1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 59 /* 60 * Rx buffer size. We use largish buffers if possible but settle for single 61 * pages under memory shortage. 62 */ 63 #if PAGE_SHIFT >= 16 64 # define FL_PG_ORDER 0 65 #else 66 # define FL_PG_ORDER (16 - PAGE_SHIFT) 67 #endif 68 69 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 70 #define RX_COPY_THRES 256 71 #define RX_PULL_LEN 128 72 73 /* 74 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 75 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 76 */ 77 #define RX_PKT_SKB_LEN 512 78 79 /* 80 * Max number of Tx descriptors we clean up at a time. Should be modest as 81 * freeing skbs isn't cheap and it happens while holding locks. We just need 82 * to free packets faster than they arrive, we eventually catch up and keep 83 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. 84 */ 85 #define MAX_TX_RECLAIM 16 86 87 /* 88 * Max number of Rx buffers we replenish at a time. Again keep this modest, 89 * allocating buffers isn't cheap either. 90 */ 91 #define MAX_RX_REFILL 16U 92 93 /* 94 * Period of the Rx queue check timer. This timer is infrequent as it has 95 * something to do only when the system experiences severe memory shortage. 96 */ 97 #define RX_QCHECK_PERIOD (HZ / 2) 98 99 /* 100 * Period of the Tx queue check timer. 101 */ 102 #define TX_QCHECK_PERIOD (HZ / 2) 103 104 /* 105 * Max number of Tx descriptors to be reclaimed by the Tx timer. 106 */ 107 #define MAX_TIMER_TX_RECLAIM 100 108 109 /* 110 * Timer index used when backing off due to memory shortage. 111 */ 112 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 113 114 /* 115 * Suspension threshold for non-Ethernet Tx queues. We require enough room 116 * for a full sized WR. 117 */ 118 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 119 120 /* 121 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 122 * into a WR. 123 */ 124 #define MAX_IMM_TX_PKT_LEN 256 125 126 /* 127 * Max size of a WR sent through a control Tx queue. 128 */ 129 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 130 131 struct rx_sw_desc { /* SW state per Rx descriptor */ 132 struct page *page; 133 dma_addr_t dma_addr; 134 }; 135 136 /* 137 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 138 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 139 * We could easily support more but there doesn't seem to be much need for 140 * that ... 141 */ 142 #define FL_MTU_SMALL 1500 143 #define FL_MTU_LARGE 9000 144 145 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 146 unsigned int mtu) 147 { 148 struct sge *s = &adapter->sge; 149 150 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 151 } 152 153 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 154 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 155 156 /* 157 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 158 * these to specify the buffer size as an index into the SGE Free List Buffer 159 * Size register array. We also use bit 4, when the buffer has been unmapped 160 * for DMA, but this is of course never sent to the hardware and is only used 161 * to prevent double unmappings. All of the above requires that the Free List 162 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 163 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 164 * Free List Buffer alignment is 32 bytes, this works out for us ... 165 */ 166 enum { 167 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 168 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 169 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 170 171 /* 172 * XXX We shouldn't depend on being able to use these indices. 173 * XXX Especially when some other Master PF has initialized the 174 * XXX adapter or we use the Firmware Configuration File. We 175 * XXX should really search through the Host Buffer Size register 176 * XXX array for the appropriately sized buffer indices. 177 */ 178 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 179 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 180 181 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 182 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 183 }; 184 185 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 186 #define MIN_NAPI_WORK 1 187 188 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 189 { 190 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 191 } 192 193 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 194 { 195 return !(d->dma_addr & RX_UNMAPPED_BUF); 196 } 197 198 /** 199 * txq_avail - return the number of available slots in a Tx queue 200 * @q: the Tx queue 201 * 202 * Returns the number of descriptors in a Tx queue available to write new 203 * packets. 204 */ 205 static inline unsigned int txq_avail(const struct sge_txq *q) 206 { 207 return q->size - 1 - q->in_use; 208 } 209 210 /** 211 * fl_cap - return the capacity of a free-buffer list 212 * @fl: the FL 213 * 214 * Returns the capacity of a free-buffer list. The capacity is less than 215 * the size because one descriptor needs to be left unpopulated, otherwise 216 * HW will think the FL is empty. 217 */ 218 static inline unsigned int fl_cap(const struct sge_fl *fl) 219 { 220 return fl->size - 8; /* 1 descriptor = 8 buffers */ 221 } 222 223 /** 224 * fl_starving - return whether a Free List is starving. 225 * @adapter: pointer to the adapter 226 * @fl: the Free List 227 * 228 * Tests specified Free List to see whether the number of buffers 229 * available to the hardware has falled below our "starvation" 230 * threshold. 231 */ 232 static inline bool fl_starving(const struct adapter *adapter, 233 const struct sge_fl *fl) 234 { 235 const struct sge *s = &adapter->sge; 236 237 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 238 } 239 240 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 241 dma_addr_t *addr) 242 { 243 const skb_frag_t *fp, *end; 244 const struct skb_shared_info *si; 245 246 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 247 if (dma_mapping_error(dev, *addr)) 248 goto out_err; 249 250 si = skb_shinfo(skb); 251 end = &si->frags[si->nr_frags]; 252 253 for (fp = si->frags; fp < end; fp++) { 254 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 255 DMA_TO_DEVICE); 256 if (dma_mapping_error(dev, *addr)) 257 goto unwind; 258 } 259 return 0; 260 261 unwind: 262 while (fp-- > si->frags) 263 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 264 265 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 266 out_err: 267 return -ENOMEM; 268 } 269 EXPORT_SYMBOL(cxgb4_map_skb); 270 271 #ifdef CONFIG_NEED_DMA_MAP_STATE 272 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 273 const dma_addr_t *addr) 274 { 275 const skb_frag_t *fp, *end; 276 const struct skb_shared_info *si; 277 278 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 279 280 si = skb_shinfo(skb); 281 end = &si->frags[si->nr_frags]; 282 for (fp = si->frags; fp < end; fp++) 283 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 284 } 285 286 /** 287 * deferred_unmap_destructor - unmap a packet when it is freed 288 * @skb: the packet 289 * 290 * This is the packet destructor used for Tx packets that need to remain 291 * mapped until they are freed rather than until their Tx descriptors are 292 * freed. 293 */ 294 static void deferred_unmap_destructor(struct sk_buff *skb) 295 { 296 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 297 } 298 #endif 299 300 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 301 const struct ulptx_sgl *sgl, const struct sge_txq *q) 302 { 303 const struct ulptx_sge_pair *p; 304 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 305 306 if (likely(skb_headlen(skb))) 307 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 308 DMA_TO_DEVICE); 309 else { 310 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 311 DMA_TO_DEVICE); 312 nfrags--; 313 } 314 315 /* 316 * the complexity below is because of the possibility of a wrap-around 317 * in the middle of an SGL 318 */ 319 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 320 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 321 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 322 ntohl(p->len[0]), DMA_TO_DEVICE); 323 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 324 ntohl(p->len[1]), DMA_TO_DEVICE); 325 p++; 326 } else if ((u8 *)p == (u8 *)q->stat) { 327 p = (const struct ulptx_sge_pair *)q->desc; 328 goto unmap; 329 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 330 const __be64 *addr = (const __be64 *)q->desc; 331 332 dma_unmap_page(dev, be64_to_cpu(addr[0]), 333 ntohl(p->len[0]), DMA_TO_DEVICE); 334 dma_unmap_page(dev, be64_to_cpu(addr[1]), 335 ntohl(p->len[1]), DMA_TO_DEVICE); 336 p = (const struct ulptx_sge_pair *)&addr[2]; 337 } else { 338 const __be64 *addr = (const __be64 *)q->desc; 339 340 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 341 ntohl(p->len[0]), DMA_TO_DEVICE); 342 dma_unmap_page(dev, be64_to_cpu(addr[0]), 343 ntohl(p->len[1]), DMA_TO_DEVICE); 344 p = (const struct ulptx_sge_pair *)&addr[1]; 345 } 346 } 347 if (nfrags) { 348 __be64 addr; 349 350 if ((u8 *)p == (u8 *)q->stat) 351 p = (const struct ulptx_sge_pair *)q->desc; 352 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 353 *(const __be64 *)q->desc; 354 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 355 DMA_TO_DEVICE); 356 } 357 } 358 359 /** 360 * free_tx_desc - reclaims Tx descriptors and their buffers 361 * @adapter: the adapter 362 * @q: the Tx queue to reclaim descriptors from 363 * @n: the number of descriptors to reclaim 364 * @unmap: whether the buffers should be unmapped for DMA 365 * 366 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 367 * Tx buffers. Called with the Tx queue lock held. 368 */ 369 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 370 unsigned int n, bool unmap) 371 { 372 struct tx_sw_desc *d; 373 unsigned int cidx = q->cidx; 374 struct device *dev = adap->pdev_dev; 375 376 d = &q->sdesc[cidx]; 377 while (n--) { 378 if (d->skb) { /* an SGL is present */ 379 if (unmap) 380 unmap_sgl(dev, d->skb, d->sgl, q); 381 dev_consume_skb_any(d->skb); 382 d->skb = NULL; 383 } 384 ++d; 385 if (++cidx == q->size) { 386 cidx = 0; 387 d = q->sdesc; 388 } 389 } 390 q->cidx = cidx; 391 } 392 393 /* 394 * Return the number of reclaimable descriptors in a Tx queue. 395 */ 396 static inline int reclaimable(const struct sge_txq *q) 397 { 398 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 399 hw_cidx -= q->cidx; 400 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 401 } 402 403 /** 404 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 405 * @adap: the adapter 406 * @q: the Tx queue to reclaim completed descriptors from 407 * @unmap: whether the buffers should be unmapped for DMA 408 * 409 * Reclaims Tx descriptors that the SGE has indicated it has processed, 410 * and frees the associated buffers if possible. Called with the Tx 411 * queue locked. 412 */ 413 inline void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 414 bool unmap) 415 { 416 int avail = reclaimable(q); 417 418 if (avail) { 419 /* 420 * Limit the amount of clean up work we do at a time to keep 421 * the Tx lock hold time O(1). 422 */ 423 if (avail > MAX_TX_RECLAIM) 424 avail = MAX_TX_RECLAIM; 425 426 free_tx_desc(adap, q, avail, unmap); 427 q->in_use -= avail; 428 } 429 } 430 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 431 432 static inline int get_buf_size(struct adapter *adapter, 433 const struct rx_sw_desc *d) 434 { 435 struct sge *s = &adapter->sge; 436 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 437 int buf_size; 438 439 switch (rx_buf_size_idx) { 440 case RX_SMALL_PG_BUF: 441 buf_size = PAGE_SIZE; 442 break; 443 444 case RX_LARGE_PG_BUF: 445 buf_size = PAGE_SIZE << s->fl_pg_order; 446 break; 447 448 case RX_SMALL_MTU_BUF: 449 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 450 break; 451 452 case RX_LARGE_MTU_BUF: 453 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 454 break; 455 456 default: 457 BUG_ON(1); 458 } 459 460 return buf_size; 461 } 462 463 /** 464 * free_rx_bufs - free the Rx buffers on an SGE free list 465 * @adap: the adapter 466 * @q: the SGE free list to free buffers from 467 * @n: how many buffers to free 468 * 469 * Release the next @n buffers on an SGE free-buffer Rx queue. The 470 * buffers must be made inaccessible to HW before calling this function. 471 */ 472 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 473 { 474 while (n--) { 475 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 476 477 if (is_buf_mapped(d)) 478 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 479 get_buf_size(adap, d), 480 PCI_DMA_FROMDEVICE); 481 put_page(d->page); 482 d->page = NULL; 483 if (++q->cidx == q->size) 484 q->cidx = 0; 485 q->avail--; 486 } 487 } 488 489 /** 490 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 491 * @adap: the adapter 492 * @q: the SGE free list 493 * 494 * Unmap the current buffer on an SGE free-buffer Rx queue. The 495 * buffer must be made inaccessible to HW before calling this function. 496 * 497 * This is similar to @free_rx_bufs above but does not free the buffer. 498 * Do note that the FL still loses any further access to the buffer. 499 */ 500 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 501 { 502 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 503 504 if (is_buf_mapped(d)) 505 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 506 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 507 d->page = NULL; 508 if (++q->cidx == q->size) 509 q->cidx = 0; 510 q->avail--; 511 } 512 513 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 514 { 515 if (q->pend_cred >= 8) { 516 u32 val = adap->params.arch.sge_fl_db; 517 518 if (is_t4(adap->params.chip)) 519 val |= PIDX_V(q->pend_cred / 8); 520 else 521 val |= PIDX_T5_V(q->pend_cred / 8); 522 523 /* Make sure all memory writes to the Free List queue are 524 * committed before we tell the hardware about them. 525 */ 526 wmb(); 527 528 /* If we don't have access to the new User Doorbell (T5+), use 529 * the old doorbell mechanism; otherwise use the new BAR2 530 * mechanism. 531 */ 532 if (unlikely(q->bar2_addr == NULL)) { 533 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 534 val | QID_V(q->cntxt_id)); 535 } else { 536 writel(val | QID_V(q->bar2_qid), 537 q->bar2_addr + SGE_UDB_KDOORBELL); 538 539 /* This Write memory Barrier will force the write to 540 * the User Doorbell area to be flushed. 