xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/sge.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #ifdef CONFIG_NET_RX_BUSY_POLL
47 #include <net/busy_poll.h>
48 #endif /* CONFIG_NET_RX_BUSY_POLL */
49 #ifdef CONFIG_CHELSIO_T4_FCOE
50 #include <scsi/fc/fc_fcoe.h>
51 #endif /* CONFIG_CHELSIO_T4_FCOE */
52 #include "cxgb4.h"
53 #include "t4_regs.h"
54 #include "t4_values.h"
55 #include "t4_msg.h"
56 #include "t4fw_api.h"
57 
58 /*
59  * Rx buffer size.  We use largish buffers if possible but settle for single
60  * pages under memory shortage.
61  */
62 #if PAGE_SHIFT >= 16
63 # define FL_PG_ORDER 0
64 #else
65 # define FL_PG_ORDER (16 - PAGE_SHIFT)
66 #endif
67 
68 /* RX_PULL_LEN should be <= RX_COPY_THRES */
69 #define RX_COPY_THRES    256
70 #define RX_PULL_LEN      128
71 
72 /*
73  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
74  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
75  */
76 #define RX_PKT_SKB_LEN   512
77 
78 /*
79  * Max number of Tx descriptors we clean up at a time.  Should be modest as
80  * freeing skbs isn't cheap and it happens while holding locks.  We just need
81  * to free packets faster than they arrive, we eventually catch up and keep
82  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
83  */
84 #define MAX_TX_RECLAIM 16
85 
86 /*
87  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
88  * allocating buffers isn't cheap either.
89  */
90 #define MAX_RX_REFILL 16U
91 
92 /*
93  * Period of the Rx queue check timer.  This timer is infrequent as it has
94  * something to do only when the system experiences severe memory shortage.
95  */
96 #define RX_QCHECK_PERIOD (HZ / 2)
97 
98 /*
99  * Period of the Tx queue check timer.
100  */
101 #define TX_QCHECK_PERIOD (HZ / 2)
102 
103 /*
104  * Max number of Tx descriptors to be reclaimed by the Tx timer.
105  */
106 #define MAX_TIMER_TX_RECLAIM 100
107 
108 /*
109  * Timer index used when backing off due to memory shortage.
110  */
111 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
112 
113 /*
114  * Suspend an Ethernet Tx queue with fewer available descriptors than this.
115  * This is the same as calc_tx_descs() for a TSO packet with
116  * nr_frags == MAX_SKB_FRAGS.
117  */
118 #define ETHTXQ_STOP_THRES \
119 	(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
120 
121 /*
122  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
123  * for a full sized WR.
124  */
125 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
126 
127 /*
128  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
129  * into a WR.
130  */
131 #define MAX_IMM_TX_PKT_LEN 256
132 
133 /*
134  * Max size of a WR sent through a control Tx queue.
135  */
136 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
137 
138 struct tx_sw_desc {                /* SW state per Tx descriptor */
139 	struct sk_buff *skb;
140 	struct ulptx_sgl *sgl;
141 };
142 
143 struct rx_sw_desc {                /* SW state per Rx descriptor */
144 	struct page *page;
145 	dma_addr_t dma_addr;
146 };
147 
148 /*
149  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
150  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
151  * We could easily support more but there doesn't seem to be much need for
152  * that ...
153  */
154 #define FL_MTU_SMALL 1500
155 #define FL_MTU_LARGE 9000
156 
157 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
158 					  unsigned int mtu)
159 {
160 	struct sge *s = &adapter->sge;
161 
162 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
163 }
164 
165 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
166 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
167 
168 /*
169  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
170  * these to specify the buffer size as an index into the SGE Free List Buffer
171  * Size register array.  We also use bit 4, when the buffer has been unmapped
172  * for DMA, but this is of course never sent to the hardware and is only used
173  * to prevent double unmappings.  All of the above requires that the Free List
174  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
175  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
176  * Free List Buffer alignment is 32 bytes, this works out for us ...
177  */
178 enum {
179 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
180 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
181 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
182 
183 	/*
184 	 * XXX We shouldn't depend on being able to use these indices.
185 	 * XXX Especially when some other Master PF has initialized the
186 	 * XXX adapter or we use the Firmware Configuration File.  We
187 	 * XXX should really search through the Host Buffer Size register
188 	 * XXX array for the appropriately sized buffer indices.
189 	 */
190 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
191 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
192 
193 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
194 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
195 };
196 
197 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
198 #define MIN_NAPI_WORK  1
199 
200 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
201 {
202 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
203 }
204 
205 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
206 {
207 	return !(d->dma_addr & RX_UNMAPPED_BUF);
208 }
209 
210 /**
211  *	txq_avail - return the number of available slots in a Tx queue
212  *	@q: the Tx queue
213  *
214  *	Returns the number of descriptors in a Tx queue available to write new
215  *	packets.
216  */
217 static inline unsigned int txq_avail(const struct sge_txq *q)
218 {
219 	return q->size - 1 - q->in_use;
220 }
221 
222 /**
223  *	fl_cap - return the capacity of a free-buffer list
224  *	@fl: the FL
225  *
226  *	Returns the capacity of a free-buffer list.  The capacity is less than
227  *	the size because one descriptor needs to be left unpopulated, otherwise
228  *	HW will think the FL is empty.
229  */
230 static inline unsigned int fl_cap(const struct sge_fl *fl)
231 {
232 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
233 }
234 
235 /**
236  *	fl_starving - return whether a Free List is starving.
237  *	@adapter: pointer to the adapter
238  *	@fl: the Free List
239  *
240  *	Tests specified Free List to see whether the number of buffers
241  *	available to the hardware has falled below our "starvation"
242  *	threshold.
243  */
244 static inline bool fl_starving(const struct adapter *adapter,
245 			       const struct sge_fl *fl)
246 {
247 	const struct sge *s = &adapter->sge;
248 
249 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
250 }
251 
252 static int map_skb(struct device *dev, const struct sk_buff *skb,
253 		   dma_addr_t *addr)
254 {
255 	const skb_frag_t *fp, *end;
256 	const struct skb_shared_info *si;
257 
258 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
259 	if (dma_mapping_error(dev, *addr))
260 		goto out_err;
261 
262 	si = skb_shinfo(skb);
263 	end = &si->frags[si->nr_frags];
264 
265 	for (fp = si->frags; fp < end; fp++) {
266 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
267 					   DMA_TO_DEVICE);
268 		if (dma_mapping_error(dev, *addr))
269 			goto unwind;
270 	}
271 	return 0;
272 
273 unwind:
274 	while (fp-- > si->frags)
275 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
276 
277 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
278 out_err:
279 	return -ENOMEM;
280 }
281 
282 #ifdef CONFIG_NEED_DMA_MAP_STATE
283 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
284 		      const dma_addr_t *addr)
285 {
286 	const skb_frag_t *fp, *end;
287 	const struct skb_shared_info *si;
288 
289 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
290 
291 	si = skb_shinfo(skb);
292 	end = &si->frags[si->nr_frags];
293 	for (fp = si->frags; fp < end; fp++)
294 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
295 }
296 
297 /**
298  *	deferred_unmap_destructor - unmap a packet when it is freed
299  *	@skb: the packet
300  *
301  *	This is the packet destructor used for Tx packets that need to remain
302  *	mapped until they are freed rather than until their Tx descriptors are
303  *	freed.
304  */
305 static void deferred_unmap_destructor(struct sk_buff *skb)
306 {
307 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
308 }
309 #endif
310 
311 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
312 		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
313 {
314 	const struct ulptx_sge_pair *p;
315 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
316 
317 	if (likely(skb_headlen(skb)))
318 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
319 				 DMA_TO_DEVICE);
320 	else {
321 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
322 			       DMA_TO_DEVICE);
323 		nfrags--;
324 	}
325 
326 	/*
327 	 * the complexity below is because of the possibility of a wrap-around
328 	 * in the middle of an SGL
329 	 */
330 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
331 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
332 unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
333 				       ntohl(p->len[0]), DMA_TO_DEVICE);
334 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
335 				       ntohl(p->len[1]), DMA_TO_DEVICE);
336 			p++;
337 		} else if ((u8 *)p == (u8 *)q->stat) {
338 			p = (const struct ulptx_sge_pair *)q->desc;
339 			goto unmap;
340 		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
341 			const __be64 *addr = (const __be64 *)q->desc;
342 
343 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
344 				       ntohl(p->len[0]), DMA_TO_DEVICE);
345 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
346 				       ntohl(p->len[1]), DMA_TO_DEVICE);
347 			p = (const struct ulptx_sge_pair *)&addr[2];
348 		} else {
349 			const __be64 *addr = (const __be64 *)q->desc;
350 
351 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
352 				       ntohl(p->len[0]), DMA_TO_DEVICE);
353 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
354 				       ntohl(p->len[1]), DMA_TO_DEVICE);
355 			p = (const struct ulptx_sge_pair *)&addr[1];
356 		}
357 	}
358 	if (nfrags) {
359 		__be64 addr;
360 
361 		if ((u8 *)p == (u8 *)q->stat)
362 			p = (const struct ulptx_sge_pair *)q->desc;
363 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
364 						       *(const __be64 *)q->desc;
365 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
366 			       DMA_TO_DEVICE);
367 	}
368 }
369 
370 /**
371  *	free_tx_desc - reclaims Tx descriptors and their buffers
372  *	@adapter: the adapter
373  *	@q: the Tx queue to reclaim descriptors from
374  *	@n: the number of descriptors to reclaim
375  *	@unmap: whether the buffers should be unmapped for DMA
376  *
377  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
378  *	Tx buffers.  Called with the Tx queue lock held.
379  */
380 static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
381 			 unsigned int n, bool unmap)
382 {
383 	struct tx_sw_desc *d;
384 	unsigned int cidx = q->cidx;
385 	struct device *dev = adap->pdev_dev;
386 
387 	d = &q->sdesc[cidx];
388 	while (n--) {
389 		if (d->skb) {                       /* an SGL is present */
390 			if (unmap)
391 				unmap_sgl(dev, d->skb, d->sgl, q);
392 			dev_consume_skb_any(d->skb);
393 			d->skb = NULL;
394 		}
395 		++d;
396 		if (++cidx == q->size) {
397 			cidx = 0;
398 			d = q->sdesc;
399 		}
400 	}
401 	q->cidx = cidx;
402 }
403 
404 /*
405  * Return the number of reclaimable descriptors in a Tx queue.
406  */
407 static inline int reclaimable(const struct sge_txq *q)
408 {
409 	int hw_cidx = ntohs(q->stat->cidx);
410 	hw_cidx -= q->cidx;
411 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
412 }
413 
414 /**
415  *	reclaim_completed_tx - reclaims completed Tx descriptors
416  *	@adap: the adapter
417  *	@q: the Tx queue to reclaim completed descriptors from
418  *	@unmap: whether the buffers should be unmapped for DMA
419  *
420  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
421  *	and frees the associated buffers if possible.  Called with the Tx
422  *	queue locked.
423  */
424 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
425 					bool unmap)
426 {
427 	int avail = reclaimable(q);
428 
429 	if (avail) {
430 		/*
431 		 * Limit the amount of clean up work we do at a time to keep
432 		 * the Tx lock hold time O(1).
433 		 */
434 		if (avail > MAX_TX_RECLAIM)
435 			avail = MAX_TX_RECLAIM;
436 
437 		free_tx_desc(adap, q, avail, unmap);
438 		q->in_use -= avail;
439 	}
440 }
441 
442 static inline int get_buf_size(struct adapter *adapter,
443 			       const struct rx_sw_desc *d)
444 {
445 	struct sge *s = &adapter->sge;
446 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
447 	int buf_size;
448 
449 	switch (rx_buf_size_idx) {
450 	case RX_SMALL_PG_BUF:
451 		buf_size = PAGE_SIZE;
452 		break;
453 
454 	case RX_LARGE_PG_BUF:
455 		buf_size = PAGE_SIZE << s->fl_pg_order;
456 		break;
457 
458 	case RX_SMALL_MTU_BUF:
459 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
460 		break;
461 
462 	case RX_LARGE_MTU_BUF:
463 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
464 		break;
465 
466 	default:
467 		BUG_ON(1);
468 	}
469 
470 	return buf_size;
471 }
472 
473 /**
474  *	free_rx_bufs - free the Rx buffers on an SGE free list
475  *	@adap: the adapter
476  *	@q: the SGE free list to free buffers from
477  *	@n: how many buffers to free
478  *
479  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
480  *	buffers must be made inaccessible to HW before calling this function.
