1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #ifdef CONFIG_NET_RX_BUSY_POLL
47 #include <net/busy_poll.h>
48 #endif /* CONFIG_NET_RX_BUSY_POLL */
49 #ifdef CONFIG_CHELSIO_T4_FCOE
50 #include <scsi/fc/fc_fcoe.h>
51 #endif /* CONFIG_CHELSIO_T4_FCOE */
52 #include "cxgb4.h"
53 #include "t4_regs.h"
54 #include "t4_values.h"
55 #include "t4_msg.h"
56 #include "t4fw_api.h"
57 
58 /*
59  * Rx buffer size.  We use largish buffers if possible but settle for single
60  * pages under memory shortage.
61  */
62 #if PAGE_SHIFT >= 16
63 # define FL_PG_ORDER 0
64 #else
65 # define FL_PG_ORDER (16 - PAGE_SHIFT)
66 #endif
67 
68 /* RX_PULL_LEN should be <= RX_COPY_THRES */
69 #define RX_COPY_THRES    256
70 #define RX_PULL_LEN      128
71 
72 /*
73  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
74  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
75  */
76 #define RX_PKT_SKB_LEN   512
77 
78 /*
79  * Max number of Tx descriptors we clean up at a time.  Should be modest as
80  * freeing skbs isn't cheap and it happens while holding locks.  We just need
81  * to free packets faster than they arrive, we eventually catch up and keep
82  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
83  */
84 #define MAX_TX_RECLAIM 16
85 
86 /*
87  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
88  * allocating buffers isn't cheap either.
89  */
90 #define MAX_RX_REFILL 16U
91 
92 /*
93  * Period of the Rx queue check timer.  This timer is infrequent as it has
94  * something to do only when the system experiences severe memory shortage.
95  */
96 #define RX_QCHECK_PERIOD (HZ / 2)
97 
98 /*
99  * Period of the Tx queue check timer.
100  */
101 #define TX_QCHECK_PERIOD (HZ / 2)
102 
103 /* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
104  * (in RX_QCHECK_PERIOD multiples).  If we find one of the SGE Ingress DMA
105  * State Machines in the same state for this amount of time (in HZ) then we'll
106  * issue a warning about a potential hang.  We'll repeat the warning as the
107  * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
108  * the situation clears.  If the situation clears, we'll note that as well.
109  */
110 #define SGE_IDMA_WARN_THRESH (1 * HZ)
111 #define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
112 
113 /*
114  * Max number of Tx descriptors to be reclaimed by the Tx timer.
115  */
116 #define MAX_TIMER_TX_RECLAIM 100
117 
118 /*
119  * Timer index used when backing off due to memory shortage.
120  */
121 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
122 
123 /*
124  * Suspend an Ethernet Tx queue with fewer available descriptors than this.
125  * This is the same as calc_tx_descs() for a TSO packet with
126  * nr_frags == MAX_SKB_FRAGS.
127  */
128 #define ETHTXQ_STOP_THRES \
129 	(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
130 
131 /*
132  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
133  * for a full sized WR.
134  */
135 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
136 
137 /*
138  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
139  * into a WR.
140  */
141 #define MAX_IMM_TX_PKT_LEN 256
142 
143 /*
144  * Max size of a WR sent through a control Tx queue.
145  */
146 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
147 
148 struct tx_sw_desc {                /* SW state per Tx descriptor */
149 	struct sk_buff *skb;
150 	struct ulptx_sgl *sgl;
151 };
152 
153 struct rx_sw_desc {                /* SW state per Rx descriptor */
154 	struct page *page;
155 	dma_addr_t dma_addr;
156 };
157 
158 /*
159  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
160  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
161  * We could easily support more but there doesn't seem to be much need for
162  * that ...
163  */
164 #define FL_MTU_SMALL 1500
165 #define FL_MTU_LARGE 9000
166 
167 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
168 					  unsigned int mtu)
169 {
170 	struct sge *s = &adapter->sge;
171 
172 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
173 }
174 
175 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
176 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
177 
178 /*
179  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
180  * these to specify the buffer size as an index into the SGE Free List Buffer
181  * Size register array.  We also use bit 4, when the buffer has been unmapped
182  * for DMA, but this is of course never sent to the hardware and is only used
183  * to prevent double unmappings.  All of the above requires that the Free List
184  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
185  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
186  * Free List Buffer alignment is 32 bytes, this works out for us ...
187  */
188 enum {
189 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
190 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
191 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
192 
193 	/*
194 	 * XXX We shouldn't depend on being able to use these indices.
195 	 * XXX Especially when some other Master PF has initialized the
196 	 * XXX adapter or we use the Firmware Configuration File.  We
197 	 * XXX should really search through the Host Buffer Size register
198 	 * XXX array for the appropriately sized buffer indices.
199 	 */
200 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
201 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
202 
203 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
204 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
205 };
206 
207 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
208 #define MIN_NAPI_WORK  1
209 
210 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
211 {
212 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
213 }
214 
215 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
216 {
217 	return !(d->dma_addr & RX_UNMAPPED_BUF);
218 }
219 
220 /**
221  *	txq_avail - return the number of available slots in a Tx queue
222  *	@q: the Tx queue
223  *
224  *	Returns the number of descriptors in a Tx queue available to write new
225  *	packets.
226  */
227 static inline unsigned int txq_avail(const struct sge_txq *q)
228 {
229 	return q->size - 1 - q->in_use;
230 }
231 
232 /**
233  *	fl_cap - return the capacity of a free-buffer list
234  *	@fl: the FL
235  *
236  *	Returns the capacity of a free-buffer list.  The capacity is less than
237  *	the size because one descriptor needs to be left unpopulated, otherwise
238  *	HW will think the FL is empty.
239  */
240 static inline unsigned int fl_cap(const struct sge_fl *fl)
241 {
242 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
243 }
244 
245 /**
246  *	fl_starving - return whether a Free List is starving.
247  *	@adapter: pointer to the adapter
248  *	@fl: the Free List
249  *
250  *	Tests specified Free List to see whether the number of buffers
251  *	available to the hardware has falled below our "starvation"
252  *	threshold.
253  */
254 static inline bool fl_starving(const struct adapter *adapter,
255 			       const struct sge_fl *fl)
256 {
257 	const struct sge *s = &adapter->sge;
258 
259 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
260 }
261 
262 static int map_skb(struct device *dev, const struct sk_buff *skb,
263 		   dma_addr_t *addr)
264 {
265 	const skb_frag_t *fp, *end;
266 	const struct skb_shared_info *si;
267 
268 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
269 	if (dma_mapping_error(dev, *addr))
270 		goto out_err;
271 
272 	si = skb_shinfo(skb);
273 	end = &si->frags[si->nr_frags];
274 
275 	for (fp = si->frags; fp < end; fp++) {
276 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
277 					   DMA_TO_DEVICE);
278 		if (dma_mapping_error(dev, *addr))
279 			goto unwind;
280 	}
281 	return 0;
282 
283 unwind:
284 	while (fp-- > si->frags)
285 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
286 
287 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
288 out_err:
289 	return -ENOMEM;
290 }
291 
292 #ifdef CONFIG_NEED_DMA_MAP_STATE
293 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
294 		      const dma_addr_t *addr)
295 {
296 	const skb_frag_t *fp, *end;
297 	const struct skb_shared_info *si;
298 
299 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
300 
301 	si = skb_shinfo(skb);
302 	end = &si->frags[si->nr_frags];
303 	for (fp = si->frags; fp < end; fp++)
304 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
305 }
306 
307 /**
308  *	deferred_unmap_destructor - unmap a packet when it is freed
309  *	@skb: the packet
310  *
311  *	This is the packet destructor used for Tx packets that need to remain
312  *	mapped until they are freed rather than until their Tx descriptors are
313  *	freed.
314  */
315 static void deferred_unmap_destructor(struct sk_buff *skb)
316 {
317 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
318 }
319 #endif
320 
321 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
322 		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
323 {
324 	const struct ulptx_sge_pair *p;
325 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
326 
327 	if (likely(skb_headlen(skb)))
328 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
329 				 DMA_TO_DEVICE);
330 	else {
331 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
332 			       DMA_TO_DEVICE);
333 		nfrags--;
334 	}
335 
336 	/*
337 	 * the complexity below is because of the possibility of a wrap-around
338 	 * in the middle of an SGL
339 	 */
340 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
341 		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
342 unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
343 				       ntohl(p->len[0]), DMA_TO_DEVICE);
344 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
345 				       ntohl(p->len[1]), DMA_TO_DEVICE);
346 			p++;
347 		} else if ((u8 *)p == (u8 *)q->stat) {
348 			p = (const struct ulptx_sge_pair *)q->desc;
349 			goto unmap;
350 		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
351 			const __be64 *addr = (const __be64 *)q->desc;
352 
353 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
354 				       ntohl(p->len[0]), DMA_TO_DEVICE);
355 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
356 				       ntohl(p->len[1]), DMA_TO_DEVICE);
357 			p = (const struct ulptx_sge_pair *)&addr[2];
358 		} else {
359 			const __be64 *addr = (const __be64 *)q->desc;
360 
361 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
362 				       ntohl(p->len[0]), DMA_TO_DEVICE);
363 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
364 				       ntohl(p->len[1]), DMA_TO_DEVICE);
365 			p = (const struct ulptx_sge_pair *)&addr[1];
366 		}
367 	}
368 	if (nfrags) {
369 		__be64 addr;
370 
371 		if ((u8 *)p == (u8 *)q->stat)
372 			p = (const struct ulptx_sge_pair *)q->desc;
373 		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
374 						       *(const __be64 *)q->desc;
375 		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
376 			       DMA_TO_DEVICE);
377 	}
378 }
379 
380 /**
381  *	free_tx_desc - reclaims Tx descriptors and their buffers
382  *	@adapter: the adapter
383  *	@q: the Tx queue to reclaim descriptors from
384  *	@n: the number of descriptors to reclaim
385  *	@unmap: whether the buffers should be unmapped for DMA
386  *
387  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
388  *	Tx buffers.  Called with the Tx queue lock held.
389  */
390 static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
391 			 unsigned int n, bool unmap)
392 {
393 	struct tx_sw_desc *d;
394 	unsigned int cidx = q->cidx;
395 	struct device *dev = adap->pdev_dev;
396 
397 	d = &q->sdesc[cidx];
398 	while (n--) {
399 		if (d->skb) {                       /* an SGL is present */
400 			if (unmap)
401 				unmap_sgl(dev, d->skb, d->sgl, q);
402 			dev_consume_skb_any(d->skb);
403 			d->skb = NULL;
404 		}
405 		++d;
406 		if (++cidx == q->size) {
407 			cidx = 0;
408 			d = q->sdesc;
409 		}
410 	}
411 	q->cidx = cidx;
412 }
413 
414 /*
415  * Return the number of reclaimable descriptors in a Tx queue.
416  */
417 static inline int reclaimable(const struct sge_txq *q)
418 {
419 	int hw_cidx = ntohs(q->stat->cidx);
420 	hw_cidx -= q->cidx;
421 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
422 }
423 
424 /**
425  *	reclaim_completed_tx - reclaims completed Tx descriptors
426  *	@adap: the adapter
427  *	@q: the Tx queue to reclaim completed descriptors from
428  *	@unmap: whether the buffers should be unmapped for DMA
429  *
430  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
431  *	and frees the associated buffers if possible.  Called with the Tx
432  *	queue locked.
433  */
434 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
435 					bool unmap)
436 {
437 	int avail = reclaimable(q);
438 
439 	if (avail) {
440 		/*
441 		 * Limit the amount of clean up work we do at a time to keep
442 		 * the Tx lock hold time O(1).
