1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/ipv6.h> 45 #include <net/tcp.h> 46 #include "cxgb4.h" 47 #include "t4_regs.h" 48 #include "t4_msg.h" 49 #include "t4fw_api.h" 50 51 /* 52 * Rx buffer size. We use largish buffers if possible but settle for single 53 * pages under memory shortage. 54 */ 55 #if PAGE_SHIFT >= 16 56 # define FL_PG_ORDER 0 57 #else 58 # define FL_PG_ORDER (16 - PAGE_SHIFT) 59 #endif 60 61 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 62 #define RX_COPY_THRES 256 63 #define RX_PULL_LEN 128 64 65 /* 66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 68 */ 69 #define RX_PKT_SKB_LEN 512 70 71 /* Ethernet header padding prepended to RX_PKTs */ 72 #define RX_PKT_PAD 2 73 74 /* 75 * Max number of Tx descriptors we clean up at a time. Should be modest as 76 * freeing skbs isn't cheap and it happens while holding locks. We just need 77 * to free packets faster than they arrive, we eventually catch up and keep 78 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. 79 */ 80 #define MAX_TX_RECLAIM 16 81 82 /* 83 * Max number of Rx buffers we replenish at a time. Again keep this modest, 84 * allocating buffers isn't cheap either. 85 */ 86 #define MAX_RX_REFILL 16U 87 88 /* 89 * Period of the Rx queue check timer. This timer is infrequent as it has 90 * something to do only when the system experiences severe memory shortage. 91 */ 92 #define RX_QCHECK_PERIOD (HZ / 2) 93 94 /* 95 * Period of the Tx queue check timer. 96 */ 97 #define TX_QCHECK_PERIOD (HZ / 2) 98 99 /* 100 * Max number of Tx descriptors to be reclaimed by the Tx timer. 101 */ 102 #define MAX_TIMER_TX_RECLAIM 100 103 104 /* 105 * Timer index used when backing off due to memory shortage. 106 */ 107 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 108 109 /* 110 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will 111 * attempt to refill it. 112 */ 113 #define FL_STARVE_THRES 4 114 115 /* 116 * Suspend an Ethernet Tx queue with fewer available descriptors than this. 117 * This is the same as calc_tx_descs() for a TSO packet with 118 * nr_frags == MAX_SKB_FRAGS. 119 */ 120 #define ETHTXQ_STOP_THRES \ 121 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) 122 123 /* 124 * Suspension threshold for non-Ethernet Tx queues. We require enough room 125 * for a full sized WR. 126 */ 127 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 128 129 /* 130 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 131 * into a WR. 132 */ 133 #define MAX_IMM_TX_PKT_LEN 128 134 135 /* 136 * Max size of a WR sent through a control Tx queue. 137 */ 138 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 139 140 enum { 141 /* packet alignment in FL buffers */ 142 FL_ALIGN = L1_CACHE_BYTES < 32 ? 32 : L1_CACHE_BYTES, 143 /* egress status entry size */ 144 STAT_LEN = L1_CACHE_BYTES > 64 ? 128 : 64 145 }; 146 147 struct tx_sw_desc { /* SW state per Tx descriptor */ 148 struct sk_buff *skb; 149 struct ulptx_sgl *sgl; 150 }; 151 152 struct rx_sw_desc { /* SW state per Rx descriptor */ 153 struct page *page; 154 dma_addr_t dma_addr; 155 }; 156 157 /* 158 * The low bits of rx_sw_desc.dma_addr have special meaning. 159 */ 160 enum { 161 RX_LARGE_BUF = 1 << 0, /* buffer is larger than PAGE_SIZE */ 162 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */ 163 }; 164 165 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 166 { 167 return d->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF); 168 } 169 170 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 171 { 172 return !(d->dma_addr & RX_UNMAPPED_BUF); 173 } 174 175 /** 176 * txq_avail - return the number of available slots in a Tx queue 177 * @q: the Tx queue 178 * 179 * Returns the number of descriptors in a Tx queue available to write new 180 * packets. 181 */ 182 static inline unsigned int txq_avail(const struct sge_txq *q) 183 { 184 return q->size - 1 - q->in_use; 185 } 186 187 /** 188 * fl_cap - return the capacity of a free-buffer list 189 * @fl: the FL 190 * 191 * Returns the capacity of a free-buffer list. The capacity is less than 192 * the size because one descriptor needs to be left unpopulated, otherwise 193 * HW will think the FL is empty. 194 */ 195 static inline unsigned int fl_cap(const struct sge_fl *fl) 196 { 197 return fl->size - 8; /* 1 descriptor = 8 buffers */ 198 } 199 200 static inline bool fl_starving(const struct sge_fl *fl) 201 { 202 return fl->avail - fl->pend_cred <= FL_STARVE_THRES; 203 } 204 205 static int map_skb(struct device *dev, const struct sk_buff *skb, 206 dma_addr_t *addr) 207 { 208 const skb_frag_t *fp, *end; 209 const struct skb_shared_info *si; 210 211 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 212 if (dma_mapping_error(dev, *addr)) 213 goto out_err; 214 215 si = skb_shinfo(skb); 216 end = &si->frags[si->nr_frags]; 217 218 for (fp = si->frags; fp < end; fp++) { 219 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 220 DMA_TO_DEVICE); 221 if (dma_mapping_error(dev, *addr)) 222 goto unwind; 223 } 224 return 0; 225 226 unwind: 227 while (fp-- > si->frags) 228 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 229 230 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 231 out_err: 232 return -ENOMEM; 233 } 234 235 #ifdef CONFIG_NEED_DMA_MAP_STATE 236 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 237 const dma_addr_t *addr) 238 { 239 const skb_frag_t *fp, *end; 240 const struct skb_shared_info *si; 241 242 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 243 244 si = skb_shinfo(skb); 245 end = &si->frags[si->nr_frags]; 246 for (fp = si->frags; fp < end; fp++) 247 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 248 } 249 250 /** 251 * deferred_unmap_destructor - unmap a packet when it is freed 252 * @skb: the packet 253 * 254 * This is the packet destructor used for Tx packets that need to remain 255 * mapped until they are freed rather than until their Tx descriptors are 256 * freed. 257 */ 258 static void deferred_unmap_destructor(struct sk_buff *skb) 259 { 260 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 261 } 262 #endif 263 264 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 265 const struct ulptx_sgl *sgl, const struct sge_txq *q) 266 { 267 const struct ulptx_sge_pair *p; 268 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 269 270 if (likely(skb_headlen(skb))) 271 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 272 DMA_TO_DEVICE); 273 else { 274 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 275 DMA_TO_DEVICE); 276 nfrags--; 277 } 278 279 /* 280 * the complexity below is because of the possibility of a wrap-around 281 * in the middle of an SGL 282 */ 283 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 284 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 285 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 286 ntohl(p->len[0]), DMA_TO_DEVICE); 287 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 288 ntohl(p->len[1]), DMA_TO_DEVICE); 289 p++; 290 } else if ((u8 *)p == (u8 *)q->stat) { 291 p = (const struct ulptx_sge_pair *)q->desc; 292 goto unmap; 293 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 294 const __be64 *addr = (const __be64 *)q->desc; 295 296 dma_unmap_page(dev, be64_to_cpu(addr[0]), 297 ntohl(p->len[0]), DMA_TO_DEVICE); 298 dma_unmap_page(dev, be64_to_cpu(addr[1]), 299 ntohl(p->len[1]), DMA_TO_DEVICE); 300 p = (const struct ulptx_sge_pair *)&addr[2]; 301 } else { 302 const __be64 *addr = (const __be64 *)q->desc; 303 304 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 305 ntohl(p->len[0]), DMA_TO_DEVICE); 306 dma_unmap_page(dev, be64_to_cpu(addr[0]), 307 ntohl(p->len[1]), DMA_TO_DEVICE); 308 p = (const struct ulptx_sge_pair *)&addr[1]; 309 } 310 } 311 if (nfrags) { 312 __be64 addr; 313 314 if ((u8 *)p == (u8 *)q->stat) 315 p = (const struct ulptx_sge_pair *)q->desc; 316 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 317 *(const __be64 *)q->desc; 318 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 319 DMA_TO_DEVICE); 320 } 321 } 322 323 /** 324 * free_tx_desc - reclaims Tx descriptors and their buffers 325 * @adapter: the adapter 326 * @q: the Tx queue to reclaim descriptors from 327 * @n: the number of descriptors to reclaim 328 * @unmap: whether the buffers should be unmapped for DMA 329 * 330 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 331 * Tx buffers. Called with the Tx queue lock held. 332 */ 333 static void free_tx_desc(struct adapter *adap, struct sge_txq *q, 334 unsigned int n, bool unmap) 335 { 336 struct tx_sw_desc *d; 337 unsigned int cidx = q->cidx; 338 struct device *dev = adap->pdev_dev; 339 340 d = &q->sdesc[cidx]; 341 while (n--) { 342 if (d->skb) { /* an SGL is present */ 343 if (unmap) 344 unmap_sgl(dev, d->skb, d->sgl, q); 345 kfree_skb(d->skb); 346 d->skb = NULL; 347 } 348 ++d; 349 if (++cidx == q->size) { 350 cidx = 0; 351 d = q->sdesc; 352 } 353 } 354 q->cidx = cidx; 355 } 356 357 /* 358 * Return the number of reclaimable descriptors in a Tx queue. 