481  */
482 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
483 {
484 	while (n--) {
485 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
486 
487 		if (is_buf_mapped(d))
488 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
489 				       get_buf_size(adap, d),
490 				       PCI_DMA_FROMDEVICE);
491 		put_page(d->page);
492 		d->page = NULL;
493 		if (++q->cidx == q->size)
494 			q->cidx = 0;
495 		q->avail--;
496 	}
497 }
498 
499 /**
500  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
501  *	@adap: the adapter
502  *	@q: the SGE free list
503  *
504  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
505  *	buffer must be made inaccessible to HW before calling this function.
506  *
507  *	This is similar to @free_rx_bufs above but does not free the buffer.
508  *	Do note that the FL still loses any further access to the buffer.
509  */
510 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
511 {
512 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
513 
514 	if (is_buf_mapped(d))
515 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
516 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
517 	d->page = NULL;
518 	if (++q->cidx == q->size)
519 		q->cidx = 0;
520 	q->avail--;
521 }
522 
523 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
524 {
525 	if (q->pend_cred >= 8) {
526 		u32 val = adap->params.arch.sge_fl_db;
527 
528 		if (is_t4(adap->params.chip))
529 			val |= PIDX_V(q->pend_cred / 8);
530 		else
531 			val |= PIDX_T5_V(q->pend_cred / 8);
532 
533 		/* Make sure all memory writes to the Free List queue are
534 		 * committed before we tell the hardware about them.
535 		 */
536 		wmb();
537 
538 		/* If we don't have access to the new User Doorbell (T5+), use
539 		 * the old doorbell mechanism; otherwise use the new BAR2
540 		 * mechanism.
541 		 */
542 		if (unlikely(q->bar2_addr == NULL)) {
543 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
544 				     val | QID_V(q->cntxt_id));
545 		} else {
546 			writel(val | QID_V(q->bar2_qid),
547 			       q->bar2_addr + SGE_UDB_KDOORBELL);
548 
549 			/* This Write memory Barrier will force the write to
550 			 * the User Doorbell area to be flushed.
551 			 */
552 			wmb();
553 		}
554 		q->pend_cred &= 7;
555 	}
556 }
557 
558 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
559 				  dma_addr_t mapping)
560 {
561 	sd->page = pg;
562 	sd->dma_addr = mapping;      /* includes size low bits */
563 }
564 
565 /**
566  *	refill_fl - refill an SGE Rx buffer ring
567  *	@adap: the adapter
568  *	@q: the ring to refill
569  *	@n: the number of new buffers to allocate
570  *	@gfp: the gfp flags for the allocations
571  *
572  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
573  *	allocated with the supplied gfp flags.  The caller must assure that
574  *	@n does not exceed the queue's capacity.  If afterwards the queue is
575  *	found critically low mark it as starving in the bitmap of starving FLs.
576  *
577  *	Returns the number of buffers allocated.
578  */
579 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
580 			      gfp_t gfp)
581 {
582 	struct sge *s = &adap->sge;
583 	struct page *pg;
584 	dma_addr_t mapping;
585 	unsigned int cred = q->avail;
586 	__be64 *d = &q->desc[q->pidx];
587 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
588 	int node;
589 
590 #ifdef CONFIG_DEBUG_FS
591 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
592 		goto out;
593 #endif
594 
595 	gfp |= __GFP_NOWARN;
596 	node = dev_to_node(adap->pdev_dev);
597 
598 	if (s->fl_pg_order == 0)
599 		goto alloc_small_pages;
600 
601 	/*
602 	 * Prefer large buffers
603 	 */
604 	while (n) {
605 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
606 		if (unlikely(!pg)) {
607 			q->large_alloc_failed++;
608 			break;       /* fall back to single pages */
609 		}
610 
611 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
612 				       PAGE_SIZE << s->fl_pg_order,
613 				       PCI_DMA_FROMDEVICE);
614 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
615 			__free_pages(pg, s->fl_pg_order);
616 			goto out;   /* do not try small pages for this error */
617 		}
618 		mapping |= RX_LARGE_PG_BUF;
619 		*d++ = cpu_to_be64(mapping);
620 
621 		set_rx_sw_desc(sd, pg, mapping);
622 		sd++;
623 
624 		q->avail++;
625 		if (++q->pidx == q->size) {
626 			q->pidx = 0;
627 			sd = q->sdesc;
628 			d = q->desc;
629 		}
630 		n--;
631 	}
632 
633 alloc_small_pages:
634 	while (n--) {
635 		pg = alloc_pages_node(node, gfp, 0);
636 		if (unlikely(!pg)) {
637 			q->alloc_failed++;
638 			break;
639 		}
640 
641 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
642 				       PCI_DMA_FROMDEVICE);
643 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
644 			put_page(pg);
645 			goto out;
646 		}
647 		*d++ = cpu_to_be64(mapping);
648 
649 		set_rx_sw_desc(sd, pg, mapping);
650 		sd++;
651 
652 		q->avail++;
653 		if (++q->pidx == q->size) {
654 			q->pidx = 0;
655 			sd = q->sdesc;
656 			d = q->desc;
657 		}
658 	}
659 
660 out:	cred = q->avail - cred;
661 	q->pend_cred += cred;
662 	ring_fl_db(adap, q);
663 
664 	if (unlikely(fl_starving(adap, q))) {
665 		smp_wmb();
666 		set_bit(q->cntxt_id - adap->sge.egr_start,
667 			adap->sge.starving_fl);
668 	}
669 
670 	return cred;
671 }
672 
673 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
674 {
675 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
676 		  GFP_ATOMIC);
677 }
678 
679 /**
680  *	alloc_ring - allocate resources for an SGE descriptor ring
681  *	@dev: the PCI device's core device
682  *	@nelem: the number of descriptors
683  *	@elem_size: the size of each descriptor
684  *	@sw_size: the size of the SW state associated with each ring element
685  *	@phys: the physical address of the allocated ring
686  *	@metadata: address of the array holding the SW state for the ring
687  *	@stat_size: extra space in HW ring for status information
688  *	@node: preferred node for memory allocations
689  *
690  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
691  *	free buffer lists, or response queues.  Each SGE ring requires
692  *	space for its HW descriptors plus, optionally, space for the SW state
693  *	associated with each HW entry (the metadata).  The function returns
694  *	three values: the virtual address for the HW ring (the return value
695  *	of the function), the bus address of the HW ring, and the address
696  *	of the SW ring.
697  */
698 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
699 			size_t sw_size, dma_addr_t *phys, void *metadata,
700 			size_t stat_size, int node)
701 {
702 	size_t len = nelem * elem_size + stat_size;
703 	void *s = NULL;
704 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
705 
706 	if (!p)
707 		return NULL;
708 	if (sw_size) {
709 		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
710 
711 		if (!s) {
712 			dma_free_coherent(dev, len, p, *phys);
713 			return NULL;
714 		}
715 	}
716 	if (metadata)
717 		*(void **)metadata = s;
718 	memset(p, 0, len);
719 	return p;
720 }
721 
722 /**
723  *	sgl_len - calculates the size of an SGL of the given capacity
724  *	@n: the number of SGL entries
725  *
726  *	Calculates the number of flits needed for a scatter/gather list that
727  *	can hold the given number of entries.
728  */
729 static inline unsigned int sgl_len(unsigned int n)
730 {
731 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
732 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
733 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
734 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
735 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
736 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
737 	 * Address[N+1] is omitted.
738 	 *
739 	 * The following calculation incorporates all of the above.  It's
740 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
741 	 * first two flits which include the DSGL header, Length0 and
742 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
743 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
744 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
745 	 * (n-1) is odd ...
746 	 */
747 	n--;
748 	return (3 * n) / 2 + (n & 1) + 2;
749 }
750 
751 /**
752  *	flits_to_desc - returns the num of Tx descriptors for the given flits
753  *	@n: the number of flits
754  *
755  *	Returns the number of Tx descriptors needed for the supplied number
756  *	of flits.
757  */
758 static inline unsigned int flits_to_desc(unsigned int n)
759 {
760 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
761 	return DIV_ROUND_UP(n, 8);
762 }
763 
764 /**
765  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
766  *	@skb: the packet
767  *
768  *	Returns whether an Ethernet packet is small enough to fit as
769  *	immediate data. Return value corresponds to headroom required.
770  */
771 static inline int is_eth_imm(const struct sk_buff *skb)
772 {
773 	int hdrlen = skb_shinfo(skb)->gso_size ?
774 			sizeof(struct cpl_tx_pkt_lso_core) : 0;
775 
776 	hdrlen += sizeof(struct cpl_tx_pkt);
777 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
778 		return hdrlen;
779 	return 0;
780 }
781 
782 /**
783  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
784  *	@skb: the packet
785  *
786  *	Returns the number of flits needed for a Tx WR for the given Ethernet
787  *	packet, including the needed WR and CPL headers.
788  */
789 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
790 {
791 	unsigned int flits;
792 	int hdrlen = is_eth_imm(skb);
793 
794 	/* If the skb is small enough, we can pump it out as a work request
795 	 * with only immediate data.  In that case we just have to have the
796 	 * TX Packet header plus the skb data in the Work Request.
797 	 */
798 
799 	if (hdrlen)
800 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
801 
802 	/* Otherwise, we're going to have to construct a Scatter gather list
803 	 * of the skb body and fragments.  We also include the flits necessary
804 	 * for the TX Packet Work Request and CPL.  We always have a firmware
805 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
806 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
807 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
808 	 * with an embedded TX Packet Write CPL message.
809 	 */
810 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
811 	if (skb_shinfo(skb)->gso_size)
812 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
813 			  sizeof(struct cpl_tx_pkt_lso_core) +
814 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
815 	else
816 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
817 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
818 	return flits;
819 }
820 
821 /**
822  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
823  *	@skb: the packet
824  *
825  *	Returns the number of Tx descriptors needed for the given Ethernet
826  *	packet, including the needed WR and CPL headers.
827  */
828 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
829 {
830 	return flits_to_desc(calc_tx_flits(skb));
831 }
832 
833 /**
834  *	write_sgl - populate a scatter/gather list for a packet
835  *	@skb: the packet
836  *	@q: the Tx queue we are writing into
837  *	@sgl: starting location for writing the SGL
838  *	@end: points right after the end of the SGL
839  *	@start: start offset into skb main-body data to include in the SGL
840  *	@addr: the list of bus addresses for the SGL elements
841  *
842  *	Generates a gather list for the buffers that make up a packet.
843  *	The caller must provide adequate space for the SGL that will be written.
844  *	The SGL includes all of the packet's page fragments and the data in its
845  *	main body except for the first @start bytes.  @sgl must be 16-byte
846  *	aligned and within a Tx descriptor with available space.  @end points
847  *	right after the end of the SGL but does not account for any potential
848  *	wrap around, i.e., @end > @sgl.
849  */
850 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
851 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
852 		      const dma_addr_t *addr)
853 {
854 	unsigned int i, len;
855 	struct ulptx_sge_pair *to;
856 	const struct skb_shared_info *si = skb_shinfo(skb);
857 	unsigned int nfrags = si->nr_frags;
858 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
859 
860 	len = skb_headlen(skb) - start;
861 	if (likely(len)) {
862 		sgl->len0 = htonl(len);
863 		sgl->addr0 = cpu_to_be64(addr[0] + start);
864 		nfrags++;
865 	} else {
866 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
867 		sgl->addr0 = cpu_to_be64(addr[1]);
868 	}
869 
870 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
871 			      ULPTX_NSGE_V(nfrags));
872 	if (likely(--nfrags == 0))
873 		return;
874 	/*
875 	 * Most of the complexity below deals with the possibility we hit the
876 	 * end of the queue in the middle of writing the SGL.  For this case
877 	 * only we create the SGL in a temporary buffer and then copy it.
