1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 59 /* 60 * Rx buffer size. We use largish buffers if possible but settle for single 61 * pages under memory shortage. 62 */ 63 #if PAGE_SHIFT >= 16 64 # define FL_PG_ORDER 0 65 #else 66 # define FL_PG_ORDER (16 - PAGE_SHIFT) 67 #endif 68 69 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 70 #define RX_COPY_THRES 256 71 #define RX_PULL_LEN 128 72 73 /* 74 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 75 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 76 */ 77 #define RX_PKT_SKB_LEN 512 78 79 /* 80 * Max number of Tx descriptors we clean up at a time. Should be modest as 81 * freeing skbs isn't cheap and it happens while holding locks. We just need 82 * to free packets faster than they arrive, we eventually catch up and keep 83 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. 84 */ 85 #define MAX_TX_RECLAIM 16 86 87 /* 88 * Max number of Rx buffers we replenish at a time. Again keep this modest, 89 * allocating buffers isn't cheap either. 90 */ 91 #define MAX_RX_REFILL 16U 92 93 /* 94 * Period of the Rx queue check timer. This timer is infrequent as it has 95 * something to do only when the system experiences severe memory shortage. 96 */ 97 #define RX_QCHECK_PERIOD (HZ / 2) 98 99 /* 100 * Period of the Tx queue check timer. 101 */ 102 #define TX_QCHECK_PERIOD (HZ / 2) 103 104 /* 105 * Max number of Tx descriptors to be reclaimed by the Tx timer. 106 */ 107 #define MAX_TIMER_TX_RECLAIM 100 108 109 /* 110 * Timer index used when backing off due to memory shortage. 111 */ 112 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 113 114 /* 115 * Suspension threshold for non-Ethernet Tx queues. We require enough room 116 * for a full sized WR. 117 */ 118 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 119 120 /* 121 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 122 * into a WR. 123 */ 124 #define MAX_IMM_TX_PKT_LEN 256 125 126 /* 127 * Max size of a WR sent through a control Tx queue. 128 */ 129 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 130 131 struct rx_sw_desc { /* SW state per Rx descriptor */ 132 struct page *page; 133 dma_addr_t dma_addr; 134 }; 135 136 /* 137 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 138 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 139 * We could easily support more but there doesn't seem to be much need for 140 * that ... 141 */ 142 #define FL_MTU_SMALL 1500 143 #define FL_MTU_LARGE 9000 144 145 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 146 unsigned int mtu) 147 { 148 struct sge *s = &adapter->sge; 149 150 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 151 } 152 153 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 154 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 155 156 /* 157 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 158 * these to specify the buffer size as an index into the SGE Free List Buffer 159 * Size register array. We also use bit 4, when the buffer has been unmapped 160 * for DMA, but this is of course never sent to the hardware and is only used 161 * to prevent double unmappings. All of the above requires that the Free List 162 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 163 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 164 * Free List Buffer alignment is 32 bytes, this works out for us ... 165 */ 166 enum { 167 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 168 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 169 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 170 171 /* 172 * XXX We shouldn't depend on being able to use these indices. 173 * XXX Especially when some other Master PF has initialized the 174 * XXX adapter or we use the Firmware Configuration File. We 175 * XXX should really search through the Host Buffer Size register 176 * XXX array for the appropriately sized buffer indices. 177 */ 178 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 179 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 180 181 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 182 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 183 }; 184 185 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 186 #define MIN_NAPI_WORK 1 187 188 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 189 { 190 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 191 } 192 193 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 194 { 195 return !(d->dma_addr & RX_UNMAPPED_BUF); 196 } 197 198 /** 199 * txq_avail - return the number of available slots in a Tx queue 200 * @q: the Tx queue 201 * 202 * Returns the number of descriptors in a Tx queue available to write new 203 * packets. 204 */ 205 static inline unsigned int txq_avail(const struct sge_txq *q) 206 { 207 return q->size - 1 - q->in_use; 208 } 209 210 /** 211 * fl_cap - return the capacity of a free-buffer list 212 * @fl: the FL 213 * 214 * Returns the capacity of a free-buffer list. The capacity is less than 215 * the size because one descriptor needs to be left unpopulated, otherwise 216 * HW will think the FL is empty. 217 */ 218 static inline unsigned int fl_cap(const struct sge_fl *fl) 219 { 220 return fl->size - 8; /* 1 descriptor = 8 buffers */ 221 } 222 223 /** 224 * fl_starving - return whether a Free List is starving. 225 * @adapter: pointer to the adapter 226 * @fl: the Free List 227 * 228 * Tests specified Free List to see whether the number of buffers 229 * available to the hardware has falled below our "starvation" 230 * threshold. 231 */ 232 static inline bool fl_starving(const struct adapter *adapter, 233 const struct sge_fl *fl) 234 { 235 const struct sge *s = &adapter->sge; 236 237 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 238 } 239 240 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 241 dma_addr_t *addr) 242 { 243 const skb_frag_t *fp, *end; 244 const struct skb_shared_info *si; 245 246 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 247 if (dma_mapping_error(dev, *addr)) 248 goto out_err; 249 250 si = skb_shinfo(skb); 251 end = &si->frags[si->nr_frags]; 252 253 for (fp = si->frags; fp < end; fp++) { 254 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 255 DMA_TO_DEVICE); 256 if (dma_mapping_error(dev, *addr)) 257 goto unwind; 258 } 259 return 0; 260 261 unwind: 262 while (fp-- > si->frags) 263 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 264 265 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 266 out_err: 267 return -ENOMEM; 268 } 269 EXPORT_SYMBOL(cxgb4_map_skb); 270 271 #ifdef CONFIG_NEED_DMA_MAP_STATE 272 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 273 const dma_addr_t *addr) 274 { 275 const skb_frag_t *fp, *end; 276 const struct skb_shared_info *si; 277 278 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 279 280 si = skb_shinfo(skb); 281 end = &si->frags[si->nr_frags]; 282 for (fp = si->frags; fp < end; fp++) 283 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 284 } 285 286 /** 287 * deferred_unmap_destructor - unmap a packet when it is freed 288 * @skb: the packet 289 * 290 * This is the packet destructor used for Tx packets that need to remain 291 * mapped until they are freed rather than until their Tx descriptors are 292 * freed. 293 */ 294 static void deferred_unmap_destructor(struct sk_buff *skb) 295 { 296 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 297 } 298 #endif 299 300 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 301 const struct ulptx_sgl *sgl, const struct sge_txq *q) 302 { 303 const struct ulptx_sge_pair *p; 304 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 305 306 if (likely(skb_headlen(skb))) 307 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 308 DMA_TO_DEVICE); 309 else { 310 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 311 DMA_TO_DEVICE); 312 nfrags--; 313 } 314 315 /* 316 * the complexity below is because of the possibility of a wrap-around 317 * in the middle of an SGL 318 */ 319 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 320 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 321 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 322 ntohl(p->len[0]), DMA_TO_DEVICE); 323 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 324 ntohl(p->len[1]), DMA_TO_DEVICE); 325 p++; 326 } else if ((u8 *)p == (u8 *)q->stat) { 327 p = (const struct ulptx_sge_pair *)q->desc; 328 goto unmap; 329 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 330 const __be64 *addr = (const __be64 *)q->desc; 331 332 dma_unmap_page(dev, be64_to_cpu(addr[0]), 333 ntohl(p->len[0]), DMA_TO_DEVICE); 334 dma_unmap_page(dev, be64_to_cpu(addr[1]), 335 ntohl(p->len[1]), DMA_TO_DEVICE); 336 p = (const struct ulptx_sge_pair *)&addr[2]; 337 } else { 338 const __be64 *addr = (const __be64 *)q->desc; 339 340 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 341 ntohl(p->len[0]), DMA_TO_DEVICE); 342 dma_unmap_page(dev, be64_to_cpu(addr[0]), 343 ntohl(p->len[1]), DMA_TO_DEVICE); 344 p = (const struct ulptx_sge_pair *)&addr[1]; 345 } 346 } 347 if (nfrags) { 348 __be64 addr; 349 350 if ((u8 *)p == (u8 *)q->stat) 351 p = (const struct ulptx_sge_pair *)q->desc; 352 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 353 *(const __be64 *)q->desc; 354 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 355 DMA_TO_DEVICE); 356 } 357 } 358 359 /** 360 * free_tx_desc - reclaims Tx descriptors and their buffers 361 * @adapter: the adapter 362 * @q: the Tx queue to reclaim descriptors from 363 * @n: the number of descriptors to reclaim 364 * @unmap: whether the buffers should be unmapped for DMA 365 * 366 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 367 * Tx buffers. Called with the Tx queue lock held. 368 */ 369 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 370 unsigned int n, bool unmap) 371 { 372 struct tx_sw_desc *d; 373 unsigned int cidx = q->cidx; 374 struct device *dev = adap->pdev_dev; 375 376 d = &q->sdesc[cidx]; 377 while (n--) { 378 if (d->skb) { /* an SGL is present */ 379 if (unmap) 380 unmap_sgl(dev, d->skb, d->sgl, q); 381 dev_consume_skb_any(d->skb); 382 d->skb = NULL; 383 } 384 ++d; 385 if (++cidx == q->size) { 386 cidx = 0; 387 d = q->sdesc; 388 } 389 } 390 q->cidx = cidx; 391 } 392 393 /* 394 * Return the number of reclaimable descriptors in a Tx queue. 395 */ 396 static inline int reclaimable(const struct sge_txq *q) 397 { 398 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 399 hw_cidx -= q->cidx; 400 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 401 } 402 403 /** 404 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 405 * @adap: the adapter 406 * @q: the Tx queue to reclaim completed descriptors from 407 * @unmap: whether the buffers should be unmapped for DMA 408 * 409 * Reclaims Tx descriptors that the SGE has indicated it has processed, 410 * and frees the associated buffers if possible. Called with the Tx 411 * queue locked. 412 */ 413 inline void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 414 bool unmap) 415 { 416 int avail = reclaimable(q); 417 418 if (avail) { 419 /* 420 * Limit the amount of clean up work we do at a time to keep 421 * the Tx lock hold time O(1). 422 */ 423 if (avail > MAX_TX_RECLAIM) 424 avail = MAX_TX_RECLAIM; 425 426 free_tx_desc(adap, q, avail, unmap); 427 q->in_use -= avail; 428 } 429 } 430 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 431 432 static inline int get_buf_size(struct adapter *adapter, 433 const struct rx_sw_desc *d) 434 { 435 struct sge *s = &adapter->sge; 436 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 437 int buf_size; 438 439 switch (rx_buf_size_idx) { 440 case RX_SMALL_PG_BUF: 441 buf_size = PAGE_SIZE; 442 break; 443 444 case RX_LARGE_PG_BUF: 445 buf_size = PAGE_SIZE << s->fl_pg_order; 446 break; 447 448 case RX_SMALL_MTU_BUF: 449 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 450 break; 451 452 case RX_LARGE_MTU_BUF: 453 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 454 break; 455 456 default: 457 BUG_ON(1); 458 } 459 460 return buf_size; 461 } 462 463 /** 464 * free_rx_bufs - free the Rx buffers on an SGE free list 465 * @adap: the adapter 466 * @q: the SGE free list to free buffers from 467 * @n: how many buffers to free 468 * 469 * Release the next @n buffers on an SGE free-buffer Rx queue. The 470 * buffers must be made inaccessible to HW before calling this function. 471 */ 472 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 473 { 474 while (n--) { 475 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 476 477 if (is_buf_mapped(d)) 478 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 479 get_buf_size(adap, d), 480 PCI_DMA_FROMDEVICE); 481 put_page(d->page); 482 d->page = NULL; 483 if (++q->cidx == q->size) 484 q->cidx = 0; 485 q->avail--; 486 } 487 } 488 489 /** 490 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 491 * @adap: the adapter 492 * @q: the SGE free list 493 * 494 * Unmap the current buffer on an SGE free-buffer Rx queue. The 495 * buffer must be made inaccessible to HW before calling this function. 496 * 497 * This is similar to @free_rx_bufs above but does not free the buffer. 498 * Do note that the FL still loses any further access to the buffer. 499 */ 500 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 501 { 502 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 503 504 if (is_buf_mapped(d)) 505 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 506 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 507 d->page = NULL; 508 if (++q->cidx == q->size) 509 q->cidx = 0; 510 q->avail--; 511 } 512 513 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 514 { 515 if (q->pend_cred >= 8) { 516 u32 val = adap->params.arch.sge_fl_db; 517 518 if (is_t4(adap->params.chip)) 519 val |= PIDX_V(q->pend_cred / 8); 520 else 521 val |= PIDX_T5_V(q->pend_cred / 8); 522 523 /* Make sure all memory writes to the Free List queue are 524 * committed before we tell the hardware about them. 525 */ 526 wmb(); 527 528 /* If we don't have access to the new User Doorbell (T5+), use 529 * the old doorbell mechanism; otherwise use the new BAR2 530 * mechanism. 531 */ 532 if (unlikely(q->bar2_addr == NULL)) { 533 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 534 val | QID_V(q->cntxt_id)); 535 } else { 536 writel(val | QID_V(q->bar2_qid), 537 q->bar2_addr + SGE_UDB_KDOORBELL); 538 539 /* This Write memory Barrier will force the write to 540 * the User Doorbell area to be flushed. 