359 */ 360 static inline int reclaimable(const struct sge_txq *q) 361 { 362 int hw_cidx = ntohs(q->stat->cidx); 363 hw_cidx -= q->cidx; 364 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 365 } 366 367 /** 368 * reclaim_completed_tx - reclaims completed Tx descriptors 369 * @adap: the adapter 370 * @q: the Tx queue to reclaim completed descriptors from 371 * @unmap: whether the buffers should be unmapped for DMA 372 * 373 * Reclaims Tx descriptors that the SGE has indicated it has processed, 374 * and frees the associated buffers if possible. Called with the Tx 375 * queue locked. 376 */ 377 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 378 bool unmap) 379 { 380 int avail = reclaimable(q); 381 382 if (avail) { 383 /* 384 * Limit the amount of clean up work we do at a time to keep 385 * the Tx lock hold time O(1). 386 */ 387 if (avail > MAX_TX_RECLAIM) 388 avail = MAX_TX_RECLAIM; 389 390 free_tx_desc(adap, q, avail, unmap); 391 q->in_use -= avail; 392 } 393 } 394 395 static inline int get_buf_size(const struct rx_sw_desc *d) 396 { 397 #if FL_PG_ORDER > 0 398 return (d->dma_addr & RX_LARGE_BUF) ? (PAGE_SIZE << FL_PG_ORDER) : 399 PAGE_SIZE; 400 #else 401 return PAGE_SIZE; 402 #endif 403 } 404 405 /** 406 * free_rx_bufs - free the Rx buffers on an SGE free list 407 * @adap: the adapter 408 * @q: the SGE free list to free buffers from 409 * @n: how many buffers to free 410 * 411 * Release the next @n buffers on an SGE free-buffer Rx queue. The 412 * buffers must be made inaccessible to HW before calling this function. 413 */ 414 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 415 { 416 while (n--) { 417 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 418 419 if (is_buf_mapped(d)) 420 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 421 get_buf_size(d), PCI_DMA_FROMDEVICE); 422 put_page(d->page); 423 d->page = NULL; 424 if (++q->cidx == q->size) 425 q->cidx = 0; 426 q->avail--; 427 } 428 } 429 430 /** 431 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 432 * @adap: the adapter 433 * @q: the SGE free list 434 * 435 * Unmap the current buffer on an SGE free-buffer Rx queue. The 436 * buffer must be made inaccessible to HW before calling this function. 437 * 438 * This is similar to @free_rx_bufs above but does not free the buffer. 439 * Do note that the FL still loses any further access to the buffer. 440 */ 441 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 442 { 443 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 444 445 if (is_buf_mapped(d)) 446 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 447 get_buf_size(d), PCI_DMA_FROMDEVICE); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453 454 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 455 { 456 if (q->pend_cred >= 8) { 457 wmb(); 458 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO | 459 QID(q->cntxt_id) | PIDX(q->pend_cred / 8)); 460 q->pend_cred &= 7; 461 } 462 } 463 464 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 465 dma_addr_t mapping) 466 { 467 sd->page = pg; 468 sd->dma_addr = mapping; /* includes size low bits */ 469 } 470 471 /** 472 * refill_fl - refill an SGE Rx buffer ring 473 * @adap: the adapter 474 * @q: the ring to refill 475 * @n: the number of new buffers to allocate 476 * @gfp: the gfp flags for the allocations 477 * 478 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 479 * allocated with the supplied gfp flags. The caller must assure that 480 * @n does not exceed the queue's capacity. If afterwards the queue is 481 * found critically low mark it as starving in the bitmap of starving FLs. 482 * 483 * Returns the number of buffers allocated. 484 */ 485 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 486 gfp_t gfp) 487 { 488 struct page *pg; 489 dma_addr_t mapping; 490 unsigned int cred = q->avail; 491 __be64 *d = &q->desc[q->pidx]; 492 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 493 494 gfp |= __GFP_NOWARN | __GFP_COLD; 495 496 #if FL_PG_ORDER > 0 497 /* 498 * Prefer large buffers 499 */ 500 while (n) { 501 pg = alloc_pages(gfp | __GFP_COMP, FL_PG_ORDER); 502 if (unlikely(!pg)) { 503 q->large_alloc_failed++; 504 break; /* fall back to single pages */ 505 } 506 507 mapping = dma_map_page(adap->pdev_dev, pg, 0, 508 PAGE_SIZE << FL_PG_ORDER, 509 PCI_DMA_FROMDEVICE); 510 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 511 __free_pages(pg, FL_PG_ORDER); 512 goto out; /* do not try small pages for this error */ 513 } 514 mapping |= RX_LARGE_BUF; 515 *d++ = cpu_to_be64(mapping); 516 517 set_rx_sw_desc(sd, pg, mapping); 518 sd++; 519 520 q->avail++; 521 if (++q->pidx == q->size) { 522 q->pidx = 0; 523 sd = q->sdesc; 524 d = q->desc; 525 } 526 n--; 527 } 528 #endif 529 530 while (n--) { 531 pg = __skb_alloc_page(gfp, NULL); 532 if (unlikely(!pg)) { 533 q->alloc_failed++; 534 break; 535 } 536 537 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 538 PCI_DMA_FROMDEVICE); 539 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 540 put_page(pg); 541 goto out; 542 } 543 *d++ = cpu_to_be64(mapping); 544 545 set_rx_sw_desc(sd, pg, mapping); 546 sd++; 547 548 q->avail++; 549 if (++q->pidx == q->size) { 550 q->pidx = 0; 551 sd = q->sdesc; 552 d = q->desc; 553 } 554 } 555 556 out: cred = q->avail - cred; 557 q->pend_cred += cred; 558 ring_fl_db(adap, q); 559 560 if (unlikely(fl_starving(q))) { 561 smp_wmb(); 562 set_bit(q->cntxt_id - adap->sge.egr_start, 563 adap->sge.starving_fl); 564 } 565 566 return cred; 567 } 568 569 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 570 { 571 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 572 GFP_ATOMIC); 573 } 574 575 /** 576 * alloc_ring - allocate resources for an SGE descriptor ring 577 * @dev: the PCI device's core device 578 * @nelem: the number of descriptors 579 * @elem_size: the size of each descriptor 580 * @sw_size: the size of the SW state associated with each ring element 581 * @phys: the physical address of the allocated ring 582 * @metadata: address of the array holding the SW state for the ring 583 * @stat_size: extra space in HW ring for status information 584 * @node: preferred node for memory allocations 585 * 586 * Allocates resources for an SGE descriptor ring, such as Tx queues, 587 * free buffer lists, or response queues. Each SGE ring requires 588 * space for its HW descriptors plus, optionally, space for the SW state 589 * associated with each HW entry (the metadata). The function returns 590 * three values: the virtual address for the HW ring (the return value 591 * of the function), the bus address of the HW ring, and the address 592 * of the SW ring. 593 */ 594 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 595 size_t sw_size, dma_addr_t *phys, void *metadata, 596 size_t stat_size, int node) 597 { 598 size_t len = nelem * elem_size + stat_size; 599 void *s = NULL; 600 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 601 602 if (!p) 603 return NULL; 604 if (sw_size) { 605 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); 606 607 if (!s) { 608 dma_free_coherent(dev, len, p, *phys); 609 return NULL; 610 } 611 } 612 if (metadata) 613 *(void **)metadata = s; 614 memset(p, 0, len); 615 return p; 616 } 617 618 /** 619 * sgl_len - calculates the size of an SGL of the given capacity 620 * @n: the number of SGL entries 621 * 622 * Calculates the number of flits needed for a scatter/gather list that 623 * can hold the given number of entries. 624 */ 625 static inline unsigned int sgl_len(unsigned int n) 626 { 627 n--; 628 return (3 * n) / 2 + (n & 1) + 2; 629 } 630 631 /** 632 * flits_to_desc - returns the num of Tx descriptors for the given flits 633 * @n: the number of flits 634 * 635 * Returns the number of Tx descriptors needed for the supplied number 636 * of flits. 637 */ 638 static inline unsigned int flits_to_desc(unsigned int n) 639 { 640 BUG_ON(n > SGE_MAX_WR_LEN / 8); 641 return DIV_ROUND_UP(n, 8); 642 } 643 644 /** 645 * is_eth_imm - can an Ethernet packet be sent as immediate data? 646 * @skb: the packet 647 * 648 * Returns whether an Ethernet packet is small enough to fit as 649 * immediate data. 650 */ 651 static inline int is_eth_imm(const struct sk_buff *skb) 652 { 653 return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt); 654 } 655 656 /** 657 * calc_tx_flits - calculate the number of flits for a packet Tx WR 658 * @skb: the packet 659 * 660 * Returns the number of flits needed for a Tx WR for the given Ethernet 661 * packet, including the needed WR and CPL headers. 662 */ 663 static inline unsigned int calc_tx_flits(const struct sk_buff *skb) 664 { 665 unsigned int flits; 666 667 if (is_eth_imm(skb)) 668 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8); 669 670 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4; 671 if (skb_shinfo(skb)->gso_size) 672 flits += 2; 673 return flits; 674 } 675 676 /** 677 * calc_tx_descs - calculate the number of Tx descriptors for a packet 678 * @skb: the packet 679 * 680 * Returns the number of Tx descriptors needed for the given Ethernet 681 * packet, including the needed WR and CPL headers. 682 */ 683 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 684 { 685 return flits_to_desc(calc_tx_flits(skb)); 686 } 687 688 /** 689 * write_sgl - populate a scatter/gather list for a packet 690 * @skb: the packet 691 * @q: the Tx queue we are writing into 692 * @sgl: starting location for writing the SGL 693 * @end: points right after the end of the SGL 694 * @start: start offset into skb main-body data to include in the SGL 695 * @addr: the list of bus addresses for the SGL elements 696 * 697 * Generates a gather list for the buffers that make up a packet. 