541 */ 542 wmb(); 543 } 544 q->pend_cred &= 7; 545 } 546 } 547 548 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 549 dma_addr_t mapping) 550 { 551 sd->page = pg; 552 sd->dma_addr = mapping; /* includes size low bits */ 553 } 554 555 /** 556 * refill_fl - refill an SGE Rx buffer ring 557 * @adap: the adapter 558 * @q: the ring to refill 559 * @n: the number of new buffers to allocate 560 * @gfp: the gfp flags for the allocations 561 * 562 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 563 * allocated with the supplied gfp flags. The caller must assure that 564 * @n does not exceed the queue's capacity. If afterwards the queue is 565 * found critically low mark it as starving in the bitmap of starving FLs. 566 * 567 * Returns the number of buffers allocated. 568 */ 569 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 570 gfp_t gfp) 571 { 572 struct sge *s = &adap->sge; 573 struct page *pg; 574 dma_addr_t mapping; 575 unsigned int cred = q->avail; 576 __be64 *d = &q->desc[q->pidx]; 577 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 578 int node; 579 580 #ifdef CONFIG_DEBUG_FS 581 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 582 goto out; 583 #endif 584 585 gfp |= __GFP_NOWARN; 586 node = dev_to_node(adap->pdev_dev); 587 588 if (s->fl_pg_order == 0) 589 goto alloc_small_pages; 590 591 /* 592 * Prefer large buffers 593 */ 594 while (n) { 595 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 596 if (unlikely(!pg)) { 597 q->large_alloc_failed++; 598 break; /* fall back to single pages */ 599 } 600 601 mapping = dma_map_page(adap->pdev_dev, pg, 0, 602 PAGE_SIZE << s->fl_pg_order, 603 PCI_DMA_FROMDEVICE); 604 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 605 __free_pages(pg, s->fl_pg_order); 606 q->mapping_err++; 607 goto out; /* do not try small pages for this error */ 608 } 609 mapping |= RX_LARGE_PG_BUF; 610 *d++ = cpu_to_be64(mapping); 611 612 set_rx_sw_desc(sd, pg, mapping); 613 sd++; 614 615 q->avail++; 616 if (++q->pidx == q->size) { 617 q->pidx = 0; 618 sd = q->sdesc; 619 d = q->desc; 620 } 621 n--; 622 } 623 624 alloc_small_pages: 625 while (n--) { 626 pg = alloc_pages_node(node, gfp, 0); 627 if (unlikely(!pg)) { 628 q->alloc_failed++; 629 break; 630 } 631 632 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 633 PCI_DMA_FROMDEVICE); 634 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 635 put_page(pg); 636 q->mapping_err++; 637 goto out; 638 } 639 *d++ = cpu_to_be64(mapping); 640 641 set_rx_sw_desc(sd, pg, mapping); 642 sd++; 643 644 q->avail++; 645 if (++q->pidx == q->size) { 646 q->pidx = 0; 647 sd = q->sdesc; 648 d = q->desc; 649 } 650 } 651 652 out: cred = q->avail - cred; 653 q->pend_cred += cred; 654 ring_fl_db(adap, q); 655 656 if (unlikely(fl_starving(adap, q))) { 657 smp_wmb(); 658 q->low++; 659 set_bit(q->cntxt_id - adap->sge.egr_start, 660 adap->sge.starving_fl); 661 } 662 663 return cred; 664 } 665 666 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 667 { 668 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 669 GFP_ATOMIC); 670 } 671 672 /** 673 * alloc_ring - allocate resources for an SGE descriptor ring 674 * @dev: the PCI device's core device 675 * @nelem: the number of descriptors 676 * @elem_size: the size of each descriptor 677 * @sw_size: the size of the SW state associated with each ring element 678 * @phys: the physical address of the allocated ring 679 * @metadata: address of the array holding the SW state for the ring 680 * @stat_size: extra space in HW ring for status information 681 * @node: preferred node for memory allocations 682 * 683 * Allocates resources for an SGE descriptor ring, such as Tx queues, 684 * free buffer lists, or response queues. Each SGE ring requires 685 * space for its HW descriptors plus, optionally, space for the SW state 686 * associated with each HW entry (the metadata). The function returns 687 * three values: the virtual address for the HW ring (the return value 688 * of the function), the bus address of the HW ring, and the address 689 * of the SW ring. 690 */ 691 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 692 size_t sw_size, dma_addr_t *phys, void *metadata, 693 size_t stat_size, int node) 694 { 695 size_t len = nelem * elem_size + stat_size; 696 void *s = NULL; 697 void *p = dma_zalloc_coherent(dev, len, phys, GFP_KERNEL); 698 699 if (!p) 700 return NULL; 701 if (sw_size) { 702 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 703 704 if (!s) { 705 dma_free_coherent(dev, len, p, *phys); 706 return NULL; 707 } 708 } 709 if (metadata) 710 *(void **)metadata = s; 711 return p; 712 } 713 714 /** 715 * sgl_len - calculates the size of an SGL of the given capacity 716 * @n: the number of SGL entries 717 * 718 * Calculates the number of flits needed for a scatter/gather list that 719 * can hold the given number of entries. 720 */ 721 static inline unsigned int sgl_len(unsigned int n) 722 { 723 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 724 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 725 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 726 * repeated sequences of { Length[i], Length[i+1], Address[i], 727 * Address[i+1] } (this ensures that all addresses are on 64-bit 728 * boundaries). If N is even, then Length[N+1] should be set to 0 and 729 * Address[N+1] is omitted. 730 * 731 * The following calculation incorporates all of the above. It's 732 * somewhat hard to follow but, briefly: the "+2" accounts for the 733 * first two flits which include the DSGL header, Length0 and 734 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 735 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 736 * finally the "+((n-1)&1)" adds the one remaining flit needed if 737 * (n-1) is odd ... 738 */ 739 n--; 740 return (3 * n) / 2 + (n & 1) + 2; 741 } 742 743 /** 744 * flits_to_desc - returns the num of Tx descriptors for the given flits 745 * @n: the number of flits 746 * 747 * Returns the number of Tx descriptors needed for the supplied number 748 * of flits. 749 */ 750 static inline unsigned int flits_to_desc(unsigned int n) 751 { 752 BUG_ON(n > SGE_MAX_WR_LEN / 8); 753 return DIV_ROUND_UP(n, 8); 754 } 755 756 /** 757 * is_eth_imm - can an Ethernet packet be sent as immediate data? 758 * @skb: the packet 759 * 760 * Returns whether an Ethernet packet is small enough to fit as 761 * immediate data. Return value corresponds to headroom required. 762 */ 763 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 764 { 765 int hdrlen = 0; 766 767 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 768 chip_ver > CHELSIO_T5) { 769 hdrlen = sizeof(struct cpl_tx_tnl_lso); 770 hdrlen += sizeof(struct cpl_tx_pkt_core); 771 } else { 772 hdrlen = skb_shinfo(skb)->gso_size ? 773 sizeof(struct cpl_tx_pkt_lso_core) : 0; 774 hdrlen += sizeof(struct cpl_tx_pkt); 775 } 776 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 777 return hdrlen; 778 return 0; 779 } 780 781 /** 782 * calc_tx_flits - calculate the number of flits for a packet Tx WR 783 * @skb: the packet 784 * 785 * Returns the number of flits needed for a Tx WR for the given Ethernet 786 * packet, including the needed WR and CPL headers. 787 */ 788 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 789 unsigned int chip_ver) 790 { 791 unsigned int flits; 792 int hdrlen = is_eth_imm(skb, chip_ver); 793 794 /* If the skb is small enough, we can pump it out as a work request 795 * with only immediate data. In that case we just have to have the 796 * TX Packet header plus the skb data in the Work Request. 797 */ 798 799 if (hdrlen) 800 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 801 802 /* Otherwise, we're going to have to construct a Scatter gather list 803 * of the skb body and fragments. We also include the flits necessary 804 * for the TX Packet Work Request and CPL. We always have a firmware 805 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 806 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 807 * message or, if we're doing a Large Send Offload, an LSO CPL message 808 * with an embedded TX Packet Write CPL message. 809 */ 810 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 811 if (skb_shinfo(skb)->gso_size) { 812 if (skb->encapsulation && chip_ver > CHELSIO_T5) 813 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 814 sizeof(struct cpl_tx_tnl_lso); 815 else 816 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 817 sizeof(struct cpl_tx_pkt_lso_core); 818 819 hdrlen += sizeof(struct cpl_tx_pkt_core); 820 flits += (hdrlen / sizeof(__be64)); 821 } else { 822 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 823 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 824 } 825 return flits; 826 } 827 828 /** 829 * calc_tx_descs - calculate the number of Tx descriptors for a packet 830 * @skb: the packet 831 * 832 * Returns the number of Tx descriptors needed for the given Ethernet 833 * packet, including the needed WR and CPL headers. 834 */ 835 static inline unsigned int calc_tx_descs(const struct sk_buff *skb, 836 unsigned int chip_ver) 837 { 838 return flits_to_desc(calc_tx_flits(skb, chip_ver)); 839 } 840 841 /** 842 * cxgb4_write_sgl - populate a scatter/gather list for a packet 843 * @skb: the packet 844 * @q: the Tx queue we are writing into 845 * @sgl: starting location for writing the SGL 846 * @end: points right after the end of the SGL 847 * @start: start offset into skb main-body data to include in the SGL 848 * @addr: the list of bus addresses for the SGL elements 849 * 850 * Generates a gather list for the buffers that make up a packet. 851 * The caller must provide adequate space for the SGL that will be written. 852 * The SGL includes all of the packet's page fragments and the data in its 853 * main body except for the first @start bytes. @sgl must be 16-byte 854 * aligned and within a Tx descriptor with available space. @end points 855 * right after the end of the SGL but does not account for any potential 856 * wrap around, i.e., @end > @sgl. 857 */ 858 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 859 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 860 const dma_addr_t *addr) 861 { 862 unsigned int i, len; 863 struct ulptx_sge_pair *to; 864 const struct skb_shared_info *si = skb_shinfo(skb); 865 unsigned int nfrags = si->nr_frags; 866 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 867 868 len = skb_headlen(skb) - start; 869 if (likely(len)) { 870 sgl->len0 = htonl(len); 871 sgl->addr0 = cpu_to_be64(addr[0] + start); 872 nfrags++; 873 } else { 874 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 875 sgl->addr0 = cpu_to_be64(addr[1]); 876 } 877 878 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 879 ULPTX_NSGE_V(nfrags)); 880 if (likely(--nfrags == 0)) 881 return; 882 /* 883 * Most of the complexity below deals with the possibility we hit the 884 * end of the queue in the middle of writing the SGL. For this case 885 * only we create the SGL in a temporary buffer and then copy it. 886 */ 887 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 888 889 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 890 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 891 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 892 to->addr[0] = cpu_to_be64(addr[i]); 893 to->addr[1] = cpu_to_be64(addr[++i]); 894 } 895 if (nfrags) { 896 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 897 to->len[1] = cpu_to_be32(0); 898 to->addr[0] = cpu_to_be64(addr[i + 1]); 899 } 900 if (unlikely((u8 *)end > (u8 *)q->stat)) { 901 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 902 903 if (likely(part0)) 904 memcpy(sgl->sge, buf, part0); 905 part1 = (u8 *)end - (u8 *)q->stat; 906 memcpy(q->desc, (u8 *)buf + part0, part1); 907 end = (void *)q->desc + part1; 908 } 909 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 910 *end = 0; 911 } 912 EXPORT_SYMBOL(cxgb4_write_sgl); 913 914 /* This function copies 64 byte coalesced work request to 915 * memory mapped BAR2 space. For coalesced WR SGE fetches 916 * data from the FIFO instead of from Host. 917 */ 918 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 919 { 920 int count = 8; 921 922 while (count) { 923 writeq(*src, dst); 924 src++; 925 dst++; 926 count--; 927 } 928 } 929 930 /** 931 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 932 * @adap: the adapter 933 * @q: the Tx queue 934 * @n: number of new descriptors to give to HW 935 * 936 * Ring the doorbel for a Tx queue. 937 */ 938 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 939 { 940 /* Make sure that all writes to the TX Descriptors are committed 941 * before we tell the hardware about them. 942 */ 943 wmb(); 944 945 /* If we don't have access to the new User Doorbell (T5+), use the old 946 * doorbell mechanism; otherwise use the new BAR2 mechanism. 947 */ 948 if (unlikely(q->bar2_addr == NULL)) { 949 u32 val = PIDX_V(n); 950 unsigned long flags; 951 952 /* For T4 we need to participate in the Doorbell Recovery 953 * mechanism. 954 */ 955 spin_lock_irqsave(&q->db_lock, flags); 956 if (!q->db_disabled) 957 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 958 QID_V(q->cntxt_id) | val); 959 else 960 q->db_pidx_inc += n; 961 q->db_pidx = q->pidx; 962 spin_unlock_irqrestore(&q->db_lock, flags); 963 } else { 964 u32 val = PIDX_T5_V(n); 965 966 /* T4 and later chips share the same PIDX field offset within 967 * the doorbell, but T5 and later shrank the field in order to 968 * gain a bit for Doorbell Priority. The field was absurdly 969 * large in the first place (14 bits) so we just use the T5 970 * and later limits and warn if a Queue ID is too large. 971 */ 972 WARN_ON(val & DBPRIO_F); 973 974 /* If we're only writing a single TX Descriptor and we can use 975 * Inferred QID registers, we can use the Write Combining 976 * Gather Buffer; otherwise we use the simple doorbell. 977 */ 978 if (n == 1 && q->bar2_qid == 0) { 979 int index = (q->pidx 980 ? (q->pidx - 1) 981 : (q->size - 1)); 982 u64 *wr = (u64 *)&q->desc[index]; 983 984 cxgb_pio_copy((u64 __iomem *) 985 (q->bar2_addr + SGE_UDB_WCDOORBELL), 986 wr); 987 } else { 988 writel(val | QID_V(q->bar2_qid), 989 q->bar2_addr + SGE_UDB_KDOORBELL); 990 } 991 992 /* This Write Memory Barrier will force the write to the User 993 * Doorbell area to be flushed. This is needed to prevent 994 * writes on different CPUs for the same queue from hitting 995 * the adapter out of order. This is required when some Work 996 * Requests take the Write Combine Gather Buffer path (user 997 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 998 * take the traditional path where we simply increment the 999 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1000 * hardware DMA read the actual Work Request. 