443 		 */
444 		if (avail > MAX_TX_RECLAIM)
445 			avail = MAX_TX_RECLAIM;
446 
447 		free_tx_desc(adap, q, avail, unmap);
448 		q->in_use -= avail;
449 	}
450 }
451 
452 static inline int get_buf_size(struct adapter *adapter,
453 			       const struct rx_sw_desc *d)
454 {
455 	struct sge *s = &adapter->sge;
456 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
457 	int buf_size;
458 
459 	switch (rx_buf_size_idx) {
460 	case RX_SMALL_PG_BUF:
461 		buf_size = PAGE_SIZE;
462 		break;
463 
464 	case RX_LARGE_PG_BUF:
465 		buf_size = PAGE_SIZE << s->fl_pg_order;
466 		break;
467 
468 	case RX_SMALL_MTU_BUF:
469 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
470 		break;
471 
472 	case RX_LARGE_MTU_BUF:
473 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
474 		break;
475 
476 	default:
477 		BUG_ON(1);
478 	}
479 
480 	return buf_size;
481 }
482 
483 /**
484  *	free_rx_bufs - free the Rx buffers on an SGE free list
485  *	@adap: the adapter
486  *	@q: the SGE free list to free buffers from
487  *	@n: how many buffers to free
488  *
489  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
490  *	buffers must be made inaccessible to HW before calling this function.
491  */
492 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
493 {
494 	while (n--) {
495 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
496 
497 		if (is_buf_mapped(d))
498 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
499 				       get_buf_size(adap, d),
500 				       PCI_DMA_FROMDEVICE);
501 		put_page(d->page);
502 		d->page = NULL;
503 		if (++q->cidx == q->size)
504 			q->cidx = 0;
505 		q->avail--;
506 	}
507 }
508 
509 /**
510  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
511  *	@adap: the adapter
512  *	@q: the SGE free list
513  *
514  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
515  *	buffer must be made inaccessible to HW before calling this function.
516  *
517  *	This is similar to @free_rx_bufs above but does not free the buffer.
518  *	Do note that the FL still loses any further access to the buffer.
519  */
520 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
521 {
522 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
523 
524 	if (is_buf_mapped(d))
525 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
526 			       get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
527 	d->page = NULL;
528 	if (++q->cidx == q->size)
529 		q->cidx = 0;
530 	q->avail--;
531 }
532 
533 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
534 {
535 	u32 val;
536 	if (q->pend_cred >= 8) {
537 		if (is_t4(adap->params.chip))
538 			val = PIDX_V(q->pend_cred / 8);
539 		else
540 			val = PIDX_T5_V(q->pend_cred / 8) |
541 				DBTYPE_F;
542 		val |= DBPRIO_F;
543 		wmb();
544 
545 		/* If we don't have access to the new User Doorbell (T5+), use
546 		 * the old doorbell mechanism; otherwise use the new BAR2
547 		 * mechanism.
548 		 */
549 		if (unlikely(q->bar2_addr == NULL)) {
550 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
551 				     val | QID_V(q->cntxt_id));
552 		} else {
553 			writel(val | QID_V(q->bar2_qid),
554 			       q->bar2_addr + SGE_UDB_KDOORBELL);
555 
556 			/* This Write memory Barrier will force the write to
557 			 * the User Doorbell area to be flushed.
558 			 */
559 			wmb();
560 		}
561 		q->pend_cred &= 7;
562 	}
563 }
564 
565 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
566 				  dma_addr_t mapping)
567 {
568 	sd->page = pg;
569 	sd->dma_addr = mapping;      /* includes size low bits */
570 }
571 
572 /**
573  *	refill_fl - refill an SGE Rx buffer ring
574  *	@adap: the adapter
575  *	@q: the ring to refill
576  *	@n: the number of new buffers to allocate
577  *	@gfp: the gfp flags for the allocations
578  *
579  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
580  *	allocated with the supplied gfp flags.  The caller must assure that
581  *	@n does not exceed the queue's capacity.  If afterwards the queue is
582  *	found critically low mark it as starving in the bitmap of starving FLs.
583  *
584  *	Returns the number of buffers allocated.
585  */
586 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
587 			      gfp_t gfp)
588 {
589 	struct sge *s = &adap->sge;
590 	struct page *pg;
591 	dma_addr_t mapping;
592 	unsigned int cred = q->avail;
593 	__be64 *d = &q->desc[q->pidx];
594 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
595 	int node;
596 
597 	gfp |= __GFP_NOWARN;
598 	node = dev_to_node(adap->pdev_dev);
599 
600 	if (s->fl_pg_order == 0)
601 		goto alloc_small_pages;
602 
603 	/*
604 	 * Prefer large buffers
605 	 */
606 	while (n) {
607 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
608 		if (unlikely(!pg)) {
609 			q->large_alloc_failed++;
610 			break;       /* fall back to single pages */
611 		}
612 
613 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
614 				       PAGE_SIZE << s->fl_pg_order,
615 				       PCI_DMA_FROMDEVICE);
616 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
617 			__free_pages(pg, s->fl_pg_order);
618 			goto out;   /* do not try small pages for this error */
619 		}
620 		mapping |= RX_LARGE_PG_BUF;
621 		*d++ = cpu_to_be64(mapping);
622 
623 		set_rx_sw_desc(sd, pg, mapping);
624 		sd++;
625 
626 		q->avail++;
627 		if (++q->pidx == q->size) {
628 			q->pidx = 0;
629 			sd = q->sdesc;
630 			d = q->desc;
631 		}
632 		n--;
633 	}
634 
635 alloc_small_pages:
636 	while (n--) {
637 		pg = alloc_pages_node(node, gfp, 0);
638 		if (unlikely(!pg)) {
639 			q->alloc_failed++;
640 			break;
641 		}
642 
643 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
644 				       PCI_DMA_FROMDEVICE);
645 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
646 			put_page(pg);
647 			goto out;
648 		}
649 		*d++ = cpu_to_be64(mapping);
650 
651 		set_rx_sw_desc(sd, pg, mapping);
652 		sd++;
653 
654 		q->avail++;
655 		if (++q->pidx == q->size) {
656 			q->pidx = 0;
657 			sd = q->sdesc;
658 			d = q->desc;
659 		}
660 	}
661 
662 out:	cred = q->avail - cred;
663 	q->pend_cred += cred;
664 	ring_fl_db(adap, q);
665 
666 	if (unlikely(fl_starving(adap, q))) {
667 		smp_wmb();
668 		set_bit(q->cntxt_id - adap->sge.egr_start,
669 			adap->sge.starving_fl);
670 	}
671 
672 	return cred;
673 }
674 
675 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
676 {
677 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
678 		  GFP_ATOMIC);
679 }
680 
681 /**
682  *	alloc_ring - allocate resources for an SGE descriptor ring
683  *	@dev: the PCI device's core device
684  *	@nelem: the number of descriptors
685  *	@elem_size: the size of each descriptor
686  *	@sw_size: the size of the SW state associated with each ring element
687  *	@phys: the physical address of the allocated ring
688  *	@metadata: address of the array holding the SW state for the ring
689  *	@stat_size: extra space in HW ring for status information
690  *	@node: preferred node for memory allocations
691  *
692  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
693  *	free buffer lists, or response queues.  Each SGE ring requires
694  *	space for its HW descriptors plus, optionally, space for the SW state
695  *	associated with each HW entry (the metadata).  The function returns
696  *	three values: the virtual address for the HW ring (the return value
697  *	of the function), the bus address of the HW ring, and the address
698  *	of the SW ring.
699  */
700 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
701 			size_t sw_size, dma_addr_t *phys, void *metadata,
702 			size_t stat_size, int node)
703 {
704 	size_t len = nelem * elem_size + stat_size;
705 	void *s = NULL;
706 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
707 
708 	if (!p)
709 		return NULL;
710 	if (sw_size) {
711 		s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
712 
713 		if (!s) {
714 			dma_free_coherent(dev, len, p, *phys);
715 			return NULL;
716 		}
717 	}
718 	if (metadata)
719 		*(void **)metadata = s;
720 	memset(p, 0, len);
721 	return p;
722 }
723 
724 /**
725  *	sgl_len - calculates the size of an SGL of the given capacity
726  *	@n: the number of SGL entries
727  *
728  *	Calculates the number of flits needed for a scatter/gather list that
729  *	can hold the given number of entries.
730  */
731 static inline unsigned int sgl_len(unsigned int n)
732 {
733 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
734 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
735 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
736 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
737 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
738 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
739 	 * Address[N+1] is omitted.
740 	 *
741 	 * The following calculation incorporates all of the above.  It's
742 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
743 	 * first two flits which include the DSGL header, Length0 and
744 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
745 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
746 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
747 	 * (n-1) is odd ...
748 	 */
749 	n--;
750 	return (3 * n) / 2 + (n & 1) + 2;
751 }
752 
753 /**
754  *	flits_to_desc - returns the num of Tx descriptors for the given flits
755  *	@n: the number of flits
756  *
757  *	Returns the number of Tx descriptors needed for the supplied number
758  *	of flits.
759  */
760 static inline unsigned int flits_to_desc(unsigned int n)
761 {
762 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
763 	return DIV_ROUND_UP(n, 8);
764 }
765 
766 /**
767  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
768  *	@skb: the packet
769  *
770  *	Returns whether an Ethernet packet is small enough to fit as
771  *	immediate data. Return value corresponds to headroom required.
772  */
773 static inline int is_eth_imm(const struct sk_buff *skb)
774 {
775 	int hdrlen = skb_shinfo(skb)->gso_size ?
776 			sizeof(struct cpl_tx_pkt_lso_core) : 0;
777 
778 	hdrlen += sizeof(struct cpl_tx_pkt);
779 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
780 		return hdrlen;
781 	return 0;
782 }
783 
784 /**
785  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
786  *	@skb: the packet
787  *
788  *	Returns the number of flits needed for a Tx WR for the given Ethernet
789  *	packet, including the needed WR and CPL headers.
790  */
791 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
792 {
793 	unsigned int flits;
794 	int hdrlen = is_eth_imm(skb);
795 
796 	/* If the skb is small enough, we can pump it out as a work request
797 	 * with only immediate data.  In that case we just have to have the
798 	 * TX Packet header plus the skb data in the Work Request.
799 	 */
800 
801 	if (hdrlen)
802 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
803 
804 	/* Otherwise, we're going to have to construct a Scatter gather list
805 	 * of the skb body and fragments.  We also include the flits necessary
806 	 * for the TX Packet Work Request and CPL.  We always have a firmware
807 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
808 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
809 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
810 	 * with an embedded TX Packet Write CPL message.
811 	 */
812 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
813 	if (skb_shinfo(skb)->gso_size)
814 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
815 			  sizeof(struct cpl_tx_pkt_lso_core) +
816 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
817 	else
818 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
819 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
820 	return flits;
821 }
822 
823 /**
824  *	calc_tx_descs - calculate the number of Tx descriptors for a packet
825  *	@skb: the packet
826  *
827  *	Returns the number of Tx descriptors needed for the given Ethernet
828  *	packet, including the needed WR and CPL headers.
829  */
830 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
831 {
832 	return flits_to_desc(calc_tx_flits(skb));
833 }
834 
835 /**
836  *	write_sgl - populate a scatter/gather list for a packet
837  *	@skb: the packet
838  *	@q: the Tx queue we are writing into
839  *	@sgl: starting location for writing the SGL
840  *	@end: points right after the end of the SGL
841  *	@start: start offset into skb main-body data to include in the SGL
842  *	@addr: the list of bus addresses for the SGL elements
843  *
844  *	Generates a gather list for the buffers that make up a packet.
845  *	The caller must provide adequate space for the SGL that will be written.
846  *	The SGL includes all of the packet's page fragments and the data in its
847  *	main body except for the first @start bytes.  @sgl must be 16-byte
848  *	aligned and within a Tx descriptor with available space.  @end points
849  *	right after the end of the SGL but does not account for any potential
850  *	wrap around, i.e., @end > @sgl.
851  */
852 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
853 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
854 		      const dma_addr_t *addr)
855 {
856 	unsigned int i, len;
857 	struct ulptx_sge_pair *to;
858 	const struct skb_shared_info *si = skb_shinfo(skb);
859 	unsigned int nfrags = si->nr_frags;
860 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
861 
862 	len = skb_headlen(skb) - start;
863 	if (likely(len)) {
864 		sgl->len0 = htonl(len);
865 		sgl->addr0 = cpu_to_be64(addr[0] + start);
866 		nfrags++;
867 	} else {
868 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
869 		sgl->addr0 = cpu_to_be64(addr[1]);
870 	}
871 
872 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
873 			      ULPTX_NSGE_V(nfrags));
874 	if (likely(--nfrags == 0))
875 		return;
876 	/*
877 	 * Most of the complexity below deals with the possibility we hit the
878 	 * end of the queue in the middle of writing the SGL.  For this case
879 	 * only we create the SGL in a temporary buffer and then copy it.