698 * The caller must provide adequate space for the SGL that will be written. 699 * The SGL includes all of the packet's page fragments and the data in its 700 * main body except for the first @start bytes. @sgl must be 16-byte 701 * aligned and within a Tx descriptor with available space. @end points 702 * right after the end of the SGL but does not account for any potential 703 * wrap around, i.e., @end > @sgl. 704 */ 705 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, 706 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 707 const dma_addr_t *addr) 708 { 709 unsigned int i, len; 710 struct ulptx_sge_pair *to; 711 const struct skb_shared_info *si = skb_shinfo(skb); 712 unsigned int nfrags = si->nr_frags; 713 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 714 715 len = skb_headlen(skb) - start; 716 if (likely(len)) { 717 sgl->len0 = htonl(len); 718 sgl->addr0 = cpu_to_be64(addr[0] + start); 719 nfrags++; 720 } else { 721 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 722 sgl->addr0 = cpu_to_be64(addr[1]); 723 } 724 725 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags)); 726 if (likely(--nfrags == 0)) 727 return; 728 /* 729 * Most of the complexity below deals with the possibility we hit the 730 * end of the queue in the middle of writing the SGL. For this case 731 * only we create the SGL in a temporary buffer and then copy it. 732 */ 733 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 734 735 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 736 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 737 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 738 to->addr[0] = cpu_to_be64(addr[i]); 739 to->addr[1] = cpu_to_be64(addr[++i]); 740 } 741 if (nfrags) { 742 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 743 to->len[1] = cpu_to_be32(0); 744 to->addr[0] = cpu_to_be64(addr[i + 1]); 745 } 746 if (unlikely((u8 *)end > (u8 *)q->stat)) { 747 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 748 749 if (likely(part0)) 750 memcpy(sgl->sge, buf, part0); 751 part1 = (u8 *)end - (u8 *)q->stat; 752 memcpy(q->desc, (u8 *)buf + part0, part1); 753 end = (void *)q->desc + part1; 754 } 755 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 756 *end = 0; 757 } 758 759 /** 760 * ring_tx_db - check and potentially ring a Tx queue's doorbell 761 * @adap: the adapter 762 * @q: the Tx queue 763 * @n: number of new descriptors to give to HW 764 * 765 * Ring the doorbel for a Tx queue. 766 */ 767 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 768 { 769 wmb(); /* write descriptors before telling HW */ 770 spin_lock(&q->db_lock); 771 if (!q->db_disabled) { 772 t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL), 773 V_QID(q->cntxt_id) | V_PIDX(n)); 774 } 775 q->db_pidx = q->pidx; 776 spin_unlock(&q->db_lock); 777 } 778 779 /** 780 * inline_tx_skb - inline a packet's data into Tx descriptors 781 * @skb: the packet 782 * @q: the Tx queue where the packet will be inlined 783 * @pos: starting position in the Tx queue where to inline the packet 784 * 785 * Inline a packet's contents directly into Tx descriptors, starting at 786 * the given position within the Tx DMA ring. 787 * Most of the complexity of this operation is dealing with wrap arounds 788 * in the middle of the packet we want to inline. 789 */ 790 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, 791 void *pos) 792 { 793 u64 *p; 794 int left = (void *)q->stat - pos; 795 796 if (likely(skb->len <= left)) { 797 if (likely(!skb->data_len)) 798 skb_copy_from_linear_data(skb, pos, skb->len); 799 else 800 skb_copy_bits(skb, 0, pos, skb->len); 801 pos += skb->len; 802 } else { 803 skb_copy_bits(skb, 0, pos, left); 804 skb_copy_bits(skb, left, q->desc, skb->len - left); 805 pos = (void *)q->desc + (skb->len - left); 806 } 807 808 /* 0-pad to multiple of 16 */ 809 p = PTR_ALIGN(pos, 8); 810 if ((uintptr_t)p & 8) 811 *p = 0; 812 } 813 814 /* 815 * Figure out what HW csum a packet wants and return the appropriate control 816 * bits. 817 */ 818 static u64 hwcsum(const struct sk_buff *skb) 819 { 820 int csum_type; 821 const struct iphdr *iph = ip_hdr(skb); 822 823 if (iph->version == 4) { 824 if (iph->protocol == IPPROTO_TCP) 825 csum_type = TX_CSUM_TCPIP; 826 else if (iph->protocol == IPPROTO_UDP) 827 csum_type = TX_CSUM_UDPIP; 828 else { 829 nocsum: /* 830 * unknown protocol, disable HW csum 831 * and hope a bad packet is detected 832 */ 833 return TXPKT_L4CSUM_DIS; 834 } 835 } else { 836 /* 837 * this doesn't work with extension headers 838 */ 839 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 840 841 if (ip6h->nexthdr == IPPROTO_TCP) 842 csum_type = TX_CSUM_TCPIP6; 843 else if (ip6h->nexthdr == IPPROTO_UDP) 844 csum_type = TX_CSUM_UDPIP6; 845 else 846 goto nocsum; 847 } 848 849 if (likely(csum_type >= TX_CSUM_TCPIP)) 850 return TXPKT_CSUM_TYPE(csum_type) | 851 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | 852 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); 853 else { 854 int start = skb_transport_offset(skb); 855 856 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) | 857 TXPKT_CSUM_LOC(start + skb->csum_offset); 858 } 859 } 860 861 static void eth_txq_stop(struct sge_eth_txq *q) 862 { 863 netif_tx_stop_queue(q->txq); 864 q->q.stops++; 865 } 866 867 static inline void txq_advance(struct sge_txq *q, unsigned int n) 868 { 869 q->in_use += n; 870 q->pidx += n; 871 if (q->pidx >= q->size) 872 q->pidx -= q->size; 873 } 874 875 /** 876 * t4_eth_xmit - add a packet to an Ethernet Tx queue 877 * @skb: the packet 878 * @dev: the egress net device 879 * 880 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 881 */ 882 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 883 { 884 u32 wr_mid; 885 u64 cntrl, *end; 886 int qidx, credits; 887 unsigned int flits, ndesc; 888 struct adapter *adap; 889 struct sge_eth_txq *q; 890 const struct port_info *pi; 891 struct fw_eth_tx_pkt_wr *wr; 892 struct cpl_tx_pkt_core *cpl; 893 const struct skb_shared_info *ssi; 894 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 895 896 /* 897 * The chip min packet length is 10 octets but play safe and reject 898 * anything shorter than an Ethernet header. 899 */ 900 if (unlikely(skb->len < ETH_HLEN)) { 901 out_free: dev_kfree_skb(skb); 902 return NETDEV_TX_OK; 903 } 904 905 pi = netdev_priv(dev); 906 adap = pi->adapter; 907 qidx = skb_get_queue_mapping(skb); 908 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 909 910 reclaim_completed_tx(adap, &q->q, true); 911 912 flits = calc_tx_flits(skb); 913 ndesc = flits_to_desc(flits); 914 credits = txq_avail(&q->q) - ndesc; 915 916 if (unlikely(credits < 0)) { 917 eth_txq_stop(q); 918 dev_err(adap->pdev_dev, 919 "%s: Tx ring %u full while queue awake!\n", 920 dev->name, qidx); 921 return NETDEV_TX_BUSY; 922 } 923 924 if (!is_eth_imm(skb) && 925 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { 926 q->mapping_err++; 927 goto out_free; 928 } 929 930 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); 931 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 932 eth_txq_stop(q); 933 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ; 934 } 935 936 wr = (void *)&q->q.desc[q->q.pidx]; 937 wr->equiq_to_len16 = htonl(wr_mid); 938 wr->r3 = cpu_to_be64(0); 939 end = (u64 *)wr + flits; 940 941 ssi = skb_shinfo(skb); 942 if (ssi->gso_size) { 943 struct cpl_tx_pkt_lso *lso = (void *)wr; 944 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 945 int l3hdr_len = skb_network_header_len(skb); 946 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 947 948 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) | 949 FW_WR_IMMDLEN(sizeof(*lso))); 950 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) | 951 LSO_FIRST_SLICE | LSO_LAST_SLICE | 952 LSO_IPV6(v6) | 953 LSO_ETHHDR_LEN(eth_xtra_len / 4) | 954 LSO_IPHDR_LEN(l3hdr_len / 4) | 955 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); 956 lso->c.ipid_ofst = htons(0); 957 lso->c.mss = htons(ssi->gso_size); 958 lso->c.seqno_offset = htonl(0); 959 lso->c.len = htonl(skb->len); 960 cpl = (void *)(lso + 1); 961 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 962 TXPKT_IPHDR_LEN(l3hdr_len) | 963 TXPKT_ETHHDR_LEN(eth_xtra_len); 964 q->tso++; 965 q->tx_cso += ssi->gso_segs; 966 } else { 967 int len; 968 969 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl); 970 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) | 971 FW_WR_IMMDLEN(len)); 972 cpl = (void *)(wr + 1); 973 if (skb->ip_summed == CHECKSUM_PARTIAL) { 974 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; 975 q->tx_cso++; 976 } else 977 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; 978 } 979 980 if (vlan_tx_tag_present(skb)) { 981 q->vlan_ins++; 982 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb)); 983 } 984 985 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) | 986 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn)); 987 cpl->pack = htons(0); 988 cpl->len = htons(skb->len); 989 cpl->ctrl1 = cpu_to_be64(cntrl); 990 991 if (is_eth_imm(skb)) { 992 inline_tx_skb(skb, &q->q, cpl + 1); 993 dev_kfree_skb(skb); 994 } else { 995 int last_desc; 996 997 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, 998 addr); 999 skb_orphan(skb); 1000 1001 last_desc = q->q.pidx + ndesc - 1; 1002 if (last_desc >= q->q.size) 1003 last_desc -= q->q.size; 1004 q->q.sdesc[last_desc].skb = skb; 1005 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); 1006 } 1007 1008 txq_advance(&q->q, ndesc); 1009 1010 ring_tx_db(adap, &q->q, ndesc); 1011 return NETDEV_TX_OK; 1012 } 1013 1014 /** 1015 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1016 * @q: the SGE control Tx queue 1017 * 1018 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1019 * that send only immediate data (presently just the control queues) and 1020 * thus do not have any sk_buffs to release. 