1001 */ 1002 wmb(); 1003 } 1004 } 1005 EXPORT_SYMBOL(cxgb4_ring_tx_db); 1006 1007 /** 1008 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 1009 * @skb: the packet 1010 * @q: the Tx queue where the packet will be inlined 1011 * @pos: starting position in the Tx queue where to inline the packet 1012 * 1013 * Inline a packet's contents directly into Tx descriptors, starting at 1014 * the given position within the Tx DMA ring. 1015 * Most of the complexity of this operation is dealing with wrap arounds 1016 * in the middle of the packet we want to inline. 1017 */ 1018 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 1019 const struct sge_txq *q, void *pos) 1020 { 1021 int left = (void *)q->stat - pos; 1022 u64 *p; 1023 1024 if (likely(skb->len <= left)) { 1025 if (likely(!skb->data_len)) 1026 skb_copy_from_linear_data(skb, pos, skb->len); 1027 else 1028 skb_copy_bits(skb, 0, pos, skb->len); 1029 pos += skb->len; 1030 } else { 1031 skb_copy_bits(skb, 0, pos, left); 1032 skb_copy_bits(skb, left, q->desc, skb->len - left); 1033 pos = (void *)q->desc + (skb->len - left); 1034 } 1035 1036 /* 0-pad to multiple of 16 */ 1037 p = PTR_ALIGN(pos, 8); 1038 if ((uintptr_t)p & 8) 1039 *p = 0; 1040 } 1041 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1042 1043 static void *inline_tx_skb_header(const struct sk_buff *skb, 1044 const struct sge_txq *q, void *pos, 1045 int length) 1046 { 1047 u64 *p; 1048 int left = (void *)q->stat - pos; 1049 1050 if (likely(length <= left)) { 1051 memcpy(pos, skb->data, length); 1052 pos += length; 1053 } else { 1054 memcpy(pos, skb->data, left); 1055 memcpy(q->desc, skb->data + left, length - left); 1056 pos = (void *)q->desc + (length - left); 1057 } 1058 /* 0-pad to multiple of 16 */ 1059 p = PTR_ALIGN(pos, 8); 1060 if ((uintptr_t)p & 8) { 1061 *p = 0; 1062 return p + 1; 1063 } 1064 return p; 1065 } 1066 1067 /* 1068 * Figure out what HW csum a packet wants and return the appropriate control 1069 * bits. 1070 */ 1071 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1072 { 1073 int csum_type; 1074 bool inner_hdr_csum = false; 1075 u16 proto, ver; 1076 1077 if (skb->encapsulation && 1078 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1079 inner_hdr_csum = true; 1080 1081 if (inner_hdr_csum) { 1082 ver = inner_ip_hdr(skb)->version; 1083 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1084 inner_ipv6_hdr(skb)->nexthdr; 1085 } else { 1086 ver = ip_hdr(skb)->version; 1087 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1088 ipv6_hdr(skb)->nexthdr; 1089 } 1090 1091 if (ver == 4) { 1092 if (proto == IPPROTO_TCP) 1093 csum_type = TX_CSUM_TCPIP; 1094 else if (proto == IPPROTO_UDP) 1095 csum_type = TX_CSUM_UDPIP; 1096 else { 1097 nocsum: /* 1098 * unknown protocol, disable HW csum 1099 * and hope a bad packet is detected 1100 */ 1101 return TXPKT_L4CSUM_DIS_F; 1102 } 1103 } else { 1104 /* 1105 * this doesn't work with extension headers 1106 */ 1107 if (proto == IPPROTO_TCP) 1108 csum_type = TX_CSUM_TCPIP6; 1109 else if (proto == IPPROTO_UDP) 1110 csum_type = TX_CSUM_UDPIP6; 1111 else 1112 goto nocsum; 1113 } 1114 1115 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1116 int eth_hdr_len, l4_len; 1117 u64 hdr_len; 1118 1119 if (inner_hdr_csum) { 1120 /* This allows checksum offload for all encapsulated 1121 * packets like GRE etc.. 1122 */ 1123 l4_len = skb_inner_network_header_len(skb); 1124 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1125 } else { 1126 l4_len = skb_network_header_len(skb); 1127 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1128 } 1129 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1130 1131 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1132 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1133 else 1134 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1135 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1136 } else { 1137 int start = skb_transport_offset(skb); 1138 1139 return TXPKT_CSUM_TYPE_V(csum_type) | 1140 TXPKT_CSUM_START_V(start) | 1141 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1142 } 1143 } 1144 1145 static void eth_txq_stop(struct sge_eth_txq *q) 1146 { 1147 netif_tx_stop_queue(q->txq); 1148 q->q.stops++; 1149 } 1150 1151 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1152 { 1153 q->in_use += n; 1154 q->pidx += n; 1155 if (q->pidx >= q->size) 1156 q->pidx -= q->size; 1157 } 1158 1159 #ifdef CONFIG_CHELSIO_T4_FCOE 1160 static inline int 1161 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1162 const struct port_info *pi, u64 *cntrl) 1163 { 1164 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1165 1166 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1167 return 0; 1168 1169 if (skb->protocol != htons(ETH_P_FCOE)) 1170 return 0; 1171 1172 skb_reset_mac_header(skb); 1173 skb->mac_len = sizeof(struct ethhdr); 1174 1175 skb_set_network_header(skb, skb->mac_len); 1176 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1177 1178 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1179 return -ENOTSUPP; 1180 1181 /* FC CRC offload */ 1182 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1183 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1184 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1185 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1186 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1187 return 0; 1188 } 1189 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1190 1191 /* Returns tunnel type if hardware supports offloading of the same. 1192 * It is called only for T5 and onwards. 1193 */ 1194 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1195 { 1196 u8 l4_hdr = 0; 1197 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1198 struct port_info *pi = netdev_priv(skb->dev); 1199 struct adapter *adapter = pi->adapter; 1200 1201 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1202 skb->inner_protocol != htons(ETH_P_TEB)) 1203 return tnl_type; 1204 1205 switch (vlan_get_protocol(skb)) { 1206 case htons(ETH_P_IP): 1207 l4_hdr = ip_hdr(skb)->protocol; 1208 break; 1209 case htons(ETH_P_IPV6): 1210 l4_hdr = ipv6_hdr(skb)->nexthdr; 1211 break; 1212 default: 1213 return tnl_type; 1214 } 1215 1216 switch (l4_hdr) { 1217 case IPPROTO_UDP: 1218 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1219 tnl_type = TX_TNL_TYPE_VXLAN; 1220 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1221 tnl_type = TX_TNL_TYPE_GENEVE; 1222 break; 1223 default: 1224 return tnl_type; 1225 } 1226 1227 return tnl_type; 1228 } 1229 1230 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1231 struct cpl_tx_tnl_lso *tnl_lso, 1232 enum cpl_tx_tnl_lso_type tnl_type) 1233 { 1234 u32 val; 1235 int in_eth_xtra_len; 1236 int l3hdr_len = skb_network_header_len(skb); 1237 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1238 const struct skb_shared_info *ssi = skb_shinfo(skb); 1239 bool v6 = (ip_hdr(skb)->version == 6); 1240 1241 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1242 CPL_TX_TNL_LSO_FIRST_F | 1243 CPL_TX_TNL_LSO_LAST_F | 1244 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1245 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1246 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1247 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1248 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1249 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1250 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1251 1252 tnl_lso->IpIdOffsetOut = 0; 1253 1254 /* Get the tunnel header length */ 1255 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1256 in_eth_xtra_len = skb_inner_network_header(skb) - 1257 skb_inner_mac_header(skb) - ETH_HLEN; 1258 1259 switch (tnl_type) { 1260 case TX_TNL_TYPE_VXLAN: 1261 case TX_TNL_TYPE_GENEVE: 1262 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1263 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1264 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1265 break; 1266 default: 1267 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1268 break; 1269 } 1270 1271 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1272 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1273 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1274 1275 tnl_lso->r1 = 0; 1276 1277 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1278 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1279 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1280 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1281 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1282 1283 tnl_lso->IpIdOffset = htons(0); 1284 1285 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1286 tnl_lso->TCPSeqOffset = htonl(0); 1287 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1288 } 1289 1290 /** 1291 * t4_eth_xmit - add a packet to an Ethernet Tx queue 1292 * @skb: the packet 1293 * @dev: the egress net device 1294 * 1295 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1296 */ 1297 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1298 { 1299 u32 wr_mid, ctrl0, op; 1300 u64 cntrl, *end, *sgl; 1301 int qidx, credits; 1302 unsigned int flits, ndesc; 1303 struct adapter *adap; 1304 struct sge_eth_txq *q; 1305 const struct port_info *pi; 1306 struct fw_eth_tx_pkt_wr *wr; 1307 struct cpl_tx_pkt_core *cpl; 1308 const struct skb_shared_info *ssi; 1309 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1310 bool immediate = false; 1311 int len, max_pkt_len; 1312 bool ptp_enabled = is_ptp_enabled(skb, dev); 1313 unsigned int chip_ver; 1314 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1315 1316 #ifdef CONFIG_CHELSIO_T4_FCOE 1317 int err; 1318 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1319 1320 /* 1321 * The chip min packet length is 10 octets but play safe and reject 1322 * anything shorter than an Ethernet header. 1323 */ 1324 if (unlikely(skb->len < ETH_HLEN)) { 1325 out_free: dev_kfree_skb_any(skb); 1326 return NETDEV_TX_OK; 1327 } 1328 1329 /* Discard the packet if the length is greater than mtu */ 1330 max_pkt_len = ETH_HLEN + dev->mtu; 1331 if (skb_vlan_tagged(skb)) 1332 max_pkt_len += VLAN_HLEN; 1333 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1334 goto out_free; 1335 1336 pi = netdev_priv(dev); 1337 adap = pi->adapter; 1338 ssi = skb_shinfo(skb); 1339 #ifdef CONFIG_CHELSIO_IPSEC_INLINE 1340 if (xfrm_offload(skb) && !ssi->gso_size) 1341 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev); 1342 #endif /* CHELSIO_IPSEC_INLINE */ 1343 1344 qidx = skb_get_queue_mapping(skb); 1345 if (ptp_enabled) { 1346 spin_lock(&adap->ptp_lock); 1347 if (!(adap->ptp_tx_skb)) { 1348 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1349 adap->ptp_tx_skb = skb_get(skb); 1350 } else { 1351 spin_unlock(&adap->ptp_lock); 1352 goto out_free; 1353 } 1354 q = &adap->sge.ptptxq; 1355 } else { 1356 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1357 } 1358 skb_tx_timestamp(skb); 1359 1360 cxgb4_reclaim_completed_tx(adap, &q->q, true); 1361 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1362 1363 #ifdef CONFIG_CHELSIO_T4_FCOE 1364 err = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1365 if (unlikely(err == -ENOTSUPP)) { 1366 if (ptp_enabled) 1367 spin_unlock(&adap->ptp_lock); 1368 goto out_free; 1369 } 1370 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1371 1372 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1373 flits = calc_tx_flits(skb, chip_ver); 1374 ndesc = flits_to_desc(flits); 1375 credits = txq_avail(&q->q) - ndesc; 1376 1377 if (unlikely(credits < 0)) { 1378 eth_txq_stop(q); 1379 dev_err(adap->pdev_dev, 1380 "%s: Tx ring %u full while queue awake!\n", 1381 dev->name, qidx); 1382 if (ptp_enabled) 1383 spin_unlock(&adap->ptp_lock); 1384 return NETDEV_TX_BUSY; 1385 } 1386 1387 if (is_eth_imm(skb, chip_ver)) 1388 immediate = true; 1389 1390 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1391 tnl_type = cxgb_encap_offload_supported(skb); 1392 1393 if (!immediate && 1394 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) { 1395 q->mapping_err++; 1396 if (ptp_enabled) 1397 spin_unlock(&adap->ptp_lock); 1398 goto out_free; 1399 } 1400 1401 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1402 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1403 eth_txq_stop(q); 1404 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1405 } 1406 1407 wr = (void *)&q->q.desc[q->q.pidx]; 1408 wr->equiq_to_len16 = htonl(wr_mid); 1409 wr->r3 = cpu_to_be64(0); 1410 end = (u64 *)wr + flits; 1411 1412 len = immediate ? skb->len : 0; 1413 len += sizeof(*cpl); 1414 if (ssi->gso_size) { 1415 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1416 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1417 int l3hdr_len = skb_network_header_len(skb); 1418 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1419 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1420 1421 if (tnl_type) 1422 len += sizeof(*tnl_lso); 1423 else 1424 len += sizeof(*lso); 1425 1426 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1427 FW_WR_IMMDLEN_V(len)); 1428 if (tnl_type) { 1429 struct iphdr *iph = ip_hdr(skb); 1430 1431 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1432 cpl = (void *)(tnl_lso + 1); 1433 /* Driver is expected to compute partial checksum that 1434 * does not include the IP Total Length. 