541 */ 542 wmb(); 543 } 544 q->pend_cred &= 7; 545 } 546 } 547 548 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 549 dma_addr_t mapping) 550 { 551 sd->page = pg; 552 sd->dma_addr = mapping; /* includes size low bits */ 553 } 554 555 /** 556 * refill_fl - refill an SGE Rx buffer ring 557 * @adap: the adapter 558 * @q: the ring to refill 559 * @n: the number of new buffers to allocate 560 * @gfp: the gfp flags for the allocations 561 * 562 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 563 * allocated with the supplied gfp flags. The caller must assure that 564 * @n does not exceed the queue's capacity. If afterwards the queue is 565 * found critically low mark it as starving in the bitmap of starving FLs. 566 * 567 * Returns the number of buffers allocated. 568 */ 569 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 570 gfp_t gfp) 571 { 572 struct sge *s = &adap->sge; 573 struct page *pg; 574 dma_addr_t mapping; 575 unsigned int cred = q->avail; 576 __be64 *d = &q->desc[q->pidx]; 577 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 578 int node; 579 580 #ifdef CONFIG_DEBUG_FS 581 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 582 goto out; 583 #endif 584 585 gfp |= __GFP_NOWARN; 586 node = dev_to_node(adap->pdev_dev); 587 588 if (s->fl_pg_order == 0) 589 goto alloc_small_pages; 590 591 /* 592 * Prefer large buffers 593 */ 594 while (n) { 595 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 596 if (unlikely(!pg)) { 597 q->large_alloc_failed++; 598 break; /* fall back to single pages */ 599 } 600 601 mapping = dma_map_page(adap->pdev_dev, pg, 0, 602 PAGE_SIZE << s->fl_pg_order, 603 PCI_DMA_FROMDEVICE); 604 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 605 __free_pages(pg, s->fl_pg_order); 606 q->mapping_err++; 607 goto out; /* do not try small pages for this error */ 608 } 609 mapping |= RX_LARGE_PG_BUF; 610 *d++ = cpu_to_be64(mapping); 611 612 set_rx_sw_desc(sd, pg, mapping); 613 sd++; 614 615 q->avail++; 616 if (++q->pidx == q->size) { 617 q->pidx = 0; 618 sd = q->sdesc; 619 d = q->desc; 620 } 621 n--; 622 } 623 624 alloc_small_pages: 625 while (n--) { 626 pg = alloc_pages_node(node, gfp, 0); 627 if (unlikely(!pg)) { 628 q->alloc_failed++; 629 break; 630 } 631 632 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 633 PCI_DMA_FROMDEVICE); 634 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 635 put_page(pg); 636 q->mapping_err++; 637 goto out; 638 } 639 *d++ = cpu_to_be64(mapping); 640 641 set_rx_sw_desc(sd, pg, mapping); 642 sd++; 643 644 q->avail++; 645 if (++q->pidx == q->size) { 646 q->pidx = 0; 647 sd = q->sdesc; 648 d = q->desc; 649 } 650 } 651 652 out: cred = q->avail - cred; 653 q->pend_cred += cred; 654 ring_fl_db(adap, q); 655 656 if (unlikely(fl_starving(adap, q))) { 657 smp_wmb(); 658 q->low++; 659 set_bit(q->cntxt_id - adap->sge.egr_start, 660 adap->sge.starving_fl); 661 } 662 663 return cred; 664 } 665 666 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 667 { 668 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 669 GFP_ATOMIC); 670 } 671 672 /** 673 * alloc_ring - allocate resources for an SGE descriptor ring 674 * @dev: the PCI device's core device 675 * @nelem: the number of descriptors 676 * @elem_size: the size of each descriptor 677 * @sw_size: the size of the SW state associated with each ring element 678 * @phys: the physical address of the allocated ring 679 * @metadata: address of the array holding the SW state for the ring 680 * @stat_size: extra space in HW ring for status information 681 * @node: preferred node for memory allocations 682 * 683 * Allocates resources for an SGE descriptor ring, such as Tx queues, 684 * free buffer lists, or response queues. Each SGE ring requires 685 * space for its HW descriptors plus, optionally, space for the SW state 686 * associated with each HW entry (the metadata). The function returns 687 * three values: the virtual address for the HW ring (the return value 688 * of the function), the bus address of the HW ring, and the address 689 * of the SW ring. 690 */ 691 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 692 size_t sw_size, dma_addr_t *phys, void *metadata, 693 size_t stat_size, int node) 694 { 695 size_t len = nelem * elem_size + stat_size; 696 void *s = NULL; 697 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 698 699 if (!p) 700 return NULL; 701 if (sw_size) { 702 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); 703 704 if (!s) { 705 dma_free_coherent(dev, len, p, *phys); 706 return NULL; 707 } 708 } 709 if (metadata) 710 *(void **)metadata = s; 711 memset(p, 0, len); 712 return p; 713 } 714 715 /** 716 * sgl_len - calculates the size of an SGL of the given capacity 717 * @n: the number of SGL entries 718 * 719 * Calculates the number of flits needed for a scatter/gather list that 720 * can hold the given number of entries. 721 */ 722 static inline unsigned int sgl_len(unsigned int n) 723 { 724 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 725 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 726 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 727 * repeated sequences of { Length[i], Length[i+1], Address[i], 728 * Address[i+1] } (this ensures that all addresses are on 64-bit 729 * boundaries). If N is even, then Length[N+1] should be set to 0 and 730 * Address[N+1] is omitted. 731 * 732 * The following calculation incorporates all of the above. It's 733 * somewhat hard to follow but, briefly: the "+2" accounts for the 734 * first two flits which include the DSGL header, Length0 and 735 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 736 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 737 * finally the "+((n-1)&1)" adds the one remaining flit needed if 738 * (n-1) is odd ... 739 */ 740 n--; 741 return (3 * n) / 2 + (n & 1) + 2; 742 } 743 744 /** 745 * flits_to_desc - returns the num of Tx descriptors for the given flits 746 * @n: the number of flits 747 * 748 * Returns the number of Tx descriptors needed for the supplied number 749 * of flits. 750 */ 751 static inline unsigned int flits_to_desc(unsigned int n) 752 { 753 BUG_ON(n > SGE_MAX_WR_LEN / 8); 754 return DIV_ROUND_UP(n, 8); 755 } 756 757 /** 758 * is_eth_imm - can an Ethernet packet be sent as immediate data? 759 * @skb: the packet 760 * 761 * Returns whether an Ethernet packet is small enough to fit as 762 * immediate data. Return value corresponds to headroom required. 763 */ 764 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 765 { 766 int hdrlen = 0; 767 768 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 769 chip_ver > CHELSIO_T5) { 770 hdrlen = sizeof(struct cpl_tx_tnl_lso); 771 hdrlen += sizeof(struct cpl_tx_pkt_core); 772 } else { 773 hdrlen = skb_shinfo(skb)->gso_size ? 774 sizeof(struct cpl_tx_pkt_lso_core) : 0; 775 hdrlen += sizeof(struct cpl_tx_pkt); 776 } 777 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 778 return hdrlen; 779 return 0; 780 } 781 782 /** 783 * calc_tx_flits - calculate the number of flits for a packet Tx WR 784 * @skb: the packet 785 * 786 * Returns the number of flits needed for a Tx WR for the given Ethernet 787 * packet, including the needed WR and CPL headers. 788 */ 789 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 790 unsigned int chip_ver) 791 { 792 unsigned int flits; 793 int hdrlen = is_eth_imm(skb, chip_ver); 794 795 /* If the skb is small enough, we can pump it out as a work request 796 * with only immediate data. In that case we just have to have the 797 * TX Packet header plus the skb data in the Work Request. 798 */ 799 800 if (hdrlen) 801 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 802 803 /* Otherwise, we're going to have to construct a Scatter gather list 804 * of the skb body and fragments. We also include the flits necessary 805 * for the TX Packet Work Request and CPL. We always have a firmware 806 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 807 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 808 * message or, if we're doing a Large Send Offload, an LSO CPL message 809 * with an embedded TX Packet Write CPL message. 810 */ 811 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 812 if (skb_shinfo(skb)->gso_size) { 813 if (skb->encapsulation && chip_ver > CHELSIO_T5) 814 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 815 sizeof(struct cpl_tx_tnl_lso); 816 else 817 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 818 sizeof(struct cpl_tx_pkt_lso_core); 819 820 hdrlen += sizeof(struct cpl_tx_pkt_core); 821 flits += (hdrlen / sizeof(__be64)); 822 } else { 823 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 824 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 825 } 826 return flits; 827 } 828 829 /** 830 * calc_tx_descs - calculate the number of Tx descriptors for a packet 831 * @skb: the packet 832 * 833 * Returns the number of Tx descriptors needed for the given Ethernet 834 * packet, including the needed WR and CPL headers. 835 */ 836 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 837 unsigned int chip_ver) 838 { 839 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 840 } 841 842 /** 843 * cxgb4_write_sgl - populate a scatter/gather list for a packet 844 * @skb: the packet 845 * @q: the Tx queue we are writing into 846 * @sgl: starting location for writing the SGL 847 * @end: points right after the end of the SGL 848 * @start: start offset into skb main-body data to include in the SGL 849 * @addr: the list of bus addresses for the SGL elements 850 * 851 * Generates a gather list for the buffers that make up a packet. 852 * The caller must provide adequate space for the SGL that will be written. 853 * The SGL includes all of the packet's page fragments and the data in its 854 * main body except for the first @start bytes. @sgl must be 16-byte 855 * aligned and within a Tx descriptor with available space. @end points 856 * right after the end of the SGL but does not account for any potential 857 * wrap around, i.e., @end > @sgl. 858 */ 859 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 860 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 861 const dma_addr_t *addr) 862 { 863 unsigned int i, len; 864 struct ulptx_sge_pair *to; 865 const struct skb_shared_info *si = skb_shinfo(skb); 866 unsigned int nfrags = si->nr_frags; 867 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 868 869 len = skb_headlen(skb) - start; 870 if (likely(len)) { 871 sgl->len0 = htonl(len); 872 sgl->addr0 = cpu_to_be64(addr[0] + start); 873 nfrags++; 874 } else { 875 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 876 sgl->addr0 = cpu_to_be64(addr[1]); 877 } 878 879 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 880 ULPTX_NSGE_V(nfrags)); 881 if (likely(--nfrags == 0)) 882 return; 883 /* 884 * Most of the complexity below deals with the possibility we hit the 885 * end of the queue in the middle of writing the SGL. For this case 886 * only we create the SGL in a temporary buffer and then copy it. 887 */ 888 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 889 890 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 891 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 892 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 893 to->addr[0] = cpu_to_be64(addr[i]); 894 to->addr[1] = cpu_to_be64(addr[++i]); 895 } 896 if (nfrags) { 897 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 898 to->len[1] = cpu_to_be32(0); 899 to->addr[0] = cpu_to_be64(addr[i + 1]); 900 } 901 if (unlikely((u8 *)end > (u8 *)q->stat)) { 902 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 903 904 if (likely(part0)) 905 memcpy(sgl->sge, buf, part0); 906 part1 = (u8 *)end - (u8 *)q->stat; 907 memcpy(q->desc, (u8 *)buf + part0, part1); 908 end = (void *)q->desc + part1; 909 } 910 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 911 *end = 0; 912 } 913 EXPORT_SYMBOL(cxgb4_write_sgl); 914 915 /* This function copies 64 byte coalesced work request to 916 * memory mapped BAR2 space. For coalesced WR SGE fetches 917 * data from the FIFO instead of from Host. 918 */ 919 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 920 { 921 int count = 8; 922 923 while (count) { 924 writeq(*src, dst); 925 src++; 926 dst++; 927 count--; 928 } 929 } 930 931 /** 932 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 933 * @adap: the adapter 934 * @q: the Tx queue 935 * @n: number of new descriptors to give to HW 936 * 937 * Ring the doorbel for a Tx queue. 938 */ 939 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 940 { 941 /* Make sure that all writes to the TX Descriptors are committed 942 * before we tell the hardware about them. 943 */ 944 wmb(); 945 946 /* If we don't have access to the new User Doorbell (T5+), use the old 947 * doorbell mechanism; otherwise use the new BAR2 mechanism. 948 */ 949 if (unlikely(q->bar2_addr == NULL)) { 950 u32 val = PIDX_V(n); 951 unsigned long flags; 952 953 /* For T4 we need to participate in the Doorbell Recovery 954 * mechanism. 955 */ 956 spin_lock_irqsave(&q->db_lock, flags); 957 if (!q->db_disabled) 958 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 959 QID_V(q->cntxt_id) | val); 960 else 961 q->db_pidx_inc += n; 962 q->db_pidx = q->pidx; 963 spin_unlock_irqrestore(&q->db_lock, flags); 964 } else { 965 u32 val = PIDX_T5_V(n); 966 967 /* T4 and later chips share the same PIDX field offset within 968 * the doorbell, but T5 and later shrank the field in order to 969 * gain a bit for Doorbell Priority. The field was absurdly 970 * large in the first place (14 bits) so we just use the T5 971 * and later limits and warn if a Queue ID is too large. 972 */ 973 WARN_ON(val & DBPRIO_F); 974 975 /* If we're only writing a single TX Descriptor and we can use 976 * Inferred QID registers, we can use the Write Combining 977 * Gather Buffer; otherwise we use the simple doorbell. 