1021 */ 1022 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1023 { 1024 int hw_cidx = ntohs(q->stat->cidx); 1025 int reclaim = hw_cidx - q->cidx; 1026 1027 if (reclaim < 0) 1028 reclaim += q->size; 1029 1030 q->in_use -= reclaim; 1031 q->cidx = hw_cidx; 1032 } 1033 1034 /** 1035 * is_imm - check whether a packet can be sent as immediate data 1036 * @skb: the packet 1037 * 1038 * Returns true if a packet can be sent as a WR with immediate data. 1039 */ 1040 static inline int is_imm(const struct sk_buff *skb) 1041 { 1042 return skb->len <= MAX_CTRL_WR_LEN; 1043 } 1044 1045 /** 1046 * ctrlq_check_stop - check if a control queue is full and should stop 1047 * @q: the queue 1048 * @wr: most recent WR written to the queue 1049 * 1050 * Check if a control queue has become full and should be stopped. 1051 * We clean up control queue descriptors very lazily, only when we are out. 1052 * If the queue is still full after reclaiming any completed descriptors 1053 * we suspend it and have the last WR wake it up. 1054 */ 1055 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 1056 { 1057 reclaim_completed_tx_imm(&q->q); 1058 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1059 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ); 1060 q->q.stops++; 1061 q->full = 1; 1062 } 1063 } 1064 1065 /** 1066 * ctrl_xmit - send a packet through an SGE control Tx queue 1067 * @q: the control queue 1068 * @skb: the packet 1069 * 1070 * Send a packet through an SGE control Tx queue. Packets sent through 1071 * a control queue must fit entirely as immediate data. 1072 */ 1073 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 1074 { 1075 unsigned int ndesc; 1076 struct fw_wr_hdr *wr; 1077 1078 if (unlikely(!is_imm(skb))) { 1079 WARN_ON(1); 1080 dev_kfree_skb(skb); 1081 return NET_XMIT_DROP; 1082 } 1083 1084 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 1085 spin_lock(&q->sendq.lock); 1086 1087 if (unlikely(q->full)) { 1088 skb->priority = ndesc; /* save for restart */ 1089 __skb_queue_tail(&q->sendq, skb); 1090 spin_unlock(&q->sendq.lock); 1091 return NET_XMIT_CN; 1092 } 1093 1094 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1095 inline_tx_skb(skb, &q->q, wr); 1096 1097 txq_advance(&q->q, ndesc); 1098 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 1099 ctrlq_check_stop(q, wr); 1100 1101 ring_tx_db(q->adap, &q->q, ndesc); 1102 spin_unlock(&q->sendq.lock); 1103 1104 kfree_skb(skb); 1105 return NET_XMIT_SUCCESS; 1106 } 1107 1108 /** 1109 * restart_ctrlq - restart a suspended control queue 1110 * @data: the control queue to restart 1111 * 1112 * Resumes transmission on a suspended Tx control queue. 1113 */ 1114 static void restart_ctrlq(unsigned long data) 1115 { 1116 struct sk_buff *skb; 1117 unsigned int written = 0; 1118 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 1119 1120 spin_lock(&q->sendq.lock); 1121 reclaim_completed_tx_imm(&q->q); 1122 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 1123 1124 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 1125 struct fw_wr_hdr *wr; 1126 unsigned int ndesc = skb->priority; /* previously saved */ 1127 1128 /* 1129 * Write descriptors and free skbs outside the lock to limit 1130 * wait times. q->full is still set so new skbs will be queued. 1131 */ 1132 spin_unlock(&q->sendq.lock); 1133 1134 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1135 inline_tx_skb(skb, &q->q, wr); 1136 kfree_skb(skb); 1137 1138 written += ndesc; 1139 txq_advance(&q->q, ndesc); 1140 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1141 unsigned long old = q->q.stops; 1142 1143 ctrlq_check_stop(q, wr); 1144 if (q->q.stops != old) { /* suspended anew */ 1145 spin_lock(&q->sendq.lock); 1146 goto ringdb; 1147 } 1148 } 1149 if (written > 16) { 1150 ring_tx_db(q->adap, &q->q, written); 1151 written = 0; 1152 } 1153 spin_lock(&q->sendq.lock); 1154 } 1155 q->full = 0; 1156 ringdb: if (written) 1157 ring_tx_db(q->adap, &q->q, written); 1158 spin_unlock(&q->sendq.lock); 1159 } 1160 1161 /** 1162 * t4_mgmt_tx - send a management message 1163 * @adap: the adapter 1164 * @skb: the packet containing the management message 1165 * 1166 * Send a management message through control queue 0. 1167 */ 1168 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1169 { 1170 int ret; 1171 1172 local_bh_disable(); 1173 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 1174 local_bh_enable(); 1175 return ret; 1176 } 1177 1178 /** 1179 * is_ofld_imm - check whether a packet can be sent as immediate data 1180 * @skb: the packet 1181 * 1182 * Returns true if a packet can be sent as an offload WR with immediate 1183 * data. We currently use the same limit as for Ethernet packets. 1184 */ 1185 static inline int is_ofld_imm(const struct sk_buff *skb) 1186 { 1187 return skb->len <= MAX_IMM_TX_PKT_LEN; 1188 } 1189 1190 /** 1191 * calc_tx_flits_ofld - calculate # of flits for an offload packet 1192 * @skb: the packet 1193 * 1194 * Returns the number of flits needed for the given offload packet. 1195 * These packets are already fully constructed and no additional headers 1196 * will be added. 1197 */ 1198 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 1199 { 1200 unsigned int flits, cnt; 1201 1202 if (is_ofld_imm(skb)) 1203 return DIV_ROUND_UP(skb->len, 8); 1204 1205 flits = skb_transport_offset(skb) / 8U; /* headers */ 1206 cnt = skb_shinfo(skb)->nr_frags; 1207 if (skb->tail != skb->transport_header) 1208 cnt++; 1209 return flits + sgl_len(cnt); 1210 } 1211 1212 /** 1213 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 1214 * @adap: the adapter 1215 * @q: the queue to stop 1216 * 1217 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 1218 * inability to map packets. A periodic timer attempts to restart 1219 * queues so marked. 1220 */ 1221 static void txq_stop_maperr(struct sge_ofld_txq *q) 1222 { 1223 q->mapping_err++; 1224 q->q.stops++; 1225 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 1226 q->adap->sge.txq_maperr); 1227 } 1228 1229 /** 1230 * ofldtxq_stop - stop an offload Tx queue that has become full 1231 * @q: the queue to stop 1232 * @skb: the packet causing the queue to become full 1233 * 1234 * Stops an offload Tx queue that has become full and modifies the packet 1235 * being written to request a wakeup. 1236 */ 1237 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb) 1238 { 1239 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; 1240 1241 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ); 1242 q->q.stops++; 1243 q->full = 1; 1244 } 1245 1246 /** 1247 * service_ofldq - restart a suspended offload queue 1248 * @q: the offload queue 1249 * 1250 * Services an offload Tx queue by moving packets from its packet queue 1251 * to the HW Tx ring. The function starts and ends with the queue locked. 1252 */ 1253 static void service_ofldq(struct sge_ofld_txq *q) 1254 { 1255 u64 *pos; 1256 int credits; 1257 struct sk_buff *skb; 1258 unsigned int written = 0; 1259 unsigned int flits, ndesc; 1260 1261 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 1262 /* 1263 * We drop the lock but leave skb on sendq, thus retaining 1264 * exclusive access to the state of the queue. 1265 */ 1266 spin_unlock(&q->sendq.lock); 1267 1268 reclaim_completed_tx(q->adap, &q->q, false); 1269 1270 flits = skb->priority; /* previously saved */ 1271 ndesc = flits_to_desc(flits); 1272 credits = txq_avail(&q->q) - ndesc; 1273 BUG_ON(credits < 0); 1274 if (unlikely(credits < TXQ_STOP_THRES)) 1275 ofldtxq_stop(q, skb); 1276 1277 pos = (u64 *)&q->q.desc[q->q.pidx]; 1278 if (is_ofld_imm(skb)) 1279 inline_tx_skb(skb, &q->q, pos); 1280 else if (map_skb(q->adap->pdev_dev, skb, 1281 (dma_addr_t *)skb->head)) { 1282 txq_stop_maperr(q); 1283 spin_lock(&q->sendq.lock); 1284 break; 1285 } else { 1286 int last_desc, hdr_len = skb_transport_offset(skb); 1287 1288 memcpy(pos, skb->data, hdr_len); 1289 write_sgl(skb, &q->q, (void *)pos + hdr_len, 1290 pos + flits, hdr_len, 1291 (dma_addr_t *)skb->head); 1292 #ifdef CONFIG_NEED_DMA_MAP_STATE 1293 skb->dev = q->adap->port[0]; 1294 skb->destructor = deferred_unmap_destructor; 1295 #endif 1296 last_desc = q->q.pidx + ndesc - 1; 1297 if (last_desc >= q->q.size) 1298 last_desc -= q->q.size; 1299 q->q.sdesc[last_desc].skb = skb; 1300 } 1301 1302 txq_advance(&q->q, ndesc); 1303 written += ndesc; 1304 if (unlikely(written > 32)) { 1305 ring_tx_db(q->adap, &q->q, written); 1306 written = 0; 1307 } 1308 1309 spin_lock(&q->sendq.lock); 1310 __skb_unlink(skb, &q->sendq); 1311 if (is_ofld_imm(skb)) 1312 kfree_skb(skb); 1313 } 1314 if (likely(written)) 1315 ring_tx_db(q->adap, &q->q, written); 1316 } 1317 1318 /** 1319 * ofld_xmit - send a packet through an offload queue 1320 * @q: the Tx offload queue 1321 * @skb: the packet 1322 * 1323 * Send an offload packet through an SGE offload queue. 