2158 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2159 { 2160 int ret; 2161 2162 local_bh_disable(); 2163 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2164 local_bh_enable(); 2165 return ret; 2166 } 2167 2168 /** 2169 * is_ofld_imm - check whether a packet can be sent as immediate data 2170 * @skb: the packet 2171 * 2172 * Returns true if a packet can be sent as an offload WR with immediate 2173 * data. We currently use the same limit as for Ethernet packets. 2174 */ 2175 static inline int is_ofld_imm(const struct sk_buff *skb) 2176 { 2177 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2178 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2179 2180 if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2181 return skb->len <= SGE_MAX_WR_LEN; 2182 else 2183 return skb->len <= MAX_IMM_TX_PKT_LEN; 2184 } 2185 2186 /** 2187 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2188 * @skb: the packet 2189 * 2190 * Returns the number of flits needed for the given offload packet. 2191 * These packets are already fully constructed and no additional headers 2192 * will be added. 2193 */ 2194 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2195 { 2196 unsigned int flits, cnt; 2197 2198 if (is_ofld_imm(skb)) 2199 return DIV_ROUND_UP(skb->len, 8); 2200 2201 flits = skb_transport_offset(skb) / 8U; /* headers */ 2202 cnt = skb_shinfo(skb)->nr_frags; 2203 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2204 cnt++; 2205 return flits + sgl_len(cnt); 2206 } 2207 2208 /** 2209 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2210 * @adap: the adapter 2211 * @q: the queue to stop 2212 * 2213 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2214 * inability to map packets. A periodic timer attempts to restart 2215 * queues so marked. 2216 */ 2217 static void txq_stop_maperr(struct sge_uld_txq *q) 2218 { 2219 q->mapping_err++; 2220 q->q.stops++; 2221 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2222 q->adap->sge.txq_maperr); 2223 } 2224 2225 /** 2226 * ofldtxq_stop - stop an offload Tx queue that has become full 2227 * @q: the queue to stop 2228 * @wr: the Work Request causing the queue to become full 2229 * 2230 * Stops an offload Tx queue that has become full and modifies the packet 2231 * being written to request a wakeup. 2232 */ 2233 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2234 { 2235 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2236 q->q.stops++; 2237 q->full = 1; 2238 } 2239 2240 /** 2241 * service_ofldq - service/restart a suspended offload queue 2242 * @q: the offload queue 2243 * 2244 * Services an offload Tx queue by moving packets from its Pending Send 2245 * Queue to the Hardware TX ring. The function starts and ends with the 2246 * Send Queue locked, but drops the lock while putting the skb at the 2247 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2248 * allows more skbs to be added to the Send Queue by other threads. 2249 * The packet being processed at the head of the Pending Send Queue is 2250 * left on the queue in case we experience DMA Mapping errors, etc. 2251 * and need to give up and restart later. 2252 * 2253 * service_ofldq() can be thought of as a task which opportunistically 2254 * uses other threads execution contexts. We use the Offload Queue 2255 * boolean "service_ofldq_running" to make sure that only one instance 2256 * is ever running at a time ... 2257 */ 2258 static void service_ofldq(struct sge_uld_txq *q) 2259 { 2260 u64 *pos, *before, *end; 2261 int credits; 2262 struct sk_buff *skb; 2263 struct sge_txq *txq; 2264 unsigned int left; 2265 unsigned int written = 0; 2266 unsigned int flits, ndesc; 2267 2268 /* If another thread is currently in service_ofldq() processing the 2269 * Pending Send Queue then there's nothing to do. Otherwise, flag 2270 * that we're doing the work and continue. Examining/modifying 2271 * the Offload Queue boolean "service_ofldq_running" must be done 2272 * while holding the Pending Send Queue Lock. 2273 */ 2274 if (q->service_ofldq_running) 2275 return; 2276 q->service_ofldq_running = true; 2277 2278 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2279 /* We drop the lock while we're working with the skb at the 2280 * head of the Pending Send Queue. This allows more skbs to 2281 * be added to the Pending Send Queue while we're working on 2282 * this one. We don't need to lock to guard the TX Ring 2283 * updates because only one thread of execution is ever 2284 * allowed into service_ofldq() at a time. 2285 */ 2286 spin_unlock(&q->sendq.lock); 2287 2288 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2289 2290 flits = skb->priority; /* previously saved */ 2291 ndesc = flits_to_desc(flits); 2292 credits = txq_avail(&q->q) - ndesc; 2293 BUG_ON(credits < 0); 2294 if (unlikely(credits < TXQ_STOP_THRES)) 2295 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2296 2297 pos = (u64 *)&q->q.desc[q->q.pidx]; 2298 if (is_ofld_imm(skb)) 2299 cxgb4_inline_tx_skb(skb, &q->q, pos); 2300 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2301 (dma_addr_t *)skb->head)) { 2302 txq_stop_maperr(q); 2303 spin_lock(&q->sendq.lock); 2304 break; 2305 } else { 2306 int last_desc, hdr_len = skb_transport_offset(skb); 2307 2308 /* The WR headers may not fit within one descriptor. 2309 * So we need to deal with wrap-around here. 2310 */ 2311 before = (u64 *)pos; 2312 end = (u64 *)pos + flits; 2313 txq = &q->q; 2314 pos = (void *)inline_tx_skb_header(skb, &q->q, 2315 (void *)pos, 2316 hdr_len); 2317 if (before > (u64 *)pos) { 2318 left = (u8 *)end - (u8 *)txq->stat; 2319 end = (void *)txq->desc + left; 2320 } 2321 2322 /* If current position is already at the end of the 2323 * ofld queue, reset the current to point to 2324 * start of the queue and update the end ptr as well. 2325 */ 2326 if (pos == (u64 *)txq->stat) { 2327 left = (u8 *)end - (u8 *)txq->stat; 2328 end = (void *)txq->desc + left; 2329 pos = (void *)txq->desc; 2330 } 2331 2332 cxgb4_write_sgl(skb, &q->q, (void *)pos, 2333 end, hdr_len, 2334 (dma_addr_t *)skb->head); 2335 #ifdef CONFIG_NEED_DMA_MAP_STATE 2336 skb->dev = q->adap->port[0]; 2337 skb->destructor = deferred_unmap_destructor; 2338 #endif 2339 last_desc = q->q.pidx + ndesc - 1; 2340 if (last_desc >= q->q.size) 2341 last_desc -= q->q.size; 2342 q->q.sdesc[last_desc].skb = skb; 2343 } 2344 2345 txq_advance(&q->q, ndesc); 2346 written += ndesc; 2347 if (unlikely(written > 32)) { 2348 cxgb4_ring_tx_db(q->adap, &q->q, written); 2349 written = 0; 2350 } 2351 2352 /* Reacquire the Pending Send Queue Lock so we can unlink the 2353 * skb we've just successfully transferred to the TX Ring and 2354 * loop for the next skb which may be at the head of the 2355 * Pending Send Queue. 2356 */ 2357 spin_lock(&q->sendq.lock); 2358 __skb_unlink(skb, &q->sendq); 2359 if (is_ofld_imm(skb)) 2360 kfree_skb(skb); 2361 } 2362 if (likely(written)) 2363 cxgb4_ring_tx_db(q->adap, &q->q, written); 2364 2365 /*Indicate that no thread is processing the Pending Send Queue 2366 * currently. 2367 */ 2368 q->service_ofldq_running = false; 2369 } 2370 2371 /** 2372 * ofld_xmit - send a packet through an offload queue 2373 * @q: the Tx offload queue 2374 * @skb: the packet 2375 * 2376 * Send an offload packet through an SGE offload queue. 2377 */ 2378 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 2379 { 2380 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 2381 spin_lock(&q->sendq.lock); 2382 2383 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 2384 * that results in this new skb being the only one on the queue, start 2385 * servicing it. If there are other skbs already on the list, then 2386 * either the queue is currently being processed or it's been stopped 2387 * for some reason and it'll be restarted at a later time. Restart 2388 * paths are triggered by events like experiencing a DMA Mapping Error 2389 * or filling the Hardware TX Ring. 2390 */ 2391 __skb_queue_tail(&q->sendq, skb); 2392 if (q->sendq.qlen == 1) 2393 service_ofldq(q); 2394 2395 spin_unlock(&q->sendq.lock); 2396 return NET_XMIT_SUCCESS; 2397 } 2398 2399 /** 2400 * restart_ofldq - restart a suspended offload queue 2401 * @data: the offload queue to restart 2402 * 2403 * Resumes transmission on a suspended Tx offload queue. 2404 */ 2405 static void restart_ofldq(unsigned long data) 2406 { 2407 struct sge_uld_txq *q = (struct sge_uld_txq *)data; 2408 2409 spin_lock(&q->sendq.lock); 2410 q->full = 0; /* the queue actually is completely empty now */ 2411 service_ofldq(q); 2412 spin_unlock(&q->sendq.lock); 2413 } 2414 2415 /** 2416 * skb_txq - return the Tx queue an offload packet should use 2417 * @skb: the packet 2418 * 2419 * Returns the Tx queue an offload packet should use as indicated by bits 2420 * 1-15 in the packet's queue_mapping. 