1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/ipv6.h> 45 #include <net/tcp.h> 46 #ifdef CONFIG_NET_RX_BUSY_POLL 47 #include <net/busy_poll.h> 48 #endif /* CONFIG_NET_RX_BUSY_POLL */ 49 #include "cxgb4.h" 50 #include "t4_regs.h" 51 #include "t4_values.h" 52 #include "t4_msg.h" 53 #include "t4fw_api.h" 54 55 /* 56 * Rx buffer size. We use largish buffers if possible but settle for single 57 * pages under memory shortage. 58 */ 59 #if PAGE_SHIFT >= 16 60 # define FL_PG_ORDER 0 61 #else 62 # define FL_PG_ORDER (16 - PAGE_SHIFT) 63 #endif 64 65 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 66 #define RX_COPY_THRES 256 67 #define RX_PULL_LEN 128 68 69 /* 70 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 71 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 72 */ 73 #define RX_PKT_SKB_LEN 512 74 75 /* 76 * Max number of Tx descriptors we clean up at a time. Should be modest as 77 * freeing skbs isn't cheap and it happens while holding locks. We just need 78 * to free packets faster than they arrive, we eventually catch up and keep 79 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. 80 */ 81 #define MAX_TX_RECLAIM 16 82 83 /* 84 * Max number of Rx buffers we replenish at a time. Again keep this modest, 85 * allocating buffers isn't cheap either. 86 */ 87 #define MAX_RX_REFILL 16U 88 89 /* 90 * Period of the Rx queue check timer. This timer is infrequent as it has 91 * something to do only when the system experiences severe memory shortage. 92 */ 93 #define RX_QCHECK_PERIOD (HZ / 2) 94 95 /* 96 * Period of the Tx queue check timer. 97 */ 98 #define TX_QCHECK_PERIOD (HZ / 2) 99 100 /* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate 101 * (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA 102 * State Machines in the same state for this amount of time (in HZ) then we'll 103 * issue a warning about a potential hang. We'll repeat the warning as the 104 * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till 105 * the situation clears. If the situation clears, we'll note that as well. 106 */ 107 #define SGE_IDMA_WARN_THRESH (1 * HZ) 108 #define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD) 109 110 /* 111 * Max number of Tx descriptors to be reclaimed by the Tx timer. 112 */ 113 #define MAX_TIMER_TX_RECLAIM 100 114 115 /* 116 * Timer index used when backing off due to memory shortage. 117 */ 118 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 119 120 /* 121 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will 122 * attempt to refill it. 123 */ 124 #define FL_STARVE_THRES 4 125 126 /* 127 * Suspend an Ethernet Tx queue with fewer available descriptors than this. 128 * This is the same as calc_tx_descs() for a TSO packet with 129 * nr_frags == MAX_SKB_FRAGS. 130 */ 131 #define ETHTXQ_STOP_THRES \ 132 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) 133 134 /* 135 * Suspension threshold for non-Ethernet Tx queues. We require enough room 136 * for a full sized WR. 137 */ 138 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 139 140 /* 141 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 142 * into a WR. 143 */ 144 #define MAX_IMM_TX_PKT_LEN 128 145 146 /* 147 * Max size of a WR sent through a control Tx queue. 148 */ 149 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 150 151 struct tx_sw_desc { /* SW state per Tx descriptor */ 152 struct sk_buff *skb; 153 struct ulptx_sgl *sgl; 154 }; 155 156 struct rx_sw_desc { /* SW state per Rx descriptor */ 157 struct page *page; 158 dma_addr_t dma_addr; 159 }; 160 161 /* 162 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 163 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 164 * We could easily support more but there doesn't seem to be much need for 165 * that ... 166 */ 167 #define FL_MTU_SMALL 1500 168 #define FL_MTU_LARGE 9000 169 170 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 171 unsigned int mtu) 172 { 173 struct sge *s = &adapter->sge; 174 175 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 176 } 177 178 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 179 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 180 181 /* 182 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 183 * these to specify the buffer size as an index into the SGE Free List Buffer 184 * Size register array. We also use bit 4, when the buffer has been unmapped 185 * for DMA, but this is of course never sent to the hardware and is only used 186 * to prevent double unmappings. All of the above requires that the Free List 187 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 188 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 189 * Free List Buffer alignment is 32 bytes, this works out for us ... 190 */ 191 enum { 192 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 193 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 194 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 195 196 /* 197 * XXX We shouldn't depend on being able to use these indices. 198 * XXX Especially when some other Master PF has initialized the 199 * XXX adapter or we use the Firmware Configuration File. We 200 * XXX should really search through the Host Buffer Size register 201 * XXX array for the appropriately sized buffer indices. 202 */ 203 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 204 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 205 206 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 207 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 208 }; 209 210 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 211 #define MIN_NAPI_WORK 1 212 213 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 214 { 215 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 216 } 217 218 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 219 { 220 return !(d->dma_addr & RX_UNMAPPED_BUF); 221 } 222 223 /** 224 * txq_avail - return the number of available slots in a Tx queue 225 * @q: the Tx queue 226 * 227 * Returns the number of descriptors in a Tx queue available to write new 228 * packets. 229 */ 230 static inline unsigned int txq_avail(const struct sge_txq *q) 231 { 232 return q->size - 1 - q->in_use; 233 } 234 235 /** 236 * fl_cap - return the capacity of a free-buffer list 237 * @fl: the FL 238 * 239 * Returns the capacity of a free-buffer list. The capacity is less than 240 * the size because one descriptor needs to be left unpopulated, otherwise 241 * HW will think the FL is empty. 242 */ 243 static inline unsigned int fl_cap(const struct sge_fl *fl) 244 { 245 return fl->size - 8; /* 1 descriptor = 8 buffers */ 246 } 247 248 static inline bool fl_starving(const struct sge_fl *fl) 249 { 250 return fl->avail - fl->pend_cred <= FL_STARVE_THRES; 251 } 252 253 static int map_skb(struct device *dev, const struct sk_buff *skb, 254 dma_addr_t *addr) 255 { 256 const skb_frag_t *fp, *end; 257 const struct skb_shared_info *si; 258 259 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 260 if (dma_mapping_error(dev, *addr)) 261 goto out_err; 262 263 si = skb_shinfo(skb); 264 end = &si->frags[si->nr_frags]; 265 266 for (fp = si->frags; fp < end; fp++) { 267 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 268 DMA_TO_DEVICE); 269 if (dma_mapping_error(dev, *addr)) 270 goto unwind; 271 } 272 return 0; 273 274 unwind: 275 while (fp-- > si->frags) 276 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 277 278 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 279 out_err: 280 return -ENOMEM; 281 } 282 283 #ifdef CONFIG_NEED_DMA_MAP_STATE 284 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 285 const dma_addr_t *addr) 286 { 287 const skb_frag_t *fp, *end; 288 const struct skb_shared_info *si; 289 290 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 291 292 si = skb_shinfo(skb); 293 end = &si->frags[si->nr_frags]; 294 for (fp = si->frags; fp < end; fp++) 295 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 296 } 297 298 /** 299 * deferred_unmap_destructor - unmap a packet when it is freed 300 * @skb: the packet 301 * 302 * This is the packet destructor used for Tx packets that need to remain 303 * mapped until they are freed rather than until their Tx descriptors are 304 * freed. 305 */ 306 static void deferred_unmap_destructor(struct sk_buff *skb) 307 { 308 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 309 } 310 #endif 311 312 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 313 const struct ulptx_sgl *sgl, const struct sge_txq *q) 314 { 315 const struct ulptx_sge_pair *p; 316 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 317 318 if (likely(skb_headlen(skb))) 319 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 320 DMA_TO_DEVICE); 321 else { 322 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), 323 DMA_TO_DEVICE); 324 nfrags--; 325 } 326 327 /* 328 * the complexity below is because of the possibility of a wrap-around 329 * in the middle of an SGL 330 */ 331 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 332 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { 333 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 334 ntohl(p->len[0]), DMA_TO_DEVICE); 335 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 336 ntohl(p->len[1]), DMA_TO_DEVICE); 337 p++; 338 } else if ((u8 *)p == (u8 *)q->stat) { 339 p = (const struct ulptx_sge_pair *)q->desc; 340 goto unmap; 341 } else if ((u8 *)p + 8 == (u8 *)q->stat) { 342 const __be64 *addr = (const __be64 *)q->desc; 343 344 dma_unmap_page(dev, be64_to_cpu(addr[0]), 345 ntohl(p->len[0]), DMA_TO_DEVICE); 346 dma_unmap_page(dev, be64_to_cpu(addr[1]), 347 ntohl(p->len[1]), DMA_TO_DEVICE); 348 p = (const struct ulptx_sge_pair *)&addr[2]; 349 } else { 350 const __be64 *addr = (const __be64 *)q->desc; 351 352 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 353 ntohl(p->len[0]), DMA_TO_DEVICE); 354 dma_unmap_page(dev, be64_to_cpu(addr[0]), 355 ntohl(p->len[1]), DMA_TO_DEVICE); 356 p = (const struct ulptx_sge_pair *)&addr[1]; 357 } 358 } 359 if (nfrags) { 360 __be64 addr; 361 362 if ((u8 *)p == (u8 *)q->stat) 363 p = (const struct ulptx_sge_pair *)q->desc; 364 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : 365 *(const __be64 *)q->desc; 366 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), 367 DMA_TO_DEVICE); 368 } 369 } 370 371 /** 372 * free_tx_desc - reclaims Tx descriptors and their buffers 373 * @adapter: the adapter 374 * @q: the Tx queue to reclaim descriptors from 375 * @n: the number of descriptors to reclaim 376 * @unmap: whether the buffers should be unmapped for DMA 377 * 378 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 379 * Tx buffers. Called with the Tx queue lock held. 380 */ 381 static void free_tx_desc(struct adapter *adap, struct sge_txq *q, 382 unsigned int n, bool unmap) 383 { 384 struct tx_sw_desc *d; 385 unsigned int cidx = q->cidx; 386 struct device *dev = adap->pdev_dev; 387 388 d = &q->sdesc[cidx]; 389 while (n--) { 390 if (d->skb) { /* an SGL is present */ 391 if (unmap) 392 unmap_sgl(dev, d->skb, d->sgl, q); 393 dev_consume_skb_any(d->skb); 394 d->skb = NULL; 395 } 396 ++d; 397 if (++cidx == q->size) { 398 cidx = 0; 399 d = q->sdesc; 400 } 401 } 402 q->cidx = cidx; 403 } 404 405 /* 406 * Return the number of reclaimable descriptors in a Tx queue. 