1324 */ 1325 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb) 1326 { 1327 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 1328 spin_lock(&q->sendq.lock); 1329 __skb_queue_tail(&q->sendq, skb); 1330 if (q->sendq.qlen == 1) 1331 service_ofldq(q); 1332 spin_unlock(&q->sendq.lock); 1333 return NET_XMIT_SUCCESS; 1334 } 1335 1336 /** 1337 * restart_ofldq - restart a suspended offload queue 1338 * @data: the offload queue to restart 1339 * 1340 * Resumes transmission on a suspended Tx offload queue. 1341 */ 1342 static void restart_ofldq(unsigned long data) 1343 { 1344 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data; 1345 1346 spin_lock(&q->sendq.lock); 1347 q->full = 0; /* the queue actually is completely empty now */ 1348 service_ofldq(q); 1349 spin_unlock(&q->sendq.lock); 1350 } 1351 1352 /** 1353 * skb_txq - return the Tx queue an offload packet should use 1354 * @skb: the packet 1355 * 1356 * Returns the Tx queue an offload packet should use as indicated by bits 1357 * 1-15 in the packet's queue_mapping. 1358 */ 1359 static inline unsigned int skb_txq(const struct sk_buff *skb) 1360 { 1361 return skb->queue_mapping >> 1; 1362 } 1363 1364 /** 1365 * is_ctrl_pkt - return whether an offload packet is a control packet 1366 * @skb: the packet 1367 * 1368 * Returns whether an offload packet should use an OFLD or a CTRL 1369 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 1370 */ 1371 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 1372 { 1373 return skb->queue_mapping & 1; 1374 } 1375 1376 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb) 1377 { 1378 unsigned int idx = skb_txq(skb); 1379 1380 if (unlikely(is_ctrl_pkt(skb))) 1381 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 1382 return ofld_xmit(&adap->sge.ofldtxq[idx], skb); 1383 } 1384 1385 /** 1386 * t4_ofld_send - send an offload packet 1387 * @adap: the adapter 1388 * @skb: the packet 1389 * 1390 * Sends an offload packet. We use the packet queue_mapping to select the 1391 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1392 * should be sent as regular or control, bits 1-15 select the queue. 1393 */ 1394 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 1395 { 1396 int ret; 1397 1398 local_bh_disable(); 1399 ret = ofld_send(adap, skb); 1400 local_bh_enable(); 1401 return ret; 1402 } 1403 1404 /** 1405 * cxgb4_ofld_send - send an offload packet 1406 * @dev: the net device 1407 * @skb: the packet 1408 * 1409 * Sends an offload packet. This is an exported version of @t4_ofld_send, 1410 * intended for ULDs. 1411 */ 1412 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 1413 { 1414 return t4_ofld_send(netdev2adap(dev), skb); 1415 } 1416 EXPORT_SYMBOL(cxgb4_ofld_send); 1417 1418 static inline void copy_frags(struct sk_buff *skb, 1419 const struct pkt_gl *gl, unsigned int offset) 1420 { 1421 int i; 1422 1423 /* usually there's just one frag */ 1424 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 1425 gl->frags[0].offset + offset, 1426 gl->frags[0].size - offset); 1427 skb_shinfo(skb)->nr_frags = gl->nfrags; 1428 for (i = 1; i < gl->nfrags; i++) 1429 __skb_fill_page_desc(skb, i, gl->frags[i].page, 1430 gl->frags[i].offset, 1431 gl->frags[i].size); 1432 1433 /* get a reference to the last page, we don't own it */ 1434 get_page(gl->frags[gl->nfrags - 1].page); 1435 } 1436 1437 /** 1438 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 1439 * @gl: the gather list 1440 * @skb_len: size of sk_buff main body if it carries fragments 1441 * @pull_len: amount of data to move to the sk_buff's main body 1442 * 1443 * Builds an sk_buff from the given packet gather list. Returns the 1444 * sk_buff or %NULL if sk_buff allocation failed. 1445 */ 1446 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 1447 unsigned int skb_len, unsigned int pull_len) 1448 { 1449 struct sk_buff *skb; 1450 1451 /* 1452 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 1453 * size, which is expected since buffers are at least PAGE_SIZEd. 1454 * In this case packets up to RX_COPY_THRES have only one fragment. 1455 */ 1456 if (gl->tot_len <= RX_COPY_THRES) { 1457 skb = dev_alloc_skb(gl->tot_len); 1458 if (unlikely(!skb)) 1459 goto out; 1460 __skb_put(skb, gl->tot_len); 1461 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 1462 } else { 1463 skb = dev_alloc_skb(skb_len); 1464 if (unlikely(!skb)) 1465 goto out; 1466 __skb_put(skb, pull_len); 1467 skb_copy_to_linear_data(skb, gl->va, pull_len); 1468 1469 copy_frags(skb, gl, pull_len); 1470 skb->len = gl->tot_len; 1471 skb->data_len = skb->len - pull_len; 1472 skb->truesize += skb->data_len; 1473 } 1474 out: return skb; 1475 } 1476 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 1477 1478 /** 1479 * t4_pktgl_free - free a packet gather list 1480 * @gl: the gather list 1481 * 1482 * Releases the pages of a packet gather list. We do not own the last 1483 * page on the list and do not free it. 1484 */ 1485 static void t4_pktgl_free(const struct pkt_gl *gl) 1486 { 1487 int n; 1488 const struct page_frag *p; 1489 1490 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 1491 put_page(p->page); 1492 } 1493 1494 /* 1495 * Process an MPS trace packet. Give it an unused protocol number so it won't 1496 * be delivered to anyone and send it to the stack for capture. 1497 */ 1498 static noinline int handle_trace_pkt(struct adapter *adap, 1499 const struct pkt_gl *gl) 1500 { 1501 struct sk_buff *skb; 1502 struct cpl_trace_pkt *p; 1503 1504 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 1505 if (unlikely(!skb)) { 1506 t4_pktgl_free(gl); 1507 return 0; 1508 } 1509 1510 p = (struct cpl_trace_pkt *)skb->data; 1511 __skb_pull(skb, sizeof(*p)); 1512 skb_reset_mac_header(skb); 1513 skb->protocol = htons(0xffff); 1514 skb->dev = adap->port[0]; 1515 netif_receive_skb(skb); 1516 return 0; 1517 } 1518 1519 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 1520 const struct cpl_rx_pkt *pkt) 1521 { 1522 int ret; 1523 struct sk_buff *skb; 1524 1525 skb = napi_get_frags(&rxq->rspq.napi); 1526 if (unlikely(!skb)) { 1527 t4_pktgl_free(gl); 1528 rxq->stats.rx_drops++; 1529 return; 1530 } 1531 1532 copy_frags(skb, gl, RX_PKT_PAD); 1533 skb->len = gl->tot_len - RX_PKT_PAD; 1534 skb->data_len = skb->len; 1535 skb->truesize += skb->data_len; 1536 skb->ip_summed = CHECKSUM_UNNECESSARY; 1537 skb_record_rx_queue(skb, rxq->rspq.idx); 1538 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 1539 skb->rxhash = (__force u32)pkt->rsshdr.hash_val; 1540 1541 if (unlikely(pkt->vlan_ex)) { 1542 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan)); 1543 rxq->stats.vlan_ex++; 1544 } 1545 ret = napi_gro_frags(&rxq->rspq.napi); 1546 if (ret == GRO_HELD) 1547 rxq->stats.lro_pkts++; 1548 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 1549 rxq->stats.lro_merged++; 1550 rxq->stats.pkts++; 1551 rxq->stats.rx_cso++; 1552 } 1553 1554 /** 1555 * t4_ethrx_handler - process an ingress ethernet packet 1556 * @q: the response queue that received the packet 1557 * @rsp: the response queue descriptor holding the RX_PKT message 1558 * @si: the gather list of packet fragments 1559 * 1560 * Process an ingress ethernet packet and deliver it to the stack. 1561 */ 1562 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 1563 const struct pkt_gl *si) 1564 { 1565 bool csum_ok; 1566 struct sk_buff *skb; 1567 const struct cpl_rx_pkt *pkt; 1568 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1569 1570 if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT)) 1571 return handle_trace_pkt(q->adap, si); 1572 1573 pkt = (const struct cpl_rx_pkt *)rsp; 1574 csum_ok = pkt->csum_calc && !pkt->err_vec; 1575 if ((pkt->l2info & htonl(RXF_TCP)) && 1576 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 1577 do_gro(rxq, si, pkt); 1578 return 0; 1579 } 1580 1581 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 1582 if (unlikely(!skb)) { 1583 t4_pktgl_free(si); 1584 rxq->stats.rx_drops++; 1585 return 0; 1586 } 1587 1588 __skb_pull(skb, RX_PKT_PAD); /* remove ethernet header padding */ 1589 skb->protocol = eth_type_trans(skb, q->netdev); 1590 skb_record_rx_queue(skb, q->idx); 1591 if (skb->dev->features & NETIF_F_RXHASH) 1592 skb->rxhash = (__force u32)pkt->rsshdr.hash_val; 1593 1594 rxq->stats.pkts++; 1595 1596 if (csum_ok && (q->netdev->features & NETIF_F_RXCSUM) && 1597 (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) { 1598 if (!pkt->ip_frag) { 1599 skb->ip_summed = CHECKSUM_UNNECESSARY; 1600 rxq->stats.rx_cso++; 1601 } else if (pkt->l2info & htonl(RXF_IP)) { 1602 __sum16 c = (__force __sum16)pkt->csum; 1603 skb->csum = csum_unfold(c); 1604 skb->ip_summed = CHECKSUM_COMPLETE; 1605 rxq->stats.rx_cso++; 1606 } 1607 } else 1608 skb_checksum_none_assert(skb); 1609 1610 if (unlikely(pkt->vlan_ex)) { 1611 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan)); 1612 rxq->stats.vlan_ex++; 1613 } 1614 netif_receive_skb(skb); 1615 return 0; 1616 } 1617 1618 /** 1619 * restore_rx_bufs - put back a packet's Rx buffers 1620 * @si: the packet gather list 1621 * @q: the SGE free list 1622 * @frags: number of FL buffers to restore 1623 * 1624 * Puts back on an FL the Rx buffers associated with @si. The buffers 1625 * have already been unmapped and are left unmapped, we mark them so to 1626 * prevent further unmapping attempts. 