2421 */ 2422 static inline unsigned int skb_txq(const struct sk_buff *skb) 2423 { 2424 return skb->queue_mapping >> 1; 2425 } 2426 2427 /** 2428 * is_ctrl_pkt - return whether an offload packet is a control packet 2429 * @skb: the packet 2430 * 2431 * Returns whether an offload packet should use an OFLD or a CTRL 2432 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 2433 */ 2434 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 2435 { 2436 return skb->queue_mapping & 1; 2437 } 2438 2439 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 2440 unsigned int tx_uld_type) 2441 { 2442 struct sge_uld_txq_info *txq_info; 2443 struct sge_uld_txq *txq; 2444 unsigned int idx = skb_txq(skb); 2445 2446 if (unlikely(is_ctrl_pkt(skb))) { 2447 /* Single ctrl queue is a requirement for LE workaround path */ 2448 if (adap->tids.nsftids) 2449 idx = 0; 2450 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 2451 } 2452 2453 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 2454 if (unlikely(!txq_info)) { 2455 WARN_ON(true); 2456 return NET_XMIT_DROP; 2457 } 2458 2459 txq = &txq_info->uldtxq[idx]; 2460 return ofld_xmit(txq, skb); 2461 } 2462 2463 /** 2464 * t4_ofld_send - send an offload packet 2465 * @adap: the adapter 2466 * @skb: the packet 2467 * 2468 * Sends an offload packet. We use the packet queue_mapping to select the 2469 * appropriate Tx queue as follows: bit 0 indicates whether the packet 2470 * should be sent as regular or control, bits 1-15 select the queue. 2471 */ 2472 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 2473 { 2474 int ret; 2475 2476 local_bh_disable(); 2477 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 2478 local_bh_enable(); 2479 return ret; 2480 } 2481 2482 /** 2483 * cxgb4_ofld_send - send an offload packet 2484 * @dev: the net device 2485 * @skb: the packet 2486 * 2487 * Sends an offload packet. This is an exported version of @t4_ofld_send, 2488 * intended for ULDs. 2489 */ 2490 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 2491 { 2492 return t4_ofld_send(netdev2adap(dev), skb); 2493 } 2494 EXPORT_SYMBOL(cxgb4_ofld_send); 2495 2496 static void *inline_tx_header(const void *src, 2497 const struct sge_txq *q, 2498 void *pos, int length) 2499 { 2500 int left = (void *)q->stat - pos; 2501 u64 *p; 2502 2503 if (likely(length <= left)) { 2504 memcpy(pos, src, length); 2505 pos += length; 2506 } else { 2507 memcpy(pos, src, left); 2508 memcpy(q->desc, src + left, length - left); 2509 pos = (void *)q->desc + (length - left); 2510 } 2511 /* 0-pad to multiple of 16 */ 2512 p = PTR_ALIGN(pos, 8); 2513 if ((uintptr_t)p & 8) { 2514 *p = 0; 2515 return p + 1; 2516 } 2517 return p; 2518 } 2519 2520 /** 2521 * ofld_xmit_direct - copy a WR into offload queue 2522 * @q: the Tx offload queue 2523 * @src: location of WR 2524 * @len: WR length 2525 * 2526 * Copy an immediate WR into an uncontended SGE offload queue. 2527 */ 2528 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 2529 unsigned int len) 2530 { 2531 unsigned int ndesc; 2532 int credits; 2533 u64 *pos; 2534 2535 /* Use the lower limit as the cut-off */ 2536 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 2537 WARN_ON(1); 2538 return NET_XMIT_DROP; 2539 } 2540 2541 /* Don't return NET_XMIT_CN here as the current 2542 * implementation doesn't queue the request 2543 * using an skb when the following conditions not met 2544 */ 2545 if (!spin_trylock(&q->sendq.lock)) 2546 return NET_XMIT_DROP; 2547 2548 if (q->full || !skb_queue_empty(&q->sendq) || 2549 q->service_ofldq_running) { 2550 spin_unlock(&q->sendq.lock); 2551 return NET_XMIT_DROP; 2552 } 2553 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 2554 credits = txq_avail(&q->q) - ndesc; 2555 pos = (u64 *)&q->q.desc[q->q.pidx]; 2556 2557 /* ofldtxq_stop modifies WR header in-situ */ 2558 inline_tx_header(src, &q->q, pos, len); 2559 if (unlikely(credits < TXQ_STOP_THRES)) 2560 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 2561 txq_advance(&q->q, ndesc); 2562 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2563 2564 spin_unlock(&q->sendq.lock); 2565 return NET_XMIT_SUCCESS; 2566 } 2567 2568 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 2569 const void *src, unsigned int len) 2570 { 2571 struct sge_uld_txq_info *txq_info; 2572 struct sge_uld_txq *txq; 2573 struct adapter *adap; 2574 int ret; 2575 2576 adap = netdev2adap(dev); 2577 2578 local_bh_disable(); 2579 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2580 if (unlikely(!txq_info)) { 2581 WARN_ON(true); 2582 local_bh_enable(); 2583 return NET_XMIT_DROP; 2584 } 2585 txq = &txq_info->uldtxq[idx]; 2586 2587 ret = ofld_xmit_direct(txq, src, len); 2588 local_bh_enable(); 2589 return net_xmit_eval(ret); 2590 } 2591 EXPORT_SYMBOL(cxgb4_immdata_send); 2592 2593 /** 2594 * t4_crypto_send - send crypto packet 2595 * @adap: the adapter 2596 * @skb: the packet 2597 * 2598 * Sends crypto packet. We use the packet queue_mapping to select the 2599 * appropriate Tx queue as follows: bit 0 indicates whether the packet 2600 * should be sent as regular or control, bits 1-15 select the queue. 2601 */ 2602 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 2603 { 2604 int ret; 2605 2606 local_bh_disable(); 2607 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 2608 local_bh_enable(); 2609 return ret; 2610 } 2611 2612 /** 2613 * cxgb4_crypto_send - send crypto packet 2614 * @dev: the net device 2615 * @skb: the packet 2616 * 2617 * Sends crypto packet. This is an exported version of @t4_crypto_send, 2618 * intended for ULDs. 2619 */ 2620 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 2621 { 2622 return t4_crypto_send(netdev2adap(dev), skb); 2623 } 2624 EXPORT_SYMBOL(cxgb4_crypto_send); 2625 2626 static inline void copy_frags(struct sk_buff *skb, 2627 const struct pkt_gl *gl, unsigned int offset) 2628 { 2629 int i; 2630 2631 /* usually there's just one frag */ 2632 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 2633 gl->frags[0].offset + offset, 2634 gl->frags[0].size - offset); 2635 skb_shinfo(skb)->nr_frags = gl->nfrags; 2636 for (i = 1; i < gl->nfrags; i++) 2637 __skb_fill_page_desc(skb, i, gl->frags[i].page, 2638 gl->frags[i].offset, 2639 gl->frags[i].size); 2640 2641 /* get a reference to the last page, we don't own it */ 2642 get_page(gl->frags[gl->nfrags - 1].page); 2643 } 2644 2645 /** 2646 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 2647 * @gl: the gather list 2648 * @skb_len: size of sk_buff main body if it carries fragments 2649 * @pull_len: amount of data to move to the sk_buff's main body 2650 * 2651 * Builds an sk_buff from the given packet gather list. Returns the 2652 * sk_buff or %NULL if sk_buff allocation failed. 2653 */ 2654 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 2655 unsigned int skb_len, unsigned int pull_len) 2656 { 2657 struct sk_buff *skb; 2658 2659 /* 2660 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 2661 * size, which is expected since buffers are at least PAGE_SIZEd. 2662 * In this case packets up to RX_COPY_THRES have only one fragment. 2663 */ 2664 if (gl->tot_len <= RX_COPY_THRES) { 2665 skb = dev_alloc_skb(gl->tot_len); 2666 if (unlikely(!skb)) 2667 goto out; 2668 __skb_put(skb, gl->tot_len); 2669 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 2670 } else { 2671 skb = dev_alloc_skb(skb_len); 2672 if (unlikely(!skb)) 2673 goto out; 2674 __skb_put(skb, pull_len); 2675 skb_copy_to_linear_data(skb, gl->va, pull_len); 2676 2677 copy_frags(skb, gl, pull_len); 2678 skb->len = gl->tot_len; 2679 skb->data_len = skb->len - pull_len; 2680 skb->truesize += skb->data_len; 2681 } 2682 out: return skb; 2683 } 2684 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 2685 2686 /** 2687 * t4_pktgl_free - free a packet gather list 2688 * @gl: the gather list 2689 * 2690 * Releases the pages of a packet gather list. We do not own the last 2691 * page on the list and do not free it. 2692 */ 2693 static void t4_pktgl_free(const struct pkt_gl *gl) 2694 { 2695 int n; 2696 const struct page_frag *p; 2697 2698 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 2699 put_page(p->page); 2700 } 2701 2702 /* 2703 * Process an MPS trace packet. Give it an unused protocol number so it won't 2704 * be delivered to anyone and send it to the stack for capture. 