880 	 */
881 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
882 
883 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
884 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
885 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
886 		to->addr[0] = cpu_to_be64(addr[i]);
887 		to->addr[1] = cpu_to_be64(addr[++i]);
888 	}
889 	if (nfrags) {
890 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
891 		to->len[1] = cpu_to_be32(0);
892 		to->addr[0] = cpu_to_be64(addr[i + 1]);
893 	}
894 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
895 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
896 
897 		if (likely(part0))
898 			memcpy(sgl->sge, buf, part0);
899 		part1 = (u8 *)end - (u8 *)q->stat;
900 		memcpy(q->desc, (u8 *)buf + part0, part1);
901 		end = (void *)q->desc + part1;
902 	}
903 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
904 		*end = 0;
905 }
906 
907 /* This function copies 64 byte coalesced work request to
908  * memory mapped BAR2 space. For coalesced WR SGE fetches
909  * data from the FIFO instead of from Host.
910  */
911 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
912 {
913 	int count = 8;
914 
915 	while (count) {
916 		writeq(*src, dst);
917 		src++;
918 		dst++;
919 		count--;
920 	}
921 }
922 
923 /**
924  *	ring_tx_db - check and potentially ring a Tx queue's doorbell
925  *	@adap: the adapter
926  *	@q: the Tx queue
927  *	@n: number of new descriptors to give to HW
928  *
929  *	Ring the doorbel for a Tx queue.
930  */
931 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
932 {
933 	wmb();            /* write descriptors before telling HW */
934 
935 	/* If we don't have access to the new User Doorbell (T5+), use the old
936 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
937 	 */
938 	if (unlikely(q->bar2_addr == NULL)) {
939 		u32 val = PIDX_V(n);
940 		unsigned long flags;
941 
942 		/* For T4 we need to participate in the Doorbell Recovery
943 		 * mechanism.
944 		 */
945 		spin_lock_irqsave(&q->db_lock, flags);
946 		if (!q->db_disabled)
947 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
948 				     QID_V(q->cntxt_id) | val);
949 		else
950 			q->db_pidx_inc += n;
951 		q->db_pidx = q->pidx;
952 		spin_unlock_irqrestore(&q->db_lock, flags);
953 	} else {
954 		u32 val = PIDX_T5_V(n);
955 
956 		/* T4 and later chips share the same PIDX field offset within
957 		 * the doorbell, but T5 and later shrank the field in order to
958 		 * gain a bit for Doorbell Priority.  The field was absurdly
959 		 * large in the first place (14 bits) so we just use the T5
960 		 * and later limits and warn if a Queue ID is too large.
961 		 */
962 		WARN_ON(val & DBPRIO_F);
963 
964 		/* If we're only writing a single TX Descriptor and we can use
965 		 * Inferred QID registers, we can use the Write Combining
966 		 * Gather Buffer; otherwise we use the simple doorbell.
967 		 */
968 		if (n == 1 && q->bar2_qid == 0) {
969 			int index = (q->pidx
970 				     ? (q->pidx - 1)
971 				     : (q->size - 1));
972 			u64 *wr = (u64 *)&q->desc[index];
973 
974 			cxgb_pio_copy((u64 __iomem *)
975 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
976 				      wr);
977 		} else {
978 			writel(val | QID_V(q->bar2_qid),
979 			       q->bar2_addr + SGE_UDB_KDOORBELL);
980 		}
981 
982 		/* This Write Memory Barrier will force the write to the User
983 		 * Doorbell area to be flushed.  This is needed to prevent
984 		 * writes on different CPUs for the same queue from hitting
985 		 * the adapter out of order.  This is required when some Work
986 		 * Requests take the Write Combine Gather Buffer path (user
987 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
988 		 * take the traditional path where we simply increment the
989 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
990 		 * hardware DMA read the actual Work Request.
991 		 */
992 		wmb();
993 	}
994 }
995 
996 /**
997  *	inline_tx_skb - inline a packet's data into Tx descriptors
998  *	@skb: the packet
999  *	@q: the Tx queue where the packet will be inlined
1000  *	@pos: starting position in the Tx queue where to inline the packet
1001  *
1002  *	Inline a packet's contents directly into Tx descriptors, starting at
1003  *	the given position within the Tx DMA ring.
1004  *	Most of the complexity of this operation is dealing with wrap arounds
1005  *	in the middle of the packet we want to inline.
1006  */
1007 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
1008 			  void *pos)
1009 {
1010 	u64 *p;
1011 	int left = (void *)q->stat - pos;
1012 
1013 	if (likely(skb->len <= left)) {
1014 		if (likely(!skb->data_len))
1015 			skb_copy_from_linear_data(skb, pos, skb->len);
1016 		else
1017 			skb_copy_bits(skb, 0, pos, skb->len);
1018 		pos += skb->len;
1019 	} else {
1020 		skb_copy_bits(skb, 0, pos, left);
1021 		skb_copy_bits(skb, left, q->desc, skb->len - left);
1022 		pos = (void *)q->desc + (skb->len - left);
1023 	}
1024 
1025 	/* 0-pad to multiple of 16 */
1026 	p = PTR_ALIGN(pos, 8);
1027 	if ((uintptr_t)p & 8)
1028 		*p = 0;
1029 }
1030 
1031 /*
1032  * Figure out what HW csum a packet wants and return the appropriate control
1033  * bits.
1034  */
1035 static u64 hwcsum(const struct sk_buff *skb)
1036 {
1037 	int csum_type;
1038 	const struct iphdr *iph = ip_hdr(skb);
1039 
1040 	if (iph->version == 4) {
1041 		if (iph->protocol == IPPROTO_TCP)
1042 			csum_type = TX_CSUM_TCPIP;
1043 		else if (iph->protocol == IPPROTO_UDP)
1044 			csum_type = TX_CSUM_UDPIP;
1045 		else {
1046 nocsum:			/*
1047 			 * unknown protocol, disable HW csum
1048 			 * and hope a bad packet is detected
1049 			 */
1050 			return TXPKT_L4CSUM_DIS;
1051 		}
1052 	} else {
1053 		/*
1054 		 * this doesn't work with extension headers
1055 		 */
1056 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1057 
1058 		if (ip6h->nexthdr == IPPROTO_TCP)
1059 			csum_type = TX_CSUM_TCPIP6;
1060 		else if (ip6h->nexthdr == IPPROTO_UDP)
1061 			csum_type = TX_CSUM_UDPIP6;
1062 		else
1063 			goto nocsum;
1064 	}
1065 
1066 	if (likely(csum_type >= TX_CSUM_TCPIP))
1067 		return TXPKT_CSUM_TYPE(csum_type) |
1068 			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1069 			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1070 	else {
1071 		int start = skb_transport_offset(skb);
1072 
1073 		return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
1074 			TXPKT_CSUM_LOC(start + skb->csum_offset);
1075 	}
1076 }
1077 
1078 static void eth_txq_stop(struct sge_eth_txq *q)
1079 {
1080 	netif_tx_stop_queue(q->txq);
1081 	q->q.stops++;
1082 }
1083 
1084 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1085 {
1086 	q->in_use += n;
1087 	q->pidx += n;
1088 	if (q->pidx >= q->size)
1089 		q->pidx -= q->size;
1090 }
1091 
1092 #ifdef CONFIG_CHELSIO_T4_FCOE
1093 static inline int
1094 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1095 		  const struct port_info *pi, u64 *cntrl)
1096 {
1097 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1098 
1099 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1100 		return 0;
1101 
1102 	if (skb->protocol != htons(ETH_P_FCOE))
1103 		return 0;
1104 
1105 	skb_reset_mac_header(skb);
1106 	skb->mac_len = sizeof(struct ethhdr);
1107 
1108 	skb_set_network_header(skb, skb->mac_len);
1109 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1110 
1111 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1112 		return -ENOTSUPP;
1113 
1114 	/* FC CRC offload */
1115 	*cntrl = TXPKT_CSUM_TYPE(TX_CSUM_FCOE) |
1116 		     TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS |
1117 		     TXPKT_CSUM_START(CXGB_FCOE_TXPKT_CSUM_START) |
1118 		     TXPKT_CSUM_END(CXGB_FCOE_TXPKT_CSUM_END) |
1119 		     TXPKT_CSUM_LOC(CXGB_FCOE_TXPKT_CSUM_END);
1120 	return 0;
1121 }
1122 #endif /* CONFIG_CHELSIO_T4_FCOE */
1123 
1124 /**
1125  *	t4_eth_xmit - add a packet to an Ethernet Tx queue
1126  *	@skb: the packet
1127  *	@dev: the egress net device
1128  *
1129  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1130  */
1131 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1132 {
1133 	int len;
1134 	u32 wr_mid;
1135 	u64 cntrl, *end;
1136 	int qidx, credits;
1137 	unsigned int flits, ndesc;
1138 	struct adapter *adap;
1139 	struct sge_eth_txq *q;
1140 	const struct port_info *pi;
1141 	struct fw_eth_tx_pkt_wr *wr;
1142 	struct cpl_tx_pkt_core *cpl;
1143 	const struct skb_shared_info *ssi;
1144 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1145 	bool immediate = false;
1146 #ifdef CONFIG_CHELSIO_T4_FCOE
1147 	int err;
1148 #endif /* CONFIG_CHELSIO_T4_FCOE */
1149 
1150 	/*
1151 	 * The chip min packet length is 10 octets but play safe and reject
1152 	 * anything shorter than an Ethernet header.
1153 	 */
1154 	if (unlikely(skb->len < ETH_HLEN)) {
1155 out_free:	dev_kfree_skb_any(skb);
1156 		return NETDEV_TX_OK;
1157 	}
1158 
1159 	pi = netdev_priv(dev);
1160 	adap = pi->adapter;
1161 	qidx = skb_get_queue_mapping(skb);
1162 	q = &adap->sge.ethtxq[qidx + pi->first_qset];
1163 
1164 	reclaim_completed_tx(adap, &q->q, true);
1165 	cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1166 
1167 #ifdef CONFIG_CHELSIO_T4_FCOE
1168 	err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1169 	if (unlikely(err == -ENOTSUPP))
1170 		goto out_free;
1171 #endif /* CONFIG_CHELSIO_T4_FCOE */
1172 
1173 	flits = calc_tx_flits(skb);
1174 	ndesc = flits_to_desc(flits);
1175 	credits = txq_avail(&q->q) - ndesc;
1176 
1177 	if (unlikely(credits < 0)) {
1178 		eth_txq_stop(q);
1179 		dev_err(adap->pdev_dev,
1180 			"%s: Tx ring %u full while queue awake!\n",
1181 			dev->name, qidx);
1182 		return NETDEV_TX_BUSY;
1183 	}
1184 
1185 	if (is_eth_imm(skb))
1186 		immediate = true;
1187 
1188 	if (!immediate &&
1189 	    unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1190 		q->mapping_err++;
1191 		goto out_free;
1192 	}
1193 
1194 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1195 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1196 		eth_txq_stop(q);
1197 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1198 	}
1199 
1200 	wr = (void *)&q->q.desc[q->q.pidx];
1201 	wr->equiq_to_len16 = htonl(wr_mid);
1202 	wr->r3 = cpu_to_be64(0);
1203 	end = (u64 *)wr + flits;
1204 
1205 	len = immediate ? skb->len : 0;
1206 	ssi = skb_shinfo(skb);
1207 	if (ssi->gso_size) {
1208 		struct cpl_tx_pkt_lso *lso = (void *)wr;
1209 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1210 		int l3hdr_len = skb_network_header_len(skb);
1211 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1212 
1213 		len += sizeof(*lso);
1214 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1215 				       FW_WR_IMMDLEN_V(len));
1216 		lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1217 					LSO_FIRST_SLICE | LSO_LAST_SLICE |
1218 					LSO_IPV6(v6) |
1219 					LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1220 					LSO_IPHDR_LEN(l3hdr_len / 4) |
1221 					LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1222 		lso->c.ipid_ofst = htons(0);
1223 		lso->c.mss = htons(ssi->gso_size);
1224 		lso->c.seqno_offset = htonl(0);
1225 		if (is_t4(adap->params.chip))
1226 			lso->c.len = htonl(skb->len);
1227 		else
1228 			lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len));
1229 		cpl = (void *)(lso + 1);
1230 		cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1231 			TXPKT_IPHDR_LEN(l3hdr_len) |
1232 			TXPKT_ETHHDR_LEN(eth_xtra_len);
1233 		q->tso++;
1234 		q->tx_cso += ssi->gso_segs;
1235 	} else {
1236 		len += sizeof(*cpl);
1237 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1238 				       FW_WR_IMMDLEN_V(len));
1239 		cpl = (void *)(wr + 1);
1240 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1241 			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1242 			q->tx_cso++;
1243 		}
1244 	}
1245 
1246 	if (skb_vlan_tag_present(skb)) {
1247 		q->vlan_ins++;
1248 		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb));
1249 #ifdef CONFIG_CHELSIO_T4_FCOE
1250 		if (skb->protocol == htons(ETH_P_FCOE))
1251 			cntrl |= TXPKT_VLAN(
1252 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1253 #endif /* CONFIG_CHELSIO_T4_FCOE */
1254 	}
1255 
1256 	cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1257 			   TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
1258 	cpl->pack = htons(0);
1259 	cpl->len = htons(skb->len);
1260 	cpl->ctrl1 = cpu_to_be64(cntrl);
1261 
1262 	if (immediate) {
1263 		inline_tx_skb(skb, &q->q, cpl + 1);
1264 		dev_consume_skb_any(skb);
1265 	} else {
1266 		int last_desc;
1267 
1268 		write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1269 			  addr);
1270 		skb_orphan(skb);
1271 
1272 		last_desc = q->q.pidx + ndesc - 1;
1273 		if (last_desc >= q->q.size)
1274 			last_desc -= q->q.size;
1275 		q->q.sdesc[last_desc].skb = skb;
1276 		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1277 	}
1278 
1279 	txq_advance(&q->q, ndesc);
1280 
1281 	ring_tx_db(adap, &q->q, ndesc);
1282 	return NETDEV_TX_OK;
1283 }
1284 
1285 /**
1286  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1287  *	@q: the SGE control Tx queue
1288  *
1289  *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1290  *	that send only immediate data (presently just the control queues) and
1291  *	thus do not have any sk_buffs to release.