407 */ 408 static inline int reclaimable(const struct sge_txq *q) 409 { 410 int hw_cidx = ntohs(q->stat->cidx); 411 hw_cidx -= q->cidx; 412 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 413 } 414 415 /** 416 * reclaim_completed_tx - reclaims completed Tx descriptors 417 * @adap: the adapter 418 * @q: the Tx queue to reclaim completed descriptors from 419 * @unmap: whether the buffers should be unmapped for DMA 420 * 421 * Reclaims Tx descriptors that the SGE has indicated it has processed, 422 * and frees the associated buffers if possible. Called with the Tx 423 * queue locked. 424 */ 425 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 426 bool unmap) 427 { 428 int avail = reclaimable(q); 429 430 if (avail) { 431 /* 432 * Limit the amount of clean up work we do at a time to keep 433 * the Tx lock hold time O(1). 434 */ 435 if (avail > MAX_TX_RECLAIM) 436 avail = MAX_TX_RECLAIM; 437 438 free_tx_desc(adap, q, avail, unmap); 439 q->in_use -= avail; 440 } 441 } 442 443 static inline int get_buf_size(struct adapter *adapter, 444 const struct rx_sw_desc *d) 445 { 446 struct sge *s = &adapter->sge; 447 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 448 int buf_size; 449 450 switch (rx_buf_size_idx) { 451 case RX_SMALL_PG_BUF: 452 buf_size = PAGE_SIZE; 453 break; 454 455 case RX_LARGE_PG_BUF: 456 buf_size = PAGE_SIZE << s->fl_pg_order; 457 break; 458 459 case RX_SMALL_MTU_BUF: 460 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 461 break; 462 463 case RX_LARGE_MTU_BUF: 464 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 465 break; 466 467 default: 468 BUG_ON(1); 469 } 470 471 return buf_size; 472 } 473 474 /** 475 * free_rx_bufs - free the Rx buffers on an SGE free list 476 * @adap: the adapter 477 * @q: the SGE free list to free buffers from 478 * @n: how many buffers to free 479 * 480 * Release the next @n buffers on an SGE free-buffer Rx queue. The 481 * buffers must be made inaccessible to HW before calling this function. 482 */ 483 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 484 { 485 while (n--) { 486 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 487 488 if (is_buf_mapped(d)) 489 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 490 get_buf_size(adap, d), 491 PCI_DMA_FROMDEVICE); 492 put_page(d->page); 493 d->page = NULL; 494 if (++q->cidx == q->size) 495 q->cidx = 0; 496 q->avail--; 497 } 498 } 499 500 /** 501 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 502 * @adap: the adapter 503 * @q: the SGE free list 504 * 505 * Unmap the current buffer on an SGE free-buffer Rx queue. The 506 * buffer must be made inaccessible to HW before calling this function. 507 * 508 * This is similar to @free_rx_bufs above but does not free the buffer. 509 * Do note that the FL still loses any further access to the buffer. 510 */ 511 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 512 { 513 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 514 515 if (is_buf_mapped(d)) 516 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 517 get_buf_size(adap, d), PCI_DMA_FROMDEVICE); 518 d->page = NULL; 519 if (++q->cidx == q->size) 520 q->cidx = 0; 521 q->avail--; 522 } 523 524 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 525 { 526 u32 val; 527 if (q->pend_cred >= 8) { 528 if (is_t4(adap->params.chip)) 529 val = PIDX_V(q->pend_cred / 8); 530 else 531 val = PIDX_T5_V(q->pend_cred / 8) | 532 DBTYPE_F; 533 val |= DBPRIO_F; 534 wmb(); 535 536 /* If we don't have access to the new User Doorbell (T5+), use 537 * the old doorbell mechanism; otherwise use the new BAR2 538 * mechanism. 539 */ 540 if (unlikely(q->bar2_addr == NULL)) { 541 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 542 val | QID_V(q->cntxt_id)); 543 } else { 544 writel(val | QID_V(q->bar2_qid), 545 q->bar2_addr + SGE_UDB_KDOORBELL); 546 547 /* This Write memory Barrier will force the write to 548 * the User Doorbell area to be flushed. 549 */ 550 wmb(); 551 } 552 q->pend_cred &= 7; 553 } 554 } 555 556 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 557 dma_addr_t mapping) 558 { 559 sd->page = pg; 560 sd->dma_addr = mapping; /* includes size low bits */ 561 } 562 563 /** 564 * refill_fl - refill an SGE Rx buffer ring 565 * @adap: the adapter 566 * @q: the ring to refill 567 * @n: the number of new buffers to allocate 568 * @gfp: the gfp flags for the allocations 569 * 570 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 571 * allocated with the supplied gfp flags. The caller must assure that 572 * @n does not exceed the queue's capacity. If afterwards the queue is 573 * found critically low mark it as starving in the bitmap of starving FLs. 574 * 575 * Returns the number of buffers allocated. 576 */ 577 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 578 gfp_t gfp) 579 { 580 struct sge *s = &adap->sge; 581 struct page *pg; 582 dma_addr_t mapping; 583 unsigned int cred = q->avail; 584 __be64 *d = &q->desc[q->pidx]; 585 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 586 587 gfp |= __GFP_NOWARN; 588 589 if (s->fl_pg_order == 0) 590 goto alloc_small_pages; 591 592 /* 593 * Prefer large buffers 594 */ 595 while (n) { 596 pg = __dev_alloc_pages(gfp, s->fl_pg_order); 597 if (unlikely(!pg)) { 598 q->large_alloc_failed++; 599 break; /* fall back to single pages */ 600 } 601 602 mapping = dma_map_page(adap->pdev_dev, pg, 0, 603 PAGE_SIZE << s->fl_pg_order, 604 PCI_DMA_FROMDEVICE); 605 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 606 __free_pages(pg, s->fl_pg_order); 607 goto out; /* do not try small pages for this error */ 608 } 609 mapping |= RX_LARGE_PG_BUF; 610 *d++ = cpu_to_be64(mapping); 611 612 set_rx_sw_desc(sd, pg, mapping); 613 sd++; 614 615 q->avail++; 616 if (++q->pidx == q->size) { 617 q->pidx = 0; 618 sd = q->sdesc; 619 d = q->desc; 620 } 621 n--; 622 } 623 624 alloc_small_pages: 625 while (n--) { 626 pg = __dev_alloc_page(gfp); 627 if (unlikely(!pg)) { 628 q->alloc_failed++; 629 break; 630 } 631 632 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 633 PCI_DMA_FROMDEVICE); 634 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 635 put_page(pg); 636 goto out; 637 } 638 *d++ = cpu_to_be64(mapping); 639 640 set_rx_sw_desc(sd, pg, mapping); 641 sd++; 642 643 q->avail++; 644 if (++q->pidx == q->size) { 645 q->pidx = 0; 646 sd = q->sdesc; 647 d = q->desc; 648 } 649 } 650 651 out: cred = q->avail - cred; 652 q->pend_cred += cred; 653 ring_fl_db(adap, q); 654 655 if (unlikely(fl_starving(q))) { 656 smp_wmb(); 657 set_bit(q->cntxt_id - adap->sge.egr_start, 658 adap->sge.starving_fl); 659 } 660 661 return cred; 662 } 663 664 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 665 { 666 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 667 GFP_ATOMIC); 668 } 669 670 /** 671 * alloc_ring - allocate resources for an SGE descriptor ring 672 * @dev: the PCI device's core device 673 * @nelem: the number of descriptors 674 * @elem_size: the size of each descriptor 675 * @sw_size: the size of the SW state associated with each ring element 676 * @phys: the physical address of the allocated ring 677 * @metadata: address of the array holding the SW state for the ring 678 * @stat_size: extra space in HW ring for status information 679 * @node: preferred node for memory allocations 680 * 681 * Allocates resources for an SGE descriptor ring, such as Tx queues, 682 * free buffer lists, or response queues. Each SGE ring requires 683 * space for its HW descriptors plus, optionally, space for the SW state 684 * associated with each HW entry (the metadata). The function returns 685 * three values: the virtual address for the HW ring (the return value 686 * of the function), the bus address of the HW ring, and the address 687 * of the SW ring. 688 */ 689 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 690 size_t sw_size, dma_addr_t *phys, void *metadata, 691 size_t stat_size, int node) 692 { 693 size_t len = nelem * elem_size + stat_size; 694 void *s = NULL; 695 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 696 697 if (!p) 698 return NULL; 699 if (sw_size) { 700 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); 701 702 if (!s) { 703 dma_free_coherent(dev, len, p, *phys); 704 return NULL; 705 } 706 } 707 if (metadata) 708 *(void **)metadata = s; 709 memset(p, 0, len); 710 return p; 711 } 712 713 /** 714 * sgl_len - calculates the size of an SGL of the given capacity 715 * @n: the number of SGL entries 716 * 717 * Calculates the number of flits needed for a scatter/gather list that 718 * can hold the given number of entries. 719 */ 720 static inline unsigned int sgl_len(unsigned int n) 721 { 722 n--; 723 return (3 * n) / 2 + (n & 1) + 2; 724 } 725 726 /** 727 * flits_to_desc - returns the num of Tx descriptors for the given flits 728 * @n: the number of flits 729 * 730 * Returns the number of Tx descriptors needed for the supplied number 731 * of flits. 732 */ 733 static inline unsigned int flits_to_desc(unsigned int n) 734 { 735 BUG_ON(n > SGE_MAX_WR_LEN / 8); 736 return DIV_ROUND_UP(n, 8); 737 } 738 739 /** 740 * is_eth_imm - can an Ethernet packet be sent as immediate data? 741 * @skb: the packet 742 * 743 * Returns whether an Ethernet packet is small enough to fit as 744 * immediate data. Return value corresponds to headroom required. 745 */ 746 static inline int is_eth_imm(const struct sk_buff *skb) 747 { 748 int hdrlen = skb_shinfo(skb)->gso_size ? 749 sizeof(struct cpl_tx_pkt_lso_core) : 0; 750 751 hdrlen += sizeof(struct cpl_tx_pkt); 752 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 753 return hdrlen; 754 return 0; 755 } 756 757 /** 758 * calc_tx_flits - calculate the number of flits for a packet Tx WR 759 * @skb: the packet 760 * 761 * Returns the number of flits needed for a Tx WR for the given Ethernet 762 * packet, including the needed WR and CPL headers. 763 */ 764 static inline unsigned int calc_tx_flits(const struct sk_buff *skb) 765 { 766 unsigned int flits; 767 int hdrlen = is_eth_imm(skb); 768 769 if (hdrlen) 770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 771 772 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4; 773 if (skb_shinfo(skb)->gso_size) 774 flits += 2; 775 return flits; 776 } 777 778 /** 779 * calc_tx_descs - calculate the number of Tx descriptors for a packet 780 * @skb: the packet 781 * 782 * Returns the number of Tx descriptors needed for the given Ethernet 783 * packet, including the needed WR and CPL headers. 784 */ 785 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 786 { 787 return flits_to_desc(calc_tx_flits(skb)); 788 } 789 790 /** 791 * write_sgl - populate a scatter/gather list for a packet 792 * @skb: the packet 793 * @q: the Tx queue we are writing into 794 * @sgl: starting location for writing the SGL 795 * @end: points right after the end of the SGL 796 * @start: start offset into skb main-body data to include in the SGL 797 * @addr: the list of bus addresses for the SGL elements 798 * 799 * Generates a gather list for the buffers that make up a packet. 800 * The caller must provide adequate space for the SGL that will be written. 