878 	 */
879 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
880 
881 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
882 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
883 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
884 		to->addr[0] = cpu_to_be64(addr[i]);
885 		to->addr[1] = cpu_to_be64(addr[++i]);
886 	}
887 	if (nfrags) {
888 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
889 		to->len[1] = cpu_to_be32(0);
890 		to->addr[0] = cpu_to_be64(addr[i + 1]);
891 	}
892 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
893 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
894 
895 		if (likely(part0))
896 			memcpy(sgl->sge, buf, part0);
897 		part1 = (u8 *)end - (u8 *)q->stat;
898 		memcpy(q->desc, (u8 *)buf + part0, part1);
899 		end = (void *)q->desc + part1;
900 	}
901 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
902 		*end = 0;
903 }
904 
905 /* This function copies 64 byte coalesced work request to
906  * memory mapped BAR2 space. For coalesced WR SGE fetches
907  * data from the FIFO instead of from Host.
908  */
909 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
910 {
911 	int count = 8;
912 
913 	while (count) {
914 		writeq(*src, dst);
915 		src++;
916 		dst++;
917 		count--;
918 	}
919 }
920 
921 /**
922  *	ring_tx_db - check and potentially ring a Tx queue's doorbell
923  *	@adap: the adapter
924  *	@q: the Tx queue
925  *	@n: number of new descriptors to give to HW
926  *
927  *	Ring the doorbel for a Tx queue.
928  */
929 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
930 {
931 	/* Make sure that all writes to the TX Descriptors are committed
932 	 * before we tell the hardware about them.
933 	 */
934 	wmb();
935 
936 	/* If we don't have access to the new User Doorbell (T5+), use the old
937 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
938 	 */
939 	if (unlikely(q->bar2_addr == NULL)) {
940 		u32 val = PIDX_V(n);
941 		unsigned long flags;
942 
943 		/* For T4 we need to participate in the Doorbell Recovery
944 		 * mechanism.
945 		 */
946 		spin_lock_irqsave(&q->db_lock, flags);
947 		if (!q->db_disabled)
948 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
949 				     QID_V(q->cntxt_id) | val);
950 		else
951 			q->db_pidx_inc += n;
952 		q->db_pidx = q->pidx;
953 		spin_unlock_irqrestore(&q->db_lock, flags);
954 	} else {
955 		u32 val = PIDX_T5_V(n);
956 
957 		/* T4 and later chips share the same PIDX field offset within
958 		 * the doorbell, but T5 and later shrank the field in order to
959 		 * gain a bit for Doorbell Priority.  The field was absurdly
960 		 * large in the first place (14 bits) so we just use the T5
961 		 * and later limits and warn if a Queue ID is too large.
962 		 */
963 		WARN_ON(val & DBPRIO_F);
964 
965 		/* If we're only writing a single TX Descriptor and we can use
966 		 * Inferred QID registers, we can use the Write Combining
967 		 * Gather Buffer; otherwise we use the simple doorbell.
968 		 */
969 		if (n == 1 && q->bar2_qid == 0) {
970 			int index = (q->pidx
971 				     ? (q->pidx - 1)
972 				     : (q->size - 1));
973 			u64 *wr = (u64 *)&q->desc[index];
974 
975 			cxgb_pio_copy((u64 __iomem *)
976 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
977 				      wr);
978 		} else {
979 			writel(val | QID_V(q->bar2_qid),
980 			       q->bar2_addr + SGE_UDB_KDOORBELL);
981 		}
982 
983 		/* This Write Memory Barrier will force the write to the User
984 		 * Doorbell area to be flushed.  This is needed to prevent
985 		 * writes on different CPUs for the same queue from hitting
986 		 * the adapter out of order.  This is required when some Work
987 		 * Requests take the Write Combine Gather Buffer path (user
988 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
989 		 * take the traditional path where we simply increment the
990 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
991 		 * hardware DMA read the actual Work Request.
992 		 */
993 		wmb();
994 	}
995 }
996 
997 /**
998  *	inline_tx_skb - inline a packet's data into Tx descriptors
999  *	@skb: the packet
1000  *	@q: the Tx queue where the packet will be inlined
1001  *	@pos: starting position in the Tx queue where to inline the packet
1002  *
1003  *	Inline a packet's contents directly into Tx descriptors, starting at
1004  *	the given position within the Tx DMA ring.
1005  *	Most of the complexity of this operation is dealing with wrap arounds
1006  *	in the middle of the packet we want to inline.
1007  */
1008 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
1009 			  void *pos)
1010 {
1011 	u64 *p;
1012 	int left = (void *)q->stat - pos;
1013 
1014 	if (likely(skb->len <= left)) {
1015 		if (likely(!skb->data_len))
1016 			skb_copy_from_linear_data(skb, pos, skb->len);
1017 		else
1018 			skb_copy_bits(skb, 0, pos, skb->len);
1019 		pos += skb->len;
1020 	} else {
1021 		skb_copy_bits(skb, 0, pos, left);
1022 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1023 		pos = (void *)q->desc + (skb->len - left);
1024 	}
1025 
1026 	/* 0-pad to multiple of 16 */
1027 	p = PTR_ALIGN(pos, 8);
1028 	if ((uintptr_t)p & 8)
1029 		*p = 0;
1030 }
1031 
1032 /*
1033  * Figure out what HW csum a packet wants and return the appropriate control
1034  * bits.
1035  */
1036 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1037 {
1038 	int csum_type;
1039 	const struct iphdr *iph = ip_hdr(skb);
1040 
1041 	if (iph->version == 4) {
1042 		if (iph->protocol == IPPROTO_TCP)
1043 			csum_type = TX_CSUM_TCPIP;
1044 		else if (iph->protocol == IPPROTO_UDP)
1045 			csum_type = TX_CSUM_UDPIP;
1046 		else {
1047 nocsum:			/*
1048 			 * unknown protocol, disable HW csum
1049 			 * and hope a bad packet is detected
1050 			 */
1051 			return TXPKT_L4CSUM_DIS_F;
1052 		}
1053 	} else {
1054 		/*
1055 		 * this doesn't work with extension headers
1056 		 */
1057 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1058 
1059 		if (ip6h->nexthdr == IPPROTO_TCP)
1060 			csum_type = TX_CSUM_TCPIP6;
1061 		else if (ip6h->nexthdr == IPPROTO_UDP)
1062 			csum_type = TX_CSUM_UDPIP6;
1063 		else
1064 			goto nocsum;
1065 	}
1066 
1067 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1068 		u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1069 		int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1070 
1071 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1072 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1073 		else
1074 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1075 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1076 	} else {
1077 		int start = skb_transport_offset(skb);
1078 
1079 		return TXPKT_CSUM_TYPE_V(csum_type) |
1080 			TXPKT_CSUM_START_V(start) |
1081 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1082 	}
1083 }
1084 
1085 static void eth_txq_stop(struct sge_eth_txq *q)
1086 {
1087 	netif_tx_stop_queue(q->txq);
1088 	q->q.stops++;
1089 }
1090 
1091 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1092 {
1093 	q->in_use += n;
1094 	q->pidx += n;
1095 	if (q->pidx >= q->size)
1096 		q->pidx -= q->size;
1097 }
1098 
1099 #ifdef CONFIG_CHELSIO_T4_FCOE
1100 static inline int
1101 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1102 		  const struct port_info *pi, u64 *cntrl)
1103 {
1104 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1105 
1106 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1107 		return 0;
1108 
1109 	if (skb->protocol != htons(ETH_P_FCOE))
1110 		return 0;
1111 
1112 	skb_reset_mac_header(skb);
1113 	skb->mac_len = sizeof(struct ethhdr);
1114 
1115 	skb_set_network_header(skb, skb->mac_len);
1116 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1117 
1118 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1119 		return -ENOTSUPP;
1120 
1121 	/* FC CRC offload */
1122 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1123 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1124 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1125 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1126 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1127 	return 0;
1128 }
1129 #endif /* CONFIG_CHELSIO_T4_FCOE */
1130 
1131 /**
1132  *	t4_eth_xmit - add a packet to an Ethernet Tx queue
1133  *	@skb: the packet
1134  *	@dev: the egress net device
1135  *
1136  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1137  */
1138 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1139 {
1140 	u32 wr_mid, ctrl0;
1141 	u64 cntrl, *end;
1142 	int qidx, credits;
1143 	unsigned int flits, ndesc;
1144 	struct adapter *adap;
1145 	struct sge_eth_txq *q;
1146 	const struct port_info *pi;
1147 	struct fw_eth_tx_pkt_wr *wr;
1148 	struct cpl_tx_pkt_core *cpl;
1149 	const struct skb_shared_info *ssi;
1150 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1151 	bool immediate = false;
1152 	int len, max_pkt_len;
1153 #ifdef CONFIG_CHELSIO_T4_FCOE
1154 	int err;
1155 #endif /* CONFIG_CHELSIO_T4_FCOE */
1156 
1157 	/*
1158 	 * The chip min packet length is 10 octets but play safe and reject
1159 	 * anything shorter than an Ethernet header.
1160 	 */
1161 	if (unlikely(skb->len < ETH_HLEN)) {
1162 out_free:	dev_kfree_skb_any(skb);
1163 		return NETDEV_TX_OK;
1164 	}
1165 
1166 	/* Discard the packet if the length is greater than mtu */
1167 	max_pkt_len = ETH_HLEN + dev->mtu;
1168 	if (skb_vlan_tag_present(skb))
1169 		max_pkt_len += VLAN_HLEN;
1170 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1171 		goto out_free;
1172 
1173 	pi = netdev_priv(dev);
1174 	adap = pi->adapter;
1175 	qidx = skb_get_queue_mapping(skb);
1176 	q = &adap->sge.ethtxq[qidx + pi->first_qset];
1177 
1178 	reclaim_completed_tx(adap, &q->q, true);
1179 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1180 
1181 #ifdef CONFIG_CHELSIO_T4_FCOE
1182 	err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1183 	if (unlikely(err == -ENOTSUPP))
1184 		goto out_free;
1185 #endif /* CONFIG_CHELSIO_T4_FCOE */
1186 
1187 	flits = calc_tx_flits(skb);
1188 	ndesc = flits_to_desc(flits);
1189 	credits = txq_avail(&q->q) - ndesc;
1190 
1191 	if (unlikely(credits < 0)) {
1192 		eth_txq_stop(q);
1193 		dev_err(adap->pdev_dev,
1194 			"%s: Tx ring %u full while queue awake!\n",
1195 			dev->name, qidx);
1196 		return NETDEV_TX_BUSY;
1197 	}
1198 
1199 	if (is_eth_imm(skb))
1200 		immediate = true;
1201 
1202 	if (!immediate &&
1203 	    unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1204 		q->mapping_err++;
1205 		goto out_free;
1206 	}
1207 
1208 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1209 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1210 		eth_txq_stop(q);
1211 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1212 	}
1213 
1214 	wr = (void *)&q->q.desc[q->q.pidx];
1215 	wr->equiq_to_len16 = htonl(wr_mid);
1216 	wr->r3 = cpu_to_be64(0);
1217 	end = (u64 *)wr + flits;
1218 
1219 	len = immediate ? skb->len : 0;
1220 	ssi = skb_shinfo(skb);
1221 	if (ssi->gso_size) {
1222 		struct cpl_tx_pkt_lso *lso = (void *)wr;
1223 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1224 		int l3hdr_len = skb_network_header_len(skb);
1225 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1226 
1227 		len += sizeof(*lso);
1228 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1229 				       FW_WR_IMMDLEN_V(len));
1230 		lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1231 					LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1232 					LSO_IPV6_V(v6) |
1233 					LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1234 					LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1235 					LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1236 		lso->c.ipid_ofst = htons(0);
1237 		lso->c.mss = htons(ssi->gso_size);
1238 		lso->c.seqno_offset = htonl(0);
1239 		if (is_t4(adap->params.chip))
1240 			lso->c.len = htonl(skb->len);
1241 		else
1242 			lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1243 		cpl = (void *)(lso + 1);
1244 
1245 		if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1246 			cntrl =	TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1247 		else
1248 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1249 
1250 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1251 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1252 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1253 		q->tso++;
1254 		q->tx_cso += ssi->gso_segs;
1255 	} else {
1256 		len += sizeof(*cpl);
1257 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1258 				       FW_WR_IMMDLEN_V(len));
1259 		cpl = (void *)(wr + 1);
1260 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1261 			cntrl = hwcsum(adap->params.chip, skb) |
1262 				TXPKT_IPCSUM_DIS_F;
1263 			q->tx_cso++;
1264 		}
1265 	}
1266 
1267 	if (skb_vlan_tag_present(skb)) {
1268 		q->vlan_ins++;
1269 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1270 #ifdef CONFIG_CHELSIO_T4_FCOE
1271 		if (skb->protocol == htons(ETH_P_FCOE))
1272 			cntrl |= TXPKT_VLAN_V(
1273 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1274 #endif /* CONFIG_CHELSIO_T4_FCOE */
1275 	}
1276 
1277 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1278 		TXPKT_PF_V(adap->pf);
1279 #ifdef CONFIG_CHELSIO_T4_DCB
1280 	if (is_t4(adap->params.chip))
1281 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1282 	else
1283 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1284 #endif
1285 	cpl->ctrl0 = htonl(ctrl0);
1286 	cpl->pack = htons(0);
1287 	cpl->len = htons(skb->len);
1288 	cpl->ctrl1 = cpu_to_be64(cntrl);
1289 
1290 	if (immediate) {
1291 		inline_tx_skb(skb, &q->q, cpl + 1);
1292 		dev_consume_skb_any(skb);
1293 	} else {
1294 		int last_desc;
1295 
1296 		write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1297 			  addr);
1298 		skb_orphan(skb);
1299 
1300 		last_desc = q->q.pidx + ndesc - 1;
1301 		if (last_desc >= q->q.size)
1302 			last_desc -= q->q.size;
1303 		q->q.sdesc[last_desc].skb = skb;
1304 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1305 	}
1306 
1307 	txq_advance(&q->q, ndesc);
1308 
1309 	ring_tx_db(adap, &q->q, ndesc);
1310 	return NETDEV_TX_OK;
1311 }
1312 
1313 /**
1314  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1315  *	@q: the SGE control Tx queue
1316  *
1317  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1318  *	that send only immediate data (presently just the control queues) and
1319  *	thus do not have any sk_buffs to release.