2705 */ 2706 static noinline int handle_trace_pkt(struct adapter *adap, 2707 const struct pkt_gl *gl) 2708 { 2709 struct sk_buff *skb; 2710 2711 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 2712 if (unlikely(!skb)) { 2713 t4_pktgl_free(gl); 2714 return 0; 2715 } 2716 2717 if (is_t4(adap->params.chip)) 2718 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 2719 else 2720 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 2721 2722 skb_reset_mac_header(skb); 2723 skb->protocol = htons(0xffff); 2724 skb->dev = adap->port[0]; 2725 netif_receive_skb(skb); 2726 return 0; 2727 } 2728 2729 /** 2730 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 2731 * @adap: the adapter 2732 * @hwtstamps: time stamp structure to update 2733 * @sgetstamp: 60bit iqe timestamp 2734 * 2735 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 2736 * which is in Core Clock ticks into ktime_t and assign it 2737 **/ 2738 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 2739 struct skb_shared_hwtstamps *hwtstamps, 2740 u64 sgetstamp) 2741 { 2742 u64 ns; 2743 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 2744 2745 ns = div_u64(tmp, adap->params.vpd.cclk); 2746 2747 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2748 hwtstamps->hwtstamp = ns_to_ktime(ns); 2749 } 2750 2751 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 2752 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 2753 { 2754 struct adapter *adapter = rxq->rspq.adap; 2755 struct sge *s = &adapter->sge; 2756 struct port_info *pi; 2757 int ret; 2758 struct sk_buff *skb; 2759 2760 skb = napi_get_frags(&rxq->rspq.napi); 2761 if (unlikely(!skb)) { 2762 t4_pktgl_free(gl); 2763 rxq->stats.rx_drops++; 2764 return; 2765 } 2766 2767 copy_frags(skb, gl, s->pktshift); 2768 if (tnl_hdr_len) 2769 skb->csum_level = 1; 2770 skb->len = gl->tot_len - s->pktshift; 2771 skb->data_len = skb->len; 2772 skb->truesize += skb->data_len; 2773 skb->ip_summed = CHECKSUM_UNNECESSARY; 2774 skb_record_rx_queue(skb, rxq->rspq.idx); 2775 pi = netdev_priv(skb->dev); 2776 if (pi->rxtstamp) 2777 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 2778 gl->sgetstamp); 2779 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 2780 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 2781 PKT_HASH_TYPE_L3); 2782 2783 if (unlikely(pkt->vlan_ex)) { 2784 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 2785 rxq->stats.vlan_ex++; 2786 } 2787 ret = napi_gro_frags(&rxq->rspq.napi); 2788 if (ret == GRO_HELD) 2789 rxq->stats.lro_pkts++; 2790 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 2791 rxq->stats.lro_merged++; 2792 rxq->stats.pkts++; 2793 rxq->stats.rx_cso++; 2794 } 2795 2796 enum { 2797 RX_NON_PTP_PKT = 0, 2798 RX_PTP_PKT_SUC = 1, 2799 RX_PTP_PKT_ERR = 2 2800 }; 2801 2802 /** 2803 * t4_systim_to_hwstamp - read hardware time stamp 2804 * @adap: the adapter 2805 * @skb: the packet 2806 * 2807 * Read Time Stamp from MPS packet and insert in skb which 2808 * is forwarded to PTP application 2809 */ 2810 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 2811 struct sk_buff *skb) 2812 { 2813 struct skb_shared_hwtstamps *hwtstamps; 2814 struct cpl_rx_mps_pkt *cpl = NULL; 2815 unsigned char *data; 2816 int offset; 2817 2818 cpl = (struct cpl_rx_mps_pkt *)skb->data; 2819 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 2820 X_CPL_RX_MPS_PKT_TYPE_PTP)) 2821 return RX_PTP_PKT_ERR; 2822 2823 data = skb->data + sizeof(*cpl); 2824 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 2825 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 2826 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 2827 return RX_PTP_PKT_ERR; 2828 2829 hwtstamps = skb_hwtstamps(skb); 2830 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2831 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data))); 2832 2833 return RX_PTP_PKT_SUC; 2834 } 2835 2836 /** 2837 * t4_rx_hststamp - Recv PTP Event Message 2838 * @adap: the adapter 2839 * @rsp: the response queue descriptor holding the RX_PKT message 2840 * @skb: the packet 2841 * 2842 * PTP enabled and MPS packet, read HW timestamp 2843 */ 2844 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 2845 struct sge_eth_rxq *rxq, struct sk_buff *skb) 2846 { 2847 int ret; 2848 2849 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 2850 !is_t4(adapter->params.chip))) { 2851 ret = t4_systim_to_hwstamp(adapter, skb); 2852 if (ret == RX_PTP_PKT_ERR) { 2853 kfree_skb(skb); 2854 rxq->stats.rx_drops++; 2855 } 2856 return ret; 2857 } 2858 return RX_NON_PTP_PKT; 2859 } 2860 2861 /** 2862 * t4_tx_hststamp - Loopback PTP Transmit Event Message 2863 * @adap: the adapter 2864 * @skb: the packet 2865 * @dev: the ingress net device 2866 * 2867 * Read hardware timestamp for the loopback PTP Tx event message 2868 */ 2869 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 2870 struct net_device *dev) 2871 { 2872 struct port_info *pi = netdev_priv(dev); 2873 2874 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 2875 cxgb4_ptp_read_hwstamp(adapter, pi); 2876 kfree_skb(skb); 2877 return 0; 2878 } 2879 return 1; 2880 } 2881 2882 /** 2883 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 2884 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 2885 * @rsp: Response Entry pointer into Response Queue 2886 * @gl: Gather List pointer 2887 * 2888 * For adapters which support the SGE Doorbell Queue Timer facility, 2889 * we configure the Ethernet TX Queues to send CIDX Updates to the 2890 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 2891 * messages. This adds a small load to PCIe Link RX bandwidth and, 2892 * potentially, higher CPU Interrupt load, but allows us to respond 2893 * much more quickly to the CIDX Updates. This is important for 2894 * Upper Layer Software which isn't willing to have a large amount 2895 * of TX Data outstanding before receiving DMA Completions. 2896 */ 2897 static void t4_tx_completion_handler(struct sge_rspq *rspq, 2898 const __be64 *rsp, 2899 const struct pkt_gl *gl) 2900 { 2901 u8 opcode = ((const struct rss_header *)rsp)->opcode; 2902 struct port_info *pi = netdev_priv(rspq->netdev); 2903 struct adapter *adapter = rspq->adap; 2904 struct sge *s = &adapter->sge; 2905 struct sge_eth_txq *txq; 2906 2907 /* skip RSS header */ 2908 rsp++; 2909 2910 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 2911 */ 2912 if (unlikely(opcode == CPL_FW4_MSG && 2913 ((const struct cpl_fw4_msg *)rsp)->type == 2914 FW_TYPE_RSSCPL)) { 2915 rsp++; 2916 opcode = ((const struct rss_header *)rsp)->opcode; 2917 rsp++; 2918 } 2919 2920 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 2921 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 2922 __func__, opcode); 2923 return; 2924 } 2925 2926 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 2927 2928 /* We've got the Hardware Consumer Index Update in the Egress Update 2929 * message. If we're using the SGE Doorbell Queue Timer mechanism, 2930 * these Egress Update messages will be our sole CIDX Updates we get 2931 * since we don't want to chew up PCIe bandwidth for both Ingress 2932 * Messages and Status Page writes. However, The code which manages 2933 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value 2934 * stored in the Status Page at the end of the TX Queue. It's easiest 2935 * to simply copy the CIDX Update value from the Egress Update message 2936 * to the Status Page. Also note that no Endian issues need to be 2937 * considered here since both are Big Endian and we're just copying 2938 * bytes consistently ... 2939 */ 2940 if (txq->dbqt) { 2941 struct cpl_sge_egr_update *egr; 2942 2943 egr = (struct cpl_sge_egr_update *)rsp; 2944 WRITE_ONCE(txq->q.stat->cidx, egr->cidx); 2945 } 2946 2947 t4_sge_eth_txq_egress_update(adapter, txq, -1); 2948 } 2949 2950 /** 2951 * t4_ethrx_handler - process an ingress ethernet packet 2952 * @q: the response queue that received the packet 2953 * @rsp: the response queue descriptor holding the RX_PKT message 2954 * @si: the gather list of packet fragments 2955 * 2956 * Process an ingress ethernet packet and deliver it to the stack. 2957 */ 2958 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 2959 const struct pkt_gl *si) 2960 { 2961 bool csum_ok; 2962 struct sk_buff *skb; 2963 const struct cpl_rx_pkt *pkt; 2964 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 2965 struct adapter *adapter = q->adap; 2966 struct sge *s = &q->adap->sge; 2967 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 2968 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 2969 u16 err_vec, tnl_hdr_len = 0; 2970 struct port_info *pi; 2971 int ret = 0; 2972 2973 /* If we're looking at TX Queue CIDX Update, handle that separately 2974 * and return. 