1292  */
1293 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1294 {
1295 	int hw_cidx = ntohs(q->stat->cidx);
1296 	int reclaim = hw_cidx - q->cidx;
1297 
1298 	if (reclaim < 0)
1299 		reclaim += q->size;
1300 
1301 	q->in_use -= reclaim;
1302 	q->cidx = hw_cidx;
1303 }
1304 
1305 /**
1306  *	is_imm - check whether a packet can be sent as immediate data
1307  *	@skb: the packet
1308  *
1309  *	Returns true if a packet can be sent as a WR with immediate data.
1310  */
1311 static inline int is_imm(const struct sk_buff *skb)
1312 {
1313 	return skb->len <= MAX_CTRL_WR_LEN;
1314 }
1315 
1316 /**
1317  *	ctrlq_check_stop - check if a control queue is full and should stop
1318  *	@q: the queue
1319  *	@wr: most recent WR written to the queue
1320  *
1321  *	Check if a control queue has become full and should be stopped.
1322  *	We clean up control queue descriptors very lazily, only when we are out.
1323  *	If the queue is still full after reclaiming any completed descriptors
1324  *	we suspend it and have the last WR wake it up.
1325  */
1326 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1327 {
1328 	reclaim_completed_tx_imm(&q->q);
1329 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1330 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1331 		q->q.stops++;
1332 		q->full = 1;
1333 	}
1334 }
1335 
1336 /**
1337  *	ctrl_xmit - send a packet through an SGE control Tx queue
1338  *	@q: the control queue
1339  *	@skb: the packet
1340  *
1341  *	Send a packet through an SGE control Tx queue.  Packets sent through
1342  *	a control queue must fit entirely as immediate data.
1343  */
1344 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1345 {
1346 	unsigned int ndesc;
1347 	struct fw_wr_hdr *wr;
1348 
1349 	if (unlikely(!is_imm(skb))) {
1350 		WARN_ON(1);
1351 		dev_kfree_skb(skb);
1352 		return NET_XMIT_DROP;
1353 	}
1354 
1355 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1356 	spin_lock(&q->sendq.lock);
1357 
1358 	if (unlikely(q->full)) {
1359 		skb->priority = ndesc;                  /* save for restart */
1360 		__skb_queue_tail(&q->sendq, skb);
1361 		spin_unlock(&q->sendq.lock);
1362 		return NET_XMIT_CN;
1363 	}
1364 
1365 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1366 	inline_tx_skb(skb, &q->q, wr);
1367 
1368 	txq_advance(&q->q, ndesc);
1369 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1370 		ctrlq_check_stop(q, wr);
1371 
1372 	ring_tx_db(q->adap, &q->q, ndesc);
1373 	spin_unlock(&q->sendq.lock);
1374 
1375 	kfree_skb(skb);
1376 	return NET_XMIT_SUCCESS;
1377 }
1378 
1379 /**
1380  *	restart_ctrlq - restart a suspended control queue
1381  *	@data: the control queue to restart
1382  *
1383  *	Resumes transmission on a suspended Tx control queue.
1384  */
1385 static void restart_ctrlq(unsigned long data)
1386 {
1387 	struct sk_buff *skb;
1388 	unsigned int written = 0;
1389 	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1390 
1391 	spin_lock(&q->sendq.lock);
1392 	reclaim_completed_tx_imm(&q->q);
1393 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1394 
1395 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1396 		struct fw_wr_hdr *wr;
1397 		unsigned int ndesc = skb->priority;     /* previously saved */
1398 
1399 		/*
1400 		 * Write descriptors and free skbs outside the lock to limit
1401 		 * wait times.  q->full is still set so new skbs will be queued.
1402 		 */
1403 		spin_unlock(&q->sendq.lock);
1404 
1405 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1406 		inline_tx_skb(skb, &q->q, wr);
1407 		kfree_skb(skb);
1408 
1409 		written += ndesc;
1410 		txq_advance(&q->q, ndesc);
1411 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1412 			unsigned long old = q->q.stops;
1413 
1414 			ctrlq_check_stop(q, wr);
1415 			if (q->q.stops != old) {          /* suspended anew */
1416 				spin_lock(&q->sendq.lock);
1417 				goto ringdb;
1418 			}
1419 		}
1420 		if (written > 16) {
1421 			ring_tx_db(q->adap, &q->q, written);
1422 			written = 0;
1423 		}
1424 		spin_lock(&q->sendq.lock);
1425 	}
1426 	q->full = 0;
1427 ringdb: if (written)
1428 		ring_tx_db(q->adap, &q->q, written);
1429 	spin_unlock(&q->sendq.lock);
1430 }
1431 
1432 /**
1433  *	t4_mgmt_tx - send a management message
1434  *	@adap: the adapter
1435  *	@skb: the packet containing the management message
1436  *
1437  *	Send a management message through control queue 0.
1438  */
1439 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1440 {
1441 	int ret;
1442 
1443 	local_bh_disable();
1444 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1445 	local_bh_enable();
1446 	return ret;
1447 }
1448 
1449 /**
1450  *	is_ofld_imm - check whether a packet can be sent as immediate data
1451  *	@skb: the packet
1452  *
1453  *	Returns true if a packet can be sent as an offload WR with immediate
1454  *	data.  We currently use the same limit as for Ethernet packets.
1455  */
1456 static inline int is_ofld_imm(const struct sk_buff *skb)
1457 {
1458 	return skb->len <= MAX_IMM_TX_PKT_LEN;
1459 }
1460 
1461 /**
1462  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
1463  *	@skb: the packet
1464  *
1465  *	Returns the number of flits needed for the given offload packet.
1466  *	These packets are already fully constructed and no additional headers
1467  *	will be added.
1468  */
1469 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1470 {
1471 	unsigned int flits, cnt;
1472 
1473 	if (is_ofld_imm(skb))
1474 		return DIV_ROUND_UP(skb->len, 8);
1475 
1476 	flits = skb_transport_offset(skb) / 8U;   /* headers */
1477 	cnt = skb_shinfo(skb)->nr_frags;
1478 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
1479 		cnt++;
1480 	return flits + sgl_len(cnt);
1481 }
1482 
1483 /**
1484  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1485  *	@adap: the adapter
1486  *	@q: the queue to stop
1487  *
1488  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1489  *	inability to map packets.  A periodic timer attempts to restart
1490  *	queues so marked.
1491  */
1492 static void txq_stop_maperr(struct sge_ofld_txq *q)
1493 {
1494 	q->mapping_err++;
1495 	q->q.stops++;
1496 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1497 		q->adap->sge.txq_maperr);
1498 }
1499 
1500 /**
1501  *	ofldtxq_stop - stop an offload Tx queue that has become full
1502  *	@q: the queue to stop
1503  *	@skb: the packet causing the queue to become full
1504  *
1505  *	Stops an offload Tx queue that has become full and modifies the packet
1506  *	being written to request a wakeup.
1507  */
1508 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1509 {
1510 	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1511 
1512 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1513 	q->q.stops++;
1514 	q->full = 1;
1515 }
1516 
1517 /**
1518  *	service_ofldq - restart a suspended offload queue
1519  *	@q: the offload queue
1520  *
1521  *	Services an offload Tx queue by moving packets from its packet queue
1522  *	to the HW Tx ring.  The function starts and ends with the queue locked.
1523  */
1524 static void service_ofldq(struct sge_ofld_txq *q)
1525 {
1526 	u64 *pos;
1527 	int credits;
1528 	struct sk_buff *skb;
1529 	unsigned int written = 0;
1530 	unsigned int flits, ndesc;
1531 
1532 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1533 		/*
1534 		 * We drop the lock but leave skb on sendq, thus retaining
1535 		 * exclusive access to the state of the queue.
1536 		 */
1537 		spin_unlock(&q->sendq.lock);
1538 
1539 		reclaim_completed_tx(q->adap, &q->q, false);
1540 
1541 		flits = skb->priority;                /* previously saved */
1542 		ndesc = flits_to_desc(flits);
1543 		credits = txq_avail(&q->q) - ndesc;
1544 		BUG_ON(credits < 0);
1545 		if (unlikely(credits < TXQ_STOP_THRES))
1546 			ofldtxq_stop(q, skb);
1547 
1548 		pos = (u64 *)&q->q.desc[q->q.pidx];
1549 		if (is_ofld_imm(skb))
1550 			inline_tx_skb(skb, &q->q, pos);
1551 		else if (map_skb(q->adap->pdev_dev, skb,
1552 				 (dma_addr_t *)skb->head)) {
1553 			txq_stop_maperr(q);
1554 			spin_lock(&q->sendq.lock);
1555 			break;
1556 		} else {
1557 			int last_desc, hdr_len = skb_transport_offset(skb);
1558 
1559 			memcpy(pos, skb->data, hdr_len);
1560 			write_sgl(skb, &q->q, (void *)pos + hdr_len,
1561 				  pos + flits, hdr_len,
1562 				  (dma_addr_t *)skb->head);
1563 #ifdef CONFIG_NEED_DMA_MAP_STATE
1564 			skb->dev = q->adap->port[0];
1565 			skb->destructor = deferred_unmap_destructor;
1566 #endif
1567 			last_desc = q->q.pidx + ndesc - 1;
1568 			if (last_desc >= q->q.size)
1569 				last_desc -= q->q.size;
1570 			q->q.sdesc[last_desc].skb = skb;
1571 		}
1572 
1573 		txq_advance(&q->q, ndesc);
1574 		written += ndesc;
1575 		if (unlikely(written > 32)) {
1576 			ring_tx_db(q->adap, &q->q, written);
1577 			written = 0;
1578 		}
1579 
1580 		spin_lock(&q->sendq.lock);
1581 		__skb_unlink(skb, &q->sendq);
1582 		if (is_ofld_imm(skb))
1583 			kfree_skb(skb);
1584 	}
1585 	if (likely(written))
1586 		ring_tx_db(q->adap, &q->q, written);
1587 }
1588 
1589 /**
1590  *	ofld_xmit - send a packet through an offload queue
1591  *	@q: the Tx offload queue
1592  *	@skb: the packet
1593  *
1594  *	Send an offload packet through an SGE offload queue.