978 */ 979 if (n == 1 && q->bar2_qid == 0) { 980 int index = (q->pidx 981 ? (q->pidx - 1) 982 : (q->size - 1)); 983 u64 *wr = (u64 *)&q->desc[index]; 984 985 cxgb_pio_copy((u64 __iomem *) 986 (q->bar2_addr + SGE_UDB_WCDOORBELL), 987 wr); 988 } else { 989 writel(val | QID_V(q->bar2_qid), 990 q->bar2_addr + SGE_UDB_KDOORBELL); 991 } 992 993 /* This Write Memory Barrier will force the write to the User 994 * Doorbell area to be flushed. This is needed to prevent 995 * writes on different CPUs for the same queue from hitting 996 * the adapter out of order. This is required when some Work 997 * Requests take the Write Combine Gather Buffer path (user 998 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 999 * take the traditional path where we simply increment the 1000 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1001 * hardware DMA read the actual Work Request. 1002 */ 1003 wmb(); 1004 } 1005 } 1006 EXPORT_SYMBOL(cxgb4_ring_tx_db); 1007 1008 /** 1009 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 1010 * @skb: the packet 1011 * @q: the Tx queue where the packet will be inlined 1012 * @pos: starting position in the Tx queue where to inline the packet 1013 * 1014 * Inline a packet's contents directly into Tx descriptors, starting at 1015 * the given position within the Tx DMA ring. 1016 * Most of the complexity of this operation is dealing with wrap arounds 1017 * in the middle of the packet we want to inline. 1018 */ 1019 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 1020 const struct sge_txq *q, void *pos) 1021 { 1022 int left = (void *)q->stat - pos; 1023 u64 *p; 1024 1025 if (likely(skb->len <= left)) { 1026 if (likely(!skb->data_len)) 1027 skb_copy_from_linear_data(skb, pos, skb->len); 1028 else 1029 skb_copy_bits(skb, 0, pos, skb->len); 1030 pos += skb->len; 1031 } else { 1032 skb_copy_bits(skb, 0, pos, left); 1033 skb_copy_bits(skb, left, q->desc, skb->len - left); 1034 pos = (void *)q->desc + (skb->len - left); 1035 } 1036 1037 /* 0-pad to multiple of 16 */ 1038 p = PTR_ALIGN(pos, 8); 1039 if ((uintptr_t)p & 8) 1040 *p = 0; 1041 } 1042 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1043 1044 static void *inline_tx_skb_header(const struct sk_buff *skb, 1045 const struct sge_txq *q, void *pos, 1046 int length) 1047 { 1048 u64 *p; 1049 int left = (void *)q->stat - pos; 1050 1051 if (likely(length <= left)) { 1052 memcpy(pos, skb->data, length); 1053 pos += length; 1054 } else { 1055 memcpy(pos, skb->data, left); 1056 memcpy(q->desc, skb->data + left, length - left); 1057 pos = (void *)q->desc + (length - left); 1058 } 1059 /* 0-pad to multiple of 16 */ 1060 p = PTR_ALIGN(pos, 8); 1061 if ((uintptr_t)p & 8) { 1062 *p = 0; 1063 return p + 1; 1064 } 1065 return p; 1066 } 1067 1068 /* 1069 * Figure out what HW csum a packet wants and return the appropriate control 1070 * bits. 1071 */ 1072 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1073 { 1074 int csum_type; 1075 const struct iphdr *iph = ip_hdr(skb); 1076 1077 if (iph->version == 4) { 1078 if (iph->protocol == IPPROTO_TCP) 1079 csum_type = TX_CSUM_TCPIP; 1080 else if (iph->protocol == IPPROTO_UDP) 1081 csum_type = TX_CSUM_UDPIP; 1082 else { 1083 nocsum: /* 1084 * unknown protocol, disable HW csum 1085 * and hope a bad packet is detected 1086 */ 1087 return TXPKT_L4CSUM_DIS_F; 1088 } 1089 } else { 1090 /* 1091 * this doesn't work with extension headers 1092 */ 1093 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 1094 1095 if (ip6h->nexthdr == IPPROTO_TCP) 1096 csum_type = TX_CSUM_TCPIP6; 1097 else if (ip6h->nexthdr == IPPROTO_UDP) 1098 csum_type = TX_CSUM_UDPIP6; 1099 else 1100 goto nocsum; 1101 } 1102 1103 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1104 u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb)); 1105 int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1106 1107 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1108 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1109 else 1110 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1111 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1112 } else { 1113 int start = skb_transport_offset(skb); 1114 1115 return TXPKT_CSUM_TYPE_V(csum_type) | 1116 TXPKT_CSUM_START_V(start) | 1117 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1118 } 1119 } 1120 1121 static void eth_txq_stop(struct sge_eth_txq *q) 1122 { 1123 netif_tx_stop_queue(q->txq); 1124 q->q.stops++; 1125 } 1126 1127 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1128 { 1129 q->in_use += n; 1130 q->pidx += n; 1131 if (q->pidx >= q->size) 1132 q->pidx -= q->size; 1133 } 1134 1135 #ifdef CONFIG_CHELSIO_T4_FCOE 1136 static inline int 1137 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1138 const struct port_info *pi, u64 *cntrl) 1139 { 1140 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1141 1142 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1143 return 0; 1144 1145 if (skb->protocol != htons(ETH_P_FCOE)) 1146 return 0; 1147 1148 skb_reset_mac_header(skb); 1149 skb->mac_len = sizeof(struct ethhdr); 1150 1151 skb_set_network_header(skb, skb->mac_len); 1152 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1153 1154 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1155 return -ENOTSUPP; 1156 1157 /* FC CRC offload */ 1158 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1159 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1160 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1161 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1162 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1163 return 0; 1164 } 1165 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1166 1167 /* Returns tunnel type if hardware supports offloading of the same. 1168 * It is called only for T5 and onwards. 1169 */ 1170 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1171 { 1172 u8 l4_hdr = 0; 1173 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1174 struct port_info *pi = netdev_priv(skb->dev); 1175 struct adapter *adapter = pi->adapter; 1176 1177 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1178 skb->inner_protocol != htons(ETH_P_TEB)) 1179 return tnl_type; 1180 1181 switch (vlan_get_protocol(skb)) { 1182 case htons(ETH_P_IP): 1183 l4_hdr = ip_hdr(skb)->protocol; 1184 break; 1185 case htons(ETH_P_IPV6): 1186 l4_hdr = ipv6_hdr(skb)->nexthdr; 1187 break; 1188 default: 1189 return tnl_type; 1190 } 1191 1192 switch (l4_hdr) { 1193 case IPPROTO_UDP: 1194 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1195 tnl_type = TX_TNL_TYPE_VXLAN; 1196 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1197 tnl_type = TX_TNL_TYPE_GENEVE; 1198 break; 1199 default: 1200 return tnl_type; 1201 } 1202 1203 return tnl_type; 1204 } 1205 1206 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1207 struct cpl_tx_tnl_lso *tnl_lso, 1208 enum cpl_tx_tnl_lso_type tnl_type) 1209 { 1210 u32 val; 1211 int in_eth_xtra_len; 1212 int l3hdr_len = skb_network_header_len(skb); 1213 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1214 const struct skb_shared_info *ssi = skb_shinfo(skb); 1215 bool v6 = (ip_hdr(skb)->version == 6); 1216 1217 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1218 CPL_TX_TNL_LSO_FIRST_F | 1219 CPL_TX_TNL_LSO_LAST_F | 1220 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1221 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1222 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1223 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1224 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1225 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1226 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1227 1228 tnl_lso->IpIdOffsetOut = 0; 1229 1230 /* Get the tunnel header length */ 1231 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1232 in_eth_xtra_len = skb_inner_network_header(skb) - 1233 skb_inner_mac_header(skb) - ETH_HLEN; 1234 1235 switch (tnl_type) { 1236 case TX_TNL_TYPE_VXLAN: 1237 case TX_TNL_TYPE_GENEVE: 1238 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1239 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1240 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1241 break; 1242 default: 1243 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1244 break; 1245 } 1246 1247 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1248 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1249 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1250 1251 tnl_lso->r1 = 0; 1252 1253 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1254 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1255 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1256 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1257 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1258 1259 tnl_lso->IpIdOffset = htons(0); 1260 1261 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1262 tnl_lso->TCPSeqOffset = htonl(0); 1263 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1264 } 1265 1266 /** 1267 * t4_eth_xmit - add a packet to an Ethernet Tx queue 1268 * @skb: the packet 1269 * @dev: the egress net device 1270 * 1271 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1272 */ 1273 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1274 { 1275 u32 wr_mid, ctrl0, op; 1276 u64 cntrl, *end; 1277 int qidx, credits; 1278 unsigned int flits, ndesc; 1279 struct adapter *adap; 1280 struct sge_eth_txq *q; 1281 const struct port_info *pi; 1282 struct fw_eth_tx_pkt_wr *wr; 1283 struct cpl_tx_pkt_core *cpl; 1284 const struct skb_shared_info *ssi; 1285 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1286 bool immediate = false; 1287 int len, max_pkt_len; 1288 bool ptp_enabled = is_ptp_enabled(skb, dev); 1289 unsigned int chip_ver; 1290 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1291 1292 #ifdef CONFIG_CHELSIO_T4_FCOE 1293 int err; 1294 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1295 1296 /* 1297 * The chip min packet length is 10 octets but play safe and reject 1298 * anything shorter than an Ethernet header. 1299 */ 1300 if (unlikely(skb->len < ETH_HLEN)) { 1301 out_free: dev_kfree_skb_any(skb); 1302 return NETDEV_TX_OK; 1303 } 1304 1305 /* Discard the packet if the length is greater than mtu */ 1306 max_pkt_len = ETH_HLEN + dev->mtu; 1307 if (skb_vlan_tagged(skb)) 1308 max_pkt_len += VLAN_HLEN; 1309 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1310 goto out_free; 1311 1312 pi = netdev_priv(dev); 1313 adap = pi->adapter; 1314 ssi = skb_shinfo(skb); 1315 #ifdef CONFIG_CHELSIO_IPSEC_INLINE 1316 if (xfrm_offload(skb) && !ssi->gso_size) 1317 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1318 #endif /* CHELSIO_IPSEC_INLINE */ 1319 1320 qidx = skb_get_queue_mapping(skb); 1321 if (ptp_enabled) { 1322 spin_lock(&adap->ptp_lock); 1323 if (!(adap->ptp_tx_skb)) { 1324 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1325 adap->ptp_tx_skb = skb_get(skb); 1326 } else { 1327 spin_unlock(&adap->ptp_lock); 1328 goto out_free; 1329 } 1330 q = &adap->sge.ptptxq; 1331 } else { 1332 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1333 } 1334 skb_tx_timestamp(skb); 1335 1336 cxgb4_reclaim_completed_tx(adap, &q->q, true); 1337 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1338 1339 #ifdef CONFIG_CHELSIO_T4_FCOE 1340 err = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1341 if (unlikely(err == -ENOTSUPP)) { 1342 if (ptp_enabled) 1343 spin_unlock(&adap->ptp_lock); 1344 goto out_free; 1345 } 1346 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1347 1348 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1349 flits = calc_tx_flits(skb, chip_ver); 1350 ndesc = flits_to_desc(flits); 1351 credits = txq_avail(&q->q) - ndesc; 1352 1353 if (unlikely(credits < 0)) { 1354 eth_txq_stop(q); 1355 dev_err(adap->pdev_dev, 1356 "%s: Tx ring %u full while queue awake!\n", 1357 dev->name, qidx); 1358 if (ptp_enabled) 1359 spin_unlock(&adap->ptp_lock); 1360 return NETDEV_TX_BUSY; 1361 } 1362 1363 if (is_eth_imm(skb, chip_ver)) 1364 immediate = true; 1365 1366 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1367 tnl_type = cxgb_encap_offload_supported(skb); 1368 1369 if (!immediate && 1370 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) { 1371 q->mapping_err++; 1372 if (ptp_enabled) 1373 spin_unlock(&adap->ptp_lock); 1374 goto out_free; 1375 } 1376 1377 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1378 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1379 eth_txq_stop(q); 1380 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1381 } 1382 1383 wr = (void *)&q->q.desc[q->q.pidx]; 1384 wr->equiq_to_len16 = htonl(wr_mid); 1385 wr->r3 = cpu_to_be64(0); 1386 end = (u64 *)wr + flits; 1387 1388 len = immediate ? skb->len : 0; 1389 if (ssi->gso_size) { 1390 struct cpl_tx_pkt_lso *lso = (void *)wr; 1391 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1392 int l3hdr_len = skb_network_header_len(skb); 1393 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1394 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1395 1396 if (tnl_type) 1397 len += sizeof(*tnl_lso); 1398 else 1399 len += sizeof(*lso); 1400 1401 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1402 FW_WR_IMMDLEN_V(len)); 1403 if (tnl_type) { 1404 struct iphdr *iph = ip_hdr(skb); 1405 1406 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1407 cpl = (void *)(tnl_lso + 1); 1408 /* Driver is expected to compute partial checksum that 1409 * does not include the IP Total Length. 