2975 */ 2976 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 2977 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 2978 t4_tx_completion_handler(q, rsp, si); 2979 return 0; 2980 } 2981 2982 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 2983 return handle_trace_pkt(q->adap, si); 2984 2985 pkt = (const struct cpl_rx_pkt *)rsp; 2986 /* Compressed error vector is enabled for T6 only */ 2987 if (q->adap->params.tp.rx_pkt_encap) { 2988 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 2989 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 2990 } else { 2991 err_vec = be16_to_cpu(pkt->err_vec); 2992 } 2993 2994 csum_ok = pkt->csum_calc && !err_vec && 2995 (q->netdev->features & NETIF_F_RXCSUM); 2996 2997 if (err_vec) 2998 rxq->stats.bad_rx_pkts++; 2999 3000 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3001 tnl_hdr_len) && 3002 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3003 do_gro(rxq, si, pkt, tnl_hdr_len); 3004 return 0; 3005 } 3006 3007 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3008 if (unlikely(!skb)) { 3009 t4_pktgl_free(si); 3010 rxq->stats.rx_drops++; 3011 return 0; 3012 } 3013 pi = netdev_priv(q->netdev); 3014 3015 /* Handle PTP Event Rx packet */ 3016 if (unlikely(pi->ptp_enable)) { 3017 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3018 if (ret == RX_PTP_PKT_ERR) 3019 return 0; 3020 } 3021 if (likely(!ret)) 3022 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3023 3024 /* Handle the PTP Event Tx Loopback packet */ 3025 if (unlikely(pi->ptp_enable && !ret && 3026 (pkt->l2info & htonl(RXF_UDP_F)) && 3027 cxgb4_ptp_is_ptp_rx(skb))) { 3028 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3029 return 0; 3030 } 3031 3032 skb->protocol = eth_type_trans(skb, q->netdev); 3033 skb_record_rx_queue(skb, q->idx); 3034 if (skb->dev->features & NETIF_F_RXHASH) 3035 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3036 PKT_HASH_TYPE_L3); 3037 3038 rxq->stats.pkts++; 3039 3040 if (pi->rxtstamp) 3041 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3042 si->sgetstamp); 3043 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3044 if (!pkt->ip_frag) { 3045 skb->ip_summed = CHECKSUM_UNNECESSARY; 3046 rxq->stats.rx_cso++; 3047 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3048 __sum16 c = (__force __sum16)pkt->csum; 3049 skb->csum = csum_unfold(c); 3050 3051 if (tnl_hdr_len) { 3052 skb->ip_summed = CHECKSUM_UNNECESSARY; 3053 skb->csum_level = 1; 3054 } else { 3055 skb->ip_summed = CHECKSUM_COMPLETE; 3056 } 3057 rxq->stats.rx_cso++; 3058 } 3059 } else { 3060 skb_checksum_none_assert(skb); 3061 #ifdef CONFIG_CHELSIO_T4_FCOE 3062 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3063 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3064 3065 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3066 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3067 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3068 if (q->adap->params.tp.rx_pkt_encap) 3069 csum_ok = err_vec & 3070 T6_COMPR_RXERR_SUM_F; 3071 else 3072 csum_ok = err_vec & RXERR_CSUM_F; 3073 if (!csum_ok) 3074 skb->ip_summed = CHECKSUM_UNNECESSARY; 3075 } 3076 } 3077 3078 #undef CPL_RX_PKT_FLAGS 3079 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3080 } 3081 3082 if (unlikely(pkt->vlan_ex)) { 3083 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3084 rxq->stats.vlan_ex++; 3085 } 3086 skb_mark_napi_id(skb, &q->napi); 3087 netif_receive_skb(skb); 3088 return 0; 3089 } 3090 3091 /** 3092 * restore_rx_bufs - put back a packet's Rx buffers 3093 * @si: the packet gather list 3094 * @q: the SGE free list 3095 * @frags: number of FL buffers to restore 3096 * 3097 * Puts back on an FL the Rx buffers associated with @si. The buffers 3098 * have already been unmapped and are left unmapped, we mark them so to 3099 * prevent further unmapping attempts. 3100 * 3101 * This function undoes a series of @unmap_rx_buf calls when we find out 3102 * that the current packet can't be processed right away afterall and we 3103 * need to come back to it later. This is a very rare event and there's 3104 * no effort to make this particularly efficient. 3105 */ 3106 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3107 int frags) 3108 { 3109 struct rx_sw_desc *d; 3110 3111 while (frags--) { 3112 if (q->cidx == 0) 3113 q->cidx = q->size - 1; 3114 else 3115 q->cidx--; 3116 d = &q->sdesc[q->cidx]; 3117 d->page = si->frags[frags].page; 3118 d->dma_addr |= RX_UNMAPPED_BUF; 3119 q->avail++; 3120 } 3121 } 3122 3123 /** 3124 * is_new_response - check if a response is newly written 3125 * @r: the response descriptor 3126 * @q: the response queue 3127 * 3128 * Returns true if a response descriptor contains a yet unprocessed 3129 * response. 3130 */ 3131 static inline bool is_new_response(const struct rsp_ctrl *r, 3132 const struct sge_rspq *q) 3133 { 3134 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3135 } 3136 3137 /** 3138 * rspq_next - advance to the next entry in a response queue 3139 * @q: the queue 3140 * 3141 * Updates the state of a response queue to advance it to the next entry. 3142 */ 3143 static inline void rspq_next(struct sge_rspq *q) 3144 { 3145 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3146 if (unlikely(++q->cidx == q->size)) { 3147 q->cidx = 0; 3148 q->gen ^= 1; 3149 q->cur_desc = q->desc; 3150 } 3151 } 3152 3153 /** 3154 * process_responses - process responses from an SGE response queue 3155 * @q: the ingress queue to process 3156 * @budget: how many responses can be processed in this round 3157 * 3158 * Process responses from an SGE response queue up to the supplied budget. 3159 * Responses include received packets as well as control messages from FW 3160 * or HW. 3161 * 3162 * Additionally choose the interrupt holdoff time for the next interrupt 3163 * on this queue. If the system is under memory shortage use a fairly 3164 * long delay to help recovery. 3165 */ 3166 static int process_responses(struct sge_rspq *q, int budget) 3167 { 3168 int ret, rsp_type; 3169 int budget_left = budget; 3170 const struct rsp_ctrl *rc; 3171 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3172 struct adapter *adapter = q->adap; 3173 struct sge *s = &adapter->sge; 3174 3175 while (likely(budget_left)) { 3176 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3177 if (!is_new_response(rc, q)) { 3178 if (q->flush_handler) 3179 q->flush_handler(q); 3180 break; 3181 } 3182 3183 dma_rmb(); 3184 rsp_type = RSPD_TYPE_G(rc->type_gen); 3185 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3186 struct page_frag *fp; 3187 struct pkt_gl si; 3188 const struct rx_sw_desc *rsd; 3189 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3190 3191 if (len & RSPD_NEWBUF_F) { 3192 if (likely(q->offset > 0)) { 3193 free_rx_bufs(q->adap, &rxq->fl, 1); 3194 q->offset = 0; 3195 } 3196 len = RSPD_LEN_G(len); 3197 } 3198 si.tot_len = len; 3199 3200 /* gather packet fragments */ 3201 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3202 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3203 bufsz = get_buf_size(adapter, rsd); 3204 fp->page = rsd->page; 3205 fp->offset = q->offset; 3206 fp->size = min(bufsz, len); 3207 len -= fp->size; 3208 if (!len) 3209 break; 3210 unmap_rx_buf(q->adap, &rxq->fl); 3211 } 3212 3213 si.sgetstamp = SGE_TIMESTAMP_G( 3214 be64_to_cpu(rc->last_flit)); 3215 /* 3216 * Last buffer remains mapped so explicitly make it 3217 * coherent for CPU access. 3218 */ 3219 dma_sync_single_for_cpu(q->adap->pdev_dev, 3220 get_buf_addr(rsd), 3221 fp->size, DMA_FROM_DEVICE); 3222 3223 si.va = page_address(si.frags[0].page) + 3224 si.frags[0].offset; 3225 prefetch(si.va); 3226 3227 si.nfrags = frags + 1; 3228 ret = q->handler(q, q->cur_desc, &si); 3229 if (likely(ret == 0)) 3230 q->offset += ALIGN(fp->size, s->fl_align); 3231 else 3232 restore_rx_bufs(&si, &rxq->fl, frags); 3233 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3234 ret = q->handler(q, q->cur_desc, NULL); 3235 } else { 3236 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3237 } 3238 3239 if (unlikely(ret)) { 3240 /* couldn't process descriptor, back off for recovery */ 3241 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3242 break; 3243 } 3244 3245 rspq_next(q); 3246 budget_left--; 3247 } 3248 3249 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3250 __refill_fl(q->adap, &rxq->fl); 3251 return budget - budget_left; 3252 } 3253 3254 /** 3255 * napi_rx_handler - the NAPI handler for Rx processing 3256 * @napi: the napi instance 3257 * @budget: how many packets we can process in this round 3258 * 3259 * Handler for new data events when using NAPI. This does not need any 3260 * locking or protection from interrupts as data interrupts are off at 3261 * this point and other adapter interrupts do not interfere (the latter 3262 * in not a concern at all with MSI-X as non-data interrupts then have 3263 * a separate handler). 