1595  */
1596 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1597 {
1598 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1599 	spin_lock(&q->sendq.lock);
1600 	__skb_queue_tail(&q->sendq, skb);
1601 	if (q->sendq.qlen == 1)
1602 		service_ofldq(q);
1603 	spin_unlock(&q->sendq.lock);
1604 	return NET_XMIT_SUCCESS;
1605 }
1606 
1607 /**
1608  *	restart_ofldq - restart a suspended offload queue
1609  *	@data: the offload queue to restart
1610  *
1611  *	Resumes transmission on a suspended Tx offload queue.
1612  */
1613 static void restart_ofldq(unsigned long data)
1614 {
1615 	struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1616 
1617 	spin_lock(&q->sendq.lock);
1618 	q->full = 0;            /* the queue actually is completely empty now */
1619 	service_ofldq(q);
1620 	spin_unlock(&q->sendq.lock);
1621 }
1622 
1623 /**
1624  *	skb_txq - return the Tx queue an offload packet should use
1625  *	@skb: the packet
1626  *
1627  *	Returns the Tx queue an offload packet should use as indicated by bits
1628  *	1-15 in the packet's queue_mapping.
1629  */
1630 static inline unsigned int skb_txq(const struct sk_buff *skb)
1631 {
1632 	return skb->queue_mapping >> 1;
1633 }
1634 
1635 /**
1636  *	is_ctrl_pkt - return whether an offload packet is a control packet
1637  *	@skb: the packet
1638  *
1639  *	Returns whether an offload packet should use an OFLD or a CTRL
1640  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
1641  */
1642 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1643 {
1644 	return skb->queue_mapping & 1;
1645 }
1646 
1647 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1648 {
1649 	unsigned int idx = skb_txq(skb);
1650 
1651 	if (unlikely(is_ctrl_pkt(skb))) {
1652 		/* Single ctrl queue is a requirement for LE workaround path */
1653 		if (adap->tids.nsftids)
1654 			idx = 0;
1655 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1656 	}
1657 	return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1658 }
1659 
1660 /**
1661  *	t4_ofld_send - send an offload packet
1662  *	@adap: the adapter
1663  *	@skb: the packet
1664  *
1665  *	Sends an offload packet.  We use the packet queue_mapping to select the
1666  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1667  *	should be sent as regular or control, bits 1-15 select the queue.
1668  */
1669 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1670 {
1671 	int ret;
1672 
1673 	local_bh_disable();
1674 	ret = ofld_send(adap, skb);
1675 	local_bh_enable();
1676 	return ret;
1677 }
1678 
1679 /**
1680  *	cxgb4_ofld_send - send an offload packet
1681  *	@dev: the net device
1682  *	@skb: the packet
1683  *
1684  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
1685  *	intended for ULDs.
1686  */
1687 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1688 {
1689 	return t4_ofld_send(netdev2adap(dev), skb);
1690 }
1691 EXPORT_SYMBOL(cxgb4_ofld_send);
1692 
1693 static inline void copy_frags(struct sk_buff *skb,
1694 			      const struct pkt_gl *gl, unsigned int offset)
1695 {
1696 	int i;
1697 
1698 	/* usually there's just one frag */
1699 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1700 			     gl->frags[0].offset + offset,
1701 			     gl->frags[0].size - offset);
1702 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1703 	for (i = 1; i < gl->nfrags; i++)
1704 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1705 				     gl->frags[i].offset,
1706 				     gl->frags[i].size);
1707 
1708 	/* get a reference to the last page, we don't own it */
1709 	get_page(gl->frags[gl->nfrags - 1].page);
1710 }
1711 
1712 /**
1713  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1714  *	@gl: the gather list
1715  *	@skb_len: size of sk_buff main body if it carries fragments
1716  *	@pull_len: amount of data to move to the sk_buff's main body
1717  *
1718  *	Builds an sk_buff from the given packet gather list.  Returns the
1719  *	sk_buff or %NULL if sk_buff allocation failed.
1720  */
1721 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1722 				   unsigned int skb_len, unsigned int pull_len)
1723 {
1724 	struct sk_buff *skb;
1725 
1726 	/*
1727 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1728 	 * size, which is expected since buffers are at least PAGE_SIZEd.
1729 	 * In this case packets up to RX_COPY_THRES have only one fragment.
1730 	 */
1731 	if (gl->tot_len <= RX_COPY_THRES) {
1732 		skb = dev_alloc_skb(gl->tot_len);
1733 		if (unlikely(!skb))
1734 			goto out;
1735 		__skb_put(skb, gl->tot_len);
1736 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1737 	} else {
1738 		skb = dev_alloc_skb(skb_len);
1739 		if (unlikely(!skb))
1740 			goto out;
1741 		__skb_put(skb, pull_len);
1742 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1743 
1744 		copy_frags(skb, gl, pull_len);
1745 		skb->len = gl->tot_len;
1746 		skb->data_len = skb->len - pull_len;
1747 		skb->truesize += skb->data_len;
1748 	}
1749 out:	return skb;
1750 }
1751 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1752 
1753 /**
1754  *	t4_pktgl_free - free a packet gather list
1755  *	@gl: the gather list
1756  *
1757  *	Releases the pages of a packet gather list.  We do not own the last
1758  *	page on the list and do not free it.
1759  */
1760 static void t4_pktgl_free(const struct pkt_gl *gl)
1761 {
1762 	int n;
1763 	const struct page_frag *p;
1764 
1765 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1766 		put_page(p->page);
1767 }
1768 
1769 /*
1770  * Process an MPS trace packet.  Give it an unused protocol number so it won't
1771  * be delivered to anyone and send it to the stack for capture.
1772  */
1773 static noinline int handle_trace_pkt(struct adapter *adap,
1774 				     const struct pkt_gl *gl)
1775 {
1776 	struct sk_buff *skb;
1777 
1778 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1779 	if (unlikely(!skb)) {
1780 		t4_pktgl_free(gl);
1781 		return 0;
1782 	}
1783 
1784 	if (is_t4(adap->params.chip))
1785 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
1786 	else
1787 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1788 
1789 	skb_reset_mac_header(skb);
1790 	skb->protocol = htons(0xffff);
1791 	skb->dev = adap->port[0];
1792 	netif_receive_skb(skb);
1793 	return 0;
1794 }
1795 
1796 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1797 		   const struct cpl_rx_pkt *pkt)
1798 {
1799 	struct adapter *adapter = rxq->rspq.adap;
1800 	struct sge *s = &adapter->sge;
1801 	int ret;
1802 	struct sk_buff *skb;
1803 
1804 	skb = napi_get_frags(&rxq->rspq.napi);
1805 	if (unlikely(!skb)) {
1806 		t4_pktgl_free(gl);
1807 		rxq->stats.rx_drops++;
1808 		return;
1809 	}
1810 
1811 	copy_frags(skb, gl, s->pktshift);
1812 	skb->len = gl->tot_len - s->pktshift;
1813 	skb->data_len = skb->len;
1814 	skb->truesize += skb->data_len;
1815 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1816 	skb_record_rx_queue(skb, rxq->rspq.idx);
1817 	skb_mark_napi_id(skb, &rxq->rspq.napi);
1818 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1819 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1820 			     PKT_HASH_TYPE_L3);
1821 
1822 	if (unlikely(pkt->vlan_ex)) {
1823 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1824 		rxq->stats.vlan_ex++;
1825 	}
1826 	ret = napi_gro_frags(&rxq->rspq.napi);
1827 	if (ret == GRO_HELD)
1828 		rxq->stats.lro_pkts++;
1829 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1830 		rxq->stats.lro_merged++;
1831 	rxq->stats.pkts++;
1832 	rxq->stats.rx_cso++;
1833 }
1834 
1835 /**
1836  *	t4_ethrx_handler - process an ingress ethernet packet
1837  *	@q: the response queue that received the packet
1838  *	@rsp: the response queue descriptor holding the RX_PKT message
1839  *	@si: the gather list of packet fragments
1840  *
1841  *	Process an ingress ethernet packet and deliver it to the stack.
1842  */
1843 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1844 		     const struct pkt_gl *si)
1845 {
1846 	bool csum_ok;
1847 	struct sk_buff *skb;
1848 	const struct cpl_rx_pkt *pkt;
1849 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1850 	struct sge *s = &q->adap->sge;
1851 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
1852 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
1853 #ifdef CONFIG_CHELSIO_T4_FCOE
1854 	struct port_info *pi;
1855 #endif
1856 
1857 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
1858 		return handle_trace_pkt(q->adap, si);
1859 
1860 	pkt = (const struct cpl_rx_pkt *)rsp;
1861 	csum_ok = pkt->csum_calc && !pkt->err_vec &&
1862 		  (q->netdev->features & NETIF_F_RXCSUM);
1863 	if ((pkt->l2info & htonl(RXF_TCP_F)) &&
1864 	    !(cxgb_poll_busy_polling(q)) &&
1865 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1866 		do_gro(rxq, si, pkt);
1867 		return 0;
1868 	}
1869 
1870 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1871 	if (unlikely(!skb)) {
1872 		t4_pktgl_free(si);
1873 		rxq->stats.rx_drops++;
1874 		return 0;
1875 	}
1876 
1877 	__skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
1878 	skb->protocol = eth_type_trans(skb, q->netdev);
1879 	skb_record_rx_queue(skb, q->idx);
1880 	if (skb->dev->features & NETIF_F_RXHASH)
1881 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1882 			     PKT_HASH_TYPE_L3);
1883 
1884 	rxq->stats.pkts++;
1885 
1886 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
1887 		if (!pkt->ip_frag) {
1888 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1889 			rxq->stats.rx_cso++;
1890 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
1891 			__sum16 c = (__force __sum16)pkt->csum;
1892 			skb->csum = csum_unfold(c);
1893 			skb->ip_summed = CHECKSUM_COMPLETE;
1894 			rxq->stats.rx_cso++;
1895 		}
1896 	} else {
1897 		skb_checksum_none_assert(skb);
1898 #ifdef CONFIG_CHELSIO_T4_FCOE
1899 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
1900 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
1901 
1902 		pi = netdev_priv(skb->dev);
1903 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
1904 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
1905 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
1906 				if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F)))
1907 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1908 			}
1909 		}
1910 
1911 #undef CPL_RX_PKT_FLAGS
1912 #endif /* CONFIG_CHELSIO_T4_FCOE */
1913 	}
1914 
1915 	if (unlikely(pkt->vlan_ex)) {
1916 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1917 		rxq->stats.vlan_ex++;
1918 	}
1919 	skb_mark_napi_id(skb, &q->napi);
1920 	netif_receive_skb(skb);
1921 	return 0;
1922 }
1923 
1924 /**
1925  *	restore_rx_bufs - put back a packet's Rx buffers
1926  *	@si: the packet gather list
1927  *	@q: the SGE free list
1928  *	@frags: number of FL buffers to restore
1929  *
1930  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
1931  *	have already been unmapped and are left unmapped, we mark them so to
1932  *	prevent further unmapping attempts.
1933  *
1934  *	This function undoes a series of @unmap_rx_buf calls when we find out
1935  *	that the current packet can't be processed right away afterall and we
1936  *	need to come back to it later.  This is a very rare event and there's
1937  *	no effort to make this particularly efficient.
1938  */
1939 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1940 			    int frags)
1941 {
1942 	struct rx_sw_desc *d;
1943 
1944 	while (frags--) {
1945 		if (q->cidx == 0)
1946 			q->cidx = q->size - 1;
1947 		else
1948 			q->cidx--;
1949 		d = &q->sdesc[q->cidx];
1950 		d->page = si->frags[frags].page;
1951 		d->dma_addr |= RX_UNMAPPED_BUF;
1952 		q->avail++;
1953 	}
1954 }
1955 
1956 /**
1957  *	is_new_response - check if a response is newly written
1958  *	@r: the response descriptor
1959  *	@q: the response queue
1960  *
1961  *	Returns true if a response descriptor contains a yet unprocessed
1962  *	response.