1410 */ 1411 if (iph->version == 4) { 1412 iph->check = 0; 1413 iph->tot_len = 0; 1414 iph->check = (u16)(~ip_fast_csum((u8 *)iph, 1415 iph->ihl)); 1416 } 1417 if (skb->ip_summed == CHECKSUM_PARTIAL) 1418 cntrl = hwcsum(adap->params.chip, skb); 1419 } else { 1420 lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1421 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1422 LSO_IPV6_V(v6) | 1423 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1424 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1425 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1426 lso->c.ipid_ofst = htons(0); 1427 lso->c.mss = htons(ssi->gso_size); 1428 lso->c.seqno_offset = htonl(0); 1429 if (is_t4(adap->params.chip)) 1430 lso->c.len = htonl(skb->len); 1431 else 1432 lso->c.len = 1433 htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1434 cpl = (void *)(lso + 1); 1435 1436 if (CHELSIO_CHIP_VERSION(adap->params.chip) 1437 <= CHELSIO_T5) 1438 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1439 else 1440 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1441 1442 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1443 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1444 TXPKT_IPHDR_LEN_V(l3hdr_len); 1445 } 1446 q->tso++; 1447 q->tx_cso += ssi->gso_segs; 1448 } else { 1449 len += sizeof(*cpl); 1450 if (ptp_enabled) 1451 op = FW_PTP_TX_PKT_WR; 1452 else 1453 op = FW_ETH_TX_PKT_WR; 1454 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1455 FW_WR_IMMDLEN_V(len)); 1456 cpl = (void *)(wr + 1); 1457 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1458 cntrl = hwcsum(adap->params.chip, skb) | 1459 TXPKT_IPCSUM_DIS_F; 1460 q->tx_cso++; 1461 } 1462 } 1463 1464 if (skb_vlan_tag_present(skb)) { 1465 q->vlan_ins++; 1466 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1467 #ifdef CONFIG_CHELSIO_T4_FCOE 1468 if (skb->protocol == htons(ETH_P_FCOE)) 1469 cntrl |= TXPKT_VLAN_V( 1470 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1471 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1472 } 1473 1474 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1475 TXPKT_PF_V(adap->pf); 1476 if (ptp_enabled) 1477 ctrl0 |= TXPKT_TSTAMP_F; 1478 #ifdef CONFIG_CHELSIO_T4_DCB 1479 if (is_t4(adap->params.chip)) 1480 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1481 else 1482 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1483 #endif 1484 cpl->ctrl0 = htonl(ctrl0); 1485 cpl->pack = htons(0); 1486 cpl->len = htons(skb->len); 1487 cpl->ctrl1 = cpu_to_be64(cntrl); 1488 1489 if (immediate) { 1490 cxgb4_inline_tx_skb(skb, &q->q, cpl + 1); 1491 dev_consume_skb_any(skb); 1492 } else { 1493 int last_desc; 1494 1495 cxgb4_write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), 1496 end, 0, addr); 1497 skb_orphan(skb); 1498 1499 last_desc = q->q.pidx + ndesc - 1; 1500 if (last_desc >= q->q.size) 1501 last_desc -= q->q.size; 1502 q->q.sdesc[last_desc].skb = skb; 1503 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); 1504 } 1505 1506 txq_advance(&q->q, ndesc); 1507 1508 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1509 if (ptp_enabled) 1510 spin_unlock(&adap->ptp_lock); 1511 return NETDEV_TX_OK; 1512 } 1513 1514 /** 1515 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1516 * @q: the SGE control Tx queue 1517 * 1518 * This is a variant of cxgb4_reclaim_completed_tx() that is used 1519 * for Tx queues that send only immediate data (presently just 1520 * the control queues) and thus do not have any sk_buffs to release. 1521 */ 1522 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1523 { 1524 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1525 int reclaim = hw_cidx - q->cidx; 1526 1527 if (reclaim < 0) 1528 reclaim += q->size; 1529 1530 q->in_use -= reclaim; 1531 q->cidx = hw_cidx; 1532 } 1533 1534 /** 1535 * is_imm - check whether a packet can be sent as immediate data 1536 * @skb: the packet 1537 * 1538 * Returns true if a packet can be sent as a WR with immediate data. 1539 */ 1540 static inline int is_imm(const struct sk_buff *skb) 1541 { 1542 return skb->len <= MAX_CTRL_WR_LEN; 1543 } 1544 1545 /** 1546 * ctrlq_check_stop - check if a control queue is full and should stop 1547 * @q: the queue 1548 * @wr: most recent WR written to the queue 1549 * 1550 * Check if a control queue has become full and should be stopped. 1551 * We clean up control queue descriptors very lazily, only when we are out. 1552 * If the queue is still full after reclaiming any completed descriptors 1553 * we suspend it and have the last WR wake it up. 1554 */ 1555 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 1556 { 1557 reclaim_completed_tx_imm(&q->q); 1558 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1559 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1560 q->q.stops++; 1561 q->full = 1; 1562 } 1563 } 1564 1565 /** 1566 * ctrl_xmit - send a packet through an SGE control Tx queue 1567 * @q: the control queue 1568 * @skb: the packet 1569 * 1570 * Send a packet through an SGE control Tx queue. Packets sent through 1571 * a control queue must fit entirely as immediate data. 1572 */ 1573 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 1574 { 1575 unsigned int ndesc; 1576 struct fw_wr_hdr *wr; 1577 1578 if (unlikely(!is_imm(skb))) { 1579 WARN_ON(1); 1580 dev_kfree_skb(skb); 1581 return NET_XMIT_DROP; 1582 } 1583 1584 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 1585 spin_lock(&q->sendq.lock); 1586 1587 if (unlikely(q->full)) { 1588 skb->priority = ndesc; /* save for restart */ 1589 __skb_queue_tail(&q->sendq, skb); 1590 spin_unlock(&q->sendq.lock); 1591 return NET_XMIT_CN; 1592 } 1593 1594 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1595 cxgb4_inline_tx_skb(skb, &q->q, wr); 1596 1597 txq_advance(&q->q, ndesc); 1598 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 1599 ctrlq_check_stop(q, wr); 1600 1601 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 1602 spin_unlock(&q->sendq.lock); 1603 1604 kfree_skb(skb); 1605 return NET_XMIT_SUCCESS; 1606 } 1607 1608 /** 1609 * restart_ctrlq - restart a suspended control queue 1610 * @data: the control queue to restart 1611 * 1612 * Resumes transmission on a suspended Tx control queue. 1613 */ 1614 static void restart_ctrlq(unsigned long data) 1615 { 1616 struct sk_buff *skb; 1617 unsigned int written = 0; 1618 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 1619 1620 spin_lock(&q->sendq.lock); 1621 reclaim_completed_tx_imm(&q->q); 1622 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 1623 1624 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 1625 struct fw_wr_hdr *wr; 1626 unsigned int ndesc = skb->priority; /* previously saved */ 1627 1628 written += ndesc; 1629 /* Write descriptors and free skbs outside the lock to limit 1630 * wait times. q->full is still set so new skbs will be queued. 1631 */ 1632 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1633 txq_advance(&q->q, ndesc); 1634 spin_unlock(&q->sendq.lock); 1635 1636 cxgb4_inline_tx_skb(skb, &q->q, wr); 1637 kfree_skb(skb); 1638 1639 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1640 unsigned long old = q->q.stops; 1641 1642 ctrlq_check_stop(q, wr); 1643 if (q->q.stops != old) { /* suspended anew */ 1644 spin_lock(&q->sendq.lock); 1645 goto ringdb; 1646 } 1647 } 1648 if (written > 16) { 1649 cxgb4_ring_tx_db(q->adap, &q->q, written); 1650 written = 0; 1651 } 1652 spin_lock(&q->sendq.lock); 1653 } 1654 q->full = 0; 1655 ringdb: 1656 if (written) 1657 cxgb4_ring_tx_db(q->adap, &q->q, written); 1658 spin_unlock(&q->sendq.lock); 1659 } 1660 1661 /** 1662 * t4_mgmt_tx - send a management message 1663 * @adap: the adapter 1664 * @skb: the packet containing the management message 1665 * 1666 * Send a management message through control queue 0. 1667 */ 1668 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1669 { 1670 int ret; 1671 1672 local_bh_disable(); 1673 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 1674 local_bh_enable(); 1675 return ret; 1676 } 1677 1678 /** 1679 * is_ofld_imm - check whether a packet can be sent as immediate data 1680 * @skb: the packet 1681 * 1682 * Returns true if a packet can be sent as an offload WR with immediate 1683 * data. We currently use the same limit as for Ethernet packets. 1684 */ 1685 static inline int is_ofld_imm(const struct sk_buff *skb) 1686 { 1687 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 1688 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 1689 1690 if (opcode == FW_CRYPTO_LOOKASIDE_WR) 1691 return skb->len <= SGE_MAX_WR_LEN; 1692 else 1693 return skb->len <= MAX_IMM_TX_PKT_LEN; 1694 } 1695 1696 /** 1697 * calc_tx_flits_ofld - calculate # of flits for an offload packet 1698 * @skb: the packet 1699 * 1700 * Returns the number of flits needed for the given offload packet. 1701 * These packets are already fully constructed and no additional headers 1702 * will be added. 1703 */ 1704 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 1705 { 1706 unsigned int flits, cnt; 1707 1708 if (is_ofld_imm(skb)) 1709 return DIV_ROUND_UP(skb->len, 8); 1710 1711 flits = skb_transport_offset(skb) / 8U; /* headers */ 1712 cnt = skb_shinfo(skb)->nr_frags; 1713 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1714 cnt++; 1715 return flits + sgl_len(cnt); 1716 } 1717 1718 /** 1719 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 1720 * @adap: the adapter 1721 * @q: the queue to stop 1722 * 1723 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 1724 * inability to map packets. A periodic timer attempts to restart 1725 * queues so marked. 1726 */ 1727 static void txq_stop_maperr(struct sge_uld_txq *q) 1728 { 1729 q->mapping_err++; 1730 q->q.stops++; 1731 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 1732 q->adap->sge.txq_maperr); 1733 } 1734 1735 /** 1736 * ofldtxq_stop - stop an offload Tx queue that has become full 1737 * @q: the queue to stop 1738 * @wr: the Work Request causing the queue to become full 1739 * 1740 * Stops an offload Tx queue that has become full and modifies the packet 1741 * being written to request a wakeup. 1742 */ 1743 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 1744 { 1745 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1746 q->q.stops++; 1747 q->full = 1; 1748 } 1749 1750 /** 1751 * service_ofldq - service/restart a suspended offload queue 1752 * @q: the offload queue 1753 * 1754 * Services an offload Tx queue by moving packets from its Pending Send 1755 * Queue to the Hardware TX ring. The function starts and ends with the 1756 * Send Queue locked, but drops the lock while putting the skb at the 1757 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 1758 * allows more skbs to be added to the Send Queue by other threads. 1759 * The packet being processed at the head of the Pending Send Queue is 1760 * left on the queue in case we experience DMA Mapping errors, etc. 1761 * and need to give up and restart later. 1762 * 1763 * service_ofldq() can be thought of as a task which opportunistically 1764 * uses other threads execution contexts. We use the Offload Queue 1765 * boolean "service_ofldq_running" to make sure that only one instance 1766 * is ever running at a time ... 1767 */ 1768 static void service_ofldq(struct sge_uld_txq *q) 1769 { 1770 u64 *pos, *before, *end; 1771 int credits; 1772 struct sk_buff *skb; 1773 struct sge_txq *txq; 1774 unsigned int left; 1775 unsigned int written = 0; 1776 unsigned int flits, ndesc; 1777 1778 /* If another thread is currently in service_ofldq() processing the 1779 * Pending Send Queue then there's nothing to do. Otherwise, flag 1780 * that we're doing the work and continue. Examining/modifying 1781 * the Offload Queue boolean "service_ofldq_running" must be done 1782 * while holding the Pending Send Queue Lock. 1783 */ 1784 if (q->service_ofldq_running) 1785 return; 1786 q->service_ofldq_running = true; 1787 1788 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 1789 /* We drop the lock while we're working with the skb at the 1790 * head of the Pending Send Queue. This allows more skbs to 1791 * be added to the Pending Send Queue while we're working on 1792 * this one. We don't need to lock to guard the TX Ring 1793 * updates because only one thread of execution is ever 1794 * allowed into service_ofldq() at a time. 1795 */ 1796 spin_unlock(&q->sendq.lock); 1797 1798 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 1799 1800 flits = skb->priority; /* previously saved */ 1801 ndesc = flits_to_desc(flits); 1802 credits = txq_avail(&q->q) - ndesc; 1803 BUG_ON(credits < 0); 1804 if (unlikely(credits < TXQ_STOP_THRES)) 1805 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 1806 1807 pos = (u64 *)&q->q.desc[q->q.pidx]; 1808 if (is_ofld_imm(skb)) 1809 cxgb4_inline_tx_skb(skb, &q->q, pos); 1810 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 1811 (dma_addr_t *)skb->head)) { 1812 txq_stop_maperr(q); 1813 spin_lock(&q->sendq.lock); 1814 break; 1815 } else { 1816 int last_desc, hdr_len = skb_transport_offset(skb); 1817 1818 /* The WR headers may not fit within one descriptor. 1819 * So we need to deal with wrap-around here. 1820 */ 1821 before = (u64 *)pos; 1822 end = (u64 *)pos + flits; 1823 txq = &q->q; 1824 pos = (void *)inline_tx_skb_header(skb, &q->q, 1825 (void *)pos, 1826 hdr_len); 1827 if (before > (u64 *)pos) { 1828 left = (u8 *)end - (u8 *)txq->stat; 1829 end = (void *)txq->desc + left; 1830 } 1831 1832 /* If current position is already at the end of the 1833 * ofld queue, reset the current to point to 1834 * start of the queue and update the end ptr as well. 1835 */ 1836 if (pos == (u64 *)txq->stat) { 1837 left = (u8 *)end - (u8 *)txq->stat; 1838 end = (void *)txq->desc + left; 1839 pos = (void *)txq->desc; 1840 } 1841 1842 cxgb4_write_sgl(skb, &q->q, (void *)pos, 1843 end, hdr_len, 1844 (dma_addr_t *)skb->head); 1845 #ifdef CONFIG_NEED_DMA_MAP_STATE 1846 skb->dev = q->adap->port[0]; 1847 skb->destructor = deferred_unmap_destructor; 1848 #endif 1849 last_desc = q->q.pidx + ndesc - 1; 1850 if (last_desc >= q->q.size) 1851 last_desc -= q->q.size; 1852 q->q.sdesc[last_desc].skb = skb; 1853 } 1854 1855 txq_advance(&q->q, ndesc); 1856 written += ndesc; 1857 if (unlikely(written > 32)) { 1858 cxgb4_ring_tx_db(q->adap, &q->q, written); 1859 written = 0; 1860 } 1861 1862 /* Reacquire the Pending Send Queue Lock so we can unlink the 1863 * skb we've just successfully transferred to the TX Ring and 1864 * loop for the next skb which may be at the head of the 1865 * Pending Send Queue. 1866 */ 1867 spin_lock(&q->sendq.lock); 1868 __skb_unlink(skb, &q->sendq); 1869 if (is_ofld_imm(skb)) 1870 kfree_skb(skb); 1871 } 1872 if (likely(written)) 1873 cxgb4_ring_tx_db(q->adap, &q->q, written); 1874 1875 /*Indicate that no thread is processing the Pending Send Queue 1876 * currently. 1877 */ 1878 q->service_ofldq_running = false; 1879 } 1880 1881 /** 1882 * ofld_xmit - send a packet through an offload queue 1883 * @q: the Tx offload queue 1884 * @skb: the packet 1885 * 1886 * Send an offload packet through an SGE offload queue. 