1627 * 1628 * This function undoes a series of @unmap_rx_buf calls when we find out 1629 * that the current packet can't be processed right away afterall and we 1630 * need to come back to it later. This is a very rare event and there's 1631 * no effort to make this particularly efficient. 1632 */ 1633 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 1634 int frags) 1635 { 1636 struct rx_sw_desc *d; 1637 1638 while (frags--) { 1639 if (q->cidx == 0) 1640 q->cidx = q->size - 1; 1641 else 1642 q->cidx--; 1643 d = &q->sdesc[q->cidx]; 1644 d->page = si->frags[frags].page; 1645 d->dma_addr |= RX_UNMAPPED_BUF; 1646 q->avail++; 1647 } 1648 } 1649 1650 /** 1651 * is_new_response - check if a response is newly written 1652 * @r: the response descriptor 1653 * @q: the response queue 1654 * 1655 * Returns true if a response descriptor contains a yet unprocessed 1656 * response. 1657 */ 1658 static inline bool is_new_response(const struct rsp_ctrl *r, 1659 const struct sge_rspq *q) 1660 { 1661 return RSPD_GEN(r->type_gen) == q->gen; 1662 } 1663 1664 /** 1665 * rspq_next - advance to the next entry in a response queue 1666 * @q: the queue 1667 * 1668 * Updates the state of a response queue to advance it to the next entry. 1669 */ 1670 static inline void rspq_next(struct sge_rspq *q) 1671 { 1672 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 1673 if (unlikely(++q->cidx == q->size)) { 1674 q->cidx = 0; 1675 q->gen ^= 1; 1676 q->cur_desc = q->desc; 1677 } 1678 } 1679 1680 /** 1681 * process_responses - process responses from an SGE response queue 1682 * @q: the ingress queue to process 1683 * @budget: how many responses can be processed in this round 1684 * 1685 * Process responses from an SGE response queue up to the supplied budget. 1686 * Responses include received packets as well as control messages from FW 1687 * or HW. 1688 * 1689 * Additionally choose the interrupt holdoff time for the next interrupt 1690 * on this queue. If the system is under memory shortage use a fairly 1691 * long delay to help recovery. 1692 */ 1693 static int process_responses(struct sge_rspq *q, int budget) 1694 { 1695 int ret, rsp_type; 1696 int budget_left = budget; 1697 const struct rsp_ctrl *rc; 1698 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1699 1700 while (likely(budget_left)) { 1701 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 1702 if (!is_new_response(rc, q)) 1703 break; 1704 1705 rmb(); 1706 rsp_type = RSPD_TYPE(rc->type_gen); 1707 if (likely(rsp_type == RSP_TYPE_FLBUF)) { 1708 struct page_frag *fp; 1709 struct pkt_gl si; 1710 const struct rx_sw_desc *rsd; 1711 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 1712 1713 if (len & RSPD_NEWBUF) { 1714 if (likely(q->offset > 0)) { 1715 free_rx_bufs(q->adap, &rxq->fl, 1); 1716 q->offset = 0; 1717 } 1718 len = RSPD_LEN(len); 1719 } 1720 si.tot_len = len; 1721 1722 /* gather packet fragments */ 1723 for (frags = 0, fp = si.frags; ; frags++, fp++) { 1724 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 1725 bufsz = get_buf_size(rsd); 1726 fp->page = rsd->page; 1727 fp->offset = q->offset; 1728 fp->size = min(bufsz, len); 1729 len -= fp->size; 1730 if (!len) 1731 break; 1732 unmap_rx_buf(q->adap, &rxq->fl); 1733 } 1734 1735 /* 1736 * Last buffer remains mapped so explicitly make it 1737 * coherent for CPU access. 1738 */ 1739 dma_sync_single_for_cpu(q->adap->pdev_dev, 1740 get_buf_addr(rsd), 1741 fp->size, DMA_FROM_DEVICE); 1742 1743 si.va = page_address(si.frags[0].page) + 1744 si.frags[0].offset; 1745 prefetch(si.va); 1746 1747 si.nfrags = frags + 1; 1748 ret = q->handler(q, q->cur_desc, &si); 1749 if (likely(ret == 0)) 1750 q->offset += ALIGN(fp->size, FL_ALIGN); 1751 else 1752 restore_rx_bufs(&si, &rxq->fl, frags); 1753 } else if (likely(rsp_type == RSP_TYPE_CPL)) { 1754 ret = q->handler(q, q->cur_desc, NULL); 1755 } else { 1756 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 1757 } 1758 1759 if (unlikely(ret)) { 1760 /* couldn't process descriptor, back off for recovery */ 1761 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX); 1762 break; 1763 } 1764 1765 rspq_next(q); 1766 budget_left--; 1767 } 1768 1769 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16) 1770 __refill_fl(q->adap, &rxq->fl); 1771 return budget - budget_left; 1772 } 1773 1774 /** 1775 * napi_rx_handler - the NAPI handler for Rx processing 1776 * @napi: the napi instance 1777 * @budget: how many packets we can process in this round 1778 * 1779 * Handler for new data events when using NAPI. This does not need any 1780 * locking or protection from interrupts as data interrupts are off at 1781 * this point and other adapter interrupts do not interfere (the latter 1782 * in not a concern at all with MSI-X as non-data interrupts then have 1783 * a separate handler). 1784 */ 1785 static int napi_rx_handler(struct napi_struct *napi, int budget) 1786 { 1787 unsigned int params; 1788 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 1789 int work_done = process_responses(q, budget); 1790 1791 if (likely(work_done < budget)) { 1792 napi_complete(napi); 1793 params = q->next_intr_params; 1794 q->next_intr_params = q->intr_params; 1795 } else 1796 params = QINTR_TIMER_IDX(7); 1797 1798 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) | 1799 INGRESSQID((u32)q->cntxt_id) | SEINTARM(params)); 1800 return work_done; 1801 } 1802 1803 /* 1804 * The MSI-X interrupt handler for an SGE response queue. 1805 */ 1806 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 1807 { 1808 struct sge_rspq *q = cookie; 1809 1810 napi_schedule(&q->napi); 1811 return IRQ_HANDLED; 1812 } 1813 1814 /* 1815 * Process the indirect interrupt entries in the interrupt queue and kick off 1816 * NAPI for each queue that has generated an entry. 1817 */ 1818 static unsigned int process_intrq(struct adapter *adap) 1819 { 1820 unsigned int credits; 1821 const struct rsp_ctrl *rc; 1822 struct sge_rspq *q = &adap->sge.intrq; 1823 1824 spin_lock(&adap->sge.intrq_lock); 1825 for (credits = 0; ; credits++) { 1826 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 1827 if (!is_new_response(rc, q)) 1828 break; 1829 1830 rmb(); 1831 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) { 1832 unsigned int qid = ntohl(rc->pldbuflen_qid); 1833 1834 qid -= adap->sge.ingr_start; 1835 napi_schedule(&adap->sge.ingr_map[qid]->napi); 1836 } 1837 1838 rspq_next(q); 1839 } 1840 1841 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) | 1842 INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params)); 1843 spin_unlock(&adap->sge.intrq_lock); 1844 return credits; 1845 } 1846 1847 /* 1848 * The MSI interrupt handler, which handles data events from SGE response queues 1849 * as well as error and other async events as they all use the same MSI vector. 1850 */ 1851 static irqreturn_t t4_intr_msi(int irq, void *cookie) 1852 { 1853 struct adapter *adap = cookie; 1854 1855 t4_slow_intr_handler(adap); 1856 process_intrq(adap); 1857 return IRQ_HANDLED; 1858 } 1859 1860 /* 1861 * Interrupt handler for legacy INTx interrupts. 1862 * Handles data events from SGE response queues as well as error and other 1863 * async events as they all use the same interrupt line. 1864 */ 1865 static irqreturn_t t4_intr_intx(int irq, void *cookie) 1866 { 1867 struct adapter *adap = cookie; 1868 1869 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0); 1870 if (t4_slow_intr_handler(adap) | process_intrq(adap)) 1871 return IRQ_HANDLED; 1872 return IRQ_NONE; /* probably shared interrupt */ 1873 } 1874 1875 /** 1876 * t4_intr_handler - select the top-level interrupt handler 1877 * @adap: the adapter 1878 * 1879 * Selects the top-level interrupt handler based on the type of interrupts 1880 * (MSI-X, MSI, or INTx). 