1435 */ 1436 if (iph->version == 4) { 1437 iph->check = 0; 1438 iph->tot_len = 0; 1439 iph->check = (u16)(~ip_fast_csum((u8 *)iph, 1440 iph->ihl)); 1441 } 1442 if (skb->ip_summed == CHECKSUM_PARTIAL) 1443 cntrl = hwcsum(adap->params.chip, skb); 1444 } else { 1445 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1446 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1447 LSO_IPV6_V(v6) | 1448 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1449 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1450 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1451 lso->ipid_ofst = htons(0); 1452 lso->mss = htons(ssi->gso_size); 1453 lso->seqno_offset = htonl(0); 1454 if (is_t4(adap->params.chip)) 1455 lso->len = htonl(skb->len); 1456 else 1457 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1458 cpl = (void *)(lso + 1); 1459 1460 if (CHELSIO_CHIP_VERSION(adap->params.chip) 1461 <= CHELSIO_T5) 1462 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1463 else 1464 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1465 1466 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1467 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1468 TXPKT_IPHDR_LEN_V(l3hdr_len); 1469 } 1470 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1471 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1472 /* If current position is already at the end of the 1473 * txq, reset the current to point to start of the queue 1474 * and update the end ptr as well. 1475 */ 1476 if (sgl == (u64 *)q->q.stat) { 1477 int left = (u8 *)end - (u8 *)q->q.stat; 1478 1479 end = (void *)q->q.desc + left; 1480 sgl = (void *)q->q.desc; 1481 } 1482 } 1483 q->tso++; 1484 q->tx_cso += ssi->gso_segs; 1485 } else { 1486 if (ptp_enabled) 1487 op = FW_PTP_TX_PKT_WR; 1488 else 1489 op = FW_ETH_TX_PKT_WR; 1490 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1491 FW_WR_IMMDLEN_V(len)); 1492 cpl = (void *)(wr + 1); 1493 sgl = (u64 *)(cpl + 1); 1494 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1495 cntrl = hwcsum(adap->params.chip, skb) | 1496 TXPKT_IPCSUM_DIS_F; 1497 q->tx_cso++; 1498 } 1499 } 1500 1501 if (skb_vlan_tag_present(skb)) { 1502 q->vlan_ins++; 1503 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1504 #ifdef CONFIG_CHELSIO_T4_FCOE 1505 if (skb->protocol == htons(ETH_P_FCOE)) 1506 cntrl |= TXPKT_VLAN_V( 1507 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1508 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1509 } 1510 1511 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1512 TXPKT_PF_V(adap->pf); 1513 if (ptp_enabled) 1514 ctrl0 |= TXPKT_TSTAMP_F; 1515 #ifdef CONFIG_CHELSIO_T4_DCB 1516 if (is_t4(adap->params.chip)) 1517 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1518 else 1519 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1520 #endif 1521 cpl->ctrl0 = htonl(ctrl0); 1522 cpl->pack = htons(0); 1523 cpl->len = htons(skb->len); 1524 cpl->ctrl1 = cpu_to_be64(cntrl); 1525 1526 if (immediate) { 1527 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1528 dev_consume_skb_any(skb); 1529 } else { 1530 int last_desc; 1531 1532 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, addr); 1533 skb_orphan(skb); 1534 1535 last_desc = q->q.pidx + ndesc - 1; 1536 if (last_desc >= q->q.size) 1537 last_desc -= q->q.size; 1538 q->q.sdesc[last_desc].skb = skb; 1539 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)sgl; 1540 } 1541 1542 txq_advance(&q->q, ndesc); 1543 1544 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1545 if (ptp_enabled) 1546 spin_unlock(&adap->ptp_lock); 1547 return NETDEV_TX_OK; 1548 } 1549 1550 /** 1551 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1552 * @q: the SGE control Tx queue 1553 * 1554 * This is a variant of cxgb4_reclaim_completed_tx() that is used 1555 * for Tx queues that send only immediate data (presently just 1556 * the control queues) and thus do not have any sk_buffs to release. 1557 */ 1558 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1559 { 1560 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1561 int reclaim = hw_cidx - q->cidx; 1562 1563 if (reclaim < 0) 1564 reclaim += q->size; 1565 1566 q->in_use -= reclaim; 1567 q->cidx = hw_cidx; 1568 } 1569 1570 /** 1571 * is_imm - check whether a packet can be sent as immediate data 1572 * @skb: the packet 1573 * 1574 * Returns true if a packet can be sent as a WR with immediate data. 1575 */ 1576 static inline int is_imm(const struct sk_buff *skb) 1577 { 1578 return skb->len <= MAX_CTRL_WR_LEN; 1579 } 1580 1581 /** 1582 * ctrlq_check_stop - check if a control queue is full and should stop 1583 * @q: the queue 1584 * @wr: most recent WR written to the queue 1585 * 1586 * Check if a control queue has become full and should be stopped. 1587 * We clean up control queue descriptors very lazily, only when we are out. 1588 * If the queue is still full after reclaiming any completed descriptors 1589 * we suspend it and have the last WR wake it up. 1590 */ 1591 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 1592 { 1593 reclaim_completed_tx_imm(&q->q); 1594 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1595 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1596 q->q.stops++; 1597 q->full = 1; 1598 } 1599 } 1600 1601 /** 1602 * ctrl_xmit - send a packet through an SGE control Tx queue 1603 * @q: the control queue 1604 * @skb: the packet 1605 * 1606 * Send a packet through an SGE control Tx queue. Packets sent through 1607 * a control queue must fit entirely as immediate data. 1608 */ 1609 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 1610 { 1611 unsigned int ndesc; 1612 struct fw_wr_hdr *wr; 1613 1614 if (unlikely(!is_imm(skb))) { 1615 WARN_ON(1); 1616 dev_kfree_skb(skb); 1617 return NET_XMIT_DROP; 1618 } 1619 1620 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 1621 spin_lock(&q->sendq.lock); 1622 1623 if (unlikely(q->full)) { 1624 skb->priority = ndesc; /* save for restart */ 1625 __skb_queue_tail(&q->sendq, skb); 1626 spin_unlock(&q->sendq.lock); 1627 return NET_XMIT_CN; 1628 } 1629 1630 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1631 cxgb4_inline_tx_skb(skb, &q->q, wr); 1632 1633 txq_advance(&q->q, ndesc); 1634 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 1635 ctrlq_check_stop(q, wr); 1636 1637 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 1638 spin_unlock(&q->sendq.lock); 1639 1640 kfree_skb(skb); 1641 return NET_XMIT_SUCCESS; 1642 } 1643 1644 /** 1645 * restart_ctrlq - restart a suspended control queue 1646 * @data: the control queue to restart 1647 * 1648 * Resumes transmission on a suspended Tx control queue. 1649 */ 1650 static void restart_ctrlq(unsigned long data) 1651 { 1652 struct sk_buff *skb; 1653 unsigned int written = 0; 1654 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 1655 1656 spin_lock(&q->sendq.lock); 1657 reclaim_completed_tx_imm(&q->q); 1658 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 1659 1660 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 1661 struct fw_wr_hdr *wr; 1662 unsigned int ndesc = skb->priority; /* previously saved */ 1663 1664 written += ndesc; 1665 /* Write descriptors and free skbs outside the lock to limit 1666 * wait times. q->full is still set so new skbs will be queued. 1667 */ 1668 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1669 txq_advance(&q->q, ndesc); 1670 spin_unlock(&q->sendq.lock); 1671 1672 cxgb4_inline_tx_skb(skb, &q->q, wr); 1673 kfree_skb(skb); 1674 1675 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1676 unsigned long old = q->q.stops; 1677 1678 ctrlq_check_stop(q, wr); 1679 if (q->q.stops != old) { /* suspended anew */ 1680 spin_lock(&q->sendq.lock); 1681 goto ringdb; 1682 } 1683 } 1684 if (written > 16) { 1685 cxgb4_ring_tx_db(q->adap, &q->q, written); 1686 written = 0; 1687 } 1688 spin_lock(&q->sendq.lock); 1689 } 1690 q->full = 0; 1691 ringdb: 1692 if (written) 1693 cxgb4_ring_tx_db(q->adap, &q->q, written); 1694 spin_unlock(&q->sendq.lock); 1695 } 1696 1697 /** 1698 * t4_mgmt_tx - send a management message 1699 * @adap: the adapter 1700 * @skb: the packet containing the management message 1701 * 1702 * Send a management message through control queue 0. 1703 */ 1704 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1705 { 1706 int ret; 1707 1708 local_bh_disable(); 1709 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 1710 local_bh_enable(); 1711 return ret; 1712 } 1713 1714 /** 1715 * is_ofld_imm - check whether a packet can be sent as immediate data 1716 * @skb: the packet 1717 * 1718 * Returns true if a packet can be sent as an offload WR with immediate 1719 * data. We currently use the same limit as for Ethernet packets. 1720 */ 1721 static inline int is_ofld_imm(const struct sk_buff *skb) 1722 { 1723 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 1724 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 1725 1726 if (opcode == FW_CRYPTO_LOOKASIDE_WR) 1727 return skb->len <= SGE_MAX_WR_LEN; 1728 else 1729 return skb->len <= MAX_IMM_TX_PKT_LEN; 1730 } 1731 1732 /** 1733 * calc_tx_flits_ofld - calculate # of flits for an offload packet 1734 * @skb: the packet 1735 * 1736 * Returns the number of flits needed for the given offload packet. 1737 * These packets are already fully constructed and no additional headers 1738 * will be added. 1739 */ 1740 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 1741 { 1742 unsigned int flits, cnt; 1743 1744 if (is_ofld_imm(skb)) 1745 return DIV_ROUND_UP(skb->len, 8); 1746 1747 flits = skb_transport_offset(skb) / 8U; /* headers */ 1748 cnt = skb_shinfo(skb)->nr_frags; 1749 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1750 cnt++; 1751 return flits + sgl_len(cnt); 1752 } 1753 1754 /** 1755 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 1756 * @adap: the adapter 1757 * @q: the queue to stop 1758 * 1759 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 1760 * inability to map packets. A periodic timer attempts to restart 1761 * queues so marked. 1762 */ 1763 static void txq_stop_maperr(struct sge_uld_txq *q) 1764 { 1765 q->mapping_err++; 1766 q->q.stops++; 1767 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 1768 q->adap->sge.txq_maperr); 1769 } 1770 1771 /** 1772 * ofldtxq_stop - stop an offload Tx queue that has become full 1773 * @q: the queue to stop 1774 * @wr: the Work Request causing the queue to become full 1775 * 1776 * Stops an offload Tx queue that has become full and modifies the packet 1777 * being written to request a wakeup. 1778 */ 1779 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 1780 { 1781 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1782 q->q.stops++; 1783 q->full = 1; 1784 } 1785 1786 /** 1787 * service_ofldq - service/restart a suspended offload queue 1788 * @q: the offload queue 1789 * 1790 * Services an offload Tx queue by moving packets from its Pending Send 1791 * Queue to the Hardware TX ring. The function starts and ends with the 1792 * Send Queue locked, but drops the lock while putting the skb at the 1793 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 1794 * allows more skbs to be added to the Send Queue by other threads. 1795 * The packet being processed at the head of the Pending Send Queue is 1796 * left on the queue in case we experience DMA Mapping errors, etc. 1797 * and need to give up and restart later. 1798 * 1799 * service_ofldq() can be thought of as a task which opportunistically 1800 * uses other threads execution contexts. We use the Offload Queue 1801 * boolean "service_ofldq_running" to make sure that only one instance 1802 * is ever running at a time ... 1803 */ 1804 static void service_ofldq(struct sge_uld_txq *q) 1805 { 1806 u64 *pos, *before, *end; 1807 int credits; 1808 struct sk_buff *skb; 1809 struct sge_txq *txq; 1810 unsigned int left; 1811 unsigned int written = 0; 1812 unsigned int flits, ndesc; 1813 1814 /* If another thread is currently in service_ofldq() processing the 1815 * Pending Send Queue then there's nothing to do. Otherwise, flag 1816 * that we're doing the work and continue. Examining/modifying 1817 * the Offload Queue boolean "service_ofldq_running" must be done 1818 * while holding the Pending Send Queue Lock. 1819 */ 1820 if (q->service_ofldq_running) 1821 return; 1822 q->service_ofldq_running = true; 1823 1824 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 1825 /* We drop the lock while we're working with the skb at the 1826 * head of the Pending Send Queue. This allows more skbs to 1827 * be added to the Pending Send Queue while we're working on 1828 * this one. We don't need to lock to guard the TX Ring 1829 * updates because only one thread of execution is ever 1830 * allowed into service_ofldq() at a time. 1831 */ 1832 spin_unlock(&q->sendq.lock); 1833 1834 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 1835 1836 flits = skb->priority; /* previously saved */ 1837 ndesc = flits_to_desc(flits); 1838 credits = txq_avail(&q->q) - ndesc; 1839 BUG_ON(credits < 0); 1840 if (unlikely(credits < TXQ_STOP_THRES)) 1841 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 1842 1843 pos = (u64 *)&q->q.desc[q->q.pidx]; 1844 if (is_ofld_imm(skb)) 1845 cxgb4_inline_tx_skb(skb, &q->q, pos); 1846 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 1847 (dma_addr_t *)skb->head)) { 1848 txq_stop_maperr(q); 1849 spin_lock(&q->sendq.lock); 1850 break; 1851 } else { 1852 int last_desc, hdr_len = skb_transport_offset(skb); 1853 1854 /* The WR headers may not fit within one descriptor. 1855 * So we need to deal with wrap-around here. 1856 */ 1857 before = (u64 *)pos; 1858 end = (u64 *)pos + flits; 1859 txq = &q->q; 1860 pos = (void *)inline_tx_skb_header(skb, &q->q, 1861 (void *)pos, 1862 hdr_len); 1863 if (before > (u64 *)pos) { 1864 left = (u8 *)end - (u8 *)txq->stat; 1865 end = (void *)txq->desc + left; 1866 } 1867 1868 /* If current position is already at the end of the 1869 * ofld queue, reset the current to point to 1870 * start of the queue and update the end ptr as well. 1871 */ 1872 if (pos == (u64 *)txq->stat) { 1873 left = (u8 *)end - (u8 *)txq->stat; 1874 end = (void *)txq->desc + left; 1875 pos = (void *)txq->desc; 1876 } 1877 1878 cxgb4_write_sgl(skb, &q->q, (void *)pos, 1879 end, hdr_len, 1880 (dma_addr_t *)skb->head); 1881 #ifdef CONFIG_NEED_DMA_MAP_STATE 1882 skb->dev = q->adap->port[0]; 1883 skb->destructor = deferred_unmap_destructor; 1884 #endif 1885 last_desc = q->q.pidx + ndesc - 1; 1886 if (last_desc >= q->q.size) 1887 last_desc -= q->q.size; 1888 q->q.sdesc[last_desc].skb = skb; 1889 } 1890 1891 txq_advance(&q->q, ndesc); 1892 written += ndesc; 1893 if (unlikely(written > 32)) { 1894 cxgb4_ring_tx_db(q->adap, &q->q, written); 1895 written = 0; 1896 } 1897 1898 /* Reacquire the Pending Send Queue Lock so we can unlink the 1899 * skb we've just successfully transferred to the TX Ring and 1900 * loop for the next skb which may be at the head of the 1901 * Pending Send Queue. 1902 */ 1903 spin_lock(&q->sendq.lock); 1904 __skb_unlink(skb, &q->sendq); 1905 if (is_ofld_imm(skb)) 1906 kfree_skb(skb); 1907 } 1908 if (likely(written)) 1909 cxgb4_ring_tx_db(q->adap, &q->q, written); 1910 1911 /*Indicate that no thread is processing the Pending Send Queue 1912 * currently. 1913 */ 1914 q->service_ofldq_running = false; 1915 } 1916 1917 /** 1918 * ofld_xmit - send a packet through an offload queue 1919 * @q: the Tx offload queue 1920 * @skb: the packet 1921 * 1922 * Send an offload packet through an SGE offload queue. 