1320  */
1321 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1322 {
1323 	int hw_cidx = ntohs(q->stat->cidx);
1324 	int reclaim = hw_cidx - q->cidx;
1325 
1326 	if (reclaim < 0)
1327 		reclaim += q->size;
1328 
1329 	q->in_use -= reclaim;
1330 	q->cidx = hw_cidx;
1331 }
1332 
1333 /**
1334  *	is_imm - check whether a packet can be sent as immediate data
1335  *	@skb: the packet
1336  *
1337  *	Returns true if a packet can be sent as a WR with immediate data.
1338  */
1339 static inline int is_imm(const struct sk_buff *skb)
1340 {
1341 	return skb->len <= MAX_CTRL_WR_LEN;
1342 }
1343 
1344 /**
1345  *	ctrlq_check_stop - check if a control queue is full and should stop
1346  *	@q: the queue
1347  *	@wr: most recent WR written to the queue
1348  *
1349  *	Check if a control queue has become full and should be stopped.
1350  *	We clean up control queue descriptors very lazily, only when we are out.
1351  *	If the queue is still full after reclaiming any completed descriptors
1352  *	we suspend it and have the last WR wake it up.
1353  */
1354 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1355 {
1356 	reclaim_completed_tx_imm(&q->q);
1357 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1358 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1359 		q->q.stops++;
1360 		q->full = 1;
1361 	}
1362 }
1363 
1364 /**
1365  *	ctrl_xmit - send a packet through an SGE control Tx queue
1366  *	@q: the control queue
1367  *	@skb: the packet
1368  *
1369  *	Send a packet through an SGE control Tx queue.  Packets sent through
1370  *	a control queue must fit entirely as immediate data.
1371  */
1372 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1373 {
1374 	unsigned int ndesc;
1375 	struct fw_wr_hdr *wr;
1376 
1377 	if (unlikely(!is_imm(skb))) {
1378 		WARN_ON(1);
1379 		dev_kfree_skb(skb);
1380 		return NET_XMIT_DROP;
1381 	}
1382 
1383 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1384 	spin_lock(&q->sendq.lock);
1385 
1386 	if (unlikely(q->full)) {
1387 		skb->priority = ndesc;                  /* save for restart */
1388 		__skb_queue_tail(&q->sendq, skb);
1389 		spin_unlock(&q->sendq.lock);
1390 		return NET_XMIT_CN;
1391 	}
1392 
1393 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1394 	inline_tx_skb(skb, &q->q, wr);
1395 
1396 	txq_advance(&q->q, ndesc);
1397 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1398 		ctrlq_check_stop(q, wr);
1399 
1400 	ring_tx_db(q->adap, &q->q, ndesc);
1401 	spin_unlock(&q->sendq.lock);
1402 
1403 	kfree_skb(skb);
1404 	return NET_XMIT_SUCCESS;
1405 }
1406 
1407 /**
1408  *	restart_ctrlq - restart a suspended control queue
1409  *	@data: the control queue to restart
1410  *
1411  *	Resumes transmission on a suspended Tx control queue.
1412  */
1413 static void restart_ctrlq(unsigned long data)
1414 {
1415 	struct sk_buff *skb;
1416 	unsigned int written = 0;
1417 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1418 
1419 	spin_lock(&q->sendq.lock);
1420 	reclaim_completed_tx_imm(&q->q);
1421 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1422 
1423 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1424 		struct fw_wr_hdr *wr;
1425 		unsigned int ndesc = skb->priority;     /* previously saved */
1426 
1427 		/*
1428 		 * Write descriptors and free skbs outside the lock to limit
1429 		 * wait times.  q->full is still set so new skbs will be queued.
1430 		 */
1431 		spin_unlock(&q->sendq.lock);
1432 
1433 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1434 		inline_tx_skb(skb, &q->q, wr);
1435 		kfree_skb(skb);
1436 
1437 		written += ndesc;
1438 		txq_advance(&q->q, ndesc);
1439 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1440 			unsigned long old = q->q.stops;
1441 
1442 			ctrlq_check_stop(q, wr);
1443 			if (q->q.stops != old) {          /* suspended anew */
1444 				spin_lock(&q->sendq.lock);
1445 				goto ringdb;
1446 			}
1447 		}
1448 		if (written > 16) {
1449 			ring_tx_db(q->adap, &q->q, written);
1450 			written = 0;
1451 		}
1452 		spin_lock(&q->sendq.lock);
1453 	}
1454 	q->full = 0;
1455 ringdb: if (written)
1456 		ring_tx_db(q->adap, &q->q, written);
1457 	spin_unlock(&q->sendq.lock);
1458 }
1459 
1460 /**
1461  *	t4_mgmt_tx - send a management message
1462  *	@adap: the adapter
1463  *	@skb: the packet containing the management message
1464  *
1465  *	Send a management message through control queue 0.
1466  */
1467 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1468 {
1469 	int ret;
1470 
1471 	local_bh_disable();
1472 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1473 	local_bh_enable();
1474 	return ret;
1475 }
1476 
1477 /**
1478  *	is_ofld_imm - check whether a packet can be sent as immediate data
1479  *	@skb: the packet
1480  *
1481  *	Returns true if a packet can be sent as an offload WR with immediate
1482  *	data.  We currently use the same limit as for Ethernet packets.
1483  */
1484 static inline int is_ofld_imm(const struct sk_buff *skb)
1485 {
1486 	return skb->len <= MAX_IMM_TX_PKT_LEN;
1487 }
1488 
1489 /**
1490  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
1491  *	@skb: the packet
1492  *
1493  *	Returns the number of flits needed for the given offload packet.
1494  *	These packets are already fully constructed and no additional headers
1495  *	will be added.
1496  */
1497 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1498 {
1499 	unsigned int flits, cnt;
1500 
1501 	if (is_ofld_imm(skb))
1502 		return DIV_ROUND_UP(skb->len, 8);
1503 
1504 	flits = skb_transport_offset(skb) / 8U;   /* headers */
1505 	cnt = skb_shinfo(skb)->nr_frags;
1506 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1507 		cnt++;
1508 	return flits + sgl_len(cnt);
1509 }
1510 
1511 /**
1512  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1513  *	@adap: the adapter
1514  *	@q: the queue to stop
1515  *
1516  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1517  *	inability to map packets.  A periodic timer attempts to restart
1518  *	queues so marked.
1519  */
1520 static void txq_stop_maperr(struct sge_ofld_txq *q)
1521 {
1522 	q->mapping_err++;
1523 	q->q.stops++;
1524 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1525 		q->adap->sge.txq_maperr);
1526 }
1527 
1528 /**
1529  *	ofldtxq_stop - stop an offload Tx queue that has become full
1530  *	@q: the queue to stop
1531  *	@skb: the packet causing the queue to become full
1532  *
1533  *	Stops an offload Tx queue that has become full and modifies the packet
1534  *	being written to request a wakeup.
1535  */
1536 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1537 {
1538 	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1539 
1540 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1541 	q->q.stops++;
1542 	q->full = 1;
1543 }
1544 
1545 /**
1546  *	service_ofldq - restart a suspended offload queue
1547  *	@q: the offload queue
1548  *
1549  *	Services an offload Tx queue by moving packets from its packet queue
1550  *	to the HW Tx ring.  The function starts and ends with the queue locked.
1551  */
1552 static void service_ofldq(struct sge_ofld_txq *q)
1553 {
1554 	u64 *pos;
1555 	int credits;
1556 	struct sk_buff *skb;
1557 	unsigned int written = 0;
1558 	unsigned int flits, ndesc;
1559 
1560 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1561 		/*
1562 		 * We drop the lock but leave skb on sendq, thus retaining
1563 		 * exclusive access to the state of the queue.
1564 		 */
1565 		spin_unlock(&q->sendq.lock);
1566 
1567 		reclaim_completed_tx(q->adap, &q->q, false);
1568 
1569 		flits = skb->priority;                /* previously saved */
1570 		ndesc = flits_to_desc(flits);
1571 		credits = txq_avail(&q->q) - ndesc;
1572 		BUG_ON(credits < 0);
1573 		if (unlikely(credits < TXQ_STOP_THRES))
1574 			ofldtxq_stop(q, skb);
1575 
1576 		pos = (u64 *)&q->q.desc[q->q.pidx];
1577 		if (is_ofld_imm(skb))
1578 			inline_tx_skb(skb, &q->q, pos);
1579 		else if (map_skb(q->adap->pdev_dev, skb,
1580 				 (dma_addr_t *)skb->head)) {
1581 			txq_stop_maperr(q);
1582 			spin_lock(&q->sendq.lock);
1583 			break;
1584 		} else {
1585 			int last_desc, hdr_len = skb_transport_offset(skb);
1586 
1587 			memcpy(pos, skb->data, hdr_len);
1588 			write_sgl(skb, &q->q, (void *)pos + hdr_len,
1589 				  pos + flits, hdr_len,
1590 				  (dma_addr_t *)skb->head);
1591 #ifdef CONFIG_NEED_DMA_MAP_STATE
1592 			skb->dev = q->adap->port[0];
1593 			skb->destructor = deferred_unmap_destructor;
1594 #endif
1595 			last_desc = q->q.pidx + ndesc - 1;
1596 			if (last_desc >= q->q.size)
1597 				last_desc -= q->q.size;
1598 			q->q.sdesc[last_desc].skb = skb;
1599 		}
1600 
1601 		txq_advance(&q->q, ndesc);
1602 		written += ndesc;
1603 		if (unlikely(written > 32)) {
1604 			ring_tx_db(q->adap, &q->q, written);
1605 			written = 0;
1606 		}
1607 
1608 		spin_lock(&q->sendq.lock);
1609 		__skb_unlink(skb, &q->sendq);
1610 		if (is_ofld_imm(skb))
1611 			kfree_skb(skb);
1612 	}
1613 	if (likely(written))
1614 		ring_tx_db(q->adap, &q->q, written);
1615 }
1616 
1617 /**
1618  *	ofld_xmit - send a packet through an offload queue
1619  *	@q: the Tx offload queue
1620  *	@skb: the packet
1621  *
1622  *	Send an offload packet through an SGE offload queue.