1887 */ 1888 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 1889 { 1890 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 1891 spin_lock(&q->sendq.lock); 1892 1893 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 1894 * that results in this new skb being the only one on the queue, start 1895 * servicing it. If there are other skbs already on the list, then 1896 * either the queue is currently being processed or it's been stopped 1897 * for some reason and it'll be restarted at a later time. Restart 1898 * paths are triggered by events like experiencing a DMA Mapping Error 1899 * or filling the Hardware TX Ring. 1900 */ 1901 __skb_queue_tail(&q->sendq, skb); 1902 if (q->sendq.qlen == 1) 1903 service_ofldq(q); 1904 1905 spin_unlock(&q->sendq.lock); 1906 return NET_XMIT_SUCCESS; 1907 } 1908 1909 /** 1910 * restart_ofldq - restart a suspended offload queue 1911 * @data: the offload queue to restart 1912 * 1913 * Resumes transmission on a suspended Tx offload queue. 1914 */ 1915 static void restart_ofldq(unsigned long data) 1916 { 1917 struct sge_uld_txq *q = (struct sge_uld_txq *)data; 1918 1919 spin_lock(&q->sendq.lock); 1920 q->full = 0; /* the queue actually is completely empty now */ 1921 service_ofldq(q); 1922 spin_unlock(&q->sendq.lock); 1923 } 1924 1925 /** 1926 * skb_txq - return the Tx queue an offload packet should use 1927 * @skb: the packet 1928 * 1929 * Returns the Tx queue an offload packet should use as indicated by bits 1930 * 1-15 in the packet's queue_mapping. 1931 */ 1932 static inline unsigned int skb_txq(const struct sk_buff *skb) 1933 { 1934 return skb->queue_mapping >> 1; 1935 } 1936 1937 /** 1938 * is_ctrl_pkt - return whether an offload packet is a control packet 1939 * @skb: the packet 1940 * 1941 * Returns whether an offload packet should use an OFLD or a CTRL 1942 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 1943 */ 1944 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 1945 { 1946 return skb->queue_mapping & 1; 1947 } 1948 1949 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 1950 unsigned int tx_uld_type) 1951 { 1952 struct sge_uld_txq_info *txq_info; 1953 struct sge_uld_txq *txq; 1954 unsigned int idx = skb_txq(skb); 1955 1956 if (unlikely(is_ctrl_pkt(skb))) { 1957 /* Single ctrl queue is a requirement for LE workaround path */ 1958 if (adap->tids.nsftids) 1959 idx = 0; 1960 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 1961 } 1962 1963 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 1964 if (unlikely(!txq_info)) { 1965 WARN_ON(true); 1966 return NET_XMIT_DROP; 1967 } 1968 1969 txq = &txq_info->uldtxq[idx]; 1970 return ofld_xmit(txq, skb); 1971 } 1972 1973 /** 1974 * t4_ofld_send - send an offload packet 1975 * @adap: the adapter 1976 * @skb: the packet 1977 * 1978 * Sends an offload packet. We use the packet queue_mapping to select the 1979 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1980 * should be sent as regular or control, bits 1-15 select the queue. 1981 */ 1982 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 1983 { 1984 int ret; 1985 1986 local_bh_disable(); 1987 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 1988 local_bh_enable(); 1989 return ret; 1990 } 1991 1992 /** 1993 * cxgb4_ofld_send - send an offload packet 1994 * @dev: the net device 1995 * @skb: the packet 1996 * 1997 * Sends an offload packet. This is an exported version of @t4_ofld_send, 1998 * intended for ULDs. 1999 */ 2000 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 2001 { 2002 return t4_ofld_send(netdev2adap(dev), skb); 2003 } 2004 EXPORT_SYMBOL(cxgb4_ofld_send); 2005 2006 static void *inline_tx_header(const void *src, 2007 const struct sge_txq *q, 2008 void *pos, int length) 2009 { 2010 int left = (void *)q->stat - pos; 2011 u64 *p; 2012 2013 if (likely(length <= left)) { 2014 memcpy(pos, src, length); 2015 pos += length; 2016 } else { 2017 memcpy(pos, src, left); 2018 memcpy(q->desc, src + left, length - left); 2019 pos = (void *)q->desc + (length - left); 2020 } 2021 /* 0-pad to multiple of 16 */ 2022 p = PTR_ALIGN(pos, 8); 2023 if ((uintptr_t)p & 8) { 2024 *p = 0; 2025 return p + 1; 2026 } 2027 return p; 2028 } 2029 2030 /** 2031 * ofld_xmit_direct - copy a WR into offload queue 2032 * @q: the Tx offload queue 2033 * @src: location of WR 2034 * @len: WR length 2035 * 2036 * Copy an immediate WR into an uncontended SGE offload queue. 2037 */ 2038 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 2039 unsigned int len) 2040 { 2041 unsigned int ndesc; 2042 int credits; 2043 u64 *pos; 2044 2045 /* Use the lower limit as the cut-off */ 2046 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 2047 WARN_ON(1); 2048 return NET_XMIT_DROP; 2049 } 2050 2051 /* Don't return NET_XMIT_CN here as the current 2052 * implementation doesn't queue the request 2053 * using an skb when the following conditions not met 2054 */ 2055 if (!spin_trylock(&q->sendq.lock)) 2056 return NET_XMIT_DROP; 2057 2058 if (q->full || !skb_queue_empty(&q->sendq) || 2059 q->service_ofldq_running) { 2060 spin_unlock(&q->sendq.lock); 2061 return NET_XMIT_DROP; 2062 } 2063 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 2064 credits = txq_avail(&q->q) - ndesc; 2065 pos = (u64 *)&q->q.desc[q->q.pidx]; 2066 2067 /* ofldtxq_stop modifies WR header in-situ */ 2068 inline_tx_header(src, &q->q, pos, len); 2069 if (unlikely(credits < TXQ_STOP_THRES)) 2070 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 2071 txq_advance(&q->q, ndesc); 2072 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2073 2074 spin_unlock(&q->sendq.lock); 2075 return NET_XMIT_SUCCESS; 2076 } 2077 2078 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 2079 const void *src, unsigned int len) 2080 { 2081 struct sge_uld_txq_info *txq_info; 2082 struct sge_uld_txq *txq; 2083 struct adapter *adap; 2084 int ret; 2085 2086 adap = netdev2adap(dev); 2087 2088 local_bh_disable(); 2089 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2090 if (unlikely(!txq_info)) { 2091 WARN_ON(true); 2092 local_bh_enable(); 2093 return NET_XMIT_DROP; 2094 } 2095 txq = &txq_info->uldtxq[idx]; 2096 2097 ret = ofld_xmit_direct(txq, src, len); 2098 local_bh_enable(); 2099 return net_xmit_eval(ret); 2100 } 2101 EXPORT_SYMBOL(cxgb4_immdata_send); 2102 2103 /** 2104 * t4_crypto_send - send crypto packet 2105 * @adap: the adapter 2106 * @skb: the packet 2107 * 2108 * Sends crypto packet. We use the packet queue_mapping to select the 2109 * appropriate Tx queue as follows: bit 0 indicates whether the packet 2110 * should be sent as regular or control, bits 1-15 select the queue. 2111 */ 2112 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 2113 { 2114 int ret; 2115 2116 local_bh_disable(); 2117 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 2118 local_bh_enable(); 2119 return ret; 2120 } 2121 2122 /** 2123 * cxgb4_crypto_send - send crypto packet 2124 * @dev: the net device 2125 * @skb: the packet 2126 * 2127 * Sends crypto packet. This is an exported version of @t4_crypto_send, 2128 * intended for ULDs. 2129 */ 2130 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 2131 { 2132 return t4_crypto_send(netdev2adap(dev), skb); 2133 } 2134 EXPORT_SYMBOL(cxgb4_crypto_send); 2135 2136 static inline void copy_frags(struct sk_buff *skb, 2137 const struct pkt_gl *gl, unsigned int offset) 2138 { 2139 int i; 2140 2141 /* usually there's just one frag */ 2142 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 2143 gl->frags[0].offset + offset, 2144 gl->frags[0].size - offset); 2145 skb_shinfo(skb)->nr_frags = gl->nfrags; 2146 for (i = 1; i < gl->nfrags; i++) 2147 __skb_fill_page_desc(skb, i, gl->frags[i].page, 2148 gl->frags[i].offset, 2149 gl->frags[i].size); 2150 2151 /* get a reference to the last page, we don't own it */ 2152 get_page(gl->frags[gl->nfrags - 1].page); 2153 } 2154 2155 /** 2156 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 2157 * @gl: the gather list 2158 * @skb_len: size of sk_buff main body if it carries fragments 2159 * @pull_len: amount of data to move to the sk_buff's main body 2160 * 2161 * Builds an sk_buff from the given packet gather list. Returns the 2162 * sk_buff or %NULL if sk_buff allocation failed. 2163 */ 2164 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 2165 unsigned int skb_len, unsigned int pull_len) 2166 { 2167 struct sk_buff *skb; 2168 2169 /* 2170 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 2171 * size, which is expected since buffers are at least PAGE_SIZEd. 2172 * In this case packets up to RX_COPY_THRES have only one fragment. 2173 */ 2174 if (gl->tot_len <= RX_COPY_THRES) { 2175 skb = dev_alloc_skb(gl->tot_len); 2176 if (unlikely(!skb)) 2177 goto out; 2178 __skb_put(skb, gl->tot_len); 2179 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 2180 } else { 2181 skb = dev_alloc_skb(skb_len); 2182 if (unlikely(!skb)) 2183 goto out; 2184 __skb_put(skb, pull_len); 2185 skb_copy_to_linear_data(skb, gl->va, pull_len); 2186 2187 copy_frags(skb, gl, pull_len); 2188 skb->len = gl->tot_len; 2189 skb->data_len = skb->len - pull_len; 2190 skb->truesize += skb->data_len; 2191 } 2192 out: return skb; 2193 } 2194 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 2195 2196 /** 2197 * t4_pktgl_free - free a packet gather list 2198 * @gl: the gather list 2199 * 2200 * Releases the pages of a packet gather list. We do not own the last 2201 * page on the list and do not free it. 2202 */ 2203 static void t4_pktgl_free(const struct pkt_gl *gl) 2204 { 2205 int n; 2206 const struct page_frag *p; 2207 2208 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 2209 put_page(p->page); 2210 } 2211 2212 /* 2213 * Process an MPS trace packet. Give it an unused protocol number so it won't 2214 * be delivered to anyone and send it to the stack for capture. 2215 */ 2216 static noinline int handle_trace_pkt(struct adapter *adap, 2217 const struct pkt_gl *gl) 2218 { 2219 struct sk_buff *skb; 2220 2221 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 2222 if (unlikely(!skb)) { 2223 t4_pktgl_free(gl); 2224 return 0; 2225 } 2226 2227 if (is_t4(adap->params.chip)) 2228 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 2229 else 2230 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 2231 2232 skb_reset_mac_header(skb); 2233 skb->protocol = htons(0xffff); 2234 skb->dev = adap->port[0]; 2235 netif_receive_skb(skb); 2236 return 0; 2237 } 2238 2239 /** 2240 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 2241 * @adap: the adapter 2242 * @hwtstamps: time stamp structure to update 2243 * @sgetstamp: 60bit iqe timestamp 2244 * 2245 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 2246 * which is in Core Clock ticks into ktime_t and assign it 2247 **/ 2248 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 2249 struct skb_shared_hwtstamps *hwtstamps, 2250 u64 sgetstamp) 2251 { 2252 u64 ns; 2253 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 2254 2255 ns = div_u64(tmp, adap->params.vpd.cclk); 2256 2257 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2258 hwtstamps->hwtstamp = ns_to_ktime(ns); 2259 } 2260 2261 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 2262 const struct cpl_rx_pkt *pkt) 2263 { 2264 struct adapter *adapter = rxq->rspq.adap; 2265 struct sge *s = &adapter->sge; 2266 struct port_info *pi; 2267 int ret; 2268 struct sk_buff *skb; 2269 2270 skb = napi_get_frags(&rxq->rspq.napi); 2271 if (unlikely(!skb)) { 2272 t4_pktgl_free(gl); 2273 rxq->stats.rx_drops++; 2274 return; 2275 } 2276 2277 copy_frags(skb, gl, s->pktshift); 2278 skb->len = gl->tot_len - s->pktshift; 2279 skb->data_len = skb->len; 2280 skb->truesize += skb->data_len; 2281 skb->ip_summed = CHECKSUM_UNNECESSARY; 2282 skb_record_rx_queue(skb, rxq->rspq.idx); 2283 pi = netdev_priv(skb->dev); 2284 if (pi->rxtstamp) 2285 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 2286 gl->sgetstamp); 2287 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 2288 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 2289 PKT_HASH_TYPE_L3); 2290 2291 if (unlikely(pkt->vlan_ex)) { 2292 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 2293 rxq->stats.vlan_ex++; 2294 } 2295 ret = napi_gro_frags(&rxq->rspq.napi); 2296 if (ret == GRO_HELD) 2297 rxq->stats.lro_pkts++; 2298 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 2299 rxq->stats.lro_merged++; 2300 rxq->stats.pkts++; 2301 rxq->stats.rx_cso++; 2302 } 2303 2304 enum { 2305 RX_NON_PTP_PKT = 0, 2306 RX_PTP_PKT_SUC = 1, 2307 RX_PTP_PKT_ERR = 2 2308 }; 2309 2310 /** 2311 * t4_systim_to_hwstamp - read hardware time stamp 2312 * @adap: the adapter 2313 * @skb: the packet 2314 * 2315 * Read Time Stamp from MPS packet and insert in skb which 2316 * is forwarded to PTP application 2317 */ 2318 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 2319 struct sk_buff *skb) 2320 { 2321 struct skb_shared_hwtstamps *hwtstamps; 2322 struct cpl_rx_mps_pkt *cpl = NULL; 2323 unsigned char *data; 2324 int offset; 2325 2326 cpl = (struct cpl_rx_mps_pkt *)skb->data; 2327 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 2328 X_CPL_RX_MPS_PKT_TYPE_PTP)) 2329 return RX_PTP_PKT_ERR; 2330 2331 data = skb->data + sizeof(*cpl); 2332 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 2333 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 2334 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 2335 return RX_PTP_PKT_ERR; 2336 2337 hwtstamps = skb_hwtstamps(skb); 2338 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2339 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data))); 2340 2341 return RX_PTP_PKT_SUC; 2342 } 2343 2344 /** 2345 * t4_rx_hststamp - Recv PTP Event Message 2346 * @adap: the adapter 2347 * @rsp: the response queue descriptor holding the RX_PKT message 2348 * @skb: the packet 2349 * 2350 * PTP enabled and MPS packet, read HW timestamp 2351 */ 2352 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 2353 struct sge_eth_rxq *rxq, struct sk_buff *skb) 2354 { 2355 int ret; 2356 2357 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 2358 !is_t4(adapter->params.chip))) { 2359 ret = t4_systim_to_hwstamp(adapter, skb); 2360 if (ret == RX_PTP_PKT_ERR) { 2361 kfree_skb(skb); 2362 rxq->stats.rx_drops++; 2363 } 2364 return ret; 2365 } 2366 return RX_NON_PTP_PKT; 2367 } 2368 2369 /** 2370 * t4_tx_hststamp - Loopback PTP Transmit Event Message 2371 * @adap: the adapter 2372 * @skb: the packet 2373 * @dev: the ingress net device 2374 * 2375 * Read hardware timestamp for the loopback PTP Tx event message 2376 */ 2377 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 2378 struct net_device *dev) 2379 { 2380 struct port_info *pi = netdev_priv(dev); 2381 2382 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 2383 cxgb4_ptp_read_hwstamp(adapter, pi); 2384 kfree_skb(skb); 2385 return 0; 2386 } 2387 return 1; 2388 } 2389 2390 /** 2391 * t4_ethrx_handler - process an ingress ethernet packet 2392 * @q: the response queue that received the packet 2393 * @rsp: the response queue descriptor holding the RX_PKT message 2394 * @si: the gather list of packet fragments 2395 * 2396 * Process an ingress ethernet packet and deliver it to the stack. 