3264 */ 3265 static int napi_rx_handler(struct napi_struct *napi, int budget) 3266 { 3267 unsigned int params; 3268 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3269 int work_done; 3270 u32 val; 3271 3272 work_done = process_responses(q, budget); 3273 if (likely(work_done < budget)) { 3274 int timer_index; 3275 3276 napi_complete_done(napi, work_done); 3277 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 3278 3279 if (q->adaptive_rx) { 3280 if (work_done > max(timer_pkt_quota[timer_index], 3281 MIN_NAPI_WORK)) 3282 timer_index = (timer_index + 1); 3283 else 3284 timer_index = timer_index - 1; 3285 3286 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 3287 q->next_intr_params = 3288 QINTR_TIMER_IDX_V(timer_index) | 3289 QINTR_CNT_EN_V(0); 3290 params = q->next_intr_params; 3291 } else { 3292 params = q->next_intr_params; 3293 q->next_intr_params = q->intr_params; 3294 } 3295 } else 3296 params = QINTR_TIMER_IDX_V(7); 3297 3298 val = CIDXINC_V(work_done) | SEINTARM_V(params); 3299 3300 /* If we don't have access to the new User GTS (T5+), use the old 3301 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3302 */ 3303 if (unlikely(q->bar2_addr == NULL)) { 3304 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 3305 val | INGRESSQID_V((u32)q->cntxt_id)); 3306 } else { 3307 writel(val | INGRESSQID_V(q->bar2_qid), 3308 q->bar2_addr + SGE_UDB_GTS); 3309 wmb(); 3310 } 3311 return work_done; 3312 } 3313 3314 /* 3315 * The MSI-X interrupt handler for an SGE response queue. 3316 */ 3317 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 3318 { 3319 struct sge_rspq *q = cookie; 3320 3321 napi_schedule(&q->napi); 3322 return IRQ_HANDLED; 3323 } 3324 3325 /* 3326 * Process the indirect interrupt entries in the interrupt queue and kick off 3327 * NAPI for each queue that has generated an entry. 3328 */ 3329 static unsigned int process_intrq(struct adapter *adap) 3330 { 3331 unsigned int credits; 3332 const struct rsp_ctrl *rc; 3333 struct sge_rspq *q = &adap->sge.intrq; 3334 u32 val; 3335 3336 spin_lock(&adap->sge.intrq_lock); 3337 for (credits = 0; ; credits++) { 3338 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3339 if (!is_new_response(rc, q)) 3340 break; 3341 3342 dma_rmb(); 3343 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 3344 unsigned int qid = ntohl(rc->pldbuflen_qid); 3345 3346 qid -= adap->sge.ingr_start; 3347 napi_schedule(&adap->sge.ingr_map[qid]->napi); 3348 } 3349 3350 rspq_next(q); 3351 } 3352 3353 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 3354 3355 /* If we don't have access to the new User GTS (T5+), use the old 3356 * doorbell mechanism; otherwise use the new BAR2 mechanism. 3357 */ 3358 if (unlikely(q->bar2_addr == NULL)) { 3359 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 3360 val | INGRESSQID_V(q->cntxt_id)); 3361 } else { 3362 writel(val | INGRESSQID_V(q->bar2_qid), 3363 q->bar2_addr + SGE_UDB_GTS); 3364 wmb(); 3365 } 3366 spin_unlock(&adap->sge.intrq_lock); 3367 return credits; 3368 } 3369 3370 /* 3371 * The MSI interrupt handler, which handles data events from SGE response queues 3372 * as well as error and other async events as they all use the same MSI vector. 3373 */ 3374 static irqreturn_t t4_intr_msi(int irq, void *cookie) 3375 { 3376 struct adapter *adap = cookie; 3377 3378 if (adap->flags & CXGB4_MASTER_PF) 3379 t4_slow_intr_handler(adap); 3380 process_intrq(adap); 3381 return IRQ_HANDLED; 3382 } 3383 3384 /* 3385 * Interrupt handler for legacy INTx interrupts. 3386 * Handles data events from SGE response queues as well as error and other 3387 * async events as they all use the same interrupt line. 3388 */ 3389 static irqreturn_t t4_intr_intx(int irq, void *cookie) 3390 { 3391 struct adapter *adap = cookie; 3392 3393 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 3394 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 3395 process_intrq(adap)) 3396 return IRQ_HANDLED; 3397 return IRQ_NONE; /* probably shared interrupt */ 3398 } 3399 3400 /** 3401 * t4_intr_handler - select the top-level interrupt handler 3402 * @adap: the adapter 3403 * 3404 * Selects the top-level interrupt handler based on the type of interrupts 3405 * (MSI-X, MSI, or INTx). 3406 */ 3407 irq_handler_t t4_intr_handler(struct adapter *adap) 3408 { 3409 if (adap->flags & CXGB4_USING_MSIX) 3410 return t4_sge_intr_msix; 3411 if (adap->flags & CXGB4_USING_MSI) 3412 return t4_intr_msi; 3413 return t4_intr_intx; 3414 } 3415 3416 static void sge_rx_timer_cb(struct timer_list *t) 3417 { 3418 unsigned long m; 3419 unsigned int i; 3420 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 3421 struct sge *s = &adap->sge; 3422 3423 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 3424 for (m = s->starving_fl[i]; m; m &= m - 1) { 3425 struct sge_eth_rxq *rxq; 3426 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 3427 struct sge_fl *fl = s->egr_map[id]; 3428 3429 clear_bit(id, s->starving_fl); 3430 smp_mb__after_atomic(); 3431 3432 if (fl_starving(adap, fl)) { 3433 rxq = container_of(fl, struct sge_eth_rxq, fl); 3434 if (napi_reschedule(&rxq->rspq.napi)) 3435 fl->starving++; 3436 else 3437 set_bit(id, s->starving_fl); 3438 } 3439 } 3440 /* The remainder of the SGE RX Timer Callback routine is dedicated to 3441 * global Master PF activities like checking for chip ingress stalls, 3442 * etc. 3443 */ 3444 if (!(adap->flags & CXGB4_MASTER_PF)) 3445 goto done; 3446 3447 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 3448 3449 done: 3450 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 3451 } 3452 3453 static void sge_tx_timer_cb(struct timer_list *t) 3454 { 3455 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 3456 struct sge *s = &adap->sge; 3457 unsigned long m, period; 3458 unsigned int i, budget; 3459 3460 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 3461 for (m = s->txq_maperr[i]; m; m &= m - 1) { 3462 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 3463 struct sge_uld_txq *txq = s->egr_map[id]; 3464 3465 clear_bit(id, s->txq_maperr); 3466 tasklet_schedule(&txq->qresume_tsk); 3467 } 3468 3469 if (!is_t4(adap->params.chip)) { 3470 struct sge_eth_txq *q = &s->ptptxq; 3471 int avail; 3472 3473 spin_lock(&adap->ptp_lock); 3474 avail = reclaimable(&q->q); 3475 3476 if (avail) { 3477 free_tx_desc(adap, &q->q, avail, false); 3478 q->q.in_use -= avail; 3479 } 3480 spin_unlock(&adap->ptp_lock); 3481 } 3482 3483 budget = MAX_TIMER_TX_RECLAIM; 3484 i = s->ethtxq_rover; 3485 do { 3486 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 3487 budget); 3488 if (!budget) 3489 break; 3490 3491 if (++i >= s->ethqsets) 3492 i = 0; 3493 } while (i != s->ethtxq_rover); 3494 s->ethtxq_rover = i; 3495 3496 if (budget == 0) { 3497 /* If we found too many reclaimable packets schedule a timer 3498 * in the near future to continue where we left off. 3499 */ 3500 period = 2; 3501 } else { 3502 /* We reclaimed all reclaimable TX Descriptors, so reschedule 3503 * at the normal period. 3504 */ 3505 period = TX_QCHECK_PERIOD; 3506 } 3507 3508 mod_timer(&s->tx_timer, jiffies + period); 3509 } 3510 3511 /** 3512 * bar2_address - return the BAR2 address for an SGE Queue's Registers 3513 * @adapter: the adapter 3514 * @qid: the SGE Queue ID 3515 * @qtype: the SGE Queue Type (Egress or Ingress) 3516 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 3517 * 3518 * Returns the BAR2 address for the SGE Queue Registers associated with 3519 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 3520 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 3521 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 3522 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 3523 */ 3524 static void __iomem *bar2_address(struct adapter *adapter, 3525 unsigned int qid, 3526 enum t4_bar2_qtype qtype, 3527 unsigned int *pbar2_qid) 3528 { 3529 u64 bar2_qoffset; 3530 int ret; 3531 3532 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 3533 &bar2_qoffset, pbar2_qid); 3534 if (ret) 3535 return NULL; 3536 3537 return adapter->bar2 + bar2_qoffset; 3538 } 3539 3540 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 3541 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 3542 */ 3543 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 3544 struct net_device *dev, int intr_idx, 3545 struct sge_fl *fl, rspq_handler_t hnd, 3546 rspq_flush_handler_t flush_hnd, int cong) 3547 { 3548 int ret, flsz = 0; 3549 struct fw_iq_cmd c; 3550 struct sge *s = &adap->sge; 3551 struct port_info *pi = netdev_priv(dev); 3552 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 3553 3554 /* Size needs to be multiple of 16, including status entry. */ 3555 iq->size = roundup(iq->size, 16); 3556 3557 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 3558 &iq->phys_addr, NULL, 0, 3559 dev_to_node(adap->pdev_dev)); 3560 if (!iq->desc) 3561 return -ENOMEM; 3562 3563 memset(&c, 0, sizeof(c)); 3564 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 3565 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3566 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 3567 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 3568 FW_LEN16(c)); 3569 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 3570 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 3571 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 3572 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 3573 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 3574 -intr_idx - 1)); 3575 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 3576 FW_IQ_CMD_IQGTSMODE_F | 3577 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 3578 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 3579 c.iqsize = htons(iq->size); 3580 c.iqaddr = cpu_to_be64(iq->phys_addr); 3581 if (cong >= 0) 3582 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 3583 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 3584 : FW_IQ_IQTYPE_OFLD)); 3585 3586 if (fl) { 3587 unsigned int chip_ver = 3588 CHELSIO_CHIP_VERSION(adap->params.chip); 3589 3590 /* Allocate the ring for the hardware free list (with space 3591 * for its status page) along with the associated software 3592 * descriptor ring. The free list size needs to be a multiple 3593 * of the Egress Queue Unit and at least 2 Egress Units larger 3594 * than the SGE's Egress Congrestion Threshold 3595 * (fl_starve_thres - 1). 