1623  */
1624 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1625 {
1626 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1627 	spin_lock(&q->sendq.lock);
1628 	__skb_queue_tail(&q->sendq, skb);
1629 	if (q->sendq.qlen == 1)
1630 		service_ofldq(q);
1631 	spin_unlock(&q->sendq.lock);
1632 	return NET_XMIT_SUCCESS;
1633 }
1634 
1635 /**
1636  *	restart_ofldq - restart a suspended offload queue
1637  *	@data: the offload queue to restart
1638  *
1639  *	Resumes transmission on a suspended Tx offload queue.
1640  */
1641 static void restart_ofldq(unsigned long data)
1642 {
1643 	struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1644 
1645 	spin_lock(&q->sendq.lock);
1646 	q->full = 0;            /* the queue actually is completely empty now */
1647 	service_ofldq(q);
1648 	spin_unlock(&q->sendq.lock);
1649 }
1650 
1651 /**
1652  *	skb_txq - return the Tx queue an offload packet should use
1653  *	@skb: the packet
1654  *
1655  *	Returns the Tx queue an offload packet should use as indicated by bits
1656  *	1-15 in the packet's queue_mapping.
1657  */
1658 static inline unsigned int skb_txq(const struct sk_buff *skb)
1659 {
1660 	return skb->queue_mapping >> 1;
1661 }
1662 
1663 /**
1664  *	is_ctrl_pkt - return whether an offload packet is a control packet
1665  *	@skb: the packet
1666  *
1667  *	Returns whether an offload packet should use an OFLD or a CTRL
1668  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
1669  */
1670 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1671 {
1672 	return skb->queue_mapping & 1;
1673 }
1674 
1675 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1676 {
1677 	unsigned int idx = skb_txq(skb);
1678 
1679 	if (unlikely(is_ctrl_pkt(skb))) {
1680 		/* Single ctrl queue is a requirement for LE workaround path */
1681 		if (adap->tids.nsftids)
1682 			idx = 0;
1683 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1684 	}
1685 	return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1686 }
1687 
1688 /**
1689  *	t4_ofld_send - send an offload packet
1690  *	@adap: the adapter
1691  *	@skb: the packet
1692  *
1693  *	Sends an offload packet.  We use the packet queue_mapping to select the
1694  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1695  *	should be sent as regular or control, bits 1-15 select the queue.
1696  */
1697 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1698 {
1699 	int ret;
1700 
1701 	local_bh_disable();
1702 	ret = ofld_send(adap, skb);
1703 	local_bh_enable();
1704 	return ret;
1705 }
1706 
1707 /**
1708  *	cxgb4_ofld_send - send an offload packet
1709  *	@dev: the net device
1710  *	@skb: the packet
1711  *
1712  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
1713  *	intended for ULDs.
1714  */
1715 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1716 {
1717 	return t4_ofld_send(netdev2adap(dev), skb);
1718 }
1719 EXPORT_SYMBOL(cxgb4_ofld_send);
1720 
1721 static inline void copy_frags(struct sk_buff *skb,
1722 			      const struct pkt_gl *gl, unsigned int offset)
1723 {
1724 	int i;
1725 
1726 	/* usually there's just one frag */
1727 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1728 			     gl->frags[0].offset + offset,
1729 			     gl->frags[0].size - offset);
1730 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1731 	for (i = 1; i < gl->nfrags; i++)
1732 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1733 				     gl->frags[i].offset,
1734 				     gl->frags[i].size);
1735 
1736 	/* get a reference to the last page, we don't own it */
1737 	get_page(gl->frags[gl->nfrags - 1].page);
1738 }
1739 
1740 /**
1741  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1742  *	@gl: the gather list
1743  *	@skb_len: size of sk_buff main body if it carries fragments
1744  *	@pull_len: amount of data to move to the sk_buff's main body
1745  *
1746  *	Builds an sk_buff from the given packet gather list.  Returns the
1747  *	sk_buff or %NULL if sk_buff allocation failed.
1748  */
1749 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1750 				   unsigned int skb_len, unsigned int pull_len)
1751 {
1752 	struct sk_buff *skb;
1753 
1754 	/*
1755 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1756 	 * size, which is expected since buffers are at least PAGE_SIZEd.
1757 	 * In this case packets up to RX_COPY_THRES have only one fragment.
1758 	 */
1759 	if (gl->tot_len <= RX_COPY_THRES) {
1760 		skb = dev_alloc_skb(gl->tot_len);
1761 		if (unlikely(!skb))
1762 			goto out;
1763 		__skb_put(skb, gl->tot_len);
1764 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1765 	} else {
1766 		skb = dev_alloc_skb(skb_len);
1767 		if (unlikely(!skb))
1768 			goto out;
1769 		__skb_put(skb, pull_len);
1770 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1771 
1772 		copy_frags(skb, gl, pull_len);
1773 		skb->len = gl->tot_len;
1774 		skb->data_len = skb->len - pull_len;
1775 		skb->truesize += skb->data_len;
1776 	}
1777 out:	return skb;
1778 }
1779 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1780 
1781 /**
1782  *	t4_pktgl_free - free a packet gather list
1783  *	@gl: the gather list
1784  *
1785  *	Releases the pages of a packet gather list.  We do not own the last
1786  *	page on the list and do not free it.
1787  */
1788 static void t4_pktgl_free(const struct pkt_gl *gl)
1789 {
1790 	int n;
1791 	const struct page_frag *p;
1792 
1793 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1794 		put_page(p->page);
1795 }
1796 
1797 /*
1798  * Process an MPS trace packet.  Give it an unused protocol number so it won't
1799  * be delivered to anyone and send it to the stack for capture.
1800  */
1801 static noinline int handle_trace_pkt(struct adapter *adap,
1802 				     const struct pkt_gl *gl)
1803 {
1804 	struct sk_buff *skb;
1805 
1806 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1807 	if (unlikely(!skb)) {
1808 		t4_pktgl_free(gl);
1809 		return 0;
1810 	}
1811 
1812 	if (is_t4(adap->params.chip))
1813 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
1814 	else
1815 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1816 
1817 	skb_reset_mac_header(skb);
1818 	skb->protocol = htons(0xffff);
1819 	skb->dev = adap->port[0];
1820 	netif_receive_skb(skb);
1821 	return 0;
1822 }
1823 
1824 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1825 		   const struct cpl_rx_pkt *pkt)
1826 {
1827 	struct adapter *adapter = rxq->rspq.adap;
1828 	struct sge *s = &adapter->sge;
1829 	int ret;
1830 	struct sk_buff *skb;
1831 
1832 	skb = napi_get_frags(&rxq->rspq.napi);
1833 	if (unlikely(!skb)) {
1834 		t4_pktgl_free(gl);
1835 		rxq->stats.rx_drops++;
1836 		return;
1837 	}
1838 
1839 	copy_frags(skb, gl, s->pktshift);
1840 	skb->len = gl->tot_len - s->pktshift;
1841 	skb->data_len = skb->len;
1842 	skb->truesize += skb->data_len;
1843 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1844 	skb_record_rx_queue(skb, rxq->rspq.idx);
1845 	skb_mark_napi_id(skb, &rxq->rspq.napi);
1846 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1847 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1848 			     PKT_HASH_TYPE_L3);
1849 
1850 	if (unlikely(pkt->vlan_ex)) {
1851 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1852 		rxq->stats.vlan_ex++;
1853 	}
1854 	ret = napi_gro_frags(&rxq->rspq.napi);
1855 	if (ret == GRO_HELD)
1856 		rxq->stats.lro_pkts++;
1857 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1858 		rxq->stats.lro_merged++;
1859 	rxq->stats.pkts++;
1860 	rxq->stats.rx_cso++;
1861 }
1862 
1863 /**
1864  *	t4_ethrx_handler - process an ingress ethernet packet
1865  *	@q: the response queue that received the packet
1866  *	@rsp: the response queue descriptor holding the RX_PKT message
1867  *	@si: the gather list of packet fragments
1868  *
1869  *	Process an ingress ethernet packet and deliver it to the stack.
1870  */
1871 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1872 		     const struct pkt_gl *si)
1873 {
1874 	bool csum_ok;
1875 	struct sk_buff *skb;
1876 	const struct cpl_rx_pkt *pkt;
1877 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1878 	struct sge *s = &q->adap->sge;
1879 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
1880 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
1881 #ifdef CONFIG_CHELSIO_T4_FCOE
1882 	struct port_info *pi;
1883 #endif
1884 
1885 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
1886 		return handle_trace_pkt(q->adap, si);
1887 
1888 	pkt = (const struct cpl_rx_pkt *)rsp;
1889 	csum_ok = pkt->csum_calc && !pkt->err_vec &&
1890 		  (q->netdev->features & NETIF_F_RXCSUM);
1891 	if ((pkt->l2info & htonl(RXF_TCP_F)) &&
1892 	    !(cxgb_poll_busy_polling(q)) &&
1893 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1894 		do_gro(rxq, si, pkt);
1895 		return 0;
1896 	}
1897 
1898 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1899 	if (unlikely(!skb)) {
1900 		t4_pktgl_free(si);
1901 		rxq->stats.rx_drops++;
1902 		return 0;
1903 	}
1904 
1905 	__skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
1906 	skb->protocol = eth_type_trans(skb, q->netdev);
1907 	skb_record_rx_queue(skb, q->idx);
1908 	if (skb->dev->features & NETIF_F_RXHASH)
1909 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1910 			     PKT_HASH_TYPE_L3);
1911 
1912 	rxq->stats.pkts++;
1913 
1914 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
1915 		if (!pkt->ip_frag) {
1916 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1917 			rxq->stats.rx_cso++;
1918 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
1919 			__sum16 c = (__force __sum16)pkt->csum;
1920 			skb->csum = csum_unfold(c);
1921 			skb->ip_summed = CHECKSUM_COMPLETE;
1922 			rxq->stats.rx_cso++;
1923 		}
1924 	} else {
1925 		skb_checksum_none_assert(skb);
1926 #ifdef CONFIG_CHELSIO_T4_FCOE
1927 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
1928 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
1929 
1930 		pi = netdev_priv(skb->dev);
1931 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
1932 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
1933 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
1934 				if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F)))
1935 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1936 			}
1937 		}
1938 
1939 #undef CPL_RX_PKT_FLAGS
1940 #endif /* CONFIG_CHELSIO_T4_FCOE */
1941 	}
1942 
1943 	if (unlikely(pkt->vlan_ex)) {
1944 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1945 		rxq->stats.vlan_ex++;
1946 	}
1947 	skb_mark_napi_id(skb, &q->napi);
1948 	netif_receive_skb(skb);
1949 	return 0;
1950 }
1951 
1952 /**
1953  *	restore_rx_bufs - put back a packet's Rx buffers
1954  *	@si: the packet gather list
1955  *	@q: the SGE free list
1956  *	@frags: number of FL buffers to restore
1957  *
1958  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
1959  *	have already been unmapped and are left unmapped, we mark them so to
1960  *	prevent further unmapping attempts.
1961  *
1962  *	This function undoes a series of @unmap_rx_buf calls when we find out
1963  *	that the current packet can't be processed right away afterall and we
1964  *	need to come back to it later.  This is a very rare event and there's
1965  *	no effort to make this particularly efficient.
1966  */
1967 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1968 			    int frags)
1969 {
1970 	struct rx_sw_desc *d;
1971 
1972 	while (frags--) {
1973 		if (q->cidx == 0)
1974 			q->cidx = q->size - 1;
1975 		else
1976 			q->cidx--;
1977 		d = &q->sdesc[q->cidx];
1978 		d->page = si->frags[frags].page;
1979 		d->dma_addr |= RX_UNMAPPED_BUF;
1980 		q->avail++;
1981 	}
1982 }
1983 
1984 /**
1985  *	is_new_response - check if a response is newly written
1986  *	@r: the response descriptor
1987  *	@q: the response queue
1988  *
1989  *	Returns true if a response descriptor contains a yet unprocessed
1990  *	response.