1963  */
1964 static inline bool is_new_response(const struct rsp_ctrl *r,
1965 				   const struct sge_rspq *q)
1966 {
1967 	return RSPD_GEN(r->type_gen) == q->gen;
1968 }
1969 
1970 /**
1971  *	rspq_next - advance to the next entry in a response queue
1972  *	@q: the queue
1973  *
1974  *	Updates the state of a response queue to advance it to the next entry.
1975  */
1976 static inline void rspq_next(struct sge_rspq *q)
1977 {
1978 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1979 	if (unlikely(++q->cidx == q->size)) {
1980 		q->cidx = 0;
1981 		q->gen ^= 1;
1982 		q->cur_desc = q->desc;
1983 	}
1984 }
1985 
1986 /**
1987  *	process_responses - process responses from an SGE response queue
1988  *	@q: the ingress queue to process
1989  *	@budget: how many responses can be processed in this round
1990  *
1991  *	Process responses from an SGE response queue up to the supplied budget.
1992  *	Responses include received packets as well as control messages from FW
1993  *	or HW.
1994  *
1995  *	Additionally choose the interrupt holdoff time for the next interrupt
1996  *	on this queue.  If the system is under memory shortage use a fairly
1997  *	long delay to help recovery.
1998  */
1999 static int process_responses(struct sge_rspq *q, int budget)
2000 {
2001 	int ret, rsp_type;
2002 	int budget_left = budget;
2003 	const struct rsp_ctrl *rc;
2004 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2005 	struct adapter *adapter = q->adap;
2006 	struct sge *s = &adapter->sge;
2007 
2008 	while (likely(budget_left)) {
2009 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2010 		if (!is_new_response(rc, q))
2011 			break;
2012 
2013 		dma_rmb();
2014 		rsp_type = RSPD_TYPE(rc->type_gen);
2015 		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
2016 			struct page_frag *fp;
2017 			struct pkt_gl si;
2018 			const struct rx_sw_desc *rsd;
2019 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
2020 
2021 			if (len & RSPD_NEWBUF) {
2022 				if (likely(q->offset > 0)) {
2023 					free_rx_bufs(q->adap, &rxq->fl, 1);
2024 					q->offset = 0;
2025 				}
2026 				len = RSPD_LEN(len);
2027 			}
2028 			si.tot_len = len;
2029 
2030 			/* gather packet fragments */
2031 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
2032 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2033 				bufsz = get_buf_size(adapter, rsd);
2034 				fp->page = rsd->page;
2035 				fp->offset = q->offset;
2036 				fp->size = min(bufsz, len);
2037 				len -= fp->size;
2038 				if (!len)
2039 					break;
2040 				unmap_rx_buf(q->adap, &rxq->fl);
2041 			}
2042 
2043 			/*
2044 			 * Last buffer remains mapped so explicitly make it
2045 			 * coherent for CPU access.
2046 			 */
2047 			dma_sync_single_for_cpu(q->adap->pdev_dev,
2048 						get_buf_addr(rsd),
2049 						fp->size, DMA_FROM_DEVICE);
2050 
2051 			si.va = page_address(si.frags[0].page) +
2052 				si.frags[0].offset;
2053 			prefetch(si.va);
2054 
2055 			si.nfrags = frags + 1;
2056 			ret = q->handler(q, q->cur_desc, &si);
2057 			if (likely(ret == 0))
2058 				q->offset += ALIGN(fp->size, s->fl_align);
2059 			else
2060 				restore_rx_bufs(&si, &rxq->fl, frags);
2061 		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
2062 			ret = q->handler(q, q->cur_desc, NULL);
2063 		} else {
2064 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
2065 		}
2066 
2067 		if (unlikely(ret)) {
2068 			/* couldn't process descriptor, back off for recovery */
2069 			q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
2070 			break;
2071 		}
2072 
2073 		rspq_next(q);
2074 		budget_left--;
2075 	}
2076 
2077 	if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
2078 		__refill_fl(q->adap, &rxq->fl);
2079 	return budget - budget_left;
2080 }
2081 
2082 #ifdef CONFIG_NET_RX_BUSY_POLL
2083 int cxgb_busy_poll(struct napi_struct *napi)
2084 {
2085 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2086 	unsigned int params, work_done;
2087 	u32 val;
2088 
2089 	if (!cxgb_poll_lock_poll(q))
2090 		return LL_FLUSH_BUSY;
2091 
2092 	work_done = process_responses(q, 4);
2093 	params = QINTR_TIMER_IDX(TIMERREG_COUNTER0_X) | QINTR_CNT_EN;
2094 	q->next_intr_params = params;
2095 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2096 
2097 	/* If we don't have access to the new User GTS (T5+), use the old
2098 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2099 	 */
2100 	if (unlikely(!q->bar2_addr))
2101 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2102 			     val | INGRESSQID_V((u32)q->cntxt_id));
2103 	else {
2104 		writel(val | INGRESSQID_V(q->bar2_qid),
2105 		       q->bar2_addr + SGE_UDB_GTS);
2106 		wmb();
2107 	}
2108 
2109 	cxgb_poll_unlock_poll(q);
2110 	return work_done;
2111 }
2112 #endif /* CONFIG_NET_RX_BUSY_POLL */
2113 
2114 /**
2115  *	napi_rx_handler - the NAPI handler for Rx processing
2116  *	@napi: the napi instance
2117  *	@budget: how many packets we can process in this round
2118  *
2119  *	Handler for new data events when using NAPI.  This does not need any
2120  *	locking or protection from interrupts as data interrupts are off at
2121  *	this point and other adapter interrupts do not interfere (the latter
2122  *	in not a concern at all with MSI-X as non-data interrupts then have
2123  *	a separate handler).
2124  */
2125 static int napi_rx_handler(struct napi_struct *napi, int budget)
2126 {
2127 	unsigned int params;
2128 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2129 	int work_done;
2130 	u32 val;
2131 
2132 	if (!cxgb_poll_lock_napi(q))
2133 		return budget;
2134 
2135 	work_done = process_responses(q, budget);
2136 	if (likely(work_done < budget)) {
2137 		int timer_index;
2138 
2139 		napi_complete(napi);
2140 		timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params);
2141 
2142 		if (q->adaptive_rx) {
2143 			if (work_done > max(timer_pkt_quota[timer_index],
2144 					    MIN_NAPI_WORK))
2145 				timer_index = (timer_index + 1);
2146 			else
2147 				timer_index = timer_index - 1;
2148 
2149 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2150 			q->next_intr_params = QINTR_TIMER_IDX(timer_index) |
2151 							      V_QINTR_CNT_EN;
2152 			params = q->next_intr_params;
2153 		} else {
2154 			params = q->next_intr_params;
2155 			q->next_intr_params = q->intr_params;
2156 		}
2157 	} else
2158 		params = QINTR_TIMER_IDX(7);
2159 
2160 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
2161 
2162 	/* If we don't have access to the new User GTS (T5+), use the old
2163 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2164 	 */
2165 	if (unlikely(q->bar2_addr == NULL)) {
2166 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2167 			     val | INGRESSQID_V((u32)q->cntxt_id));
2168 	} else {
2169 		writel(val | INGRESSQID_V(q->bar2_qid),
2170 		       q->bar2_addr + SGE_UDB_GTS);
2171 		wmb();
2172 	}
2173 	cxgb_poll_unlock_napi(q);
2174 	return work_done;
2175 }
2176 
2177 /*
2178  * The MSI-X interrupt handler for an SGE response queue.
2179  */
2180 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2181 {
2182 	struct sge_rspq *q = cookie;
2183 
2184 	napi_schedule(&q->napi);
2185 	return IRQ_HANDLED;
2186 }
2187 
2188 /*
2189  * Process the indirect interrupt entries in the interrupt queue and kick off
2190  * NAPI for each queue that has generated an entry.
2191  */
2192 static unsigned int process_intrq(struct adapter *adap)
2193 {
2194 	unsigned int credits;
2195 	const struct rsp_ctrl *rc;
2196 	struct sge_rspq *q = &adap->sge.intrq;
2197 	u32 val;
2198 
2199 	spin_lock(&adap->sge.intrq_lock);
2200 	for (credits = 0; ; credits++) {
2201 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2202 		if (!is_new_response(rc, q))
2203 			break;
2204 
2205 		dma_rmb();
2206 		if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
2207 			unsigned int qid = ntohl(rc->pldbuflen_qid);
2208 
2209 			qid -= adap->sge.ingr_start;
2210 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
2211 		}
2212 
2213 		rspq_next(q);
2214 	}
2215 
2216 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2217 
2218 	/* If we don't have access to the new User GTS (T5+), use the old
2219 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2220 	 */
2221 	if (unlikely(q->bar2_addr == NULL)) {
2222 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2223 			     val | INGRESSQID_V(q->cntxt_id));
2224 	} else {
2225 		writel(val | INGRESSQID_V(q->bar2_qid),
2226 		       q->bar2_addr + SGE_UDB_GTS);
2227 		wmb();
2228 	}
2229 	spin_unlock(&adap->sge.intrq_lock);
2230 	return credits;
2231 }
2232 
2233 /*
2234  * The MSI interrupt handler, which handles data events from SGE response queues
2235  * as well as error and other async events as they all use the same MSI vector.
2236  */
2237 static irqreturn_t t4_intr_msi(int irq, void *cookie)
2238 {
2239 	struct adapter *adap = cookie;
2240 
2241 	if (adap->flags & MASTER_PF)
2242 		t4_slow_intr_handler(adap);
2243 	process_intrq(adap);
2244 	return IRQ_HANDLED;
2245 }
2246 
2247 /*
2248  * Interrupt handler for legacy INTx interrupts.
2249  * Handles data events from SGE response queues as well as error and other
2250  * async events as they all use the same interrupt line.
2251  */
2252 static irqreturn_t t4_intr_intx(int irq, void *cookie)
2253 {
2254 	struct adapter *adap = cookie;
2255 
2256 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2257 	if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
2258 	    process_intrq(adap))
2259 		return IRQ_HANDLED;
2260 	return IRQ_NONE;             /* probably shared interrupt */
2261 }
2262 
2263 /**
2264  *	t4_intr_handler - select the top-level interrupt handler
2265  *	@adap: the adapter
2266  *
2267  *	Selects the top-level interrupt handler based on the type of interrupts
2268  *	(MSI-X, MSI, or INTx).
2269  */
2270 irq_handler_t t4_intr_handler(struct adapter *adap)
2271 {
2272 	if (adap->flags & USING_MSIX)
2273 		return t4_sge_intr_msix;
2274 	if (adap->flags & USING_MSI)
2275 		return t4_intr_msi;
2276 	return t4_intr_intx;
2277 }
2278 
2279 static void sge_rx_timer_cb(unsigned long data)
2280 {
2281 	unsigned long m;
2282 	unsigned int i, idma_same_state_cnt[2];
2283 	struct adapter *adap = (struct adapter *)data;
2284 	struct sge *s = &adap->sge;
2285 
2286 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2287 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2288 			struct sge_eth_rxq *rxq;
2289 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2290 			struct sge_fl *fl = s->egr_map[id];
2291 
2292 			clear_bit(id, s->starving_fl);
2293 			smp_mb__after_atomic();
2294 
2295 			if (fl_starving(adap, fl)) {
2296 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2297 				if (napi_reschedule(&rxq->rspq.napi))
2298 					fl->starving++;
2299 				else
2300 					set_bit(id, s->starving_fl);
2301 			}
2302 		}
2303 
2304 	t4_write_reg(adap, SGE_DEBUG_INDEX_A, 13);
2305 	idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH_A);
2306 	idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
2307 
2308 	for (i = 0; i < 2; i++) {
2309 		u32 debug0, debug11;
2310 
2311 		/* If the Ingress DMA Same State Counter ("timer") is less
2312 		 * than 1s, then we can reset our synthesized Stall Timer and
2313 		 * continue.  If we have previously emitted warnings about a
2314 		 * potential stalled Ingress Queue, issue a note indicating
2315 		 * that the Ingress Queue has resumed forward progress.