1881 */ 1882 irq_handler_t t4_intr_handler(struct adapter *adap) 1883 { 1884 if (adap->flags & USING_MSIX) 1885 return t4_sge_intr_msix; 1886 if (adap->flags & USING_MSI) 1887 return t4_intr_msi; 1888 return t4_intr_intx; 1889 } 1890 1891 static void sge_rx_timer_cb(unsigned long data) 1892 { 1893 unsigned long m; 1894 unsigned int i, cnt[2]; 1895 struct adapter *adap = (struct adapter *)data; 1896 struct sge *s = &adap->sge; 1897 1898 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) 1899 for (m = s->starving_fl[i]; m; m &= m - 1) { 1900 struct sge_eth_rxq *rxq; 1901 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 1902 struct sge_fl *fl = s->egr_map[id]; 1903 1904 clear_bit(id, s->starving_fl); 1905 smp_mb__after_clear_bit(); 1906 1907 if (fl_starving(fl)) { 1908 rxq = container_of(fl, struct sge_eth_rxq, fl); 1909 if (napi_reschedule(&rxq->rspq.napi)) 1910 fl->starving++; 1911 else 1912 set_bit(id, s->starving_fl); 1913 } 1914 } 1915 1916 t4_write_reg(adap, SGE_DEBUG_INDEX, 13); 1917 cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH); 1918 cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW); 1919 1920 for (i = 0; i < 2; i++) 1921 if (cnt[i] >= s->starve_thres) { 1922 if (s->idma_state[i] || cnt[i] == 0xffffffff) 1923 continue; 1924 s->idma_state[i] = 1; 1925 t4_write_reg(adap, SGE_DEBUG_INDEX, 11); 1926 m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16); 1927 dev_warn(adap->pdev_dev, 1928 "SGE idma%u starvation detected for " 1929 "queue %lu\n", i, m & 0xffff); 1930 } else if (s->idma_state[i]) 1931 s->idma_state[i] = 0; 1932 1933 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 1934 } 1935 1936 static void sge_tx_timer_cb(unsigned long data) 1937 { 1938 unsigned long m; 1939 unsigned int i, budget; 1940 struct adapter *adap = (struct adapter *)data; 1941 struct sge *s = &adap->sge; 1942 1943 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++) 1944 for (m = s->txq_maperr[i]; m; m &= m - 1) { 1945 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 1946 struct sge_ofld_txq *txq = s->egr_map[id]; 1947 1948 clear_bit(id, s->txq_maperr); 1949 tasklet_schedule(&txq->qresume_tsk); 1950 } 1951 1952 budget = MAX_TIMER_TX_RECLAIM; 1953 i = s->ethtxq_rover; 1954 do { 1955 struct sge_eth_txq *q = &s->ethtxq[i]; 1956 1957 if (q->q.in_use && 1958 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && 1959 __netif_tx_trylock(q->txq)) { 1960 int avail = reclaimable(&q->q); 1961 1962 if (avail) { 1963 if (avail > budget) 1964 avail = budget; 1965 1966 free_tx_desc(adap, &q->q, avail, true); 1967 q->q.in_use -= avail; 1968 budget -= avail; 1969 } 1970 __netif_tx_unlock(q->txq); 1971 } 1972 1973 if (++i >= s->ethqsets) 1974 i = 0; 1975 } while (budget && i != s->ethtxq_rover); 1976 s->ethtxq_rover = i; 1977 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 1978 } 1979 1980 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 1981 struct net_device *dev, int intr_idx, 1982 struct sge_fl *fl, rspq_handler_t hnd) 1983 { 1984 int ret, flsz = 0; 1985 struct fw_iq_cmd c; 1986 struct port_info *pi = netdev_priv(dev); 1987 1988 /* Size needs to be multiple of 16, including status entry. */ 1989 iq->size = roundup(iq->size, 16); 1990 1991 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 1992 &iq->phys_addr, NULL, 0, NUMA_NO_NODE); 1993 if (!iq->desc) 1994 return -ENOMEM; 1995 1996 memset(&c, 0, sizeof(c)); 1997 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST | 1998 FW_CMD_WRITE | FW_CMD_EXEC | 1999 FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0)); 2000 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) | 2001 FW_LEN16(c)); 2002 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2003 FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) | 2004 FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) | 2005 FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx : 2006 -intr_idx - 1)); 2007 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2008 FW_IQ_CMD_IQGTSMODE | 2009 FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) | 2010 FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4)); 2011 c.iqsize = htons(iq->size); 2012 c.iqaddr = cpu_to_be64(iq->phys_addr); 2013 2014 if (fl) { 2015 fl->size = roundup(fl->size, 8); 2016 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 2017 sizeof(struct rx_sw_desc), &fl->addr, 2018 &fl->sdesc, STAT_LEN, NUMA_NO_NODE); 2019 if (!fl->desc) 2020 goto fl_nomem; 2021 2022 flsz = fl->size / 8 + STAT_LEN / sizeof(struct tx_desc); 2023 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN | 2024 FW_IQ_CMD_FL0FETCHRO(1) | 2025 FW_IQ_CMD_FL0DATARO(1) | 2026 FW_IQ_CMD_FL0PADEN); 2027 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) | 2028 FW_IQ_CMD_FL0FBMAX(3)); 2029 c.fl0size = htons(flsz); 2030 c.fl0addr = cpu_to_be64(fl->addr); 2031 } 2032 2033 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2034 if (ret) 2035 goto err; 2036 2037 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 2038 iq->cur_desc = iq->desc; 2039 iq->cidx = 0; 2040 iq->gen = 1; 2041 iq->next_intr_params = iq->intr_params; 2042 iq->cntxt_id = ntohs(c.iqid); 2043 iq->abs_id = ntohs(c.physiqid); 2044 iq->size--; /* subtract status entry */ 2045 iq->adap = adap; 2046 iq->netdev = dev; 2047 iq->handler = hnd; 2048 2049 /* set offset to -1 to distinguish ingress queues without FL */ 2050 iq->offset = fl ? 0 : -1; 2051 2052 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 2053 2054 if (fl) { 2055 fl->cntxt_id = ntohs(c.fl0id); 2056 fl->avail = fl->pend_cred = 0; 2057 fl->pidx = fl->cidx = 0; 2058 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 2059 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 2060 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 2061 } 2062 return 0; 2063 2064 fl_nomem: 2065 ret = -ENOMEM; 2066 err: 2067 if (iq->desc) { 2068 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 2069 iq->desc, iq->phys_addr); 2070 iq->desc = NULL; 2071 } 2072 if (fl && fl->desc) { 2073 kfree(fl->sdesc); 2074 fl->sdesc = NULL; 2075 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 2076 fl->desc, fl->addr); 2077 fl->desc = NULL; 2078 } 2079 return ret; 2080 } 2081 2082 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 2083 { 2084 q->in_use = 0; 2085 q->cidx = q->pidx = 0; 2086 q->stops = q->restarts = 0; 2087 q->stat = (void *)&q->desc[q->size]; 2088 q->cntxt_id = id; 2089 spin_lock_init(&q->db_lock); 2090 adap->sge.egr_map[id - adap->sge.egr_start] = q; 2091 } 2092 2093 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 2094 struct net_device *dev, struct netdev_queue *netdevq, 2095 unsigned int iqid) 2096 { 2097 int ret, nentries; 2098 struct fw_eq_eth_cmd c; 2099 struct port_info *pi = netdev_priv(dev); 2100 2101 /* Add status entries */ 2102 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); 2103 2104 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2105 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2106 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN, 2107 netdev_queue_numa_node_read(netdevq)); 2108 if (!txq->q.desc) 2109 return -ENOMEM; 2110 2111 memset(&c, 0, sizeof(c)); 2112 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST | 2113 FW_CMD_WRITE | FW_CMD_EXEC | 2114 FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0)); 2115 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC | 2116 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 2117 c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid)); 2118 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) | 2119 FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) | 2120 FW_EQ_ETH_CMD_FETCHRO(1) | 2121 FW_EQ_ETH_CMD_IQID(iqid)); 2122 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) | 2123 FW_EQ_ETH_CMD_FBMAX(3) | 2124 FW_EQ_ETH_CMD_CIDXFTHRESH(5) | 2125 FW_EQ_ETH_CMD_EQSIZE(nentries)); 2126 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2127 2128 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2129 if (ret) { 2130 kfree(txq->q.sdesc); 2131 txq->q.sdesc = NULL; 2132 dma_free_coherent(adap->pdev_dev, 2133 nentries * sizeof(struct tx_desc), 2134 txq->q.desc, txq->q.phys_addr); 2135 txq->q.desc = NULL; 2136 return ret; 2137 } 2138 2139 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd))); 2140 txq->txq = netdevq; 2141 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 2142 txq->mapping_err = 0; 2143 return 0; 2144 } 2145 2146 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 2147 struct net_device *dev, unsigned int iqid, 2148 unsigned int cmplqid) 2149 { 2150 int ret, nentries; 2151 struct fw_eq_ctrl_cmd c; 2152 struct port_info *pi = netdev_priv(dev); 2153 2154 /* Add status entries */ 2155 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); 2156 2157 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 2158 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 2159 NULL, 0, NUMA_NO_NODE); 2160 if (!txq->q.desc) 2161 return -ENOMEM; 2162 2163 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST | 2164 FW_CMD_WRITE | FW_CMD_EXEC | 2165 FW_EQ_CTRL_CMD_PFN(adap->fn) | 2166 FW_EQ_CTRL_CMD_VFN(0)); 2167 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC | 2168 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 2169 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid)); 2170 c.physeqid_pkd = htonl(0); 2171 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) | 2172 FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) | 2173 FW_EQ_CTRL_CMD_FETCHRO | 2174 FW_EQ_CTRL_CMD_IQID(iqid)); 2175 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) | 2176 FW_EQ_CTRL_CMD_FBMAX(3) | 2177 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) | 2178 FW_EQ_CTRL_CMD_EQSIZE(nentries)); 2179 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2180 2181 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2182 if (ret) { 2183 dma_free_coherent(adap->pdev_dev, 2184 nentries * sizeof(struct tx_desc), 2185 txq->q.desc, txq->q.phys_addr); 