1923 */ 1924 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 1925 { 1926 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 1927 spin_lock(&q->sendq.lock); 1928 1929 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 1930 * that results in this new skb being the only one on the queue, start 1931 * servicing it. If there are other skbs already on the list, then 1932 * either the queue is currently being processed or it's been stopped 1933 * for some reason and it'll be restarted at a later time. Restart 1934 * paths are triggered by events like experiencing a DMA Mapping Error 1935 * or filling the Hardware TX Ring. 1936 */ 1937 __skb_queue_tail(&q->sendq, skb); 1938 if (q->sendq.qlen == 1) 1939 service_ofldq(q); 1940 1941 spin_unlock(&q->sendq.lock); 1942 return NET_XMIT_SUCCESS; 1943 } 1944 1945 /** 1946 * restart_ofldq - restart a suspended offload queue 1947 * @data: the offload queue to restart 1948 * 1949 * Resumes transmission on a suspended Tx offload queue. 1950 */ 1951 static void restart_ofldq(unsigned long data) 1952 { 1953 struct sge_uld_txq *q = (struct sge_uld_txq *)data; 1954 1955 spin_lock(&q->sendq.lock); 1956 q->full = 0; /* the queue actually is completely empty now */ 1957 service_ofldq(q); 1958 spin_unlock(&q->sendq.lock); 1959 } 1960 1961 /** 1962 * skb_txq - return the Tx queue an offload packet should use 1963 * @skb: the packet 1964 * 1965 * Returns the Tx queue an offload packet should use as indicated by bits 1966 * 1-15 in the packet's queue_mapping. 1967 */ 1968 static inline unsigned int skb_txq(const struct sk_buff *skb) 1969 { 1970 return skb->queue_mapping >> 1; 1971 } 1972 1973 /** 1974 * is_ctrl_pkt - return whether an offload packet is a control packet 1975 * @skb: the packet 1976 * 1977 * Returns whether an offload packet should use an OFLD or a CTRL 1978 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 1979 */ 1980 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 1981 { 1982 return skb->queue_mapping & 1; 1983 } 1984 1985 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 1986 unsigned int tx_uld_type) 1987 { 1988 struct sge_uld_txq_info *txq_info; 1989 struct sge_uld_txq *txq; 1990 unsigned int idx = skb_txq(skb); 1991 1992 if (unlikely(is_ctrl_pkt(skb))) { 1993 /* Single ctrl queue is a requirement for LE workaround path */ 1994 if (adap->tids.nsftids) 1995 idx = 0; 1996 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 1997 } 1998 1999 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 2000 if (unlikely(!txq_info)) { 2001 WARN_ON(true); 2002 return NET_XMIT_DROP; 2003 } 2004 2005 txq = &txq_info->uldtxq[idx]; 2006 return ofld_xmit(txq, skb); 2007 } 2008 2009 /** 2010 * t4_ofld_send - send an offload packet 2011 * @adap: the adapter 2012 * @skb: the packet 2013 * 2014 * Sends an offload packet. We use the packet queue_mapping to select the 2015 * appropriate Tx queue as follows: bit 0 indicates whether the packet 2016 * should be sent as regular or control, bits 1-15 select the queue. 2017 */ 2018 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 2019 { 2020 int ret; 2021 2022 local_bh_disable(); 2023 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 2024 local_bh_enable(); 2025 return ret; 2026 } 2027 2028 /** 2029 * cxgb4_ofld_send - send an offload packet 2030 * @dev: the net device 2031 * @skb: the packet 2032 * 2033 * Sends an offload packet. This is an exported version of @t4_ofld_send, 2034 * intended for ULDs. 2035 */ 2036 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 2037 { 2038 return t4_ofld_send(netdev2adap(dev), skb); 2039 } 2040 EXPORT_SYMBOL(cxgb4_ofld_send); 2041 2042 static void *inline_tx_header(const void *src, 2043 const struct sge_txq *q, 2044 void *pos, int length) 2045 { 2046 int left = (void *)q->stat - pos; 2047 u64 *p; 2048 2049 if (likely(length <= left)) { 2050 memcpy(pos, src, length); 2051 pos += length; 2052 } else { 2053 memcpy(pos, src, left); 2054 memcpy(q->desc, src + left, length - left); 2055 pos = (void *)q->desc + (length - left); 2056 } 2057 /* 0-pad to multiple of 16 */ 2058 p = PTR_ALIGN(pos, 8); 2059 if ((uintptr_t)p & 8) { 2060 *p = 0; 2061 return p + 1; 2062 } 2063 return p; 2064 } 2065 2066 /** 2067 * ofld_xmit_direct - copy a WR into offload queue 2068 * @q: the Tx offload queue 2069 * @src: location of WR 2070 * @len: WR length 2071 * 2072 * Copy an immediate WR into an uncontended SGE offload queue. 2073 */ 2074 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 2075 unsigned int len) 2076 { 2077 unsigned int ndesc; 2078 int credits; 2079 u64 *pos; 2080 2081 /* Use the lower limit as the cut-off */ 2082 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 2083 WARN_ON(1); 2084 return NET_XMIT_DROP; 2085 } 2086 2087 /* Don't return NET_XMIT_CN here as the current 2088 * implementation doesn't queue the request 2089 * using an skb when the following conditions not met 2090 */ 2091 if (!spin_trylock(&q->sendq.lock)) 2092 return NET_XMIT_DROP; 2093 2094 if (q->full || !skb_queue_empty(&q->sendq) || 2095 q->service_ofldq_running) { 2096 spin_unlock(&q->sendq.lock); 2097 return NET_XMIT_DROP; 2098 } 2099 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 2100 credits = txq_avail(&q->q) - ndesc; 2101 pos = (u64 *)&q->q.desc[q->q.pidx]; 2102 2103 /* ofldtxq_stop modifies WR header in-situ */ 2104 inline_tx_header(src, &q->q, pos, len); 2105 if (unlikely(credits < TXQ_STOP_THRES)) 2106 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 2107 txq_advance(&q->q, ndesc); 2108 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2109 2110 spin_unlock(&q->sendq.lock); 2111 return NET_XMIT_SUCCESS; 2112 } 2113 2114 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 2115 const void *src, unsigned int len) 2116 { 2117 struct sge_uld_txq_info *txq_info; 2118 struct sge_uld_txq *txq; 2119 struct adapter *adap; 2120 int ret; 2121 2122 adap = netdev2adap(dev); 2123 2124 local_bh_disable(); 2125 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2126 if (unlikely(!txq_info)) { 2127 WARN_ON(true); 2128 local_bh_enable(); 2129 return NET_XMIT_DROP; 2130 } 2131 txq = &txq_info->uldtxq[idx]; 2132 2133 ret = ofld_xmit_direct(txq, src, len); 2134 local_bh_enable(); 2135 return net_xmit_eval(ret); 2136 } 2137 EXPORT_SYMBOL(cxgb4_immdata_send); 2138 2139 /** 2140 * t4_crypto_send - send crypto packet 2141 * @adap: the adapter 2142 * @skb: the packet 2143 * 2144 * Sends crypto packet. We use the packet queue_mapping to select the 2145 * appropriate Tx queue as follows: bit 0 indicates whether the packet 2146 * should be sent as regular or control, bits 1-15 select the queue. 2147 */ 2148 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 2149 { 2150 int ret; 2151 2152 local_bh_disable(); 2153 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 2154 local_bh_enable(); 2155 return ret; 2156 } 2157 2158 /** 2159 * cxgb4_crypto_send - send crypto packet 2160 * @dev: the net device 2161 * @skb: the packet 2162 * 2163 * Sends crypto packet. This is an exported version of @t4_crypto_send, 2164 * intended for ULDs. 2165 */ 2166 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 2167 { 2168 return t4_crypto_send(netdev2adap(dev), skb); 2169 } 2170 EXPORT_SYMBOL(cxgb4_crypto_send); 2171 2172 static inline void copy_frags(struct sk_buff *skb, 2173 const struct pkt_gl *gl, unsigned int offset) 2174 { 2175 int i; 2176 2177 /* usually there's just one frag */ 2178 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 2179 gl->frags[0].offset + offset, 2180 gl->frags[0].size - offset); 2181 skb_shinfo(skb)->nr_frags = gl->nfrags; 2182 for (i = 1; i < gl->nfrags; i++) 2183 __skb_fill_page_desc(skb, i, gl->frags[i].page, 2184 gl->frags[i].offset, 2185 gl->frags[i].size); 2186 2187 /* get a reference to the last page, we don't own it */ 2188 get_page(gl->frags[gl->nfrags - 1].page); 2189 } 2190 2191 /** 2192 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 2193 * @gl: the gather list 2194 * @skb_len: size of sk_buff main body if it carries fragments 2195 * @pull_len: amount of data to move to the sk_buff's main body 2196 * 2197 * Builds an sk_buff from the given packet gather list. Returns the 2198 * sk_buff or %NULL if sk_buff allocation failed. 2199 */ 2200 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 2201 unsigned int skb_len, unsigned int pull_len) 2202 { 2203 struct sk_buff *skb; 2204 2205 /* 2206 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 2207 * size, which is expected since buffers are at least PAGE_SIZEd. 2208 * In this case packets up to RX_COPY_THRES have only one fragment. 2209 */ 2210 if (gl->tot_len <= RX_COPY_THRES) { 2211 skb = dev_alloc_skb(gl->tot_len); 2212 if (unlikely(!skb)) 2213 goto out; 2214 __skb_put(skb, gl->tot_len); 2215 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 2216 } else { 2217 skb = dev_alloc_skb(skb_len); 2218 if (unlikely(!skb)) 2219 goto out; 2220 __skb_put(skb, pull_len); 2221 skb_copy_to_linear_data(skb, gl->va, pull_len); 2222 2223 copy_frags(skb, gl, pull_len); 2224 skb->len = gl->tot_len; 2225 skb->data_len = skb->len - pull_len; 2226 skb->truesize += skb->data_len; 2227 } 2228 out: return skb; 2229 } 2230 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 2231 2232 /** 2233 * t4_pktgl_free - free a packet gather list 2234 * @gl: the gather list 2235 * 2236 * Releases the pages of a packet gather list. We do not own the last 2237 * page on the list and do not free it. 2238 */ 2239 static void t4_pktgl_free(const struct pkt_gl *gl) 2240 { 2241 int n; 2242 const struct page_frag *p; 2243 2244 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 2245 put_page(p->page); 2246 } 2247 2248 /* 2249 * Process an MPS trace packet. Give it an unused protocol number so it won't 2250 * be delivered to anyone and send it to the stack for capture. 2251 */ 2252 static noinline int handle_trace_pkt(struct adapter *adap, 2253 const struct pkt_gl *gl) 2254 { 2255 struct sk_buff *skb; 2256 2257 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 2258 if (unlikely(!skb)) { 2259 t4_pktgl_free(gl); 2260 return 0; 2261 } 2262 2263 if (is_t4(adap->params.chip)) 2264 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 2265 else 2266 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 2267 2268 skb_reset_mac_header(skb); 2269 skb->protocol = htons(0xffff); 2270 skb->dev = adap->port[0]; 2271 netif_receive_skb(skb); 2272 return 0; 2273 } 2274 2275 /** 2276 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 2277 * @adap: the adapter 2278 * @hwtstamps: time stamp structure to update 2279 * @sgetstamp: 60bit iqe timestamp 2280 * 2281 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 2282 * which is in Core Clock ticks into ktime_t and assign it 2283 **/ 2284 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 2285 struct skb_shared_hwtstamps *hwtstamps, 2286 u64 sgetstamp) 2287 { 2288 u64 ns; 2289 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 2290 2291 ns = div_u64(tmp, adap->params.vpd.cclk); 2292 2293 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2294 hwtstamps->hwtstamp = ns_to_ktime(ns); 2295 } 2296 2297 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 2298 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 2299 { 2300 struct adapter *adapter = rxq->rspq.adap; 2301 struct sge *s = &adapter->sge; 2302 struct port_info *pi; 2303 int ret; 2304 struct sk_buff *skb; 2305 2306 skb = napi_get_frags(&rxq->rspq.napi); 2307 if (unlikely(!skb)) { 2308 t4_pktgl_free(gl); 2309 rxq->stats.rx_drops++; 2310 return; 2311 } 2312 2313 copy_frags(skb, gl, s->pktshift); 2314 if (tnl_hdr_len) 2315 skb->csum_level = 1; 2316 skb->len = gl->tot_len - s->pktshift; 2317 skb->data_len = skb->len; 2318 skb->truesize += skb->data_len; 2319 skb->ip_summed = CHECKSUM_UNNECESSARY; 2320 skb_record_rx_queue(skb, rxq->rspq.idx); 2321 pi = netdev_priv(skb->dev); 2322 if (pi->rxtstamp) 2323 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 2324 gl->sgetstamp); 2325 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 2326 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 2327 PKT_HASH_TYPE_L3); 2328 2329 if (unlikely(pkt->vlan_ex)) { 2330 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 2331 rxq->stats.vlan_ex++; 2332 } 2333 ret = napi_gro_frags(&rxq->rspq.napi); 2334 if (ret == GRO_HELD) 2335 rxq->stats.lro_pkts++; 2336 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 2337 rxq->stats.lro_merged++; 2338 rxq->stats.pkts++; 2339 rxq->stats.rx_cso++; 2340 } 2341 2342 enum { 2343 RX_NON_PTP_PKT = 0, 2344 RX_PTP_PKT_SUC = 1, 2345 RX_PTP_PKT_ERR = 2 2346 }; 2347 2348 /** 2349 * t4_systim_to_hwstamp - read hardware time stamp 2350 * @adap: the adapter 2351 * @skb: the packet 2352 * 2353 * Read Time Stamp from MPS packet and insert in skb which 2354 * is forwarded to PTP application 2355 */ 2356 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 2357 struct sk_buff *skb) 2358 { 2359 struct skb_shared_hwtstamps *hwtstamps; 2360 struct cpl_rx_mps_pkt *cpl = NULL; 2361 unsigned char *data; 2362 int offset; 2363 2364 cpl = (struct cpl_rx_mps_pkt *)skb->data; 2365 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 2366 X_CPL_RX_MPS_PKT_TYPE_PTP)) 2367 return RX_PTP_PKT_ERR; 2368 2369 data = skb->data + sizeof(*cpl); 2370 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 2371 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 2372 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 2373 return RX_PTP_PKT_ERR; 2374 2375 hwtstamps = skb_hwtstamps(skb); 2376 memset(hwtstamps, 0, sizeof(*hwtstamps)); 2377 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data))); 2378 2379 return RX_PTP_PKT_SUC; 2380 } 2381 2382 /** 2383 * t4_rx_hststamp - Recv PTP Event Message 2384 * @adap: the adapter 2385 * @rsp: the response queue descriptor holding the RX_PKT message 2386 * @skb: the packet 2387 * 2388 * PTP enabled and MPS packet, read HW timestamp 2389 */ 2390 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 2391 struct sge_eth_rxq *rxq, struct sk_buff *skb) 2392 { 2393 int ret; 2394 2395 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 2396 !is_t4(adapter->params.chip))) { 2397 ret = t4_systim_to_hwstamp(adapter, skb); 2398 if (ret == RX_PTP_PKT_ERR) { 2399 kfree_skb(skb); 2400 rxq->stats.rx_drops++; 2401 } 2402 return ret; 2403 } 2404 return RX_NON_PTP_PKT; 2405 } 2406 2407 /** 2408 * t4_tx_hststamp - Loopback PTP Transmit Event Message 2409 * @adap: the adapter 2410 * @skb: the packet 2411 * @dev: the ingress net device 2412 * 2413 * Read hardware timestamp for the loopback PTP Tx event message 2414 */ 2415 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 2416 struct net_device *dev) 2417 { 2418 struct port_info *pi = netdev_priv(dev); 2419 2420 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 2421 cxgb4_ptp_read_hwstamp(adapter, pi); 2422 kfree_skb(skb); 2423 return 0; 2424 } 2425 return 1; 2426 } 2427 2428 /** 2429 * t4_ethrx_handler - process an ingress ethernet packet 2430 * @q: the response queue that received the packet 2431 * @rsp: the response queue descriptor holding the RX_PKT message 2432 * @si: the gather list of packet fragments 2433 * 2434 * Process an ingress ethernet packet and deliver it to the stack. 