2316 		 */
2317 		if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
2318 			if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
2319 				CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
2320 					i, s->idma_qid[i],
2321 					s->idma_stalled[i]/HZ);
2322 			s->idma_stalled[i] = 0;
2323 			continue;
2324 		}
2325 
2326 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
2327 		 * domain.  The first time we get here it'll be because we
2328 		 * passed the 1s Threshold; each additional time it'll be
2329 		 * because the RX Timer Callback is being fired on its regular
2330 		 * schedule.
2331 		 *
2332 		 * If the stall is below our Potential Hung Ingress Queue
2333 		 * Warning Threshold, continue.
2334 		 */
2335 		if (s->idma_stalled[i] == 0)
2336 			s->idma_stalled[i] = HZ;
2337 		else
2338 			s->idma_stalled[i] += RX_QCHECK_PERIOD;
2339 
2340 		if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
2341 			continue;
2342 
2343 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
2344 		if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
2345 			continue;
2346 
2347 		/* Read and save the SGE IDMA State and Queue ID information.
2348 		 * We do this every time in case it changes across time ...
2349 		 */
2350 		t4_write_reg(adap, SGE_DEBUG_INDEX_A, 0);
2351 		debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
2352 		s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
2353 
2354 		t4_write_reg(adap, SGE_DEBUG_INDEX_A, 11);
2355 		debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
2356 		s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
2357 
2358 		CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
2359 			i, s->idma_qid[i], s->idma_state[i],
2360 			s->idma_stalled[i]/HZ, debug0, debug11);
2361 		t4_sge_decode_idma_state(adap, s->idma_state[i]);
2362 	}
2363 
2364 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2365 }
2366 
2367 static void sge_tx_timer_cb(unsigned long data)
2368 {
2369 	unsigned long m;
2370 	unsigned int i, budget;
2371 	struct adapter *adap = (struct adapter *)data;
2372 	struct sge *s = &adap->sge;
2373 
2374 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2375 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
2376 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2377 			struct sge_ofld_txq *txq = s->egr_map[id];
2378 
2379 			clear_bit(id, s->txq_maperr);
2380 			tasklet_schedule(&txq->qresume_tsk);
2381 		}
2382 
2383 	budget = MAX_TIMER_TX_RECLAIM;
2384 	i = s->ethtxq_rover;
2385 	do {
2386 		struct sge_eth_txq *q = &s->ethtxq[i];
2387 
2388 		if (q->q.in_use &&
2389 		    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2390 		    __netif_tx_trylock(q->txq)) {
2391 			int avail = reclaimable(&q->q);
2392 
2393 			if (avail) {
2394 				if (avail > budget)
2395 					avail = budget;
2396 
2397 				free_tx_desc(adap, &q->q, avail, true);
2398 				q->q.in_use -= avail;
2399 				budget -= avail;
2400 			}
2401 			__netif_tx_unlock(q->txq);
2402 		}
2403 
2404 		if (++i >= s->ethqsets)
2405 			i = 0;
2406 	} while (budget && i != s->ethtxq_rover);
2407 	s->ethtxq_rover = i;
2408 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2409 }
2410 
2411 /**
2412  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2413  *	@adapter: the adapter
2414  *	@qid: the SGE Queue ID
2415  *	@qtype: the SGE Queue Type (Egress or Ingress)
2416  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2417  *
2418  *	Returns the BAR2 address for the SGE Queue Registers associated with
2419  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2420  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2421  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2422  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2423  */
2424 static void __iomem *bar2_address(struct adapter *adapter,
2425 				  unsigned int qid,
2426 				  enum t4_bar2_qtype qtype,
2427 				  unsigned int *pbar2_qid)
2428 {
2429 	u64 bar2_qoffset;
2430 	int ret;
2431 
2432 	ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype,
2433 				&bar2_qoffset, pbar2_qid);
2434 	if (ret)
2435 		return NULL;
2436 
2437 	return adapter->bar2 + bar2_qoffset;
2438 }
2439 
2440 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2441 		     struct net_device *dev, int intr_idx,
2442 		     struct sge_fl *fl, rspq_handler_t hnd)
2443 {
2444 	int ret, flsz = 0;
2445 	struct fw_iq_cmd c;
2446 	struct sge *s = &adap->sge;
2447 	struct port_info *pi = netdev_priv(dev);
2448 
2449 	/* Size needs to be multiple of 16, including status entry. */
2450 	iq->size = roundup(iq->size, 16);
2451 
2452 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2453 			      &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2454 	if (!iq->desc)
2455 		return -ENOMEM;
2456 
2457 	memset(&c, 0, sizeof(c));
2458 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2459 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2460 			    FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0));
2461 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2462 				 FW_LEN16(c));
2463 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2464 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2465 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) |
2466 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2467 							-intr_idx - 1));
2468 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2469 		FW_IQ_CMD_IQGTSMODE_F |
2470 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2471 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2472 	c.iqsize = htons(iq->size);
2473 	c.iqaddr = cpu_to_be64(iq->phys_addr);
2474 
2475 	if (fl) {
2476 		fl->size = roundup(fl->size, 8);
2477 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2478 				      sizeof(struct rx_sw_desc), &fl->addr,
2479 				      &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2480 		if (!fl->desc)
2481 			goto fl_nomem;
2482 
2483 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2484 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F |
2485 					    FW_IQ_CMD_FL0FETCHRO_F |
2486 					    FW_IQ_CMD_FL0DATARO_F |
2487 					    FW_IQ_CMD_FL0PADEN_F);
2488 		c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) |
2489 				FW_IQ_CMD_FL0FBMAX_V(3));
2490 		c.fl0size = htons(flsz);
2491 		c.fl0addr = cpu_to_be64(fl->addr);
2492 	}
2493 
2494 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2495 	if (ret)
2496 		goto err;
2497 
2498 	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2499 	napi_hash_add(&iq->napi);
2500 	iq->cur_desc = iq->desc;
2501 	iq->cidx = 0;
2502 	iq->gen = 1;
2503 	iq->next_intr_params = iq->intr_params;
2504 	iq->cntxt_id = ntohs(c.iqid);
2505 	iq->abs_id = ntohs(c.physiqid);
2506 	iq->bar2_addr = bar2_address(adap,
2507 				     iq->cntxt_id,
2508 				     T4_BAR2_QTYPE_INGRESS,
2509 				     &iq->bar2_qid);
2510 	iq->size--;                           /* subtract status entry */
2511 	iq->netdev = dev;
2512 	iq->handler = hnd;
2513 
2514 	/* set offset to -1 to distinguish ingress queues without FL */
2515 	iq->offset = fl ? 0 : -1;
2516 
2517 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2518 
2519 	if (fl) {
2520 		fl->cntxt_id = ntohs(c.fl0id);
2521 		fl->avail = fl->pend_cred = 0;
2522 		fl->pidx = fl->cidx = 0;
2523 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2524 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2525 
2526 		/* Note, we must initialize the BAR2 Free List User Doorbell
2527 		 * information before refilling the Free List!
2528 		 */
2529 		fl->bar2_addr = bar2_address(adap,
2530 					     fl->cntxt_id,
2531 					     T4_BAR2_QTYPE_EGRESS,
2532 					     &fl->bar2_qid);
2533 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2534 	}
2535 	return 0;
2536 
2537 fl_nomem:
2538 	ret = -ENOMEM;
2539 err:
2540 	if (iq->desc) {
2541 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2542 				  iq->desc, iq->phys_addr);
2543 		iq->desc = NULL;
2544 	}
2545 	if (fl && fl->desc) {
2546 		kfree(fl->sdesc);
2547 		fl->sdesc = NULL;
2548 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2549 				  fl->desc, fl->addr);
2550 		fl->desc = NULL;
2551 	}
2552 	return ret;
2553 }
2554 
2555 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2556 {
2557 	q->cntxt_id = id;
2558 	q->bar2_addr = bar2_address(adap,
2559 				    q->cntxt_id,
2560 				    T4_BAR2_QTYPE_EGRESS,
2561 				    &q->bar2_qid);
2562 	q->in_use = 0;
2563 	q->cidx = q->pidx = 0;
2564 	q->stops = q->restarts = 0;
2565 	q->stat = (void *)&q->desc[q->size];
2566 	spin_lock_init(&q->db_lock);
2567 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
2568 }
2569 
2570 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2571 			 struct net_device *dev, struct netdev_queue *netdevq,
2572 			 unsigned int iqid)
2573 {
2574 	int ret, nentries;
2575 	struct fw_eq_eth_cmd c;
2576 	struct sge *s = &adap->sge;
2577 	struct port_info *pi = netdev_priv(dev);
2578 
2579 	/* Add status entries */
2580 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2581 
2582 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2583 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2584 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2585 			netdev_queue_numa_node_read(netdevq));
2586 	if (!txq->q.desc)
2587 		return -ENOMEM;
2588 
2589 	memset(&c, 0, sizeof(c));
2590 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
2591 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2592 			    FW_EQ_ETH_CMD_PFN_V(adap->fn) |
2593 			    FW_EQ_ETH_CMD_VFN_V(0));
2594 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
2595 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
2596 	c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2597 			   FW_EQ_ETH_CMD_VIID_V(pi->viid));
2598 	c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) |
2599 				   FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
2600 				   FW_EQ_ETH_CMD_FETCHRO_V(1) |
2601 				   FW_EQ_ETH_CMD_IQID_V(iqid));
2602 	c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) |
2603 				  FW_EQ_ETH_CMD_FBMAX_V(3) |
2604 				  FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) |
2605 				  FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2606 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2607 
2608 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2609 	if (ret) {
2610 		kfree(txq->q.sdesc);
2611 		txq->q.sdesc = NULL;
2612 		dma_free_coherent(adap->pdev_dev,
2613 				  nentries * sizeof(struct tx_desc),
2614 				  txq->q.desc, txq->q.phys_addr);
2615 		txq->q.desc = NULL;
2616 		return ret;
2617 	}
2618 
2619 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
2620 	txq->txq = netdevq;
2621 	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2622 	txq->mapping_err = 0;
2623 	return 0;
2624 }
2625 
2626 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2627 			  struct net_device *dev, unsigned int iqid,
2628 			  unsigned int cmplqid)
2629 {
2630 	int ret, nentries;
2631 	struct fw_eq_ctrl_cmd c;
2632 	struct sge *s = &adap->sge;
2633 	struct port_info *pi = netdev_priv(dev);
2634 
2635 	/* Add status entries */
2636 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2637 
2638 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2639 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2640 				 NULL, 0, NUMA_NO_NODE);
2641 	if (!txq->q.desc)
2642 		return -ENOMEM;
2643 
2644 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
2645 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2646 			    FW_EQ_CTRL_CMD_PFN_V(adap->fn) |
2647 			    FW_EQ_CTRL_CMD_VFN_V(0));
2648 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
2649 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
2650 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
2651 	c.physeqid_pkd = htonl(0);
2652 	c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) |
2653 				   FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
2654 				   FW_EQ_CTRL_CMD_FETCHRO_F |
2655 				   FW_EQ_CTRL_CMD_IQID_V(iqid));
2656 	c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) |
2657 				  FW_EQ_CTRL_CMD_FBMAX_V(3) |
2658 				  FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) |
2659 				  FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
2660 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2661 
2662 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2663 	if (ret) {
2664 		dma_free_coherent(adap->pdev_dev,
2665 				  nentries * sizeof(struct tx_desc),
2666 				  txq->q.desc, txq->q.phys_addr);
2667 		txq->q.desc = NULL;
2668 		return ret;
2669 	}
2670 
2671 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
2672 	txq->adap = adap;
2673 	skb_queue_head_init(&txq->sendq);
2674 	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2675 	txq->full = 0;
2676 	return 0;
2677 }
2678 
2679 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2680 			  struct net_device *dev, unsigned int iqid)
2681 {
2682 	int ret, nentries;
2683 	struct fw_eq_ofld_cmd c;
2684 	struct sge *s = &adap->sge;
2685 	struct port_info *pi = netdev_priv(dev);
2686 
2687 	/* Add status entries */
2688 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2689 
2690 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2691 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2692 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2693 			NUMA_NO_NODE);
2694 	if (!txq->q.desc)
2695 		return -ENOMEM;
2696 
2697 	memset(&c, 0, sizeof(c));
2698 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
2699 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2700 			    FW_EQ_OFLD_CMD_PFN_V(adap->fn) |
2701 			    FW_EQ_OFLD_CMD_VFN_V(0));
2702 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
2703 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
2704 	c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) |
2705 				   FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
2706 				   FW_EQ_OFLD_CMD_FETCHRO_F |
2707 				   FW_EQ_OFLD_CMD_IQID_V(iqid));
2708 	c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) |
2709 				  FW_EQ_OFLD_CMD_FBMAX_V(3) |
2710 				  FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) |
2711 				  FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
2712 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2713 
2714 	ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2715 	if (ret) {
2716 		kfree(txq->q.sdesc);
2717 		txq->q.sdesc = NULL;
2718 		dma_free_coherent(adap->pdev_dev,
2719 				  nentries * sizeof(struct tx_desc),
2720 				  txq->q.desc, txq->q.phys_addr);
2721 		txq->q.desc = NULL;
2722 		return ret;
2723 	}
2724 
2725 	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
2726 	txq->adap = adap;
2727 	skb_queue_head_init(&txq->sendq);
2728 	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2729 	txq->full = 0;
2730 	txq->mapping_err = 0;
2731 	return 0;
2732 }
2733 
2734 static void free_txq(struct adapter *adap, struct sge_txq *q)
2735 {
2736 	struct sge *s = &adap->sge;
2737 
2738 	dma_free_coherent(adap->pdev_dev,
2739 			  q->size * sizeof(struct tx_desc) + s->stat_len,
2740 			  q->desc, q->phys_addr);
2741 	q->cntxt_id = 0;
2742 	q->sdesc = NULL;
2743 	q->desc = NULL;
2744 }
2745 
2746 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2747 			 struct sge_fl *fl)
2748 {
2749 	struct sge *s = &adap->sge;
2750 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2751 
2752 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2753 	t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2754 		   rq->cntxt_id, fl_id, 0xffff);
2755 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2756 			  rq->desc, rq->phys_addr);
2757 	napi_hash_del(&rq->napi);
2758 	netif_napi_del(&rq->napi);
2759 	rq->netdev = NULL;
2760 	rq->cntxt_id = rq->abs_id = 0;
2761 	rq->desc = NULL;
2762 
2763 	if (fl) {
2764 		free_rx_bufs(adap, fl, fl->avail);
2765 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2766 				  fl->desc, fl->addr);
2767 		kfree(fl->sdesc);
2768 		fl->sdesc = NULL;
2769 		fl->cntxt_id = 0;
2770 		fl->desc = NULL;
2771 	}
2772 }
2773 
2774 /**
2775  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
2776  *      @adap: the adapter
2777  *      @n: number of queues
2778  *      @q: pointer to first queue
2779  *
2780  *      Release the resources of a consecutive block of offload Rx queues.