3596 */ 3597 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 3598 fl->size = s->fl_starve_thres - 1 + 2 * 8; 3599 fl->size = roundup(fl->size, 8); 3600 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 3601 sizeof(struct rx_sw_desc), &fl->addr, 3602 &fl->sdesc, s->stat_len, 3603 dev_to_node(adap->pdev_dev)); 3604 if (!fl->desc) 3605 goto fl_nomem; 3606 3607 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 3608 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 3609 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 3610 FW_IQ_CMD_FL0DATARO_V(relaxed) | 3611 FW_IQ_CMD_FL0PADEN_F); 3612 if (cong >= 0) 3613 c.iqns_to_fl0congen |= 3614 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 3615 FW_IQ_CMD_FL0CONGCIF_F | 3616 FW_IQ_CMD_FL0CONGEN_F); 3617 /* In T6, for egress queue type FL there is internal overhead 3618 * of 16B for header going into FLM module. Hence the maximum 3619 * allowed burst size is 448 bytes. For T4/T5, the hardware 3620 * doesn't coalesce fetch requests if more than 64 bytes of 3621 * Free List pointers are provided, so we use a 128-byte Fetch 3622 * Burst Minimum there (T6 implements coalescing so we can use 3623 * the smaller 64-byte value there). 3624 */ 3625 c.fl0dcaen_to_fl0cidxfthresh = 3626 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 3627 FETCHBURSTMIN_128B_X : 3628 FETCHBURSTMIN_64B_T6_X) | 3629 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 3630 FETCHBURSTMAX_512B_X : 3631 FETCHBURSTMAX_256B_X)); 3632 c.fl0size = htons(flsz); 3633 c.fl0addr = cpu_to_be64(fl->addr); 3634 } 3635 3636 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3637 if (ret) 3638 goto err; 3639 3640 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 3641 iq->cur_desc = iq->desc; 3642 iq->cidx = 0; 3643 iq->gen = 1; 3644 iq->next_intr_params = iq->intr_params; 3645 iq->cntxt_id = ntohs(c.iqid); 3646 iq->abs_id = ntohs(c.physiqid); 3647 iq->bar2_addr = bar2_address(adap, 3648 iq->cntxt_id, 3649 T4_BAR2_QTYPE_INGRESS, 3650 &iq->bar2_qid); 3651 iq->size--; /* subtract status entry */ 3652 iq->netdev = dev; 3653 iq->handler = hnd; 3654 iq->flush_handler = flush_hnd; 3655 3656 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 3657 skb_queue_head_init(&iq->lro_mgr.lroq); 3658 3659 /* set offset to -1 to distinguish ingress queues without FL */ 3660 iq->offset = fl ? 0 : -1; 3661 3662 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 3663 3664 if (fl) { 3665 fl->cntxt_id = ntohs(c.fl0id); 3666 fl->avail = fl->pend_cred = 0; 3667 fl->pidx = fl->cidx = 0; 3668 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 3669 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 3670 3671 /* Note, we must initialize the BAR2 Free List User Doorbell 3672 * information before refilling the Free List! 3673 */ 3674 fl->bar2_addr = bar2_address(adap, 3675 fl->cntxt_id, 3676 T4_BAR2_QTYPE_EGRESS, 3677 &fl->bar2_qid); 3678 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 3679 } 3680 3681 /* For T5 and later we attempt to set up the Congestion Manager values 3682 * of the new RX Ethernet Queue. This should really be handled by 3683 * firmware because it's more complex than any host driver wants to 3684 * get involved with and it's different per chip and this is almost 3685 * certainly wrong. Firmware would be wrong as well, but it would be 3686 * a lot easier to fix in one place ... For now we do something very 3687 * simple (and hopefully less wrong). 3688 */ 3689 if (!is_t4(adap->params.chip) && cong >= 0) { 3690 u32 param, val, ch_map = 0; 3691 int i; 3692 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 3693 3694 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 3695 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 3696 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 3697 if (cong == 0) { 3698 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 3699 } else { 3700 val = 3701 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 3702 for (i = 0; i < 4; i++) { 3703 if (cong & (1 << i)) 3704 ch_map |= 1 << (i << cng_ch_bits_log); 3705 } 3706 val |= CONMCTXT_CNGCHMAP_V(ch_map); 3707 } 3708 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 3709 ¶m, &val); 3710 if (ret) 3711 dev_warn(adap->pdev_dev, "Failed to set Congestion" 3712 " Manager Context for Ingress Queue %d: %d\n", 3713 iq->cntxt_id, -ret); 3714 } 3715 3716 return 0; 3717 3718 fl_nomem: 3719 ret = -ENOMEM; 3720 err: 3721 if (iq->desc) { 3722 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 3723 iq->desc, iq->phys_addr); 3724 iq->desc = NULL; 3725 } 3726 if (fl && fl->desc) { 3727 kfree(fl->sdesc); 3728 fl->sdesc = NULL; 3729 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 3730 fl->desc, fl->addr); 3731 fl->desc = NULL; 3732 } 3733 return ret; 3734 } 3735 3736 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 3737 { 3738 q->cntxt_id = id; 3739 q->bar2_addr = bar2_address(adap, 3740 q->cntxt_id, 3741 T4_BAR2_QTYPE_EGRESS, 3742 &q->bar2_qid); 3743 q->in_use = 0; 3744 q->cidx = q->pidx = 0; 3745 q->stops = q->restarts = 0; 3746 q->stat = (void *)&q->desc[q->size]; 3747 spin_lock_init(&q->db_lock); 3748 adap->sge.egr_map[id - adap->sge.egr_start] = q; 3749 } 3750 3751 /** 3752 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 3753 * @adap: the adapter 3754 * @txq: the SGE Ethernet TX Queue to initialize 3755 * @dev: the Linux Network Device 3756 * @netdevq: the corresponding Linux TX Queue 3757 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 3758 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 3759 */ 3760 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 3761 struct net_device *dev, struct netdev_queue *netdevq, 3762 unsigned int iqid, u8 dbqt) 3763 { 3764 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 3765 struct port_info *pi = netdev_priv(dev); 3766 struct sge *s = &adap->sge; 3767 struct fw_eq_eth_cmd c; 3768 int ret, nentries; 3769 3770 /* Add status entries */ 3771 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3772 3773 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 3774 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 3775 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 3776 netdev_queue_numa_node_read(netdevq)); 3777 if (!txq->q.desc) 3778 return -ENOMEM; 3779 3780 memset(&c, 0, sizeof(c)); 3781 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 3782 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3783 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 3784 FW_EQ_ETH_CMD_VFN_V(0)); 3785 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 3786 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 3787 3788 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 3789 * mechanism, we use Ingress Queue messages for Hardware Consumer 3790 * Index Updates on the TX Queue. Otherwise we have the Hardware 3791 * write the CIDX Updates into the Status Page at the end of the 3792 * TX Queue. 