2435 */ 2436 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 2437 const struct pkt_gl *si) 2438 { 2439 bool csum_ok; 2440 struct sk_buff *skb; 2441 const struct cpl_rx_pkt *pkt; 2442 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 2443 struct adapter *adapter = q->adap; 2444 struct sge *s = &q->adap->sge; 2445 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 2446 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 2447 u16 err_vec, tnl_hdr_len = 0; 2448 struct port_info *pi; 2449 int ret = 0; 2450 2451 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 2452 return handle_trace_pkt(q->adap, si); 2453 2454 pkt = (const struct cpl_rx_pkt *)rsp; 2455 /* Compressed error vector is enabled for T6 only */ 2456 if (q->adap->params.tp.rx_pkt_encap) { 2457 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 2458 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 2459 } else { 2460 err_vec = be16_to_cpu(pkt->err_vec); 2461 } 2462 2463 csum_ok = pkt->csum_calc && !err_vec && 2464 (q->netdev->features & NETIF_F_RXCSUM); 2465 if (((pkt->l2info & htonl(RXF_TCP_F)) || 2466 tnl_hdr_len) && 2467 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 2468 do_gro(rxq, si, pkt, tnl_hdr_len); 2469 return 0; 2470 } 2471 2472 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 2473 if (unlikely(!skb)) { 2474 t4_pktgl_free(si); 2475 rxq->stats.rx_drops++; 2476 return 0; 2477 } 2478 pi = netdev_priv(q->netdev); 2479 2480 /* Handle PTP Event Rx packet */ 2481 if (unlikely(pi->ptp_enable)) { 2482 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 2483 if (ret == RX_PTP_PKT_ERR) 2484 return 0; 2485 } 2486 if (likely(!ret)) 2487 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 2488 2489 /* Handle the PTP Event Tx Loopback packet */ 2490 if (unlikely(pi->ptp_enable && !ret && 2491 (pkt->l2info & htonl(RXF_UDP_F)) && 2492 cxgb4_ptp_is_ptp_rx(skb))) { 2493 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 2494 return 0; 2495 } 2496 2497 skb->protocol = eth_type_trans(skb, q->netdev); 2498 skb_record_rx_queue(skb, q->idx); 2499 if (skb->dev->features & NETIF_F_RXHASH) 2500 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 2501 PKT_HASH_TYPE_L3); 2502 2503 rxq->stats.pkts++; 2504 2505 if (pi->rxtstamp) 2506 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 2507 si->sgetstamp); 2508 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 2509 if (!pkt->ip_frag) { 2510 skb->ip_summed = CHECKSUM_UNNECESSARY; 2511 rxq->stats.rx_cso++; 2512 } else if (pkt->l2info & htonl(RXF_IP_F)) { 2513 __sum16 c = (__force __sum16)pkt->csum; 2514 skb->csum = csum_unfold(c); 2515 2516 if (tnl_hdr_len) { 2517 skb->ip_summed = CHECKSUM_UNNECESSARY; 2518 skb->csum_level = 1; 2519 } else { 2520 skb->ip_summed = CHECKSUM_COMPLETE; 2521 } 2522 rxq->stats.rx_cso++; 2523 } 2524 } else { 2525 skb_checksum_none_assert(skb); 2526 #ifdef CONFIG_CHELSIO_T4_FCOE 2527 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 2528 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 2529 2530 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 2531 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 2532 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 2533 if (q->adap->params.tp.rx_pkt_encap) 2534 csum_ok = err_vec & 2535 T6_COMPR_RXERR_SUM_F; 2536 else 2537 csum_ok = err_vec & RXERR_CSUM_F; 2538 if (!csum_ok) 2539 skb->ip_summed = CHECKSUM_UNNECESSARY; 2540 } 2541 } 2542 2543 #undef CPL_RX_PKT_FLAGS 2544 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2545 } 2546 2547 if (unlikely(pkt->vlan_ex)) { 2548 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 2549 rxq->stats.vlan_ex++; 2550 } 2551 skb_mark_napi_id(skb, &q->napi); 2552 netif_receive_skb(skb); 2553 return 0; 2554 } 2555 2556 /** 2557 * restore_rx_bufs - put back a packet's Rx buffers 2558 * @si: the packet gather list 2559 * @q: the SGE free list 2560 * @frags: number of FL buffers to restore 2561 * 2562 * Puts back on an FL the Rx buffers associated with @si. The buffers 2563 * have already been unmapped and are left unmapped, we mark them so to 2564 * prevent further unmapping attempts. 2565 * 2566 * This function undoes a series of @unmap_rx_buf calls when we find out 2567 * that the current packet can't be processed right away afterall and we 2568 * need to come back to it later. This is a very rare event and there's 2569 * no effort to make this particularly efficient. 2570 */ 2571 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 2572 int frags) 2573 { 2574 struct rx_sw_desc *d; 2575 2576 while (frags--) { 2577 if (q->cidx == 0) 2578 q->cidx = q->size - 1; 2579 else 2580 q->cidx--; 2581 d = &q->sdesc[q->cidx]; 2582 d->page = si->frags[frags].page; 2583 d->dma_addr |= RX_UNMAPPED_BUF; 2584 q->avail++; 2585 } 2586 } 2587 2588 /** 2589 * is_new_response - check if a response is newly written 2590 * @r: the response descriptor 2591 * @q: the response queue 2592 * 2593 * Returns true if a response descriptor contains a yet unprocessed 2594 * response. 2595 */ 2596 static inline bool is_new_response(const struct rsp_ctrl *r, 2597 const struct sge_rspq *q) 2598 { 2599 return (r->type_gen >> RSPD_GEN_S) == q->gen; 2600 } 2601 2602 /** 2603 * rspq_next - advance to the next entry in a response queue 2604 * @q: the queue 2605 * 2606 * Updates the state of a response queue to advance it to the next entry. 2607 */ 2608 static inline void rspq_next(struct sge_rspq *q) 2609 { 2610 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 2611 if (unlikely(++q->cidx == q->size)) { 2612 q->cidx = 0; 2613 q->gen ^= 1; 2614 q->cur_desc = q->desc; 2615 } 2616 } 2617 2618 /** 2619 * process_responses - process responses from an SGE response queue 2620 * @q: the ingress queue to process 2621 * @budget: how many responses can be processed in this round 2622 * 2623 * Process responses from an SGE response queue up to the supplied budget. 2624 * Responses include received packets as well as control messages from FW 2625 * or HW. 2626 * 2627 * Additionally choose the interrupt holdoff time for the next interrupt 2628 * on this queue. If the system is under memory shortage use a fairly 2629 * long delay to help recovery. 2630 */ 2631 static int process_responses(struct sge_rspq *q, int budget) 2632 { 2633 int ret, rsp_type; 2634 int budget_left = budget; 2635 const struct rsp_ctrl *rc; 2636 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 2637 struct adapter *adapter = q->adap; 2638 struct sge *s = &adapter->sge; 2639 2640 while (likely(budget_left)) { 2641 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2642 if (!is_new_response(rc, q)) { 2643 if (q->flush_handler) 2644 q->flush_handler(q); 2645 break; 2646 } 2647 2648 dma_rmb(); 2649 rsp_type = RSPD_TYPE_G(rc->type_gen); 2650 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 2651 struct page_frag *fp; 2652 struct pkt_gl si; 2653 const struct rx_sw_desc *rsd; 2654 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 2655 2656 if (len & RSPD_NEWBUF_F) { 2657 if (likely(q->offset > 0)) { 2658 free_rx_bufs(q->adap, &rxq->fl, 1); 2659 q->offset = 0; 2660 } 2661 len = RSPD_LEN_G(len); 2662 } 2663 si.tot_len = len; 2664 2665 /* gather packet fragments */ 2666 for (frags = 0, fp = si.frags; ; frags++, fp++) { 2667 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 2668 bufsz = get_buf_size(adapter, rsd); 2669 fp->page = rsd->page; 2670 fp->offset = q->offset; 2671 fp->size = min(bufsz, len); 2672 len -= fp->size; 2673 if (!len) 2674 break; 2675 unmap_rx_buf(q->adap, &rxq->fl); 2676 } 2677 2678 si.sgetstamp = SGE_TIMESTAMP_G( 2679 be64_to_cpu(rc->last_flit)); 2680 /* 2681 * Last buffer remains mapped so explicitly make it 2682 * coherent for CPU access. 2683 */ 2684 dma_sync_single_for_cpu(q->adap->pdev_dev, 2685 get_buf_addr(rsd), 2686 fp->size, DMA_FROM_DEVICE); 2687 2688 si.va = page_address(si.frags[0].page) + 2689 si.frags[0].offset; 2690 prefetch(si.va); 2691 2692 si.nfrags = frags + 1; 2693 ret = q->handler(q, q->cur_desc, &si); 2694 if (likely(ret == 0)) 2695 q->offset += ALIGN(fp->size, s->fl_align); 2696 else 2697 restore_rx_bufs(&si, &rxq->fl, frags); 2698 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 2699 ret = q->handler(q, q->cur_desc, NULL); 2700 } else { 2701 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 2702 } 2703 2704 if (unlikely(ret)) { 2705 /* couldn't process descriptor, back off for recovery */ 2706 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 2707 break; 2708 } 2709 2710 rspq_next(q); 2711 budget_left--; 2712 } 2713 2714 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 2715 __refill_fl(q->adap, &rxq->fl); 2716 return budget - budget_left; 2717 } 2718 2719 /** 2720 * napi_rx_handler - the NAPI handler for Rx processing 2721 * @napi: the napi instance 2722 * @budget: how many packets we can process in this round 2723 * 2724 * Handler for new data events when using NAPI. This does not need any 2725 * locking or protection from interrupts as data interrupts are off at 2726 * this point and other adapter interrupts do not interfere (the latter 2727 * in not a concern at all with MSI-X as non-data interrupts then have 2728 * a separate handler). 2729 */ 2730 static int napi_rx_handler(struct napi_struct *napi, int budget) 2731 { 2732 unsigned int params; 2733 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 2734 int work_done; 2735 u32 val; 2736 2737 work_done = process_responses(q, budget); 2738 if (likely(work_done < budget)) { 2739 int timer_index; 2740 2741 napi_complete_done(napi, work_done); 2742 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 2743 2744 if (q->adaptive_rx) { 2745 if (work_done > max(timer_pkt_quota[timer_index], 2746 MIN_NAPI_WORK)) 2747 timer_index = (timer_index + 1); 2748 else 2749 timer_index = timer_index - 1; 2750 2751 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 2752 q->next_intr_params = 2753 QINTR_TIMER_IDX_V(timer_index) | 2754 QINTR_CNT_EN_V(0); 2755 params = q->next_intr_params; 2756 } else { 2757 params = q->next_intr_params; 2758 q->next_intr_params = q->intr_params; 2759 } 2760 } else 2761 params = QINTR_TIMER_IDX_V(7); 2762 2763 val = CIDXINC_V(work_done) | SEINTARM_V(params); 2764 2765 /* If we don't have access to the new User GTS (T5+), use the old 2766 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2767 */ 2768 if (unlikely(q->bar2_addr == NULL)) { 2769 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 2770 val | INGRESSQID_V((u32)q->cntxt_id)); 2771 } else { 2772 writel(val | INGRESSQID_V(q->bar2_qid), 2773 q->bar2_addr + SGE_UDB_GTS); 2774 wmb(); 2775 } 2776 return work_done; 2777 } 2778 2779 /* 2780 * The MSI-X interrupt handler for an SGE response queue. 2781 */ 2782 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 2783 { 2784 struct sge_rspq *q = cookie; 2785 2786 napi_schedule(&q->napi); 2787 return IRQ_HANDLED; 2788 } 2789 2790 /* 2791 * Process the indirect interrupt entries in the interrupt queue and kick off 2792 * NAPI for each queue that has generated an entry. 2793 */ 2794 static unsigned int process_intrq(struct adapter *adap) 2795 { 2796 unsigned int credits; 2797 const struct rsp_ctrl *rc; 2798 struct sge_rspq *q = &adap->sge.intrq; 2799 u32 val; 2800 2801 spin_lock(&adap->sge.intrq_lock); 2802 for (credits = 0; ; credits++) { 2803 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2804 if (!is_new_response(rc, q)) 2805 break; 2806 2807 dma_rmb(); 2808 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 2809 unsigned int qid = ntohl(rc->pldbuflen_qid); 2810 2811 qid -= adap->sge.ingr_start; 2812 napi_schedule(&adap->sge.ingr_map[qid]->napi); 2813 } 2814 2815 rspq_next(q); 2816 } 2817 2818 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 2819 2820 /* If we don't have access to the new User GTS (T5+), use the old 2821 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2822 */ 2823 if (unlikely(q->bar2_addr == NULL)) { 2824 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 2825 val | INGRESSQID_V(q->cntxt_id)); 2826 } else { 2827 writel(val | INGRESSQID_V(q->bar2_qid), 2828 q->bar2_addr + SGE_UDB_GTS); 2829 wmb(); 2830 } 2831 spin_unlock(&adap->sge.intrq_lock); 2832 return credits; 2833 } 2834 2835 /* 2836 * The MSI interrupt handler, which handles data events from SGE response queues 2837 * as well as error and other async events as they all use the same MSI vector. 2838 */ 2839 static irqreturn_t t4_intr_msi(int irq, void *cookie) 2840 { 2841 struct adapter *adap = cookie; 2842 2843 if (adap->flags & MASTER_PF) 2844 t4_slow_intr_handler(adap); 2845 process_intrq(adap); 2846 return IRQ_HANDLED; 2847 } 2848 2849 /* 2850 * Interrupt handler for legacy INTx interrupts. 2851 * Handles data events from SGE response queues as well as error and other 2852 * async events as they all use the same interrupt line. 2853 */ 2854 static irqreturn_t t4_intr_intx(int irq, void *cookie) 2855 { 2856 struct adapter *adap = cookie; 2857 2858 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 2859 if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) | 2860 process_intrq(adap)) 2861 return IRQ_HANDLED; 2862 return IRQ_NONE; /* probably shared interrupt */ 2863 } 2864 2865 /** 2866 * t4_intr_handler - select the top-level interrupt handler 2867 * @adap: the adapter 2868 * 2869 * Selects the top-level interrupt handler based on the type of interrupts 2870 * (MSI-X, MSI, or INTx). 