801 * The SGL includes all of the packet's page fragments and the data in its 802 * main body except for the first @start bytes. @sgl must be 16-byte 803 * aligned and within a Tx descriptor with available space. @end points 804 * right after the end of the SGL but does not account for any potential 805 * wrap around, i.e., @end > @sgl. 806 */ 807 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, 808 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 809 const dma_addr_t *addr) 810 { 811 unsigned int i, len; 812 struct ulptx_sge_pair *to; 813 const struct skb_shared_info *si = skb_shinfo(skb); 814 unsigned int nfrags = si->nr_frags; 815 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 816 817 len = skb_headlen(skb) - start; 818 if (likely(len)) { 819 sgl->len0 = htonl(len); 820 sgl->addr0 = cpu_to_be64(addr[0] + start); 821 nfrags++; 822 } else { 823 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 824 sgl->addr0 = cpu_to_be64(addr[1]); 825 } 826 827 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 828 ULPTX_NSGE_V(nfrags)); 829 if (likely(--nfrags == 0)) 830 return; 831 /* 832 * Most of the complexity below deals with the possibility we hit the 833 * end of the queue in the middle of writing the SGL. For this case 834 * only we create the SGL in a temporary buffer and then copy it. 835 */ 836 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 837 838 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 839 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 840 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 841 to->addr[0] = cpu_to_be64(addr[i]); 842 to->addr[1] = cpu_to_be64(addr[++i]); 843 } 844 if (nfrags) { 845 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 846 to->len[1] = cpu_to_be32(0); 847 to->addr[0] = cpu_to_be64(addr[i + 1]); 848 } 849 if (unlikely((u8 *)end > (u8 *)q->stat)) { 850 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 851 852 if (likely(part0)) 853 memcpy(sgl->sge, buf, part0); 854 part1 = (u8 *)end - (u8 *)q->stat; 855 memcpy(q->desc, (u8 *)buf + part0, part1); 856 end = (void *)q->desc + part1; 857 } 858 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 859 *end = 0; 860 } 861 862 /* This function copies 64 byte coalesced work request to 863 * memory mapped BAR2 space. For coalesced WR SGE fetches 864 * data from the FIFO instead of from Host. 865 */ 866 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 867 { 868 int count = 8; 869 870 while (count) { 871 writeq(*src, dst); 872 src++; 873 dst++; 874 count--; 875 } 876 } 877 878 /** 879 * ring_tx_db - check and potentially ring a Tx queue's doorbell 880 * @adap: the adapter 881 * @q: the Tx queue 882 * @n: number of new descriptors to give to HW 883 * 884 * Ring the doorbel for a Tx queue. 885 */ 886 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 887 { 888 wmb(); /* write descriptors before telling HW */ 889 890 /* If we don't have access to the new User Doorbell (T5+), use the old 891 * doorbell mechanism; otherwise use the new BAR2 mechanism. 892 */ 893 if (unlikely(q->bar2_addr == NULL)) { 894 u32 val = PIDX_V(n); 895 unsigned long flags; 896 897 /* For T4 we need to participate in the Doorbell Recovery 898 * mechanism. 899 */ 900 spin_lock_irqsave(&q->db_lock, flags); 901 if (!q->db_disabled) 902 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 903 QID_V(q->cntxt_id) | val); 904 else 905 q->db_pidx_inc += n; 906 q->db_pidx = q->pidx; 907 spin_unlock_irqrestore(&q->db_lock, flags); 908 } else { 909 u32 val = PIDX_T5_V(n); 910 911 /* T4 and later chips share the same PIDX field offset within 912 * the doorbell, but T5 and later shrank the field in order to 913 * gain a bit for Doorbell Priority. The field was absurdly 914 * large in the first place (14 bits) so we just use the T5 915 * and later limits and warn if a Queue ID is too large. 916 */ 917 WARN_ON(val & DBPRIO_F); 918 919 /* If we're only writing a single TX Descriptor and we can use 920 * Inferred QID registers, we can use the Write Combining 921 * Gather Buffer; otherwise we use the simple doorbell. 922 */ 923 if (n == 1 && q->bar2_qid == 0) { 924 int index = (q->pidx 925 ? (q->pidx - 1) 926 : (q->size - 1)); 927 u64 *wr = (u64 *)&q->desc[index]; 928 929 cxgb_pio_copy((u64 __iomem *) 930 (q->bar2_addr + SGE_UDB_WCDOORBELL), 931 wr); 932 } else { 933 writel(val | QID_V(q->bar2_qid), 934 q->bar2_addr + SGE_UDB_KDOORBELL); 935 } 936 937 /* This Write Memory Barrier will force the write to the User 938 * Doorbell area to be flushed. This is needed to prevent 939 * writes on different CPUs for the same queue from hitting 940 * the adapter out of order. This is required when some Work 941 * Requests take the Write Combine Gather Buffer path (user 942 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 943 * take the traditional path where we simply increment the 944 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 945 * hardware DMA read the actual Work Request. 946 */ 947 wmb(); 948 } 949 } 950 951 /** 952 * inline_tx_skb - inline a packet's data into Tx descriptors 953 * @skb: the packet 954 * @q: the Tx queue where the packet will be inlined 955 * @pos: starting position in the Tx queue where to inline the packet 956 * 957 * Inline a packet's contents directly into Tx descriptors, starting at 958 * the given position within the Tx DMA ring. 959 * Most of the complexity of this operation is dealing with wrap arounds 960 * in the middle of the packet we want to inline. 961 */ 962 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, 963 void *pos) 964 { 965 u64 *p; 966 int left = (void *)q->stat - pos; 967 968 if (likely(skb->len <= left)) { 969 if (likely(!skb->data_len)) 970 skb_copy_from_linear_data(skb, pos, skb->len); 971 else 972 skb_copy_bits(skb, 0, pos, skb->len); 973 pos += skb->len; 974 } else { 975 skb_copy_bits(skb, 0, pos, left); 976 skb_copy_bits(skb, left, q->desc, skb->len - left); 977 pos = (void *)q->desc + (skb->len - left); 978 } 979 980 /* 0-pad to multiple of 16 */ 981 p = PTR_ALIGN(pos, 8); 982 if ((uintptr_t)p & 8) 983 *p = 0; 984 } 985 986 /* 987 * Figure out what HW csum a packet wants and return the appropriate control 988 * bits. 989 */ 990 static u64 hwcsum(const struct sk_buff *skb) 991 { 992 int csum_type; 993 const struct iphdr *iph = ip_hdr(skb); 994 995 if (iph->version == 4) { 996 if (iph->protocol == IPPROTO_TCP) 997 csum_type = TX_CSUM_TCPIP; 998 else if (iph->protocol == IPPROTO_UDP) 999 csum_type = TX_CSUM_UDPIP; 1000 else { 1001 nocsum: /* 1002 * unknown protocol, disable HW csum 1003 * and hope a bad packet is detected 1004 */ 1005 return TXPKT_L4CSUM_DIS; 1006 } 1007 } else { 1008 /* 1009 * this doesn't work with extension headers 1010 */ 1011 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 1012 1013 if (ip6h->nexthdr == IPPROTO_TCP) 1014 csum_type = TX_CSUM_TCPIP6; 1015 else if (ip6h->nexthdr == IPPROTO_UDP) 1016 csum_type = TX_CSUM_UDPIP6; 1017 else 1018 goto nocsum; 1019 } 1020 1021 if (likely(csum_type >= TX_CSUM_TCPIP)) 1022 return TXPKT_CSUM_TYPE(csum_type) | 1023 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | 1024 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); 1025 else { 1026 int start = skb_transport_offset(skb); 1027 1028 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) | 1029 TXPKT_CSUM_LOC(start + skb->csum_offset); 1030 } 1031 } 1032 1033 static void eth_txq_stop(struct sge_eth_txq *q) 1034 { 1035 netif_tx_stop_queue(q->txq); 1036 q->q.stops++; 1037 } 1038 1039 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1040 { 1041 q->in_use += n; 1042 q->pidx += n; 1043 if (q->pidx >= q->size) 1044 q->pidx -= q->size; 1045 } 1046 1047 /** 1048 * t4_eth_xmit - add a packet to an Ethernet Tx queue 1049 * @skb: the packet 1050 * @dev: the egress net device 1051 * 1052 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1053 */ 1054 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1055 { 1056 int len; 1057 u32 wr_mid; 1058 u64 cntrl, *end; 1059 int qidx, credits; 1060 unsigned int flits, ndesc; 1061 struct adapter *adap; 1062 struct sge_eth_txq *q; 1063 const struct port_info *pi; 1064 struct fw_eth_tx_pkt_wr *wr; 1065 struct cpl_tx_pkt_core *cpl; 1066 const struct skb_shared_info *ssi; 1067 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1068 bool immediate = false; 1069 1070 /* 1071 * The chip min packet length is 10 octets but play safe and reject 1072 * anything shorter than an Ethernet header. 1073 */ 1074 if (unlikely(skb->len < ETH_HLEN)) { 1075 out_free: dev_kfree_skb_any(skb); 1076 return NETDEV_TX_OK; 1077 } 1078 1079 pi = netdev_priv(dev); 1080 adap = pi->adapter; 1081 qidx = skb_get_queue_mapping(skb); 1082 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1083 1084 reclaim_completed_tx(adap, &q->q, true); 1085 1086 flits = calc_tx_flits(skb); 1087 ndesc = flits_to_desc(flits); 1088 credits = txq_avail(&q->q) - ndesc; 1089 1090 if (unlikely(credits < 0)) { 1091 eth_txq_stop(q); 1092 dev_err(adap->pdev_dev, 1093 "%s: Tx ring %u full while queue awake!\n", 1094 dev->name, qidx); 1095 return NETDEV_TX_BUSY; 1096 } 1097 1098 if (is_eth_imm(skb)) 1099 immediate = true; 1100 1101 if (!immediate && 1102 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { 1103 q->mapping_err++; 1104 goto out_free; 1105 } 1106 1107 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1108 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1109 eth_txq_stop(q); 1110 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1111 } 1112 1113 wr = (void *)&q->q.desc[q->q.pidx]; 1114 wr->equiq_to_len16 = htonl(wr_mid); 1115 wr->r3 = cpu_to_be64(0); 1116 end = (u64 *)wr + flits; 1117 1118 len = immediate ? skb->len : 0; 1119 ssi = skb_shinfo(skb); 1120 if (ssi->gso_size) { 1121 struct cpl_tx_pkt_lso *lso = (void *)wr; 1122 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1123 int l3hdr_len = skb_network_header_len(skb); 1124 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1125 1126 len += sizeof(*lso); 1127 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1128 FW_WR_IMMDLEN_V(len)); 1129 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) | 1130 LSO_FIRST_SLICE | LSO_LAST_SLICE | 1131 LSO_IPV6(v6) | 1132 LSO_ETHHDR_LEN(eth_xtra_len / 4) | 1133 LSO_IPHDR_LEN(l3hdr_len / 4) | 1134 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); 1135 lso->c.ipid_ofst = htons(0); 1136 lso->c.mss = htons(ssi->gso_size); 1137 lso->c.seqno_offset = htonl(0); 1138 if (is_t4(adap->params.chip)) 1139 lso->c.len = htonl(skb->len); 1140 else 1141 lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len)); 1142 cpl = (void *)(lso + 1); 1143 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1144 TXPKT_IPHDR_LEN(l3hdr_len) | 1145 TXPKT_ETHHDR_LEN(eth_xtra_len); 1146 q->tso++; 1147 q->tx_cso += ssi->gso_segs; 1148 } else { 1149 len += sizeof(*cpl); 1150 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1151 FW_WR_IMMDLEN_V(len)); 1152 cpl = (void *)(wr + 1); 1153 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1154 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; 1155 q->tx_cso++; 1156 } else 1157 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; 1158 } 1159 1160 if (skb_vlan_tag_present(skb)) { 1161 q->vlan_ins++; 1162 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb)); 1163 } 1164 1165 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) | 1166 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn)); 1167 cpl->pack = htons(0); 1168 cpl->len = htons(skb->len); 1169 cpl->ctrl1 = cpu_to_be64(cntrl); 1170 1171 if (immediate) { 1172 inline_tx_skb(skb, &q->q, cpl + 1); 1173 dev_consume_skb_any(skb); 1174 } else { 1175 int last_desc; 1176 1177 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, 1178 addr); 1179 skb_orphan(skb); 1180 1181 last_desc = q->q.pidx + ndesc - 1; 1182 if (last_desc >= q->q.size) 1183 last_desc -= q->q.size; 1184 q->q.sdesc[last_desc].skb = skb; 1185 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); 1186 } 1187 1188 txq_advance(&q->q, ndesc); 1189 1190 ring_tx_db(adap, &q->q, ndesc); 1191 return NETDEV_TX_OK; 1192 } 1193 1194 /** 1195 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1196 * @q: the SGE control Tx queue 1197 * 1198 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1199 * that send only immediate data (presently just the control queues) and 1200 * thus do not have any sk_buffs to release. 