3793 */ 3794 c.autoequiqe_to_viid = htonl((dbqt 3795 ? FW_EQ_ETH_CMD_AUTOEQUIQE_F 3796 : FW_EQ_ETH_CMD_AUTOEQUEQE_F) | 3797 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 3798 3799 c.fetchszm_to_iqid = 3800 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(dbqt 3801 ? HOSTFCMODE_INGRESS_QUEUE_X 3802 : HOSTFCMODE_STATUS_PAGE_X) | 3803 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 3804 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 3805 3806 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 3807 c.dcaen_to_eqsize = 3808 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 3809 ? FETCHBURSTMIN_64B_X 3810 : FETCHBURSTMIN_64B_T6_X) | 3811 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3812 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3813 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 3814 3815 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3816 3817 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 3818 * currently configured Timer Index. THis can be changed later via an 3819 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 3820 * Doorbell Queue mode is currently automatically enabled in the 3821 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 3822 */ 3823 if (dbqt) 3824 c.timeren_timerix = 3825 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 3826 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 3827 3828 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3829 if (ret) { 3830 kfree(txq->q.sdesc); 3831 txq->q.sdesc = NULL; 3832 dma_free_coherent(adap->pdev_dev, 3833 nentries * sizeof(struct tx_desc), 3834 txq->q.desc, txq->q.phys_addr); 3835 txq->q.desc = NULL; 3836 return ret; 3837 } 3838 3839 txq->q.q_type = CXGB4_TXQ_ETH; 3840 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 3841 txq->txq = netdevq; 3842 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 3843 txq->mapping_err = 0; 3844 txq->dbqt = dbqt; 3845 3846 return 0; 3847 } 3848 3849 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 3850 struct net_device *dev, unsigned int iqid, 3851 unsigned int cmplqid) 3852 { 3853 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 3854 struct port_info *pi = netdev_priv(dev); 3855 struct sge *s = &adap->sge; 3856 struct fw_eq_ctrl_cmd c; 3857 int ret, nentries; 3858 3859 /* Add status entries */ 3860 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3861 3862 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 3863 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 3864 NULL, 0, dev_to_node(adap->pdev_dev)); 3865 if (!txq->q.desc) 3866 return -ENOMEM; 3867 3868 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 3869 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3870 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 3871 FW_EQ_CTRL_CMD_VFN_V(0)); 3872 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 3873 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 3874 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 3875 c.physeqid_pkd = htonl(0); 3876 c.fetchszm_to_iqid = 3877 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3878 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 3879 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 3880 c.dcaen_to_eqsize = 3881 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 3882 ? FETCHBURSTMIN_64B_X 3883 : FETCHBURSTMIN_64B_T6_X) | 3884 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3885 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3886 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 3887 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3888 3889 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3890 if (ret) { 3891 dma_free_coherent(adap->pdev_dev, 3892 nentries * sizeof(struct tx_desc), 3893 txq->q.desc, txq->q.phys_addr); 3894 txq->q.desc = NULL; 3895 return ret; 3896 } 3897 3898 txq->q.q_type = CXGB4_TXQ_CTRL; 3899 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 3900 txq->adap = adap; 3901 skb_queue_head_init(&txq->sendq); 3902 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 3903 txq->full = 0; 3904 return 0; 3905 } 3906 3907 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 3908 unsigned int cmplqid) 3909 { 3910 u32 param, val; 3911 3912 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 3913 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 3914 FW_PARAMS_PARAM_YZ_V(eqid)); 3915 val = cmplqid; 3916 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 3917 } 3918 3919 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 3920 struct net_device *dev, unsigned int iqid, 3921 unsigned int uld_type) 3922 { 3923 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 3924 int ret, nentries; 3925 struct fw_eq_ofld_cmd c; 3926 struct sge *s = &adap->sge; 3927 struct port_info *pi = netdev_priv(dev); 3928 int cmd = FW_EQ_OFLD_CMD; 3929 3930 /* Add status entries */ 3931 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3932 3933 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 3934 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 3935 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 3936 NUMA_NO_NODE); 3937 if (!txq->q.desc) 3938 return -ENOMEM; 3939 3940 memset(&c, 0, sizeof(c)); 3941 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 3942 cmd = FW_EQ_CTRL_CMD; 3943 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 3944 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3945 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 3946 FW_EQ_OFLD_CMD_VFN_V(0)); 3947 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 3948 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 3949 c.fetchszm_to_iqid = 3950 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3951 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 3952 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 3953 c.dcaen_to_eqsize = 3954 htonl(FW_EQ_OFLD_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 3955 ? FETCHBURSTMIN_64B_X 3956 : FETCHBURSTMIN_64B_T6_X) | 3957 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3958 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3959 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 3960 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3961 3962 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3963 if (ret) { 3964 kfree(txq->q.sdesc); 3965 txq->q.sdesc = NULL; 3966 dma_free_coherent(adap->pdev_dev, 3967 nentries * sizeof(struct tx_desc), 3968 txq->q.desc, txq->q.phys_addr); 3969 txq->q.desc = NULL; 3970 return ret; 3971 } 3972 3973 txq->q.q_type = CXGB4_TXQ_ULD; 3974 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 3975 txq->adap = adap; 3976 skb_queue_head_init(&txq->sendq); 3977 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 3978 txq->full = 0; 3979 txq->mapping_err = 0; 3980 return 0; 3981 } 3982 3983 void free_txq(struct adapter *adap, struct sge_txq *q) 3984 { 3985 struct sge *s = &adap->sge; 3986 3987 dma_free_coherent(adap->pdev_dev, 3988 q->size * sizeof(struct tx_desc) + s->stat_len, 3989 q->desc, q->phys_addr); 3990 q->cntxt_id = 0; 3991 q->sdesc = NULL; 3992 q->desc = NULL; 3993 } 3994 3995 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 3996 struct sge_fl *fl) 3997 { 3998 struct sge *s = &adap->sge; 3999 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4000 4001 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4002 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4003 rq->cntxt_id, fl_id, 0xffff); 4004 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4005 rq->desc, rq->phys_addr); 4006 netif_napi_del(&rq->napi); 4007 rq->netdev = NULL; 4008 rq->cntxt_id = rq->abs_id = 0; 4009 rq->desc = NULL; 4010 4011 if (fl) { 4012 free_rx_bufs(adap, fl, fl->avail); 4013 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4014 fl->desc, fl->addr); 4015 kfree(fl->sdesc); 4016 fl->sdesc = NULL; 4017 fl->cntxt_id = 0; 4018 fl->desc = NULL; 4019 } 4020 } 4021 4022 /** 4023 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 4024 * @adap: the adapter 4025 * @n: number of queues 4026 * @q: pointer to first queue 4027 * 4028 * Release the resources of a consecutive block of offload Rx queues. 4029 */ 4030 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 4031 { 4032 for ( ; n; n--, q++) 4033 if (q->rspq.desc) 4034 free_rspq_fl(adap, &q->rspq, 4035 q->fl.size ? &q->fl : NULL); 4036 } 4037 4038 /** 4039 * t4_free_sge_resources - free SGE resources 4040 * @adap: the adapter 4041 * 4042 * Frees resources used by the SGE queue sets. 4043 */ 4044 void t4_free_sge_resources(struct adapter *adap) 4045 { 4046 int i; 4047 struct sge_eth_rxq *eq; 4048 struct sge_eth_txq *etq; 4049 4050 /* stop all Rx queues in order to start them draining */ 4051 for (i = 0; i < adap->sge.ethqsets; i++) { 4052 eq = &adap->sge.ethrxq[i]; 4053 if (eq->rspq.desc) 4054 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4055 FW_IQ_TYPE_FL_INT_CAP, 4056 eq->rspq.cntxt_id, 4057 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4058 0xffff); 4059 } 4060 4061 /* clean up Ethernet Tx/Rx queues */ 4062 for (i = 0; i < adap->sge.ethqsets; i++) { 4063 eq = &adap->sge.ethrxq[i]; 4064 if (eq->rspq.desc) 4065 free_rspq_fl(adap, &eq->rspq, 4066 eq->fl.size ? &eq->fl : NULL); 4067 4068 etq = &adap->sge.ethtxq[i]; 4069 if (etq->q.desc) { 4070 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4071 etq->q.cntxt_id); 4072 __netif_tx_lock_bh(etq->txq); 4073 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4074 __netif_tx_unlock_bh(etq->txq); 4075 kfree(etq->q.sdesc); 