2871 */ 2872 irq_handler_t t4_intr_handler(struct adapter *adap) 2873 { 2874 if (adap->flags & USING_MSIX) 2875 return t4_sge_intr_msix; 2876 if (adap->flags & USING_MSI) 2877 return t4_intr_msi; 2878 return t4_intr_intx; 2879 } 2880 2881 static void sge_rx_timer_cb(struct timer_list *t) 2882 { 2883 unsigned long m; 2884 unsigned int i; 2885 struct adapter *adap = from_timer(adap, t, sge.rx_timer); 2886 struct sge *s = &adap->sge; 2887 2888 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 2889 for (m = s->starving_fl[i]; m; m &= m - 1) { 2890 struct sge_eth_rxq *rxq; 2891 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 2892 struct sge_fl *fl = s->egr_map[id]; 2893 2894 clear_bit(id, s->starving_fl); 2895 smp_mb__after_atomic(); 2896 2897 if (fl_starving(adap, fl)) { 2898 rxq = container_of(fl, struct sge_eth_rxq, fl); 2899 if (napi_reschedule(&rxq->rspq.napi)) 2900 fl->starving++; 2901 else 2902 set_bit(id, s->starving_fl); 2903 } 2904 } 2905 /* The remainder of the SGE RX Timer Callback routine is dedicated to 2906 * global Master PF activities like checking for chip ingress stalls, 2907 * etc. 2908 */ 2909 if (!(adap->flags & MASTER_PF)) 2910 goto done; 2911 2912 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 2913 2914 done: 2915 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 2916 } 2917 2918 static void sge_tx_timer_cb(struct timer_list *t) 2919 { 2920 unsigned long m; 2921 unsigned int i, budget; 2922 struct adapter *adap = from_timer(adap, t, sge.tx_timer); 2923 struct sge *s = &adap->sge; 2924 2925 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 2926 for (m = s->txq_maperr[i]; m; m &= m - 1) { 2927 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 2928 struct sge_uld_txq *txq = s->egr_map[id]; 2929 2930 clear_bit(id, s->txq_maperr); 2931 tasklet_schedule(&txq->qresume_tsk); 2932 } 2933 2934 if (!is_t4(adap->params.chip)) { 2935 struct sge_eth_txq *q = &s->ptptxq; 2936 int avail; 2937 2938 spin_lock(&adap->ptp_lock); 2939 avail = reclaimable(&q->q); 2940 2941 if (avail) { 2942 free_tx_desc(adap, &q->q, avail, false); 2943 q->q.in_use -= avail; 2944 } 2945 spin_unlock(&adap->ptp_lock); 2946 } 2947 2948 budget = MAX_TIMER_TX_RECLAIM; 2949 i = s->ethtxq_rover; 2950 do { 2951 struct sge_eth_txq *q = &s->ethtxq[i]; 2952 2953 if (q->q.in_use && 2954 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && 2955 __netif_tx_trylock(q->txq)) { 2956 int avail = reclaimable(&q->q); 2957 2958 if (avail) { 2959 if (avail > budget) 2960 avail = budget; 2961 2962 free_tx_desc(adap, &q->q, avail, true); 2963 q->q.in_use -= avail; 2964 budget -= avail; 2965 } 2966 __netif_tx_unlock(q->txq); 2967 } 2968 2969 if (++i >= s->ethqsets) 2970 i = 0; 2971 } while (budget && i != s->ethtxq_rover); 2972 s->ethtxq_rover = i; 2973 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2974 } 2975 2976 /** 2977 * bar2_address - return the BAR2 address for an SGE Queue's Registers 2978 * @adapter: the adapter 2979 * @qid: the SGE Queue ID 2980 * @qtype: the SGE Queue Type (Egress or Ingress) 2981 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 2982 * 2983 * Returns the BAR2 address for the SGE Queue Registers associated with 2984 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 2985 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 2986 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 2987 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 2988 */ 2989 static void __iomem *bar2_address(struct adapter *adapter, 2990 unsigned int qid, 2991 enum t4_bar2_qtype qtype, 2992 unsigned int *pbar2_qid) 2993 { 2994 u64 bar2_qoffset; 2995 int ret; 2996 2997 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 2998 &bar2_qoffset, pbar2_qid); 2999 if (ret) 3000 return NULL; 3001 3002 return adapter->bar2 + bar2_qoffset; 3003 } 3004 3005 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 3006 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 3007 */ 3008 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 3009 struct net_device *dev, int intr_idx, 3010 struct sge_fl *fl, rspq_handler_t hnd, 3011 rspq_flush_handler_t flush_hnd, int cong) 3012 { 3013 int ret, flsz = 0; 3014 struct fw_iq_cmd c; 3015 struct sge *s = &adap->sge; 3016 struct port_info *pi = netdev_priv(dev); 3017 int relaxed = !(adap->flags & ROOT_NO_RELAXED_ORDERING); 3018 3019 /* Size needs to be multiple of 16, including status entry. */ 3020 iq->size = roundup(iq->size, 16); 3021 3022 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 3023 &iq->phys_addr, NULL, 0, 3024 dev_to_node(adap->pdev_dev)); 3025 if (!iq->desc) 3026 return -ENOMEM; 3027 3028 memset(&c, 0, sizeof(c)); 3029 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 3030 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3031 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 3032 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 3033 FW_LEN16(c)); 3034 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 3035 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 3036 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 3037 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 3038 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 3039 -intr_idx - 1)); 3040 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 3041 FW_IQ_CMD_IQGTSMODE_F | 3042 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 3043 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 3044 c.iqsize = htons(iq->size); 3045 c.iqaddr = cpu_to_be64(iq->phys_addr); 3046 if (cong >= 0) 3047 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F); 3048 3049 if (fl) { 3050 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 3051 3052 /* Allocate the ring for the hardware free list (with space 3053 * for its status page) along with the associated software 3054 * descriptor ring. The free list size needs to be a multiple 3055 * of the Egress Queue Unit and at least 2 Egress Units larger 3056 * than the SGE's Egress Congrestion Threshold 3057 * (fl_starve_thres - 1). 3058 */ 3059 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 3060 fl->size = s->fl_starve_thres - 1 + 2 * 8; 3061 fl->size = roundup(fl->size, 8); 3062 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 3063 sizeof(struct rx_sw_desc), &fl->addr, 3064 &fl->sdesc, s->stat_len, 3065 dev_to_node(adap->pdev_dev)); 3066 if (!fl->desc) 3067 goto fl_nomem; 3068 3069 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 3070 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 3071 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 3072 FW_IQ_CMD_FL0DATARO_V(relaxed) | 3073 FW_IQ_CMD_FL0PADEN_F); 3074 if (cong >= 0) 3075 c.iqns_to_fl0congen |= 3076 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 3077 FW_IQ_CMD_FL0CONGCIF_F | 3078 FW_IQ_CMD_FL0CONGEN_F); 3079 /* In T6, for egress queue type FL there is internal overhead 3080 * of 16B for header going into FLM module. Hence the maximum 3081 * allowed burst size is 448 bytes. For T4/T5, the hardware 3082 * doesn't coalesce fetch requests if more than 64 bytes of 3083 * Free List pointers are provided, so we use a 128-byte Fetch 3084 * Burst Minimum there (T6 implements coalescing so we can use 3085 * the smaller 64-byte value there). 3086 */ 3087 c.fl0dcaen_to_fl0cidxfthresh = 3088 htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ? 3089 FETCHBURSTMIN_128B_X : 3090 FETCHBURSTMIN_64B_X) | 3091 FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ? 3092 FETCHBURSTMAX_512B_X : 3093 FETCHBURSTMAX_256B_X)); 3094 c.fl0size = htons(flsz); 3095 c.fl0addr = cpu_to_be64(fl->addr); 3096 } 3097 3098 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3099 if (ret) 3100 goto err; 3101 3102 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 3103 iq->cur_desc = iq->desc; 3104 iq->cidx = 0; 3105 iq->gen = 1; 3106 iq->next_intr_params = iq->intr_params; 3107 iq->cntxt_id = ntohs(c.iqid); 3108 iq->abs_id = ntohs(c.physiqid); 3109 iq->bar2_addr = bar2_address(adap, 3110 iq->cntxt_id, 3111 T4_BAR2_QTYPE_INGRESS, 3112 &iq->bar2_qid); 3113 iq->size--; /* subtract status entry */ 3114 iq->netdev = dev; 3115 iq->handler = hnd; 3116 iq->flush_handler = flush_hnd; 3117 3118 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 3119 skb_queue_head_init(&iq->lro_mgr.lroq); 3120 3121 /* set offset to -1 to distinguish ingress queues without FL */ 3122 iq->offset = fl ? 0 : -1; 3123 3124 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 3125 3126 if (fl) { 3127 fl->cntxt_id = ntohs(c.fl0id); 3128 fl->avail = fl->pend_cred = 0; 3129 fl->pidx = fl->cidx = 0; 3130 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 3131 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 3132 3133 /* Note, we must initialize the BAR2 Free List User Doorbell 3134 * information before refilling the Free List! 3135 */ 3136 fl->bar2_addr = bar2_address(adap, 3137 fl->cntxt_id, 3138 T4_BAR2_QTYPE_EGRESS, 3139 &fl->bar2_qid); 3140 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 3141 } 3142 3143 /* For T5 and later we attempt to set up the Congestion Manager values 3144 * of the new RX Ethernet Queue. This should really be handled by 3145 * firmware because it's more complex than any host driver wants to 3146 * get involved with and it's different per chip and this is almost 3147 * certainly wrong. Firmware would be wrong as well, but it would be 3148 * a lot easier to fix in one place ... For now we do something very 3149 * simple (and hopefully less wrong). 3150 */ 3151 if (!is_t4(adap->params.chip) && cong >= 0) { 3152 u32 param, val, ch_map = 0; 3153 int i; 3154 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 3155 3156 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 3157 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 3158 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 3159 if (cong == 0) { 3160 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 3161 } else { 3162 val = 3163 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 3164 for (i = 0; i < 4; i++) { 3165 if (cong & (1 << i)) 3166 ch_map |= 1 << (i << cng_ch_bits_log); 3167 } 3168 val |= CONMCTXT_CNGCHMAP_V(ch_map); 3169 } 3170 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 3171 ¶m, &val); 3172 if (ret) 3173 dev_warn(adap->pdev_dev, "Failed to set Congestion" 3174 " Manager Context for Ingress Queue %d: %d\n", 3175 iq->cntxt_id, -ret); 3176 } 3177 3178 return 0; 3179 3180 fl_nomem: 3181 ret = -ENOMEM; 3182 err: 3183 if (iq->desc) { 3184 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 3185 iq->desc, iq->phys_addr); 3186 iq->desc = NULL; 3187 } 3188 if (fl && fl->desc) { 3189 kfree(fl->sdesc); 3190 fl->sdesc = NULL; 3191 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 3192 fl->desc, fl->addr); 3193 fl->desc = NULL; 3194 } 3195 return ret; 3196 } 3197 3198 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 3199 { 3200 q->cntxt_id = id; 3201 q->bar2_addr = bar2_address(adap, 3202 q->cntxt_id, 3203 T4_BAR2_QTYPE_EGRESS, 3204 &q->bar2_qid); 3205 q->in_use = 0; 3206 q->cidx = q->pidx = 0; 3207 q->stops = q->restarts = 0; 3208 q->stat = (void *)&q->desc[q->size]; 3209 spin_lock_init(&q->db_lock); 3210 adap->sge.egr_map[id - adap->sge.egr_start] = q; 3211 } 3212 3213 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 3214 struct net_device *dev, struct netdev_queue *netdevq, 3215 unsigned int iqid) 3216 { 3217 int ret, nentries; 3218 struct fw_eq_eth_cmd c; 3219 struct sge *s = &adap->sge; 3220 struct port_info *pi = netdev_priv(dev); 3221 3222 /* Add status entries */ 3223 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3224 3225 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 3226 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 3227 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 3228 netdev_queue_numa_node_read(netdevq)); 3229 if (!txq->q.desc) 3230 return -ENOMEM; 3231 3232 memset(&c, 0, sizeof(c)); 3233 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 3234 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3235 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 3236 FW_EQ_ETH_CMD_VFN_V(0)); 3237 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 3238 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 3239 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 3240 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 3241 c.fetchszm_to_iqid = 3242 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3243 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 3244 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 3245 c.dcaen_to_eqsize = 3246 htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3247 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3248 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3249 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 3250 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3251 3252 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3253 if (ret) { 3254 kfree(txq->q.sdesc); 3255 txq->q.sdesc = NULL; 3256 dma_free_coherent(adap->pdev_dev, 3257 nentries * sizeof(struct tx_desc), 3258 txq->q.desc, txq->q.phys_addr); 3259 txq->q.desc = NULL; 3260 return ret; 3261 } 3262 3263 txq->q.q_type = CXGB4_TXQ_ETH; 3264 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 3265 txq->txq = netdevq; 3266 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 3267 txq->mapping_err = 0; 3268 return 0; 3269 } 3270 3271 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 3272 struct net_device *dev, unsigned int iqid, 3273 unsigned int cmplqid) 3274 { 3275 int ret, nentries; 3276 struct fw_eq_ctrl_cmd c; 3277 struct sge *s = &adap->sge; 3278 struct port_info *pi = netdev_priv(dev); 3279 3280 /* Add status entries */ 3281 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3282 3283 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 3284 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 3285 NULL, 0, dev_to_node(adap->pdev_dev)); 3286 if (!txq->q.desc) 3287 return -ENOMEM; 3288 3289 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 3290 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3291 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 3292 FW_EQ_CTRL_CMD_VFN_V(0)); 3293 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 3294 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 3295 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 3296 c.physeqid_pkd = htonl(0); 3297 c.fetchszm_to_iqid = 3298 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3299 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 3300 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 3301 c.dcaen_to_eqsize = 3302 htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3303 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3304 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3305 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 3306 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3307 3308 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3309 if (ret) { 