2397 */ 2398 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 2399 const struct pkt_gl *si) 2400 { 2401 bool csum_ok; 2402 struct sk_buff *skb; 2403 const struct cpl_rx_pkt *pkt; 2404 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 2405 struct adapter *adapter = q->adap; 2406 struct sge *s = &q->adap->sge; 2407 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 2408 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 2409 u16 err_vec; 2410 struct port_info *pi; 2411 int ret = 0; 2412 2413 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 2414 return handle_trace_pkt(q->adap, si); 2415 2416 pkt = (const struct cpl_rx_pkt *)rsp; 2417 /* Compressed error vector is enabled for T6 only */ 2418 if (q->adap->params.tp.rx_pkt_encap) 2419 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 2420 else 2421 err_vec = be16_to_cpu(pkt->err_vec); 2422 2423 csum_ok = pkt->csum_calc && !err_vec && 2424 (q->netdev->features & NETIF_F_RXCSUM); 2425 if ((pkt->l2info & htonl(RXF_TCP_F)) && 2426 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 2427 do_gro(rxq, si, pkt); 2428 return 0; 2429 } 2430 2431 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 2432 if (unlikely(!skb)) { 2433 t4_pktgl_free(si); 2434 rxq->stats.rx_drops++; 2435 return 0; 2436 } 2437 pi = netdev_priv(q->netdev); 2438 2439 /* Handle PTP Event Rx packet */ 2440 if (unlikely(pi->ptp_enable)) { 2441 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 2442 if (ret == RX_PTP_PKT_ERR) 2443 return 0; 2444 } 2445 if (likely(!ret)) 2446 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 2447 2448 /* Handle the PTP Event Tx Loopback packet */ 2449 if (unlikely(pi->ptp_enable && !ret && 2450 (pkt->l2info & htonl(RXF_UDP_F)) && 2451 cxgb4_ptp_is_ptp_rx(skb))) { 2452 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 2453 return 0; 2454 } 2455 2456 skb->protocol = eth_type_trans(skb, q->netdev); 2457 skb_record_rx_queue(skb, q->idx); 2458 if (skb->dev->features & NETIF_F_RXHASH) 2459 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 2460 PKT_HASH_TYPE_L3); 2461 2462 rxq->stats.pkts++; 2463 2464 if (pi->rxtstamp) 2465 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 2466 si->sgetstamp); 2467 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 2468 if (!pkt->ip_frag) { 2469 skb->ip_summed = CHECKSUM_UNNECESSARY; 2470 rxq->stats.rx_cso++; 2471 } else if (pkt->l2info & htonl(RXF_IP_F)) { 2472 __sum16 c = (__force __sum16)pkt->csum; 2473 skb->csum = csum_unfold(c); 2474 skb->ip_summed = CHECKSUM_COMPLETE; 2475 rxq->stats.rx_cso++; 2476 } 2477 } else { 2478 skb_checksum_none_assert(skb); 2479 #ifdef CONFIG_CHELSIO_T4_FCOE 2480 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 2481 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 2482 2483 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 2484 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 2485 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 2486 if (q->adap->params.tp.rx_pkt_encap) 2487 csum_ok = err_vec & 2488 T6_COMPR_RXERR_SUM_F; 2489 else 2490 csum_ok = err_vec & RXERR_CSUM_F; 2491 if (!csum_ok) 2492 skb->ip_summed = CHECKSUM_UNNECESSARY; 2493 } 2494 } 2495 2496 #undef CPL_RX_PKT_FLAGS 2497 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2498 } 2499 2500 if (unlikely(pkt->vlan_ex)) { 2501 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 2502 rxq->stats.vlan_ex++; 2503 } 2504 skb_mark_napi_id(skb, &q->napi); 2505 netif_receive_skb(skb); 2506 return 0; 2507 } 2508 2509 /** 2510 * restore_rx_bufs - put back a packet's Rx buffers 2511 * @si: the packet gather list 2512 * @q: the SGE free list 2513 * @frags: number of FL buffers to restore 2514 * 2515 * Puts back on an FL the Rx buffers associated with @si. The buffers 2516 * have already been unmapped and are left unmapped, we mark them so to 2517 * prevent further unmapping attempts. 2518 * 2519 * This function undoes a series of @unmap_rx_buf calls when we find out 2520 * that the current packet can't be processed right away afterall and we 2521 * need to come back to it later. This is a very rare event and there's 2522 * no effort to make this particularly efficient. 2523 */ 2524 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 2525 int frags) 2526 { 2527 struct rx_sw_desc *d; 2528 2529 while (frags--) { 2530 if (q->cidx == 0) 2531 q->cidx = q->size - 1; 2532 else 2533 q->cidx--; 2534 d = &q->sdesc[q->cidx]; 2535 d->page = si->frags[frags].page; 2536 d->dma_addr |= RX_UNMAPPED_BUF; 2537 q->avail++; 2538 } 2539 } 2540 2541 /** 2542 * is_new_response - check if a response is newly written 2543 * @r: the response descriptor 2544 * @q: the response queue 2545 * 2546 * Returns true if a response descriptor contains a yet unprocessed 2547 * response. 2548 */ 2549 static inline bool is_new_response(const struct rsp_ctrl *r, 2550 const struct sge_rspq *q) 2551 { 2552 return (r->type_gen >> RSPD_GEN_S) == q->gen; 2553 } 2554 2555 /** 2556 * rspq_next - advance to the next entry in a response queue 2557 * @q: the queue 2558 * 2559 * Updates the state of a response queue to advance it to the next entry. 2560 */ 2561 static inline void rspq_next(struct sge_rspq *q) 2562 { 2563 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 2564 if (unlikely(++q->cidx == q->size)) { 2565 q->cidx = 0; 2566 q->gen ^= 1; 2567 q->cur_desc = q->desc; 2568 } 2569 } 2570 2571 /** 2572 * process_responses - process responses from an SGE response queue 2573 * @q: the ingress queue to process 2574 * @budget: how many responses can be processed in this round 2575 * 2576 * Process responses from an SGE response queue up to the supplied budget. 2577 * Responses include received packets as well as control messages from FW 2578 * or HW. 2579 * 2580 * Additionally choose the interrupt holdoff time for the next interrupt 2581 * on this queue. If the system is under memory shortage use a fairly 2582 * long delay to help recovery. 2583 */ 2584 static int process_responses(struct sge_rspq *q, int budget) 2585 { 2586 int ret, rsp_type; 2587 int budget_left = budget; 2588 const struct rsp_ctrl *rc; 2589 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 2590 struct adapter *adapter = q->adap; 2591 struct sge *s = &adapter->sge; 2592 2593 while (likely(budget_left)) { 2594 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2595 if (!is_new_response(rc, q)) { 2596 if (q->flush_handler) 2597 q->flush_handler(q); 2598 break; 2599 } 2600 2601 dma_rmb(); 2602 rsp_type = RSPD_TYPE_G(rc->type_gen); 2603 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 2604 struct page_frag *fp; 2605 struct pkt_gl si; 2606 const struct rx_sw_desc *rsd; 2607 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 2608 2609 if (len & RSPD_NEWBUF_F) { 2610 if (likely(q->offset > 0)) { 2611 free_rx_bufs(q->adap, &rxq->fl, 1); 2612 q->offset = 0; 2613 } 2614 len = RSPD_LEN_G(len); 2615 } 2616 si.tot_len = len; 2617 2618 /* gather packet fragments */ 2619 for (frags = 0, fp = si.frags; ; frags++, fp++) { 2620 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 2621 bufsz = get_buf_size(adapter, rsd); 2622 fp->page = rsd->page; 2623 fp->offset = q->offset; 2624 fp->size = min(bufsz, len); 2625 len -= fp->size; 2626 if (!len) 2627 break; 2628 unmap_rx_buf(q->adap, &rxq->fl); 2629 } 2630 2631 si.sgetstamp = SGE_TIMESTAMP_G( 2632 be64_to_cpu(rc->last_flit)); 2633 /* 2634 * Last buffer remains mapped so explicitly make it 2635 * coherent for CPU access. 2636 */ 2637 dma_sync_single_for_cpu(q->adap->pdev_dev, 2638 get_buf_addr(rsd), 2639 fp->size, DMA_FROM_DEVICE); 2640 2641 si.va = page_address(si.frags[0].page) + 2642 si.frags[0].offset; 2643 prefetch(si.va); 2644 2645 si.nfrags = frags + 1; 2646 ret = q->handler(q, q->cur_desc, &si); 2647 if (likely(ret == 0)) 2648 q->offset += ALIGN(fp->size, s->fl_align); 2649 else 2650 restore_rx_bufs(&si, &rxq->fl, frags); 2651 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 2652 ret = q->handler(q, q->cur_desc, NULL); 2653 } else { 2654 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 2655 } 2656 2657 if (unlikely(ret)) { 2658 /* couldn't process descriptor, back off for recovery */ 2659 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 2660 break; 2661 } 2662 2663 rspq_next(q); 2664 budget_left--; 2665 } 2666 2667 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 2668 __refill_fl(q->adap, &rxq->fl); 2669 return budget - budget_left; 2670 } 2671 2672 /** 2673 * napi_rx_handler - the NAPI handler for Rx processing 2674 * @napi: the napi instance 2675 * @budget: how many packets we can process in this round 2676 * 2677 * Handler for new data events when using NAPI. This does not need any 2678 * locking or protection from interrupts as data interrupts are off at 2679 * this point and other adapter interrupts do not interfere (the latter 2680 * in not a concern at all with MSI-X as non-data interrupts then have 2681 * a separate handler). 2682 */ 2683 static int napi_rx_handler(struct napi_struct *napi, int budget) 2684 { 2685 unsigned int params; 2686 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 2687 int work_done; 2688 u32 val; 2689 2690 work_done = process_responses(q, budget); 2691 if (likely(work_done < budget)) { 2692 int timer_index; 2693 2694 napi_complete_done(napi, work_done); 2695 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 2696 2697 if (q->adaptive_rx) { 2698 if (work_done > max(timer_pkt_quota[timer_index], 2699 MIN_NAPI_WORK)) 2700 timer_index = (timer_index + 1); 2701 else 2702 timer_index = timer_index - 1; 2703 2704 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 2705 q->next_intr_params = 2706 QINTR_TIMER_IDX_V(timer_index) | 2707 QINTR_CNT_EN_V(0); 2708 params = q->next_intr_params; 2709 } else { 2710 params = q->next_intr_params; 2711 q->next_intr_params = q->intr_params; 2712 } 2713 } else 2714 params = QINTR_TIMER_IDX_V(7); 2715 2716 val = CIDXINC_V(work_done) | SEINTARM_V(params); 2717 2718 /* If we don't have access to the new User GTS (T5+), use the old 2719 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2720 */ 2721 if (unlikely(q->bar2_addr == NULL)) { 2722 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 2723 val | INGRESSQID_V((u32)q->cntxt_id)); 2724 } else { 2725 writel(val | INGRESSQID_V(q->bar2_qid), 2726 q->bar2_addr + SGE_UDB_GTS); 2727 wmb(); 2728 } 2729 return work_done; 2730 } 2731 2732 /* 2733 * The MSI-X interrupt handler for an SGE response queue. 2734 */ 2735 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 2736 { 2737 struct sge_rspq *q = cookie; 2738 2739 napi_schedule(&q->napi); 2740 return IRQ_HANDLED; 2741 } 2742 2743 /* 2744 * Process the indirect interrupt entries in the interrupt queue and kick off 2745 * NAPI for each queue that has generated an entry. 2746 */ 2747 static unsigned int process_intrq(struct adapter *adap) 2748 { 2749 unsigned int credits; 2750 const struct rsp_ctrl *rc; 2751 struct sge_rspq *q = &adap->sge.intrq; 2752 u32 val; 2753 2754 spin_lock(&adap->sge.intrq_lock); 2755 for (credits = 0; ; credits++) { 2756 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2757 if (!is_new_response(rc, q)) 2758 break; 2759 2760 dma_rmb(); 2761 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 2762 unsigned int qid = ntohl(rc->pldbuflen_qid); 2763 2764 qid -= adap->sge.ingr_start; 2765 napi_schedule(&adap->sge.ingr_map[qid]->napi); 2766 } 2767 2768 rspq_next(q); 2769 } 2770 2771 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 2772 2773 /* If we don't have access to the new User GTS (T5+), use the old 2774 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2775 */ 2776 if (unlikely(q->bar2_addr == NULL)) { 2777 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 2778 val | INGRESSQID_V(q->cntxt_id)); 2779 } else { 2780 writel(val | INGRESSQID_V(q->bar2_qid), 2781 q->bar2_addr + SGE_UDB_GTS); 2782 wmb(); 2783 } 2784 spin_unlock(&adap->sge.intrq_lock); 2785 return credits; 2786 } 2787 2788 /* 2789 * The MSI interrupt handler, which handles data events from SGE response queues 2790 * as well as error and other async events as they all use the same MSI vector. 2791 */ 2792 static irqreturn_t t4_intr_msi(int irq, void *cookie) 2793 { 2794 struct adapter *adap = cookie; 2795 2796 if (adap->flags & MASTER_PF) 2797 t4_slow_intr_handler(adap); 2798 process_intrq(adap); 2799 return IRQ_HANDLED; 2800 } 2801 2802 /* 2803 * Interrupt handler for legacy INTx interrupts. 2804 * Handles data events from SGE response queues as well as error and other 2805 * async events as they all use the same interrupt line. 2806 */ 2807 static irqreturn_t t4_intr_intx(int irq, void *cookie) 2808 { 2809 struct adapter *adap = cookie; 2810 2811 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 2812 if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) | 2813 process_intrq(adap)) 2814 return IRQ_HANDLED; 2815 return IRQ_NONE; /* probably shared interrupt */ 2816 } 2817 2818 /** 2819 * t4_intr_handler - select the top-level interrupt handler 2820 * @adap: the adapter 2821 * 2822 * Selects the top-level interrupt handler based on the type of interrupts 2823 * (MSI-X, MSI, or INTx). 2824 */ 2825 irq_handler_t t4_intr_handler(struct adapter *adap) 2826 { 2827 if (adap->flags & USING_MSIX) 2828 return t4_sge_intr_msix; 2829 if (adap->flags & USING_MSI) 2830 return t4_intr_msi; 2831 return t4_intr_intx; 2832 } 2833 2834 static void sge_rx_timer_cb(struct timer_list *t) 2835 { 2836 unsigned long m; 2837 unsigned int i; 2838 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 2839 struct sge *s = &adap->sge; 2840 2841 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 2842 for (m = s->starving_fl[i]; m; m &= m - 1) { 2843 struct sge_eth_rxq *rxq; 2844 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 2845 struct sge_fl *fl = s->egr_map[id]; 2846 2847 clear_bit(id, s->starving_fl); 2848 smp_mb__after_atomic(); 2849 2850 if (fl_starving(adap, fl)) { 2851 rxq = container_of(fl, struct sge_eth_rxq, fl); 2852 if (napi_reschedule(&rxq->rspq.napi)) 2853 fl->starving++; 2854 else 2855 set_bit(id, s->starving_fl); 2856 } 2857 } 2858 /* The remainder of the SGE RX Timer Callback routine is dedicated to 2859 * global Master PF activities like checking for chip ingress stalls, 2860 * etc. 2861 */ 2862 if (!