1991  */
1992 static inline bool is_new_response(const struct rsp_ctrl *r,
1993 				   const struct sge_rspq *q)
1994 {
1995 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
1996 }
1997 
1998 /**
1999  *	rspq_next - advance to the next entry in a response queue
2000  *	@q: the queue
2001  *
2002  *	Updates the state of a response queue to advance it to the next entry.
2003  */
2004 static inline void rspq_next(struct sge_rspq *q)
2005 {
2006 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
2007 	if (unlikely(++q->cidx == q->size)) {
2008 		q->cidx = 0;
2009 		q->gen ^= 1;
2010 		q->cur_desc = q->desc;
2011 	}
2012 }
2013 
2014 /**
2015  *	process_responses - process responses from an SGE response queue
2016  *	@q: the ingress queue to process
2017  *	@budget: how many responses can be processed in this round
2018  *
2019  *	Process responses from an SGE response queue up to the supplied budget.
2020  *	Responses include received packets as well as control messages from FW
2021  *	or HW.
2022  *
2023  *	Additionally choose the interrupt holdoff time for the next interrupt
2024  *	on this queue.  If the system is under memory shortage use a fairly
2025  *	long delay to help recovery.
2026  */
2027 static int process_responses(struct sge_rspq *q, int budget)
2028 {
2029 	int ret, rsp_type;
2030 	int budget_left = budget;
2031 	const struct rsp_ctrl *rc;
2032 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2033 	struct adapter *adapter = q->adap;
2034 	struct sge *s = &adapter->sge;
2035 
2036 	while (likely(budget_left)) {
2037 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2038 		if (!is_new_response(rc, q))
2039 			break;
2040 
2041 		dma_rmb();
2042 		rsp_type = RSPD_TYPE_G(rc->type_gen);
2043 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
2044 			struct page_frag *fp;
2045 			struct pkt_gl si;
2046 			const struct rx_sw_desc *rsd;
2047 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
2048 
2049 			if (len & RSPD_NEWBUF_F) {
2050 				if (likely(q->offset > 0)) {
2051 					free_rx_bufs(q->adap, &rxq->fl, 1);
2052 					q->offset = 0;
2053 				}
2054 				len = RSPD_LEN_G(len);
2055 			}
2056 			si.tot_len = len;
2057 
2058 			/* gather packet fragments */
2059 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
2060 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2061 				bufsz = get_buf_size(adapter, rsd);
2062 				fp->page = rsd->page;
2063 				fp->offset = q->offset;
2064 				fp->size = min(bufsz, len);
2065 				len -= fp->size;
2066 				if (!len)
2067 					break;
2068 				unmap_rx_buf(q->adap, &rxq->fl);
2069 			}
2070 
2071 			/*
2072 			 * Last buffer remains mapped so explicitly make it
2073 			 * coherent for CPU access.
2074 			 */
2075 			dma_sync_single_for_cpu(q->adap->pdev_dev,
2076 						get_buf_addr(rsd),
2077 						fp->size, DMA_FROM_DEVICE);
2078 
2079 			si.va = page_address(si.frags[0].page) +
2080 				si.frags[0].offset;
2081 			prefetch(si.va);
2082 
2083 			si.nfrags = frags + 1;
2084 			ret = q->handler(q, q->cur_desc, &si);
2085 			if (likely(ret == 0))
2086 				q->offset += ALIGN(fp->size, s->fl_align);
2087 			else
2088 				restore_rx_bufs(&si, &rxq->fl, frags);
2089 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
2090 			ret = q->handler(q, q->cur_desc, NULL);
2091 		} else {
2092 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
2093 		}
2094 
2095 		if (unlikely(ret)) {
2096 			/* couldn't process descriptor, back off for recovery */
2097 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
2098 			break;
2099 		}
2100 
2101 		rspq_next(q);
2102 		budget_left--;
2103 	}
2104 
2105 	if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
2106 		__refill_fl(q->adap, &rxq->fl);
2107 	return budget - budget_left;
2108 }
2109 
2110 #ifdef CONFIG_NET_RX_BUSY_POLL
2111 int cxgb_busy_poll(struct napi_struct *napi)
2112 {
2113 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2114 	unsigned int params, work_done;
2115 	u32 val;
2116 
2117 	if (!cxgb_poll_lock_poll(q))
2118 		return LL_FLUSH_BUSY;
2119 
2120 	work_done = process_responses(q, 4);
2121 	params = QINTR_TIMER_IDX_V(TIMERREG_COUNTER0_X) | QINTR_CNT_EN_V(1);
2122 	q->next_intr_params = params;
2123 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2124 
2125 	/* If we don't have access to the new User GTS (T5+), use the old
2126 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2127 	 */
2128 	if (unlikely(!q->bar2_addr))
2129 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2130 			     val | INGRESSQID_V((u32)q->cntxt_id));
2131 	else {
2132 		writel(val | INGRESSQID_V(q->bar2_qid),
2133 		       q->bar2_addr + SGE_UDB_GTS);
2134 		wmb();
2135 	}
2136 
2137 	cxgb_poll_unlock_poll(q);
2138 	return work_done;
2139 }
2140 #endif /* CONFIG_NET_RX_BUSY_POLL */
2141 
2142 /**
2143  *	napi_rx_handler - the NAPI handler for Rx processing
2144  *	@napi: the napi instance
2145  *	@budget: how many packets we can process in this round
2146  *
2147  *	Handler for new data events when using NAPI.  This does not need any
2148  *	locking or protection from interrupts as data interrupts are off at
2149  *	this point and other adapter interrupts do not interfere (the latter
2150  *	in not a concern at all with MSI-X as non-data interrupts then have
2151  *	a separate handler).
2152  */
2153 static int napi_rx_handler(struct napi_struct *napi, int budget)
2154 {
2155 	unsigned int params;
2156 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2157 	int work_done;
2158 	u32 val;
2159 
2160 	if (!cxgb_poll_lock_napi(q))
2161 		return budget;
2162 
2163 	work_done = process_responses(q, budget);
2164 	if (likely(work_done < budget)) {
2165 		int timer_index;
2166 
2167 		napi_complete(napi);
2168 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
2169 
2170 		if (q->adaptive_rx) {
2171 			if (work_done > max(timer_pkt_quota[timer_index],
2172 					    MIN_NAPI_WORK))
2173 				timer_index = (timer_index + 1);
2174 			else
2175 				timer_index = timer_index - 1;
2176 
2177 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2178 			q->next_intr_params =
2179 					QINTR_TIMER_IDX_V(timer_index) |
2180 					QINTR_CNT_EN_V(0);
2181 			params = q->next_intr_params;
2182 		} else {
2183 			params = q->next_intr_params;
2184 			q->next_intr_params = q->intr_params;
2185 		}
2186 	} else
2187 		params = QINTR_TIMER_IDX_V(7);
2188 
2189 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2190 
2191 	/* If we don't have access to the new User GTS (T5+), use the old
2192 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2193 	 */
2194 	if (unlikely(q->bar2_addr == NULL)) {
2195 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2196 			     val | INGRESSQID_V((u32)q->cntxt_id));
2197 	} else {
2198 		writel(val | INGRESSQID_V(q->bar2_qid),
2199 		       q->bar2_addr + SGE_UDB_GTS);
2200 		wmb();
2201 	}
2202 	cxgb_poll_unlock_napi(q);
2203 	return work_done;
2204 }
2205 
2206 /*
2207  * The MSI-X interrupt handler for an SGE response queue.
2208  */
2209 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2210 {
2211 	struct sge_rspq *q = cookie;
2212 
2213 	napi_schedule(&q->napi);
2214 	return IRQ_HANDLED;
2215 }
2216 
2217 /*
2218  * Process the indirect interrupt entries in the interrupt queue and kick off
2219  * NAPI for each queue that has generated an entry.
2220  */
2221 static unsigned int process_intrq(struct adapter *adap)
2222 {
2223 	unsigned int credits;
2224 	const struct rsp_ctrl *rc;
2225 	struct sge_rspq *q = &adap->sge.intrq;
2226 	u32 val;
2227 
2228 	spin_lock(&adap->sge.intrq_lock);
2229 	for (credits = 0; ; credits++) {
2230 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2231 		if (!is_new_response(rc, q))
2232 			break;
2233 
2234 		dma_rmb();
2235 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
2236 			unsigned int qid = ntohl(rc->pldbuflen_qid);
2237 
2238 			qid -= adap->sge.ingr_start;
2239 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
2240 		}
2241 
2242 		rspq_next(q);
2243 	}
2244 
2245 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2246 
2247 	/* If we don't have access to the new User GTS (T5+), use the old
2248 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2249 	 */
2250 	if (unlikely(q->bar2_addr == NULL)) {
2251 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2252 			     val | INGRESSQID_V(q->cntxt_id));
2253 	} else {
2254 		writel(val | INGRESSQID_V(q->bar2_qid),
2255 		       q->bar2_addr + SGE_UDB_GTS);
2256 		wmb();
2257 	}
2258 	spin_unlock(&adap->sge.intrq_lock);
2259 	return credits;
2260 }
2261 
2262 /*
2263  * The MSI interrupt handler, which handles data events from SGE response queues
2264  * as well as error and other async events as they all use the same MSI vector.
2265  */
2266 static irqreturn_t t4_intr_msi(int irq, void *cookie)
2267 {
2268 	struct adapter *adap = cookie;
2269 
2270 	if (adap->flags & MASTER_PF)
2271 		t4_slow_intr_handler(adap);
2272 	process_intrq(adap);
2273 	return IRQ_HANDLED;
2274 }
2275 
2276 /*
2277  * Interrupt handler for legacy INTx interrupts.
2278  * Handles data events from SGE response queues as well as error and other
2279  * async events as they all use the same interrupt line.
2280  */
2281 static irqreturn_t t4_intr_intx(int irq, void *cookie)
2282 {
2283 	struct adapter *adap = cookie;
2284 
2285 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2286 	if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
2287 	    process_intrq(adap))
2288 		return IRQ_HANDLED;
2289 	return IRQ_NONE;             /* probably shared interrupt */
2290 }
2291 
2292 /**
2293  *	t4_intr_handler - select the top-level interrupt handler
2294  *	@adap: the adapter
2295  *
2296  *	Selects the top-level interrupt handler based on the type of interrupts
2297  *	(MSI-X, MSI, or INTx).
2298  */
2299 irq_handler_t t4_intr_handler(struct adapter *adap)
2300 {
2301 	if (adap->flags & USING_MSIX)
2302 		return t4_sge_intr_msix;
2303 	if (adap->flags & USING_MSI)
2304 		return t4_intr_msi;
2305 	return t4_intr_intx;
2306 }
2307 
2308 static void sge_rx_timer_cb(unsigned long data)
2309 {
2310 	unsigned long m;
2311 	unsigned int i;
2312 	struct adapter *adap = (struct adapter *)data;
2313 	struct sge *s = &adap->sge;
2314 
2315 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2316 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2317 			struct sge_eth_rxq *rxq;
2318 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2319 			struct sge_fl *fl = s->egr_map[id];
2320 
2321 			clear_bit(id, s->starving_fl);
2322 			smp_mb__after_atomic();
2323 
2324 			if (fl_starving(adap, fl)) {
2325 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2326 				if (napi_reschedule(&rxq->rspq.napi))
2327 					fl->starving++;
2328 				else
2329 					set_bit(id, s->starving_fl);
2330 			}
2331 		}
2332 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
2333 	 * global Master PF activities like checking for chip ingress stalls,
2334 	 * etc.