3310 dma_free_coherent(adap->pdev_dev, 3311 nentries * sizeof(struct tx_desc), 3312 txq->q.desc, txq->q.phys_addr); 3313 txq->q.desc = NULL; 3314 return ret; 3315 } 3316 3317 txq->q.q_type = CXGB4_TXQ_CTRL; 3318 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 3319 txq->adap = adap; 3320 skb_queue_head_init(&txq->sendq); 3321 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 3322 txq->full = 0; 3323 return 0; 3324 } 3325 3326 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 3327 unsigned int cmplqid) 3328 { 3329 u32 param, val; 3330 3331 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 3332 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 3333 FW_PARAMS_PARAM_YZ_V(eqid)); 3334 val = cmplqid; 3335 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 3336 } 3337 3338 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 3339 struct net_device *dev, unsigned int iqid, 3340 unsigned int uld_type) 3341 { 3342 int ret, nentries; 3343 struct fw_eq_ofld_cmd c; 3344 struct sge *s = &adap->sge; 3345 struct port_info *pi = netdev_priv(dev); 3346 int cmd = FW_EQ_OFLD_CMD; 3347 3348 /* Add status entries */ 3349 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 3350 3351 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 3352 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 3353 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 3354 NUMA_NO_NODE); 3355 if (!txq->q.desc) 3356 return -ENOMEM; 3357 3358 memset(&c, 0, sizeof(c)); 3359 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 3360 cmd = FW_EQ_CTRL_CMD; 3361 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 3362 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 3363 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 3364 FW_EQ_OFLD_CMD_VFN_V(0)); 3365 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 3366 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 3367 c.fetchszm_to_iqid = 3368 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 3369 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 3370 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 3371 c.dcaen_to_eqsize = 3372 htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | 3373 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 3374 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 3375 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 3376 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 3377 3378 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 3379 if (ret) { 3380 kfree(txq->q.sdesc); 3381 txq->q.sdesc = NULL; 3382 dma_free_coherent(adap->pdev_dev, 3383 nentries * sizeof(struct tx_desc), 3384 txq->q.desc, txq->q.phys_addr); 3385 txq->q.desc = NULL; 3386 return ret; 3387 } 3388 3389 txq->q.q_type = CXGB4_TXQ_ULD; 3390 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 3391 txq->adap = adap; 3392 skb_queue_head_init(&txq->sendq); 3393 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 3394 txq->full = 0; 3395 txq->mapping_err = 0; 3396 return 0; 3397 } 3398 3399 void free_txq(struct adapter *adap, struct sge_txq *q) 3400 { 3401 struct sge *s = &adap->sge; 3402 3403 dma_free_coherent(adap->pdev_dev, 3404 q->size * sizeof(struct tx_desc) + s->stat_len, 3405 q->desc, q->phys_addr); 3406 q->cntxt_id = 0; 3407 q->sdesc = NULL; 3408 q->desc = NULL; 3409 } 3410 3411 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 3412 struct sge_fl *fl) 3413 { 3414 struct sge *s = &adap->sge; 3415 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 3416 3417 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 3418 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 3419 rq->cntxt_id, fl_id, 0xffff); 3420 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 3421 rq->desc, rq->phys_addr); 3422 netif_napi_del(&rq->napi); 3423 rq->netdev = NULL; 3424 rq->cntxt_id = rq->abs_id = 0; 3425 rq->desc = NULL; 3426 3427 if (fl) { 3428 free_rx_bufs(adap, fl, fl->avail); 3429 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 3430 fl->desc, fl->addr); 3431 kfree(fl->sdesc); 3432 fl->sdesc = NULL; 3433 fl->cntxt_id = 0; 3434 fl->desc = NULL; 3435 } 3436 } 3437 3438 /** 3439 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 3440 * @adap: the adapter 3441 * @n: number of queues 3442 * @q: pointer to first queue 3443 * 3444 * Release the resources of a consecutive block of offload Rx queues. 3445 */ 3446 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 3447 { 3448 for ( ; n; n--, q++) 3449 if (q->rspq.desc) 3450 free_rspq_fl(adap, &q->rspq, 3451 q->fl.size ? &q->fl : NULL); 3452 } 3453 3454 /** 3455 * t4_free_sge_resources - free SGE resources 3456 * @adap: the adapter 3457 * 3458 * Frees resources used by the SGE queue sets. 3459 */ 3460 void t4_free_sge_resources(struct adapter *adap) 3461 { 3462 int i; 3463 struct sge_eth_rxq *eq; 3464 struct sge_eth_txq *etq; 3465 3466 /* stop all Rx queues in order to start them draining */ 3467 for (i = 0; i < adap->sge.ethqsets; i++) { 3468 eq = &adap->sge.ethrxq[i]; 3469 if (eq->rspq.desc) 3470 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 3471 FW_IQ_TYPE_FL_INT_CAP, 3472 eq->rspq.cntxt_id, 3473 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 3474 0xffff); 3475 } 3476 3477 /* clean up Ethernet Tx/Rx queues */ 3478 for (i = 0; i < adap->sge.ethqsets; i++) { 3479 eq = &adap->sge.ethrxq[i]; 3480 if (eq->rspq.desc) 3481 free_rspq_fl(adap, &eq->rspq, 3482 eq->fl.size ? &eq->fl : NULL); 3483 3484 etq = &adap->sge.ethtxq[i]; 3485 if (etq->q.desc) { 3486 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 3487 etq->q.cntxt_id); 3488 __netif_tx_lock_bh(etq->txq); 3489 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 3490 __netif_tx_unlock_bh(etq->txq); 3491 kfree(etq->q.sdesc); 3492 free_txq(adap, &etq->q); 3493 } 3494 } 3495 3496 /* clean up control Tx queues */ 3497 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 3498 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 3499 3500 if (cq->q.desc) { 3501 tasklet_kill(&cq->qresume_tsk); 3502 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 3503 cq->q.cntxt_id); 3504 __skb_queue_purge(&cq->sendq); 3505 free_txq(adap, &cq->q); 3506 } 3507 } 3508 3509 if (adap->sge.fw_evtq.desc) 3510 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 3511 3512 if (adap->sge.intrq.desc) 3513 free_rspq_fl(adap, &adap->sge.intrq, NULL); 3514 3515 if (!is_t4(adap->params.chip)) { 3516 etq = &adap->sge.ptptxq; 3517 if (etq->q.desc) { 3518 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 3519 etq->q.cntxt_id); 3520 spin_lock_bh(&adap->ptp_lock); 3521 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 3522 spin_unlock_bh(&adap->ptp_lock); 3523 kfree(etq->q.sdesc); 3524 free_txq(adap, &etq->q); 3525 } 3526 } 3527 3528 /* clear the reverse egress queue map */ 3529 memset(adap->sge.egr_map, 0, 3530 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 3531 } 3532 3533 void t4_sge_start(struct adapter *adap) 3534 { 3535 adap->sge.ethtxq_rover = 0; 3536 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 3537 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 3538 } 3539 3540 /** 3541 * t4_sge_stop - disable SGE operation 3542 * @adap: the adapter 3543 * 3544 * Stop tasklets and timers associated with the DMA engine. Note that 3545 * this is effective only if measures have been taken to disable any HW 3546 * events that may restart them. 3547 */ 3548 void t4_sge_stop(struct adapter *adap) 3549 { 3550 int i; 3551 struct sge *s = &adap->sge; 3552 3553 if (in_interrupt()) /* actions below require waiting */ 3554 return; 3555 3556 if (s->rx_timer.function) 3557 del_timer_sync(&s->rx_timer); 3558 if (s->tx_timer.function) 3559 del_timer_sync(&s->tx_timer); 3560 3561 if (is_offload(adap)) { 3562 struct sge_uld_txq_info *txq_info; 3563 3564 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3565 if (txq_info) { 3566 struct sge_uld_txq *txq = txq_info->uldtxq; 3567 3568 for_each_ofldtxq(&adap->sge, i) { 3569 if (txq->q.desc) 3570 tasklet_kill(&txq->qresume_tsk); 3571 } 3572 } 3573 } 3574 3575 if (is_pci_uld(adap)) { 3576 struct sge_uld_txq_info *txq_info; 3577 3578 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 3579 if (txq_info) { 3580 struct sge_uld_txq *txq = txq_info->uldtxq; 3581 3582 for_each_ofldtxq(&adap->sge, i) { 3583 if (txq->q.desc) 3584 tasklet_kill(&txq->qresume_tsk); 3585 } 3586 } 3587 } 3588 3589 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 3590 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 3591 3592 if (cq->q.desc) 3593 tasklet_kill(&cq->qresume_tsk); 3594 } 3595 } 3596 3597 /** 3598 * t4_sge_init_soft - grab core SGE values needed by SGE code 3599 * @adap: the adapter 3600 * 3601 * We need to grab the SGE operating parameters that we need to have 3602 * in order to do our job and make sure we can live with them. 3603 */ 3604 3605 static int t4_sge_init_soft(struct adapter *adap) 3606 { 3607 struct sge *s = &adap->sge; 3608 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 3609 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 3610 u32 ingress_rx_threshold; 3611 3612 /* 3613 * Verify that CPL messages are going to the Ingress Queue for 3614 * process_responses() and that only packet data is going to the 3615 * Free Lists. 3616 */ 3617 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 3618 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 3619 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 3620 return -EINVAL; 3621 } 3622 3623 /* 3624 * Validate the Host Buffer Register Array indices that we want to 3625 * use ... 3626 * 3627 * XXX Note that we should really read through the Host Buffer Size 3628 * XXX register array and find the indices of the Buffer Sizes which 3629 * XXX meet our needs! 3630 */ 3631 #define READ_FL_BUF(x) \ 3632 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 3633 3634 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 3635 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 3636 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 3637 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 3638 3639 /* We only bother using the Large Page logic if the Large Page Buffer 3640 * is larger than our Page Size Buffer. 3641 */ 3642 if (fl_large_pg <= fl_small_pg) 3643 fl_large_pg = 0; 3644 3645 #undef READ_FL_BUF 3646 3647 /* The Page Size Buffer must be exactly equal to our Page Size and the 3648 * Large Page Size Buffer should be 0 (per above) or a power of 2. 3649 */ 3650 if (fl_small_pg != PAGE_SIZE || 3651 (fl_large_pg & (fl_large_pg-1)) != 0) { 3652 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 3653 fl_small_pg, fl_large_pg); 3654 return -EINVAL; 3655 } 3656 if (fl_large_pg) 3657 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 3658 3659 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 3660 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 3661 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 3662 fl_small_mtu, fl_large_mtu); 3663 return -EINVAL; 3664 } 3665 3666 /* 3667 * Retrieve our RX interrupt holdoff timer values and counter 3668 * threshold values from the SGE parameters. 3669 */ 3670 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 3671 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 3672 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 3673 s->timer_val[0] = core_ticks_to_us(adap, 3674 TIMERVALUE0_G(timer_value_0_and_1)); 3675 s->timer_val[1] = core_ticks_to_us(adap, 3676 TIMERVALUE1_G(timer_value_0_and_1)); 3677 s->timer_val[2] = core_ticks_to_us(adap, 3678 TIMERVALUE2_G(timer_value_2_and_3)); 3679 s->timer_val[3] = core_ticks_to_us(adap, 3680 TIMERVALUE3_G(timer_value_2_and_3)); 3681 s->timer_val[4] = core_ticks_to_us(adap, 3682 TIMERVALUE4_G(timer_value_4_and_5)); 3683 s->timer_val[5] = core_ticks_to_us(adap, 3684 TIMERVALUE5_G(timer_value_4_and_5)); 3685 3686 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 3687 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 3688 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 3689 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 3690 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 3691 3692 return 0; 3693 } 3694 3695 /** 3696 * t4_sge_init - initialize SGE 3697 * @adap: the adapter 3698 * 3699 * Perform low-level SGE code initialization needed every time after a 3700 * chip reset. 3701 */ 3702 int t4_sge_init(struct adapter *adap) 3703 { 3704 struct sge *s = &adap->sge; 3705 u32 sge_control, sge_conm_ctrl; 3706 int ret, egress_threshold; 3707 3708 /* 3709 * Ingress Padding Boundary and Egress Status Page Size are set up by 3710 * t4_fixup_host_params(). 3711 */ 3712 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 3713 s->pktshift = PKTSHIFT_G(sge_control); 3714 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 3715 3716 s->fl_align = t4_fl_pkt_align(adap); 3717 ret = t4_sge_init_soft(adap); 3718 if (ret < 0) 3719 return ret; 3720 3721 /* 3722 * A FL with <= fl_starve_thres buffers is starving and a periodic 3723 * timer will attempt to refill it. This needs to be larger than the 3724 * SGE's Egress Congestion Threshold. If it isn't, then we can get 3725 * stuck waiting for new packets while the SGE is waiting for us to 3726 * give it more Free List entries. (Note that the SGE's Egress 3727 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 3728 * there was only a single field to control this. For T5 there's the 3729 * original field which now only applies to Unpacked Mode Free List 3730 * buffers and a new field which only applies to Packed Mode Free List 3731 * buffers. 3732 */ 3733 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 3734 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 3735 case CHELSIO_T4: 3736 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 3737 break; 3738 case CHELSIO_T5: 3739 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 3740 break; 3741 case CHELSIO_T6: 3742 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 3743 break; 3744 default: 3745 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 3746 CHELSIO_CHIP_VERSION(adap->params.chip)); 3747 return -EINVAL; 3748 } 3749 s->fl_starve_thres = 2*egress_threshold + 1; 3750 3751 t4_idma_monitor_init(adap, &s->idma_monitor); 3752 3753 /* Set up timers used for recuring callbacks to process RX and TX 3754 * administrative tasks. 3755 */ 3756 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 3757 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 3758 3759 spin_lock_init(&s->intrq_lock); 3760 3761 return 0; 3762 } 3763