4076 free_txq(adap, &etq->q); 4077 } 4078 } 4079 4080 /* clean up control Tx queues */ 4081 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4082 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4083 4084 if (cq->q.desc) { 4085 tasklet_kill(&cq->qresume_tsk); 4086 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4087 cq->q.cntxt_id); 4088 __skb_queue_purge(&cq->sendq); 4089 free_txq(adap, &cq->q); 4090 } 4091 } 4092 4093 if (adap->sge.fw_evtq.desc) 4094 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4095 4096 if (adap->sge.intrq.desc) 4097 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4098 4099 if (!is_t4(adap->params.chip)) { 4100 etq = &adap->sge.ptptxq; 4101 if (etq->q.desc) { 4102 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4103 etq->q.cntxt_id); 4104 spin_lock_bh(&adap->ptp_lock); 4105 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4106 spin_unlock_bh(&adap->ptp_lock); 4107 kfree(etq->q.sdesc); 4108 free_txq(adap, &etq->q); 4109 } 4110 } 4111 4112 /* clear the reverse egress queue map */ 4113 memset(adap->sge.egr_map, 0, 4114 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 4115 } 4116 4117 void t4_sge_start(struct adapter *adap) 4118 { 4119 adap->sge.ethtxq_rover = 0; 4120 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 4121 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 4122 } 4123 4124 /** 4125 * t4_sge_stop - disable SGE operation 4126 * @adap: the adapter 4127 * 4128 * Stop tasklets and timers associated with the DMA engine. Note that 4129 * this is effective only if measures have been taken to disable any HW 4130 * events that may restart them. 4131 */ 4132 void t4_sge_stop(struct adapter *adap) 4133 { 4134 int i; 4135 struct sge *s = &adap->sge; 4136 4137 if (in_interrupt()) /* actions below require waiting */ 4138 return; 4139 4140 if (s->rx_timer.function) 4141 del_timer_sync(&s->rx_timer); 4142 if (s->tx_timer.function) 4143 del_timer_sync(&s->tx_timer); 4144 4145 if (is_offload(adap)) { 4146 struct sge_uld_txq_info *txq_info; 4147 4148 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 4149 if (txq_info) { 4150 struct sge_uld_txq *txq = txq_info->uldtxq; 4151 4152 for_each_ofldtxq(&adap->sge, i) { 4153 if (txq->q.desc) 4154 tasklet_kill(&txq->qresume_tsk); 4155 } 4156 } 4157 } 4158 4159 if (is_pci_uld(adap)) { 4160 struct sge_uld_txq_info *txq_info; 4161 4162 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 4163 if (txq_info) { 4164 struct sge_uld_txq *txq = txq_info->uldtxq; 4165 4166 for_each_ofldtxq(&adap->sge, i) { 4167 if (txq->q.desc) 4168 tasklet_kill(&txq->qresume_tsk); 4169 } 4170 } 4171 } 4172 4173 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 4174 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 4175 4176 if (cq->q.desc) 4177 tasklet_kill(&cq->qresume_tsk); 4178 } 4179 } 4180 4181 /** 4182 * t4_sge_init_soft - grab core SGE values needed by SGE code 4183 * @adap: the adapter 4184 * 4185 * We need to grab the SGE operating parameters that we need to have 4186 * in order to do our job and make sure we can live with them. 4187 */ 4188 4189 static int t4_sge_init_soft(struct adapter *adap) 4190 { 4191 struct sge *s = &adap->sge; 4192 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 4193 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 4194 u32 ingress_rx_threshold; 4195 4196 /* 4197 * Verify that CPL messages are going to the Ingress Queue for 4198 * process_responses() and that only packet data is going to the 4199 * Free Lists. 4200 */ 4201 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 4202 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 4203 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 4204 return -EINVAL; 4205 } 4206 4207 /* 4208 * Validate the Host Buffer Register Array indices that we want to 4209 * use ... 4210 * 4211 * XXX Note that we should really read through the Host Buffer Size 4212 * XXX register array and find the indices of the Buffer Sizes which 4213 * XXX meet our needs! 4214 */ 4215 #define READ_FL_BUF(x) \ 4216 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 4217 4218 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 4219 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 4220 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 4221 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 4222 4223 /* We only bother using the Large Page logic if the Large Page Buffer 4224 * is larger than our Page Size Buffer. 4225 */ 4226 if (fl_large_pg <= fl_small_pg) 4227 fl_large_pg = 0; 4228 4229 #undef READ_FL_BUF 4230 4231 /* The Page Size Buffer must be exactly equal to our Page Size and the 4232 * Large Page Size Buffer should be 0 (per above) or a power of 2. 4233 */ 4234 if (fl_small_pg != PAGE_SIZE || 4235 (fl_large_pg & (fl_large_pg-1)) != 0) { 4236 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 4237 fl_small_pg, fl_large_pg); 4238 return -EINVAL; 4239 } 4240 if (fl_large_pg) 4241 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 4242 4243 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 4244 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 4245 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 4246 fl_small_mtu, fl_large_mtu); 4247 return -EINVAL; 4248 } 4249 4250 /* 4251 * Retrieve our RX interrupt holdoff timer values and counter 4252 * threshold values from the SGE parameters. 4253 */ 4254 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 4255 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 4256 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 4257 s->timer_val[0] = core_ticks_to_us(adap, 4258 TIMERVALUE0_G(timer_value_0_and_1)); 4259 s->timer_val[1] = core_ticks_to_us(adap, 4260 TIMERVALUE1_G(timer_value_0_and_1)); 4261 s->timer_val[2] = core_ticks_to_us(adap, 4262 TIMERVALUE2_G(timer_value_2_and_3)); 4263 s->timer_val[3] = core_ticks_to_us(adap, 4264 TIMERVALUE3_G(timer_value_2_and_3)); 4265 s->timer_val[4] = core_ticks_to_us(adap, 4266 TIMERVALUE4_G(timer_value_4_and_5)); 4267 s->timer_val[5] = core_ticks_to_us(adap, 4268 TIMERVALUE5_G(timer_value_4_and_5)); 4269 4270 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 4271 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 4272 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 4273 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 4274 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 4275 4276 return 0; 4277 } 4278 4279 /** 4280 * t4_sge_init - initialize SGE 4281 * @adap: the adapter 4282 * 4283 * Perform low-level SGE code initialization needed every time after a 4284 * chip reset. 4285 */ 4286 int t4_sge_init(struct adapter *adap) 4287 { 4288 struct sge *s = &adap->sge; 4289 u32 sge_control, sge_conm_ctrl; 4290 int ret, egress_threshold; 4291 4292 /* 4293 * Ingress Padding Boundary and Egress Status Page Size are set up by 4294 * t4_fixup_host_params(). 4295 */ 4296 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 4297 s->pktshift = PKTSHIFT_G(sge_control); 4298 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 4299 4300 s->fl_align = t4_fl_pkt_align(adap); 4301 ret = t4_sge_init_soft(adap); 4302 if (ret < 0) 4303 return ret; 4304 4305 /* 4306 * A FL with <= fl_starve_thres buffers is starving and a periodic 4307 * timer will attempt to refill it. This needs to be larger than the 4308 * SGE's Egress Congestion Threshold. If it isn't, then we can get 4309 * stuck waiting for new packets while the SGE is waiting for us to 4310 * give it more Free List entries. (Note that the SGE's Egress 4311 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 4312 * there was only a single field to control this. For T5 there's the 4313 * original field which now only applies to Unpacked Mode Free List 4314 * buffers and a new field which only applies to Packed Mode Free List 4315 * buffers. 4316 */ 4317 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 4318 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 4319 case CHELSIO_T4: 4320 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 4321 break; 4322 case CHELSIO_T5: 4323 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 4324 break; 4325 case CHELSIO_T6: 4326 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 4327 break; 4328 default: 4329 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 4330 CHELSIO_CHIP_VERSION(adap->params.chip)); 4331 return -EINVAL; 4332 } 4333 s->fl_starve_thres = 2*egress_threshold + 1; 4334 4335 t4_idma_monitor_init(adap, &s->idma_monitor); 4336 4337 /* Set up timers used for recuring callbacks to process RX and TX 4338 * administrative tasks. 4339 */ 4340 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 4341 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 4342 4343 spin_lock_init(&s->intrq_lock); 4344 4345 return 0; 4346 } 4347