2781  */
2782 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
2783 {
2784 	for ( ; n; n--, q++)
2785 		if (q->rspq.desc)
2786 			free_rspq_fl(adap, &q->rspq,
2787 				     q->fl.size ? &q->fl : NULL);
2788 }
2789 
2790 /**
2791  *	t4_free_sge_resources - free SGE resources
2792  *	@adap: the adapter
2793  *
2794  *	Frees resources used by the SGE queue sets.
2795  */
2796 void t4_free_sge_resources(struct adapter *adap)
2797 {
2798 	int i;
2799 	struct sge_eth_rxq *eq = adap->sge.ethrxq;
2800 	struct sge_eth_txq *etq = adap->sge.ethtxq;
2801 
2802 	/* clean up Ethernet Tx/Rx queues */
2803 	for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2804 		if (eq->rspq.desc)
2805 			free_rspq_fl(adap, &eq->rspq,
2806 				     eq->fl.size ? &eq->fl : NULL);
2807 		if (etq->q.desc) {
2808 			t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2809 				       etq->q.cntxt_id);
2810 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2811 			kfree(etq->q.sdesc);
2812 			free_txq(adap, &etq->q);
2813 		}
2814 	}
2815 
2816 	/* clean up RDMA and iSCSI Rx queues */
2817 	t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
2818 	t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
2819 	t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
2820 
2821 	/* clean up offload Tx queues */
2822 	for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2823 		struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2824 
2825 		if (q->q.desc) {
2826 			tasklet_kill(&q->qresume_tsk);
2827 			t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2828 					q->q.cntxt_id);
2829 			free_tx_desc(adap, &q->q, q->q.in_use, false);
2830 			kfree(q->q.sdesc);
2831 			__skb_queue_purge(&q->sendq);
2832 			free_txq(adap, &q->q);
2833 		}
2834 	}
2835 
2836 	/* clean up control Tx queues */
2837 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2838 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2839 
2840 		if (cq->q.desc) {
2841 			tasklet_kill(&cq->qresume_tsk);
2842 			t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2843 					cq->q.cntxt_id);
2844 			__skb_queue_purge(&cq->sendq);
2845 			free_txq(adap, &cq->q);
2846 		}
2847 	}
2848 
2849 	if (adap->sge.fw_evtq.desc)
2850 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2851 
2852 	if (adap->sge.intrq.desc)
2853 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
2854 
2855 	/* clear the reverse egress queue map */
2856 	memset(adap->sge.egr_map, 0,
2857 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
2858 }
2859 
2860 void t4_sge_start(struct adapter *adap)
2861 {
2862 	adap->sge.ethtxq_rover = 0;
2863 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2864 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2865 }
2866 
2867 /**
2868  *	t4_sge_stop - disable SGE operation
2869  *	@adap: the adapter
2870  *
2871  *	Stop tasklets and timers associated with the DMA engine.  Note that
2872  *	this is effective only if measures have been taken to disable any HW
2873  *	events that may restart them.
2874  */
2875 void t4_sge_stop(struct adapter *adap)
2876 {
2877 	int i;
2878 	struct sge *s = &adap->sge;
2879 
2880 	if (in_interrupt())  /* actions below require waiting */
2881 		return;
2882 
2883 	if (s->rx_timer.function)
2884 		del_timer_sync(&s->rx_timer);
2885 	if (s->tx_timer.function)
2886 		del_timer_sync(&s->tx_timer);
2887 
2888 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2889 		struct sge_ofld_txq *q = &s->ofldtxq[i];
2890 
2891 		if (q->q.desc)
2892 			tasklet_kill(&q->qresume_tsk);
2893 	}
2894 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2895 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
2896 
2897 		if (cq->q.desc)
2898 			tasklet_kill(&cq->qresume_tsk);
2899 	}
2900 }
2901 
2902 /**
2903  *	t4_sge_init_soft - grab core SGE values needed by SGE code
2904  *	@adap: the adapter
2905  *
2906  *	We need to grab the SGE operating parameters that we need to have
2907  *	in order to do our job and make sure we can live with them.
2908  */
2909 
2910 static int t4_sge_init_soft(struct adapter *adap)
2911 {
2912 	struct sge *s = &adap->sge;
2913 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2914 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2915 	u32 ingress_rx_threshold;
2916 
2917 	/*
2918 	 * Verify that CPL messages are going to the Ingress Queue for
2919 	 * process_responses() and that only packet data is going to the
2920 	 * Free Lists.
2921 	 */
2922 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
2923 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2924 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2925 		return -EINVAL;
2926 	}
2927 
2928 	/*
2929 	 * Validate the Host Buffer Register Array indices that we want to
2930 	 * use ...
2931 	 *
2932 	 * XXX Note that we should really read through the Host Buffer Size
2933 	 * XXX register array and find the indices of the Buffer Sizes which
2934 	 * XXX meet our needs!
2935 	 */
2936 	#define READ_FL_BUF(x) \
2937 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
2938 
2939 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2940 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2941 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2942 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2943 
2944 	/* We only bother using the Large Page logic if the Large Page Buffer
2945 	 * is larger than our Page Size Buffer.
2946 	 */
2947 	if (fl_large_pg <= fl_small_pg)
2948 		fl_large_pg = 0;
2949 
2950 	#undef READ_FL_BUF
2951 
2952 	/* The Page Size Buffer must be exactly equal to our Page Size and the
2953 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2954 	 */
2955 	if (fl_small_pg != PAGE_SIZE ||
2956 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
2957 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2958 			fl_small_pg, fl_large_pg);
2959 		return -EINVAL;
2960 	}
2961 	if (fl_large_pg)
2962 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2963 
2964 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2965 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2966 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2967 			fl_small_mtu, fl_large_mtu);
2968 		return -EINVAL;
2969 	}
2970 
2971 	/*
2972 	 * Retrieve our RX interrupt holdoff timer values and counter
2973 	 * threshold values from the SGE parameters.
2974 	 */
2975 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
2976 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
2977 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
2978 	s->timer_val[0] = core_ticks_to_us(adap,
2979 		TIMERVALUE0_G(timer_value_0_and_1));
2980 	s->timer_val[1] = core_ticks_to_us(adap,
2981 		TIMERVALUE1_G(timer_value_0_and_1));
2982 	s->timer_val[2] = core_ticks_to_us(adap,
2983 		TIMERVALUE2_G(timer_value_2_and_3));
2984 	s->timer_val[3] = core_ticks_to_us(adap,
2985 		TIMERVALUE3_G(timer_value_2_and_3));
2986 	s->timer_val[4] = core_ticks_to_us(adap,
2987 		TIMERVALUE4_G(timer_value_4_and_5));
2988 	s->timer_val[5] = core_ticks_to_us(adap,
2989 		TIMERVALUE5_G(timer_value_4_and_5));
2990 
2991 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
2992 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
2993 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
2994 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
2995 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
2996 
2997 	return 0;
2998 }
2999 
3000 /**
3001  *     t4_sge_init - initialize SGE
3002  *     @adap: the adapter
3003  *
3004  *     Perform low-level SGE code initialization needed every time after a
3005  *     chip reset.
3006  */
3007 int t4_sge_init(struct adapter *adap)
3008 {
3009 	struct sge *s = &adap->sge;
3010 	u32 sge_control, sge_control2, sge_conm_ctrl;
3011 	unsigned int ingpadboundary, ingpackboundary;
3012 	int ret, egress_threshold;
3013 
3014 	/*
3015 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
3016 	 * t4_fixup_host_params().
3017 	 */
3018 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
3019 	s->pktshift = PKTSHIFT_G(sge_control);
3020 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3021 
3022 	/* T4 uses a single control field to specify both the PCIe Padding and
3023 	 * Packing Boundary.  T5 introduced the ability to specify these
3024 	 * separately.  The actual Ingress Packet Data alignment boundary
3025 	 * within Packed Buffer Mode is the maximum of these two
3026 	 * specifications.
3027 	 */
3028 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) +
3029 			       INGPADBOUNDARY_SHIFT_X);
3030 	if (is_t4(adap->params.chip)) {
3031 		s->fl_align = ingpadboundary;
3032 	} else {
3033 		/* T5 has a different interpretation of one of the PCIe Packing
3034 		 * Boundary values.
3035 		 */
3036 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
3037 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
3038 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
3039 			ingpackboundary = 16;
3040 		else
3041 			ingpackboundary = 1 << (ingpackboundary +
3042 						INGPACKBOUNDARY_SHIFT_X);
3043 
3044 		s->fl_align = max(ingpadboundary, ingpackboundary);
3045 	}
3046 
3047 	ret = t4_sge_init_soft(adap);
3048 	if (ret < 0)
3049 		return ret;
3050 
3051 	/*
3052 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
3053 	 * timer will attempt to refill it.  This needs to be larger than the
3054 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
3055 	 * stuck waiting for new packets while the SGE is waiting for us to
3056 	 * give it more Free List entries.  (Note that the SGE's Egress
3057 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
3058 	 * there was only a single field to control this.  For T5 there's the
3059 	 * original field which now only applies to Unpacked Mode Free List
3060 	 * buffers and a new field which only applies to Packed Mode Free List
3061 	 * buffers.
3062 	 */
3063 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3064 	if (is_t4(adap->params.chip))
3065 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3066 	else
3067 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3068 	s->fl_starve_thres = 2*egress_threshold + 1;
3069 
3070 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
3071 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
3072 	s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000;  /* 1 s */
3073 	s->idma_stalled[0] = 0;
3074 	s->idma_stalled[1] = 0;
3075 	spin_lock_init(&s->intrq_lock);
3076 
3077 	return 0;
3078 }
3079