1201 */ 1202 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1203 { 1204 int hw_cidx = ntohs(q->stat->cidx); 1205 int reclaim = hw_cidx - q->cidx; 1206 1207 if (reclaim < 0) 1208 reclaim += q->size; 1209 1210 q->in_use -= reclaim; 1211 q->cidx = hw_cidx; 1212 } 1213 1214 /** 1215 * is_imm - check whether a packet can be sent as immediate data 1216 * @skb: the packet 1217 * 1218 * Returns true if a packet can be sent as a WR with immediate data. 1219 */ 1220 static inline int is_imm(const struct sk_buff *skb) 1221 { 1222 return skb->len <= MAX_CTRL_WR_LEN; 1223 } 1224 1225 /** 1226 * ctrlq_check_stop - check if a control queue is full and should stop 1227 * @q: the queue 1228 * @wr: most recent WR written to the queue 1229 * 1230 * Check if a control queue has become full and should be stopped. 1231 * We clean up control queue descriptors very lazily, only when we are out. 1232 * If the queue is still full after reclaiming any completed descriptors 1233 * we suspend it and have the last WR wake it up. 1234 */ 1235 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 1236 { 1237 reclaim_completed_tx_imm(&q->q); 1238 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1239 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1240 q->q.stops++; 1241 q->full = 1; 1242 } 1243 } 1244 1245 /** 1246 * ctrl_xmit - send a packet through an SGE control Tx queue 1247 * @q: the control queue 1248 * @skb: the packet 1249 * 1250 * Send a packet through an SGE control Tx queue. Packets sent through 1251 * a control queue must fit entirely as immediate data. 1252 */ 1253 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 1254 { 1255 unsigned int ndesc; 1256 struct fw_wr_hdr *wr; 1257 1258 if (unlikely(!is_imm(skb))) { 1259 WARN_ON(1); 1260 dev_kfree_skb(skb); 1261 return NET_XMIT_DROP; 1262 } 1263 1264 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 1265 spin_lock(&q->sendq.lock); 1266 1267 if (unlikely(q->full)) { 1268 skb->priority = ndesc; /* save for restart */ 1269 __skb_queue_tail(&q->sendq, skb); 1270 spin_unlock(&q->sendq.lock); 1271 return NET_XMIT_CN; 1272 } 1273 1274 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1275 inline_tx_skb(skb, &q->q, wr); 1276 1277 txq_advance(&q->q, ndesc); 1278 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 1279 ctrlq_check_stop(q, wr); 1280 1281 ring_tx_db(q->adap, &q->q, ndesc); 1282 spin_unlock(&q->sendq.lock); 1283 1284 kfree_skb(skb); 1285 return NET_XMIT_SUCCESS; 1286 } 1287 1288 /** 1289 * restart_ctrlq - restart a suspended control queue 1290 * @data: the control queue to restart 1291 * 1292 * Resumes transmission on a suspended Tx control queue. 1293 */ 1294 static void restart_ctrlq(unsigned long data) 1295 { 1296 struct sk_buff *skb; 1297 unsigned int written = 0; 1298 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; 1299 1300 spin_lock(&q->sendq.lock); 1301 reclaim_completed_tx_imm(&q->q); 1302 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 1303 1304 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 1305 struct fw_wr_hdr *wr; 1306 unsigned int ndesc = skb->priority; /* previously saved */ 1307 1308 /* 1309 * Write descriptors and free skbs outside the lock to limit 1310 * wait times. q->full is still set so new skbs will be queued. 1311 */ 1312 spin_unlock(&q->sendq.lock); 1313 1314 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 1315 inline_tx_skb(skb, &q->q, wr); 1316 kfree_skb(skb); 1317 1318 written += ndesc; 1319 txq_advance(&q->q, ndesc); 1320 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 1321 unsigned long old = q->q.stops; 1322 1323 ctrlq_check_stop(q, wr); 1324 if (q->q.stops != old) { /* suspended anew */ 1325 spin_lock(&q->sendq.lock); 1326 goto ringdb; 1327 } 1328 } 1329 if (written > 16) { 1330 ring_tx_db(q->adap, &q->q, written); 1331 written = 0; 1332 } 1333 spin_lock(&q->sendq.lock); 1334 } 1335 q->full = 0; 1336 ringdb: if (written) 1337 ring_tx_db(q->adap, &q->q, written); 1338 spin_unlock(&q->sendq.lock); 1339 } 1340 1341 /** 1342 * t4_mgmt_tx - send a management message 1343 * @adap: the adapter 1344 * @skb: the packet containing the management message 1345 * 1346 * Send a management message through control queue 0. 1347 */ 1348 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1349 { 1350 int ret; 1351 1352 local_bh_disable(); 1353 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 1354 local_bh_enable(); 1355 return ret; 1356 } 1357 1358 /** 1359 * is_ofld_imm - check whether a packet can be sent as immediate data 1360 * @skb: the packet 1361 * 1362 * Returns true if a packet can be sent as an offload WR with immediate 1363 * data. We currently use the same limit as for Ethernet packets. 1364 */ 1365 static inline int is_ofld_imm(const struct sk_buff *skb) 1366 { 1367 return skb->len <= MAX_IMM_TX_PKT_LEN; 1368 } 1369 1370 /** 1371 * calc_tx_flits_ofld - calculate # of flits for an offload packet 1372 * @skb: the packet 1373 * 1374 * Returns the number of flits needed for the given offload packet. 1375 * These packets are already fully constructed and no additional headers 1376 * will be added. 1377 */ 1378 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 1379 { 1380 unsigned int flits, cnt; 1381 1382 if (is_ofld_imm(skb)) 1383 return DIV_ROUND_UP(skb->len, 8); 1384 1385 flits = skb_transport_offset(skb) / 8U; /* headers */ 1386 cnt = skb_shinfo(skb)->nr_frags; 1387 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1388 cnt++; 1389 return flits + sgl_len(cnt); 1390 } 1391 1392 /** 1393 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 1394 * @adap: the adapter 1395 * @q: the queue to stop 1396 * 1397 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 1398 * inability to map packets. A periodic timer attempts to restart 1399 * queues so marked. 1400 */ 1401 static void txq_stop_maperr(struct sge_ofld_txq *q) 1402 { 1403 q->mapping_err++; 1404 q->q.stops++; 1405 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 1406 q->adap->sge.txq_maperr); 1407 } 1408 1409 /** 1410 * ofldtxq_stop - stop an offload Tx queue that has become full 1411 * @q: the queue to stop 1412 * @skb: the packet causing the queue to become full 1413 * 1414 * Stops an offload Tx queue that has become full and modifies the packet 1415 * being written to request a wakeup. 1416 */ 1417 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb) 1418 { 1419 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; 1420 1421 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 1422 q->q.stops++; 1423 q->full = 1; 1424 } 1425 1426 /** 1427 * service_ofldq - restart a suspended offload queue 1428 * @q: the offload queue 1429 * 1430 * Services an offload Tx queue by moving packets from its packet queue 1431 * to the HW Tx ring. The function starts and ends with the queue locked. 1432 */ 1433 static void service_ofldq(struct sge_ofld_txq *q) 1434 { 1435 u64 *pos; 1436 int credits; 1437 struct sk_buff *skb; 1438 unsigned int written = 0; 1439 unsigned int flits, ndesc; 1440 1441 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 1442 /* 1443 * We drop the lock but leave skb on sendq, thus retaining 1444 * exclusive access to the state of the queue. 1445 */ 1446 spin_unlock(&q->sendq.lock); 1447 1448 reclaim_completed_tx(q->adap, &q->q, false); 1449 1450 flits = skb->priority; /* previously saved */ 1451 ndesc = flits_to_desc(flits); 1452 credits = txq_avail(&q->q) - ndesc; 1453 BUG_ON(credits < 0); 1454 if (unlikely(credits < TXQ_STOP_THRES)) 1455 ofldtxq_stop(q, skb); 1456 1457 pos = (u64 *)&q->q.desc[q->q.pidx]; 1458 if (is_ofld_imm(skb)) 1459 inline_tx_skb(skb, &q->q, pos); 1460 else if (map_skb(q->adap->pdev_dev, skb, 1461 (dma_addr_t *)skb->head)) { 1462 txq_stop_maperr(q); 1463 spin_lock(&q->sendq.lock); 1464 break; 1465 } else { 1466 int last_desc, hdr_len = skb_transport_offset(skb); 1467 1468 memcpy(pos, skb->data, hdr_len); 1469 write_sgl(skb, &q->q, (void *)pos + hdr_len, 1470 pos + flits, hdr_len, 1471 (dma_addr_t *)skb->head); 1472 #ifdef CONFIG_NEED_DMA_MAP_STATE 1473 skb->dev = q->adap->port[0]; 1474 skb->destructor = deferred_unmap_destructor; 1475 #endif 1476 last_desc = q->q.pidx + ndesc - 1; 1477 if (last_desc >= q->q.size) 1478 last_desc -= q->q.size; 1479 q->q.sdesc[last_desc].skb = skb; 1480 } 1481 1482 txq_advance(&q->q, ndesc); 1483 written += ndesc; 1484 if (unlikely(written > 32)) { 1485 ring_tx_db(q->adap, &q->q, written); 1486 written = 0; 1487 } 1488 1489 spin_lock(&q->sendq.lock); 1490 __skb_unlink(skb, &q->sendq); 1491 if (is_ofld_imm(skb)) 1492 kfree_skb(skb); 1493 } 1494 if (likely(written)) 1495 ring_tx_db(q->adap, &q->q, written); 1496 } 1497 1498 /** 1499 * ofld_xmit - send a packet through an offload queue 1500 * @q: the Tx offload queue 1501 * @skb: the packet 1502 * 1503 * Send an offload packet through an SGE offload queue. 1504 */ 1505 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb) 1506 { 1507 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 1508 spin_lock(&q->sendq.lock); 1509 __skb_queue_tail(&q->sendq, skb); 1510 if (q->sendq.qlen == 1) 1511 service_ofldq(q); 1512 spin_unlock(&q->sendq.lock); 1513 return NET_XMIT_SUCCESS; 1514 } 1515 1516 /** 1517 * restart_ofldq - restart a suspended offload queue 1518 * @data: the offload queue to restart 1519 * 1520 * Resumes transmission on a suspended Tx offload queue. 1521 */ 1522 static void restart_ofldq(unsigned long data) 1523 { 1524 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data; 1525 1526 spin_lock(&q->sendq.lock); 1527 q->full = 0; /* the queue actually is completely empty now */ 1528 service_ofldq(q); 1529 spin_unlock(&q->sendq.lock); 1530 } 1531 1532 /** 1533 * skb_txq - return the Tx queue an offload packet should use 1534 * @skb: the packet 1535 * 1536 * Returns the Tx queue an offload packet should use as indicated by bits 1537 * 1-15 in the packet's queue_mapping. 1538 */ 1539 static inline unsigned int skb_txq(const struct sk_buff *skb) 1540 { 1541 return skb->queue_mapping >> 1; 1542 } 1543 1544 /** 1545 * is_ctrl_pkt - return whether an offload packet is a control packet 1546 * @skb: the packet 1547 * 1548 * Returns whether an offload packet should use an OFLD or a CTRL 1549 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 1550 */ 1551 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 1552 { 1553 return skb->queue_mapping & 1; 1554 } 1555 1556 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb) 1557 { 1558 unsigned int idx = skb_txq(skb); 1559 1560 if (unlikely(is_ctrl_pkt(skb))) { 1561 /* Single ctrl queue is a requirement for LE workaround path */ 1562 if (adap->tids.nsftids) 1563 idx = 0; 1564 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 1565 } 1566 return ofld_xmit(&adap->sge.ofldtxq[idx], skb); 1567 } 1568 1569 /** 1570 * t4_ofld_send - send an offload packet 1571 * @adap: the adapter 1572 * @skb: the packet 1573 * 1574 * Sends an offload packet. We use the packet queue_mapping to select the 1575 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1576 * should be sent as regular or control, bits 1-15 select the queue. 