(adap->flags & MASTER_PF)) 2863 goto done; 2864 2865 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 2866 2867 done: 2868 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 2869 } 2870 2871 static void sge_tx_timer_cb(struct timer_list *t) 2872 { 2873 unsigned long m; 2874 unsigned int i, budget; 2875 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 2876 struct sge *s = &adap->sge; 2877 2878 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 2879 for (m = s->txq_maperr[i]; m; m &= m - 1) { 2880 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 2881 struct sge_uld_txq *txq = s->egr_map[id]; 2882 2883 clear_bit(id, s->txq_maperr); 2884 tasklet_schedule(&txq->qresume_tsk); 2885 } 2886 2887 if (!is_t4(adap->params.chip)) { 2888 struct sge_eth_txq *q = &s->ptptxq; 2889 int avail; 2890 2891 spin_lock(&adap->ptp_lock); 2892 avail = reclaimable(&q->q); 2893 2894 if (avail) { 2895 free_tx_desc(adap, &q->q, avail, false); 2896 q->q.in_use -= avail; 2897 } 2898 spin_unlock(&adap->ptp_lock); 2899 } 2900 2901 budget = MAX_TIMER_TX_RECLAIM; 2902 i = s->ethtxq_rover; 2903 do { 2904 struct sge_eth_txq *q = &s->ethtxq[i]; 2905 2906 if (q->q.in_use && 2907 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && 2908 __netif_tx_trylock(q->txq)) { 2909 int avail = reclaimable(&q->q); 2910 2911 if (avail) { 2912 if (avail > budget) 2913 avail = budget; 2914 2915 free_tx_desc(adap, &q->q, avail, true); 2916 q->q.in_use -= avail; 2917 budget -= avail; 2918 } 2919 __netif_tx_unlock(q->txq); 2920 } 2921 2922 if (++i >= s->ethqsets) 2923 i = 0; 2924 } while (budget && i != s->ethtxq_rover); 2925 s->ethtxq_rover = i; 2926 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2927 } 2928 2929 /** 2930 * bar2_address - return the BAR2 address for an SGE Queue's Registers 2931 * @adapter: the adapter 2932 * @qid: the SGE Queue ID 2933 * @qtype: the SGE Queue Type (Egress or Ingress) 2934 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 2935 * 2936 * Returns the BAR2 address for the SGE Queue Registers associated with 2937 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 2938 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 2939 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 2940 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 2941 */ 2942 static void __iomem *bar2_address(struct adapter *adapter, 2943 unsigned int qid, 2944 enum t4_bar2_qtype qtype, 2945 unsigned int *pbar2_qid) 2946 { 2947 u64 bar2_qoffset; 2948 int ret; 2949 2950 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 2951 &bar2_qoffset, pbar2_qid); 2952 if (ret) 2953 return NULL; 2954 2955 return adapter->bar2 + bar2_qoffset; 2956 } 2957 2958 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 2959 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 2960 */ 2961 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 2962 struct net_device *dev, int intr_idx, 2963 struct sge_fl *fl, rspq_handler_t hnd, 2964 rspq_flush_handler_t flush_hnd, int cong) 2965 { 2966 int ret, flsz = 0; 2967 struct fw_iq_cmd c; 2968 struct sge *s = &adap->sge; 2969 struct port_info *pi = netdev_priv(dev); 2970 int relaxed = !(adap->flags & ROOT_NO_RELAXED_ORDERING); 2971 2972 /* Size needs to be multiple of 16, including status entry. */ 2973 iq->size = roundup(iq->size, 16); 2974 2975 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 2976 &iq->phys_addr, NULL, 0, 2977 dev_to_node(adap->pdev_dev)); 2978 if (!iq->desc) 2979 return -ENOMEM; 2980 2981 memset(&c, 0, sizeof(c)); 2982 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 2983 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2984 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 2985 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 2986 FW_LEN16(c)); 2987 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 2988 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 2989 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 2990 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 2991 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 2992 -intr_idx - 1)); 2993 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 2994 FW_IQ_CMD_IQGTSMODE_F | 2995 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 2996 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 2997 c.iqsize = htons(iq->size); 2998 c.iqaddr = cpu_to_be64(iq->phys_addr); 2999 if (cong >= 0) 3000 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F); 3001 3002 if (fl) { 3003 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 3004 3005 /* Allocate the ring for the hardware free list (with space 3006 * for its status page) along with the associated software 3007 * descriptor ring. The free list size needs to be a multiple 3008 * of the Egress Queue Unit and at least 2 Egress Units larger 3009 * than the SGE's Egress Congrestion Threshold 3010 * (fl_starve_thres - 1). 3011 */ 3012 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 3013 fl->size = s->fl_starve_thres - 1 + 2 * 8; 3014 fl->size = roundup(fl->size, 8); 3015 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 3016 sizeof(struct rx_sw_desc), &fl->addr, 3017 &fl->sdesc, s->stat_len, 3018 dev_to_node(adap->pdev_dev)); 3019 if (!fl->desc) 3020 goto fl_nomem; 3021 3022 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 3023 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 3024 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 3025 FW_IQ_CMD_FL0DATARO_V(relaxed) | 3026 FW_IQ_CMD_FL0PADEN_F); 3027 if (cong >= 0) 3028 c.iqns_to_fl0congen |= 3029 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 3030 FW_IQ_CMD_FL0CONGCIF_F | 3031 FW_IQ_CMD_FL0CONGEN_F); 3032 /* In T6, for egress queue type FL there is internal overhead 3033 * of 16B for header going into FLM module. Hence the maximum 3034 * allowed burst size is 448 bytes. For T4/T5, the hardware 3035 * doesn't coalesce fetch requests if more than 64 bytes of 3036 * Free List pointers are provided, so we use a 128-byte Fetch 3037 * Burst Minimum there (T6 implements coalescing so we can use 3038 * the smaller 64-byte value there). 3039 */ 3040 c.fl0dcaen_to_fl0cidxfthresh = 3041 htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ? 3042 FETCHBURSTMIN_128B_X : 3043 FETCHBURSTMIN_64B_X) | 3044 FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ? 3045 FETCHBURSTMAX_512B_X : 3046 FETCHBURSTMAX_256B_X)); 3047 c.fl0size = htons(flsz); 3048 c.fl0addr = cpu_to_be64(fl->addr); 3049 } 3050 3051 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3052 if (ret) 3053 goto err; 3054 3055 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 3056 iq->cur_desc = iq->desc; 3057 iq->cidx = 0; 3058 iq->gen = 1; 3059 iq->next_intr_params = iq->intr_params; 3060 iq->cntxt_id = ntohs(c.iqid); 3061 iq->abs_id = ntohs(c.physiqid); 3062 iq->bar2_addr = bar2_address(adap, 3063 iq->cntxt_id, 3064 T4_BAR2_QTYPE_INGRESS, 3065 &iq->bar2_qid); 3066 iq->size--; /* subtract status entry */ 3067 iq->netdev = dev; 3068 iq->handler = hnd; 3069 iq->flush_handler = flush_hnd; 3070 3071 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 3072 skb_queue_head_init(&iq->lro_mgr.lroq); 3073 3074 /* set offset to -1 to distinguish ingress queues without FL */ 3075 iq->offset = fl ? 0 : -1; 3076 3077 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 3078 3079 if (fl) { 3080 fl->cntxt_id = ntohs(c.fl0id); 3081 fl->avail = fl->pend_cred = 0; 3082 fl->pidx = fl->cidx = 0; 3083 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 3084 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 3085 3086 /* Note, we must initialize the BAR2 Free List User Doorbell 3087 * information before refilling the Free List! 3088 */ 3089 fl->bar2_addr = bar2_address(adap, 3090 fl->cntxt_id, 3091 T4_BAR2_QTYPE_EGRESS, 3092 &fl->bar2_qid); 3093 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 3094 } 3095 3096 /* For T5 and later we attempt to set up the Congestion Manager values 3097 * of the new RX Ethernet Queue. This should really be handled by 3098 * firmware because it's more complex than any host driver wants to 3099 * get involved with and it's different per chip and this is almost 3100 * certainly wrong. Firmware would be wrong as well, but it would be 3101 * a lot easier to fix in one place ... For now we do something very 3102 * simple (and hopefully less wrong). 3103 */ 3104 if (!is_t4(adap->params.chip) && cong >= 0) { 3105 u32 param, val, ch_map = 0; 3106 int i; 3107 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 3108 3109 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 3110 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 3111 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 3112 if (cong == 0) { 3113 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 3114 } else { 3115 val = 3116 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 3117 for (i = 0; i < 4; i++) { 3118 if (cong & (1 << i)) 3119 ch_map |= 1 << (i << cng_ch_bits_log); 3120 } 3121 val |= CONMCTXT_CNGCHMAP_V(ch_map); 3122 } 3123 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 3124 ¶m, &val); 3125 if (ret) 3126 dev_warn(adap->pdev_dev, "Failed to set Congestion" 3127 " Manager Context for Ingress Queue %d: %d\n", 3128 iq->cntxt_id, -ret); 3129 } 3130 3131 return 0; 3132 3133 fl_nomem: 3134 ret = -ENOMEM; 3135 err: 3136 if (iq->desc) { 3137 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 3138 iq->desc, iq->phys_addr); 3139 iq->desc = NULL; 3140 } 3141 if (fl && fl->desc) { 3142 kfree(fl->sdesc); 3143 fl->sdesc = NULL; 3144 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 3145 fl->desc, fl->addr); 3146 fl->desc = NULL; 3147 } 3148 return ret; 3149 } 3150 3151 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 3152 { 3153 q->cntxt_id = id; 3154 q->bar2_addr = bar2_address(adap, 3155 q->cntxt_id, 3156 T4_BAR2_QTYPE_EGRESS, 3157 &q->bar2_qid); 3158 q->in_use = 0; 3159 q->cidx = q->pidx = 0; 3160 q->stops = q->restarts = 0; 3161 q->stat = (void *)&q->desc[q->size]; 3162 spin_lock_init(&q->db_lock); 3163 adap->sge.egr_map[id - adap->sge.egr_start] = q; 3164 } 3165 3166 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 3167 struct net_device *dev, struct netdev_queue *netdevq, 3168 unsigned int iqid) 3169 { 3170 int ret, nentries; 3171 struct fw_eq_eth_cmd c; 3172 struct sge *s = &adap->sge; 3173 struct port_info *pi = netdev_priv(dev); 3174 3175 /* Add status entries */ 3176 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3177 3178 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 3179 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 3180 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 3181 netdev_queue_numa_node_read(netdevq)); 3182 if (!txq->q.desc) 3183 return -ENOMEM; 3184 3185 memset(&c, 0, sizeof(c)); 3186 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 3187 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3188 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 3189 FW_EQ_ETH_CMD_VFN_V(0)); 3190 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 3191 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 3192 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 3193 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 3194 c.fetchszm_to_iqid = 3195 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3196 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 3197 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 3198 c.dcaen_to_eqsize = 3199 htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3200 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3201 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3202 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 3203 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3204 3205 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3206 if (ret) { 3207 kfree(txq->q.sdesc); 3208 txq->q.sdesc = NULL; 3209 dma_free_coherent(adap->pdev_dev, 3210 nentries * sizeof(struct tx_desc), 3211 txq->q.desc, txq->q.phys_addr); 3212 txq->q.desc = NULL; 3213 return ret; 3214 } 3215 3216 txq->q.q_type = CXGB4_TXQ_ETH; 3217 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 3218 txq->txq = netdevq; 3219 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 3220 txq->mapping_err = 0; 3221 return 0; 3222 } 3223 3224 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 3225 struct net_device *dev, unsigned int iqid, 3226 unsigned int cmplqid) 3227 { 3228 int ret, nentries; 3229 struct fw_eq_ctrl_cmd c; 3230 struct sge *s = &adap->sge; 3231 struct port_info *pi = netdev_priv(dev); 3232 3233 /* Add status entries */ 3234 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3235 3236 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 3237 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 3238 NULL, 0, dev_to_node(adap->pdev_dev)); 3239 if (!txq->q.desc) 3240 return -ENOMEM; 3241 3242 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 3243 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3244 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 3245 FW_EQ_CTRL_CMD_VFN_V(0)); 3246 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 3247 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 3248 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 3249 c.physeqid_pkd = htonl(0); 3250 c.fetchszm_to_iqid = 3251 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3252 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 3253 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 3254 c.dcaen_to_eqsize = 3255 htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3256 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3257 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3258 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 3259 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3260 3261 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3262 if (ret) { 3263 dma_free_coherent(adap->pdev_dev, 3264 nentries * sizeof(struct tx_desc), 3265 txq->q.desc, txq->q.phys_addr); 3266 txq->q.desc = NULL; 3267 return ret; 3268 } 3269 