2186 txq->q.desc = NULL; 2187 return ret; 2188 } 2189 2190 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid))); 2191 txq->adap = adap; 2192 skb_queue_head_init(&txq->sendq); 2193 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 2194 txq->full = 0; 2195 return 0; 2196 } 2197 2198 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq, 2199 struct net_device *dev, unsigned int iqid) 2200 { 2201 int ret, nentries; 2202 struct fw_eq_ofld_cmd c; 2203 struct port_info *pi = netdev_priv(dev); 2204 2205 /* Add status entries */ 2206 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); 2207 2208 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2209 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2210 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN, 2211 NUMA_NO_NODE); 2212 if (!txq->q.desc) 2213 return -ENOMEM; 2214 2215 memset(&c, 0, sizeof(c)); 2216 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST | 2217 FW_CMD_WRITE | FW_CMD_EXEC | 2218 FW_EQ_OFLD_CMD_PFN(adap->fn) | 2219 FW_EQ_OFLD_CMD_VFN(0)); 2220 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC | 2221 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 2222 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) | 2223 FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) | 2224 FW_EQ_OFLD_CMD_FETCHRO(1) | 2225 FW_EQ_OFLD_CMD_IQID(iqid)); 2226 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) | 2227 FW_EQ_OFLD_CMD_FBMAX(3) | 2228 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) | 2229 FW_EQ_OFLD_CMD_EQSIZE(nentries)); 2230 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2231 2232 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2233 if (ret) { 2234 kfree(txq->q.sdesc); 2235 txq->q.sdesc = NULL; 2236 dma_free_coherent(adap->pdev_dev, 2237 nentries * sizeof(struct tx_desc), 2238 txq->q.desc, txq->q.phys_addr); 2239 txq->q.desc = NULL; 2240 return ret; 2241 } 2242 2243 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd))); 2244 txq->adap = adap; 2245 skb_queue_head_init(&txq->sendq); 2246 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 2247 txq->full = 0; 2248 txq->mapping_err = 0; 2249 return 0; 2250 } 2251 2252 static void free_txq(struct adapter *adap, struct sge_txq *q) 2253 { 2254 dma_free_coherent(adap->pdev_dev, 2255 q->size * sizeof(struct tx_desc) + STAT_LEN, 2256 q->desc, q->phys_addr); 2257 q->cntxt_id = 0; 2258 q->sdesc = NULL; 2259 q->desc = NULL; 2260 } 2261 2262 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 2263 struct sge_fl *fl) 2264 { 2265 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 2266 2267 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 2268 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP, 2269 rq->cntxt_id, fl_id, 0xffff); 2270 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 2271 rq->desc, rq->phys_addr); 2272 netif_napi_del(&rq->napi); 2273 rq->netdev = NULL; 2274 rq->cntxt_id = rq->abs_id = 0; 2275 rq->desc = NULL; 2276 2277 if (fl) { 2278 free_rx_bufs(adap, fl, fl->avail); 2279 dma_free_coherent(adap->pdev_dev, fl->size * 8 + STAT_LEN, 2280 fl->desc, fl->addr); 2281 kfree(fl->sdesc); 2282 fl->sdesc = NULL; 2283 fl->cntxt_id = 0; 2284 fl->desc = NULL; 2285 } 2286 } 2287 2288 /** 2289 * t4_free_sge_resources - free SGE resources 2290 * @adap: the adapter 2291 * 2292 * Frees resources used by the SGE queue sets. 2293 */ 2294 void t4_free_sge_resources(struct adapter *adap) 2295 { 2296 int i; 2297 struct sge_eth_rxq *eq = adap->sge.ethrxq; 2298 struct sge_eth_txq *etq = adap->sge.ethtxq; 2299 struct sge_ofld_rxq *oq = adap->sge.ofldrxq; 2300 2301 /* clean up Ethernet Tx/Rx queues */ 2302 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) { 2303 if (eq->rspq.desc) 2304 free_rspq_fl(adap, &eq->rspq, &eq->fl); 2305 if (etq->q.desc) { 2306 t4_eth_eq_free(adap, adap->fn, adap->fn, 0, 2307 etq->q.cntxt_id); 2308 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 2309 kfree(etq->q.sdesc); 2310 free_txq(adap, &etq->q); 2311 } 2312 } 2313 2314 /* clean up RDMA and iSCSI Rx queues */ 2315 for (i = 0; i < adap->sge.ofldqsets; i++, oq++) { 2316 if (oq->rspq.desc) 2317 free_rspq_fl(adap, &oq->rspq, &oq->fl); 2318 } 2319 for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) { 2320 if (oq->rspq.desc) 2321 free_rspq_fl(adap, &oq->rspq, &oq->fl); 2322 } 2323 2324 /* clean up offload Tx queues */ 2325 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) { 2326 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i]; 2327 2328 if (q->q.desc) { 2329 tasklet_kill(&q->qresume_tsk); 2330 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0, 2331 q->q.cntxt_id); 2332 free_tx_desc(adap, &q->q, q->q.in_use, false); 2333 kfree(q->q.sdesc); 2334 __skb_queue_purge(&q->sendq); 2335 free_txq(adap, &q->q); 2336 } 2337 } 2338 2339 /* clean up control Tx queues */ 2340 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 2341 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 2342 2343 if (cq->q.desc) { 2344 tasklet_kill(&cq->qresume_tsk); 2345 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0, 2346 cq->q.cntxt_id); 2347 __skb_queue_purge(&cq->sendq); 2348 free_txq(adap, &cq->q); 2349 } 2350 } 2351 2352 if (adap->sge.fw_evtq.desc) 2353 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 2354 2355 if (adap->sge.intrq.desc) 2356 free_rspq_fl(adap, &adap->sge.intrq, NULL); 2357 2358 /* clear the reverse egress queue map */ 2359 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map)); 2360 } 2361 2362 void t4_sge_start(struct adapter *adap) 2363 { 2364 adap->sge.ethtxq_rover = 0; 2365 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 2366 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 2367 } 2368 2369 /** 2370 * t4_sge_stop - disable SGE operation 2371 * @adap: the adapter 2372 * 2373 * Stop tasklets and timers associated with the DMA engine. Note that 2374 * this is effective only if measures have been taken to disable any HW 2375 * events that may restart them. 2376 */ 2377 void t4_sge_stop(struct adapter *adap) 2378 { 2379 int i; 2380 struct sge *s = &adap->sge; 2381 2382 if (in_interrupt()) /* actions below require waiting */ 2383 return; 2384 2385 if (s->rx_timer.function) 2386 del_timer_sync(&s->rx_timer); 2387 if (s->tx_timer.function) 2388 del_timer_sync(&s->tx_timer); 2389 2390 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) { 2391 struct sge_ofld_txq *q = &s->ofldtxq[i]; 2392 2393 if (q->q.desc) 2394 tasklet_kill(&q->qresume_tsk); 2395 } 2396 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 2397 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 2398 2399 if (cq->q.desc) 2400 tasklet_kill(&cq->qresume_tsk); 2401 } 2402 } 2403 2404 /** 2405 * t4_sge_init - initialize SGE 2406 * @adap: the adapter 2407 * 2408 * Performs SGE initialization needed every time after a chip reset. 2409 * We do not initialize any of the queues here, instead the driver 2410 * top-level must request them individually. 2411 */ 2412 void t4_sge_init(struct adapter *adap) 2413 { 2414 unsigned int i, v; 2415 struct sge *s = &adap->sge; 2416 unsigned int fl_align_log = ilog2(FL_ALIGN); 2417 2418 t4_set_reg_field(adap, SGE_CONTROL, PKTSHIFT_MASK | 2419 INGPADBOUNDARY_MASK | EGRSTATUSPAGESIZE, 2420 INGPADBOUNDARY(fl_align_log - 5) | PKTSHIFT(2) | 2421 RXPKTCPLMODE | 2422 (STAT_LEN == 128 ? EGRSTATUSPAGESIZE : 0)); 2423 2424 /* 2425 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows 2426 * and generate an interrupt when this occurs so we can recover. 2427 */ 2428 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS, 2429 V_HP_INT_THRESH(M_HP_INT_THRESH) | 2430 V_LP_INT_THRESH(M_LP_INT_THRESH), 2431 V_HP_INT_THRESH(dbfifo_int_thresh) | 2432 V_LP_INT_THRESH(dbfifo_int_thresh)); 2433 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP, 2434 F_ENABLE_DROP); 2435 2436 for (i = v = 0; i < 32; i += 4) 2437 v |= (PAGE_SHIFT - 10) << i; 2438 t4_write_reg(adap, SGE_HOST_PAGE_SIZE, v); 2439 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, PAGE_SIZE); 2440 #if FL_PG_ORDER > 0 2441 t4_write_reg(adap, SGE_FL_BUFFER_SIZE1, PAGE_SIZE << FL_PG_ORDER); 2442 #endif 2443 t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD, 2444 THRESHOLD_0(s->counter_val[0]) | 2445 THRESHOLD_1(s->counter_val[1]) | 2446 THRESHOLD_2(s->counter_val[2]) | 2447 THRESHOLD_3(s->counter_val[3])); 2448 t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1, 2449 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) | 2450 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1]))); 2451 t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3, 2452 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[2])) | 2453 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[3]))); 2454 t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5, 2455 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[4])) | 2456 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[5]))); 2457 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); 2458 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); 2459 s->starve_thres = core_ticks_per_usec(adap) * 1000000; /* 1 s */ 2460 s->idma_state[0] = s->idma_state[1] = 0; 2461 spin_lock_init(&s->intrq_lock); 2462 } 2463