1577 */ 1578 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 1579 { 1580 int ret; 1581 1582 local_bh_disable(); 1583 ret = ofld_send(adap, skb); 1584 local_bh_enable(); 1585 return ret; 1586 } 1587 1588 /** 1589 * cxgb4_ofld_send - send an offload packet 1590 * @dev: the net device 1591 * @skb: the packet 1592 * 1593 * Sends an offload packet. This is an exported version of @t4_ofld_send, 1594 * intended for ULDs. 1595 */ 1596 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 1597 { 1598 return t4_ofld_send(netdev2adap(dev), skb); 1599 } 1600 EXPORT_SYMBOL(cxgb4_ofld_send); 1601 1602 static inline void copy_frags(struct sk_buff *skb, 1603 const struct pkt_gl *gl, unsigned int offset) 1604 { 1605 int i; 1606 1607 /* usually there's just one frag */ 1608 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 1609 gl->frags[0].offset + offset, 1610 gl->frags[0].size - offset); 1611 skb_shinfo(skb)->nr_frags = gl->nfrags; 1612 for (i = 1; i < gl->nfrags; i++) 1613 __skb_fill_page_desc(skb, i, gl->frags[i].page, 1614 gl->frags[i].offset, 1615 gl->frags[i].size); 1616 1617 /* get a reference to the last page, we don't own it */ 1618 get_page(gl->frags[gl->nfrags - 1].page); 1619 } 1620 1621 /** 1622 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 1623 * @gl: the gather list 1624 * @skb_len: size of sk_buff main body if it carries fragments 1625 * @pull_len: amount of data to move to the sk_buff's main body 1626 * 1627 * Builds an sk_buff from the given packet gather list. Returns the 1628 * sk_buff or %NULL if sk_buff allocation failed. 1629 */ 1630 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 1631 unsigned int skb_len, unsigned int pull_len) 1632 { 1633 struct sk_buff *skb; 1634 1635 /* 1636 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 1637 * size, which is expected since buffers are at least PAGE_SIZEd. 1638 * In this case packets up to RX_COPY_THRES have only one fragment. 1639 */ 1640 if (gl->tot_len <= RX_COPY_THRES) { 1641 skb = dev_alloc_skb(gl->tot_len); 1642 if (unlikely(!skb)) 1643 goto out; 1644 __skb_put(skb, gl->tot_len); 1645 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 1646 } else { 1647 skb = dev_alloc_skb(skb_len); 1648 if (unlikely(!skb)) 1649 goto out; 1650 __skb_put(skb, pull_len); 1651 skb_copy_to_linear_data(skb, gl->va, pull_len); 1652 1653 copy_frags(skb, gl, pull_len); 1654 skb->len = gl->tot_len; 1655 skb->data_len = skb->len - pull_len; 1656 skb->truesize += skb->data_len; 1657 } 1658 out: return skb; 1659 } 1660 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 1661 1662 /** 1663 * t4_pktgl_free - free a packet gather list 1664 * @gl: the gather list 1665 * 1666 * Releases the pages of a packet gather list. We do not own the last 1667 * page on the list and do not free it. 1668 */ 1669 static void t4_pktgl_free(const struct pkt_gl *gl) 1670 { 1671 int n; 1672 const struct page_frag *p; 1673 1674 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 1675 put_page(p->page); 1676 } 1677 1678 /* 1679 * Process an MPS trace packet. Give it an unused protocol number so it won't 1680 * be delivered to anyone and send it to the stack for capture. 1681 */ 1682 static noinline int handle_trace_pkt(struct adapter *adap, 1683 const struct pkt_gl *gl) 1684 { 1685 struct sk_buff *skb; 1686 1687 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 1688 if (unlikely(!skb)) { 1689 t4_pktgl_free(gl); 1690 return 0; 1691 } 1692 1693 if (is_t4(adap->params.chip)) 1694 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 1695 else 1696 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 1697 1698 skb_reset_mac_header(skb); 1699 skb->protocol = htons(0xffff); 1700 skb->dev = adap->port[0]; 1701 netif_receive_skb(skb); 1702 return 0; 1703 } 1704 1705 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 1706 const struct cpl_rx_pkt *pkt) 1707 { 1708 struct adapter *adapter = rxq->rspq.adap; 1709 struct sge *s = &adapter->sge; 1710 int ret; 1711 struct sk_buff *skb; 1712 1713 skb = napi_get_frags(&rxq->rspq.napi); 1714 if (unlikely(!skb)) { 1715 t4_pktgl_free(gl); 1716 rxq->stats.rx_drops++; 1717 return; 1718 } 1719 1720 copy_frags(skb, gl, s->pktshift); 1721 skb->len = gl->tot_len - s->pktshift; 1722 skb->data_len = skb->len; 1723 skb->truesize += skb->data_len; 1724 skb->ip_summed = CHECKSUM_UNNECESSARY; 1725 skb_record_rx_queue(skb, rxq->rspq.idx); 1726 skb_mark_napi_id(skb, &rxq->rspq.napi); 1727 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 1728 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 1729 PKT_HASH_TYPE_L3); 1730 1731 if (unlikely(pkt->vlan_ex)) { 1732 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 1733 rxq->stats.vlan_ex++; 1734 } 1735 ret = napi_gro_frags(&rxq->rspq.napi); 1736 if (ret == GRO_HELD) 1737 rxq->stats.lro_pkts++; 1738 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 1739 rxq->stats.lro_merged++; 1740 rxq->stats.pkts++; 1741 rxq->stats.rx_cso++; 1742 } 1743 1744 /** 1745 * t4_ethrx_handler - process an ingress ethernet packet 1746 * @q: the response queue that received the packet 1747 * @rsp: the response queue descriptor holding the RX_PKT message 1748 * @si: the gather list of packet fragments 1749 * 1750 * Process an ingress ethernet packet and deliver it to the stack. 1751 */ 1752 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 1753 const struct pkt_gl *si) 1754 { 1755 bool csum_ok; 1756 struct sk_buff *skb; 1757 const struct cpl_rx_pkt *pkt; 1758 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1759 struct sge *s = &q->adap->sge; 1760 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 1761 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 1762 1763 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 1764 return handle_trace_pkt(q->adap, si); 1765 1766 pkt = (const struct cpl_rx_pkt *)rsp; 1767 csum_ok = pkt->csum_calc && !pkt->err_vec && 1768 (q->netdev->features & NETIF_F_RXCSUM); 1769 if ((pkt->l2info & htonl(RXF_TCP_F)) && 1770 !(cxgb_poll_busy_polling(q)) && 1771 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 1772 do_gro(rxq, si, pkt); 1773 return 0; 1774 } 1775 1776 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 1777 if (unlikely(!skb)) { 1778 t4_pktgl_free(si); 1779 rxq->stats.rx_drops++; 1780 return 0; 1781 } 1782 1783 __skb_pull(skb, s->pktshift); /* remove ethernet header padding */ 1784 skb->protocol = eth_type_trans(skb, q->netdev); 1785 skb_record_rx_queue(skb, q->idx); 1786 if (skb->dev->features & NETIF_F_RXHASH) 1787 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 1788 PKT_HASH_TYPE_L3); 1789 1790 rxq->stats.pkts++; 1791 1792 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 1793 if (!pkt->ip_frag) { 1794 skb->ip_summed = CHECKSUM_UNNECESSARY; 1795 rxq->stats.rx_cso++; 1796 } else if (pkt->l2info & htonl(RXF_IP_F)) { 1797 __sum16 c = (__force __sum16)pkt->csum; 1798 skb->csum = csum_unfold(c); 1799 skb->ip_summed = CHECKSUM_COMPLETE; 1800 rxq->stats.rx_cso++; 1801 } 1802 } else 1803 skb_checksum_none_assert(skb); 1804 1805 if (unlikely(pkt->vlan_ex)) { 1806 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 1807 rxq->stats.vlan_ex++; 1808 } 1809 skb_mark_napi_id(skb, &q->napi); 1810 netif_receive_skb(skb); 1811 return 0; 1812 } 1813 1814 /** 1815 * restore_rx_bufs - put back a packet's Rx buffers 1816 * @si: the packet gather list 1817 * @q: the SGE free list 1818 * @frags: number of FL buffers to restore 1819 * 1820 * Puts back on an FL the Rx buffers associated with @si. The buffers 1821 * have already been unmapped and are left unmapped, we mark them so to 1822 * prevent further unmapping attempts. 1823 * 1824 * This function undoes a series of @unmap_rx_buf calls when we find out 1825 * that the current packet can't be processed right away afterall and we 1826 * need to come back to it later. This is a very rare event and there's 1827 * no effort to make this particularly efficient. 1828 */ 1829 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 1830 int frags) 1831 { 1832 struct rx_sw_desc *d; 1833 1834 while (frags--) { 1835 if (q->cidx == 0) 1836 q->cidx = q->size - 1; 1837 else 1838 q->cidx--; 1839 d = &q->sdesc[q->cidx]; 1840 d->page = si->frags[frags].page; 1841 d->dma_addr |= RX_UNMAPPED_BUF; 1842 q->avail++; 1843 } 1844 } 1845 1846 /** 1847 * is_new_response - check if a response is newly written 1848 * @r: the response descriptor 1849 * @q: the response queue 1850 * 1851 * Returns true if a response descriptor contains a yet unprocessed 1852 * response. 1853 */ 1854 static inline bool is_new_response(const struct rsp_ctrl *r, 1855 const struct sge_rspq *q) 1856 { 1857 return RSPD_GEN(r->type_gen) == q->gen; 1858 } 1859 1860 /** 1861 * rspq_next - advance to the next entry in a response queue 1862 * @q: the queue 1863 * 1864 * Updates the state of a response queue to advance it to the next entry. 1865 */ 1866 static inline void rspq_next(struct sge_rspq *q) 1867 { 1868 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 1869 if (unlikely(++q->cidx == q->size)) { 1870 q->cidx = 0; 1871 q->gen ^= 1; 1872 q->cur_desc = q->desc; 1873 } 1874 } 1875 1876 /** 1877 * process_responses - process responses from an SGE response queue 1878 * @q: the ingress queue to process 1879 * @budget: how many responses can be processed in this round 1880 * 1881 * Process responses from an SGE response queue up to the supplied budget. 1882 * Responses include received packets as well as control messages from FW 1883 * or HW. 1884 * 1885 * Additionally choose the interrupt holdoff time for the next interrupt 1886 * on this queue. If the system is under memory shortage use a fairly 1887 * long delay to help recovery. 1888 */ 1889 static int process_responses(struct sge_rspq *q, int budget) 1890 { 1891 int ret, rsp_type; 1892 int budget_left = budget; 1893 const struct rsp_ctrl *rc; 1894 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1895 struct adapter *adapter = q->adap; 1896 struct sge *s = &adapter->sge; 1897 1898 while (likely(budget_left)) { 1899 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 1900 if (!is_new_response(rc, q)) 1901 break; 1902 1903 rmb(); 1904 rsp_type = RSPD_TYPE(rc->type_gen); 1905 if (likely(rsp_type == RSP_TYPE_FLBUF)) { 1906 struct page_frag *fp; 1907 struct pkt_gl si; 1908 const struct rx_sw_desc *rsd; 1909 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 1910 1911 if (len & RSPD_NEWBUF) { 1912 if (likely(q->offset > 0)) { 1913 free_rx_bufs(q->adap, &rxq->fl, 1); 1914 q->offset = 0; 1915 } 1916 len = RSPD_LEN(len); 1917 } 1918 si.tot_len = len; 1919 1920 /* gather packet fragments */ 1921 for (frags = 0, fp = si.frags; ; frags++, fp++) { 1922 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 1923 bufsz = get_buf_size(adapter, rsd); 1924 fp->page = rsd->page; 1925 fp->offset = q->offset; 1926 fp->size = min(bufsz, len); 1927 len -= fp->size; 1928 if (!len) 1929 break; 1930 unmap_rx_buf(q->adap, &rxq->fl); 1931 } 1932 1933 /* 1934 * Last buffer remains mapped so explicitly make it 1935 * coherent for CPU access. 