3270 txq->q.q_type = CXGB4_TXQ_CTRL; 3271 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 3272 txq->adap = adap; 3273 skb_queue_head_init(&txq->sendq); 3274 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 3275 txq->full = 0; 3276 return 0; 3277 } 3278 3279 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 3280 unsigned int cmplqid) 3281 { 3282 u32 param, val; 3283 3284 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 3285 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 3286 FW_PARAMS_PARAM_YZ_V(eqid)); 3287 val = cmplqid; 3288 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 3289 } 3290 3291 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 3292 struct net_device *dev, unsigned int iqid, 3293 unsigned int uld_type) 3294 { 3295 int ret, nentries; 3296 struct fw_eq_ofld_cmd c; 3297 struct sge *s = &adap->sge; 3298 struct port_info *pi = netdev_priv(dev); 3299 int cmd = FW_EQ_OFLD_CMD; 3300 3301 /* Add status entries */ 3302 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3303 3304 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 3305 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 3306 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 3307 NUMA_NO_NODE); 3308 if (!txq->q.desc) 3309 return -ENOMEM; 3310 3311 memset(&c, 0, sizeof(c)); 3312 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 3313 cmd = FW_EQ_CTRL_CMD; 3314 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 3315 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3316 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 3317 FW_EQ_OFLD_CMD_VFN_V(0)); 3318 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 3319 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 3320 c.fetchszm_to_iqid = 3321 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3322 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 3323 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 3324 c.dcaen_to_eqsize = 3325 htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3326 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3327 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3328 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 3329 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3330 3331 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3332 if (ret) { 3333 kfree(txq->q.sdesc); 3334 txq->q.sdesc = NULL; 3335 dma_free_coherent(adap->pdev_dev, 3336 nentries * sizeof(struct tx_desc), 3337 txq->q.desc, txq->q.phys_addr); 3338 txq->q.desc = NULL; 3339 return ret; 3340 } 3341 3342 txq->q.q_type = CXGB4_TXQ_ULD; 3343 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 3344 txq->adap = adap; 3345 skb_queue_head_init(&txq->sendq); 3346 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 3347 txq->full = 0; 3348 txq->mapping_err = 0; 3349 return 0; 3350 } 3351 3352 void free_txq(struct adapter *adap, struct sge_txq *q) 3353 { 3354 struct sge *s = &adap->sge; 3355 3356 dma_free_coherent(adap->pdev_dev, 3357 q->size * sizeof(struct tx_desc) + s->stat_len, 3358 q->desc, q->phys_addr); 3359 q->cntxt_id = 0; 3360 q->sdesc = NULL; 3361 q->desc = NULL; 3362 } 3363 3364 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 3365 struct sge_fl *fl) 3366 { 3367 struct sge *s = &adap->sge; 3368 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 3369 3370 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 3371 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 3372 rq->cntxt_id, fl_id, 0xffff); 3373 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 3374 rq->desc, rq->phys_addr); 3375 netif_napi_del(&rq->napi); 3376 rq->netdev = NULL; 3377 rq->cntxt_id = rq->abs_id = 0; 3378 rq->desc = NULL; 3379 3380 if (fl) { 3381 free_rx_bufs(adap, fl, fl->avail); 3382 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 3383 fl->desc, fl->addr); 3384 kfree(fl->sdesc); 3385 fl->sdesc = NULL; 3386 fl->cntxt_id = 0; 3387 fl->desc = NULL; 3388 } 3389 } 3390 3391 /** 3392 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 3393 * @adap: the adapter 3394 * @n: number of queues 3395 * @q: pointer to first queue 3396 * 3397 * Release the resources of a consecutive block of offload Rx queues. 3398 */ 3399 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 3400 { 3401 for ( ; n; n--, q++) 3402 if (q->rspq.desc) 3403 free_rspq_fl(adap, &q->rspq, 3404 q->fl.size ? &q->fl : NULL); 3405 } 3406 3407 /** 3408 * t4_free_sge_resources - free SGE resources 3409 * @adap: the adapter 3410 * 3411 * Frees resources used by the SGE queue sets. 3412 */ 3413 void t4_free_sge_resources(struct adapter *adap) 3414 { 3415 int i; 3416 struct sge_eth_rxq *eq; 3417 struct sge_eth_txq *etq; 3418 3419 /* stop all Rx queues in order to start them draining */ 3420 for (i = 0; i < adap->sge.ethqsets; i++) { 3421 eq = &adap->sge.ethrxq[i]; 3422 if (eq->rspq.desc) 3423 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 3424 FW_IQ_TYPE_FL_INT_CAP, 3425 eq->rspq.cntxt_id, 3426 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 3427 0xffff); 3428 } 3429 3430 /* clean up Ethernet Tx/Rx queues */ 3431 for (i = 0; i < adap->sge.ethqsets; i++) { 3432 eq = &adap->sge.ethrxq[i]; 3433 if (eq->rspq.desc) 3434 free_rspq_fl(adap, &eq->rspq, 3435 eq->fl.size ? &eq->fl : NULL); 3436 3437 etq = &adap->sge.ethtxq[i]; 3438 if (etq->q.desc) { 3439 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 3440 etq->q.cntxt_id); 3441 __netif_tx_lock_bh(etq->txq); 3442 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 3443 __netif_tx_unlock_bh(etq->txq); 3444 kfree(etq->q.sdesc); 3445 free_txq(adap, &etq->q); 3446 } 3447 } 3448 3449 /* clean up control Tx queues */ 3450 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 3451 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 3452 3453 if (cq->q.desc) { 3454 tasklet_kill(&cq->qresume_tsk); 3455 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 3456 cq->q.cntxt_id); 3457 __skb_queue_purge(&cq->sendq); 3458 free_txq(adap, &cq->q); 3459 } 3460 } 3461 3462 if (adap->sge.fw_evtq.desc) 3463 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 3464 3465 if (adap->sge.intrq.desc) 3466 free_rspq_fl(adap, &adap->sge.intrq, NULL); 3467 3468 if (!is_t4(adap->params.chip)) { 3469 etq = &adap->sge.ptptxq; 3470 if (etq->q.desc) { 3471 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 3472 etq->q.cntxt_id); 3473 spin_lock_bh(&adap->ptp_lock); 3474 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 3475 spin_unlock_bh(&adap->ptp_lock); 3476 kfree(etq->q.sdesc); 3477 free_txq(adap, &etq->q); 3478 } 3479 } 3480 3481 /* clear the reverse egress queue map */ 3482 memset(adap->sge.egr_map, 0, 3483 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 3484 } 3485 3486 void t4_sge_start(struct adapter *adap) 3487 { 3488 adap->sge.ethtxq_rover = 0; 3489 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 3490 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 3491 } 3492 3493 /** 3494 * t4_sge_stop - disable SGE operation 3495 * @adap: the adapter 3496 * 3497 * Stop tasklets and timers associated with the DMA engine. Note that 3498 * this is effective only if measures have been taken to disable any HW 3499 * events that may restart them. 3500 */ 3501 void t4_sge_stop(struct adapter *adap) 3502 { 3503 int i; 3504 struct sge *s = &adap->sge; 3505 3506 if (in_interrupt()) /* actions below require waiting */ 3507 return; 3508 3509 if (s->rx_timer.function) 3510 del_timer_sync(&s->rx_timer); 3511 if (s->tx_timer.function) 3512 del_timer_sync(&s->tx_timer); 3513 3514 if (is_offload(adap)) { 3515 struct sge_uld_txq_info *txq_info; 3516 3517 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3518 if (txq_info) { 3519 struct sge_uld_txq *txq = txq_info->uldtxq; 3520 3521 for_each_ofldtxq(&adap->sge, i) { 3522 if (txq->q.desc) 3523 tasklet_kill(&txq->qresume_tsk); 3524 } 3525 } 3526 } 3527 3528 if (is_pci_uld(adap)) { 3529 struct sge_uld_txq_info *txq_info; 3530 3531 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 3532 if (txq_info) { 3533 struct sge_uld_txq *txq = txq_info->uldtxq; 3534 3535 for_each_ofldtxq(&adap->sge, i) { 3536 if (txq->q.desc) 3537 tasklet_kill(&txq->qresume_tsk); 3538 } 3539 } 3540 } 3541 3542 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 3543 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 3544 3545 if (cq->q.desc) 3546 tasklet_kill(&cq->qresume_tsk); 3547 } 3548 } 3549 3550 /** 3551 * t4_sge_init_soft - grab core SGE values needed by SGE code 3552 * @adap: the adapter 3553 * 3554 * We need to grab the SGE operating parameters that we need to have 3555 * in order to do our job and make sure we can live with them. 3556 */ 3557 3558 static int t4_sge_init_soft(struct adapter *adap) 3559 { 3560 struct sge *s = &adap->sge; 3561 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 3562 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 3563 u32 ingress_rx_threshold; 3564 3565 /* 3566 * Verify that CPL messages are going to the Ingress Queue for 3567 * process_responses() and that only packet data is going to the 3568 * Free Lists. 3569 */ 3570 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 3571 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 3572 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 3573 return -EINVAL; 3574 } 3575 3576 /* 3577 * Validate the Host Buffer Register Array indices that we want to 3578 * use ... 3579 * 3580 * XXX Note that we should really read through the Host Buffer Size 3581 * XXX register array and find the indices of the Buffer Sizes which 3582 * XXX meet our needs! 3583 */ 3584 #define READ_FL_BUF(x) \ 3585 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 3586 3587 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 3588 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 3589 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 3590 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 3591 3592 /* We only bother using the Large Page logic if the Large Page Buffer 3593 * is larger than our Page Size Buffer. 3594 */ 3595 if (fl_large_pg <= fl_small_pg) 3596 fl_large_pg = 0; 3597 3598 #undef READ_FL_BUF 3599 3600 /* The Page Size Buffer must be exactly equal to our Page Size and the 3601 * Large Page Size Buffer should be 0 (per above) or a power of 2. 3602 */ 3603 if (fl_small_pg != PAGE_SIZE || 3604 (fl_large_pg & (fl_large_pg-1)) != 0) { 3605 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 3606 fl_small_pg, fl_large_pg); 3607 return -EINVAL; 3608 } 3609 if (fl_large_pg) 3610 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 3611 3612 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 3613 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 3614 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 3615 fl_small_mtu, fl_large_mtu); 3616 return -EINVAL; 3617 } 3618 3619 /* 3620 * Retrieve our RX interrupt holdoff timer values and counter 3621 * threshold values from the SGE parameters. 3622 */ 3623 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 3624 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 3625 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 3626 s->timer_val[0] = core_ticks_to_us(adap, 3627 TIMERVALUE0_G(timer_value_0_and_1)); 3628 s->timer_val[1] = core_ticks_to_us(adap, 3629 TIMERVALUE1_G(timer_value_0_and_1)); 3630 s->timer_val[2] = core_ticks_to_us(adap, 3631 TIMERVALUE2_G(timer_value_2_and_3)); 3632 s->timer_val[3] = core_ticks_to_us(adap, 3633 TIMERVALUE3_G(timer_value_2_and_3)); 3634 s->timer_val[4] = core_ticks_to_us(adap, 3635 TIMERVALUE4_G(timer_value_4_and_5)); 3636 s->timer_val[5] = core_ticks_to_us(adap, 3637 TIMERVALUE5_G(timer_value_4_and_5)); 3638 3639 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 3640 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 3641 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 3642 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 3643 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 3644 3645 return 0; 3646 } 3647 3648 /** 3649 * t4_sge_init - initialize SGE 3650 * @adap: the adapter 3651 * 3652 * Perform low-level SGE code initialization needed every time after a 3653 * chip reset. 3654 */ 3655 int t4_sge_init(struct adapter *adap) 3656 { 3657 struct sge *s = &adap->sge; 3658 u32 sge_control, sge_conm_ctrl; 3659 int ret, egress_threshold; 3660 3661 /* 3662 * Ingress Padding Boundary and Egress Status Page Size are set up by 3663 * t4_fixup_host_params(). 3664 */ 3665 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 3666 s->pktshift = PKTSHIFT_G(sge_control); 3667 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 3668 3669 s->fl_align = t4_fl_pkt_align(adap); 3670 ret = t4_sge_init_soft(adap); 3671 if (ret < 0) 3672 return ret; 3673 3674 /* 3675 * A FL with <= fl_starve_thres buffers is starving and a periodic 3676 * timer will attempt to refill it. This needs to be larger than the 3677 * SGE's Egress Congestion Threshold. If it isn't, then we can get 3678 * stuck waiting for new packets while the SGE is waiting for us to 3679 * give it more Free List entries. (Note that the SGE's Egress 3680 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 3681 * there was only a single field to control this. For T5 there's the 3682 * original field which now only applies to Unpacked Mode Free List 3683 * buffers and a new field which only applies to Packed Mode Free List 3684 * buffers. 3685 */ 3686 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 3687 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 3688 case CHELSIO_T4: 3689 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 3690 break; 3691 case CHELSIO_T5: 3692 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 3693 break; 3694 case CHELSIO_T6: 3695 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 3696 break; 3697 default: 3698 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 3699 CHELSIO_CHIP_VERSION(adap->params.chip)); 3700 return -EINVAL; 3701 } 3702 s->fl_starve_thres = 2*egress_threshold + 1; 3703 3704 t4_idma_monitor_init(adap, &s->idma_monitor); 3705 3706 /* Set up timers used for recuring callbacks to process RX and TX 3707 * administrative tasks. 3708 */ 3709 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 3710 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 3711 3712 spin_lock_init(&s->intrq_lock); 3713 3714 return 0; 3715 } 3716