2335 	 */
2336 	if (!(adap->flags & MASTER_PF))
2337 		goto done;
2338 
2339 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
2340 
2341 done:
2342 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2343 }
2344 
2345 static void sge_tx_timer_cb(unsigned long data)
2346 {
2347 	unsigned long m;
2348 	unsigned int i, budget;
2349 	struct adapter *adap = (struct adapter *)data;
2350 	struct sge *s = &adap->sge;
2351 
2352 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2353 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
2354 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2355 			struct sge_ofld_txq *txq = s->egr_map[id];
2356 
2357 			clear_bit(id, s->txq_maperr);
2358 			tasklet_schedule(&txq->qresume_tsk);
2359 		}
2360 
2361 	budget = MAX_TIMER_TX_RECLAIM;
2362 	i = s->ethtxq_rover;
2363 	do {
2364 		struct sge_eth_txq *q = &s->ethtxq[i];
2365 
2366 		if (q->q.in_use &&
2367 		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2368 		    __netif_tx_trylock(q->txq)) {
2369 			int avail = reclaimable(&q->q);
2370 
2371 			if (avail) {
2372 				if (avail > budget)
2373 					avail = budget;
2374 
2375 				free_tx_desc(adap, &q->q, avail, true);
2376 				q->q.in_use -= avail;
2377 				budget -= avail;
2378 			}
2379 			__netif_tx_unlock(q->txq);
2380 		}
2381 
2382 		if (++i >= s->ethqsets)
2383 			i = 0;
2384 	} while (budget && i != s->ethtxq_rover);
2385 	s->ethtxq_rover = i;
2386 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2387 }
2388 
2389 /**
2390  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2391  *	@adapter: the adapter
2392  *	@qid: the SGE Queue ID
2393  *	@qtype: the SGE Queue Type (Egress or Ingress)
2394  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2395  *
2396  *	Returns the BAR2 address for the SGE Queue Registers associated with
2397  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2398  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2399  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2400  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2401  */
2402 static void __iomem *bar2_address(struct adapter *adapter,
2403 				  unsigned int qid,
2404 				  enum t4_bar2_qtype qtype,
2405 				  unsigned int *pbar2_qid)
2406 {
2407 	u64 bar2_qoffset;
2408 	int ret;
2409 
2410 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
2411 				&bar2_qoffset, pbar2_qid);
2412 	if (ret)
2413 		return NULL;
2414 
2415 	return adapter->bar2 + bar2_qoffset;
2416 }
2417 
2418 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
2419  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
2420  */
2421 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2422 		     struct net_device *dev, int intr_idx,
2423 		     struct sge_fl *fl, rspq_handler_t hnd, int cong)
2424 {
2425 	int ret, flsz = 0;
2426 	struct fw_iq_cmd c;
2427 	struct sge *s = &adap->sge;
2428 	struct port_info *pi = netdev_priv(dev);
2429 
2430 	/* Size needs to be multiple of 16, including status entry. */
2431 	iq->size = roundup(iq->size, 16);
2432 
2433 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2434 			      &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2435 	if (!iq->desc)
2436 		return -ENOMEM;
2437 
2438 	memset(&c, 0, sizeof(c));
2439 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2440 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2441 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
2442 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2443 				 FW_LEN16(c));
2444 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2445 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2446 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
2447 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
2448 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2449 							-intr_idx - 1));
2450 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2451 		FW_IQ_CMD_IQGTSMODE_F |
2452 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2453 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2454 	c.iqsize = htons(iq->size);
2455 	c.iqaddr = cpu_to_be64(iq->phys_addr);
2456 	if (cong >= 0)
2457 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
2458 
2459 	if (fl) {
2460 		enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2461 
2462 		/* Allocate the ring for the hardware free list (with space
2463 		 * for its status page) along with the associated software
2464 		 * descriptor ring.  The free list size needs to be a multiple
2465 		 * of the Egress Queue Unit and at least 2 Egress Units larger
2466 		 * than the SGE's Egress Congrestion Threshold
2467 		 * (fl_starve_thres - 1).
2468 		 */
2469 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
2470 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
2471 		fl->size = roundup(fl->size, 8);
2472 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2473 				      sizeof(struct rx_sw_desc), &fl->addr,
2474 				      &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2475 		if (!fl->desc)
2476 			goto fl_nomem;
2477 
2478 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2479 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
2480 					     FW_IQ_CMD_FL0FETCHRO_F |
2481 					     FW_IQ_CMD_FL0DATARO_F |
2482 					     FW_IQ_CMD_FL0PADEN_F);
2483 		if (cong >= 0)
2484 			c.iqns_to_fl0congen |=
2485 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
2486 				      FW_IQ_CMD_FL0CONGCIF_F |
2487 				      FW_IQ_CMD_FL0CONGEN_F);
2488 		c.fl0dcaen_to_fl0cidxfthresh =
2489 			htons(FW_IQ_CMD_FL0FBMIN_V(FETCHBURSTMIN_64B_X) |
2490 			      FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
2491 						   FETCHBURSTMAX_512B_X :
2492 						   FETCHBURSTMAX_256B_X));
2493 		c.fl0size = htons(flsz);
2494 		c.fl0addr = cpu_to_be64(fl->addr);
2495 	}
2496 
2497 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2498 	if (ret)
2499 		goto err;
2500 
2501 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2502 	napi_hash_add(&iq->napi);
2503 	iq->cur_desc = iq->desc;
2504 	iq->cidx = 0;
2505 	iq->gen = 1;
2506 	iq->next_intr_params = iq->intr_params;
2507 	iq->cntxt_id = ntohs(c.iqid);
2508 	iq->abs_id = ntohs(c.physiqid);
2509 	iq->bar2_addr = bar2_address(adap,
2510 				     iq->cntxt_id,
2511 				     T4_BAR2_QTYPE_INGRESS,
2512 				     &iq->bar2_qid);
2513 	iq->size--;                           /* subtract status entry */
2514 	iq->netdev = dev;
2515 	iq->handler = hnd;
2516 
2517 	/* set offset to -1 to distinguish ingress queues without FL */
2518 	iq->offset = fl ? 0 : -1;
2519 
2520 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2521 
2522 	if (fl) {
2523 		fl->cntxt_id = ntohs(c.fl0id);
2524 		fl->avail = fl->pend_cred = 0;
2525 		fl->pidx = fl->cidx = 0;
2526 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2527 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2528 
2529 		/* Note, we must initialize the BAR2 Free List User Doorbell
2530 		 * information before refilling the Free List!
2531 		 */
2532 		fl->bar2_addr = bar2_address(adap,
2533 					     fl->cntxt_id,
2534 					     T4_BAR2_QTYPE_EGRESS,
2535 					     &fl->bar2_qid);
2536 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2537 	}
2538 
2539 	/* For T5 and later we attempt to set up the Congestion Manager values
2540 	 * of the new RX Ethernet Queue.  This should really be handled by
2541 	 * firmware because it's more complex than any host driver wants to
2542 	 * get involved with and it's different per chip and this is almost
2543 	 * certainly wrong.  Firmware would be wrong as well, but it would be
2544 	 * a lot easier to fix in one place ...  For now we do something very
2545 	 * simple (and hopefully less wrong).
2546 	 */
2547 	if (!is_t4(adap->params.chip) && cong >= 0) {
2548 		u32 param, val;
2549 		int i;
2550 
2551 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
2552 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2553 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
2554 		if (cong == 0) {
2555 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
2556 		} else {
2557 			val =
2558 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
2559 			for (i = 0; i < 4; i++) {
2560 				if (cong & (1 << i))
2561 					val |=
2562 					     CONMCTXT_CNGCHMAP_V(1 << (i << 2));
2563 			}
2564 		}
2565 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
2566 				    &param, &val);
2567 		if (ret)
2568 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
2569 				 " Manager Context for Ingress Queue %d: %d\n",
2570 				 iq->cntxt_id, -ret);
2571 	}
2572 
2573 	return 0;
2574 
2575 fl_nomem:
2576 	ret = -ENOMEM;
2577 err:
2578 	if (iq->desc) {
2579 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2580 				  iq->desc, iq->phys_addr);
2581 		iq->desc = NULL;
2582 	}
2583 	if (fl && fl->desc) {
2584 		kfree(fl->sdesc);
2585 		fl->sdesc = NULL;
2586 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2587 				  fl->desc, fl->addr);
2588 		fl->desc = NULL;
2589 	}
2590 	return ret;
2591 }
2592 
2593 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2594 {
2595 	q->cntxt_id = id;
2596 	q->bar2_addr = bar2_address(adap,
2597 				    q->cntxt_id,
2598 				    T4_BAR2_QTYPE_EGRESS,
2599 				    &q->bar2_qid);
2600 	q->in_use = 0;
2601 	q->cidx = q->pidx = 0;
2602 	q->stops = q->restarts = 0;
2603 	q->stat = (void *)&q->desc[q->size];
2604 	spin_lock_init(&q->db_lock);
2605 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
2606 }
2607 
2608 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2609 			 struct net_device *dev, struct netdev_queue *netdevq,
2610 			 unsigned int iqid)
2611 {
2612 	int ret, nentries;
2613 	struct fw_eq_eth_cmd c;
2614 	struct sge *s = &adap->sge;
2615 	struct port_info *pi = netdev_priv(dev);
2616 
2617 	/* Add status entries */
2618 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2619 
2620 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2621 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2622 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2623 			netdev_queue_numa_node_read(netdevq));
2624 	if (!txq->q.desc)
2625 		return -ENOMEM;
2626 
2627 	memset(&c, 0, sizeof(c));
2628 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
2629 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2630 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
2631 			    FW_EQ_ETH_CMD_VFN_V(0));
2632 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
2633 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
2634 	c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2635 			   FW_EQ_ETH_CMD_VIID_V(pi->viid));
2636 	c.fetchszm_to_iqid =
2637 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2638 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
2639 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
2640 	c.dcaen_to_eqsize =
2641 		htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2642 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2643 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2644 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2645 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2646 
2647 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2648 	if (ret) {
2649 		kfree(txq->q.sdesc);
2650 		txq->q.sdesc = NULL;
2651 		dma_free_coherent(adap->pdev_dev,
2652 				  nentries * sizeof(struct tx_desc),
2653 				  txq->q.desc, txq->q.phys_addr);
2654 		txq->q.desc = NULL;
2655 		return ret;
2656 	}
2657 
2658 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
2659 	txq->txq = netdevq;
2660 	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2661 	txq->mapping_err = 0;
2662 	return 0;
2663 }
2664 
2665 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2666 			  struct net_device *dev, unsigned int iqid,
2667 			  unsigned int cmplqid)
2668 {
2669 	int ret, nentries;
2670 	struct fw_eq_ctrl_cmd c;
2671 	struct sge *s = &adap->sge;
2672 	struct port_info *pi = netdev_priv(dev);
2673 
2674 	/* Add status entries */
2675 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2676 
2677 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2678 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2679 				 NULL, 0, dev_to_node(adap->pdev_dev));
2680 	if (!txq->q.desc)
2681 		return -ENOMEM;
2682 
2683 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
2684 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2685 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
2686 			    FW_EQ_CTRL_CMD_VFN_V(0));
2687 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
2688 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
2689 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
2690 	c.physeqid_pkd = htonl(0);
2691 	c.fetchszm_to_iqid =
2692 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2693 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
2694 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
2695 	c.dcaen_to_eqsize =
2696 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2697 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2698 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2699 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
2700 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2701 
2702 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2703 	if (ret) {
2704 		dma_free_coherent(adap->pdev_dev,
2705 				  nentries * sizeof(struct tx_desc),
2706 				  txq->q.desc, txq->q.phys_addr);
2707 		txq->q.desc = NULL;
2708 		return ret;
2709 	}
2710 
2711 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
2712 	txq->adap = adap;
2713 	skb_queue_head_init(&txq->sendq);
2714 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2715 	txq->full = 0;
2716 	return 0;
2717 }
2718 
2719 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2720 			  struct net_device *dev, unsigned int iqid)
2721 {
2722 	int ret, nentries;
2723 	struct fw_eq_ofld_cmd c;
2724 	struct sge *s = &adap->sge;
2725 	struct port_info *pi = netdev_priv(dev);
2726 
2727 	/* Add status entries */
2728 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2729 
2730 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2731 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2732 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2733 			NUMA_NO_NODE);
2734 	if (!txq->q.desc)
2735 		return -ENOMEM;
2736 
2737 	memset(&c, 0, sizeof(c));
2738 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
2739 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2740 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
2741 			    FW_EQ_OFLD_CMD_VFN_V(0));
2742 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
2743 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
2744 	c.fetchszm_to_iqid =
2745 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
2746 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
2747 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
2748 	c.dcaen_to_eqsize =
2749 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
2750 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2751 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
2752 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
2753 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2754 
2755 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2756 	if (ret) {
2757 		kfree(txq->q.sdesc);
2758 		txq->q.sdesc = NULL;
2759 		dma_free_coherent(adap->pdev_dev,
2760 				  nentries * sizeof(struct tx_desc),
2761 				  txq->q.desc, txq->q.phys_addr);
2762 		txq->q.desc = NULL;
2763 		return ret;
2764 	}
2765 
2766 	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
2767 	txq->adap = adap;
2768 	skb_queue_head_init(&txq->sendq);
2769 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2770 	txq->full = 0;
2771 	txq->mapping_err = 0;
2772 	return 0;
2773 }
2774 
2775 static void free_txq(struct adapter *adap, struct sge_txq *q)
2776 {
2777 	struct sge *s = &adap->sge;
2778 
2779 	dma_free_coherent(adap->pdev_dev,
2780 			  q->size * sizeof(struct tx_desc) + s->stat_len,
2781 			  q->desc, q->phys_addr);
2782 	q->cntxt_id = 0;
2783 	q->sdesc = NULL;
2784 	q->desc = NULL;
2785 }
2786 
2787 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2788 			 struct sge_fl *fl)
2789 {
2790 	struct sge *s = &adap->sge;
2791 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2792 
2793 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2794 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
2795 		   rq->cntxt_id, fl_id, 0xffff);
2796 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2797 			  rq->desc, rq->phys_addr);
2798 	napi_hash_del(&rq->napi);
2799 	netif_napi_del(&rq->napi);
2800 	rq->netdev = NULL;
2801 	rq->cntxt_id = rq->abs_id = 0;
2802 	rq->desc = NULL;
2803 
2804 	if (fl) {
2805 		free_rx_bufs(adap, fl, fl->avail);
2806 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2807 				  fl->desc, fl->addr);
2808 		kfree(fl->sdesc);
2809 		fl->sdesc = NULL;
2810 		fl->cntxt_id = 0;
2811 		fl->desc = NULL;
2812 	}
2813 }
2814 
2815 /**
2816  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
2817  *      @adap: the adapter
2818  *      @n: number of queues
2819  *      @q: pointer to first queue
2820  *
2821  *      Release the resources of a consecutive block of offload Rx queues.