1936 */ 1937 dma_sync_single_for_cpu(q->adap->pdev_dev, 1938 get_buf_addr(rsd), 1939 fp->size, DMA_FROM_DEVICE); 1940 1941 si.va = page_address(si.frags[0].page) + 1942 si.frags[0].offset; 1943 prefetch(si.va); 1944 1945 si.nfrags = frags + 1; 1946 ret = q->handler(q, q->cur_desc, &si); 1947 if (likely(ret == 0)) 1948 q->offset += ALIGN(fp->size, s->fl_align); 1949 else 1950 restore_rx_bufs(&si, &rxq->fl, frags); 1951 } else if (likely(rsp_type == RSP_TYPE_CPL)) { 1952 ret = q->handler(q, q->cur_desc, NULL); 1953 } else { 1954 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 1955 } 1956 1957 if (unlikely(ret)) { 1958 /* couldn't process descriptor, back off for recovery */ 1959 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX); 1960 break; 1961 } 1962 1963 rspq_next(q); 1964 budget_left--; 1965 } 1966 1967 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16) 1968 __refill_fl(q->adap, &rxq->fl); 1969 return budget - budget_left; 1970 } 1971 1972 #ifdef CONFIG_NET_RX_BUSY_POLL 1973 int cxgb_busy_poll(struct napi_struct *napi) 1974 { 1975 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 1976 unsigned int params, work_done; 1977 u32 val; 1978 1979 if (!cxgb_poll_lock_poll(q)) 1980 return LL_FLUSH_BUSY; 1981 1982 work_done = process_responses(q, 4); 1983 params = QINTR_TIMER_IDX(TIMERREG_COUNTER0_X) | QINTR_CNT_EN; 1984 q->next_intr_params = params; 1985 val = CIDXINC_V(work_done) | SEINTARM_V(params); 1986 1987 /* If we don't have access to the new User GTS (T5+), use the old 1988 * doorbell mechanism; otherwise use the new BAR2 mechanism. 1989 */ 1990 if (unlikely(!q->bar2_addr)) 1991 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 1992 val | INGRESSQID_V((u32)q->cntxt_id)); 1993 else { 1994 writel(val | INGRESSQID_V(q->bar2_qid), 1995 q->bar2_addr + SGE_UDB_GTS); 1996 wmb(); 1997 } 1998 1999 cxgb_poll_unlock_poll(q); 2000 return work_done; 2001 } 2002 #endif /* CONFIG_NET_RX_BUSY_POLL */ 2003 2004 /** 2005 * napi_rx_handler - the NAPI handler for Rx processing 2006 * @napi: the napi instance 2007 * @budget: how many packets we can process in this round 2008 * 2009 * Handler for new data events when using NAPI. This does not need any 2010 * locking or protection from interrupts as data interrupts are off at 2011 * this point and other adapter interrupts do not interfere (the latter 2012 * in not a concern at all with MSI-X as non-data interrupts then have 2013 * a separate handler). 2014 */ 2015 static int napi_rx_handler(struct napi_struct *napi, int budget) 2016 { 2017 unsigned int params; 2018 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 2019 int work_done; 2020 u32 val; 2021 2022 if (!cxgb_poll_lock_napi(q)) 2023 return budget; 2024 2025 work_done = process_responses(q, budget); 2026 if (likely(work_done < budget)) { 2027 int timer_index; 2028 2029 napi_complete(napi); 2030 timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params); 2031 2032 if (q->adaptive_rx) { 2033 if (work_done > max(timer_pkt_quota[timer_index], 2034 MIN_NAPI_WORK)) 2035 timer_index = (timer_index + 1); 2036 else 2037 timer_index = timer_index - 1; 2038 2039 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 2040 q->next_intr_params = QINTR_TIMER_IDX(timer_index) | 2041 V_QINTR_CNT_EN; 2042 params = q->next_intr_params; 2043 } else { 2044 params = q->next_intr_params; 2045 q->next_intr_params = q->intr_params; 2046 } 2047 } else 2048 params = QINTR_TIMER_IDX(7); 2049 2050 val = CIDXINC_V(work_done) | SEINTARM_V(params); 2051 2052 /* If we don't have access to the new User GTS (T5+), use the old 2053 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2054 */ 2055 if (unlikely(q->bar2_addr == NULL)) { 2056 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 2057 val | INGRESSQID_V((u32)q->cntxt_id)); 2058 } else { 2059 writel(val | INGRESSQID_V(q->bar2_qid), 2060 q->bar2_addr + SGE_UDB_GTS); 2061 wmb(); 2062 } 2063 cxgb_poll_unlock_napi(q); 2064 return work_done; 2065 } 2066 2067 /* 2068 * The MSI-X interrupt handler for an SGE response queue. 2069 */ 2070 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 2071 { 2072 struct sge_rspq *q = cookie; 2073 2074 napi_schedule(&q->napi); 2075 return IRQ_HANDLED; 2076 } 2077 2078 /* 2079 * Process the indirect interrupt entries in the interrupt queue and kick off 2080 * NAPI for each queue that has generated an entry. 2081 */ 2082 static unsigned int process_intrq(struct adapter *adap) 2083 { 2084 unsigned int credits; 2085 const struct rsp_ctrl *rc; 2086 struct sge_rspq *q = &adap->sge.intrq; 2087 u32 val; 2088 2089 spin_lock(&adap->sge.intrq_lock); 2090 for (credits = 0; ; credits++) { 2091 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 2092 if (!is_new_response(rc, q)) 2093 break; 2094 2095 rmb(); 2096 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) { 2097 unsigned int qid = ntohl(rc->pldbuflen_qid); 2098 2099 qid -= adap->sge.ingr_start; 2100 napi_schedule(&adap->sge.ingr_map[qid]->napi); 2101 } 2102 2103 rspq_next(q); 2104 } 2105 2106 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 2107 2108 /* If we don't have access to the new User GTS (T5+), use the old 2109 * doorbell mechanism; otherwise use the new BAR2 mechanism. 2110 */ 2111 if (unlikely(q->bar2_addr == NULL)) { 2112 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 2113 val | INGRESSQID_V(q->cntxt_id)); 2114 } else { 2115 writel(val | INGRESSQID_V(q->bar2_qid), 2116 q->bar2_addr + SGE_UDB_GTS); 2117 wmb(); 2118 } 2119 spin_unlock(&adap->sge.intrq_lock); 2120 return credits; 2121 } 2122 2123 /* 2124 * The MSI interrupt handler, which handles data events from SGE response queues 2125 * as well as error and other async events as they all use the same MSI vector. 2126 */ 2127 static irqreturn_t t4_intr_msi(int irq, void *cookie) 2128 { 2129 struct adapter *adap = cookie; 2130 2131 t4_slow_intr_handler(adap); 2132 process_intrq(adap); 2133 return IRQ_HANDLED; 2134 } 2135 2136 /* 2137 * Interrupt handler for legacy INTx interrupts. 2138 * Handles data events from SGE response queues as well as error and other 2139 * async events as they all use the same interrupt line. 2140 */ 2141 static irqreturn_t t4_intr_intx(int irq, void *cookie) 2142 { 2143 struct adapter *adap = cookie; 2144 2145 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 2146 if (t4_slow_intr_handler(adap) | process_intrq(adap)) 2147 return IRQ_HANDLED; 2148 return IRQ_NONE; /* probably shared interrupt */ 2149 } 2150 2151 /** 2152 * t4_intr_handler - select the top-level interrupt handler 2153 * @adap: the adapter 2154 * 2155 * Selects the top-level interrupt handler based on the type of interrupts 2156 * (MSI-X, MSI, or INTx). 2157 */ 2158 irq_handler_t t4_intr_handler(struct adapter *adap) 2159 { 2160 if (adap->flags & USING_MSIX) 2161 return t4_sge_intr_msix; 2162 if (adap->flags & USING_MSI) 2163 return t4_intr_msi; 2164 return t4_intr_intx; 2165 } 2166 2167 static void sge_rx_timer_cb(unsigned long data) 2168 { 2169 unsigned long m; 2170 unsigned int i, idma_same_state_cnt[2]; 2171 struct adapter *adap = (struct adapter *)data; 2172 struct sge *s = &adap->sge; 2173 2174 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) 2175 for (m = s->starving_fl[i]; m; m &= m - 1) { 2176 struct sge_eth_rxq *rxq; 2177 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 2178 struct sge_fl *fl = s->egr_map[id]; 2179 2180 clear_bit(id, s->starving_fl); 2181 smp_mb__after_atomic(); 2182 2183 if (fl_starving(fl)) { 2184 rxq = container_of(fl, struct sge_eth_rxq, fl); 2185 if (napi_reschedule(&rxq->rspq.napi)) 2186 fl->starving++; 2187 else 2188 set_bit(id, s->starving_fl); 2189 } 2190 } 2191 2192 t4_write_reg(adap, SGE_DEBUG_INDEX_A, 13); 2193 idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH_A); 2194 idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); 2195 2196 for (i = 0; i < 2; i++) { 2197 u32 debug0, debug11; 2198 2199 /* If the Ingress DMA Same State Counter ("timer") is less 2200 * than 1s, then we can reset our synthesized Stall Timer and 2201 * continue. If we have previously emitted warnings about a 2202 * potential stalled Ingress Queue, issue a note indicating 2203 * that the Ingress Queue has resumed forward progress. 2204 */ 2205 if (idma_same_state_cnt[i] < s->idma_1s_thresh) { 2206 if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH) 2207 CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n", 2208 i, s->idma_qid[i], 2209 s->idma_stalled[i]/HZ); 2210 s->idma_stalled[i] = 0; 2211 continue; 2212 } 2213 2214 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 2215 * domain. The first time we get here it'll be because we 2216 * passed the 1s Threshold; each additional time it'll be 2217 * because the RX Timer Callback is being fired on its regular 2218 * schedule. 2219 * 2220 * If the stall is below our Potential Hung Ingress Queue 2221 * Warning Threshold, continue. 2222 */ 2223 if (s->idma_stalled[i] == 0) 2224 s->idma_stalled[i] = HZ; 2225 else 2226 s->idma_stalled[i] += RX_QCHECK_PERIOD; 2227 2228 if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH) 2229 continue; 2230 2231 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */ 2232 if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0) 2233 continue; 2234 2235 /* Read and save the SGE IDMA State and Queue ID information. 2236 * We do this every time in case it changes across time ... 2237 */ 2238 t4_write_reg(adap, SGE_DEBUG_INDEX_A, 0); 2239 debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); 2240 s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 2241 2242 t4_write_reg(adap, SGE_DEBUG_INDEX_A, 11); 2243 debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A); 2244 s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 2245 2246 CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n", 2247 i, s->idma_qid[i], s->idma_state[i], 2248 s->idma_stalled[i]/HZ, debug0, debug11); 2249 t4_sge_decode_idma_state(adap, s->idma_state[i]); 2250 } 2251 2252 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 2253 } 2254 2255 static void sge_tx_timer_cb(unsigned long data) 2256 { 2257 unsigned long m; 2258 unsigned int i, budget; 2259 struct adapter *adap = (struct adapter *)data; 2260 struct sge *s = &adap->sge; 2261 2262 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++) 2263 for (m = s->txq_maperr[i]; m; m &= m - 1) { 2264 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 2265 struct sge_ofld_txq *txq = s->egr_map[id]; 2266 2267 clear_bit(id, s->txq_maperr); 2268 tasklet_schedule(&txq->qresume_tsk); 2269 } 2270 2271 budget = MAX_TIMER_TX_RECLAIM; 2272 i = s->ethtxq_rover; 2273 do { 2274 struct sge_eth_txq *q = &s->ethtxq[i]; 2275 2276 if (q->q.in_use && 2277 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && 2278 __netif_tx_trylock(q->txq)) { 2279 int avail = reclaimable(&q->q); 2280 2281 if (avail) { 2282 if (avail > budget) 2283 avail = budget; 2284 2285 free_tx_desc(adap, &q->q, avail, true); 2286 q->q.in_use -= avail; 2287 budget -= avail; 2288 } 2289 __netif_tx_unlock(q->txq); 2290 } 2291 2292 if (++i >= s->ethqsets) 2293 i = 0; 2294 } while (budget && i != s->ethtxq_rover); 2295 s->ethtxq_rover = i; 2296 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2297 } 2298 2299 /** 2300 * bar2_address - return the BAR2 address for an SGE Queue's Registers 2301 * @adapter: the adapter 2302 * @qid: the SGE Queue ID 2303 * @qtype: the SGE Queue Type (Egress or Ingress) 2304 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 2305 * 2306 * Returns the BAR2 address for the SGE Queue Registers associated with 2307 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 2308 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 2309 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 2310 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 2311 */ 2312 static void __iomem *bar2_address(struct adapter *adapter, 2313 unsigned int qid, 2314 enum t4_bar2_qtype qtype, 2315 unsigned int *pbar2_qid) 2316 { 2317 u64 bar2_qoffset; 2318 int ret; 2319 2320 ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype, 2321 &bar2_qoffset, pbar2_qid); 2322 if (ret) 2323 return NULL; 2324 2325 return adapter->bar2 + bar2_qoffset; 2326 } 2327 2328 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 2329 struct net_device *dev, int intr_idx, 2330 struct sge_fl *fl, rspq_handler_t hnd) 2331 { 2332 int ret, flsz = 0; 2333 struct fw_iq_cmd c; 2334 struct sge *s = &adap->sge; 2335 struct port_info *pi = netdev_priv(dev); 2336 2337 /* Size needs to be multiple of 16, including status entry. */ 2338 iq->size = roundup(iq->size, 16); 2339 2340 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 2341 &iq->phys_addr, NULL, 0, NUMA_NO_NODE); 2342 if (!iq->desc) 2343 return -ENOMEM; 2344 2345 memset(&c, 0, sizeof(c)); 2346 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 2347 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2348 FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0)); 2349 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 2350 FW_LEN16(c)); 2351 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 2352 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 2353 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) | 2354 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 2355 -intr_idx - 1)); 2356 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 2357 FW_IQ_CMD_IQGTSMODE_F | 2358 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 2359 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 2360 c.iqsize = htons(iq->size); 2361 c.iqaddr = cpu_to_be64(iq->phys_addr); 2362 2363 if (fl) { 2364 fl->size = roundup(fl->size, 8); 2365 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 2366 sizeof(struct rx_sw_desc), &fl->addr, 2367 &fl->sdesc, s->stat_len, NUMA_NO_NODE); 2368 if (!fl->desc) 2369 goto fl_nomem; 2370 2371 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 2372 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F | 2373 FW_IQ_CMD_FL0FETCHRO_F | 2374 FW_IQ_CMD_FL0DATARO_F | 2375 FW_IQ_CMD_FL0PADEN_F); 2376 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) | 2377 FW_IQ_CMD_FL0FBMAX_V(3)); 2378 c.fl0size = htons(flsz); 2379 c.fl0addr = cpu_to_be64(fl->addr); 2380 } 2381 2382 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2383 if (ret) 2384 goto err; 2385 2386 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); 2387 napi_hash_add(&iq->napi); 2388 iq->cur_desc = iq->desc; 2389 iq->cidx = 0; 2390 iq->gen = 1; 2391 iq->next_intr_params = iq->intr_params; 2392 iq->cntxt_id = ntohs(c.iqid); 2393 iq->abs_id = ntohs(c.physiqid); 2394 iq->bar2_addr = bar2_address(adap, 2395 iq->cntxt_id, 2396 T4_BAR2_QTYPE_INGRESS, 2397 &iq->bar2_qid); 2398 iq->size--; /* subtract status entry */ 2399 iq->netdev = dev; 2400 iq->handler = hnd; 2401 2402 /* set offset to -1 to distinguish ingress queues without FL */ 2403 iq->offset = fl ? 0 : -1; 2404 2405 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 2406 2407 if (fl) { 2408 fl->cntxt_id = ntohs(c.fl0id); 2409 fl->avail = fl->pend_cred = 0; 2410 fl->pidx = fl->cidx = 0; 2411 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 2412 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 2413 2414 /* Note, we must initialize the BAR2 Free List User Doorbell 2415 * information before refilling the Free List! 2416 */ 2417 fl->bar2_addr = bar2_address(adap, 2418 fl->cntxt_id, 2419 T4_BAR2_QTYPE_EGRESS, 2420 &fl->bar2_qid); 2421 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 2422 } 2423 return 0; 2424 2425 fl_nomem: 2426 ret = -ENOMEM; 2427 err: 2428 if (iq->desc) { 2429 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 2430 iq->desc, iq->phys_addr); 2431 iq->desc = NULL; 2432 } 2433 if (fl && fl->desc) { 2434 kfree(fl->sdesc); 2435 fl->sdesc = NULL; 2436 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 2437 fl->desc, fl->addr); 2438 fl->desc = NULL; 2439 } 2440 return ret; 2441 } 2442 2443 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 2444 { 2445 q->cntxt_id = id; 2446 q->bar2_addr = bar2_address(adap, 2447 q->cntxt_id, 2448 T4_BAR2_QTYPE_EGRESS, 2449 &q->bar2_qid); 2450 q->in_use = 0; 2451 q->cidx = q->pidx = 0; 2452 q->stops = q->restarts = 0; 2453 q->stat = (void *)&q->desc[q->size]; 2454 spin_lock_init(&q->db_lock); 2455 adap->sge.egr_map[id - adap->sge.egr_start] = q; 2456 } 2457 2458 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 2459 struct net_device *dev, struct netdev_queue *netdevq, 2460 unsigned int iqid) 2461 { 2462 int ret, nentries; 2463 struct fw_eq_eth_cmd c; 2464 struct sge *s = &adap->sge; 2465 struct port_info *pi = netdev_priv(dev); 2466 2467 /* Add status entries */ 2468 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2469 2470 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2471 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2472 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 2473 netdev_queue_numa_node_read(netdevq)); 2474 if (!txq->q.desc) 2475 return -ENOMEM; 2476 2477 memset(&c, 0, sizeof(c)); 2478 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 2479 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2480 FW_EQ_ETH_CMD_PFN_V(adap->fn) | 2481 FW_EQ_ETH_CMD_VFN_V(0)); 2482 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 2483 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 2484 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 2485 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 2486 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) | 2487 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 2488 FW_EQ_ETH_CMD_FETCHRO_V(1) | 2489 FW_EQ_ETH_CMD_IQID_V(iqid)); 2490 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) | 2491 FW_EQ_ETH_CMD_FBMAX_V(3) | 2492 FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) | 2493 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 2494 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2495 2496 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2497 if (ret) { 2498 kfree(txq->q.sdesc); 2499 txq->q.sdesc = NULL; 2500 dma_free_coherent(adap->pdev_dev, 2501 nentries * sizeof(struct tx_desc), 2502 txq->q.desc, txq->q.phys_addr); 2503 txq->q.desc = NULL; 2504 return ret; 2505 } 2506 2507 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 2508 txq->txq = netdevq; 2509 txq->tso = txq->tx_cso = txq->vlan_ins = 0; 2510 txq->mapping_err = 0; 2511 return 0; 2512 } 2513 2514 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 2515 struct net_device *dev, unsigned int iqid, 2516 unsigned int cmplqid) 2517 { 2518 int ret, nentries; 2519 struct fw_eq_ctrl_cmd c; 2520 struct sge *s = &adap->sge; 2521 struct port_info *pi = netdev_priv(dev); 2522 2523 /* Add status entries */ 2524 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2525 2526 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 2527 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 2528 NULL, 0, NUMA_NO_NODE); 2529 if (!txq->q.desc) 2530 return -ENOMEM; 2531 2532 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 2533 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2534 FW_EQ_CTRL_CMD_PFN_V(adap->fn) | 2535 FW_EQ_CTRL_CMD_VFN_V(0)); 2536 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 2537 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 2538 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 2539 c.physeqid_pkd = htonl(0); 2540 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) | 2541 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 2542 FW_EQ_CTRL_CMD_FETCHRO_F | 2543 FW_EQ_CTRL_CMD_IQID_V(iqid)); 2544 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) | 2545 FW_EQ_CTRL_CMD_FBMAX_V(3) | 2546 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) | 2547 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 2548 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2549 2550 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2551 if (ret) { 2552 dma_free_coherent(adap->pdev_dev, 2553 nentries * sizeof(struct tx_desc), 2554 txq->q.desc, txq->q.phys_addr); 2555 txq->q.desc = NULL; 2556 return ret; 2557 } 2558 2559 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 2560 txq->adap = adap; 2561 skb_queue_head_init(&txq->sendq); 2562 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); 2563 txq->full = 0; 2564 return 0; 2565 } 2566 2567 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq, 2568 struct net_device *dev, unsigned int iqid) 2569 { 2570 int ret, nentries; 2571 struct fw_eq_ofld_cmd c; 2572 struct sge *s = &adap->sge; 2573 struct port_info *pi = netdev_priv(dev); 2574 2575 /* Add status entries */ 2576 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2577 2578 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 2579 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 2580 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 2581 NUMA_NO_NODE); 2582 if (!txq->q.desc) 2583 return -ENOMEM; 2584 2585 memset(&c, 0, sizeof(c)); 2586 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F | 2587 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 2588 FW_EQ_OFLD_CMD_PFN_V(adap->fn) | 2589 FW_EQ_OFLD_CMD_VFN_V(0)); 2590 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 2591 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 2592 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) | 2593 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 2594 FW_EQ_OFLD_CMD_FETCHRO_F | 2595 FW_EQ_OFLD_CMD_IQID_V(iqid)); 2596 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) | 2597 FW_EQ_OFLD_CMD_FBMAX_V(3) | 2598 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) | 2599 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 2600 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 2601 2602 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); 2603 if (ret) { 2604 kfree(txq->q.sdesc); 2605 txq->q.sdesc = NULL; 2606 dma_free_coherent(adap->pdev_dev, 2607 nentries * sizeof(struct tx_desc), 2608 txq->q.desc, txq->q.phys_addr); 2609 txq->q.desc = NULL; 2610 return ret; 2611 } 2612 2613 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 2614 txq->adap = adap; 2615 skb_queue_head_init(&txq->sendq); 2616 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); 2617 txq->full = 0; 2618 txq->mapping_err = 0; 2619 return 0; 2620 } 2621 2622 static void free_txq(struct adapter *adap, struct sge_txq *q) 2623 { 2624 struct sge *s = &adap->sge; 2625 2626 dma_free_coherent(adap->pdev_dev, 2627 q->size * sizeof(struct tx_desc) + s->stat_len, 2628 q->desc, q->phys_addr); 2629 q->cntxt_id = 0; 2630 q->sdesc = NULL; 2631 q->desc = NULL; 2632 } 2633 2634 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 2635 struct sge_fl *fl) 2636 { 2637 struct sge *s = &adap->sge; 2638 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 2639 2640 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 2641 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP, 2642 rq->cntxt_id, fl_id, 0xffff); 2643 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 2644 rq->desc, rq->phys_addr); 2645 napi_hash_del(&rq->napi); 2646 netif_napi_del(&rq->napi); 2647 rq->netdev = NULL; 2648 rq->cntxt_id = rq->abs_id = 0; 2649 rq->desc = NULL; 2650 2651 if (fl) { 2652 free_rx_bufs(adap, fl, fl->avail); 2653 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 2654 fl->desc, fl->addr); 2655 kfree(fl->sdesc); 2656 fl->sdesc = NULL; 2657 fl->cntxt_id = 0; 2658 fl->desc = NULL; 2659 } 2660 } 2661 2662 /** 2663 * t4_free_ofld_rxqs - free a block of consecutive Rx queues 2664 * @adap: the adapter 2665 * @n: number of queues 2666 * @q: pointer to first queue 2667 * 2668 * Release the resources of a consecutive block of offload Rx queues. 