2822  */
2823 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
2824 {
2825 	for ( ; n; n--, q++)
2826 		if (q->rspq.desc)
2827 			free_rspq_fl(adap, &q->rspq,
2828 				     q->fl.size ? &q->fl : NULL);
2829 }
2830 
2831 /**
2832  *	t4_free_sge_resources - free SGE resources
2833  *	@adap: the adapter
2834  *
2835  *	Frees resources used by the SGE queue sets.
2836  */
2837 void t4_free_sge_resources(struct adapter *adap)
2838 {
2839 	int i;
2840 	struct sge_eth_rxq *eq = adap->sge.ethrxq;
2841 	struct sge_eth_txq *etq = adap->sge.ethtxq;
2842 
2843 	/* clean up Ethernet Tx/Rx queues */
2844 	for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2845 		if (eq->rspq.desc)
2846 			free_rspq_fl(adap, &eq->rspq,
2847 				     eq->fl.size ? &eq->fl : NULL);
2848 		if (etq->q.desc) {
2849 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
2850 				       etq->q.cntxt_id);
2851 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2852 			kfree(etq->q.sdesc);
2853 			free_txq(adap, &etq->q);
2854 		}
2855 	}
2856 
2857 	/* clean up RDMA and iSCSI Rx queues */
2858 	t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
2859 	t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
2860 	t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
2861 
2862 	/* clean up offload Tx queues */
2863 	for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2864 		struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2865 
2866 		if (q->q.desc) {
2867 			tasklet_kill(&q->qresume_tsk);
2868 			t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
2869 					q->q.cntxt_id);
2870 			free_tx_desc(adap, &q->q, q->q.in_use, false);
2871 			kfree(q->q.sdesc);
2872 			__skb_queue_purge(&q->sendq);
2873 			free_txq(adap, &q->q);
2874 		}
2875 	}
2876 
2877 	/* clean up control Tx queues */
2878 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2879 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2880 
2881 		if (cq->q.desc) {
2882 			tasklet_kill(&cq->qresume_tsk);
2883 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
2884 					cq->q.cntxt_id);
2885 			__skb_queue_purge(&cq->sendq);
2886 			free_txq(adap, &cq->q);
2887 		}
2888 	}
2889 
2890 	if (adap->sge.fw_evtq.desc)
2891 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2892 
2893 	if (adap->sge.intrq.desc)
2894 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
2895 
2896 	/* clear the reverse egress queue map */
2897 	memset(adap->sge.egr_map, 0,
2898 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
2899 }
2900 
2901 void t4_sge_start(struct adapter *adap)
2902 {
2903 	adap->sge.ethtxq_rover = 0;
2904 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2905 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2906 }
2907 
2908 /**
2909  *	t4_sge_stop - disable SGE operation
2910  *	@adap: the adapter
2911  *
2912  *	Stop tasklets and timers associated with the DMA engine.  Note that
2913  *	this is effective only if measures have been taken to disable any HW
2914  *	events that may restart them.
2915  */
2916 void t4_sge_stop(struct adapter *adap)
2917 {
2918 	int i;
2919 	struct sge *s = &adap->sge;
2920 
2921 	if (in_interrupt())  /* actions below require waiting */
2922 		return;
2923 
2924 	if (s->rx_timer.function)
2925 		del_timer_sync(&s->rx_timer);
2926 	if (s->tx_timer.function)
2927 		del_timer_sync(&s->tx_timer);
2928 
2929 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2930 		struct sge_ofld_txq *q = &s->ofldtxq[i];
2931 
2932 		if (q->q.desc)
2933 			tasklet_kill(&q->qresume_tsk);
2934 	}
2935 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2936 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
2937 
2938 		if (cq->q.desc)
2939 			tasklet_kill(&cq->qresume_tsk);
2940 	}
2941 }
2942 
2943 /**
2944  *	t4_sge_init_soft - grab core SGE values needed by SGE code
2945  *	@adap: the adapter
2946  *
2947  *	We need to grab the SGE operating parameters that we need to have
2948  *	in order to do our job and make sure we can live with them.
2949  */
2950 
2951 static int t4_sge_init_soft(struct adapter *adap)
2952 {
2953 	struct sge *s = &adap->sge;
2954 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2955 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2956 	u32 ingress_rx_threshold;
2957 
2958 	/*
2959 	 * Verify that CPL messages are going to the Ingress Queue for
2960 	 * process_responses() and that only packet data is going to the
2961 	 * Free Lists.
2962 	 */
2963 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
2964 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2965 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2966 		return -EINVAL;
2967 	}
2968 
2969 	/*
2970 	 * Validate the Host Buffer Register Array indices that we want to
2971 	 * use ...
2972 	 *
2973 	 * XXX Note that we should really read through the Host Buffer Size
2974 	 * XXX register array and find the indices of the Buffer Sizes which
2975 	 * XXX meet our needs!
2976 	 */
2977 	#define READ_FL_BUF(x) \
2978 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
2979 
2980 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2981 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2982 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2983 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2984 
2985 	/* We only bother using the Large Page logic if the Large Page Buffer
2986 	 * is larger than our Page Size Buffer.
2987 	 */
2988 	if (fl_large_pg <= fl_small_pg)
2989 		fl_large_pg = 0;
2990 
2991 	#undef READ_FL_BUF
2992 
2993 	/* The Page Size Buffer must be exactly equal to our Page Size and the
2994 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2995 	 */
2996 	if (fl_small_pg != PAGE_SIZE ||
2997 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
2998 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2999 			fl_small_pg, fl_large_pg);
3000 		return -EINVAL;
3001 	}
3002 	if (fl_large_pg)
3003 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
3004 
3005 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
3006 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
3007 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
3008 			fl_small_mtu, fl_large_mtu);
3009 		return -EINVAL;
3010 	}
3011 
3012 	/*
3013 	 * Retrieve our RX interrupt holdoff timer values and counter
3014 	 * threshold values from the SGE parameters.
3015 	 */
3016 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
3017 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
3018 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
3019 	s->timer_val[0] = core_ticks_to_us(adap,
3020 		TIMERVALUE0_G(timer_value_0_and_1));
3021 	s->timer_val[1] = core_ticks_to_us(adap,
3022 		TIMERVALUE1_G(timer_value_0_and_1));
3023 	s->timer_val[2] = core_ticks_to_us(adap,
3024 		TIMERVALUE2_G(timer_value_2_and_3));
3025 	s->timer_val[3] = core_ticks_to_us(adap,
3026 		TIMERVALUE3_G(timer_value_2_and_3));
3027 	s->timer_val[4] = core_ticks_to_us(adap,
3028 		TIMERVALUE4_G(timer_value_4_and_5));
3029 	s->timer_val[5] = core_ticks_to_us(adap,
3030 		TIMERVALUE5_G(timer_value_4_and_5));
3031 
3032 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
3033 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
3034 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
3035 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
3036 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
3037 
3038 	return 0;
3039 }
3040 
3041 /**
3042  *     t4_sge_init - initialize SGE
3043  *     @adap: the adapter
3044  *
3045  *     Perform low-level SGE code initialization needed every time after a
3046  *     chip reset.
3047  */
3048 int t4_sge_init(struct adapter *adap)
3049 {
3050 	struct sge *s = &adap->sge;
3051 	u32 sge_control, sge_control2, sge_conm_ctrl;
3052 	unsigned int ingpadboundary, ingpackboundary;
3053 	int ret, egress_threshold;
3054 
3055 	/*
3056 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
3057 	 * t4_fixup_host_params().
3058 	 */
3059 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
3060 	s->pktshift = PKTSHIFT_G(sge_control);
3061 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3062 
3063 	/* T4 uses a single control field to specify both the PCIe Padding and
3064 	 * Packing Boundary.  T5 introduced the ability to specify these
3065 	 * separately.  The actual Ingress Packet Data alignment boundary
3066 	 * within Packed Buffer Mode is the maximum of these two
3067 	 * specifications.  (Note that it makes no real practical sense to
3068 	 * have the Pading Boudary be larger than the Packing Boundary but you
3069 	 * could set the chip up that way and, in fact, legacy T4 code would
3070 	 * end doing this because it would initialize the Padding Boundary and
3071 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
3072 	 */
3073 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) +
3074 			       INGPADBOUNDARY_SHIFT_X);
3075 	if (is_t4(adap->params.chip)) {
3076 		s->fl_align = ingpadboundary;
3077 	} else {
3078 		/* T5 has a different interpretation of one of the PCIe Packing
3079 		 * Boundary values.
3080 		 */
3081 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
3082 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
3083 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
3084 			ingpackboundary = 16;
3085 		else
3086 			ingpackboundary = 1 << (ingpackboundary +
3087 						INGPACKBOUNDARY_SHIFT_X);
3088 
3089 		s->fl_align = max(ingpadboundary, ingpackboundary);
3090 	}
3091 
3092 	ret = t4_sge_init_soft(adap);
3093 	if (ret < 0)
3094 		return ret;
3095 
3096 	/*
3097 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
3098 	 * timer will attempt to refill it.  This needs to be larger than the
3099 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
3100 	 * stuck waiting for new packets while the SGE is waiting for us to
3101 	 * give it more Free List entries.  (Note that the SGE's Egress
3102 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
3103 	 * there was only a single field to control this.  For T5 there's the
3104 	 * original field which now only applies to Unpacked Mode Free List
3105 	 * buffers and a new field which only applies to Packed Mode Free List
3106 	 * buffers.
3107 	 */
3108 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3109 	if (is_t4(adap->params.chip))
3110 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3111 	else
3112 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3113 	s->fl_starve_thres = 2*egress_threshold + 1;
3114 
3115 	t4_idma_monitor_init(adap, &s->idma_monitor);
3116 
3117 	/* Set up timers used for recuring callbacks to process RX and TX
3118 	 * administrative tasks.
3119 	 */
3120 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
3121 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
3122 
3123 	spin_lock_init(&s->intrq_lock);
3124 
3125 	return 0;
3126 }
3127