2669 */ 2670 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) 2671 { 2672 for ( ; n; n--, q++) 2673 if (q->rspq.desc) 2674 free_rspq_fl(adap, &q->rspq, 2675 q->fl.size ? &q->fl : NULL); 2676 } 2677 2678 /** 2679 * t4_free_sge_resources - free SGE resources 2680 * @adap: the adapter 2681 * 2682 * Frees resources used by the SGE queue sets. 2683 */ 2684 void t4_free_sge_resources(struct adapter *adap) 2685 { 2686 int i; 2687 struct sge_eth_rxq *eq = adap->sge.ethrxq; 2688 struct sge_eth_txq *etq = adap->sge.ethtxq; 2689 2690 /* clean up Ethernet Tx/Rx queues */ 2691 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) { 2692 if (eq->rspq.desc) 2693 free_rspq_fl(adap, &eq->rspq, 2694 eq->fl.size ? &eq->fl : NULL); 2695 if (etq->q.desc) { 2696 t4_eth_eq_free(adap, adap->fn, adap->fn, 0, 2697 etq->q.cntxt_id); 2698 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 2699 kfree(etq->q.sdesc); 2700 free_txq(adap, &etq->q); 2701 } 2702 } 2703 2704 /* clean up RDMA and iSCSI Rx queues */ 2705 t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq); 2706 t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq); 2707 t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq); 2708 2709 /* clean up offload Tx queues */ 2710 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) { 2711 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i]; 2712 2713 if (q->q.desc) { 2714 tasklet_kill(&q->qresume_tsk); 2715 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0, 2716 q->q.cntxt_id); 2717 free_tx_desc(adap, &q->q, q->q.in_use, false); 2718 kfree(q->q.sdesc); 2719 __skb_queue_purge(&q->sendq); 2720 free_txq(adap, &q->q); 2721 } 2722 } 2723 2724 /* clean up control Tx queues */ 2725 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 2726 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 2727 2728 if (cq->q.desc) { 2729 tasklet_kill(&cq->qresume_tsk); 2730 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0, 2731 cq->q.cntxt_id); 2732 __skb_queue_purge(&cq->sendq); 2733 free_txq(adap, &cq->q); 2734 } 2735 } 2736 2737 if (adap->sge.fw_evtq.desc) 2738 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 2739 2740 if (adap->sge.intrq.desc) 2741 free_rspq_fl(adap, &adap->sge.intrq, NULL); 2742 2743 /* clear the reverse egress queue map */ 2744 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map)); 2745 } 2746 2747 void t4_sge_start(struct adapter *adap) 2748 { 2749 adap->sge.ethtxq_rover = 0; 2750 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 2751 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 2752 } 2753 2754 /** 2755 * t4_sge_stop - disable SGE operation 2756 * @adap: the adapter 2757 * 2758 * Stop tasklets and timers associated with the DMA engine. Note that 2759 * this is effective only if measures have been taken to disable any HW 2760 * events that may restart them. 2761 */ 2762 void t4_sge_stop(struct adapter *adap) 2763 { 2764 int i; 2765 struct sge *s = &adap->sge; 2766 2767 if (in_interrupt()) /* actions below require waiting */ 2768 return; 2769 2770 if (s->rx_timer.function) 2771 del_timer_sync(&s->rx_timer); 2772 if (s->tx_timer.function) 2773 del_timer_sync(&s->tx_timer); 2774 2775 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) { 2776 struct sge_ofld_txq *q = &s->ofldtxq[i]; 2777 2778 if (q->q.desc) 2779 tasklet_kill(&q->qresume_tsk); 2780 } 2781 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 2782 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 2783 2784 if (cq->q.desc) 2785 tasklet_kill(&cq->qresume_tsk); 2786 } 2787 } 2788 2789 /** 2790 * t4_sge_init_soft - grab core SGE values needed by SGE code 2791 * @adap: the adapter 2792 * 2793 * We need to grab the SGE operating parameters that we need to have 2794 * in order to do our job and make sure we can live with them. 2795 */ 2796 2797 static int t4_sge_init_soft(struct adapter *adap) 2798 { 2799 struct sge *s = &adap->sge; 2800 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 2801 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 2802 u32 ingress_rx_threshold; 2803 2804 /* 2805 * Verify that CPL messages are going to the Ingress Queue for 2806 * process_responses() and that only packet data is going to the 2807 * Free Lists. 2808 */ 2809 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 2810 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 2811 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 2812 return -EINVAL; 2813 } 2814 2815 /* 2816 * Validate the Host Buffer Register Array indices that we want to 2817 * use ... 2818 * 2819 * XXX Note that we should really read through the Host Buffer Size 2820 * XXX register array and find the indices of the Buffer Sizes which 2821 * XXX meet our needs! 2822 */ 2823 #define READ_FL_BUF(x) \ 2824 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 2825 2826 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 2827 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 2828 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 2829 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 2830 2831 /* We only bother using the Large Page logic if the Large Page Buffer 2832 * is larger than our Page Size Buffer. 2833 */ 2834 if (fl_large_pg <= fl_small_pg) 2835 fl_large_pg = 0; 2836 2837 #undef READ_FL_BUF 2838 2839 /* The Page Size Buffer must be exactly equal to our Page Size and the 2840 * Large Page Size Buffer should be 0 (per above) or a power of 2. 2841 */ 2842 if (fl_small_pg != PAGE_SIZE || 2843 (fl_large_pg & (fl_large_pg-1)) != 0) { 2844 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 2845 fl_small_pg, fl_large_pg); 2846 return -EINVAL; 2847 } 2848 if (fl_large_pg) 2849 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 2850 2851 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 2852 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 2853 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 2854 fl_small_mtu, fl_large_mtu); 2855 return -EINVAL; 2856 } 2857 2858 /* 2859 * Retrieve our RX interrupt holdoff timer values and counter 2860 * threshold values from the SGE parameters. 2861 */ 2862 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 2863 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 2864 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 2865 s->timer_val[0] = core_ticks_to_us(adap, 2866 TIMERVALUE0_G(timer_value_0_and_1)); 2867 s->timer_val[1] = core_ticks_to_us(adap, 2868 TIMERVALUE1_G(timer_value_0_and_1)); 2869 s->timer_val[2] = core_ticks_to_us(adap, 2870 TIMERVALUE2_G(timer_value_2_and_3)); 2871 s->timer_val[3] = core_ticks_to_us(adap, 2872 TIMERVALUE3_G(timer_value_2_and_3)); 2873 s->timer_val[4] = core_ticks_to_us(adap, 2874 TIMERVALUE4_G(timer_value_4_and_5)); 2875 s->timer_val[5] = core_ticks_to_us(adap, 2876 TIMERVALUE5_G(timer_value_4_and_5)); 2877 2878 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 2879 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 2880 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 2881 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 2882 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 2883 2884 return 0; 2885 } 2886 2887 /** 2888 * t4_sge_init - initialize SGE 2889 * @adap: the adapter 2890 * 2891 * Perform low-level SGE code initialization needed every time after a 2892 * chip reset. 2893 */ 2894 int t4_sge_init(struct adapter *adap) 2895 { 2896 struct sge *s = &adap->sge; 2897 u32 sge_control, sge_control2, sge_conm_ctrl; 2898 unsigned int ingpadboundary, ingpackboundary; 2899 int ret, egress_threshold; 2900 2901 /* 2902 * Ingress Padding Boundary and Egress Status Page Size are set up by 2903 * t4_fixup_host_params(). 2904 */ 2905 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 2906 s->pktshift = PKTSHIFT_G(sge_control); 2907 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 2908 2909 /* T4 uses a single control field to specify both the PCIe Padding and 2910 * Packing Boundary. T5 introduced the ability to specify these 2911 * separately. The actual Ingress Packet Data alignment boundary 2912 * within Packed Buffer Mode is the maximum of these two 2913 * specifications. 2914 */ 2915 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + 2916 INGPADBOUNDARY_SHIFT_X); 2917 if (is_t4(adap->params.chip)) { 2918 s->fl_align = ingpadboundary; 2919 } else { 2920 /* T5 has a different interpretation of one of the PCIe Packing 2921 * Boundary values. 2922 */ 2923 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 2924 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 2925 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 2926 ingpackboundary = 16; 2927 else 2928 ingpackboundary = 1 << (ingpackboundary + 2929 INGPACKBOUNDARY_SHIFT_X); 2930 2931 s->fl_align = max(ingpadboundary, ingpackboundary); 2932 } 2933 2934 ret = t4_sge_init_soft(adap); 2935 if (ret < 0) 2936 return ret; 2937 2938 /* 2939 * A FL with <= fl_starve_thres buffers is starving and a periodic 2940 * timer will attempt to refill it. This needs to be larger than the 2941 * SGE's Egress Congestion Threshold. If it isn't, then we can get 2942 * stuck waiting for new packets while the SGE is waiting for us to 2943 * give it more Free List entries. (Note that the SGE's Egress 2944 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 2945 * there was only a single field to control this. For T5 there's the 2946 * original field which now only applies to Unpacked Mode Free List 2947 * buffers and a new field which only applies to Packed Mode Free List 2948 * buffers. 2949 */ 2950 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 2951 if (is_t4(adap->params.chip)) 2952 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 2953 else 2954 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 2955 s->fl_starve_thres = 2*egress_threshold + 1; 2956 2957 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); 2958 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); 2959 s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */ 2960 s->idma_stalled[0] = 0; 2961 s->idma_stalled[1] = 0; 2962 spin_lock_init(&s->intrq_lock); 2963 2964 return 0; 2965 } 2966